xref: /linux/drivers/net/ethernet/intel/e1000e/phy.c (revision 08ec212c0f92cbf30e3ecc7349f18151714041d6)
1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #include "e1000.h"
30 
31 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
32 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
33 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
34 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
35 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
36 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
37 					  u16 *data, bool read, bool page_set);
38 static u32 e1000_get_phy_addr_for_hv_page(u32 page);
39 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
40                                           u16 *data, bool read);
41 
42 /* Cable length tables */
43 static const u16 e1000_m88_cable_length_table[] = {
44 	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
45 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
46 		ARRAY_SIZE(e1000_m88_cable_length_table)
47 
48 static const u16 e1000_igp_2_cable_length_table[] = {
49 	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
50 	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
51 	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
52 	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
53 	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
54 	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
55 	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
56 	124};
57 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
58 		ARRAY_SIZE(e1000_igp_2_cable_length_table)
59 
60 #define BM_PHY_REG_PAGE(offset) \
61 	((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
62 #define BM_PHY_REG_NUM(offset) \
63 	((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
64 	 (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
65 		~MAX_PHY_REG_ADDRESS)))
66 
67 #define HV_INTC_FC_PAGE_START             768
68 #define I82578_ADDR_REG                   29
69 #define I82577_ADDR_REG                   16
70 #define I82577_CFG_REG                    22
71 #define I82577_CFG_ASSERT_CRS_ON_TX       (1 << 15)
72 #define I82577_CFG_ENABLE_DOWNSHIFT       (3 << 10) /* auto downshift 100/10 */
73 #define I82577_CTRL_REG                   23
74 
75 /* 82577 specific PHY registers */
76 #define I82577_PHY_CTRL_2            18
77 #define I82577_PHY_STATUS_2          26
78 #define I82577_PHY_DIAG_STATUS       31
79 
80 /* I82577 PHY Status 2 */
81 #define I82577_PHY_STATUS2_REV_POLARITY   0x0400
82 #define I82577_PHY_STATUS2_MDIX           0x0800
83 #define I82577_PHY_STATUS2_SPEED_MASK     0x0300
84 #define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200
85 
86 /* I82577 PHY Control 2 */
87 #define I82577_PHY_CTRL2_MANUAL_MDIX      0x0200
88 #define I82577_PHY_CTRL2_AUTO_MDI_MDIX    0x0400
89 #define I82577_PHY_CTRL2_MDIX_CFG_MASK    0x0600
90 
91 /* I82577 PHY Diagnostics Status */
92 #define I82577_DSTATUS_CABLE_LENGTH       0x03FC
93 #define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2
94 
95 /* BM PHY Copper Specific Control 1 */
96 #define BM_CS_CTRL1                       16
97 
98 #define HV_MUX_DATA_CTRL               PHY_REG(776, 16)
99 #define HV_MUX_DATA_CTRL_GEN_TO_MAC    0x0400
100 #define HV_MUX_DATA_CTRL_FORCE_SPEED   0x0004
101 
102 /**
103  *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
104  *  @hw: pointer to the HW structure
105  *
106  *  Read the PHY management control register and check whether a PHY reset
107  *  is blocked.  If a reset is not blocked return 0, otherwise
108  *  return E1000_BLK_PHY_RESET (12).
109  **/
110 s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
111 {
112 	u32 manc;
113 
114 	manc = er32(MANC);
115 
116 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
117 	       E1000_BLK_PHY_RESET : 0;
118 }
119 
120 /**
121  *  e1000e_get_phy_id - Retrieve the PHY ID and revision
122  *  @hw: pointer to the HW structure
123  *
124  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
125  *  revision in the hardware structure.
126  **/
127 s32 e1000e_get_phy_id(struct e1000_hw *hw)
128 {
129 	struct e1000_phy_info *phy = &hw->phy;
130 	s32 ret_val = 0;
131 	u16 phy_id;
132 	u16 retry_count = 0;
133 
134 	if (!phy->ops.read_reg)
135 		return 0;
136 
137 	while (retry_count < 2) {
138 		ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
139 		if (ret_val)
140 			return ret_val;
141 
142 		phy->id = (u32)(phy_id << 16);
143 		udelay(20);
144 		ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
145 		if (ret_val)
146 			return ret_val;
147 
148 		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
149 		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
150 
151 		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
152 			return 0;
153 
154 		retry_count++;
155 	}
156 
157 	return 0;
158 }
159 
160 /**
161  *  e1000e_phy_reset_dsp - Reset PHY DSP
162  *  @hw: pointer to the HW structure
163  *
164  *  Reset the digital signal processor.
165  **/
166 s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
167 {
168 	s32 ret_val;
169 
170 	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
171 	if (ret_val)
172 		return ret_val;
173 
174 	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
175 }
176 
177 /**
178  *  e1000e_read_phy_reg_mdic - Read MDI control register
179  *  @hw: pointer to the HW structure
180  *  @offset: register offset to be read
181  *  @data: pointer to the read data
182  *
183  *  Reads the MDI control register in the PHY at offset and stores the
184  *  information read to data.
185  **/
186 s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
187 {
188 	struct e1000_phy_info *phy = &hw->phy;
189 	u32 i, mdic = 0;
190 
191 	if (offset > MAX_PHY_REG_ADDRESS) {
192 		e_dbg("PHY Address %d is out of range\n", offset);
193 		return -E1000_ERR_PARAM;
194 	}
195 
196 	/*
197 	 * Set up Op-code, Phy Address, and register offset in the MDI
198 	 * Control register.  The MAC will take care of interfacing with the
199 	 * PHY to retrieve the desired data.
200 	 */
201 	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
202 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
203 		(E1000_MDIC_OP_READ));
204 
205 	ew32(MDIC, mdic);
206 
207 	/*
208 	 * Poll the ready bit to see if the MDI read completed
209 	 * Increasing the time out as testing showed failures with
210 	 * the lower time out
211 	 */
212 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
213 		udelay(50);
214 		mdic = er32(MDIC);
215 		if (mdic & E1000_MDIC_READY)
216 			break;
217 	}
218 	if (!(mdic & E1000_MDIC_READY)) {
219 		e_dbg("MDI Read did not complete\n");
220 		return -E1000_ERR_PHY;
221 	}
222 	if (mdic & E1000_MDIC_ERROR) {
223 		e_dbg("MDI Error\n");
224 		return -E1000_ERR_PHY;
225 	}
226 	*data = (u16) mdic;
227 
228 	/*
229 	 * Allow some time after each MDIC transaction to avoid
230 	 * reading duplicate data in the next MDIC transaction.
231 	 */
232 	if (hw->mac.type == e1000_pch2lan)
233 		udelay(100);
234 
235 	return 0;
236 }
237 
238 /**
239  *  e1000e_write_phy_reg_mdic - Write MDI control register
240  *  @hw: pointer to the HW structure
241  *  @offset: register offset to write to
242  *  @data: data to write to register at offset
243  *
244  *  Writes data to MDI control register in the PHY at offset.
245  **/
246 s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
247 {
248 	struct e1000_phy_info *phy = &hw->phy;
249 	u32 i, mdic = 0;
250 
251 	if (offset > MAX_PHY_REG_ADDRESS) {
252 		e_dbg("PHY Address %d is out of range\n", offset);
253 		return -E1000_ERR_PARAM;
254 	}
255 
256 	/*
257 	 * Set up Op-code, Phy Address, and register offset in the MDI
258 	 * Control register.  The MAC will take care of interfacing with the
259 	 * PHY to retrieve the desired data.
260 	 */
261 	mdic = (((u32)data) |
262 		(offset << E1000_MDIC_REG_SHIFT) |
263 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
264 		(E1000_MDIC_OP_WRITE));
265 
266 	ew32(MDIC, mdic);
267 
268 	/*
269 	 * Poll the ready bit to see if the MDI read completed
270 	 * Increasing the time out as testing showed failures with
271 	 * the lower time out
272 	 */
273 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
274 		udelay(50);
275 		mdic = er32(MDIC);
276 		if (mdic & E1000_MDIC_READY)
277 			break;
278 	}
279 	if (!(mdic & E1000_MDIC_READY)) {
280 		e_dbg("MDI Write did not complete\n");
281 		return -E1000_ERR_PHY;
282 	}
283 	if (mdic & E1000_MDIC_ERROR) {
284 		e_dbg("MDI Error\n");
285 		return -E1000_ERR_PHY;
286 	}
287 
288 	/*
289 	 * Allow some time after each MDIC transaction to avoid
290 	 * reading duplicate data in the next MDIC transaction.
291 	 */
292 	if (hw->mac.type == e1000_pch2lan)
293 		udelay(100);
294 
295 	return 0;
296 }
297 
298 /**
299  *  e1000e_read_phy_reg_m88 - Read m88 PHY register
300  *  @hw: pointer to the HW structure
301  *  @offset: register offset to be read
302  *  @data: pointer to the read data
303  *
304  *  Acquires semaphore, if necessary, then reads the PHY register at offset
305  *  and storing the retrieved information in data.  Release any acquired
306  *  semaphores before exiting.
307  **/
308 s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
309 {
310 	s32 ret_val;
311 
312 	ret_val = hw->phy.ops.acquire(hw);
313 	if (ret_val)
314 		return ret_val;
315 
316 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
317 					   data);
318 
319 	hw->phy.ops.release(hw);
320 
321 	return ret_val;
322 }
323 
324 /**
325  *  e1000e_write_phy_reg_m88 - Write m88 PHY register
326  *  @hw: pointer to the HW structure
327  *  @offset: register offset to write to
328  *  @data: data to write at register offset
329  *
330  *  Acquires semaphore, if necessary, then writes the data to PHY register
331  *  at the offset.  Release any acquired semaphores before exiting.
332  **/
333 s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
334 {
335 	s32 ret_val;
336 
337 	ret_val = hw->phy.ops.acquire(hw);
338 	if (ret_val)
339 		return ret_val;
340 
341 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
342 					    data);
343 
344 	hw->phy.ops.release(hw);
345 
346 	return ret_val;
347 }
348 
349 /**
350  *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
351  *  @hw: pointer to the HW structure
352  *  @page: page to set (shifted left when necessary)
353  *
354  *  Sets PHY page required for PHY register access.  Assumes semaphore is
355  *  already acquired.  Note, this function sets phy.addr to 1 so the caller
356  *  must set it appropriately (if necessary) after this function returns.
357  **/
358 s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
359 {
360 	e_dbg("Setting page 0x%x\n", page);
361 
362 	hw->phy.addr = 1;
363 
364 	return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
365 }
366 
367 /**
368  *  __e1000e_read_phy_reg_igp - Read igp PHY register
369  *  @hw: pointer to the HW structure
370  *  @offset: register offset to be read
371  *  @data: pointer to the read data
372  *  @locked: semaphore has already been acquired or not
373  *
374  *  Acquires semaphore, if necessary, then reads the PHY register at offset
375  *  and stores the retrieved information in data.  Release any acquired
376  *  semaphores before exiting.
377  **/
378 static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
379                                     bool locked)
380 {
381 	s32 ret_val = 0;
382 
383 	if (!locked) {
384 		if (!hw->phy.ops.acquire)
385 			return 0;
386 
387 		ret_val = hw->phy.ops.acquire(hw);
388 		if (ret_val)
389 			return ret_val;
390 	}
391 
392 	if (offset > MAX_PHY_MULTI_PAGE_REG)
393 		ret_val = e1000e_write_phy_reg_mdic(hw,
394 						    IGP01E1000_PHY_PAGE_SELECT,
395 						    (u16)offset);
396 	if (!ret_val)
397 		ret_val = e1000e_read_phy_reg_mdic(hw,
398 						   MAX_PHY_REG_ADDRESS & offset,
399 						   data);
400 	if (!locked)
401 		hw->phy.ops.release(hw);
402 
403 	return ret_val;
404 }
405 
406 /**
407  *  e1000e_read_phy_reg_igp - Read igp PHY register
408  *  @hw: pointer to the HW structure
409  *  @offset: register offset to be read
410  *  @data: pointer to the read data
411  *
412  *  Acquires semaphore then reads the PHY register at offset and stores the
413  *  retrieved information in data.
414  *  Release the acquired semaphore before exiting.
415  **/
416 s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
417 {
418 	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
419 }
420 
421 /**
422  *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
423  *  @hw: pointer to the HW structure
424  *  @offset: register offset to be read
425  *  @data: pointer to the read data
426  *
427  *  Reads the PHY register at offset and stores the retrieved information
428  *  in data.  Assumes semaphore already acquired.
429  **/
430 s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
431 {
432 	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
433 }
434 
435 /**
436  *  e1000e_write_phy_reg_igp - Write igp PHY register
437  *  @hw: pointer to the HW structure
438  *  @offset: register offset to write to
439  *  @data: data to write at register offset
440  *  @locked: semaphore has already been acquired or not
441  *
442  *  Acquires semaphore, if necessary, then writes the data to PHY register
443  *  at the offset.  Release any acquired semaphores before exiting.
444  **/
445 static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
446                                      bool locked)
447 {
448 	s32 ret_val = 0;
449 
450 	if (!locked) {
451 		if (!hw->phy.ops.acquire)
452 			return 0;
453 
454 		ret_val = hw->phy.ops.acquire(hw);
455 		if (ret_val)
456 			return ret_val;
457 	}
458 
459 	if (offset > MAX_PHY_MULTI_PAGE_REG)
460 		ret_val = e1000e_write_phy_reg_mdic(hw,
461 						    IGP01E1000_PHY_PAGE_SELECT,
462 						    (u16)offset);
463 	if (!ret_val)
464 		ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
465 							offset,
466 						    data);
467 	if (!locked)
468 		hw->phy.ops.release(hw);
469 
470 	return ret_val;
471 }
472 
473 /**
474  *  e1000e_write_phy_reg_igp - Write igp PHY register
475  *  @hw: pointer to the HW structure
476  *  @offset: register offset to write to
477  *  @data: data to write at register offset
478  *
479  *  Acquires semaphore then writes the data to PHY register
480  *  at the offset.  Release any acquired semaphores before exiting.
481  **/
482 s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
483 {
484 	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
485 }
486 
487 /**
488  *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
489  *  @hw: pointer to the HW structure
490  *  @offset: register offset to write to
491  *  @data: data to write at register offset
492  *
493  *  Writes the data to PHY register at the offset.
494  *  Assumes semaphore already acquired.
495  **/
496 s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
497 {
498 	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
499 }
500 
501 /**
502  *  __e1000_read_kmrn_reg - Read kumeran register
503  *  @hw: pointer to the HW structure
504  *  @offset: register offset to be read
505  *  @data: pointer to the read data
506  *  @locked: semaphore has already been acquired or not
507  *
508  *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
509  *  using the kumeran interface.  The information retrieved is stored in data.
510  *  Release any acquired semaphores before exiting.
511  **/
512 static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
513                                  bool locked)
514 {
515 	u32 kmrnctrlsta;
516 
517 	if (!locked) {
518 		s32 ret_val = 0;
519 
520 		if (!hw->phy.ops.acquire)
521 			return 0;
522 
523 		ret_val = hw->phy.ops.acquire(hw);
524 		if (ret_val)
525 			return ret_val;
526 	}
527 
528 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
529 		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
530 	ew32(KMRNCTRLSTA, kmrnctrlsta);
531 	e1e_flush();
532 
533 	udelay(2);
534 
535 	kmrnctrlsta = er32(KMRNCTRLSTA);
536 	*data = (u16)kmrnctrlsta;
537 
538 	if (!locked)
539 		hw->phy.ops.release(hw);
540 
541 	return 0;
542 }
543 
544 /**
545  *  e1000e_read_kmrn_reg -  Read kumeran register
546  *  @hw: pointer to the HW structure
547  *  @offset: register offset to be read
548  *  @data: pointer to the read data
549  *
550  *  Acquires semaphore then reads the PHY register at offset using the
551  *  kumeran interface.  The information retrieved is stored in data.
552  *  Release the acquired semaphore before exiting.
553  **/
554 s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
555 {
556 	return __e1000_read_kmrn_reg(hw, offset, data, false);
557 }
558 
559 /**
560  *  e1000e_read_kmrn_reg_locked -  Read kumeran register
561  *  @hw: pointer to the HW structure
562  *  @offset: register offset to be read
563  *  @data: pointer to the read data
564  *
565  *  Reads the PHY register at offset using the kumeran interface.  The
566  *  information retrieved is stored in data.
567  *  Assumes semaphore already acquired.
568  **/
569 s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
570 {
571 	return __e1000_read_kmrn_reg(hw, offset, data, true);
572 }
573 
574 /**
575  *  __e1000_write_kmrn_reg - Write kumeran register
576  *  @hw: pointer to the HW structure
577  *  @offset: register offset to write to
578  *  @data: data to write at register offset
579  *  @locked: semaphore has already been acquired or not
580  *
581  *  Acquires semaphore, if necessary.  Then write the data to PHY register
582  *  at the offset using the kumeran interface.  Release any acquired semaphores
583  *  before exiting.
584  **/
585 static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
586                                   bool locked)
587 {
588 	u32 kmrnctrlsta;
589 
590 	if (!locked) {
591 		s32 ret_val = 0;
592 
593 		if (!hw->phy.ops.acquire)
594 			return 0;
595 
596 		ret_val = hw->phy.ops.acquire(hw);
597 		if (ret_val)
598 			return ret_val;
599 	}
600 
601 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
602 		       E1000_KMRNCTRLSTA_OFFSET) | data;
603 	ew32(KMRNCTRLSTA, kmrnctrlsta);
604 	e1e_flush();
605 
606 	udelay(2);
607 
608 	if (!locked)
609 		hw->phy.ops.release(hw);
610 
611 	return 0;
612 }
613 
614 /**
615  *  e1000e_write_kmrn_reg -  Write kumeran register
616  *  @hw: pointer to the HW structure
617  *  @offset: register offset to write to
618  *  @data: data to write at register offset
619  *
620  *  Acquires semaphore then writes the data to the PHY register at the offset
621  *  using the kumeran interface.  Release the acquired semaphore before exiting.
622  **/
623 s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
624 {
625 	return __e1000_write_kmrn_reg(hw, offset, data, false);
626 }
627 
628 /**
629  *  e1000e_write_kmrn_reg_locked -  Write kumeran register
630  *  @hw: pointer to the HW structure
631  *  @offset: register offset to write to
632  *  @data: data to write at register offset
633  *
634  *  Write the data to PHY register at the offset using the kumeran interface.
635  *  Assumes semaphore already acquired.
636  **/
637 s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
638 {
639 	return __e1000_write_kmrn_reg(hw, offset, data, true);
640 }
641 
642 /**
643  *  e1000_set_master_slave_mode - Setup PHY for Master/slave mode
644  *  @hw: pointer to the HW structure
645  *
646  *  Sets up Master/slave mode
647  **/
648 static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
649 {
650 	s32 ret_val;
651 	u16 phy_data;
652 
653 	/* Resolve Master/Slave mode */
654 	ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &phy_data);
655 	if (ret_val)
656 		return ret_val;
657 
658 	/* load defaults for future use */
659 	hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
660 	    ((phy_data & CR_1000T_MS_VALUE) ?
661 	     e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto;
662 
663 	switch (hw->phy.ms_type) {
664 	case e1000_ms_force_master:
665 		phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
666 		break;
667 	case e1000_ms_force_slave:
668 		phy_data |= CR_1000T_MS_ENABLE;
669 		phy_data &= ~(CR_1000T_MS_VALUE);
670 		break;
671 	case e1000_ms_auto:
672 		phy_data &= ~CR_1000T_MS_ENABLE;
673 		/* fall-through */
674 	default:
675 		break;
676 	}
677 
678 	return e1e_wphy(hw, PHY_1000T_CTRL, phy_data);
679 }
680 
681 /**
682  *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
683  *  @hw: pointer to the HW structure
684  *
685  *  Sets up Carrier-sense on Transmit and downshift values.
686  **/
687 s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
688 {
689 	s32 ret_val;
690 	u16 phy_data;
691 
692 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
693 	ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
694 	if (ret_val)
695 		return ret_val;
696 
697 	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
698 
699 	/* Enable downshift */
700 	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
701 
702 	ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
703 	if (ret_val)
704 		return ret_val;
705 
706 	/* Set MDI/MDIX mode */
707 	ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data);
708 	if (ret_val)
709 		return ret_val;
710 	phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
711 	/*
712 	 * Options:
713 	 *   0 - Auto (default)
714 	 *   1 - MDI mode
715 	 *   2 - MDI-X mode
716 	 */
717 	switch (hw->phy.mdix) {
718 	case 1:
719 		break;
720 	case 2:
721 		phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
722 		break;
723 	case 0:
724 	default:
725 		phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
726 		break;
727 	}
728 	ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data);
729 	if (ret_val)
730 		return ret_val;
731 
732 	return e1000_set_master_slave_mode(hw);
733 }
734 
735 /**
736  *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
737  *  @hw: pointer to the HW structure
738  *
739  *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
740  *  and downshift values are set also.
741  **/
742 s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
743 {
744 	struct e1000_phy_info *phy = &hw->phy;
745 	s32 ret_val;
746 	u16 phy_data;
747 
748 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
749 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
750 	if (ret_val)
751 		return ret_val;
752 
753 	/* For BM PHY this bit is downshift enable */
754 	if (phy->type != e1000_phy_bm)
755 		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
756 
757 	/*
758 	 * Options:
759 	 *   MDI/MDI-X = 0 (default)
760 	 *   0 - Auto for all speeds
761 	 *   1 - MDI mode
762 	 *   2 - MDI-X mode
763 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
764 	 */
765 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
766 
767 	switch (phy->mdix) {
768 	case 1:
769 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
770 		break;
771 	case 2:
772 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
773 		break;
774 	case 3:
775 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
776 		break;
777 	case 0:
778 	default:
779 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
780 		break;
781 	}
782 
783 	/*
784 	 * Options:
785 	 *   disable_polarity_correction = 0 (default)
786 	 *       Automatic Correction for Reversed Cable Polarity
787 	 *   0 - Disabled
788 	 *   1 - Enabled
789 	 */
790 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
791 	if (phy->disable_polarity_correction)
792 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
793 
794 	/* Enable downshift on BM (disabled by default) */
795 	if (phy->type == e1000_phy_bm) {
796 		/* For 82574/82583, first disable then enable downshift */
797 		if (phy->id == BME1000_E_PHY_ID_R2) {
798 			phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
799 			ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
800 					   phy_data);
801 			if (ret_val)
802 				return ret_val;
803 			/* Commit the changes. */
804 			ret_val = e1000e_commit_phy(hw);
805 			if (ret_val) {
806 				e_dbg("Error committing the PHY changes\n");
807 				return ret_val;
808 			}
809 		}
810 
811 		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
812 	}
813 
814 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
815 	if (ret_val)
816 		return ret_val;
817 
818 	if ((phy->type == e1000_phy_m88) &&
819 	    (phy->revision < E1000_REVISION_4) &&
820 	    (phy->id != BME1000_E_PHY_ID_R2)) {
821 		/*
822 		 * Force TX_CLK in the Extended PHY Specific Control Register
823 		 * to 25MHz clock.
824 		 */
825 		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
826 		if (ret_val)
827 			return ret_val;
828 
829 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
830 
831 		if ((phy->revision == 2) &&
832 		    (phy->id == M88E1111_I_PHY_ID)) {
833 			/* 82573L PHY - set the downshift counter to 5x. */
834 			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
835 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
836 		} else {
837 			/* Configure Master and Slave downshift values */
838 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
839 				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
840 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
841 				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
842 		}
843 		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
844 		if (ret_val)
845 			return ret_val;
846 	}
847 
848 	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
849 		/* Set PHY page 0, register 29 to 0x0003 */
850 		ret_val = e1e_wphy(hw, 29, 0x0003);
851 		if (ret_val)
852 			return ret_val;
853 
854 		/* Set PHY page 0, register 30 to 0x0000 */
855 		ret_val = e1e_wphy(hw, 30, 0x0000);
856 		if (ret_val)
857 			return ret_val;
858 	}
859 
860 	/* Commit the changes. */
861 	ret_val = e1000e_commit_phy(hw);
862 	if (ret_val) {
863 		e_dbg("Error committing the PHY changes\n");
864 		return ret_val;
865 	}
866 
867 	if (phy->type == e1000_phy_82578) {
868 		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
869 		if (ret_val)
870 			return ret_val;
871 
872 		/* 82578 PHY - set the downshift count to 1x. */
873 		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
874 		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
875 		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
876 		if (ret_val)
877 			return ret_val;
878 	}
879 
880 	return 0;
881 }
882 
883 /**
884  *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
885  *  @hw: pointer to the HW structure
886  *
887  *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
888  *  igp PHY's.
889  **/
890 s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
891 {
892 	struct e1000_phy_info *phy = &hw->phy;
893 	s32 ret_val;
894 	u16 data;
895 
896 	ret_val = e1000_phy_hw_reset(hw);
897 	if (ret_val) {
898 		e_dbg("Error resetting the PHY.\n");
899 		return ret_val;
900 	}
901 
902 	/*
903 	 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
904 	 * timeout issues when LFS is enabled.
905 	 */
906 	msleep(100);
907 
908 	/* disable lplu d0 during driver init */
909 	ret_val = e1000_set_d0_lplu_state(hw, false);
910 	if (ret_val) {
911 		e_dbg("Error Disabling LPLU D0\n");
912 		return ret_val;
913 	}
914 	/* Configure mdi-mdix settings */
915 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
916 	if (ret_val)
917 		return ret_val;
918 
919 	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
920 
921 	switch (phy->mdix) {
922 	case 1:
923 		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
924 		break;
925 	case 2:
926 		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
927 		break;
928 	case 0:
929 	default:
930 		data |= IGP01E1000_PSCR_AUTO_MDIX;
931 		break;
932 	}
933 	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
934 	if (ret_val)
935 		return ret_val;
936 
937 	/* set auto-master slave resolution settings */
938 	if (hw->mac.autoneg) {
939 		/*
940 		 * when autonegotiation advertisement is only 1000Mbps then we
941 		 * should disable SmartSpeed and enable Auto MasterSlave
942 		 * resolution as hardware default.
943 		 */
944 		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
945 			/* Disable SmartSpeed */
946 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
947 					   &data);
948 			if (ret_val)
949 				return ret_val;
950 
951 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
952 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
953 					   data);
954 			if (ret_val)
955 				return ret_val;
956 
957 			/* Set auto Master/Slave resolution process */
958 			ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
959 			if (ret_val)
960 				return ret_val;
961 
962 			data &= ~CR_1000T_MS_ENABLE;
963 			ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
964 			if (ret_val)
965 				return ret_val;
966 		}
967 
968 		ret_val = e1000_set_master_slave_mode(hw);
969 	}
970 
971 	return ret_val;
972 }
973 
974 /**
975  *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
976  *  @hw: pointer to the HW structure
977  *
978  *  Reads the MII auto-neg advertisement register and/or the 1000T control
979  *  register and if the PHY is already setup for auto-negotiation, then
980  *  return successful.  Otherwise, setup advertisement and flow control to
981  *  the appropriate values for the wanted auto-negotiation.
982  **/
983 static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
984 {
985 	struct e1000_phy_info *phy = &hw->phy;
986 	s32 ret_val;
987 	u16 mii_autoneg_adv_reg;
988 	u16 mii_1000t_ctrl_reg = 0;
989 
990 	phy->autoneg_advertised &= phy->autoneg_mask;
991 
992 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
993 	ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
994 	if (ret_val)
995 		return ret_val;
996 
997 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
998 		/* Read the MII 1000Base-T Control Register (Address 9). */
999 		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
1000 		if (ret_val)
1001 			return ret_val;
1002 	}
1003 
1004 	/*
1005 	 * Need to parse both autoneg_advertised and fc and set up
1006 	 * the appropriate PHY registers.  First we will parse for
1007 	 * autoneg_advertised software override.  Since we can advertise
1008 	 * a plethora of combinations, we need to check each bit
1009 	 * individually.
1010 	 */
1011 
1012 	/*
1013 	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
1014 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1015 	 * the  1000Base-T Control Register (Address 9).
1016 	 */
1017 	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
1018 				 NWAY_AR_100TX_HD_CAPS |
1019 				 NWAY_AR_10T_FD_CAPS   |
1020 				 NWAY_AR_10T_HD_CAPS);
1021 	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
1022 
1023 	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
1024 
1025 	/* Do we want to advertise 10 Mb Half Duplex? */
1026 	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
1027 		e_dbg("Advertise 10mb Half duplex\n");
1028 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1029 	}
1030 
1031 	/* Do we want to advertise 10 Mb Full Duplex? */
1032 	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
1033 		e_dbg("Advertise 10mb Full duplex\n");
1034 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1035 	}
1036 
1037 	/* Do we want to advertise 100 Mb Half Duplex? */
1038 	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
1039 		e_dbg("Advertise 100mb Half duplex\n");
1040 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1041 	}
1042 
1043 	/* Do we want to advertise 100 Mb Full Duplex? */
1044 	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
1045 		e_dbg("Advertise 100mb Full duplex\n");
1046 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1047 	}
1048 
1049 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1050 	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1051 		e_dbg("Advertise 1000mb Half duplex request denied!\n");
1052 
1053 	/* Do we want to advertise 1000 Mb Full Duplex? */
1054 	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1055 		e_dbg("Advertise 1000mb Full duplex\n");
1056 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1057 	}
1058 
1059 	/*
1060 	 * Check for a software override of the flow control settings, and
1061 	 * setup the PHY advertisement registers accordingly.  If
1062 	 * auto-negotiation is enabled, then software will have to set the
1063 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1064 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1065 	 * negotiation.
1066 	 *
1067 	 * The possible values of the "fc" parameter are:
1068 	 *      0:  Flow control is completely disabled
1069 	 *      1:  Rx flow control is enabled (we can receive pause frames
1070 	 *          but not send pause frames).
1071 	 *      2:  Tx flow control is enabled (we can send pause frames
1072 	 *          but we do not support receiving pause frames).
1073 	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1074 	 *  other:  No software override.  The flow control configuration
1075 	 *          in the EEPROM is used.
1076 	 */
1077 	switch (hw->fc.current_mode) {
1078 	case e1000_fc_none:
1079 		/*
1080 		 * Flow control (Rx & Tx) is completely disabled by a
1081 		 * software over-ride.
1082 		 */
1083 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1084 		break;
1085 	case e1000_fc_rx_pause:
1086 		/*
1087 		 * Rx Flow control is enabled, and Tx Flow control is
1088 		 * disabled, by a software over-ride.
1089 		 *
1090 		 * Since there really isn't a way to advertise that we are
1091 		 * capable of Rx Pause ONLY, we will advertise that we
1092 		 * support both symmetric and asymmetric Rx PAUSE.  Later
1093 		 * (in e1000e_config_fc_after_link_up) we will disable the
1094 		 * hw's ability to send PAUSE frames.
1095 		 */
1096 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1097 		break;
1098 	case e1000_fc_tx_pause:
1099 		/*
1100 		 * Tx Flow control is enabled, and Rx Flow control is
1101 		 * disabled, by a software over-ride.
1102 		 */
1103 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1104 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1105 		break;
1106 	case e1000_fc_full:
1107 		/*
1108 		 * Flow control (both Rx and Tx) is enabled by a software
1109 		 * over-ride.
1110 		 */
1111 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1112 		break;
1113 	default:
1114 		e_dbg("Flow control param set incorrectly\n");
1115 		return -E1000_ERR_CONFIG;
1116 	}
1117 
1118 	ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1119 	if (ret_val)
1120 		return ret_val;
1121 
1122 	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1123 
1124 	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1125 		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
1126 
1127 	return ret_val;
1128 }
1129 
1130 /**
1131  *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1132  *  @hw: pointer to the HW structure
1133  *
1134  *  Performs initial bounds checking on autoneg advertisement parameter, then
1135  *  configure to advertise the full capability.  Setup the PHY to autoneg
1136  *  and restart the negotiation process between the link partner.  If
1137  *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1138  **/
1139 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1140 {
1141 	struct e1000_phy_info *phy = &hw->phy;
1142 	s32 ret_val;
1143 	u16 phy_ctrl;
1144 
1145 	/*
1146 	 * Perform some bounds checking on the autoneg advertisement
1147 	 * parameter.
1148 	 */
1149 	phy->autoneg_advertised &= phy->autoneg_mask;
1150 
1151 	/*
1152 	 * If autoneg_advertised is zero, we assume it was not defaulted
1153 	 * by the calling code so we set to advertise full capability.
1154 	 */
1155 	if (!phy->autoneg_advertised)
1156 		phy->autoneg_advertised = phy->autoneg_mask;
1157 
1158 	e_dbg("Reconfiguring auto-neg advertisement params\n");
1159 	ret_val = e1000_phy_setup_autoneg(hw);
1160 	if (ret_val) {
1161 		e_dbg("Error Setting up Auto-Negotiation\n");
1162 		return ret_val;
1163 	}
1164 	e_dbg("Restarting Auto-Neg\n");
1165 
1166 	/*
1167 	 * Restart auto-negotiation by setting the Auto Neg Enable bit and
1168 	 * the Auto Neg Restart bit in the PHY control register.
1169 	 */
1170 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
1171 	if (ret_val)
1172 		return ret_val;
1173 
1174 	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1175 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
1176 	if (ret_val)
1177 		return ret_val;
1178 
1179 	/*
1180 	 * Does the user want to wait for Auto-Neg to complete here, or
1181 	 * check at a later time (for example, callback routine).
1182 	 */
1183 	if (phy->autoneg_wait_to_complete) {
1184 		ret_val = e1000_wait_autoneg(hw);
1185 		if (ret_val) {
1186 			e_dbg("Error while waiting for autoneg to complete\n");
1187 			return ret_val;
1188 		}
1189 	}
1190 
1191 	hw->mac.get_link_status = true;
1192 
1193 	return ret_val;
1194 }
1195 
1196 /**
1197  *  e1000e_setup_copper_link - Configure copper link settings
1198  *  @hw: pointer to the HW structure
1199  *
1200  *  Calls the appropriate function to configure the link for auto-neg or forced
1201  *  speed and duplex.  Then we check for link, once link is established calls
1202  *  to configure collision distance and flow control are called.  If link is
1203  *  not established, we return -E1000_ERR_PHY (-2).
1204  **/
1205 s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1206 {
1207 	s32 ret_val;
1208 	bool link;
1209 
1210 	if (hw->mac.autoneg) {
1211 		/*
1212 		 * Setup autoneg and flow control advertisement and perform
1213 		 * autonegotiation.
1214 		 */
1215 		ret_val = e1000_copper_link_autoneg(hw);
1216 		if (ret_val)
1217 			return ret_val;
1218 	} else {
1219 		/*
1220 		 * PHY will be set to 10H, 10F, 100H or 100F
1221 		 * depending on user settings.
1222 		 */
1223 		e_dbg("Forcing Speed and Duplex\n");
1224 		ret_val = e1000_phy_force_speed_duplex(hw);
1225 		if (ret_val) {
1226 			e_dbg("Error Forcing Speed and Duplex\n");
1227 			return ret_val;
1228 		}
1229 	}
1230 
1231 	/*
1232 	 * Check link status. Wait up to 100 microseconds for link to become
1233 	 * valid.
1234 	 */
1235 	ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1236 					      &link);
1237 	if (ret_val)
1238 		return ret_val;
1239 
1240 	if (link) {
1241 		e_dbg("Valid link established!!!\n");
1242 		hw->mac.ops.config_collision_dist(hw);
1243 		ret_val = e1000e_config_fc_after_link_up(hw);
1244 	} else {
1245 		e_dbg("Unable to establish link!!!\n");
1246 	}
1247 
1248 	return ret_val;
1249 }
1250 
1251 /**
1252  *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1253  *  @hw: pointer to the HW structure
1254  *
1255  *  Calls the PHY setup function to force speed and duplex.  Clears the
1256  *  auto-crossover to force MDI manually.  Waits for link and returns
1257  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1258  **/
1259 s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1260 {
1261 	struct e1000_phy_info *phy = &hw->phy;
1262 	s32 ret_val;
1263 	u16 phy_data;
1264 	bool link;
1265 
1266 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1267 	if (ret_val)
1268 		return ret_val;
1269 
1270 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1271 
1272 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1273 	if (ret_val)
1274 		return ret_val;
1275 
1276 	/*
1277 	 * Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1278 	 * forced whenever speed and duplex are forced.
1279 	 */
1280 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1281 	if (ret_val)
1282 		return ret_val;
1283 
1284 	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1285 	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1286 
1287 	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1288 	if (ret_val)
1289 		return ret_val;
1290 
1291 	e_dbg("IGP PSCR: %X\n", phy_data);
1292 
1293 	udelay(1);
1294 
1295 	if (phy->autoneg_wait_to_complete) {
1296 		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1297 
1298 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1299 						      100000, &link);
1300 		if (ret_val)
1301 			return ret_val;
1302 
1303 		if (!link)
1304 			e_dbg("Link taking longer than expected.\n");
1305 
1306 		/* Try once more */
1307 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1308 						      100000, &link);
1309 	}
1310 
1311 	return ret_val;
1312 }
1313 
1314 /**
1315  *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1316  *  @hw: pointer to the HW structure
1317  *
1318  *  Calls the PHY setup function to force speed and duplex.  Clears the
1319  *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1320  *  changes.  If time expires while waiting for link up, we reset the DSP.
1321  *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1322  *  successful completion, else return corresponding error code.
1323  **/
1324 s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1325 {
1326 	struct e1000_phy_info *phy = &hw->phy;
1327 	s32 ret_val;
1328 	u16 phy_data;
1329 	bool link;
1330 
1331 	/*
1332 	 * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1333 	 * forced whenever speed and duplex are forced.
1334 	 */
1335 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1336 	if (ret_val)
1337 		return ret_val;
1338 
1339 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1340 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1341 	if (ret_val)
1342 		return ret_val;
1343 
1344 	e_dbg("M88E1000 PSCR: %X\n", phy_data);
1345 
1346 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1347 	if (ret_val)
1348 		return ret_val;
1349 
1350 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1351 
1352 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1353 	if (ret_val)
1354 		return ret_val;
1355 
1356 	/* Reset the phy to commit changes. */
1357 	ret_val = e1000e_commit_phy(hw);
1358 	if (ret_val)
1359 		return ret_val;
1360 
1361 	if (phy->autoneg_wait_to_complete) {
1362 		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1363 
1364 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1365 						     100000, &link);
1366 		if (ret_val)
1367 			return ret_val;
1368 
1369 		if (!link) {
1370 			if (hw->phy.type != e1000_phy_m88) {
1371 				e_dbg("Link taking longer than expected.\n");
1372 			} else {
1373 				/*
1374 				 * We didn't get link.
1375 				 * Reset the DSP and cross our fingers.
1376 				 */
1377 				ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1378 						   0x001d);
1379 				if (ret_val)
1380 					return ret_val;
1381 				ret_val = e1000e_phy_reset_dsp(hw);
1382 				if (ret_val)
1383 					return ret_val;
1384 			}
1385 		}
1386 
1387 		/* Try once more */
1388 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1389 						     100000, &link);
1390 		if (ret_val)
1391 			return ret_val;
1392 	}
1393 
1394 	if (hw->phy.type != e1000_phy_m88)
1395 		return 0;
1396 
1397 	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1398 	if (ret_val)
1399 		return ret_val;
1400 
1401 	/*
1402 	 * Resetting the phy means we need to re-force TX_CLK in the
1403 	 * Extended PHY Specific Control Register to 25MHz clock from
1404 	 * the reset value of 2.5MHz.
1405 	 */
1406 	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1407 	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1408 	if (ret_val)
1409 		return ret_val;
1410 
1411 	/*
1412 	 * In addition, we must re-enable CRS on Tx for both half and full
1413 	 * duplex.
1414 	 */
1415 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1416 	if (ret_val)
1417 		return ret_val;
1418 
1419 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1420 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1421 
1422 	return ret_val;
1423 }
1424 
1425 /**
1426  *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1427  *  @hw: pointer to the HW structure
1428  *
1429  *  Forces the speed and duplex settings of the PHY.
1430  *  This is a function pointer entry point only called by
1431  *  PHY setup routines.
1432  **/
1433 s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1434 {
1435 	struct e1000_phy_info *phy = &hw->phy;
1436 	s32 ret_val;
1437 	u16 data;
1438 	bool link;
1439 
1440 	ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
1441 	if (ret_val)
1442 		return ret_val;
1443 
1444 	e1000e_phy_force_speed_duplex_setup(hw, &data);
1445 
1446 	ret_val = e1e_wphy(hw, PHY_CONTROL, data);
1447 	if (ret_val)
1448 		return ret_val;
1449 
1450 	/* Disable MDI-X support for 10/100 */
1451 	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1452 	if (ret_val)
1453 		return ret_val;
1454 
1455 	data &= ~IFE_PMC_AUTO_MDIX;
1456 	data &= ~IFE_PMC_FORCE_MDIX;
1457 
1458 	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1459 	if (ret_val)
1460 		return ret_val;
1461 
1462 	e_dbg("IFE PMC: %X\n", data);
1463 
1464 	udelay(1);
1465 
1466 	if (phy->autoneg_wait_to_complete) {
1467 		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1468 
1469 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1470 						      100000, &link);
1471 		if (ret_val)
1472 			return ret_val;
1473 
1474 		if (!link)
1475 			e_dbg("Link taking longer than expected.\n");
1476 
1477 		/* Try once more */
1478 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1479 						      100000, &link);
1480 		if (ret_val)
1481 			return ret_val;
1482 	}
1483 
1484 	return 0;
1485 }
1486 
1487 /**
1488  *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1489  *  @hw: pointer to the HW structure
1490  *  @phy_ctrl: pointer to current value of PHY_CONTROL
1491  *
1492  *  Forces speed and duplex on the PHY by doing the following: disable flow
1493  *  control, force speed/duplex on the MAC, disable auto speed detection,
1494  *  disable auto-negotiation, configure duplex, configure speed, configure
1495  *  the collision distance, write configuration to CTRL register.  The
1496  *  caller must write to the PHY_CONTROL register for these settings to
1497  *  take affect.
1498  **/
1499 void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1500 {
1501 	struct e1000_mac_info *mac = &hw->mac;
1502 	u32 ctrl;
1503 
1504 	/* Turn off flow control when forcing speed/duplex */
1505 	hw->fc.current_mode = e1000_fc_none;
1506 
1507 	/* Force speed/duplex on the mac */
1508 	ctrl = er32(CTRL);
1509 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1510 	ctrl &= ~E1000_CTRL_SPD_SEL;
1511 
1512 	/* Disable Auto Speed Detection */
1513 	ctrl &= ~E1000_CTRL_ASDE;
1514 
1515 	/* Disable autoneg on the phy */
1516 	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1517 
1518 	/* Forcing Full or Half Duplex? */
1519 	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1520 		ctrl &= ~E1000_CTRL_FD;
1521 		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1522 		e_dbg("Half Duplex\n");
1523 	} else {
1524 		ctrl |= E1000_CTRL_FD;
1525 		*phy_ctrl |= MII_CR_FULL_DUPLEX;
1526 		e_dbg("Full Duplex\n");
1527 	}
1528 
1529 	/* Forcing 10mb or 100mb? */
1530 	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1531 		ctrl |= E1000_CTRL_SPD_100;
1532 		*phy_ctrl |= MII_CR_SPEED_100;
1533 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1534 		e_dbg("Forcing 100mb\n");
1535 	} else {
1536 		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1537 		*phy_ctrl |= MII_CR_SPEED_10;
1538 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1539 		e_dbg("Forcing 10mb\n");
1540 	}
1541 
1542 	hw->mac.ops.config_collision_dist(hw);
1543 
1544 	ew32(CTRL, ctrl);
1545 }
1546 
1547 /**
1548  *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
1549  *  @hw: pointer to the HW structure
1550  *  @active: boolean used to enable/disable lplu
1551  *
1552  *  Success returns 0, Failure returns 1
1553  *
1554  *  The low power link up (lplu) state is set to the power management level D3
1555  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1556  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1557  *  is used during Dx states where the power conservation is most important.
1558  *  During driver activity, SmartSpeed should be enabled so performance is
1559  *  maintained.
1560  **/
1561 s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1562 {
1563 	struct e1000_phy_info *phy = &hw->phy;
1564 	s32 ret_val;
1565 	u16 data;
1566 
1567 	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1568 	if (ret_val)
1569 		return ret_val;
1570 
1571 	if (!active) {
1572 		data &= ~IGP02E1000_PM_D3_LPLU;
1573 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1574 		if (ret_val)
1575 			return ret_val;
1576 		/*
1577 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1578 		 * during Dx states where the power conservation is most
1579 		 * important.  During driver activity we should enable
1580 		 * SmartSpeed, so performance is maintained.
1581 		 */
1582 		if (phy->smart_speed == e1000_smart_speed_on) {
1583 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1584 					   &data);
1585 			if (ret_val)
1586 				return ret_val;
1587 
1588 			data |= IGP01E1000_PSCFR_SMART_SPEED;
1589 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1590 					   data);
1591 			if (ret_val)
1592 				return ret_val;
1593 		} else if (phy->smart_speed == e1000_smart_speed_off) {
1594 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1595 					   &data);
1596 			if (ret_val)
1597 				return ret_val;
1598 
1599 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1600 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1601 					   data);
1602 			if (ret_val)
1603 				return ret_val;
1604 		}
1605 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1606 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1607 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1608 		data |= IGP02E1000_PM_D3_LPLU;
1609 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1610 		if (ret_val)
1611 			return ret_val;
1612 
1613 		/* When LPLU is enabled, we should disable SmartSpeed */
1614 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1615 		if (ret_val)
1616 			return ret_val;
1617 
1618 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1619 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1620 	}
1621 
1622 	return ret_val;
1623 }
1624 
1625 /**
1626  *  e1000e_check_downshift - Checks whether a downshift in speed occurred
1627  *  @hw: pointer to the HW structure
1628  *
1629  *  Success returns 0, Failure returns 1
1630  *
1631  *  A downshift is detected by querying the PHY link health.
1632  **/
1633 s32 e1000e_check_downshift(struct e1000_hw *hw)
1634 {
1635 	struct e1000_phy_info *phy = &hw->phy;
1636 	s32 ret_val;
1637 	u16 phy_data, offset, mask;
1638 
1639 	switch (phy->type) {
1640 	case e1000_phy_m88:
1641 	case e1000_phy_gg82563:
1642 	case e1000_phy_bm:
1643 	case e1000_phy_82578:
1644 		offset	= M88E1000_PHY_SPEC_STATUS;
1645 		mask	= M88E1000_PSSR_DOWNSHIFT;
1646 		break;
1647 	case e1000_phy_igp_2:
1648 	case e1000_phy_igp_3:
1649 		offset	= IGP01E1000_PHY_LINK_HEALTH;
1650 		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
1651 		break;
1652 	default:
1653 		/* speed downshift not supported */
1654 		phy->speed_downgraded = false;
1655 		return 0;
1656 	}
1657 
1658 	ret_val = e1e_rphy(hw, offset, &phy_data);
1659 
1660 	if (!ret_val)
1661 		phy->speed_downgraded = !!(phy_data & mask);
1662 
1663 	return ret_val;
1664 }
1665 
1666 /**
1667  *  e1000_check_polarity_m88 - Checks the polarity.
1668  *  @hw: pointer to the HW structure
1669  *
1670  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1671  *
1672  *  Polarity is determined based on the PHY specific status register.
1673  **/
1674 s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1675 {
1676 	struct e1000_phy_info *phy = &hw->phy;
1677 	s32 ret_val;
1678 	u16 data;
1679 
1680 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1681 
1682 	if (!ret_val)
1683 		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1684 				      ? e1000_rev_polarity_reversed
1685 				      : e1000_rev_polarity_normal;
1686 
1687 	return ret_val;
1688 }
1689 
1690 /**
1691  *  e1000_check_polarity_igp - Checks the polarity.
1692  *  @hw: pointer to the HW structure
1693  *
1694  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1695  *
1696  *  Polarity is determined based on the PHY port status register, and the
1697  *  current speed (since there is no polarity at 100Mbps).
1698  **/
1699 s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1700 {
1701 	struct e1000_phy_info *phy = &hw->phy;
1702 	s32 ret_val;
1703 	u16 data, offset, mask;
1704 
1705 	/*
1706 	 * Polarity is determined based on the speed of
1707 	 * our connection.
1708 	 */
1709 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1710 	if (ret_val)
1711 		return ret_val;
1712 
1713 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1714 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1715 		offset	= IGP01E1000_PHY_PCS_INIT_REG;
1716 		mask	= IGP01E1000_PHY_POLARITY_MASK;
1717 	} else {
1718 		/*
1719 		 * This really only applies to 10Mbps since
1720 		 * there is no polarity for 100Mbps (always 0).
1721 		 */
1722 		offset	= IGP01E1000_PHY_PORT_STATUS;
1723 		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
1724 	}
1725 
1726 	ret_val = e1e_rphy(hw, offset, &data);
1727 
1728 	if (!ret_val)
1729 		phy->cable_polarity = (data & mask)
1730 				      ? e1000_rev_polarity_reversed
1731 				      : e1000_rev_polarity_normal;
1732 
1733 	return ret_val;
1734 }
1735 
1736 /**
1737  *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
1738  *  @hw: pointer to the HW structure
1739  *
1740  *  Polarity is determined on the polarity reversal feature being enabled.
1741  **/
1742 s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1743 {
1744 	struct e1000_phy_info *phy = &hw->phy;
1745 	s32 ret_val;
1746 	u16 phy_data, offset, mask;
1747 
1748 	/*
1749 	 * Polarity is determined based on the reversal feature being enabled.
1750 	 */
1751 	if (phy->polarity_correction) {
1752 		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1753 		mask = IFE_PESC_POLARITY_REVERSED;
1754 	} else {
1755 		offset = IFE_PHY_SPECIAL_CONTROL;
1756 		mask = IFE_PSC_FORCE_POLARITY;
1757 	}
1758 
1759 	ret_val = e1e_rphy(hw, offset, &phy_data);
1760 
1761 	if (!ret_val)
1762 		phy->cable_polarity = (phy_data & mask)
1763 		                       ? e1000_rev_polarity_reversed
1764 		                       : e1000_rev_polarity_normal;
1765 
1766 	return ret_val;
1767 }
1768 
1769 /**
1770  *  e1000_wait_autoneg - Wait for auto-neg completion
1771  *  @hw: pointer to the HW structure
1772  *
1773  *  Waits for auto-negotiation to complete or for the auto-negotiation time
1774  *  limit to expire, which ever happens first.
1775  **/
1776 static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1777 {
1778 	s32 ret_val = 0;
1779 	u16 i, phy_status;
1780 
1781 	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1782 	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1783 		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1784 		if (ret_val)
1785 			break;
1786 		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1787 		if (ret_val)
1788 			break;
1789 		if (phy_status & MII_SR_AUTONEG_COMPLETE)
1790 			break;
1791 		msleep(100);
1792 	}
1793 
1794 	/*
1795 	 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1796 	 * has completed.
1797 	 */
1798 	return ret_val;
1799 }
1800 
1801 /**
1802  *  e1000e_phy_has_link_generic - Polls PHY for link
1803  *  @hw: pointer to the HW structure
1804  *  @iterations: number of times to poll for link
1805  *  @usec_interval: delay between polling attempts
1806  *  @success: pointer to whether polling was successful or not
1807  *
1808  *  Polls the PHY status register for link, 'iterations' number of times.
1809  **/
1810 s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1811 			       u32 usec_interval, bool *success)
1812 {
1813 	s32 ret_val = 0;
1814 	u16 i, phy_status;
1815 
1816 	for (i = 0; i < iterations; i++) {
1817 		/*
1818 		 * Some PHYs require the PHY_STATUS register to be read
1819 		 * twice due to the link bit being sticky.  No harm doing
1820 		 * it across the board.
1821 		 */
1822 		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1823 		if (ret_val)
1824 			/*
1825 			 * If the first read fails, another entity may have
1826 			 * ownership of the resources, wait and try again to
1827 			 * see if they have relinquished the resources yet.
1828 			 */
1829 			udelay(usec_interval);
1830 		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1831 		if (ret_val)
1832 			break;
1833 		if (phy_status & MII_SR_LINK_STATUS)
1834 			break;
1835 		if (usec_interval >= 1000)
1836 			mdelay(usec_interval/1000);
1837 		else
1838 			udelay(usec_interval);
1839 	}
1840 
1841 	*success = (i < iterations);
1842 
1843 	return ret_val;
1844 }
1845 
1846 /**
1847  *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1848  *  @hw: pointer to the HW structure
1849  *
1850  *  Reads the PHY specific status register to retrieve the cable length
1851  *  information.  The cable length is determined by averaging the minimum and
1852  *  maximum values to get the "average" cable length.  The m88 PHY has four
1853  *  possible cable length values, which are:
1854  *	Register Value		Cable Length
1855  *	0			< 50 meters
1856  *	1			50 - 80 meters
1857  *	2			80 - 110 meters
1858  *	3			110 - 140 meters
1859  *	4			> 140 meters
1860  **/
1861 s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1862 {
1863 	struct e1000_phy_info *phy = &hw->phy;
1864 	s32 ret_val;
1865 	u16 phy_data, index;
1866 
1867 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1868 	if (ret_val)
1869 		return ret_val;
1870 
1871 	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1872 	        M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1873 
1874 	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
1875 		return -E1000_ERR_PHY;
1876 
1877 	phy->min_cable_length = e1000_m88_cable_length_table[index];
1878 	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1879 
1880 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1881 
1882 	return 0;
1883 }
1884 
1885 /**
1886  *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1887  *  @hw: pointer to the HW structure
1888  *
1889  *  The automatic gain control (agc) normalizes the amplitude of the
1890  *  received signal, adjusting for the attenuation produced by the
1891  *  cable.  By reading the AGC registers, which represent the
1892  *  combination of coarse and fine gain value, the value can be put
1893  *  into a lookup table to obtain the approximate cable length
1894  *  for each channel.
1895  **/
1896 s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1897 {
1898 	struct e1000_phy_info *phy = &hw->phy;
1899 	s32 ret_val;
1900 	u16 phy_data, i, agc_value = 0;
1901 	u16 cur_agc_index, max_agc_index = 0;
1902 	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1903 	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1904 	       IGP02E1000_PHY_AGC_A,
1905 	       IGP02E1000_PHY_AGC_B,
1906 	       IGP02E1000_PHY_AGC_C,
1907 	       IGP02E1000_PHY_AGC_D
1908 	};
1909 
1910 	/* Read the AGC registers for all channels */
1911 	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1912 		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1913 		if (ret_val)
1914 			return ret_val;
1915 
1916 		/*
1917 		 * Getting bits 15:9, which represent the combination of
1918 		 * coarse and fine gain values.  The result is a number
1919 		 * that can be put into the lookup table to obtain the
1920 		 * approximate cable length.
1921 		 */
1922 		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1923 				IGP02E1000_AGC_LENGTH_MASK;
1924 
1925 		/* Array index bound check. */
1926 		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1927 		    (cur_agc_index == 0))
1928 			return -E1000_ERR_PHY;
1929 
1930 		/* Remove min & max AGC values from calculation. */
1931 		if (e1000_igp_2_cable_length_table[min_agc_index] >
1932 		    e1000_igp_2_cable_length_table[cur_agc_index])
1933 			min_agc_index = cur_agc_index;
1934 		if (e1000_igp_2_cable_length_table[max_agc_index] <
1935 		    e1000_igp_2_cable_length_table[cur_agc_index])
1936 			max_agc_index = cur_agc_index;
1937 
1938 		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1939 	}
1940 
1941 	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1942 		      e1000_igp_2_cable_length_table[max_agc_index]);
1943 	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1944 
1945 	/* Calculate cable length with the error range of +/- 10 meters. */
1946 	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1947 				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1948 	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1949 
1950 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1951 
1952 	return 0;
1953 }
1954 
1955 /**
1956  *  e1000e_get_phy_info_m88 - Retrieve PHY information
1957  *  @hw: pointer to the HW structure
1958  *
1959  *  Valid for only copper links.  Read the PHY status register (sticky read)
1960  *  to verify that link is up.  Read the PHY special control register to
1961  *  determine the polarity and 10base-T extended distance.  Read the PHY
1962  *  special status register to determine MDI/MDIx and current speed.  If
1963  *  speed is 1000, then determine cable length, local and remote receiver.
1964  **/
1965 s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1966 {
1967 	struct e1000_phy_info *phy = &hw->phy;
1968 	s32  ret_val;
1969 	u16 phy_data;
1970 	bool link;
1971 
1972 	if (phy->media_type != e1000_media_type_copper) {
1973 		e_dbg("Phy info is only valid for copper media\n");
1974 		return -E1000_ERR_CONFIG;
1975 	}
1976 
1977 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1978 	if (ret_val)
1979 		return ret_val;
1980 
1981 	if (!link) {
1982 		e_dbg("Phy info is only valid if link is up\n");
1983 		return -E1000_ERR_CONFIG;
1984 	}
1985 
1986 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1987 	if (ret_val)
1988 		return ret_val;
1989 
1990 	phy->polarity_correction = !!(phy_data &
1991 				      M88E1000_PSCR_POLARITY_REVERSAL);
1992 
1993 	ret_val = e1000_check_polarity_m88(hw);
1994 	if (ret_val)
1995 		return ret_val;
1996 
1997 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1998 	if (ret_val)
1999 		return ret_val;
2000 
2001 	phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
2002 
2003 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
2004 		ret_val = e1000_get_cable_length(hw);
2005 		if (ret_val)
2006 			return ret_val;
2007 
2008 		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
2009 		if (ret_val)
2010 			return ret_val;
2011 
2012 		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
2013 				? e1000_1000t_rx_status_ok
2014 				: e1000_1000t_rx_status_not_ok;
2015 
2016 		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
2017 				 ? e1000_1000t_rx_status_ok
2018 				 : e1000_1000t_rx_status_not_ok;
2019 	} else {
2020 		/* Set values to "undefined" */
2021 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2022 		phy->local_rx = e1000_1000t_rx_status_undefined;
2023 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2024 	}
2025 
2026 	return ret_val;
2027 }
2028 
2029 /**
2030  *  e1000e_get_phy_info_igp - Retrieve igp PHY information
2031  *  @hw: pointer to the HW structure
2032  *
2033  *  Read PHY status to determine if link is up.  If link is up, then
2034  *  set/determine 10base-T extended distance and polarity correction.  Read
2035  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2036  *  determine on the cable length, local and remote receiver.
2037  **/
2038 s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
2039 {
2040 	struct e1000_phy_info *phy = &hw->phy;
2041 	s32 ret_val;
2042 	u16 data;
2043 	bool link;
2044 
2045 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2046 	if (ret_val)
2047 		return ret_val;
2048 
2049 	if (!link) {
2050 		e_dbg("Phy info is only valid if link is up\n");
2051 		return -E1000_ERR_CONFIG;
2052 	}
2053 
2054 	phy->polarity_correction = true;
2055 
2056 	ret_val = e1000_check_polarity_igp(hw);
2057 	if (ret_val)
2058 		return ret_val;
2059 
2060 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2061 	if (ret_val)
2062 		return ret_val;
2063 
2064 	phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
2065 
2066 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2067 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2068 		ret_val = e1000_get_cable_length(hw);
2069 		if (ret_val)
2070 			return ret_val;
2071 
2072 		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
2073 		if (ret_val)
2074 			return ret_val;
2075 
2076 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2077 				? e1000_1000t_rx_status_ok
2078 				: e1000_1000t_rx_status_not_ok;
2079 
2080 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2081 				 ? e1000_1000t_rx_status_ok
2082 				 : e1000_1000t_rx_status_not_ok;
2083 	} else {
2084 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2085 		phy->local_rx = e1000_1000t_rx_status_undefined;
2086 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2087 	}
2088 
2089 	return ret_val;
2090 }
2091 
2092 /**
2093  *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
2094  *  @hw: pointer to the HW structure
2095  *
2096  *  Populates "phy" structure with various feature states.
2097  **/
2098 s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2099 {
2100 	struct e1000_phy_info *phy = &hw->phy;
2101 	s32 ret_val;
2102 	u16 data;
2103 	bool link;
2104 
2105 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2106 	if (ret_val)
2107 		return ret_val;
2108 
2109 	if (!link) {
2110 		e_dbg("Phy info is only valid if link is up\n");
2111 		return -E1000_ERR_CONFIG;
2112 	}
2113 
2114 	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2115 	if (ret_val)
2116 		return ret_val;
2117 	phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
2118 
2119 	if (phy->polarity_correction) {
2120 		ret_val = e1000_check_polarity_ife(hw);
2121 		if (ret_val)
2122 			return ret_val;
2123 	} else {
2124 		/* Polarity is forced */
2125 		phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
2126 		                      ? e1000_rev_polarity_reversed
2127 		                      : e1000_rev_polarity_normal;
2128 	}
2129 
2130 	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2131 	if (ret_val)
2132 		return ret_val;
2133 
2134 	phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
2135 
2136 	/* The following parameters are undefined for 10/100 operation. */
2137 	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2138 	phy->local_rx = e1000_1000t_rx_status_undefined;
2139 	phy->remote_rx = e1000_1000t_rx_status_undefined;
2140 
2141 	return 0;
2142 }
2143 
2144 /**
2145  *  e1000e_phy_sw_reset - PHY software reset
2146  *  @hw: pointer to the HW structure
2147  *
2148  *  Does a software reset of the PHY by reading the PHY control register and
2149  *  setting/write the control register reset bit to the PHY.
2150  **/
2151 s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2152 {
2153 	s32 ret_val;
2154 	u16 phy_ctrl;
2155 
2156 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
2157 	if (ret_val)
2158 		return ret_val;
2159 
2160 	phy_ctrl |= MII_CR_RESET;
2161 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
2162 	if (ret_val)
2163 		return ret_val;
2164 
2165 	udelay(1);
2166 
2167 	return ret_val;
2168 }
2169 
2170 /**
2171  *  e1000e_phy_hw_reset_generic - PHY hardware reset
2172  *  @hw: pointer to the HW structure
2173  *
2174  *  Verify the reset block is not blocking us from resetting.  Acquire
2175  *  semaphore (if necessary) and read/set/write the device control reset
2176  *  bit in the PHY.  Wait the appropriate delay time for the device to
2177  *  reset and release the semaphore (if necessary).
2178  **/
2179 s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2180 {
2181 	struct e1000_phy_info *phy = &hw->phy;
2182 	s32 ret_val;
2183 	u32 ctrl;
2184 
2185 	if (phy->ops.check_reset_block) {
2186 		ret_val = phy->ops.check_reset_block(hw);
2187 		if (ret_val)
2188 			return 0;
2189 	}
2190 
2191 	ret_val = phy->ops.acquire(hw);
2192 	if (ret_val)
2193 		return ret_val;
2194 
2195 	ctrl = er32(CTRL);
2196 	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2197 	e1e_flush();
2198 
2199 	udelay(phy->reset_delay_us);
2200 
2201 	ew32(CTRL, ctrl);
2202 	e1e_flush();
2203 
2204 	udelay(150);
2205 
2206 	phy->ops.release(hw);
2207 
2208 	return e1000_get_phy_cfg_done(hw);
2209 }
2210 
2211 /**
2212  *  e1000e_get_cfg_done - Generic configuration done
2213  *  @hw: pointer to the HW structure
2214  *
2215  *  Generic function to wait 10 milli-seconds for configuration to complete
2216  *  and return success.
2217  **/
2218 s32 e1000e_get_cfg_done(struct e1000_hw *hw)
2219 {
2220 	mdelay(10);
2221 
2222 	return 0;
2223 }
2224 
2225 /**
2226  *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2227  *  @hw: pointer to the HW structure
2228  *
2229  *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2230  **/
2231 s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2232 {
2233 	e_dbg("Running IGP 3 PHY init script\n");
2234 
2235 	/* PHY init IGP 3 */
2236 	/* Enable rise/fall, 10-mode work in class-A */
2237 	e1e_wphy(hw, 0x2F5B, 0x9018);
2238 	/* Remove all caps from Replica path filter */
2239 	e1e_wphy(hw, 0x2F52, 0x0000);
2240 	/* Bias trimming for ADC, AFE and Driver (Default) */
2241 	e1e_wphy(hw, 0x2FB1, 0x8B24);
2242 	/* Increase Hybrid poly bias */
2243 	e1e_wphy(hw, 0x2FB2, 0xF8F0);
2244 	/* Add 4% to Tx amplitude in Gig mode */
2245 	e1e_wphy(hw, 0x2010, 0x10B0);
2246 	/* Disable trimming (TTT) */
2247 	e1e_wphy(hw, 0x2011, 0x0000);
2248 	/* Poly DC correction to 94.6% + 2% for all channels */
2249 	e1e_wphy(hw, 0x20DD, 0x249A);
2250 	/* ABS DC correction to 95.9% */
2251 	e1e_wphy(hw, 0x20DE, 0x00D3);
2252 	/* BG temp curve trim */
2253 	e1e_wphy(hw, 0x28B4, 0x04CE);
2254 	/* Increasing ADC OPAMP stage 1 currents to max */
2255 	e1e_wphy(hw, 0x2F70, 0x29E4);
2256 	/* Force 1000 ( required for enabling PHY regs configuration) */
2257 	e1e_wphy(hw, 0x0000, 0x0140);
2258 	/* Set upd_freq to 6 */
2259 	e1e_wphy(hw, 0x1F30, 0x1606);
2260 	/* Disable NPDFE */
2261 	e1e_wphy(hw, 0x1F31, 0xB814);
2262 	/* Disable adaptive fixed FFE (Default) */
2263 	e1e_wphy(hw, 0x1F35, 0x002A);
2264 	/* Enable FFE hysteresis */
2265 	e1e_wphy(hw, 0x1F3E, 0x0067);
2266 	/* Fixed FFE for short cable lengths */
2267 	e1e_wphy(hw, 0x1F54, 0x0065);
2268 	/* Fixed FFE for medium cable lengths */
2269 	e1e_wphy(hw, 0x1F55, 0x002A);
2270 	/* Fixed FFE for long cable lengths */
2271 	e1e_wphy(hw, 0x1F56, 0x002A);
2272 	/* Enable Adaptive Clip Threshold */
2273 	e1e_wphy(hw, 0x1F72, 0x3FB0);
2274 	/* AHT reset limit to 1 */
2275 	e1e_wphy(hw, 0x1F76, 0xC0FF);
2276 	/* Set AHT master delay to 127 msec */
2277 	e1e_wphy(hw, 0x1F77, 0x1DEC);
2278 	/* Set scan bits for AHT */
2279 	e1e_wphy(hw, 0x1F78, 0xF9EF);
2280 	/* Set AHT Preset bits */
2281 	e1e_wphy(hw, 0x1F79, 0x0210);
2282 	/* Change integ_factor of channel A to 3 */
2283 	e1e_wphy(hw, 0x1895, 0x0003);
2284 	/* Change prop_factor of channels BCD to 8 */
2285 	e1e_wphy(hw, 0x1796, 0x0008);
2286 	/* Change cg_icount + enable integbp for channels BCD */
2287 	e1e_wphy(hw, 0x1798, 0xD008);
2288 	/*
2289 	 * Change cg_icount + enable integbp + change prop_factor_master
2290 	 * to 8 for channel A
2291 	 */
2292 	e1e_wphy(hw, 0x1898, 0xD918);
2293 	/* Disable AHT in Slave mode on channel A */
2294 	e1e_wphy(hw, 0x187A, 0x0800);
2295 	/*
2296 	 * Enable LPLU and disable AN to 1000 in non-D0a states,
2297 	 * Enable SPD+B2B
2298 	 */
2299 	e1e_wphy(hw, 0x0019, 0x008D);
2300 	/* Enable restart AN on an1000_dis change */
2301 	e1e_wphy(hw, 0x001B, 0x2080);
2302 	/* Enable wh_fifo read clock in 10/100 modes */
2303 	e1e_wphy(hw, 0x0014, 0x0045);
2304 	/* Restart AN, Speed selection is 1000 */
2305 	e1e_wphy(hw, 0x0000, 0x1340);
2306 
2307 	return 0;
2308 }
2309 
2310 /* Internal function pointers */
2311 
2312 /**
2313  *  e1000_get_phy_cfg_done - Generic PHY configuration done
2314  *  @hw: pointer to the HW structure
2315  *
2316  *  Return success if silicon family did not implement a family specific
2317  *  get_cfg_done function.
2318  **/
2319 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
2320 {
2321 	if (hw->phy.ops.get_cfg_done)
2322 		return hw->phy.ops.get_cfg_done(hw);
2323 
2324 	return 0;
2325 }
2326 
2327 /**
2328  *  e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
2329  *  @hw: pointer to the HW structure
2330  *
2331  *  When the silicon family has not implemented a forced speed/duplex
2332  *  function for the PHY, simply return 0.
2333  **/
2334 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
2335 {
2336 	if (hw->phy.ops.force_speed_duplex)
2337 		return hw->phy.ops.force_speed_duplex(hw);
2338 
2339 	return 0;
2340 }
2341 
2342 /**
2343  *  e1000e_get_phy_type_from_id - Get PHY type from id
2344  *  @phy_id: phy_id read from the phy
2345  *
2346  *  Returns the phy type from the id.
2347  **/
2348 enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2349 {
2350 	enum e1000_phy_type phy_type = e1000_phy_unknown;
2351 
2352 	switch (phy_id) {
2353 	case M88E1000_I_PHY_ID:
2354 	case M88E1000_E_PHY_ID:
2355 	case M88E1111_I_PHY_ID:
2356 	case M88E1011_I_PHY_ID:
2357 		phy_type = e1000_phy_m88;
2358 		break;
2359 	case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
2360 		phy_type = e1000_phy_igp_2;
2361 		break;
2362 	case GG82563_E_PHY_ID:
2363 		phy_type = e1000_phy_gg82563;
2364 		break;
2365 	case IGP03E1000_E_PHY_ID:
2366 		phy_type = e1000_phy_igp_3;
2367 		break;
2368 	case IFE_E_PHY_ID:
2369 	case IFE_PLUS_E_PHY_ID:
2370 	case IFE_C_E_PHY_ID:
2371 		phy_type = e1000_phy_ife;
2372 		break;
2373 	case BME1000_E_PHY_ID:
2374 	case BME1000_E_PHY_ID_R2:
2375 		phy_type = e1000_phy_bm;
2376 		break;
2377 	case I82578_E_PHY_ID:
2378 		phy_type = e1000_phy_82578;
2379 		break;
2380 	case I82577_E_PHY_ID:
2381 		phy_type = e1000_phy_82577;
2382 		break;
2383 	case I82579_E_PHY_ID:
2384 		phy_type = e1000_phy_82579;
2385 		break;
2386 	case I217_E_PHY_ID:
2387 		phy_type = e1000_phy_i217;
2388 		break;
2389 	default:
2390 		phy_type = e1000_phy_unknown;
2391 		break;
2392 	}
2393 	return phy_type;
2394 }
2395 
2396 /**
2397  *  e1000e_determine_phy_address - Determines PHY address.
2398  *  @hw: pointer to the HW structure
2399  *
2400  *  This uses a trial and error method to loop through possible PHY
2401  *  addresses. It tests each by reading the PHY ID registers and
2402  *  checking for a match.
2403  **/
2404 s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2405 {
2406 	u32 phy_addr = 0;
2407 	u32 i;
2408 	enum e1000_phy_type phy_type = e1000_phy_unknown;
2409 
2410 	hw->phy.id = phy_type;
2411 
2412 	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2413 		hw->phy.addr = phy_addr;
2414 		i = 0;
2415 
2416 		do {
2417 			e1000e_get_phy_id(hw);
2418 			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2419 
2420 			/*
2421 			 * If phy_type is valid, break - we found our
2422 			 * PHY address
2423 			 */
2424 			if (phy_type  != e1000_phy_unknown)
2425 				return 0;
2426 
2427 			usleep_range(1000, 2000);
2428 			i++;
2429 		} while (i < 10);
2430 	}
2431 
2432 	return -E1000_ERR_PHY_TYPE;
2433 }
2434 
2435 /**
2436  *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2437  *  @page: page to access
2438  *
2439  *  Returns the phy address for the page requested.
2440  **/
2441 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2442 {
2443 	u32 phy_addr = 2;
2444 
2445 	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2446 		phy_addr = 1;
2447 
2448 	return phy_addr;
2449 }
2450 
2451 /**
2452  *  e1000e_write_phy_reg_bm - Write BM PHY register
2453  *  @hw: pointer to the HW structure
2454  *  @offset: register offset to write to
2455  *  @data: data to write at register offset
2456  *
2457  *  Acquires semaphore, if necessary, then writes the data to PHY register
2458  *  at the offset.  Release any acquired semaphores before exiting.
2459  **/
2460 s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2461 {
2462 	s32 ret_val;
2463 	u32 page = offset >> IGP_PAGE_SHIFT;
2464 
2465 	ret_val = hw->phy.ops.acquire(hw);
2466 	if (ret_val)
2467 		return ret_val;
2468 
2469 	/* Page 800 works differently than the rest so it has its own func */
2470 	if (page == BM_WUC_PAGE) {
2471 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2472 							 false, false);
2473 		goto release;
2474 	}
2475 
2476 	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2477 
2478 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2479 		u32 page_shift, page_select;
2480 
2481 		/*
2482 		 * Page select is register 31 for phy address 1 and 22 for
2483 		 * phy address 2 and 3. Page select is shifted only for
2484 		 * phy address 1.
2485 		 */
2486 		if (hw->phy.addr == 1) {
2487 			page_shift = IGP_PAGE_SHIFT;
2488 			page_select = IGP01E1000_PHY_PAGE_SELECT;
2489 		} else {
2490 			page_shift = 0;
2491 			page_select = BM_PHY_PAGE_SELECT;
2492 		}
2493 
2494 		/* Page is shifted left, PHY expects (page x 32) */
2495 		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2496 		                                    (page << page_shift));
2497 		if (ret_val)
2498 			goto release;
2499 	}
2500 
2501 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2502 	                                    data);
2503 
2504 release:
2505 	hw->phy.ops.release(hw);
2506 	return ret_val;
2507 }
2508 
2509 /**
2510  *  e1000e_read_phy_reg_bm - Read BM PHY register
2511  *  @hw: pointer to the HW structure
2512  *  @offset: register offset to be read
2513  *  @data: pointer to the read data
2514  *
2515  *  Acquires semaphore, if necessary, then reads the PHY register at offset
2516  *  and storing the retrieved information in data.  Release any acquired
2517  *  semaphores before exiting.
2518  **/
2519 s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2520 {
2521 	s32 ret_val;
2522 	u32 page = offset >> IGP_PAGE_SHIFT;
2523 
2524 	ret_val = hw->phy.ops.acquire(hw);
2525 	if (ret_val)
2526 		return ret_val;
2527 
2528 	/* Page 800 works differently than the rest so it has its own func */
2529 	if (page == BM_WUC_PAGE) {
2530 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2531 							 true, false);
2532 		goto release;
2533 	}
2534 
2535 	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2536 
2537 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2538 		u32 page_shift, page_select;
2539 
2540 		/*
2541 		 * Page select is register 31 for phy address 1 and 22 for
2542 		 * phy address 2 and 3. Page select is shifted only for
2543 		 * phy address 1.
2544 		 */
2545 		if (hw->phy.addr == 1) {
2546 			page_shift = IGP_PAGE_SHIFT;
2547 			page_select = IGP01E1000_PHY_PAGE_SELECT;
2548 		} else {
2549 			page_shift = 0;
2550 			page_select = BM_PHY_PAGE_SELECT;
2551 		}
2552 
2553 		/* Page is shifted left, PHY expects (page x 32) */
2554 		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2555 		                                    (page << page_shift));
2556 		if (ret_val)
2557 			goto release;
2558 	}
2559 
2560 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2561 	                                   data);
2562 release:
2563 	hw->phy.ops.release(hw);
2564 	return ret_val;
2565 }
2566 
2567 /**
2568  *  e1000e_read_phy_reg_bm2 - Read BM PHY register
2569  *  @hw: pointer to the HW structure
2570  *  @offset: register offset to be read
2571  *  @data: pointer to the read data
2572  *
2573  *  Acquires semaphore, if necessary, then reads the PHY register at offset
2574  *  and storing the retrieved information in data.  Release any acquired
2575  *  semaphores before exiting.
2576  **/
2577 s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2578 {
2579 	s32 ret_val;
2580 	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2581 
2582 	ret_val = hw->phy.ops.acquire(hw);
2583 	if (ret_val)
2584 		return ret_val;
2585 
2586 	/* Page 800 works differently than the rest so it has its own func */
2587 	if (page == BM_WUC_PAGE) {
2588 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2589 							 true, false);
2590 		goto release;
2591 	}
2592 
2593 	hw->phy.addr = 1;
2594 
2595 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2596 
2597 		/* Page is shifted left, PHY expects (page x 32) */
2598 		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2599 						    page);
2600 
2601 		if (ret_val)
2602 			goto release;
2603 	}
2604 
2605 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2606 					   data);
2607 release:
2608 	hw->phy.ops.release(hw);
2609 	return ret_val;
2610 }
2611 
2612 /**
2613  *  e1000e_write_phy_reg_bm2 - Write BM PHY register
2614  *  @hw: pointer to the HW structure
2615  *  @offset: register offset to write to
2616  *  @data: data to write at register offset
2617  *
2618  *  Acquires semaphore, if necessary, then writes the data to PHY register
2619  *  at the offset.  Release any acquired semaphores before exiting.
2620  **/
2621 s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2622 {
2623 	s32 ret_val;
2624 	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2625 
2626 	ret_val = hw->phy.ops.acquire(hw);
2627 	if (ret_val)
2628 		return ret_val;
2629 
2630 	/* Page 800 works differently than the rest so it has its own func */
2631 	if (page == BM_WUC_PAGE) {
2632 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2633 							 false, false);
2634 		goto release;
2635 	}
2636 
2637 	hw->phy.addr = 1;
2638 
2639 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2640 		/* Page is shifted left, PHY expects (page x 32) */
2641 		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2642 						    page);
2643 
2644 		if (ret_val)
2645 			goto release;
2646 	}
2647 
2648 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2649 					    data);
2650 
2651 release:
2652 	hw->phy.ops.release(hw);
2653 	return ret_val;
2654 }
2655 
2656 /**
2657  *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2658  *  @hw: pointer to the HW structure
2659  *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2660  *
2661  *  Assumes semaphore already acquired and phy_reg points to a valid memory
2662  *  address to store contents of the BM_WUC_ENABLE_REG register.
2663  **/
2664 s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2665 {
2666 	s32 ret_val;
2667 	u16 temp;
2668 
2669 	/* All page select, port ctrl and wakeup registers use phy address 1 */
2670 	hw->phy.addr = 1;
2671 
2672 	/* Select Port Control Registers page */
2673 	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2674 	if (ret_val) {
2675 		e_dbg("Could not set Port Control page\n");
2676 		return ret_val;
2677 	}
2678 
2679 	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2680 	if (ret_val) {
2681 		e_dbg("Could not read PHY register %d.%d\n",
2682 		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2683 		return ret_val;
2684 	}
2685 
2686 	/*
2687 	 * Enable both PHY wakeup mode and Wakeup register page writes.
2688 	 * Prevent a power state change by disabling ME and Host PHY wakeup.
2689 	 */
2690 	temp = *phy_reg;
2691 	temp |= BM_WUC_ENABLE_BIT;
2692 	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
2693 
2694 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
2695 	if (ret_val) {
2696 		e_dbg("Could not write PHY register %d.%d\n",
2697 		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2698 		return ret_val;
2699 	}
2700 
2701 	/*
2702 	 * Select Host Wakeup Registers page - caller now able to write
2703 	 * registers on the Wakeup registers page
2704 	 */
2705 	return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2706 }
2707 
2708 /**
2709  *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2710  *  @hw: pointer to the HW structure
2711  *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2712  *
2713  *  Restore BM_WUC_ENABLE_REG to its original value.
2714  *
2715  *  Assumes semaphore already acquired and *phy_reg is the contents of the
2716  *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2717  *  caller.
2718  **/
2719 s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2720 {
2721 	s32 ret_val = 0;
2722 
2723 	/* Select Port Control Registers page */
2724 	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2725 	if (ret_val) {
2726 		e_dbg("Could not set Port Control page\n");
2727 		return ret_val;
2728 	}
2729 
2730 	/* Restore 769.17 to its original value */
2731 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
2732 	if (ret_val)
2733 		e_dbg("Could not restore PHY register %d.%d\n",
2734 		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2735 
2736 	return ret_val;
2737 }
2738 
2739 /**
2740  *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2741  *  @hw: pointer to the HW structure
2742  *  @offset: register offset to be read or written
2743  *  @data: pointer to the data to read or write
2744  *  @read: determines if operation is read or write
2745  *  @page_set: BM_WUC_PAGE already set and access enabled
2746  *
2747  *  Read the PHY register at offset and store the retrieved information in
2748  *  data, or write data to PHY register at offset.  Note the procedure to
2749  *  access the PHY wakeup registers is different than reading the other PHY
2750  *  registers. It works as such:
2751  *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2752  *  2) Set page to 800 for host (801 if we were manageability)
2753  *  3) Write the address using the address opcode (0x11)
2754  *  4) Read or write the data using the data opcode (0x12)
2755  *  5) Restore 769.17.2 to its original value
2756  *
2757  *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2758  *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2759  *
2760  *  Assumes semaphore is already acquired.  When page_set==true, assumes
2761  *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2762  *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2763  **/
2764 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2765 					  u16 *data, bool read, bool page_set)
2766 {
2767 	s32 ret_val;
2768 	u16 reg = BM_PHY_REG_NUM(offset);
2769 	u16 page = BM_PHY_REG_PAGE(offset);
2770 	u16 phy_reg = 0;
2771 
2772 	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2773 	if ((hw->mac.type == e1000_pchlan) &&
2774 	    (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2775 		e_dbg("Attempting to access page %d while gig enabled.\n",
2776 		      page);
2777 
2778 	if (!page_set) {
2779 		/* Enable access to PHY wakeup registers */
2780 		ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2781 		if (ret_val) {
2782 			e_dbg("Could not enable PHY wakeup reg access\n");
2783 			return ret_val;
2784 		}
2785 	}
2786 
2787 	e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
2788 
2789 	/* Write the Wakeup register page offset value using opcode 0x11 */
2790 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2791 	if (ret_val) {
2792 		e_dbg("Could not write address opcode to page %d\n", page);
2793 		return ret_val;
2794 	}
2795 
2796 	if (read) {
2797 		/* Read the Wakeup register page value using opcode 0x12 */
2798 		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2799 		                                   data);
2800 	} else {
2801 		/* Write the Wakeup register page value using opcode 0x12 */
2802 		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2803 						    *data);
2804 	}
2805 
2806 	if (ret_val) {
2807 		e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2808 		return ret_val;
2809 	}
2810 
2811 	if (!page_set)
2812 		ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2813 
2814 	return ret_val;
2815 }
2816 
2817 /**
2818  * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2819  * @hw: pointer to the HW structure
2820  *
2821  * In the case of a PHY power down to save power, or to turn off link during a
2822  * driver unload, or wake on lan is not enabled, restore the link to previous
2823  * settings.
2824  **/
2825 void e1000_power_up_phy_copper(struct e1000_hw *hw)
2826 {
2827 	u16 mii_reg = 0;
2828 
2829 	/* The PHY will retain its settings across a power down/up cycle */
2830 	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2831 	mii_reg &= ~MII_CR_POWER_DOWN;
2832 	e1e_wphy(hw, PHY_CONTROL, mii_reg);
2833 }
2834 
2835 /**
2836  * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2837  * @hw: pointer to the HW structure
2838  *
2839  * In the case of a PHY power down to save power, or to turn off link during a
2840  * driver unload, or wake on lan is not enabled, restore the link to previous
2841  * settings.
2842  **/
2843 void e1000_power_down_phy_copper(struct e1000_hw *hw)
2844 {
2845 	u16 mii_reg = 0;
2846 
2847 	/* The PHY will retain its settings across a power down/up cycle */
2848 	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2849 	mii_reg |= MII_CR_POWER_DOWN;
2850 	e1e_wphy(hw, PHY_CONTROL, mii_reg);
2851 	usleep_range(1000, 2000);
2852 }
2853 
2854 /**
2855  *  e1000e_commit_phy - Soft PHY reset
2856  *  @hw: pointer to the HW structure
2857  *
2858  *  Performs a soft PHY reset on those that apply. This is a function pointer
2859  *  entry point called by drivers.
2860  **/
2861 s32 e1000e_commit_phy(struct e1000_hw *hw)
2862 {
2863 	if (hw->phy.ops.commit)
2864 		return hw->phy.ops.commit(hw);
2865 
2866 	return 0;
2867 }
2868 
2869 /**
2870  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
2871  *  @hw: pointer to the HW structure
2872  *  @active: boolean used to enable/disable lplu
2873  *
2874  *  Success returns 0, Failure returns 1
2875  *
2876  *  The low power link up (lplu) state is set to the power management level D0
2877  *  and SmartSpeed is disabled when active is true, else clear lplu for D0
2878  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
2879  *  is used during Dx states where the power conservation is most important.
2880  *  During driver activity, SmartSpeed should be enabled so performance is
2881  *  maintained.  This is a function pointer entry point called by drivers.
2882  **/
2883 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2884 {
2885 	if (hw->phy.ops.set_d0_lplu_state)
2886 		return hw->phy.ops.set_d0_lplu_state(hw, active);
2887 
2888 	return 0;
2889 }
2890 
2891 /**
2892  *  __e1000_read_phy_reg_hv -  Read HV PHY register
2893  *  @hw: pointer to the HW structure
2894  *  @offset: register offset to be read
2895  *  @data: pointer to the read data
2896  *  @locked: semaphore has already been acquired or not
2897  *
2898  *  Acquires semaphore, if necessary, then reads the PHY register at offset
2899  *  and stores the retrieved information in data.  Release any acquired
2900  *  semaphore before exiting.
2901  **/
2902 static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2903 				   bool locked, bool page_set)
2904 {
2905 	s32 ret_val;
2906 	u16 page = BM_PHY_REG_PAGE(offset);
2907 	u16 reg = BM_PHY_REG_NUM(offset);
2908 	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2909 
2910 	if (!locked) {
2911 		ret_val = hw->phy.ops.acquire(hw);
2912 		if (ret_val)
2913 			return ret_val;
2914 	}
2915 
2916 	/* Page 800 works differently than the rest so it has its own func */
2917 	if (page == BM_WUC_PAGE) {
2918 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2919 							 true, page_set);
2920 		goto out;
2921 	}
2922 
2923 	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2924 		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2925 		                                         data, true);
2926 		goto out;
2927 	}
2928 
2929 	if (!page_set) {
2930 		if (page == HV_INTC_FC_PAGE_START)
2931 			page = 0;
2932 
2933 		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2934 			/* Page is shifted left, PHY expects (page x 32) */
2935 			ret_val = e1000_set_page_igp(hw,
2936 						     (page << IGP_PAGE_SHIFT));
2937 
2938 			hw->phy.addr = phy_addr;
2939 
2940 			if (ret_val)
2941 				goto out;
2942 		}
2943 	}
2944 
2945 	e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2946 	      page << IGP_PAGE_SHIFT, reg);
2947 
2948 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2949 	                                  data);
2950 out:
2951 	if (!locked)
2952 		hw->phy.ops.release(hw);
2953 
2954 	return ret_val;
2955 }
2956 
2957 /**
2958  *  e1000_read_phy_reg_hv -  Read HV PHY register
2959  *  @hw: pointer to the HW structure
2960  *  @offset: register offset to be read
2961  *  @data: pointer to the read data
2962  *
2963  *  Acquires semaphore then reads the PHY register at offset and stores
2964  *  the retrieved information in data.  Release the acquired semaphore
2965  *  before exiting.
2966  **/
2967 s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2968 {
2969 	return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2970 }
2971 
2972 /**
2973  *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
2974  *  @hw: pointer to the HW structure
2975  *  @offset: register offset to be read
2976  *  @data: pointer to the read data
2977  *
2978  *  Reads the PHY register at offset and stores the retrieved information
2979  *  in data.  Assumes semaphore already acquired.
2980  **/
2981 s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2982 {
2983 	return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
2984 }
2985 
2986 /**
2987  *  e1000_read_phy_reg_page_hv - Read HV PHY register
2988  *  @hw: pointer to the HW structure
2989  *  @offset: register offset to write to
2990  *  @data: data to write at register offset
2991  *
2992  *  Reads the PHY register at offset and stores the retrieved information
2993  *  in data.  Assumes semaphore already acquired and page already set.
2994  **/
2995 s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2996 {
2997 	return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2998 }
2999 
3000 /**
3001  *  __e1000_write_phy_reg_hv - Write HV PHY register
3002  *  @hw: pointer to the HW structure
3003  *  @offset: register offset to write to
3004  *  @data: data to write at register offset
3005  *  @locked: semaphore has already been acquired or not
3006  *
3007  *  Acquires semaphore, if necessary, then writes the data to PHY register
3008  *  at the offset.  Release any acquired semaphores before exiting.
3009  **/
3010 static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
3011 				    bool locked, bool page_set)
3012 {
3013 	s32 ret_val;
3014 	u16 page = BM_PHY_REG_PAGE(offset);
3015 	u16 reg = BM_PHY_REG_NUM(offset);
3016 	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
3017 
3018 	if (!locked) {
3019 		ret_val = hw->phy.ops.acquire(hw);
3020 		if (ret_val)
3021 			return ret_val;
3022 	}
3023 
3024 	/* Page 800 works differently than the rest so it has its own func */
3025 	if (page == BM_WUC_PAGE) {
3026 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
3027 							 false, page_set);
3028 		goto out;
3029 	}
3030 
3031 	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
3032 		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
3033 		                                         &data, false);
3034 		goto out;
3035 	}
3036 
3037 	if (!page_set) {
3038 		if (page == HV_INTC_FC_PAGE_START)
3039 			page = 0;
3040 
3041 		/*
3042 		 * Workaround MDIO accesses being disabled after entering IEEE
3043 		 * Power Down (when bit 11 of the PHY Control register is set)
3044 		 */
3045 		if ((hw->phy.type == e1000_phy_82578) &&
3046 		    (hw->phy.revision >= 1) &&
3047 		    (hw->phy.addr == 2) &&
3048 		    !(MAX_PHY_REG_ADDRESS & reg) && (data & (1 << 11))) {
3049 			u16 data2 = 0x7EFF;
3050 			ret_val = e1000_access_phy_debug_regs_hv(hw,
3051 								 (1 << 6) | 0x3,
3052 								 &data2, false);
3053 			if (ret_val)
3054 				goto out;
3055 		}
3056 
3057 		if (reg > MAX_PHY_MULTI_PAGE_REG) {
3058 			/* Page is shifted left, PHY expects (page x 32) */
3059 			ret_val = e1000_set_page_igp(hw,
3060 						     (page << IGP_PAGE_SHIFT));
3061 
3062 			hw->phy.addr = phy_addr;
3063 
3064 			if (ret_val)
3065 				goto out;
3066 		}
3067 	}
3068 
3069 	e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
3070 	      page << IGP_PAGE_SHIFT, reg);
3071 
3072 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
3073 	                                  data);
3074 
3075 out:
3076 	if (!locked)
3077 		hw->phy.ops.release(hw);
3078 
3079 	return ret_val;
3080 }
3081 
3082 /**
3083  *  e1000_write_phy_reg_hv - Write HV PHY register
3084  *  @hw: pointer to the HW structure
3085  *  @offset: register offset to write to
3086  *  @data: data to write at register offset
3087  *
3088  *  Acquires semaphore then writes the data to PHY register at the offset.
3089  *  Release the acquired semaphores before exiting.
3090  **/
3091 s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
3092 {
3093 	return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
3094 }
3095 
3096 /**
3097  *  e1000_write_phy_reg_hv_locked - Write HV PHY register
3098  *  @hw: pointer to the HW structure
3099  *  @offset: register offset to write to
3100  *  @data: data to write at register offset
3101  *
3102  *  Writes the data to PHY register at the offset.  Assumes semaphore
3103  *  already acquired.
3104  **/
3105 s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
3106 {
3107 	return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
3108 }
3109 
3110 /**
3111  *  e1000_write_phy_reg_page_hv - Write HV PHY register
3112  *  @hw: pointer to the HW structure
3113  *  @offset: register offset to write to
3114  *  @data: data to write at register offset
3115  *
3116  *  Writes the data to PHY register at the offset.  Assumes semaphore
3117  *  already acquired and page already set.
3118  **/
3119 s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
3120 {
3121 	return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
3122 }
3123 
3124 /**
3125  *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page
3126  *  @page: page to be accessed
3127  **/
3128 static u32 e1000_get_phy_addr_for_hv_page(u32 page)
3129 {
3130 	u32 phy_addr = 2;
3131 
3132 	if (page >= HV_INTC_FC_PAGE_START)
3133 		phy_addr = 1;
3134 
3135 	return phy_addr;
3136 }
3137 
3138 /**
3139  *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
3140  *  @hw: pointer to the HW structure
3141  *  @offset: register offset to be read or written
3142  *  @data: pointer to the data to be read or written
3143  *  @read: determines if operation is read or write
3144  *
3145  *  Reads the PHY register at offset and stores the retreived information
3146  *  in data.  Assumes semaphore already acquired.  Note that the procedure
3147  *  to access these regs uses the address port and data port to read/write.
3148  *  These accesses done with PHY address 2 and without using pages.
3149  **/
3150 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
3151                                           u16 *data, bool read)
3152 {
3153 	s32 ret_val;
3154 	u32 addr_reg = 0;
3155 	u32 data_reg = 0;
3156 
3157 	/* This takes care of the difference with desktop vs mobile phy */
3158 	addr_reg = (hw->phy.type == e1000_phy_82578) ?
3159 	           I82578_ADDR_REG : I82577_ADDR_REG;
3160 	data_reg = addr_reg + 1;
3161 
3162 	/* All operations in this function are phy address 2 */
3163 	hw->phy.addr = 2;
3164 
3165 	/* masking with 0x3F to remove the page from offset */
3166 	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3167 	if (ret_val) {
3168 		e_dbg("Could not write the Address Offset port register\n");
3169 		return ret_val;
3170 	}
3171 
3172 	/* Read or write the data value next */
3173 	if (read)
3174 		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3175 	else
3176 		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3177 
3178 	if (ret_val)
3179 		e_dbg("Could not access the Data port register\n");
3180 
3181 	return ret_val;
3182 }
3183 
3184 /**
3185  *  e1000_link_stall_workaround_hv - Si workaround
3186  *  @hw: pointer to the HW structure
3187  *
3188  *  This function works around a Si bug where the link partner can get
3189  *  a link up indication before the PHY does.  If small packets are sent
3190  *  by the link partner they can be placed in the packet buffer without
3191  *  being properly accounted for by the PHY and will stall preventing
3192  *  further packets from being received.  The workaround is to clear the
3193  *  packet buffer after the PHY detects link up.
3194  **/
3195 s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3196 {
3197 	s32 ret_val = 0;
3198 	u16 data;
3199 
3200 	if (hw->phy.type != e1000_phy_82578)
3201 		return 0;
3202 
3203 	/* Do not apply workaround if in PHY loopback bit 14 set */
3204 	e1e_rphy(hw, PHY_CONTROL, &data);
3205 	if (data & PHY_CONTROL_LB)
3206 		return 0;
3207 
3208 	/* check if link is up and at 1Gbps */
3209 	ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3210 	if (ret_val)
3211 		return ret_val;
3212 
3213 	data &= BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3214 		BM_CS_STATUS_SPEED_MASK;
3215 
3216 	if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3217 		     BM_CS_STATUS_SPEED_1000))
3218 		return 0;
3219 
3220 	msleep(200);
3221 
3222 	/* flush the packets in the fifo buffer */
3223 	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC |
3224 			   HV_MUX_DATA_CTRL_FORCE_SPEED);
3225 	if (ret_val)
3226 		return ret_val;
3227 
3228 	return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3229 }
3230 
3231 /**
3232  *  e1000_check_polarity_82577 - Checks the polarity.
3233  *  @hw: pointer to the HW structure
3234  *
3235  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3236  *
3237  *  Polarity is determined based on the PHY specific status register.
3238  **/
3239 s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3240 {
3241 	struct e1000_phy_info *phy = &hw->phy;
3242 	s32 ret_val;
3243 	u16 data;
3244 
3245 	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3246 
3247 	if (!ret_val)
3248 		phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY)
3249 		                      ? e1000_rev_polarity_reversed
3250 		                      : e1000_rev_polarity_normal;
3251 
3252 	return ret_val;
3253 }
3254 
3255 /**
3256  *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3257  *  @hw: pointer to the HW structure
3258  *
3259  *  Calls the PHY setup function to force speed and duplex.
3260  **/
3261 s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3262 {
3263 	struct e1000_phy_info *phy = &hw->phy;
3264 	s32 ret_val;
3265 	u16 phy_data;
3266 	bool link;
3267 
3268 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
3269 	if (ret_val)
3270 		return ret_val;
3271 
3272 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3273 
3274 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
3275 	if (ret_val)
3276 		return ret_val;
3277 
3278 	udelay(1);
3279 
3280 	if (phy->autoneg_wait_to_complete) {
3281 		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3282 
3283 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3284 						      100000, &link);
3285 		if (ret_val)
3286 			return ret_val;
3287 
3288 		if (!link)
3289 			e_dbg("Link taking longer than expected.\n");
3290 
3291 		/* Try once more */
3292 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3293 						      100000, &link);
3294 	}
3295 
3296 	return ret_val;
3297 }
3298 
3299 /**
3300  *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3301  *  @hw: pointer to the HW structure
3302  *
3303  *  Read PHY status to determine if link is up.  If link is up, then
3304  *  set/determine 10base-T extended distance and polarity correction.  Read
3305  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
3306  *  determine on the cable length, local and remote receiver.
3307  **/
3308 s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3309 {
3310 	struct e1000_phy_info *phy = &hw->phy;
3311 	s32 ret_val;
3312 	u16 data;
3313 	bool link;
3314 
3315 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3316 	if (ret_val)
3317 		return ret_val;
3318 
3319 	if (!link) {
3320 		e_dbg("Phy info is only valid if link is up\n");
3321 		return -E1000_ERR_CONFIG;
3322 	}
3323 
3324 	phy->polarity_correction = true;
3325 
3326 	ret_val = e1000_check_polarity_82577(hw);
3327 	if (ret_val)
3328 		return ret_val;
3329 
3330 	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3331 	if (ret_val)
3332 		return ret_val;
3333 
3334 	phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
3335 
3336 	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3337 	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
3338 		ret_val = hw->phy.ops.get_cable_length(hw);
3339 		if (ret_val)
3340 			return ret_val;
3341 
3342 		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
3343 		if (ret_val)
3344 			return ret_val;
3345 
3346 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
3347 		                ? e1000_1000t_rx_status_ok
3348 		                : e1000_1000t_rx_status_not_ok;
3349 
3350 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
3351 		                 ? e1000_1000t_rx_status_ok
3352 		                 : e1000_1000t_rx_status_not_ok;
3353 	} else {
3354 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3355 		phy->local_rx = e1000_1000t_rx_status_undefined;
3356 		phy->remote_rx = e1000_1000t_rx_status_undefined;
3357 	}
3358 
3359 	return 0;
3360 }
3361 
3362 /**
3363  *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3364  *  @hw: pointer to the HW structure
3365  *
3366  * Reads the diagnostic status register and verifies result is valid before
3367  * placing it in the phy_cable_length field.
3368  **/
3369 s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3370 {
3371 	struct e1000_phy_info *phy = &hw->phy;
3372 	s32 ret_val;
3373 	u16 phy_data, length;
3374 
3375 	ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3376 	if (ret_val)
3377 		return ret_val;
3378 
3379 	length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
3380 	         I82577_DSTATUS_CABLE_LENGTH_SHIFT;
3381 
3382 	if (length == E1000_CABLE_LENGTH_UNDEFINED)
3383 		ret_val = -E1000_ERR_PHY;
3384 
3385 	phy->cable_length = length;
3386 
3387 	return 0;
3388 }
3389