xref: /linux/drivers/net/ethernet/intel/e1000e/netdev.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2011 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/interrupt.h>
40 #include <linux/tcp.h>
41 #include <linux/ipv6.h>
42 #include <linux/slab.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <linux/mii.h>
46 #include <linux/ethtool.h>
47 #include <linux/if_vlan.h>
48 #include <linux/cpu.h>
49 #include <linux/smp.h>
50 #include <linux/pm_qos.h>
51 #include <linux/pm_runtime.h>
52 #include <linux/aer.h>
53 #include <linux/prefetch.h>
54 
55 #include "e1000.h"
56 
57 #define DRV_EXTRAVERSION "-k"
58 
59 #define DRV_VERSION "1.5.1" DRV_EXTRAVERSION
60 char e1000e_driver_name[] = "e1000e";
61 const char e1000e_driver_version[] = DRV_VERSION;
62 
63 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);
64 
65 static const struct e1000_info *e1000_info_tbl[] = {
66 	[board_82571]		= &e1000_82571_info,
67 	[board_82572]		= &e1000_82572_info,
68 	[board_82573]		= &e1000_82573_info,
69 	[board_82574]		= &e1000_82574_info,
70 	[board_82583]		= &e1000_82583_info,
71 	[board_80003es2lan]	= &e1000_es2_info,
72 	[board_ich8lan]		= &e1000_ich8_info,
73 	[board_ich9lan]		= &e1000_ich9_info,
74 	[board_ich10lan]	= &e1000_ich10_info,
75 	[board_pchlan]		= &e1000_pch_info,
76 	[board_pch2lan]		= &e1000_pch2_info,
77 };
78 
79 struct e1000_reg_info {
80 	u32 ofs;
81 	char *name;
82 };
83 
84 #define E1000_RDFH	0x02410	/* Rx Data FIFO Head - RW */
85 #define E1000_RDFT	0x02418	/* Rx Data FIFO Tail - RW */
86 #define E1000_RDFHS	0x02420	/* Rx Data FIFO Head Saved - RW */
87 #define E1000_RDFTS	0x02428	/* Rx Data FIFO Tail Saved - RW */
88 #define E1000_RDFPC	0x02430	/* Rx Data FIFO Packet Count - RW */
89 
90 #define E1000_TDFH	0x03410	/* Tx Data FIFO Head - RW */
91 #define E1000_TDFT	0x03418	/* Tx Data FIFO Tail - RW */
92 #define E1000_TDFHS	0x03420	/* Tx Data FIFO Head Saved - RW */
93 #define E1000_TDFTS	0x03428	/* Tx Data FIFO Tail Saved - RW */
94 #define E1000_TDFPC	0x03430	/* Tx Data FIFO Packet Count - RW */
95 
96 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
97 
98 	/* General Registers */
99 	{E1000_CTRL, "CTRL"},
100 	{E1000_STATUS, "STATUS"},
101 	{E1000_CTRL_EXT, "CTRL_EXT"},
102 
103 	/* Interrupt Registers */
104 	{E1000_ICR, "ICR"},
105 
106 	/* Rx Registers */
107 	{E1000_RCTL, "RCTL"},
108 	{E1000_RDLEN, "RDLEN"},
109 	{E1000_RDH, "RDH"},
110 	{E1000_RDT, "RDT"},
111 	{E1000_RDTR, "RDTR"},
112 	{E1000_RXDCTL(0), "RXDCTL"},
113 	{E1000_ERT, "ERT"},
114 	{E1000_RDBAL, "RDBAL"},
115 	{E1000_RDBAH, "RDBAH"},
116 	{E1000_RDFH, "RDFH"},
117 	{E1000_RDFT, "RDFT"},
118 	{E1000_RDFHS, "RDFHS"},
119 	{E1000_RDFTS, "RDFTS"},
120 	{E1000_RDFPC, "RDFPC"},
121 
122 	/* Tx Registers */
123 	{E1000_TCTL, "TCTL"},
124 	{E1000_TDBAL, "TDBAL"},
125 	{E1000_TDBAH, "TDBAH"},
126 	{E1000_TDLEN, "TDLEN"},
127 	{E1000_TDH, "TDH"},
128 	{E1000_TDT, "TDT"},
129 	{E1000_TIDV, "TIDV"},
130 	{E1000_TXDCTL(0), "TXDCTL"},
131 	{E1000_TADV, "TADV"},
132 	{E1000_TARC(0), "TARC"},
133 	{E1000_TDFH, "TDFH"},
134 	{E1000_TDFT, "TDFT"},
135 	{E1000_TDFHS, "TDFHS"},
136 	{E1000_TDFTS, "TDFTS"},
137 	{E1000_TDFPC, "TDFPC"},
138 
139 	/* List Terminator */
140 	{}
141 };
142 
143 /*
144  * e1000_regdump - register printout routine
145  */
146 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
147 {
148 	int n = 0;
149 	char rname[16];
150 	u32 regs[8];
151 
152 	switch (reginfo->ofs) {
153 	case E1000_RXDCTL(0):
154 		for (n = 0; n < 2; n++)
155 			regs[n] = __er32(hw, E1000_RXDCTL(n));
156 		break;
157 	case E1000_TXDCTL(0):
158 		for (n = 0; n < 2; n++)
159 			regs[n] = __er32(hw, E1000_TXDCTL(n));
160 		break;
161 	case E1000_TARC(0):
162 		for (n = 0; n < 2; n++)
163 			regs[n] = __er32(hw, E1000_TARC(n));
164 		break;
165 	default:
166 		printk(KERN_INFO "%-15s %08x\n",
167 		       reginfo->name, __er32(hw, reginfo->ofs));
168 		return;
169 	}
170 
171 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
172 	printk(KERN_INFO "%-15s ", rname);
173 	for (n = 0; n < 2; n++)
174 		printk(KERN_CONT "%08x ", regs[n]);
175 	printk(KERN_CONT "\n");
176 }
177 
178 /*
179  * e1000e_dump - Print registers, Tx-ring and Rx-ring
180  */
181 static void e1000e_dump(struct e1000_adapter *adapter)
182 {
183 	struct net_device *netdev = adapter->netdev;
184 	struct e1000_hw *hw = &adapter->hw;
185 	struct e1000_reg_info *reginfo;
186 	struct e1000_ring *tx_ring = adapter->tx_ring;
187 	struct e1000_tx_desc *tx_desc;
188 	struct my_u0 {
189 		u64 a;
190 		u64 b;
191 	} *u0;
192 	struct e1000_buffer *buffer_info;
193 	struct e1000_ring *rx_ring = adapter->rx_ring;
194 	union e1000_rx_desc_packet_split *rx_desc_ps;
195 	union e1000_rx_desc_extended *rx_desc;
196 	struct my_u1 {
197 		u64 a;
198 		u64 b;
199 		u64 c;
200 		u64 d;
201 	} *u1;
202 	u32 staterr;
203 	int i = 0;
204 
205 	if (!netif_msg_hw(adapter))
206 		return;
207 
208 	/* Print netdevice Info */
209 	if (netdev) {
210 		dev_info(&adapter->pdev->dev, "Net device Info\n");
211 		printk(KERN_INFO "Device Name     state            "
212 		       "trans_start      last_rx\n");
213 		printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
214 		       netdev->name, netdev->state, netdev->trans_start,
215 		       netdev->last_rx);
216 	}
217 
218 	/* Print Registers */
219 	dev_info(&adapter->pdev->dev, "Register Dump\n");
220 	printk(KERN_INFO " Register Name   Value\n");
221 	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
222 	     reginfo->name; reginfo++) {
223 		e1000_regdump(hw, reginfo);
224 	}
225 
226 	/* Print Tx Ring Summary */
227 	if (!netdev || !netif_running(netdev))
228 		goto exit;
229 
230 	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
231 	printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma  ]"
232 	       " leng ntw timestamp\n");
233 	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
234 	printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
235 	       0, tx_ring->next_to_use, tx_ring->next_to_clean,
236 	       (unsigned long long)buffer_info->dma,
237 	       buffer_info->length,
238 	       buffer_info->next_to_watch,
239 	       (unsigned long long)buffer_info->time_stamp);
240 
241 	/* Print Tx Ring */
242 	if (!netif_msg_tx_done(adapter))
243 		goto rx_ring_summary;
244 
245 	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
246 
247 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
248 	 *
249 	 * Legacy Transmit Descriptor
250 	 *   +--------------------------------------------------------------+
251 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
252 	 *   +--------------------------------------------------------------+
253 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
254 	 *   +--------------------------------------------------------------+
255 	 *   63       48 47        36 35    32 31     24 23    16 15        0
256 	 *
257 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
258 	 *   63      48 47    40 39       32 31             16 15    8 7      0
259 	 *   +----------------------------------------------------------------+
260 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
261 	 *   +----------------------------------------------------------------+
262 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
263 	 *   +----------------------------------------------------------------+
264 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
265 	 *
266 	 * Extended Data Descriptor (DTYP=0x1)
267 	 *   +----------------------------------------------------------------+
268 	 * 0 |                     Buffer Address [63:0]                      |
269 	 *   +----------------------------------------------------------------+
270 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
271 	 *   +----------------------------------------------------------------+
272 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
273 	 */
274 	printk(KERN_INFO "Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen]"
275 	       " [bi->dma       ] leng  ntw timestamp        bi->skb "
276 	       "<-- Legacy format\n");
277 	printk(KERN_INFO "Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen]"
278 	       " [bi->dma       ] leng  ntw timestamp        bi->skb "
279 	       "<-- Ext Context format\n");
280 	printk(KERN_INFO "Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen]"
281 	       " [bi->dma       ] leng  ntw timestamp        bi->skb "
282 	       "<-- Ext Data format\n");
283 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
284 		tx_desc = E1000_TX_DESC(*tx_ring, i);
285 		buffer_info = &tx_ring->buffer_info[i];
286 		u0 = (struct my_u0 *)tx_desc;
287 		printk(KERN_INFO "T%c[0x%03X]    %016llX %016llX %016llX "
288 		       "%04X  %3X %016llX %p",
289 		       (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
290 			((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')), i,
291 		       (unsigned long long)le64_to_cpu(u0->a),
292 		       (unsigned long long)le64_to_cpu(u0->b),
293 		       (unsigned long long)buffer_info->dma,
294 		       buffer_info->length, buffer_info->next_to_watch,
295 		       (unsigned long long)buffer_info->time_stamp,
296 		       buffer_info->skb);
297 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
298 			printk(KERN_CONT " NTC/U\n");
299 		else if (i == tx_ring->next_to_use)
300 			printk(KERN_CONT " NTU\n");
301 		else if (i == tx_ring->next_to_clean)
302 			printk(KERN_CONT " NTC\n");
303 		else
304 			printk(KERN_CONT "\n");
305 
306 		if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
307 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
308 				       16, 1, phys_to_virt(buffer_info->dma),
309 				       buffer_info->length, true);
310 	}
311 
312 	/* Print Rx Ring Summary */
313 rx_ring_summary:
314 	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
315 	printk(KERN_INFO "Queue [NTU] [NTC]\n");
316 	printk(KERN_INFO " %5d %5X %5X\n", 0,
317 	       rx_ring->next_to_use, rx_ring->next_to_clean);
318 
319 	/* Print Rx Ring */
320 	if (!netif_msg_rx_status(adapter))
321 		goto exit;
322 
323 	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
324 	switch (adapter->rx_ps_pages) {
325 	case 1:
326 	case 2:
327 	case 3:
328 		/* [Extended] Packet Split Receive Descriptor Format
329 		 *
330 		 *    +-----------------------------------------------------+
331 		 *  0 |                Buffer Address 0 [63:0]              |
332 		 *    +-----------------------------------------------------+
333 		 *  8 |                Buffer Address 1 [63:0]              |
334 		 *    +-----------------------------------------------------+
335 		 * 16 |                Buffer Address 2 [63:0]              |
336 		 *    +-----------------------------------------------------+
337 		 * 24 |                Buffer Address 3 [63:0]              |
338 		 *    +-----------------------------------------------------+
339 		 */
340 		printk(KERN_INFO "R  [desc]      [buffer 0 63:0 ] "
341 		       "[buffer 1 63:0 ] "
342 		       "[buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] "
343 		       "[bi->skb] <-- Ext Pkt Split format\n");
344 		/* [Extended] Receive Descriptor (Write-Back) Format
345 		 *
346 		 *   63       48 47    32 31     13 12    8 7    4 3        0
347 		 *   +------------------------------------------------------+
348 		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
349 		 *   | Checksum | Ident  |         | Queue |      |  Type   |
350 		 *   +------------------------------------------------------+
351 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
352 		 *   +------------------------------------------------------+
353 		 *   63       48 47    32 31            20 19               0
354 		 */
355 		printk(KERN_INFO "RWB[desc]      [ck ipid mrqhsh] "
356 		       "[vl   l0 ee  es] "
357 		       "[ l3  l2  l1 hs] [reserved      ] ---------------- "
358 		       "[bi->skb] <-- Ext Rx Write-Back format\n");
359 		for (i = 0; i < rx_ring->count; i++) {
360 			buffer_info = &rx_ring->buffer_info[i];
361 			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
362 			u1 = (struct my_u1 *)rx_desc_ps;
363 			staterr =
364 			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
365 			if (staterr & E1000_RXD_STAT_DD) {
366 				/* Descriptor Done */
367 				printk(KERN_INFO "RWB[0x%03X]     %016llX "
368 				       "%016llX %016llX %016llX "
369 				       "---------------- %p", i,
370 				       (unsigned long long)le64_to_cpu(u1->a),
371 				       (unsigned long long)le64_to_cpu(u1->b),
372 				       (unsigned long long)le64_to_cpu(u1->c),
373 				       (unsigned long long)le64_to_cpu(u1->d),
374 				       buffer_info->skb);
375 			} else {
376 				printk(KERN_INFO "R  [0x%03X]     %016llX "
377 				       "%016llX %016llX %016llX %016llX %p", i,
378 				       (unsigned long long)le64_to_cpu(u1->a),
379 				       (unsigned long long)le64_to_cpu(u1->b),
380 				       (unsigned long long)le64_to_cpu(u1->c),
381 				       (unsigned long long)le64_to_cpu(u1->d),
382 				       (unsigned long long)buffer_info->dma,
383 				       buffer_info->skb);
384 
385 				if (netif_msg_pktdata(adapter))
386 					print_hex_dump(KERN_INFO, "",
387 						DUMP_PREFIX_ADDRESS, 16, 1,
388 						phys_to_virt(buffer_info->dma),
389 						adapter->rx_ps_bsize0, true);
390 			}
391 
392 			if (i == rx_ring->next_to_use)
393 				printk(KERN_CONT " NTU\n");
394 			else if (i == rx_ring->next_to_clean)
395 				printk(KERN_CONT " NTC\n");
396 			else
397 				printk(KERN_CONT "\n");
398 		}
399 		break;
400 	default:
401 	case 0:
402 		/* Extended Receive Descriptor (Read) Format
403 		 *
404 		 *   +-----------------------------------------------------+
405 		 * 0 |                Buffer Address [63:0]                |
406 		 *   +-----------------------------------------------------+
407 		 * 8 |                      Reserved                       |
408 		 *   +-----------------------------------------------------+
409 		 */
410 		printk(KERN_INFO "R  [desc]      [buf addr 63:0 ] "
411 		       "[reserved 63:0 ] [bi->dma       ] "
412 		       "[bi->skb] <-- Ext (Read) format\n");
413 		/* Extended Receive Descriptor (Write-Back) Format
414 		 *
415 		 *   63       48 47    32 31    24 23            4 3        0
416 		 *   +------------------------------------------------------+
417 		 *   |     RSS Hash      |        |               |         |
418 		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
419 		 *   | Packet   | IP     |        |               |  Type   |
420 		 *   | Checksum | Ident  |        |               |         |
421 		 *   +------------------------------------------------------+
422 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
423 		 *   +------------------------------------------------------+
424 		 *   63       48 47    32 31            20 19               0
425 		 */
426 		printk(KERN_INFO "RWB[desc]      [cs ipid    mrq] "
427 		       "[vt   ln xe  xs] "
428 		       "[bi->skb] <-- Ext (Write-Back) format\n");
429 
430 		for (i = 0; i < rx_ring->count; i++) {
431 			buffer_info = &rx_ring->buffer_info[i];
432 			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
433 			u1 = (struct my_u1 *)rx_desc;
434 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
435 			if (staterr & E1000_RXD_STAT_DD) {
436 				/* Descriptor Done */
437 				printk(KERN_INFO "RWB[0x%03X]     %016llX "
438 				       "%016llX ---------------- %p", i,
439 				       (unsigned long long)le64_to_cpu(u1->a),
440 				       (unsigned long long)le64_to_cpu(u1->b),
441 				       buffer_info->skb);
442 			} else {
443 				printk(KERN_INFO "R  [0x%03X]     %016llX "
444 				       "%016llX %016llX %p", i,
445 				       (unsigned long long)le64_to_cpu(u1->a),
446 				       (unsigned long long)le64_to_cpu(u1->b),
447 				       (unsigned long long)buffer_info->dma,
448 				       buffer_info->skb);
449 
450 				if (netif_msg_pktdata(adapter))
451 					print_hex_dump(KERN_INFO, "",
452 						       DUMP_PREFIX_ADDRESS, 16,
453 						       1,
454 						       phys_to_virt
455 						       (buffer_info->dma),
456 						       adapter->rx_buffer_len,
457 						       true);
458 			}
459 
460 			if (i == rx_ring->next_to_use)
461 				printk(KERN_CONT " NTU\n");
462 			else if (i == rx_ring->next_to_clean)
463 				printk(KERN_CONT " NTC\n");
464 			else
465 				printk(KERN_CONT "\n");
466 		}
467 	}
468 
469 exit:
470 	return;
471 }
472 
473 /**
474  * e1000_desc_unused - calculate if we have unused descriptors
475  **/
476 static int e1000_desc_unused(struct e1000_ring *ring)
477 {
478 	if (ring->next_to_clean > ring->next_to_use)
479 		return ring->next_to_clean - ring->next_to_use - 1;
480 
481 	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
482 }
483 
484 /**
485  * e1000_receive_skb - helper function to handle Rx indications
486  * @adapter: board private structure
487  * @status: descriptor status field as written by hardware
488  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
489  * @skb: pointer to sk_buff to be indicated to stack
490  **/
491 static void e1000_receive_skb(struct e1000_adapter *adapter,
492 			      struct net_device *netdev, struct sk_buff *skb,
493 			      u8 status, __le16 vlan)
494 {
495 	u16 tag = le16_to_cpu(vlan);
496 	skb->protocol = eth_type_trans(skb, netdev);
497 
498 	if (status & E1000_RXD_STAT_VP)
499 		__vlan_hwaccel_put_tag(skb, tag);
500 
501 	napi_gro_receive(&adapter->napi, skb);
502 }
503 
504 /**
505  * e1000_rx_checksum - Receive Checksum Offload
506  * @adapter:     board private structure
507  * @status_err:  receive descriptor status and error fields
508  * @csum:	receive descriptor csum field
509  * @sk_buff:     socket buffer with received data
510  **/
511 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
512 			      u32 csum, struct sk_buff *skb)
513 {
514 	u16 status = (u16)status_err;
515 	u8 errors = (u8)(status_err >> 24);
516 
517 	skb_checksum_none_assert(skb);
518 
519 	/* Ignore Checksum bit is set */
520 	if (status & E1000_RXD_STAT_IXSM)
521 		return;
522 	/* TCP/UDP checksum error bit is set */
523 	if (errors & E1000_RXD_ERR_TCPE) {
524 		/* let the stack verify checksum errors */
525 		adapter->hw_csum_err++;
526 		return;
527 	}
528 
529 	/* TCP/UDP Checksum has not been calculated */
530 	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
531 		return;
532 
533 	/* It must be a TCP or UDP packet with a valid checksum */
534 	if (status & E1000_RXD_STAT_TCPCS) {
535 		/* TCP checksum is good */
536 		skb->ip_summed = CHECKSUM_UNNECESSARY;
537 	} else {
538 		/*
539 		 * IP fragment with UDP payload
540 		 * Hardware complements the payload checksum, so we undo it
541 		 * and then put the value in host order for further stack use.
542 		 */
543 		__sum16 sum = (__force __sum16)htons(csum);
544 		skb->csum = csum_unfold(~sum);
545 		skb->ip_summed = CHECKSUM_COMPLETE;
546 	}
547 	adapter->hw_csum_good++;
548 }
549 
550 /**
551  * e1000e_update_tail_wa - helper function for e1000e_update_[rt]dt_wa()
552  * @hw: pointer to the HW structure
553  * @tail: address of tail descriptor register
554  * @i: value to write to tail descriptor register
555  *
556  * When updating the tail register, the ME could be accessing Host CSR
557  * registers at the same time.  Normally, this is handled in h/w by an
558  * arbiter but on some parts there is a bug that acknowledges Host accesses
559  * later than it should which could result in the descriptor register to
560  * have an incorrect value.  Workaround this by checking the FWSM register
561  * which has bit 24 set while ME is accessing Host CSR registers, wait
562  * if it is set and try again a number of times.
563  **/
564 static inline s32 e1000e_update_tail_wa(struct e1000_hw *hw, u8 __iomem * tail,
565 					unsigned int i)
566 {
567 	unsigned int j = 0;
568 
569 	while ((j++ < E1000_ICH_FWSM_PCIM2PCI_COUNT) &&
570 	       (er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI))
571 		udelay(50);
572 
573 	writel(i, tail);
574 
575 	if ((j == E1000_ICH_FWSM_PCIM2PCI_COUNT) && (i != readl(tail)))
576 		return E1000_ERR_SWFW_SYNC;
577 
578 	return 0;
579 }
580 
581 static void e1000e_update_rdt_wa(struct e1000_adapter *adapter, unsigned int i)
582 {
583 	u8 __iomem *tail = (adapter->hw.hw_addr + adapter->rx_ring->tail);
584 	struct e1000_hw *hw = &adapter->hw;
585 
586 	if (e1000e_update_tail_wa(hw, tail, i)) {
587 		u32 rctl = er32(RCTL);
588 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
589 		e_err("ME firmware caused invalid RDT - resetting\n");
590 		schedule_work(&adapter->reset_task);
591 	}
592 }
593 
594 static void e1000e_update_tdt_wa(struct e1000_adapter *adapter, unsigned int i)
595 {
596 	u8 __iomem *tail = (adapter->hw.hw_addr + adapter->tx_ring->tail);
597 	struct e1000_hw *hw = &adapter->hw;
598 
599 	if (e1000e_update_tail_wa(hw, tail, i)) {
600 		u32 tctl = er32(TCTL);
601 		ew32(TCTL, tctl & ~E1000_TCTL_EN);
602 		e_err("ME firmware caused invalid TDT - resetting\n");
603 		schedule_work(&adapter->reset_task);
604 	}
605 }
606 
607 /**
608  * e1000_alloc_rx_buffers - Replace used receive buffers
609  * @adapter: address of board private structure
610  **/
611 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
612 				   int cleaned_count, gfp_t gfp)
613 {
614 	struct net_device *netdev = adapter->netdev;
615 	struct pci_dev *pdev = adapter->pdev;
616 	struct e1000_ring *rx_ring = adapter->rx_ring;
617 	union e1000_rx_desc_extended *rx_desc;
618 	struct e1000_buffer *buffer_info;
619 	struct sk_buff *skb;
620 	unsigned int i;
621 	unsigned int bufsz = adapter->rx_buffer_len;
622 
623 	i = rx_ring->next_to_use;
624 	buffer_info = &rx_ring->buffer_info[i];
625 
626 	while (cleaned_count--) {
627 		skb = buffer_info->skb;
628 		if (skb) {
629 			skb_trim(skb, 0);
630 			goto map_skb;
631 		}
632 
633 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
634 		if (!skb) {
635 			/* Better luck next round */
636 			adapter->alloc_rx_buff_failed++;
637 			break;
638 		}
639 
640 		buffer_info->skb = skb;
641 map_skb:
642 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
643 						  adapter->rx_buffer_len,
644 						  DMA_FROM_DEVICE);
645 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
646 			dev_err(&pdev->dev, "Rx DMA map failed\n");
647 			adapter->rx_dma_failed++;
648 			break;
649 		}
650 
651 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
652 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
653 
654 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
655 			/*
656 			 * Force memory writes to complete before letting h/w
657 			 * know there are new descriptors to fetch.  (Only
658 			 * applicable for weak-ordered memory model archs,
659 			 * such as IA-64).
660 			 */
661 			wmb();
662 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
663 				e1000e_update_rdt_wa(adapter, i);
664 			else
665 				writel(i, adapter->hw.hw_addr + rx_ring->tail);
666 		}
667 		i++;
668 		if (i == rx_ring->count)
669 			i = 0;
670 		buffer_info = &rx_ring->buffer_info[i];
671 	}
672 
673 	rx_ring->next_to_use = i;
674 }
675 
676 /**
677  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
678  * @adapter: address of board private structure
679  **/
680 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
681 				      int cleaned_count, gfp_t gfp)
682 {
683 	struct net_device *netdev = adapter->netdev;
684 	struct pci_dev *pdev = adapter->pdev;
685 	union e1000_rx_desc_packet_split *rx_desc;
686 	struct e1000_ring *rx_ring = adapter->rx_ring;
687 	struct e1000_buffer *buffer_info;
688 	struct e1000_ps_page *ps_page;
689 	struct sk_buff *skb;
690 	unsigned int i, j;
691 
692 	i = rx_ring->next_to_use;
693 	buffer_info = &rx_ring->buffer_info[i];
694 
695 	while (cleaned_count--) {
696 		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
697 
698 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
699 			ps_page = &buffer_info->ps_pages[j];
700 			if (j >= adapter->rx_ps_pages) {
701 				/* all unused desc entries get hw null ptr */
702 				rx_desc->read.buffer_addr[j + 1] =
703 				    ~cpu_to_le64(0);
704 				continue;
705 			}
706 			if (!ps_page->page) {
707 				ps_page->page = alloc_page(gfp);
708 				if (!ps_page->page) {
709 					adapter->alloc_rx_buff_failed++;
710 					goto no_buffers;
711 				}
712 				ps_page->dma = dma_map_page(&pdev->dev,
713 							    ps_page->page,
714 							    0, PAGE_SIZE,
715 							    DMA_FROM_DEVICE);
716 				if (dma_mapping_error(&pdev->dev,
717 						      ps_page->dma)) {
718 					dev_err(&adapter->pdev->dev,
719 						"Rx DMA page map failed\n");
720 					adapter->rx_dma_failed++;
721 					goto no_buffers;
722 				}
723 			}
724 			/*
725 			 * Refresh the desc even if buffer_addrs
726 			 * didn't change because each write-back
727 			 * erases this info.
728 			 */
729 			rx_desc->read.buffer_addr[j + 1] =
730 			    cpu_to_le64(ps_page->dma);
731 		}
732 
733 		skb = __netdev_alloc_skb_ip_align(netdev,
734 						  adapter->rx_ps_bsize0,
735 						  gfp);
736 
737 		if (!skb) {
738 			adapter->alloc_rx_buff_failed++;
739 			break;
740 		}
741 
742 		buffer_info->skb = skb;
743 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
744 						  adapter->rx_ps_bsize0,
745 						  DMA_FROM_DEVICE);
746 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
747 			dev_err(&pdev->dev, "Rx DMA map failed\n");
748 			adapter->rx_dma_failed++;
749 			/* cleanup skb */
750 			dev_kfree_skb_any(skb);
751 			buffer_info->skb = NULL;
752 			break;
753 		}
754 
755 		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
756 
757 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
758 			/*
759 			 * Force memory writes to complete before letting h/w
760 			 * know there are new descriptors to fetch.  (Only
761 			 * applicable for weak-ordered memory model archs,
762 			 * such as IA-64).
763 			 */
764 			wmb();
765 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
766 				e1000e_update_rdt_wa(adapter, i << 1);
767 			else
768 				writel(i << 1,
769 				       adapter->hw.hw_addr + rx_ring->tail);
770 		}
771 
772 		i++;
773 		if (i == rx_ring->count)
774 			i = 0;
775 		buffer_info = &rx_ring->buffer_info[i];
776 	}
777 
778 no_buffers:
779 	rx_ring->next_to_use = i;
780 }
781 
782 /**
783  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
784  * @adapter: address of board private structure
785  * @cleaned_count: number of buffers to allocate this pass
786  **/
787 
788 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
789 					 int cleaned_count, gfp_t gfp)
790 {
791 	struct net_device *netdev = adapter->netdev;
792 	struct pci_dev *pdev = adapter->pdev;
793 	union e1000_rx_desc_extended *rx_desc;
794 	struct e1000_ring *rx_ring = adapter->rx_ring;
795 	struct e1000_buffer *buffer_info;
796 	struct sk_buff *skb;
797 	unsigned int i;
798 	unsigned int bufsz = 256 - 16 /* for skb_reserve */;
799 
800 	i = rx_ring->next_to_use;
801 	buffer_info = &rx_ring->buffer_info[i];
802 
803 	while (cleaned_count--) {
804 		skb = buffer_info->skb;
805 		if (skb) {
806 			skb_trim(skb, 0);
807 			goto check_page;
808 		}
809 
810 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
811 		if (unlikely(!skb)) {
812 			/* Better luck next round */
813 			adapter->alloc_rx_buff_failed++;
814 			break;
815 		}
816 
817 		buffer_info->skb = skb;
818 check_page:
819 		/* allocate a new page if necessary */
820 		if (!buffer_info->page) {
821 			buffer_info->page = alloc_page(gfp);
822 			if (unlikely(!buffer_info->page)) {
823 				adapter->alloc_rx_buff_failed++;
824 				break;
825 			}
826 		}
827 
828 		if (!buffer_info->dma)
829 			buffer_info->dma = dma_map_page(&pdev->dev,
830 			                                buffer_info->page, 0,
831 			                                PAGE_SIZE,
832 							DMA_FROM_DEVICE);
833 
834 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
835 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
836 
837 		if (unlikely(++i == rx_ring->count))
838 			i = 0;
839 		buffer_info = &rx_ring->buffer_info[i];
840 	}
841 
842 	if (likely(rx_ring->next_to_use != i)) {
843 		rx_ring->next_to_use = i;
844 		if (unlikely(i-- == 0))
845 			i = (rx_ring->count - 1);
846 
847 		/* Force memory writes to complete before letting h/w
848 		 * know there are new descriptors to fetch.  (Only
849 		 * applicable for weak-ordered memory model archs,
850 		 * such as IA-64). */
851 		wmb();
852 		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
853 			e1000e_update_rdt_wa(adapter, i);
854 		else
855 			writel(i, adapter->hw.hw_addr + rx_ring->tail);
856 	}
857 }
858 
859 /**
860  * e1000_clean_rx_irq - Send received data up the network stack; legacy
861  * @adapter: board private structure
862  *
863  * the return value indicates whether actual cleaning was done, there
864  * is no guarantee that everything was cleaned
865  **/
866 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
867 			       int *work_done, int work_to_do)
868 {
869 	struct net_device *netdev = adapter->netdev;
870 	struct pci_dev *pdev = adapter->pdev;
871 	struct e1000_hw *hw = &adapter->hw;
872 	struct e1000_ring *rx_ring = adapter->rx_ring;
873 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
874 	struct e1000_buffer *buffer_info, *next_buffer;
875 	u32 length, staterr;
876 	unsigned int i;
877 	int cleaned_count = 0;
878 	bool cleaned = 0;
879 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
880 
881 	i = rx_ring->next_to_clean;
882 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
883 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
884 	buffer_info = &rx_ring->buffer_info[i];
885 
886 	while (staterr & E1000_RXD_STAT_DD) {
887 		struct sk_buff *skb;
888 
889 		if (*work_done >= work_to_do)
890 			break;
891 		(*work_done)++;
892 		rmb();	/* read descriptor and rx_buffer_info after status DD */
893 
894 		skb = buffer_info->skb;
895 		buffer_info->skb = NULL;
896 
897 		prefetch(skb->data - NET_IP_ALIGN);
898 
899 		i++;
900 		if (i == rx_ring->count)
901 			i = 0;
902 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
903 		prefetch(next_rxd);
904 
905 		next_buffer = &rx_ring->buffer_info[i];
906 
907 		cleaned = 1;
908 		cleaned_count++;
909 		dma_unmap_single(&pdev->dev,
910 				 buffer_info->dma,
911 				 adapter->rx_buffer_len,
912 				 DMA_FROM_DEVICE);
913 		buffer_info->dma = 0;
914 
915 		length = le16_to_cpu(rx_desc->wb.upper.length);
916 
917 		/*
918 		 * !EOP means multiple descriptors were used to store a single
919 		 * packet, if that's the case we need to toss it.  In fact, we
920 		 * need to toss every packet with the EOP bit clear and the
921 		 * next frame that _does_ have the EOP bit set, as it is by
922 		 * definition only a frame fragment
923 		 */
924 		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
925 			adapter->flags2 |= FLAG2_IS_DISCARDING;
926 
927 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
928 			/* All receives must fit into a single buffer */
929 			e_dbg("Receive packet consumed multiple buffers\n");
930 			/* recycle */
931 			buffer_info->skb = skb;
932 			if (staterr & E1000_RXD_STAT_EOP)
933 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
934 			goto next_desc;
935 		}
936 
937 		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
938 			/* recycle */
939 			buffer_info->skb = skb;
940 			goto next_desc;
941 		}
942 
943 		/* adjust length to remove Ethernet CRC */
944 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
945 			length -= 4;
946 
947 		total_rx_bytes += length;
948 		total_rx_packets++;
949 
950 		/*
951 		 * code added for copybreak, this should improve
952 		 * performance for small packets with large amounts
953 		 * of reassembly being done in the stack
954 		 */
955 		if (length < copybreak) {
956 			struct sk_buff *new_skb =
957 			    netdev_alloc_skb_ip_align(netdev, length);
958 			if (new_skb) {
959 				skb_copy_to_linear_data_offset(new_skb,
960 							       -NET_IP_ALIGN,
961 							       (skb->data -
962 								NET_IP_ALIGN),
963 							       (length +
964 								NET_IP_ALIGN));
965 				/* save the skb in buffer_info as good */
966 				buffer_info->skb = skb;
967 				skb = new_skb;
968 			}
969 			/* else just continue with the old one */
970 		}
971 		/* end copybreak code */
972 		skb_put(skb, length);
973 
974 		/* Receive Checksum Offload */
975 		e1000_rx_checksum(adapter, staterr,
976 				  le16_to_cpu(rx_desc->wb.lower.hi_dword.
977 					      csum_ip.csum), skb);
978 
979 		e1000_receive_skb(adapter, netdev, skb, staterr,
980 				  rx_desc->wb.upper.vlan);
981 
982 next_desc:
983 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
984 
985 		/* return some buffers to hardware, one at a time is too slow */
986 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
987 			adapter->alloc_rx_buf(adapter, cleaned_count,
988 					      GFP_ATOMIC);
989 			cleaned_count = 0;
990 		}
991 
992 		/* use prefetched values */
993 		rx_desc = next_rxd;
994 		buffer_info = next_buffer;
995 
996 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
997 	}
998 	rx_ring->next_to_clean = i;
999 
1000 	cleaned_count = e1000_desc_unused(rx_ring);
1001 	if (cleaned_count)
1002 		adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC);
1003 
1004 	adapter->total_rx_bytes += total_rx_bytes;
1005 	adapter->total_rx_packets += total_rx_packets;
1006 	return cleaned;
1007 }
1008 
1009 static void e1000_put_txbuf(struct e1000_adapter *adapter,
1010 			     struct e1000_buffer *buffer_info)
1011 {
1012 	if (buffer_info->dma) {
1013 		if (buffer_info->mapped_as_page)
1014 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1015 				       buffer_info->length, DMA_TO_DEVICE);
1016 		else
1017 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1018 					 buffer_info->length, DMA_TO_DEVICE);
1019 		buffer_info->dma = 0;
1020 	}
1021 	if (buffer_info->skb) {
1022 		dev_kfree_skb_any(buffer_info->skb);
1023 		buffer_info->skb = NULL;
1024 	}
1025 	buffer_info->time_stamp = 0;
1026 }
1027 
1028 static void e1000_print_hw_hang(struct work_struct *work)
1029 {
1030 	struct e1000_adapter *adapter = container_of(work,
1031 	                                             struct e1000_adapter,
1032 	                                             print_hang_task);
1033 	struct e1000_ring *tx_ring = adapter->tx_ring;
1034 	unsigned int i = tx_ring->next_to_clean;
1035 	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1036 	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1037 	struct e1000_hw *hw = &adapter->hw;
1038 	u16 phy_status, phy_1000t_status, phy_ext_status;
1039 	u16 pci_status;
1040 
1041 	if (test_bit(__E1000_DOWN, &adapter->state))
1042 		return;
1043 
1044 	e1e_rphy(hw, PHY_STATUS, &phy_status);
1045 	e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
1046 	e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
1047 
1048 	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1049 
1050 	/* detected Hardware unit hang */
1051 	e_err("Detected Hardware Unit Hang:\n"
1052 	      "  TDH                  <%x>\n"
1053 	      "  TDT                  <%x>\n"
1054 	      "  next_to_use          <%x>\n"
1055 	      "  next_to_clean        <%x>\n"
1056 	      "buffer_info[next_to_clean]:\n"
1057 	      "  time_stamp           <%lx>\n"
1058 	      "  next_to_watch        <%x>\n"
1059 	      "  jiffies              <%lx>\n"
1060 	      "  next_to_watch.status <%x>\n"
1061 	      "MAC Status             <%x>\n"
1062 	      "PHY Status             <%x>\n"
1063 	      "PHY 1000BASE-T Status  <%x>\n"
1064 	      "PHY Extended Status    <%x>\n"
1065 	      "PCI Status             <%x>\n",
1066 	      readl(adapter->hw.hw_addr + tx_ring->head),
1067 	      readl(adapter->hw.hw_addr + tx_ring->tail),
1068 	      tx_ring->next_to_use,
1069 	      tx_ring->next_to_clean,
1070 	      tx_ring->buffer_info[eop].time_stamp,
1071 	      eop,
1072 	      jiffies,
1073 	      eop_desc->upper.fields.status,
1074 	      er32(STATUS),
1075 	      phy_status,
1076 	      phy_1000t_status,
1077 	      phy_ext_status,
1078 	      pci_status);
1079 }
1080 
1081 /**
1082  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1083  * @adapter: board private structure
1084  *
1085  * the return value indicates whether actual cleaning was done, there
1086  * is no guarantee that everything was cleaned
1087  **/
1088 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
1089 {
1090 	struct net_device *netdev = adapter->netdev;
1091 	struct e1000_hw *hw = &adapter->hw;
1092 	struct e1000_ring *tx_ring = adapter->tx_ring;
1093 	struct e1000_tx_desc *tx_desc, *eop_desc;
1094 	struct e1000_buffer *buffer_info;
1095 	unsigned int i, eop;
1096 	unsigned int count = 0;
1097 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1098 
1099 	i = tx_ring->next_to_clean;
1100 	eop = tx_ring->buffer_info[i].next_to_watch;
1101 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1102 
1103 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1104 	       (count < tx_ring->count)) {
1105 		bool cleaned = false;
1106 		rmb(); /* read buffer_info after eop_desc */
1107 		for (; !cleaned; count++) {
1108 			tx_desc = E1000_TX_DESC(*tx_ring, i);
1109 			buffer_info = &tx_ring->buffer_info[i];
1110 			cleaned = (i == eop);
1111 
1112 			if (cleaned) {
1113 				total_tx_packets += buffer_info->segs;
1114 				total_tx_bytes += buffer_info->bytecount;
1115 			}
1116 
1117 			e1000_put_txbuf(adapter, buffer_info);
1118 			tx_desc->upper.data = 0;
1119 
1120 			i++;
1121 			if (i == tx_ring->count)
1122 				i = 0;
1123 		}
1124 
1125 		if (i == tx_ring->next_to_use)
1126 			break;
1127 		eop = tx_ring->buffer_info[i].next_to_watch;
1128 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1129 	}
1130 
1131 	tx_ring->next_to_clean = i;
1132 
1133 #define TX_WAKE_THRESHOLD 32
1134 	if (count && netif_carrier_ok(netdev) &&
1135 	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1136 		/* Make sure that anybody stopping the queue after this
1137 		 * sees the new next_to_clean.
1138 		 */
1139 		smp_mb();
1140 
1141 		if (netif_queue_stopped(netdev) &&
1142 		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1143 			netif_wake_queue(netdev);
1144 			++adapter->restart_queue;
1145 		}
1146 	}
1147 
1148 	if (adapter->detect_tx_hung) {
1149 		/*
1150 		 * Detect a transmit hang in hardware, this serializes the
1151 		 * check with the clearing of time_stamp and movement of i
1152 		 */
1153 		adapter->detect_tx_hung = 0;
1154 		if (tx_ring->buffer_info[i].time_stamp &&
1155 		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1156 			       + (adapter->tx_timeout_factor * HZ)) &&
1157 		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
1158 			schedule_work(&adapter->print_hang_task);
1159 			netif_stop_queue(netdev);
1160 		}
1161 	}
1162 	adapter->total_tx_bytes += total_tx_bytes;
1163 	adapter->total_tx_packets += total_tx_packets;
1164 	return count < tx_ring->count;
1165 }
1166 
1167 /**
1168  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1169  * @adapter: board private structure
1170  *
1171  * the return value indicates whether actual cleaning was done, there
1172  * is no guarantee that everything was cleaned
1173  **/
1174 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
1175 				  int *work_done, int work_to_do)
1176 {
1177 	struct e1000_hw *hw = &adapter->hw;
1178 	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1179 	struct net_device *netdev = adapter->netdev;
1180 	struct pci_dev *pdev = adapter->pdev;
1181 	struct e1000_ring *rx_ring = adapter->rx_ring;
1182 	struct e1000_buffer *buffer_info, *next_buffer;
1183 	struct e1000_ps_page *ps_page;
1184 	struct sk_buff *skb;
1185 	unsigned int i, j;
1186 	u32 length, staterr;
1187 	int cleaned_count = 0;
1188 	bool cleaned = 0;
1189 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1190 
1191 	i = rx_ring->next_to_clean;
1192 	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1193 	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1194 	buffer_info = &rx_ring->buffer_info[i];
1195 
1196 	while (staterr & E1000_RXD_STAT_DD) {
1197 		if (*work_done >= work_to_do)
1198 			break;
1199 		(*work_done)++;
1200 		skb = buffer_info->skb;
1201 		rmb();	/* read descriptor and rx_buffer_info after status DD */
1202 
1203 		/* in the packet split case this is header only */
1204 		prefetch(skb->data - NET_IP_ALIGN);
1205 
1206 		i++;
1207 		if (i == rx_ring->count)
1208 			i = 0;
1209 		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1210 		prefetch(next_rxd);
1211 
1212 		next_buffer = &rx_ring->buffer_info[i];
1213 
1214 		cleaned = 1;
1215 		cleaned_count++;
1216 		dma_unmap_single(&pdev->dev, buffer_info->dma,
1217 				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1218 		buffer_info->dma = 0;
1219 
1220 		/* see !EOP comment in other Rx routine */
1221 		if (!(staterr & E1000_RXD_STAT_EOP))
1222 			adapter->flags2 |= FLAG2_IS_DISCARDING;
1223 
1224 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1225 			e_dbg("Packet Split buffers didn't pick up the full "
1226 			      "packet\n");
1227 			dev_kfree_skb_irq(skb);
1228 			if (staterr & E1000_RXD_STAT_EOP)
1229 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1230 			goto next_desc;
1231 		}
1232 
1233 		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
1234 			dev_kfree_skb_irq(skb);
1235 			goto next_desc;
1236 		}
1237 
1238 		length = le16_to_cpu(rx_desc->wb.middle.length0);
1239 
1240 		if (!length) {
1241 			e_dbg("Last part of the packet spanning multiple "
1242 			      "descriptors\n");
1243 			dev_kfree_skb_irq(skb);
1244 			goto next_desc;
1245 		}
1246 
1247 		/* Good Receive */
1248 		skb_put(skb, length);
1249 
1250 		{
1251 		/*
1252 		 * this looks ugly, but it seems compiler issues make it
1253 		 * more efficient than reusing j
1254 		 */
1255 		int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1256 
1257 		/*
1258 		 * page alloc/put takes too long and effects small packet
1259 		 * throughput, so unsplit small packets and save the alloc/put
1260 		 * only valid in softirq (napi) context to call kmap_*
1261 		 */
1262 		if (l1 && (l1 <= copybreak) &&
1263 		    ((length + l1) <= adapter->rx_ps_bsize0)) {
1264 			u8 *vaddr;
1265 
1266 			ps_page = &buffer_info->ps_pages[0];
1267 
1268 			/*
1269 			 * there is no documentation about how to call
1270 			 * kmap_atomic, so we can't hold the mapping
1271 			 * very long
1272 			 */
1273 			dma_sync_single_for_cpu(&pdev->dev, ps_page->dma,
1274 						PAGE_SIZE, DMA_FROM_DEVICE);
1275 			vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
1276 			memcpy(skb_tail_pointer(skb), vaddr, l1);
1277 			kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1278 			dma_sync_single_for_device(&pdev->dev, ps_page->dma,
1279 						   PAGE_SIZE, DMA_FROM_DEVICE);
1280 
1281 			/* remove the CRC */
1282 			if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
1283 				l1 -= 4;
1284 
1285 			skb_put(skb, l1);
1286 			goto copydone;
1287 		} /* if */
1288 		}
1289 
1290 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1291 			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1292 			if (!length)
1293 				break;
1294 
1295 			ps_page = &buffer_info->ps_pages[j];
1296 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1297 				       DMA_FROM_DEVICE);
1298 			ps_page->dma = 0;
1299 			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1300 			ps_page->page = NULL;
1301 			skb->len += length;
1302 			skb->data_len += length;
1303 			skb->truesize += PAGE_SIZE;
1304 		}
1305 
1306 		/* strip the ethernet crc, problem is we're using pages now so
1307 		 * this whole operation can get a little cpu intensive
1308 		 */
1309 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
1310 			pskb_trim(skb, skb->len - 4);
1311 
1312 copydone:
1313 		total_rx_bytes += skb->len;
1314 		total_rx_packets++;
1315 
1316 		e1000_rx_checksum(adapter, staterr, le16_to_cpu(
1317 			rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
1318 
1319 		if (rx_desc->wb.upper.header_status &
1320 			   cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1321 			adapter->rx_hdr_split++;
1322 
1323 		e1000_receive_skb(adapter, netdev, skb,
1324 				  staterr, rx_desc->wb.middle.vlan);
1325 
1326 next_desc:
1327 		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1328 		buffer_info->skb = NULL;
1329 
1330 		/* return some buffers to hardware, one at a time is too slow */
1331 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1332 			adapter->alloc_rx_buf(adapter, cleaned_count,
1333 					      GFP_ATOMIC);
1334 			cleaned_count = 0;
1335 		}
1336 
1337 		/* use prefetched values */
1338 		rx_desc = next_rxd;
1339 		buffer_info = next_buffer;
1340 
1341 		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1342 	}
1343 	rx_ring->next_to_clean = i;
1344 
1345 	cleaned_count = e1000_desc_unused(rx_ring);
1346 	if (cleaned_count)
1347 		adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC);
1348 
1349 	adapter->total_rx_bytes += total_rx_bytes;
1350 	adapter->total_rx_packets += total_rx_packets;
1351 	return cleaned;
1352 }
1353 
1354 /**
1355  * e1000_consume_page - helper function
1356  **/
1357 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1358                                u16 length)
1359 {
1360 	bi->page = NULL;
1361 	skb->len += length;
1362 	skb->data_len += length;
1363 	skb->truesize += PAGE_SIZE;
1364 }
1365 
1366 /**
1367  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1368  * @adapter: board private structure
1369  *
1370  * the return value indicates whether actual cleaning was done, there
1371  * is no guarantee that everything was cleaned
1372  **/
1373 
1374 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
1375                                      int *work_done, int work_to_do)
1376 {
1377 	struct net_device *netdev = adapter->netdev;
1378 	struct pci_dev *pdev = adapter->pdev;
1379 	struct e1000_ring *rx_ring = adapter->rx_ring;
1380 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1381 	struct e1000_buffer *buffer_info, *next_buffer;
1382 	u32 length, staterr;
1383 	unsigned int i;
1384 	int cleaned_count = 0;
1385 	bool cleaned = false;
1386 	unsigned int total_rx_bytes=0, total_rx_packets=0;
1387 
1388 	i = rx_ring->next_to_clean;
1389 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1390 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1391 	buffer_info = &rx_ring->buffer_info[i];
1392 
1393 	while (staterr & E1000_RXD_STAT_DD) {
1394 		struct sk_buff *skb;
1395 
1396 		if (*work_done >= work_to_do)
1397 			break;
1398 		(*work_done)++;
1399 		rmb();	/* read descriptor and rx_buffer_info after status DD */
1400 
1401 		skb = buffer_info->skb;
1402 		buffer_info->skb = NULL;
1403 
1404 		++i;
1405 		if (i == rx_ring->count)
1406 			i = 0;
1407 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1408 		prefetch(next_rxd);
1409 
1410 		next_buffer = &rx_ring->buffer_info[i];
1411 
1412 		cleaned = true;
1413 		cleaned_count++;
1414 		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1415 			       DMA_FROM_DEVICE);
1416 		buffer_info->dma = 0;
1417 
1418 		length = le16_to_cpu(rx_desc->wb.upper.length);
1419 
1420 		/* errors is only valid for DD + EOP descriptors */
1421 		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1422 			     (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK))) {
1423 			/* recycle both page and skb */
1424 			buffer_info->skb = skb;
1425 			/* an error means any chain goes out the window too */
1426 			if (rx_ring->rx_skb_top)
1427 				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1428 			rx_ring->rx_skb_top = NULL;
1429 			goto next_desc;
1430 		}
1431 
1432 #define rxtop (rx_ring->rx_skb_top)
1433 		if (!(staterr & E1000_RXD_STAT_EOP)) {
1434 			/* this descriptor is only the beginning (or middle) */
1435 			if (!rxtop) {
1436 				/* this is the beginning of a chain */
1437 				rxtop = skb;
1438 				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1439 				                   0, length);
1440 			} else {
1441 				/* this is the middle of a chain */
1442 				skb_fill_page_desc(rxtop,
1443 				    skb_shinfo(rxtop)->nr_frags,
1444 				    buffer_info->page, 0, length);
1445 				/* re-use the skb, only consumed the page */
1446 				buffer_info->skb = skb;
1447 			}
1448 			e1000_consume_page(buffer_info, rxtop, length);
1449 			goto next_desc;
1450 		} else {
1451 			if (rxtop) {
1452 				/* end of the chain */
1453 				skb_fill_page_desc(rxtop,
1454 				    skb_shinfo(rxtop)->nr_frags,
1455 				    buffer_info->page, 0, length);
1456 				/* re-use the current skb, we only consumed the
1457 				 * page */
1458 				buffer_info->skb = skb;
1459 				skb = rxtop;
1460 				rxtop = NULL;
1461 				e1000_consume_page(buffer_info, skb, length);
1462 			} else {
1463 				/* no chain, got EOP, this buf is the packet
1464 				 * copybreak to save the put_page/alloc_page */
1465 				if (length <= copybreak &&
1466 				    skb_tailroom(skb) >= length) {
1467 					u8 *vaddr;
1468 					vaddr = kmap_atomic(buffer_info->page,
1469 					                   KM_SKB_DATA_SOFTIRQ);
1470 					memcpy(skb_tail_pointer(skb), vaddr,
1471 					       length);
1472 					kunmap_atomic(vaddr,
1473 					              KM_SKB_DATA_SOFTIRQ);
1474 					/* re-use the page, so don't erase
1475 					 * buffer_info->page */
1476 					skb_put(skb, length);
1477 				} else {
1478 					skb_fill_page_desc(skb, 0,
1479 					                   buffer_info->page, 0,
1480 				                           length);
1481 					e1000_consume_page(buffer_info, skb,
1482 					                   length);
1483 				}
1484 			}
1485 		}
1486 
1487 		/* Receive Checksum Offload XXX recompute due to CRC strip? */
1488 		e1000_rx_checksum(adapter, staterr,
1489 				  le16_to_cpu(rx_desc->wb.lower.hi_dword.
1490 					      csum_ip.csum), skb);
1491 
1492 		/* probably a little skewed due to removing CRC */
1493 		total_rx_bytes += skb->len;
1494 		total_rx_packets++;
1495 
1496 		/* eth type trans needs skb->data to point to something */
1497 		if (!pskb_may_pull(skb, ETH_HLEN)) {
1498 			e_err("pskb_may_pull failed.\n");
1499 			dev_kfree_skb_irq(skb);
1500 			goto next_desc;
1501 		}
1502 
1503 		e1000_receive_skb(adapter, netdev, skb, staterr,
1504 				  rx_desc->wb.upper.vlan);
1505 
1506 next_desc:
1507 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1508 
1509 		/* return some buffers to hardware, one at a time is too slow */
1510 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1511 			adapter->alloc_rx_buf(adapter, cleaned_count,
1512 					      GFP_ATOMIC);
1513 			cleaned_count = 0;
1514 		}
1515 
1516 		/* use prefetched values */
1517 		rx_desc = next_rxd;
1518 		buffer_info = next_buffer;
1519 
1520 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1521 	}
1522 	rx_ring->next_to_clean = i;
1523 
1524 	cleaned_count = e1000_desc_unused(rx_ring);
1525 	if (cleaned_count)
1526 		adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC);
1527 
1528 	adapter->total_rx_bytes += total_rx_bytes;
1529 	adapter->total_rx_packets += total_rx_packets;
1530 	return cleaned;
1531 }
1532 
1533 /**
1534  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1535  * @adapter: board private structure
1536  **/
1537 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1538 {
1539 	struct e1000_ring *rx_ring = adapter->rx_ring;
1540 	struct e1000_buffer *buffer_info;
1541 	struct e1000_ps_page *ps_page;
1542 	struct pci_dev *pdev = adapter->pdev;
1543 	unsigned int i, j;
1544 
1545 	/* Free all the Rx ring sk_buffs */
1546 	for (i = 0; i < rx_ring->count; i++) {
1547 		buffer_info = &rx_ring->buffer_info[i];
1548 		if (buffer_info->dma) {
1549 			if (adapter->clean_rx == e1000_clean_rx_irq)
1550 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1551 						 adapter->rx_buffer_len,
1552 						 DMA_FROM_DEVICE);
1553 			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1554 				dma_unmap_page(&pdev->dev, buffer_info->dma,
1555 				               PAGE_SIZE,
1556 					       DMA_FROM_DEVICE);
1557 			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1558 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1559 						 adapter->rx_ps_bsize0,
1560 						 DMA_FROM_DEVICE);
1561 			buffer_info->dma = 0;
1562 		}
1563 
1564 		if (buffer_info->page) {
1565 			put_page(buffer_info->page);
1566 			buffer_info->page = NULL;
1567 		}
1568 
1569 		if (buffer_info->skb) {
1570 			dev_kfree_skb(buffer_info->skb);
1571 			buffer_info->skb = NULL;
1572 		}
1573 
1574 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1575 			ps_page = &buffer_info->ps_pages[j];
1576 			if (!ps_page->page)
1577 				break;
1578 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1579 				       DMA_FROM_DEVICE);
1580 			ps_page->dma = 0;
1581 			put_page(ps_page->page);
1582 			ps_page->page = NULL;
1583 		}
1584 	}
1585 
1586 	/* there also may be some cached data from a chained receive */
1587 	if (rx_ring->rx_skb_top) {
1588 		dev_kfree_skb(rx_ring->rx_skb_top);
1589 		rx_ring->rx_skb_top = NULL;
1590 	}
1591 
1592 	/* Zero out the descriptor ring */
1593 	memset(rx_ring->desc, 0, rx_ring->size);
1594 
1595 	rx_ring->next_to_clean = 0;
1596 	rx_ring->next_to_use = 0;
1597 	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1598 
1599 	writel(0, adapter->hw.hw_addr + rx_ring->head);
1600 	writel(0, adapter->hw.hw_addr + rx_ring->tail);
1601 }
1602 
1603 static void e1000e_downshift_workaround(struct work_struct *work)
1604 {
1605 	struct e1000_adapter *adapter = container_of(work,
1606 					struct e1000_adapter, downshift_task);
1607 
1608 	if (test_bit(__E1000_DOWN, &adapter->state))
1609 		return;
1610 
1611 	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1612 }
1613 
1614 /**
1615  * e1000_intr_msi - Interrupt Handler
1616  * @irq: interrupt number
1617  * @data: pointer to a network interface device structure
1618  **/
1619 static irqreturn_t e1000_intr_msi(int irq, void *data)
1620 {
1621 	struct net_device *netdev = data;
1622 	struct e1000_adapter *adapter = netdev_priv(netdev);
1623 	struct e1000_hw *hw = &adapter->hw;
1624 	u32 icr = er32(ICR);
1625 
1626 	/*
1627 	 * read ICR disables interrupts using IAM
1628 	 */
1629 
1630 	if (icr & E1000_ICR_LSC) {
1631 		hw->mac.get_link_status = 1;
1632 		/*
1633 		 * ICH8 workaround-- Call gig speed drop workaround on cable
1634 		 * disconnect (LSC) before accessing any PHY registers
1635 		 */
1636 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1637 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1638 			schedule_work(&adapter->downshift_task);
1639 
1640 		/*
1641 		 * 80003ES2LAN workaround-- For packet buffer work-around on
1642 		 * link down event; disable receives here in the ISR and reset
1643 		 * adapter in watchdog
1644 		 */
1645 		if (netif_carrier_ok(netdev) &&
1646 		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1647 			/* disable receives */
1648 			u32 rctl = er32(RCTL);
1649 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1650 			adapter->flags |= FLAG_RX_RESTART_NOW;
1651 		}
1652 		/* guard against interrupt when we're going down */
1653 		if (!test_bit(__E1000_DOWN, &adapter->state))
1654 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1655 	}
1656 
1657 	if (napi_schedule_prep(&adapter->napi)) {
1658 		adapter->total_tx_bytes = 0;
1659 		adapter->total_tx_packets = 0;
1660 		adapter->total_rx_bytes = 0;
1661 		adapter->total_rx_packets = 0;
1662 		__napi_schedule(&adapter->napi);
1663 	}
1664 
1665 	return IRQ_HANDLED;
1666 }
1667 
1668 /**
1669  * e1000_intr - Interrupt Handler
1670  * @irq: interrupt number
1671  * @data: pointer to a network interface device structure
1672  **/
1673 static irqreturn_t e1000_intr(int irq, void *data)
1674 {
1675 	struct net_device *netdev = data;
1676 	struct e1000_adapter *adapter = netdev_priv(netdev);
1677 	struct e1000_hw *hw = &adapter->hw;
1678 	u32 rctl, icr = er32(ICR);
1679 
1680 	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1681 		return IRQ_NONE;  /* Not our interrupt */
1682 
1683 	/*
1684 	 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1685 	 * not set, then the adapter didn't send an interrupt
1686 	 */
1687 	if (!(icr & E1000_ICR_INT_ASSERTED))
1688 		return IRQ_NONE;
1689 
1690 	/*
1691 	 * Interrupt Auto-Mask...upon reading ICR,
1692 	 * interrupts are masked.  No need for the
1693 	 * IMC write
1694 	 */
1695 
1696 	if (icr & E1000_ICR_LSC) {
1697 		hw->mac.get_link_status = 1;
1698 		/*
1699 		 * ICH8 workaround-- Call gig speed drop workaround on cable
1700 		 * disconnect (LSC) before accessing any PHY registers
1701 		 */
1702 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1703 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1704 			schedule_work(&adapter->downshift_task);
1705 
1706 		/*
1707 		 * 80003ES2LAN workaround--
1708 		 * For packet buffer work-around on link down event;
1709 		 * disable receives here in the ISR and
1710 		 * reset adapter in watchdog
1711 		 */
1712 		if (netif_carrier_ok(netdev) &&
1713 		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1714 			/* disable receives */
1715 			rctl = er32(RCTL);
1716 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1717 			adapter->flags |= FLAG_RX_RESTART_NOW;
1718 		}
1719 		/* guard against interrupt when we're going down */
1720 		if (!test_bit(__E1000_DOWN, &adapter->state))
1721 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1722 	}
1723 
1724 	if (napi_schedule_prep(&adapter->napi)) {
1725 		adapter->total_tx_bytes = 0;
1726 		adapter->total_tx_packets = 0;
1727 		adapter->total_rx_bytes = 0;
1728 		adapter->total_rx_packets = 0;
1729 		__napi_schedule(&adapter->napi);
1730 	}
1731 
1732 	return IRQ_HANDLED;
1733 }
1734 
1735 static irqreturn_t e1000_msix_other(int irq, void *data)
1736 {
1737 	struct net_device *netdev = data;
1738 	struct e1000_adapter *adapter = netdev_priv(netdev);
1739 	struct e1000_hw *hw = &adapter->hw;
1740 	u32 icr = er32(ICR);
1741 
1742 	if (!(icr & E1000_ICR_INT_ASSERTED)) {
1743 		if (!test_bit(__E1000_DOWN, &adapter->state))
1744 			ew32(IMS, E1000_IMS_OTHER);
1745 		return IRQ_NONE;
1746 	}
1747 
1748 	if (icr & adapter->eiac_mask)
1749 		ew32(ICS, (icr & adapter->eiac_mask));
1750 
1751 	if (icr & E1000_ICR_OTHER) {
1752 		if (!(icr & E1000_ICR_LSC))
1753 			goto no_link_interrupt;
1754 		hw->mac.get_link_status = 1;
1755 		/* guard against interrupt when we're going down */
1756 		if (!test_bit(__E1000_DOWN, &adapter->state))
1757 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1758 	}
1759 
1760 no_link_interrupt:
1761 	if (!test_bit(__E1000_DOWN, &adapter->state))
1762 		ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1763 
1764 	return IRQ_HANDLED;
1765 }
1766 
1767 
1768 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1769 {
1770 	struct net_device *netdev = data;
1771 	struct e1000_adapter *adapter = netdev_priv(netdev);
1772 	struct e1000_hw *hw = &adapter->hw;
1773 	struct e1000_ring *tx_ring = adapter->tx_ring;
1774 
1775 
1776 	adapter->total_tx_bytes = 0;
1777 	adapter->total_tx_packets = 0;
1778 
1779 	if (!e1000_clean_tx_irq(adapter))
1780 		/* Ring was not completely cleaned, so fire another interrupt */
1781 		ew32(ICS, tx_ring->ims_val);
1782 
1783 	return IRQ_HANDLED;
1784 }
1785 
1786 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1787 {
1788 	struct net_device *netdev = data;
1789 	struct e1000_adapter *adapter = netdev_priv(netdev);
1790 
1791 	/* Write the ITR value calculated at the end of the
1792 	 * previous interrupt.
1793 	 */
1794 	if (adapter->rx_ring->set_itr) {
1795 		writel(1000000000 / (adapter->rx_ring->itr_val * 256),
1796 		       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
1797 		adapter->rx_ring->set_itr = 0;
1798 	}
1799 
1800 	if (napi_schedule_prep(&adapter->napi)) {
1801 		adapter->total_rx_bytes = 0;
1802 		adapter->total_rx_packets = 0;
1803 		__napi_schedule(&adapter->napi);
1804 	}
1805 	return IRQ_HANDLED;
1806 }
1807 
1808 /**
1809  * e1000_configure_msix - Configure MSI-X hardware
1810  *
1811  * e1000_configure_msix sets up the hardware to properly
1812  * generate MSI-X interrupts.
1813  **/
1814 static void e1000_configure_msix(struct e1000_adapter *adapter)
1815 {
1816 	struct e1000_hw *hw = &adapter->hw;
1817 	struct e1000_ring *rx_ring = adapter->rx_ring;
1818 	struct e1000_ring *tx_ring = adapter->tx_ring;
1819 	int vector = 0;
1820 	u32 ctrl_ext, ivar = 0;
1821 
1822 	adapter->eiac_mask = 0;
1823 
1824 	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1825 	if (hw->mac.type == e1000_82574) {
1826 		u32 rfctl = er32(RFCTL);
1827 		rfctl |= E1000_RFCTL_ACK_DIS;
1828 		ew32(RFCTL, rfctl);
1829 	}
1830 
1831 #define E1000_IVAR_INT_ALLOC_VALID	0x8
1832 	/* Configure Rx vector */
1833 	rx_ring->ims_val = E1000_IMS_RXQ0;
1834 	adapter->eiac_mask |= rx_ring->ims_val;
1835 	if (rx_ring->itr_val)
1836 		writel(1000000000 / (rx_ring->itr_val * 256),
1837 		       hw->hw_addr + rx_ring->itr_register);
1838 	else
1839 		writel(1, hw->hw_addr + rx_ring->itr_register);
1840 	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1841 
1842 	/* Configure Tx vector */
1843 	tx_ring->ims_val = E1000_IMS_TXQ0;
1844 	vector++;
1845 	if (tx_ring->itr_val)
1846 		writel(1000000000 / (tx_ring->itr_val * 256),
1847 		       hw->hw_addr + tx_ring->itr_register);
1848 	else
1849 		writel(1, hw->hw_addr + tx_ring->itr_register);
1850 	adapter->eiac_mask |= tx_ring->ims_val;
1851 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1852 
1853 	/* set vector for Other Causes, e.g. link changes */
1854 	vector++;
1855 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1856 	if (rx_ring->itr_val)
1857 		writel(1000000000 / (rx_ring->itr_val * 256),
1858 		       hw->hw_addr + E1000_EITR_82574(vector));
1859 	else
1860 		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1861 
1862 	/* Cause Tx interrupts on every write back */
1863 	ivar |= (1 << 31);
1864 
1865 	ew32(IVAR, ivar);
1866 
1867 	/* enable MSI-X PBA support */
1868 	ctrl_ext = er32(CTRL_EXT);
1869 	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1870 
1871 	/* Auto-Mask Other interrupts upon ICR read */
1872 #define E1000_EIAC_MASK_82574   0x01F00000
1873 	ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1874 	ctrl_ext |= E1000_CTRL_EXT_EIAME;
1875 	ew32(CTRL_EXT, ctrl_ext);
1876 	e1e_flush();
1877 }
1878 
1879 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1880 {
1881 	if (adapter->msix_entries) {
1882 		pci_disable_msix(adapter->pdev);
1883 		kfree(adapter->msix_entries);
1884 		adapter->msix_entries = NULL;
1885 	} else if (adapter->flags & FLAG_MSI_ENABLED) {
1886 		pci_disable_msi(adapter->pdev);
1887 		adapter->flags &= ~FLAG_MSI_ENABLED;
1888 	}
1889 }
1890 
1891 /**
1892  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1893  *
1894  * Attempt to configure interrupts using the best available
1895  * capabilities of the hardware and kernel.
1896  **/
1897 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1898 {
1899 	int err;
1900 	int i;
1901 
1902 	switch (adapter->int_mode) {
1903 	case E1000E_INT_MODE_MSIX:
1904 		if (adapter->flags & FLAG_HAS_MSIX) {
1905 			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
1906 			adapter->msix_entries = kcalloc(adapter->num_vectors,
1907 						      sizeof(struct msix_entry),
1908 						      GFP_KERNEL);
1909 			if (adapter->msix_entries) {
1910 				for (i = 0; i < adapter->num_vectors; i++)
1911 					adapter->msix_entries[i].entry = i;
1912 
1913 				err = pci_enable_msix(adapter->pdev,
1914 						      adapter->msix_entries,
1915 						      adapter->num_vectors);
1916 				if (err == 0)
1917 					return;
1918 			}
1919 			/* MSI-X failed, so fall through and try MSI */
1920 			e_err("Failed to initialize MSI-X interrupts.  "
1921 			      "Falling back to MSI interrupts.\n");
1922 			e1000e_reset_interrupt_capability(adapter);
1923 		}
1924 		adapter->int_mode = E1000E_INT_MODE_MSI;
1925 		/* Fall through */
1926 	case E1000E_INT_MODE_MSI:
1927 		if (!pci_enable_msi(adapter->pdev)) {
1928 			adapter->flags |= FLAG_MSI_ENABLED;
1929 		} else {
1930 			adapter->int_mode = E1000E_INT_MODE_LEGACY;
1931 			e_err("Failed to initialize MSI interrupts.  Falling "
1932 			      "back to legacy interrupts.\n");
1933 		}
1934 		/* Fall through */
1935 	case E1000E_INT_MODE_LEGACY:
1936 		/* Don't do anything; this is the system default */
1937 		break;
1938 	}
1939 
1940 	/* store the number of vectors being used */
1941 	adapter->num_vectors = 1;
1942 }
1943 
1944 /**
1945  * e1000_request_msix - Initialize MSI-X interrupts
1946  *
1947  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1948  * kernel.
1949  **/
1950 static int e1000_request_msix(struct e1000_adapter *adapter)
1951 {
1952 	struct net_device *netdev = adapter->netdev;
1953 	int err = 0, vector = 0;
1954 
1955 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
1956 		snprintf(adapter->rx_ring->name,
1957 			 sizeof(adapter->rx_ring->name) - 1,
1958 			 "%s-rx-0", netdev->name);
1959 	else
1960 		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1961 	err = request_irq(adapter->msix_entries[vector].vector,
1962 			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1963 			  netdev);
1964 	if (err)
1965 		goto out;
1966 	adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
1967 	adapter->rx_ring->itr_val = adapter->itr;
1968 	vector++;
1969 
1970 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
1971 		snprintf(adapter->tx_ring->name,
1972 			 sizeof(adapter->tx_ring->name) - 1,
1973 			 "%s-tx-0", netdev->name);
1974 	else
1975 		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1976 	err = request_irq(adapter->msix_entries[vector].vector,
1977 			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1978 			  netdev);
1979 	if (err)
1980 		goto out;
1981 	adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
1982 	adapter->tx_ring->itr_val = adapter->itr;
1983 	vector++;
1984 
1985 	err = request_irq(adapter->msix_entries[vector].vector,
1986 			  e1000_msix_other, 0, netdev->name, netdev);
1987 	if (err)
1988 		goto out;
1989 
1990 	e1000_configure_msix(adapter);
1991 	return 0;
1992 out:
1993 	return err;
1994 }
1995 
1996 /**
1997  * e1000_request_irq - initialize interrupts
1998  *
1999  * Attempts to configure interrupts using the best available
2000  * capabilities of the hardware and kernel.
2001  **/
2002 static int e1000_request_irq(struct e1000_adapter *adapter)
2003 {
2004 	struct net_device *netdev = adapter->netdev;
2005 	int err;
2006 
2007 	if (adapter->msix_entries) {
2008 		err = e1000_request_msix(adapter);
2009 		if (!err)
2010 			return err;
2011 		/* fall back to MSI */
2012 		e1000e_reset_interrupt_capability(adapter);
2013 		adapter->int_mode = E1000E_INT_MODE_MSI;
2014 		e1000e_set_interrupt_capability(adapter);
2015 	}
2016 	if (adapter->flags & FLAG_MSI_ENABLED) {
2017 		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2018 				  netdev->name, netdev);
2019 		if (!err)
2020 			return err;
2021 
2022 		/* fall back to legacy interrupt */
2023 		e1000e_reset_interrupt_capability(adapter);
2024 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2025 	}
2026 
2027 	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2028 			  netdev->name, netdev);
2029 	if (err)
2030 		e_err("Unable to allocate interrupt, Error: %d\n", err);
2031 
2032 	return err;
2033 }
2034 
2035 static void e1000_free_irq(struct e1000_adapter *adapter)
2036 {
2037 	struct net_device *netdev = adapter->netdev;
2038 
2039 	if (adapter->msix_entries) {
2040 		int vector = 0;
2041 
2042 		free_irq(adapter->msix_entries[vector].vector, netdev);
2043 		vector++;
2044 
2045 		free_irq(adapter->msix_entries[vector].vector, netdev);
2046 		vector++;
2047 
2048 		/* Other Causes interrupt vector */
2049 		free_irq(adapter->msix_entries[vector].vector, netdev);
2050 		return;
2051 	}
2052 
2053 	free_irq(adapter->pdev->irq, netdev);
2054 }
2055 
2056 /**
2057  * e1000_irq_disable - Mask off interrupt generation on the NIC
2058  **/
2059 static void e1000_irq_disable(struct e1000_adapter *adapter)
2060 {
2061 	struct e1000_hw *hw = &adapter->hw;
2062 
2063 	ew32(IMC, ~0);
2064 	if (adapter->msix_entries)
2065 		ew32(EIAC_82574, 0);
2066 	e1e_flush();
2067 
2068 	if (adapter->msix_entries) {
2069 		int i;
2070 		for (i = 0; i < adapter->num_vectors; i++)
2071 			synchronize_irq(adapter->msix_entries[i].vector);
2072 	} else {
2073 		synchronize_irq(adapter->pdev->irq);
2074 	}
2075 }
2076 
2077 /**
2078  * e1000_irq_enable - Enable default interrupt generation settings
2079  **/
2080 static void e1000_irq_enable(struct e1000_adapter *adapter)
2081 {
2082 	struct e1000_hw *hw = &adapter->hw;
2083 
2084 	if (adapter->msix_entries) {
2085 		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2086 		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
2087 	} else {
2088 		ew32(IMS, IMS_ENABLE_MASK);
2089 	}
2090 	e1e_flush();
2091 }
2092 
2093 /**
2094  * e1000e_get_hw_control - get control of the h/w from f/w
2095  * @adapter: address of board private structure
2096  *
2097  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2098  * For ASF and Pass Through versions of f/w this means that
2099  * the driver is loaded. For AMT version (only with 82573)
2100  * of the f/w this means that the network i/f is open.
2101  **/
2102 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2103 {
2104 	struct e1000_hw *hw = &adapter->hw;
2105 	u32 ctrl_ext;
2106 	u32 swsm;
2107 
2108 	/* Let firmware know the driver has taken over */
2109 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2110 		swsm = er32(SWSM);
2111 		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2112 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2113 		ctrl_ext = er32(CTRL_EXT);
2114 		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2115 	}
2116 }
2117 
2118 /**
2119  * e1000e_release_hw_control - release control of the h/w to f/w
2120  * @adapter: address of board private structure
2121  *
2122  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2123  * For ASF and Pass Through versions of f/w this means that the
2124  * driver is no longer loaded. For AMT version (only with 82573) i
2125  * of the f/w this means that the network i/f is closed.
2126  *
2127  **/
2128 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2129 {
2130 	struct e1000_hw *hw = &adapter->hw;
2131 	u32 ctrl_ext;
2132 	u32 swsm;
2133 
2134 	/* Let firmware taken over control of h/w */
2135 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2136 		swsm = er32(SWSM);
2137 		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2138 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2139 		ctrl_ext = er32(CTRL_EXT);
2140 		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2141 	}
2142 }
2143 
2144 /**
2145  * @e1000_alloc_ring - allocate memory for a ring structure
2146  **/
2147 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2148 				struct e1000_ring *ring)
2149 {
2150 	struct pci_dev *pdev = adapter->pdev;
2151 
2152 	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2153 					GFP_KERNEL);
2154 	if (!ring->desc)
2155 		return -ENOMEM;
2156 
2157 	return 0;
2158 }
2159 
2160 /**
2161  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2162  * @adapter: board private structure
2163  *
2164  * Return 0 on success, negative on failure
2165  **/
2166 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
2167 {
2168 	struct e1000_ring *tx_ring = adapter->tx_ring;
2169 	int err = -ENOMEM, size;
2170 
2171 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2172 	tx_ring->buffer_info = vzalloc(size);
2173 	if (!tx_ring->buffer_info)
2174 		goto err;
2175 
2176 	/* round up to nearest 4K */
2177 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2178 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2179 
2180 	err = e1000_alloc_ring_dma(adapter, tx_ring);
2181 	if (err)
2182 		goto err;
2183 
2184 	tx_ring->next_to_use = 0;
2185 	tx_ring->next_to_clean = 0;
2186 
2187 	return 0;
2188 err:
2189 	vfree(tx_ring->buffer_info);
2190 	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2191 	return err;
2192 }
2193 
2194 /**
2195  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2196  * @adapter: board private structure
2197  *
2198  * Returns 0 on success, negative on failure
2199  **/
2200 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
2201 {
2202 	struct e1000_ring *rx_ring = adapter->rx_ring;
2203 	struct e1000_buffer *buffer_info;
2204 	int i, size, desc_len, err = -ENOMEM;
2205 
2206 	size = sizeof(struct e1000_buffer) * rx_ring->count;
2207 	rx_ring->buffer_info = vzalloc(size);
2208 	if (!rx_ring->buffer_info)
2209 		goto err;
2210 
2211 	for (i = 0; i < rx_ring->count; i++) {
2212 		buffer_info = &rx_ring->buffer_info[i];
2213 		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2214 						sizeof(struct e1000_ps_page),
2215 						GFP_KERNEL);
2216 		if (!buffer_info->ps_pages)
2217 			goto err_pages;
2218 	}
2219 
2220 	desc_len = sizeof(union e1000_rx_desc_packet_split);
2221 
2222 	/* Round up to nearest 4K */
2223 	rx_ring->size = rx_ring->count * desc_len;
2224 	rx_ring->size = ALIGN(rx_ring->size, 4096);
2225 
2226 	err = e1000_alloc_ring_dma(adapter, rx_ring);
2227 	if (err)
2228 		goto err_pages;
2229 
2230 	rx_ring->next_to_clean = 0;
2231 	rx_ring->next_to_use = 0;
2232 	rx_ring->rx_skb_top = NULL;
2233 
2234 	return 0;
2235 
2236 err_pages:
2237 	for (i = 0; i < rx_ring->count; i++) {
2238 		buffer_info = &rx_ring->buffer_info[i];
2239 		kfree(buffer_info->ps_pages);
2240 	}
2241 err:
2242 	vfree(rx_ring->buffer_info);
2243 	e_err("Unable to allocate memory for the receive descriptor ring\n");
2244 	return err;
2245 }
2246 
2247 /**
2248  * e1000_clean_tx_ring - Free Tx Buffers
2249  * @adapter: board private structure
2250  **/
2251 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
2252 {
2253 	struct e1000_ring *tx_ring = adapter->tx_ring;
2254 	struct e1000_buffer *buffer_info;
2255 	unsigned long size;
2256 	unsigned int i;
2257 
2258 	for (i = 0; i < tx_ring->count; i++) {
2259 		buffer_info = &tx_ring->buffer_info[i];
2260 		e1000_put_txbuf(adapter, buffer_info);
2261 	}
2262 
2263 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2264 	memset(tx_ring->buffer_info, 0, size);
2265 
2266 	memset(tx_ring->desc, 0, tx_ring->size);
2267 
2268 	tx_ring->next_to_use = 0;
2269 	tx_ring->next_to_clean = 0;
2270 
2271 	writel(0, adapter->hw.hw_addr + tx_ring->head);
2272 	writel(0, adapter->hw.hw_addr + tx_ring->tail);
2273 }
2274 
2275 /**
2276  * e1000e_free_tx_resources - Free Tx Resources per Queue
2277  * @adapter: board private structure
2278  *
2279  * Free all transmit software resources
2280  **/
2281 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
2282 {
2283 	struct pci_dev *pdev = adapter->pdev;
2284 	struct e1000_ring *tx_ring = adapter->tx_ring;
2285 
2286 	e1000_clean_tx_ring(adapter);
2287 
2288 	vfree(tx_ring->buffer_info);
2289 	tx_ring->buffer_info = NULL;
2290 
2291 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2292 			  tx_ring->dma);
2293 	tx_ring->desc = NULL;
2294 }
2295 
2296 /**
2297  * e1000e_free_rx_resources - Free Rx Resources
2298  * @adapter: board private structure
2299  *
2300  * Free all receive software resources
2301  **/
2302 
2303 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
2304 {
2305 	struct pci_dev *pdev = adapter->pdev;
2306 	struct e1000_ring *rx_ring = adapter->rx_ring;
2307 	int i;
2308 
2309 	e1000_clean_rx_ring(adapter);
2310 
2311 	for (i = 0; i < rx_ring->count; i++)
2312 		kfree(rx_ring->buffer_info[i].ps_pages);
2313 
2314 	vfree(rx_ring->buffer_info);
2315 	rx_ring->buffer_info = NULL;
2316 
2317 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2318 			  rx_ring->dma);
2319 	rx_ring->desc = NULL;
2320 }
2321 
2322 /**
2323  * e1000_update_itr - update the dynamic ITR value based on statistics
2324  * @adapter: pointer to adapter
2325  * @itr_setting: current adapter->itr
2326  * @packets: the number of packets during this measurement interval
2327  * @bytes: the number of bytes during this measurement interval
2328  *
2329  *      Stores a new ITR value based on packets and byte
2330  *      counts during the last interrupt.  The advantage of per interrupt
2331  *      computation is faster updates and more accurate ITR for the current
2332  *      traffic pattern.  Constants in this function were computed
2333  *      based on theoretical maximum wire speed and thresholds were set based
2334  *      on testing data as well as attempting to minimize response time
2335  *      while increasing bulk throughput.  This functionality is controlled
2336  *      by the InterruptThrottleRate module parameter.
2337  **/
2338 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2339 				     u16 itr_setting, int packets,
2340 				     int bytes)
2341 {
2342 	unsigned int retval = itr_setting;
2343 
2344 	if (packets == 0)
2345 		goto update_itr_done;
2346 
2347 	switch (itr_setting) {
2348 	case lowest_latency:
2349 		/* handle TSO and jumbo frames */
2350 		if (bytes/packets > 8000)
2351 			retval = bulk_latency;
2352 		else if ((packets < 5) && (bytes > 512))
2353 			retval = low_latency;
2354 		break;
2355 	case low_latency:  /* 50 usec aka 20000 ints/s */
2356 		if (bytes > 10000) {
2357 			/* this if handles the TSO accounting */
2358 			if (bytes/packets > 8000)
2359 				retval = bulk_latency;
2360 			else if ((packets < 10) || ((bytes/packets) > 1200))
2361 				retval = bulk_latency;
2362 			else if ((packets > 35))
2363 				retval = lowest_latency;
2364 		} else if (bytes/packets > 2000) {
2365 			retval = bulk_latency;
2366 		} else if (packets <= 2 && bytes < 512) {
2367 			retval = lowest_latency;
2368 		}
2369 		break;
2370 	case bulk_latency: /* 250 usec aka 4000 ints/s */
2371 		if (bytes > 25000) {
2372 			if (packets > 35)
2373 				retval = low_latency;
2374 		} else if (bytes < 6000) {
2375 			retval = low_latency;
2376 		}
2377 		break;
2378 	}
2379 
2380 update_itr_done:
2381 	return retval;
2382 }
2383 
2384 static void e1000_set_itr(struct e1000_adapter *adapter)
2385 {
2386 	struct e1000_hw *hw = &adapter->hw;
2387 	u16 current_itr;
2388 	u32 new_itr = adapter->itr;
2389 
2390 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2391 	if (adapter->link_speed != SPEED_1000) {
2392 		current_itr = 0;
2393 		new_itr = 4000;
2394 		goto set_itr_now;
2395 	}
2396 
2397 	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2398 		new_itr = 0;
2399 		goto set_itr_now;
2400 	}
2401 
2402 	adapter->tx_itr = e1000_update_itr(adapter,
2403 				    adapter->tx_itr,
2404 				    adapter->total_tx_packets,
2405 				    adapter->total_tx_bytes);
2406 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2407 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2408 		adapter->tx_itr = low_latency;
2409 
2410 	adapter->rx_itr = e1000_update_itr(adapter,
2411 				    adapter->rx_itr,
2412 				    adapter->total_rx_packets,
2413 				    adapter->total_rx_bytes);
2414 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2415 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2416 		adapter->rx_itr = low_latency;
2417 
2418 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2419 
2420 	switch (current_itr) {
2421 	/* counts and packets in update_itr are dependent on these numbers */
2422 	case lowest_latency:
2423 		new_itr = 70000;
2424 		break;
2425 	case low_latency:
2426 		new_itr = 20000; /* aka hwitr = ~200 */
2427 		break;
2428 	case bulk_latency:
2429 		new_itr = 4000;
2430 		break;
2431 	default:
2432 		break;
2433 	}
2434 
2435 set_itr_now:
2436 	if (new_itr != adapter->itr) {
2437 		/*
2438 		 * this attempts to bias the interrupt rate towards Bulk
2439 		 * by adding intermediate steps when interrupt rate is
2440 		 * increasing
2441 		 */
2442 		new_itr = new_itr > adapter->itr ?
2443 			     min(adapter->itr + (new_itr >> 2), new_itr) :
2444 			     new_itr;
2445 		adapter->itr = new_itr;
2446 		adapter->rx_ring->itr_val = new_itr;
2447 		if (adapter->msix_entries)
2448 			adapter->rx_ring->set_itr = 1;
2449 		else
2450 			if (new_itr)
2451 				ew32(ITR, 1000000000 / (new_itr * 256));
2452 			else
2453 				ew32(ITR, 0);
2454 	}
2455 }
2456 
2457 /**
2458  * e1000_alloc_queues - Allocate memory for all rings
2459  * @adapter: board private structure to initialize
2460  **/
2461 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
2462 {
2463 	adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2464 	if (!adapter->tx_ring)
2465 		goto err;
2466 
2467 	adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2468 	if (!adapter->rx_ring)
2469 		goto err;
2470 
2471 	return 0;
2472 err:
2473 	e_err("Unable to allocate memory for queues\n");
2474 	kfree(adapter->rx_ring);
2475 	kfree(adapter->tx_ring);
2476 	return -ENOMEM;
2477 }
2478 
2479 /**
2480  * e1000_clean - NAPI Rx polling callback
2481  * @napi: struct associated with this polling callback
2482  * @budget: amount of packets driver is allowed to process this poll
2483  **/
2484 static int e1000_clean(struct napi_struct *napi, int budget)
2485 {
2486 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
2487 	struct e1000_hw *hw = &adapter->hw;
2488 	struct net_device *poll_dev = adapter->netdev;
2489 	int tx_cleaned = 1, work_done = 0;
2490 
2491 	adapter = netdev_priv(poll_dev);
2492 
2493 	if (adapter->msix_entries &&
2494 	    !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2495 		goto clean_rx;
2496 
2497 	tx_cleaned = e1000_clean_tx_irq(adapter);
2498 
2499 clean_rx:
2500 	adapter->clean_rx(adapter, &work_done, budget);
2501 
2502 	if (!tx_cleaned)
2503 		work_done = budget;
2504 
2505 	/* If budget not fully consumed, exit the polling mode */
2506 	if (work_done < budget) {
2507 		if (adapter->itr_setting & 3)
2508 			e1000_set_itr(adapter);
2509 		napi_complete(napi);
2510 		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2511 			if (adapter->msix_entries)
2512 				ew32(IMS, adapter->rx_ring->ims_val);
2513 			else
2514 				e1000_irq_enable(adapter);
2515 		}
2516 	}
2517 
2518 	return work_done;
2519 }
2520 
2521 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2522 {
2523 	struct e1000_adapter *adapter = netdev_priv(netdev);
2524 	struct e1000_hw *hw = &adapter->hw;
2525 	u32 vfta, index;
2526 
2527 	/* don't update vlan cookie if already programmed */
2528 	if ((adapter->hw.mng_cookie.status &
2529 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2530 	    (vid == adapter->mng_vlan_id))
2531 		return;
2532 
2533 	/* add VID to filter table */
2534 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2535 		index = (vid >> 5) & 0x7F;
2536 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2537 		vfta |= (1 << (vid & 0x1F));
2538 		hw->mac.ops.write_vfta(hw, index, vfta);
2539 	}
2540 
2541 	set_bit(vid, adapter->active_vlans);
2542 }
2543 
2544 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2545 {
2546 	struct e1000_adapter *adapter = netdev_priv(netdev);
2547 	struct e1000_hw *hw = &adapter->hw;
2548 	u32 vfta, index;
2549 
2550 	if ((adapter->hw.mng_cookie.status &
2551 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2552 	    (vid == adapter->mng_vlan_id)) {
2553 		/* release control to f/w */
2554 		e1000e_release_hw_control(adapter);
2555 		return;
2556 	}
2557 
2558 	/* remove VID from filter table */
2559 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2560 		index = (vid >> 5) & 0x7F;
2561 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2562 		vfta &= ~(1 << (vid & 0x1F));
2563 		hw->mac.ops.write_vfta(hw, index, vfta);
2564 	}
2565 
2566 	clear_bit(vid, adapter->active_vlans);
2567 }
2568 
2569 /**
2570  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2571  * @adapter: board private structure to initialize
2572  **/
2573 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2574 {
2575 	struct net_device *netdev = adapter->netdev;
2576 	struct e1000_hw *hw = &adapter->hw;
2577 	u32 rctl;
2578 
2579 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2580 		/* disable VLAN receive filtering */
2581 		rctl = er32(RCTL);
2582 		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2583 		ew32(RCTL, rctl);
2584 
2585 		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2586 			e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2587 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2588 		}
2589 	}
2590 }
2591 
2592 /**
2593  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2594  * @adapter: board private structure to initialize
2595  **/
2596 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2597 {
2598 	struct e1000_hw *hw = &adapter->hw;
2599 	u32 rctl;
2600 
2601 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2602 		/* enable VLAN receive filtering */
2603 		rctl = er32(RCTL);
2604 		rctl |= E1000_RCTL_VFE;
2605 		rctl &= ~E1000_RCTL_CFIEN;
2606 		ew32(RCTL, rctl);
2607 	}
2608 }
2609 
2610 /**
2611  * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2612  * @adapter: board private structure to initialize
2613  **/
2614 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2615 {
2616 	struct e1000_hw *hw = &adapter->hw;
2617 	u32 ctrl;
2618 
2619 	/* disable VLAN tag insert/strip */
2620 	ctrl = er32(CTRL);
2621 	ctrl &= ~E1000_CTRL_VME;
2622 	ew32(CTRL, ctrl);
2623 }
2624 
2625 /**
2626  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2627  * @adapter: board private structure to initialize
2628  **/
2629 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2630 {
2631 	struct e1000_hw *hw = &adapter->hw;
2632 	u32 ctrl;
2633 
2634 	/* enable VLAN tag insert/strip */
2635 	ctrl = er32(CTRL);
2636 	ctrl |= E1000_CTRL_VME;
2637 	ew32(CTRL, ctrl);
2638 }
2639 
2640 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2641 {
2642 	struct net_device *netdev = adapter->netdev;
2643 	u16 vid = adapter->hw.mng_cookie.vlan_id;
2644 	u16 old_vid = adapter->mng_vlan_id;
2645 
2646 	if (adapter->hw.mng_cookie.status &
2647 	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2648 		e1000_vlan_rx_add_vid(netdev, vid);
2649 		adapter->mng_vlan_id = vid;
2650 	}
2651 
2652 	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2653 		e1000_vlan_rx_kill_vid(netdev, old_vid);
2654 }
2655 
2656 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2657 {
2658 	u16 vid;
2659 
2660 	e1000_vlan_rx_add_vid(adapter->netdev, 0);
2661 
2662 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2663 		e1000_vlan_rx_add_vid(adapter->netdev, vid);
2664 }
2665 
2666 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2667 {
2668 	struct e1000_hw *hw = &adapter->hw;
2669 	u32 manc, manc2h, mdef, i, j;
2670 
2671 	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2672 		return;
2673 
2674 	manc = er32(MANC);
2675 
2676 	/*
2677 	 * enable receiving management packets to the host. this will probably
2678 	 * generate destination unreachable messages from the host OS, but
2679 	 * the packets will be handled on SMBUS
2680 	 */
2681 	manc |= E1000_MANC_EN_MNG2HOST;
2682 	manc2h = er32(MANC2H);
2683 
2684 	switch (hw->mac.type) {
2685 	default:
2686 		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2687 		break;
2688 	case e1000_82574:
2689 	case e1000_82583:
2690 		/*
2691 		 * Check if IPMI pass-through decision filter already exists;
2692 		 * if so, enable it.
2693 		 */
2694 		for (i = 0, j = 0; i < 8; i++) {
2695 			mdef = er32(MDEF(i));
2696 
2697 			/* Ignore filters with anything other than IPMI ports */
2698 			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2699 				continue;
2700 
2701 			/* Enable this decision filter in MANC2H */
2702 			if (mdef)
2703 				manc2h |= (1 << i);
2704 
2705 			j |= mdef;
2706 		}
2707 
2708 		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2709 			break;
2710 
2711 		/* Create new decision filter in an empty filter */
2712 		for (i = 0, j = 0; i < 8; i++)
2713 			if (er32(MDEF(i)) == 0) {
2714 				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2715 					       E1000_MDEF_PORT_664));
2716 				manc2h |= (1 << 1);
2717 				j++;
2718 				break;
2719 			}
2720 
2721 		if (!j)
2722 			e_warn("Unable to create IPMI pass-through filter\n");
2723 		break;
2724 	}
2725 
2726 	ew32(MANC2H, manc2h);
2727 	ew32(MANC, manc);
2728 }
2729 
2730 /**
2731  * e1000_configure_tx - Configure Transmit Unit after Reset
2732  * @adapter: board private structure
2733  *
2734  * Configure the Tx unit of the MAC after a reset.
2735  **/
2736 static void e1000_configure_tx(struct e1000_adapter *adapter)
2737 {
2738 	struct e1000_hw *hw = &adapter->hw;
2739 	struct e1000_ring *tx_ring = adapter->tx_ring;
2740 	u64 tdba;
2741 	u32 tdlen, tctl, tipg, tarc;
2742 	u32 ipgr1, ipgr2;
2743 
2744 	/* Setup the HW Tx Head and Tail descriptor pointers */
2745 	tdba = tx_ring->dma;
2746 	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2747 	ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2748 	ew32(TDBAH, (tdba >> 32));
2749 	ew32(TDLEN, tdlen);
2750 	ew32(TDH, 0);
2751 	ew32(TDT, 0);
2752 	tx_ring->head = E1000_TDH;
2753 	tx_ring->tail = E1000_TDT;
2754 
2755 	/* Set the default values for the Tx Inter Packet Gap timer */
2756 	tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */
2757 	ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */
2758 	ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */
2759 
2760 	if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
2761 		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */
2762 
2763 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
2764 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
2765 	ew32(TIPG, tipg);
2766 
2767 	/* Set the Tx Interrupt Delay register */
2768 	ew32(TIDV, adapter->tx_int_delay);
2769 	/* Tx irq moderation */
2770 	ew32(TADV, adapter->tx_abs_int_delay);
2771 
2772 	if (adapter->flags2 & FLAG2_DMA_BURST) {
2773 		u32 txdctl = er32(TXDCTL(0));
2774 		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2775 			    E1000_TXDCTL_WTHRESH);
2776 		/*
2777 		 * set up some performance related parameters to encourage the
2778 		 * hardware to use the bus more efficiently in bursts, depends
2779 		 * on the tx_int_delay to be enabled,
2780 		 * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
2781 		 * hthresh = 1 ==> prefetch when one or more available
2782 		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2783 		 * BEWARE: this seems to work but should be considered first if
2784 		 * there are Tx hangs or other Tx related bugs
2785 		 */
2786 		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2787 		ew32(TXDCTL(0), txdctl);
2788 		/* erratum work around: set txdctl the same for both queues */
2789 		ew32(TXDCTL(1), txdctl);
2790 	}
2791 
2792 	/* Program the Transmit Control Register */
2793 	tctl = er32(TCTL);
2794 	tctl &= ~E1000_TCTL_CT;
2795 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2796 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2797 
2798 	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2799 		tarc = er32(TARC(0));
2800 		/*
2801 		 * set the speed mode bit, we'll clear it if we're not at
2802 		 * gigabit link later
2803 		 */
2804 #define SPEED_MODE_BIT (1 << 21)
2805 		tarc |= SPEED_MODE_BIT;
2806 		ew32(TARC(0), tarc);
2807 	}
2808 
2809 	/* errata: program both queues to unweighted RR */
2810 	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2811 		tarc = er32(TARC(0));
2812 		tarc |= 1;
2813 		ew32(TARC(0), tarc);
2814 		tarc = er32(TARC(1));
2815 		tarc |= 1;
2816 		ew32(TARC(1), tarc);
2817 	}
2818 
2819 	/* Setup Transmit Descriptor Settings for eop descriptor */
2820 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2821 
2822 	/* only set IDE if we are delaying interrupts using the timers */
2823 	if (adapter->tx_int_delay)
2824 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2825 
2826 	/* enable Report Status bit */
2827 	adapter->txd_cmd |= E1000_TXD_CMD_RS;
2828 
2829 	ew32(TCTL, tctl);
2830 
2831 	e1000e_config_collision_dist(hw);
2832 }
2833 
2834 /**
2835  * e1000_setup_rctl - configure the receive control registers
2836  * @adapter: Board private structure
2837  **/
2838 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2839 			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2840 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2841 {
2842 	struct e1000_hw *hw = &adapter->hw;
2843 	u32 rctl, rfctl;
2844 	u32 pages = 0;
2845 
2846 	/* Workaround Si errata on 82579 - configure jumbo frame flow */
2847 	if (hw->mac.type == e1000_pch2lan) {
2848 		s32 ret_val;
2849 
2850 		if (adapter->netdev->mtu > ETH_DATA_LEN)
2851 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
2852 		else
2853 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2854 
2855 		if (ret_val)
2856 			e_dbg("failed to enable jumbo frame workaround mode\n");
2857 	}
2858 
2859 	/* Program MC offset vector base */
2860 	rctl = er32(RCTL);
2861 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2862 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2863 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2864 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2865 
2866 	/* Do not Store bad packets */
2867 	rctl &= ~E1000_RCTL_SBP;
2868 
2869 	/* Enable Long Packet receive */
2870 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
2871 		rctl &= ~E1000_RCTL_LPE;
2872 	else
2873 		rctl |= E1000_RCTL_LPE;
2874 
2875 	/* Some systems expect that the CRC is included in SMBUS traffic. The
2876 	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
2877 	 * host memory when this is enabled
2878 	 */
2879 	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2880 		rctl |= E1000_RCTL_SECRC;
2881 
2882 	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2883 	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2884 		u16 phy_data;
2885 
2886 		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2887 		phy_data &= 0xfff8;
2888 		phy_data |= (1 << 2);
2889 		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2890 
2891 		e1e_rphy(hw, 22, &phy_data);
2892 		phy_data &= 0x0fff;
2893 		phy_data |= (1 << 14);
2894 		e1e_wphy(hw, 0x10, 0x2823);
2895 		e1e_wphy(hw, 0x11, 0x0003);
2896 		e1e_wphy(hw, 22, phy_data);
2897 	}
2898 
2899 	/* Setup buffer sizes */
2900 	rctl &= ~E1000_RCTL_SZ_4096;
2901 	rctl |= E1000_RCTL_BSEX;
2902 	switch (adapter->rx_buffer_len) {
2903 	case 2048:
2904 	default:
2905 		rctl |= E1000_RCTL_SZ_2048;
2906 		rctl &= ~E1000_RCTL_BSEX;
2907 		break;
2908 	case 4096:
2909 		rctl |= E1000_RCTL_SZ_4096;
2910 		break;
2911 	case 8192:
2912 		rctl |= E1000_RCTL_SZ_8192;
2913 		break;
2914 	case 16384:
2915 		rctl |= E1000_RCTL_SZ_16384;
2916 		break;
2917 	}
2918 
2919 	/* Enable Extended Status in all Receive Descriptors */
2920 	rfctl = er32(RFCTL);
2921 	rfctl |= E1000_RFCTL_EXTEN;
2922 
2923 	/*
2924 	 * 82571 and greater support packet-split where the protocol
2925 	 * header is placed in skb->data and the packet data is
2926 	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2927 	 * In the case of a non-split, skb->data is linearly filled,
2928 	 * followed by the page buffers.  Therefore, skb->data is
2929 	 * sized to hold the largest protocol header.
2930 	 *
2931 	 * allocations using alloc_page take too long for regular MTU
2932 	 * so only enable packet split for jumbo frames
2933 	 *
2934 	 * Using pages when the page size is greater than 16k wastes
2935 	 * a lot of memory, since we allocate 3 pages at all times
2936 	 * per packet.
2937 	 */
2938 	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2939 	if (!(adapter->flags & FLAG_HAS_ERT) && (pages <= 3) &&
2940 	    (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2941 		adapter->rx_ps_pages = pages;
2942 	else
2943 		adapter->rx_ps_pages = 0;
2944 
2945 	if (adapter->rx_ps_pages) {
2946 		u32 psrctl = 0;
2947 
2948 		/*
2949 		 * disable packet split support for IPv6 extension headers,
2950 		 * because some malformed IPv6 headers can hang the Rx
2951 		 */
2952 		rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2953 			  E1000_RFCTL_NEW_IPV6_EXT_DIS);
2954 
2955 		/* Enable Packet split descriptors */
2956 		rctl |= E1000_RCTL_DTYP_PS;
2957 
2958 		psrctl |= adapter->rx_ps_bsize0 >>
2959 			E1000_PSRCTL_BSIZE0_SHIFT;
2960 
2961 		switch (adapter->rx_ps_pages) {
2962 		case 3:
2963 			psrctl |= PAGE_SIZE <<
2964 				E1000_PSRCTL_BSIZE3_SHIFT;
2965 		case 2:
2966 			psrctl |= PAGE_SIZE <<
2967 				E1000_PSRCTL_BSIZE2_SHIFT;
2968 		case 1:
2969 			psrctl |= PAGE_SIZE >>
2970 				E1000_PSRCTL_BSIZE1_SHIFT;
2971 			break;
2972 		}
2973 
2974 		ew32(PSRCTL, psrctl);
2975 	}
2976 
2977 	ew32(RFCTL, rfctl);
2978 	ew32(RCTL, rctl);
2979 	/* just started the receive unit, no need to restart */
2980 	adapter->flags &= ~FLAG_RX_RESTART_NOW;
2981 }
2982 
2983 /**
2984  * e1000_configure_rx - Configure Receive Unit after Reset
2985  * @adapter: board private structure
2986  *
2987  * Configure the Rx unit of the MAC after a reset.
2988  **/
2989 static void e1000_configure_rx(struct e1000_adapter *adapter)
2990 {
2991 	struct e1000_hw *hw = &adapter->hw;
2992 	struct e1000_ring *rx_ring = adapter->rx_ring;
2993 	u64 rdba;
2994 	u32 rdlen, rctl, rxcsum, ctrl_ext;
2995 
2996 	if (adapter->rx_ps_pages) {
2997 		/* this is a 32 byte descriptor */
2998 		rdlen = rx_ring->count *
2999 		    sizeof(union e1000_rx_desc_packet_split);
3000 		adapter->clean_rx = e1000_clean_rx_irq_ps;
3001 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3002 	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3003 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3004 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3005 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3006 	} else {
3007 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3008 		adapter->clean_rx = e1000_clean_rx_irq;
3009 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3010 	}
3011 
3012 	/* disable receives while setting up the descriptors */
3013 	rctl = er32(RCTL);
3014 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3015 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3016 	e1e_flush();
3017 	usleep_range(10000, 20000);
3018 
3019 	if (adapter->flags2 & FLAG2_DMA_BURST) {
3020 		/*
3021 		 * set the writeback threshold (only takes effect if the RDTR
3022 		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3023 		 * enable prefetching of 0x20 Rx descriptors
3024 		 * granularity = 01
3025 		 * wthresh = 04,
3026 		 * hthresh = 04,
3027 		 * pthresh = 0x20
3028 		 */
3029 		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3030 		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3031 
3032 		/*
3033 		 * override the delay timers for enabling bursting, only if
3034 		 * the value was not set by the user via module options
3035 		 */
3036 		if (adapter->rx_int_delay == DEFAULT_RDTR)
3037 			adapter->rx_int_delay = BURST_RDTR;
3038 		if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3039 			adapter->rx_abs_int_delay = BURST_RADV;
3040 	}
3041 
3042 	/* set the Receive Delay Timer Register */
3043 	ew32(RDTR, adapter->rx_int_delay);
3044 
3045 	/* irq moderation */
3046 	ew32(RADV, adapter->rx_abs_int_delay);
3047 	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3048 		ew32(ITR, 1000000000 / (adapter->itr * 256));
3049 
3050 	ctrl_ext = er32(CTRL_EXT);
3051 	/* Auto-Mask interrupts upon ICR access */
3052 	ctrl_ext |= E1000_CTRL_EXT_IAME;
3053 	ew32(IAM, 0xffffffff);
3054 	ew32(CTRL_EXT, ctrl_ext);
3055 	e1e_flush();
3056 
3057 	/*
3058 	 * Setup the HW Rx Head and Tail Descriptor Pointers and
3059 	 * the Base and Length of the Rx Descriptor Ring
3060 	 */
3061 	rdba = rx_ring->dma;
3062 	ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
3063 	ew32(RDBAH, (rdba >> 32));
3064 	ew32(RDLEN, rdlen);
3065 	ew32(RDH, 0);
3066 	ew32(RDT, 0);
3067 	rx_ring->head = E1000_RDH;
3068 	rx_ring->tail = E1000_RDT;
3069 
3070 	/* Enable Receive Checksum Offload for TCP and UDP */
3071 	rxcsum = er32(RXCSUM);
3072 	if (adapter->netdev->features & NETIF_F_RXCSUM) {
3073 		rxcsum |= E1000_RXCSUM_TUOFL;
3074 
3075 		/*
3076 		 * IPv4 payload checksum for UDP fragments must be
3077 		 * used in conjunction with packet-split.
3078 		 */
3079 		if (adapter->rx_ps_pages)
3080 			rxcsum |= E1000_RXCSUM_IPPCSE;
3081 	} else {
3082 		rxcsum &= ~E1000_RXCSUM_TUOFL;
3083 		/* no need to clear IPPCSE as it defaults to 0 */
3084 	}
3085 	ew32(RXCSUM, rxcsum);
3086 
3087 	/*
3088 	 * Enable early receives on supported devices, only takes effect when
3089 	 * packet size is equal or larger than the specified value (in 8 byte
3090 	 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
3091 	 */
3092 	if ((adapter->flags & FLAG_HAS_ERT) ||
3093 	    (adapter->hw.mac.type == e1000_pch2lan)) {
3094 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3095 			u32 rxdctl = er32(RXDCTL(0));
3096 			ew32(RXDCTL(0), rxdctl | 0x3);
3097 			if (adapter->flags & FLAG_HAS_ERT)
3098 				ew32(ERT, E1000_ERT_2048 | (1 << 13));
3099 			/*
3100 			 * With jumbo frames and early-receive enabled,
3101 			 * excessive C-state transition latencies result in
3102 			 * dropped transactions.
3103 			 */
3104 			pm_qos_update_request(&adapter->netdev->pm_qos_req, 55);
3105 		} else {
3106 			pm_qos_update_request(&adapter->netdev->pm_qos_req,
3107 					      PM_QOS_DEFAULT_VALUE);
3108 		}
3109 	}
3110 
3111 	/* Enable Receives */
3112 	ew32(RCTL, rctl);
3113 }
3114 
3115 /**
3116  *  e1000_update_mc_addr_list - Update Multicast addresses
3117  *  @hw: pointer to the HW structure
3118  *  @mc_addr_list: array of multicast addresses to program
3119  *  @mc_addr_count: number of multicast addresses to program
3120  *
3121  *  Updates the Multicast Table Array.
3122  *  The caller must have a packed mc_addr_list of multicast addresses.
3123  **/
3124 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
3125 				      u32 mc_addr_count)
3126 {
3127 	hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count);
3128 }
3129 
3130 /**
3131  * e1000_set_multi - Multicast and Promiscuous mode set
3132  * @netdev: network interface device structure
3133  *
3134  * The set_multi entry point is called whenever the multicast address
3135  * list or the network interface flags are updated.  This routine is
3136  * responsible for configuring the hardware for proper multicast,
3137  * promiscuous mode, and all-multi behavior.
3138  **/
3139 static void e1000_set_multi(struct net_device *netdev)
3140 {
3141 	struct e1000_adapter *adapter = netdev_priv(netdev);
3142 	struct e1000_hw *hw = &adapter->hw;
3143 	struct netdev_hw_addr *ha;
3144 	u8  *mta_list;
3145 	u32 rctl;
3146 
3147 	/* Check for Promiscuous and All Multicast modes */
3148 
3149 	rctl = er32(RCTL);
3150 
3151 	if (netdev->flags & IFF_PROMISC) {
3152 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3153 		rctl &= ~E1000_RCTL_VFE;
3154 		/* Do not hardware filter VLANs in promisc mode */
3155 		e1000e_vlan_filter_disable(adapter);
3156 	} else {
3157 		if (netdev->flags & IFF_ALLMULTI) {
3158 			rctl |= E1000_RCTL_MPE;
3159 			rctl &= ~E1000_RCTL_UPE;
3160 		} else {
3161 			rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3162 		}
3163 		e1000e_vlan_filter_enable(adapter);
3164 	}
3165 
3166 	ew32(RCTL, rctl);
3167 
3168 	if (!netdev_mc_empty(netdev)) {
3169 		int i = 0;
3170 
3171 		mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3172 		if (!mta_list)
3173 			return;
3174 
3175 		/* prepare a packed array of only addresses. */
3176 		netdev_for_each_mc_addr(ha, netdev)
3177 			memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3178 
3179 		e1000_update_mc_addr_list(hw, mta_list, i);
3180 		kfree(mta_list);
3181 	} else {
3182 		/*
3183 		 * if we're called from probe, we might not have
3184 		 * anything to do here, so clear out the list
3185 		 */
3186 		e1000_update_mc_addr_list(hw, NULL, 0);
3187 	}
3188 
3189 	if (netdev->features & NETIF_F_HW_VLAN_RX)
3190 		e1000e_vlan_strip_enable(adapter);
3191 	else
3192 		e1000e_vlan_strip_disable(adapter);
3193 }
3194 
3195 /**
3196  * e1000_configure - configure the hardware for Rx and Tx
3197  * @adapter: private board structure
3198  **/
3199 static void e1000_configure(struct e1000_adapter *adapter)
3200 {
3201 	e1000_set_multi(adapter->netdev);
3202 
3203 	e1000_restore_vlan(adapter);
3204 	e1000_init_manageability_pt(adapter);
3205 
3206 	e1000_configure_tx(adapter);
3207 	e1000_setup_rctl(adapter);
3208 	e1000_configure_rx(adapter);
3209 	adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring),
3210 			      GFP_KERNEL);
3211 }
3212 
3213 /**
3214  * e1000e_power_up_phy - restore link in case the phy was powered down
3215  * @adapter: address of board private structure
3216  *
3217  * The phy may be powered down to save power and turn off link when the
3218  * driver is unloaded and wake on lan is not enabled (among others)
3219  * *** this routine MUST be followed by a call to e1000e_reset ***
3220  **/
3221 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3222 {
3223 	if (adapter->hw.phy.ops.power_up)
3224 		adapter->hw.phy.ops.power_up(&adapter->hw);
3225 
3226 	adapter->hw.mac.ops.setup_link(&adapter->hw);
3227 }
3228 
3229 /**
3230  * e1000_power_down_phy - Power down the PHY
3231  *
3232  * Power down the PHY so no link is implied when interface is down.
3233  * The PHY cannot be powered down if management or WoL is active.
3234  */
3235 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3236 {
3237 	/* WoL is enabled */
3238 	if (adapter->wol)
3239 		return;
3240 
3241 	if (adapter->hw.phy.ops.power_down)
3242 		adapter->hw.phy.ops.power_down(&adapter->hw);
3243 }
3244 
3245 /**
3246  * e1000e_reset - bring the hardware into a known good state
3247  *
3248  * This function boots the hardware and enables some settings that
3249  * require a configuration cycle of the hardware - those cannot be
3250  * set/changed during runtime. After reset the device needs to be
3251  * properly configured for Rx, Tx etc.
3252  */
3253 void e1000e_reset(struct e1000_adapter *adapter)
3254 {
3255 	struct e1000_mac_info *mac = &adapter->hw.mac;
3256 	struct e1000_fc_info *fc = &adapter->hw.fc;
3257 	struct e1000_hw *hw = &adapter->hw;
3258 	u32 tx_space, min_tx_space, min_rx_space;
3259 	u32 pba = adapter->pba;
3260 	u16 hwm;
3261 
3262 	/* reset Packet Buffer Allocation to default */
3263 	ew32(PBA, pba);
3264 
3265 	if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3266 		/*
3267 		 * To maintain wire speed transmits, the Tx FIFO should be
3268 		 * large enough to accommodate two full transmit packets,
3269 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3270 		 * the Rx FIFO should be large enough to accommodate at least
3271 		 * one full receive packet and is similarly rounded up and
3272 		 * expressed in KB.
3273 		 */
3274 		pba = er32(PBA);
3275 		/* upper 16 bits has Tx packet buffer allocation size in KB */
3276 		tx_space = pba >> 16;
3277 		/* lower 16 bits has Rx packet buffer allocation size in KB */
3278 		pba &= 0xffff;
3279 		/*
3280 		 * the Tx fifo also stores 16 bytes of information about the Tx
3281 		 * but don't include ethernet FCS because hardware appends it
3282 		 */
3283 		min_tx_space = (adapter->max_frame_size +
3284 				sizeof(struct e1000_tx_desc) -
3285 				ETH_FCS_LEN) * 2;
3286 		min_tx_space = ALIGN(min_tx_space, 1024);
3287 		min_tx_space >>= 10;
3288 		/* software strips receive CRC, so leave room for it */
3289 		min_rx_space = adapter->max_frame_size;
3290 		min_rx_space = ALIGN(min_rx_space, 1024);
3291 		min_rx_space >>= 10;
3292 
3293 		/*
3294 		 * If current Tx allocation is less than the min Tx FIFO size,
3295 		 * and the min Tx FIFO size is less than the current Rx FIFO
3296 		 * allocation, take space away from current Rx allocation
3297 		 */
3298 		if ((tx_space < min_tx_space) &&
3299 		    ((min_tx_space - tx_space) < pba)) {
3300 			pba -= min_tx_space - tx_space;
3301 
3302 			/*
3303 			 * if short on Rx space, Rx wins and must trump Tx
3304 			 * adjustment or use Early Receive if available
3305 			 */
3306 			if ((pba < min_rx_space) &&
3307 			    (!(adapter->flags & FLAG_HAS_ERT)))
3308 				/* ERT enabled in e1000_configure_rx */
3309 				pba = min_rx_space;
3310 		}
3311 
3312 		ew32(PBA, pba);
3313 	}
3314 
3315 	/*
3316 	 * flow control settings
3317 	 *
3318 	 * The high water mark must be low enough to fit one full frame
3319 	 * (or the size used for early receive) above it in the Rx FIFO.
3320 	 * Set it to the lower of:
3321 	 * - 90% of the Rx FIFO size, and
3322 	 * - the full Rx FIFO size minus the early receive size (for parts
3323 	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
3324 	 * - the full Rx FIFO size minus one full frame
3325 	 */
3326 	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3327 		fc->pause_time = 0xFFFF;
3328 	else
3329 		fc->pause_time = E1000_FC_PAUSE_TIME;
3330 	fc->send_xon = 1;
3331 	fc->current_mode = fc->requested_mode;
3332 
3333 	switch (hw->mac.type) {
3334 	default:
3335 		if ((adapter->flags & FLAG_HAS_ERT) &&
3336 		    (adapter->netdev->mtu > ETH_DATA_LEN))
3337 			hwm = min(((pba << 10) * 9 / 10),
3338 				  ((pba << 10) - (E1000_ERT_2048 << 3)));
3339 		else
3340 			hwm = min(((pba << 10) * 9 / 10),
3341 				  ((pba << 10) - adapter->max_frame_size));
3342 
3343 		fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3344 		fc->low_water = fc->high_water - 8;
3345 		break;
3346 	case e1000_pchlan:
3347 		/*
3348 		 * Workaround PCH LOM adapter hangs with certain network
3349 		 * loads.  If hangs persist, try disabling Tx flow control.
3350 		 */
3351 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3352 			fc->high_water = 0x3500;
3353 			fc->low_water  = 0x1500;
3354 		} else {
3355 			fc->high_water = 0x5000;
3356 			fc->low_water  = 0x3000;
3357 		}
3358 		fc->refresh_time = 0x1000;
3359 		break;
3360 	case e1000_pch2lan:
3361 		fc->high_water = 0x05C20;
3362 		fc->low_water = 0x05048;
3363 		fc->pause_time = 0x0650;
3364 		fc->refresh_time = 0x0400;
3365 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3366 			pba = 14;
3367 			ew32(PBA, pba);
3368 		}
3369 		break;
3370 	}
3371 
3372 	/*
3373 	 * Disable Adaptive Interrupt Moderation if 2 full packets cannot
3374 	 * fit in receive buffer and early-receive not supported.
3375 	 */
3376 	if (adapter->itr_setting & 0x3) {
3377 		if (((adapter->max_frame_size * 2) > (pba << 10)) &&
3378 		    !(adapter->flags & FLAG_HAS_ERT)) {
3379 			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3380 				dev_info(&adapter->pdev->dev,
3381 					"Interrupt Throttle Rate turned off\n");
3382 				adapter->flags2 |= FLAG2_DISABLE_AIM;
3383 				ew32(ITR, 0);
3384 			}
3385 		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3386 			dev_info(&adapter->pdev->dev,
3387 				 "Interrupt Throttle Rate turned on\n");
3388 			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3389 			adapter->itr = 20000;
3390 			ew32(ITR, 1000000000 / (adapter->itr * 256));
3391 		}
3392 	}
3393 
3394 	/* Allow time for pending master requests to run */
3395 	mac->ops.reset_hw(hw);
3396 
3397 	/*
3398 	 * For parts with AMT enabled, let the firmware know
3399 	 * that the network interface is in control
3400 	 */
3401 	if (adapter->flags & FLAG_HAS_AMT)
3402 		e1000e_get_hw_control(adapter);
3403 
3404 	ew32(WUC, 0);
3405 
3406 	if (mac->ops.init_hw(hw))
3407 		e_err("Hardware Error\n");
3408 
3409 	e1000_update_mng_vlan(adapter);
3410 
3411 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3412 	ew32(VET, ETH_P_8021Q);
3413 
3414 	e1000e_reset_adaptive(hw);
3415 
3416 	if (!netif_running(adapter->netdev) &&
3417 	    !test_bit(__E1000_TESTING, &adapter->state)) {
3418 		e1000_power_down_phy(adapter);
3419 		return;
3420 	}
3421 
3422 	e1000_get_phy_info(hw);
3423 
3424 	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3425 	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3426 		u16 phy_data = 0;
3427 		/*
3428 		 * speed up time to link by disabling smart power down, ignore
3429 		 * the return value of this function because there is nothing
3430 		 * different we would do if it failed
3431 		 */
3432 		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3433 		phy_data &= ~IGP02E1000_PM_SPD;
3434 		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3435 	}
3436 }
3437 
3438 int e1000e_up(struct e1000_adapter *adapter)
3439 {
3440 	struct e1000_hw *hw = &adapter->hw;
3441 
3442 	/* hardware has been reset, we need to reload some things */
3443 	e1000_configure(adapter);
3444 
3445 	clear_bit(__E1000_DOWN, &adapter->state);
3446 
3447 	napi_enable(&adapter->napi);
3448 	if (adapter->msix_entries)
3449 		e1000_configure_msix(adapter);
3450 	e1000_irq_enable(adapter);
3451 
3452 	netif_start_queue(adapter->netdev);
3453 
3454 	/* fire a link change interrupt to start the watchdog */
3455 	if (adapter->msix_entries)
3456 		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3457 	else
3458 		ew32(ICS, E1000_ICS_LSC);
3459 
3460 	return 0;
3461 }
3462 
3463 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
3464 {
3465 	struct e1000_hw *hw = &adapter->hw;
3466 
3467 	if (!(adapter->flags2 & FLAG2_DMA_BURST))
3468 		return;
3469 
3470 	/* flush pending descriptor writebacks to memory */
3471 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3472 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3473 
3474 	/* execute the writes immediately */
3475 	e1e_flush();
3476 }
3477 
3478 static void e1000e_update_stats(struct e1000_adapter *adapter);
3479 
3480 void e1000e_down(struct e1000_adapter *adapter)
3481 {
3482 	struct net_device *netdev = adapter->netdev;
3483 	struct e1000_hw *hw = &adapter->hw;
3484 	u32 tctl, rctl;
3485 
3486 	/*
3487 	 * signal that we're down so the interrupt handler does not
3488 	 * reschedule our watchdog timer
3489 	 */
3490 	set_bit(__E1000_DOWN, &adapter->state);
3491 
3492 	/* disable receives in the hardware */
3493 	rctl = er32(RCTL);
3494 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3495 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3496 	/* flush and sleep below */
3497 
3498 	netif_stop_queue(netdev);
3499 
3500 	/* disable transmits in the hardware */
3501 	tctl = er32(TCTL);
3502 	tctl &= ~E1000_TCTL_EN;
3503 	ew32(TCTL, tctl);
3504 
3505 	/* flush both disables and wait for them to finish */
3506 	e1e_flush();
3507 	usleep_range(10000, 20000);
3508 
3509 	napi_disable(&adapter->napi);
3510 	e1000_irq_disable(adapter);
3511 
3512 	del_timer_sync(&adapter->watchdog_timer);
3513 	del_timer_sync(&adapter->phy_info_timer);
3514 
3515 	netif_carrier_off(netdev);
3516 
3517 	spin_lock(&adapter->stats64_lock);
3518 	e1000e_update_stats(adapter);
3519 	spin_unlock(&adapter->stats64_lock);
3520 
3521 	e1000e_flush_descriptors(adapter);
3522 	e1000_clean_tx_ring(adapter);
3523 	e1000_clean_rx_ring(adapter);
3524 
3525 	adapter->link_speed = 0;
3526 	adapter->link_duplex = 0;
3527 
3528 	if (!pci_channel_offline(adapter->pdev))
3529 		e1000e_reset(adapter);
3530 
3531 	/*
3532 	 * TODO: for power management, we could drop the link and
3533 	 * pci_disable_device here.
3534 	 */
3535 }
3536 
3537 void e1000e_reinit_locked(struct e1000_adapter *adapter)
3538 {
3539 	might_sleep();
3540 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3541 		usleep_range(1000, 2000);
3542 	e1000e_down(adapter);
3543 	e1000e_up(adapter);
3544 	clear_bit(__E1000_RESETTING, &adapter->state);
3545 }
3546 
3547 /**
3548  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
3549  * @adapter: board private structure to initialize
3550  *
3551  * e1000_sw_init initializes the Adapter private data structure.
3552  * Fields are initialized based on PCI device information and
3553  * OS network device settings (MTU size).
3554  **/
3555 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
3556 {
3557 	struct net_device *netdev = adapter->netdev;
3558 
3559 	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
3560 	adapter->rx_ps_bsize0 = 128;
3561 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
3562 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3563 
3564 	spin_lock_init(&adapter->stats64_lock);
3565 
3566 	e1000e_set_interrupt_capability(adapter);
3567 
3568 	if (e1000_alloc_queues(adapter))
3569 		return -ENOMEM;
3570 
3571 	/* Explicitly disable IRQ since the NIC can be in any state. */
3572 	e1000_irq_disable(adapter);
3573 
3574 	set_bit(__E1000_DOWN, &adapter->state);
3575 	return 0;
3576 }
3577 
3578 /**
3579  * e1000_intr_msi_test - Interrupt Handler
3580  * @irq: interrupt number
3581  * @data: pointer to a network interface device structure
3582  **/
3583 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
3584 {
3585 	struct net_device *netdev = data;
3586 	struct e1000_adapter *adapter = netdev_priv(netdev);
3587 	struct e1000_hw *hw = &adapter->hw;
3588 	u32 icr = er32(ICR);
3589 
3590 	e_dbg("icr is %08X\n", icr);
3591 	if (icr & E1000_ICR_RXSEQ) {
3592 		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
3593 		wmb();
3594 	}
3595 
3596 	return IRQ_HANDLED;
3597 }
3598 
3599 /**
3600  * e1000_test_msi_interrupt - Returns 0 for successful test
3601  * @adapter: board private struct
3602  *
3603  * code flow taken from tg3.c
3604  **/
3605 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
3606 {
3607 	struct net_device *netdev = adapter->netdev;
3608 	struct e1000_hw *hw = &adapter->hw;
3609 	int err;
3610 
3611 	/* poll_enable hasn't been called yet, so don't need disable */
3612 	/* clear any pending events */
3613 	er32(ICR);
3614 
3615 	/* free the real vector and request a test handler */
3616 	e1000_free_irq(adapter);
3617 	e1000e_reset_interrupt_capability(adapter);
3618 
3619 	/* Assume that the test fails, if it succeeds then the test
3620 	 * MSI irq handler will unset this flag */
3621 	adapter->flags |= FLAG_MSI_TEST_FAILED;
3622 
3623 	err = pci_enable_msi(adapter->pdev);
3624 	if (err)
3625 		goto msi_test_failed;
3626 
3627 	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3628 			  netdev->name, netdev);
3629 	if (err) {
3630 		pci_disable_msi(adapter->pdev);
3631 		goto msi_test_failed;
3632 	}
3633 
3634 	wmb();
3635 
3636 	e1000_irq_enable(adapter);
3637 
3638 	/* fire an unusual interrupt on the test handler */
3639 	ew32(ICS, E1000_ICS_RXSEQ);
3640 	e1e_flush();
3641 	msleep(50);
3642 
3643 	e1000_irq_disable(adapter);
3644 
3645 	rmb();
3646 
3647 	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3648 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
3649 		e_info("MSI interrupt test failed, using legacy interrupt.\n");
3650 	} else
3651 		e_dbg("MSI interrupt test succeeded!\n");
3652 
3653 	free_irq(adapter->pdev->irq, netdev);
3654 	pci_disable_msi(adapter->pdev);
3655 
3656 msi_test_failed:
3657 	e1000e_set_interrupt_capability(adapter);
3658 	return e1000_request_irq(adapter);
3659 }
3660 
3661 /**
3662  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3663  * @adapter: board private struct
3664  *
3665  * code flow taken from tg3.c, called with e1000 interrupts disabled.
3666  **/
3667 static int e1000_test_msi(struct e1000_adapter *adapter)
3668 {
3669 	int err;
3670 	u16 pci_cmd;
3671 
3672 	if (!(adapter->flags & FLAG_MSI_ENABLED))
3673 		return 0;
3674 
3675 	/* disable SERR in case the MSI write causes a master abort */
3676 	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3677 	if (pci_cmd & PCI_COMMAND_SERR)
3678 		pci_write_config_word(adapter->pdev, PCI_COMMAND,
3679 				      pci_cmd & ~PCI_COMMAND_SERR);
3680 
3681 	err = e1000_test_msi_interrupt(adapter);
3682 
3683 	/* re-enable SERR */
3684 	if (pci_cmd & PCI_COMMAND_SERR) {
3685 		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3686 		pci_cmd |= PCI_COMMAND_SERR;
3687 		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3688 	}
3689 
3690 	return err;
3691 }
3692 
3693 /**
3694  * e1000_open - Called when a network interface is made active
3695  * @netdev: network interface device structure
3696  *
3697  * Returns 0 on success, negative value on failure
3698  *
3699  * The open entry point is called when a network interface is made
3700  * active by the system (IFF_UP).  At this point all resources needed
3701  * for transmit and receive operations are allocated, the interrupt
3702  * handler is registered with the OS, the watchdog timer is started,
3703  * and the stack is notified that the interface is ready.
3704  **/
3705 static int e1000_open(struct net_device *netdev)
3706 {
3707 	struct e1000_adapter *adapter = netdev_priv(netdev);
3708 	struct e1000_hw *hw = &adapter->hw;
3709 	struct pci_dev *pdev = adapter->pdev;
3710 	int err;
3711 
3712 	/* disallow open during test */
3713 	if (test_bit(__E1000_TESTING, &adapter->state))
3714 		return -EBUSY;
3715 
3716 	pm_runtime_get_sync(&pdev->dev);
3717 
3718 	netif_carrier_off(netdev);
3719 
3720 	/* allocate transmit descriptors */
3721 	err = e1000e_setup_tx_resources(adapter);
3722 	if (err)
3723 		goto err_setup_tx;
3724 
3725 	/* allocate receive descriptors */
3726 	err = e1000e_setup_rx_resources(adapter);
3727 	if (err)
3728 		goto err_setup_rx;
3729 
3730 	/*
3731 	 * If AMT is enabled, let the firmware know that the network
3732 	 * interface is now open and reset the part to a known state.
3733 	 */
3734 	if (adapter->flags & FLAG_HAS_AMT) {
3735 		e1000e_get_hw_control(adapter);
3736 		e1000e_reset(adapter);
3737 	}
3738 
3739 	e1000e_power_up_phy(adapter);
3740 
3741 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3742 	if ((adapter->hw.mng_cookie.status &
3743 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3744 		e1000_update_mng_vlan(adapter);
3745 
3746 	/* DMA latency requirement to workaround early-receive/jumbo issue */
3747 	if ((adapter->flags & FLAG_HAS_ERT) ||
3748 	    (adapter->hw.mac.type == e1000_pch2lan))
3749 		pm_qos_add_request(&adapter->netdev->pm_qos_req,
3750 				   PM_QOS_CPU_DMA_LATENCY,
3751 				   PM_QOS_DEFAULT_VALUE);
3752 
3753 	/*
3754 	 * before we allocate an interrupt, we must be ready to handle it.
3755 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3756 	 * as soon as we call pci_request_irq, so we have to setup our
3757 	 * clean_rx handler before we do so.
3758 	 */
3759 	e1000_configure(adapter);
3760 
3761 	err = e1000_request_irq(adapter);
3762 	if (err)
3763 		goto err_req_irq;
3764 
3765 	/*
3766 	 * Work around PCIe errata with MSI interrupts causing some chipsets to
3767 	 * ignore e1000e MSI messages, which means we need to test our MSI
3768 	 * interrupt now
3769 	 */
3770 	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3771 		err = e1000_test_msi(adapter);
3772 		if (err) {
3773 			e_err("Interrupt allocation failed\n");
3774 			goto err_req_irq;
3775 		}
3776 	}
3777 
3778 	/* From here on the code is the same as e1000e_up() */
3779 	clear_bit(__E1000_DOWN, &adapter->state);
3780 
3781 	napi_enable(&adapter->napi);
3782 
3783 	e1000_irq_enable(adapter);
3784 
3785 	netif_start_queue(netdev);
3786 
3787 	adapter->idle_check = true;
3788 	pm_runtime_put(&pdev->dev);
3789 
3790 	/* fire a link status change interrupt to start the watchdog */
3791 	if (adapter->msix_entries)
3792 		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3793 	else
3794 		ew32(ICS, E1000_ICS_LSC);
3795 
3796 	return 0;
3797 
3798 err_req_irq:
3799 	e1000e_release_hw_control(adapter);
3800 	e1000_power_down_phy(adapter);
3801 	e1000e_free_rx_resources(adapter);
3802 err_setup_rx:
3803 	e1000e_free_tx_resources(adapter);
3804 err_setup_tx:
3805 	e1000e_reset(adapter);
3806 	pm_runtime_put_sync(&pdev->dev);
3807 
3808 	return err;
3809 }
3810 
3811 /**
3812  * e1000_close - Disables a network interface
3813  * @netdev: network interface device structure
3814  *
3815  * Returns 0, this is not allowed to fail
3816  *
3817  * The close entry point is called when an interface is de-activated
3818  * by the OS.  The hardware is still under the drivers control, but
3819  * needs to be disabled.  A global MAC reset is issued to stop the
3820  * hardware, and all transmit and receive resources are freed.
3821  **/
3822 static int e1000_close(struct net_device *netdev)
3823 {
3824 	struct e1000_adapter *adapter = netdev_priv(netdev);
3825 	struct pci_dev *pdev = adapter->pdev;
3826 
3827 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3828 
3829 	pm_runtime_get_sync(&pdev->dev);
3830 
3831 	if (!test_bit(__E1000_DOWN, &adapter->state)) {
3832 		e1000e_down(adapter);
3833 		e1000_free_irq(adapter);
3834 	}
3835 	e1000_power_down_phy(adapter);
3836 
3837 	e1000e_free_tx_resources(adapter);
3838 	e1000e_free_rx_resources(adapter);
3839 
3840 	/*
3841 	 * kill manageability vlan ID if supported, but not if a vlan with
3842 	 * the same ID is registered on the host OS (let 8021q kill it)
3843 	 */
3844 	if (adapter->hw.mng_cookie.status &
3845 	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
3846 		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3847 
3848 	/*
3849 	 * If AMT is enabled, let the firmware know that the network
3850 	 * interface is now closed
3851 	 */
3852 	if ((adapter->flags & FLAG_HAS_AMT) &&
3853 	    !test_bit(__E1000_TESTING, &adapter->state))
3854 		e1000e_release_hw_control(adapter);
3855 
3856 	if ((adapter->flags & FLAG_HAS_ERT) ||
3857 	    (adapter->hw.mac.type == e1000_pch2lan))
3858 		pm_qos_remove_request(&adapter->netdev->pm_qos_req);
3859 
3860 	pm_runtime_put_sync(&pdev->dev);
3861 
3862 	return 0;
3863 }
3864 /**
3865  * e1000_set_mac - Change the Ethernet Address of the NIC
3866  * @netdev: network interface device structure
3867  * @p: pointer to an address structure
3868  *
3869  * Returns 0 on success, negative on failure
3870  **/
3871 static int e1000_set_mac(struct net_device *netdev, void *p)
3872 {
3873 	struct e1000_adapter *adapter = netdev_priv(netdev);
3874 	struct sockaddr *addr = p;
3875 
3876 	if (!is_valid_ether_addr(addr->sa_data))
3877 		return -EADDRNOTAVAIL;
3878 
3879 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3880 	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
3881 
3882 	e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
3883 
3884 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
3885 		/* activate the work around */
3886 		e1000e_set_laa_state_82571(&adapter->hw, 1);
3887 
3888 		/*
3889 		 * Hold a copy of the LAA in RAR[14] This is done so that
3890 		 * between the time RAR[0] gets clobbered  and the time it
3891 		 * gets fixed (in e1000_watchdog), the actual LAA is in one
3892 		 * of the RARs and no incoming packets directed to this port
3893 		 * are dropped. Eventually the LAA will be in RAR[0] and
3894 		 * RAR[14]
3895 		 */
3896 		e1000e_rar_set(&adapter->hw,
3897 			      adapter->hw.mac.addr,
3898 			      adapter->hw.mac.rar_entry_count - 1);
3899 	}
3900 
3901 	return 0;
3902 }
3903 
3904 /**
3905  * e1000e_update_phy_task - work thread to update phy
3906  * @work: pointer to our work struct
3907  *
3908  * this worker thread exists because we must acquire a
3909  * semaphore to read the phy, which we could msleep while
3910  * waiting for it, and we can't msleep in a timer.
3911  **/
3912 static void e1000e_update_phy_task(struct work_struct *work)
3913 {
3914 	struct e1000_adapter *adapter = container_of(work,
3915 					struct e1000_adapter, update_phy_task);
3916 
3917 	if (test_bit(__E1000_DOWN, &adapter->state))
3918 		return;
3919 
3920 	e1000_get_phy_info(&adapter->hw);
3921 }
3922 
3923 /*
3924  * Need to wait a few seconds after link up to get diagnostic information from
3925  * the phy
3926  */
3927 static void e1000_update_phy_info(unsigned long data)
3928 {
3929 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3930 
3931 	if (test_bit(__E1000_DOWN, &adapter->state))
3932 		return;
3933 
3934 	schedule_work(&adapter->update_phy_task);
3935 }
3936 
3937 /**
3938  * e1000e_update_phy_stats - Update the PHY statistics counters
3939  * @adapter: board private structure
3940  *
3941  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
3942  **/
3943 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
3944 {
3945 	struct e1000_hw *hw = &adapter->hw;
3946 	s32 ret_val;
3947 	u16 phy_data;
3948 
3949 	ret_val = hw->phy.ops.acquire(hw);
3950 	if (ret_val)
3951 		return;
3952 
3953 	/*
3954 	 * A page set is expensive so check if already on desired page.
3955 	 * If not, set to the page with the PHY status registers.
3956 	 */
3957 	hw->phy.addr = 1;
3958 	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
3959 					   &phy_data);
3960 	if (ret_val)
3961 		goto release;
3962 	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
3963 		ret_val = hw->phy.ops.set_page(hw,
3964 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
3965 		if (ret_val)
3966 			goto release;
3967 	}
3968 
3969 	/* Single Collision Count */
3970 	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
3971 	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
3972 	if (!ret_val)
3973 		adapter->stats.scc += phy_data;
3974 
3975 	/* Excessive Collision Count */
3976 	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
3977 	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
3978 	if (!ret_val)
3979 		adapter->stats.ecol += phy_data;
3980 
3981 	/* Multiple Collision Count */
3982 	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
3983 	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
3984 	if (!ret_val)
3985 		adapter->stats.mcc += phy_data;
3986 
3987 	/* Late Collision Count */
3988 	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
3989 	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
3990 	if (!ret_val)
3991 		adapter->stats.latecol += phy_data;
3992 
3993 	/* Collision Count - also used for adaptive IFS */
3994 	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
3995 	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
3996 	if (!ret_val)
3997 		hw->mac.collision_delta = phy_data;
3998 
3999 	/* Defer Count */
4000 	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4001 	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4002 	if (!ret_val)
4003 		adapter->stats.dc += phy_data;
4004 
4005 	/* Transmit with no CRS */
4006 	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4007 	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4008 	if (!ret_val)
4009 		adapter->stats.tncrs += phy_data;
4010 
4011 release:
4012 	hw->phy.ops.release(hw);
4013 }
4014 
4015 /**
4016  * e1000e_update_stats - Update the board statistics counters
4017  * @adapter: board private structure
4018  **/
4019 static void e1000e_update_stats(struct e1000_adapter *adapter)
4020 {
4021 	struct net_device *netdev = adapter->netdev;
4022 	struct e1000_hw *hw = &adapter->hw;
4023 	struct pci_dev *pdev = adapter->pdev;
4024 
4025 	/*
4026 	 * Prevent stats update while adapter is being reset, or if the pci
4027 	 * connection is down.
4028 	 */
4029 	if (adapter->link_speed == 0)
4030 		return;
4031 	if (pci_channel_offline(pdev))
4032 		return;
4033 
4034 	adapter->stats.crcerrs += er32(CRCERRS);
4035 	adapter->stats.gprc += er32(GPRC);
4036 	adapter->stats.gorc += er32(GORCL);
4037 	er32(GORCH); /* Clear gorc */
4038 	adapter->stats.bprc += er32(BPRC);
4039 	adapter->stats.mprc += er32(MPRC);
4040 	adapter->stats.roc += er32(ROC);
4041 
4042 	adapter->stats.mpc += er32(MPC);
4043 
4044 	/* Half-duplex statistics */
4045 	if (adapter->link_duplex == HALF_DUPLEX) {
4046 		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4047 			e1000e_update_phy_stats(adapter);
4048 		} else {
4049 			adapter->stats.scc += er32(SCC);
4050 			adapter->stats.ecol += er32(ECOL);
4051 			adapter->stats.mcc += er32(MCC);
4052 			adapter->stats.latecol += er32(LATECOL);
4053 			adapter->stats.dc += er32(DC);
4054 
4055 			hw->mac.collision_delta = er32(COLC);
4056 
4057 			if ((hw->mac.type != e1000_82574) &&
4058 			    (hw->mac.type != e1000_82583))
4059 				adapter->stats.tncrs += er32(TNCRS);
4060 		}
4061 		adapter->stats.colc += hw->mac.collision_delta;
4062 	}
4063 
4064 	adapter->stats.xonrxc += er32(XONRXC);
4065 	adapter->stats.xontxc += er32(XONTXC);
4066 	adapter->stats.xoffrxc += er32(XOFFRXC);
4067 	adapter->stats.xofftxc += er32(XOFFTXC);
4068 	adapter->stats.gptc += er32(GPTC);
4069 	adapter->stats.gotc += er32(GOTCL);
4070 	er32(GOTCH); /* Clear gotc */
4071 	adapter->stats.rnbc += er32(RNBC);
4072 	adapter->stats.ruc += er32(RUC);
4073 
4074 	adapter->stats.mptc += er32(MPTC);
4075 	adapter->stats.bptc += er32(BPTC);
4076 
4077 	/* used for adaptive IFS */
4078 
4079 	hw->mac.tx_packet_delta = er32(TPT);
4080 	adapter->stats.tpt += hw->mac.tx_packet_delta;
4081 
4082 	adapter->stats.algnerrc += er32(ALGNERRC);
4083 	adapter->stats.rxerrc += er32(RXERRC);
4084 	adapter->stats.cexterr += er32(CEXTERR);
4085 	adapter->stats.tsctc += er32(TSCTC);
4086 	adapter->stats.tsctfc += er32(TSCTFC);
4087 
4088 	/* Fill out the OS statistics structure */
4089 	netdev->stats.multicast = adapter->stats.mprc;
4090 	netdev->stats.collisions = adapter->stats.colc;
4091 
4092 	/* Rx Errors */
4093 
4094 	/*
4095 	 * RLEC on some newer hardware can be incorrect so build
4096 	 * our own version based on RUC and ROC
4097 	 */
4098 	netdev->stats.rx_errors = adapter->stats.rxerrc +
4099 		adapter->stats.crcerrs + adapter->stats.algnerrc +
4100 		adapter->stats.ruc + adapter->stats.roc +
4101 		adapter->stats.cexterr;
4102 	netdev->stats.rx_length_errors = adapter->stats.ruc +
4103 					      adapter->stats.roc;
4104 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4105 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4106 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
4107 
4108 	/* Tx Errors */
4109 	netdev->stats.tx_errors = adapter->stats.ecol +
4110 				       adapter->stats.latecol;
4111 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4112 	netdev->stats.tx_window_errors = adapter->stats.latecol;
4113 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4114 
4115 	/* Tx Dropped needs to be maintained elsewhere */
4116 
4117 	/* Management Stats */
4118 	adapter->stats.mgptc += er32(MGTPTC);
4119 	adapter->stats.mgprc += er32(MGTPRC);
4120 	adapter->stats.mgpdc += er32(MGTPDC);
4121 }
4122 
4123 /**
4124  * e1000_phy_read_status - Update the PHY register status snapshot
4125  * @adapter: board private structure
4126  **/
4127 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4128 {
4129 	struct e1000_hw *hw = &adapter->hw;
4130 	struct e1000_phy_regs *phy = &adapter->phy_regs;
4131 
4132 	if ((er32(STATUS) & E1000_STATUS_LU) &&
4133 	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4134 		int ret_val;
4135 
4136 		ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
4137 		ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
4138 		ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
4139 		ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
4140 		ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
4141 		ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
4142 		ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
4143 		ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
4144 		if (ret_val)
4145 			e_warn("Error reading PHY register\n");
4146 	} else {
4147 		/*
4148 		 * Do not read PHY registers if link is not up
4149 		 * Set values to typical power-on defaults
4150 		 */
4151 		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4152 		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4153 			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4154 			     BMSR_ERCAP);
4155 		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4156 				  ADVERTISE_ALL | ADVERTISE_CSMA);
4157 		phy->lpa = 0;
4158 		phy->expansion = EXPANSION_ENABLENPAGE;
4159 		phy->ctrl1000 = ADVERTISE_1000FULL;
4160 		phy->stat1000 = 0;
4161 		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4162 	}
4163 }
4164 
4165 static void e1000_print_link_info(struct e1000_adapter *adapter)
4166 {
4167 	struct e1000_hw *hw = &adapter->hw;
4168 	u32 ctrl = er32(CTRL);
4169 
4170 	/* Link status message must follow this format for user tools */
4171 	printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
4172 	       "Flow Control: %s\n",
4173 	       adapter->netdev->name,
4174 	       adapter->link_speed,
4175 	       (adapter->link_duplex == FULL_DUPLEX) ?
4176 	       "Full Duplex" : "Half Duplex",
4177 	       ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
4178 	       "Rx/Tx" :
4179 	       ((ctrl & E1000_CTRL_RFCE) ? "Rx" :
4180 		((ctrl & E1000_CTRL_TFCE) ? "Tx" : "None")));
4181 }
4182 
4183 static bool e1000e_has_link(struct e1000_adapter *adapter)
4184 {
4185 	struct e1000_hw *hw = &adapter->hw;
4186 	bool link_active = 0;
4187 	s32 ret_val = 0;
4188 
4189 	/*
4190 	 * get_link_status is set on LSC (link status) interrupt or
4191 	 * Rx sequence error interrupt.  get_link_status will stay
4192 	 * false until the check_for_link establishes link
4193 	 * for copper adapters ONLY
4194 	 */
4195 	switch (hw->phy.media_type) {
4196 	case e1000_media_type_copper:
4197 		if (hw->mac.get_link_status) {
4198 			ret_val = hw->mac.ops.check_for_link(hw);
4199 			link_active = !hw->mac.get_link_status;
4200 		} else {
4201 			link_active = 1;
4202 		}
4203 		break;
4204 	case e1000_media_type_fiber:
4205 		ret_val = hw->mac.ops.check_for_link(hw);
4206 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4207 		break;
4208 	case e1000_media_type_internal_serdes:
4209 		ret_val = hw->mac.ops.check_for_link(hw);
4210 		link_active = adapter->hw.mac.serdes_has_link;
4211 		break;
4212 	default:
4213 	case e1000_media_type_unknown:
4214 		break;
4215 	}
4216 
4217 	if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4218 	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4219 		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4220 		e_info("Gigabit has been disabled, downgrading speed\n");
4221 	}
4222 
4223 	return link_active;
4224 }
4225 
4226 static void e1000e_enable_receives(struct e1000_adapter *adapter)
4227 {
4228 	/* make sure the receive unit is started */
4229 	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4230 	    (adapter->flags & FLAG_RX_RESTART_NOW)) {
4231 		struct e1000_hw *hw = &adapter->hw;
4232 		u32 rctl = er32(RCTL);
4233 		ew32(RCTL, rctl | E1000_RCTL_EN);
4234 		adapter->flags &= ~FLAG_RX_RESTART_NOW;
4235 	}
4236 }
4237 
4238 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4239 {
4240 	struct e1000_hw *hw = &adapter->hw;
4241 
4242 	/*
4243 	 * With 82574 controllers, PHY needs to be checked periodically
4244 	 * for hung state and reset, if two calls return true
4245 	 */
4246 	if (e1000_check_phy_82574(hw))
4247 		adapter->phy_hang_count++;
4248 	else
4249 		adapter->phy_hang_count = 0;
4250 
4251 	if (adapter->phy_hang_count > 1) {
4252 		adapter->phy_hang_count = 0;
4253 		schedule_work(&adapter->reset_task);
4254 	}
4255 }
4256 
4257 /**
4258  * e1000_watchdog - Timer Call-back
4259  * @data: pointer to adapter cast into an unsigned long
4260  **/
4261 static void e1000_watchdog(unsigned long data)
4262 {
4263 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4264 
4265 	/* Do the rest outside of interrupt context */
4266 	schedule_work(&adapter->watchdog_task);
4267 
4268 	/* TODO: make this use queue_delayed_work() */
4269 }
4270 
4271 static void e1000_watchdog_task(struct work_struct *work)
4272 {
4273 	struct e1000_adapter *adapter = container_of(work,
4274 					struct e1000_adapter, watchdog_task);
4275 	struct net_device *netdev = adapter->netdev;
4276 	struct e1000_mac_info *mac = &adapter->hw.mac;
4277 	struct e1000_phy_info *phy = &adapter->hw.phy;
4278 	struct e1000_ring *tx_ring = adapter->tx_ring;
4279 	struct e1000_hw *hw = &adapter->hw;
4280 	u32 link, tctl;
4281 
4282 	if (test_bit(__E1000_DOWN, &adapter->state))
4283 		return;
4284 
4285 	link = e1000e_has_link(adapter);
4286 	if ((netif_carrier_ok(netdev)) && link) {
4287 		/* Cancel scheduled suspend requests. */
4288 		pm_runtime_resume(netdev->dev.parent);
4289 
4290 		e1000e_enable_receives(adapter);
4291 		goto link_up;
4292 	}
4293 
4294 	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4295 	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4296 		e1000_update_mng_vlan(adapter);
4297 
4298 	if (link) {
4299 		if (!netif_carrier_ok(netdev)) {
4300 			bool txb2b = 1;
4301 
4302 			/* Cancel scheduled suspend requests. */
4303 			pm_runtime_resume(netdev->dev.parent);
4304 
4305 			/* update snapshot of PHY registers on LSC */
4306 			e1000_phy_read_status(adapter);
4307 			mac->ops.get_link_up_info(&adapter->hw,
4308 						   &adapter->link_speed,
4309 						   &adapter->link_duplex);
4310 			e1000_print_link_info(adapter);
4311 			/*
4312 			 * On supported PHYs, check for duplex mismatch only
4313 			 * if link has autonegotiated at 10/100 half
4314 			 */
4315 			if ((hw->phy.type == e1000_phy_igp_3 ||
4316 			     hw->phy.type == e1000_phy_bm) &&
4317 			    (hw->mac.autoneg == true) &&
4318 			    (adapter->link_speed == SPEED_10 ||
4319 			     adapter->link_speed == SPEED_100) &&
4320 			    (adapter->link_duplex == HALF_DUPLEX)) {
4321 				u16 autoneg_exp;
4322 
4323 				e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
4324 
4325 				if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
4326 					e_info("Autonegotiated half duplex but"
4327 					       " link partner cannot autoneg. "
4328 					       " Try forcing full duplex if "
4329 					       "link gets many collisions.\n");
4330 			}
4331 
4332 			/* adjust timeout factor according to speed/duplex */
4333 			adapter->tx_timeout_factor = 1;
4334 			switch (adapter->link_speed) {
4335 			case SPEED_10:
4336 				txb2b = 0;
4337 				adapter->tx_timeout_factor = 16;
4338 				break;
4339 			case SPEED_100:
4340 				txb2b = 0;
4341 				adapter->tx_timeout_factor = 10;
4342 				break;
4343 			}
4344 
4345 			/*
4346 			 * workaround: re-program speed mode bit after
4347 			 * link-up event
4348 			 */
4349 			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4350 			    !txb2b) {
4351 				u32 tarc0;
4352 				tarc0 = er32(TARC(0));
4353 				tarc0 &= ~SPEED_MODE_BIT;
4354 				ew32(TARC(0), tarc0);
4355 			}
4356 
4357 			/*
4358 			 * disable TSO for pcie and 10/100 speeds, to avoid
4359 			 * some hardware issues
4360 			 */
4361 			if (!(adapter->flags & FLAG_TSO_FORCE)) {
4362 				switch (adapter->link_speed) {
4363 				case SPEED_10:
4364 				case SPEED_100:
4365 					e_info("10/100 speed: disabling TSO\n");
4366 					netdev->features &= ~NETIF_F_TSO;
4367 					netdev->features &= ~NETIF_F_TSO6;
4368 					break;
4369 				case SPEED_1000:
4370 					netdev->features |= NETIF_F_TSO;
4371 					netdev->features |= NETIF_F_TSO6;
4372 					break;
4373 				default:
4374 					/* oops */
4375 					break;
4376 				}
4377 			}
4378 
4379 			/*
4380 			 * enable transmits in the hardware, need to do this
4381 			 * after setting TARC(0)
4382 			 */
4383 			tctl = er32(TCTL);
4384 			tctl |= E1000_TCTL_EN;
4385 			ew32(TCTL, tctl);
4386 
4387                         /*
4388 			 * Perform any post-link-up configuration before
4389 			 * reporting link up.
4390 			 */
4391 			if (phy->ops.cfg_on_link_up)
4392 				phy->ops.cfg_on_link_up(hw);
4393 
4394 			netif_carrier_on(netdev);
4395 
4396 			if (!test_bit(__E1000_DOWN, &adapter->state))
4397 				mod_timer(&adapter->phy_info_timer,
4398 					  round_jiffies(jiffies + 2 * HZ));
4399 		}
4400 	} else {
4401 		if (netif_carrier_ok(netdev)) {
4402 			adapter->link_speed = 0;
4403 			adapter->link_duplex = 0;
4404 			/* Link status message must follow this format */
4405 			printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
4406 			       adapter->netdev->name);
4407 			netif_carrier_off(netdev);
4408 			if (!test_bit(__E1000_DOWN, &adapter->state))
4409 				mod_timer(&adapter->phy_info_timer,
4410 					  round_jiffies(jiffies + 2 * HZ));
4411 
4412 			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
4413 				schedule_work(&adapter->reset_task);
4414 			else
4415 				pm_schedule_suspend(netdev->dev.parent,
4416 							LINK_TIMEOUT);
4417 		}
4418 	}
4419 
4420 link_up:
4421 	spin_lock(&adapter->stats64_lock);
4422 	e1000e_update_stats(adapter);
4423 
4424 	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
4425 	adapter->tpt_old = adapter->stats.tpt;
4426 	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
4427 	adapter->colc_old = adapter->stats.colc;
4428 
4429 	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
4430 	adapter->gorc_old = adapter->stats.gorc;
4431 	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
4432 	adapter->gotc_old = adapter->stats.gotc;
4433 	spin_unlock(&adapter->stats64_lock);
4434 
4435 	e1000e_update_adaptive(&adapter->hw);
4436 
4437 	if (!netif_carrier_ok(netdev) &&
4438 	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) {
4439 		/*
4440 		 * We've lost link, so the controller stops DMA,
4441 		 * but we've got queued Tx work that's never going
4442 		 * to get done, so reset controller to flush Tx.
4443 		 * (Do the reset outside of interrupt context).
4444 		 */
4445 		schedule_work(&adapter->reset_task);
4446 		/* return immediately since reset is imminent */
4447 		return;
4448 	}
4449 
4450 	/* Simple mode for Interrupt Throttle Rate (ITR) */
4451 	if (adapter->itr_setting == 4) {
4452 		/*
4453 		 * Symmetric Tx/Rx gets a reduced ITR=2000;
4454 		 * Total asymmetrical Tx or Rx gets ITR=8000;
4455 		 * everyone else is between 2000-8000.
4456 		 */
4457 		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
4458 		u32 dif = (adapter->gotc > adapter->gorc ?
4459 			    adapter->gotc - adapter->gorc :
4460 			    adapter->gorc - adapter->gotc) / 10000;
4461 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
4462 
4463 		ew32(ITR, 1000000000 / (itr * 256));
4464 	}
4465 
4466 	/* Cause software interrupt to ensure Rx ring is cleaned */
4467 	if (adapter->msix_entries)
4468 		ew32(ICS, adapter->rx_ring->ims_val);
4469 	else
4470 		ew32(ICS, E1000_ICS_RXDMT0);
4471 
4472 	/* flush pending descriptors to memory before detecting Tx hang */
4473 	e1000e_flush_descriptors(adapter);
4474 
4475 	/* Force detection of hung controller every watchdog period */
4476 	adapter->detect_tx_hung = 1;
4477 
4478 	/*
4479 	 * With 82571 controllers, LAA may be overwritten due to controller
4480 	 * reset from the other port. Set the appropriate LAA in RAR[0]
4481 	 */
4482 	if (e1000e_get_laa_state_82571(hw))
4483 		e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
4484 
4485 	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
4486 		e1000e_check_82574_phy_workaround(adapter);
4487 
4488 	/* Reset the timer */
4489 	if (!test_bit(__E1000_DOWN, &adapter->state))
4490 		mod_timer(&adapter->watchdog_timer,
4491 			  round_jiffies(jiffies + 2 * HZ));
4492 }
4493 
4494 #define E1000_TX_FLAGS_CSUM		0x00000001
4495 #define E1000_TX_FLAGS_VLAN		0x00000002
4496 #define E1000_TX_FLAGS_TSO		0x00000004
4497 #define E1000_TX_FLAGS_IPV4		0x00000008
4498 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
4499 #define E1000_TX_FLAGS_VLAN_SHIFT	16
4500 
4501 static int e1000_tso(struct e1000_adapter *adapter,
4502 		     struct sk_buff *skb)
4503 {
4504 	struct e1000_ring *tx_ring = adapter->tx_ring;
4505 	struct e1000_context_desc *context_desc;
4506 	struct e1000_buffer *buffer_info;
4507 	unsigned int i;
4508 	u32 cmd_length = 0;
4509 	u16 ipcse = 0, tucse, mss;
4510 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
4511 
4512 	if (!skb_is_gso(skb))
4513 		return 0;
4514 
4515 	if (skb_header_cloned(skb)) {
4516 		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4517 
4518 		if (err)
4519 			return err;
4520 	}
4521 
4522 	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4523 	mss = skb_shinfo(skb)->gso_size;
4524 	if (skb->protocol == htons(ETH_P_IP)) {
4525 		struct iphdr *iph = ip_hdr(skb);
4526 		iph->tot_len = 0;
4527 		iph->check = 0;
4528 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
4529 		                                         0, IPPROTO_TCP, 0);
4530 		cmd_length = E1000_TXD_CMD_IP;
4531 		ipcse = skb_transport_offset(skb) - 1;
4532 	} else if (skb_is_gso_v6(skb)) {
4533 		ipv6_hdr(skb)->payload_len = 0;
4534 		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4535 		                                       &ipv6_hdr(skb)->daddr,
4536 		                                       0, IPPROTO_TCP, 0);
4537 		ipcse = 0;
4538 	}
4539 	ipcss = skb_network_offset(skb);
4540 	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
4541 	tucss = skb_transport_offset(skb);
4542 	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
4543 	tucse = 0;
4544 
4545 	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
4546 	               E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
4547 
4548 	i = tx_ring->next_to_use;
4549 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4550 	buffer_info = &tx_ring->buffer_info[i];
4551 
4552 	context_desc->lower_setup.ip_fields.ipcss  = ipcss;
4553 	context_desc->lower_setup.ip_fields.ipcso  = ipcso;
4554 	context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
4555 	context_desc->upper_setup.tcp_fields.tucss = tucss;
4556 	context_desc->upper_setup.tcp_fields.tucso = tucso;
4557 	context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
4558 	context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
4559 	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
4560 	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
4561 
4562 	buffer_info->time_stamp = jiffies;
4563 	buffer_info->next_to_watch = i;
4564 
4565 	i++;
4566 	if (i == tx_ring->count)
4567 		i = 0;
4568 	tx_ring->next_to_use = i;
4569 
4570 	return 1;
4571 }
4572 
4573 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
4574 {
4575 	struct e1000_ring *tx_ring = adapter->tx_ring;
4576 	struct e1000_context_desc *context_desc;
4577 	struct e1000_buffer *buffer_info;
4578 	unsigned int i;
4579 	u8 css;
4580 	u32 cmd_len = E1000_TXD_CMD_DEXT;
4581 	__be16 protocol;
4582 
4583 	if (skb->ip_summed != CHECKSUM_PARTIAL)
4584 		return 0;
4585 
4586 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
4587 		protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
4588 	else
4589 		protocol = skb->protocol;
4590 
4591 	switch (protocol) {
4592 	case cpu_to_be16(ETH_P_IP):
4593 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
4594 			cmd_len |= E1000_TXD_CMD_TCP;
4595 		break;
4596 	case cpu_to_be16(ETH_P_IPV6):
4597 		/* XXX not handling all IPV6 headers */
4598 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
4599 			cmd_len |= E1000_TXD_CMD_TCP;
4600 		break;
4601 	default:
4602 		if (unlikely(net_ratelimit()))
4603 			e_warn("checksum_partial proto=%x!\n",
4604 			       be16_to_cpu(protocol));
4605 		break;
4606 	}
4607 
4608 	css = skb_checksum_start_offset(skb);
4609 
4610 	i = tx_ring->next_to_use;
4611 	buffer_info = &tx_ring->buffer_info[i];
4612 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4613 
4614 	context_desc->lower_setup.ip_config = 0;
4615 	context_desc->upper_setup.tcp_fields.tucss = css;
4616 	context_desc->upper_setup.tcp_fields.tucso =
4617 				css + skb->csum_offset;
4618 	context_desc->upper_setup.tcp_fields.tucse = 0;
4619 	context_desc->tcp_seg_setup.data = 0;
4620 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
4621 
4622 	buffer_info->time_stamp = jiffies;
4623 	buffer_info->next_to_watch = i;
4624 
4625 	i++;
4626 	if (i == tx_ring->count)
4627 		i = 0;
4628 	tx_ring->next_to_use = i;
4629 
4630 	return 1;
4631 }
4632 
4633 #define E1000_MAX_PER_TXD	8192
4634 #define E1000_MAX_TXD_PWR	12
4635 
4636 static int e1000_tx_map(struct e1000_adapter *adapter,
4637 			struct sk_buff *skb, unsigned int first,
4638 			unsigned int max_per_txd, unsigned int nr_frags,
4639 			unsigned int mss)
4640 {
4641 	struct e1000_ring *tx_ring = adapter->tx_ring;
4642 	struct pci_dev *pdev = adapter->pdev;
4643 	struct e1000_buffer *buffer_info;
4644 	unsigned int len = skb_headlen(skb);
4645 	unsigned int offset = 0, size, count = 0, i;
4646 	unsigned int f, bytecount, segs;
4647 
4648 	i = tx_ring->next_to_use;
4649 
4650 	while (len) {
4651 		buffer_info = &tx_ring->buffer_info[i];
4652 		size = min(len, max_per_txd);
4653 
4654 		buffer_info->length = size;
4655 		buffer_info->time_stamp = jiffies;
4656 		buffer_info->next_to_watch = i;
4657 		buffer_info->dma = dma_map_single(&pdev->dev,
4658 						  skb->data + offset,
4659 						  size, DMA_TO_DEVICE);
4660 		buffer_info->mapped_as_page = false;
4661 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4662 			goto dma_error;
4663 
4664 		len -= size;
4665 		offset += size;
4666 		count++;
4667 
4668 		if (len) {
4669 			i++;
4670 			if (i == tx_ring->count)
4671 				i = 0;
4672 		}
4673 	}
4674 
4675 	for (f = 0; f < nr_frags; f++) {
4676 		const struct skb_frag_struct *frag;
4677 
4678 		frag = &skb_shinfo(skb)->frags[f];
4679 		len = skb_frag_size(frag);
4680 		offset = 0;
4681 
4682 		while (len) {
4683 			i++;
4684 			if (i == tx_ring->count)
4685 				i = 0;
4686 
4687 			buffer_info = &tx_ring->buffer_info[i];
4688 			size = min(len, max_per_txd);
4689 
4690 			buffer_info->length = size;
4691 			buffer_info->time_stamp = jiffies;
4692 			buffer_info->next_to_watch = i;
4693 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
4694 						offset, size, DMA_TO_DEVICE);
4695 			buffer_info->mapped_as_page = true;
4696 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4697 				goto dma_error;
4698 
4699 			len -= size;
4700 			offset += size;
4701 			count++;
4702 		}
4703 	}
4704 
4705 	segs = skb_shinfo(skb)->gso_segs ? : 1;
4706 	/* multiply data chunks by size of headers */
4707 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
4708 
4709 	tx_ring->buffer_info[i].skb = skb;
4710 	tx_ring->buffer_info[i].segs = segs;
4711 	tx_ring->buffer_info[i].bytecount = bytecount;
4712 	tx_ring->buffer_info[first].next_to_watch = i;
4713 
4714 	return count;
4715 
4716 dma_error:
4717 	dev_err(&pdev->dev, "Tx DMA map failed\n");
4718 	buffer_info->dma = 0;
4719 	if (count)
4720 		count--;
4721 
4722 	while (count--) {
4723 		if (i == 0)
4724 			i += tx_ring->count;
4725 		i--;
4726 		buffer_info = &tx_ring->buffer_info[i];
4727 		e1000_put_txbuf(adapter, buffer_info);
4728 	}
4729 
4730 	return 0;
4731 }
4732 
4733 static void e1000_tx_queue(struct e1000_adapter *adapter,
4734 			   int tx_flags, int count)
4735 {
4736 	struct e1000_ring *tx_ring = adapter->tx_ring;
4737 	struct e1000_tx_desc *tx_desc = NULL;
4738 	struct e1000_buffer *buffer_info;
4739 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
4740 	unsigned int i;
4741 
4742 	if (tx_flags & E1000_TX_FLAGS_TSO) {
4743 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
4744 			     E1000_TXD_CMD_TSE;
4745 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4746 
4747 		if (tx_flags & E1000_TX_FLAGS_IPV4)
4748 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
4749 	}
4750 
4751 	if (tx_flags & E1000_TX_FLAGS_CSUM) {
4752 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
4753 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4754 	}
4755 
4756 	if (tx_flags & E1000_TX_FLAGS_VLAN) {
4757 		txd_lower |= E1000_TXD_CMD_VLE;
4758 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
4759 	}
4760 
4761 	i = tx_ring->next_to_use;
4762 
4763 	do {
4764 		buffer_info = &tx_ring->buffer_info[i];
4765 		tx_desc = E1000_TX_DESC(*tx_ring, i);
4766 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4767 		tx_desc->lower.data =
4768 			cpu_to_le32(txd_lower | buffer_info->length);
4769 		tx_desc->upper.data = cpu_to_le32(txd_upper);
4770 
4771 		i++;
4772 		if (i == tx_ring->count)
4773 			i = 0;
4774 	} while (--count > 0);
4775 
4776 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
4777 
4778 	/*
4779 	 * Force memory writes to complete before letting h/w
4780 	 * know there are new descriptors to fetch.  (Only
4781 	 * applicable for weak-ordered memory model archs,
4782 	 * such as IA-64).
4783 	 */
4784 	wmb();
4785 
4786 	tx_ring->next_to_use = i;
4787 
4788 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
4789 		e1000e_update_tdt_wa(adapter, i);
4790 	else
4791 		writel(i, adapter->hw.hw_addr + tx_ring->tail);
4792 
4793 	/*
4794 	 * we need this if more than one processor can write to our tail
4795 	 * at a time, it synchronizes IO on IA64/Altix systems
4796 	 */
4797 	mmiowb();
4798 }
4799 
4800 #define MINIMUM_DHCP_PACKET_SIZE 282
4801 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
4802 				    struct sk_buff *skb)
4803 {
4804 	struct e1000_hw *hw =  &adapter->hw;
4805 	u16 length, offset;
4806 
4807 	if (vlan_tx_tag_present(skb)) {
4808 		if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
4809 		    (adapter->hw.mng_cookie.status &
4810 			E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
4811 			return 0;
4812 	}
4813 
4814 	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
4815 		return 0;
4816 
4817 	if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
4818 		return 0;
4819 
4820 	{
4821 		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4822 		struct udphdr *udp;
4823 
4824 		if (ip->protocol != IPPROTO_UDP)
4825 			return 0;
4826 
4827 		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4828 		if (ntohs(udp->dest) != 67)
4829 			return 0;
4830 
4831 		offset = (u8 *)udp + 8 - skb->data;
4832 		length = skb->len - offset;
4833 		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4834 	}
4835 
4836 	return 0;
4837 }
4838 
4839 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
4840 {
4841 	struct e1000_adapter *adapter = netdev_priv(netdev);
4842 
4843 	netif_stop_queue(netdev);
4844 	/*
4845 	 * Herbert's original patch had:
4846 	 *  smp_mb__after_netif_stop_queue();
4847 	 * but since that doesn't exist yet, just open code it.
4848 	 */
4849 	smp_mb();
4850 
4851 	/*
4852 	 * We need to check again in a case another CPU has just
4853 	 * made room available.
4854 	 */
4855 	if (e1000_desc_unused(adapter->tx_ring) < size)
4856 		return -EBUSY;
4857 
4858 	/* A reprieve! */
4859 	netif_start_queue(netdev);
4860 	++adapter->restart_queue;
4861 	return 0;
4862 }
4863 
4864 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
4865 {
4866 	struct e1000_adapter *adapter = netdev_priv(netdev);
4867 
4868 	if (e1000_desc_unused(adapter->tx_ring) >= size)
4869 		return 0;
4870 	return __e1000_maybe_stop_tx(netdev, size);
4871 }
4872 
4873 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4874 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
4875 				    struct net_device *netdev)
4876 {
4877 	struct e1000_adapter *adapter = netdev_priv(netdev);
4878 	struct e1000_ring *tx_ring = adapter->tx_ring;
4879 	unsigned int first;
4880 	unsigned int max_per_txd = E1000_MAX_PER_TXD;
4881 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
4882 	unsigned int tx_flags = 0;
4883 	unsigned int len = skb_headlen(skb);
4884 	unsigned int nr_frags;
4885 	unsigned int mss;
4886 	int count = 0;
4887 	int tso;
4888 	unsigned int f;
4889 
4890 	if (test_bit(__E1000_DOWN, &adapter->state)) {
4891 		dev_kfree_skb_any(skb);
4892 		return NETDEV_TX_OK;
4893 	}
4894 
4895 	if (skb->len <= 0) {
4896 		dev_kfree_skb_any(skb);
4897 		return NETDEV_TX_OK;
4898 	}
4899 
4900 	mss = skb_shinfo(skb)->gso_size;
4901 	/*
4902 	 * The controller does a simple calculation to
4903 	 * make sure there is enough room in the FIFO before
4904 	 * initiating the DMA for each buffer.  The calc is:
4905 	 * 4 = ceil(buffer len/mss).  To make sure we don't
4906 	 * overrun the FIFO, adjust the max buffer len if mss
4907 	 * drops.
4908 	 */
4909 	if (mss) {
4910 		u8 hdr_len;
4911 		max_per_txd = min(mss << 2, max_per_txd);
4912 		max_txd_pwr = fls(max_per_txd) - 1;
4913 
4914 		/*
4915 		 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4916 		 * points to just header, pull a few bytes of payload from
4917 		 * frags into skb->data
4918 		 */
4919 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4920 		/*
4921 		 * we do this workaround for ES2LAN, but it is un-necessary,
4922 		 * avoiding it could save a lot of cycles
4923 		 */
4924 		if (skb->data_len && (hdr_len == len)) {
4925 			unsigned int pull_size;
4926 
4927 			pull_size = min((unsigned int)4, skb->data_len);
4928 			if (!__pskb_pull_tail(skb, pull_size)) {
4929 				e_err("__pskb_pull_tail failed.\n");
4930 				dev_kfree_skb_any(skb);
4931 				return NETDEV_TX_OK;
4932 			}
4933 			len = skb_headlen(skb);
4934 		}
4935 	}
4936 
4937 	/* reserve a descriptor for the offload context */
4938 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
4939 		count++;
4940 	count++;
4941 
4942 	count += TXD_USE_COUNT(len, max_txd_pwr);
4943 
4944 	nr_frags = skb_shinfo(skb)->nr_frags;
4945 	for (f = 0; f < nr_frags; f++)
4946 		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
4947 				       max_txd_pwr);
4948 
4949 	if (adapter->hw.mac.tx_pkt_filtering)
4950 		e1000_transfer_dhcp_info(adapter, skb);
4951 
4952 	/*
4953 	 * need: count + 2 desc gap to keep tail from touching
4954 	 * head, otherwise try next time
4955 	 */
4956 	if (e1000_maybe_stop_tx(netdev, count + 2))
4957 		return NETDEV_TX_BUSY;
4958 
4959 	if (vlan_tx_tag_present(skb)) {
4960 		tx_flags |= E1000_TX_FLAGS_VLAN;
4961 		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
4962 	}
4963 
4964 	first = tx_ring->next_to_use;
4965 
4966 	tso = e1000_tso(adapter, skb);
4967 	if (tso < 0) {
4968 		dev_kfree_skb_any(skb);
4969 		return NETDEV_TX_OK;
4970 	}
4971 
4972 	if (tso)
4973 		tx_flags |= E1000_TX_FLAGS_TSO;
4974 	else if (e1000_tx_csum(adapter, skb))
4975 		tx_flags |= E1000_TX_FLAGS_CSUM;
4976 
4977 	/*
4978 	 * Old method was to assume IPv4 packet by default if TSO was enabled.
4979 	 * 82571 hardware supports TSO capabilities for IPv6 as well...
4980 	 * no longer assume, we must.
4981 	 */
4982 	if (skb->protocol == htons(ETH_P_IP))
4983 		tx_flags |= E1000_TX_FLAGS_IPV4;
4984 
4985 	/* if count is 0 then mapping error has occurred */
4986 	count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
4987 	if (count) {
4988 		e1000_tx_queue(adapter, tx_flags, count);
4989 		/* Make sure there is space in the ring for the next send. */
4990 		e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
4991 
4992 	} else {
4993 		dev_kfree_skb_any(skb);
4994 		tx_ring->buffer_info[first].time_stamp = 0;
4995 		tx_ring->next_to_use = first;
4996 	}
4997 
4998 	return NETDEV_TX_OK;
4999 }
5000 
5001 /**
5002  * e1000_tx_timeout - Respond to a Tx Hang
5003  * @netdev: network interface device structure
5004  **/
5005 static void e1000_tx_timeout(struct net_device *netdev)
5006 {
5007 	struct e1000_adapter *adapter = netdev_priv(netdev);
5008 
5009 	/* Do the reset outside of interrupt context */
5010 	adapter->tx_timeout_count++;
5011 	schedule_work(&adapter->reset_task);
5012 }
5013 
5014 static void e1000_reset_task(struct work_struct *work)
5015 {
5016 	struct e1000_adapter *adapter;
5017 	adapter = container_of(work, struct e1000_adapter, reset_task);
5018 
5019 	/* don't run the task if already down */
5020 	if (test_bit(__E1000_DOWN, &adapter->state))
5021 		return;
5022 
5023 	if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5024 	      (adapter->flags & FLAG_RX_RESTART_NOW))) {
5025 		e1000e_dump(adapter);
5026 		e_err("Reset adapter\n");
5027 	}
5028 	e1000e_reinit_locked(adapter);
5029 }
5030 
5031 /**
5032  * e1000_get_stats64 - Get System Network Statistics
5033  * @netdev: network interface device structure
5034  * @stats: rtnl_link_stats64 pointer
5035  *
5036  * Returns the address of the device statistics structure.
5037  **/
5038 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5039                                              struct rtnl_link_stats64 *stats)
5040 {
5041 	struct e1000_adapter *adapter = netdev_priv(netdev);
5042 
5043 	memset(stats, 0, sizeof(struct rtnl_link_stats64));
5044 	spin_lock(&adapter->stats64_lock);
5045 	e1000e_update_stats(adapter);
5046 	/* Fill out the OS statistics structure */
5047 	stats->rx_bytes = adapter->stats.gorc;
5048 	stats->rx_packets = adapter->stats.gprc;
5049 	stats->tx_bytes = adapter->stats.gotc;
5050 	stats->tx_packets = adapter->stats.gptc;
5051 	stats->multicast = adapter->stats.mprc;
5052 	stats->collisions = adapter->stats.colc;
5053 
5054 	/* Rx Errors */
5055 
5056 	/*
5057 	 * RLEC on some newer hardware can be incorrect so build
5058 	 * our own version based on RUC and ROC
5059 	 */
5060 	stats->rx_errors = adapter->stats.rxerrc +
5061 		adapter->stats.crcerrs + adapter->stats.algnerrc +
5062 		adapter->stats.ruc + adapter->stats.roc +
5063 		adapter->stats.cexterr;
5064 	stats->rx_length_errors = adapter->stats.ruc +
5065 					      adapter->stats.roc;
5066 	stats->rx_crc_errors = adapter->stats.crcerrs;
5067 	stats->rx_frame_errors = adapter->stats.algnerrc;
5068 	stats->rx_missed_errors = adapter->stats.mpc;
5069 
5070 	/* Tx Errors */
5071 	stats->tx_errors = adapter->stats.ecol +
5072 				       adapter->stats.latecol;
5073 	stats->tx_aborted_errors = adapter->stats.ecol;
5074 	stats->tx_window_errors = adapter->stats.latecol;
5075 	stats->tx_carrier_errors = adapter->stats.tncrs;
5076 
5077 	/* Tx Dropped needs to be maintained elsewhere */
5078 
5079 	spin_unlock(&adapter->stats64_lock);
5080 	return stats;
5081 }
5082 
5083 /**
5084  * e1000_change_mtu - Change the Maximum Transfer Unit
5085  * @netdev: network interface device structure
5086  * @new_mtu: new value for maximum frame size
5087  *
5088  * Returns 0 on success, negative on failure
5089  **/
5090 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5091 {
5092 	struct e1000_adapter *adapter = netdev_priv(netdev);
5093 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
5094 
5095 	/* Jumbo frame support */
5096 	if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
5097 	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5098 		e_err("Jumbo Frames not supported.\n");
5099 		return -EINVAL;
5100 	}
5101 
5102 	/* Supported frame sizes */
5103 	if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
5104 	    (max_frame > adapter->max_hw_frame_size)) {
5105 		e_err("Unsupported MTU setting\n");
5106 		return -EINVAL;
5107 	}
5108 
5109 	/* Jumbo frame workaround on 82579 requires CRC be stripped */
5110 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
5111 	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5112 	    (new_mtu > ETH_DATA_LEN)) {
5113 		e_err("Jumbo Frames not supported on 82579 when CRC "
5114 		      "stripping is disabled.\n");
5115 		return -EINVAL;
5116 	}
5117 
5118 	/* 82573 Errata 17 */
5119 	if (((adapter->hw.mac.type == e1000_82573) ||
5120 	     (adapter->hw.mac.type == e1000_82574)) &&
5121 	    (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) {
5122 		adapter->flags2 |= FLAG2_DISABLE_ASPM_L1;
5123 		e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1);
5124 	}
5125 
5126 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5127 		usleep_range(1000, 2000);
5128 	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5129 	adapter->max_frame_size = max_frame;
5130 	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5131 	netdev->mtu = new_mtu;
5132 	if (netif_running(netdev))
5133 		e1000e_down(adapter);
5134 
5135 	/*
5136 	 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5137 	 * means we reserve 2 more, this pushes us to allocate from the next
5138 	 * larger slab size.
5139 	 * i.e. RXBUFFER_2048 --> size-4096 slab
5140 	 * However with the new *_jumbo_rx* routines, jumbo receives will use
5141 	 * fragmented skbs
5142 	 */
5143 
5144 	if (max_frame <= 2048)
5145 		adapter->rx_buffer_len = 2048;
5146 	else
5147 		adapter->rx_buffer_len = 4096;
5148 
5149 	/* adjust allocation if LPE protects us, and we aren't using SBP */
5150 	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
5151 	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
5152 		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5153 					 + ETH_FCS_LEN;
5154 
5155 	if (netif_running(netdev))
5156 		e1000e_up(adapter);
5157 	else
5158 		e1000e_reset(adapter);
5159 
5160 	clear_bit(__E1000_RESETTING, &adapter->state);
5161 
5162 	return 0;
5163 }
5164 
5165 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5166 			   int cmd)
5167 {
5168 	struct e1000_adapter *adapter = netdev_priv(netdev);
5169 	struct mii_ioctl_data *data = if_mii(ifr);
5170 
5171 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
5172 		return -EOPNOTSUPP;
5173 
5174 	switch (cmd) {
5175 	case SIOCGMIIPHY:
5176 		data->phy_id = adapter->hw.phy.addr;
5177 		break;
5178 	case SIOCGMIIREG:
5179 		e1000_phy_read_status(adapter);
5180 
5181 		switch (data->reg_num & 0x1F) {
5182 		case MII_BMCR:
5183 			data->val_out = adapter->phy_regs.bmcr;
5184 			break;
5185 		case MII_BMSR:
5186 			data->val_out = adapter->phy_regs.bmsr;
5187 			break;
5188 		case MII_PHYSID1:
5189 			data->val_out = (adapter->hw.phy.id >> 16);
5190 			break;
5191 		case MII_PHYSID2:
5192 			data->val_out = (adapter->hw.phy.id & 0xFFFF);
5193 			break;
5194 		case MII_ADVERTISE:
5195 			data->val_out = adapter->phy_regs.advertise;
5196 			break;
5197 		case MII_LPA:
5198 			data->val_out = adapter->phy_regs.lpa;
5199 			break;
5200 		case MII_EXPANSION:
5201 			data->val_out = adapter->phy_regs.expansion;
5202 			break;
5203 		case MII_CTRL1000:
5204 			data->val_out = adapter->phy_regs.ctrl1000;
5205 			break;
5206 		case MII_STAT1000:
5207 			data->val_out = adapter->phy_regs.stat1000;
5208 			break;
5209 		case MII_ESTATUS:
5210 			data->val_out = adapter->phy_regs.estatus;
5211 			break;
5212 		default:
5213 			return -EIO;
5214 		}
5215 		break;
5216 	case SIOCSMIIREG:
5217 	default:
5218 		return -EOPNOTSUPP;
5219 	}
5220 	return 0;
5221 }
5222 
5223 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5224 {
5225 	switch (cmd) {
5226 	case SIOCGMIIPHY:
5227 	case SIOCGMIIREG:
5228 	case SIOCSMIIREG:
5229 		return e1000_mii_ioctl(netdev, ifr, cmd);
5230 	default:
5231 		return -EOPNOTSUPP;
5232 	}
5233 }
5234 
5235 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5236 {
5237 	struct e1000_hw *hw = &adapter->hw;
5238 	u32 i, mac_reg;
5239 	u16 phy_reg, wuc_enable;
5240 	int retval = 0;
5241 
5242 	/* copy MAC RARs to PHY RARs */
5243 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5244 
5245 	retval = hw->phy.ops.acquire(hw);
5246 	if (retval) {
5247 		e_err("Could not acquire PHY\n");
5248 		return retval;
5249 	}
5250 
5251 	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5252 	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5253 	if (retval)
5254 		goto out;
5255 
5256 	/* copy MAC MTA to PHY MTA - only needed for pchlan */
5257 	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5258 		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5259 		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
5260 					   (u16)(mac_reg & 0xFFFF));
5261 		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
5262 					   (u16)((mac_reg >> 16) & 0xFFFF));
5263 	}
5264 
5265 	/* configure PHY Rx Control register */
5266 	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5267 	mac_reg = er32(RCTL);
5268 	if (mac_reg & E1000_RCTL_UPE)
5269 		phy_reg |= BM_RCTL_UPE;
5270 	if (mac_reg & E1000_RCTL_MPE)
5271 		phy_reg |= BM_RCTL_MPE;
5272 	phy_reg &= ~(BM_RCTL_MO_MASK);
5273 	if (mac_reg & E1000_RCTL_MO_3)
5274 		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5275 				<< BM_RCTL_MO_SHIFT);
5276 	if (mac_reg & E1000_RCTL_BAM)
5277 		phy_reg |= BM_RCTL_BAM;
5278 	if (mac_reg & E1000_RCTL_PMCF)
5279 		phy_reg |= BM_RCTL_PMCF;
5280 	mac_reg = er32(CTRL);
5281 	if (mac_reg & E1000_CTRL_RFCE)
5282 		phy_reg |= BM_RCTL_RFCE;
5283 	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5284 
5285 	/* enable PHY wakeup in MAC register */
5286 	ew32(WUFC, wufc);
5287 	ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
5288 
5289 	/* configure and enable PHY wakeup in PHY registers */
5290 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
5291 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5292 
5293 	/* activate PHY wakeup */
5294 	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
5295 	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5296 	if (retval)
5297 		e_err("Could not set PHY Host Wakeup bit\n");
5298 out:
5299 	hw->phy.ops.release(hw);
5300 
5301 	return retval;
5302 }
5303 
5304 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
5305 			    bool runtime)
5306 {
5307 	struct net_device *netdev = pci_get_drvdata(pdev);
5308 	struct e1000_adapter *adapter = netdev_priv(netdev);
5309 	struct e1000_hw *hw = &adapter->hw;
5310 	u32 ctrl, ctrl_ext, rctl, status;
5311 	/* Runtime suspend should only enable wakeup for link changes */
5312 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5313 	int retval = 0;
5314 
5315 	netif_device_detach(netdev);
5316 
5317 	if (netif_running(netdev)) {
5318 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
5319 		e1000e_down(adapter);
5320 		e1000_free_irq(adapter);
5321 	}
5322 	e1000e_reset_interrupt_capability(adapter);
5323 
5324 	retval = pci_save_state(pdev);
5325 	if (retval)
5326 		return retval;
5327 
5328 	status = er32(STATUS);
5329 	if (status & E1000_STATUS_LU)
5330 		wufc &= ~E1000_WUFC_LNKC;
5331 
5332 	if (wufc) {
5333 		e1000_setup_rctl(adapter);
5334 		e1000_set_multi(netdev);
5335 
5336 		/* turn on all-multi mode if wake on multicast is enabled */
5337 		if (wufc & E1000_WUFC_MC) {
5338 			rctl = er32(RCTL);
5339 			rctl |= E1000_RCTL_MPE;
5340 			ew32(RCTL, rctl);
5341 		}
5342 
5343 		ctrl = er32(CTRL);
5344 		/* advertise wake from D3Cold */
5345 		#define E1000_CTRL_ADVD3WUC 0x00100000
5346 		/* phy power management enable */
5347 		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5348 		ctrl |= E1000_CTRL_ADVD3WUC;
5349 		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
5350 			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5351 		ew32(CTRL, ctrl);
5352 
5353 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
5354 		    adapter->hw.phy.media_type ==
5355 		    e1000_media_type_internal_serdes) {
5356 			/* keep the laser running in D3 */
5357 			ctrl_ext = er32(CTRL_EXT);
5358 			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5359 			ew32(CTRL_EXT, ctrl_ext);
5360 		}
5361 
5362 		if (adapter->flags & FLAG_IS_ICH)
5363 			e1000_suspend_workarounds_ich8lan(&adapter->hw);
5364 
5365 		/* Allow time for pending master requests to run */
5366 		e1000e_disable_pcie_master(&adapter->hw);
5367 
5368 		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5369 			/* enable wakeup by the PHY */
5370 			retval = e1000_init_phy_wakeup(adapter, wufc);
5371 			if (retval)
5372 				return retval;
5373 		} else {
5374 			/* enable wakeup by the MAC */
5375 			ew32(WUFC, wufc);
5376 			ew32(WUC, E1000_WUC_PME_EN);
5377 		}
5378 	} else {
5379 		ew32(WUC, 0);
5380 		ew32(WUFC, 0);
5381 	}
5382 
5383 	*enable_wake = !!wufc;
5384 
5385 	/* make sure adapter isn't asleep if manageability is enabled */
5386 	if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
5387 	    (hw->mac.ops.check_mng_mode(hw)))
5388 		*enable_wake = true;
5389 
5390 	if (adapter->hw.phy.type == e1000_phy_igp_3)
5391 		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
5392 
5393 	/*
5394 	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
5395 	 * would have already happened in close and is redundant.
5396 	 */
5397 	e1000e_release_hw_control(adapter);
5398 
5399 	pci_disable_device(pdev);
5400 
5401 	return 0;
5402 }
5403 
5404 static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
5405 {
5406 	if (sleep && wake) {
5407 		pci_prepare_to_sleep(pdev);
5408 		return;
5409 	}
5410 
5411 	pci_wake_from_d3(pdev, wake);
5412 	pci_set_power_state(pdev, PCI_D3hot);
5413 }
5414 
5415 static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
5416                                     bool wake)
5417 {
5418 	struct net_device *netdev = pci_get_drvdata(pdev);
5419 	struct e1000_adapter *adapter = netdev_priv(netdev);
5420 
5421 	/*
5422 	 * The pci-e switch on some quad port adapters will report a
5423 	 * correctable error when the MAC transitions from D0 to D3.  To
5424 	 * prevent this we need to mask off the correctable errors on the
5425 	 * downstream port of the pci-e switch.
5426 	 */
5427 	if (adapter->flags & FLAG_IS_QUAD_PORT) {
5428 		struct pci_dev *us_dev = pdev->bus->self;
5429 		int pos = pci_pcie_cap(us_dev);
5430 		u16 devctl;
5431 
5432 		pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
5433 		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
5434 		                      (devctl & ~PCI_EXP_DEVCTL_CERE));
5435 
5436 		e1000_power_off(pdev, sleep, wake);
5437 
5438 		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
5439 	} else {
5440 		e1000_power_off(pdev, sleep, wake);
5441 	}
5442 }
5443 
5444 #ifdef CONFIG_PCIEASPM
5445 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5446 {
5447 	pci_disable_link_state_locked(pdev, state);
5448 }
5449 #else
5450 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5451 {
5452 	int pos;
5453 	u16 reg16;
5454 
5455 	/*
5456 	 * Both device and parent should have the same ASPM setting.
5457 	 * Disable ASPM in downstream component first and then upstream.
5458 	 */
5459 	pos = pci_pcie_cap(pdev);
5460 	pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
5461 	reg16 &= ~state;
5462 	pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);
5463 
5464 	if (!pdev->bus->self)
5465 		return;
5466 
5467 	pos = pci_pcie_cap(pdev->bus->self);
5468 	pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
5469 	reg16 &= ~state;
5470 	pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
5471 }
5472 #endif
5473 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5474 {
5475 	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
5476 		 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
5477 		 (state & PCIE_LINK_STATE_L1) ? "L1" : "");
5478 
5479 	__e1000e_disable_aspm(pdev, state);
5480 }
5481 
5482 #ifdef CONFIG_PM
5483 static bool e1000e_pm_ready(struct e1000_adapter *adapter)
5484 {
5485 	return !!adapter->tx_ring->buffer_info;
5486 }
5487 
5488 static int __e1000_resume(struct pci_dev *pdev)
5489 {
5490 	struct net_device *netdev = pci_get_drvdata(pdev);
5491 	struct e1000_adapter *adapter = netdev_priv(netdev);
5492 	struct e1000_hw *hw = &adapter->hw;
5493 	u16 aspm_disable_flag = 0;
5494 	u32 err;
5495 
5496 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
5497 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
5498 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5499 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
5500 	if (aspm_disable_flag)
5501 		e1000e_disable_aspm(pdev, aspm_disable_flag);
5502 
5503 	pci_set_power_state(pdev, PCI_D0);
5504 	pci_restore_state(pdev);
5505 	pci_save_state(pdev);
5506 
5507 	e1000e_set_interrupt_capability(adapter);
5508 	if (netif_running(netdev)) {
5509 		err = e1000_request_irq(adapter);
5510 		if (err)
5511 			return err;
5512 	}
5513 
5514 	if (hw->mac.type == e1000_pch2lan)
5515 		e1000_resume_workarounds_pchlan(&adapter->hw);
5516 
5517 	e1000e_power_up_phy(adapter);
5518 
5519 	/* report the system wakeup cause from S3/S4 */
5520 	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5521 		u16 phy_data;
5522 
5523 		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
5524 		if (phy_data) {
5525 			e_info("PHY Wakeup cause - %s\n",
5526 				phy_data & E1000_WUS_EX ? "Unicast Packet" :
5527 				phy_data & E1000_WUS_MC ? "Multicast Packet" :
5528 				phy_data & E1000_WUS_BC ? "Broadcast Packet" :
5529 				phy_data & E1000_WUS_MAG ? "Magic Packet" :
5530 				phy_data & E1000_WUS_LNKC ? "Link Status "
5531 				" Change" : "other");
5532 		}
5533 		e1e_wphy(&adapter->hw, BM_WUS, ~0);
5534 	} else {
5535 		u32 wus = er32(WUS);
5536 		if (wus) {
5537 			e_info("MAC Wakeup cause - %s\n",
5538 				wus & E1000_WUS_EX ? "Unicast Packet" :
5539 				wus & E1000_WUS_MC ? "Multicast Packet" :
5540 				wus & E1000_WUS_BC ? "Broadcast Packet" :
5541 				wus & E1000_WUS_MAG ? "Magic Packet" :
5542 				wus & E1000_WUS_LNKC ? "Link Status Change" :
5543 				"other");
5544 		}
5545 		ew32(WUS, ~0);
5546 	}
5547 
5548 	e1000e_reset(adapter);
5549 
5550 	e1000_init_manageability_pt(adapter);
5551 
5552 	if (netif_running(netdev))
5553 		e1000e_up(adapter);
5554 
5555 	netif_device_attach(netdev);
5556 
5557 	/*
5558 	 * If the controller has AMT, do not set DRV_LOAD until the interface
5559 	 * is up.  For all other cases, let the f/w know that the h/w is now
5560 	 * under the control of the driver.
5561 	 */
5562 	if (!(adapter->flags & FLAG_HAS_AMT))
5563 		e1000e_get_hw_control(adapter);
5564 
5565 	return 0;
5566 }
5567 
5568 #ifdef CONFIG_PM_SLEEP
5569 static int e1000_suspend(struct device *dev)
5570 {
5571 	struct pci_dev *pdev = to_pci_dev(dev);
5572 	int retval;
5573 	bool wake;
5574 
5575 	retval = __e1000_shutdown(pdev, &wake, false);
5576 	if (!retval)
5577 		e1000_complete_shutdown(pdev, true, wake);
5578 
5579 	return retval;
5580 }
5581 
5582 static int e1000_resume(struct device *dev)
5583 {
5584 	struct pci_dev *pdev = to_pci_dev(dev);
5585 	struct net_device *netdev = pci_get_drvdata(pdev);
5586 	struct e1000_adapter *adapter = netdev_priv(netdev);
5587 
5588 	if (e1000e_pm_ready(adapter))
5589 		adapter->idle_check = true;
5590 
5591 	return __e1000_resume(pdev);
5592 }
5593 #endif /* CONFIG_PM_SLEEP */
5594 
5595 #ifdef CONFIG_PM_RUNTIME
5596 static int e1000_runtime_suspend(struct device *dev)
5597 {
5598 	struct pci_dev *pdev = to_pci_dev(dev);
5599 	struct net_device *netdev = pci_get_drvdata(pdev);
5600 	struct e1000_adapter *adapter = netdev_priv(netdev);
5601 
5602 	if (e1000e_pm_ready(adapter)) {
5603 		bool wake;
5604 
5605 		__e1000_shutdown(pdev, &wake, true);
5606 	}
5607 
5608 	return 0;
5609 }
5610 
5611 static int e1000_idle(struct device *dev)
5612 {
5613 	struct pci_dev *pdev = to_pci_dev(dev);
5614 	struct net_device *netdev = pci_get_drvdata(pdev);
5615 	struct e1000_adapter *adapter = netdev_priv(netdev);
5616 
5617 	if (!e1000e_pm_ready(adapter))
5618 		return 0;
5619 
5620 	if (adapter->idle_check) {
5621 		adapter->idle_check = false;
5622 		if (!e1000e_has_link(adapter))
5623 			pm_schedule_suspend(dev, MSEC_PER_SEC);
5624 	}
5625 
5626 	return -EBUSY;
5627 }
5628 
5629 static int e1000_runtime_resume(struct device *dev)
5630 {
5631 	struct pci_dev *pdev = to_pci_dev(dev);
5632 	struct net_device *netdev = pci_get_drvdata(pdev);
5633 	struct e1000_adapter *adapter = netdev_priv(netdev);
5634 
5635 	if (!e1000e_pm_ready(adapter))
5636 		return 0;
5637 
5638 	adapter->idle_check = !dev->power.runtime_auto;
5639 	return __e1000_resume(pdev);
5640 }
5641 #endif /* CONFIG_PM_RUNTIME */
5642 #endif /* CONFIG_PM */
5643 
5644 static void e1000_shutdown(struct pci_dev *pdev)
5645 {
5646 	bool wake = false;
5647 
5648 	__e1000_shutdown(pdev, &wake, false);
5649 
5650 	if (system_state == SYSTEM_POWER_OFF)
5651 		e1000_complete_shutdown(pdev, false, wake);
5652 }
5653 
5654 #ifdef CONFIG_NET_POLL_CONTROLLER
5655 
5656 static irqreturn_t e1000_intr_msix(int irq, void *data)
5657 {
5658 	struct net_device *netdev = data;
5659 	struct e1000_adapter *adapter = netdev_priv(netdev);
5660 
5661 	if (adapter->msix_entries) {
5662 		int vector, msix_irq;
5663 
5664 		vector = 0;
5665 		msix_irq = adapter->msix_entries[vector].vector;
5666 		disable_irq(msix_irq);
5667 		e1000_intr_msix_rx(msix_irq, netdev);
5668 		enable_irq(msix_irq);
5669 
5670 		vector++;
5671 		msix_irq = adapter->msix_entries[vector].vector;
5672 		disable_irq(msix_irq);
5673 		e1000_intr_msix_tx(msix_irq, netdev);
5674 		enable_irq(msix_irq);
5675 
5676 		vector++;
5677 		msix_irq = adapter->msix_entries[vector].vector;
5678 		disable_irq(msix_irq);
5679 		e1000_msix_other(msix_irq, netdev);
5680 		enable_irq(msix_irq);
5681 	}
5682 
5683 	return IRQ_HANDLED;
5684 }
5685 
5686 /*
5687  * Polling 'interrupt' - used by things like netconsole to send skbs
5688  * without having to re-enable interrupts. It's not called while
5689  * the interrupt routine is executing.
5690  */
5691 static void e1000_netpoll(struct net_device *netdev)
5692 {
5693 	struct e1000_adapter *adapter = netdev_priv(netdev);
5694 
5695 	switch (adapter->int_mode) {
5696 	case E1000E_INT_MODE_MSIX:
5697 		e1000_intr_msix(adapter->pdev->irq, netdev);
5698 		break;
5699 	case E1000E_INT_MODE_MSI:
5700 		disable_irq(adapter->pdev->irq);
5701 		e1000_intr_msi(adapter->pdev->irq, netdev);
5702 		enable_irq(adapter->pdev->irq);
5703 		break;
5704 	default: /* E1000E_INT_MODE_LEGACY */
5705 		disable_irq(adapter->pdev->irq);
5706 		e1000_intr(adapter->pdev->irq, netdev);
5707 		enable_irq(adapter->pdev->irq);
5708 		break;
5709 	}
5710 }
5711 #endif
5712 
5713 /**
5714  * e1000_io_error_detected - called when PCI error is detected
5715  * @pdev: Pointer to PCI device
5716  * @state: The current pci connection state
5717  *
5718  * This function is called after a PCI bus error affecting
5719  * this device has been detected.
5720  */
5721 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5722 						pci_channel_state_t state)
5723 {
5724 	struct net_device *netdev = pci_get_drvdata(pdev);
5725 	struct e1000_adapter *adapter = netdev_priv(netdev);
5726 
5727 	netif_device_detach(netdev);
5728 
5729 	if (state == pci_channel_io_perm_failure)
5730 		return PCI_ERS_RESULT_DISCONNECT;
5731 
5732 	if (netif_running(netdev))
5733 		e1000e_down(adapter);
5734 	pci_disable_device(pdev);
5735 
5736 	/* Request a slot slot reset. */
5737 	return PCI_ERS_RESULT_NEED_RESET;
5738 }
5739 
5740 /**
5741  * e1000_io_slot_reset - called after the pci bus has been reset.
5742  * @pdev: Pointer to PCI device
5743  *
5744  * Restart the card from scratch, as if from a cold-boot. Implementation
5745  * resembles the first-half of the e1000_resume routine.
5746  */
5747 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5748 {
5749 	struct net_device *netdev = pci_get_drvdata(pdev);
5750 	struct e1000_adapter *adapter = netdev_priv(netdev);
5751 	struct e1000_hw *hw = &adapter->hw;
5752 	u16 aspm_disable_flag = 0;
5753 	int err;
5754 	pci_ers_result_t result;
5755 
5756 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
5757 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
5758 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5759 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
5760 	if (aspm_disable_flag)
5761 		e1000e_disable_aspm(pdev, aspm_disable_flag);
5762 
5763 	err = pci_enable_device_mem(pdev);
5764 	if (err) {
5765 		dev_err(&pdev->dev,
5766 			"Cannot re-enable PCI device after reset.\n");
5767 		result = PCI_ERS_RESULT_DISCONNECT;
5768 	} else {
5769 		pci_set_master(pdev);
5770 		pdev->state_saved = true;
5771 		pci_restore_state(pdev);
5772 
5773 		pci_enable_wake(pdev, PCI_D3hot, 0);
5774 		pci_enable_wake(pdev, PCI_D3cold, 0);
5775 
5776 		e1000e_reset(adapter);
5777 		ew32(WUS, ~0);
5778 		result = PCI_ERS_RESULT_RECOVERED;
5779 	}
5780 
5781 	pci_cleanup_aer_uncorrect_error_status(pdev);
5782 
5783 	return result;
5784 }
5785 
5786 /**
5787  * e1000_io_resume - called when traffic can start flowing again.
5788  * @pdev: Pointer to PCI device
5789  *
5790  * This callback is called when the error recovery driver tells us that
5791  * its OK to resume normal operation. Implementation resembles the
5792  * second-half of the e1000_resume routine.
5793  */
5794 static void e1000_io_resume(struct pci_dev *pdev)
5795 {
5796 	struct net_device *netdev = pci_get_drvdata(pdev);
5797 	struct e1000_adapter *adapter = netdev_priv(netdev);
5798 
5799 	e1000_init_manageability_pt(adapter);
5800 
5801 	if (netif_running(netdev)) {
5802 		if (e1000e_up(adapter)) {
5803 			dev_err(&pdev->dev,
5804 				"can't bring device back up after reset\n");
5805 			return;
5806 		}
5807 	}
5808 
5809 	netif_device_attach(netdev);
5810 
5811 	/*
5812 	 * If the controller has AMT, do not set DRV_LOAD until the interface
5813 	 * is up.  For all other cases, let the f/w know that the h/w is now
5814 	 * under the control of the driver.
5815 	 */
5816 	if (!(adapter->flags & FLAG_HAS_AMT))
5817 		e1000e_get_hw_control(adapter);
5818 
5819 }
5820 
5821 static void e1000_print_device_info(struct e1000_adapter *adapter)
5822 {
5823 	struct e1000_hw *hw = &adapter->hw;
5824 	struct net_device *netdev = adapter->netdev;
5825 	u32 ret_val;
5826 	u8 pba_str[E1000_PBANUM_LENGTH];
5827 
5828 	/* print bus type/speed/width info */
5829 	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
5830 	       /* bus width */
5831 	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
5832 	        "Width x1"),
5833 	       /* MAC address */
5834 	       netdev->dev_addr);
5835 	e_info("Intel(R) PRO/%s Network Connection\n",
5836 	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
5837 	ret_val = e1000_read_pba_string_generic(hw, pba_str,
5838 						E1000_PBANUM_LENGTH);
5839 	if (ret_val)
5840 		strncpy((char *)pba_str, "Unknown", sizeof(pba_str) - 1);
5841 	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
5842 	       hw->mac.type, hw->phy.type, pba_str);
5843 }
5844 
5845 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
5846 {
5847 	struct e1000_hw *hw = &adapter->hw;
5848 	int ret_val;
5849 	u16 buf = 0;
5850 
5851 	if (hw->mac.type != e1000_82573)
5852 		return;
5853 
5854 	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
5855 	if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
5856 		/* Deep Smart Power Down (DSPD) */
5857 		dev_warn(&adapter->pdev->dev,
5858 			 "Warning: detected DSPD enabled in EEPROM\n");
5859 	}
5860 }
5861 
5862 static int e1000_set_features(struct net_device *netdev, u32 features)
5863 {
5864 	struct e1000_adapter *adapter = netdev_priv(netdev);
5865 	u32 changed = features ^ netdev->features;
5866 
5867 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
5868 		adapter->flags |= FLAG_TSO_FORCE;
5869 
5870 	if (!(changed & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX |
5871 			 NETIF_F_RXCSUM)))
5872 		return 0;
5873 
5874 	if (netif_running(netdev))
5875 		e1000e_reinit_locked(adapter);
5876 	else
5877 		e1000e_reset(adapter);
5878 
5879 	return 0;
5880 }
5881 
5882 static const struct net_device_ops e1000e_netdev_ops = {
5883 	.ndo_open		= e1000_open,
5884 	.ndo_stop		= e1000_close,
5885 	.ndo_start_xmit		= e1000_xmit_frame,
5886 	.ndo_get_stats64	= e1000e_get_stats64,
5887 	.ndo_set_rx_mode	= e1000_set_multi,
5888 	.ndo_set_mac_address	= e1000_set_mac,
5889 	.ndo_change_mtu		= e1000_change_mtu,
5890 	.ndo_do_ioctl		= e1000_ioctl,
5891 	.ndo_tx_timeout		= e1000_tx_timeout,
5892 	.ndo_validate_addr	= eth_validate_addr,
5893 
5894 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
5895 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
5896 #ifdef CONFIG_NET_POLL_CONTROLLER
5897 	.ndo_poll_controller	= e1000_netpoll,
5898 #endif
5899 	.ndo_set_features = e1000_set_features,
5900 };
5901 
5902 /**
5903  * e1000_probe - Device Initialization Routine
5904  * @pdev: PCI device information struct
5905  * @ent: entry in e1000_pci_tbl
5906  *
5907  * Returns 0 on success, negative on failure
5908  *
5909  * e1000_probe initializes an adapter identified by a pci_dev structure.
5910  * The OS initialization, configuring of the adapter private structure,
5911  * and a hardware reset occur.
5912  **/
5913 static int __devinit e1000_probe(struct pci_dev *pdev,
5914 				 const struct pci_device_id *ent)
5915 {
5916 	struct net_device *netdev;
5917 	struct e1000_adapter *adapter;
5918 	struct e1000_hw *hw;
5919 	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
5920 	resource_size_t mmio_start, mmio_len;
5921 	resource_size_t flash_start, flash_len;
5922 
5923 	static int cards_found;
5924 	u16 aspm_disable_flag = 0;
5925 	int i, err, pci_using_dac;
5926 	u16 eeprom_data = 0;
5927 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
5928 
5929 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
5930 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
5931 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
5932 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
5933 	if (aspm_disable_flag)
5934 		e1000e_disable_aspm(pdev, aspm_disable_flag);
5935 
5936 	err = pci_enable_device_mem(pdev);
5937 	if (err)
5938 		return err;
5939 
5940 	pci_using_dac = 0;
5941 	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
5942 	if (!err) {
5943 		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
5944 		if (!err)
5945 			pci_using_dac = 1;
5946 	} else {
5947 		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
5948 		if (err) {
5949 			err = dma_set_coherent_mask(&pdev->dev,
5950 						    DMA_BIT_MASK(32));
5951 			if (err) {
5952 				dev_err(&pdev->dev, "No usable DMA "
5953 					"configuration, aborting\n");
5954 				goto err_dma;
5955 			}
5956 		}
5957 	}
5958 
5959 	err = pci_request_selected_regions_exclusive(pdev,
5960 	                                  pci_select_bars(pdev, IORESOURCE_MEM),
5961 	                                  e1000e_driver_name);
5962 	if (err)
5963 		goto err_pci_reg;
5964 
5965 	/* AER (Advanced Error Reporting) hooks */
5966 	pci_enable_pcie_error_reporting(pdev);
5967 
5968 	pci_set_master(pdev);
5969 	/* PCI config space info */
5970 	err = pci_save_state(pdev);
5971 	if (err)
5972 		goto err_alloc_etherdev;
5973 
5974 	err = -ENOMEM;
5975 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
5976 	if (!netdev)
5977 		goto err_alloc_etherdev;
5978 
5979 	SET_NETDEV_DEV(netdev, &pdev->dev);
5980 
5981 	netdev->irq = pdev->irq;
5982 
5983 	pci_set_drvdata(pdev, netdev);
5984 	adapter = netdev_priv(netdev);
5985 	hw = &adapter->hw;
5986 	adapter->netdev = netdev;
5987 	adapter->pdev = pdev;
5988 	adapter->ei = ei;
5989 	adapter->pba = ei->pba;
5990 	adapter->flags = ei->flags;
5991 	adapter->flags2 = ei->flags2;
5992 	adapter->hw.adapter = adapter;
5993 	adapter->hw.mac.type = ei->mac;
5994 	adapter->max_hw_frame_size = ei->max_hw_frame_size;
5995 	adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
5996 
5997 	mmio_start = pci_resource_start(pdev, 0);
5998 	mmio_len = pci_resource_len(pdev, 0);
5999 
6000 	err = -EIO;
6001 	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
6002 	if (!adapter->hw.hw_addr)
6003 		goto err_ioremap;
6004 
6005 	if ((adapter->flags & FLAG_HAS_FLASH) &&
6006 	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
6007 		flash_start = pci_resource_start(pdev, 1);
6008 		flash_len = pci_resource_len(pdev, 1);
6009 		adapter->hw.flash_address = ioremap(flash_start, flash_len);
6010 		if (!adapter->hw.flash_address)
6011 			goto err_flashmap;
6012 	}
6013 
6014 	/* construct the net_device struct */
6015 	netdev->netdev_ops		= &e1000e_netdev_ops;
6016 	e1000e_set_ethtool_ops(netdev);
6017 	netdev->watchdog_timeo		= 5 * HZ;
6018 	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
6019 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
6020 
6021 	netdev->mem_start = mmio_start;
6022 	netdev->mem_end = mmio_start + mmio_len;
6023 
6024 	adapter->bd_number = cards_found++;
6025 
6026 	e1000e_check_options(adapter);
6027 
6028 	/* setup adapter struct */
6029 	err = e1000_sw_init(adapter);
6030 	if (err)
6031 		goto err_sw_init;
6032 
6033 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6034 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
6035 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6036 
6037 	err = ei->get_variants(adapter);
6038 	if (err)
6039 		goto err_hw_init;
6040 
6041 	if ((adapter->flags & FLAG_IS_ICH) &&
6042 	    (adapter->flags & FLAG_READ_ONLY_NVM))
6043 		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
6044 
6045 	hw->mac.ops.get_bus_info(&adapter->hw);
6046 
6047 	adapter->hw.phy.autoneg_wait_to_complete = 0;
6048 
6049 	/* Copper options */
6050 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6051 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
6052 		adapter->hw.phy.disable_polarity_correction = 0;
6053 		adapter->hw.phy.ms_type = e1000_ms_hw_default;
6054 	}
6055 
6056 	if (e1000_check_reset_block(&adapter->hw))
6057 		e_info("PHY reset is blocked due to SOL/IDER session.\n");
6058 
6059 	/* Set initial default active device features */
6060 	netdev->features = (NETIF_F_SG |
6061 			    NETIF_F_HW_VLAN_RX |
6062 			    NETIF_F_HW_VLAN_TX |
6063 			    NETIF_F_TSO |
6064 			    NETIF_F_TSO6 |
6065 			    NETIF_F_RXCSUM |
6066 			    NETIF_F_HW_CSUM);
6067 
6068 	/* Set user-changeable features (subset of all device features) */
6069 	netdev->hw_features = netdev->features;
6070 
6071 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
6072 		netdev->features |= NETIF_F_HW_VLAN_FILTER;
6073 
6074 	netdev->vlan_features |= (NETIF_F_SG |
6075 				  NETIF_F_TSO |
6076 				  NETIF_F_TSO6 |
6077 				  NETIF_F_HW_CSUM);
6078 
6079 	if (pci_using_dac) {
6080 		netdev->features |= NETIF_F_HIGHDMA;
6081 		netdev->vlan_features |= NETIF_F_HIGHDMA;
6082 	}
6083 
6084 	if (e1000e_enable_mng_pass_thru(&adapter->hw))
6085 		adapter->flags |= FLAG_MNG_PT_ENABLED;
6086 
6087 	/*
6088 	 * before reading the NVM, reset the controller to
6089 	 * put the device in a known good starting state
6090 	 */
6091 	adapter->hw.mac.ops.reset_hw(&adapter->hw);
6092 
6093 	/*
6094 	 * systems with ASPM and others may see the checksum fail on the first
6095 	 * attempt. Let's give it a few tries
6096 	 */
6097 	for (i = 0;; i++) {
6098 		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
6099 			break;
6100 		if (i == 2) {
6101 			e_err("The NVM Checksum Is Not Valid\n");
6102 			err = -EIO;
6103 			goto err_eeprom;
6104 		}
6105 	}
6106 
6107 	e1000_eeprom_checks(adapter);
6108 
6109 	/* copy the MAC address */
6110 	if (e1000e_read_mac_addr(&adapter->hw))
6111 		e_err("NVM Read Error while reading MAC address\n");
6112 
6113 	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
6114 	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
6115 
6116 	if (!is_valid_ether_addr(netdev->perm_addr)) {
6117 		e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
6118 		err = -EIO;
6119 		goto err_eeprom;
6120 	}
6121 
6122 	init_timer(&adapter->watchdog_timer);
6123 	adapter->watchdog_timer.function = e1000_watchdog;
6124 	adapter->watchdog_timer.data = (unsigned long) adapter;
6125 
6126 	init_timer(&adapter->phy_info_timer);
6127 	adapter->phy_info_timer.function = e1000_update_phy_info;
6128 	adapter->phy_info_timer.data = (unsigned long) adapter;
6129 
6130 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
6131 	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6132 	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
6133 	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6134 	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6135 
6136 	/* Initialize link parameters. User can change them with ethtool */
6137 	adapter->hw.mac.autoneg = 1;
6138 	adapter->fc_autoneg = 1;
6139 	adapter->hw.fc.requested_mode = e1000_fc_default;
6140 	adapter->hw.fc.current_mode = e1000_fc_default;
6141 	adapter->hw.phy.autoneg_advertised = 0x2f;
6142 
6143 	/* ring size defaults */
6144 	adapter->rx_ring->count = 256;
6145 	adapter->tx_ring->count = 256;
6146 
6147 	/*
6148 	 * Initial Wake on LAN setting - If APM wake is enabled in
6149 	 * the EEPROM, enable the ACPI Magic Packet filter
6150 	 */
6151 	if (adapter->flags & FLAG_APME_IN_WUC) {
6152 		/* APME bit in EEPROM is mapped to WUC.APME */
6153 		eeprom_data = er32(WUC);
6154 		eeprom_apme_mask = E1000_WUC_APME;
6155 		if ((hw->mac.type > e1000_ich10lan) &&
6156 		    (eeprom_data & E1000_WUC_PHY_WAKE))
6157 			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6158 	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
6159 		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
6160 		    (adapter->hw.bus.func == 1))
6161 			e1000_read_nvm(&adapter->hw,
6162 				NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
6163 		else
6164 			e1000_read_nvm(&adapter->hw,
6165 				NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
6166 	}
6167 
6168 	/* fetch WoL from EEPROM */
6169 	if (eeprom_data & eeprom_apme_mask)
6170 		adapter->eeprom_wol |= E1000_WUFC_MAG;
6171 
6172 	/*
6173 	 * now that we have the eeprom settings, apply the special cases
6174 	 * where the eeprom may be wrong or the board simply won't support
6175 	 * wake on lan on a particular port
6176 	 */
6177 	if (!(adapter->flags & FLAG_HAS_WOL))
6178 		adapter->eeprom_wol = 0;
6179 
6180 	/* initialize the wol settings based on the eeprom settings */
6181 	adapter->wol = adapter->eeprom_wol;
6182 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
6183 
6184 	/* save off EEPROM version number */
6185 	e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
6186 
6187 	/* reset the hardware with the new settings */
6188 	e1000e_reset(adapter);
6189 
6190 	/*
6191 	 * If the controller has AMT, do not set DRV_LOAD until the interface
6192 	 * is up.  For all other cases, let the f/w know that the h/w is now
6193 	 * under the control of the driver.
6194 	 */
6195 	if (!(adapter->flags & FLAG_HAS_AMT))
6196 		e1000e_get_hw_control(adapter);
6197 
6198 	strncpy(netdev->name, "eth%d", sizeof(netdev->name) - 1);
6199 	err = register_netdev(netdev);
6200 	if (err)
6201 		goto err_register;
6202 
6203 	/* carrier off reporting is important to ethtool even BEFORE open */
6204 	netif_carrier_off(netdev);
6205 
6206 	e1000_print_device_info(adapter);
6207 
6208 	if (pci_dev_run_wake(pdev))
6209 		pm_runtime_put_noidle(&pdev->dev);
6210 
6211 	return 0;
6212 
6213 err_register:
6214 	if (!(adapter->flags & FLAG_HAS_AMT))
6215 		e1000e_release_hw_control(adapter);
6216 err_eeprom:
6217 	if (!e1000_check_reset_block(&adapter->hw))
6218 		e1000_phy_hw_reset(&adapter->hw);
6219 err_hw_init:
6220 	kfree(adapter->tx_ring);
6221 	kfree(adapter->rx_ring);
6222 err_sw_init:
6223 	if (adapter->hw.flash_address)
6224 		iounmap(adapter->hw.flash_address);
6225 	e1000e_reset_interrupt_capability(adapter);
6226 err_flashmap:
6227 	iounmap(adapter->hw.hw_addr);
6228 err_ioremap:
6229 	free_netdev(netdev);
6230 err_alloc_etherdev:
6231 	pci_release_selected_regions(pdev,
6232 	                             pci_select_bars(pdev, IORESOURCE_MEM));
6233 err_pci_reg:
6234 err_dma:
6235 	pci_disable_device(pdev);
6236 	return err;
6237 }
6238 
6239 /**
6240  * e1000_remove - Device Removal Routine
6241  * @pdev: PCI device information struct
6242  *
6243  * e1000_remove is called by the PCI subsystem to alert the driver
6244  * that it should release a PCI device.  The could be caused by a
6245  * Hot-Plug event, or because the driver is going to be removed from
6246  * memory.
6247  **/
6248 static void __devexit e1000_remove(struct pci_dev *pdev)
6249 {
6250 	struct net_device *netdev = pci_get_drvdata(pdev);
6251 	struct e1000_adapter *adapter = netdev_priv(netdev);
6252 	bool down = test_bit(__E1000_DOWN, &adapter->state);
6253 
6254 	/*
6255 	 * The timers may be rescheduled, so explicitly disable them
6256 	 * from being rescheduled.
6257 	 */
6258 	if (!down)
6259 		set_bit(__E1000_DOWN, &adapter->state);
6260 	del_timer_sync(&adapter->watchdog_timer);
6261 	del_timer_sync(&adapter->phy_info_timer);
6262 
6263 	cancel_work_sync(&adapter->reset_task);
6264 	cancel_work_sync(&adapter->watchdog_task);
6265 	cancel_work_sync(&adapter->downshift_task);
6266 	cancel_work_sync(&adapter->update_phy_task);
6267 	cancel_work_sync(&adapter->print_hang_task);
6268 
6269 	if (!(netdev->flags & IFF_UP))
6270 		e1000_power_down_phy(adapter);
6271 
6272 	/* Don't lie to e1000_close() down the road. */
6273 	if (!down)
6274 		clear_bit(__E1000_DOWN, &adapter->state);
6275 	unregister_netdev(netdev);
6276 
6277 	if (pci_dev_run_wake(pdev))
6278 		pm_runtime_get_noresume(&pdev->dev);
6279 
6280 	/*
6281 	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
6282 	 * would have already happened in close and is redundant.
6283 	 */
6284 	e1000e_release_hw_control(adapter);
6285 
6286 	e1000e_reset_interrupt_capability(adapter);
6287 	kfree(adapter->tx_ring);
6288 	kfree(adapter->rx_ring);
6289 
6290 	iounmap(adapter->hw.hw_addr);
6291 	if (adapter->hw.flash_address)
6292 		iounmap(adapter->hw.flash_address);
6293 	pci_release_selected_regions(pdev,
6294 	                             pci_select_bars(pdev, IORESOURCE_MEM));
6295 
6296 	free_netdev(netdev);
6297 
6298 	/* AER disable */
6299 	pci_disable_pcie_error_reporting(pdev);
6300 
6301 	pci_disable_device(pdev);
6302 }
6303 
6304 /* PCI Error Recovery (ERS) */
6305 static struct pci_error_handlers e1000_err_handler = {
6306 	.error_detected = e1000_io_error_detected,
6307 	.slot_reset = e1000_io_slot_reset,
6308 	.resume = e1000_io_resume,
6309 };
6310 
6311 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6312 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
6313 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
6314 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
6315 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
6316 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
6317 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6318 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
6319 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
6320 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6321 
6322 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
6323 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
6324 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
6325 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6326 
6327 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
6328 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
6329 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6330 
6331 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6332 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6333 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6334 
6335 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
6336 	  board_80003es2lan },
6337 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
6338 	  board_80003es2lan },
6339 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
6340 	  board_80003es2lan },
6341 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
6342 	  board_80003es2lan },
6343 
6344 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
6345 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
6346 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
6347 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
6348 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
6349 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
6350 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
6351 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6352 
6353 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
6354 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
6355 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
6356 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
6357 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6358 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6359 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
6360 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
6361 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
6362 
6363 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
6364 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
6365 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6366 
6367 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
6368 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6369 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6370 
6371 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
6372 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
6373 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
6374 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
6375 
6376 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
6377 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
6378 
6379 	{ }	/* terminate list */
6380 };
6381 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
6382 
6383 #ifdef CONFIG_PM
6384 static const struct dev_pm_ops e1000_pm_ops = {
6385 	SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
6386 	SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
6387 				e1000_runtime_resume, e1000_idle)
6388 };
6389 #endif
6390 
6391 /* PCI Device API Driver */
6392 static struct pci_driver e1000_driver = {
6393 	.name     = e1000e_driver_name,
6394 	.id_table = e1000_pci_tbl,
6395 	.probe    = e1000_probe,
6396 	.remove   = __devexit_p(e1000_remove),
6397 #ifdef CONFIG_PM
6398 	.driver.pm = &e1000_pm_ops,
6399 #endif
6400 	.shutdown = e1000_shutdown,
6401 	.err_handler = &e1000_err_handler
6402 };
6403 
6404 /**
6405  * e1000_init_module - Driver Registration Routine
6406  *
6407  * e1000_init_module is the first routine called when the driver is
6408  * loaded. All it does is register with the PCI subsystem.
6409  **/
6410 static int __init e1000_init_module(void)
6411 {
6412 	int ret;
6413 	pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
6414 		e1000e_driver_version);
6415 	pr_info("Copyright(c) 1999 - 2011 Intel Corporation.\n");
6416 	ret = pci_register_driver(&e1000_driver);
6417 
6418 	return ret;
6419 }
6420 module_init(e1000_init_module);
6421 
6422 /**
6423  * e1000_exit_module - Driver Exit Cleanup Routine
6424  *
6425  * e1000_exit_module is called just before the driver is removed
6426  * from memory.
6427  **/
6428 static void __exit e1000_exit_module(void)
6429 {
6430 	pci_unregister_driver(&e1000_driver);
6431 }
6432 module_exit(e1000_exit_module);
6433 
6434 
6435 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
6436 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
6437 MODULE_LICENSE("GPL");
6438 MODULE_VERSION(DRV_VERSION);
6439 
6440 /* e1000_main.c */
6441