1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 5 6 #include <linux/module.h> 7 #include <linux/types.h> 8 #include <linux/init.h> 9 #include <linux/pci.h> 10 #include <linux/vmalloc.h> 11 #include <linux/pagemap.h> 12 #include <linux/delay.h> 13 #include <linux/netdevice.h> 14 #include <linux/interrupt.h> 15 #include <linux/tcp.h> 16 #include <linux/ipv6.h> 17 #include <linux/slab.h> 18 #include <net/checksum.h> 19 #include <net/ip6_checksum.h> 20 #include <linux/ethtool.h> 21 #include <linux/if_vlan.h> 22 #include <linux/cpu.h> 23 #include <linux/smp.h> 24 #include <linux/pm_qos.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/prefetch.h> 27 #include <linux/suspend.h> 28 29 #include "e1000.h" 30 #define CREATE_TRACE_POINTS 31 #include "e1000e_trace.h" 32 33 char e1000e_driver_name[] = "e1000e"; 34 35 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 36 static int debug = -1; 37 module_param(debug, int, 0); 38 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 39 40 static const struct e1000_info *e1000_info_tbl[] = { 41 [board_82571] = &e1000_82571_info, 42 [board_82572] = &e1000_82572_info, 43 [board_82573] = &e1000_82573_info, 44 [board_82574] = &e1000_82574_info, 45 [board_82583] = &e1000_82583_info, 46 [board_80003es2lan] = &e1000_es2_info, 47 [board_ich8lan] = &e1000_ich8_info, 48 [board_ich9lan] = &e1000_ich9_info, 49 [board_ich10lan] = &e1000_ich10_info, 50 [board_pchlan] = &e1000_pch_info, 51 [board_pch2lan] = &e1000_pch2_info, 52 [board_pch_lpt] = &e1000_pch_lpt_info, 53 [board_pch_spt] = &e1000_pch_spt_info, 54 [board_pch_cnp] = &e1000_pch_cnp_info, 55 [board_pch_tgp] = &e1000_pch_tgp_info, 56 [board_pch_adp] = &e1000_pch_adp_info, 57 [board_pch_mtp] = &e1000_pch_mtp_info, 58 }; 59 60 struct e1000_reg_info { 61 u32 ofs; 62 char *name; 63 }; 64 65 static const struct e1000_reg_info e1000_reg_info_tbl[] = { 66 /* General Registers */ 67 {E1000_CTRL, "CTRL"}, 68 {E1000_STATUS, "STATUS"}, 69 {E1000_CTRL_EXT, "CTRL_EXT"}, 70 71 /* Interrupt Registers */ 72 {E1000_ICR, "ICR"}, 73 74 /* Rx Registers */ 75 {E1000_RCTL, "RCTL"}, 76 {E1000_RDLEN(0), "RDLEN"}, 77 {E1000_RDH(0), "RDH"}, 78 {E1000_RDT(0), "RDT"}, 79 {E1000_RDTR, "RDTR"}, 80 {E1000_RXDCTL(0), "RXDCTL"}, 81 {E1000_ERT, "ERT"}, 82 {E1000_RDBAL(0), "RDBAL"}, 83 {E1000_RDBAH(0), "RDBAH"}, 84 {E1000_RDFH, "RDFH"}, 85 {E1000_RDFT, "RDFT"}, 86 {E1000_RDFHS, "RDFHS"}, 87 {E1000_RDFTS, "RDFTS"}, 88 {E1000_RDFPC, "RDFPC"}, 89 90 /* Tx Registers */ 91 {E1000_TCTL, "TCTL"}, 92 {E1000_TDBAL(0), "TDBAL"}, 93 {E1000_TDBAH(0), "TDBAH"}, 94 {E1000_TDLEN(0), "TDLEN"}, 95 {E1000_TDH(0), "TDH"}, 96 {E1000_TDT(0), "TDT"}, 97 {E1000_TIDV, "TIDV"}, 98 {E1000_TXDCTL(0), "TXDCTL"}, 99 {E1000_TADV, "TADV"}, 100 {E1000_TARC(0), "TARC"}, 101 {E1000_TDFH, "TDFH"}, 102 {E1000_TDFT, "TDFT"}, 103 {E1000_TDFHS, "TDFHS"}, 104 {E1000_TDFTS, "TDFTS"}, 105 {E1000_TDFPC, "TDFPC"}, 106 107 /* List Terminator */ 108 {0, NULL} 109 }; 110 111 /** 112 * __ew32_prepare - prepare to write to MAC CSR register on certain parts 113 * @hw: pointer to the HW structure 114 * 115 * When updating the MAC CSR registers, the Manageability Engine (ME) could 116 * be accessing the registers at the same time. Normally, this is handled in 117 * h/w by an arbiter but on some parts there is a bug that acknowledges Host 118 * accesses later than it should which could result in the register to have 119 * an incorrect value. Workaround this by checking the FWSM register which 120 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set 121 * and try again a number of times. 122 **/ 123 static void __ew32_prepare(struct e1000_hw *hw) 124 { 125 s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT; 126 127 while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i) 128 udelay(50); 129 } 130 131 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val) 132 { 133 if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 134 __ew32_prepare(hw); 135 136 writel(val, hw->hw_addr + reg); 137 } 138 139 /** 140 * e1000_regdump - register printout routine 141 * @hw: pointer to the HW structure 142 * @reginfo: pointer to the register info table 143 **/ 144 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo) 145 { 146 int n = 0; 147 char rname[16]; 148 u32 regs[8]; 149 150 switch (reginfo->ofs) { 151 case E1000_RXDCTL(0): 152 for (n = 0; n < 2; n++) 153 regs[n] = __er32(hw, E1000_RXDCTL(n)); 154 break; 155 case E1000_TXDCTL(0): 156 for (n = 0; n < 2; n++) 157 regs[n] = __er32(hw, E1000_TXDCTL(n)); 158 break; 159 case E1000_TARC(0): 160 for (n = 0; n < 2; n++) 161 regs[n] = __er32(hw, E1000_TARC(n)); 162 break; 163 default: 164 pr_info("%-15s %08x\n", 165 reginfo->name, __er32(hw, reginfo->ofs)); 166 return; 167 } 168 169 snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]"); 170 pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]); 171 } 172 173 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter, 174 struct e1000_buffer *bi) 175 { 176 int i; 177 struct e1000_ps_page *ps_page; 178 179 for (i = 0; i < adapter->rx_ps_pages; i++) { 180 ps_page = &bi->ps_pages[i]; 181 182 if (ps_page->page) { 183 pr_info("packet dump for ps_page %d:\n", i); 184 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 185 16, 1, page_address(ps_page->page), 186 PAGE_SIZE, true); 187 } 188 } 189 } 190 191 /** 192 * e1000e_dump - Print registers, Tx-ring and Rx-ring 193 * @adapter: board private structure 194 **/ 195 static void e1000e_dump(struct e1000_adapter *adapter) 196 { 197 struct net_device *netdev = adapter->netdev; 198 struct e1000_hw *hw = &adapter->hw; 199 struct e1000_reg_info *reginfo; 200 struct e1000_ring *tx_ring = adapter->tx_ring; 201 struct e1000_tx_desc *tx_desc; 202 struct my_u0 { 203 __le64 a; 204 __le64 b; 205 } *u0; 206 struct e1000_buffer *buffer_info; 207 struct e1000_ring *rx_ring = adapter->rx_ring; 208 union e1000_rx_desc_packet_split *rx_desc_ps; 209 union e1000_rx_desc_extended *rx_desc; 210 struct my_u1 { 211 __le64 a; 212 __le64 b; 213 __le64 c; 214 __le64 d; 215 } *u1; 216 u32 staterr; 217 int i = 0; 218 219 if (!netif_msg_hw(adapter)) 220 return; 221 222 /* Print netdevice Info */ 223 if (netdev) { 224 dev_info(&adapter->pdev->dev, "Net device Info\n"); 225 pr_info("Device Name state trans_start\n"); 226 pr_info("%-15s %016lX %016lX\n", netdev->name, 227 netdev->state, dev_trans_start(netdev)); 228 } 229 230 /* Print Registers */ 231 dev_info(&adapter->pdev->dev, "Register Dump\n"); 232 pr_info(" Register Name Value\n"); 233 for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl; 234 reginfo->name; reginfo++) { 235 e1000_regdump(hw, reginfo); 236 } 237 238 /* Print Tx Ring Summary */ 239 if (!netdev || !netif_running(netdev)) 240 return; 241 242 dev_info(&adapter->pdev->dev, "Tx Ring Summary\n"); 243 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n"); 244 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean]; 245 pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n", 246 0, tx_ring->next_to_use, tx_ring->next_to_clean, 247 (unsigned long long)buffer_info->dma, 248 buffer_info->length, 249 buffer_info->next_to_watch, 250 (unsigned long long)buffer_info->time_stamp); 251 252 /* Print Tx Ring */ 253 if (!netif_msg_tx_done(adapter)) 254 goto rx_ring_summary; 255 256 dev_info(&adapter->pdev->dev, "Tx Ring Dump\n"); 257 258 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended) 259 * 260 * Legacy Transmit Descriptor 261 * +--------------------------------------------------------------+ 262 * 0 | Buffer Address [63:0] (Reserved on Write Back) | 263 * +--------------------------------------------------------------+ 264 * 8 | Special | CSS | Status | CMD | CSO | Length | 265 * +--------------------------------------------------------------+ 266 * 63 48 47 36 35 32 31 24 23 16 15 0 267 * 268 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload 269 * 63 48 47 40 39 32 31 16 15 8 7 0 270 * +----------------------------------------------------------------+ 271 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS | 272 * +----------------------------------------------------------------+ 273 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN | 274 * +----------------------------------------------------------------+ 275 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 276 * 277 * Extended Data Descriptor (DTYP=0x1) 278 * +----------------------------------------------------------------+ 279 * 0 | Buffer Address [63:0] | 280 * +----------------------------------------------------------------+ 281 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN | 282 * +----------------------------------------------------------------+ 283 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 284 */ 285 pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n"); 286 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n"); 287 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n"); 288 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { 289 const char *next_desc; 290 tx_desc = E1000_TX_DESC(*tx_ring, i); 291 buffer_info = &tx_ring->buffer_info[i]; 292 u0 = (struct my_u0 *)tx_desc; 293 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean) 294 next_desc = " NTC/U"; 295 else if (i == tx_ring->next_to_use) 296 next_desc = " NTU"; 297 else if (i == tx_ring->next_to_clean) 298 next_desc = " NTC"; 299 else 300 next_desc = ""; 301 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n", 302 (!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' : 303 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')), 304 i, 305 (unsigned long long)le64_to_cpu(u0->a), 306 (unsigned long long)le64_to_cpu(u0->b), 307 (unsigned long long)buffer_info->dma, 308 buffer_info->length, buffer_info->next_to_watch, 309 (unsigned long long)buffer_info->time_stamp, 310 buffer_info->skb, next_desc); 311 312 if (netif_msg_pktdata(adapter) && buffer_info->skb) 313 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 314 16, 1, buffer_info->skb->data, 315 buffer_info->skb->len, true); 316 } 317 318 /* Print Rx Ring Summary */ 319 rx_ring_summary: 320 dev_info(&adapter->pdev->dev, "Rx Ring Summary\n"); 321 pr_info("Queue [NTU] [NTC]\n"); 322 pr_info(" %5d %5X %5X\n", 323 0, rx_ring->next_to_use, rx_ring->next_to_clean); 324 325 /* Print Rx Ring */ 326 if (!netif_msg_rx_status(adapter)) 327 return; 328 329 dev_info(&adapter->pdev->dev, "Rx Ring Dump\n"); 330 switch (adapter->rx_ps_pages) { 331 case 1: 332 case 2: 333 case 3: 334 /* [Extended] Packet Split Receive Descriptor Format 335 * 336 * +-----------------------------------------------------+ 337 * 0 | Buffer Address 0 [63:0] | 338 * +-----------------------------------------------------+ 339 * 8 | Buffer Address 1 [63:0] | 340 * +-----------------------------------------------------+ 341 * 16 | Buffer Address 2 [63:0] | 342 * +-----------------------------------------------------+ 343 * 24 | Buffer Address 3 [63:0] | 344 * +-----------------------------------------------------+ 345 */ 346 pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n"); 347 /* [Extended] Receive Descriptor (Write-Back) Format 348 * 349 * 63 48 47 32 31 13 12 8 7 4 3 0 350 * +------------------------------------------------------+ 351 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS | 352 * | Checksum | Ident | | Queue | | Type | 353 * +------------------------------------------------------+ 354 * 8 | VLAN Tag | Length | Extended Error | Extended Status | 355 * +------------------------------------------------------+ 356 * 63 48 47 32 31 20 19 0 357 */ 358 pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n"); 359 for (i = 0; i < rx_ring->count; i++) { 360 const char *next_desc; 361 buffer_info = &rx_ring->buffer_info[i]; 362 rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i); 363 u1 = (struct my_u1 *)rx_desc_ps; 364 staterr = 365 le32_to_cpu(rx_desc_ps->wb.middle.status_error); 366 367 if (i == rx_ring->next_to_use) 368 next_desc = " NTU"; 369 else if (i == rx_ring->next_to_clean) 370 next_desc = " NTC"; 371 else 372 next_desc = ""; 373 374 if (staterr & E1000_RXD_STAT_DD) { 375 /* Descriptor Done */ 376 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n", 377 "RWB", i, 378 (unsigned long long)le64_to_cpu(u1->a), 379 (unsigned long long)le64_to_cpu(u1->b), 380 (unsigned long long)le64_to_cpu(u1->c), 381 (unsigned long long)le64_to_cpu(u1->d), 382 buffer_info->skb, next_desc); 383 } else { 384 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n", 385 "R ", i, 386 (unsigned long long)le64_to_cpu(u1->a), 387 (unsigned long long)le64_to_cpu(u1->b), 388 (unsigned long long)le64_to_cpu(u1->c), 389 (unsigned long long)le64_to_cpu(u1->d), 390 (unsigned long long)buffer_info->dma, 391 buffer_info->skb, next_desc); 392 393 if (netif_msg_pktdata(adapter)) 394 e1000e_dump_ps_pages(adapter, 395 buffer_info); 396 } 397 } 398 break; 399 default: 400 case 0: 401 /* Extended Receive Descriptor (Read) Format 402 * 403 * +-----------------------------------------------------+ 404 * 0 | Buffer Address [63:0] | 405 * +-----------------------------------------------------+ 406 * 8 | Reserved | 407 * +-----------------------------------------------------+ 408 */ 409 pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n"); 410 /* Extended Receive Descriptor (Write-Back) Format 411 * 412 * 63 48 47 32 31 24 23 4 3 0 413 * +------------------------------------------------------+ 414 * | RSS Hash | | | | 415 * 0 +-------------------+ Rsvd | Reserved | MRQ RSS | 416 * | Packet | IP | | | Type | 417 * | Checksum | Ident | | | | 418 * +------------------------------------------------------+ 419 * 8 | VLAN Tag | Length | Extended Error | Extended Status | 420 * +------------------------------------------------------+ 421 * 63 48 47 32 31 20 19 0 422 */ 423 pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n"); 424 425 for (i = 0; i < rx_ring->count; i++) { 426 const char *next_desc; 427 428 buffer_info = &rx_ring->buffer_info[i]; 429 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 430 u1 = (struct my_u1 *)rx_desc; 431 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 432 433 if (i == rx_ring->next_to_use) 434 next_desc = " NTU"; 435 else if (i == rx_ring->next_to_clean) 436 next_desc = " NTC"; 437 else 438 next_desc = ""; 439 440 if (staterr & E1000_RXD_STAT_DD) { 441 /* Descriptor Done */ 442 pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n", 443 "RWB", i, 444 (unsigned long long)le64_to_cpu(u1->a), 445 (unsigned long long)le64_to_cpu(u1->b), 446 buffer_info->skb, next_desc); 447 } else { 448 pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n", 449 "R ", i, 450 (unsigned long long)le64_to_cpu(u1->a), 451 (unsigned long long)le64_to_cpu(u1->b), 452 (unsigned long long)buffer_info->dma, 453 buffer_info->skb, next_desc); 454 455 if (netif_msg_pktdata(adapter) && 456 buffer_info->skb) 457 print_hex_dump(KERN_INFO, "", 458 DUMP_PREFIX_ADDRESS, 16, 459 1, 460 buffer_info->skb->data, 461 adapter->rx_buffer_len, 462 true); 463 } 464 } 465 } 466 } 467 468 /** 469 * e1000_desc_unused - calculate if we have unused descriptors 470 * @ring: pointer to ring struct to perform calculation on 471 **/ 472 static int e1000_desc_unused(struct e1000_ring *ring) 473 { 474 if (ring->next_to_clean > ring->next_to_use) 475 return ring->next_to_clean - ring->next_to_use - 1; 476 477 return ring->count + ring->next_to_clean - ring->next_to_use - 1; 478 } 479 480 /** 481 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp 482 * @adapter: board private structure 483 * @hwtstamps: time stamp structure to update 484 * @systim: unsigned 64bit system time value. 485 * 486 * Convert the system time value stored in the RX/TXSTMP registers into a 487 * hwtstamp which can be used by the upper level time stamping functions. 488 * 489 * The 'systim_lock' spinlock is used to protect the consistency of the 490 * system time value. This is needed because reading the 64 bit time 491 * value involves reading two 32 bit registers. The first read latches the 492 * value. 493 **/ 494 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter, 495 struct skb_shared_hwtstamps *hwtstamps, 496 u64 systim) 497 { 498 u64 ns; 499 unsigned long flags; 500 501 spin_lock_irqsave(&adapter->systim_lock, flags); 502 ns = timecounter_cyc2time(&adapter->tc, systim); 503 spin_unlock_irqrestore(&adapter->systim_lock, flags); 504 505 memset(hwtstamps, 0, sizeof(*hwtstamps)); 506 hwtstamps->hwtstamp = ns_to_ktime(ns); 507 } 508 509 /** 510 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp 511 * @adapter: board private structure 512 * @status: descriptor extended error and status field 513 * @skb: particular skb to include time stamp 514 * 515 * If the time stamp is valid, convert it into the timecounter ns value 516 * and store that result into the shhwtstamps structure which is passed 517 * up the network stack. 518 **/ 519 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status, 520 struct sk_buff *skb) 521 { 522 struct e1000_hw *hw = &adapter->hw; 523 u64 rxstmp; 524 525 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) || 526 !(status & E1000_RXDEXT_STATERR_TST) || 527 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) 528 return; 529 530 /* The Rx time stamp registers contain the time stamp. No other 531 * received packet will be time stamped until the Rx time stamp 532 * registers are read. Because only one packet can be time stamped 533 * at a time, the register values must belong to this packet and 534 * therefore none of the other additional attributes need to be 535 * compared. 536 */ 537 rxstmp = (u64)er32(RXSTMPL); 538 rxstmp |= (u64)er32(RXSTMPH) << 32; 539 e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp); 540 541 adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP; 542 } 543 544 /** 545 * e1000_receive_skb - helper function to handle Rx indications 546 * @adapter: board private structure 547 * @netdev: pointer to netdev struct 548 * @staterr: descriptor extended error and status field as written by hardware 549 * @vlan: descriptor vlan field as written by hardware (no le/be conversion) 550 * @skb: pointer to sk_buff to be indicated to stack 551 **/ 552 static void e1000_receive_skb(struct e1000_adapter *adapter, 553 struct net_device *netdev, struct sk_buff *skb, 554 u32 staterr, __le16 vlan) 555 { 556 u16 tag = le16_to_cpu(vlan); 557 558 e1000e_rx_hwtstamp(adapter, staterr, skb); 559 560 skb->protocol = eth_type_trans(skb, netdev); 561 562 if (staterr & E1000_RXD_STAT_VP) 563 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag); 564 565 napi_gro_receive(&adapter->napi, skb); 566 } 567 568 /** 569 * e1000_rx_checksum - Receive Checksum Offload 570 * @adapter: board private structure 571 * @status_err: receive descriptor status and error fields 572 * @skb: socket buffer with received data 573 **/ 574 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, 575 struct sk_buff *skb) 576 { 577 u16 status = (u16)status_err; 578 u8 errors = (u8)(status_err >> 24); 579 580 skb_checksum_none_assert(skb); 581 582 /* Rx checksum disabled */ 583 if (!(adapter->netdev->features & NETIF_F_RXCSUM)) 584 return; 585 586 /* Ignore Checksum bit is set */ 587 if (status & E1000_RXD_STAT_IXSM) 588 return; 589 590 /* TCP/UDP checksum error bit or IP checksum error bit is set */ 591 if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) { 592 /* let the stack verify checksum errors */ 593 adapter->hw_csum_err++; 594 return; 595 } 596 597 /* TCP/UDP Checksum has not been calculated */ 598 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) 599 return; 600 601 /* It must be a TCP or UDP packet with a valid checksum */ 602 skb->ip_summed = CHECKSUM_UNNECESSARY; 603 adapter->hw_csum_good++; 604 } 605 606 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i) 607 { 608 struct e1000_adapter *adapter = rx_ring->adapter; 609 struct e1000_hw *hw = &adapter->hw; 610 611 __ew32_prepare(hw); 612 writel(i, rx_ring->tail); 613 614 if (unlikely(i != readl(rx_ring->tail))) { 615 u32 rctl = er32(RCTL); 616 617 ew32(RCTL, rctl & ~E1000_RCTL_EN); 618 e_err("ME firmware caused invalid RDT - resetting\n"); 619 schedule_work(&adapter->reset_task); 620 } 621 } 622 623 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i) 624 { 625 struct e1000_adapter *adapter = tx_ring->adapter; 626 struct e1000_hw *hw = &adapter->hw; 627 628 __ew32_prepare(hw); 629 writel(i, tx_ring->tail); 630 631 if (unlikely(i != readl(tx_ring->tail))) { 632 u32 tctl = er32(TCTL); 633 634 ew32(TCTL, tctl & ~E1000_TCTL_EN); 635 e_err("ME firmware caused invalid TDT - resetting\n"); 636 schedule_work(&adapter->reset_task); 637 } 638 } 639 640 /** 641 * e1000_alloc_rx_buffers - Replace used receive buffers 642 * @rx_ring: Rx descriptor ring 643 * @cleaned_count: number to reallocate 644 * @gfp: flags for allocation 645 **/ 646 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring, 647 int cleaned_count, gfp_t gfp) 648 { 649 struct e1000_adapter *adapter = rx_ring->adapter; 650 struct net_device *netdev = adapter->netdev; 651 struct pci_dev *pdev = adapter->pdev; 652 union e1000_rx_desc_extended *rx_desc; 653 struct e1000_buffer *buffer_info; 654 struct sk_buff *skb; 655 unsigned int i; 656 unsigned int bufsz = adapter->rx_buffer_len; 657 658 i = rx_ring->next_to_use; 659 buffer_info = &rx_ring->buffer_info[i]; 660 661 while (cleaned_count--) { 662 skb = buffer_info->skb; 663 if (skb) { 664 skb_trim(skb, 0); 665 goto map_skb; 666 } 667 668 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp); 669 if (!skb) { 670 /* Better luck next round */ 671 adapter->alloc_rx_buff_failed++; 672 break; 673 } 674 675 buffer_info->skb = skb; 676 map_skb: 677 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, 678 adapter->rx_buffer_len, 679 DMA_FROM_DEVICE); 680 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 681 dev_err(&pdev->dev, "Rx DMA map failed\n"); 682 adapter->rx_dma_failed++; 683 break; 684 } 685 686 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 687 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma); 688 689 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) { 690 /* Force memory writes to complete before letting h/w 691 * know there are new descriptors to fetch. (Only 692 * applicable for weak-ordered memory model archs, 693 * such as IA-64). 694 */ 695 wmb(); 696 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 697 e1000e_update_rdt_wa(rx_ring, i); 698 else 699 writel(i, rx_ring->tail); 700 } 701 i++; 702 if (i == rx_ring->count) 703 i = 0; 704 buffer_info = &rx_ring->buffer_info[i]; 705 } 706 707 rx_ring->next_to_use = i; 708 } 709 710 /** 711 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split 712 * @rx_ring: Rx descriptor ring 713 * @cleaned_count: number to reallocate 714 * @gfp: flags for allocation 715 **/ 716 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring, 717 int cleaned_count, gfp_t gfp) 718 { 719 struct e1000_adapter *adapter = rx_ring->adapter; 720 struct net_device *netdev = adapter->netdev; 721 struct pci_dev *pdev = adapter->pdev; 722 union e1000_rx_desc_packet_split *rx_desc; 723 struct e1000_buffer *buffer_info; 724 struct e1000_ps_page *ps_page; 725 struct sk_buff *skb; 726 unsigned int i, j; 727 728 i = rx_ring->next_to_use; 729 buffer_info = &rx_ring->buffer_info[i]; 730 731 while (cleaned_count--) { 732 rx_desc = E1000_RX_DESC_PS(*rx_ring, i); 733 734 for (j = 0; j < PS_PAGE_BUFFERS; j++) { 735 ps_page = &buffer_info->ps_pages[j]; 736 if (j >= adapter->rx_ps_pages) { 737 /* all unused desc entries get hw null ptr */ 738 rx_desc->read.buffer_addr[j + 1] = 739 ~cpu_to_le64(0); 740 continue; 741 } 742 if (!ps_page->page) { 743 ps_page->page = alloc_page(gfp); 744 if (!ps_page->page) { 745 adapter->alloc_rx_buff_failed++; 746 goto no_buffers; 747 } 748 ps_page->dma = dma_map_page(&pdev->dev, 749 ps_page->page, 750 0, PAGE_SIZE, 751 DMA_FROM_DEVICE); 752 if (dma_mapping_error(&pdev->dev, 753 ps_page->dma)) { 754 dev_err(&adapter->pdev->dev, 755 "Rx DMA page map failed\n"); 756 adapter->rx_dma_failed++; 757 goto no_buffers; 758 } 759 } 760 /* Refresh the desc even if buffer_addrs 761 * didn't change because each write-back 762 * erases this info. 763 */ 764 rx_desc->read.buffer_addr[j + 1] = 765 cpu_to_le64(ps_page->dma); 766 } 767 768 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0, 769 gfp); 770 771 if (!skb) { 772 adapter->alloc_rx_buff_failed++; 773 break; 774 } 775 776 buffer_info->skb = skb; 777 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, 778 adapter->rx_ps_bsize0, 779 DMA_FROM_DEVICE); 780 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 781 dev_err(&pdev->dev, "Rx DMA map failed\n"); 782 adapter->rx_dma_failed++; 783 /* cleanup skb */ 784 dev_kfree_skb_any(skb); 785 buffer_info->skb = NULL; 786 break; 787 } 788 789 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma); 790 791 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) { 792 /* Force memory writes to complete before letting h/w 793 * know there are new descriptors to fetch. (Only 794 * applicable for weak-ordered memory model archs, 795 * such as IA-64). 796 */ 797 wmb(); 798 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 799 e1000e_update_rdt_wa(rx_ring, i << 1); 800 else 801 writel(i << 1, rx_ring->tail); 802 } 803 804 i++; 805 if (i == rx_ring->count) 806 i = 0; 807 buffer_info = &rx_ring->buffer_info[i]; 808 } 809 810 no_buffers: 811 rx_ring->next_to_use = i; 812 } 813 814 /** 815 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers 816 * @rx_ring: Rx descriptor ring 817 * @cleaned_count: number of buffers to allocate this pass 818 * @gfp: flags for allocation 819 **/ 820 821 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring, 822 int cleaned_count, gfp_t gfp) 823 { 824 struct e1000_adapter *adapter = rx_ring->adapter; 825 struct net_device *netdev = adapter->netdev; 826 struct pci_dev *pdev = adapter->pdev; 827 union e1000_rx_desc_extended *rx_desc; 828 struct e1000_buffer *buffer_info; 829 struct sk_buff *skb; 830 unsigned int i; 831 unsigned int bufsz = 256 - 16; /* for skb_reserve */ 832 833 i = rx_ring->next_to_use; 834 buffer_info = &rx_ring->buffer_info[i]; 835 836 while (cleaned_count--) { 837 skb = buffer_info->skb; 838 if (skb) { 839 skb_trim(skb, 0); 840 goto check_page; 841 } 842 843 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp); 844 if (unlikely(!skb)) { 845 /* Better luck next round */ 846 adapter->alloc_rx_buff_failed++; 847 break; 848 } 849 850 buffer_info->skb = skb; 851 check_page: 852 /* allocate a new page if necessary */ 853 if (!buffer_info->page) { 854 buffer_info->page = alloc_page(gfp); 855 if (unlikely(!buffer_info->page)) { 856 adapter->alloc_rx_buff_failed++; 857 break; 858 } 859 } 860 861 if (!buffer_info->dma) { 862 buffer_info->dma = dma_map_page(&pdev->dev, 863 buffer_info->page, 0, 864 PAGE_SIZE, 865 DMA_FROM_DEVICE); 866 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 867 adapter->alloc_rx_buff_failed++; 868 break; 869 } 870 } 871 872 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 873 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma); 874 875 if (unlikely(++i == rx_ring->count)) 876 i = 0; 877 buffer_info = &rx_ring->buffer_info[i]; 878 } 879 880 if (likely(rx_ring->next_to_use != i)) { 881 rx_ring->next_to_use = i; 882 if (unlikely(i-- == 0)) 883 i = (rx_ring->count - 1); 884 885 /* Force memory writes to complete before letting h/w 886 * know there are new descriptors to fetch. (Only 887 * applicable for weak-ordered memory model archs, 888 * such as IA-64). 889 */ 890 wmb(); 891 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 892 e1000e_update_rdt_wa(rx_ring, i); 893 else 894 writel(i, rx_ring->tail); 895 } 896 } 897 898 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss, 899 struct sk_buff *skb) 900 { 901 if (netdev->features & NETIF_F_RXHASH) 902 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3); 903 } 904 905 /** 906 * e1000_clean_rx_irq - Send received data up the network stack 907 * @rx_ring: Rx descriptor ring 908 * @work_done: output parameter for indicating completed work 909 * @work_to_do: how many packets we can clean 910 * 911 * the return value indicates whether actual cleaning was done, there 912 * is no guarantee that everything was cleaned 913 **/ 914 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done, 915 int work_to_do) 916 { 917 struct e1000_adapter *adapter = rx_ring->adapter; 918 struct net_device *netdev = adapter->netdev; 919 struct pci_dev *pdev = adapter->pdev; 920 struct e1000_hw *hw = &adapter->hw; 921 union e1000_rx_desc_extended *rx_desc, *next_rxd; 922 struct e1000_buffer *buffer_info, *next_buffer; 923 u32 length, staterr; 924 unsigned int i; 925 int cleaned_count = 0; 926 bool cleaned = false; 927 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 928 929 i = rx_ring->next_to_clean; 930 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 931 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 932 buffer_info = &rx_ring->buffer_info[i]; 933 934 while (staterr & E1000_RXD_STAT_DD) { 935 struct sk_buff *skb; 936 937 if (*work_done >= work_to_do) 938 break; 939 (*work_done)++; 940 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ 941 942 skb = buffer_info->skb; 943 buffer_info->skb = NULL; 944 945 prefetch(skb->data - NET_IP_ALIGN); 946 947 i++; 948 if (i == rx_ring->count) 949 i = 0; 950 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i); 951 prefetch(next_rxd); 952 953 next_buffer = &rx_ring->buffer_info[i]; 954 955 cleaned = true; 956 cleaned_count++; 957 dma_unmap_single(&pdev->dev, buffer_info->dma, 958 adapter->rx_buffer_len, DMA_FROM_DEVICE); 959 buffer_info->dma = 0; 960 961 length = le16_to_cpu(rx_desc->wb.upper.length); 962 963 /* !EOP means multiple descriptors were used to store a single 964 * packet, if that's the case we need to toss it. In fact, we 965 * need to toss every packet with the EOP bit clear and the 966 * next frame that _does_ have the EOP bit set, as it is by 967 * definition only a frame fragment 968 */ 969 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) 970 adapter->flags2 |= FLAG2_IS_DISCARDING; 971 972 if (adapter->flags2 & FLAG2_IS_DISCARDING) { 973 /* All receives must fit into a single buffer */ 974 e_dbg("Receive packet consumed multiple buffers\n"); 975 /* recycle */ 976 buffer_info->skb = skb; 977 if (staterr & E1000_RXD_STAT_EOP) 978 adapter->flags2 &= ~FLAG2_IS_DISCARDING; 979 goto next_desc; 980 } 981 982 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) && 983 !(netdev->features & NETIF_F_RXALL))) { 984 /* recycle */ 985 buffer_info->skb = skb; 986 goto next_desc; 987 } 988 989 /* adjust length to remove Ethernet CRC */ 990 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) { 991 /* If configured to store CRC, don't subtract FCS, 992 * but keep the FCS bytes out of the total_rx_bytes 993 * counter 994 */ 995 if (netdev->features & NETIF_F_RXFCS) 996 total_rx_bytes -= 4; 997 else 998 length -= 4; 999 } 1000 1001 total_rx_bytes += length; 1002 total_rx_packets++; 1003 1004 /* code added for copybreak, this should improve 1005 * performance for small packets with large amounts 1006 * of reassembly being done in the stack 1007 */ 1008 if (length < copybreak) { 1009 struct sk_buff *new_skb = 1010 napi_alloc_skb(&adapter->napi, length); 1011 if (new_skb) { 1012 skb_copy_to_linear_data_offset(new_skb, 1013 -NET_IP_ALIGN, 1014 (skb->data - 1015 NET_IP_ALIGN), 1016 (length + 1017 NET_IP_ALIGN)); 1018 /* save the skb in buffer_info as good */ 1019 buffer_info->skb = skb; 1020 skb = new_skb; 1021 } 1022 /* else just continue with the old one */ 1023 } 1024 /* end copybreak code */ 1025 skb_put(skb, length); 1026 1027 /* Receive Checksum Offload */ 1028 e1000_rx_checksum(adapter, staterr, skb); 1029 1030 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb); 1031 1032 e1000_receive_skb(adapter, netdev, skb, staterr, 1033 rx_desc->wb.upper.vlan); 1034 1035 next_desc: 1036 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF); 1037 1038 /* return some buffers to hardware, one at a time is too slow */ 1039 if (cleaned_count >= E1000_RX_BUFFER_WRITE) { 1040 adapter->alloc_rx_buf(rx_ring, cleaned_count, 1041 GFP_ATOMIC); 1042 cleaned_count = 0; 1043 } 1044 1045 /* use prefetched values */ 1046 rx_desc = next_rxd; 1047 buffer_info = next_buffer; 1048 1049 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 1050 } 1051 rx_ring->next_to_clean = i; 1052 1053 cleaned_count = e1000_desc_unused(rx_ring); 1054 if (cleaned_count) 1055 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC); 1056 1057 adapter->total_rx_bytes += total_rx_bytes; 1058 adapter->total_rx_packets += total_rx_packets; 1059 return cleaned; 1060 } 1061 1062 static void e1000_put_txbuf(struct e1000_ring *tx_ring, 1063 struct e1000_buffer *buffer_info, 1064 bool drop) 1065 { 1066 struct e1000_adapter *adapter = tx_ring->adapter; 1067 1068 if (buffer_info->dma) { 1069 if (buffer_info->mapped_as_page) 1070 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma, 1071 buffer_info->length, DMA_TO_DEVICE); 1072 else 1073 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, 1074 buffer_info->length, DMA_TO_DEVICE); 1075 buffer_info->dma = 0; 1076 } 1077 if (buffer_info->skb) { 1078 if (drop) 1079 dev_kfree_skb_any(buffer_info->skb); 1080 else 1081 dev_consume_skb_any(buffer_info->skb); 1082 buffer_info->skb = NULL; 1083 } 1084 buffer_info->time_stamp = 0; 1085 } 1086 1087 static void e1000_print_hw_hang(struct work_struct *work) 1088 { 1089 struct e1000_adapter *adapter = container_of(work, 1090 struct e1000_adapter, 1091 print_hang_task); 1092 struct net_device *netdev = adapter->netdev; 1093 struct e1000_ring *tx_ring = adapter->tx_ring; 1094 unsigned int i = tx_ring->next_to_clean; 1095 unsigned int eop = tx_ring->buffer_info[i].next_to_watch; 1096 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop); 1097 struct e1000_hw *hw = &adapter->hw; 1098 u16 phy_status, phy_1000t_status, phy_ext_status; 1099 u16 pci_status; 1100 1101 if (test_bit(__E1000_DOWN, &adapter->state)) 1102 return; 1103 1104 if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) { 1105 /* May be block on write-back, flush and detect again 1106 * flush pending descriptor writebacks to memory 1107 */ 1108 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); 1109 /* execute the writes immediately */ 1110 e1e_flush(); 1111 /* Due to rare timing issues, write to TIDV again to ensure 1112 * the write is successful 1113 */ 1114 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); 1115 /* execute the writes immediately */ 1116 e1e_flush(); 1117 adapter->tx_hang_recheck = true; 1118 return; 1119 } 1120 adapter->tx_hang_recheck = false; 1121 1122 if (er32(TDH(0)) == er32(TDT(0))) { 1123 e_dbg("false hang detected, ignoring\n"); 1124 return; 1125 } 1126 1127 /* Real hang detected */ 1128 netif_stop_queue(netdev); 1129 1130 e1e_rphy(hw, MII_BMSR, &phy_status); 1131 e1e_rphy(hw, MII_STAT1000, &phy_1000t_status); 1132 e1e_rphy(hw, MII_ESTATUS, &phy_ext_status); 1133 1134 pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status); 1135 1136 /* detected Hardware unit hang */ 1137 e_err("Detected Hardware Unit Hang:\n" 1138 " TDH <%x>\n" 1139 " TDT <%x>\n" 1140 " next_to_use <%x>\n" 1141 " next_to_clean <%x>\n" 1142 "buffer_info[next_to_clean]:\n" 1143 " time_stamp <%lx>\n" 1144 " next_to_watch <%x>\n" 1145 " jiffies <%lx>\n" 1146 " next_to_watch.status <%x>\n" 1147 "MAC Status <%x>\n" 1148 "PHY Status <%x>\n" 1149 "PHY 1000BASE-T Status <%x>\n" 1150 "PHY Extended Status <%x>\n" 1151 "PCI Status <%x>\n", 1152 readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use, 1153 tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp, 1154 eop, jiffies, eop_desc->upper.fields.status, er32(STATUS), 1155 phy_status, phy_1000t_status, phy_ext_status, pci_status); 1156 1157 e1000e_dump(adapter); 1158 1159 /* Suggest workaround for known h/w issue */ 1160 if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE)) 1161 e_err("Try turning off Tx pause (flow control) via ethtool\n"); 1162 } 1163 1164 /** 1165 * e1000e_tx_hwtstamp_work - check for Tx time stamp 1166 * @work: pointer to work struct 1167 * 1168 * This work function polls the TSYNCTXCTL valid bit to determine when a 1169 * timestamp has been taken for the current stored skb. The timestamp must 1170 * be for this skb because only one such packet is allowed in the queue. 1171 */ 1172 static void e1000e_tx_hwtstamp_work(struct work_struct *work) 1173 { 1174 struct e1000_adapter *adapter = container_of(work, struct e1000_adapter, 1175 tx_hwtstamp_work); 1176 struct e1000_hw *hw = &adapter->hw; 1177 1178 if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) { 1179 struct sk_buff *skb = adapter->tx_hwtstamp_skb; 1180 struct skb_shared_hwtstamps shhwtstamps; 1181 u64 txstmp; 1182 1183 txstmp = er32(TXSTMPL); 1184 txstmp |= (u64)er32(TXSTMPH) << 32; 1185 1186 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp); 1187 1188 /* Clear the global tx_hwtstamp_skb pointer and force writes 1189 * prior to notifying the stack of a Tx timestamp. 1190 */ 1191 adapter->tx_hwtstamp_skb = NULL; 1192 wmb(); /* force write prior to skb_tstamp_tx */ 1193 1194 skb_tstamp_tx(skb, &shhwtstamps); 1195 dev_consume_skb_any(skb); 1196 } else if (time_after(jiffies, adapter->tx_hwtstamp_start 1197 + adapter->tx_timeout_factor * HZ)) { 1198 dev_kfree_skb_any(adapter->tx_hwtstamp_skb); 1199 adapter->tx_hwtstamp_skb = NULL; 1200 adapter->tx_hwtstamp_timeouts++; 1201 e_warn("clearing Tx timestamp hang\n"); 1202 } else { 1203 /* reschedule to check later */ 1204 schedule_work(&adapter->tx_hwtstamp_work); 1205 } 1206 } 1207 1208 /** 1209 * e1000_clean_tx_irq - Reclaim resources after transmit completes 1210 * @tx_ring: Tx descriptor ring 1211 * 1212 * the return value indicates whether actual cleaning was done, there 1213 * is no guarantee that everything was cleaned 1214 **/ 1215 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring) 1216 { 1217 struct e1000_adapter *adapter = tx_ring->adapter; 1218 struct net_device *netdev = adapter->netdev; 1219 struct e1000_hw *hw = &adapter->hw; 1220 struct e1000_tx_desc *tx_desc, *eop_desc; 1221 struct e1000_buffer *buffer_info; 1222 unsigned int i, eop; 1223 unsigned int count = 0; 1224 unsigned int total_tx_bytes = 0, total_tx_packets = 0; 1225 unsigned int bytes_compl = 0, pkts_compl = 0; 1226 1227 i = tx_ring->next_to_clean; 1228 eop = tx_ring->buffer_info[i].next_to_watch; 1229 eop_desc = E1000_TX_DESC(*tx_ring, eop); 1230 1231 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && 1232 (count < tx_ring->count)) { 1233 bool cleaned = false; 1234 1235 dma_rmb(); /* read buffer_info after eop_desc */ 1236 for (; !cleaned; count++) { 1237 tx_desc = E1000_TX_DESC(*tx_ring, i); 1238 buffer_info = &tx_ring->buffer_info[i]; 1239 cleaned = (i == eop); 1240 1241 if (cleaned) { 1242 total_tx_packets += buffer_info->segs; 1243 total_tx_bytes += buffer_info->bytecount; 1244 if (buffer_info->skb) { 1245 bytes_compl += buffer_info->skb->len; 1246 pkts_compl++; 1247 } 1248 } 1249 1250 e1000_put_txbuf(tx_ring, buffer_info, false); 1251 tx_desc->upper.data = 0; 1252 1253 i++; 1254 if (i == tx_ring->count) 1255 i = 0; 1256 } 1257 1258 if (i == tx_ring->next_to_use) 1259 break; 1260 eop = tx_ring->buffer_info[i].next_to_watch; 1261 eop_desc = E1000_TX_DESC(*tx_ring, eop); 1262 } 1263 1264 tx_ring->next_to_clean = i; 1265 1266 netdev_completed_queue(netdev, pkts_compl, bytes_compl); 1267 1268 #define TX_WAKE_THRESHOLD 32 1269 if (count && netif_carrier_ok(netdev) && 1270 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) { 1271 /* Make sure that anybody stopping the queue after this 1272 * sees the new next_to_clean. 1273 */ 1274 smp_mb(); 1275 1276 if (netif_queue_stopped(netdev) && 1277 !(test_bit(__E1000_DOWN, &adapter->state))) { 1278 netif_wake_queue(netdev); 1279 ++adapter->restart_queue; 1280 } 1281 } 1282 1283 if (adapter->detect_tx_hung) { 1284 /* Detect a transmit hang in hardware, this serializes the 1285 * check with the clearing of time_stamp and movement of i 1286 */ 1287 adapter->detect_tx_hung = false; 1288 if (tx_ring->buffer_info[i].time_stamp && 1289 time_after(jiffies, tx_ring->buffer_info[i].time_stamp 1290 + (adapter->tx_timeout_factor * HZ)) && 1291 !(er32(STATUS) & E1000_STATUS_TXOFF)) 1292 schedule_work(&adapter->print_hang_task); 1293 else 1294 adapter->tx_hang_recheck = false; 1295 } 1296 adapter->total_tx_bytes += total_tx_bytes; 1297 adapter->total_tx_packets += total_tx_packets; 1298 return count < tx_ring->count; 1299 } 1300 1301 /** 1302 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split 1303 * @rx_ring: Rx descriptor ring 1304 * @work_done: output parameter for indicating completed work 1305 * @work_to_do: how many packets we can clean 1306 * 1307 * the return value indicates whether actual cleaning was done, there 1308 * is no guarantee that everything was cleaned 1309 **/ 1310 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done, 1311 int work_to_do) 1312 { 1313 struct e1000_adapter *adapter = rx_ring->adapter; 1314 struct e1000_hw *hw = &adapter->hw; 1315 union e1000_rx_desc_packet_split *rx_desc, *next_rxd; 1316 struct net_device *netdev = adapter->netdev; 1317 struct pci_dev *pdev = adapter->pdev; 1318 struct e1000_buffer *buffer_info, *next_buffer; 1319 struct e1000_ps_page *ps_page; 1320 struct sk_buff *skb; 1321 unsigned int i, j; 1322 u32 length, staterr; 1323 int cleaned_count = 0; 1324 bool cleaned = false; 1325 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 1326 1327 i = rx_ring->next_to_clean; 1328 rx_desc = E1000_RX_DESC_PS(*rx_ring, i); 1329 staterr = le32_to_cpu(rx_desc->wb.middle.status_error); 1330 buffer_info = &rx_ring->buffer_info[i]; 1331 1332 while (staterr & E1000_RXD_STAT_DD) { 1333 if (*work_done >= work_to_do) 1334 break; 1335 (*work_done)++; 1336 skb = buffer_info->skb; 1337 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ 1338 1339 /* in the packet split case this is header only */ 1340 prefetch(skb->data - NET_IP_ALIGN); 1341 1342 i++; 1343 if (i == rx_ring->count) 1344 i = 0; 1345 next_rxd = E1000_RX_DESC_PS(*rx_ring, i); 1346 prefetch(next_rxd); 1347 1348 next_buffer = &rx_ring->buffer_info[i]; 1349 1350 cleaned = true; 1351 cleaned_count++; 1352 dma_unmap_single(&pdev->dev, buffer_info->dma, 1353 adapter->rx_ps_bsize0, DMA_FROM_DEVICE); 1354 buffer_info->dma = 0; 1355 1356 /* see !EOP comment in other Rx routine */ 1357 if (!(staterr & E1000_RXD_STAT_EOP)) 1358 adapter->flags2 |= FLAG2_IS_DISCARDING; 1359 1360 if (adapter->flags2 & FLAG2_IS_DISCARDING) { 1361 e_dbg("Packet Split buffers didn't pick up the full packet\n"); 1362 dev_kfree_skb_irq(skb); 1363 if (staterr & E1000_RXD_STAT_EOP) 1364 adapter->flags2 &= ~FLAG2_IS_DISCARDING; 1365 goto next_desc; 1366 } 1367 1368 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) && 1369 !(netdev->features & NETIF_F_RXALL))) { 1370 dev_kfree_skb_irq(skb); 1371 goto next_desc; 1372 } 1373 1374 length = le16_to_cpu(rx_desc->wb.middle.length0); 1375 1376 if (!length) { 1377 e_dbg("Last part of the packet spanning multiple descriptors\n"); 1378 dev_kfree_skb_irq(skb); 1379 goto next_desc; 1380 } 1381 1382 /* Good Receive */ 1383 skb_put(skb, length); 1384 1385 { 1386 /* this looks ugly, but it seems compiler issues make 1387 * it more efficient than reusing j 1388 */ 1389 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]); 1390 1391 /* page alloc/put takes too long and effects small 1392 * packet throughput, so unsplit small packets and 1393 * save the alloc/put 1394 */ 1395 if (l1 && (l1 <= copybreak) && 1396 ((length + l1) <= adapter->rx_ps_bsize0)) { 1397 ps_page = &buffer_info->ps_pages[0]; 1398 1399 dma_sync_single_for_cpu(&pdev->dev, 1400 ps_page->dma, 1401 PAGE_SIZE, 1402 DMA_FROM_DEVICE); 1403 memcpy(skb_tail_pointer(skb), 1404 page_address(ps_page->page), l1); 1405 dma_sync_single_for_device(&pdev->dev, 1406 ps_page->dma, 1407 PAGE_SIZE, 1408 DMA_FROM_DEVICE); 1409 1410 /* remove the CRC */ 1411 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) { 1412 if (!(netdev->features & NETIF_F_RXFCS)) 1413 l1 -= 4; 1414 } 1415 1416 skb_put(skb, l1); 1417 goto copydone; 1418 } /* if */ 1419 } 1420 1421 for (j = 0; j < PS_PAGE_BUFFERS; j++) { 1422 length = le16_to_cpu(rx_desc->wb.upper.length[j]); 1423 if (!length) 1424 break; 1425 1426 ps_page = &buffer_info->ps_pages[j]; 1427 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE, 1428 DMA_FROM_DEVICE); 1429 ps_page->dma = 0; 1430 skb_fill_page_desc(skb, j, ps_page->page, 0, length); 1431 ps_page->page = NULL; 1432 skb->len += length; 1433 skb->data_len += length; 1434 skb->truesize += PAGE_SIZE; 1435 } 1436 1437 /* strip the ethernet crc, problem is we're using pages now so 1438 * this whole operation can get a little cpu intensive 1439 */ 1440 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) { 1441 if (!(netdev->features & NETIF_F_RXFCS)) 1442 pskb_trim(skb, skb->len - 4); 1443 } 1444 1445 copydone: 1446 total_rx_bytes += skb->len; 1447 total_rx_packets++; 1448 1449 e1000_rx_checksum(adapter, staterr, skb); 1450 1451 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb); 1452 1453 if (rx_desc->wb.upper.header_status & 1454 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)) 1455 adapter->rx_hdr_split++; 1456 1457 e1000_receive_skb(adapter, netdev, skb, staterr, 1458 rx_desc->wb.middle.vlan); 1459 1460 next_desc: 1461 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF); 1462 buffer_info->skb = NULL; 1463 1464 /* return some buffers to hardware, one at a time is too slow */ 1465 if (cleaned_count >= E1000_RX_BUFFER_WRITE) { 1466 adapter->alloc_rx_buf(rx_ring, cleaned_count, 1467 GFP_ATOMIC); 1468 cleaned_count = 0; 1469 } 1470 1471 /* use prefetched values */ 1472 rx_desc = next_rxd; 1473 buffer_info = next_buffer; 1474 1475 staterr = le32_to_cpu(rx_desc->wb.middle.status_error); 1476 } 1477 rx_ring->next_to_clean = i; 1478 1479 cleaned_count = e1000_desc_unused(rx_ring); 1480 if (cleaned_count) 1481 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC); 1482 1483 adapter->total_rx_bytes += total_rx_bytes; 1484 adapter->total_rx_packets += total_rx_packets; 1485 return cleaned; 1486 } 1487 1488 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb, 1489 u16 length) 1490 { 1491 bi->page = NULL; 1492 skb->len += length; 1493 skb->data_len += length; 1494 skb->truesize += PAGE_SIZE; 1495 } 1496 1497 /** 1498 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy 1499 * @rx_ring: Rx descriptor ring 1500 * @work_done: output parameter for indicating completed work 1501 * @work_to_do: how many packets we can clean 1502 * 1503 * the return value indicates whether actual cleaning was done, there 1504 * is no guarantee that everything was cleaned 1505 **/ 1506 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done, 1507 int work_to_do) 1508 { 1509 struct e1000_adapter *adapter = rx_ring->adapter; 1510 struct net_device *netdev = adapter->netdev; 1511 struct pci_dev *pdev = adapter->pdev; 1512 union e1000_rx_desc_extended *rx_desc, *next_rxd; 1513 struct e1000_buffer *buffer_info, *next_buffer; 1514 u32 length, staterr; 1515 unsigned int i; 1516 int cleaned_count = 0; 1517 bool cleaned = false; 1518 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 1519 struct skb_shared_info *shinfo; 1520 1521 i = rx_ring->next_to_clean; 1522 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 1523 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 1524 buffer_info = &rx_ring->buffer_info[i]; 1525 1526 while (staterr & E1000_RXD_STAT_DD) { 1527 struct sk_buff *skb; 1528 1529 if (*work_done >= work_to_do) 1530 break; 1531 (*work_done)++; 1532 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ 1533 1534 skb = buffer_info->skb; 1535 buffer_info->skb = NULL; 1536 1537 ++i; 1538 if (i == rx_ring->count) 1539 i = 0; 1540 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i); 1541 prefetch(next_rxd); 1542 1543 next_buffer = &rx_ring->buffer_info[i]; 1544 1545 cleaned = true; 1546 cleaned_count++; 1547 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE, 1548 DMA_FROM_DEVICE); 1549 buffer_info->dma = 0; 1550 1551 length = le16_to_cpu(rx_desc->wb.upper.length); 1552 1553 /* errors is only valid for DD + EOP descriptors */ 1554 if (unlikely((staterr & E1000_RXD_STAT_EOP) && 1555 ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) && 1556 !(netdev->features & NETIF_F_RXALL)))) { 1557 /* recycle both page and skb */ 1558 buffer_info->skb = skb; 1559 /* an error means any chain goes out the window too */ 1560 if (rx_ring->rx_skb_top) 1561 dev_kfree_skb_irq(rx_ring->rx_skb_top); 1562 rx_ring->rx_skb_top = NULL; 1563 goto next_desc; 1564 } 1565 #define rxtop (rx_ring->rx_skb_top) 1566 if (!(staterr & E1000_RXD_STAT_EOP)) { 1567 /* this descriptor is only the beginning (or middle) */ 1568 if (!rxtop) { 1569 /* this is the beginning of a chain */ 1570 rxtop = skb; 1571 skb_fill_page_desc(rxtop, 0, buffer_info->page, 1572 0, length); 1573 } else { 1574 /* this is the middle of a chain */ 1575 shinfo = skb_shinfo(rxtop); 1576 skb_fill_page_desc(rxtop, shinfo->nr_frags, 1577 buffer_info->page, 0, 1578 length); 1579 /* re-use the skb, only consumed the page */ 1580 buffer_info->skb = skb; 1581 } 1582 e1000_consume_page(buffer_info, rxtop, length); 1583 goto next_desc; 1584 } else { 1585 if (rxtop) { 1586 /* end of the chain */ 1587 shinfo = skb_shinfo(rxtop); 1588 skb_fill_page_desc(rxtop, shinfo->nr_frags, 1589 buffer_info->page, 0, 1590 length); 1591 /* re-use the current skb, we only consumed the 1592 * page 1593 */ 1594 buffer_info->skb = skb; 1595 skb = rxtop; 1596 rxtop = NULL; 1597 e1000_consume_page(buffer_info, skb, length); 1598 } else { 1599 /* no chain, got EOP, this buf is the packet 1600 * copybreak to save the put_page/alloc_page 1601 */ 1602 if (length <= copybreak && 1603 skb_tailroom(skb) >= length) { 1604 memcpy(skb_tail_pointer(skb), 1605 page_address(buffer_info->page), 1606 length); 1607 /* re-use the page, so don't erase 1608 * buffer_info->page 1609 */ 1610 skb_put(skb, length); 1611 } else { 1612 skb_fill_page_desc(skb, 0, 1613 buffer_info->page, 0, 1614 length); 1615 e1000_consume_page(buffer_info, skb, 1616 length); 1617 } 1618 } 1619 } 1620 1621 /* Receive Checksum Offload */ 1622 e1000_rx_checksum(adapter, staterr, skb); 1623 1624 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb); 1625 1626 /* probably a little skewed due to removing CRC */ 1627 total_rx_bytes += skb->len; 1628 total_rx_packets++; 1629 1630 /* eth type trans needs skb->data to point to something */ 1631 if (!pskb_may_pull(skb, ETH_HLEN)) { 1632 e_err("pskb_may_pull failed.\n"); 1633 dev_kfree_skb_irq(skb); 1634 goto next_desc; 1635 } 1636 1637 e1000_receive_skb(adapter, netdev, skb, staterr, 1638 rx_desc->wb.upper.vlan); 1639 1640 next_desc: 1641 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF); 1642 1643 /* return some buffers to hardware, one at a time is too slow */ 1644 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { 1645 adapter->alloc_rx_buf(rx_ring, cleaned_count, 1646 GFP_ATOMIC); 1647 cleaned_count = 0; 1648 } 1649 1650 /* use prefetched values */ 1651 rx_desc = next_rxd; 1652 buffer_info = next_buffer; 1653 1654 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 1655 } 1656 rx_ring->next_to_clean = i; 1657 1658 cleaned_count = e1000_desc_unused(rx_ring); 1659 if (cleaned_count) 1660 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC); 1661 1662 adapter->total_rx_bytes += total_rx_bytes; 1663 adapter->total_rx_packets += total_rx_packets; 1664 return cleaned; 1665 } 1666 1667 /** 1668 * e1000_clean_rx_ring - Free Rx Buffers per Queue 1669 * @rx_ring: Rx descriptor ring 1670 **/ 1671 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring) 1672 { 1673 struct e1000_adapter *adapter = rx_ring->adapter; 1674 struct e1000_buffer *buffer_info; 1675 struct e1000_ps_page *ps_page; 1676 struct pci_dev *pdev = adapter->pdev; 1677 unsigned int i, j; 1678 1679 /* Free all the Rx ring sk_buffs */ 1680 for (i = 0; i < rx_ring->count; i++) { 1681 buffer_info = &rx_ring->buffer_info[i]; 1682 if (buffer_info->dma) { 1683 if (adapter->clean_rx == e1000_clean_rx_irq) 1684 dma_unmap_single(&pdev->dev, buffer_info->dma, 1685 adapter->rx_buffer_len, 1686 DMA_FROM_DEVICE); 1687 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) 1688 dma_unmap_page(&pdev->dev, buffer_info->dma, 1689 PAGE_SIZE, DMA_FROM_DEVICE); 1690 else if (adapter->clean_rx == e1000_clean_rx_irq_ps) 1691 dma_unmap_single(&pdev->dev, buffer_info->dma, 1692 adapter->rx_ps_bsize0, 1693 DMA_FROM_DEVICE); 1694 buffer_info->dma = 0; 1695 } 1696 1697 if (buffer_info->page) { 1698 put_page(buffer_info->page); 1699 buffer_info->page = NULL; 1700 } 1701 1702 if (buffer_info->skb) { 1703 dev_kfree_skb(buffer_info->skb); 1704 buffer_info->skb = NULL; 1705 } 1706 1707 for (j = 0; j < PS_PAGE_BUFFERS; j++) { 1708 ps_page = &buffer_info->ps_pages[j]; 1709 if (!ps_page->page) 1710 break; 1711 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE, 1712 DMA_FROM_DEVICE); 1713 ps_page->dma = 0; 1714 put_page(ps_page->page); 1715 ps_page->page = NULL; 1716 } 1717 } 1718 1719 /* there also may be some cached data from a chained receive */ 1720 if (rx_ring->rx_skb_top) { 1721 dev_kfree_skb(rx_ring->rx_skb_top); 1722 rx_ring->rx_skb_top = NULL; 1723 } 1724 1725 /* Zero out the descriptor ring */ 1726 memset(rx_ring->desc, 0, rx_ring->size); 1727 1728 rx_ring->next_to_clean = 0; 1729 rx_ring->next_to_use = 0; 1730 adapter->flags2 &= ~FLAG2_IS_DISCARDING; 1731 } 1732 1733 static void e1000e_downshift_workaround(struct work_struct *work) 1734 { 1735 struct e1000_adapter *adapter = container_of(work, 1736 struct e1000_adapter, 1737 downshift_task); 1738 1739 if (test_bit(__E1000_DOWN, &adapter->state)) 1740 return; 1741 1742 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw); 1743 } 1744 1745 /** 1746 * e1000_intr_msi - Interrupt Handler 1747 * @irq: interrupt number 1748 * @data: pointer to a network interface device structure 1749 **/ 1750 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data) 1751 { 1752 struct net_device *netdev = data; 1753 struct e1000_adapter *adapter = netdev_priv(netdev); 1754 struct e1000_hw *hw = &adapter->hw; 1755 u32 icr = er32(ICR); 1756 1757 /* read ICR disables interrupts using IAM */ 1758 if (icr & E1000_ICR_LSC) { 1759 hw->mac.get_link_status = true; 1760 /* ICH8 workaround-- Call gig speed drop workaround on cable 1761 * disconnect (LSC) before accessing any PHY registers 1762 */ 1763 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && 1764 (!(er32(STATUS) & E1000_STATUS_LU))) 1765 schedule_work(&adapter->downshift_task); 1766 1767 /* 80003ES2LAN workaround-- For packet buffer work-around on 1768 * link down event; disable receives here in the ISR and reset 1769 * adapter in watchdog 1770 */ 1771 if (netif_carrier_ok(netdev) && 1772 adapter->flags & FLAG_RX_NEEDS_RESTART) { 1773 /* disable receives */ 1774 u32 rctl = er32(RCTL); 1775 1776 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1777 adapter->flags |= FLAG_RESTART_NOW; 1778 } 1779 /* guard against interrupt when we're going down */ 1780 if (!test_bit(__E1000_DOWN, &adapter->state)) 1781 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1782 } 1783 1784 /* Reset on uncorrectable ECC error */ 1785 if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) { 1786 u32 pbeccsts = er32(PBECCSTS); 1787 1788 adapter->corr_errors += 1789 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK; 1790 adapter->uncorr_errors += 1791 FIELD_GET(E1000_PBECCSTS_UNCORR_ERR_CNT_MASK, pbeccsts); 1792 1793 /* Do the reset outside of interrupt context */ 1794 schedule_work(&adapter->reset_task); 1795 1796 /* return immediately since reset is imminent */ 1797 return IRQ_HANDLED; 1798 } 1799 1800 if (napi_schedule_prep(&adapter->napi)) { 1801 adapter->total_tx_bytes = 0; 1802 adapter->total_tx_packets = 0; 1803 adapter->total_rx_bytes = 0; 1804 adapter->total_rx_packets = 0; 1805 __napi_schedule(&adapter->napi); 1806 } 1807 1808 return IRQ_HANDLED; 1809 } 1810 1811 /** 1812 * e1000_intr - Interrupt Handler 1813 * @irq: interrupt number 1814 * @data: pointer to a network interface device structure 1815 **/ 1816 static irqreturn_t e1000_intr(int __always_unused irq, void *data) 1817 { 1818 struct net_device *netdev = data; 1819 struct e1000_adapter *adapter = netdev_priv(netdev); 1820 struct e1000_hw *hw = &adapter->hw; 1821 u32 rctl, icr = er32(ICR); 1822 1823 if (!icr || test_bit(__E1000_DOWN, &adapter->state)) 1824 return IRQ_NONE; /* Not our interrupt */ 1825 1826 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is 1827 * not set, then the adapter didn't send an interrupt 1828 */ 1829 if (!(icr & E1000_ICR_INT_ASSERTED)) 1830 return IRQ_NONE; 1831 1832 /* Interrupt Auto-Mask...upon reading ICR, 1833 * interrupts are masked. No need for the 1834 * IMC write 1835 */ 1836 1837 if (icr & E1000_ICR_LSC) { 1838 hw->mac.get_link_status = true; 1839 /* ICH8 workaround-- Call gig speed drop workaround on cable 1840 * disconnect (LSC) before accessing any PHY registers 1841 */ 1842 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && 1843 (!(er32(STATUS) & E1000_STATUS_LU))) 1844 schedule_work(&adapter->downshift_task); 1845 1846 /* 80003ES2LAN workaround-- 1847 * For packet buffer work-around on link down event; 1848 * disable receives here in the ISR and 1849 * reset adapter in watchdog 1850 */ 1851 if (netif_carrier_ok(netdev) && 1852 (adapter->flags & FLAG_RX_NEEDS_RESTART)) { 1853 /* disable receives */ 1854 rctl = er32(RCTL); 1855 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1856 adapter->flags |= FLAG_RESTART_NOW; 1857 } 1858 /* guard against interrupt when we're going down */ 1859 if (!test_bit(__E1000_DOWN, &adapter->state)) 1860 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1861 } 1862 1863 /* Reset on uncorrectable ECC error */ 1864 if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) { 1865 u32 pbeccsts = er32(PBECCSTS); 1866 1867 adapter->corr_errors += 1868 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK; 1869 adapter->uncorr_errors += 1870 FIELD_GET(E1000_PBECCSTS_UNCORR_ERR_CNT_MASK, pbeccsts); 1871 1872 /* Do the reset outside of interrupt context */ 1873 schedule_work(&adapter->reset_task); 1874 1875 /* return immediately since reset is imminent */ 1876 return IRQ_HANDLED; 1877 } 1878 1879 if (napi_schedule_prep(&adapter->napi)) { 1880 adapter->total_tx_bytes = 0; 1881 adapter->total_tx_packets = 0; 1882 adapter->total_rx_bytes = 0; 1883 adapter->total_rx_packets = 0; 1884 __napi_schedule(&adapter->napi); 1885 } 1886 1887 return IRQ_HANDLED; 1888 } 1889 1890 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data) 1891 { 1892 struct net_device *netdev = data; 1893 struct e1000_adapter *adapter = netdev_priv(netdev); 1894 struct e1000_hw *hw = &adapter->hw; 1895 u32 icr = er32(ICR); 1896 1897 if (icr & adapter->eiac_mask) 1898 ew32(ICS, (icr & adapter->eiac_mask)); 1899 1900 if (icr & E1000_ICR_LSC) { 1901 hw->mac.get_link_status = true; 1902 /* guard against interrupt when we're going down */ 1903 if (!test_bit(__E1000_DOWN, &adapter->state)) 1904 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1905 } 1906 1907 if (!test_bit(__E1000_DOWN, &adapter->state)) 1908 ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK); 1909 1910 return IRQ_HANDLED; 1911 } 1912 1913 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data) 1914 { 1915 struct net_device *netdev = data; 1916 struct e1000_adapter *adapter = netdev_priv(netdev); 1917 struct e1000_hw *hw = &adapter->hw; 1918 struct e1000_ring *tx_ring = adapter->tx_ring; 1919 1920 adapter->total_tx_bytes = 0; 1921 adapter->total_tx_packets = 0; 1922 1923 if (!e1000_clean_tx_irq(tx_ring)) 1924 /* Ring was not completely cleaned, so fire another interrupt */ 1925 ew32(ICS, tx_ring->ims_val); 1926 1927 if (!test_bit(__E1000_DOWN, &adapter->state)) 1928 ew32(IMS, adapter->tx_ring->ims_val); 1929 1930 return IRQ_HANDLED; 1931 } 1932 1933 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data) 1934 { 1935 struct net_device *netdev = data; 1936 struct e1000_adapter *adapter = netdev_priv(netdev); 1937 struct e1000_ring *rx_ring = adapter->rx_ring; 1938 1939 /* Write the ITR value calculated at the end of the 1940 * previous interrupt. 1941 */ 1942 if (rx_ring->set_itr) { 1943 u32 itr = rx_ring->itr_val ? 1944 1000000000 / (rx_ring->itr_val * 256) : 0; 1945 1946 writel(itr, rx_ring->itr_register); 1947 rx_ring->set_itr = 0; 1948 } 1949 1950 if (napi_schedule_prep(&adapter->napi)) { 1951 adapter->total_rx_bytes = 0; 1952 adapter->total_rx_packets = 0; 1953 __napi_schedule(&adapter->napi); 1954 } 1955 return IRQ_HANDLED; 1956 } 1957 1958 /** 1959 * e1000_configure_msix - Configure MSI-X hardware 1960 * @adapter: board private structure 1961 * 1962 * e1000_configure_msix sets up the hardware to properly 1963 * generate MSI-X interrupts. 1964 **/ 1965 static void e1000_configure_msix(struct e1000_adapter *adapter) 1966 { 1967 struct e1000_hw *hw = &adapter->hw; 1968 struct e1000_ring *rx_ring = adapter->rx_ring; 1969 struct e1000_ring *tx_ring = adapter->tx_ring; 1970 int vector = 0; 1971 u32 ctrl_ext, ivar = 0; 1972 1973 adapter->eiac_mask = 0; 1974 1975 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */ 1976 if (hw->mac.type == e1000_82574) { 1977 u32 rfctl = er32(RFCTL); 1978 1979 rfctl |= E1000_RFCTL_ACK_DIS; 1980 ew32(RFCTL, rfctl); 1981 } 1982 1983 /* Configure Rx vector */ 1984 rx_ring->ims_val = E1000_IMS_RXQ0; 1985 adapter->eiac_mask |= rx_ring->ims_val; 1986 if (rx_ring->itr_val) 1987 writel(1000000000 / (rx_ring->itr_val * 256), 1988 rx_ring->itr_register); 1989 else 1990 writel(1, rx_ring->itr_register); 1991 ivar = E1000_IVAR_INT_ALLOC_VALID | vector; 1992 1993 /* Configure Tx vector */ 1994 tx_ring->ims_val = E1000_IMS_TXQ0; 1995 vector++; 1996 if (tx_ring->itr_val) 1997 writel(1000000000 / (tx_ring->itr_val * 256), 1998 tx_ring->itr_register); 1999 else 2000 writel(1, tx_ring->itr_register); 2001 adapter->eiac_mask |= tx_ring->ims_val; 2002 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8); 2003 2004 /* set vector for Other Causes, e.g. link changes */ 2005 vector++; 2006 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16); 2007 if (rx_ring->itr_val) 2008 writel(1000000000 / (rx_ring->itr_val * 256), 2009 hw->hw_addr + E1000_EITR_82574(vector)); 2010 else 2011 writel(1, hw->hw_addr + E1000_EITR_82574(vector)); 2012 2013 /* Cause Tx interrupts on every write back */ 2014 ivar |= BIT(31); 2015 2016 ew32(IVAR, ivar); 2017 2018 /* enable MSI-X PBA support */ 2019 ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME; 2020 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME; 2021 ew32(CTRL_EXT, ctrl_ext); 2022 e1e_flush(); 2023 } 2024 2025 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter) 2026 { 2027 if (adapter->msix_entries) { 2028 pci_disable_msix(adapter->pdev); 2029 kfree(adapter->msix_entries); 2030 adapter->msix_entries = NULL; 2031 } else if (adapter->flags & FLAG_MSI_ENABLED) { 2032 pci_disable_msi(adapter->pdev); 2033 adapter->flags &= ~FLAG_MSI_ENABLED; 2034 } 2035 } 2036 2037 /** 2038 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported 2039 * @adapter: board private structure 2040 * 2041 * Attempt to configure interrupts using the best available 2042 * capabilities of the hardware and kernel. 2043 **/ 2044 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter) 2045 { 2046 int err; 2047 int i; 2048 2049 switch (adapter->int_mode) { 2050 case E1000E_INT_MODE_MSIX: 2051 if (adapter->flags & FLAG_HAS_MSIX) { 2052 adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */ 2053 adapter->msix_entries = kcalloc(adapter->num_vectors, 2054 sizeof(struct 2055 msix_entry), 2056 GFP_KERNEL); 2057 if (adapter->msix_entries) { 2058 struct e1000_adapter *a = adapter; 2059 2060 for (i = 0; i < adapter->num_vectors; i++) 2061 adapter->msix_entries[i].entry = i; 2062 2063 err = pci_enable_msix_range(a->pdev, 2064 a->msix_entries, 2065 a->num_vectors, 2066 a->num_vectors); 2067 if (err > 0) 2068 return; 2069 } 2070 /* MSI-X failed, so fall through and try MSI */ 2071 e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n"); 2072 e1000e_reset_interrupt_capability(adapter); 2073 } 2074 adapter->int_mode = E1000E_INT_MODE_MSI; 2075 fallthrough; 2076 case E1000E_INT_MODE_MSI: 2077 if (!pci_enable_msi(adapter->pdev)) { 2078 adapter->flags |= FLAG_MSI_ENABLED; 2079 } else { 2080 adapter->int_mode = E1000E_INT_MODE_LEGACY; 2081 e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n"); 2082 } 2083 fallthrough; 2084 case E1000E_INT_MODE_LEGACY: 2085 /* Don't do anything; this is the system default */ 2086 break; 2087 } 2088 2089 /* store the number of vectors being used */ 2090 adapter->num_vectors = 1; 2091 } 2092 2093 /** 2094 * e1000_request_msix - Initialize MSI-X interrupts 2095 * @adapter: board private structure 2096 * 2097 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the 2098 * kernel. 2099 **/ 2100 static int e1000_request_msix(struct e1000_adapter *adapter) 2101 { 2102 struct net_device *netdev = adapter->netdev; 2103 int err = 0, vector = 0; 2104 2105 if (strlen(netdev->name) < (IFNAMSIZ - 5)) 2106 snprintf(adapter->rx_ring->name, 2107 sizeof(adapter->rx_ring->name) - 1, 2108 "%.14s-rx-0", netdev->name); 2109 else 2110 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ); 2111 err = request_irq(adapter->msix_entries[vector].vector, 2112 e1000_intr_msix_rx, 0, adapter->rx_ring->name, 2113 netdev); 2114 if (err) 2115 return err; 2116 adapter->rx_ring->itr_register = adapter->hw.hw_addr + 2117 E1000_EITR_82574(vector); 2118 adapter->rx_ring->itr_val = adapter->itr; 2119 vector++; 2120 2121 if (strlen(netdev->name) < (IFNAMSIZ - 5)) 2122 snprintf(adapter->tx_ring->name, 2123 sizeof(adapter->tx_ring->name) - 1, 2124 "%.14s-tx-0", netdev->name); 2125 else 2126 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ); 2127 err = request_irq(adapter->msix_entries[vector].vector, 2128 e1000_intr_msix_tx, 0, adapter->tx_ring->name, 2129 netdev); 2130 if (err) 2131 return err; 2132 adapter->tx_ring->itr_register = adapter->hw.hw_addr + 2133 E1000_EITR_82574(vector); 2134 adapter->tx_ring->itr_val = adapter->itr; 2135 vector++; 2136 2137 err = request_irq(adapter->msix_entries[vector].vector, 2138 e1000_msix_other, 0, netdev->name, netdev); 2139 if (err) 2140 return err; 2141 2142 e1000_configure_msix(adapter); 2143 2144 return 0; 2145 } 2146 2147 /** 2148 * e1000_request_irq - initialize interrupts 2149 * @adapter: board private structure 2150 * 2151 * Attempts to configure interrupts using the best available 2152 * capabilities of the hardware and kernel. 2153 **/ 2154 static int e1000_request_irq(struct e1000_adapter *adapter) 2155 { 2156 struct net_device *netdev = adapter->netdev; 2157 int err; 2158 2159 if (adapter->msix_entries) { 2160 err = e1000_request_msix(adapter); 2161 if (!err) 2162 return err; 2163 /* fall back to MSI */ 2164 e1000e_reset_interrupt_capability(adapter); 2165 adapter->int_mode = E1000E_INT_MODE_MSI; 2166 e1000e_set_interrupt_capability(adapter); 2167 } 2168 if (adapter->flags & FLAG_MSI_ENABLED) { 2169 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0, 2170 netdev->name, netdev); 2171 if (!err) 2172 return err; 2173 2174 /* fall back to legacy interrupt */ 2175 e1000e_reset_interrupt_capability(adapter); 2176 adapter->int_mode = E1000E_INT_MODE_LEGACY; 2177 } 2178 2179 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED, 2180 netdev->name, netdev); 2181 if (err) 2182 e_err("Unable to allocate interrupt, Error: %d\n", err); 2183 2184 return err; 2185 } 2186 2187 static void e1000_free_irq(struct e1000_adapter *adapter) 2188 { 2189 struct net_device *netdev = adapter->netdev; 2190 2191 if (adapter->msix_entries) { 2192 int vector = 0; 2193 2194 free_irq(adapter->msix_entries[vector].vector, netdev); 2195 vector++; 2196 2197 free_irq(adapter->msix_entries[vector].vector, netdev); 2198 vector++; 2199 2200 /* Other Causes interrupt vector */ 2201 free_irq(adapter->msix_entries[vector].vector, netdev); 2202 return; 2203 } 2204 2205 free_irq(adapter->pdev->irq, netdev); 2206 } 2207 2208 /** 2209 * e1000_irq_disable - Mask off interrupt generation on the NIC 2210 * @adapter: board private structure 2211 **/ 2212 static void e1000_irq_disable(struct e1000_adapter *adapter) 2213 { 2214 struct e1000_hw *hw = &adapter->hw; 2215 2216 ew32(IMC, ~0); 2217 if (adapter->msix_entries) 2218 ew32(EIAC_82574, 0); 2219 e1e_flush(); 2220 2221 if (adapter->msix_entries) { 2222 int i; 2223 2224 for (i = 0; i < adapter->num_vectors; i++) 2225 synchronize_irq(adapter->msix_entries[i].vector); 2226 } else { 2227 synchronize_irq(adapter->pdev->irq); 2228 } 2229 } 2230 2231 /** 2232 * e1000_irq_enable - Enable default interrupt generation settings 2233 * @adapter: board private structure 2234 **/ 2235 static void e1000_irq_enable(struct e1000_adapter *adapter) 2236 { 2237 struct e1000_hw *hw = &adapter->hw; 2238 2239 if (adapter->msix_entries) { 2240 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574); 2241 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | 2242 IMS_OTHER_MASK); 2243 } else if (hw->mac.type >= e1000_pch_lpt) { 2244 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER); 2245 } else { 2246 ew32(IMS, IMS_ENABLE_MASK); 2247 } 2248 e1e_flush(); 2249 } 2250 2251 /** 2252 * e1000e_get_hw_control - get control of the h/w from f/w 2253 * @adapter: address of board private structure 2254 * 2255 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit. 2256 * For ASF and Pass Through versions of f/w this means that 2257 * the driver is loaded. For AMT version (only with 82573) 2258 * of the f/w this means that the network i/f is open. 2259 **/ 2260 void e1000e_get_hw_control(struct e1000_adapter *adapter) 2261 { 2262 struct e1000_hw *hw = &adapter->hw; 2263 u32 ctrl_ext; 2264 u32 swsm; 2265 2266 /* Let firmware know the driver has taken over */ 2267 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { 2268 swsm = er32(SWSM); 2269 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD); 2270 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { 2271 ctrl_ext = er32(CTRL_EXT); 2272 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); 2273 } 2274 } 2275 2276 /** 2277 * e1000e_release_hw_control - release control of the h/w to f/w 2278 * @adapter: address of board private structure 2279 * 2280 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit. 2281 * For ASF and Pass Through versions of f/w this means that the 2282 * driver is no longer loaded. For AMT version (only with 82573) i 2283 * of the f/w this means that the network i/f is closed. 2284 * 2285 **/ 2286 void e1000e_release_hw_control(struct e1000_adapter *adapter) 2287 { 2288 struct e1000_hw *hw = &adapter->hw; 2289 u32 ctrl_ext; 2290 u32 swsm; 2291 2292 /* Let firmware taken over control of h/w */ 2293 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { 2294 swsm = er32(SWSM); 2295 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD); 2296 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { 2297 ctrl_ext = er32(CTRL_EXT); 2298 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); 2299 } 2300 } 2301 2302 /** 2303 * e1000_alloc_ring_dma - allocate memory for a ring structure 2304 * @adapter: board private structure 2305 * @ring: ring struct for which to allocate dma 2306 **/ 2307 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter, 2308 struct e1000_ring *ring) 2309 { 2310 struct pci_dev *pdev = adapter->pdev; 2311 2312 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma, 2313 GFP_KERNEL); 2314 if (!ring->desc) 2315 return -ENOMEM; 2316 2317 return 0; 2318 } 2319 2320 /** 2321 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors) 2322 * @tx_ring: Tx descriptor ring 2323 * 2324 * Return 0 on success, negative on failure 2325 **/ 2326 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring) 2327 { 2328 struct e1000_adapter *adapter = tx_ring->adapter; 2329 int err = -ENOMEM, size; 2330 2331 size = sizeof(struct e1000_buffer) * tx_ring->count; 2332 tx_ring->buffer_info = vzalloc(size); 2333 if (!tx_ring->buffer_info) 2334 goto err; 2335 2336 /* round up to nearest 4K */ 2337 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); 2338 tx_ring->size = ALIGN(tx_ring->size, 4096); 2339 2340 err = e1000_alloc_ring_dma(adapter, tx_ring); 2341 if (err) 2342 goto err; 2343 2344 tx_ring->next_to_use = 0; 2345 tx_ring->next_to_clean = 0; 2346 2347 return 0; 2348 err: 2349 vfree(tx_ring->buffer_info); 2350 e_err("Unable to allocate memory for the transmit descriptor ring\n"); 2351 return err; 2352 } 2353 2354 /** 2355 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors) 2356 * @rx_ring: Rx descriptor ring 2357 * 2358 * Returns 0 on success, negative on failure 2359 **/ 2360 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring) 2361 { 2362 struct e1000_adapter *adapter = rx_ring->adapter; 2363 struct e1000_buffer *buffer_info; 2364 int i, size, desc_len, err = -ENOMEM; 2365 2366 size = sizeof(struct e1000_buffer) * rx_ring->count; 2367 rx_ring->buffer_info = vzalloc(size); 2368 if (!rx_ring->buffer_info) 2369 goto err; 2370 2371 for (i = 0; i < rx_ring->count; i++) { 2372 buffer_info = &rx_ring->buffer_info[i]; 2373 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS, 2374 sizeof(struct e1000_ps_page), 2375 GFP_KERNEL); 2376 if (!buffer_info->ps_pages) 2377 goto err_pages; 2378 } 2379 2380 desc_len = sizeof(union e1000_rx_desc_packet_split); 2381 2382 /* Round up to nearest 4K */ 2383 rx_ring->size = rx_ring->count * desc_len; 2384 rx_ring->size = ALIGN(rx_ring->size, 4096); 2385 2386 err = e1000_alloc_ring_dma(adapter, rx_ring); 2387 if (err) 2388 goto err_pages; 2389 2390 rx_ring->next_to_clean = 0; 2391 rx_ring->next_to_use = 0; 2392 rx_ring->rx_skb_top = NULL; 2393 2394 return 0; 2395 2396 err_pages: 2397 for (i = 0; i < rx_ring->count; i++) { 2398 buffer_info = &rx_ring->buffer_info[i]; 2399 kfree(buffer_info->ps_pages); 2400 } 2401 err: 2402 vfree(rx_ring->buffer_info); 2403 e_err("Unable to allocate memory for the receive descriptor ring\n"); 2404 return err; 2405 } 2406 2407 /** 2408 * e1000_clean_tx_ring - Free Tx Buffers 2409 * @tx_ring: Tx descriptor ring 2410 **/ 2411 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring) 2412 { 2413 struct e1000_adapter *adapter = tx_ring->adapter; 2414 struct e1000_buffer *buffer_info; 2415 unsigned long size; 2416 unsigned int i; 2417 2418 for (i = 0; i < tx_ring->count; i++) { 2419 buffer_info = &tx_ring->buffer_info[i]; 2420 e1000_put_txbuf(tx_ring, buffer_info, false); 2421 } 2422 2423 netdev_reset_queue(adapter->netdev); 2424 size = sizeof(struct e1000_buffer) * tx_ring->count; 2425 memset(tx_ring->buffer_info, 0, size); 2426 2427 memset(tx_ring->desc, 0, tx_ring->size); 2428 2429 tx_ring->next_to_use = 0; 2430 tx_ring->next_to_clean = 0; 2431 } 2432 2433 /** 2434 * e1000e_free_tx_resources - Free Tx Resources per Queue 2435 * @tx_ring: Tx descriptor ring 2436 * 2437 * Free all transmit software resources 2438 **/ 2439 void e1000e_free_tx_resources(struct e1000_ring *tx_ring) 2440 { 2441 struct e1000_adapter *adapter = tx_ring->adapter; 2442 struct pci_dev *pdev = adapter->pdev; 2443 2444 e1000_clean_tx_ring(tx_ring); 2445 2446 vfree(tx_ring->buffer_info); 2447 tx_ring->buffer_info = NULL; 2448 2449 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 2450 tx_ring->dma); 2451 tx_ring->desc = NULL; 2452 } 2453 2454 /** 2455 * e1000e_free_rx_resources - Free Rx Resources 2456 * @rx_ring: Rx descriptor ring 2457 * 2458 * Free all receive software resources 2459 **/ 2460 void e1000e_free_rx_resources(struct e1000_ring *rx_ring) 2461 { 2462 struct e1000_adapter *adapter = rx_ring->adapter; 2463 struct pci_dev *pdev = adapter->pdev; 2464 int i; 2465 2466 e1000_clean_rx_ring(rx_ring); 2467 2468 for (i = 0; i < rx_ring->count; i++) 2469 kfree(rx_ring->buffer_info[i].ps_pages); 2470 2471 vfree(rx_ring->buffer_info); 2472 rx_ring->buffer_info = NULL; 2473 2474 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 2475 rx_ring->dma); 2476 rx_ring->desc = NULL; 2477 } 2478 2479 /** 2480 * e1000_update_itr - update the dynamic ITR value based on statistics 2481 * @itr_setting: current adapter->itr 2482 * @packets: the number of packets during this measurement interval 2483 * @bytes: the number of bytes during this measurement interval 2484 * 2485 * Stores a new ITR value based on packets and byte 2486 * counts during the last interrupt. The advantage of per interrupt 2487 * computation is faster updates and more accurate ITR for the current 2488 * traffic pattern. Constants in this function were computed 2489 * based on theoretical maximum wire speed and thresholds were set based 2490 * on testing data as well as attempting to minimize response time 2491 * while increasing bulk throughput. This functionality is controlled 2492 * by the InterruptThrottleRate module parameter. 2493 **/ 2494 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes) 2495 { 2496 unsigned int retval = itr_setting; 2497 2498 if (packets == 0) 2499 return itr_setting; 2500 2501 switch (itr_setting) { 2502 case lowest_latency: 2503 /* handle TSO and jumbo frames */ 2504 if (bytes / packets > 8000) 2505 retval = bulk_latency; 2506 else if ((packets < 5) && (bytes > 512)) 2507 retval = low_latency; 2508 break; 2509 case low_latency: /* 50 usec aka 20000 ints/s */ 2510 if (bytes > 10000) { 2511 /* this if handles the TSO accounting */ 2512 if (bytes / packets > 8000) 2513 retval = bulk_latency; 2514 else if ((packets < 10) || ((bytes / packets) > 1200)) 2515 retval = bulk_latency; 2516 else if ((packets > 35)) 2517 retval = lowest_latency; 2518 } else if (bytes / packets > 2000) { 2519 retval = bulk_latency; 2520 } else if (packets <= 2 && bytes < 512) { 2521 retval = lowest_latency; 2522 } 2523 break; 2524 case bulk_latency: /* 250 usec aka 4000 ints/s */ 2525 if (bytes > 25000) { 2526 if (packets > 35) 2527 retval = low_latency; 2528 } else if (bytes < 6000) { 2529 retval = low_latency; 2530 } 2531 break; 2532 } 2533 2534 return retval; 2535 } 2536 2537 static void e1000_set_itr(struct e1000_adapter *adapter) 2538 { 2539 u16 current_itr; 2540 u32 new_itr = adapter->itr; 2541 2542 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 2543 if (adapter->link_speed != SPEED_1000) { 2544 new_itr = 4000; 2545 goto set_itr_now; 2546 } 2547 2548 if (adapter->flags2 & FLAG2_DISABLE_AIM) { 2549 new_itr = 0; 2550 goto set_itr_now; 2551 } 2552 2553 adapter->tx_itr = e1000_update_itr(adapter->tx_itr, 2554 adapter->total_tx_packets, 2555 adapter->total_tx_bytes); 2556 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2557 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) 2558 adapter->tx_itr = low_latency; 2559 2560 adapter->rx_itr = e1000_update_itr(adapter->rx_itr, 2561 adapter->total_rx_packets, 2562 adapter->total_rx_bytes); 2563 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2564 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) 2565 adapter->rx_itr = low_latency; 2566 2567 current_itr = max(adapter->rx_itr, adapter->tx_itr); 2568 2569 /* counts and packets in update_itr are dependent on these numbers */ 2570 switch (current_itr) { 2571 case lowest_latency: 2572 new_itr = 70000; 2573 break; 2574 case low_latency: 2575 new_itr = 20000; /* aka hwitr = ~200 */ 2576 break; 2577 case bulk_latency: 2578 new_itr = 4000; 2579 break; 2580 default: 2581 break; 2582 } 2583 2584 set_itr_now: 2585 if (new_itr != adapter->itr) { 2586 /* this attempts to bias the interrupt rate towards Bulk 2587 * by adding intermediate steps when interrupt rate is 2588 * increasing 2589 */ 2590 new_itr = new_itr > adapter->itr ? 2591 min(adapter->itr + (new_itr >> 2), new_itr) : new_itr; 2592 adapter->itr = new_itr; 2593 adapter->rx_ring->itr_val = new_itr; 2594 if (adapter->msix_entries) 2595 adapter->rx_ring->set_itr = 1; 2596 else 2597 e1000e_write_itr(adapter, new_itr); 2598 } 2599 } 2600 2601 /** 2602 * e1000e_write_itr - write the ITR value to the appropriate registers 2603 * @adapter: address of board private structure 2604 * @itr: new ITR value to program 2605 * 2606 * e1000e_write_itr determines if the adapter is in MSI-X mode 2607 * and, if so, writes the EITR registers with the ITR value. 2608 * Otherwise, it writes the ITR value into the ITR register. 2609 **/ 2610 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr) 2611 { 2612 struct e1000_hw *hw = &adapter->hw; 2613 u32 new_itr = itr ? 1000000000 / (itr * 256) : 0; 2614 2615 if (adapter->msix_entries) { 2616 int vector; 2617 2618 for (vector = 0; vector < adapter->num_vectors; vector++) 2619 writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector)); 2620 } else { 2621 ew32(ITR, new_itr); 2622 } 2623 } 2624 2625 /** 2626 * e1000_alloc_queues - Allocate memory for all rings 2627 * @adapter: board private structure to initialize 2628 **/ 2629 static int e1000_alloc_queues(struct e1000_adapter *adapter) 2630 { 2631 int size = sizeof(struct e1000_ring); 2632 2633 adapter->tx_ring = kzalloc(size, GFP_KERNEL); 2634 if (!adapter->tx_ring) 2635 goto err; 2636 adapter->tx_ring->count = adapter->tx_ring_count; 2637 adapter->tx_ring->adapter = adapter; 2638 2639 adapter->rx_ring = kzalloc(size, GFP_KERNEL); 2640 if (!adapter->rx_ring) 2641 goto err; 2642 adapter->rx_ring->count = adapter->rx_ring_count; 2643 adapter->rx_ring->adapter = adapter; 2644 2645 return 0; 2646 err: 2647 e_err("Unable to allocate memory for queues\n"); 2648 kfree(adapter->rx_ring); 2649 kfree(adapter->tx_ring); 2650 return -ENOMEM; 2651 } 2652 2653 /** 2654 * e1000e_poll - NAPI Rx polling callback 2655 * @napi: struct associated with this polling callback 2656 * @budget: number of packets driver is allowed to process this poll 2657 **/ 2658 static int e1000e_poll(struct napi_struct *napi, int budget) 2659 { 2660 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, 2661 napi); 2662 struct e1000_hw *hw = &adapter->hw; 2663 struct net_device *poll_dev = adapter->netdev; 2664 int tx_cleaned = 1, work_done = 0; 2665 2666 adapter = netdev_priv(poll_dev); 2667 2668 if (!adapter->msix_entries || 2669 (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val)) 2670 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring); 2671 2672 adapter->clean_rx(adapter->rx_ring, &work_done, budget); 2673 2674 if (!tx_cleaned || work_done == budget) 2675 return budget; 2676 2677 /* Exit the polling mode, but don't re-enable interrupts if stack might 2678 * poll us due to busy-polling 2679 */ 2680 if (likely(napi_complete_done(napi, work_done))) { 2681 if (adapter->itr_setting & 3) 2682 e1000_set_itr(adapter); 2683 if (!test_bit(__E1000_DOWN, &adapter->state)) { 2684 if (adapter->msix_entries) 2685 ew32(IMS, adapter->rx_ring->ims_val); 2686 else 2687 e1000_irq_enable(adapter); 2688 } 2689 } 2690 2691 return work_done; 2692 } 2693 2694 static int e1000_vlan_rx_add_vid(struct net_device *netdev, 2695 __always_unused __be16 proto, u16 vid) 2696 { 2697 struct e1000_adapter *adapter = netdev_priv(netdev); 2698 struct e1000_hw *hw = &adapter->hw; 2699 u32 vfta, index; 2700 2701 /* don't update vlan cookie if already programmed */ 2702 if ((adapter->hw.mng_cookie.status & 2703 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && 2704 (vid == adapter->mng_vlan_id)) 2705 return 0; 2706 2707 /* add VID to filter table */ 2708 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { 2709 index = (vid >> 5) & 0x7F; 2710 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); 2711 vfta |= BIT((vid & 0x1F)); 2712 hw->mac.ops.write_vfta(hw, index, vfta); 2713 } 2714 2715 set_bit(vid, adapter->active_vlans); 2716 2717 return 0; 2718 } 2719 2720 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, 2721 __always_unused __be16 proto, u16 vid) 2722 { 2723 struct e1000_adapter *adapter = netdev_priv(netdev); 2724 struct e1000_hw *hw = &adapter->hw; 2725 u32 vfta, index; 2726 2727 if ((adapter->hw.mng_cookie.status & 2728 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && 2729 (vid == adapter->mng_vlan_id)) { 2730 /* release control to f/w */ 2731 e1000e_release_hw_control(adapter); 2732 return 0; 2733 } 2734 2735 /* remove VID from filter table */ 2736 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { 2737 index = (vid >> 5) & 0x7F; 2738 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); 2739 vfta &= ~BIT((vid & 0x1F)); 2740 hw->mac.ops.write_vfta(hw, index, vfta); 2741 } 2742 2743 clear_bit(vid, adapter->active_vlans); 2744 2745 return 0; 2746 } 2747 2748 /** 2749 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering 2750 * @adapter: board private structure to initialize 2751 **/ 2752 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter) 2753 { 2754 struct net_device *netdev = adapter->netdev; 2755 struct e1000_hw *hw = &adapter->hw; 2756 u32 rctl; 2757 2758 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { 2759 /* disable VLAN receive filtering */ 2760 rctl = er32(RCTL); 2761 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN); 2762 ew32(RCTL, rctl); 2763 2764 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) { 2765 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), 2766 adapter->mng_vlan_id); 2767 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 2768 } 2769 } 2770 } 2771 2772 /** 2773 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering 2774 * @adapter: board private structure to initialize 2775 **/ 2776 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter) 2777 { 2778 struct e1000_hw *hw = &adapter->hw; 2779 u32 rctl; 2780 2781 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { 2782 /* enable VLAN receive filtering */ 2783 rctl = er32(RCTL); 2784 rctl |= E1000_RCTL_VFE; 2785 rctl &= ~E1000_RCTL_CFIEN; 2786 ew32(RCTL, rctl); 2787 } 2788 } 2789 2790 /** 2791 * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping 2792 * @adapter: board private structure to initialize 2793 **/ 2794 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter) 2795 { 2796 struct e1000_hw *hw = &adapter->hw; 2797 u32 ctrl; 2798 2799 /* disable VLAN tag insert/strip */ 2800 ctrl = er32(CTRL); 2801 ctrl &= ~E1000_CTRL_VME; 2802 ew32(CTRL, ctrl); 2803 } 2804 2805 /** 2806 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping 2807 * @adapter: board private structure to initialize 2808 **/ 2809 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter) 2810 { 2811 struct e1000_hw *hw = &adapter->hw; 2812 u32 ctrl; 2813 2814 /* enable VLAN tag insert/strip */ 2815 ctrl = er32(CTRL); 2816 ctrl |= E1000_CTRL_VME; 2817 ew32(CTRL, ctrl); 2818 } 2819 2820 static void e1000_update_mng_vlan(struct e1000_adapter *adapter) 2821 { 2822 struct net_device *netdev = adapter->netdev; 2823 u16 vid = adapter->hw.mng_cookie.vlan_id; 2824 u16 old_vid = adapter->mng_vlan_id; 2825 2826 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { 2827 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid); 2828 adapter->mng_vlan_id = vid; 2829 } 2830 2831 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid)) 2832 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid); 2833 } 2834 2835 static void e1000_restore_vlan(struct e1000_adapter *adapter) 2836 { 2837 u16 vid; 2838 2839 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0); 2840 2841 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 2842 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); 2843 } 2844 2845 static void e1000_init_manageability_pt(struct e1000_adapter *adapter) 2846 { 2847 struct e1000_hw *hw = &adapter->hw; 2848 u32 manc, manc2h, mdef, i, j; 2849 2850 if (!(adapter->flags & FLAG_MNG_PT_ENABLED)) 2851 return; 2852 2853 manc = er32(MANC); 2854 2855 /* enable receiving management packets to the host. this will probably 2856 * generate destination unreachable messages from the host OS, but 2857 * the packets will be handled on SMBUS 2858 */ 2859 manc |= E1000_MANC_EN_MNG2HOST; 2860 manc2h = er32(MANC2H); 2861 2862 switch (hw->mac.type) { 2863 default: 2864 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664); 2865 break; 2866 case e1000_82574: 2867 case e1000_82583: 2868 /* Check if IPMI pass-through decision filter already exists; 2869 * if so, enable it. 2870 */ 2871 for (i = 0, j = 0; i < 8; i++) { 2872 mdef = er32(MDEF(i)); 2873 2874 /* Ignore filters with anything other than IPMI ports */ 2875 if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664)) 2876 continue; 2877 2878 /* Enable this decision filter in MANC2H */ 2879 if (mdef) 2880 manc2h |= BIT(i); 2881 2882 j |= mdef; 2883 } 2884 2885 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664)) 2886 break; 2887 2888 /* Create new decision filter in an empty filter */ 2889 for (i = 0, j = 0; i < 8; i++) 2890 if (er32(MDEF(i)) == 0) { 2891 ew32(MDEF(i), (E1000_MDEF_PORT_623 | 2892 E1000_MDEF_PORT_664)); 2893 manc2h |= BIT(1); 2894 j++; 2895 break; 2896 } 2897 2898 if (!j) 2899 e_warn("Unable to create IPMI pass-through filter\n"); 2900 break; 2901 } 2902 2903 ew32(MANC2H, manc2h); 2904 ew32(MANC, manc); 2905 } 2906 2907 /** 2908 * e1000_configure_tx - Configure Transmit Unit after Reset 2909 * @adapter: board private structure 2910 * 2911 * Configure the Tx unit of the MAC after a reset. 2912 **/ 2913 static void e1000_configure_tx(struct e1000_adapter *adapter) 2914 { 2915 struct e1000_hw *hw = &adapter->hw; 2916 struct e1000_ring *tx_ring = adapter->tx_ring; 2917 u64 tdba; 2918 u32 tdlen, tctl, tarc; 2919 2920 /* Setup the HW Tx Head and Tail descriptor pointers */ 2921 tdba = tx_ring->dma; 2922 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc); 2923 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32))); 2924 ew32(TDBAH(0), (tdba >> 32)); 2925 ew32(TDLEN(0), tdlen); 2926 ew32(TDH(0), 0); 2927 ew32(TDT(0), 0); 2928 tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0); 2929 tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0); 2930 2931 writel(0, tx_ring->head); 2932 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 2933 e1000e_update_tdt_wa(tx_ring, 0); 2934 else 2935 writel(0, tx_ring->tail); 2936 2937 /* Set the Tx Interrupt Delay register */ 2938 ew32(TIDV, adapter->tx_int_delay); 2939 /* Tx irq moderation */ 2940 ew32(TADV, adapter->tx_abs_int_delay); 2941 2942 if (adapter->flags2 & FLAG2_DMA_BURST) { 2943 u32 txdctl = er32(TXDCTL(0)); 2944 2945 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH | 2946 E1000_TXDCTL_WTHRESH); 2947 /* set up some performance related parameters to encourage the 2948 * hardware to use the bus more efficiently in bursts, depends 2949 * on the tx_int_delay to be enabled, 2950 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls 2951 * hthresh = 1 ==> prefetch when one or more available 2952 * pthresh = 0x1f ==> prefetch if internal cache 31 or less 2953 * BEWARE: this seems to work but should be considered first if 2954 * there are Tx hangs or other Tx related bugs 2955 */ 2956 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE; 2957 ew32(TXDCTL(0), txdctl); 2958 } 2959 /* erratum work around: set txdctl the same for both queues */ 2960 ew32(TXDCTL(1), er32(TXDCTL(0))); 2961 2962 /* Program the Transmit Control Register */ 2963 tctl = er32(TCTL); 2964 tctl &= ~E1000_TCTL_CT; 2965 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | 2966 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); 2967 2968 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) { 2969 tarc = er32(TARC(0)); 2970 /* set the speed mode bit, we'll clear it if we're not at 2971 * gigabit link later 2972 */ 2973 #define SPEED_MODE_BIT BIT(21) 2974 tarc |= SPEED_MODE_BIT; 2975 ew32(TARC(0), tarc); 2976 } 2977 2978 /* errata: program both queues to unweighted RR */ 2979 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) { 2980 tarc = er32(TARC(0)); 2981 tarc |= 1; 2982 ew32(TARC(0), tarc); 2983 tarc = er32(TARC(1)); 2984 tarc |= 1; 2985 ew32(TARC(1), tarc); 2986 } 2987 2988 /* Setup Transmit Descriptor Settings for eop descriptor */ 2989 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; 2990 2991 /* only set IDE if we are delaying interrupts using the timers */ 2992 if (adapter->tx_int_delay) 2993 adapter->txd_cmd |= E1000_TXD_CMD_IDE; 2994 2995 /* enable Report Status bit */ 2996 adapter->txd_cmd |= E1000_TXD_CMD_RS; 2997 2998 ew32(TCTL, tctl); 2999 3000 hw->mac.ops.config_collision_dist(hw); 3001 3002 /* SPT and KBL Si errata workaround to avoid data corruption */ 3003 if (hw->mac.type == e1000_pch_spt) { 3004 u32 reg_val; 3005 3006 reg_val = er32(IOSFPC); 3007 reg_val |= E1000_RCTL_RDMTS_HEX; 3008 ew32(IOSFPC, reg_val); 3009 3010 reg_val = er32(TARC(0)); 3011 /* SPT and KBL Si errata workaround to avoid Tx hang. 3012 * Dropping the number of outstanding requests from 3013 * 3 to 2 in order to avoid a buffer overrun. 3014 */ 3015 reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ; 3016 reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ; 3017 ew32(TARC(0), reg_val); 3018 } 3019 } 3020 3021 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \ 3022 (((S) & (PAGE_SIZE - 1)) ? 1 : 0)) 3023 3024 /** 3025 * e1000_setup_rctl - configure the receive control registers 3026 * @adapter: Board private structure 3027 **/ 3028 static void e1000_setup_rctl(struct e1000_adapter *adapter) 3029 { 3030 struct e1000_hw *hw = &adapter->hw; 3031 u32 rctl, rfctl; 3032 u32 pages = 0; 3033 3034 /* Workaround Si errata on PCHx - configure jumbo frame flow. 3035 * If jumbo frames not set, program related MAC/PHY registers 3036 * to h/w defaults 3037 */ 3038 if (hw->mac.type >= e1000_pch2lan) { 3039 s32 ret_val; 3040 3041 if (adapter->netdev->mtu > ETH_DATA_LEN) 3042 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true); 3043 else 3044 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false); 3045 3046 if (ret_val) 3047 e_dbg("failed to enable|disable jumbo frame workaround mode\n"); 3048 } 3049 3050 /* Program MC offset vector base */ 3051 rctl = er32(RCTL); 3052 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 3053 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | 3054 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 3055 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 3056 3057 /* Do not Store bad packets */ 3058 rctl &= ~E1000_RCTL_SBP; 3059 3060 /* Enable Long Packet receive */ 3061 if (adapter->netdev->mtu <= ETH_DATA_LEN) 3062 rctl &= ~E1000_RCTL_LPE; 3063 else 3064 rctl |= E1000_RCTL_LPE; 3065 3066 /* Some systems expect that the CRC is included in SMBUS traffic. The 3067 * hardware strips the CRC before sending to both SMBUS (BMC) and to 3068 * host memory when this is enabled 3069 */ 3070 if (adapter->flags2 & FLAG2_CRC_STRIPPING) 3071 rctl |= E1000_RCTL_SECRC; 3072 3073 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */ 3074 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) { 3075 u16 phy_data; 3076 3077 e1e_rphy(hw, PHY_REG(770, 26), &phy_data); 3078 phy_data &= 0xfff8; 3079 phy_data |= BIT(2); 3080 e1e_wphy(hw, PHY_REG(770, 26), phy_data); 3081 3082 e1e_rphy(hw, 22, &phy_data); 3083 phy_data &= 0x0fff; 3084 phy_data |= BIT(14); 3085 e1e_wphy(hw, 0x10, 0x2823); 3086 e1e_wphy(hw, 0x11, 0x0003); 3087 e1e_wphy(hw, 22, phy_data); 3088 } 3089 3090 /* Setup buffer sizes */ 3091 rctl &= ~E1000_RCTL_SZ_4096; 3092 rctl |= E1000_RCTL_BSEX; 3093 switch (adapter->rx_buffer_len) { 3094 case 2048: 3095 default: 3096 rctl |= E1000_RCTL_SZ_2048; 3097 rctl &= ~E1000_RCTL_BSEX; 3098 break; 3099 case 4096: 3100 rctl |= E1000_RCTL_SZ_4096; 3101 break; 3102 case 8192: 3103 rctl |= E1000_RCTL_SZ_8192; 3104 break; 3105 case 16384: 3106 rctl |= E1000_RCTL_SZ_16384; 3107 break; 3108 } 3109 3110 /* Enable Extended Status in all Receive Descriptors */ 3111 rfctl = er32(RFCTL); 3112 rfctl |= E1000_RFCTL_EXTEN; 3113 ew32(RFCTL, rfctl); 3114 3115 /* 82571 and greater support packet-split where the protocol 3116 * header is placed in skb->data and the packet data is 3117 * placed in pages hanging off of skb_shinfo(skb)->nr_frags. 3118 * In the case of a non-split, skb->data is linearly filled, 3119 * followed by the page buffers. Therefore, skb->data is 3120 * sized to hold the largest protocol header. 3121 * 3122 * allocations using alloc_page take too long for regular MTU 3123 * so only enable packet split for jumbo frames 3124 * 3125 * Using pages when the page size is greater than 16k wastes 3126 * a lot of memory, since we allocate 3 pages at all times 3127 * per packet. 3128 */ 3129 pages = PAGE_USE_COUNT(adapter->netdev->mtu); 3130 if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE)) 3131 adapter->rx_ps_pages = pages; 3132 else 3133 adapter->rx_ps_pages = 0; 3134 3135 if (adapter->rx_ps_pages) { 3136 u32 psrctl = 0; 3137 3138 /* Enable Packet split descriptors */ 3139 rctl |= E1000_RCTL_DTYP_PS; 3140 3141 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT; 3142 3143 switch (adapter->rx_ps_pages) { 3144 case 3: 3145 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT; 3146 fallthrough; 3147 case 2: 3148 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT; 3149 fallthrough; 3150 case 1: 3151 psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT; 3152 break; 3153 } 3154 3155 ew32(PSRCTL, psrctl); 3156 } 3157 3158 /* This is useful for sniffing bad packets. */ 3159 if (adapter->netdev->features & NETIF_F_RXALL) { 3160 /* UPE and MPE will be handled by normal PROMISC logic 3161 * in e1000e_set_rx_mode 3162 */ 3163 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ 3164 E1000_RCTL_BAM | /* RX All Bcast Pkts */ 3165 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 3166 3167 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */ 3168 E1000_RCTL_DPF | /* Allow filtered pause */ 3169 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ 3170 /* Do not mess with E1000_CTRL_VME, it affects transmit as well, 3171 * and that breaks VLANs. 3172 */ 3173 } 3174 3175 ew32(RCTL, rctl); 3176 /* just started the receive unit, no need to restart */ 3177 adapter->flags &= ~FLAG_RESTART_NOW; 3178 } 3179 3180 /** 3181 * e1000_configure_rx - Configure Receive Unit after Reset 3182 * @adapter: board private structure 3183 * 3184 * Configure the Rx unit of the MAC after a reset. 3185 **/ 3186 static void e1000_configure_rx(struct e1000_adapter *adapter) 3187 { 3188 struct e1000_hw *hw = &adapter->hw; 3189 struct e1000_ring *rx_ring = adapter->rx_ring; 3190 u64 rdba; 3191 u32 rdlen, rctl, rxcsum, ctrl_ext; 3192 3193 if (adapter->rx_ps_pages) { 3194 /* this is a 32 byte descriptor */ 3195 rdlen = rx_ring->count * 3196 sizeof(union e1000_rx_desc_packet_split); 3197 adapter->clean_rx = e1000_clean_rx_irq_ps; 3198 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps; 3199 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) { 3200 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended); 3201 adapter->clean_rx = e1000_clean_jumbo_rx_irq; 3202 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; 3203 } else { 3204 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended); 3205 adapter->clean_rx = e1000_clean_rx_irq; 3206 adapter->alloc_rx_buf = e1000_alloc_rx_buffers; 3207 } 3208 3209 /* disable receives while setting up the descriptors */ 3210 rctl = er32(RCTL); 3211 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) 3212 ew32(RCTL, rctl & ~E1000_RCTL_EN); 3213 e1e_flush(); 3214 usleep_range(10000, 11000); 3215 3216 if (adapter->flags2 & FLAG2_DMA_BURST) { 3217 /* set the writeback threshold (only takes effect if the RDTR 3218 * is set). set GRAN=1 and write back up to 0x4 worth, and 3219 * enable prefetching of 0x20 Rx descriptors 3220 * granularity = 01 3221 * wthresh = 04, 3222 * hthresh = 04, 3223 * pthresh = 0x20 3224 */ 3225 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE); 3226 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE); 3227 } 3228 3229 /* set the Receive Delay Timer Register */ 3230 ew32(RDTR, adapter->rx_int_delay); 3231 3232 /* irq moderation */ 3233 ew32(RADV, adapter->rx_abs_int_delay); 3234 if ((adapter->itr_setting != 0) && (adapter->itr != 0)) 3235 e1000e_write_itr(adapter, adapter->itr); 3236 3237 ctrl_ext = er32(CTRL_EXT); 3238 /* Auto-Mask interrupts upon ICR access */ 3239 ctrl_ext |= E1000_CTRL_EXT_IAME; 3240 ew32(IAM, 0xffffffff); 3241 ew32(CTRL_EXT, ctrl_ext); 3242 e1e_flush(); 3243 3244 /* Setup the HW Rx Head and Tail Descriptor Pointers and 3245 * the Base and Length of the Rx Descriptor Ring 3246 */ 3247 rdba = rx_ring->dma; 3248 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32))); 3249 ew32(RDBAH(0), (rdba >> 32)); 3250 ew32(RDLEN(0), rdlen); 3251 ew32(RDH(0), 0); 3252 ew32(RDT(0), 0); 3253 rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0); 3254 rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0); 3255 3256 writel(0, rx_ring->head); 3257 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 3258 e1000e_update_rdt_wa(rx_ring, 0); 3259 else 3260 writel(0, rx_ring->tail); 3261 3262 /* Enable Receive Checksum Offload for TCP and UDP */ 3263 rxcsum = er32(RXCSUM); 3264 if (adapter->netdev->features & NETIF_F_RXCSUM) 3265 rxcsum |= E1000_RXCSUM_TUOFL; 3266 else 3267 rxcsum &= ~E1000_RXCSUM_TUOFL; 3268 ew32(RXCSUM, rxcsum); 3269 3270 /* With jumbo frames, excessive C-state transition latencies result 3271 * in dropped transactions. 3272 */ 3273 if (adapter->netdev->mtu > ETH_DATA_LEN) { 3274 u32 lat = 3275 ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 - 3276 adapter->max_frame_size) * 8 / 1000; 3277 3278 if (adapter->flags & FLAG_IS_ICH) { 3279 u32 rxdctl = er32(RXDCTL(0)); 3280 3281 ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8)); 3282 } 3283 3284 dev_info(&adapter->pdev->dev, 3285 "Some CPU C-states have been disabled in order to enable jumbo frames\n"); 3286 cpu_latency_qos_update_request(&adapter->pm_qos_req, lat); 3287 } else { 3288 cpu_latency_qos_update_request(&adapter->pm_qos_req, 3289 PM_QOS_DEFAULT_VALUE); 3290 } 3291 3292 /* Enable Receives */ 3293 ew32(RCTL, rctl); 3294 } 3295 3296 /** 3297 * e1000e_write_mc_addr_list - write multicast addresses to MTA 3298 * @netdev: network interface device structure 3299 * 3300 * Writes multicast address list to the MTA hash table. 3301 * Returns: -ENOMEM on failure 3302 * 0 on no addresses written 3303 * X on writing X addresses to MTA 3304 */ 3305 static int e1000e_write_mc_addr_list(struct net_device *netdev) 3306 { 3307 struct e1000_adapter *adapter = netdev_priv(netdev); 3308 struct e1000_hw *hw = &adapter->hw; 3309 struct netdev_hw_addr *ha; 3310 u8 *mta_list; 3311 int i; 3312 3313 if (netdev_mc_empty(netdev)) { 3314 /* nothing to program, so clear mc list */ 3315 hw->mac.ops.update_mc_addr_list(hw, NULL, 0); 3316 return 0; 3317 } 3318 3319 mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC); 3320 if (!mta_list) 3321 return -ENOMEM; 3322 3323 /* update_mc_addr_list expects a packed array of only addresses. */ 3324 i = 0; 3325 netdev_for_each_mc_addr(ha, netdev) 3326 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); 3327 3328 hw->mac.ops.update_mc_addr_list(hw, mta_list, i); 3329 kfree(mta_list); 3330 3331 return netdev_mc_count(netdev); 3332 } 3333 3334 /** 3335 * e1000e_write_uc_addr_list - write unicast addresses to RAR table 3336 * @netdev: network interface device structure 3337 * 3338 * Writes unicast address list to the RAR table. 3339 * Returns: -ENOMEM on failure/insufficient address space 3340 * 0 on no addresses written 3341 * X on writing X addresses to the RAR table 3342 **/ 3343 static int e1000e_write_uc_addr_list(struct net_device *netdev) 3344 { 3345 struct e1000_adapter *adapter = netdev_priv(netdev); 3346 struct e1000_hw *hw = &adapter->hw; 3347 unsigned int rar_entries; 3348 int count = 0; 3349 3350 rar_entries = hw->mac.ops.rar_get_count(hw); 3351 3352 /* save a rar entry for our hardware address */ 3353 rar_entries--; 3354 3355 /* save a rar entry for the LAA workaround */ 3356 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) 3357 rar_entries--; 3358 3359 /* return ENOMEM indicating insufficient memory for addresses */ 3360 if (netdev_uc_count(netdev) > rar_entries) 3361 return -ENOMEM; 3362 3363 if (!netdev_uc_empty(netdev) && rar_entries) { 3364 struct netdev_hw_addr *ha; 3365 3366 /* write the addresses in reverse order to avoid write 3367 * combining 3368 */ 3369 netdev_for_each_uc_addr(ha, netdev) { 3370 int ret_val; 3371 3372 if (!rar_entries) 3373 break; 3374 ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--); 3375 if (ret_val < 0) 3376 return -ENOMEM; 3377 count++; 3378 } 3379 } 3380 3381 /* zero out the remaining RAR entries not used above */ 3382 for (; rar_entries > 0; rar_entries--) { 3383 ew32(RAH(rar_entries), 0); 3384 ew32(RAL(rar_entries), 0); 3385 } 3386 e1e_flush(); 3387 3388 return count; 3389 } 3390 3391 /** 3392 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set 3393 * @netdev: network interface device structure 3394 * 3395 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast 3396 * address list or the network interface flags are updated. This routine is 3397 * responsible for configuring the hardware for proper unicast, multicast, 3398 * promiscuous mode, and all-multi behavior. 3399 **/ 3400 static void e1000e_set_rx_mode(struct net_device *netdev) 3401 { 3402 struct e1000_adapter *adapter = netdev_priv(netdev); 3403 struct e1000_hw *hw = &adapter->hw; 3404 u32 rctl; 3405 3406 if (pm_runtime_suspended(netdev->dev.parent)) 3407 return; 3408 3409 /* Check for Promiscuous and All Multicast modes */ 3410 rctl = er32(RCTL); 3411 3412 /* clear the affected bits */ 3413 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); 3414 3415 if (netdev->flags & IFF_PROMISC) { 3416 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 3417 /* Do not hardware filter VLANs in promisc mode */ 3418 e1000e_vlan_filter_disable(adapter); 3419 } else { 3420 int count; 3421 3422 if (netdev->flags & IFF_ALLMULTI) { 3423 rctl |= E1000_RCTL_MPE; 3424 } else { 3425 /* Write addresses to the MTA, if the attempt fails 3426 * then we should just turn on promiscuous mode so 3427 * that we can at least receive multicast traffic 3428 */ 3429 count = e1000e_write_mc_addr_list(netdev); 3430 if (count < 0) 3431 rctl |= E1000_RCTL_MPE; 3432 } 3433 e1000e_vlan_filter_enable(adapter); 3434 /* Write addresses to available RAR registers, if there is not 3435 * sufficient space to store all the addresses then enable 3436 * unicast promiscuous mode 3437 */ 3438 count = e1000e_write_uc_addr_list(netdev); 3439 if (count < 0) 3440 rctl |= E1000_RCTL_UPE; 3441 } 3442 3443 ew32(RCTL, rctl); 3444 3445 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 3446 e1000e_vlan_strip_enable(adapter); 3447 else 3448 e1000e_vlan_strip_disable(adapter); 3449 } 3450 3451 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter) 3452 { 3453 struct e1000_hw *hw = &adapter->hw; 3454 u32 mrqc, rxcsum; 3455 u32 rss_key[10]; 3456 int i; 3457 3458 netdev_rss_key_fill(rss_key, sizeof(rss_key)); 3459 for (i = 0; i < 10; i++) 3460 ew32(RSSRK(i), rss_key[i]); 3461 3462 /* Direct all traffic to queue 0 */ 3463 for (i = 0; i < 32; i++) 3464 ew32(RETA(i), 0); 3465 3466 /* Disable raw packet checksumming so that RSS hash is placed in 3467 * descriptor on writeback. 3468 */ 3469 rxcsum = er32(RXCSUM); 3470 rxcsum |= E1000_RXCSUM_PCSD; 3471 3472 ew32(RXCSUM, rxcsum); 3473 3474 mrqc = (E1000_MRQC_RSS_FIELD_IPV4 | 3475 E1000_MRQC_RSS_FIELD_IPV4_TCP | 3476 E1000_MRQC_RSS_FIELD_IPV6 | 3477 E1000_MRQC_RSS_FIELD_IPV6_TCP | 3478 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX); 3479 3480 ew32(MRQC, mrqc); 3481 } 3482 3483 /** 3484 * e1000e_get_base_timinca - get default SYSTIM time increment attributes 3485 * @adapter: board private structure 3486 * @timinca: pointer to returned time increment attributes 3487 * 3488 * Get attributes for incrementing the System Time Register SYSTIML/H at 3489 * the default base frequency, and set the cyclecounter shift value. 3490 **/ 3491 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca) 3492 { 3493 struct e1000_hw *hw = &adapter->hw; 3494 u32 incvalue, incperiod, shift; 3495 3496 /* Make sure clock is enabled on I217/I218/I219 before checking 3497 * the frequency 3498 */ 3499 if ((hw->mac.type >= e1000_pch_lpt) && 3500 !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) && 3501 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) { 3502 u32 fextnvm7 = er32(FEXTNVM7); 3503 3504 if (!(fextnvm7 & BIT(0))) { 3505 ew32(FEXTNVM7, fextnvm7 | BIT(0)); 3506 e1e_flush(); 3507 } 3508 } 3509 3510 switch (hw->mac.type) { 3511 case e1000_pch2lan: 3512 /* Stable 96MHz frequency */ 3513 incperiod = INCPERIOD_96MHZ; 3514 incvalue = INCVALUE_96MHZ; 3515 shift = INCVALUE_SHIFT_96MHZ; 3516 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ; 3517 break; 3518 case e1000_pch_lpt: 3519 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) { 3520 /* Stable 96MHz frequency */ 3521 incperiod = INCPERIOD_96MHZ; 3522 incvalue = INCVALUE_96MHZ; 3523 shift = INCVALUE_SHIFT_96MHZ; 3524 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ; 3525 } else { 3526 /* Stable 25MHz frequency */ 3527 incperiod = INCPERIOD_25MHZ; 3528 incvalue = INCVALUE_25MHZ; 3529 shift = INCVALUE_SHIFT_25MHZ; 3530 adapter->cc.shift = shift; 3531 } 3532 break; 3533 case e1000_pch_spt: 3534 /* Stable 24MHz frequency */ 3535 incperiod = INCPERIOD_24MHZ; 3536 incvalue = INCVALUE_24MHZ; 3537 shift = INCVALUE_SHIFT_24MHZ; 3538 adapter->cc.shift = shift; 3539 break; 3540 case e1000_pch_cnp: 3541 case e1000_pch_tgp: 3542 case e1000_pch_adp: 3543 case e1000_pch_mtp: 3544 case e1000_pch_lnp: 3545 case e1000_pch_ptp: 3546 case e1000_pch_nvp: 3547 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) { 3548 /* Stable 24MHz frequency */ 3549 incperiod = INCPERIOD_24MHZ; 3550 incvalue = INCVALUE_24MHZ; 3551 shift = INCVALUE_SHIFT_24MHZ; 3552 adapter->cc.shift = shift; 3553 } else { 3554 /* Stable 38400KHz frequency */ 3555 incperiod = INCPERIOD_38400KHZ; 3556 incvalue = INCVALUE_38400KHZ; 3557 shift = INCVALUE_SHIFT_38400KHZ; 3558 adapter->cc.shift = shift; 3559 } 3560 break; 3561 case e1000_82574: 3562 case e1000_82583: 3563 /* Stable 25MHz frequency */ 3564 incperiod = INCPERIOD_25MHZ; 3565 incvalue = INCVALUE_25MHZ; 3566 shift = INCVALUE_SHIFT_25MHZ; 3567 adapter->cc.shift = shift; 3568 break; 3569 default: 3570 return -EINVAL; 3571 } 3572 3573 *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) | 3574 ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK)); 3575 3576 return 0; 3577 } 3578 3579 /** 3580 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable 3581 * @adapter: board private structure 3582 * @config: timestamp configuration 3583 * 3584 * Outgoing time stamping can be enabled and disabled. Play nice and 3585 * disable it when requested, although it shouldn't cause any overhead 3586 * when no packet needs it. At most one packet in the queue may be 3587 * marked for time stamping, otherwise it would be impossible to tell 3588 * for sure to which packet the hardware time stamp belongs. 3589 * 3590 * Incoming time stamping has to be configured via the hardware filters. 3591 * Not all combinations are supported, in particular event type has to be 3592 * specified. Matching the kind of event packet is not supported, with the 3593 * exception of "all V2 events regardless of level 2 or 4". 3594 **/ 3595 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter, 3596 struct hwtstamp_config *config) 3597 { 3598 struct e1000_hw *hw = &adapter->hw; 3599 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED; 3600 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED; 3601 u32 rxmtrl = 0; 3602 u16 rxudp = 0; 3603 bool is_l4 = false; 3604 bool is_l2 = false; 3605 u32 regval; 3606 3607 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP)) 3608 return -EINVAL; 3609 3610 switch (config->tx_type) { 3611 case HWTSTAMP_TX_OFF: 3612 tsync_tx_ctl = 0; 3613 break; 3614 case HWTSTAMP_TX_ON: 3615 break; 3616 default: 3617 return -ERANGE; 3618 } 3619 3620 switch (config->rx_filter) { 3621 case HWTSTAMP_FILTER_NONE: 3622 tsync_rx_ctl = 0; 3623 break; 3624 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 3625 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; 3626 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE; 3627 is_l4 = true; 3628 break; 3629 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 3630 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; 3631 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE; 3632 is_l4 = true; 3633 break; 3634 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 3635 /* Also time stamps V2 L2 Path Delay Request/Response */ 3636 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2; 3637 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE; 3638 is_l2 = true; 3639 break; 3640 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 3641 /* Also time stamps V2 L2 Path Delay Request/Response. */ 3642 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2; 3643 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE; 3644 is_l2 = true; 3645 break; 3646 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 3647 /* Hardware cannot filter just V2 L4 Sync messages */ 3648 fallthrough; 3649 case HWTSTAMP_FILTER_PTP_V2_SYNC: 3650 /* Also time stamps V2 Path Delay Request/Response. */ 3651 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2; 3652 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE; 3653 is_l2 = true; 3654 is_l4 = true; 3655 break; 3656 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 3657 /* Hardware cannot filter just V2 L4 Delay Request messages */ 3658 fallthrough; 3659 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 3660 /* Also time stamps V2 Path Delay Request/Response. */ 3661 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2; 3662 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE; 3663 is_l2 = true; 3664 is_l4 = true; 3665 break; 3666 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 3667 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 3668 /* Hardware cannot filter just V2 L4 or L2 Event messages */ 3669 fallthrough; 3670 case HWTSTAMP_FILTER_PTP_V2_EVENT: 3671 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2; 3672 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 3673 is_l2 = true; 3674 is_l4 = true; 3675 break; 3676 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 3677 /* For V1, the hardware can only filter Sync messages or 3678 * Delay Request messages but not both so fall-through to 3679 * time stamp all packets. 3680 */ 3681 fallthrough; 3682 case HWTSTAMP_FILTER_NTP_ALL: 3683 case HWTSTAMP_FILTER_ALL: 3684 is_l2 = true; 3685 is_l4 = true; 3686 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL; 3687 config->rx_filter = HWTSTAMP_FILTER_ALL; 3688 break; 3689 default: 3690 return -ERANGE; 3691 } 3692 3693 adapter->hwtstamp_config = *config; 3694 3695 /* enable/disable Tx h/w time stamping */ 3696 regval = er32(TSYNCTXCTL); 3697 regval &= ~E1000_TSYNCTXCTL_ENABLED; 3698 regval |= tsync_tx_ctl; 3699 ew32(TSYNCTXCTL, regval); 3700 if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) != 3701 (regval & E1000_TSYNCTXCTL_ENABLED)) { 3702 e_err("Timesync Tx Control register not set as expected\n"); 3703 return -EAGAIN; 3704 } 3705 3706 /* enable/disable Rx h/w time stamping */ 3707 regval = er32(TSYNCRXCTL); 3708 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK); 3709 regval |= tsync_rx_ctl; 3710 ew32(TSYNCRXCTL, regval); 3711 if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED | 3712 E1000_TSYNCRXCTL_TYPE_MASK)) != 3713 (regval & (E1000_TSYNCRXCTL_ENABLED | 3714 E1000_TSYNCRXCTL_TYPE_MASK))) { 3715 e_err("Timesync Rx Control register not set as expected\n"); 3716 return -EAGAIN; 3717 } 3718 3719 /* L2: define ethertype filter for time stamped packets */ 3720 if (is_l2) 3721 rxmtrl |= ETH_P_1588; 3722 3723 /* define which PTP packets get time stamped */ 3724 ew32(RXMTRL, rxmtrl); 3725 3726 /* Filter by destination port */ 3727 if (is_l4) { 3728 rxudp = PTP_EV_PORT; 3729 cpu_to_be16s(&rxudp); 3730 } 3731 ew32(RXUDP, rxudp); 3732 3733 e1e_flush(); 3734 3735 /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */ 3736 er32(RXSTMPH); 3737 er32(TXSTMPH); 3738 3739 return 0; 3740 } 3741 3742 /** 3743 * e1000_configure - configure the hardware for Rx and Tx 3744 * @adapter: private board structure 3745 **/ 3746 static void e1000_configure(struct e1000_adapter *adapter) 3747 { 3748 struct e1000_ring *rx_ring = adapter->rx_ring; 3749 3750 e1000e_set_rx_mode(adapter->netdev); 3751 3752 e1000_restore_vlan(adapter); 3753 e1000_init_manageability_pt(adapter); 3754 3755 e1000_configure_tx(adapter); 3756 3757 if (adapter->netdev->features & NETIF_F_RXHASH) 3758 e1000e_setup_rss_hash(adapter); 3759 e1000_setup_rctl(adapter); 3760 e1000_configure_rx(adapter); 3761 adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL); 3762 } 3763 3764 /** 3765 * e1000e_power_up_phy - restore link in case the phy was powered down 3766 * @adapter: address of board private structure 3767 * 3768 * The phy may be powered down to save power and turn off link when the 3769 * driver is unloaded and wake on lan is not enabled (among others) 3770 * *** this routine MUST be followed by a call to e1000e_reset *** 3771 **/ 3772 void e1000e_power_up_phy(struct e1000_adapter *adapter) 3773 { 3774 if (adapter->hw.phy.ops.power_up) 3775 adapter->hw.phy.ops.power_up(&adapter->hw); 3776 3777 adapter->hw.mac.ops.setup_link(&adapter->hw); 3778 } 3779 3780 /** 3781 * e1000_power_down_phy - Power down the PHY 3782 * @adapter: board private structure 3783 * 3784 * Power down the PHY so no link is implied when interface is down. 3785 * The PHY cannot be powered down if management or WoL is active. 3786 */ 3787 static void e1000_power_down_phy(struct e1000_adapter *adapter) 3788 { 3789 if (adapter->hw.phy.ops.power_down) 3790 adapter->hw.phy.ops.power_down(&adapter->hw); 3791 } 3792 3793 /** 3794 * e1000_flush_tx_ring - remove all descriptors from the tx_ring 3795 * @adapter: board private structure 3796 * 3797 * We want to clear all pending descriptors from the TX ring. 3798 * zeroing happens when the HW reads the regs. We assign the ring itself as 3799 * the data of the next descriptor. We don't care about the data we are about 3800 * to reset the HW. 3801 */ 3802 static void e1000_flush_tx_ring(struct e1000_adapter *adapter) 3803 { 3804 struct e1000_hw *hw = &adapter->hw; 3805 struct e1000_ring *tx_ring = adapter->tx_ring; 3806 struct e1000_tx_desc *tx_desc = NULL; 3807 u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS; 3808 u16 size = 512; 3809 3810 tctl = er32(TCTL); 3811 ew32(TCTL, tctl | E1000_TCTL_EN); 3812 tdt = er32(TDT(0)); 3813 BUG_ON(tdt != tx_ring->next_to_use); 3814 tx_desc = E1000_TX_DESC(*tx_ring, tx_ring->next_to_use); 3815 tx_desc->buffer_addr = cpu_to_le64(tx_ring->dma); 3816 3817 tx_desc->lower.data = cpu_to_le32(txd_lower | size); 3818 tx_desc->upper.data = 0; 3819 /* flush descriptors to memory before notifying the HW */ 3820 wmb(); 3821 tx_ring->next_to_use++; 3822 if (tx_ring->next_to_use == tx_ring->count) 3823 tx_ring->next_to_use = 0; 3824 ew32(TDT(0), tx_ring->next_to_use); 3825 usleep_range(200, 250); 3826 } 3827 3828 /** 3829 * e1000_flush_rx_ring - remove all descriptors from the rx_ring 3830 * @adapter: board private structure 3831 * 3832 * Mark all descriptors in the RX ring as consumed and disable the rx ring 3833 */ 3834 static void e1000_flush_rx_ring(struct e1000_adapter *adapter) 3835 { 3836 u32 rctl, rxdctl; 3837 struct e1000_hw *hw = &adapter->hw; 3838 3839 rctl = er32(RCTL); 3840 ew32(RCTL, rctl & ~E1000_RCTL_EN); 3841 e1e_flush(); 3842 usleep_range(100, 150); 3843 3844 rxdctl = er32(RXDCTL(0)); 3845 /* zero the lower 14 bits (prefetch and host thresholds) */ 3846 rxdctl &= 0xffffc000; 3847 3848 /* update thresholds: prefetch threshold to 31, host threshold to 1 3849 * and make sure the granularity is "descriptors" and not "cache lines" 3850 */ 3851 rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC); 3852 3853 ew32(RXDCTL(0), rxdctl); 3854 /* momentarily enable the RX ring for the changes to take effect */ 3855 ew32(RCTL, rctl | E1000_RCTL_EN); 3856 e1e_flush(); 3857 usleep_range(100, 150); 3858 ew32(RCTL, rctl & ~E1000_RCTL_EN); 3859 } 3860 3861 /** 3862 * e1000_flush_desc_rings - remove all descriptors from the descriptor rings 3863 * @adapter: board private structure 3864 * 3865 * In i219, the descriptor rings must be emptied before resetting the HW 3866 * or before changing the device state to D3 during runtime (runtime PM). 3867 * 3868 * Failure to do this will cause the HW to enter a unit hang state which can 3869 * only be released by PCI reset on the device 3870 * 3871 */ 3872 3873 static void e1000_flush_desc_rings(struct e1000_adapter *adapter) 3874 { 3875 u16 hang_state; 3876 u32 fext_nvm11, tdlen; 3877 struct e1000_hw *hw = &adapter->hw; 3878 3879 /* First, disable MULR fix in FEXTNVM11 */ 3880 fext_nvm11 = er32(FEXTNVM11); 3881 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX; 3882 ew32(FEXTNVM11, fext_nvm11); 3883 /* do nothing if we're not in faulty state, or if the queue is empty */ 3884 tdlen = er32(TDLEN(0)); 3885 pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS, 3886 &hang_state); 3887 if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen) 3888 return; 3889 e1000_flush_tx_ring(adapter); 3890 /* recheck, maybe the fault is caused by the rx ring */ 3891 pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS, 3892 &hang_state); 3893 if (hang_state & FLUSH_DESC_REQUIRED) 3894 e1000_flush_rx_ring(adapter); 3895 } 3896 3897 /** 3898 * e1000e_systim_reset - reset the timesync registers after a hardware reset 3899 * @adapter: board private structure 3900 * 3901 * When the MAC is reset, all hardware bits for timesync will be reset to the 3902 * default values. This function will restore the settings last in place. 3903 * Since the clock SYSTIME registers are reset, we will simply restore the 3904 * cyclecounter to the kernel real clock time. 3905 **/ 3906 static void e1000e_systim_reset(struct e1000_adapter *adapter) 3907 { 3908 struct ptp_clock_info *info = &adapter->ptp_clock_info; 3909 struct e1000_hw *hw = &adapter->hw; 3910 unsigned long flags; 3911 u32 timinca; 3912 s32 ret_val; 3913 3914 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP)) 3915 return; 3916 3917 if (info->adjfine) { 3918 /* restore the previous ptp frequency delta */ 3919 ret_val = info->adjfine(info, adapter->ptp_delta); 3920 } else { 3921 /* set the default base frequency if no adjustment possible */ 3922 ret_val = e1000e_get_base_timinca(adapter, &timinca); 3923 if (!ret_val) 3924 ew32(TIMINCA, timinca); 3925 } 3926 3927 if (ret_val) { 3928 dev_warn(&adapter->pdev->dev, 3929 "Failed to restore TIMINCA clock rate delta: %d\n", 3930 ret_val); 3931 return; 3932 } 3933 3934 /* reset the systim ns time counter */ 3935 spin_lock_irqsave(&adapter->systim_lock, flags); 3936 timecounter_init(&adapter->tc, &adapter->cc, 3937 ktime_to_ns(ktime_get_real())); 3938 spin_unlock_irqrestore(&adapter->systim_lock, flags); 3939 3940 /* restore the previous hwtstamp configuration settings */ 3941 e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config); 3942 } 3943 3944 /** 3945 * e1000e_reset - bring the hardware into a known good state 3946 * @adapter: board private structure 3947 * 3948 * This function boots the hardware and enables some settings that 3949 * require a configuration cycle of the hardware - those cannot be 3950 * set/changed during runtime. After reset the device needs to be 3951 * properly configured for Rx, Tx etc. 3952 */ 3953 void e1000e_reset(struct e1000_adapter *adapter) 3954 { 3955 struct e1000_mac_info *mac = &adapter->hw.mac; 3956 struct e1000_fc_info *fc = &adapter->hw.fc; 3957 struct e1000_hw *hw = &adapter->hw; 3958 u32 tx_space, min_tx_space, min_rx_space; 3959 u32 pba = adapter->pba; 3960 u16 hwm; 3961 3962 /* reset Packet Buffer Allocation to default */ 3963 ew32(PBA, pba); 3964 3965 if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) { 3966 /* To maintain wire speed transmits, the Tx FIFO should be 3967 * large enough to accommodate two full transmit packets, 3968 * rounded up to the next 1KB and expressed in KB. Likewise, 3969 * the Rx FIFO should be large enough to accommodate at least 3970 * one full receive packet and is similarly rounded up and 3971 * expressed in KB. 3972 */ 3973 pba = er32(PBA); 3974 /* upper 16 bits has Tx packet buffer allocation size in KB */ 3975 tx_space = pba >> 16; 3976 /* lower 16 bits has Rx packet buffer allocation size in KB */ 3977 pba &= 0xffff; 3978 /* the Tx fifo also stores 16 bytes of information about the Tx 3979 * but don't include ethernet FCS because hardware appends it 3980 */ 3981 min_tx_space = (adapter->max_frame_size + 3982 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2; 3983 min_tx_space = ALIGN(min_tx_space, 1024); 3984 min_tx_space >>= 10; 3985 /* software strips receive CRC, so leave room for it */ 3986 min_rx_space = adapter->max_frame_size; 3987 min_rx_space = ALIGN(min_rx_space, 1024); 3988 min_rx_space >>= 10; 3989 3990 /* If current Tx allocation is less than the min Tx FIFO size, 3991 * and the min Tx FIFO size is less than the current Rx FIFO 3992 * allocation, take space away from current Rx allocation 3993 */ 3994 if ((tx_space < min_tx_space) && 3995 ((min_tx_space - tx_space) < pba)) { 3996 pba -= min_tx_space - tx_space; 3997 3998 /* if short on Rx space, Rx wins and must trump Tx 3999 * adjustment 4000 */ 4001 if (pba < min_rx_space) 4002 pba = min_rx_space; 4003 } 4004 4005 ew32(PBA, pba); 4006 } 4007 4008 /* flow control settings 4009 * 4010 * The high water mark must be low enough to fit one full frame 4011 * (or the size used for early receive) above it in the Rx FIFO. 4012 * Set it to the lower of: 4013 * - 90% of the Rx FIFO size, and 4014 * - the full Rx FIFO size minus one full frame 4015 */ 4016 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME) 4017 fc->pause_time = 0xFFFF; 4018 else 4019 fc->pause_time = E1000_FC_PAUSE_TIME; 4020 fc->send_xon = true; 4021 fc->current_mode = fc->requested_mode; 4022 4023 switch (hw->mac.type) { 4024 case e1000_ich9lan: 4025 case e1000_ich10lan: 4026 if (adapter->netdev->mtu > ETH_DATA_LEN) { 4027 pba = 14; 4028 ew32(PBA, pba); 4029 fc->high_water = 0x2800; 4030 fc->low_water = fc->high_water - 8; 4031 break; 4032 } 4033 fallthrough; 4034 default: 4035 hwm = min(((pba << 10) * 9 / 10), 4036 ((pba << 10) - adapter->max_frame_size)); 4037 4038 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */ 4039 fc->low_water = fc->high_water - 8; 4040 break; 4041 case e1000_pchlan: 4042 /* Workaround PCH LOM adapter hangs with certain network 4043 * loads. If hangs persist, try disabling Tx flow control. 4044 */ 4045 if (adapter->netdev->mtu > ETH_DATA_LEN) { 4046 fc->high_water = 0x3500; 4047 fc->low_water = 0x1500; 4048 } else { 4049 fc->high_water = 0x5000; 4050 fc->low_water = 0x3000; 4051 } 4052 fc->refresh_time = 0x1000; 4053 break; 4054 case e1000_pch2lan: 4055 case e1000_pch_lpt: 4056 case e1000_pch_spt: 4057 case e1000_pch_cnp: 4058 case e1000_pch_tgp: 4059 case e1000_pch_adp: 4060 case e1000_pch_mtp: 4061 case e1000_pch_lnp: 4062 case e1000_pch_ptp: 4063 case e1000_pch_nvp: 4064 fc->refresh_time = 0xFFFF; 4065 fc->pause_time = 0xFFFF; 4066 4067 if (adapter->netdev->mtu <= ETH_DATA_LEN) { 4068 fc->high_water = 0x05C20; 4069 fc->low_water = 0x05048; 4070 break; 4071 } 4072 4073 pba = 14; 4074 ew32(PBA, pba); 4075 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH; 4076 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL; 4077 break; 4078 } 4079 4080 /* Alignment of Tx data is on an arbitrary byte boundary with the 4081 * maximum size per Tx descriptor limited only to the transmit 4082 * allocation of the packet buffer minus 96 bytes with an upper 4083 * limit of 24KB due to receive synchronization limitations. 4084 */ 4085 adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96, 4086 24 << 10); 4087 4088 /* Disable Adaptive Interrupt Moderation if 2 full packets cannot 4089 * fit in receive buffer. 4090 */ 4091 if (adapter->itr_setting & 0x3) { 4092 if ((adapter->max_frame_size * 2) > (pba << 10)) { 4093 if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) { 4094 dev_info(&adapter->pdev->dev, 4095 "Interrupt Throttle Rate off\n"); 4096 adapter->flags2 |= FLAG2_DISABLE_AIM; 4097 e1000e_write_itr(adapter, 0); 4098 } 4099 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) { 4100 dev_info(&adapter->pdev->dev, 4101 "Interrupt Throttle Rate on\n"); 4102 adapter->flags2 &= ~FLAG2_DISABLE_AIM; 4103 adapter->itr = 20000; 4104 e1000e_write_itr(adapter, adapter->itr); 4105 } 4106 } 4107 4108 if (hw->mac.type >= e1000_pch_spt) 4109 e1000_flush_desc_rings(adapter); 4110 /* Allow time for pending master requests to run */ 4111 mac->ops.reset_hw(hw); 4112 4113 /* For parts with AMT enabled, let the firmware know 4114 * that the network interface is in control 4115 */ 4116 if (adapter->flags & FLAG_HAS_AMT) 4117 e1000e_get_hw_control(adapter); 4118 4119 ew32(WUC, 0); 4120 4121 if (mac->ops.init_hw(hw)) 4122 e_err("Hardware Error\n"); 4123 4124 e1000_update_mng_vlan(adapter); 4125 4126 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ 4127 ew32(VET, ETH_P_8021Q); 4128 4129 e1000e_reset_adaptive(hw); 4130 4131 /* restore systim and hwtstamp settings */ 4132 e1000e_systim_reset(adapter); 4133 4134 /* Set EEE advertisement as appropriate */ 4135 if (adapter->flags2 & FLAG2_HAS_EEE) { 4136 s32 ret_val; 4137 u16 adv_addr; 4138 4139 switch (hw->phy.type) { 4140 case e1000_phy_82579: 4141 adv_addr = I82579_EEE_ADVERTISEMENT; 4142 break; 4143 case e1000_phy_i217: 4144 adv_addr = I217_EEE_ADVERTISEMENT; 4145 break; 4146 default: 4147 dev_err(&adapter->pdev->dev, 4148 "Invalid PHY type setting EEE advertisement\n"); 4149 return; 4150 } 4151 4152 ret_val = hw->phy.ops.acquire(hw); 4153 if (ret_val) { 4154 dev_err(&adapter->pdev->dev, 4155 "EEE advertisement - unable to acquire PHY\n"); 4156 return; 4157 } 4158 4159 e1000_write_emi_reg_locked(hw, adv_addr, 4160 hw->dev_spec.ich8lan.eee_disable ? 4161 0 : adapter->eee_advert); 4162 4163 hw->phy.ops.release(hw); 4164 } 4165 4166 if (!netif_running(adapter->netdev) && 4167 !test_bit(__E1000_TESTING, &adapter->state)) 4168 e1000_power_down_phy(adapter); 4169 4170 e1000_get_phy_info(hw); 4171 4172 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) && 4173 !(adapter->flags & FLAG_SMART_POWER_DOWN)) { 4174 u16 phy_data = 0; 4175 /* speed up time to link by disabling smart power down, ignore 4176 * the return value of this function because there is nothing 4177 * different we would do if it failed 4178 */ 4179 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); 4180 phy_data &= ~IGP02E1000_PM_SPD; 4181 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); 4182 } 4183 if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) { 4184 u32 reg; 4185 4186 /* Fextnvm7 @ 0xe4[2] = 1 */ 4187 reg = er32(FEXTNVM7); 4188 reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE; 4189 ew32(FEXTNVM7, reg); 4190 /* Fextnvm9 @ 0x5bb4[13:12] = 11 */ 4191 reg = er32(FEXTNVM9); 4192 reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS | 4193 E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS; 4194 ew32(FEXTNVM9, reg); 4195 } 4196 4197 } 4198 4199 /** 4200 * e1000e_trigger_lsc - trigger an LSC interrupt 4201 * @adapter: board private structure 4202 * 4203 * Fire a link status change interrupt to start the watchdog. 4204 **/ 4205 static void e1000e_trigger_lsc(struct e1000_adapter *adapter) 4206 { 4207 struct e1000_hw *hw = &adapter->hw; 4208 4209 if (adapter->msix_entries) 4210 ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER); 4211 else 4212 ew32(ICS, E1000_ICS_LSC); 4213 } 4214 4215 void e1000e_up(struct e1000_adapter *adapter) 4216 { 4217 /* hardware has been reset, we need to reload some things */ 4218 e1000_configure(adapter); 4219 4220 clear_bit(__E1000_DOWN, &adapter->state); 4221 4222 if (adapter->msix_entries) 4223 e1000_configure_msix(adapter); 4224 e1000_irq_enable(adapter); 4225 4226 /* Tx queue started by watchdog timer when link is up */ 4227 4228 e1000e_trigger_lsc(adapter); 4229 } 4230 4231 static void e1000e_flush_descriptors(struct e1000_adapter *adapter) 4232 { 4233 struct e1000_hw *hw = &adapter->hw; 4234 4235 if (!(adapter->flags2 & FLAG2_DMA_BURST)) 4236 return; 4237 4238 /* flush pending descriptor writebacks to memory */ 4239 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); 4240 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD); 4241 4242 /* execute the writes immediately */ 4243 e1e_flush(); 4244 4245 /* due to rare timing issues, write to TIDV/RDTR again to ensure the 4246 * write is successful 4247 */ 4248 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); 4249 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD); 4250 4251 /* execute the writes immediately */ 4252 e1e_flush(); 4253 } 4254 4255 static void e1000e_update_stats(struct e1000_adapter *adapter); 4256 4257 /** 4258 * e1000e_down - quiesce the device and optionally reset the hardware 4259 * @adapter: board private structure 4260 * @reset: boolean flag to reset the hardware or not 4261 */ 4262 void e1000e_down(struct e1000_adapter *adapter, bool reset) 4263 { 4264 struct net_device *netdev = adapter->netdev; 4265 struct e1000_hw *hw = &adapter->hw; 4266 u32 tctl, rctl; 4267 4268 /* signal that we're down so the interrupt handler does not 4269 * reschedule our watchdog timer 4270 */ 4271 set_bit(__E1000_DOWN, &adapter->state); 4272 4273 netif_carrier_off(netdev); 4274 4275 /* disable receives in the hardware */ 4276 rctl = er32(RCTL); 4277 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) 4278 ew32(RCTL, rctl & ~E1000_RCTL_EN); 4279 /* flush and sleep below */ 4280 4281 netif_stop_queue(netdev); 4282 4283 /* disable transmits in the hardware */ 4284 tctl = er32(TCTL); 4285 tctl &= ~E1000_TCTL_EN; 4286 ew32(TCTL, tctl); 4287 4288 /* flush both disables and wait for them to finish */ 4289 e1e_flush(); 4290 usleep_range(10000, 11000); 4291 4292 e1000_irq_disable(adapter); 4293 4294 napi_synchronize(&adapter->napi); 4295 4296 del_timer_sync(&adapter->watchdog_timer); 4297 del_timer_sync(&adapter->phy_info_timer); 4298 4299 spin_lock(&adapter->stats64_lock); 4300 e1000e_update_stats(adapter); 4301 spin_unlock(&adapter->stats64_lock); 4302 4303 e1000e_flush_descriptors(adapter); 4304 4305 adapter->link_speed = 0; 4306 adapter->link_duplex = 0; 4307 4308 /* Disable Si errata workaround on PCHx for jumbo frame flow */ 4309 if ((hw->mac.type >= e1000_pch2lan) && 4310 (adapter->netdev->mtu > ETH_DATA_LEN) && 4311 e1000_lv_jumbo_workaround_ich8lan(hw, false)) 4312 e_dbg("failed to disable jumbo frame workaround mode\n"); 4313 4314 if (!pci_channel_offline(adapter->pdev)) { 4315 if (reset) 4316 e1000e_reset(adapter); 4317 else if (hw->mac.type >= e1000_pch_spt) 4318 e1000_flush_desc_rings(adapter); 4319 } 4320 e1000_clean_tx_ring(adapter->tx_ring); 4321 e1000_clean_rx_ring(adapter->rx_ring); 4322 } 4323 4324 void e1000e_reinit_locked(struct e1000_adapter *adapter) 4325 { 4326 might_sleep(); 4327 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 4328 usleep_range(1000, 1100); 4329 e1000e_down(adapter, true); 4330 e1000e_up(adapter); 4331 clear_bit(__E1000_RESETTING, &adapter->state); 4332 } 4333 4334 /** 4335 * e1000e_sanitize_systim - sanitize raw cycle counter reads 4336 * @hw: pointer to the HW structure 4337 * @systim: PHC time value read, sanitized and returned 4338 * @sts: structure to hold system time before and after reading SYSTIML, 4339 * may be NULL 4340 * 4341 * Errata for 82574/82583 possible bad bits read from SYSTIMH/L: 4342 * check to see that the time is incrementing at a reasonable 4343 * rate and is a multiple of incvalue. 4344 **/ 4345 static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim, 4346 struct ptp_system_timestamp *sts) 4347 { 4348 u64 time_delta, rem, temp; 4349 u64 systim_next; 4350 u32 incvalue; 4351 int i; 4352 4353 incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK; 4354 for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) { 4355 /* latch SYSTIMH on read of SYSTIML */ 4356 ptp_read_system_prets(sts); 4357 systim_next = (u64)er32(SYSTIML); 4358 ptp_read_system_postts(sts); 4359 systim_next |= (u64)er32(SYSTIMH) << 32; 4360 4361 time_delta = systim_next - systim; 4362 temp = time_delta; 4363 /* VMWare users have seen incvalue of zero, don't div / 0 */ 4364 rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0); 4365 4366 systim = systim_next; 4367 4368 if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0)) 4369 break; 4370 } 4371 4372 return systim; 4373 } 4374 4375 /** 4376 * e1000e_read_systim - read SYSTIM register 4377 * @adapter: board private structure 4378 * @sts: structure which will contain system time before and after reading 4379 * SYSTIML, may be NULL 4380 **/ 4381 u64 e1000e_read_systim(struct e1000_adapter *adapter, 4382 struct ptp_system_timestamp *sts) 4383 { 4384 struct e1000_hw *hw = &adapter->hw; 4385 u32 systimel, systimel_2, systimeh; 4386 u64 systim; 4387 /* SYSTIMH latching upon SYSTIML read does not work well. 4388 * This means that if SYSTIML overflows after we read it but before 4389 * we read SYSTIMH, the value of SYSTIMH has been incremented and we 4390 * will experience a huge non linear increment in the systime value 4391 * to fix that we test for overflow and if true, we re-read systime. 4392 */ 4393 ptp_read_system_prets(sts); 4394 systimel = er32(SYSTIML); 4395 ptp_read_system_postts(sts); 4396 systimeh = er32(SYSTIMH); 4397 /* Is systimel is so large that overflow is possible? */ 4398 if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) { 4399 ptp_read_system_prets(sts); 4400 systimel_2 = er32(SYSTIML); 4401 ptp_read_system_postts(sts); 4402 if (systimel > systimel_2) { 4403 /* There was an overflow, read again SYSTIMH, and use 4404 * systimel_2 4405 */ 4406 systimeh = er32(SYSTIMH); 4407 systimel = systimel_2; 4408 } 4409 } 4410 systim = (u64)systimel; 4411 systim |= (u64)systimeh << 32; 4412 4413 if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW) 4414 systim = e1000e_sanitize_systim(hw, systim, sts); 4415 4416 return systim; 4417 } 4418 4419 /** 4420 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter) 4421 * @cc: cyclecounter structure 4422 **/ 4423 static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc) 4424 { 4425 struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter, 4426 cc); 4427 4428 return e1000e_read_systim(adapter, NULL); 4429 } 4430 4431 /** 4432 * e1000_sw_init - Initialize general software structures (struct e1000_adapter) 4433 * @adapter: board private structure to initialize 4434 * 4435 * e1000_sw_init initializes the Adapter private data structure. 4436 * Fields are initialized based on PCI device information and 4437 * OS network device settings (MTU size). 4438 **/ 4439 static int e1000_sw_init(struct e1000_adapter *adapter) 4440 { 4441 struct net_device *netdev = adapter->netdev; 4442 4443 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN; 4444 adapter->rx_ps_bsize0 = 128; 4445 adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN; 4446 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 4447 adapter->tx_ring_count = E1000_DEFAULT_TXD; 4448 adapter->rx_ring_count = E1000_DEFAULT_RXD; 4449 4450 spin_lock_init(&adapter->stats64_lock); 4451 4452 e1000e_set_interrupt_capability(adapter); 4453 4454 if (e1000_alloc_queues(adapter)) 4455 return -ENOMEM; 4456 4457 /* Setup hardware time stamping cyclecounter */ 4458 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) { 4459 adapter->cc.read = e1000e_cyclecounter_read; 4460 adapter->cc.mask = CYCLECOUNTER_MASK(64); 4461 adapter->cc.mult = 1; 4462 /* cc.shift set in e1000e_get_base_tininca() */ 4463 4464 spin_lock_init(&adapter->systim_lock); 4465 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work); 4466 } 4467 4468 /* Explicitly disable IRQ since the NIC can be in any state. */ 4469 e1000_irq_disable(adapter); 4470 4471 set_bit(__E1000_DOWN, &adapter->state); 4472 return 0; 4473 } 4474 4475 /** 4476 * e1000_intr_msi_test - Interrupt Handler 4477 * @irq: interrupt number 4478 * @data: pointer to a network interface device structure 4479 **/ 4480 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data) 4481 { 4482 struct net_device *netdev = data; 4483 struct e1000_adapter *adapter = netdev_priv(netdev); 4484 struct e1000_hw *hw = &adapter->hw; 4485 u32 icr = er32(ICR); 4486 4487 e_dbg("icr is %08X\n", icr); 4488 if (icr & E1000_ICR_RXSEQ) { 4489 adapter->flags &= ~FLAG_MSI_TEST_FAILED; 4490 /* Force memory writes to complete before acknowledging the 4491 * interrupt is handled. 4492 */ 4493 wmb(); 4494 } 4495 4496 return IRQ_HANDLED; 4497 } 4498 4499 /** 4500 * e1000_test_msi_interrupt - Returns 0 for successful test 4501 * @adapter: board private struct 4502 * 4503 * code flow taken from tg3.c 4504 **/ 4505 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter) 4506 { 4507 struct net_device *netdev = adapter->netdev; 4508 struct e1000_hw *hw = &adapter->hw; 4509 int err; 4510 4511 /* poll_enable hasn't been called yet, so don't need disable */ 4512 /* clear any pending events */ 4513 er32(ICR); 4514 4515 /* free the real vector and request a test handler */ 4516 e1000_free_irq(adapter); 4517 e1000e_reset_interrupt_capability(adapter); 4518 4519 /* Assume that the test fails, if it succeeds then the test 4520 * MSI irq handler will unset this flag 4521 */ 4522 adapter->flags |= FLAG_MSI_TEST_FAILED; 4523 4524 err = pci_enable_msi(adapter->pdev); 4525 if (err) 4526 goto msi_test_failed; 4527 4528 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0, 4529 netdev->name, netdev); 4530 if (err) { 4531 pci_disable_msi(adapter->pdev); 4532 goto msi_test_failed; 4533 } 4534 4535 /* Force memory writes to complete before enabling and firing an 4536 * interrupt. 4537 */ 4538 wmb(); 4539 4540 e1000_irq_enable(adapter); 4541 4542 /* fire an unusual interrupt on the test handler */ 4543 ew32(ICS, E1000_ICS_RXSEQ); 4544 e1e_flush(); 4545 msleep(100); 4546 4547 e1000_irq_disable(adapter); 4548 4549 rmb(); /* read flags after interrupt has been fired */ 4550 4551 if (adapter->flags & FLAG_MSI_TEST_FAILED) { 4552 adapter->int_mode = E1000E_INT_MODE_LEGACY; 4553 e_info("MSI interrupt test failed, using legacy interrupt.\n"); 4554 } else { 4555 e_dbg("MSI interrupt test succeeded!\n"); 4556 } 4557 4558 free_irq(adapter->pdev->irq, netdev); 4559 pci_disable_msi(adapter->pdev); 4560 4561 msi_test_failed: 4562 e1000e_set_interrupt_capability(adapter); 4563 return e1000_request_irq(adapter); 4564 } 4565 4566 /** 4567 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored 4568 * @adapter: board private struct 4569 * 4570 * code flow taken from tg3.c, called with e1000 interrupts disabled. 4571 **/ 4572 static int e1000_test_msi(struct e1000_adapter *adapter) 4573 { 4574 int err; 4575 u16 pci_cmd; 4576 4577 if (!(adapter->flags & FLAG_MSI_ENABLED)) 4578 return 0; 4579 4580 /* disable SERR in case the MSI write causes a master abort */ 4581 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd); 4582 if (pci_cmd & PCI_COMMAND_SERR) 4583 pci_write_config_word(adapter->pdev, PCI_COMMAND, 4584 pci_cmd & ~PCI_COMMAND_SERR); 4585 4586 err = e1000_test_msi_interrupt(adapter); 4587 4588 /* re-enable SERR */ 4589 if (pci_cmd & PCI_COMMAND_SERR) { 4590 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd); 4591 pci_cmd |= PCI_COMMAND_SERR; 4592 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd); 4593 } 4594 4595 return err; 4596 } 4597 4598 /** 4599 * e1000e_open - Called when a network interface is made active 4600 * @netdev: network interface device structure 4601 * 4602 * Returns 0 on success, negative value on failure 4603 * 4604 * The open entry point is called when a network interface is made 4605 * active by the system (IFF_UP). At this point all resources needed 4606 * for transmit and receive operations are allocated, the interrupt 4607 * handler is registered with the OS, the watchdog timer is started, 4608 * and the stack is notified that the interface is ready. 4609 **/ 4610 int e1000e_open(struct net_device *netdev) 4611 { 4612 struct e1000_adapter *adapter = netdev_priv(netdev); 4613 struct e1000_hw *hw = &adapter->hw; 4614 struct pci_dev *pdev = adapter->pdev; 4615 int err; 4616 4617 /* disallow open during test */ 4618 if (test_bit(__E1000_TESTING, &adapter->state)) 4619 return -EBUSY; 4620 4621 pm_runtime_get_sync(&pdev->dev); 4622 4623 netif_carrier_off(netdev); 4624 netif_stop_queue(netdev); 4625 4626 /* allocate transmit descriptors */ 4627 err = e1000e_setup_tx_resources(adapter->tx_ring); 4628 if (err) 4629 goto err_setup_tx; 4630 4631 /* allocate receive descriptors */ 4632 err = e1000e_setup_rx_resources(adapter->rx_ring); 4633 if (err) 4634 goto err_setup_rx; 4635 4636 /* If AMT is enabled, let the firmware know that the network 4637 * interface is now open and reset the part to a known state. 4638 */ 4639 if (adapter->flags & FLAG_HAS_AMT) { 4640 e1000e_get_hw_control(adapter); 4641 e1000e_reset(adapter); 4642 } 4643 4644 e1000e_power_up_phy(adapter); 4645 4646 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 4647 if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)) 4648 e1000_update_mng_vlan(adapter); 4649 4650 /* DMA latency requirement to workaround jumbo issue */ 4651 cpu_latency_qos_add_request(&adapter->pm_qos_req, PM_QOS_DEFAULT_VALUE); 4652 4653 /* before we allocate an interrupt, we must be ready to handle it. 4654 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 4655 * as soon as we call pci_request_irq, so we have to setup our 4656 * clean_rx handler before we do so. 4657 */ 4658 e1000_configure(adapter); 4659 4660 err = e1000_request_irq(adapter); 4661 if (err) 4662 goto err_req_irq; 4663 4664 /* Work around PCIe errata with MSI interrupts causing some chipsets to 4665 * ignore e1000e MSI messages, which means we need to test our MSI 4666 * interrupt now 4667 */ 4668 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) { 4669 err = e1000_test_msi(adapter); 4670 if (err) { 4671 e_err("Interrupt allocation failed\n"); 4672 goto err_req_irq; 4673 } 4674 } 4675 4676 /* From here on the code is the same as e1000e_up() */ 4677 clear_bit(__E1000_DOWN, &adapter->state); 4678 4679 napi_enable(&adapter->napi); 4680 4681 e1000_irq_enable(adapter); 4682 4683 adapter->tx_hang_recheck = false; 4684 4685 hw->mac.get_link_status = true; 4686 pm_runtime_put(&pdev->dev); 4687 4688 e1000e_trigger_lsc(adapter); 4689 4690 return 0; 4691 4692 err_req_irq: 4693 cpu_latency_qos_remove_request(&adapter->pm_qos_req); 4694 e1000e_release_hw_control(adapter); 4695 e1000_power_down_phy(adapter); 4696 e1000e_free_rx_resources(adapter->rx_ring); 4697 err_setup_rx: 4698 e1000e_free_tx_resources(adapter->tx_ring); 4699 err_setup_tx: 4700 e1000e_reset(adapter); 4701 pm_runtime_put_sync(&pdev->dev); 4702 4703 return err; 4704 } 4705 4706 /** 4707 * e1000e_close - Disables a network interface 4708 * @netdev: network interface device structure 4709 * 4710 * Returns 0, this is not allowed to fail 4711 * 4712 * The close entry point is called when an interface is de-activated 4713 * by the OS. The hardware is still under the drivers control, but 4714 * needs to be disabled. A global MAC reset is issued to stop the 4715 * hardware, and all transmit and receive resources are freed. 4716 **/ 4717 int e1000e_close(struct net_device *netdev) 4718 { 4719 struct e1000_adapter *adapter = netdev_priv(netdev); 4720 struct pci_dev *pdev = adapter->pdev; 4721 int count = E1000_CHECK_RESET_COUNT; 4722 4723 while (test_bit(__E1000_RESETTING, &adapter->state) && count--) 4724 usleep_range(10000, 11000); 4725 4726 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); 4727 4728 pm_runtime_get_sync(&pdev->dev); 4729 4730 if (netif_device_present(netdev)) { 4731 e1000e_down(adapter, true); 4732 e1000_free_irq(adapter); 4733 4734 /* Link status message must follow this format */ 4735 netdev_info(netdev, "NIC Link is Down\n"); 4736 } 4737 4738 napi_disable(&adapter->napi); 4739 4740 e1000e_free_tx_resources(adapter->tx_ring); 4741 e1000e_free_rx_resources(adapter->rx_ring); 4742 4743 /* kill manageability vlan ID if supported, but not if a vlan with 4744 * the same ID is registered on the host OS (let 8021q kill it) 4745 */ 4746 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) 4747 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), 4748 adapter->mng_vlan_id); 4749 4750 /* If AMT is enabled, let the firmware know that the network 4751 * interface is now closed 4752 */ 4753 if ((adapter->flags & FLAG_HAS_AMT) && 4754 !test_bit(__E1000_TESTING, &adapter->state)) 4755 e1000e_release_hw_control(adapter); 4756 4757 cpu_latency_qos_remove_request(&adapter->pm_qos_req); 4758 4759 pm_runtime_put_sync(&pdev->dev); 4760 4761 return 0; 4762 } 4763 4764 /** 4765 * e1000_set_mac - Change the Ethernet Address of the NIC 4766 * @netdev: network interface device structure 4767 * @p: pointer to an address structure 4768 * 4769 * Returns 0 on success, negative on failure 4770 **/ 4771 static int e1000_set_mac(struct net_device *netdev, void *p) 4772 { 4773 struct e1000_adapter *adapter = netdev_priv(netdev); 4774 struct e1000_hw *hw = &adapter->hw; 4775 struct sockaddr *addr = p; 4776 4777 if (!is_valid_ether_addr(addr->sa_data)) 4778 return -EADDRNOTAVAIL; 4779 4780 eth_hw_addr_set(netdev, addr->sa_data); 4781 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len); 4782 4783 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0); 4784 4785 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) { 4786 /* activate the work around */ 4787 e1000e_set_laa_state_82571(&adapter->hw, 1); 4788 4789 /* Hold a copy of the LAA in RAR[14] This is done so that 4790 * between the time RAR[0] gets clobbered and the time it 4791 * gets fixed (in e1000_watchdog), the actual LAA is in one 4792 * of the RARs and no incoming packets directed to this port 4793 * are dropped. Eventually the LAA will be in RAR[0] and 4794 * RAR[14] 4795 */ 4796 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 4797 adapter->hw.mac.rar_entry_count - 1); 4798 } 4799 4800 return 0; 4801 } 4802 4803 /** 4804 * e1000e_update_phy_task - work thread to update phy 4805 * @work: pointer to our work struct 4806 * 4807 * this worker thread exists because we must acquire a 4808 * semaphore to read the phy, which we could msleep while 4809 * waiting for it, and we can't msleep in a timer. 4810 **/ 4811 static void e1000e_update_phy_task(struct work_struct *work) 4812 { 4813 struct e1000_adapter *adapter = container_of(work, 4814 struct e1000_adapter, 4815 update_phy_task); 4816 struct e1000_hw *hw = &adapter->hw; 4817 4818 if (test_bit(__E1000_DOWN, &adapter->state)) 4819 return; 4820 4821 e1000_get_phy_info(hw); 4822 4823 /* Enable EEE on 82579 after link up */ 4824 if (hw->phy.type >= e1000_phy_82579) 4825 e1000_set_eee_pchlan(hw); 4826 } 4827 4828 /** 4829 * e1000_update_phy_info - timre call-back to update PHY info 4830 * @t: pointer to timer_list containing private info adapter 4831 * 4832 * Need to wait a few seconds after link up to get diagnostic information from 4833 * the phy 4834 **/ 4835 static void e1000_update_phy_info(struct timer_list *t) 4836 { 4837 struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer); 4838 4839 if (test_bit(__E1000_DOWN, &adapter->state)) 4840 return; 4841 4842 schedule_work(&adapter->update_phy_task); 4843 } 4844 4845 /** 4846 * e1000e_update_phy_stats - Update the PHY statistics counters 4847 * @adapter: board private structure 4848 * 4849 * Read/clear the upper 16-bit PHY registers and read/accumulate lower 4850 **/ 4851 static void e1000e_update_phy_stats(struct e1000_adapter *adapter) 4852 { 4853 struct e1000_hw *hw = &adapter->hw; 4854 s32 ret_val; 4855 u16 phy_data; 4856 4857 ret_val = hw->phy.ops.acquire(hw); 4858 if (ret_val) 4859 return; 4860 4861 /* A page set is expensive so check if already on desired page. 4862 * If not, set to the page with the PHY status registers. 4863 */ 4864 hw->phy.addr = 1; 4865 ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 4866 &phy_data); 4867 if (ret_val) 4868 goto release; 4869 if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) { 4870 ret_val = hw->phy.ops.set_page(hw, 4871 HV_STATS_PAGE << IGP_PAGE_SHIFT); 4872 if (ret_val) 4873 goto release; 4874 } 4875 4876 /* Single Collision Count */ 4877 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data); 4878 ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data); 4879 if (!ret_val) 4880 adapter->stats.scc += phy_data; 4881 4882 /* Excessive Collision Count */ 4883 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data); 4884 ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data); 4885 if (!ret_val) 4886 adapter->stats.ecol += phy_data; 4887 4888 /* Multiple Collision Count */ 4889 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data); 4890 ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data); 4891 if (!ret_val) 4892 adapter->stats.mcc += phy_data; 4893 4894 /* Late Collision Count */ 4895 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data); 4896 ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data); 4897 if (!ret_val) 4898 adapter->stats.latecol += phy_data; 4899 4900 /* Collision Count - also used for adaptive IFS */ 4901 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data); 4902 ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data); 4903 if (!ret_val) 4904 hw->mac.collision_delta = phy_data; 4905 4906 /* Defer Count */ 4907 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data); 4908 ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data); 4909 if (!ret_val) 4910 adapter->stats.dc += phy_data; 4911 4912 /* Transmit with no CRS */ 4913 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data); 4914 ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data); 4915 if (!ret_val) 4916 adapter->stats.tncrs += phy_data; 4917 4918 release: 4919 hw->phy.ops.release(hw); 4920 } 4921 4922 /** 4923 * e1000e_update_stats - Update the board statistics counters 4924 * @adapter: board private structure 4925 **/ 4926 static void e1000e_update_stats(struct e1000_adapter *adapter) 4927 { 4928 struct net_device *netdev = adapter->netdev; 4929 struct e1000_hw *hw = &adapter->hw; 4930 struct pci_dev *pdev = adapter->pdev; 4931 4932 /* Prevent stats update while adapter is being reset, or if the pci 4933 * connection is down. 4934 */ 4935 if (adapter->link_speed == 0) 4936 return; 4937 if (pci_channel_offline(pdev)) 4938 return; 4939 4940 adapter->stats.crcerrs += er32(CRCERRS); 4941 adapter->stats.gprc += er32(GPRC); 4942 adapter->stats.gorc += er32(GORCL); 4943 er32(GORCH); /* Clear gorc */ 4944 adapter->stats.bprc += er32(BPRC); 4945 adapter->stats.mprc += er32(MPRC); 4946 adapter->stats.roc += er32(ROC); 4947 4948 adapter->stats.mpc += er32(MPC); 4949 4950 /* Half-duplex statistics */ 4951 if (adapter->link_duplex == HALF_DUPLEX) { 4952 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) { 4953 e1000e_update_phy_stats(adapter); 4954 } else { 4955 adapter->stats.scc += er32(SCC); 4956 adapter->stats.ecol += er32(ECOL); 4957 adapter->stats.mcc += er32(MCC); 4958 adapter->stats.latecol += er32(LATECOL); 4959 adapter->stats.dc += er32(DC); 4960 4961 hw->mac.collision_delta = er32(COLC); 4962 4963 if ((hw->mac.type != e1000_82574) && 4964 (hw->mac.type != e1000_82583)) 4965 adapter->stats.tncrs += er32(TNCRS); 4966 } 4967 adapter->stats.colc += hw->mac.collision_delta; 4968 } 4969 4970 adapter->stats.xonrxc += er32(XONRXC); 4971 adapter->stats.xontxc += er32(XONTXC); 4972 adapter->stats.xoffrxc += er32(XOFFRXC); 4973 adapter->stats.xofftxc += er32(XOFFTXC); 4974 adapter->stats.gptc += er32(GPTC); 4975 adapter->stats.gotc += er32(GOTCL); 4976 er32(GOTCH); /* Clear gotc */ 4977 adapter->stats.rnbc += er32(RNBC); 4978 adapter->stats.ruc += er32(RUC); 4979 4980 adapter->stats.mptc += er32(MPTC); 4981 adapter->stats.bptc += er32(BPTC); 4982 4983 /* used for adaptive IFS */ 4984 4985 hw->mac.tx_packet_delta = er32(TPT); 4986 adapter->stats.tpt += hw->mac.tx_packet_delta; 4987 4988 adapter->stats.algnerrc += er32(ALGNERRC); 4989 adapter->stats.rxerrc += er32(RXERRC); 4990 adapter->stats.cexterr += er32(CEXTERR); 4991 adapter->stats.tsctc += er32(TSCTC); 4992 adapter->stats.tsctfc += er32(TSCTFC); 4993 4994 /* Fill out the OS statistics structure */ 4995 netdev->stats.multicast = adapter->stats.mprc; 4996 netdev->stats.collisions = adapter->stats.colc; 4997 4998 /* Rx Errors */ 4999 5000 /* RLEC on some newer hardware can be incorrect so build 5001 * our own version based on RUC and ROC 5002 */ 5003 netdev->stats.rx_errors = adapter->stats.rxerrc + 5004 adapter->stats.crcerrs + adapter->stats.algnerrc + 5005 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr; 5006 netdev->stats.rx_length_errors = adapter->stats.ruc + 5007 adapter->stats.roc; 5008 netdev->stats.rx_crc_errors = adapter->stats.crcerrs; 5009 netdev->stats.rx_frame_errors = adapter->stats.algnerrc; 5010 netdev->stats.rx_missed_errors = adapter->stats.mpc; 5011 5012 /* Tx Errors */ 5013 netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol; 5014 netdev->stats.tx_aborted_errors = adapter->stats.ecol; 5015 netdev->stats.tx_window_errors = adapter->stats.latecol; 5016 netdev->stats.tx_carrier_errors = adapter->stats.tncrs; 5017 5018 /* Tx Dropped needs to be maintained elsewhere */ 5019 5020 /* Management Stats */ 5021 adapter->stats.mgptc += er32(MGTPTC); 5022 adapter->stats.mgprc += er32(MGTPRC); 5023 adapter->stats.mgpdc += er32(MGTPDC); 5024 5025 /* Correctable ECC Errors */ 5026 if (hw->mac.type >= e1000_pch_lpt) { 5027 u32 pbeccsts = er32(PBECCSTS); 5028 5029 adapter->corr_errors += 5030 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK; 5031 adapter->uncorr_errors += 5032 FIELD_GET(E1000_PBECCSTS_UNCORR_ERR_CNT_MASK, pbeccsts); 5033 } 5034 } 5035 5036 /** 5037 * e1000_phy_read_status - Update the PHY register status snapshot 5038 * @adapter: board private structure 5039 **/ 5040 static void e1000_phy_read_status(struct e1000_adapter *adapter) 5041 { 5042 struct e1000_hw *hw = &adapter->hw; 5043 struct e1000_phy_regs *phy = &adapter->phy_regs; 5044 5045 if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) && 5046 (er32(STATUS) & E1000_STATUS_LU) && 5047 (adapter->hw.phy.media_type == e1000_media_type_copper)) { 5048 int ret_val; 5049 5050 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr); 5051 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr); 5052 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise); 5053 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa); 5054 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion); 5055 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000); 5056 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000); 5057 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus); 5058 if (ret_val) 5059 e_warn("Error reading PHY register\n"); 5060 } else { 5061 /* Do not read PHY registers if link is not up 5062 * Set values to typical power-on defaults 5063 */ 5064 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX); 5065 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL | 5066 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE | 5067 BMSR_ERCAP); 5068 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP | 5069 ADVERTISE_ALL | ADVERTISE_CSMA); 5070 phy->lpa = 0; 5071 phy->expansion = EXPANSION_ENABLENPAGE; 5072 phy->ctrl1000 = ADVERTISE_1000FULL; 5073 phy->stat1000 = 0; 5074 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF); 5075 } 5076 } 5077 5078 static void e1000_print_link_info(struct e1000_adapter *adapter) 5079 { 5080 struct e1000_hw *hw = &adapter->hw; 5081 u32 ctrl = er32(CTRL); 5082 5083 /* Link status message must follow this format for user tools */ 5084 netdev_info(adapter->netdev, 5085 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n", 5086 adapter->link_speed, 5087 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half", 5088 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" : 5089 (ctrl & E1000_CTRL_RFCE) ? "Rx" : 5090 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None"); 5091 } 5092 5093 static bool e1000e_has_link(struct e1000_adapter *adapter) 5094 { 5095 struct e1000_hw *hw = &adapter->hw; 5096 bool link_active = false; 5097 s32 ret_val = 0; 5098 5099 /* get_link_status is set on LSC (link status) interrupt or 5100 * Rx sequence error interrupt. get_link_status will stay 5101 * true until the check_for_link establishes link 5102 * for copper adapters ONLY 5103 */ 5104 switch (hw->phy.media_type) { 5105 case e1000_media_type_copper: 5106 if (hw->mac.get_link_status) { 5107 ret_val = hw->mac.ops.check_for_link(hw); 5108 link_active = !hw->mac.get_link_status; 5109 } else { 5110 link_active = true; 5111 } 5112 break; 5113 case e1000_media_type_fiber: 5114 ret_val = hw->mac.ops.check_for_link(hw); 5115 link_active = !!(er32(STATUS) & E1000_STATUS_LU); 5116 break; 5117 case e1000_media_type_internal_serdes: 5118 ret_val = hw->mac.ops.check_for_link(hw); 5119 link_active = hw->mac.serdes_has_link; 5120 break; 5121 default: 5122 case e1000_media_type_unknown: 5123 break; 5124 } 5125 5126 if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) && 5127 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) { 5128 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */ 5129 e_info("Gigabit has been disabled, downgrading speed\n"); 5130 } 5131 5132 return link_active; 5133 } 5134 5135 static void e1000e_enable_receives(struct e1000_adapter *adapter) 5136 { 5137 /* make sure the receive unit is started */ 5138 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) && 5139 (adapter->flags & FLAG_RESTART_NOW)) { 5140 struct e1000_hw *hw = &adapter->hw; 5141 u32 rctl = er32(RCTL); 5142 5143 ew32(RCTL, rctl | E1000_RCTL_EN); 5144 adapter->flags &= ~FLAG_RESTART_NOW; 5145 } 5146 } 5147 5148 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter) 5149 { 5150 struct e1000_hw *hw = &adapter->hw; 5151 5152 /* With 82574 controllers, PHY needs to be checked periodically 5153 * for hung state and reset, if two calls return true 5154 */ 5155 if (e1000_check_phy_82574(hw)) 5156 adapter->phy_hang_count++; 5157 else 5158 adapter->phy_hang_count = 0; 5159 5160 if (adapter->phy_hang_count > 1) { 5161 adapter->phy_hang_count = 0; 5162 e_dbg("PHY appears hung - resetting\n"); 5163 schedule_work(&adapter->reset_task); 5164 } 5165 } 5166 5167 /** 5168 * e1000_watchdog - Timer Call-back 5169 * @t: pointer to timer_list containing private info adapter 5170 **/ 5171 static void e1000_watchdog(struct timer_list *t) 5172 { 5173 struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer); 5174 5175 /* Do the rest outside of interrupt context */ 5176 schedule_work(&adapter->watchdog_task); 5177 5178 /* TODO: make this use queue_delayed_work() */ 5179 } 5180 5181 static void e1000_watchdog_task(struct work_struct *work) 5182 { 5183 struct e1000_adapter *adapter = container_of(work, 5184 struct e1000_adapter, 5185 watchdog_task); 5186 struct net_device *netdev = adapter->netdev; 5187 struct e1000_mac_info *mac = &adapter->hw.mac; 5188 struct e1000_phy_info *phy = &adapter->hw.phy; 5189 struct e1000_ring *tx_ring = adapter->tx_ring; 5190 u32 dmoff_exit_timeout = 100, tries = 0; 5191 struct e1000_hw *hw = &adapter->hw; 5192 u32 link, tctl, pcim_state; 5193 5194 if (test_bit(__E1000_DOWN, &adapter->state)) 5195 return; 5196 5197 link = e1000e_has_link(adapter); 5198 if ((netif_carrier_ok(netdev)) && link) { 5199 /* Cancel scheduled suspend requests. */ 5200 pm_runtime_resume(netdev->dev.parent); 5201 5202 e1000e_enable_receives(adapter); 5203 goto link_up; 5204 } 5205 5206 if ((e1000e_enable_tx_pkt_filtering(hw)) && 5207 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)) 5208 e1000_update_mng_vlan(adapter); 5209 5210 if (link) { 5211 if (!netif_carrier_ok(netdev)) { 5212 bool txb2b = true; 5213 5214 /* Cancel scheduled suspend requests. */ 5215 pm_runtime_resume(netdev->dev.parent); 5216 5217 /* Checking if MAC is in DMoff state*/ 5218 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) { 5219 pcim_state = er32(STATUS); 5220 while (pcim_state & E1000_STATUS_PCIM_STATE) { 5221 if (tries++ == dmoff_exit_timeout) { 5222 e_dbg("Error in exiting dmoff\n"); 5223 break; 5224 } 5225 usleep_range(10000, 20000); 5226 pcim_state = er32(STATUS); 5227 5228 /* Checking if MAC exited DMoff state */ 5229 if (!(pcim_state & E1000_STATUS_PCIM_STATE)) 5230 e1000_phy_hw_reset(&adapter->hw); 5231 } 5232 } 5233 5234 /* update snapshot of PHY registers on LSC */ 5235 e1000_phy_read_status(adapter); 5236 mac->ops.get_link_up_info(&adapter->hw, 5237 &adapter->link_speed, 5238 &adapter->link_duplex); 5239 e1000_print_link_info(adapter); 5240 5241 /* check if SmartSpeed worked */ 5242 e1000e_check_downshift(hw); 5243 if (phy->speed_downgraded) 5244 netdev_warn(netdev, 5245 "Link Speed was downgraded by SmartSpeed\n"); 5246 5247 /* On supported PHYs, check for duplex mismatch only 5248 * if link has autonegotiated at 10/100 half 5249 */ 5250 if ((hw->phy.type == e1000_phy_igp_3 || 5251 hw->phy.type == e1000_phy_bm) && 5252 hw->mac.autoneg && 5253 (adapter->link_speed == SPEED_10 || 5254 adapter->link_speed == SPEED_100) && 5255 (adapter->link_duplex == HALF_DUPLEX)) { 5256 u16 autoneg_exp; 5257 5258 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp); 5259 5260 if (!(autoneg_exp & EXPANSION_NWAY)) 5261 e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n"); 5262 } 5263 5264 /* adjust timeout factor according to speed/duplex */ 5265 adapter->tx_timeout_factor = 1; 5266 switch (adapter->link_speed) { 5267 case SPEED_10: 5268 txb2b = false; 5269 adapter->tx_timeout_factor = 16; 5270 break; 5271 case SPEED_100: 5272 txb2b = false; 5273 adapter->tx_timeout_factor = 10; 5274 break; 5275 } 5276 5277 /* workaround: re-program speed mode bit after 5278 * link-up event 5279 */ 5280 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) && 5281 !txb2b) { 5282 u32 tarc0; 5283 5284 tarc0 = er32(TARC(0)); 5285 tarc0 &= ~SPEED_MODE_BIT; 5286 ew32(TARC(0), tarc0); 5287 } 5288 5289 /* enable transmits in the hardware, need to do this 5290 * after setting TARC(0) 5291 */ 5292 tctl = er32(TCTL); 5293 tctl |= E1000_TCTL_EN; 5294 ew32(TCTL, tctl); 5295 5296 /* Perform any post-link-up configuration before 5297 * reporting link up. 5298 */ 5299 if (phy->ops.cfg_on_link_up) 5300 phy->ops.cfg_on_link_up(hw); 5301 5302 netif_wake_queue(netdev); 5303 netif_carrier_on(netdev); 5304 5305 if (!test_bit(__E1000_DOWN, &adapter->state)) 5306 mod_timer(&adapter->phy_info_timer, 5307 round_jiffies(jiffies + 2 * HZ)); 5308 } 5309 } else { 5310 if (netif_carrier_ok(netdev)) { 5311 adapter->link_speed = 0; 5312 adapter->link_duplex = 0; 5313 /* Link status message must follow this format */ 5314 netdev_info(netdev, "NIC Link is Down\n"); 5315 netif_carrier_off(netdev); 5316 netif_stop_queue(netdev); 5317 if (!test_bit(__E1000_DOWN, &adapter->state)) 5318 mod_timer(&adapter->phy_info_timer, 5319 round_jiffies(jiffies + 2 * HZ)); 5320 5321 /* 8000ES2LAN requires a Rx packet buffer work-around 5322 * on link down event; reset the controller to flush 5323 * the Rx packet buffer. 5324 */ 5325 if (adapter->flags & FLAG_RX_NEEDS_RESTART) 5326 adapter->flags |= FLAG_RESTART_NOW; 5327 else 5328 pm_schedule_suspend(netdev->dev.parent, 5329 LINK_TIMEOUT); 5330 } 5331 } 5332 5333 link_up: 5334 spin_lock(&adapter->stats64_lock); 5335 e1000e_update_stats(adapter); 5336 5337 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; 5338 adapter->tpt_old = adapter->stats.tpt; 5339 mac->collision_delta = adapter->stats.colc - adapter->colc_old; 5340 adapter->colc_old = adapter->stats.colc; 5341 5342 adapter->gorc = adapter->stats.gorc - adapter->gorc_old; 5343 adapter->gorc_old = adapter->stats.gorc; 5344 adapter->gotc = adapter->stats.gotc - adapter->gotc_old; 5345 adapter->gotc_old = adapter->stats.gotc; 5346 spin_unlock(&adapter->stats64_lock); 5347 5348 /* If the link is lost the controller stops DMA, but 5349 * if there is queued Tx work it cannot be done. So 5350 * reset the controller to flush the Tx packet buffers. 5351 */ 5352 if (!netif_carrier_ok(netdev) && 5353 (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) 5354 adapter->flags |= FLAG_RESTART_NOW; 5355 5356 /* If reset is necessary, do it outside of interrupt context. */ 5357 if (adapter->flags & FLAG_RESTART_NOW) { 5358 schedule_work(&adapter->reset_task); 5359 /* return immediately since reset is imminent */ 5360 return; 5361 } 5362 5363 e1000e_update_adaptive(&adapter->hw); 5364 5365 /* Simple mode for Interrupt Throttle Rate (ITR) */ 5366 if (adapter->itr_setting == 4) { 5367 /* Symmetric Tx/Rx gets a reduced ITR=2000; 5368 * Total asymmetrical Tx or Rx gets ITR=8000; 5369 * everyone else is between 2000-8000. 5370 */ 5371 u32 goc = (adapter->gotc + adapter->gorc) / 10000; 5372 u32 dif = (adapter->gotc > adapter->gorc ? 5373 adapter->gotc - adapter->gorc : 5374 adapter->gorc - adapter->gotc) / 10000; 5375 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; 5376 5377 e1000e_write_itr(adapter, itr); 5378 } 5379 5380 /* Cause software interrupt to ensure Rx ring is cleaned */ 5381 if (adapter->msix_entries) 5382 ew32(ICS, adapter->rx_ring->ims_val); 5383 else 5384 ew32(ICS, E1000_ICS_RXDMT0); 5385 5386 /* flush pending descriptors to memory before detecting Tx hang */ 5387 e1000e_flush_descriptors(adapter); 5388 5389 /* Force detection of hung controller every watchdog period */ 5390 adapter->detect_tx_hung = true; 5391 5392 /* With 82571 controllers, LAA may be overwritten due to controller 5393 * reset from the other port. Set the appropriate LAA in RAR[0] 5394 */ 5395 if (e1000e_get_laa_state_82571(hw)) 5396 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0); 5397 5398 if (adapter->flags2 & FLAG2_CHECK_PHY_HANG) 5399 e1000e_check_82574_phy_workaround(adapter); 5400 5401 /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */ 5402 if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) { 5403 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) && 5404 (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) { 5405 er32(RXSTMPH); 5406 adapter->rx_hwtstamp_cleared++; 5407 } else { 5408 adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP; 5409 } 5410 } 5411 5412 /* Reset the timer */ 5413 if (!test_bit(__E1000_DOWN, &adapter->state)) 5414 mod_timer(&adapter->watchdog_timer, 5415 round_jiffies(jiffies + 2 * HZ)); 5416 } 5417 5418 #define E1000_TX_FLAGS_CSUM 0x00000001 5419 #define E1000_TX_FLAGS_VLAN 0x00000002 5420 #define E1000_TX_FLAGS_TSO 0x00000004 5421 #define E1000_TX_FLAGS_IPV4 0x00000008 5422 #define E1000_TX_FLAGS_NO_FCS 0x00000010 5423 #define E1000_TX_FLAGS_HWTSTAMP 0x00000020 5424 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 5425 #define E1000_TX_FLAGS_VLAN_SHIFT 16 5426 5427 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb, 5428 __be16 protocol) 5429 { 5430 struct e1000_context_desc *context_desc; 5431 struct e1000_buffer *buffer_info; 5432 unsigned int i; 5433 u32 cmd_length = 0; 5434 u16 ipcse = 0, mss; 5435 u8 ipcss, ipcso, tucss, tucso, hdr_len; 5436 int err; 5437 5438 if (!skb_is_gso(skb)) 5439 return 0; 5440 5441 err = skb_cow_head(skb, 0); 5442 if (err < 0) 5443 return err; 5444 5445 hdr_len = skb_tcp_all_headers(skb); 5446 mss = skb_shinfo(skb)->gso_size; 5447 if (protocol == htons(ETH_P_IP)) { 5448 struct iphdr *iph = ip_hdr(skb); 5449 iph->tot_len = 0; 5450 iph->check = 0; 5451 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, 5452 0, IPPROTO_TCP, 0); 5453 cmd_length = E1000_TXD_CMD_IP; 5454 ipcse = skb_transport_offset(skb) - 1; 5455 } else if (skb_is_gso_v6(skb)) { 5456 tcp_v6_gso_csum_prep(skb); 5457 ipcse = 0; 5458 } 5459 ipcss = skb_network_offset(skb); 5460 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; 5461 tucss = skb_transport_offset(skb); 5462 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; 5463 5464 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | 5465 E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); 5466 5467 i = tx_ring->next_to_use; 5468 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 5469 buffer_info = &tx_ring->buffer_info[i]; 5470 5471 context_desc->lower_setup.ip_fields.ipcss = ipcss; 5472 context_desc->lower_setup.ip_fields.ipcso = ipcso; 5473 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); 5474 context_desc->upper_setup.tcp_fields.tucss = tucss; 5475 context_desc->upper_setup.tcp_fields.tucso = tucso; 5476 context_desc->upper_setup.tcp_fields.tucse = 0; 5477 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); 5478 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; 5479 context_desc->cmd_and_length = cpu_to_le32(cmd_length); 5480 5481 buffer_info->time_stamp = jiffies; 5482 buffer_info->next_to_watch = i; 5483 5484 i++; 5485 if (i == tx_ring->count) 5486 i = 0; 5487 tx_ring->next_to_use = i; 5488 5489 return 1; 5490 } 5491 5492 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb, 5493 __be16 protocol) 5494 { 5495 struct e1000_adapter *adapter = tx_ring->adapter; 5496 struct e1000_context_desc *context_desc; 5497 struct e1000_buffer *buffer_info; 5498 unsigned int i; 5499 u8 css; 5500 u32 cmd_len = E1000_TXD_CMD_DEXT; 5501 5502 if (skb->ip_summed != CHECKSUM_PARTIAL) 5503 return false; 5504 5505 switch (protocol) { 5506 case cpu_to_be16(ETH_P_IP): 5507 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 5508 cmd_len |= E1000_TXD_CMD_TCP; 5509 break; 5510 case cpu_to_be16(ETH_P_IPV6): 5511 /* XXX not handling all IPV6 headers */ 5512 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 5513 cmd_len |= E1000_TXD_CMD_TCP; 5514 break; 5515 default: 5516 if (unlikely(net_ratelimit())) 5517 e_warn("checksum_partial proto=%x!\n", 5518 be16_to_cpu(protocol)); 5519 break; 5520 } 5521 5522 css = skb_checksum_start_offset(skb); 5523 5524 i = tx_ring->next_to_use; 5525 buffer_info = &tx_ring->buffer_info[i]; 5526 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 5527 5528 context_desc->lower_setup.ip_config = 0; 5529 context_desc->upper_setup.tcp_fields.tucss = css; 5530 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset; 5531 context_desc->upper_setup.tcp_fields.tucse = 0; 5532 context_desc->tcp_seg_setup.data = 0; 5533 context_desc->cmd_and_length = cpu_to_le32(cmd_len); 5534 5535 buffer_info->time_stamp = jiffies; 5536 buffer_info->next_to_watch = i; 5537 5538 i++; 5539 if (i == tx_ring->count) 5540 i = 0; 5541 tx_ring->next_to_use = i; 5542 5543 return true; 5544 } 5545 5546 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb, 5547 unsigned int first, unsigned int max_per_txd, 5548 unsigned int nr_frags) 5549 { 5550 struct e1000_adapter *adapter = tx_ring->adapter; 5551 struct pci_dev *pdev = adapter->pdev; 5552 struct e1000_buffer *buffer_info; 5553 unsigned int len = skb_headlen(skb); 5554 unsigned int offset = 0, size, count = 0, i; 5555 unsigned int f, bytecount, segs; 5556 5557 i = tx_ring->next_to_use; 5558 5559 while (len) { 5560 buffer_info = &tx_ring->buffer_info[i]; 5561 size = min(len, max_per_txd); 5562 5563 buffer_info->length = size; 5564 buffer_info->time_stamp = jiffies; 5565 buffer_info->next_to_watch = i; 5566 buffer_info->dma = dma_map_single(&pdev->dev, 5567 skb->data + offset, 5568 size, DMA_TO_DEVICE); 5569 buffer_info->mapped_as_page = false; 5570 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 5571 goto dma_error; 5572 5573 len -= size; 5574 offset += size; 5575 count++; 5576 5577 if (len) { 5578 i++; 5579 if (i == tx_ring->count) 5580 i = 0; 5581 } 5582 } 5583 5584 for (f = 0; f < nr_frags; f++) { 5585 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; 5586 5587 len = skb_frag_size(frag); 5588 offset = 0; 5589 5590 while (len) { 5591 i++; 5592 if (i == tx_ring->count) 5593 i = 0; 5594 5595 buffer_info = &tx_ring->buffer_info[i]; 5596 size = min(len, max_per_txd); 5597 5598 buffer_info->length = size; 5599 buffer_info->time_stamp = jiffies; 5600 buffer_info->next_to_watch = i; 5601 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 5602 offset, size, 5603 DMA_TO_DEVICE); 5604 buffer_info->mapped_as_page = true; 5605 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 5606 goto dma_error; 5607 5608 len -= size; 5609 offset += size; 5610 count++; 5611 } 5612 } 5613 5614 segs = skb_shinfo(skb)->gso_segs ? : 1; 5615 /* multiply data chunks by size of headers */ 5616 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len; 5617 5618 tx_ring->buffer_info[i].skb = skb; 5619 tx_ring->buffer_info[i].segs = segs; 5620 tx_ring->buffer_info[i].bytecount = bytecount; 5621 tx_ring->buffer_info[first].next_to_watch = i; 5622 5623 return count; 5624 5625 dma_error: 5626 dev_err(&pdev->dev, "Tx DMA map failed\n"); 5627 buffer_info->dma = 0; 5628 if (count) 5629 count--; 5630 5631 while (count--) { 5632 if (i == 0) 5633 i += tx_ring->count; 5634 i--; 5635 buffer_info = &tx_ring->buffer_info[i]; 5636 e1000_put_txbuf(tx_ring, buffer_info, true); 5637 } 5638 5639 return 0; 5640 } 5641 5642 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count) 5643 { 5644 struct e1000_adapter *adapter = tx_ring->adapter; 5645 struct e1000_tx_desc *tx_desc = NULL; 5646 struct e1000_buffer *buffer_info; 5647 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; 5648 unsigned int i; 5649 5650 if (tx_flags & E1000_TX_FLAGS_TSO) { 5651 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | 5652 E1000_TXD_CMD_TSE; 5653 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 5654 5655 if (tx_flags & E1000_TX_FLAGS_IPV4) 5656 txd_upper |= E1000_TXD_POPTS_IXSM << 8; 5657 } 5658 5659 if (tx_flags & E1000_TX_FLAGS_CSUM) { 5660 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; 5661 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 5662 } 5663 5664 if (tx_flags & E1000_TX_FLAGS_VLAN) { 5665 txd_lower |= E1000_TXD_CMD_VLE; 5666 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); 5667 } 5668 5669 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) 5670 txd_lower &= ~(E1000_TXD_CMD_IFCS); 5671 5672 if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) { 5673 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; 5674 txd_upper |= E1000_TXD_EXTCMD_TSTAMP; 5675 } 5676 5677 i = tx_ring->next_to_use; 5678 5679 do { 5680 buffer_info = &tx_ring->buffer_info[i]; 5681 tx_desc = E1000_TX_DESC(*tx_ring, i); 5682 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 5683 tx_desc->lower.data = cpu_to_le32(txd_lower | 5684 buffer_info->length); 5685 tx_desc->upper.data = cpu_to_le32(txd_upper); 5686 5687 i++; 5688 if (i == tx_ring->count) 5689 i = 0; 5690 } while (--count > 0); 5691 5692 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); 5693 5694 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */ 5695 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) 5696 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS)); 5697 5698 /* Force memory writes to complete before letting h/w 5699 * know there are new descriptors to fetch. (Only 5700 * applicable for weak-ordered memory model archs, 5701 * such as IA-64). 5702 */ 5703 wmb(); 5704 5705 tx_ring->next_to_use = i; 5706 } 5707 5708 #define MINIMUM_DHCP_PACKET_SIZE 282 5709 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter, 5710 struct sk_buff *skb) 5711 { 5712 struct e1000_hw *hw = &adapter->hw; 5713 u16 length, offset; 5714 5715 if (skb_vlan_tag_present(skb) && 5716 !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) && 5717 (adapter->hw.mng_cookie.status & 5718 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))) 5719 return 0; 5720 5721 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE) 5722 return 0; 5723 5724 if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP)) 5725 return 0; 5726 5727 { 5728 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14); 5729 struct udphdr *udp; 5730 5731 if (ip->protocol != IPPROTO_UDP) 5732 return 0; 5733 5734 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2)); 5735 if (ntohs(udp->dest) != 67) 5736 return 0; 5737 5738 offset = (u8 *)udp + 8 - skb->data; 5739 length = skb->len - offset; 5740 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length); 5741 } 5742 5743 return 0; 5744 } 5745 5746 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size) 5747 { 5748 struct e1000_adapter *adapter = tx_ring->adapter; 5749 5750 netif_stop_queue(adapter->netdev); 5751 /* Herbert's original patch had: 5752 * smp_mb__after_netif_stop_queue(); 5753 * but since that doesn't exist yet, just open code it. 5754 */ 5755 smp_mb(); 5756 5757 /* We need to check again in a case another CPU has just 5758 * made room available. 5759 */ 5760 if (e1000_desc_unused(tx_ring) < size) 5761 return -EBUSY; 5762 5763 /* A reprieve! */ 5764 netif_start_queue(adapter->netdev); 5765 ++adapter->restart_queue; 5766 return 0; 5767 } 5768 5769 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size) 5770 { 5771 BUG_ON(size > tx_ring->count); 5772 5773 if (e1000_desc_unused(tx_ring) >= size) 5774 return 0; 5775 return __e1000_maybe_stop_tx(tx_ring, size); 5776 } 5777 5778 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, 5779 struct net_device *netdev) 5780 { 5781 struct e1000_adapter *adapter = netdev_priv(netdev); 5782 struct e1000_ring *tx_ring = adapter->tx_ring; 5783 unsigned int first; 5784 unsigned int tx_flags = 0; 5785 unsigned int len = skb_headlen(skb); 5786 unsigned int nr_frags; 5787 unsigned int mss; 5788 int count = 0; 5789 int tso; 5790 unsigned int f; 5791 __be16 protocol = vlan_get_protocol(skb); 5792 5793 if (test_bit(__E1000_DOWN, &adapter->state)) { 5794 dev_kfree_skb_any(skb); 5795 return NETDEV_TX_OK; 5796 } 5797 5798 if (skb->len <= 0) { 5799 dev_kfree_skb_any(skb); 5800 return NETDEV_TX_OK; 5801 } 5802 5803 /* The minimum packet size with TCTL.PSP set is 17 bytes so 5804 * pad skb in order to meet this minimum size requirement 5805 */ 5806 if (skb_put_padto(skb, 17)) 5807 return NETDEV_TX_OK; 5808 5809 mss = skb_shinfo(skb)->gso_size; 5810 if (mss) { 5811 u8 hdr_len; 5812 5813 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data 5814 * points to just header, pull a few bytes of payload from 5815 * frags into skb->data 5816 */ 5817 hdr_len = skb_tcp_all_headers(skb); 5818 /* we do this workaround for ES2LAN, but it is un-necessary, 5819 * avoiding it could save a lot of cycles 5820 */ 5821 if (skb->data_len && (hdr_len == len)) { 5822 unsigned int pull_size; 5823 5824 pull_size = min_t(unsigned int, 4, skb->data_len); 5825 if (!__pskb_pull_tail(skb, pull_size)) { 5826 e_err("__pskb_pull_tail failed.\n"); 5827 dev_kfree_skb_any(skb); 5828 return NETDEV_TX_OK; 5829 } 5830 len = skb_headlen(skb); 5831 } 5832 } 5833 5834 /* reserve a descriptor for the offload context */ 5835 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) 5836 count++; 5837 count++; 5838 5839 count += DIV_ROUND_UP(len, adapter->tx_fifo_limit); 5840 5841 nr_frags = skb_shinfo(skb)->nr_frags; 5842 for (f = 0; f < nr_frags; f++) 5843 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]), 5844 adapter->tx_fifo_limit); 5845 5846 if (adapter->hw.mac.tx_pkt_filtering) 5847 e1000_transfer_dhcp_info(adapter, skb); 5848 5849 /* need: count + 2 desc gap to keep tail from touching 5850 * head, otherwise try next time 5851 */ 5852 if (e1000_maybe_stop_tx(tx_ring, count + 2)) 5853 return NETDEV_TX_BUSY; 5854 5855 if (skb_vlan_tag_present(skb)) { 5856 tx_flags |= E1000_TX_FLAGS_VLAN; 5857 tx_flags |= (skb_vlan_tag_get(skb) << 5858 E1000_TX_FLAGS_VLAN_SHIFT); 5859 } 5860 5861 first = tx_ring->next_to_use; 5862 5863 tso = e1000_tso(tx_ring, skb, protocol); 5864 if (tso < 0) { 5865 dev_kfree_skb_any(skb); 5866 return NETDEV_TX_OK; 5867 } 5868 5869 if (tso) 5870 tx_flags |= E1000_TX_FLAGS_TSO; 5871 else if (e1000_tx_csum(tx_ring, skb, protocol)) 5872 tx_flags |= E1000_TX_FLAGS_CSUM; 5873 5874 /* Old method was to assume IPv4 packet by default if TSO was enabled. 5875 * 82571 hardware supports TSO capabilities for IPv6 as well... 5876 * no longer assume, we must. 5877 */ 5878 if (protocol == htons(ETH_P_IP)) 5879 tx_flags |= E1000_TX_FLAGS_IPV4; 5880 5881 if (unlikely(skb->no_fcs)) 5882 tx_flags |= E1000_TX_FLAGS_NO_FCS; 5883 5884 /* if count is 0 then mapping error has occurred */ 5885 count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit, 5886 nr_frags); 5887 if (count) { 5888 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 5889 (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) { 5890 if (!adapter->tx_hwtstamp_skb) { 5891 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 5892 tx_flags |= E1000_TX_FLAGS_HWTSTAMP; 5893 adapter->tx_hwtstamp_skb = skb_get(skb); 5894 adapter->tx_hwtstamp_start = jiffies; 5895 schedule_work(&adapter->tx_hwtstamp_work); 5896 } else { 5897 adapter->tx_hwtstamp_skipped++; 5898 } 5899 } 5900 5901 skb_tx_timestamp(skb); 5902 5903 netdev_sent_queue(netdev, skb->len); 5904 e1000_tx_queue(tx_ring, tx_flags, count); 5905 /* Make sure there is space in the ring for the next send. */ 5906 e1000_maybe_stop_tx(tx_ring, 5907 ((MAX_SKB_FRAGS + 1) * 5908 DIV_ROUND_UP(PAGE_SIZE, 5909 adapter->tx_fifo_limit) + 4)); 5910 5911 if (!netdev_xmit_more() || 5912 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) { 5913 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 5914 e1000e_update_tdt_wa(tx_ring, 5915 tx_ring->next_to_use); 5916 else 5917 writel(tx_ring->next_to_use, tx_ring->tail); 5918 } 5919 } else { 5920 dev_kfree_skb_any(skb); 5921 tx_ring->buffer_info[first].time_stamp = 0; 5922 tx_ring->next_to_use = first; 5923 } 5924 5925 return NETDEV_TX_OK; 5926 } 5927 5928 /** 5929 * e1000_tx_timeout - Respond to a Tx Hang 5930 * @netdev: network interface device structure 5931 * @txqueue: index of the hung queue (unused) 5932 **/ 5933 static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue) 5934 { 5935 struct e1000_adapter *adapter = netdev_priv(netdev); 5936 5937 /* Do the reset outside of interrupt context */ 5938 adapter->tx_timeout_count++; 5939 schedule_work(&adapter->reset_task); 5940 } 5941 5942 static void e1000_reset_task(struct work_struct *work) 5943 { 5944 struct e1000_adapter *adapter; 5945 adapter = container_of(work, struct e1000_adapter, reset_task); 5946 5947 rtnl_lock(); 5948 /* don't run the task if already down */ 5949 if (test_bit(__E1000_DOWN, &adapter->state)) { 5950 rtnl_unlock(); 5951 return; 5952 } 5953 5954 if (!(adapter->flags & FLAG_RESTART_NOW)) { 5955 e1000e_dump(adapter); 5956 e_err("Reset adapter unexpectedly\n"); 5957 } 5958 e1000e_reinit_locked(adapter); 5959 rtnl_unlock(); 5960 } 5961 5962 /** 5963 * e1000e_get_stats64 - Get System Network Statistics 5964 * @netdev: network interface device structure 5965 * @stats: rtnl_link_stats64 pointer 5966 * 5967 * Returns the address of the device statistics structure. 5968 **/ 5969 void e1000e_get_stats64(struct net_device *netdev, 5970 struct rtnl_link_stats64 *stats) 5971 { 5972 struct e1000_adapter *adapter = netdev_priv(netdev); 5973 5974 spin_lock(&adapter->stats64_lock); 5975 e1000e_update_stats(adapter); 5976 /* Fill out the OS statistics structure */ 5977 stats->rx_bytes = adapter->stats.gorc; 5978 stats->rx_packets = adapter->stats.gprc; 5979 stats->tx_bytes = adapter->stats.gotc; 5980 stats->tx_packets = adapter->stats.gptc; 5981 stats->multicast = adapter->stats.mprc; 5982 stats->collisions = adapter->stats.colc; 5983 5984 /* Rx Errors */ 5985 5986 /* RLEC on some newer hardware can be incorrect so build 5987 * our own version based on RUC and ROC 5988 */ 5989 stats->rx_errors = adapter->stats.rxerrc + 5990 adapter->stats.crcerrs + adapter->stats.algnerrc + 5991 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr; 5992 stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc; 5993 stats->rx_crc_errors = adapter->stats.crcerrs; 5994 stats->rx_frame_errors = adapter->stats.algnerrc; 5995 stats->rx_missed_errors = adapter->stats.mpc; 5996 5997 /* Tx Errors */ 5998 stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol; 5999 stats->tx_aborted_errors = adapter->stats.ecol; 6000 stats->tx_window_errors = adapter->stats.latecol; 6001 stats->tx_carrier_errors = adapter->stats.tncrs; 6002 6003 /* Tx Dropped needs to be maintained elsewhere */ 6004 6005 spin_unlock(&adapter->stats64_lock); 6006 } 6007 6008 /** 6009 * e1000_change_mtu - Change the Maximum Transfer Unit 6010 * @netdev: network interface device structure 6011 * @new_mtu: new value for maximum frame size 6012 * 6013 * Returns 0 on success, negative on failure 6014 **/ 6015 static int e1000_change_mtu(struct net_device *netdev, int new_mtu) 6016 { 6017 struct e1000_adapter *adapter = netdev_priv(netdev); 6018 int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN; 6019 6020 /* Jumbo frame support */ 6021 if ((new_mtu > ETH_DATA_LEN) && 6022 !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) { 6023 e_err("Jumbo Frames not supported.\n"); 6024 return -EINVAL; 6025 } 6026 6027 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */ 6028 if ((adapter->hw.mac.type >= e1000_pch2lan) && 6029 !(adapter->flags2 & FLAG2_CRC_STRIPPING) && 6030 (new_mtu > ETH_DATA_LEN)) { 6031 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n"); 6032 return -EINVAL; 6033 } 6034 6035 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 6036 usleep_range(1000, 1100); 6037 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */ 6038 adapter->max_frame_size = max_frame; 6039 netdev_dbg(netdev, "changing MTU from %d to %d\n", 6040 netdev->mtu, new_mtu); 6041 WRITE_ONCE(netdev->mtu, new_mtu); 6042 6043 pm_runtime_get_sync(netdev->dev.parent); 6044 6045 if (netif_running(netdev)) 6046 e1000e_down(adapter, true); 6047 6048 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN 6049 * means we reserve 2 more, this pushes us to allocate from the next 6050 * larger slab size. 6051 * i.e. RXBUFFER_2048 --> size-4096 slab 6052 * However with the new *_jumbo_rx* routines, jumbo receives will use 6053 * fragmented skbs 6054 */ 6055 6056 if (max_frame <= 2048) 6057 adapter->rx_buffer_len = 2048; 6058 else 6059 adapter->rx_buffer_len = 4096; 6060 6061 /* adjust allocation if LPE protects us, and we aren't using SBP */ 6062 if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) 6063 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN; 6064 6065 if (netif_running(netdev)) 6066 e1000e_up(adapter); 6067 else 6068 e1000e_reset(adapter); 6069 6070 pm_runtime_put_sync(netdev->dev.parent); 6071 6072 clear_bit(__E1000_RESETTING, &adapter->state); 6073 6074 return 0; 6075 } 6076 6077 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, 6078 int cmd) 6079 { 6080 struct e1000_adapter *adapter = netdev_priv(netdev); 6081 struct mii_ioctl_data *data = if_mii(ifr); 6082 6083 if (adapter->hw.phy.media_type != e1000_media_type_copper) 6084 return -EOPNOTSUPP; 6085 6086 switch (cmd) { 6087 case SIOCGMIIPHY: 6088 data->phy_id = adapter->hw.phy.addr; 6089 break; 6090 case SIOCGMIIREG: 6091 e1000_phy_read_status(adapter); 6092 6093 switch (data->reg_num & 0x1F) { 6094 case MII_BMCR: 6095 data->val_out = adapter->phy_regs.bmcr; 6096 break; 6097 case MII_BMSR: 6098 data->val_out = adapter->phy_regs.bmsr; 6099 break; 6100 case MII_PHYSID1: 6101 data->val_out = (adapter->hw.phy.id >> 16); 6102 break; 6103 case MII_PHYSID2: 6104 data->val_out = (adapter->hw.phy.id & 0xFFFF); 6105 break; 6106 case MII_ADVERTISE: 6107 data->val_out = adapter->phy_regs.advertise; 6108 break; 6109 case MII_LPA: 6110 data->val_out = adapter->phy_regs.lpa; 6111 break; 6112 case MII_EXPANSION: 6113 data->val_out = adapter->phy_regs.expansion; 6114 break; 6115 case MII_CTRL1000: 6116 data->val_out = adapter->phy_regs.ctrl1000; 6117 break; 6118 case MII_STAT1000: 6119 data->val_out = adapter->phy_regs.stat1000; 6120 break; 6121 case MII_ESTATUS: 6122 data->val_out = adapter->phy_regs.estatus; 6123 break; 6124 default: 6125 return -EIO; 6126 } 6127 break; 6128 case SIOCSMIIREG: 6129 default: 6130 return -EOPNOTSUPP; 6131 } 6132 return 0; 6133 } 6134 6135 /** 6136 * e1000e_hwtstamp_set - control hardware time stamping 6137 * @netdev: network interface device structure 6138 * @ifr: interface request 6139 * 6140 * Outgoing time stamping can be enabled and disabled. Play nice and 6141 * disable it when requested, although it shouldn't cause any overhead 6142 * when no packet needs it. At most one packet in the queue may be 6143 * marked for time stamping, otherwise it would be impossible to tell 6144 * for sure to which packet the hardware time stamp belongs. 6145 * 6146 * Incoming time stamping has to be configured via the hardware filters. 6147 * Not all combinations are supported, in particular event type has to be 6148 * specified. Matching the kind of event packet is not supported, with the 6149 * exception of "all V2 events regardless of level 2 or 4". 6150 **/ 6151 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr) 6152 { 6153 struct e1000_adapter *adapter = netdev_priv(netdev); 6154 struct hwtstamp_config config; 6155 int ret_val; 6156 6157 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 6158 return -EFAULT; 6159 6160 ret_val = e1000e_config_hwtstamp(adapter, &config); 6161 if (ret_val) 6162 return ret_val; 6163 6164 switch (config.rx_filter) { 6165 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 6166 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 6167 case HWTSTAMP_FILTER_PTP_V2_SYNC: 6168 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 6169 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 6170 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 6171 /* With V2 type filters which specify a Sync or Delay Request, 6172 * Path Delay Request/Response messages are also time stamped 6173 * by hardware so notify the caller the requested packets plus 6174 * some others are time stamped. 6175 */ 6176 config.rx_filter = HWTSTAMP_FILTER_SOME; 6177 break; 6178 default: 6179 break; 6180 } 6181 6182 return copy_to_user(ifr->ifr_data, &config, 6183 sizeof(config)) ? -EFAULT : 0; 6184 } 6185 6186 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr) 6187 { 6188 struct e1000_adapter *adapter = netdev_priv(netdev); 6189 6190 return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config, 6191 sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0; 6192 } 6193 6194 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 6195 { 6196 switch (cmd) { 6197 case SIOCGMIIPHY: 6198 case SIOCGMIIREG: 6199 case SIOCSMIIREG: 6200 return e1000_mii_ioctl(netdev, ifr, cmd); 6201 case SIOCSHWTSTAMP: 6202 return e1000e_hwtstamp_set(netdev, ifr); 6203 case SIOCGHWTSTAMP: 6204 return e1000e_hwtstamp_get(netdev, ifr); 6205 default: 6206 return -EOPNOTSUPP; 6207 } 6208 } 6209 6210 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc) 6211 { 6212 struct e1000_hw *hw = &adapter->hw; 6213 u32 i, mac_reg, wuc; 6214 u16 phy_reg, wuc_enable; 6215 int retval; 6216 6217 /* copy MAC RARs to PHY RARs */ 6218 e1000_copy_rx_addrs_to_phy_ich8lan(hw); 6219 6220 retval = hw->phy.ops.acquire(hw); 6221 if (retval) { 6222 e_err("Could not acquire PHY\n"); 6223 return retval; 6224 } 6225 6226 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */ 6227 retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable); 6228 if (retval) 6229 goto release; 6230 6231 /* copy MAC MTA to PHY MTA - only needed for pchlan */ 6232 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) { 6233 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i); 6234 hw->phy.ops.write_reg_page(hw, BM_MTA(i), 6235 (u16)(mac_reg & 0xFFFF)); 6236 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1, 6237 (u16)((mac_reg >> 16) & 0xFFFF)); 6238 } 6239 6240 /* configure PHY Rx Control register */ 6241 hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg); 6242 mac_reg = er32(RCTL); 6243 if (mac_reg & E1000_RCTL_UPE) 6244 phy_reg |= BM_RCTL_UPE; 6245 if (mac_reg & E1000_RCTL_MPE) 6246 phy_reg |= BM_RCTL_MPE; 6247 phy_reg &= ~(BM_RCTL_MO_MASK); 6248 if (mac_reg & E1000_RCTL_MO_3) 6249 phy_reg |= (FIELD_GET(E1000_RCTL_MO_3, mac_reg) 6250 << BM_RCTL_MO_SHIFT); 6251 if (mac_reg & E1000_RCTL_BAM) 6252 phy_reg |= BM_RCTL_BAM; 6253 if (mac_reg & E1000_RCTL_PMCF) 6254 phy_reg |= BM_RCTL_PMCF; 6255 mac_reg = er32(CTRL); 6256 if (mac_reg & E1000_CTRL_RFCE) 6257 phy_reg |= BM_RCTL_RFCE; 6258 hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg); 6259 6260 wuc = E1000_WUC_PME_EN; 6261 if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC)) 6262 wuc |= E1000_WUC_APME; 6263 6264 /* enable PHY wakeup in MAC register */ 6265 ew32(WUFC, wufc); 6266 ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME | 6267 E1000_WUC_PME_STATUS | wuc)); 6268 6269 /* configure and enable PHY wakeup in PHY registers */ 6270 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc); 6271 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc); 6272 6273 /* activate PHY wakeup */ 6274 wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT; 6275 retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable); 6276 if (retval) 6277 e_err("Could not set PHY Host Wakeup bit\n"); 6278 release: 6279 hw->phy.ops.release(hw); 6280 6281 return retval; 6282 } 6283 6284 static void e1000e_flush_lpic(struct pci_dev *pdev) 6285 { 6286 struct net_device *netdev = pci_get_drvdata(pdev); 6287 struct e1000_adapter *adapter = netdev_priv(netdev); 6288 struct e1000_hw *hw = &adapter->hw; 6289 u32 ret_val; 6290 6291 pm_runtime_get_sync(netdev->dev.parent); 6292 6293 ret_val = hw->phy.ops.acquire(hw); 6294 if (ret_val) 6295 goto fl_out; 6296 6297 pr_info("EEE TX LPI TIMER: %08X\n", 6298 er32(LPIC) >> E1000_LPIC_LPIET_SHIFT); 6299 6300 hw->phy.ops.release(hw); 6301 6302 fl_out: 6303 pm_runtime_put_sync(netdev->dev.parent); 6304 } 6305 6306 /* S0ix implementation */ 6307 static void e1000e_s0ix_entry_flow(struct e1000_adapter *adapter) 6308 { 6309 struct e1000_hw *hw = &adapter->hw; 6310 u32 mac_data; 6311 u16 phy_data; 6312 6313 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID && 6314 hw->mac.type >= e1000_pch_adp) { 6315 /* Request ME configure the device for S0ix */ 6316 mac_data = er32(H2ME); 6317 mac_data |= E1000_H2ME_START_DPG; 6318 mac_data &= ~E1000_H2ME_EXIT_DPG; 6319 trace_e1000e_trace_mac_register(mac_data); 6320 ew32(H2ME, mac_data); 6321 } else { 6322 /* Request driver configure the device to S0ix */ 6323 /* Disable the periodic inband message, 6324 * don't request PCIe clock in K1 page770_17[10:9] = 10b 6325 */ 6326 e1e_rphy(hw, HV_PM_CTRL, &phy_data); 6327 phy_data &= ~HV_PM_CTRL_K1_CLK_REQ; 6328 phy_data |= BIT(10); 6329 e1e_wphy(hw, HV_PM_CTRL, phy_data); 6330 6331 /* Make sure we don't exit K1 every time a new packet arrives 6332 * 772_29[5] = 1 CS_Mode_Stay_In_K1 6333 */ 6334 e1e_rphy(hw, I217_CGFREG, &phy_data); 6335 phy_data |= BIT(5); 6336 e1e_wphy(hw, I217_CGFREG, phy_data); 6337 6338 /* Change the MAC/PHY interface to SMBus 6339 * Force the SMBus in PHY page769_23[0] = 1 6340 * Force the SMBus in MAC CTRL_EXT[11] = 1 6341 */ 6342 e1e_rphy(hw, CV_SMB_CTRL, &phy_data); 6343 phy_data |= CV_SMB_CTRL_FORCE_SMBUS; 6344 e1e_wphy(hw, CV_SMB_CTRL, phy_data); 6345 mac_data = er32(CTRL_EXT); 6346 mac_data |= E1000_CTRL_EXT_FORCE_SMBUS; 6347 ew32(CTRL_EXT, mac_data); 6348 6349 /* DFT control: PHY bit: page769_20[0] = 1 6350 * page769_20[7] - PHY PLL stop 6351 * page769_20[8] - PHY go to the electrical idle 6352 * page769_20[9] - PHY serdes disable 6353 * Gate PPW via EXTCNF_CTRL - set 0x0F00[7] = 1 6354 */ 6355 e1e_rphy(hw, I82579_DFT_CTRL, &phy_data); 6356 phy_data |= BIT(0); 6357 phy_data |= BIT(7); 6358 phy_data |= BIT(8); 6359 phy_data |= BIT(9); 6360 e1e_wphy(hw, I82579_DFT_CTRL, phy_data); 6361 6362 mac_data = er32(EXTCNF_CTRL); 6363 mac_data |= E1000_EXTCNF_CTRL_GATE_PHY_CFG; 6364 ew32(EXTCNF_CTRL, mac_data); 6365 6366 /* Disable disconnected cable conditioning for Power Gating */ 6367 mac_data = er32(DPGFR); 6368 mac_data |= BIT(2); 6369 ew32(DPGFR, mac_data); 6370 6371 /* Enable the Dynamic Clock Gating in the DMA and MAC */ 6372 mac_data = er32(CTRL_EXT); 6373 mac_data |= E1000_CTRL_EXT_DMA_DYN_CLK_EN; 6374 ew32(CTRL_EXT, mac_data); 6375 } 6376 6377 /* Enable the Dynamic Power Gating in the MAC */ 6378 mac_data = er32(FEXTNVM7); 6379 mac_data |= BIT(22); 6380 ew32(FEXTNVM7, mac_data); 6381 6382 /* Don't wake from dynamic Power Gating with clock request */ 6383 mac_data = er32(FEXTNVM12); 6384 mac_data |= BIT(12); 6385 ew32(FEXTNVM12, mac_data); 6386 6387 /* Ungate PGCB clock */ 6388 mac_data = er32(FEXTNVM9); 6389 mac_data &= ~BIT(28); 6390 ew32(FEXTNVM9, mac_data); 6391 6392 /* Enable K1 off to enable mPHY Power Gating */ 6393 mac_data = er32(FEXTNVM6); 6394 mac_data |= BIT(31); 6395 ew32(FEXTNVM6, mac_data); 6396 6397 /* Enable mPHY power gating for any link and speed */ 6398 mac_data = er32(FEXTNVM8); 6399 mac_data |= BIT(9); 6400 ew32(FEXTNVM8, mac_data); 6401 6402 /* No MAC DPG gating SLP_S0 in modern standby 6403 * Switch the logic of the lanphypc to use PMC counter 6404 */ 6405 mac_data = er32(FEXTNVM5); 6406 mac_data |= BIT(7); 6407 ew32(FEXTNVM5, mac_data); 6408 6409 /* Disable the time synchronization clock */ 6410 mac_data = er32(FEXTNVM7); 6411 mac_data |= BIT(31); 6412 mac_data &= ~BIT(0); 6413 ew32(FEXTNVM7, mac_data); 6414 6415 /* Dynamic Power Gating Enable */ 6416 mac_data = er32(CTRL_EXT); 6417 mac_data |= BIT(3); 6418 ew32(CTRL_EXT, mac_data); 6419 6420 /* Check MAC Tx/Rx packet buffer pointers. 6421 * Reset MAC Tx/Rx packet buffer pointers to suppress any 6422 * pending traffic indication that would prevent power gating. 6423 */ 6424 mac_data = er32(TDFH); 6425 if (mac_data) 6426 ew32(TDFH, 0); 6427 mac_data = er32(TDFT); 6428 if (mac_data) 6429 ew32(TDFT, 0); 6430 mac_data = er32(TDFHS); 6431 if (mac_data) 6432 ew32(TDFHS, 0); 6433 mac_data = er32(TDFTS); 6434 if (mac_data) 6435 ew32(TDFTS, 0); 6436 mac_data = er32(TDFPC); 6437 if (mac_data) 6438 ew32(TDFPC, 0); 6439 mac_data = er32(RDFH); 6440 if (mac_data) 6441 ew32(RDFH, 0); 6442 mac_data = er32(RDFT); 6443 if (mac_data) 6444 ew32(RDFT, 0); 6445 mac_data = er32(RDFHS); 6446 if (mac_data) 6447 ew32(RDFHS, 0); 6448 mac_data = er32(RDFTS); 6449 if (mac_data) 6450 ew32(RDFTS, 0); 6451 mac_data = er32(RDFPC); 6452 if (mac_data) 6453 ew32(RDFPC, 0); 6454 } 6455 6456 static void e1000e_s0ix_exit_flow(struct e1000_adapter *adapter) 6457 { 6458 struct e1000_hw *hw = &adapter->hw; 6459 bool firmware_bug = false; 6460 u32 mac_data; 6461 u16 phy_data; 6462 u32 i = 0; 6463 6464 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID && 6465 hw->mac.type >= e1000_pch_adp) { 6466 /* Keep the GPT clock enabled for CSME */ 6467 mac_data = er32(FEXTNVM); 6468 mac_data |= BIT(3); 6469 ew32(FEXTNVM, mac_data); 6470 /* Request ME unconfigure the device from S0ix */ 6471 mac_data = er32(H2ME); 6472 mac_data &= ~E1000_H2ME_START_DPG; 6473 mac_data |= E1000_H2ME_EXIT_DPG; 6474 trace_e1000e_trace_mac_register(mac_data); 6475 ew32(H2ME, mac_data); 6476 6477 /* Poll up to 2.5 seconds for ME to unconfigure DPG. 6478 * If this takes more than 1 second, show a warning indicating a 6479 * firmware bug 6480 */ 6481 while (!(er32(EXFWSM) & E1000_EXFWSM_DPG_EXIT_DONE)) { 6482 if (i > 100 && !firmware_bug) 6483 firmware_bug = true; 6484 6485 if (i++ == 250) { 6486 e_dbg("Timeout (firmware bug): %d msec\n", 6487 i * 10); 6488 break; 6489 } 6490 6491 usleep_range(10000, 11000); 6492 } 6493 if (firmware_bug) 6494 e_warn("DPG_EXIT_DONE took %d msec. This is a firmware bug\n", 6495 i * 10); 6496 else 6497 e_dbg("DPG_EXIT_DONE cleared after %d msec\n", i * 10); 6498 } else { 6499 /* Request driver unconfigure the device from S0ix */ 6500 6501 /* Cancel disable disconnected cable conditioning 6502 * for Power Gating 6503 */ 6504 mac_data = er32(DPGFR); 6505 mac_data &= ~BIT(2); 6506 ew32(DPGFR, mac_data); 6507 6508 /* Disable the Dynamic Clock Gating in the DMA and MAC */ 6509 mac_data = er32(CTRL_EXT); 6510 mac_data &= 0xFFF7FFFF; 6511 ew32(CTRL_EXT, mac_data); 6512 6513 /* Enable the periodic inband message, 6514 * Request PCIe clock in K1 page770_17[10:9] =01b 6515 */ 6516 e1e_rphy(hw, HV_PM_CTRL, &phy_data); 6517 phy_data &= 0xFBFF; 6518 phy_data |= HV_PM_CTRL_K1_CLK_REQ; 6519 e1e_wphy(hw, HV_PM_CTRL, phy_data); 6520 6521 /* Return back configuration 6522 * 772_29[5] = 0 CS_Mode_Stay_In_K1 6523 */ 6524 e1e_rphy(hw, I217_CGFREG, &phy_data); 6525 phy_data &= 0xFFDF; 6526 e1e_wphy(hw, I217_CGFREG, phy_data); 6527 6528 /* Change the MAC/PHY interface to Kumeran 6529 * Unforce the SMBus in PHY page769_23[0] = 0 6530 * Unforce the SMBus in MAC CTRL_EXT[11] = 0 6531 */ 6532 e1e_rphy(hw, CV_SMB_CTRL, &phy_data); 6533 phy_data &= ~CV_SMB_CTRL_FORCE_SMBUS; 6534 e1e_wphy(hw, CV_SMB_CTRL, phy_data); 6535 mac_data = er32(CTRL_EXT); 6536 mac_data &= ~E1000_CTRL_EXT_FORCE_SMBUS; 6537 ew32(CTRL_EXT, mac_data); 6538 } 6539 6540 /* Disable Dynamic Power Gating */ 6541 mac_data = er32(CTRL_EXT); 6542 mac_data &= 0xFFFFFFF7; 6543 ew32(CTRL_EXT, mac_data); 6544 6545 /* Enable the time synchronization clock */ 6546 mac_data = er32(FEXTNVM7); 6547 mac_data &= ~BIT(31); 6548 mac_data |= BIT(0); 6549 ew32(FEXTNVM7, mac_data); 6550 6551 /* Disable the Dynamic Power Gating in the MAC */ 6552 mac_data = er32(FEXTNVM7); 6553 mac_data &= 0xFFBFFFFF; 6554 ew32(FEXTNVM7, mac_data); 6555 6556 /* Disable mPHY power gating for any link and speed */ 6557 mac_data = er32(FEXTNVM8); 6558 mac_data &= ~BIT(9); 6559 ew32(FEXTNVM8, mac_data); 6560 6561 /* Disable K1 off */ 6562 mac_data = er32(FEXTNVM6); 6563 mac_data &= ~BIT(31); 6564 ew32(FEXTNVM6, mac_data); 6565 6566 /* Disable Ungate PGCB clock */ 6567 mac_data = er32(FEXTNVM9); 6568 mac_data |= BIT(28); 6569 ew32(FEXTNVM9, mac_data); 6570 6571 /* Cancel not waking from dynamic 6572 * Power Gating with clock request 6573 */ 6574 mac_data = er32(FEXTNVM12); 6575 mac_data &= ~BIT(12); 6576 ew32(FEXTNVM12, mac_data); 6577 6578 /* Revert the lanphypc logic to use the internal Gbe counter 6579 * and not the PMC counter 6580 */ 6581 mac_data = er32(FEXTNVM5); 6582 mac_data &= 0xFFFFFF7F; 6583 ew32(FEXTNVM5, mac_data); 6584 } 6585 6586 static int e1000e_pm_freeze(struct device *dev) 6587 { 6588 struct net_device *netdev = dev_get_drvdata(dev); 6589 struct e1000_adapter *adapter = netdev_priv(netdev); 6590 bool present; 6591 6592 rtnl_lock(); 6593 6594 present = netif_device_present(netdev); 6595 netif_device_detach(netdev); 6596 6597 if (present && netif_running(netdev)) { 6598 int count = E1000_CHECK_RESET_COUNT; 6599 6600 while (test_bit(__E1000_RESETTING, &adapter->state) && count--) 6601 usleep_range(10000, 11000); 6602 6603 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); 6604 6605 /* Quiesce the device without resetting the hardware */ 6606 e1000e_down(adapter, false); 6607 e1000_free_irq(adapter); 6608 } 6609 rtnl_unlock(); 6610 6611 e1000e_reset_interrupt_capability(adapter); 6612 6613 /* Allow time for pending master requests to run */ 6614 e1000e_disable_pcie_master(&adapter->hw); 6615 6616 return 0; 6617 } 6618 6619 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime) 6620 { 6621 struct net_device *netdev = pci_get_drvdata(pdev); 6622 struct e1000_adapter *adapter = netdev_priv(netdev); 6623 struct e1000_hw *hw = &adapter->hw; 6624 u32 ctrl, ctrl_ext, rctl, status, wufc; 6625 int retval = 0; 6626 6627 /* Runtime suspend should only enable wakeup for link changes */ 6628 if (runtime) 6629 wufc = E1000_WUFC_LNKC; 6630 else if (device_may_wakeup(&pdev->dev)) 6631 wufc = adapter->wol; 6632 else 6633 wufc = 0; 6634 6635 status = er32(STATUS); 6636 if (status & E1000_STATUS_LU) 6637 wufc &= ~E1000_WUFC_LNKC; 6638 6639 if (wufc) { 6640 e1000_setup_rctl(adapter); 6641 e1000e_set_rx_mode(netdev); 6642 6643 /* turn on all-multi mode if wake on multicast is enabled */ 6644 if (wufc & E1000_WUFC_MC) { 6645 rctl = er32(RCTL); 6646 rctl |= E1000_RCTL_MPE; 6647 ew32(RCTL, rctl); 6648 } 6649 6650 ctrl = er32(CTRL); 6651 ctrl |= E1000_CTRL_ADVD3WUC; 6652 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP)) 6653 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT; 6654 ew32(CTRL, ctrl); 6655 6656 if (adapter->hw.phy.media_type == e1000_media_type_fiber || 6657 adapter->hw.phy.media_type == 6658 e1000_media_type_internal_serdes) { 6659 /* keep the laser running in D3 */ 6660 ctrl_ext = er32(CTRL_EXT); 6661 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA; 6662 ew32(CTRL_EXT, ctrl_ext); 6663 } 6664 6665 if (!runtime) 6666 e1000e_power_up_phy(adapter); 6667 6668 if (adapter->flags & FLAG_IS_ICH) 6669 e1000_suspend_workarounds_ich8lan(&adapter->hw); 6670 6671 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) { 6672 /* enable wakeup by the PHY */ 6673 retval = e1000_init_phy_wakeup(adapter, wufc); 6674 if (retval) 6675 return retval; 6676 } else { 6677 /* enable wakeup by the MAC */ 6678 ew32(WUFC, wufc); 6679 ew32(WUC, E1000_WUC_PME_EN); 6680 } 6681 } else { 6682 ew32(WUC, 0); 6683 ew32(WUFC, 0); 6684 6685 e1000_power_down_phy(adapter); 6686 } 6687 6688 if (adapter->hw.phy.type == e1000_phy_igp_3) { 6689 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw); 6690 } else if (hw->mac.type >= e1000_pch_lpt) { 6691 if (wufc && !(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC))) { 6692 /* ULP does not support wake from unicast, multicast 6693 * or broadcast. 6694 */ 6695 retval = e1000_enable_ulp_lpt_lp(hw, !runtime); 6696 if (retval) 6697 return retval; 6698 } 6699 } 6700 6701 /* Ensure that the appropriate bits are set in LPI_CTRL 6702 * for EEE in Sx 6703 */ 6704 if ((hw->phy.type >= e1000_phy_i217) && 6705 adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) { 6706 u16 lpi_ctrl = 0; 6707 6708 retval = hw->phy.ops.acquire(hw); 6709 if (!retval) { 6710 retval = e1e_rphy_locked(hw, I82579_LPI_CTRL, 6711 &lpi_ctrl); 6712 if (!retval) { 6713 if (adapter->eee_advert & 6714 hw->dev_spec.ich8lan.eee_lp_ability & 6715 I82579_EEE_100_SUPPORTED) 6716 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE; 6717 if (adapter->eee_advert & 6718 hw->dev_spec.ich8lan.eee_lp_ability & 6719 I82579_EEE_1000_SUPPORTED) 6720 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE; 6721 6722 retval = e1e_wphy_locked(hw, I82579_LPI_CTRL, 6723 lpi_ctrl); 6724 } 6725 } 6726 hw->phy.ops.release(hw); 6727 } 6728 6729 /* Release control of h/w to f/w. If f/w is AMT enabled, this 6730 * would have already happened in close and is redundant. 6731 */ 6732 e1000e_release_hw_control(adapter); 6733 6734 pci_clear_master(pdev); 6735 6736 /* The pci-e switch on some quad port adapters will report a 6737 * correctable error when the MAC transitions from D0 to D3. To 6738 * prevent this we need to mask off the correctable errors on the 6739 * downstream port of the pci-e switch. 6740 * 6741 * We don't have the associated upstream bridge while assigning 6742 * the PCI device into guest. For example, the KVM on power is 6743 * one of the cases. 6744 */ 6745 if (adapter->flags & FLAG_IS_QUAD_PORT) { 6746 struct pci_dev *us_dev = pdev->bus->self; 6747 u16 devctl; 6748 6749 if (!us_dev) 6750 return 0; 6751 6752 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl); 6753 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, 6754 (devctl & ~PCI_EXP_DEVCTL_CERE)); 6755 6756 pci_save_state(pdev); 6757 pci_prepare_to_sleep(pdev); 6758 6759 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl); 6760 } 6761 6762 return 0; 6763 } 6764 6765 /** 6766 * __e1000e_disable_aspm - Disable ASPM states 6767 * @pdev: pointer to PCI device struct 6768 * @state: bit-mask of ASPM states to disable 6769 * @locked: indication if this context holds pci_bus_sem locked. 6770 * 6771 * Some devices *must* have certain ASPM states disabled per hardware errata. 6772 **/ 6773 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked) 6774 { 6775 struct pci_dev *parent = pdev->bus->self; 6776 u16 aspm_dis_mask = 0; 6777 u16 pdev_aspmc, parent_aspmc; 6778 6779 switch (state) { 6780 case PCIE_LINK_STATE_L0S: 6781 case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1: 6782 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S; 6783 fallthrough; /* can't have L1 without L0s */ 6784 case PCIE_LINK_STATE_L1: 6785 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1; 6786 break; 6787 default: 6788 return; 6789 } 6790 6791 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc); 6792 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC; 6793 6794 if (parent) { 6795 pcie_capability_read_word(parent, PCI_EXP_LNKCTL, 6796 &parent_aspmc); 6797 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC; 6798 } 6799 6800 /* Nothing to do if the ASPM states to be disabled already are */ 6801 if (!(pdev_aspmc & aspm_dis_mask) && 6802 (!parent || !(parent_aspmc & aspm_dis_mask))) 6803 return; 6804 6805 dev_info(&pdev->dev, "Disabling ASPM %s %s\n", 6806 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ? 6807 "L0s" : "", 6808 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ? 6809 "L1" : ""); 6810 6811 #ifdef CONFIG_PCIEASPM 6812 if (locked) 6813 pci_disable_link_state_locked(pdev, state); 6814 else 6815 pci_disable_link_state(pdev, state); 6816 6817 /* Double-check ASPM control. If not disabled by the above, the 6818 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is 6819 * not enabled); override by writing PCI config space directly. 6820 */ 6821 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc); 6822 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC; 6823 6824 if (!(aspm_dis_mask & pdev_aspmc)) 6825 return; 6826 #endif 6827 6828 /* Both device and parent should have the same ASPM setting. 6829 * Disable ASPM in downstream component first and then upstream. 6830 */ 6831 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask); 6832 6833 if (parent) 6834 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL, 6835 aspm_dis_mask); 6836 } 6837 6838 /** 6839 * e1000e_disable_aspm - Disable ASPM states. 6840 * @pdev: pointer to PCI device struct 6841 * @state: bit-mask of ASPM states to disable 6842 * 6843 * This function acquires the pci_bus_sem! 6844 * Some devices *must* have certain ASPM states disabled per hardware errata. 6845 **/ 6846 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state) 6847 { 6848 __e1000e_disable_aspm(pdev, state, 0); 6849 } 6850 6851 /** 6852 * e1000e_disable_aspm_locked - Disable ASPM states. 6853 * @pdev: pointer to PCI device struct 6854 * @state: bit-mask of ASPM states to disable 6855 * 6856 * This function must be called with pci_bus_sem acquired! 6857 * Some devices *must* have certain ASPM states disabled per hardware errata. 6858 **/ 6859 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state) 6860 { 6861 __e1000e_disable_aspm(pdev, state, 1); 6862 } 6863 6864 static int e1000e_pm_thaw(struct device *dev) 6865 { 6866 struct net_device *netdev = dev_get_drvdata(dev); 6867 struct e1000_adapter *adapter = netdev_priv(netdev); 6868 int rc = 0; 6869 6870 e1000e_set_interrupt_capability(adapter); 6871 6872 rtnl_lock(); 6873 if (netif_running(netdev)) { 6874 rc = e1000_request_irq(adapter); 6875 if (rc) 6876 goto err_irq; 6877 6878 e1000e_up(adapter); 6879 } 6880 6881 netif_device_attach(netdev); 6882 err_irq: 6883 rtnl_unlock(); 6884 6885 return rc; 6886 } 6887 6888 static int __e1000_resume(struct pci_dev *pdev) 6889 { 6890 struct net_device *netdev = pci_get_drvdata(pdev); 6891 struct e1000_adapter *adapter = netdev_priv(netdev); 6892 struct e1000_hw *hw = &adapter->hw; 6893 u16 aspm_disable_flag = 0; 6894 6895 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S) 6896 aspm_disable_flag = PCIE_LINK_STATE_L0S; 6897 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1) 6898 aspm_disable_flag |= PCIE_LINK_STATE_L1; 6899 if (aspm_disable_flag) 6900 e1000e_disable_aspm(pdev, aspm_disable_flag); 6901 6902 pci_set_master(pdev); 6903 6904 if (hw->mac.type >= e1000_pch2lan) 6905 e1000_resume_workarounds_pchlan(&adapter->hw); 6906 6907 e1000e_power_up_phy(adapter); 6908 6909 /* report the system wakeup cause from S3/S4 */ 6910 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) { 6911 u16 phy_data; 6912 6913 e1e_rphy(&adapter->hw, BM_WUS, &phy_data); 6914 if (phy_data) { 6915 e_info("PHY Wakeup cause - %s\n", 6916 phy_data & E1000_WUS_EX ? "Unicast Packet" : 6917 phy_data & E1000_WUS_MC ? "Multicast Packet" : 6918 phy_data & E1000_WUS_BC ? "Broadcast Packet" : 6919 phy_data & E1000_WUS_MAG ? "Magic Packet" : 6920 phy_data & E1000_WUS_LNKC ? 6921 "Link Status Change" : "other"); 6922 } 6923 e1e_wphy(&adapter->hw, BM_WUS, ~0); 6924 } else { 6925 u32 wus = er32(WUS); 6926 6927 if (wus) { 6928 e_info("MAC Wakeup cause - %s\n", 6929 wus & E1000_WUS_EX ? "Unicast Packet" : 6930 wus & E1000_WUS_MC ? "Multicast Packet" : 6931 wus & E1000_WUS_BC ? "Broadcast Packet" : 6932 wus & E1000_WUS_MAG ? "Magic Packet" : 6933 wus & E1000_WUS_LNKC ? "Link Status Change" : 6934 "other"); 6935 } 6936 ew32(WUS, ~0); 6937 } 6938 6939 e1000e_reset(adapter); 6940 6941 e1000_init_manageability_pt(adapter); 6942 6943 /* If the controller has AMT, do not set DRV_LOAD until the interface 6944 * is up. For all other cases, let the f/w know that the h/w is now 6945 * under the control of the driver. 6946 */ 6947 if (!(adapter->flags & FLAG_HAS_AMT)) 6948 e1000e_get_hw_control(adapter); 6949 6950 return 0; 6951 } 6952 6953 static int e1000e_pm_prepare(struct device *dev) 6954 { 6955 return pm_runtime_suspended(dev) && 6956 pm_suspend_via_firmware(); 6957 } 6958 6959 static int e1000e_pm_suspend(struct device *dev) 6960 { 6961 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev)); 6962 struct e1000_adapter *adapter = netdev_priv(netdev); 6963 struct pci_dev *pdev = to_pci_dev(dev); 6964 int rc; 6965 6966 e1000e_flush_lpic(pdev); 6967 6968 e1000e_pm_freeze(dev); 6969 6970 rc = __e1000_shutdown(pdev, false); 6971 if (rc) { 6972 e1000e_pm_thaw(dev); 6973 } else { 6974 /* Introduce S0ix implementation */ 6975 if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS) 6976 e1000e_s0ix_entry_flow(adapter); 6977 } 6978 6979 return rc; 6980 } 6981 6982 static int e1000e_pm_resume(struct device *dev) 6983 { 6984 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev)); 6985 struct e1000_adapter *adapter = netdev_priv(netdev); 6986 struct pci_dev *pdev = to_pci_dev(dev); 6987 int rc; 6988 6989 /* Introduce S0ix implementation */ 6990 if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS) 6991 e1000e_s0ix_exit_flow(adapter); 6992 6993 rc = __e1000_resume(pdev); 6994 if (rc) 6995 return rc; 6996 6997 return e1000e_pm_thaw(dev); 6998 } 6999 7000 static __maybe_unused int e1000e_pm_runtime_idle(struct device *dev) 7001 { 7002 struct net_device *netdev = dev_get_drvdata(dev); 7003 struct e1000_adapter *adapter = netdev_priv(netdev); 7004 u16 eee_lp; 7005 7006 eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability; 7007 7008 if (!e1000e_has_link(adapter)) { 7009 adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp; 7010 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC); 7011 } 7012 7013 return -EBUSY; 7014 } 7015 7016 static int e1000e_pm_runtime_resume(struct device *dev) 7017 { 7018 struct pci_dev *pdev = to_pci_dev(dev); 7019 struct net_device *netdev = pci_get_drvdata(pdev); 7020 struct e1000_adapter *adapter = netdev_priv(netdev); 7021 int rc; 7022 7023 pdev->pme_poll = true; 7024 7025 rc = __e1000_resume(pdev); 7026 if (rc) 7027 return rc; 7028 7029 if (netdev->flags & IFF_UP) 7030 e1000e_up(adapter); 7031 7032 return rc; 7033 } 7034 7035 static int e1000e_pm_runtime_suspend(struct device *dev) 7036 { 7037 struct pci_dev *pdev = to_pci_dev(dev); 7038 struct net_device *netdev = pci_get_drvdata(pdev); 7039 struct e1000_adapter *adapter = netdev_priv(netdev); 7040 7041 if (netdev->flags & IFF_UP) { 7042 int count = E1000_CHECK_RESET_COUNT; 7043 7044 while (test_bit(__E1000_RESETTING, &adapter->state) && count--) 7045 usleep_range(10000, 11000); 7046 7047 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); 7048 7049 /* Down the device without resetting the hardware */ 7050 e1000e_down(adapter, false); 7051 } 7052 7053 if (__e1000_shutdown(pdev, true)) { 7054 e1000e_pm_runtime_resume(dev); 7055 return -EBUSY; 7056 } 7057 7058 return 0; 7059 } 7060 7061 static void e1000_shutdown(struct pci_dev *pdev) 7062 { 7063 e1000e_flush_lpic(pdev); 7064 7065 e1000e_pm_freeze(&pdev->dev); 7066 7067 __e1000_shutdown(pdev, false); 7068 } 7069 7070 #ifdef CONFIG_NET_POLL_CONTROLLER 7071 7072 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data) 7073 { 7074 struct net_device *netdev = data; 7075 struct e1000_adapter *adapter = netdev_priv(netdev); 7076 7077 if (adapter->msix_entries) { 7078 int vector, msix_irq; 7079 7080 vector = 0; 7081 msix_irq = adapter->msix_entries[vector].vector; 7082 if (disable_hardirq(msix_irq)) 7083 e1000_intr_msix_rx(msix_irq, netdev); 7084 enable_irq(msix_irq); 7085 7086 vector++; 7087 msix_irq = adapter->msix_entries[vector].vector; 7088 if (disable_hardirq(msix_irq)) 7089 e1000_intr_msix_tx(msix_irq, netdev); 7090 enable_irq(msix_irq); 7091 7092 vector++; 7093 msix_irq = adapter->msix_entries[vector].vector; 7094 if (disable_hardirq(msix_irq)) 7095 e1000_msix_other(msix_irq, netdev); 7096 enable_irq(msix_irq); 7097 } 7098 7099 return IRQ_HANDLED; 7100 } 7101 7102 /** 7103 * e1000_netpoll 7104 * @netdev: network interface device structure 7105 * 7106 * Polling 'interrupt' - used by things like netconsole to send skbs 7107 * without having to re-enable interrupts. It's not called while 7108 * the interrupt routine is executing. 7109 */ 7110 static void e1000_netpoll(struct net_device *netdev) 7111 { 7112 struct e1000_adapter *adapter = netdev_priv(netdev); 7113 7114 switch (adapter->int_mode) { 7115 case E1000E_INT_MODE_MSIX: 7116 e1000_intr_msix(adapter->pdev->irq, netdev); 7117 break; 7118 case E1000E_INT_MODE_MSI: 7119 if (disable_hardirq(adapter->pdev->irq)) 7120 e1000_intr_msi(adapter->pdev->irq, netdev); 7121 enable_irq(adapter->pdev->irq); 7122 break; 7123 default: /* E1000E_INT_MODE_LEGACY */ 7124 if (disable_hardirq(adapter->pdev->irq)) 7125 e1000_intr(adapter->pdev->irq, netdev); 7126 enable_irq(adapter->pdev->irq); 7127 break; 7128 } 7129 } 7130 #endif 7131 7132 /** 7133 * e1000_io_error_detected - called when PCI error is detected 7134 * @pdev: Pointer to PCI device 7135 * @state: The current pci connection state 7136 * 7137 * This function is called after a PCI bus error affecting 7138 * this device has been detected. 7139 */ 7140 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, 7141 pci_channel_state_t state) 7142 { 7143 e1000e_pm_freeze(&pdev->dev); 7144 7145 if (state == pci_channel_io_perm_failure) 7146 return PCI_ERS_RESULT_DISCONNECT; 7147 7148 pci_disable_device(pdev); 7149 7150 /* Request a slot reset. */ 7151 return PCI_ERS_RESULT_NEED_RESET; 7152 } 7153 7154 /** 7155 * e1000_io_slot_reset - called after the pci bus has been reset. 7156 * @pdev: Pointer to PCI device 7157 * 7158 * Restart the card from scratch, as if from a cold-boot. Implementation 7159 * resembles the first-half of the e1000e_pm_resume routine. 7160 */ 7161 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) 7162 { 7163 struct net_device *netdev = pci_get_drvdata(pdev); 7164 struct e1000_adapter *adapter = netdev_priv(netdev); 7165 struct e1000_hw *hw = &adapter->hw; 7166 u16 aspm_disable_flag = 0; 7167 int err; 7168 pci_ers_result_t result; 7169 7170 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S) 7171 aspm_disable_flag = PCIE_LINK_STATE_L0S; 7172 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1) 7173 aspm_disable_flag |= PCIE_LINK_STATE_L1; 7174 if (aspm_disable_flag) 7175 e1000e_disable_aspm_locked(pdev, aspm_disable_flag); 7176 7177 err = pci_enable_device_mem(pdev); 7178 if (err) { 7179 dev_err(&pdev->dev, 7180 "Cannot re-enable PCI device after reset.\n"); 7181 result = PCI_ERS_RESULT_DISCONNECT; 7182 } else { 7183 pdev->state_saved = true; 7184 pci_restore_state(pdev); 7185 pci_set_master(pdev); 7186 7187 pci_enable_wake(pdev, PCI_D3hot, 0); 7188 pci_enable_wake(pdev, PCI_D3cold, 0); 7189 7190 e1000e_reset(adapter); 7191 ew32(WUS, ~0); 7192 result = PCI_ERS_RESULT_RECOVERED; 7193 } 7194 7195 return result; 7196 } 7197 7198 /** 7199 * e1000_io_resume - called when traffic can start flowing again. 7200 * @pdev: Pointer to PCI device 7201 * 7202 * This callback is called when the error recovery driver tells us that 7203 * its OK to resume normal operation. Implementation resembles the 7204 * second-half of the e1000e_pm_resume routine. 7205 */ 7206 static void e1000_io_resume(struct pci_dev *pdev) 7207 { 7208 struct net_device *netdev = pci_get_drvdata(pdev); 7209 struct e1000_adapter *adapter = netdev_priv(netdev); 7210 7211 e1000_init_manageability_pt(adapter); 7212 7213 e1000e_pm_thaw(&pdev->dev); 7214 7215 /* If the controller has AMT, do not set DRV_LOAD until the interface 7216 * is up. For all other cases, let the f/w know that the h/w is now 7217 * under the control of the driver. 7218 */ 7219 if (!(adapter->flags & FLAG_HAS_AMT)) 7220 e1000e_get_hw_control(adapter); 7221 } 7222 7223 static void e1000_print_device_info(struct e1000_adapter *adapter) 7224 { 7225 struct e1000_hw *hw = &adapter->hw; 7226 struct net_device *netdev = adapter->netdev; 7227 u32 ret_val; 7228 u8 pba_str[E1000_PBANUM_LENGTH]; 7229 7230 /* print bus type/speed/width info */ 7231 e_info("(PCI Express:2.5GT/s:%s) %pM\n", 7232 /* bus width */ 7233 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" : 7234 "Width x1"), 7235 /* MAC address */ 7236 netdev->dev_addr); 7237 e_info("Intel(R) PRO/%s Network Connection\n", 7238 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000"); 7239 ret_val = e1000_read_pba_string_generic(hw, pba_str, 7240 E1000_PBANUM_LENGTH); 7241 if (ret_val) 7242 strscpy((char *)pba_str, "Unknown", sizeof(pba_str)); 7243 e_info("MAC: %d, PHY: %d, PBA No: %s\n", 7244 hw->mac.type, hw->phy.type, pba_str); 7245 } 7246 7247 static void e1000_eeprom_checks(struct e1000_adapter *adapter) 7248 { 7249 struct e1000_hw *hw = &adapter->hw; 7250 int ret_val; 7251 u16 buf = 0; 7252 7253 if (hw->mac.type != e1000_82573) 7254 return; 7255 7256 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf); 7257 le16_to_cpus(&buf); 7258 if (!ret_val && (!(buf & BIT(0)))) { 7259 /* Deep Smart Power Down (DSPD) */ 7260 dev_warn(&adapter->pdev->dev, 7261 "Warning: detected DSPD enabled in EEPROM\n"); 7262 } 7263 } 7264 7265 static netdev_features_t e1000_fix_features(struct net_device *netdev, 7266 netdev_features_t features) 7267 { 7268 struct e1000_adapter *adapter = netdev_priv(netdev); 7269 struct e1000_hw *hw = &adapter->hw; 7270 7271 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */ 7272 if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN)) 7273 features &= ~NETIF_F_RXFCS; 7274 7275 /* Since there is no support for separate Rx/Tx vlan accel 7276 * enable/disable make sure Tx flag is always in same state as Rx. 7277 */ 7278 if (features & NETIF_F_HW_VLAN_CTAG_RX) 7279 features |= NETIF_F_HW_VLAN_CTAG_TX; 7280 else 7281 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 7282 7283 return features; 7284 } 7285 7286 static int e1000_set_features(struct net_device *netdev, 7287 netdev_features_t features) 7288 { 7289 struct e1000_adapter *adapter = netdev_priv(netdev); 7290 netdev_features_t changed = features ^ netdev->features; 7291 7292 if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) 7293 adapter->flags |= FLAG_TSO_FORCE; 7294 7295 if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX | 7296 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS | 7297 NETIF_F_RXALL))) 7298 return 0; 7299 7300 if (changed & NETIF_F_RXFCS) { 7301 if (features & NETIF_F_RXFCS) { 7302 adapter->flags2 &= ~FLAG2_CRC_STRIPPING; 7303 } else { 7304 /* We need to take it back to defaults, which might mean 7305 * stripping is still disabled at the adapter level. 7306 */ 7307 if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING) 7308 adapter->flags2 |= FLAG2_CRC_STRIPPING; 7309 else 7310 adapter->flags2 &= ~FLAG2_CRC_STRIPPING; 7311 } 7312 } 7313 7314 netdev->features = features; 7315 7316 if (netif_running(netdev)) 7317 e1000e_reinit_locked(adapter); 7318 else 7319 e1000e_reset(adapter); 7320 7321 return 1; 7322 } 7323 7324 static const struct net_device_ops e1000e_netdev_ops = { 7325 .ndo_open = e1000e_open, 7326 .ndo_stop = e1000e_close, 7327 .ndo_start_xmit = e1000_xmit_frame, 7328 .ndo_get_stats64 = e1000e_get_stats64, 7329 .ndo_set_rx_mode = e1000e_set_rx_mode, 7330 .ndo_set_mac_address = e1000_set_mac, 7331 .ndo_change_mtu = e1000_change_mtu, 7332 .ndo_eth_ioctl = e1000_ioctl, 7333 .ndo_tx_timeout = e1000_tx_timeout, 7334 .ndo_validate_addr = eth_validate_addr, 7335 7336 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, 7337 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, 7338 #ifdef CONFIG_NET_POLL_CONTROLLER 7339 .ndo_poll_controller = e1000_netpoll, 7340 #endif 7341 .ndo_set_features = e1000_set_features, 7342 .ndo_fix_features = e1000_fix_features, 7343 .ndo_features_check = passthru_features_check, 7344 }; 7345 7346 /** 7347 * e1000_probe - Device Initialization Routine 7348 * @pdev: PCI device information struct 7349 * @ent: entry in e1000_pci_tbl 7350 * 7351 * Returns 0 on success, negative on failure 7352 * 7353 * e1000_probe initializes an adapter identified by a pci_dev structure. 7354 * The OS initialization, configuring of the adapter private structure, 7355 * and a hardware reset occur. 7356 **/ 7357 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 7358 { 7359 struct net_device *netdev; 7360 struct e1000_adapter *adapter; 7361 struct e1000_hw *hw; 7362 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data]; 7363 resource_size_t mmio_start, mmio_len; 7364 resource_size_t flash_start, flash_len; 7365 static int cards_found; 7366 u16 aspm_disable_flag = 0; 7367 u16 eeprom_data = 0; 7368 u16 eeprom_apme_mask = E1000_EEPROM_APME; 7369 int bars, i, err; 7370 s32 ret_val = 0; 7371 7372 if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S) 7373 aspm_disable_flag = PCIE_LINK_STATE_L0S; 7374 if (ei->flags2 & FLAG2_DISABLE_ASPM_L1) 7375 aspm_disable_flag |= PCIE_LINK_STATE_L1; 7376 if (aspm_disable_flag) 7377 e1000e_disable_aspm(pdev, aspm_disable_flag); 7378 7379 err = pci_enable_device_mem(pdev); 7380 if (err) 7381 return err; 7382 7383 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 7384 if (err) { 7385 dev_err(&pdev->dev, 7386 "No usable DMA configuration, aborting\n"); 7387 goto err_dma; 7388 } 7389 7390 bars = pci_select_bars(pdev, IORESOURCE_MEM); 7391 err = pci_request_selected_regions_exclusive(pdev, bars, 7392 e1000e_driver_name); 7393 if (err) 7394 goto err_pci_reg; 7395 7396 pci_set_master(pdev); 7397 /* PCI config space info */ 7398 err = pci_save_state(pdev); 7399 if (err) 7400 goto err_alloc_etherdev; 7401 7402 err = -ENOMEM; 7403 netdev = alloc_etherdev(sizeof(struct e1000_adapter)); 7404 if (!netdev) 7405 goto err_alloc_etherdev; 7406 7407 SET_NETDEV_DEV(netdev, &pdev->dev); 7408 7409 netdev->irq = pdev->irq; 7410 7411 pci_set_drvdata(pdev, netdev); 7412 adapter = netdev_priv(netdev); 7413 hw = &adapter->hw; 7414 adapter->netdev = netdev; 7415 adapter->pdev = pdev; 7416 adapter->ei = ei; 7417 adapter->pba = ei->pba; 7418 adapter->flags = ei->flags; 7419 adapter->flags2 = ei->flags2; 7420 adapter->hw.adapter = adapter; 7421 adapter->hw.mac.type = ei->mac; 7422 adapter->max_hw_frame_size = ei->max_hw_frame_size; 7423 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 7424 7425 mmio_start = pci_resource_start(pdev, 0); 7426 mmio_len = pci_resource_len(pdev, 0); 7427 7428 err = -EIO; 7429 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len); 7430 if (!adapter->hw.hw_addr) 7431 goto err_ioremap; 7432 7433 if ((adapter->flags & FLAG_HAS_FLASH) && 7434 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) && 7435 (hw->mac.type < e1000_pch_spt)) { 7436 flash_start = pci_resource_start(pdev, 1); 7437 flash_len = pci_resource_len(pdev, 1); 7438 adapter->hw.flash_address = ioremap(flash_start, flash_len); 7439 if (!adapter->hw.flash_address) 7440 goto err_flashmap; 7441 } 7442 7443 /* Set default EEE advertisement */ 7444 if (adapter->flags2 & FLAG2_HAS_EEE) 7445 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T; 7446 7447 /* construct the net_device struct */ 7448 netdev->netdev_ops = &e1000e_netdev_ops; 7449 e1000e_set_ethtool_ops(netdev); 7450 netdev->watchdog_timeo = 5 * HZ; 7451 netif_napi_add(netdev, &adapter->napi, e1000e_poll); 7452 strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name)); 7453 7454 netdev->mem_start = mmio_start; 7455 netdev->mem_end = mmio_start + mmio_len; 7456 7457 adapter->bd_number = cards_found++; 7458 7459 e1000e_check_options(adapter); 7460 7461 /* setup adapter struct */ 7462 err = e1000_sw_init(adapter); 7463 if (err) 7464 goto err_sw_init; 7465 7466 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); 7467 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); 7468 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); 7469 7470 err = ei->get_variants(adapter); 7471 if (err) 7472 goto err_hw_init; 7473 7474 if ((adapter->flags & FLAG_IS_ICH) && 7475 (adapter->flags & FLAG_READ_ONLY_NVM) && 7476 (hw->mac.type < e1000_pch_spt)) 7477 e1000e_write_protect_nvm_ich8lan(&adapter->hw); 7478 7479 hw->mac.ops.get_bus_info(&adapter->hw); 7480 7481 adapter->hw.phy.autoneg_wait_to_complete = 0; 7482 7483 /* Copper options */ 7484 if (adapter->hw.phy.media_type == e1000_media_type_copper) { 7485 adapter->hw.phy.mdix = AUTO_ALL_MODES; 7486 adapter->hw.phy.disable_polarity_correction = 0; 7487 adapter->hw.phy.ms_type = e1000_ms_hw_default; 7488 } 7489 7490 if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw)) 7491 dev_info(&pdev->dev, 7492 "PHY reset is blocked due to SOL/IDER session.\n"); 7493 7494 /* Set initial default active device features */ 7495 netdev->features = (NETIF_F_SG | 7496 NETIF_F_HW_VLAN_CTAG_RX | 7497 NETIF_F_HW_VLAN_CTAG_TX | 7498 NETIF_F_TSO | 7499 NETIF_F_TSO6 | 7500 NETIF_F_RXHASH | 7501 NETIF_F_RXCSUM | 7502 NETIF_F_HW_CSUM); 7503 7504 /* disable TSO for pcie and 10/100 speeds to avoid 7505 * some hardware issues and for i219 to fix transfer 7506 * speed being capped at 60% 7507 */ 7508 if (!(adapter->flags & FLAG_TSO_FORCE)) { 7509 switch (adapter->link_speed) { 7510 case SPEED_10: 7511 case SPEED_100: 7512 e_info("10/100 speed: disabling TSO\n"); 7513 netdev->features &= ~NETIF_F_TSO; 7514 netdev->features &= ~NETIF_F_TSO6; 7515 break; 7516 case SPEED_1000: 7517 netdev->features |= NETIF_F_TSO; 7518 netdev->features |= NETIF_F_TSO6; 7519 break; 7520 default: 7521 /* oops */ 7522 break; 7523 } 7524 if (hw->mac.type == e1000_pch_spt) { 7525 netdev->features &= ~NETIF_F_TSO; 7526 netdev->features &= ~NETIF_F_TSO6; 7527 } 7528 } 7529 7530 /* Set user-changeable features (subset of all device features) */ 7531 netdev->hw_features = netdev->features; 7532 netdev->hw_features |= NETIF_F_RXFCS; 7533 netdev->priv_flags |= IFF_SUPP_NOFCS; 7534 netdev->hw_features |= NETIF_F_RXALL; 7535 7536 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) 7537 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 7538 7539 netdev->vlan_features |= (NETIF_F_SG | 7540 NETIF_F_TSO | 7541 NETIF_F_TSO6 | 7542 NETIF_F_HW_CSUM); 7543 7544 netdev->priv_flags |= IFF_UNICAST_FLT; 7545 7546 netdev->features |= NETIF_F_HIGHDMA; 7547 netdev->vlan_features |= NETIF_F_HIGHDMA; 7548 7549 /* MTU range: 68 - max_hw_frame_size */ 7550 netdev->min_mtu = ETH_MIN_MTU; 7551 netdev->max_mtu = adapter->max_hw_frame_size - 7552 (VLAN_ETH_HLEN + ETH_FCS_LEN); 7553 7554 if (e1000e_enable_mng_pass_thru(&adapter->hw)) 7555 adapter->flags |= FLAG_MNG_PT_ENABLED; 7556 7557 /* before reading the NVM, reset the controller to 7558 * put the device in a known good starting state 7559 */ 7560 adapter->hw.mac.ops.reset_hw(&adapter->hw); 7561 7562 /* systems with ASPM and others may see the checksum fail on the first 7563 * attempt. Let's give it a few tries 7564 */ 7565 for (i = 0;; i++) { 7566 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0) 7567 break; 7568 if (i == 2) { 7569 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); 7570 err = -EIO; 7571 goto err_eeprom; 7572 } 7573 } 7574 7575 e1000_eeprom_checks(adapter); 7576 7577 /* copy the MAC address */ 7578 if (e1000e_read_mac_addr(&adapter->hw)) 7579 dev_err(&pdev->dev, 7580 "NVM Read Error while reading MAC address\n"); 7581 7582 eth_hw_addr_set(netdev, adapter->hw.mac.addr); 7583 7584 if (!is_valid_ether_addr(netdev->dev_addr)) { 7585 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n", 7586 netdev->dev_addr); 7587 err = -EIO; 7588 goto err_eeprom; 7589 } 7590 7591 timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0); 7592 timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0); 7593 7594 INIT_WORK(&adapter->reset_task, e1000_reset_task); 7595 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task); 7596 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround); 7597 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task); 7598 INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang); 7599 7600 /* Initialize link parameters. User can change them with ethtool */ 7601 adapter->hw.mac.autoneg = 1; 7602 adapter->fc_autoneg = true; 7603 adapter->hw.fc.requested_mode = e1000_fc_default; 7604 adapter->hw.fc.current_mode = e1000_fc_default; 7605 adapter->hw.phy.autoneg_advertised = 0x2f; 7606 7607 /* Initial Wake on LAN setting - If APM wake is enabled in 7608 * the EEPROM, enable the ACPI Magic Packet filter 7609 */ 7610 if (adapter->flags & FLAG_APME_IN_WUC) { 7611 /* APME bit in EEPROM is mapped to WUC.APME */ 7612 eeprom_data = er32(WUC); 7613 eeprom_apme_mask = E1000_WUC_APME; 7614 if ((hw->mac.type > e1000_ich10lan) && 7615 (eeprom_data & E1000_WUC_PHY_WAKE)) 7616 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP; 7617 } else if (adapter->flags & FLAG_APME_IN_CTRL3) { 7618 if (adapter->flags & FLAG_APME_CHECK_PORT_B && 7619 (adapter->hw.bus.func == 1)) 7620 ret_val = e1000_read_nvm(&adapter->hw, 7621 NVM_INIT_CONTROL3_PORT_B, 7622 1, &eeprom_data); 7623 else 7624 ret_val = e1000_read_nvm(&adapter->hw, 7625 NVM_INIT_CONTROL3_PORT_A, 7626 1, &eeprom_data); 7627 } 7628 7629 /* fetch WoL from EEPROM */ 7630 if (ret_val) 7631 e_dbg("NVM read error getting WoL initial values: %d\n", ret_val); 7632 else if (eeprom_data & eeprom_apme_mask) 7633 adapter->eeprom_wol |= E1000_WUFC_MAG; 7634 7635 /* now that we have the eeprom settings, apply the special cases 7636 * where the eeprom may be wrong or the board simply won't support 7637 * wake on lan on a particular port 7638 */ 7639 if (!(adapter->flags & FLAG_HAS_WOL)) 7640 adapter->eeprom_wol = 0; 7641 7642 /* initialize the wol settings based on the eeprom settings */ 7643 adapter->wol = adapter->eeprom_wol; 7644 7645 /* make sure adapter isn't asleep if manageability is enabled */ 7646 if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) || 7647 (hw->mac.ops.check_mng_mode(hw))) 7648 device_wakeup_enable(&pdev->dev); 7649 7650 /* save off EEPROM version number */ 7651 ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers); 7652 7653 if (ret_val) { 7654 e_dbg("NVM read error getting EEPROM version: %d\n", ret_val); 7655 adapter->eeprom_vers = 0; 7656 } 7657 7658 /* init PTP hardware clock */ 7659 e1000e_ptp_init(adapter); 7660 7661 /* reset the hardware with the new settings */ 7662 e1000e_reset(adapter); 7663 7664 /* If the controller has AMT, do not set DRV_LOAD until the interface 7665 * is up. For all other cases, let the f/w know that the h/w is now 7666 * under the control of the driver. 7667 */ 7668 if (!(adapter->flags & FLAG_HAS_AMT)) 7669 e1000e_get_hw_control(adapter); 7670 7671 if (hw->mac.type >= e1000_pch_cnp) 7672 adapter->flags2 |= FLAG2_ENABLE_S0IX_FLOWS; 7673 7674 strscpy(netdev->name, "eth%d", sizeof(netdev->name)); 7675 err = register_netdev(netdev); 7676 if (err) 7677 goto err_register; 7678 7679 /* carrier off reporting is important to ethtool even BEFORE open */ 7680 netif_carrier_off(netdev); 7681 7682 e1000_print_device_info(adapter); 7683 7684 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_SMART_PREPARE); 7685 7686 if (pci_dev_run_wake(pdev)) 7687 pm_runtime_put_noidle(&pdev->dev); 7688 7689 return 0; 7690 7691 err_register: 7692 if (!(adapter->flags & FLAG_HAS_AMT)) 7693 e1000e_release_hw_control(adapter); 7694 err_eeprom: 7695 if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw)) 7696 e1000_phy_hw_reset(&adapter->hw); 7697 err_hw_init: 7698 kfree(adapter->tx_ring); 7699 kfree(adapter->rx_ring); 7700 err_sw_init: 7701 if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt)) 7702 iounmap(adapter->hw.flash_address); 7703 e1000e_reset_interrupt_capability(adapter); 7704 err_flashmap: 7705 iounmap(adapter->hw.hw_addr); 7706 err_ioremap: 7707 free_netdev(netdev); 7708 err_alloc_etherdev: 7709 pci_release_mem_regions(pdev); 7710 err_pci_reg: 7711 err_dma: 7712 pci_disable_device(pdev); 7713 return err; 7714 } 7715 7716 /** 7717 * e1000_remove - Device Removal Routine 7718 * @pdev: PCI device information struct 7719 * 7720 * e1000_remove is called by the PCI subsystem to alert the driver 7721 * that it should release a PCI device. This could be caused by a 7722 * Hot-Plug event, or because the driver is going to be removed from 7723 * memory. 7724 **/ 7725 static void e1000_remove(struct pci_dev *pdev) 7726 { 7727 struct net_device *netdev = pci_get_drvdata(pdev); 7728 struct e1000_adapter *adapter = netdev_priv(netdev); 7729 7730 e1000e_ptp_remove(adapter); 7731 7732 /* The timers may be rescheduled, so explicitly disable them 7733 * from being rescheduled. 7734 */ 7735 set_bit(__E1000_DOWN, &adapter->state); 7736 del_timer_sync(&adapter->watchdog_timer); 7737 del_timer_sync(&adapter->phy_info_timer); 7738 7739 cancel_work_sync(&adapter->reset_task); 7740 cancel_work_sync(&adapter->watchdog_task); 7741 cancel_work_sync(&adapter->downshift_task); 7742 cancel_work_sync(&adapter->update_phy_task); 7743 cancel_work_sync(&adapter->print_hang_task); 7744 7745 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) { 7746 cancel_work_sync(&adapter->tx_hwtstamp_work); 7747 if (adapter->tx_hwtstamp_skb) { 7748 dev_consume_skb_any(adapter->tx_hwtstamp_skb); 7749 adapter->tx_hwtstamp_skb = NULL; 7750 } 7751 } 7752 7753 unregister_netdev(netdev); 7754 7755 if (pci_dev_run_wake(pdev)) 7756 pm_runtime_get_noresume(&pdev->dev); 7757 7758 /* Release control of h/w to f/w. If f/w is AMT enabled, this 7759 * would have already happened in close and is redundant. 7760 */ 7761 e1000e_release_hw_control(adapter); 7762 7763 e1000e_reset_interrupt_capability(adapter); 7764 kfree(adapter->tx_ring); 7765 kfree(adapter->rx_ring); 7766 7767 iounmap(adapter->hw.hw_addr); 7768 if ((adapter->hw.flash_address) && 7769 (adapter->hw.mac.type < e1000_pch_spt)) 7770 iounmap(adapter->hw.flash_address); 7771 pci_release_mem_regions(pdev); 7772 7773 free_netdev(netdev); 7774 7775 pci_disable_device(pdev); 7776 } 7777 7778 /* PCI Error Recovery (ERS) */ 7779 static const struct pci_error_handlers e1000_err_handler = { 7780 .error_detected = e1000_io_error_detected, 7781 .slot_reset = e1000_io_slot_reset, 7782 .resume = e1000_io_resume, 7783 }; 7784 7785 static const struct pci_device_id e1000_pci_tbl[] = { 7786 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 }, 7787 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 }, 7788 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 }, 7789 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), 7790 board_82571 }, 7791 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 }, 7792 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 }, 7793 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 }, 7794 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 }, 7795 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 }, 7796 7797 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 }, 7798 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 }, 7799 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 }, 7800 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 }, 7801 7802 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 }, 7803 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 }, 7804 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 }, 7805 7806 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 }, 7807 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 }, 7808 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 }, 7809 7810 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT), 7811 board_80003es2lan }, 7812 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT), 7813 board_80003es2lan }, 7814 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT), 7815 board_80003es2lan }, 7816 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT), 7817 board_80003es2lan }, 7818 7819 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan }, 7820 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan }, 7821 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan }, 7822 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan }, 7823 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan }, 7824 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan }, 7825 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan }, 7826 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan }, 7827 7828 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan }, 7829 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan }, 7830 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan }, 7831 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan }, 7832 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan }, 7833 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan }, 7834 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan }, 7835 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan }, 7836 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan }, 7837 7838 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan }, 7839 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan }, 7840 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan }, 7841 7842 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan }, 7843 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan }, 7844 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan }, 7845 7846 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan }, 7847 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan }, 7848 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan }, 7849 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan }, 7850 7851 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan }, 7852 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan }, 7853 7854 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt }, 7855 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt }, 7856 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt }, 7857 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt }, 7858 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt }, 7859 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt }, 7860 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt }, 7861 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt }, 7862 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt }, 7863 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt }, 7864 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt }, 7865 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt }, 7866 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt }, 7867 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt }, 7868 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt }, 7869 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt }, 7870 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt }, 7871 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp }, 7872 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp }, 7873 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp }, 7874 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp }, 7875 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp }, 7876 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp }, 7877 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp }, 7878 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp }, 7879 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM10), board_pch_cnp }, 7880 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V10), board_pch_cnp }, 7881 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM11), board_pch_cnp }, 7882 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V11), board_pch_cnp }, 7883 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM12), board_pch_spt }, 7884 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V12), board_pch_spt }, 7885 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM13), board_pch_tgp }, 7886 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V13), board_pch_tgp }, 7887 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM14), board_pch_tgp }, 7888 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V14), board_pch_tgp }, 7889 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM15), board_pch_tgp }, 7890 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V15), board_pch_tgp }, 7891 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM23), board_pch_adp }, 7892 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V23), board_pch_adp }, 7893 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM16), board_pch_adp }, 7894 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V16), board_pch_adp }, 7895 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM17), board_pch_adp }, 7896 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V17), board_pch_adp }, 7897 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM22), board_pch_adp }, 7898 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V22), board_pch_adp }, 7899 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM18), board_pch_mtp }, 7900 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V18), board_pch_mtp }, 7901 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM19), board_pch_mtp }, 7902 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V19), board_pch_mtp }, 7903 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM20), board_pch_mtp }, 7904 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V20), board_pch_mtp }, 7905 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM21), board_pch_mtp }, 7906 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V21), board_pch_mtp }, 7907 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ARL_I219_LM24), board_pch_mtp }, 7908 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ARL_I219_V24), board_pch_mtp }, 7909 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM25), board_pch_mtp }, 7910 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V25), board_pch_mtp }, 7911 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM26), board_pch_mtp }, 7912 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V26), board_pch_mtp }, 7913 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM27), board_pch_mtp }, 7914 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V27), board_pch_mtp }, 7915 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_NVL_I219_LM29), board_pch_mtp }, 7916 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_NVL_I219_V29), board_pch_mtp }, 7917 7918 { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */ 7919 }; 7920 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); 7921 7922 static const struct dev_pm_ops e1000e_pm_ops = { 7923 .prepare = e1000e_pm_prepare, 7924 .suspend = e1000e_pm_suspend, 7925 .resume = e1000e_pm_resume, 7926 .freeze = e1000e_pm_freeze, 7927 .thaw = e1000e_pm_thaw, 7928 .poweroff = e1000e_pm_suspend, 7929 .restore = e1000e_pm_resume, 7930 RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume, 7931 e1000e_pm_runtime_idle) 7932 }; 7933 7934 /* PCI Device API Driver */ 7935 static struct pci_driver e1000_driver = { 7936 .name = e1000e_driver_name, 7937 .id_table = e1000_pci_tbl, 7938 .probe = e1000_probe, 7939 .remove = e1000_remove, 7940 .driver.pm = pm_ptr(&e1000e_pm_ops), 7941 .shutdown = e1000_shutdown, 7942 .err_handler = &e1000_err_handler 7943 }; 7944 7945 /** 7946 * e1000_init_module - Driver Registration Routine 7947 * 7948 * e1000_init_module is the first routine called when the driver is 7949 * loaded. All it does is register with the PCI subsystem. 7950 **/ 7951 static int __init e1000_init_module(void) 7952 { 7953 pr_info("Intel(R) PRO/1000 Network Driver\n"); 7954 pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n"); 7955 7956 return pci_register_driver(&e1000_driver); 7957 } 7958 module_init(e1000_init_module); 7959 7960 /** 7961 * e1000_exit_module - Driver Exit Cleanup Routine 7962 * 7963 * e1000_exit_module is called just before the driver is removed 7964 * from memory. 7965 **/ 7966 static void __exit e1000_exit_module(void) 7967 { 7968 pci_unregister_driver(&e1000_driver); 7969 } 7970 module_exit(e1000_exit_module); 7971 7972 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); 7973 MODULE_LICENSE("GPL v2"); 7974 7975 /* netdev.c */ 7976