1 /* Intel PRO/1000 Linux driver 2 * Copyright(c) 1999 - 2015 Intel Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * The full GNU General Public License is included in this distribution in 14 * the file called "COPYING". 15 * 16 * Contact Information: 17 * Linux NICS <linux.nics@intel.com> 18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 20 */ 21 22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 23 24 #include <linux/module.h> 25 #include <linux/types.h> 26 #include <linux/init.h> 27 #include <linux/pci.h> 28 #include <linux/vmalloc.h> 29 #include <linux/pagemap.h> 30 #include <linux/delay.h> 31 #include <linux/netdevice.h> 32 #include <linux/interrupt.h> 33 #include <linux/tcp.h> 34 #include <linux/ipv6.h> 35 #include <linux/slab.h> 36 #include <net/checksum.h> 37 #include <net/ip6_checksum.h> 38 #include <linux/ethtool.h> 39 #include <linux/if_vlan.h> 40 #include <linux/cpu.h> 41 #include <linux/smp.h> 42 #include <linux/pm_qos.h> 43 #include <linux/pm_runtime.h> 44 #include <linux/aer.h> 45 #include <linux/prefetch.h> 46 47 #include "e1000.h" 48 49 #define DRV_EXTRAVERSION "-k" 50 51 #define DRV_VERSION "3.2.5" DRV_EXTRAVERSION 52 char e1000e_driver_name[] = "e1000e"; 53 const char e1000e_driver_version[] = DRV_VERSION; 54 55 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 56 static int debug = -1; 57 module_param(debug, int, 0); 58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 59 60 static const struct e1000_info *e1000_info_tbl[] = { 61 [board_82571] = &e1000_82571_info, 62 [board_82572] = &e1000_82572_info, 63 [board_82573] = &e1000_82573_info, 64 [board_82574] = &e1000_82574_info, 65 [board_82583] = &e1000_82583_info, 66 [board_80003es2lan] = &e1000_es2_info, 67 [board_ich8lan] = &e1000_ich8_info, 68 [board_ich9lan] = &e1000_ich9_info, 69 [board_ich10lan] = &e1000_ich10_info, 70 [board_pchlan] = &e1000_pch_info, 71 [board_pch2lan] = &e1000_pch2_info, 72 [board_pch_lpt] = &e1000_pch_lpt_info, 73 [board_pch_spt] = &e1000_pch_spt_info, 74 }; 75 76 struct e1000_reg_info { 77 u32 ofs; 78 char *name; 79 }; 80 81 static const struct e1000_reg_info e1000_reg_info_tbl[] = { 82 /* General Registers */ 83 {E1000_CTRL, "CTRL"}, 84 {E1000_STATUS, "STATUS"}, 85 {E1000_CTRL_EXT, "CTRL_EXT"}, 86 87 /* Interrupt Registers */ 88 {E1000_ICR, "ICR"}, 89 90 /* Rx Registers */ 91 {E1000_RCTL, "RCTL"}, 92 {E1000_RDLEN(0), "RDLEN"}, 93 {E1000_RDH(0), "RDH"}, 94 {E1000_RDT(0), "RDT"}, 95 {E1000_RDTR, "RDTR"}, 96 {E1000_RXDCTL(0), "RXDCTL"}, 97 {E1000_ERT, "ERT"}, 98 {E1000_RDBAL(0), "RDBAL"}, 99 {E1000_RDBAH(0), "RDBAH"}, 100 {E1000_RDFH, "RDFH"}, 101 {E1000_RDFT, "RDFT"}, 102 {E1000_RDFHS, "RDFHS"}, 103 {E1000_RDFTS, "RDFTS"}, 104 {E1000_RDFPC, "RDFPC"}, 105 106 /* Tx Registers */ 107 {E1000_TCTL, "TCTL"}, 108 {E1000_TDBAL(0), "TDBAL"}, 109 {E1000_TDBAH(0), "TDBAH"}, 110 {E1000_TDLEN(0), "TDLEN"}, 111 {E1000_TDH(0), "TDH"}, 112 {E1000_TDT(0), "TDT"}, 113 {E1000_TIDV, "TIDV"}, 114 {E1000_TXDCTL(0), "TXDCTL"}, 115 {E1000_TADV, "TADV"}, 116 {E1000_TARC(0), "TARC"}, 117 {E1000_TDFH, "TDFH"}, 118 {E1000_TDFT, "TDFT"}, 119 {E1000_TDFHS, "TDFHS"}, 120 {E1000_TDFTS, "TDFTS"}, 121 {E1000_TDFPC, "TDFPC"}, 122 123 /* List Terminator */ 124 {0, NULL} 125 }; 126 127 /** 128 * __ew32_prepare - prepare to write to MAC CSR register on certain parts 129 * @hw: pointer to the HW structure 130 * 131 * When updating the MAC CSR registers, the Manageability Engine (ME) could 132 * be accessing the registers at the same time. Normally, this is handled in 133 * h/w by an arbiter but on some parts there is a bug that acknowledges Host 134 * accesses later than it should which could result in the register to have 135 * an incorrect value. Workaround this by checking the FWSM register which 136 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set 137 * and try again a number of times. 138 **/ 139 s32 __ew32_prepare(struct e1000_hw *hw) 140 { 141 s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT; 142 143 while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i) 144 udelay(50); 145 146 return i; 147 } 148 149 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val) 150 { 151 if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 152 __ew32_prepare(hw); 153 154 writel(val, hw->hw_addr + reg); 155 } 156 157 /** 158 * e1000_regdump - register printout routine 159 * @hw: pointer to the HW structure 160 * @reginfo: pointer to the register info table 161 **/ 162 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo) 163 { 164 int n = 0; 165 char rname[16]; 166 u32 regs[8]; 167 168 switch (reginfo->ofs) { 169 case E1000_RXDCTL(0): 170 for (n = 0; n < 2; n++) 171 regs[n] = __er32(hw, E1000_RXDCTL(n)); 172 break; 173 case E1000_TXDCTL(0): 174 for (n = 0; n < 2; n++) 175 regs[n] = __er32(hw, E1000_TXDCTL(n)); 176 break; 177 case E1000_TARC(0): 178 for (n = 0; n < 2; n++) 179 regs[n] = __er32(hw, E1000_TARC(n)); 180 break; 181 default: 182 pr_info("%-15s %08x\n", 183 reginfo->name, __er32(hw, reginfo->ofs)); 184 return; 185 } 186 187 snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]"); 188 pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]); 189 } 190 191 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter, 192 struct e1000_buffer *bi) 193 { 194 int i; 195 struct e1000_ps_page *ps_page; 196 197 for (i = 0; i < adapter->rx_ps_pages; i++) { 198 ps_page = &bi->ps_pages[i]; 199 200 if (ps_page->page) { 201 pr_info("packet dump for ps_page %d:\n", i); 202 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 203 16, 1, page_address(ps_page->page), 204 PAGE_SIZE, true); 205 } 206 } 207 } 208 209 /** 210 * e1000e_dump - Print registers, Tx-ring and Rx-ring 211 * @adapter: board private structure 212 **/ 213 static void e1000e_dump(struct e1000_adapter *adapter) 214 { 215 struct net_device *netdev = adapter->netdev; 216 struct e1000_hw *hw = &adapter->hw; 217 struct e1000_reg_info *reginfo; 218 struct e1000_ring *tx_ring = adapter->tx_ring; 219 struct e1000_tx_desc *tx_desc; 220 struct my_u0 { 221 __le64 a; 222 __le64 b; 223 } *u0; 224 struct e1000_buffer *buffer_info; 225 struct e1000_ring *rx_ring = adapter->rx_ring; 226 union e1000_rx_desc_packet_split *rx_desc_ps; 227 union e1000_rx_desc_extended *rx_desc; 228 struct my_u1 { 229 __le64 a; 230 __le64 b; 231 __le64 c; 232 __le64 d; 233 } *u1; 234 u32 staterr; 235 int i = 0; 236 237 if (!netif_msg_hw(adapter)) 238 return; 239 240 /* Print netdevice Info */ 241 if (netdev) { 242 dev_info(&adapter->pdev->dev, "Net device Info\n"); 243 pr_info("Device Name state trans_start last_rx\n"); 244 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name, 245 netdev->state, netdev->trans_start, netdev->last_rx); 246 } 247 248 /* Print Registers */ 249 dev_info(&adapter->pdev->dev, "Register Dump\n"); 250 pr_info(" Register Name Value\n"); 251 for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl; 252 reginfo->name; reginfo++) { 253 e1000_regdump(hw, reginfo); 254 } 255 256 /* Print Tx Ring Summary */ 257 if (!netdev || !netif_running(netdev)) 258 return; 259 260 dev_info(&adapter->pdev->dev, "Tx Ring Summary\n"); 261 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n"); 262 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean]; 263 pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n", 264 0, tx_ring->next_to_use, tx_ring->next_to_clean, 265 (unsigned long long)buffer_info->dma, 266 buffer_info->length, 267 buffer_info->next_to_watch, 268 (unsigned long long)buffer_info->time_stamp); 269 270 /* Print Tx Ring */ 271 if (!netif_msg_tx_done(adapter)) 272 goto rx_ring_summary; 273 274 dev_info(&adapter->pdev->dev, "Tx Ring Dump\n"); 275 276 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended) 277 * 278 * Legacy Transmit Descriptor 279 * +--------------------------------------------------------------+ 280 * 0 | Buffer Address [63:0] (Reserved on Write Back) | 281 * +--------------------------------------------------------------+ 282 * 8 | Special | CSS | Status | CMD | CSO | Length | 283 * +--------------------------------------------------------------+ 284 * 63 48 47 36 35 32 31 24 23 16 15 0 285 * 286 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload 287 * 63 48 47 40 39 32 31 16 15 8 7 0 288 * +----------------------------------------------------------------+ 289 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS | 290 * +----------------------------------------------------------------+ 291 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN | 292 * +----------------------------------------------------------------+ 293 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 294 * 295 * Extended Data Descriptor (DTYP=0x1) 296 * +----------------------------------------------------------------+ 297 * 0 | Buffer Address [63:0] | 298 * +----------------------------------------------------------------+ 299 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN | 300 * +----------------------------------------------------------------+ 301 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 302 */ 303 pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n"); 304 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n"); 305 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n"); 306 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { 307 const char *next_desc; 308 tx_desc = E1000_TX_DESC(*tx_ring, i); 309 buffer_info = &tx_ring->buffer_info[i]; 310 u0 = (struct my_u0 *)tx_desc; 311 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean) 312 next_desc = " NTC/U"; 313 else if (i == tx_ring->next_to_use) 314 next_desc = " NTU"; 315 else if (i == tx_ring->next_to_clean) 316 next_desc = " NTC"; 317 else 318 next_desc = ""; 319 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n", 320 (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' : 321 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')), 322 i, 323 (unsigned long long)le64_to_cpu(u0->a), 324 (unsigned long long)le64_to_cpu(u0->b), 325 (unsigned long long)buffer_info->dma, 326 buffer_info->length, buffer_info->next_to_watch, 327 (unsigned long long)buffer_info->time_stamp, 328 buffer_info->skb, next_desc); 329 330 if (netif_msg_pktdata(adapter) && buffer_info->skb) 331 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 332 16, 1, buffer_info->skb->data, 333 buffer_info->skb->len, true); 334 } 335 336 /* Print Rx Ring Summary */ 337 rx_ring_summary: 338 dev_info(&adapter->pdev->dev, "Rx Ring Summary\n"); 339 pr_info("Queue [NTU] [NTC]\n"); 340 pr_info(" %5d %5X %5X\n", 341 0, rx_ring->next_to_use, rx_ring->next_to_clean); 342 343 /* Print Rx Ring */ 344 if (!netif_msg_rx_status(adapter)) 345 return; 346 347 dev_info(&adapter->pdev->dev, "Rx Ring Dump\n"); 348 switch (adapter->rx_ps_pages) { 349 case 1: 350 case 2: 351 case 3: 352 /* [Extended] Packet Split Receive Descriptor Format 353 * 354 * +-----------------------------------------------------+ 355 * 0 | Buffer Address 0 [63:0] | 356 * +-----------------------------------------------------+ 357 * 8 | Buffer Address 1 [63:0] | 358 * +-----------------------------------------------------+ 359 * 16 | Buffer Address 2 [63:0] | 360 * +-----------------------------------------------------+ 361 * 24 | Buffer Address 3 [63:0] | 362 * +-----------------------------------------------------+ 363 */ 364 pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n"); 365 /* [Extended] Receive Descriptor (Write-Back) Format 366 * 367 * 63 48 47 32 31 13 12 8 7 4 3 0 368 * +------------------------------------------------------+ 369 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS | 370 * | Checksum | Ident | | Queue | | Type | 371 * +------------------------------------------------------+ 372 * 8 | VLAN Tag | Length | Extended Error | Extended Status | 373 * +------------------------------------------------------+ 374 * 63 48 47 32 31 20 19 0 375 */ 376 pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n"); 377 for (i = 0; i < rx_ring->count; i++) { 378 const char *next_desc; 379 buffer_info = &rx_ring->buffer_info[i]; 380 rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i); 381 u1 = (struct my_u1 *)rx_desc_ps; 382 staterr = 383 le32_to_cpu(rx_desc_ps->wb.middle.status_error); 384 385 if (i == rx_ring->next_to_use) 386 next_desc = " NTU"; 387 else if (i == rx_ring->next_to_clean) 388 next_desc = " NTC"; 389 else 390 next_desc = ""; 391 392 if (staterr & E1000_RXD_STAT_DD) { 393 /* Descriptor Done */ 394 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n", 395 "RWB", i, 396 (unsigned long long)le64_to_cpu(u1->a), 397 (unsigned long long)le64_to_cpu(u1->b), 398 (unsigned long long)le64_to_cpu(u1->c), 399 (unsigned long long)le64_to_cpu(u1->d), 400 buffer_info->skb, next_desc); 401 } else { 402 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n", 403 "R ", i, 404 (unsigned long long)le64_to_cpu(u1->a), 405 (unsigned long long)le64_to_cpu(u1->b), 406 (unsigned long long)le64_to_cpu(u1->c), 407 (unsigned long long)le64_to_cpu(u1->d), 408 (unsigned long long)buffer_info->dma, 409 buffer_info->skb, next_desc); 410 411 if (netif_msg_pktdata(adapter)) 412 e1000e_dump_ps_pages(adapter, 413 buffer_info); 414 } 415 } 416 break; 417 default: 418 case 0: 419 /* Extended Receive Descriptor (Read) Format 420 * 421 * +-----------------------------------------------------+ 422 * 0 | Buffer Address [63:0] | 423 * +-----------------------------------------------------+ 424 * 8 | Reserved | 425 * +-----------------------------------------------------+ 426 */ 427 pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n"); 428 /* Extended Receive Descriptor (Write-Back) Format 429 * 430 * 63 48 47 32 31 24 23 4 3 0 431 * +------------------------------------------------------+ 432 * | RSS Hash | | | | 433 * 0 +-------------------+ Rsvd | Reserved | MRQ RSS | 434 * | Packet | IP | | | Type | 435 * | Checksum | Ident | | | | 436 * +------------------------------------------------------+ 437 * 8 | VLAN Tag | Length | Extended Error | Extended Status | 438 * +------------------------------------------------------+ 439 * 63 48 47 32 31 20 19 0 440 */ 441 pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n"); 442 443 for (i = 0; i < rx_ring->count; i++) { 444 const char *next_desc; 445 446 buffer_info = &rx_ring->buffer_info[i]; 447 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 448 u1 = (struct my_u1 *)rx_desc; 449 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 450 451 if (i == rx_ring->next_to_use) 452 next_desc = " NTU"; 453 else if (i == rx_ring->next_to_clean) 454 next_desc = " NTC"; 455 else 456 next_desc = ""; 457 458 if (staterr & E1000_RXD_STAT_DD) { 459 /* Descriptor Done */ 460 pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n", 461 "RWB", i, 462 (unsigned long long)le64_to_cpu(u1->a), 463 (unsigned long long)le64_to_cpu(u1->b), 464 buffer_info->skb, next_desc); 465 } else { 466 pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n", 467 "R ", i, 468 (unsigned long long)le64_to_cpu(u1->a), 469 (unsigned long long)le64_to_cpu(u1->b), 470 (unsigned long long)buffer_info->dma, 471 buffer_info->skb, next_desc); 472 473 if (netif_msg_pktdata(adapter) && 474 buffer_info->skb) 475 print_hex_dump(KERN_INFO, "", 476 DUMP_PREFIX_ADDRESS, 16, 477 1, 478 buffer_info->skb->data, 479 adapter->rx_buffer_len, 480 true); 481 } 482 } 483 } 484 } 485 486 /** 487 * e1000_desc_unused - calculate if we have unused descriptors 488 **/ 489 static int e1000_desc_unused(struct e1000_ring *ring) 490 { 491 if (ring->next_to_clean > ring->next_to_use) 492 return ring->next_to_clean - ring->next_to_use - 1; 493 494 return ring->count + ring->next_to_clean - ring->next_to_use - 1; 495 } 496 497 /** 498 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp 499 * @adapter: board private structure 500 * @hwtstamps: time stamp structure to update 501 * @systim: unsigned 64bit system time value. 502 * 503 * Convert the system time value stored in the RX/TXSTMP registers into a 504 * hwtstamp which can be used by the upper level time stamping functions. 505 * 506 * The 'systim_lock' spinlock is used to protect the consistency of the 507 * system time value. This is needed because reading the 64 bit time 508 * value involves reading two 32 bit registers. The first read latches the 509 * value. 510 **/ 511 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter, 512 struct skb_shared_hwtstamps *hwtstamps, 513 u64 systim) 514 { 515 u64 ns; 516 unsigned long flags; 517 518 spin_lock_irqsave(&adapter->systim_lock, flags); 519 ns = timecounter_cyc2time(&adapter->tc, systim); 520 spin_unlock_irqrestore(&adapter->systim_lock, flags); 521 522 memset(hwtstamps, 0, sizeof(*hwtstamps)); 523 hwtstamps->hwtstamp = ns_to_ktime(ns); 524 } 525 526 /** 527 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp 528 * @adapter: board private structure 529 * @status: descriptor extended error and status field 530 * @skb: particular skb to include time stamp 531 * 532 * If the time stamp is valid, convert it into the timecounter ns value 533 * and store that result into the shhwtstamps structure which is passed 534 * up the network stack. 535 **/ 536 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status, 537 struct sk_buff *skb) 538 { 539 struct e1000_hw *hw = &adapter->hw; 540 u64 rxstmp; 541 542 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) || 543 !(status & E1000_RXDEXT_STATERR_TST) || 544 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) 545 return; 546 547 /* The Rx time stamp registers contain the time stamp. No other 548 * received packet will be time stamped until the Rx time stamp 549 * registers are read. Because only one packet can be time stamped 550 * at a time, the register values must belong to this packet and 551 * therefore none of the other additional attributes need to be 552 * compared. 553 */ 554 rxstmp = (u64)er32(RXSTMPL); 555 rxstmp |= (u64)er32(RXSTMPH) << 32; 556 e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp); 557 558 adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP; 559 } 560 561 /** 562 * e1000_receive_skb - helper function to handle Rx indications 563 * @adapter: board private structure 564 * @staterr: descriptor extended error and status field as written by hardware 565 * @vlan: descriptor vlan field as written by hardware (no le/be conversion) 566 * @skb: pointer to sk_buff to be indicated to stack 567 **/ 568 static void e1000_receive_skb(struct e1000_adapter *adapter, 569 struct net_device *netdev, struct sk_buff *skb, 570 u32 staterr, __le16 vlan) 571 { 572 u16 tag = le16_to_cpu(vlan); 573 574 e1000e_rx_hwtstamp(adapter, staterr, skb); 575 576 skb->protocol = eth_type_trans(skb, netdev); 577 578 if (staterr & E1000_RXD_STAT_VP) 579 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag); 580 581 napi_gro_receive(&adapter->napi, skb); 582 } 583 584 /** 585 * e1000_rx_checksum - Receive Checksum Offload 586 * @adapter: board private structure 587 * @status_err: receive descriptor status and error fields 588 * @csum: receive descriptor csum field 589 * @sk_buff: socket buffer with received data 590 **/ 591 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, 592 struct sk_buff *skb) 593 { 594 u16 status = (u16)status_err; 595 u8 errors = (u8)(status_err >> 24); 596 597 skb_checksum_none_assert(skb); 598 599 /* Rx checksum disabled */ 600 if (!(adapter->netdev->features & NETIF_F_RXCSUM)) 601 return; 602 603 /* Ignore Checksum bit is set */ 604 if (status & E1000_RXD_STAT_IXSM) 605 return; 606 607 /* TCP/UDP checksum error bit or IP checksum error bit is set */ 608 if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) { 609 /* let the stack verify checksum errors */ 610 adapter->hw_csum_err++; 611 return; 612 } 613 614 /* TCP/UDP Checksum has not been calculated */ 615 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) 616 return; 617 618 /* It must be a TCP or UDP packet with a valid checksum */ 619 skb->ip_summed = CHECKSUM_UNNECESSARY; 620 adapter->hw_csum_good++; 621 } 622 623 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i) 624 { 625 struct e1000_adapter *adapter = rx_ring->adapter; 626 struct e1000_hw *hw = &adapter->hw; 627 s32 ret_val = __ew32_prepare(hw); 628 629 writel(i, rx_ring->tail); 630 631 if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) { 632 u32 rctl = er32(RCTL); 633 634 ew32(RCTL, rctl & ~E1000_RCTL_EN); 635 e_err("ME firmware caused invalid RDT - resetting\n"); 636 schedule_work(&adapter->reset_task); 637 } 638 } 639 640 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i) 641 { 642 struct e1000_adapter *adapter = tx_ring->adapter; 643 struct e1000_hw *hw = &adapter->hw; 644 s32 ret_val = __ew32_prepare(hw); 645 646 writel(i, tx_ring->tail); 647 648 if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) { 649 u32 tctl = er32(TCTL); 650 651 ew32(TCTL, tctl & ~E1000_TCTL_EN); 652 e_err("ME firmware caused invalid TDT - resetting\n"); 653 schedule_work(&adapter->reset_task); 654 } 655 } 656 657 /** 658 * e1000_alloc_rx_buffers - Replace used receive buffers 659 * @rx_ring: Rx descriptor ring 660 **/ 661 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring, 662 int cleaned_count, gfp_t gfp) 663 { 664 struct e1000_adapter *adapter = rx_ring->adapter; 665 struct net_device *netdev = adapter->netdev; 666 struct pci_dev *pdev = adapter->pdev; 667 union e1000_rx_desc_extended *rx_desc; 668 struct e1000_buffer *buffer_info; 669 struct sk_buff *skb; 670 unsigned int i; 671 unsigned int bufsz = adapter->rx_buffer_len; 672 673 i = rx_ring->next_to_use; 674 buffer_info = &rx_ring->buffer_info[i]; 675 676 while (cleaned_count--) { 677 skb = buffer_info->skb; 678 if (skb) { 679 skb_trim(skb, 0); 680 goto map_skb; 681 } 682 683 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp); 684 if (!skb) { 685 /* Better luck next round */ 686 adapter->alloc_rx_buff_failed++; 687 break; 688 } 689 690 buffer_info->skb = skb; 691 map_skb: 692 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, 693 adapter->rx_buffer_len, 694 DMA_FROM_DEVICE); 695 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 696 dev_err(&pdev->dev, "Rx DMA map failed\n"); 697 adapter->rx_dma_failed++; 698 break; 699 } 700 701 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 702 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma); 703 704 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) { 705 /* Force memory writes to complete before letting h/w 706 * know there are new descriptors to fetch. (Only 707 * applicable for weak-ordered memory model archs, 708 * such as IA-64). 709 */ 710 wmb(); 711 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 712 e1000e_update_rdt_wa(rx_ring, i); 713 else 714 writel(i, rx_ring->tail); 715 } 716 i++; 717 if (i == rx_ring->count) 718 i = 0; 719 buffer_info = &rx_ring->buffer_info[i]; 720 } 721 722 rx_ring->next_to_use = i; 723 } 724 725 /** 726 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split 727 * @rx_ring: Rx descriptor ring 728 **/ 729 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring, 730 int cleaned_count, gfp_t gfp) 731 { 732 struct e1000_adapter *adapter = rx_ring->adapter; 733 struct net_device *netdev = adapter->netdev; 734 struct pci_dev *pdev = adapter->pdev; 735 union e1000_rx_desc_packet_split *rx_desc; 736 struct e1000_buffer *buffer_info; 737 struct e1000_ps_page *ps_page; 738 struct sk_buff *skb; 739 unsigned int i, j; 740 741 i = rx_ring->next_to_use; 742 buffer_info = &rx_ring->buffer_info[i]; 743 744 while (cleaned_count--) { 745 rx_desc = E1000_RX_DESC_PS(*rx_ring, i); 746 747 for (j = 0; j < PS_PAGE_BUFFERS; j++) { 748 ps_page = &buffer_info->ps_pages[j]; 749 if (j >= adapter->rx_ps_pages) { 750 /* all unused desc entries get hw null ptr */ 751 rx_desc->read.buffer_addr[j + 1] = 752 ~cpu_to_le64(0); 753 continue; 754 } 755 if (!ps_page->page) { 756 ps_page->page = alloc_page(gfp); 757 if (!ps_page->page) { 758 adapter->alloc_rx_buff_failed++; 759 goto no_buffers; 760 } 761 ps_page->dma = dma_map_page(&pdev->dev, 762 ps_page->page, 763 0, PAGE_SIZE, 764 DMA_FROM_DEVICE); 765 if (dma_mapping_error(&pdev->dev, 766 ps_page->dma)) { 767 dev_err(&adapter->pdev->dev, 768 "Rx DMA page map failed\n"); 769 adapter->rx_dma_failed++; 770 goto no_buffers; 771 } 772 } 773 /* Refresh the desc even if buffer_addrs 774 * didn't change because each write-back 775 * erases this info. 776 */ 777 rx_desc->read.buffer_addr[j + 1] = 778 cpu_to_le64(ps_page->dma); 779 } 780 781 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0, 782 gfp); 783 784 if (!skb) { 785 adapter->alloc_rx_buff_failed++; 786 break; 787 } 788 789 buffer_info->skb = skb; 790 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, 791 adapter->rx_ps_bsize0, 792 DMA_FROM_DEVICE); 793 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 794 dev_err(&pdev->dev, "Rx DMA map failed\n"); 795 adapter->rx_dma_failed++; 796 /* cleanup skb */ 797 dev_kfree_skb_any(skb); 798 buffer_info->skb = NULL; 799 break; 800 } 801 802 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma); 803 804 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) { 805 /* Force memory writes to complete before letting h/w 806 * know there are new descriptors to fetch. (Only 807 * applicable for weak-ordered memory model archs, 808 * such as IA-64). 809 */ 810 wmb(); 811 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 812 e1000e_update_rdt_wa(rx_ring, i << 1); 813 else 814 writel(i << 1, rx_ring->tail); 815 } 816 817 i++; 818 if (i == rx_ring->count) 819 i = 0; 820 buffer_info = &rx_ring->buffer_info[i]; 821 } 822 823 no_buffers: 824 rx_ring->next_to_use = i; 825 } 826 827 /** 828 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers 829 * @rx_ring: Rx descriptor ring 830 * @cleaned_count: number of buffers to allocate this pass 831 **/ 832 833 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring, 834 int cleaned_count, gfp_t gfp) 835 { 836 struct e1000_adapter *adapter = rx_ring->adapter; 837 struct net_device *netdev = adapter->netdev; 838 struct pci_dev *pdev = adapter->pdev; 839 union e1000_rx_desc_extended *rx_desc; 840 struct e1000_buffer *buffer_info; 841 struct sk_buff *skb; 842 unsigned int i; 843 unsigned int bufsz = 256 - 16; /* for skb_reserve */ 844 845 i = rx_ring->next_to_use; 846 buffer_info = &rx_ring->buffer_info[i]; 847 848 while (cleaned_count--) { 849 skb = buffer_info->skb; 850 if (skb) { 851 skb_trim(skb, 0); 852 goto check_page; 853 } 854 855 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp); 856 if (unlikely(!skb)) { 857 /* Better luck next round */ 858 adapter->alloc_rx_buff_failed++; 859 break; 860 } 861 862 buffer_info->skb = skb; 863 check_page: 864 /* allocate a new page if necessary */ 865 if (!buffer_info->page) { 866 buffer_info->page = alloc_page(gfp); 867 if (unlikely(!buffer_info->page)) { 868 adapter->alloc_rx_buff_failed++; 869 break; 870 } 871 } 872 873 if (!buffer_info->dma) { 874 buffer_info->dma = dma_map_page(&pdev->dev, 875 buffer_info->page, 0, 876 PAGE_SIZE, 877 DMA_FROM_DEVICE); 878 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 879 adapter->alloc_rx_buff_failed++; 880 break; 881 } 882 } 883 884 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 885 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma); 886 887 if (unlikely(++i == rx_ring->count)) 888 i = 0; 889 buffer_info = &rx_ring->buffer_info[i]; 890 } 891 892 if (likely(rx_ring->next_to_use != i)) { 893 rx_ring->next_to_use = i; 894 if (unlikely(i-- == 0)) 895 i = (rx_ring->count - 1); 896 897 /* Force memory writes to complete before letting h/w 898 * know there are new descriptors to fetch. (Only 899 * applicable for weak-ordered memory model archs, 900 * such as IA-64). 901 */ 902 wmb(); 903 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 904 e1000e_update_rdt_wa(rx_ring, i); 905 else 906 writel(i, rx_ring->tail); 907 } 908 } 909 910 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss, 911 struct sk_buff *skb) 912 { 913 if (netdev->features & NETIF_F_RXHASH) 914 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3); 915 } 916 917 /** 918 * e1000_clean_rx_irq - Send received data up the network stack 919 * @rx_ring: Rx descriptor ring 920 * 921 * the return value indicates whether actual cleaning was done, there 922 * is no guarantee that everything was cleaned 923 **/ 924 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done, 925 int work_to_do) 926 { 927 struct e1000_adapter *adapter = rx_ring->adapter; 928 struct net_device *netdev = adapter->netdev; 929 struct pci_dev *pdev = adapter->pdev; 930 struct e1000_hw *hw = &adapter->hw; 931 union e1000_rx_desc_extended *rx_desc, *next_rxd; 932 struct e1000_buffer *buffer_info, *next_buffer; 933 u32 length, staterr; 934 unsigned int i; 935 int cleaned_count = 0; 936 bool cleaned = false; 937 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 938 939 i = rx_ring->next_to_clean; 940 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 941 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 942 buffer_info = &rx_ring->buffer_info[i]; 943 944 while (staterr & E1000_RXD_STAT_DD) { 945 struct sk_buff *skb; 946 947 if (*work_done >= work_to_do) 948 break; 949 (*work_done)++; 950 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ 951 952 skb = buffer_info->skb; 953 buffer_info->skb = NULL; 954 955 prefetch(skb->data - NET_IP_ALIGN); 956 957 i++; 958 if (i == rx_ring->count) 959 i = 0; 960 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i); 961 prefetch(next_rxd); 962 963 next_buffer = &rx_ring->buffer_info[i]; 964 965 cleaned = true; 966 cleaned_count++; 967 dma_unmap_single(&pdev->dev, buffer_info->dma, 968 adapter->rx_buffer_len, DMA_FROM_DEVICE); 969 buffer_info->dma = 0; 970 971 length = le16_to_cpu(rx_desc->wb.upper.length); 972 973 /* !EOP means multiple descriptors were used to store a single 974 * packet, if that's the case we need to toss it. In fact, we 975 * need to toss every packet with the EOP bit clear and the 976 * next frame that _does_ have the EOP bit set, as it is by 977 * definition only a frame fragment 978 */ 979 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) 980 adapter->flags2 |= FLAG2_IS_DISCARDING; 981 982 if (adapter->flags2 & FLAG2_IS_DISCARDING) { 983 /* All receives must fit into a single buffer */ 984 e_dbg("Receive packet consumed multiple buffers\n"); 985 /* recycle */ 986 buffer_info->skb = skb; 987 if (staterr & E1000_RXD_STAT_EOP) 988 adapter->flags2 &= ~FLAG2_IS_DISCARDING; 989 goto next_desc; 990 } 991 992 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) && 993 !(netdev->features & NETIF_F_RXALL))) { 994 /* recycle */ 995 buffer_info->skb = skb; 996 goto next_desc; 997 } 998 999 /* adjust length to remove Ethernet CRC */ 1000 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) { 1001 /* If configured to store CRC, don't subtract FCS, 1002 * but keep the FCS bytes out of the total_rx_bytes 1003 * counter 1004 */ 1005 if (netdev->features & NETIF_F_RXFCS) 1006 total_rx_bytes -= 4; 1007 else 1008 length -= 4; 1009 } 1010 1011 total_rx_bytes += length; 1012 total_rx_packets++; 1013 1014 /* code added for copybreak, this should improve 1015 * performance for small packets with large amounts 1016 * of reassembly being done in the stack 1017 */ 1018 if (length < copybreak) { 1019 struct sk_buff *new_skb = 1020 napi_alloc_skb(&adapter->napi, length); 1021 if (new_skb) { 1022 skb_copy_to_linear_data_offset(new_skb, 1023 -NET_IP_ALIGN, 1024 (skb->data - 1025 NET_IP_ALIGN), 1026 (length + 1027 NET_IP_ALIGN)); 1028 /* save the skb in buffer_info as good */ 1029 buffer_info->skb = skb; 1030 skb = new_skb; 1031 } 1032 /* else just continue with the old one */ 1033 } 1034 /* end copybreak code */ 1035 skb_put(skb, length); 1036 1037 /* Receive Checksum Offload */ 1038 e1000_rx_checksum(adapter, staterr, skb); 1039 1040 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb); 1041 1042 e1000_receive_skb(adapter, netdev, skb, staterr, 1043 rx_desc->wb.upper.vlan); 1044 1045 next_desc: 1046 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF); 1047 1048 /* return some buffers to hardware, one at a time is too slow */ 1049 if (cleaned_count >= E1000_RX_BUFFER_WRITE) { 1050 adapter->alloc_rx_buf(rx_ring, cleaned_count, 1051 GFP_ATOMIC); 1052 cleaned_count = 0; 1053 } 1054 1055 /* use prefetched values */ 1056 rx_desc = next_rxd; 1057 buffer_info = next_buffer; 1058 1059 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 1060 } 1061 rx_ring->next_to_clean = i; 1062 1063 cleaned_count = e1000_desc_unused(rx_ring); 1064 if (cleaned_count) 1065 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC); 1066 1067 adapter->total_rx_bytes += total_rx_bytes; 1068 adapter->total_rx_packets += total_rx_packets; 1069 return cleaned; 1070 } 1071 1072 static void e1000_put_txbuf(struct e1000_ring *tx_ring, 1073 struct e1000_buffer *buffer_info) 1074 { 1075 struct e1000_adapter *adapter = tx_ring->adapter; 1076 1077 if (buffer_info->dma) { 1078 if (buffer_info->mapped_as_page) 1079 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma, 1080 buffer_info->length, DMA_TO_DEVICE); 1081 else 1082 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, 1083 buffer_info->length, DMA_TO_DEVICE); 1084 buffer_info->dma = 0; 1085 } 1086 if (buffer_info->skb) { 1087 dev_kfree_skb_any(buffer_info->skb); 1088 buffer_info->skb = NULL; 1089 } 1090 buffer_info->time_stamp = 0; 1091 } 1092 1093 static void e1000_print_hw_hang(struct work_struct *work) 1094 { 1095 struct e1000_adapter *adapter = container_of(work, 1096 struct e1000_adapter, 1097 print_hang_task); 1098 struct net_device *netdev = adapter->netdev; 1099 struct e1000_ring *tx_ring = adapter->tx_ring; 1100 unsigned int i = tx_ring->next_to_clean; 1101 unsigned int eop = tx_ring->buffer_info[i].next_to_watch; 1102 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop); 1103 struct e1000_hw *hw = &adapter->hw; 1104 u16 phy_status, phy_1000t_status, phy_ext_status; 1105 u16 pci_status; 1106 1107 if (test_bit(__E1000_DOWN, &adapter->state)) 1108 return; 1109 1110 if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) { 1111 /* May be block on write-back, flush and detect again 1112 * flush pending descriptor writebacks to memory 1113 */ 1114 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); 1115 /* execute the writes immediately */ 1116 e1e_flush(); 1117 /* Due to rare timing issues, write to TIDV again to ensure 1118 * the write is successful 1119 */ 1120 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); 1121 /* execute the writes immediately */ 1122 e1e_flush(); 1123 adapter->tx_hang_recheck = true; 1124 return; 1125 } 1126 adapter->tx_hang_recheck = false; 1127 1128 if (er32(TDH(0)) == er32(TDT(0))) { 1129 e_dbg("false hang detected, ignoring\n"); 1130 return; 1131 } 1132 1133 /* Real hang detected */ 1134 netif_stop_queue(netdev); 1135 1136 e1e_rphy(hw, MII_BMSR, &phy_status); 1137 e1e_rphy(hw, MII_STAT1000, &phy_1000t_status); 1138 e1e_rphy(hw, MII_ESTATUS, &phy_ext_status); 1139 1140 pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status); 1141 1142 /* detected Hardware unit hang */ 1143 e_err("Detected Hardware Unit Hang:\n" 1144 " TDH <%x>\n" 1145 " TDT <%x>\n" 1146 " next_to_use <%x>\n" 1147 " next_to_clean <%x>\n" 1148 "buffer_info[next_to_clean]:\n" 1149 " time_stamp <%lx>\n" 1150 " next_to_watch <%x>\n" 1151 " jiffies <%lx>\n" 1152 " next_to_watch.status <%x>\n" 1153 "MAC Status <%x>\n" 1154 "PHY Status <%x>\n" 1155 "PHY 1000BASE-T Status <%x>\n" 1156 "PHY Extended Status <%x>\n" 1157 "PCI Status <%x>\n", 1158 readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use, 1159 tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp, 1160 eop, jiffies, eop_desc->upper.fields.status, er32(STATUS), 1161 phy_status, phy_1000t_status, phy_ext_status, pci_status); 1162 1163 e1000e_dump(adapter); 1164 1165 /* Suggest workaround for known h/w issue */ 1166 if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE)) 1167 e_err("Try turning off Tx pause (flow control) via ethtool\n"); 1168 } 1169 1170 /** 1171 * e1000e_tx_hwtstamp_work - check for Tx time stamp 1172 * @work: pointer to work struct 1173 * 1174 * This work function polls the TSYNCTXCTL valid bit to determine when a 1175 * timestamp has been taken for the current stored skb. The timestamp must 1176 * be for this skb because only one such packet is allowed in the queue. 1177 */ 1178 static void e1000e_tx_hwtstamp_work(struct work_struct *work) 1179 { 1180 struct e1000_adapter *adapter = container_of(work, struct e1000_adapter, 1181 tx_hwtstamp_work); 1182 struct e1000_hw *hw = &adapter->hw; 1183 1184 if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) { 1185 struct skb_shared_hwtstamps shhwtstamps; 1186 u64 txstmp; 1187 1188 txstmp = er32(TXSTMPL); 1189 txstmp |= (u64)er32(TXSTMPH) << 32; 1190 1191 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp); 1192 1193 skb_tstamp_tx(adapter->tx_hwtstamp_skb, &shhwtstamps); 1194 dev_kfree_skb_any(adapter->tx_hwtstamp_skb); 1195 adapter->tx_hwtstamp_skb = NULL; 1196 } else if (time_after(jiffies, adapter->tx_hwtstamp_start 1197 + adapter->tx_timeout_factor * HZ)) { 1198 dev_kfree_skb_any(adapter->tx_hwtstamp_skb); 1199 adapter->tx_hwtstamp_skb = NULL; 1200 adapter->tx_hwtstamp_timeouts++; 1201 e_warn("clearing Tx timestamp hang\n"); 1202 } else { 1203 /* reschedule to check later */ 1204 schedule_work(&adapter->tx_hwtstamp_work); 1205 } 1206 } 1207 1208 /** 1209 * e1000_clean_tx_irq - Reclaim resources after transmit completes 1210 * @tx_ring: Tx descriptor ring 1211 * 1212 * the return value indicates whether actual cleaning was done, there 1213 * is no guarantee that everything was cleaned 1214 **/ 1215 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring) 1216 { 1217 struct e1000_adapter *adapter = tx_ring->adapter; 1218 struct net_device *netdev = adapter->netdev; 1219 struct e1000_hw *hw = &adapter->hw; 1220 struct e1000_tx_desc *tx_desc, *eop_desc; 1221 struct e1000_buffer *buffer_info; 1222 unsigned int i, eop; 1223 unsigned int count = 0; 1224 unsigned int total_tx_bytes = 0, total_tx_packets = 0; 1225 unsigned int bytes_compl = 0, pkts_compl = 0; 1226 1227 i = tx_ring->next_to_clean; 1228 eop = tx_ring->buffer_info[i].next_to_watch; 1229 eop_desc = E1000_TX_DESC(*tx_ring, eop); 1230 1231 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && 1232 (count < tx_ring->count)) { 1233 bool cleaned = false; 1234 1235 dma_rmb(); /* read buffer_info after eop_desc */ 1236 for (; !cleaned; count++) { 1237 tx_desc = E1000_TX_DESC(*tx_ring, i); 1238 buffer_info = &tx_ring->buffer_info[i]; 1239 cleaned = (i == eop); 1240 1241 if (cleaned) { 1242 total_tx_packets += buffer_info->segs; 1243 total_tx_bytes += buffer_info->bytecount; 1244 if (buffer_info->skb) { 1245 bytes_compl += buffer_info->skb->len; 1246 pkts_compl++; 1247 } 1248 } 1249 1250 e1000_put_txbuf(tx_ring, buffer_info); 1251 tx_desc->upper.data = 0; 1252 1253 i++; 1254 if (i == tx_ring->count) 1255 i = 0; 1256 } 1257 1258 if (i == tx_ring->next_to_use) 1259 break; 1260 eop = tx_ring->buffer_info[i].next_to_watch; 1261 eop_desc = E1000_TX_DESC(*tx_ring, eop); 1262 } 1263 1264 tx_ring->next_to_clean = i; 1265 1266 netdev_completed_queue(netdev, pkts_compl, bytes_compl); 1267 1268 #define TX_WAKE_THRESHOLD 32 1269 if (count && netif_carrier_ok(netdev) && 1270 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) { 1271 /* Make sure that anybody stopping the queue after this 1272 * sees the new next_to_clean. 1273 */ 1274 smp_mb(); 1275 1276 if (netif_queue_stopped(netdev) && 1277 !(test_bit(__E1000_DOWN, &adapter->state))) { 1278 netif_wake_queue(netdev); 1279 ++adapter->restart_queue; 1280 } 1281 } 1282 1283 if (adapter->detect_tx_hung) { 1284 /* Detect a transmit hang in hardware, this serializes the 1285 * check with the clearing of time_stamp and movement of i 1286 */ 1287 adapter->detect_tx_hung = false; 1288 if (tx_ring->buffer_info[i].time_stamp && 1289 time_after(jiffies, tx_ring->buffer_info[i].time_stamp 1290 + (adapter->tx_timeout_factor * HZ)) && 1291 !(er32(STATUS) & E1000_STATUS_TXOFF)) 1292 schedule_work(&adapter->print_hang_task); 1293 else 1294 adapter->tx_hang_recheck = false; 1295 } 1296 adapter->total_tx_bytes += total_tx_bytes; 1297 adapter->total_tx_packets += total_tx_packets; 1298 return count < tx_ring->count; 1299 } 1300 1301 /** 1302 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split 1303 * @rx_ring: Rx descriptor ring 1304 * 1305 * the return value indicates whether actual cleaning was done, there 1306 * is no guarantee that everything was cleaned 1307 **/ 1308 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done, 1309 int work_to_do) 1310 { 1311 struct e1000_adapter *adapter = rx_ring->adapter; 1312 struct e1000_hw *hw = &adapter->hw; 1313 union e1000_rx_desc_packet_split *rx_desc, *next_rxd; 1314 struct net_device *netdev = adapter->netdev; 1315 struct pci_dev *pdev = adapter->pdev; 1316 struct e1000_buffer *buffer_info, *next_buffer; 1317 struct e1000_ps_page *ps_page; 1318 struct sk_buff *skb; 1319 unsigned int i, j; 1320 u32 length, staterr; 1321 int cleaned_count = 0; 1322 bool cleaned = false; 1323 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 1324 1325 i = rx_ring->next_to_clean; 1326 rx_desc = E1000_RX_DESC_PS(*rx_ring, i); 1327 staterr = le32_to_cpu(rx_desc->wb.middle.status_error); 1328 buffer_info = &rx_ring->buffer_info[i]; 1329 1330 while (staterr & E1000_RXD_STAT_DD) { 1331 if (*work_done >= work_to_do) 1332 break; 1333 (*work_done)++; 1334 skb = buffer_info->skb; 1335 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ 1336 1337 /* in the packet split case this is header only */ 1338 prefetch(skb->data - NET_IP_ALIGN); 1339 1340 i++; 1341 if (i == rx_ring->count) 1342 i = 0; 1343 next_rxd = E1000_RX_DESC_PS(*rx_ring, i); 1344 prefetch(next_rxd); 1345 1346 next_buffer = &rx_ring->buffer_info[i]; 1347 1348 cleaned = true; 1349 cleaned_count++; 1350 dma_unmap_single(&pdev->dev, buffer_info->dma, 1351 adapter->rx_ps_bsize0, DMA_FROM_DEVICE); 1352 buffer_info->dma = 0; 1353 1354 /* see !EOP comment in other Rx routine */ 1355 if (!(staterr & E1000_RXD_STAT_EOP)) 1356 adapter->flags2 |= FLAG2_IS_DISCARDING; 1357 1358 if (adapter->flags2 & FLAG2_IS_DISCARDING) { 1359 e_dbg("Packet Split buffers didn't pick up the full packet\n"); 1360 dev_kfree_skb_irq(skb); 1361 if (staterr & E1000_RXD_STAT_EOP) 1362 adapter->flags2 &= ~FLAG2_IS_DISCARDING; 1363 goto next_desc; 1364 } 1365 1366 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) && 1367 !(netdev->features & NETIF_F_RXALL))) { 1368 dev_kfree_skb_irq(skb); 1369 goto next_desc; 1370 } 1371 1372 length = le16_to_cpu(rx_desc->wb.middle.length0); 1373 1374 if (!length) { 1375 e_dbg("Last part of the packet spanning multiple descriptors\n"); 1376 dev_kfree_skb_irq(skb); 1377 goto next_desc; 1378 } 1379 1380 /* Good Receive */ 1381 skb_put(skb, length); 1382 1383 { 1384 /* this looks ugly, but it seems compiler issues make 1385 * it more efficient than reusing j 1386 */ 1387 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]); 1388 1389 /* page alloc/put takes too long and effects small 1390 * packet throughput, so unsplit small packets and 1391 * save the alloc/put only valid in softirq (napi) 1392 * context to call kmap_* 1393 */ 1394 if (l1 && (l1 <= copybreak) && 1395 ((length + l1) <= adapter->rx_ps_bsize0)) { 1396 u8 *vaddr; 1397 1398 ps_page = &buffer_info->ps_pages[0]; 1399 1400 /* there is no documentation about how to call 1401 * kmap_atomic, so we can't hold the mapping 1402 * very long 1403 */ 1404 dma_sync_single_for_cpu(&pdev->dev, 1405 ps_page->dma, 1406 PAGE_SIZE, 1407 DMA_FROM_DEVICE); 1408 vaddr = kmap_atomic(ps_page->page); 1409 memcpy(skb_tail_pointer(skb), vaddr, l1); 1410 kunmap_atomic(vaddr); 1411 dma_sync_single_for_device(&pdev->dev, 1412 ps_page->dma, 1413 PAGE_SIZE, 1414 DMA_FROM_DEVICE); 1415 1416 /* remove the CRC */ 1417 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) { 1418 if (!(netdev->features & NETIF_F_RXFCS)) 1419 l1 -= 4; 1420 } 1421 1422 skb_put(skb, l1); 1423 goto copydone; 1424 } /* if */ 1425 } 1426 1427 for (j = 0; j < PS_PAGE_BUFFERS; j++) { 1428 length = le16_to_cpu(rx_desc->wb.upper.length[j]); 1429 if (!length) 1430 break; 1431 1432 ps_page = &buffer_info->ps_pages[j]; 1433 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE, 1434 DMA_FROM_DEVICE); 1435 ps_page->dma = 0; 1436 skb_fill_page_desc(skb, j, ps_page->page, 0, length); 1437 ps_page->page = NULL; 1438 skb->len += length; 1439 skb->data_len += length; 1440 skb->truesize += PAGE_SIZE; 1441 } 1442 1443 /* strip the ethernet crc, problem is we're using pages now so 1444 * this whole operation can get a little cpu intensive 1445 */ 1446 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) { 1447 if (!(netdev->features & NETIF_F_RXFCS)) 1448 pskb_trim(skb, skb->len - 4); 1449 } 1450 1451 copydone: 1452 total_rx_bytes += skb->len; 1453 total_rx_packets++; 1454 1455 e1000_rx_checksum(adapter, staterr, skb); 1456 1457 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb); 1458 1459 if (rx_desc->wb.upper.header_status & 1460 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)) 1461 adapter->rx_hdr_split++; 1462 1463 e1000_receive_skb(adapter, netdev, skb, staterr, 1464 rx_desc->wb.middle.vlan); 1465 1466 next_desc: 1467 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF); 1468 buffer_info->skb = NULL; 1469 1470 /* return some buffers to hardware, one at a time is too slow */ 1471 if (cleaned_count >= E1000_RX_BUFFER_WRITE) { 1472 adapter->alloc_rx_buf(rx_ring, cleaned_count, 1473 GFP_ATOMIC); 1474 cleaned_count = 0; 1475 } 1476 1477 /* use prefetched values */ 1478 rx_desc = next_rxd; 1479 buffer_info = next_buffer; 1480 1481 staterr = le32_to_cpu(rx_desc->wb.middle.status_error); 1482 } 1483 rx_ring->next_to_clean = i; 1484 1485 cleaned_count = e1000_desc_unused(rx_ring); 1486 if (cleaned_count) 1487 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC); 1488 1489 adapter->total_rx_bytes += total_rx_bytes; 1490 adapter->total_rx_packets += total_rx_packets; 1491 return cleaned; 1492 } 1493 1494 /** 1495 * e1000_consume_page - helper function 1496 **/ 1497 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb, 1498 u16 length) 1499 { 1500 bi->page = NULL; 1501 skb->len += length; 1502 skb->data_len += length; 1503 skb->truesize += PAGE_SIZE; 1504 } 1505 1506 /** 1507 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy 1508 * @adapter: board private structure 1509 * 1510 * the return value indicates whether actual cleaning was done, there 1511 * is no guarantee that everything was cleaned 1512 **/ 1513 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done, 1514 int work_to_do) 1515 { 1516 struct e1000_adapter *adapter = rx_ring->adapter; 1517 struct net_device *netdev = adapter->netdev; 1518 struct pci_dev *pdev = adapter->pdev; 1519 union e1000_rx_desc_extended *rx_desc, *next_rxd; 1520 struct e1000_buffer *buffer_info, *next_buffer; 1521 u32 length, staterr; 1522 unsigned int i; 1523 int cleaned_count = 0; 1524 bool cleaned = false; 1525 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 1526 struct skb_shared_info *shinfo; 1527 1528 i = rx_ring->next_to_clean; 1529 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 1530 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 1531 buffer_info = &rx_ring->buffer_info[i]; 1532 1533 while (staterr & E1000_RXD_STAT_DD) { 1534 struct sk_buff *skb; 1535 1536 if (*work_done >= work_to_do) 1537 break; 1538 (*work_done)++; 1539 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ 1540 1541 skb = buffer_info->skb; 1542 buffer_info->skb = NULL; 1543 1544 ++i; 1545 if (i == rx_ring->count) 1546 i = 0; 1547 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i); 1548 prefetch(next_rxd); 1549 1550 next_buffer = &rx_ring->buffer_info[i]; 1551 1552 cleaned = true; 1553 cleaned_count++; 1554 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE, 1555 DMA_FROM_DEVICE); 1556 buffer_info->dma = 0; 1557 1558 length = le16_to_cpu(rx_desc->wb.upper.length); 1559 1560 /* errors is only valid for DD + EOP descriptors */ 1561 if (unlikely((staterr & E1000_RXD_STAT_EOP) && 1562 ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) && 1563 !(netdev->features & NETIF_F_RXALL)))) { 1564 /* recycle both page and skb */ 1565 buffer_info->skb = skb; 1566 /* an error means any chain goes out the window too */ 1567 if (rx_ring->rx_skb_top) 1568 dev_kfree_skb_irq(rx_ring->rx_skb_top); 1569 rx_ring->rx_skb_top = NULL; 1570 goto next_desc; 1571 } 1572 #define rxtop (rx_ring->rx_skb_top) 1573 if (!(staterr & E1000_RXD_STAT_EOP)) { 1574 /* this descriptor is only the beginning (or middle) */ 1575 if (!rxtop) { 1576 /* this is the beginning of a chain */ 1577 rxtop = skb; 1578 skb_fill_page_desc(rxtop, 0, buffer_info->page, 1579 0, length); 1580 } else { 1581 /* this is the middle of a chain */ 1582 shinfo = skb_shinfo(rxtop); 1583 skb_fill_page_desc(rxtop, shinfo->nr_frags, 1584 buffer_info->page, 0, 1585 length); 1586 /* re-use the skb, only consumed the page */ 1587 buffer_info->skb = skb; 1588 } 1589 e1000_consume_page(buffer_info, rxtop, length); 1590 goto next_desc; 1591 } else { 1592 if (rxtop) { 1593 /* end of the chain */ 1594 shinfo = skb_shinfo(rxtop); 1595 skb_fill_page_desc(rxtop, shinfo->nr_frags, 1596 buffer_info->page, 0, 1597 length); 1598 /* re-use the current skb, we only consumed the 1599 * page 1600 */ 1601 buffer_info->skb = skb; 1602 skb = rxtop; 1603 rxtop = NULL; 1604 e1000_consume_page(buffer_info, skb, length); 1605 } else { 1606 /* no chain, got EOP, this buf is the packet 1607 * copybreak to save the put_page/alloc_page 1608 */ 1609 if (length <= copybreak && 1610 skb_tailroom(skb) >= length) { 1611 u8 *vaddr; 1612 vaddr = kmap_atomic(buffer_info->page); 1613 memcpy(skb_tail_pointer(skb), vaddr, 1614 length); 1615 kunmap_atomic(vaddr); 1616 /* re-use the page, so don't erase 1617 * buffer_info->page 1618 */ 1619 skb_put(skb, length); 1620 } else { 1621 skb_fill_page_desc(skb, 0, 1622 buffer_info->page, 0, 1623 length); 1624 e1000_consume_page(buffer_info, skb, 1625 length); 1626 } 1627 } 1628 } 1629 1630 /* Receive Checksum Offload */ 1631 e1000_rx_checksum(adapter, staterr, skb); 1632 1633 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb); 1634 1635 /* probably a little skewed due to removing CRC */ 1636 total_rx_bytes += skb->len; 1637 total_rx_packets++; 1638 1639 /* eth type trans needs skb->data to point to something */ 1640 if (!pskb_may_pull(skb, ETH_HLEN)) { 1641 e_err("pskb_may_pull failed.\n"); 1642 dev_kfree_skb_irq(skb); 1643 goto next_desc; 1644 } 1645 1646 e1000_receive_skb(adapter, netdev, skb, staterr, 1647 rx_desc->wb.upper.vlan); 1648 1649 next_desc: 1650 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF); 1651 1652 /* return some buffers to hardware, one at a time is too slow */ 1653 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { 1654 adapter->alloc_rx_buf(rx_ring, cleaned_count, 1655 GFP_ATOMIC); 1656 cleaned_count = 0; 1657 } 1658 1659 /* use prefetched values */ 1660 rx_desc = next_rxd; 1661 buffer_info = next_buffer; 1662 1663 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 1664 } 1665 rx_ring->next_to_clean = i; 1666 1667 cleaned_count = e1000_desc_unused(rx_ring); 1668 if (cleaned_count) 1669 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC); 1670 1671 adapter->total_rx_bytes += total_rx_bytes; 1672 adapter->total_rx_packets += total_rx_packets; 1673 return cleaned; 1674 } 1675 1676 /** 1677 * e1000_clean_rx_ring - Free Rx Buffers per Queue 1678 * @rx_ring: Rx descriptor ring 1679 **/ 1680 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring) 1681 { 1682 struct e1000_adapter *adapter = rx_ring->adapter; 1683 struct e1000_buffer *buffer_info; 1684 struct e1000_ps_page *ps_page; 1685 struct pci_dev *pdev = adapter->pdev; 1686 unsigned int i, j; 1687 1688 /* Free all the Rx ring sk_buffs */ 1689 for (i = 0; i < rx_ring->count; i++) { 1690 buffer_info = &rx_ring->buffer_info[i]; 1691 if (buffer_info->dma) { 1692 if (adapter->clean_rx == e1000_clean_rx_irq) 1693 dma_unmap_single(&pdev->dev, buffer_info->dma, 1694 adapter->rx_buffer_len, 1695 DMA_FROM_DEVICE); 1696 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) 1697 dma_unmap_page(&pdev->dev, buffer_info->dma, 1698 PAGE_SIZE, DMA_FROM_DEVICE); 1699 else if (adapter->clean_rx == e1000_clean_rx_irq_ps) 1700 dma_unmap_single(&pdev->dev, buffer_info->dma, 1701 adapter->rx_ps_bsize0, 1702 DMA_FROM_DEVICE); 1703 buffer_info->dma = 0; 1704 } 1705 1706 if (buffer_info->page) { 1707 put_page(buffer_info->page); 1708 buffer_info->page = NULL; 1709 } 1710 1711 if (buffer_info->skb) { 1712 dev_kfree_skb(buffer_info->skb); 1713 buffer_info->skb = NULL; 1714 } 1715 1716 for (j = 0; j < PS_PAGE_BUFFERS; j++) { 1717 ps_page = &buffer_info->ps_pages[j]; 1718 if (!ps_page->page) 1719 break; 1720 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE, 1721 DMA_FROM_DEVICE); 1722 ps_page->dma = 0; 1723 put_page(ps_page->page); 1724 ps_page->page = NULL; 1725 } 1726 } 1727 1728 /* there also may be some cached data from a chained receive */ 1729 if (rx_ring->rx_skb_top) { 1730 dev_kfree_skb(rx_ring->rx_skb_top); 1731 rx_ring->rx_skb_top = NULL; 1732 } 1733 1734 /* Zero out the descriptor ring */ 1735 memset(rx_ring->desc, 0, rx_ring->size); 1736 1737 rx_ring->next_to_clean = 0; 1738 rx_ring->next_to_use = 0; 1739 adapter->flags2 &= ~FLAG2_IS_DISCARDING; 1740 1741 writel(0, rx_ring->head); 1742 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 1743 e1000e_update_rdt_wa(rx_ring, 0); 1744 else 1745 writel(0, rx_ring->tail); 1746 } 1747 1748 static void e1000e_downshift_workaround(struct work_struct *work) 1749 { 1750 struct e1000_adapter *adapter = container_of(work, 1751 struct e1000_adapter, 1752 downshift_task); 1753 1754 if (test_bit(__E1000_DOWN, &adapter->state)) 1755 return; 1756 1757 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw); 1758 } 1759 1760 /** 1761 * e1000_intr_msi - Interrupt Handler 1762 * @irq: interrupt number 1763 * @data: pointer to a network interface device structure 1764 **/ 1765 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data) 1766 { 1767 struct net_device *netdev = data; 1768 struct e1000_adapter *adapter = netdev_priv(netdev); 1769 struct e1000_hw *hw = &adapter->hw; 1770 u32 icr = er32(ICR); 1771 1772 /* read ICR disables interrupts using IAM */ 1773 if (icr & E1000_ICR_LSC) { 1774 hw->mac.get_link_status = true; 1775 /* ICH8 workaround-- Call gig speed drop workaround on cable 1776 * disconnect (LSC) before accessing any PHY registers 1777 */ 1778 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && 1779 (!(er32(STATUS) & E1000_STATUS_LU))) 1780 schedule_work(&adapter->downshift_task); 1781 1782 /* 80003ES2LAN workaround-- For packet buffer work-around on 1783 * link down event; disable receives here in the ISR and reset 1784 * adapter in watchdog 1785 */ 1786 if (netif_carrier_ok(netdev) && 1787 adapter->flags & FLAG_RX_NEEDS_RESTART) { 1788 /* disable receives */ 1789 u32 rctl = er32(RCTL); 1790 1791 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1792 adapter->flags |= FLAG_RESTART_NOW; 1793 } 1794 /* guard against interrupt when we're going down */ 1795 if (!test_bit(__E1000_DOWN, &adapter->state)) 1796 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1797 } 1798 1799 /* Reset on uncorrectable ECC error */ 1800 if ((icr & E1000_ICR_ECCER) && ((hw->mac.type == e1000_pch_lpt) || 1801 (hw->mac.type == e1000_pch_spt))) { 1802 u32 pbeccsts = er32(PBECCSTS); 1803 1804 adapter->corr_errors += 1805 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK; 1806 adapter->uncorr_errors += 1807 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >> 1808 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT; 1809 1810 /* Do the reset outside of interrupt context */ 1811 schedule_work(&adapter->reset_task); 1812 1813 /* return immediately since reset is imminent */ 1814 return IRQ_HANDLED; 1815 } 1816 1817 if (napi_schedule_prep(&adapter->napi)) { 1818 adapter->total_tx_bytes = 0; 1819 adapter->total_tx_packets = 0; 1820 adapter->total_rx_bytes = 0; 1821 adapter->total_rx_packets = 0; 1822 __napi_schedule(&adapter->napi); 1823 } 1824 1825 return IRQ_HANDLED; 1826 } 1827 1828 /** 1829 * e1000_intr - Interrupt Handler 1830 * @irq: interrupt number 1831 * @data: pointer to a network interface device structure 1832 **/ 1833 static irqreturn_t e1000_intr(int __always_unused irq, void *data) 1834 { 1835 struct net_device *netdev = data; 1836 struct e1000_adapter *adapter = netdev_priv(netdev); 1837 struct e1000_hw *hw = &adapter->hw; 1838 u32 rctl, icr = er32(ICR); 1839 1840 if (!icr || test_bit(__E1000_DOWN, &adapter->state)) 1841 return IRQ_NONE; /* Not our interrupt */ 1842 1843 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is 1844 * not set, then the adapter didn't send an interrupt 1845 */ 1846 if (!(icr & E1000_ICR_INT_ASSERTED)) 1847 return IRQ_NONE; 1848 1849 /* Interrupt Auto-Mask...upon reading ICR, 1850 * interrupts are masked. No need for the 1851 * IMC write 1852 */ 1853 1854 if (icr & E1000_ICR_LSC) { 1855 hw->mac.get_link_status = true; 1856 /* ICH8 workaround-- Call gig speed drop workaround on cable 1857 * disconnect (LSC) before accessing any PHY registers 1858 */ 1859 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && 1860 (!(er32(STATUS) & E1000_STATUS_LU))) 1861 schedule_work(&adapter->downshift_task); 1862 1863 /* 80003ES2LAN workaround-- 1864 * For packet buffer work-around on link down event; 1865 * disable receives here in the ISR and 1866 * reset adapter in watchdog 1867 */ 1868 if (netif_carrier_ok(netdev) && 1869 (adapter->flags & FLAG_RX_NEEDS_RESTART)) { 1870 /* disable receives */ 1871 rctl = er32(RCTL); 1872 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1873 adapter->flags |= FLAG_RESTART_NOW; 1874 } 1875 /* guard against interrupt when we're going down */ 1876 if (!test_bit(__E1000_DOWN, &adapter->state)) 1877 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1878 } 1879 1880 /* Reset on uncorrectable ECC error */ 1881 if ((icr & E1000_ICR_ECCER) && ((hw->mac.type == e1000_pch_lpt) || 1882 (hw->mac.type == e1000_pch_spt))) { 1883 u32 pbeccsts = er32(PBECCSTS); 1884 1885 adapter->corr_errors += 1886 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK; 1887 adapter->uncorr_errors += 1888 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >> 1889 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT; 1890 1891 /* Do the reset outside of interrupt context */ 1892 schedule_work(&adapter->reset_task); 1893 1894 /* return immediately since reset is imminent */ 1895 return IRQ_HANDLED; 1896 } 1897 1898 if (napi_schedule_prep(&adapter->napi)) { 1899 adapter->total_tx_bytes = 0; 1900 adapter->total_tx_packets = 0; 1901 adapter->total_rx_bytes = 0; 1902 adapter->total_rx_packets = 0; 1903 __napi_schedule(&adapter->napi); 1904 } 1905 1906 return IRQ_HANDLED; 1907 } 1908 1909 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data) 1910 { 1911 struct net_device *netdev = data; 1912 struct e1000_adapter *adapter = netdev_priv(netdev); 1913 struct e1000_hw *hw = &adapter->hw; 1914 u32 icr = er32(ICR); 1915 1916 if (!(icr & E1000_ICR_INT_ASSERTED)) { 1917 if (!test_bit(__E1000_DOWN, &adapter->state)) 1918 ew32(IMS, E1000_IMS_OTHER); 1919 return IRQ_NONE; 1920 } 1921 1922 if (icr & adapter->eiac_mask) 1923 ew32(ICS, (icr & adapter->eiac_mask)); 1924 1925 if (icr & E1000_ICR_OTHER) { 1926 if (!(icr & E1000_ICR_LSC)) 1927 goto no_link_interrupt; 1928 hw->mac.get_link_status = true; 1929 /* guard against interrupt when we're going down */ 1930 if (!test_bit(__E1000_DOWN, &adapter->state)) 1931 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1932 } 1933 1934 no_link_interrupt: 1935 if (!test_bit(__E1000_DOWN, &adapter->state)) 1936 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER); 1937 1938 return IRQ_HANDLED; 1939 } 1940 1941 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data) 1942 { 1943 struct net_device *netdev = data; 1944 struct e1000_adapter *adapter = netdev_priv(netdev); 1945 struct e1000_hw *hw = &adapter->hw; 1946 struct e1000_ring *tx_ring = adapter->tx_ring; 1947 1948 adapter->total_tx_bytes = 0; 1949 adapter->total_tx_packets = 0; 1950 1951 if (!e1000_clean_tx_irq(tx_ring)) 1952 /* Ring was not completely cleaned, so fire another interrupt */ 1953 ew32(ICS, tx_ring->ims_val); 1954 1955 return IRQ_HANDLED; 1956 } 1957 1958 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data) 1959 { 1960 struct net_device *netdev = data; 1961 struct e1000_adapter *adapter = netdev_priv(netdev); 1962 struct e1000_ring *rx_ring = adapter->rx_ring; 1963 1964 /* Write the ITR value calculated at the end of the 1965 * previous interrupt. 1966 */ 1967 if (rx_ring->set_itr) { 1968 writel(1000000000 / (rx_ring->itr_val * 256), 1969 rx_ring->itr_register); 1970 rx_ring->set_itr = 0; 1971 } 1972 1973 if (napi_schedule_prep(&adapter->napi)) { 1974 adapter->total_rx_bytes = 0; 1975 adapter->total_rx_packets = 0; 1976 __napi_schedule(&adapter->napi); 1977 } 1978 return IRQ_HANDLED; 1979 } 1980 1981 /** 1982 * e1000_configure_msix - Configure MSI-X hardware 1983 * 1984 * e1000_configure_msix sets up the hardware to properly 1985 * generate MSI-X interrupts. 1986 **/ 1987 static void e1000_configure_msix(struct e1000_adapter *adapter) 1988 { 1989 struct e1000_hw *hw = &adapter->hw; 1990 struct e1000_ring *rx_ring = adapter->rx_ring; 1991 struct e1000_ring *tx_ring = adapter->tx_ring; 1992 int vector = 0; 1993 u32 ctrl_ext, ivar = 0; 1994 1995 adapter->eiac_mask = 0; 1996 1997 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */ 1998 if (hw->mac.type == e1000_82574) { 1999 u32 rfctl = er32(RFCTL); 2000 2001 rfctl |= E1000_RFCTL_ACK_DIS; 2002 ew32(RFCTL, rfctl); 2003 } 2004 2005 /* Configure Rx vector */ 2006 rx_ring->ims_val = E1000_IMS_RXQ0; 2007 adapter->eiac_mask |= rx_ring->ims_val; 2008 if (rx_ring->itr_val) 2009 writel(1000000000 / (rx_ring->itr_val * 256), 2010 rx_ring->itr_register); 2011 else 2012 writel(1, rx_ring->itr_register); 2013 ivar = E1000_IVAR_INT_ALLOC_VALID | vector; 2014 2015 /* Configure Tx vector */ 2016 tx_ring->ims_val = E1000_IMS_TXQ0; 2017 vector++; 2018 if (tx_ring->itr_val) 2019 writel(1000000000 / (tx_ring->itr_val * 256), 2020 tx_ring->itr_register); 2021 else 2022 writel(1, tx_ring->itr_register); 2023 adapter->eiac_mask |= tx_ring->ims_val; 2024 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8); 2025 2026 /* set vector for Other Causes, e.g. link changes */ 2027 vector++; 2028 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16); 2029 if (rx_ring->itr_val) 2030 writel(1000000000 / (rx_ring->itr_val * 256), 2031 hw->hw_addr + E1000_EITR_82574(vector)); 2032 else 2033 writel(1, hw->hw_addr + E1000_EITR_82574(vector)); 2034 2035 /* Cause Tx interrupts on every write back */ 2036 ivar |= (1 << 31); 2037 2038 ew32(IVAR, ivar); 2039 2040 /* enable MSI-X PBA support */ 2041 ctrl_ext = er32(CTRL_EXT); 2042 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR; 2043 2044 /* Auto-Mask Other interrupts upon ICR read */ 2045 ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER); 2046 ctrl_ext |= E1000_CTRL_EXT_EIAME; 2047 ew32(CTRL_EXT, ctrl_ext); 2048 e1e_flush(); 2049 } 2050 2051 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter) 2052 { 2053 if (adapter->msix_entries) { 2054 pci_disable_msix(adapter->pdev); 2055 kfree(adapter->msix_entries); 2056 adapter->msix_entries = NULL; 2057 } else if (adapter->flags & FLAG_MSI_ENABLED) { 2058 pci_disable_msi(adapter->pdev); 2059 adapter->flags &= ~FLAG_MSI_ENABLED; 2060 } 2061 } 2062 2063 /** 2064 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported 2065 * 2066 * Attempt to configure interrupts using the best available 2067 * capabilities of the hardware and kernel. 2068 **/ 2069 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter) 2070 { 2071 int err; 2072 int i; 2073 2074 switch (adapter->int_mode) { 2075 case E1000E_INT_MODE_MSIX: 2076 if (adapter->flags & FLAG_HAS_MSIX) { 2077 adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */ 2078 adapter->msix_entries = kcalloc(adapter->num_vectors, 2079 sizeof(struct 2080 msix_entry), 2081 GFP_KERNEL); 2082 if (adapter->msix_entries) { 2083 struct e1000_adapter *a = adapter; 2084 2085 for (i = 0; i < adapter->num_vectors; i++) 2086 adapter->msix_entries[i].entry = i; 2087 2088 err = pci_enable_msix_range(a->pdev, 2089 a->msix_entries, 2090 a->num_vectors, 2091 a->num_vectors); 2092 if (err > 0) 2093 return; 2094 } 2095 /* MSI-X failed, so fall through and try MSI */ 2096 e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n"); 2097 e1000e_reset_interrupt_capability(adapter); 2098 } 2099 adapter->int_mode = E1000E_INT_MODE_MSI; 2100 /* Fall through */ 2101 case E1000E_INT_MODE_MSI: 2102 if (!pci_enable_msi(adapter->pdev)) { 2103 adapter->flags |= FLAG_MSI_ENABLED; 2104 } else { 2105 adapter->int_mode = E1000E_INT_MODE_LEGACY; 2106 e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n"); 2107 } 2108 /* Fall through */ 2109 case E1000E_INT_MODE_LEGACY: 2110 /* Don't do anything; this is the system default */ 2111 break; 2112 } 2113 2114 /* store the number of vectors being used */ 2115 adapter->num_vectors = 1; 2116 } 2117 2118 /** 2119 * e1000_request_msix - Initialize MSI-X interrupts 2120 * 2121 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the 2122 * kernel. 2123 **/ 2124 static int e1000_request_msix(struct e1000_adapter *adapter) 2125 { 2126 struct net_device *netdev = adapter->netdev; 2127 int err = 0, vector = 0; 2128 2129 if (strlen(netdev->name) < (IFNAMSIZ - 5)) 2130 snprintf(adapter->rx_ring->name, 2131 sizeof(adapter->rx_ring->name) - 1, 2132 "%s-rx-0", netdev->name); 2133 else 2134 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ); 2135 err = request_irq(adapter->msix_entries[vector].vector, 2136 e1000_intr_msix_rx, 0, adapter->rx_ring->name, 2137 netdev); 2138 if (err) 2139 return err; 2140 adapter->rx_ring->itr_register = adapter->hw.hw_addr + 2141 E1000_EITR_82574(vector); 2142 adapter->rx_ring->itr_val = adapter->itr; 2143 vector++; 2144 2145 if (strlen(netdev->name) < (IFNAMSIZ - 5)) 2146 snprintf(adapter->tx_ring->name, 2147 sizeof(adapter->tx_ring->name) - 1, 2148 "%s-tx-0", netdev->name); 2149 else 2150 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ); 2151 err = request_irq(adapter->msix_entries[vector].vector, 2152 e1000_intr_msix_tx, 0, adapter->tx_ring->name, 2153 netdev); 2154 if (err) 2155 return err; 2156 adapter->tx_ring->itr_register = adapter->hw.hw_addr + 2157 E1000_EITR_82574(vector); 2158 adapter->tx_ring->itr_val = adapter->itr; 2159 vector++; 2160 2161 err = request_irq(adapter->msix_entries[vector].vector, 2162 e1000_msix_other, 0, netdev->name, netdev); 2163 if (err) 2164 return err; 2165 2166 e1000_configure_msix(adapter); 2167 2168 return 0; 2169 } 2170 2171 /** 2172 * e1000_request_irq - initialize interrupts 2173 * 2174 * Attempts to configure interrupts using the best available 2175 * capabilities of the hardware and kernel. 2176 **/ 2177 static int e1000_request_irq(struct e1000_adapter *adapter) 2178 { 2179 struct net_device *netdev = adapter->netdev; 2180 int err; 2181 2182 if (adapter->msix_entries) { 2183 err = e1000_request_msix(adapter); 2184 if (!err) 2185 return err; 2186 /* fall back to MSI */ 2187 e1000e_reset_interrupt_capability(adapter); 2188 adapter->int_mode = E1000E_INT_MODE_MSI; 2189 e1000e_set_interrupt_capability(adapter); 2190 } 2191 if (adapter->flags & FLAG_MSI_ENABLED) { 2192 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0, 2193 netdev->name, netdev); 2194 if (!err) 2195 return err; 2196 2197 /* fall back to legacy interrupt */ 2198 e1000e_reset_interrupt_capability(adapter); 2199 adapter->int_mode = E1000E_INT_MODE_LEGACY; 2200 } 2201 2202 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED, 2203 netdev->name, netdev); 2204 if (err) 2205 e_err("Unable to allocate interrupt, Error: %d\n", err); 2206 2207 return err; 2208 } 2209 2210 static void e1000_free_irq(struct e1000_adapter *adapter) 2211 { 2212 struct net_device *netdev = adapter->netdev; 2213 2214 if (adapter->msix_entries) { 2215 int vector = 0; 2216 2217 free_irq(adapter->msix_entries[vector].vector, netdev); 2218 vector++; 2219 2220 free_irq(adapter->msix_entries[vector].vector, netdev); 2221 vector++; 2222 2223 /* Other Causes interrupt vector */ 2224 free_irq(adapter->msix_entries[vector].vector, netdev); 2225 return; 2226 } 2227 2228 free_irq(adapter->pdev->irq, netdev); 2229 } 2230 2231 /** 2232 * e1000_irq_disable - Mask off interrupt generation on the NIC 2233 **/ 2234 static void e1000_irq_disable(struct e1000_adapter *adapter) 2235 { 2236 struct e1000_hw *hw = &adapter->hw; 2237 2238 ew32(IMC, ~0); 2239 if (adapter->msix_entries) 2240 ew32(EIAC_82574, 0); 2241 e1e_flush(); 2242 2243 if (adapter->msix_entries) { 2244 int i; 2245 2246 for (i = 0; i < adapter->num_vectors; i++) 2247 synchronize_irq(adapter->msix_entries[i].vector); 2248 } else { 2249 synchronize_irq(adapter->pdev->irq); 2250 } 2251 } 2252 2253 /** 2254 * e1000_irq_enable - Enable default interrupt generation settings 2255 **/ 2256 static void e1000_irq_enable(struct e1000_adapter *adapter) 2257 { 2258 struct e1000_hw *hw = &adapter->hw; 2259 2260 if (adapter->msix_entries) { 2261 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574); 2262 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC); 2263 } else if ((hw->mac.type == e1000_pch_lpt) || 2264 (hw->mac.type == e1000_pch_spt)) { 2265 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER); 2266 } else { 2267 ew32(IMS, IMS_ENABLE_MASK); 2268 } 2269 e1e_flush(); 2270 } 2271 2272 /** 2273 * e1000e_get_hw_control - get control of the h/w from f/w 2274 * @adapter: address of board private structure 2275 * 2276 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit. 2277 * For ASF and Pass Through versions of f/w this means that 2278 * the driver is loaded. For AMT version (only with 82573) 2279 * of the f/w this means that the network i/f is open. 2280 **/ 2281 void e1000e_get_hw_control(struct e1000_adapter *adapter) 2282 { 2283 struct e1000_hw *hw = &adapter->hw; 2284 u32 ctrl_ext; 2285 u32 swsm; 2286 2287 /* Let firmware know the driver has taken over */ 2288 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { 2289 swsm = er32(SWSM); 2290 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD); 2291 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { 2292 ctrl_ext = er32(CTRL_EXT); 2293 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); 2294 } 2295 } 2296 2297 /** 2298 * e1000e_release_hw_control - release control of the h/w to f/w 2299 * @adapter: address of board private structure 2300 * 2301 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit. 2302 * For ASF and Pass Through versions of f/w this means that the 2303 * driver is no longer loaded. For AMT version (only with 82573) i 2304 * of the f/w this means that the network i/f is closed. 2305 * 2306 **/ 2307 void e1000e_release_hw_control(struct e1000_adapter *adapter) 2308 { 2309 struct e1000_hw *hw = &adapter->hw; 2310 u32 ctrl_ext; 2311 u32 swsm; 2312 2313 /* Let firmware taken over control of h/w */ 2314 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { 2315 swsm = er32(SWSM); 2316 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD); 2317 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { 2318 ctrl_ext = er32(CTRL_EXT); 2319 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); 2320 } 2321 } 2322 2323 /** 2324 * e1000_alloc_ring_dma - allocate memory for a ring structure 2325 **/ 2326 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter, 2327 struct e1000_ring *ring) 2328 { 2329 struct pci_dev *pdev = adapter->pdev; 2330 2331 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma, 2332 GFP_KERNEL); 2333 if (!ring->desc) 2334 return -ENOMEM; 2335 2336 return 0; 2337 } 2338 2339 /** 2340 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors) 2341 * @tx_ring: Tx descriptor ring 2342 * 2343 * Return 0 on success, negative on failure 2344 **/ 2345 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring) 2346 { 2347 struct e1000_adapter *adapter = tx_ring->adapter; 2348 int err = -ENOMEM, size; 2349 2350 size = sizeof(struct e1000_buffer) * tx_ring->count; 2351 tx_ring->buffer_info = vzalloc(size); 2352 if (!tx_ring->buffer_info) 2353 goto err; 2354 2355 /* round up to nearest 4K */ 2356 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); 2357 tx_ring->size = ALIGN(tx_ring->size, 4096); 2358 2359 err = e1000_alloc_ring_dma(adapter, tx_ring); 2360 if (err) 2361 goto err; 2362 2363 tx_ring->next_to_use = 0; 2364 tx_ring->next_to_clean = 0; 2365 2366 return 0; 2367 err: 2368 vfree(tx_ring->buffer_info); 2369 e_err("Unable to allocate memory for the transmit descriptor ring\n"); 2370 return err; 2371 } 2372 2373 /** 2374 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors) 2375 * @rx_ring: Rx descriptor ring 2376 * 2377 * Returns 0 on success, negative on failure 2378 **/ 2379 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring) 2380 { 2381 struct e1000_adapter *adapter = rx_ring->adapter; 2382 struct e1000_buffer *buffer_info; 2383 int i, size, desc_len, err = -ENOMEM; 2384 2385 size = sizeof(struct e1000_buffer) * rx_ring->count; 2386 rx_ring->buffer_info = vzalloc(size); 2387 if (!rx_ring->buffer_info) 2388 goto err; 2389 2390 for (i = 0; i < rx_ring->count; i++) { 2391 buffer_info = &rx_ring->buffer_info[i]; 2392 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS, 2393 sizeof(struct e1000_ps_page), 2394 GFP_KERNEL); 2395 if (!buffer_info->ps_pages) 2396 goto err_pages; 2397 } 2398 2399 desc_len = sizeof(union e1000_rx_desc_packet_split); 2400 2401 /* Round up to nearest 4K */ 2402 rx_ring->size = rx_ring->count * desc_len; 2403 rx_ring->size = ALIGN(rx_ring->size, 4096); 2404 2405 err = e1000_alloc_ring_dma(adapter, rx_ring); 2406 if (err) 2407 goto err_pages; 2408 2409 rx_ring->next_to_clean = 0; 2410 rx_ring->next_to_use = 0; 2411 rx_ring->rx_skb_top = NULL; 2412 2413 return 0; 2414 2415 err_pages: 2416 for (i = 0; i < rx_ring->count; i++) { 2417 buffer_info = &rx_ring->buffer_info[i]; 2418 kfree(buffer_info->ps_pages); 2419 } 2420 err: 2421 vfree(rx_ring->buffer_info); 2422 e_err("Unable to allocate memory for the receive descriptor ring\n"); 2423 return err; 2424 } 2425 2426 /** 2427 * e1000_clean_tx_ring - Free Tx Buffers 2428 * @tx_ring: Tx descriptor ring 2429 **/ 2430 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring) 2431 { 2432 struct e1000_adapter *adapter = tx_ring->adapter; 2433 struct e1000_buffer *buffer_info; 2434 unsigned long size; 2435 unsigned int i; 2436 2437 for (i = 0; i < tx_ring->count; i++) { 2438 buffer_info = &tx_ring->buffer_info[i]; 2439 e1000_put_txbuf(tx_ring, buffer_info); 2440 } 2441 2442 netdev_reset_queue(adapter->netdev); 2443 size = sizeof(struct e1000_buffer) * tx_ring->count; 2444 memset(tx_ring->buffer_info, 0, size); 2445 2446 memset(tx_ring->desc, 0, tx_ring->size); 2447 2448 tx_ring->next_to_use = 0; 2449 tx_ring->next_to_clean = 0; 2450 2451 writel(0, tx_ring->head); 2452 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 2453 e1000e_update_tdt_wa(tx_ring, 0); 2454 else 2455 writel(0, tx_ring->tail); 2456 } 2457 2458 /** 2459 * e1000e_free_tx_resources - Free Tx Resources per Queue 2460 * @tx_ring: Tx descriptor ring 2461 * 2462 * Free all transmit software resources 2463 **/ 2464 void e1000e_free_tx_resources(struct e1000_ring *tx_ring) 2465 { 2466 struct e1000_adapter *adapter = tx_ring->adapter; 2467 struct pci_dev *pdev = adapter->pdev; 2468 2469 e1000_clean_tx_ring(tx_ring); 2470 2471 vfree(tx_ring->buffer_info); 2472 tx_ring->buffer_info = NULL; 2473 2474 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 2475 tx_ring->dma); 2476 tx_ring->desc = NULL; 2477 } 2478 2479 /** 2480 * e1000e_free_rx_resources - Free Rx Resources 2481 * @rx_ring: Rx descriptor ring 2482 * 2483 * Free all receive software resources 2484 **/ 2485 void e1000e_free_rx_resources(struct e1000_ring *rx_ring) 2486 { 2487 struct e1000_adapter *adapter = rx_ring->adapter; 2488 struct pci_dev *pdev = adapter->pdev; 2489 int i; 2490 2491 e1000_clean_rx_ring(rx_ring); 2492 2493 for (i = 0; i < rx_ring->count; i++) 2494 kfree(rx_ring->buffer_info[i].ps_pages); 2495 2496 vfree(rx_ring->buffer_info); 2497 rx_ring->buffer_info = NULL; 2498 2499 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 2500 rx_ring->dma); 2501 rx_ring->desc = NULL; 2502 } 2503 2504 /** 2505 * e1000_update_itr - update the dynamic ITR value based on statistics 2506 * @adapter: pointer to adapter 2507 * @itr_setting: current adapter->itr 2508 * @packets: the number of packets during this measurement interval 2509 * @bytes: the number of bytes during this measurement interval 2510 * 2511 * Stores a new ITR value based on packets and byte 2512 * counts during the last interrupt. The advantage of per interrupt 2513 * computation is faster updates and more accurate ITR for the current 2514 * traffic pattern. Constants in this function were computed 2515 * based on theoretical maximum wire speed and thresholds were set based 2516 * on testing data as well as attempting to minimize response time 2517 * while increasing bulk throughput. This functionality is controlled 2518 * by the InterruptThrottleRate module parameter. 2519 **/ 2520 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes) 2521 { 2522 unsigned int retval = itr_setting; 2523 2524 if (packets == 0) 2525 return itr_setting; 2526 2527 switch (itr_setting) { 2528 case lowest_latency: 2529 /* handle TSO and jumbo frames */ 2530 if (bytes / packets > 8000) 2531 retval = bulk_latency; 2532 else if ((packets < 5) && (bytes > 512)) 2533 retval = low_latency; 2534 break; 2535 case low_latency: /* 50 usec aka 20000 ints/s */ 2536 if (bytes > 10000) { 2537 /* this if handles the TSO accounting */ 2538 if (bytes / packets > 8000) 2539 retval = bulk_latency; 2540 else if ((packets < 10) || ((bytes / packets) > 1200)) 2541 retval = bulk_latency; 2542 else if ((packets > 35)) 2543 retval = lowest_latency; 2544 } else if (bytes / packets > 2000) { 2545 retval = bulk_latency; 2546 } else if (packets <= 2 && bytes < 512) { 2547 retval = lowest_latency; 2548 } 2549 break; 2550 case bulk_latency: /* 250 usec aka 4000 ints/s */ 2551 if (bytes > 25000) { 2552 if (packets > 35) 2553 retval = low_latency; 2554 } else if (bytes < 6000) { 2555 retval = low_latency; 2556 } 2557 break; 2558 } 2559 2560 return retval; 2561 } 2562 2563 static void e1000_set_itr(struct e1000_adapter *adapter) 2564 { 2565 u16 current_itr; 2566 u32 new_itr = adapter->itr; 2567 2568 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 2569 if (adapter->link_speed != SPEED_1000) { 2570 current_itr = 0; 2571 new_itr = 4000; 2572 goto set_itr_now; 2573 } 2574 2575 if (adapter->flags2 & FLAG2_DISABLE_AIM) { 2576 new_itr = 0; 2577 goto set_itr_now; 2578 } 2579 2580 adapter->tx_itr = e1000_update_itr(adapter->tx_itr, 2581 adapter->total_tx_packets, 2582 adapter->total_tx_bytes); 2583 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2584 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) 2585 adapter->tx_itr = low_latency; 2586 2587 adapter->rx_itr = e1000_update_itr(adapter->rx_itr, 2588 adapter->total_rx_packets, 2589 adapter->total_rx_bytes); 2590 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2591 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) 2592 adapter->rx_itr = low_latency; 2593 2594 current_itr = max(adapter->rx_itr, adapter->tx_itr); 2595 2596 /* counts and packets in update_itr are dependent on these numbers */ 2597 switch (current_itr) { 2598 case lowest_latency: 2599 new_itr = 70000; 2600 break; 2601 case low_latency: 2602 new_itr = 20000; /* aka hwitr = ~200 */ 2603 break; 2604 case bulk_latency: 2605 new_itr = 4000; 2606 break; 2607 default: 2608 break; 2609 } 2610 2611 set_itr_now: 2612 if (new_itr != adapter->itr) { 2613 /* this attempts to bias the interrupt rate towards Bulk 2614 * by adding intermediate steps when interrupt rate is 2615 * increasing 2616 */ 2617 new_itr = new_itr > adapter->itr ? 2618 min(adapter->itr + (new_itr >> 2), new_itr) : new_itr; 2619 adapter->itr = new_itr; 2620 adapter->rx_ring->itr_val = new_itr; 2621 if (adapter->msix_entries) 2622 adapter->rx_ring->set_itr = 1; 2623 else 2624 e1000e_write_itr(adapter, new_itr); 2625 } 2626 } 2627 2628 /** 2629 * e1000e_write_itr - write the ITR value to the appropriate registers 2630 * @adapter: address of board private structure 2631 * @itr: new ITR value to program 2632 * 2633 * e1000e_write_itr determines if the adapter is in MSI-X mode 2634 * and, if so, writes the EITR registers with the ITR value. 2635 * Otherwise, it writes the ITR value into the ITR register. 2636 **/ 2637 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr) 2638 { 2639 struct e1000_hw *hw = &adapter->hw; 2640 u32 new_itr = itr ? 1000000000 / (itr * 256) : 0; 2641 2642 if (adapter->msix_entries) { 2643 int vector; 2644 2645 for (vector = 0; vector < adapter->num_vectors; vector++) 2646 writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector)); 2647 } else { 2648 ew32(ITR, new_itr); 2649 } 2650 } 2651 2652 /** 2653 * e1000_alloc_queues - Allocate memory for all rings 2654 * @adapter: board private structure to initialize 2655 **/ 2656 static int e1000_alloc_queues(struct e1000_adapter *adapter) 2657 { 2658 int size = sizeof(struct e1000_ring); 2659 2660 adapter->tx_ring = kzalloc(size, GFP_KERNEL); 2661 if (!adapter->tx_ring) 2662 goto err; 2663 adapter->tx_ring->count = adapter->tx_ring_count; 2664 adapter->tx_ring->adapter = adapter; 2665 2666 adapter->rx_ring = kzalloc(size, GFP_KERNEL); 2667 if (!adapter->rx_ring) 2668 goto err; 2669 adapter->rx_ring->count = adapter->rx_ring_count; 2670 adapter->rx_ring->adapter = adapter; 2671 2672 return 0; 2673 err: 2674 e_err("Unable to allocate memory for queues\n"); 2675 kfree(adapter->rx_ring); 2676 kfree(adapter->tx_ring); 2677 return -ENOMEM; 2678 } 2679 2680 /** 2681 * e1000e_poll - NAPI Rx polling callback 2682 * @napi: struct associated with this polling callback 2683 * @weight: number of packets driver is allowed to process this poll 2684 **/ 2685 static int e1000e_poll(struct napi_struct *napi, int weight) 2686 { 2687 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, 2688 napi); 2689 struct e1000_hw *hw = &adapter->hw; 2690 struct net_device *poll_dev = adapter->netdev; 2691 int tx_cleaned = 1, work_done = 0; 2692 2693 adapter = netdev_priv(poll_dev); 2694 2695 if (!adapter->msix_entries || 2696 (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val)) 2697 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring); 2698 2699 adapter->clean_rx(adapter->rx_ring, &work_done, weight); 2700 2701 if (!tx_cleaned) 2702 work_done = weight; 2703 2704 /* If weight not fully consumed, exit the polling mode */ 2705 if (work_done < weight) { 2706 if (adapter->itr_setting & 3) 2707 e1000_set_itr(adapter); 2708 napi_complete(napi); 2709 if (!test_bit(__E1000_DOWN, &adapter->state)) { 2710 if (adapter->msix_entries) 2711 ew32(IMS, adapter->rx_ring->ims_val); 2712 else 2713 e1000_irq_enable(adapter); 2714 } 2715 } 2716 2717 return work_done; 2718 } 2719 2720 static int e1000_vlan_rx_add_vid(struct net_device *netdev, 2721 __always_unused __be16 proto, u16 vid) 2722 { 2723 struct e1000_adapter *adapter = netdev_priv(netdev); 2724 struct e1000_hw *hw = &adapter->hw; 2725 u32 vfta, index; 2726 2727 /* don't update vlan cookie if already programmed */ 2728 if ((adapter->hw.mng_cookie.status & 2729 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && 2730 (vid == adapter->mng_vlan_id)) 2731 return 0; 2732 2733 /* add VID to filter table */ 2734 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { 2735 index = (vid >> 5) & 0x7F; 2736 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); 2737 vfta |= (1 << (vid & 0x1F)); 2738 hw->mac.ops.write_vfta(hw, index, vfta); 2739 } 2740 2741 set_bit(vid, adapter->active_vlans); 2742 2743 return 0; 2744 } 2745 2746 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, 2747 __always_unused __be16 proto, u16 vid) 2748 { 2749 struct e1000_adapter *adapter = netdev_priv(netdev); 2750 struct e1000_hw *hw = &adapter->hw; 2751 u32 vfta, index; 2752 2753 if ((adapter->hw.mng_cookie.status & 2754 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && 2755 (vid == adapter->mng_vlan_id)) { 2756 /* release control to f/w */ 2757 e1000e_release_hw_control(adapter); 2758 return 0; 2759 } 2760 2761 /* remove VID from filter table */ 2762 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { 2763 index = (vid >> 5) & 0x7F; 2764 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); 2765 vfta &= ~(1 << (vid & 0x1F)); 2766 hw->mac.ops.write_vfta(hw, index, vfta); 2767 } 2768 2769 clear_bit(vid, adapter->active_vlans); 2770 2771 return 0; 2772 } 2773 2774 /** 2775 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering 2776 * @adapter: board private structure to initialize 2777 **/ 2778 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter) 2779 { 2780 struct net_device *netdev = adapter->netdev; 2781 struct e1000_hw *hw = &adapter->hw; 2782 u32 rctl; 2783 2784 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { 2785 /* disable VLAN receive filtering */ 2786 rctl = er32(RCTL); 2787 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN); 2788 ew32(RCTL, rctl); 2789 2790 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) { 2791 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), 2792 adapter->mng_vlan_id); 2793 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 2794 } 2795 } 2796 } 2797 2798 /** 2799 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering 2800 * @adapter: board private structure to initialize 2801 **/ 2802 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter) 2803 { 2804 struct e1000_hw *hw = &adapter->hw; 2805 u32 rctl; 2806 2807 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { 2808 /* enable VLAN receive filtering */ 2809 rctl = er32(RCTL); 2810 rctl |= E1000_RCTL_VFE; 2811 rctl &= ~E1000_RCTL_CFIEN; 2812 ew32(RCTL, rctl); 2813 } 2814 } 2815 2816 /** 2817 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping 2818 * @adapter: board private structure to initialize 2819 **/ 2820 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter) 2821 { 2822 struct e1000_hw *hw = &adapter->hw; 2823 u32 ctrl; 2824 2825 /* disable VLAN tag insert/strip */ 2826 ctrl = er32(CTRL); 2827 ctrl &= ~E1000_CTRL_VME; 2828 ew32(CTRL, ctrl); 2829 } 2830 2831 /** 2832 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping 2833 * @adapter: board private structure to initialize 2834 **/ 2835 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter) 2836 { 2837 struct e1000_hw *hw = &adapter->hw; 2838 u32 ctrl; 2839 2840 /* enable VLAN tag insert/strip */ 2841 ctrl = er32(CTRL); 2842 ctrl |= E1000_CTRL_VME; 2843 ew32(CTRL, ctrl); 2844 } 2845 2846 static void e1000_update_mng_vlan(struct e1000_adapter *adapter) 2847 { 2848 struct net_device *netdev = adapter->netdev; 2849 u16 vid = adapter->hw.mng_cookie.vlan_id; 2850 u16 old_vid = adapter->mng_vlan_id; 2851 2852 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { 2853 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid); 2854 adapter->mng_vlan_id = vid; 2855 } 2856 2857 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid)) 2858 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid); 2859 } 2860 2861 static void e1000_restore_vlan(struct e1000_adapter *adapter) 2862 { 2863 u16 vid; 2864 2865 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0); 2866 2867 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 2868 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); 2869 } 2870 2871 static void e1000_init_manageability_pt(struct e1000_adapter *adapter) 2872 { 2873 struct e1000_hw *hw = &adapter->hw; 2874 u32 manc, manc2h, mdef, i, j; 2875 2876 if (!(adapter->flags & FLAG_MNG_PT_ENABLED)) 2877 return; 2878 2879 manc = er32(MANC); 2880 2881 /* enable receiving management packets to the host. this will probably 2882 * generate destination unreachable messages from the host OS, but 2883 * the packets will be handled on SMBUS 2884 */ 2885 manc |= E1000_MANC_EN_MNG2HOST; 2886 manc2h = er32(MANC2H); 2887 2888 switch (hw->mac.type) { 2889 default: 2890 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664); 2891 break; 2892 case e1000_82574: 2893 case e1000_82583: 2894 /* Check if IPMI pass-through decision filter already exists; 2895 * if so, enable it. 2896 */ 2897 for (i = 0, j = 0; i < 8; i++) { 2898 mdef = er32(MDEF(i)); 2899 2900 /* Ignore filters with anything other than IPMI ports */ 2901 if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664)) 2902 continue; 2903 2904 /* Enable this decision filter in MANC2H */ 2905 if (mdef) 2906 manc2h |= (1 << i); 2907 2908 j |= mdef; 2909 } 2910 2911 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664)) 2912 break; 2913 2914 /* Create new decision filter in an empty filter */ 2915 for (i = 0, j = 0; i < 8; i++) 2916 if (er32(MDEF(i)) == 0) { 2917 ew32(MDEF(i), (E1000_MDEF_PORT_623 | 2918 E1000_MDEF_PORT_664)); 2919 manc2h |= (1 << 1); 2920 j++; 2921 break; 2922 } 2923 2924 if (!j) 2925 e_warn("Unable to create IPMI pass-through filter\n"); 2926 break; 2927 } 2928 2929 ew32(MANC2H, manc2h); 2930 ew32(MANC, manc); 2931 } 2932 2933 /** 2934 * e1000_configure_tx - Configure Transmit Unit after Reset 2935 * @adapter: board private structure 2936 * 2937 * Configure the Tx unit of the MAC after a reset. 2938 **/ 2939 static void e1000_configure_tx(struct e1000_adapter *adapter) 2940 { 2941 struct e1000_hw *hw = &adapter->hw; 2942 struct e1000_ring *tx_ring = adapter->tx_ring; 2943 u64 tdba; 2944 u32 tdlen, tctl, tarc; 2945 2946 /* Setup the HW Tx Head and Tail descriptor pointers */ 2947 tdba = tx_ring->dma; 2948 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc); 2949 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32))); 2950 ew32(TDBAH(0), (tdba >> 32)); 2951 ew32(TDLEN(0), tdlen); 2952 ew32(TDH(0), 0); 2953 ew32(TDT(0), 0); 2954 tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0); 2955 tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0); 2956 2957 /* Set the Tx Interrupt Delay register */ 2958 ew32(TIDV, adapter->tx_int_delay); 2959 /* Tx irq moderation */ 2960 ew32(TADV, adapter->tx_abs_int_delay); 2961 2962 if (adapter->flags2 & FLAG2_DMA_BURST) { 2963 u32 txdctl = er32(TXDCTL(0)); 2964 2965 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH | 2966 E1000_TXDCTL_WTHRESH); 2967 /* set up some performance related parameters to encourage the 2968 * hardware to use the bus more efficiently in bursts, depends 2969 * on the tx_int_delay to be enabled, 2970 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls 2971 * hthresh = 1 ==> prefetch when one or more available 2972 * pthresh = 0x1f ==> prefetch if internal cache 31 or less 2973 * BEWARE: this seems to work but should be considered first if 2974 * there are Tx hangs or other Tx related bugs 2975 */ 2976 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE; 2977 ew32(TXDCTL(0), txdctl); 2978 } 2979 /* erratum work around: set txdctl the same for both queues */ 2980 ew32(TXDCTL(1), er32(TXDCTL(0))); 2981 2982 /* Program the Transmit Control Register */ 2983 tctl = er32(TCTL); 2984 tctl &= ~E1000_TCTL_CT; 2985 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | 2986 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); 2987 2988 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) { 2989 tarc = er32(TARC(0)); 2990 /* set the speed mode bit, we'll clear it if we're not at 2991 * gigabit link later 2992 */ 2993 #define SPEED_MODE_BIT (1 << 21) 2994 tarc |= SPEED_MODE_BIT; 2995 ew32(TARC(0), tarc); 2996 } 2997 2998 /* errata: program both queues to unweighted RR */ 2999 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) { 3000 tarc = er32(TARC(0)); 3001 tarc |= 1; 3002 ew32(TARC(0), tarc); 3003 tarc = er32(TARC(1)); 3004 tarc |= 1; 3005 ew32(TARC(1), tarc); 3006 } 3007 3008 /* Setup Transmit Descriptor Settings for eop descriptor */ 3009 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; 3010 3011 /* only set IDE if we are delaying interrupts using the timers */ 3012 if (adapter->tx_int_delay) 3013 adapter->txd_cmd |= E1000_TXD_CMD_IDE; 3014 3015 /* enable Report Status bit */ 3016 adapter->txd_cmd |= E1000_TXD_CMD_RS; 3017 3018 ew32(TCTL, tctl); 3019 3020 hw->mac.ops.config_collision_dist(hw); 3021 3022 /* SPT Si errata workaround to avoid data corruption */ 3023 if (hw->mac.type == e1000_pch_spt) { 3024 u32 reg_val; 3025 3026 reg_val = er32(IOSFPC); 3027 reg_val |= E1000_RCTL_RDMTS_HEX; 3028 ew32(IOSFPC, reg_val); 3029 3030 reg_val = er32(TARC(0)); 3031 reg_val |= E1000_TARC0_CB_MULTIQ_3_REQ; 3032 ew32(TARC(0), reg_val); 3033 } 3034 } 3035 3036 /** 3037 * e1000_setup_rctl - configure the receive control registers 3038 * @adapter: Board private structure 3039 **/ 3040 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \ 3041 (((S) & (PAGE_SIZE - 1)) ? 1 : 0)) 3042 static void e1000_setup_rctl(struct e1000_adapter *adapter) 3043 { 3044 struct e1000_hw *hw = &adapter->hw; 3045 u32 rctl, rfctl; 3046 u32 pages = 0; 3047 3048 /* Workaround Si errata on PCHx - configure jumbo frame flow. 3049 * If jumbo frames not set, program related MAC/PHY registers 3050 * to h/w defaults 3051 */ 3052 if (hw->mac.type >= e1000_pch2lan) { 3053 s32 ret_val; 3054 3055 if (adapter->netdev->mtu > ETH_DATA_LEN) 3056 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true); 3057 else 3058 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false); 3059 3060 if (ret_val) 3061 e_dbg("failed to enable|disable jumbo frame workaround mode\n"); 3062 } 3063 3064 /* Program MC offset vector base */ 3065 rctl = er32(RCTL); 3066 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 3067 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | 3068 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 3069 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 3070 3071 /* Do not Store bad packets */ 3072 rctl &= ~E1000_RCTL_SBP; 3073 3074 /* Enable Long Packet receive */ 3075 if (adapter->netdev->mtu <= ETH_DATA_LEN) 3076 rctl &= ~E1000_RCTL_LPE; 3077 else 3078 rctl |= E1000_RCTL_LPE; 3079 3080 /* Some systems expect that the CRC is included in SMBUS traffic. The 3081 * hardware strips the CRC before sending to both SMBUS (BMC) and to 3082 * host memory when this is enabled 3083 */ 3084 if (adapter->flags2 & FLAG2_CRC_STRIPPING) 3085 rctl |= E1000_RCTL_SECRC; 3086 3087 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */ 3088 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) { 3089 u16 phy_data; 3090 3091 e1e_rphy(hw, PHY_REG(770, 26), &phy_data); 3092 phy_data &= 0xfff8; 3093 phy_data |= (1 << 2); 3094 e1e_wphy(hw, PHY_REG(770, 26), phy_data); 3095 3096 e1e_rphy(hw, 22, &phy_data); 3097 phy_data &= 0x0fff; 3098 phy_data |= (1 << 14); 3099 e1e_wphy(hw, 0x10, 0x2823); 3100 e1e_wphy(hw, 0x11, 0x0003); 3101 e1e_wphy(hw, 22, phy_data); 3102 } 3103 3104 /* Setup buffer sizes */ 3105 rctl &= ~E1000_RCTL_SZ_4096; 3106 rctl |= E1000_RCTL_BSEX; 3107 switch (adapter->rx_buffer_len) { 3108 case 2048: 3109 default: 3110 rctl |= E1000_RCTL_SZ_2048; 3111 rctl &= ~E1000_RCTL_BSEX; 3112 break; 3113 case 4096: 3114 rctl |= E1000_RCTL_SZ_4096; 3115 break; 3116 case 8192: 3117 rctl |= E1000_RCTL_SZ_8192; 3118 break; 3119 case 16384: 3120 rctl |= E1000_RCTL_SZ_16384; 3121 break; 3122 } 3123 3124 /* Enable Extended Status in all Receive Descriptors */ 3125 rfctl = er32(RFCTL); 3126 rfctl |= E1000_RFCTL_EXTEN; 3127 ew32(RFCTL, rfctl); 3128 3129 /* 82571 and greater support packet-split where the protocol 3130 * header is placed in skb->data and the packet data is 3131 * placed in pages hanging off of skb_shinfo(skb)->nr_frags. 3132 * In the case of a non-split, skb->data is linearly filled, 3133 * followed by the page buffers. Therefore, skb->data is 3134 * sized to hold the largest protocol header. 3135 * 3136 * allocations using alloc_page take too long for regular MTU 3137 * so only enable packet split for jumbo frames 3138 * 3139 * Using pages when the page size is greater than 16k wastes 3140 * a lot of memory, since we allocate 3 pages at all times 3141 * per packet. 3142 */ 3143 pages = PAGE_USE_COUNT(adapter->netdev->mtu); 3144 if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE)) 3145 adapter->rx_ps_pages = pages; 3146 else 3147 adapter->rx_ps_pages = 0; 3148 3149 if (adapter->rx_ps_pages) { 3150 u32 psrctl = 0; 3151 3152 /* Enable Packet split descriptors */ 3153 rctl |= E1000_RCTL_DTYP_PS; 3154 3155 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT; 3156 3157 switch (adapter->rx_ps_pages) { 3158 case 3: 3159 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT; 3160 /* fall-through */ 3161 case 2: 3162 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT; 3163 /* fall-through */ 3164 case 1: 3165 psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT; 3166 break; 3167 } 3168 3169 ew32(PSRCTL, psrctl); 3170 } 3171 3172 /* This is useful for sniffing bad packets. */ 3173 if (adapter->netdev->features & NETIF_F_RXALL) { 3174 /* UPE and MPE will be handled by normal PROMISC logic 3175 * in e1000e_set_rx_mode 3176 */ 3177 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ 3178 E1000_RCTL_BAM | /* RX All Bcast Pkts */ 3179 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 3180 3181 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */ 3182 E1000_RCTL_DPF | /* Allow filtered pause */ 3183 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ 3184 /* Do not mess with E1000_CTRL_VME, it affects transmit as well, 3185 * and that breaks VLANs. 3186 */ 3187 } 3188 3189 ew32(RCTL, rctl); 3190 /* just started the receive unit, no need to restart */ 3191 adapter->flags &= ~FLAG_RESTART_NOW; 3192 } 3193 3194 /** 3195 * e1000_configure_rx - Configure Receive Unit after Reset 3196 * @adapter: board private structure 3197 * 3198 * Configure the Rx unit of the MAC after a reset. 3199 **/ 3200 static void e1000_configure_rx(struct e1000_adapter *adapter) 3201 { 3202 struct e1000_hw *hw = &adapter->hw; 3203 struct e1000_ring *rx_ring = adapter->rx_ring; 3204 u64 rdba; 3205 u32 rdlen, rctl, rxcsum, ctrl_ext; 3206 3207 if (adapter->rx_ps_pages) { 3208 /* this is a 32 byte descriptor */ 3209 rdlen = rx_ring->count * 3210 sizeof(union e1000_rx_desc_packet_split); 3211 adapter->clean_rx = e1000_clean_rx_irq_ps; 3212 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps; 3213 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) { 3214 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended); 3215 adapter->clean_rx = e1000_clean_jumbo_rx_irq; 3216 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; 3217 } else { 3218 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended); 3219 adapter->clean_rx = e1000_clean_rx_irq; 3220 adapter->alloc_rx_buf = e1000_alloc_rx_buffers; 3221 } 3222 3223 /* disable receives while setting up the descriptors */ 3224 rctl = er32(RCTL); 3225 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) 3226 ew32(RCTL, rctl & ~E1000_RCTL_EN); 3227 e1e_flush(); 3228 usleep_range(10000, 20000); 3229 3230 if (adapter->flags2 & FLAG2_DMA_BURST) { 3231 /* set the writeback threshold (only takes effect if the RDTR 3232 * is set). set GRAN=1 and write back up to 0x4 worth, and 3233 * enable prefetching of 0x20 Rx descriptors 3234 * granularity = 01 3235 * wthresh = 04, 3236 * hthresh = 04, 3237 * pthresh = 0x20 3238 */ 3239 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE); 3240 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE); 3241 3242 /* override the delay timers for enabling bursting, only if 3243 * the value was not set by the user via module options 3244 */ 3245 if (adapter->rx_int_delay == DEFAULT_RDTR) 3246 adapter->rx_int_delay = BURST_RDTR; 3247 if (adapter->rx_abs_int_delay == DEFAULT_RADV) 3248 adapter->rx_abs_int_delay = BURST_RADV; 3249 } 3250 3251 /* set the Receive Delay Timer Register */ 3252 ew32(RDTR, adapter->rx_int_delay); 3253 3254 /* irq moderation */ 3255 ew32(RADV, adapter->rx_abs_int_delay); 3256 if ((adapter->itr_setting != 0) && (adapter->itr != 0)) 3257 e1000e_write_itr(adapter, adapter->itr); 3258 3259 ctrl_ext = er32(CTRL_EXT); 3260 /* Auto-Mask interrupts upon ICR access */ 3261 ctrl_ext |= E1000_CTRL_EXT_IAME; 3262 ew32(IAM, 0xffffffff); 3263 ew32(CTRL_EXT, ctrl_ext); 3264 e1e_flush(); 3265 3266 /* Setup the HW Rx Head and Tail Descriptor Pointers and 3267 * the Base and Length of the Rx Descriptor Ring 3268 */ 3269 rdba = rx_ring->dma; 3270 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32))); 3271 ew32(RDBAH(0), (rdba >> 32)); 3272 ew32(RDLEN(0), rdlen); 3273 ew32(RDH(0), 0); 3274 ew32(RDT(0), 0); 3275 rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0); 3276 rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0); 3277 3278 /* Enable Receive Checksum Offload for TCP and UDP */ 3279 rxcsum = er32(RXCSUM); 3280 if (adapter->netdev->features & NETIF_F_RXCSUM) 3281 rxcsum |= E1000_RXCSUM_TUOFL; 3282 else 3283 rxcsum &= ~E1000_RXCSUM_TUOFL; 3284 ew32(RXCSUM, rxcsum); 3285 3286 /* With jumbo frames, excessive C-state transition latencies result 3287 * in dropped transactions. 3288 */ 3289 if (adapter->netdev->mtu > ETH_DATA_LEN) { 3290 u32 lat = 3291 ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 - 3292 adapter->max_frame_size) * 8 / 1000; 3293 3294 if (adapter->flags & FLAG_IS_ICH) { 3295 u32 rxdctl = er32(RXDCTL(0)); 3296 3297 ew32(RXDCTL(0), rxdctl | 0x3); 3298 } 3299 3300 pm_qos_update_request(&adapter->pm_qos_req, lat); 3301 } else { 3302 pm_qos_update_request(&adapter->pm_qos_req, 3303 PM_QOS_DEFAULT_VALUE); 3304 } 3305 3306 /* Enable Receives */ 3307 ew32(RCTL, rctl); 3308 } 3309 3310 /** 3311 * e1000e_write_mc_addr_list - write multicast addresses to MTA 3312 * @netdev: network interface device structure 3313 * 3314 * Writes multicast address list to the MTA hash table. 3315 * Returns: -ENOMEM on failure 3316 * 0 on no addresses written 3317 * X on writing X addresses to MTA 3318 */ 3319 static int e1000e_write_mc_addr_list(struct net_device *netdev) 3320 { 3321 struct e1000_adapter *adapter = netdev_priv(netdev); 3322 struct e1000_hw *hw = &adapter->hw; 3323 struct netdev_hw_addr *ha; 3324 u8 *mta_list; 3325 int i; 3326 3327 if (netdev_mc_empty(netdev)) { 3328 /* nothing to program, so clear mc list */ 3329 hw->mac.ops.update_mc_addr_list(hw, NULL, 0); 3330 return 0; 3331 } 3332 3333 mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC); 3334 if (!mta_list) 3335 return -ENOMEM; 3336 3337 /* update_mc_addr_list expects a packed array of only addresses. */ 3338 i = 0; 3339 netdev_for_each_mc_addr(ha, netdev) 3340 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); 3341 3342 hw->mac.ops.update_mc_addr_list(hw, mta_list, i); 3343 kfree(mta_list); 3344 3345 return netdev_mc_count(netdev); 3346 } 3347 3348 /** 3349 * e1000e_write_uc_addr_list - write unicast addresses to RAR table 3350 * @netdev: network interface device structure 3351 * 3352 * Writes unicast address list to the RAR table. 3353 * Returns: -ENOMEM on failure/insufficient address space 3354 * 0 on no addresses written 3355 * X on writing X addresses to the RAR table 3356 **/ 3357 static int e1000e_write_uc_addr_list(struct net_device *netdev) 3358 { 3359 struct e1000_adapter *adapter = netdev_priv(netdev); 3360 struct e1000_hw *hw = &adapter->hw; 3361 unsigned int rar_entries; 3362 int count = 0; 3363 3364 rar_entries = hw->mac.ops.rar_get_count(hw); 3365 3366 /* save a rar entry for our hardware address */ 3367 rar_entries--; 3368 3369 /* save a rar entry for the LAA workaround */ 3370 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) 3371 rar_entries--; 3372 3373 /* return ENOMEM indicating insufficient memory for addresses */ 3374 if (netdev_uc_count(netdev) > rar_entries) 3375 return -ENOMEM; 3376 3377 if (!netdev_uc_empty(netdev) && rar_entries) { 3378 struct netdev_hw_addr *ha; 3379 3380 /* write the addresses in reverse order to avoid write 3381 * combining 3382 */ 3383 netdev_for_each_uc_addr(ha, netdev) { 3384 int rval; 3385 3386 if (!rar_entries) 3387 break; 3388 rval = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--); 3389 if (rval < 0) 3390 return -ENOMEM; 3391 count++; 3392 } 3393 } 3394 3395 /* zero out the remaining RAR entries not used above */ 3396 for (; rar_entries > 0; rar_entries--) { 3397 ew32(RAH(rar_entries), 0); 3398 ew32(RAL(rar_entries), 0); 3399 } 3400 e1e_flush(); 3401 3402 return count; 3403 } 3404 3405 /** 3406 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set 3407 * @netdev: network interface device structure 3408 * 3409 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast 3410 * address list or the network interface flags are updated. This routine is 3411 * responsible for configuring the hardware for proper unicast, multicast, 3412 * promiscuous mode, and all-multi behavior. 3413 **/ 3414 static void e1000e_set_rx_mode(struct net_device *netdev) 3415 { 3416 struct e1000_adapter *adapter = netdev_priv(netdev); 3417 struct e1000_hw *hw = &adapter->hw; 3418 u32 rctl; 3419 3420 if (pm_runtime_suspended(netdev->dev.parent)) 3421 return; 3422 3423 /* Check for Promiscuous and All Multicast modes */ 3424 rctl = er32(RCTL); 3425 3426 /* clear the affected bits */ 3427 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); 3428 3429 if (netdev->flags & IFF_PROMISC) { 3430 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 3431 /* Do not hardware filter VLANs in promisc mode */ 3432 e1000e_vlan_filter_disable(adapter); 3433 } else { 3434 int count; 3435 3436 if (netdev->flags & IFF_ALLMULTI) { 3437 rctl |= E1000_RCTL_MPE; 3438 } else { 3439 /* Write addresses to the MTA, if the attempt fails 3440 * then we should just turn on promiscuous mode so 3441 * that we can at least receive multicast traffic 3442 */ 3443 count = e1000e_write_mc_addr_list(netdev); 3444 if (count < 0) 3445 rctl |= E1000_RCTL_MPE; 3446 } 3447 e1000e_vlan_filter_enable(adapter); 3448 /* Write addresses to available RAR registers, if there is not 3449 * sufficient space to store all the addresses then enable 3450 * unicast promiscuous mode 3451 */ 3452 count = e1000e_write_uc_addr_list(netdev); 3453 if (count < 0) 3454 rctl |= E1000_RCTL_UPE; 3455 } 3456 3457 ew32(RCTL, rctl); 3458 3459 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 3460 e1000e_vlan_strip_enable(adapter); 3461 else 3462 e1000e_vlan_strip_disable(adapter); 3463 } 3464 3465 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter) 3466 { 3467 struct e1000_hw *hw = &adapter->hw; 3468 u32 mrqc, rxcsum; 3469 u32 rss_key[10]; 3470 int i; 3471 3472 netdev_rss_key_fill(rss_key, sizeof(rss_key)); 3473 for (i = 0; i < 10; i++) 3474 ew32(RSSRK(i), rss_key[i]); 3475 3476 /* Direct all traffic to queue 0 */ 3477 for (i = 0; i < 32; i++) 3478 ew32(RETA(i), 0); 3479 3480 /* Disable raw packet checksumming so that RSS hash is placed in 3481 * descriptor on writeback. 3482 */ 3483 rxcsum = er32(RXCSUM); 3484 rxcsum |= E1000_RXCSUM_PCSD; 3485 3486 ew32(RXCSUM, rxcsum); 3487 3488 mrqc = (E1000_MRQC_RSS_FIELD_IPV4 | 3489 E1000_MRQC_RSS_FIELD_IPV4_TCP | 3490 E1000_MRQC_RSS_FIELD_IPV6 | 3491 E1000_MRQC_RSS_FIELD_IPV6_TCP | 3492 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX); 3493 3494 ew32(MRQC, mrqc); 3495 } 3496 3497 /** 3498 * e1000e_get_base_timinca - get default SYSTIM time increment attributes 3499 * @adapter: board private structure 3500 * @timinca: pointer to returned time increment attributes 3501 * 3502 * Get attributes for incrementing the System Time Register SYSTIML/H at 3503 * the default base frequency, and set the cyclecounter shift value. 3504 **/ 3505 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca) 3506 { 3507 struct e1000_hw *hw = &adapter->hw; 3508 u32 incvalue, incperiod, shift; 3509 3510 /* Make sure clock is enabled on I217/I218/I219 before checking 3511 * the frequency 3512 */ 3513 if (((hw->mac.type == e1000_pch_lpt) || 3514 (hw->mac.type == e1000_pch_spt)) && 3515 !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) && 3516 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) { 3517 u32 fextnvm7 = er32(FEXTNVM7); 3518 3519 if (!(fextnvm7 & (1 << 0))) { 3520 ew32(FEXTNVM7, fextnvm7 | (1 << 0)); 3521 e1e_flush(); 3522 } 3523 } 3524 3525 switch (hw->mac.type) { 3526 case e1000_pch2lan: 3527 case e1000_pch_lpt: 3528 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) { 3529 /* Stable 96MHz frequency */ 3530 incperiod = INCPERIOD_96MHz; 3531 incvalue = INCVALUE_96MHz; 3532 shift = INCVALUE_SHIFT_96MHz; 3533 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHz; 3534 } else { 3535 /* Stable 25MHz frequency */ 3536 incperiod = INCPERIOD_25MHz; 3537 incvalue = INCVALUE_25MHz; 3538 shift = INCVALUE_SHIFT_25MHz; 3539 adapter->cc.shift = shift; 3540 } 3541 break; 3542 case e1000_pch_spt: 3543 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) { 3544 /* Stable 24MHz frequency */ 3545 incperiod = INCPERIOD_24MHz; 3546 incvalue = INCVALUE_24MHz; 3547 shift = INCVALUE_SHIFT_24MHz; 3548 adapter->cc.shift = shift; 3549 break; 3550 } 3551 return -EINVAL; 3552 case e1000_82574: 3553 case e1000_82583: 3554 /* Stable 25MHz frequency */ 3555 incperiod = INCPERIOD_25MHz; 3556 incvalue = INCVALUE_25MHz; 3557 shift = INCVALUE_SHIFT_25MHz; 3558 adapter->cc.shift = shift; 3559 break; 3560 default: 3561 return -EINVAL; 3562 } 3563 3564 *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) | 3565 ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK)); 3566 3567 return 0; 3568 } 3569 3570 /** 3571 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable 3572 * @adapter: board private structure 3573 * 3574 * Outgoing time stamping can be enabled and disabled. Play nice and 3575 * disable it when requested, although it shouldn't cause any overhead 3576 * when no packet needs it. At most one packet in the queue may be 3577 * marked for time stamping, otherwise it would be impossible to tell 3578 * for sure to which packet the hardware time stamp belongs. 3579 * 3580 * Incoming time stamping has to be configured via the hardware filters. 3581 * Not all combinations are supported, in particular event type has to be 3582 * specified. Matching the kind of event packet is not supported, with the 3583 * exception of "all V2 events regardless of level 2 or 4". 3584 **/ 3585 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter, 3586 struct hwtstamp_config *config) 3587 { 3588 struct e1000_hw *hw = &adapter->hw; 3589 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED; 3590 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED; 3591 u32 rxmtrl = 0; 3592 u16 rxudp = 0; 3593 bool is_l4 = false; 3594 bool is_l2 = false; 3595 u32 regval; 3596 s32 ret_val; 3597 3598 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP)) 3599 return -EINVAL; 3600 3601 /* flags reserved for future extensions - must be zero */ 3602 if (config->flags) 3603 return -EINVAL; 3604 3605 switch (config->tx_type) { 3606 case HWTSTAMP_TX_OFF: 3607 tsync_tx_ctl = 0; 3608 break; 3609 case HWTSTAMP_TX_ON: 3610 break; 3611 default: 3612 return -ERANGE; 3613 } 3614 3615 switch (config->rx_filter) { 3616 case HWTSTAMP_FILTER_NONE: 3617 tsync_rx_ctl = 0; 3618 break; 3619 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 3620 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; 3621 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE; 3622 is_l4 = true; 3623 break; 3624 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 3625 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; 3626 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE; 3627 is_l4 = true; 3628 break; 3629 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 3630 /* Also time stamps V2 L2 Path Delay Request/Response */ 3631 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2; 3632 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE; 3633 is_l2 = true; 3634 break; 3635 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 3636 /* Also time stamps V2 L2 Path Delay Request/Response. */ 3637 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2; 3638 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE; 3639 is_l2 = true; 3640 break; 3641 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 3642 /* Hardware cannot filter just V2 L4 Sync messages; 3643 * fall-through to V2 (both L2 and L4) Sync. 3644 */ 3645 case HWTSTAMP_FILTER_PTP_V2_SYNC: 3646 /* Also time stamps V2 Path Delay Request/Response. */ 3647 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2; 3648 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE; 3649 is_l2 = true; 3650 is_l4 = true; 3651 break; 3652 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 3653 /* Hardware cannot filter just V2 L4 Delay Request messages; 3654 * fall-through to V2 (both L2 and L4) Delay Request. 3655 */ 3656 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 3657 /* Also time stamps V2 Path Delay Request/Response. */ 3658 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2; 3659 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE; 3660 is_l2 = true; 3661 is_l4 = true; 3662 break; 3663 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 3664 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 3665 /* Hardware cannot filter just V2 L4 or L2 Event messages; 3666 * fall-through to all V2 (both L2 and L4) Events. 3667 */ 3668 case HWTSTAMP_FILTER_PTP_V2_EVENT: 3669 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2; 3670 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 3671 is_l2 = true; 3672 is_l4 = true; 3673 break; 3674 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 3675 /* For V1, the hardware can only filter Sync messages or 3676 * Delay Request messages but not both so fall-through to 3677 * time stamp all packets. 3678 */ 3679 case HWTSTAMP_FILTER_ALL: 3680 is_l2 = true; 3681 is_l4 = true; 3682 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL; 3683 config->rx_filter = HWTSTAMP_FILTER_ALL; 3684 break; 3685 default: 3686 return -ERANGE; 3687 } 3688 3689 adapter->hwtstamp_config = *config; 3690 3691 /* enable/disable Tx h/w time stamping */ 3692 regval = er32(TSYNCTXCTL); 3693 regval &= ~E1000_TSYNCTXCTL_ENABLED; 3694 regval |= tsync_tx_ctl; 3695 ew32(TSYNCTXCTL, regval); 3696 if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) != 3697 (regval & E1000_TSYNCTXCTL_ENABLED)) { 3698 e_err("Timesync Tx Control register not set as expected\n"); 3699 return -EAGAIN; 3700 } 3701 3702 /* enable/disable Rx h/w time stamping */ 3703 regval = er32(TSYNCRXCTL); 3704 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK); 3705 regval |= tsync_rx_ctl; 3706 ew32(TSYNCRXCTL, regval); 3707 if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED | 3708 E1000_TSYNCRXCTL_TYPE_MASK)) != 3709 (regval & (E1000_TSYNCRXCTL_ENABLED | 3710 E1000_TSYNCRXCTL_TYPE_MASK))) { 3711 e_err("Timesync Rx Control register not set as expected\n"); 3712 return -EAGAIN; 3713 } 3714 3715 /* L2: define ethertype filter for time stamped packets */ 3716 if (is_l2) 3717 rxmtrl |= ETH_P_1588; 3718 3719 /* define which PTP packets get time stamped */ 3720 ew32(RXMTRL, rxmtrl); 3721 3722 /* Filter by destination port */ 3723 if (is_l4) { 3724 rxudp = PTP_EV_PORT; 3725 cpu_to_be16s(&rxudp); 3726 } 3727 ew32(RXUDP, rxudp); 3728 3729 e1e_flush(); 3730 3731 /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */ 3732 er32(RXSTMPH); 3733 er32(TXSTMPH); 3734 3735 /* Get and set the System Time Register SYSTIM base frequency */ 3736 ret_val = e1000e_get_base_timinca(adapter, ®val); 3737 if (ret_val) 3738 return ret_val; 3739 ew32(TIMINCA, regval); 3740 3741 /* reset the ns time counter */ 3742 timecounter_init(&adapter->tc, &adapter->cc, 3743 ktime_to_ns(ktime_get_real())); 3744 3745 return 0; 3746 } 3747 3748 /** 3749 * e1000_configure - configure the hardware for Rx and Tx 3750 * @adapter: private board structure 3751 **/ 3752 static void e1000_configure(struct e1000_adapter *adapter) 3753 { 3754 struct e1000_ring *rx_ring = adapter->rx_ring; 3755 3756 e1000e_set_rx_mode(adapter->netdev); 3757 3758 e1000_restore_vlan(adapter); 3759 e1000_init_manageability_pt(adapter); 3760 3761 e1000_configure_tx(adapter); 3762 3763 if (adapter->netdev->features & NETIF_F_RXHASH) 3764 e1000e_setup_rss_hash(adapter); 3765 e1000_setup_rctl(adapter); 3766 e1000_configure_rx(adapter); 3767 adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL); 3768 } 3769 3770 /** 3771 * e1000e_power_up_phy - restore link in case the phy was powered down 3772 * @adapter: address of board private structure 3773 * 3774 * The phy may be powered down to save power and turn off link when the 3775 * driver is unloaded and wake on lan is not enabled (among others) 3776 * *** this routine MUST be followed by a call to e1000e_reset *** 3777 **/ 3778 void e1000e_power_up_phy(struct e1000_adapter *adapter) 3779 { 3780 if (adapter->hw.phy.ops.power_up) 3781 adapter->hw.phy.ops.power_up(&adapter->hw); 3782 3783 adapter->hw.mac.ops.setup_link(&adapter->hw); 3784 } 3785 3786 /** 3787 * e1000_power_down_phy - Power down the PHY 3788 * 3789 * Power down the PHY so no link is implied when interface is down. 3790 * The PHY cannot be powered down if management or WoL is active. 3791 */ 3792 static void e1000_power_down_phy(struct e1000_adapter *adapter) 3793 { 3794 if (adapter->hw.phy.ops.power_down) 3795 adapter->hw.phy.ops.power_down(&adapter->hw); 3796 } 3797 3798 /** 3799 * e1000_flush_tx_ring - remove all descriptors from the tx_ring 3800 * 3801 * We want to clear all pending descriptors from the TX ring. 3802 * zeroing happens when the HW reads the regs. We assign the ring itself as 3803 * the data of the next descriptor. We don't care about the data we are about 3804 * to reset the HW. 3805 */ 3806 static void e1000_flush_tx_ring(struct e1000_adapter *adapter) 3807 { 3808 struct e1000_hw *hw = &adapter->hw; 3809 struct e1000_ring *tx_ring = adapter->tx_ring; 3810 struct e1000_tx_desc *tx_desc = NULL; 3811 u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS; 3812 u16 size = 512; 3813 3814 tctl = er32(TCTL); 3815 ew32(TCTL, tctl | E1000_TCTL_EN); 3816 tdt = er32(TDT(0)); 3817 BUG_ON(tdt != tx_ring->next_to_use); 3818 tx_desc = E1000_TX_DESC(*tx_ring, tx_ring->next_to_use); 3819 tx_desc->buffer_addr = tx_ring->dma; 3820 3821 tx_desc->lower.data = cpu_to_le32(txd_lower | size); 3822 tx_desc->upper.data = 0; 3823 /* flush descriptors to memory before notifying the HW */ 3824 wmb(); 3825 tx_ring->next_to_use++; 3826 if (tx_ring->next_to_use == tx_ring->count) 3827 tx_ring->next_to_use = 0; 3828 ew32(TDT(0), tx_ring->next_to_use); 3829 mmiowb(); 3830 usleep_range(200, 250); 3831 } 3832 3833 /** 3834 * e1000_flush_rx_ring - remove all descriptors from the rx_ring 3835 * 3836 * Mark all descriptors in the RX ring as consumed and disable the rx ring 3837 */ 3838 static void e1000_flush_rx_ring(struct e1000_adapter *adapter) 3839 { 3840 u32 rctl, rxdctl; 3841 struct e1000_hw *hw = &adapter->hw; 3842 3843 rctl = er32(RCTL); 3844 ew32(RCTL, rctl & ~E1000_RCTL_EN); 3845 e1e_flush(); 3846 usleep_range(100, 150); 3847 3848 rxdctl = er32(RXDCTL(0)); 3849 /* zero the lower 14 bits (prefetch and host thresholds) */ 3850 rxdctl &= 0xffffc000; 3851 3852 /* update thresholds: prefetch threshold to 31, host threshold to 1 3853 * and make sure the granularity is "descriptors" and not "cache lines" 3854 */ 3855 rxdctl |= (0x1F | (1 << 8) | E1000_RXDCTL_THRESH_UNIT_DESC); 3856 3857 ew32(RXDCTL(0), rxdctl); 3858 /* momentarily enable the RX ring for the changes to take effect */ 3859 ew32(RCTL, rctl | E1000_RCTL_EN); 3860 e1e_flush(); 3861 usleep_range(100, 150); 3862 ew32(RCTL, rctl & ~E1000_RCTL_EN); 3863 } 3864 3865 /** 3866 * e1000_flush_desc_rings - remove all descriptors from the descriptor rings 3867 * 3868 * In i219, the descriptor rings must be emptied before resetting the HW 3869 * or before changing the device state to D3 during runtime (runtime PM). 3870 * 3871 * Failure to do this will cause the HW to enter a unit hang state which can 3872 * only be released by PCI reset on the device 3873 * 3874 */ 3875 3876 static void e1000_flush_desc_rings(struct e1000_adapter *adapter) 3877 { 3878 u16 hang_state; 3879 u32 fext_nvm11, tdlen; 3880 struct e1000_hw *hw = &adapter->hw; 3881 3882 /* First, disable MULR fix in FEXTNVM11 */ 3883 fext_nvm11 = er32(FEXTNVM11); 3884 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX; 3885 ew32(FEXTNVM11, fext_nvm11); 3886 /* do nothing if we're not in faulty state, or if the queue is empty */ 3887 tdlen = er32(TDLEN(0)); 3888 pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS, 3889 &hang_state); 3890 if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen) 3891 return; 3892 e1000_flush_tx_ring(adapter); 3893 /* recheck, maybe the fault is caused by the rx ring */ 3894 pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS, 3895 &hang_state); 3896 if (hang_state & FLUSH_DESC_REQUIRED) 3897 e1000_flush_rx_ring(adapter); 3898 } 3899 3900 /** 3901 * e1000e_reset - bring the hardware into a known good state 3902 * 3903 * This function boots the hardware and enables some settings that 3904 * require a configuration cycle of the hardware - those cannot be 3905 * set/changed during runtime. After reset the device needs to be 3906 * properly configured for Rx, Tx etc. 3907 */ 3908 void e1000e_reset(struct e1000_adapter *adapter) 3909 { 3910 struct e1000_mac_info *mac = &adapter->hw.mac; 3911 struct e1000_fc_info *fc = &adapter->hw.fc; 3912 struct e1000_hw *hw = &adapter->hw; 3913 u32 tx_space, min_tx_space, min_rx_space; 3914 u32 pba = adapter->pba; 3915 u16 hwm; 3916 3917 /* reset Packet Buffer Allocation to default */ 3918 ew32(PBA, pba); 3919 3920 if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) { 3921 /* To maintain wire speed transmits, the Tx FIFO should be 3922 * large enough to accommodate two full transmit packets, 3923 * rounded up to the next 1KB and expressed in KB. Likewise, 3924 * the Rx FIFO should be large enough to accommodate at least 3925 * one full receive packet and is similarly rounded up and 3926 * expressed in KB. 3927 */ 3928 pba = er32(PBA); 3929 /* upper 16 bits has Tx packet buffer allocation size in KB */ 3930 tx_space = pba >> 16; 3931 /* lower 16 bits has Rx packet buffer allocation size in KB */ 3932 pba &= 0xffff; 3933 /* the Tx fifo also stores 16 bytes of information about the Tx 3934 * but don't include ethernet FCS because hardware appends it 3935 */ 3936 min_tx_space = (adapter->max_frame_size + 3937 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2; 3938 min_tx_space = ALIGN(min_tx_space, 1024); 3939 min_tx_space >>= 10; 3940 /* software strips receive CRC, so leave room for it */ 3941 min_rx_space = adapter->max_frame_size; 3942 min_rx_space = ALIGN(min_rx_space, 1024); 3943 min_rx_space >>= 10; 3944 3945 /* If current Tx allocation is less than the min Tx FIFO size, 3946 * and the min Tx FIFO size is less than the current Rx FIFO 3947 * allocation, take space away from current Rx allocation 3948 */ 3949 if ((tx_space < min_tx_space) && 3950 ((min_tx_space - tx_space) < pba)) { 3951 pba -= min_tx_space - tx_space; 3952 3953 /* if short on Rx space, Rx wins and must trump Tx 3954 * adjustment 3955 */ 3956 if (pba < min_rx_space) 3957 pba = min_rx_space; 3958 } 3959 3960 ew32(PBA, pba); 3961 } 3962 3963 /* flow control settings 3964 * 3965 * The high water mark must be low enough to fit one full frame 3966 * (or the size used for early receive) above it in the Rx FIFO. 3967 * Set it to the lower of: 3968 * - 90% of the Rx FIFO size, and 3969 * - the full Rx FIFO size minus one full frame 3970 */ 3971 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME) 3972 fc->pause_time = 0xFFFF; 3973 else 3974 fc->pause_time = E1000_FC_PAUSE_TIME; 3975 fc->send_xon = true; 3976 fc->current_mode = fc->requested_mode; 3977 3978 switch (hw->mac.type) { 3979 case e1000_ich9lan: 3980 case e1000_ich10lan: 3981 if (adapter->netdev->mtu > ETH_DATA_LEN) { 3982 pba = 14; 3983 ew32(PBA, pba); 3984 fc->high_water = 0x2800; 3985 fc->low_water = fc->high_water - 8; 3986 break; 3987 } 3988 /* fall-through */ 3989 default: 3990 hwm = min(((pba << 10) * 9 / 10), 3991 ((pba << 10) - adapter->max_frame_size)); 3992 3993 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */ 3994 fc->low_water = fc->high_water - 8; 3995 break; 3996 case e1000_pchlan: 3997 /* Workaround PCH LOM adapter hangs with certain network 3998 * loads. If hangs persist, try disabling Tx flow control. 3999 */ 4000 if (adapter->netdev->mtu > ETH_DATA_LEN) { 4001 fc->high_water = 0x3500; 4002 fc->low_water = 0x1500; 4003 } else { 4004 fc->high_water = 0x5000; 4005 fc->low_water = 0x3000; 4006 } 4007 fc->refresh_time = 0x1000; 4008 break; 4009 case e1000_pch2lan: 4010 case e1000_pch_lpt: 4011 case e1000_pch_spt: 4012 fc->refresh_time = 0x0400; 4013 4014 if (adapter->netdev->mtu <= ETH_DATA_LEN) { 4015 fc->high_water = 0x05C20; 4016 fc->low_water = 0x05048; 4017 fc->pause_time = 0x0650; 4018 break; 4019 } 4020 4021 pba = 14; 4022 ew32(PBA, pba); 4023 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH; 4024 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL; 4025 break; 4026 } 4027 4028 /* Alignment of Tx data is on an arbitrary byte boundary with the 4029 * maximum size per Tx descriptor limited only to the transmit 4030 * allocation of the packet buffer minus 96 bytes with an upper 4031 * limit of 24KB due to receive synchronization limitations. 4032 */ 4033 adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96, 4034 24 << 10); 4035 4036 /* Disable Adaptive Interrupt Moderation if 2 full packets cannot 4037 * fit in receive buffer. 4038 */ 4039 if (adapter->itr_setting & 0x3) { 4040 if ((adapter->max_frame_size * 2) > (pba << 10)) { 4041 if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) { 4042 dev_info(&adapter->pdev->dev, 4043 "Interrupt Throttle Rate off\n"); 4044 adapter->flags2 |= FLAG2_DISABLE_AIM; 4045 e1000e_write_itr(adapter, 0); 4046 } 4047 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) { 4048 dev_info(&adapter->pdev->dev, 4049 "Interrupt Throttle Rate on\n"); 4050 adapter->flags2 &= ~FLAG2_DISABLE_AIM; 4051 adapter->itr = 20000; 4052 e1000e_write_itr(adapter, adapter->itr); 4053 } 4054 } 4055 4056 if (hw->mac.type == e1000_pch_spt) 4057 e1000_flush_desc_rings(adapter); 4058 /* Allow time for pending master requests to run */ 4059 mac->ops.reset_hw(hw); 4060 4061 /* For parts with AMT enabled, let the firmware know 4062 * that the network interface is in control 4063 */ 4064 if (adapter->flags & FLAG_HAS_AMT) 4065 e1000e_get_hw_control(adapter); 4066 4067 ew32(WUC, 0); 4068 4069 if (mac->ops.init_hw(hw)) 4070 e_err("Hardware Error\n"); 4071 4072 e1000_update_mng_vlan(adapter); 4073 4074 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ 4075 ew32(VET, ETH_P_8021Q); 4076 4077 e1000e_reset_adaptive(hw); 4078 4079 /* initialize systim and reset the ns time counter */ 4080 e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config); 4081 4082 /* Set EEE advertisement as appropriate */ 4083 if (adapter->flags2 & FLAG2_HAS_EEE) { 4084 s32 ret_val; 4085 u16 adv_addr; 4086 4087 switch (hw->phy.type) { 4088 case e1000_phy_82579: 4089 adv_addr = I82579_EEE_ADVERTISEMENT; 4090 break; 4091 case e1000_phy_i217: 4092 adv_addr = I217_EEE_ADVERTISEMENT; 4093 break; 4094 default: 4095 dev_err(&adapter->pdev->dev, 4096 "Invalid PHY type setting EEE advertisement\n"); 4097 return; 4098 } 4099 4100 ret_val = hw->phy.ops.acquire(hw); 4101 if (ret_val) { 4102 dev_err(&adapter->pdev->dev, 4103 "EEE advertisement - unable to acquire PHY\n"); 4104 return; 4105 } 4106 4107 e1000_write_emi_reg_locked(hw, adv_addr, 4108 hw->dev_spec.ich8lan.eee_disable ? 4109 0 : adapter->eee_advert); 4110 4111 hw->phy.ops.release(hw); 4112 } 4113 4114 if (!netif_running(adapter->netdev) && 4115 !test_bit(__E1000_TESTING, &adapter->state)) 4116 e1000_power_down_phy(adapter); 4117 4118 e1000_get_phy_info(hw); 4119 4120 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) && 4121 !(adapter->flags & FLAG_SMART_POWER_DOWN)) { 4122 u16 phy_data = 0; 4123 /* speed up time to link by disabling smart power down, ignore 4124 * the return value of this function because there is nothing 4125 * different we would do if it failed 4126 */ 4127 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); 4128 phy_data &= ~IGP02E1000_PM_SPD; 4129 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); 4130 } 4131 if (hw->mac.type == e1000_pch_spt && adapter->int_mode == 0) { 4132 u32 reg; 4133 4134 /* Fextnvm7 @ 0xe4[2] = 1 */ 4135 reg = er32(FEXTNVM7); 4136 reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE; 4137 ew32(FEXTNVM7, reg); 4138 /* Fextnvm9 @ 0x5bb4[13:12] = 11 */ 4139 reg = er32(FEXTNVM9); 4140 reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS | 4141 E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS; 4142 ew32(FEXTNVM9, reg); 4143 } 4144 4145 } 4146 4147 int e1000e_up(struct e1000_adapter *adapter) 4148 { 4149 struct e1000_hw *hw = &adapter->hw; 4150 4151 /* hardware has been reset, we need to reload some things */ 4152 e1000_configure(adapter); 4153 4154 clear_bit(__E1000_DOWN, &adapter->state); 4155 4156 if (adapter->msix_entries) 4157 e1000_configure_msix(adapter); 4158 e1000_irq_enable(adapter); 4159 4160 netif_start_queue(adapter->netdev); 4161 4162 /* fire a link change interrupt to start the watchdog */ 4163 if (adapter->msix_entries) 4164 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER); 4165 else 4166 ew32(ICS, E1000_ICS_LSC); 4167 4168 return 0; 4169 } 4170 4171 static void e1000e_flush_descriptors(struct e1000_adapter *adapter) 4172 { 4173 struct e1000_hw *hw = &adapter->hw; 4174 4175 if (!(adapter->flags2 & FLAG2_DMA_BURST)) 4176 return; 4177 4178 /* flush pending descriptor writebacks to memory */ 4179 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); 4180 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD); 4181 4182 /* execute the writes immediately */ 4183 e1e_flush(); 4184 4185 /* due to rare timing issues, write to TIDV/RDTR again to ensure the 4186 * write is successful 4187 */ 4188 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); 4189 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD); 4190 4191 /* execute the writes immediately */ 4192 e1e_flush(); 4193 } 4194 4195 static void e1000e_update_stats(struct e1000_adapter *adapter); 4196 4197 /** 4198 * e1000e_down - quiesce the device and optionally reset the hardware 4199 * @adapter: board private structure 4200 * @reset: boolean flag to reset the hardware or not 4201 */ 4202 void e1000e_down(struct e1000_adapter *adapter, bool reset) 4203 { 4204 struct net_device *netdev = adapter->netdev; 4205 struct e1000_hw *hw = &adapter->hw; 4206 u32 tctl, rctl; 4207 4208 /* signal that we're down so the interrupt handler does not 4209 * reschedule our watchdog timer 4210 */ 4211 set_bit(__E1000_DOWN, &adapter->state); 4212 4213 netif_carrier_off(netdev); 4214 4215 /* disable receives in the hardware */ 4216 rctl = er32(RCTL); 4217 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) 4218 ew32(RCTL, rctl & ~E1000_RCTL_EN); 4219 /* flush and sleep below */ 4220 4221 netif_stop_queue(netdev); 4222 4223 /* disable transmits in the hardware */ 4224 tctl = er32(TCTL); 4225 tctl &= ~E1000_TCTL_EN; 4226 ew32(TCTL, tctl); 4227 4228 /* flush both disables and wait for them to finish */ 4229 e1e_flush(); 4230 usleep_range(10000, 20000); 4231 4232 e1000_irq_disable(adapter); 4233 4234 napi_synchronize(&adapter->napi); 4235 4236 del_timer_sync(&adapter->watchdog_timer); 4237 del_timer_sync(&adapter->phy_info_timer); 4238 4239 spin_lock(&adapter->stats64_lock); 4240 e1000e_update_stats(adapter); 4241 spin_unlock(&adapter->stats64_lock); 4242 4243 e1000e_flush_descriptors(adapter); 4244 4245 adapter->link_speed = 0; 4246 adapter->link_duplex = 0; 4247 4248 /* Disable Si errata workaround on PCHx for jumbo frame flow */ 4249 if ((hw->mac.type >= e1000_pch2lan) && 4250 (adapter->netdev->mtu > ETH_DATA_LEN) && 4251 e1000_lv_jumbo_workaround_ich8lan(hw, false)) 4252 e_dbg("failed to disable jumbo frame workaround mode\n"); 4253 4254 if (!pci_channel_offline(adapter->pdev)) { 4255 if (reset) 4256 e1000e_reset(adapter); 4257 else if (hw->mac.type == e1000_pch_spt) 4258 e1000_flush_desc_rings(adapter); 4259 } 4260 e1000_clean_tx_ring(adapter->tx_ring); 4261 e1000_clean_rx_ring(adapter->rx_ring); 4262 } 4263 4264 void e1000e_reinit_locked(struct e1000_adapter *adapter) 4265 { 4266 might_sleep(); 4267 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 4268 usleep_range(1000, 2000); 4269 e1000e_down(adapter, true); 4270 e1000e_up(adapter); 4271 clear_bit(__E1000_RESETTING, &adapter->state); 4272 } 4273 4274 /** 4275 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter) 4276 * @cc: cyclecounter structure 4277 **/ 4278 static cycle_t e1000e_cyclecounter_read(const struct cyclecounter *cc) 4279 { 4280 struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter, 4281 cc); 4282 struct e1000_hw *hw = &adapter->hw; 4283 cycle_t systim, systim_next; 4284 /* SYSTIMH latching upon SYSTIML read does not work well. To fix that 4285 * we don't want to allow overflow of SYSTIML and a change to SYSTIMH 4286 * to occur between reads, so if we read a vale close to overflow, we 4287 * wait for overflow to occur and read both registers when its safe. 4288 */ 4289 u32 systim_overflow_latch_fix = 0x3FFFFFFF; 4290 4291 do { 4292 systim = (cycle_t)er32(SYSTIML); 4293 } while (systim > systim_overflow_latch_fix); 4294 systim |= (cycle_t)er32(SYSTIMH) << 32; 4295 4296 if ((hw->mac.type == e1000_82574) || (hw->mac.type == e1000_82583)) { 4297 u64 incvalue, time_delta, rem, temp; 4298 int i; 4299 4300 /* errata for 82574/82583 possible bad bits read from SYSTIMH/L 4301 * check to see that the time is incrementing at a reasonable 4302 * rate and is a multiple of incvalue 4303 */ 4304 incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK; 4305 for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) { 4306 /* latch SYSTIMH on read of SYSTIML */ 4307 systim_next = (cycle_t)er32(SYSTIML); 4308 systim_next |= (cycle_t)er32(SYSTIMH) << 32; 4309 4310 time_delta = systim_next - systim; 4311 temp = time_delta; 4312 rem = do_div(temp, incvalue); 4313 4314 systim = systim_next; 4315 4316 if ((time_delta < E1000_82574_SYSTIM_EPSILON) && 4317 (rem == 0)) 4318 break; 4319 } 4320 } 4321 return systim; 4322 } 4323 4324 /** 4325 * e1000_sw_init - Initialize general software structures (struct e1000_adapter) 4326 * @adapter: board private structure to initialize 4327 * 4328 * e1000_sw_init initializes the Adapter private data structure. 4329 * Fields are initialized based on PCI device information and 4330 * OS network device settings (MTU size). 4331 **/ 4332 static int e1000_sw_init(struct e1000_adapter *adapter) 4333 { 4334 struct net_device *netdev = adapter->netdev; 4335 4336 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN; 4337 adapter->rx_ps_bsize0 = 128; 4338 adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN; 4339 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 4340 adapter->tx_ring_count = E1000_DEFAULT_TXD; 4341 adapter->rx_ring_count = E1000_DEFAULT_RXD; 4342 4343 spin_lock_init(&adapter->stats64_lock); 4344 4345 e1000e_set_interrupt_capability(adapter); 4346 4347 if (e1000_alloc_queues(adapter)) 4348 return -ENOMEM; 4349 4350 /* Setup hardware time stamping cyclecounter */ 4351 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) { 4352 adapter->cc.read = e1000e_cyclecounter_read; 4353 adapter->cc.mask = CYCLECOUNTER_MASK(64); 4354 adapter->cc.mult = 1; 4355 /* cc.shift set in e1000e_get_base_tininca() */ 4356 4357 spin_lock_init(&adapter->systim_lock); 4358 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work); 4359 } 4360 4361 /* Explicitly disable IRQ since the NIC can be in any state. */ 4362 e1000_irq_disable(adapter); 4363 4364 set_bit(__E1000_DOWN, &adapter->state); 4365 return 0; 4366 } 4367 4368 /** 4369 * e1000_intr_msi_test - Interrupt Handler 4370 * @irq: interrupt number 4371 * @data: pointer to a network interface device structure 4372 **/ 4373 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data) 4374 { 4375 struct net_device *netdev = data; 4376 struct e1000_adapter *adapter = netdev_priv(netdev); 4377 struct e1000_hw *hw = &adapter->hw; 4378 u32 icr = er32(ICR); 4379 4380 e_dbg("icr is %08X\n", icr); 4381 if (icr & E1000_ICR_RXSEQ) { 4382 adapter->flags &= ~FLAG_MSI_TEST_FAILED; 4383 /* Force memory writes to complete before acknowledging the 4384 * interrupt is handled. 4385 */ 4386 wmb(); 4387 } 4388 4389 return IRQ_HANDLED; 4390 } 4391 4392 /** 4393 * e1000_test_msi_interrupt - Returns 0 for successful test 4394 * @adapter: board private struct 4395 * 4396 * code flow taken from tg3.c 4397 **/ 4398 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter) 4399 { 4400 struct net_device *netdev = adapter->netdev; 4401 struct e1000_hw *hw = &adapter->hw; 4402 int err; 4403 4404 /* poll_enable hasn't been called yet, so don't need disable */ 4405 /* clear any pending events */ 4406 er32(ICR); 4407 4408 /* free the real vector and request a test handler */ 4409 e1000_free_irq(adapter); 4410 e1000e_reset_interrupt_capability(adapter); 4411 4412 /* Assume that the test fails, if it succeeds then the test 4413 * MSI irq handler will unset this flag 4414 */ 4415 adapter->flags |= FLAG_MSI_TEST_FAILED; 4416 4417 err = pci_enable_msi(adapter->pdev); 4418 if (err) 4419 goto msi_test_failed; 4420 4421 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0, 4422 netdev->name, netdev); 4423 if (err) { 4424 pci_disable_msi(adapter->pdev); 4425 goto msi_test_failed; 4426 } 4427 4428 /* Force memory writes to complete before enabling and firing an 4429 * interrupt. 4430 */ 4431 wmb(); 4432 4433 e1000_irq_enable(adapter); 4434 4435 /* fire an unusual interrupt on the test handler */ 4436 ew32(ICS, E1000_ICS_RXSEQ); 4437 e1e_flush(); 4438 msleep(100); 4439 4440 e1000_irq_disable(adapter); 4441 4442 rmb(); /* read flags after interrupt has been fired */ 4443 4444 if (adapter->flags & FLAG_MSI_TEST_FAILED) { 4445 adapter->int_mode = E1000E_INT_MODE_LEGACY; 4446 e_info("MSI interrupt test failed, using legacy interrupt.\n"); 4447 } else { 4448 e_dbg("MSI interrupt test succeeded!\n"); 4449 } 4450 4451 free_irq(adapter->pdev->irq, netdev); 4452 pci_disable_msi(adapter->pdev); 4453 4454 msi_test_failed: 4455 e1000e_set_interrupt_capability(adapter); 4456 return e1000_request_irq(adapter); 4457 } 4458 4459 /** 4460 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored 4461 * @adapter: board private struct 4462 * 4463 * code flow taken from tg3.c, called with e1000 interrupts disabled. 4464 **/ 4465 static int e1000_test_msi(struct e1000_adapter *adapter) 4466 { 4467 int err; 4468 u16 pci_cmd; 4469 4470 if (!(adapter->flags & FLAG_MSI_ENABLED)) 4471 return 0; 4472 4473 /* disable SERR in case the MSI write causes a master abort */ 4474 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd); 4475 if (pci_cmd & PCI_COMMAND_SERR) 4476 pci_write_config_word(adapter->pdev, PCI_COMMAND, 4477 pci_cmd & ~PCI_COMMAND_SERR); 4478 4479 err = e1000_test_msi_interrupt(adapter); 4480 4481 /* re-enable SERR */ 4482 if (pci_cmd & PCI_COMMAND_SERR) { 4483 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd); 4484 pci_cmd |= PCI_COMMAND_SERR; 4485 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd); 4486 } 4487 4488 return err; 4489 } 4490 4491 /** 4492 * e1000_open - Called when a network interface is made active 4493 * @netdev: network interface device structure 4494 * 4495 * Returns 0 on success, negative value on failure 4496 * 4497 * The open entry point is called when a network interface is made 4498 * active by the system (IFF_UP). At this point all resources needed 4499 * for transmit and receive operations are allocated, the interrupt 4500 * handler is registered with the OS, the watchdog timer is started, 4501 * and the stack is notified that the interface is ready. 4502 **/ 4503 static int e1000_open(struct net_device *netdev) 4504 { 4505 struct e1000_adapter *adapter = netdev_priv(netdev); 4506 struct e1000_hw *hw = &adapter->hw; 4507 struct pci_dev *pdev = adapter->pdev; 4508 int err; 4509 4510 /* disallow open during test */ 4511 if (test_bit(__E1000_TESTING, &adapter->state)) 4512 return -EBUSY; 4513 4514 pm_runtime_get_sync(&pdev->dev); 4515 4516 netif_carrier_off(netdev); 4517 4518 /* allocate transmit descriptors */ 4519 err = e1000e_setup_tx_resources(adapter->tx_ring); 4520 if (err) 4521 goto err_setup_tx; 4522 4523 /* allocate receive descriptors */ 4524 err = e1000e_setup_rx_resources(adapter->rx_ring); 4525 if (err) 4526 goto err_setup_rx; 4527 4528 /* If AMT is enabled, let the firmware know that the network 4529 * interface is now open and reset the part to a known state. 4530 */ 4531 if (adapter->flags & FLAG_HAS_AMT) { 4532 e1000e_get_hw_control(adapter); 4533 e1000e_reset(adapter); 4534 } 4535 4536 e1000e_power_up_phy(adapter); 4537 4538 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 4539 if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)) 4540 e1000_update_mng_vlan(adapter); 4541 4542 /* DMA latency requirement to workaround jumbo issue */ 4543 pm_qos_add_request(&adapter->pm_qos_req, PM_QOS_CPU_DMA_LATENCY, 4544 PM_QOS_DEFAULT_VALUE); 4545 4546 /* before we allocate an interrupt, we must be ready to handle it. 4547 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 4548 * as soon as we call pci_request_irq, so we have to setup our 4549 * clean_rx handler before we do so. 4550 */ 4551 e1000_configure(adapter); 4552 4553 err = e1000_request_irq(adapter); 4554 if (err) 4555 goto err_req_irq; 4556 4557 /* Work around PCIe errata with MSI interrupts causing some chipsets to 4558 * ignore e1000e MSI messages, which means we need to test our MSI 4559 * interrupt now 4560 */ 4561 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) { 4562 err = e1000_test_msi(adapter); 4563 if (err) { 4564 e_err("Interrupt allocation failed\n"); 4565 goto err_req_irq; 4566 } 4567 } 4568 4569 /* From here on the code is the same as e1000e_up() */ 4570 clear_bit(__E1000_DOWN, &adapter->state); 4571 4572 napi_enable(&adapter->napi); 4573 4574 e1000_irq_enable(adapter); 4575 4576 adapter->tx_hang_recheck = false; 4577 netif_start_queue(netdev); 4578 4579 hw->mac.get_link_status = true; 4580 pm_runtime_put(&pdev->dev); 4581 4582 /* fire a link status change interrupt to start the watchdog */ 4583 if (adapter->msix_entries) 4584 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER); 4585 else 4586 ew32(ICS, E1000_ICS_LSC); 4587 4588 return 0; 4589 4590 err_req_irq: 4591 e1000e_release_hw_control(adapter); 4592 e1000_power_down_phy(adapter); 4593 e1000e_free_rx_resources(adapter->rx_ring); 4594 err_setup_rx: 4595 e1000e_free_tx_resources(adapter->tx_ring); 4596 err_setup_tx: 4597 e1000e_reset(adapter); 4598 pm_runtime_put_sync(&pdev->dev); 4599 4600 return err; 4601 } 4602 4603 /** 4604 * e1000_close - Disables a network interface 4605 * @netdev: network interface device structure 4606 * 4607 * Returns 0, this is not allowed to fail 4608 * 4609 * The close entry point is called when an interface is de-activated 4610 * by the OS. The hardware is still under the drivers control, but 4611 * needs to be disabled. A global MAC reset is issued to stop the 4612 * hardware, and all transmit and receive resources are freed. 4613 **/ 4614 static int e1000_close(struct net_device *netdev) 4615 { 4616 struct e1000_adapter *adapter = netdev_priv(netdev); 4617 struct pci_dev *pdev = adapter->pdev; 4618 int count = E1000_CHECK_RESET_COUNT; 4619 4620 while (test_bit(__E1000_RESETTING, &adapter->state) && count--) 4621 usleep_range(10000, 20000); 4622 4623 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); 4624 4625 pm_runtime_get_sync(&pdev->dev); 4626 4627 if (!test_bit(__E1000_DOWN, &adapter->state)) { 4628 e1000e_down(adapter, true); 4629 e1000_free_irq(adapter); 4630 4631 /* Link status message must follow this format */ 4632 pr_info("%s NIC Link is Down\n", adapter->netdev->name); 4633 } 4634 4635 napi_disable(&adapter->napi); 4636 4637 e1000e_free_tx_resources(adapter->tx_ring); 4638 e1000e_free_rx_resources(adapter->rx_ring); 4639 4640 /* kill manageability vlan ID if supported, but not if a vlan with 4641 * the same ID is registered on the host OS (let 8021q kill it) 4642 */ 4643 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) 4644 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), 4645 adapter->mng_vlan_id); 4646 4647 /* If AMT is enabled, let the firmware know that the network 4648 * interface is now closed 4649 */ 4650 if ((adapter->flags & FLAG_HAS_AMT) && 4651 !test_bit(__E1000_TESTING, &adapter->state)) 4652 e1000e_release_hw_control(adapter); 4653 4654 pm_qos_remove_request(&adapter->pm_qos_req); 4655 4656 pm_runtime_put_sync(&pdev->dev); 4657 4658 return 0; 4659 } 4660 4661 /** 4662 * e1000_set_mac - Change the Ethernet Address of the NIC 4663 * @netdev: network interface device structure 4664 * @p: pointer to an address structure 4665 * 4666 * Returns 0 on success, negative on failure 4667 **/ 4668 static int e1000_set_mac(struct net_device *netdev, void *p) 4669 { 4670 struct e1000_adapter *adapter = netdev_priv(netdev); 4671 struct e1000_hw *hw = &adapter->hw; 4672 struct sockaddr *addr = p; 4673 4674 if (!is_valid_ether_addr(addr->sa_data)) 4675 return -EADDRNOTAVAIL; 4676 4677 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 4678 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len); 4679 4680 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0); 4681 4682 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) { 4683 /* activate the work around */ 4684 e1000e_set_laa_state_82571(&adapter->hw, 1); 4685 4686 /* Hold a copy of the LAA in RAR[14] This is done so that 4687 * between the time RAR[0] gets clobbered and the time it 4688 * gets fixed (in e1000_watchdog), the actual LAA is in one 4689 * of the RARs and no incoming packets directed to this port 4690 * are dropped. Eventually the LAA will be in RAR[0] and 4691 * RAR[14] 4692 */ 4693 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 4694 adapter->hw.mac.rar_entry_count - 1); 4695 } 4696 4697 return 0; 4698 } 4699 4700 /** 4701 * e1000e_update_phy_task - work thread to update phy 4702 * @work: pointer to our work struct 4703 * 4704 * this worker thread exists because we must acquire a 4705 * semaphore to read the phy, which we could msleep while 4706 * waiting for it, and we can't msleep in a timer. 4707 **/ 4708 static void e1000e_update_phy_task(struct work_struct *work) 4709 { 4710 struct e1000_adapter *adapter = container_of(work, 4711 struct e1000_adapter, 4712 update_phy_task); 4713 struct e1000_hw *hw = &adapter->hw; 4714 4715 if (test_bit(__E1000_DOWN, &adapter->state)) 4716 return; 4717 4718 e1000_get_phy_info(hw); 4719 4720 /* Enable EEE on 82579 after link up */ 4721 if (hw->phy.type >= e1000_phy_82579) 4722 e1000_set_eee_pchlan(hw); 4723 } 4724 4725 /** 4726 * e1000_update_phy_info - timre call-back to update PHY info 4727 * @data: pointer to adapter cast into an unsigned long 4728 * 4729 * Need to wait a few seconds after link up to get diagnostic information from 4730 * the phy 4731 **/ 4732 static void e1000_update_phy_info(unsigned long data) 4733 { 4734 struct e1000_adapter *adapter = (struct e1000_adapter *)data; 4735 4736 if (test_bit(__E1000_DOWN, &adapter->state)) 4737 return; 4738 4739 schedule_work(&adapter->update_phy_task); 4740 } 4741 4742 /** 4743 * e1000e_update_phy_stats - Update the PHY statistics counters 4744 * @adapter: board private structure 4745 * 4746 * Read/clear the upper 16-bit PHY registers and read/accumulate lower 4747 **/ 4748 static void e1000e_update_phy_stats(struct e1000_adapter *adapter) 4749 { 4750 struct e1000_hw *hw = &adapter->hw; 4751 s32 ret_val; 4752 u16 phy_data; 4753 4754 ret_val = hw->phy.ops.acquire(hw); 4755 if (ret_val) 4756 return; 4757 4758 /* A page set is expensive so check if already on desired page. 4759 * If not, set to the page with the PHY status registers. 4760 */ 4761 hw->phy.addr = 1; 4762 ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 4763 &phy_data); 4764 if (ret_val) 4765 goto release; 4766 if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) { 4767 ret_val = hw->phy.ops.set_page(hw, 4768 HV_STATS_PAGE << IGP_PAGE_SHIFT); 4769 if (ret_val) 4770 goto release; 4771 } 4772 4773 /* Single Collision Count */ 4774 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data); 4775 ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data); 4776 if (!ret_val) 4777 adapter->stats.scc += phy_data; 4778 4779 /* Excessive Collision Count */ 4780 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data); 4781 ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data); 4782 if (!ret_val) 4783 adapter->stats.ecol += phy_data; 4784 4785 /* Multiple Collision Count */ 4786 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data); 4787 ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data); 4788 if (!ret_val) 4789 adapter->stats.mcc += phy_data; 4790 4791 /* Late Collision Count */ 4792 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data); 4793 ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data); 4794 if (!ret_val) 4795 adapter->stats.latecol += phy_data; 4796 4797 /* Collision Count - also used for adaptive IFS */ 4798 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data); 4799 ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data); 4800 if (!ret_val) 4801 hw->mac.collision_delta = phy_data; 4802 4803 /* Defer Count */ 4804 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data); 4805 ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data); 4806 if (!ret_val) 4807 adapter->stats.dc += phy_data; 4808 4809 /* Transmit with no CRS */ 4810 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data); 4811 ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data); 4812 if (!ret_val) 4813 adapter->stats.tncrs += phy_data; 4814 4815 release: 4816 hw->phy.ops.release(hw); 4817 } 4818 4819 /** 4820 * e1000e_update_stats - Update the board statistics counters 4821 * @adapter: board private structure 4822 **/ 4823 static void e1000e_update_stats(struct e1000_adapter *adapter) 4824 { 4825 struct net_device *netdev = adapter->netdev; 4826 struct e1000_hw *hw = &adapter->hw; 4827 struct pci_dev *pdev = adapter->pdev; 4828 4829 /* Prevent stats update while adapter is being reset, or if the pci 4830 * connection is down. 4831 */ 4832 if (adapter->link_speed == 0) 4833 return; 4834 if (pci_channel_offline(pdev)) 4835 return; 4836 4837 adapter->stats.crcerrs += er32(CRCERRS); 4838 adapter->stats.gprc += er32(GPRC); 4839 adapter->stats.gorc += er32(GORCL); 4840 er32(GORCH); /* Clear gorc */ 4841 adapter->stats.bprc += er32(BPRC); 4842 adapter->stats.mprc += er32(MPRC); 4843 adapter->stats.roc += er32(ROC); 4844 4845 adapter->stats.mpc += er32(MPC); 4846 4847 /* Half-duplex statistics */ 4848 if (adapter->link_duplex == HALF_DUPLEX) { 4849 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) { 4850 e1000e_update_phy_stats(adapter); 4851 } else { 4852 adapter->stats.scc += er32(SCC); 4853 adapter->stats.ecol += er32(ECOL); 4854 adapter->stats.mcc += er32(MCC); 4855 adapter->stats.latecol += er32(LATECOL); 4856 adapter->stats.dc += er32(DC); 4857 4858 hw->mac.collision_delta = er32(COLC); 4859 4860 if ((hw->mac.type != e1000_82574) && 4861 (hw->mac.type != e1000_82583)) 4862 adapter->stats.tncrs += er32(TNCRS); 4863 } 4864 adapter->stats.colc += hw->mac.collision_delta; 4865 } 4866 4867 adapter->stats.xonrxc += er32(XONRXC); 4868 adapter->stats.xontxc += er32(XONTXC); 4869 adapter->stats.xoffrxc += er32(XOFFRXC); 4870 adapter->stats.xofftxc += er32(XOFFTXC); 4871 adapter->stats.gptc += er32(GPTC); 4872 adapter->stats.gotc += er32(GOTCL); 4873 er32(GOTCH); /* Clear gotc */ 4874 adapter->stats.rnbc += er32(RNBC); 4875 adapter->stats.ruc += er32(RUC); 4876 4877 adapter->stats.mptc += er32(MPTC); 4878 adapter->stats.bptc += er32(BPTC); 4879 4880 /* used for adaptive IFS */ 4881 4882 hw->mac.tx_packet_delta = er32(TPT); 4883 adapter->stats.tpt += hw->mac.tx_packet_delta; 4884 4885 adapter->stats.algnerrc += er32(ALGNERRC); 4886 adapter->stats.rxerrc += er32(RXERRC); 4887 adapter->stats.cexterr += er32(CEXTERR); 4888 adapter->stats.tsctc += er32(TSCTC); 4889 adapter->stats.tsctfc += er32(TSCTFC); 4890 4891 /* Fill out the OS statistics structure */ 4892 netdev->stats.multicast = adapter->stats.mprc; 4893 netdev->stats.collisions = adapter->stats.colc; 4894 4895 /* Rx Errors */ 4896 4897 /* RLEC on some newer hardware can be incorrect so build 4898 * our own version based on RUC and ROC 4899 */ 4900 netdev->stats.rx_errors = adapter->stats.rxerrc + 4901 adapter->stats.crcerrs + adapter->stats.algnerrc + 4902 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr; 4903 netdev->stats.rx_length_errors = adapter->stats.ruc + 4904 adapter->stats.roc; 4905 netdev->stats.rx_crc_errors = adapter->stats.crcerrs; 4906 netdev->stats.rx_frame_errors = adapter->stats.algnerrc; 4907 netdev->stats.rx_missed_errors = adapter->stats.mpc; 4908 4909 /* Tx Errors */ 4910 netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol; 4911 netdev->stats.tx_aborted_errors = adapter->stats.ecol; 4912 netdev->stats.tx_window_errors = adapter->stats.latecol; 4913 netdev->stats.tx_carrier_errors = adapter->stats.tncrs; 4914 4915 /* Tx Dropped needs to be maintained elsewhere */ 4916 4917 /* Management Stats */ 4918 adapter->stats.mgptc += er32(MGTPTC); 4919 adapter->stats.mgprc += er32(MGTPRC); 4920 adapter->stats.mgpdc += er32(MGTPDC); 4921 4922 /* Correctable ECC Errors */ 4923 if ((hw->mac.type == e1000_pch_lpt) || 4924 (hw->mac.type == e1000_pch_spt)) { 4925 u32 pbeccsts = er32(PBECCSTS); 4926 4927 adapter->corr_errors += 4928 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK; 4929 adapter->uncorr_errors += 4930 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >> 4931 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT; 4932 } 4933 } 4934 4935 /** 4936 * e1000_phy_read_status - Update the PHY register status snapshot 4937 * @adapter: board private structure 4938 **/ 4939 static void e1000_phy_read_status(struct e1000_adapter *adapter) 4940 { 4941 struct e1000_hw *hw = &adapter->hw; 4942 struct e1000_phy_regs *phy = &adapter->phy_regs; 4943 4944 if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) && 4945 (er32(STATUS) & E1000_STATUS_LU) && 4946 (adapter->hw.phy.media_type == e1000_media_type_copper)) { 4947 int ret_val; 4948 4949 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr); 4950 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr); 4951 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise); 4952 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa); 4953 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion); 4954 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000); 4955 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000); 4956 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus); 4957 if (ret_val) 4958 e_warn("Error reading PHY register\n"); 4959 } else { 4960 /* Do not read PHY registers if link is not up 4961 * Set values to typical power-on defaults 4962 */ 4963 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX); 4964 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL | 4965 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE | 4966 BMSR_ERCAP); 4967 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP | 4968 ADVERTISE_ALL | ADVERTISE_CSMA); 4969 phy->lpa = 0; 4970 phy->expansion = EXPANSION_ENABLENPAGE; 4971 phy->ctrl1000 = ADVERTISE_1000FULL; 4972 phy->stat1000 = 0; 4973 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF); 4974 } 4975 } 4976 4977 static void e1000_print_link_info(struct e1000_adapter *adapter) 4978 { 4979 struct e1000_hw *hw = &adapter->hw; 4980 u32 ctrl = er32(CTRL); 4981 4982 /* Link status message must follow this format for user tools */ 4983 pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n", 4984 adapter->netdev->name, adapter->link_speed, 4985 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half", 4986 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" : 4987 (ctrl & E1000_CTRL_RFCE) ? "Rx" : 4988 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None"); 4989 } 4990 4991 static bool e1000e_has_link(struct e1000_adapter *adapter) 4992 { 4993 struct e1000_hw *hw = &adapter->hw; 4994 bool link_active = false; 4995 s32 ret_val = 0; 4996 4997 /* get_link_status is set on LSC (link status) interrupt or 4998 * Rx sequence error interrupt. get_link_status will stay 4999 * false until the check_for_link establishes link 5000 * for copper adapters ONLY 5001 */ 5002 switch (hw->phy.media_type) { 5003 case e1000_media_type_copper: 5004 if (hw->mac.get_link_status) { 5005 ret_val = hw->mac.ops.check_for_link(hw); 5006 link_active = !hw->mac.get_link_status; 5007 } else { 5008 link_active = true; 5009 } 5010 break; 5011 case e1000_media_type_fiber: 5012 ret_val = hw->mac.ops.check_for_link(hw); 5013 link_active = !!(er32(STATUS) & E1000_STATUS_LU); 5014 break; 5015 case e1000_media_type_internal_serdes: 5016 ret_val = hw->mac.ops.check_for_link(hw); 5017 link_active = adapter->hw.mac.serdes_has_link; 5018 break; 5019 default: 5020 case e1000_media_type_unknown: 5021 break; 5022 } 5023 5024 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) && 5025 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) { 5026 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */ 5027 e_info("Gigabit has been disabled, downgrading speed\n"); 5028 } 5029 5030 return link_active; 5031 } 5032 5033 static void e1000e_enable_receives(struct e1000_adapter *adapter) 5034 { 5035 /* make sure the receive unit is started */ 5036 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) && 5037 (adapter->flags & FLAG_RESTART_NOW)) { 5038 struct e1000_hw *hw = &adapter->hw; 5039 u32 rctl = er32(RCTL); 5040 5041 ew32(RCTL, rctl | E1000_RCTL_EN); 5042 adapter->flags &= ~FLAG_RESTART_NOW; 5043 } 5044 } 5045 5046 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter) 5047 { 5048 struct e1000_hw *hw = &adapter->hw; 5049 5050 /* With 82574 controllers, PHY needs to be checked periodically 5051 * for hung state and reset, if two calls return true 5052 */ 5053 if (e1000_check_phy_82574(hw)) 5054 adapter->phy_hang_count++; 5055 else 5056 adapter->phy_hang_count = 0; 5057 5058 if (adapter->phy_hang_count > 1) { 5059 adapter->phy_hang_count = 0; 5060 e_dbg("PHY appears hung - resetting\n"); 5061 schedule_work(&adapter->reset_task); 5062 } 5063 } 5064 5065 /** 5066 * e1000_watchdog - Timer Call-back 5067 * @data: pointer to adapter cast into an unsigned long 5068 **/ 5069 static void e1000_watchdog(unsigned long data) 5070 { 5071 struct e1000_adapter *adapter = (struct e1000_adapter *)data; 5072 5073 /* Do the rest outside of interrupt context */ 5074 schedule_work(&adapter->watchdog_task); 5075 5076 /* TODO: make this use queue_delayed_work() */ 5077 } 5078 5079 static void e1000_watchdog_task(struct work_struct *work) 5080 { 5081 struct e1000_adapter *adapter = container_of(work, 5082 struct e1000_adapter, 5083 watchdog_task); 5084 struct net_device *netdev = adapter->netdev; 5085 struct e1000_mac_info *mac = &adapter->hw.mac; 5086 struct e1000_phy_info *phy = &adapter->hw.phy; 5087 struct e1000_ring *tx_ring = adapter->tx_ring; 5088 struct e1000_hw *hw = &adapter->hw; 5089 u32 link, tctl; 5090 5091 if (test_bit(__E1000_DOWN, &adapter->state)) 5092 return; 5093 5094 link = e1000e_has_link(adapter); 5095 if ((netif_carrier_ok(netdev)) && link) { 5096 /* Cancel scheduled suspend requests. */ 5097 pm_runtime_resume(netdev->dev.parent); 5098 5099 e1000e_enable_receives(adapter); 5100 goto link_up; 5101 } 5102 5103 if ((e1000e_enable_tx_pkt_filtering(hw)) && 5104 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)) 5105 e1000_update_mng_vlan(adapter); 5106 5107 if (link) { 5108 if (!netif_carrier_ok(netdev)) { 5109 bool txb2b = true; 5110 5111 /* Cancel scheduled suspend requests. */ 5112 pm_runtime_resume(netdev->dev.parent); 5113 5114 /* update snapshot of PHY registers on LSC */ 5115 e1000_phy_read_status(adapter); 5116 mac->ops.get_link_up_info(&adapter->hw, 5117 &adapter->link_speed, 5118 &adapter->link_duplex); 5119 e1000_print_link_info(adapter); 5120 5121 /* check if SmartSpeed worked */ 5122 e1000e_check_downshift(hw); 5123 if (phy->speed_downgraded) 5124 netdev_warn(netdev, 5125 "Link Speed was downgraded by SmartSpeed\n"); 5126 5127 /* On supported PHYs, check for duplex mismatch only 5128 * if link has autonegotiated at 10/100 half 5129 */ 5130 if ((hw->phy.type == e1000_phy_igp_3 || 5131 hw->phy.type == e1000_phy_bm) && 5132 hw->mac.autoneg && 5133 (adapter->link_speed == SPEED_10 || 5134 adapter->link_speed == SPEED_100) && 5135 (adapter->link_duplex == HALF_DUPLEX)) { 5136 u16 autoneg_exp; 5137 5138 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp); 5139 5140 if (!(autoneg_exp & EXPANSION_NWAY)) 5141 e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n"); 5142 } 5143 5144 /* adjust timeout factor according to speed/duplex */ 5145 adapter->tx_timeout_factor = 1; 5146 switch (adapter->link_speed) { 5147 case SPEED_10: 5148 txb2b = false; 5149 adapter->tx_timeout_factor = 16; 5150 break; 5151 case SPEED_100: 5152 txb2b = false; 5153 adapter->tx_timeout_factor = 10; 5154 break; 5155 } 5156 5157 /* workaround: re-program speed mode bit after 5158 * link-up event 5159 */ 5160 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) && 5161 !txb2b) { 5162 u32 tarc0; 5163 5164 tarc0 = er32(TARC(0)); 5165 tarc0 &= ~SPEED_MODE_BIT; 5166 ew32(TARC(0), tarc0); 5167 } 5168 5169 /* disable TSO for pcie and 10/100 speeds, to avoid 5170 * some hardware issues 5171 */ 5172 if (!(adapter->flags & FLAG_TSO_FORCE)) { 5173 switch (adapter->link_speed) { 5174 case SPEED_10: 5175 case SPEED_100: 5176 e_info("10/100 speed: disabling TSO\n"); 5177 netdev->features &= ~NETIF_F_TSO; 5178 netdev->features &= ~NETIF_F_TSO6; 5179 break; 5180 case SPEED_1000: 5181 netdev->features |= NETIF_F_TSO; 5182 netdev->features |= NETIF_F_TSO6; 5183 break; 5184 default: 5185 /* oops */ 5186 break; 5187 } 5188 } 5189 5190 /* enable transmits in the hardware, need to do this 5191 * after setting TARC(0) 5192 */ 5193 tctl = er32(TCTL); 5194 tctl |= E1000_TCTL_EN; 5195 ew32(TCTL, tctl); 5196 5197 /* Perform any post-link-up configuration before 5198 * reporting link up. 5199 */ 5200 if (phy->ops.cfg_on_link_up) 5201 phy->ops.cfg_on_link_up(hw); 5202 5203 netif_carrier_on(netdev); 5204 5205 if (!test_bit(__E1000_DOWN, &adapter->state)) 5206 mod_timer(&adapter->phy_info_timer, 5207 round_jiffies(jiffies + 2 * HZ)); 5208 } 5209 } else { 5210 if (netif_carrier_ok(netdev)) { 5211 adapter->link_speed = 0; 5212 adapter->link_duplex = 0; 5213 /* Link status message must follow this format */ 5214 pr_info("%s NIC Link is Down\n", adapter->netdev->name); 5215 netif_carrier_off(netdev); 5216 if (!test_bit(__E1000_DOWN, &adapter->state)) 5217 mod_timer(&adapter->phy_info_timer, 5218 round_jiffies(jiffies + 2 * HZ)); 5219 5220 /* 8000ES2LAN requires a Rx packet buffer work-around 5221 * on link down event; reset the controller to flush 5222 * the Rx packet buffer. 5223 */ 5224 if (adapter->flags & FLAG_RX_NEEDS_RESTART) 5225 adapter->flags |= FLAG_RESTART_NOW; 5226 else 5227 pm_schedule_suspend(netdev->dev.parent, 5228 LINK_TIMEOUT); 5229 } 5230 } 5231 5232 link_up: 5233 spin_lock(&adapter->stats64_lock); 5234 e1000e_update_stats(adapter); 5235 5236 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; 5237 adapter->tpt_old = adapter->stats.tpt; 5238 mac->collision_delta = adapter->stats.colc - adapter->colc_old; 5239 adapter->colc_old = adapter->stats.colc; 5240 5241 adapter->gorc = adapter->stats.gorc - adapter->gorc_old; 5242 adapter->gorc_old = adapter->stats.gorc; 5243 adapter->gotc = adapter->stats.gotc - adapter->gotc_old; 5244 adapter->gotc_old = adapter->stats.gotc; 5245 spin_unlock(&adapter->stats64_lock); 5246 5247 /* If the link is lost the controller stops DMA, but 5248 * if there is queued Tx work it cannot be done. So 5249 * reset the controller to flush the Tx packet buffers. 5250 */ 5251 if (!netif_carrier_ok(netdev) && 5252 (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) 5253 adapter->flags |= FLAG_RESTART_NOW; 5254 5255 /* If reset is necessary, do it outside of interrupt context. */ 5256 if (adapter->flags & FLAG_RESTART_NOW) { 5257 schedule_work(&adapter->reset_task); 5258 /* return immediately since reset is imminent */ 5259 return; 5260 } 5261 5262 e1000e_update_adaptive(&adapter->hw); 5263 5264 /* Simple mode for Interrupt Throttle Rate (ITR) */ 5265 if (adapter->itr_setting == 4) { 5266 /* Symmetric Tx/Rx gets a reduced ITR=2000; 5267 * Total asymmetrical Tx or Rx gets ITR=8000; 5268 * everyone else is between 2000-8000. 5269 */ 5270 u32 goc = (adapter->gotc + adapter->gorc) / 10000; 5271 u32 dif = (adapter->gotc > adapter->gorc ? 5272 adapter->gotc - adapter->gorc : 5273 adapter->gorc - adapter->gotc) / 10000; 5274 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; 5275 5276 e1000e_write_itr(adapter, itr); 5277 } 5278 5279 /* Cause software interrupt to ensure Rx ring is cleaned */ 5280 if (adapter->msix_entries) 5281 ew32(ICS, adapter->rx_ring->ims_val); 5282 else 5283 ew32(ICS, E1000_ICS_RXDMT0); 5284 5285 /* flush pending descriptors to memory before detecting Tx hang */ 5286 e1000e_flush_descriptors(adapter); 5287 5288 /* Force detection of hung controller every watchdog period */ 5289 adapter->detect_tx_hung = true; 5290 5291 /* With 82571 controllers, LAA may be overwritten due to controller 5292 * reset from the other port. Set the appropriate LAA in RAR[0] 5293 */ 5294 if (e1000e_get_laa_state_82571(hw)) 5295 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0); 5296 5297 if (adapter->flags2 & FLAG2_CHECK_PHY_HANG) 5298 e1000e_check_82574_phy_workaround(adapter); 5299 5300 /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */ 5301 if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) { 5302 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) && 5303 (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) { 5304 er32(RXSTMPH); 5305 adapter->rx_hwtstamp_cleared++; 5306 } else { 5307 adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP; 5308 } 5309 } 5310 5311 /* Reset the timer */ 5312 if (!test_bit(__E1000_DOWN, &adapter->state)) 5313 mod_timer(&adapter->watchdog_timer, 5314 round_jiffies(jiffies + 2 * HZ)); 5315 } 5316 5317 #define E1000_TX_FLAGS_CSUM 0x00000001 5318 #define E1000_TX_FLAGS_VLAN 0x00000002 5319 #define E1000_TX_FLAGS_TSO 0x00000004 5320 #define E1000_TX_FLAGS_IPV4 0x00000008 5321 #define E1000_TX_FLAGS_NO_FCS 0x00000010 5322 #define E1000_TX_FLAGS_HWTSTAMP 0x00000020 5323 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 5324 #define E1000_TX_FLAGS_VLAN_SHIFT 16 5325 5326 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb, 5327 __be16 protocol) 5328 { 5329 struct e1000_context_desc *context_desc; 5330 struct e1000_buffer *buffer_info; 5331 unsigned int i; 5332 u32 cmd_length = 0; 5333 u16 ipcse = 0, mss; 5334 u8 ipcss, ipcso, tucss, tucso, hdr_len; 5335 int err; 5336 5337 if (!skb_is_gso(skb)) 5338 return 0; 5339 5340 err = skb_cow_head(skb, 0); 5341 if (err < 0) 5342 return err; 5343 5344 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 5345 mss = skb_shinfo(skb)->gso_size; 5346 if (protocol == htons(ETH_P_IP)) { 5347 struct iphdr *iph = ip_hdr(skb); 5348 iph->tot_len = 0; 5349 iph->check = 0; 5350 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, 5351 0, IPPROTO_TCP, 0); 5352 cmd_length = E1000_TXD_CMD_IP; 5353 ipcse = skb_transport_offset(skb) - 1; 5354 } else if (skb_is_gso_v6(skb)) { 5355 ipv6_hdr(skb)->payload_len = 0; 5356 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5357 &ipv6_hdr(skb)->daddr, 5358 0, IPPROTO_TCP, 0); 5359 ipcse = 0; 5360 } 5361 ipcss = skb_network_offset(skb); 5362 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; 5363 tucss = skb_transport_offset(skb); 5364 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; 5365 5366 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | 5367 E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); 5368 5369 i = tx_ring->next_to_use; 5370 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 5371 buffer_info = &tx_ring->buffer_info[i]; 5372 5373 context_desc->lower_setup.ip_fields.ipcss = ipcss; 5374 context_desc->lower_setup.ip_fields.ipcso = ipcso; 5375 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); 5376 context_desc->upper_setup.tcp_fields.tucss = tucss; 5377 context_desc->upper_setup.tcp_fields.tucso = tucso; 5378 context_desc->upper_setup.tcp_fields.tucse = 0; 5379 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); 5380 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; 5381 context_desc->cmd_and_length = cpu_to_le32(cmd_length); 5382 5383 buffer_info->time_stamp = jiffies; 5384 buffer_info->next_to_watch = i; 5385 5386 i++; 5387 if (i == tx_ring->count) 5388 i = 0; 5389 tx_ring->next_to_use = i; 5390 5391 return 1; 5392 } 5393 5394 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb, 5395 __be16 protocol) 5396 { 5397 struct e1000_adapter *adapter = tx_ring->adapter; 5398 struct e1000_context_desc *context_desc; 5399 struct e1000_buffer *buffer_info; 5400 unsigned int i; 5401 u8 css; 5402 u32 cmd_len = E1000_TXD_CMD_DEXT; 5403 5404 if (skb->ip_summed != CHECKSUM_PARTIAL) 5405 return false; 5406 5407 switch (protocol) { 5408 case cpu_to_be16(ETH_P_IP): 5409 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 5410 cmd_len |= E1000_TXD_CMD_TCP; 5411 break; 5412 case cpu_to_be16(ETH_P_IPV6): 5413 /* XXX not handling all IPV6 headers */ 5414 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 5415 cmd_len |= E1000_TXD_CMD_TCP; 5416 break; 5417 default: 5418 if (unlikely(net_ratelimit())) 5419 e_warn("checksum_partial proto=%x!\n", 5420 be16_to_cpu(protocol)); 5421 break; 5422 } 5423 5424 css = skb_checksum_start_offset(skb); 5425 5426 i = tx_ring->next_to_use; 5427 buffer_info = &tx_ring->buffer_info[i]; 5428 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 5429 5430 context_desc->lower_setup.ip_config = 0; 5431 context_desc->upper_setup.tcp_fields.tucss = css; 5432 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset; 5433 context_desc->upper_setup.tcp_fields.tucse = 0; 5434 context_desc->tcp_seg_setup.data = 0; 5435 context_desc->cmd_and_length = cpu_to_le32(cmd_len); 5436 5437 buffer_info->time_stamp = jiffies; 5438 buffer_info->next_to_watch = i; 5439 5440 i++; 5441 if (i == tx_ring->count) 5442 i = 0; 5443 tx_ring->next_to_use = i; 5444 5445 return true; 5446 } 5447 5448 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb, 5449 unsigned int first, unsigned int max_per_txd, 5450 unsigned int nr_frags) 5451 { 5452 struct e1000_adapter *adapter = tx_ring->adapter; 5453 struct pci_dev *pdev = adapter->pdev; 5454 struct e1000_buffer *buffer_info; 5455 unsigned int len = skb_headlen(skb); 5456 unsigned int offset = 0, size, count = 0, i; 5457 unsigned int f, bytecount, segs; 5458 5459 i = tx_ring->next_to_use; 5460 5461 while (len) { 5462 buffer_info = &tx_ring->buffer_info[i]; 5463 size = min(len, max_per_txd); 5464 5465 buffer_info->length = size; 5466 buffer_info->time_stamp = jiffies; 5467 buffer_info->next_to_watch = i; 5468 buffer_info->dma = dma_map_single(&pdev->dev, 5469 skb->data + offset, 5470 size, DMA_TO_DEVICE); 5471 buffer_info->mapped_as_page = false; 5472 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 5473 goto dma_error; 5474 5475 len -= size; 5476 offset += size; 5477 count++; 5478 5479 if (len) { 5480 i++; 5481 if (i == tx_ring->count) 5482 i = 0; 5483 } 5484 } 5485 5486 for (f = 0; f < nr_frags; f++) { 5487 const struct skb_frag_struct *frag; 5488 5489 frag = &skb_shinfo(skb)->frags[f]; 5490 len = skb_frag_size(frag); 5491 offset = 0; 5492 5493 while (len) { 5494 i++; 5495 if (i == tx_ring->count) 5496 i = 0; 5497 5498 buffer_info = &tx_ring->buffer_info[i]; 5499 size = min(len, max_per_txd); 5500 5501 buffer_info->length = size; 5502 buffer_info->time_stamp = jiffies; 5503 buffer_info->next_to_watch = i; 5504 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 5505 offset, size, 5506 DMA_TO_DEVICE); 5507 buffer_info->mapped_as_page = true; 5508 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 5509 goto dma_error; 5510 5511 len -= size; 5512 offset += size; 5513 count++; 5514 } 5515 } 5516 5517 segs = skb_shinfo(skb)->gso_segs ? : 1; 5518 /* multiply data chunks by size of headers */ 5519 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len; 5520 5521 tx_ring->buffer_info[i].skb = skb; 5522 tx_ring->buffer_info[i].segs = segs; 5523 tx_ring->buffer_info[i].bytecount = bytecount; 5524 tx_ring->buffer_info[first].next_to_watch = i; 5525 5526 return count; 5527 5528 dma_error: 5529 dev_err(&pdev->dev, "Tx DMA map failed\n"); 5530 buffer_info->dma = 0; 5531 if (count) 5532 count--; 5533 5534 while (count--) { 5535 if (i == 0) 5536 i += tx_ring->count; 5537 i--; 5538 buffer_info = &tx_ring->buffer_info[i]; 5539 e1000_put_txbuf(tx_ring, buffer_info); 5540 } 5541 5542 return 0; 5543 } 5544 5545 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count) 5546 { 5547 struct e1000_adapter *adapter = tx_ring->adapter; 5548 struct e1000_tx_desc *tx_desc = NULL; 5549 struct e1000_buffer *buffer_info; 5550 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; 5551 unsigned int i; 5552 5553 if (tx_flags & E1000_TX_FLAGS_TSO) { 5554 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | 5555 E1000_TXD_CMD_TSE; 5556 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 5557 5558 if (tx_flags & E1000_TX_FLAGS_IPV4) 5559 txd_upper |= E1000_TXD_POPTS_IXSM << 8; 5560 } 5561 5562 if (tx_flags & E1000_TX_FLAGS_CSUM) { 5563 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; 5564 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 5565 } 5566 5567 if (tx_flags & E1000_TX_FLAGS_VLAN) { 5568 txd_lower |= E1000_TXD_CMD_VLE; 5569 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); 5570 } 5571 5572 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) 5573 txd_lower &= ~(E1000_TXD_CMD_IFCS); 5574 5575 if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) { 5576 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; 5577 txd_upper |= E1000_TXD_EXTCMD_TSTAMP; 5578 } 5579 5580 i = tx_ring->next_to_use; 5581 5582 do { 5583 buffer_info = &tx_ring->buffer_info[i]; 5584 tx_desc = E1000_TX_DESC(*tx_ring, i); 5585 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 5586 tx_desc->lower.data = cpu_to_le32(txd_lower | 5587 buffer_info->length); 5588 tx_desc->upper.data = cpu_to_le32(txd_upper); 5589 5590 i++; 5591 if (i == tx_ring->count) 5592 i = 0; 5593 } while (--count > 0); 5594 5595 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); 5596 5597 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */ 5598 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) 5599 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS)); 5600 5601 /* Force memory writes to complete before letting h/w 5602 * know there are new descriptors to fetch. (Only 5603 * applicable for weak-ordered memory model archs, 5604 * such as IA-64). 5605 */ 5606 wmb(); 5607 5608 tx_ring->next_to_use = i; 5609 } 5610 5611 #define MINIMUM_DHCP_PACKET_SIZE 282 5612 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter, 5613 struct sk_buff *skb) 5614 { 5615 struct e1000_hw *hw = &adapter->hw; 5616 u16 length, offset; 5617 5618 if (skb_vlan_tag_present(skb) && 5619 !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) && 5620 (adapter->hw.mng_cookie.status & 5621 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))) 5622 return 0; 5623 5624 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE) 5625 return 0; 5626 5627 if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP)) 5628 return 0; 5629 5630 { 5631 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14); 5632 struct udphdr *udp; 5633 5634 if (ip->protocol != IPPROTO_UDP) 5635 return 0; 5636 5637 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2)); 5638 if (ntohs(udp->dest) != 67) 5639 return 0; 5640 5641 offset = (u8 *)udp + 8 - skb->data; 5642 length = skb->len - offset; 5643 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length); 5644 } 5645 5646 return 0; 5647 } 5648 5649 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size) 5650 { 5651 struct e1000_adapter *adapter = tx_ring->adapter; 5652 5653 netif_stop_queue(adapter->netdev); 5654 /* Herbert's original patch had: 5655 * smp_mb__after_netif_stop_queue(); 5656 * but since that doesn't exist yet, just open code it. 5657 */ 5658 smp_mb(); 5659 5660 /* We need to check again in a case another CPU has just 5661 * made room available. 5662 */ 5663 if (e1000_desc_unused(tx_ring) < size) 5664 return -EBUSY; 5665 5666 /* A reprieve! */ 5667 netif_start_queue(adapter->netdev); 5668 ++adapter->restart_queue; 5669 return 0; 5670 } 5671 5672 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size) 5673 { 5674 BUG_ON(size > tx_ring->count); 5675 5676 if (e1000_desc_unused(tx_ring) >= size) 5677 return 0; 5678 return __e1000_maybe_stop_tx(tx_ring, size); 5679 } 5680 5681 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, 5682 struct net_device *netdev) 5683 { 5684 struct e1000_adapter *adapter = netdev_priv(netdev); 5685 struct e1000_ring *tx_ring = adapter->tx_ring; 5686 unsigned int first; 5687 unsigned int tx_flags = 0; 5688 unsigned int len = skb_headlen(skb); 5689 unsigned int nr_frags; 5690 unsigned int mss; 5691 int count = 0; 5692 int tso; 5693 unsigned int f; 5694 __be16 protocol = vlan_get_protocol(skb); 5695 5696 if (test_bit(__E1000_DOWN, &adapter->state)) { 5697 dev_kfree_skb_any(skb); 5698 return NETDEV_TX_OK; 5699 } 5700 5701 if (skb->len <= 0) { 5702 dev_kfree_skb_any(skb); 5703 return NETDEV_TX_OK; 5704 } 5705 5706 /* The minimum packet size with TCTL.PSP set is 17 bytes so 5707 * pad skb in order to meet this minimum size requirement 5708 */ 5709 if (skb_put_padto(skb, 17)) 5710 return NETDEV_TX_OK; 5711 5712 mss = skb_shinfo(skb)->gso_size; 5713 if (mss) { 5714 u8 hdr_len; 5715 5716 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data 5717 * points to just header, pull a few bytes of payload from 5718 * frags into skb->data 5719 */ 5720 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 5721 /* we do this workaround for ES2LAN, but it is un-necessary, 5722 * avoiding it could save a lot of cycles 5723 */ 5724 if (skb->data_len && (hdr_len == len)) { 5725 unsigned int pull_size; 5726 5727 pull_size = min_t(unsigned int, 4, skb->data_len); 5728 if (!__pskb_pull_tail(skb, pull_size)) { 5729 e_err("__pskb_pull_tail failed.\n"); 5730 dev_kfree_skb_any(skb); 5731 return NETDEV_TX_OK; 5732 } 5733 len = skb_headlen(skb); 5734 } 5735 } 5736 5737 /* reserve a descriptor for the offload context */ 5738 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) 5739 count++; 5740 count++; 5741 5742 count += DIV_ROUND_UP(len, adapter->tx_fifo_limit); 5743 5744 nr_frags = skb_shinfo(skb)->nr_frags; 5745 for (f = 0; f < nr_frags; f++) 5746 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]), 5747 adapter->tx_fifo_limit); 5748 5749 if (adapter->hw.mac.tx_pkt_filtering) 5750 e1000_transfer_dhcp_info(adapter, skb); 5751 5752 /* need: count + 2 desc gap to keep tail from touching 5753 * head, otherwise try next time 5754 */ 5755 if (e1000_maybe_stop_tx(tx_ring, count + 2)) 5756 return NETDEV_TX_BUSY; 5757 5758 if (skb_vlan_tag_present(skb)) { 5759 tx_flags |= E1000_TX_FLAGS_VLAN; 5760 tx_flags |= (skb_vlan_tag_get(skb) << 5761 E1000_TX_FLAGS_VLAN_SHIFT); 5762 } 5763 5764 first = tx_ring->next_to_use; 5765 5766 tso = e1000_tso(tx_ring, skb, protocol); 5767 if (tso < 0) { 5768 dev_kfree_skb_any(skb); 5769 return NETDEV_TX_OK; 5770 } 5771 5772 if (tso) 5773 tx_flags |= E1000_TX_FLAGS_TSO; 5774 else if (e1000_tx_csum(tx_ring, skb, protocol)) 5775 tx_flags |= E1000_TX_FLAGS_CSUM; 5776 5777 /* Old method was to assume IPv4 packet by default if TSO was enabled. 5778 * 82571 hardware supports TSO capabilities for IPv6 as well... 5779 * no longer assume, we must. 5780 */ 5781 if (protocol == htons(ETH_P_IP)) 5782 tx_flags |= E1000_TX_FLAGS_IPV4; 5783 5784 if (unlikely(skb->no_fcs)) 5785 tx_flags |= E1000_TX_FLAGS_NO_FCS; 5786 5787 /* if count is 0 then mapping error has occurred */ 5788 count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit, 5789 nr_frags); 5790 if (count) { 5791 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 5792 (adapter->flags & FLAG_HAS_HW_TIMESTAMP) && 5793 !adapter->tx_hwtstamp_skb) { 5794 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 5795 tx_flags |= E1000_TX_FLAGS_HWTSTAMP; 5796 adapter->tx_hwtstamp_skb = skb_get(skb); 5797 adapter->tx_hwtstamp_start = jiffies; 5798 schedule_work(&adapter->tx_hwtstamp_work); 5799 } else { 5800 skb_tx_timestamp(skb); 5801 } 5802 5803 netdev_sent_queue(netdev, skb->len); 5804 e1000_tx_queue(tx_ring, tx_flags, count); 5805 /* Make sure there is space in the ring for the next send. */ 5806 e1000_maybe_stop_tx(tx_ring, 5807 (MAX_SKB_FRAGS * 5808 DIV_ROUND_UP(PAGE_SIZE, 5809 adapter->tx_fifo_limit) + 2)); 5810 5811 if (!skb->xmit_more || 5812 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) { 5813 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 5814 e1000e_update_tdt_wa(tx_ring, 5815 tx_ring->next_to_use); 5816 else 5817 writel(tx_ring->next_to_use, tx_ring->tail); 5818 5819 /* we need this if more than one processor can write 5820 * to our tail at a time, it synchronizes IO on 5821 *IA64/Altix systems 5822 */ 5823 mmiowb(); 5824 } 5825 } else { 5826 dev_kfree_skb_any(skb); 5827 tx_ring->buffer_info[first].time_stamp = 0; 5828 tx_ring->next_to_use = first; 5829 } 5830 5831 return NETDEV_TX_OK; 5832 } 5833 5834 /** 5835 * e1000_tx_timeout - Respond to a Tx Hang 5836 * @netdev: network interface device structure 5837 **/ 5838 static void e1000_tx_timeout(struct net_device *netdev) 5839 { 5840 struct e1000_adapter *adapter = netdev_priv(netdev); 5841 5842 /* Do the reset outside of interrupt context */ 5843 adapter->tx_timeout_count++; 5844 schedule_work(&adapter->reset_task); 5845 } 5846 5847 static void e1000_reset_task(struct work_struct *work) 5848 { 5849 struct e1000_adapter *adapter; 5850 adapter = container_of(work, struct e1000_adapter, reset_task); 5851 5852 /* don't run the task if already down */ 5853 if (test_bit(__E1000_DOWN, &adapter->state)) 5854 return; 5855 5856 if (!(adapter->flags & FLAG_RESTART_NOW)) { 5857 e1000e_dump(adapter); 5858 e_err("Reset adapter unexpectedly\n"); 5859 } 5860 e1000e_reinit_locked(adapter); 5861 } 5862 5863 /** 5864 * e1000_get_stats64 - Get System Network Statistics 5865 * @netdev: network interface device structure 5866 * @stats: rtnl_link_stats64 pointer 5867 * 5868 * Returns the address of the device statistics structure. 5869 **/ 5870 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev, 5871 struct rtnl_link_stats64 *stats) 5872 { 5873 struct e1000_adapter *adapter = netdev_priv(netdev); 5874 5875 memset(stats, 0, sizeof(struct rtnl_link_stats64)); 5876 spin_lock(&adapter->stats64_lock); 5877 e1000e_update_stats(adapter); 5878 /* Fill out the OS statistics structure */ 5879 stats->rx_bytes = adapter->stats.gorc; 5880 stats->rx_packets = adapter->stats.gprc; 5881 stats->tx_bytes = adapter->stats.gotc; 5882 stats->tx_packets = adapter->stats.gptc; 5883 stats->multicast = adapter->stats.mprc; 5884 stats->collisions = adapter->stats.colc; 5885 5886 /* Rx Errors */ 5887 5888 /* RLEC on some newer hardware can be incorrect so build 5889 * our own version based on RUC and ROC 5890 */ 5891 stats->rx_errors = adapter->stats.rxerrc + 5892 adapter->stats.crcerrs + adapter->stats.algnerrc + 5893 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr; 5894 stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc; 5895 stats->rx_crc_errors = adapter->stats.crcerrs; 5896 stats->rx_frame_errors = adapter->stats.algnerrc; 5897 stats->rx_missed_errors = adapter->stats.mpc; 5898 5899 /* Tx Errors */ 5900 stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol; 5901 stats->tx_aborted_errors = adapter->stats.ecol; 5902 stats->tx_window_errors = adapter->stats.latecol; 5903 stats->tx_carrier_errors = adapter->stats.tncrs; 5904 5905 /* Tx Dropped needs to be maintained elsewhere */ 5906 5907 spin_unlock(&adapter->stats64_lock); 5908 return stats; 5909 } 5910 5911 /** 5912 * e1000_change_mtu - Change the Maximum Transfer Unit 5913 * @netdev: network interface device structure 5914 * @new_mtu: new value for maximum frame size 5915 * 5916 * Returns 0 on success, negative on failure 5917 **/ 5918 static int e1000_change_mtu(struct net_device *netdev, int new_mtu) 5919 { 5920 struct e1000_adapter *adapter = netdev_priv(netdev); 5921 int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN; 5922 5923 /* Jumbo frame support */ 5924 if ((max_frame > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) && 5925 !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) { 5926 e_err("Jumbo Frames not supported.\n"); 5927 return -EINVAL; 5928 } 5929 5930 /* Supported frame sizes */ 5931 if ((new_mtu < (VLAN_ETH_ZLEN + ETH_FCS_LEN)) || 5932 (max_frame > adapter->max_hw_frame_size)) { 5933 e_err("Unsupported MTU setting\n"); 5934 return -EINVAL; 5935 } 5936 5937 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */ 5938 if ((adapter->hw.mac.type >= e1000_pch2lan) && 5939 !(adapter->flags2 & FLAG2_CRC_STRIPPING) && 5940 (new_mtu > ETH_DATA_LEN)) { 5941 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n"); 5942 return -EINVAL; 5943 } 5944 5945 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 5946 usleep_range(1000, 2000); 5947 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */ 5948 adapter->max_frame_size = max_frame; 5949 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu); 5950 netdev->mtu = new_mtu; 5951 5952 pm_runtime_get_sync(netdev->dev.parent); 5953 5954 if (netif_running(netdev)) 5955 e1000e_down(adapter, true); 5956 5957 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN 5958 * means we reserve 2 more, this pushes us to allocate from the next 5959 * larger slab size. 5960 * i.e. RXBUFFER_2048 --> size-4096 slab 5961 * However with the new *_jumbo_rx* routines, jumbo receives will use 5962 * fragmented skbs 5963 */ 5964 5965 if (max_frame <= 2048) 5966 adapter->rx_buffer_len = 2048; 5967 else 5968 adapter->rx_buffer_len = 4096; 5969 5970 /* adjust allocation if LPE protects us, and we aren't using SBP */ 5971 if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) 5972 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN; 5973 5974 if (netif_running(netdev)) 5975 e1000e_up(adapter); 5976 else 5977 e1000e_reset(adapter); 5978 5979 pm_runtime_put_sync(netdev->dev.parent); 5980 5981 clear_bit(__E1000_RESETTING, &adapter->state); 5982 5983 return 0; 5984 } 5985 5986 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, 5987 int cmd) 5988 { 5989 struct e1000_adapter *adapter = netdev_priv(netdev); 5990 struct mii_ioctl_data *data = if_mii(ifr); 5991 5992 if (adapter->hw.phy.media_type != e1000_media_type_copper) 5993 return -EOPNOTSUPP; 5994 5995 switch (cmd) { 5996 case SIOCGMIIPHY: 5997 data->phy_id = adapter->hw.phy.addr; 5998 break; 5999 case SIOCGMIIREG: 6000 e1000_phy_read_status(adapter); 6001 6002 switch (data->reg_num & 0x1F) { 6003 case MII_BMCR: 6004 data->val_out = adapter->phy_regs.bmcr; 6005 break; 6006 case MII_BMSR: 6007 data->val_out = adapter->phy_regs.bmsr; 6008 break; 6009 case MII_PHYSID1: 6010 data->val_out = (adapter->hw.phy.id >> 16); 6011 break; 6012 case MII_PHYSID2: 6013 data->val_out = (adapter->hw.phy.id & 0xFFFF); 6014 break; 6015 case MII_ADVERTISE: 6016 data->val_out = adapter->phy_regs.advertise; 6017 break; 6018 case MII_LPA: 6019 data->val_out = adapter->phy_regs.lpa; 6020 break; 6021 case MII_EXPANSION: 6022 data->val_out = adapter->phy_regs.expansion; 6023 break; 6024 case MII_CTRL1000: 6025 data->val_out = adapter->phy_regs.ctrl1000; 6026 break; 6027 case MII_STAT1000: 6028 data->val_out = adapter->phy_regs.stat1000; 6029 break; 6030 case MII_ESTATUS: 6031 data->val_out = adapter->phy_regs.estatus; 6032 break; 6033 default: 6034 return -EIO; 6035 } 6036 break; 6037 case SIOCSMIIREG: 6038 default: 6039 return -EOPNOTSUPP; 6040 } 6041 return 0; 6042 } 6043 6044 /** 6045 * e1000e_hwtstamp_ioctl - control hardware time stamping 6046 * @netdev: network interface device structure 6047 * @ifreq: interface request 6048 * 6049 * Outgoing time stamping can be enabled and disabled. Play nice and 6050 * disable it when requested, although it shouldn't cause any overhead 6051 * when no packet needs it. At most one packet in the queue may be 6052 * marked for time stamping, otherwise it would be impossible to tell 6053 * for sure to which packet the hardware time stamp belongs. 6054 * 6055 * Incoming time stamping has to be configured via the hardware filters. 6056 * Not all combinations are supported, in particular event type has to be 6057 * specified. Matching the kind of event packet is not supported, with the 6058 * exception of "all V2 events regardless of level 2 or 4". 6059 **/ 6060 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr) 6061 { 6062 struct e1000_adapter *adapter = netdev_priv(netdev); 6063 struct hwtstamp_config config; 6064 int ret_val; 6065 6066 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 6067 return -EFAULT; 6068 6069 ret_val = e1000e_config_hwtstamp(adapter, &config); 6070 if (ret_val) 6071 return ret_val; 6072 6073 switch (config.rx_filter) { 6074 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 6075 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 6076 case HWTSTAMP_FILTER_PTP_V2_SYNC: 6077 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 6078 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 6079 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 6080 /* With V2 type filters which specify a Sync or Delay Request, 6081 * Path Delay Request/Response messages are also time stamped 6082 * by hardware so notify the caller the requested packets plus 6083 * some others are time stamped. 6084 */ 6085 config.rx_filter = HWTSTAMP_FILTER_SOME; 6086 break; 6087 default: 6088 break; 6089 } 6090 6091 return copy_to_user(ifr->ifr_data, &config, 6092 sizeof(config)) ? -EFAULT : 0; 6093 } 6094 6095 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr) 6096 { 6097 struct e1000_adapter *adapter = netdev_priv(netdev); 6098 6099 return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config, 6100 sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0; 6101 } 6102 6103 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 6104 { 6105 switch (cmd) { 6106 case SIOCGMIIPHY: 6107 case SIOCGMIIREG: 6108 case SIOCSMIIREG: 6109 return e1000_mii_ioctl(netdev, ifr, cmd); 6110 case SIOCSHWTSTAMP: 6111 return e1000e_hwtstamp_set(netdev, ifr); 6112 case SIOCGHWTSTAMP: 6113 return e1000e_hwtstamp_get(netdev, ifr); 6114 default: 6115 return -EOPNOTSUPP; 6116 } 6117 } 6118 6119 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc) 6120 { 6121 struct e1000_hw *hw = &adapter->hw; 6122 u32 i, mac_reg, wuc; 6123 u16 phy_reg, wuc_enable; 6124 int retval; 6125 6126 /* copy MAC RARs to PHY RARs */ 6127 e1000_copy_rx_addrs_to_phy_ich8lan(hw); 6128 6129 retval = hw->phy.ops.acquire(hw); 6130 if (retval) { 6131 e_err("Could not acquire PHY\n"); 6132 return retval; 6133 } 6134 6135 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */ 6136 retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable); 6137 if (retval) 6138 goto release; 6139 6140 /* copy MAC MTA to PHY MTA - only needed for pchlan */ 6141 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) { 6142 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i); 6143 hw->phy.ops.write_reg_page(hw, BM_MTA(i), 6144 (u16)(mac_reg & 0xFFFF)); 6145 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1, 6146 (u16)((mac_reg >> 16) & 0xFFFF)); 6147 } 6148 6149 /* configure PHY Rx Control register */ 6150 hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg); 6151 mac_reg = er32(RCTL); 6152 if (mac_reg & E1000_RCTL_UPE) 6153 phy_reg |= BM_RCTL_UPE; 6154 if (mac_reg & E1000_RCTL_MPE) 6155 phy_reg |= BM_RCTL_MPE; 6156 phy_reg &= ~(BM_RCTL_MO_MASK); 6157 if (mac_reg & E1000_RCTL_MO_3) 6158 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT) 6159 << BM_RCTL_MO_SHIFT); 6160 if (mac_reg & E1000_RCTL_BAM) 6161 phy_reg |= BM_RCTL_BAM; 6162 if (mac_reg & E1000_RCTL_PMCF) 6163 phy_reg |= BM_RCTL_PMCF; 6164 mac_reg = er32(CTRL); 6165 if (mac_reg & E1000_CTRL_RFCE) 6166 phy_reg |= BM_RCTL_RFCE; 6167 hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg); 6168 6169 wuc = E1000_WUC_PME_EN; 6170 if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC)) 6171 wuc |= E1000_WUC_APME; 6172 6173 /* enable PHY wakeup in MAC register */ 6174 ew32(WUFC, wufc); 6175 ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME | 6176 E1000_WUC_PME_STATUS | wuc)); 6177 6178 /* configure and enable PHY wakeup in PHY registers */ 6179 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc); 6180 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc); 6181 6182 /* activate PHY wakeup */ 6183 wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT; 6184 retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable); 6185 if (retval) 6186 e_err("Could not set PHY Host Wakeup bit\n"); 6187 release: 6188 hw->phy.ops.release(hw); 6189 6190 return retval; 6191 } 6192 6193 static void e1000e_flush_lpic(struct pci_dev *pdev) 6194 { 6195 struct net_device *netdev = pci_get_drvdata(pdev); 6196 struct e1000_adapter *adapter = netdev_priv(netdev); 6197 struct e1000_hw *hw = &adapter->hw; 6198 u32 ret_val; 6199 6200 pm_runtime_get_sync(netdev->dev.parent); 6201 6202 ret_val = hw->phy.ops.acquire(hw); 6203 if (ret_val) 6204 goto fl_out; 6205 6206 pr_info("EEE TX LPI TIMER: %08X\n", 6207 er32(LPIC) >> E1000_LPIC_LPIET_SHIFT); 6208 6209 hw->phy.ops.release(hw); 6210 6211 fl_out: 6212 pm_runtime_put_sync(netdev->dev.parent); 6213 } 6214 6215 static int e1000e_pm_freeze(struct device *dev) 6216 { 6217 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev)); 6218 struct e1000_adapter *adapter = netdev_priv(netdev); 6219 6220 netif_device_detach(netdev); 6221 6222 if (netif_running(netdev)) { 6223 int count = E1000_CHECK_RESET_COUNT; 6224 6225 while (test_bit(__E1000_RESETTING, &adapter->state) && count--) 6226 usleep_range(10000, 20000); 6227 6228 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); 6229 6230 /* Quiesce the device without resetting the hardware */ 6231 e1000e_down(adapter, false); 6232 e1000_free_irq(adapter); 6233 } 6234 e1000e_reset_interrupt_capability(adapter); 6235 6236 /* Allow time for pending master requests to run */ 6237 e1000e_disable_pcie_master(&adapter->hw); 6238 6239 return 0; 6240 } 6241 6242 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime) 6243 { 6244 struct net_device *netdev = pci_get_drvdata(pdev); 6245 struct e1000_adapter *adapter = netdev_priv(netdev); 6246 struct e1000_hw *hw = &adapter->hw; 6247 u32 ctrl, ctrl_ext, rctl, status; 6248 /* Runtime suspend should only enable wakeup for link changes */ 6249 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol; 6250 int retval = 0; 6251 6252 status = er32(STATUS); 6253 if (status & E1000_STATUS_LU) 6254 wufc &= ~E1000_WUFC_LNKC; 6255 6256 if (wufc) { 6257 e1000_setup_rctl(adapter); 6258 e1000e_set_rx_mode(netdev); 6259 6260 /* turn on all-multi mode if wake on multicast is enabled */ 6261 if (wufc & E1000_WUFC_MC) { 6262 rctl = er32(RCTL); 6263 rctl |= E1000_RCTL_MPE; 6264 ew32(RCTL, rctl); 6265 } 6266 6267 ctrl = er32(CTRL); 6268 ctrl |= E1000_CTRL_ADVD3WUC; 6269 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP)) 6270 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT; 6271 ew32(CTRL, ctrl); 6272 6273 if (adapter->hw.phy.media_type == e1000_media_type_fiber || 6274 adapter->hw.phy.media_type == 6275 e1000_media_type_internal_serdes) { 6276 /* keep the laser running in D3 */ 6277 ctrl_ext = er32(CTRL_EXT); 6278 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA; 6279 ew32(CTRL_EXT, ctrl_ext); 6280 } 6281 6282 if (!runtime) 6283 e1000e_power_up_phy(adapter); 6284 6285 if (adapter->flags & FLAG_IS_ICH) 6286 e1000_suspend_workarounds_ich8lan(&adapter->hw); 6287 6288 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) { 6289 /* enable wakeup by the PHY */ 6290 retval = e1000_init_phy_wakeup(adapter, wufc); 6291 if (retval) 6292 return retval; 6293 } else { 6294 /* enable wakeup by the MAC */ 6295 ew32(WUFC, wufc); 6296 ew32(WUC, E1000_WUC_PME_EN); 6297 } 6298 } else { 6299 ew32(WUC, 0); 6300 ew32(WUFC, 0); 6301 6302 e1000_power_down_phy(adapter); 6303 } 6304 6305 if (adapter->hw.phy.type == e1000_phy_igp_3) { 6306 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw); 6307 } else if ((hw->mac.type == e1000_pch_lpt) || 6308 (hw->mac.type == e1000_pch_spt)) { 6309 if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC))) 6310 /* ULP does not support wake from unicast, multicast 6311 * or broadcast. 6312 */ 6313 retval = e1000_enable_ulp_lpt_lp(hw, !runtime); 6314 6315 if (retval) 6316 return retval; 6317 } 6318 6319 6320 /* Release control of h/w to f/w. If f/w is AMT enabled, this 6321 * would have already happened in close and is redundant. 6322 */ 6323 e1000e_release_hw_control(adapter); 6324 6325 pci_clear_master(pdev); 6326 6327 /* The pci-e switch on some quad port adapters will report a 6328 * correctable error when the MAC transitions from D0 to D3. To 6329 * prevent this we need to mask off the correctable errors on the 6330 * downstream port of the pci-e switch. 6331 * 6332 * We don't have the associated upstream bridge while assigning 6333 * the PCI device into guest. For example, the KVM on power is 6334 * one of the cases. 6335 */ 6336 if (adapter->flags & FLAG_IS_QUAD_PORT) { 6337 struct pci_dev *us_dev = pdev->bus->self; 6338 u16 devctl; 6339 6340 if (!us_dev) 6341 return 0; 6342 6343 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl); 6344 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, 6345 (devctl & ~PCI_EXP_DEVCTL_CERE)); 6346 6347 pci_save_state(pdev); 6348 pci_prepare_to_sleep(pdev); 6349 6350 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl); 6351 } 6352 6353 return 0; 6354 } 6355 6356 /** 6357 * __e1000e_disable_aspm - Disable ASPM states 6358 * @pdev: pointer to PCI device struct 6359 * @state: bit-mask of ASPM states to disable 6360 * @locked: indication if this context holds pci_bus_sem locked. 6361 * 6362 * Some devices *must* have certain ASPM states disabled per hardware errata. 6363 **/ 6364 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked) 6365 { 6366 struct pci_dev *parent = pdev->bus->self; 6367 u16 aspm_dis_mask = 0; 6368 u16 pdev_aspmc, parent_aspmc; 6369 6370 switch (state) { 6371 case PCIE_LINK_STATE_L0S: 6372 case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1: 6373 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S; 6374 /* fall-through - can't have L1 without L0s */ 6375 case PCIE_LINK_STATE_L1: 6376 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1; 6377 break; 6378 default: 6379 return; 6380 } 6381 6382 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc); 6383 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC; 6384 6385 if (parent) { 6386 pcie_capability_read_word(parent, PCI_EXP_LNKCTL, 6387 &parent_aspmc); 6388 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC; 6389 } 6390 6391 /* Nothing to do if the ASPM states to be disabled already are */ 6392 if (!(pdev_aspmc & aspm_dis_mask) && 6393 (!parent || !(parent_aspmc & aspm_dis_mask))) 6394 return; 6395 6396 dev_info(&pdev->dev, "Disabling ASPM %s %s\n", 6397 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ? 6398 "L0s" : "", 6399 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ? 6400 "L1" : ""); 6401 6402 #ifdef CONFIG_PCIEASPM 6403 if (locked) 6404 pci_disable_link_state_locked(pdev, state); 6405 else 6406 pci_disable_link_state(pdev, state); 6407 6408 /* Double-check ASPM control. If not disabled by the above, the 6409 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is 6410 * not enabled); override by writing PCI config space directly. 6411 */ 6412 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc); 6413 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC; 6414 6415 if (!(aspm_dis_mask & pdev_aspmc)) 6416 return; 6417 #endif 6418 6419 /* Both device and parent should have the same ASPM setting. 6420 * Disable ASPM in downstream component first and then upstream. 6421 */ 6422 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask); 6423 6424 if (parent) 6425 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL, 6426 aspm_dis_mask); 6427 } 6428 6429 /** 6430 * e1000e_disable_aspm - Disable ASPM states. 6431 * @pdev: pointer to PCI device struct 6432 * @state: bit-mask of ASPM states to disable 6433 * 6434 * This function acquires the pci_bus_sem! 6435 * Some devices *must* have certain ASPM states disabled per hardware errata. 6436 **/ 6437 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state) 6438 { 6439 __e1000e_disable_aspm(pdev, state, 0); 6440 } 6441 6442 /** 6443 * e1000e_disable_aspm_locked Disable ASPM states. 6444 * @pdev: pointer to PCI device struct 6445 * @state: bit-mask of ASPM states to disable 6446 * 6447 * This function must be called with pci_bus_sem acquired! 6448 * Some devices *must* have certain ASPM states disabled per hardware errata. 6449 **/ 6450 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state) 6451 { 6452 __e1000e_disable_aspm(pdev, state, 1); 6453 } 6454 6455 #ifdef CONFIG_PM 6456 static int __e1000_resume(struct pci_dev *pdev) 6457 { 6458 struct net_device *netdev = pci_get_drvdata(pdev); 6459 struct e1000_adapter *adapter = netdev_priv(netdev); 6460 struct e1000_hw *hw = &adapter->hw; 6461 u16 aspm_disable_flag = 0; 6462 6463 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S) 6464 aspm_disable_flag = PCIE_LINK_STATE_L0S; 6465 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1) 6466 aspm_disable_flag |= PCIE_LINK_STATE_L1; 6467 if (aspm_disable_flag) 6468 e1000e_disable_aspm_locked(pdev, aspm_disable_flag); 6469 6470 pci_set_master(pdev); 6471 6472 if (hw->mac.type >= e1000_pch2lan) 6473 e1000_resume_workarounds_pchlan(&adapter->hw); 6474 6475 e1000e_power_up_phy(adapter); 6476 6477 /* report the system wakeup cause from S3/S4 */ 6478 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) { 6479 u16 phy_data; 6480 6481 e1e_rphy(&adapter->hw, BM_WUS, &phy_data); 6482 if (phy_data) { 6483 e_info("PHY Wakeup cause - %s\n", 6484 phy_data & E1000_WUS_EX ? "Unicast Packet" : 6485 phy_data & E1000_WUS_MC ? "Multicast Packet" : 6486 phy_data & E1000_WUS_BC ? "Broadcast Packet" : 6487 phy_data & E1000_WUS_MAG ? "Magic Packet" : 6488 phy_data & E1000_WUS_LNKC ? 6489 "Link Status Change" : "other"); 6490 } 6491 e1e_wphy(&adapter->hw, BM_WUS, ~0); 6492 } else { 6493 u32 wus = er32(WUS); 6494 6495 if (wus) { 6496 e_info("MAC Wakeup cause - %s\n", 6497 wus & E1000_WUS_EX ? "Unicast Packet" : 6498 wus & E1000_WUS_MC ? "Multicast Packet" : 6499 wus & E1000_WUS_BC ? "Broadcast Packet" : 6500 wus & E1000_WUS_MAG ? "Magic Packet" : 6501 wus & E1000_WUS_LNKC ? "Link Status Change" : 6502 "other"); 6503 } 6504 ew32(WUS, ~0); 6505 } 6506 6507 e1000e_reset(adapter); 6508 6509 e1000_init_manageability_pt(adapter); 6510 6511 /* If the controller has AMT, do not set DRV_LOAD until the interface 6512 * is up. For all other cases, let the f/w know that the h/w is now 6513 * under the control of the driver. 6514 */ 6515 if (!(adapter->flags & FLAG_HAS_AMT)) 6516 e1000e_get_hw_control(adapter); 6517 6518 return 0; 6519 } 6520 6521 #ifdef CONFIG_PM_SLEEP 6522 static int e1000e_pm_thaw(struct device *dev) 6523 { 6524 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev)); 6525 struct e1000_adapter *adapter = netdev_priv(netdev); 6526 6527 e1000e_set_interrupt_capability(adapter); 6528 if (netif_running(netdev)) { 6529 u32 err = e1000_request_irq(adapter); 6530 6531 if (err) 6532 return err; 6533 6534 e1000e_up(adapter); 6535 } 6536 6537 netif_device_attach(netdev); 6538 6539 return 0; 6540 } 6541 6542 static int e1000e_pm_suspend(struct device *dev) 6543 { 6544 struct pci_dev *pdev = to_pci_dev(dev); 6545 6546 e1000e_flush_lpic(pdev); 6547 6548 e1000e_pm_freeze(dev); 6549 6550 return __e1000_shutdown(pdev, false); 6551 } 6552 6553 static int e1000e_pm_resume(struct device *dev) 6554 { 6555 struct pci_dev *pdev = to_pci_dev(dev); 6556 int rc; 6557 6558 rc = __e1000_resume(pdev); 6559 if (rc) 6560 return rc; 6561 6562 return e1000e_pm_thaw(dev); 6563 } 6564 #endif /* CONFIG_PM_SLEEP */ 6565 6566 static int e1000e_pm_runtime_idle(struct device *dev) 6567 { 6568 struct pci_dev *pdev = to_pci_dev(dev); 6569 struct net_device *netdev = pci_get_drvdata(pdev); 6570 struct e1000_adapter *adapter = netdev_priv(netdev); 6571 u16 eee_lp; 6572 6573 eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability; 6574 6575 if (!e1000e_has_link(adapter)) { 6576 adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp; 6577 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC); 6578 } 6579 6580 return -EBUSY; 6581 } 6582 6583 static int e1000e_pm_runtime_resume(struct device *dev) 6584 { 6585 struct pci_dev *pdev = to_pci_dev(dev); 6586 struct net_device *netdev = pci_get_drvdata(pdev); 6587 struct e1000_adapter *adapter = netdev_priv(netdev); 6588 int rc; 6589 6590 rc = __e1000_resume(pdev); 6591 if (rc) 6592 return rc; 6593 6594 if (netdev->flags & IFF_UP) 6595 rc = e1000e_up(adapter); 6596 6597 return rc; 6598 } 6599 6600 static int e1000e_pm_runtime_suspend(struct device *dev) 6601 { 6602 struct pci_dev *pdev = to_pci_dev(dev); 6603 struct net_device *netdev = pci_get_drvdata(pdev); 6604 struct e1000_adapter *adapter = netdev_priv(netdev); 6605 6606 if (netdev->flags & IFF_UP) { 6607 int count = E1000_CHECK_RESET_COUNT; 6608 6609 while (test_bit(__E1000_RESETTING, &adapter->state) && count--) 6610 usleep_range(10000, 20000); 6611 6612 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); 6613 6614 /* Down the device without resetting the hardware */ 6615 e1000e_down(adapter, false); 6616 } 6617 6618 if (__e1000_shutdown(pdev, true)) { 6619 e1000e_pm_runtime_resume(dev); 6620 return -EBUSY; 6621 } 6622 6623 return 0; 6624 } 6625 #endif /* CONFIG_PM */ 6626 6627 static void e1000_shutdown(struct pci_dev *pdev) 6628 { 6629 e1000e_flush_lpic(pdev); 6630 6631 e1000e_pm_freeze(&pdev->dev); 6632 6633 __e1000_shutdown(pdev, false); 6634 } 6635 6636 #ifdef CONFIG_NET_POLL_CONTROLLER 6637 6638 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data) 6639 { 6640 struct net_device *netdev = data; 6641 struct e1000_adapter *adapter = netdev_priv(netdev); 6642 6643 if (adapter->msix_entries) { 6644 int vector, msix_irq; 6645 6646 vector = 0; 6647 msix_irq = adapter->msix_entries[vector].vector; 6648 disable_irq(msix_irq); 6649 e1000_intr_msix_rx(msix_irq, netdev); 6650 enable_irq(msix_irq); 6651 6652 vector++; 6653 msix_irq = adapter->msix_entries[vector].vector; 6654 disable_irq(msix_irq); 6655 e1000_intr_msix_tx(msix_irq, netdev); 6656 enable_irq(msix_irq); 6657 6658 vector++; 6659 msix_irq = adapter->msix_entries[vector].vector; 6660 disable_irq(msix_irq); 6661 e1000_msix_other(msix_irq, netdev); 6662 enable_irq(msix_irq); 6663 } 6664 6665 return IRQ_HANDLED; 6666 } 6667 6668 /** 6669 * e1000_netpoll 6670 * @netdev: network interface device structure 6671 * 6672 * Polling 'interrupt' - used by things like netconsole to send skbs 6673 * without having to re-enable interrupts. It's not called while 6674 * the interrupt routine is executing. 6675 */ 6676 static void e1000_netpoll(struct net_device *netdev) 6677 { 6678 struct e1000_adapter *adapter = netdev_priv(netdev); 6679 6680 switch (adapter->int_mode) { 6681 case E1000E_INT_MODE_MSIX: 6682 e1000_intr_msix(adapter->pdev->irq, netdev); 6683 break; 6684 case E1000E_INT_MODE_MSI: 6685 disable_irq(adapter->pdev->irq); 6686 e1000_intr_msi(adapter->pdev->irq, netdev); 6687 enable_irq(adapter->pdev->irq); 6688 break; 6689 default: /* E1000E_INT_MODE_LEGACY */ 6690 disable_irq(adapter->pdev->irq); 6691 e1000_intr(adapter->pdev->irq, netdev); 6692 enable_irq(adapter->pdev->irq); 6693 break; 6694 } 6695 } 6696 #endif 6697 6698 /** 6699 * e1000_io_error_detected - called when PCI error is detected 6700 * @pdev: Pointer to PCI device 6701 * @state: The current pci connection state 6702 * 6703 * This function is called after a PCI bus error affecting 6704 * this device has been detected. 6705 */ 6706 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, 6707 pci_channel_state_t state) 6708 { 6709 struct net_device *netdev = pci_get_drvdata(pdev); 6710 struct e1000_adapter *adapter = netdev_priv(netdev); 6711 6712 netif_device_detach(netdev); 6713 6714 if (state == pci_channel_io_perm_failure) 6715 return PCI_ERS_RESULT_DISCONNECT; 6716 6717 if (netif_running(netdev)) 6718 e1000e_down(adapter, true); 6719 pci_disable_device(pdev); 6720 6721 /* Request a slot slot reset. */ 6722 return PCI_ERS_RESULT_NEED_RESET; 6723 } 6724 6725 /** 6726 * e1000_io_slot_reset - called after the pci bus has been reset. 6727 * @pdev: Pointer to PCI device 6728 * 6729 * Restart the card from scratch, as if from a cold-boot. Implementation 6730 * resembles the first-half of the e1000e_pm_resume routine. 6731 */ 6732 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) 6733 { 6734 struct net_device *netdev = pci_get_drvdata(pdev); 6735 struct e1000_adapter *adapter = netdev_priv(netdev); 6736 struct e1000_hw *hw = &adapter->hw; 6737 u16 aspm_disable_flag = 0; 6738 int err; 6739 pci_ers_result_t result; 6740 6741 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S) 6742 aspm_disable_flag = PCIE_LINK_STATE_L0S; 6743 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1) 6744 aspm_disable_flag |= PCIE_LINK_STATE_L1; 6745 if (aspm_disable_flag) 6746 e1000e_disable_aspm(pdev, aspm_disable_flag); 6747 6748 err = pci_enable_device_mem(pdev); 6749 if (err) { 6750 dev_err(&pdev->dev, 6751 "Cannot re-enable PCI device after reset.\n"); 6752 result = PCI_ERS_RESULT_DISCONNECT; 6753 } else { 6754 pdev->state_saved = true; 6755 pci_restore_state(pdev); 6756 pci_set_master(pdev); 6757 6758 pci_enable_wake(pdev, PCI_D3hot, 0); 6759 pci_enable_wake(pdev, PCI_D3cold, 0); 6760 6761 e1000e_reset(adapter); 6762 ew32(WUS, ~0); 6763 result = PCI_ERS_RESULT_RECOVERED; 6764 } 6765 6766 pci_cleanup_aer_uncorrect_error_status(pdev); 6767 6768 return result; 6769 } 6770 6771 /** 6772 * e1000_io_resume - called when traffic can start flowing again. 6773 * @pdev: Pointer to PCI device 6774 * 6775 * This callback is called when the error recovery driver tells us that 6776 * its OK to resume normal operation. Implementation resembles the 6777 * second-half of the e1000e_pm_resume routine. 6778 */ 6779 static void e1000_io_resume(struct pci_dev *pdev) 6780 { 6781 struct net_device *netdev = pci_get_drvdata(pdev); 6782 struct e1000_adapter *adapter = netdev_priv(netdev); 6783 6784 e1000_init_manageability_pt(adapter); 6785 6786 if (netif_running(netdev)) { 6787 if (e1000e_up(adapter)) { 6788 dev_err(&pdev->dev, 6789 "can't bring device back up after reset\n"); 6790 return; 6791 } 6792 } 6793 6794 netif_device_attach(netdev); 6795 6796 /* If the controller has AMT, do not set DRV_LOAD until the interface 6797 * is up. For all other cases, let the f/w know that the h/w is now 6798 * under the control of the driver. 6799 */ 6800 if (!(adapter->flags & FLAG_HAS_AMT)) 6801 e1000e_get_hw_control(adapter); 6802 } 6803 6804 static void e1000_print_device_info(struct e1000_adapter *adapter) 6805 { 6806 struct e1000_hw *hw = &adapter->hw; 6807 struct net_device *netdev = adapter->netdev; 6808 u32 ret_val; 6809 u8 pba_str[E1000_PBANUM_LENGTH]; 6810 6811 /* print bus type/speed/width info */ 6812 e_info("(PCI Express:2.5GT/s:%s) %pM\n", 6813 /* bus width */ 6814 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" : 6815 "Width x1"), 6816 /* MAC address */ 6817 netdev->dev_addr); 6818 e_info("Intel(R) PRO/%s Network Connection\n", 6819 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000"); 6820 ret_val = e1000_read_pba_string_generic(hw, pba_str, 6821 E1000_PBANUM_LENGTH); 6822 if (ret_val) 6823 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str)); 6824 e_info("MAC: %d, PHY: %d, PBA No: %s\n", 6825 hw->mac.type, hw->phy.type, pba_str); 6826 } 6827 6828 static void e1000_eeprom_checks(struct e1000_adapter *adapter) 6829 { 6830 struct e1000_hw *hw = &adapter->hw; 6831 int ret_val; 6832 u16 buf = 0; 6833 6834 if (hw->mac.type != e1000_82573) 6835 return; 6836 6837 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf); 6838 le16_to_cpus(&buf); 6839 if (!ret_val && (!(buf & (1 << 0)))) { 6840 /* Deep Smart Power Down (DSPD) */ 6841 dev_warn(&adapter->pdev->dev, 6842 "Warning: detected DSPD enabled in EEPROM\n"); 6843 } 6844 } 6845 6846 static netdev_features_t e1000_fix_features(struct net_device *netdev, 6847 netdev_features_t features) 6848 { 6849 struct e1000_adapter *adapter = netdev_priv(netdev); 6850 struct e1000_hw *hw = &adapter->hw; 6851 6852 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */ 6853 if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN)) 6854 features &= ~NETIF_F_RXFCS; 6855 6856 return features; 6857 } 6858 6859 static int e1000_set_features(struct net_device *netdev, 6860 netdev_features_t features) 6861 { 6862 struct e1000_adapter *adapter = netdev_priv(netdev); 6863 netdev_features_t changed = features ^ netdev->features; 6864 6865 if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) 6866 adapter->flags |= FLAG_TSO_FORCE; 6867 6868 if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX | 6869 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS | 6870 NETIF_F_RXALL))) 6871 return 0; 6872 6873 if (changed & NETIF_F_RXFCS) { 6874 if (features & NETIF_F_RXFCS) { 6875 adapter->flags2 &= ~FLAG2_CRC_STRIPPING; 6876 } else { 6877 /* We need to take it back to defaults, which might mean 6878 * stripping is still disabled at the adapter level. 6879 */ 6880 if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING) 6881 adapter->flags2 |= FLAG2_CRC_STRIPPING; 6882 else 6883 adapter->flags2 &= ~FLAG2_CRC_STRIPPING; 6884 } 6885 } 6886 6887 netdev->features = features; 6888 6889 if (netif_running(netdev)) 6890 e1000e_reinit_locked(adapter); 6891 else 6892 e1000e_reset(adapter); 6893 6894 return 0; 6895 } 6896 6897 static const struct net_device_ops e1000e_netdev_ops = { 6898 .ndo_open = e1000_open, 6899 .ndo_stop = e1000_close, 6900 .ndo_start_xmit = e1000_xmit_frame, 6901 .ndo_get_stats64 = e1000e_get_stats64, 6902 .ndo_set_rx_mode = e1000e_set_rx_mode, 6903 .ndo_set_mac_address = e1000_set_mac, 6904 .ndo_change_mtu = e1000_change_mtu, 6905 .ndo_do_ioctl = e1000_ioctl, 6906 .ndo_tx_timeout = e1000_tx_timeout, 6907 .ndo_validate_addr = eth_validate_addr, 6908 6909 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, 6910 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, 6911 #ifdef CONFIG_NET_POLL_CONTROLLER 6912 .ndo_poll_controller = e1000_netpoll, 6913 #endif 6914 .ndo_set_features = e1000_set_features, 6915 .ndo_fix_features = e1000_fix_features, 6916 }; 6917 6918 /** 6919 * e1000_probe - Device Initialization Routine 6920 * @pdev: PCI device information struct 6921 * @ent: entry in e1000_pci_tbl 6922 * 6923 * Returns 0 on success, negative on failure 6924 * 6925 * e1000_probe initializes an adapter identified by a pci_dev structure. 6926 * The OS initialization, configuring of the adapter private structure, 6927 * and a hardware reset occur. 6928 **/ 6929 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 6930 { 6931 struct net_device *netdev; 6932 struct e1000_adapter *adapter; 6933 struct e1000_hw *hw; 6934 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data]; 6935 resource_size_t mmio_start, mmio_len; 6936 resource_size_t flash_start, flash_len; 6937 static int cards_found; 6938 u16 aspm_disable_flag = 0; 6939 int bars, i, err, pci_using_dac; 6940 u16 eeprom_data = 0; 6941 u16 eeprom_apme_mask = E1000_EEPROM_APME; 6942 s32 rval = 0; 6943 6944 if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S) 6945 aspm_disable_flag = PCIE_LINK_STATE_L0S; 6946 if (ei->flags2 & FLAG2_DISABLE_ASPM_L1) 6947 aspm_disable_flag |= PCIE_LINK_STATE_L1; 6948 if (aspm_disable_flag) 6949 e1000e_disable_aspm(pdev, aspm_disable_flag); 6950 6951 err = pci_enable_device_mem(pdev); 6952 if (err) 6953 return err; 6954 6955 pci_using_dac = 0; 6956 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 6957 if (!err) { 6958 pci_using_dac = 1; 6959 } else { 6960 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 6961 if (err) { 6962 dev_err(&pdev->dev, 6963 "No usable DMA configuration, aborting\n"); 6964 goto err_dma; 6965 } 6966 } 6967 6968 bars = pci_select_bars(pdev, IORESOURCE_MEM); 6969 err = pci_request_selected_regions_exclusive(pdev, bars, 6970 e1000e_driver_name); 6971 if (err) 6972 goto err_pci_reg; 6973 6974 /* AER (Advanced Error Reporting) hooks */ 6975 pci_enable_pcie_error_reporting(pdev); 6976 6977 pci_set_master(pdev); 6978 /* PCI config space info */ 6979 err = pci_save_state(pdev); 6980 if (err) 6981 goto err_alloc_etherdev; 6982 6983 err = -ENOMEM; 6984 netdev = alloc_etherdev(sizeof(struct e1000_adapter)); 6985 if (!netdev) 6986 goto err_alloc_etherdev; 6987 6988 SET_NETDEV_DEV(netdev, &pdev->dev); 6989 6990 netdev->irq = pdev->irq; 6991 6992 pci_set_drvdata(pdev, netdev); 6993 adapter = netdev_priv(netdev); 6994 hw = &adapter->hw; 6995 adapter->netdev = netdev; 6996 adapter->pdev = pdev; 6997 adapter->ei = ei; 6998 adapter->pba = ei->pba; 6999 adapter->flags = ei->flags; 7000 adapter->flags2 = ei->flags2; 7001 adapter->hw.adapter = adapter; 7002 adapter->hw.mac.type = ei->mac; 7003 adapter->max_hw_frame_size = ei->max_hw_frame_size; 7004 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 7005 7006 mmio_start = pci_resource_start(pdev, 0); 7007 mmio_len = pci_resource_len(pdev, 0); 7008 7009 err = -EIO; 7010 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len); 7011 if (!adapter->hw.hw_addr) 7012 goto err_ioremap; 7013 7014 if ((adapter->flags & FLAG_HAS_FLASH) && 7015 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) && 7016 (hw->mac.type < e1000_pch_spt)) { 7017 flash_start = pci_resource_start(pdev, 1); 7018 flash_len = pci_resource_len(pdev, 1); 7019 adapter->hw.flash_address = ioremap(flash_start, flash_len); 7020 if (!adapter->hw.flash_address) 7021 goto err_flashmap; 7022 } 7023 7024 /* Set default EEE advertisement */ 7025 if (adapter->flags2 & FLAG2_HAS_EEE) 7026 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T; 7027 7028 /* construct the net_device struct */ 7029 netdev->netdev_ops = &e1000e_netdev_ops; 7030 e1000e_set_ethtool_ops(netdev); 7031 netdev->watchdog_timeo = 5 * HZ; 7032 netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64); 7033 strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name)); 7034 7035 netdev->mem_start = mmio_start; 7036 netdev->mem_end = mmio_start + mmio_len; 7037 7038 adapter->bd_number = cards_found++; 7039 7040 e1000e_check_options(adapter); 7041 7042 /* setup adapter struct */ 7043 err = e1000_sw_init(adapter); 7044 if (err) 7045 goto err_sw_init; 7046 7047 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); 7048 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); 7049 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); 7050 7051 err = ei->get_variants(adapter); 7052 if (err) 7053 goto err_hw_init; 7054 7055 if ((adapter->flags & FLAG_IS_ICH) && 7056 (adapter->flags & FLAG_READ_ONLY_NVM) && 7057 (hw->mac.type < e1000_pch_spt)) 7058 e1000e_write_protect_nvm_ich8lan(&adapter->hw); 7059 7060 hw->mac.ops.get_bus_info(&adapter->hw); 7061 7062 adapter->hw.phy.autoneg_wait_to_complete = 0; 7063 7064 /* Copper options */ 7065 if (adapter->hw.phy.media_type == e1000_media_type_copper) { 7066 adapter->hw.phy.mdix = AUTO_ALL_MODES; 7067 adapter->hw.phy.disable_polarity_correction = 0; 7068 adapter->hw.phy.ms_type = e1000_ms_hw_default; 7069 } 7070 7071 if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw)) 7072 dev_info(&pdev->dev, 7073 "PHY reset is blocked due to SOL/IDER session.\n"); 7074 7075 /* Set initial default active device features */ 7076 netdev->features = (NETIF_F_SG | 7077 NETIF_F_HW_VLAN_CTAG_RX | 7078 NETIF_F_HW_VLAN_CTAG_TX | 7079 NETIF_F_TSO | 7080 NETIF_F_TSO6 | 7081 NETIF_F_RXHASH | 7082 NETIF_F_RXCSUM | 7083 NETIF_F_HW_CSUM); 7084 7085 /* Set user-changeable features (subset of all device features) */ 7086 netdev->hw_features = netdev->features; 7087 netdev->hw_features |= NETIF_F_RXFCS; 7088 netdev->priv_flags |= IFF_SUPP_NOFCS; 7089 netdev->hw_features |= NETIF_F_RXALL; 7090 7091 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) 7092 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 7093 7094 netdev->vlan_features |= (NETIF_F_SG | 7095 NETIF_F_TSO | 7096 NETIF_F_TSO6 | 7097 NETIF_F_HW_CSUM); 7098 7099 netdev->priv_flags |= IFF_UNICAST_FLT; 7100 7101 if (pci_using_dac) { 7102 netdev->features |= NETIF_F_HIGHDMA; 7103 netdev->vlan_features |= NETIF_F_HIGHDMA; 7104 } 7105 7106 if (e1000e_enable_mng_pass_thru(&adapter->hw)) 7107 adapter->flags |= FLAG_MNG_PT_ENABLED; 7108 7109 /* before reading the NVM, reset the controller to 7110 * put the device in a known good starting state 7111 */ 7112 adapter->hw.mac.ops.reset_hw(&adapter->hw); 7113 7114 /* systems with ASPM and others may see the checksum fail on the first 7115 * attempt. Let's give it a few tries 7116 */ 7117 for (i = 0;; i++) { 7118 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0) 7119 break; 7120 if (i == 2) { 7121 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); 7122 err = -EIO; 7123 goto err_eeprom; 7124 } 7125 } 7126 7127 e1000_eeprom_checks(adapter); 7128 7129 /* copy the MAC address */ 7130 if (e1000e_read_mac_addr(&adapter->hw)) 7131 dev_err(&pdev->dev, 7132 "NVM Read Error while reading MAC address\n"); 7133 7134 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len); 7135 7136 if (!is_valid_ether_addr(netdev->dev_addr)) { 7137 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n", 7138 netdev->dev_addr); 7139 err = -EIO; 7140 goto err_eeprom; 7141 } 7142 7143 init_timer(&adapter->watchdog_timer); 7144 adapter->watchdog_timer.function = e1000_watchdog; 7145 adapter->watchdog_timer.data = (unsigned long)adapter; 7146 7147 init_timer(&adapter->phy_info_timer); 7148 adapter->phy_info_timer.function = e1000_update_phy_info; 7149 adapter->phy_info_timer.data = (unsigned long)adapter; 7150 7151 INIT_WORK(&adapter->reset_task, e1000_reset_task); 7152 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task); 7153 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround); 7154 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task); 7155 INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang); 7156 7157 /* Initialize link parameters. User can change them with ethtool */ 7158 adapter->hw.mac.autoneg = 1; 7159 adapter->fc_autoneg = true; 7160 adapter->hw.fc.requested_mode = e1000_fc_default; 7161 adapter->hw.fc.current_mode = e1000_fc_default; 7162 adapter->hw.phy.autoneg_advertised = 0x2f; 7163 7164 /* Initial Wake on LAN setting - If APM wake is enabled in 7165 * the EEPROM, enable the ACPI Magic Packet filter 7166 */ 7167 if (adapter->flags & FLAG_APME_IN_WUC) { 7168 /* APME bit in EEPROM is mapped to WUC.APME */ 7169 eeprom_data = er32(WUC); 7170 eeprom_apme_mask = E1000_WUC_APME; 7171 if ((hw->mac.type > e1000_ich10lan) && 7172 (eeprom_data & E1000_WUC_PHY_WAKE)) 7173 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP; 7174 } else if (adapter->flags & FLAG_APME_IN_CTRL3) { 7175 if (adapter->flags & FLAG_APME_CHECK_PORT_B && 7176 (adapter->hw.bus.func == 1)) 7177 rval = e1000_read_nvm(&adapter->hw, 7178 NVM_INIT_CONTROL3_PORT_B, 7179 1, &eeprom_data); 7180 else 7181 rval = e1000_read_nvm(&adapter->hw, 7182 NVM_INIT_CONTROL3_PORT_A, 7183 1, &eeprom_data); 7184 } 7185 7186 /* fetch WoL from EEPROM */ 7187 if (rval) 7188 e_dbg("NVM read error getting WoL initial values: %d\n", rval); 7189 else if (eeprom_data & eeprom_apme_mask) 7190 adapter->eeprom_wol |= E1000_WUFC_MAG; 7191 7192 /* now that we have the eeprom settings, apply the special cases 7193 * where the eeprom may be wrong or the board simply won't support 7194 * wake on lan on a particular port 7195 */ 7196 if (!(adapter->flags & FLAG_HAS_WOL)) 7197 adapter->eeprom_wol = 0; 7198 7199 /* initialize the wol settings based on the eeprom settings */ 7200 adapter->wol = adapter->eeprom_wol; 7201 7202 /* make sure adapter isn't asleep if manageability is enabled */ 7203 if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) || 7204 (hw->mac.ops.check_mng_mode(hw))) 7205 device_wakeup_enable(&pdev->dev); 7206 7207 /* save off EEPROM version number */ 7208 rval = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers); 7209 7210 if (rval) { 7211 e_dbg("NVM read error getting EEPROM version: %d\n", rval); 7212 adapter->eeprom_vers = 0; 7213 } 7214 7215 /* reset the hardware with the new settings */ 7216 e1000e_reset(adapter); 7217 7218 /* If the controller has AMT, do not set DRV_LOAD until the interface 7219 * is up. For all other cases, let the f/w know that the h/w is now 7220 * under the control of the driver. 7221 */ 7222 if (!(adapter->flags & FLAG_HAS_AMT)) 7223 e1000e_get_hw_control(adapter); 7224 7225 strlcpy(netdev->name, "eth%d", sizeof(netdev->name)); 7226 err = register_netdev(netdev); 7227 if (err) 7228 goto err_register; 7229 7230 /* carrier off reporting is important to ethtool even BEFORE open */ 7231 netif_carrier_off(netdev); 7232 7233 /* init PTP hardware clock */ 7234 e1000e_ptp_init(adapter); 7235 7236 e1000_print_device_info(adapter); 7237 7238 if (pci_dev_run_wake(pdev)) 7239 pm_runtime_put_noidle(&pdev->dev); 7240 7241 return 0; 7242 7243 err_register: 7244 if (!(adapter->flags & FLAG_HAS_AMT)) 7245 e1000e_release_hw_control(adapter); 7246 err_eeprom: 7247 if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw)) 7248 e1000_phy_hw_reset(&adapter->hw); 7249 err_hw_init: 7250 kfree(adapter->tx_ring); 7251 kfree(adapter->rx_ring); 7252 err_sw_init: 7253 if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt)) 7254 iounmap(adapter->hw.flash_address); 7255 e1000e_reset_interrupt_capability(adapter); 7256 err_flashmap: 7257 iounmap(adapter->hw.hw_addr); 7258 err_ioremap: 7259 free_netdev(netdev); 7260 err_alloc_etherdev: 7261 pci_release_selected_regions(pdev, 7262 pci_select_bars(pdev, IORESOURCE_MEM)); 7263 err_pci_reg: 7264 err_dma: 7265 pci_disable_device(pdev); 7266 return err; 7267 } 7268 7269 /** 7270 * e1000_remove - Device Removal Routine 7271 * @pdev: PCI device information struct 7272 * 7273 * e1000_remove is called by the PCI subsystem to alert the driver 7274 * that it should release a PCI device. The could be caused by a 7275 * Hot-Plug event, or because the driver is going to be removed from 7276 * memory. 7277 **/ 7278 static void e1000_remove(struct pci_dev *pdev) 7279 { 7280 struct net_device *netdev = pci_get_drvdata(pdev); 7281 struct e1000_adapter *adapter = netdev_priv(netdev); 7282 bool down = test_bit(__E1000_DOWN, &adapter->state); 7283 7284 e1000e_ptp_remove(adapter); 7285 7286 /* The timers may be rescheduled, so explicitly disable them 7287 * from being rescheduled. 7288 */ 7289 if (!down) 7290 set_bit(__E1000_DOWN, &adapter->state); 7291 del_timer_sync(&adapter->watchdog_timer); 7292 del_timer_sync(&adapter->phy_info_timer); 7293 7294 cancel_work_sync(&adapter->reset_task); 7295 cancel_work_sync(&adapter->watchdog_task); 7296 cancel_work_sync(&adapter->downshift_task); 7297 cancel_work_sync(&adapter->update_phy_task); 7298 cancel_work_sync(&adapter->print_hang_task); 7299 7300 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) { 7301 cancel_work_sync(&adapter->tx_hwtstamp_work); 7302 if (adapter->tx_hwtstamp_skb) { 7303 dev_kfree_skb_any(adapter->tx_hwtstamp_skb); 7304 adapter->tx_hwtstamp_skb = NULL; 7305 } 7306 } 7307 7308 /* Don't lie to e1000_close() down the road. */ 7309 if (!down) 7310 clear_bit(__E1000_DOWN, &adapter->state); 7311 unregister_netdev(netdev); 7312 7313 if (pci_dev_run_wake(pdev)) 7314 pm_runtime_get_noresume(&pdev->dev); 7315 7316 /* Release control of h/w to f/w. If f/w is AMT enabled, this 7317 * would have already happened in close and is redundant. 7318 */ 7319 e1000e_release_hw_control(adapter); 7320 7321 e1000e_reset_interrupt_capability(adapter); 7322 kfree(adapter->tx_ring); 7323 kfree(adapter->rx_ring); 7324 7325 iounmap(adapter->hw.hw_addr); 7326 if ((adapter->hw.flash_address) && 7327 (adapter->hw.mac.type < e1000_pch_spt)) 7328 iounmap(adapter->hw.flash_address); 7329 pci_release_selected_regions(pdev, 7330 pci_select_bars(pdev, IORESOURCE_MEM)); 7331 7332 free_netdev(netdev); 7333 7334 /* AER disable */ 7335 pci_disable_pcie_error_reporting(pdev); 7336 7337 pci_disable_device(pdev); 7338 } 7339 7340 /* PCI Error Recovery (ERS) */ 7341 static const struct pci_error_handlers e1000_err_handler = { 7342 .error_detected = e1000_io_error_detected, 7343 .slot_reset = e1000_io_slot_reset, 7344 .resume = e1000_io_resume, 7345 }; 7346 7347 static const struct pci_device_id e1000_pci_tbl[] = { 7348 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 }, 7349 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 }, 7350 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 }, 7351 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), 7352 board_82571 }, 7353 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 }, 7354 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 }, 7355 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 }, 7356 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 }, 7357 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 }, 7358 7359 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 }, 7360 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 }, 7361 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 }, 7362 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 }, 7363 7364 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 }, 7365 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 }, 7366 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 }, 7367 7368 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 }, 7369 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 }, 7370 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 }, 7371 7372 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT), 7373 board_80003es2lan }, 7374 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT), 7375 board_80003es2lan }, 7376 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT), 7377 board_80003es2lan }, 7378 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT), 7379 board_80003es2lan }, 7380 7381 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan }, 7382 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan }, 7383 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan }, 7384 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan }, 7385 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan }, 7386 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan }, 7387 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan }, 7388 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan }, 7389 7390 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan }, 7391 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan }, 7392 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan }, 7393 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan }, 7394 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan }, 7395 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan }, 7396 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan }, 7397 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan }, 7398 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan }, 7399 7400 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan }, 7401 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan }, 7402 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan }, 7403 7404 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan }, 7405 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan }, 7406 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan }, 7407 7408 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan }, 7409 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan }, 7410 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan }, 7411 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan }, 7412 7413 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan }, 7414 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan }, 7415 7416 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt }, 7417 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt }, 7418 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt }, 7419 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt }, 7420 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt }, 7421 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt }, 7422 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt }, 7423 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt }, 7424 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt }, 7425 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt }, 7426 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt }, 7427 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt }, 7428 7429 { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */ 7430 }; 7431 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); 7432 7433 static const struct dev_pm_ops e1000_pm_ops = { 7434 #ifdef CONFIG_PM_SLEEP 7435 .suspend = e1000e_pm_suspend, 7436 .resume = e1000e_pm_resume, 7437 .freeze = e1000e_pm_freeze, 7438 .thaw = e1000e_pm_thaw, 7439 .poweroff = e1000e_pm_suspend, 7440 .restore = e1000e_pm_resume, 7441 #endif 7442 SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume, 7443 e1000e_pm_runtime_idle) 7444 }; 7445 7446 /* PCI Device API Driver */ 7447 static struct pci_driver e1000_driver = { 7448 .name = e1000e_driver_name, 7449 .id_table = e1000_pci_tbl, 7450 .probe = e1000_probe, 7451 .remove = e1000_remove, 7452 .driver = { 7453 .pm = &e1000_pm_ops, 7454 }, 7455 .shutdown = e1000_shutdown, 7456 .err_handler = &e1000_err_handler 7457 }; 7458 7459 /** 7460 * e1000_init_module - Driver Registration Routine 7461 * 7462 * e1000_init_module is the first routine called when the driver is 7463 * loaded. All it does is register with the PCI subsystem. 7464 **/ 7465 static int __init e1000_init_module(void) 7466 { 7467 int ret; 7468 7469 pr_info("Intel(R) PRO/1000 Network Driver - %s\n", 7470 e1000e_driver_version); 7471 pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n"); 7472 ret = pci_register_driver(&e1000_driver); 7473 7474 return ret; 7475 } 7476 module_init(e1000_init_module); 7477 7478 /** 7479 * e1000_exit_module - Driver Exit Cleanup Routine 7480 * 7481 * e1000_exit_module is called just before the driver is removed 7482 * from memory. 7483 **/ 7484 static void __exit e1000_exit_module(void) 7485 { 7486 pci_unregister_driver(&e1000_driver); 7487 } 7488 module_exit(e1000_exit_module); 7489 7490 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 7491 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); 7492 MODULE_LICENSE("GPL"); 7493 MODULE_VERSION(DRV_VERSION); 7494 7495 /* netdev.c */ 7496