xref: /linux/drivers/net/ethernet/intel/e1000e/netdev.c (revision c0e297dc61f8d4453e07afbea1fa8d0e67cd4a34)
1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21 
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23 
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/init.h>
27 #include <linux/pci.h>
28 #include <linux/vmalloc.h>
29 #include <linux/pagemap.h>
30 #include <linux/delay.h>
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/tcp.h>
34 #include <linux/ipv6.h>
35 #include <linux/slab.h>
36 #include <net/checksum.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/cpu.h>
41 #include <linux/smp.h>
42 #include <linux/pm_qos.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/aer.h>
45 #include <linux/prefetch.h>
46 
47 #include "e1000.h"
48 
49 #define DRV_EXTRAVERSION "-k"
50 
51 #define DRV_VERSION "3.2.5" DRV_EXTRAVERSION
52 char e1000e_driver_name[] = "e1000e";
53 const char e1000e_driver_version[] = DRV_VERSION;
54 
55 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
56 static int debug = -1;
57 module_param(debug, int, 0);
58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
59 
60 static const struct e1000_info *e1000_info_tbl[] = {
61 	[board_82571]		= &e1000_82571_info,
62 	[board_82572]		= &e1000_82572_info,
63 	[board_82573]		= &e1000_82573_info,
64 	[board_82574]		= &e1000_82574_info,
65 	[board_82583]		= &e1000_82583_info,
66 	[board_80003es2lan]	= &e1000_es2_info,
67 	[board_ich8lan]		= &e1000_ich8_info,
68 	[board_ich9lan]		= &e1000_ich9_info,
69 	[board_ich10lan]	= &e1000_ich10_info,
70 	[board_pchlan]		= &e1000_pch_info,
71 	[board_pch2lan]		= &e1000_pch2_info,
72 	[board_pch_lpt]		= &e1000_pch_lpt_info,
73 	[board_pch_spt]		= &e1000_pch_spt_info,
74 };
75 
76 struct e1000_reg_info {
77 	u32 ofs;
78 	char *name;
79 };
80 
81 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
82 	/* General Registers */
83 	{E1000_CTRL, "CTRL"},
84 	{E1000_STATUS, "STATUS"},
85 	{E1000_CTRL_EXT, "CTRL_EXT"},
86 
87 	/* Interrupt Registers */
88 	{E1000_ICR, "ICR"},
89 
90 	/* Rx Registers */
91 	{E1000_RCTL, "RCTL"},
92 	{E1000_RDLEN(0), "RDLEN"},
93 	{E1000_RDH(0), "RDH"},
94 	{E1000_RDT(0), "RDT"},
95 	{E1000_RDTR, "RDTR"},
96 	{E1000_RXDCTL(0), "RXDCTL"},
97 	{E1000_ERT, "ERT"},
98 	{E1000_RDBAL(0), "RDBAL"},
99 	{E1000_RDBAH(0), "RDBAH"},
100 	{E1000_RDFH, "RDFH"},
101 	{E1000_RDFT, "RDFT"},
102 	{E1000_RDFHS, "RDFHS"},
103 	{E1000_RDFTS, "RDFTS"},
104 	{E1000_RDFPC, "RDFPC"},
105 
106 	/* Tx Registers */
107 	{E1000_TCTL, "TCTL"},
108 	{E1000_TDBAL(0), "TDBAL"},
109 	{E1000_TDBAH(0), "TDBAH"},
110 	{E1000_TDLEN(0), "TDLEN"},
111 	{E1000_TDH(0), "TDH"},
112 	{E1000_TDT(0), "TDT"},
113 	{E1000_TIDV, "TIDV"},
114 	{E1000_TXDCTL(0), "TXDCTL"},
115 	{E1000_TADV, "TADV"},
116 	{E1000_TARC(0), "TARC"},
117 	{E1000_TDFH, "TDFH"},
118 	{E1000_TDFT, "TDFT"},
119 	{E1000_TDFHS, "TDFHS"},
120 	{E1000_TDFTS, "TDFTS"},
121 	{E1000_TDFPC, "TDFPC"},
122 
123 	/* List Terminator */
124 	{0, NULL}
125 };
126 
127 /**
128  * __ew32_prepare - prepare to write to MAC CSR register on certain parts
129  * @hw: pointer to the HW structure
130  *
131  * When updating the MAC CSR registers, the Manageability Engine (ME) could
132  * be accessing the registers at the same time.  Normally, this is handled in
133  * h/w by an arbiter but on some parts there is a bug that acknowledges Host
134  * accesses later than it should which could result in the register to have
135  * an incorrect value.  Workaround this by checking the FWSM register which
136  * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
137  * and try again a number of times.
138  **/
139 s32 __ew32_prepare(struct e1000_hw *hw)
140 {
141 	s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
142 
143 	while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
144 		udelay(50);
145 
146 	return i;
147 }
148 
149 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
150 {
151 	if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
152 		__ew32_prepare(hw);
153 
154 	writel(val, hw->hw_addr + reg);
155 }
156 
157 /**
158  * e1000_regdump - register printout routine
159  * @hw: pointer to the HW structure
160  * @reginfo: pointer to the register info table
161  **/
162 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
163 {
164 	int n = 0;
165 	char rname[16];
166 	u32 regs[8];
167 
168 	switch (reginfo->ofs) {
169 	case E1000_RXDCTL(0):
170 		for (n = 0; n < 2; n++)
171 			regs[n] = __er32(hw, E1000_RXDCTL(n));
172 		break;
173 	case E1000_TXDCTL(0):
174 		for (n = 0; n < 2; n++)
175 			regs[n] = __er32(hw, E1000_TXDCTL(n));
176 		break;
177 	case E1000_TARC(0):
178 		for (n = 0; n < 2; n++)
179 			regs[n] = __er32(hw, E1000_TARC(n));
180 		break;
181 	default:
182 		pr_info("%-15s %08x\n",
183 			reginfo->name, __er32(hw, reginfo->ofs));
184 		return;
185 	}
186 
187 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
188 	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
189 }
190 
191 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
192 				 struct e1000_buffer *bi)
193 {
194 	int i;
195 	struct e1000_ps_page *ps_page;
196 
197 	for (i = 0; i < adapter->rx_ps_pages; i++) {
198 		ps_page = &bi->ps_pages[i];
199 
200 		if (ps_page->page) {
201 			pr_info("packet dump for ps_page %d:\n", i);
202 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
203 				       16, 1, page_address(ps_page->page),
204 				       PAGE_SIZE, true);
205 		}
206 	}
207 }
208 
209 /**
210  * e1000e_dump - Print registers, Tx-ring and Rx-ring
211  * @adapter: board private structure
212  **/
213 static void e1000e_dump(struct e1000_adapter *adapter)
214 {
215 	struct net_device *netdev = adapter->netdev;
216 	struct e1000_hw *hw = &adapter->hw;
217 	struct e1000_reg_info *reginfo;
218 	struct e1000_ring *tx_ring = adapter->tx_ring;
219 	struct e1000_tx_desc *tx_desc;
220 	struct my_u0 {
221 		__le64 a;
222 		__le64 b;
223 	} *u0;
224 	struct e1000_buffer *buffer_info;
225 	struct e1000_ring *rx_ring = adapter->rx_ring;
226 	union e1000_rx_desc_packet_split *rx_desc_ps;
227 	union e1000_rx_desc_extended *rx_desc;
228 	struct my_u1 {
229 		__le64 a;
230 		__le64 b;
231 		__le64 c;
232 		__le64 d;
233 	} *u1;
234 	u32 staterr;
235 	int i = 0;
236 
237 	if (!netif_msg_hw(adapter))
238 		return;
239 
240 	/* Print netdevice Info */
241 	if (netdev) {
242 		dev_info(&adapter->pdev->dev, "Net device Info\n");
243 		pr_info("Device Name     state            trans_start      last_rx\n");
244 		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
245 			netdev->state, netdev->trans_start, netdev->last_rx);
246 	}
247 
248 	/* Print Registers */
249 	dev_info(&adapter->pdev->dev, "Register Dump\n");
250 	pr_info(" Register Name   Value\n");
251 	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
252 	     reginfo->name; reginfo++) {
253 		e1000_regdump(hw, reginfo);
254 	}
255 
256 	/* Print Tx Ring Summary */
257 	if (!netdev || !netif_running(netdev))
258 		return;
259 
260 	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
261 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
262 	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
263 	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
264 		0, tx_ring->next_to_use, tx_ring->next_to_clean,
265 		(unsigned long long)buffer_info->dma,
266 		buffer_info->length,
267 		buffer_info->next_to_watch,
268 		(unsigned long long)buffer_info->time_stamp);
269 
270 	/* Print Tx Ring */
271 	if (!netif_msg_tx_done(adapter))
272 		goto rx_ring_summary;
273 
274 	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
275 
276 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
277 	 *
278 	 * Legacy Transmit Descriptor
279 	 *   +--------------------------------------------------------------+
280 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
281 	 *   +--------------------------------------------------------------+
282 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
283 	 *   +--------------------------------------------------------------+
284 	 *   63       48 47        36 35    32 31     24 23    16 15        0
285 	 *
286 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
287 	 *   63      48 47    40 39       32 31             16 15    8 7      0
288 	 *   +----------------------------------------------------------------+
289 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
290 	 *   +----------------------------------------------------------------+
291 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
292 	 *   +----------------------------------------------------------------+
293 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
294 	 *
295 	 * Extended Data Descriptor (DTYP=0x1)
296 	 *   +----------------------------------------------------------------+
297 	 * 0 |                     Buffer Address [63:0]                      |
298 	 *   +----------------------------------------------------------------+
299 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
300 	 *   +----------------------------------------------------------------+
301 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
302 	 */
303 	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
304 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
305 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
306 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
307 		const char *next_desc;
308 		tx_desc = E1000_TX_DESC(*tx_ring, i);
309 		buffer_info = &tx_ring->buffer_info[i];
310 		u0 = (struct my_u0 *)tx_desc;
311 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
312 			next_desc = " NTC/U";
313 		else if (i == tx_ring->next_to_use)
314 			next_desc = " NTU";
315 		else if (i == tx_ring->next_to_clean)
316 			next_desc = " NTC";
317 		else
318 			next_desc = "";
319 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
320 			(!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
321 			 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
322 			i,
323 			(unsigned long long)le64_to_cpu(u0->a),
324 			(unsigned long long)le64_to_cpu(u0->b),
325 			(unsigned long long)buffer_info->dma,
326 			buffer_info->length, buffer_info->next_to_watch,
327 			(unsigned long long)buffer_info->time_stamp,
328 			buffer_info->skb, next_desc);
329 
330 		if (netif_msg_pktdata(adapter) && buffer_info->skb)
331 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
332 				       16, 1, buffer_info->skb->data,
333 				       buffer_info->skb->len, true);
334 	}
335 
336 	/* Print Rx Ring Summary */
337 rx_ring_summary:
338 	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
339 	pr_info("Queue [NTU] [NTC]\n");
340 	pr_info(" %5d %5X %5X\n",
341 		0, rx_ring->next_to_use, rx_ring->next_to_clean);
342 
343 	/* Print Rx Ring */
344 	if (!netif_msg_rx_status(adapter))
345 		return;
346 
347 	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
348 	switch (adapter->rx_ps_pages) {
349 	case 1:
350 	case 2:
351 	case 3:
352 		/* [Extended] Packet Split Receive Descriptor Format
353 		 *
354 		 *    +-----------------------------------------------------+
355 		 *  0 |                Buffer Address 0 [63:0]              |
356 		 *    +-----------------------------------------------------+
357 		 *  8 |                Buffer Address 1 [63:0]              |
358 		 *    +-----------------------------------------------------+
359 		 * 16 |                Buffer Address 2 [63:0]              |
360 		 *    +-----------------------------------------------------+
361 		 * 24 |                Buffer Address 3 [63:0]              |
362 		 *    +-----------------------------------------------------+
363 		 */
364 		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
365 		/* [Extended] Receive Descriptor (Write-Back) Format
366 		 *
367 		 *   63       48 47    32 31     13 12    8 7    4 3        0
368 		 *   +------------------------------------------------------+
369 		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
370 		 *   | Checksum | Ident  |         | Queue |      |  Type   |
371 		 *   +------------------------------------------------------+
372 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
373 		 *   +------------------------------------------------------+
374 		 *   63       48 47    32 31            20 19               0
375 		 */
376 		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
377 		for (i = 0; i < rx_ring->count; i++) {
378 			const char *next_desc;
379 			buffer_info = &rx_ring->buffer_info[i];
380 			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
381 			u1 = (struct my_u1 *)rx_desc_ps;
382 			staterr =
383 			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
384 
385 			if (i == rx_ring->next_to_use)
386 				next_desc = " NTU";
387 			else if (i == rx_ring->next_to_clean)
388 				next_desc = " NTC";
389 			else
390 				next_desc = "";
391 
392 			if (staterr & E1000_RXD_STAT_DD) {
393 				/* Descriptor Done */
394 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
395 					"RWB", i,
396 					(unsigned long long)le64_to_cpu(u1->a),
397 					(unsigned long long)le64_to_cpu(u1->b),
398 					(unsigned long long)le64_to_cpu(u1->c),
399 					(unsigned long long)le64_to_cpu(u1->d),
400 					buffer_info->skb, next_desc);
401 			} else {
402 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
403 					"R  ", i,
404 					(unsigned long long)le64_to_cpu(u1->a),
405 					(unsigned long long)le64_to_cpu(u1->b),
406 					(unsigned long long)le64_to_cpu(u1->c),
407 					(unsigned long long)le64_to_cpu(u1->d),
408 					(unsigned long long)buffer_info->dma,
409 					buffer_info->skb, next_desc);
410 
411 				if (netif_msg_pktdata(adapter))
412 					e1000e_dump_ps_pages(adapter,
413 							     buffer_info);
414 			}
415 		}
416 		break;
417 	default:
418 	case 0:
419 		/* Extended Receive Descriptor (Read) Format
420 		 *
421 		 *   +-----------------------------------------------------+
422 		 * 0 |                Buffer Address [63:0]                |
423 		 *   +-----------------------------------------------------+
424 		 * 8 |                      Reserved                       |
425 		 *   +-----------------------------------------------------+
426 		 */
427 		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
428 		/* Extended Receive Descriptor (Write-Back) Format
429 		 *
430 		 *   63       48 47    32 31    24 23            4 3        0
431 		 *   +------------------------------------------------------+
432 		 *   |     RSS Hash      |        |               |         |
433 		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
434 		 *   | Packet   | IP     |        |               |  Type   |
435 		 *   | Checksum | Ident  |        |               |         |
436 		 *   +------------------------------------------------------+
437 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
438 		 *   +------------------------------------------------------+
439 		 *   63       48 47    32 31            20 19               0
440 		 */
441 		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
442 
443 		for (i = 0; i < rx_ring->count; i++) {
444 			const char *next_desc;
445 
446 			buffer_info = &rx_ring->buffer_info[i];
447 			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
448 			u1 = (struct my_u1 *)rx_desc;
449 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
450 
451 			if (i == rx_ring->next_to_use)
452 				next_desc = " NTU";
453 			else if (i == rx_ring->next_to_clean)
454 				next_desc = " NTC";
455 			else
456 				next_desc = "";
457 
458 			if (staterr & E1000_RXD_STAT_DD) {
459 				/* Descriptor Done */
460 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
461 					"RWB", i,
462 					(unsigned long long)le64_to_cpu(u1->a),
463 					(unsigned long long)le64_to_cpu(u1->b),
464 					buffer_info->skb, next_desc);
465 			} else {
466 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
467 					"R  ", i,
468 					(unsigned long long)le64_to_cpu(u1->a),
469 					(unsigned long long)le64_to_cpu(u1->b),
470 					(unsigned long long)buffer_info->dma,
471 					buffer_info->skb, next_desc);
472 
473 				if (netif_msg_pktdata(adapter) &&
474 				    buffer_info->skb)
475 					print_hex_dump(KERN_INFO, "",
476 						       DUMP_PREFIX_ADDRESS, 16,
477 						       1,
478 						       buffer_info->skb->data,
479 						       adapter->rx_buffer_len,
480 						       true);
481 			}
482 		}
483 	}
484 }
485 
486 /**
487  * e1000_desc_unused - calculate if we have unused descriptors
488  **/
489 static int e1000_desc_unused(struct e1000_ring *ring)
490 {
491 	if (ring->next_to_clean > ring->next_to_use)
492 		return ring->next_to_clean - ring->next_to_use - 1;
493 
494 	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
495 }
496 
497 /**
498  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
499  * @adapter: board private structure
500  * @hwtstamps: time stamp structure to update
501  * @systim: unsigned 64bit system time value.
502  *
503  * Convert the system time value stored in the RX/TXSTMP registers into a
504  * hwtstamp which can be used by the upper level time stamping functions.
505  *
506  * The 'systim_lock' spinlock is used to protect the consistency of the
507  * system time value. This is needed because reading the 64 bit time
508  * value involves reading two 32 bit registers. The first read latches the
509  * value.
510  **/
511 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
512 				      struct skb_shared_hwtstamps *hwtstamps,
513 				      u64 systim)
514 {
515 	u64 ns;
516 	unsigned long flags;
517 
518 	spin_lock_irqsave(&adapter->systim_lock, flags);
519 	ns = timecounter_cyc2time(&adapter->tc, systim);
520 	spin_unlock_irqrestore(&adapter->systim_lock, flags);
521 
522 	memset(hwtstamps, 0, sizeof(*hwtstamps));
523 	hwtstamps->hwtstamp = ns_to_ktime(ns);
524 }
525 
526 /**
527  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
528  * @adapter: board private structure
529  * @status: descriptor extended error and status field
530  * @skb: particular skb to include time stamp
531  *
532  * If the time stamp is valid, convert it into the timecounter ns value
533  * and store that result into the shhwtstamps structure which is passed
534  * up the network stack.
535  **/
536 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
537 			       struct sk_buff *skb)
538 {
539 	struct e1000_hw *hw = &adapter->hw;
540 	u64 rxstmp;
541 
542 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
543 	    !(status & E1000_RXDEXT_STATERR_TST) ||
544 	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
545 		return;
546 
547 	/* The Rx time stamp registers contain the time stamp.  No other
548 	 * received packet will be time stamped until the Rx time stamp
549 	 * registers are read.  Because only one packet can be time stamped
550 	 * at a time, the register values must belong to this packet and
551 	 * therefore none of the other additional attributes need to be
552 	 * compared.
553 	 */
554 	rxstmp = (u64)er32(RXSTMPL);
555 	rxstmp |= (u64)er32(RXSTMPH) << 32;
556 	e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
557 
558 	adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
559 }
560 
561 /**
562  * e1000_receive_skb - helper function to handle Rx indications
563  * @adapter: board private structure
564  * @staterr: descriptor extended error and status field as written by hardware
565  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
566  * @skb: pointer to sk_buff to be indicated to stack
567  **/
568 static void e1000_receive_skb(struct e1000_adapter *adapter,
569 			      struct net_device *netdev, struct sk_buff *skb,
570 			      u32 staterr, __le16 vlan)
571 {
572 	u16 tag = le16_to_cpu(vlan);
573 
574 	e1000e_rx_hwtstamp(adapter, staterr, skb);
575 
576 	skb->protocol = eth_type_trans(skb, netdev);
577 
578 	if (staterr & E1000_RXD_STAT_VP)
579 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
580 
581 	napi_gro_receive(&adapter->napi, skb);
582 }
583 
584 /**
585  * e1000_rx_checksum - Receive Checksum Offload
586  * @adapter: board private structure
587  * @status_err: receive descriptor status and error fields
588  * @csum: receive descriptor csum field
589  * @sk_buff: socket buffer with received data
590  **/
591 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
592 			      struct sk_buff *skb)
593 {
594 	u16 status = (u16)status_err;
595 	u8 errors = (u8)(status_err >> 24);
596 
597 	skb_checksum_none_assert(skb);
598 
599 	/* Rx checksum disabled */
600 	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
601 		return;
602 
603 	/* Ignore Checksum bit is set */
604 	if (status & E1000_RXD_STAT_IXSM)
605 		return;
606 
607 	/* TCP/UDP checksum error bit or IP checksum error bit is set */
608 	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
609 		/* let the stack verify checksum errors */
610 		adapter->hw_csum_err++;
611 		return;
612 	}
613 
614 	/* TCP/UDP Checksum has not been calculated */
615 	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
616 		return;
617 
618 	/* It must be a TCP or UDP packet with a valid checksum */
619 	skb->ip_summed = CHECKSUM_UNNECESSARY;
620 	adapter->hw_csum_good++;
621 }
622 
623 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
624 {
625 	struct e1000_adapter *adapter = rx_ring->adapter;
626 	struct e1000_hw *hw = &adapter->hw;
627 	s32 ret_val = __ew32_prepare(hw);
628 
629 	writel(i, rx_ring->tail);
630 
631 	if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
632 		u32 rctl = er32(RCTL);
633 
634 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
635 		e_err("ME firmware caused invalid RDT - resetting\n");
636 		schedule_work(&adapter->reset_task);
637 	}
638 }
639 
640 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
641 {
642 	struct e1000_adapter *adapter = tx_ring->adapter;
643 	struct e1000_hw *hw = &adapter->hw;
644 	s32 ret_val = __ew32_prepare(hw);
645 
646 	writel(i, tx_ring->tail);
647 
648 	if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
649 		u32 tctl = er32(TCTL);
650 
651 		ew32(TCTL, tctl & ~E1000_TCTL_EN);
652 		e_err("ME firmware caused invalid TDT - resetting\n");
653 		schedule_work(&adapter->reset_task);
654 	}
655 }
656 
657 /**
658  * e1000_alloc_rx_buffers - Replace used receive buffers
659  * @rx_ring: Rx descriptor ring
660  **/
661 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
662 				   int cleaned_count, gfp_t gfp)
663 {
664 	struct e1000_adapter *adapter = rx_ring->adapter;
665 	struct net_device *netdev = adapter->netdev;
666 	struct pci_dev *pdev = adapter->pdev;
667 	union e1000_rx_desc_extended *rx_desc;
668 	struct e1000_buffer *buffer_info;
669 	struct sk_buff *skb;
670 	unsigned int i;
671 	unsigned int bufsz = adapter->rx_buffer_len;
672 
673 	i = rx_ring->next_to_use;
674 	buffer_info = &rx_ring->buffer_info[i];
675 
676 	while (cleaned_count--) {
677 		skb = buffer_info->skb;
678 		if (skb) {
679 			skb_trim(skb, 0);
680 			goto map_skb;
681 		}
682 
683 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
684 		if (!skb) {
685 			/* Better luck next round */
686 			adapter->alloc_rx_buff_failed++;
687 			break;
688 		}
689 
690 		buffer_info->skb = skb;
691 map_skb:
692 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
693 						  adapter->rx_buffer_len,
694 						  DMA_FROM_DEVICE);
695 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
696 			dev_err(&pdev->dev, "Rx DMA map failed\n");
697 			adapter->rx_dma_failed++;
698 			break;
699 		}
700 
701 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
702 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
703 
704 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
705 			/* Force memory writes to complete before letting h/w
706 			 * know there are new descriptors to fetch.  (Only
707 			 * applicable for weak-ordered memory model archs,
708 			 * such as IA-64).
709 			 */
710 			wmb();
711 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
712 				e1000e_update_rdt_wa(rx_ring, i);
713 			else
714 				writel(i, rx_ring->tail);
715 		}
716 		i++;
717 		if (i == rx_ring->count)
718 			i = 0;
719 		buffer_info = &rx_ring->buffer_info[i];
720 	}
721 
722 	rx_ring->next_to_use = i;
723 }
724 
725 /**
726  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
727  * @rx_ring: Rx descriptor ring
728  **/
729 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
730 				      int cleaned_count, gfp_t gfp)
731 {
732 	struct e1000_adapter *adapter = rx_ring->adapter;
733 	struct net_device *netdev = adapter->netdev;
734 	struct pci_dev *pdev = adapter->pdev;
735 	union e1000_rx_desc_packet_split *rx_desc;
736 	struct e1000_buffer *buffer_info;
737 	struct e1000_ps_page *ps_page;
738 	struct sk_buff *skb;
739 	unsigned int i, j;
740 
741 	i = rx_ring->next_to_use;
742 	buffer_info = &rx_ring->buffer_info[i];
743 
744 	while (cleaned_count--) {
745 		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
746 
747 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
748 			ps_page = &buffer_info->ps_pages[j];
749 			if (j >= adapter->rx_ps_pages) {
750 				/* all unused desc entries get hw null ptr */
751 				rx_desc->read.buffer_addr[j + 1] =
752 				    ~cpu_to_le64(0);
753 				continue;
754 			}
755 			if (!ps_page->page) {
756 				ps_page->page = alloc_page(gfp);
757 				if (!ps_page->page) {
758 					adapter->alloc_rx_buff_failed++;
759 					goto no_buffers;
760 				}
761 				ps_page->dma = dma_map_page(&pdev->dev,
762 							    ps_page->page,
763 							    0, PAGE_SIZE,
764 							    DMA_FROM_DEVICE);
765 				if (dma_mapping_error(&pdev->dev,
766 						      ps_page->dma)) {
767 					dev_err(&adapter->pdev->dev,
768 						"Rx DMA page map failed\n");
769 					adapter->rx_dma_failed++;
770 					goto no_buffers;
771 				}
772 			}
773 			/* Refresh the desc even if buffer_addrs
774 			 * didn't change because each write-back
775 			 * erases this info.
776 			 */
777 			rx_desc->read.buffer_addr[j + 1] =
778 			    cpu_to_le64(ps_page->dma);
779 		}
780 
781 		skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
782 						  gfp);
783 
784 		if (!skb) {
785 			adapter->alloc_rx_buff_failed++;
786 			break;
787 		}
788 
789 		buffer_info->skb = skb;
790 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
791 						  adapter->rx_ps_bsize0,
792 						  DMA_FROM_DEVICE);
793 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
794 			dev_err(&pdev->dev, "Rx DMA map failed\n");
795 			adapter->rx_dma_failed++;
796 			/* cleanup skb */
797 			dev_kfree_skb_any(skb);
798 			buffer_info->skb = NULL;
799 			break;
800 		}
801 
802 		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
803 
804 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
805 			/* Force memory writes to complete before letting h/w
806 			 * know there are new descriptors to fetch.  (Only
807 			 * applicable for weak-ordered memory model archs,
808 			 * such as IA-64).
809 			 */
810 			wmb();
811 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
812 				e1000e_update_rdt_wa(rx_ring, i << 1);
813 			else
814 				writel(i << 1, rx_ring->tail);
815 		}
816 
817 		i++;
818 		if (i == rx_ring->count)
819 			i = 0;
820 		buffer_info = &rx_ring->buffer_info[i];
821 	}
822 
823 no_buffers:
824 	rx_ring->next_to_use = i;
825 }
826 
827 /**
828  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
829  * @rx_ring: Rx descriptor ring
830  * @cleaned_count: number of buffers to allocate this pass
831  **/
832 
833 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
834 					 int cleaned_count, gfp_t gfp)
835 {
836 	struct e1000_adapter *adapter = rx_ring->adapter;
837 	struct net_device *netdev = adapter->netdev;
838 	struct pci_dev *pdev = adapter->pdev;
839 	union e1000_rx_desc_extended *rx_desc;
840 	struct e1000_buffer *buffer_info;
841 	struct sk_buff *skb;
842 	unsigned int i;
843 	unsigned int bufsz = 256 - 16;	/* for skb_reserve */
844 
845 	i = rx_ring->next_to_use;
846 	buffer_info = &rx_ring->buffer_info[i];
847 
848 	while (cleaned_count--) {
849 		skb = buffer_info->skb;
850 		if (skb) {
851 			skb_trim(skb, 0);
852 			goto check_page;
853 		}
854 
855 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
856 		if (unlikely(!skb)) {
857 			/* Better luck next round */
858 			adapter->alloc_rx_buff_failed++;
859 			break;
860 		}
861 
862 		buffer_info->skb = skb;
863 check_page:
864 		/* allocate a new page if necessary */
865 		if (!buffer_info->page) {
866 			buffer_info->page = alloc_page(gfp);
867 			if (unlikely(!buffer_info->page)) {
868 				adapter->alloc_rx_buff_failed++;
869 				break;
870 			}
871 		}
872 
873 		if (!buffer_info->dma) {
874 			buffer_info->dma = dma_map_page(&pdev->dev,
875 							buffer_info->page, 0,
876 							PAGE_SIZE,
877 							DMA_FROM_DEVICE);
878 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
879 				adapter->alloc_rx_buff_failed++;
880 				break;
881 			}
882 		}
883 
884 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
885 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
886 
887 		if (unlikely(++i == rx_ring->count))
888 			i = 0;
889 		buffer_info = &rx_ring->buffer_info[i];
890 	}
891 
892 	if (likely(rx_ring->next_to_use != i)) {
893 		rx_ring->next_to_use = i;
894 		if (unlikely(i-- == 0))
895 			i = (rx_ring->count - 1);
896 
897 		/* Force memory writes to complete before letting h/w
898 		 * know there are new descriptors to fetch.  (Only
899 		 * applicable for weak-ordered memory model archs,
900 		 * such as IA-64).
901 		 */
902 		wmb();
903 		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
904 			e1000e_update_rdt_wa(rx_ring, i);
905 		else
906 			writel(i, rx_ring->tail);
907 	}
908 }
909 
910 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
911 				 struct sk_buff *skb)
912 {
913 	if (netdev->features & NETIF_F_RXHASH)
914 		skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
915 }
916 
917 /**
918  * e1000_clean_rx_irq - Send received data up the network stack
919  * @rx_ring: Rx descriptor ring
920  *
921  * the return value indicates whether actual cleaning was done, there
922  * is no guarantee that everything was cleaned
923  **/
924 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
925 			       int work_to_do)
926 {
927 	struct e1000_adapter *adapter = rx_ring->adapter;
928 	struct net_device *netdev = adapter->netdev;
929 	struct pci_dev *pdev = adapter->pdev;
930 	struct e1000_hw *hw = &adapter->hw;
931 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
932 	struct e1000_buffer *buffer_info, *next_buffer;
933 	u32 length, staterr;
934 	unsigned int i;
935 	int cleaned_count = 0;
936 	bool cleaned = false;
937 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
938 
939 	i = rx_ring->next_to_clean;
940 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
941 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
942 	buffer_info = &rx_ring->buffer_info[i];
943 
944 	while (staterr & E1000_RXD_STAT_DD) {
945 		struct sk_buff *skb;
946 
947 		if (*work_done >= work_to_do)
948 			break;
949 		(*work_done)++;
950 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
951 
952 		skb = buffer_info->skb;
953 		buffer_info->skb = NULL;
954 
955 		prefetch(skb->data - NET_IP_ALIGN);
956 
957 		i++;
958 		if (i == rx_ring->count)
959 			i = 0;
960 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
961 		prefetch(next_rxd);
962 
963 		next_buffer = &rx_ring->buffer_info[i];
964 
965 		cleaned = true;
966 		cleaned_count++;
967 		dma_unmap_single(&pdev->dev, buffer_info->dma,
968 				 adapter->rx_buffer_len, DMA_FROM_DEVICE);
969 		buffer_info->dma = 0;
970 
971 		length = le16_to_cpu(rx_desc->wb.upper.length);
972 
973 		/* !EOP means multiple descriptors were used to store a single
974 		 * packet, if that's the case we need to toss it.  In fact, we
975 		 * need to toss every packet with the EOP bit clear and the
976 		 * next frame that _does_ have the EOP bit set, as it is by
977 		 * definition only a frame fragment
978 		 */
979 		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
980 			adapter->flags2 |= FLAG2_IS_DISCARDING;
981 
982 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
983 			/* All receives must fit into a single buffer */
984 			e_dbg("Receive packet consumed multiple buffers\n");
985 			/* recycle */
986 			buffer_info->skb = skb;
987 			if (staterr & E1000_RXD_STAT_EOP)
988 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
989 			goto next_desc;
990 		}
991 
992 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
993 			     !(netdev->features & NETIF_F_RXALL))) {
994 			/* recycle */
995 			buffer_info->skb = skb;
996 			goto next_desc;
997 		}
998 
999 		/* adjust length to remove Ethernet CRC */
1000 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1001 			/* If configured to store CRC, don't subtract FCS,
1002 			 * but keep the FCS bytes out of the total_rx_bytes
1003 			 * counter
1004 			 */
1005 			if (netdev->features & NETIF_F_RXFCS)
1006 				total_rx_bytes -= 4;
1007 			else
1008 				length -= 4;
1009 		}
1010 
1011 		total_rx_bytes += length;
1012 		total_rx_packets++;
1013 
1014 		/* code added for copybreak, this should improve
1015 		 * performance for small packets with large amounts
1016 		 * of reassembly being done in the stack
1017 		 */
1018 		if (length < copybreak) {
1019 			struct sk_buff *new_skb =
1020 				napi_alloc_skb(&adapter->napi, length);
1021 			if (new_skb) {
1022 				skb_copy_to_linear_data_offset(new_skb,
1023 							       -NET_IP_ALIGN,
1024 							       (skb->data -
1025 								NET_IP_ALIGN),
1026 							       (length +
1027 								NET_IP_ALIGN));
1028 				/* save the skb in buffer_info as good */
1029 				buffer_info->skb = skb;
1030 				skb = new_skb;
1031 			}
1032 			/* else just continue with the old one */
1033 		}
1034 		/* end copybreak code */
1035 		skb_put(skb, length);
1036 
1037 		/* Receive Checksum Offload */
1038 		e1000_rx_checksum(adapter, staterr, skb);
1039 
1040 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1041 
1042 		e1000_receive_skb(adapter, netdev, skb, staterr,
1043 				  rx_desc->wb.upper.vlan);
1044 
1045 next_desc:
1046 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1047 
1048 		/* return some buffers to hardware, one at a time is too slow */
1049 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1050 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1051 					      GFP_ATOMIC);
1052 			cleaned_count = 0;
1053 		}
1054 
1055 		/* use prefetched values */
1056 		rx_desc = next_rxd;
1057 		buffer_info = next_buffer;
1058 
1059 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1060 	}
1061 	rx_ring->next_to_clean = i;
1062 
1063 	cleaned_count = e1000_desc_unused(rx_ring);
1064 	if (cleaned_count)
1065 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1066 
1067 	adapter->total_rx_bytes += total_rx_bytes;
1068 	adapter->total_rx_packets += total_rx_packets;
1069 	return cleaned;
1070 }
1071 
1072 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1073 			    struct e1000_buffer *buffer_info)
1074 {
1075 	struct e1000_adapter *adapter = tx_ring->adapter;
1076 
1077 	if (buffer_info->dma) {
1078 		if (buffer_info->mapped_as_page)
1079 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1080 				       buffer_info->length, DMA_TO_DEVICE);
1081 		else
1082 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1083 					 buffer_info->length, DMA_TO_DEVICE);
1084 		buffer_info->dma = 0;
1085 	}
1086 	if (buffer_info->skb) {
1087 		dev_kfree_skb_any(buffer_info->skb);
1088 		buffer_info->skb = NULL;
1089 	}
1090 	buffer_info->time_stamp = 0;
1091 }
1092 
1093 static void e1000_print_hw_hang(struct work_struct *work)
1094 {
1095 	struct e1000_adapter *adapter = container_of(work,
1096 						     struct e1000_adapter,
1097 						     print_hang_task);
1098 	struct net_device *netdev = adapter->netdev;
1099 	struct e1000_ring *tx_ring = adapter->tx_ring;
1100 	unsigned int i = tx_ring->next_to_clean;
1101 	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1102 	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1103 	struct e1000_hw *hw = &adapter->hw;
1104 	u16 phy_status, phy_1000t_status, phy_ext_status;
1105 	u16 pci_status;
1106 
1107 	if (test_bit(__E1000_DOWN, &adapter->state))
1108 		return;
1109 
1110 	if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1111 		/* May be block on write-back, flush and detect again
1112 		 * flush pending descriptor writebacks to memory
1113 		 */
1114 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1115 		/* execute the writes immediately */
1116 		e1e_flush();
1117 		/* Due to rare timing issues, write to TIDV again to ensure
1118 		 * the write is successful
1119 		 */
1120 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1121 		/* execute the writes immediately */
1122 		e1e_flush();
1123 		adapter->tx_hang_recheck = true;
1124 		return;
1125 	}
1126 	adapter->tx_hang_recheck = false;
1127 
1128 	if (er32(TDH(0)) == er32(TDT(0))) {
1129 		e_dbg("false hang detected, ignoring\n");
1130 		return;
1131 	}
1132 
1133 	/* Real hang detected */
1134 	netif_stop_queue(netdev);
1135 
1136 	e1e_rphy(hw, MII_BMSR, &phy_status);
1137 	e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1138 	e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1139 
1140 	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1141 
1142 	/* detected Hardware unit hang */
1143 	e_err("Detected Hardware Unit Hang:\n"
1144 	      "  TDH                  <%x>\n"
1145 	      "  TDT                  <%x>\n"
1146 	      "  next_to_use          <%x>\n"
1147 	      "  next_to_clean        <%x>\n"
1148 	      "buffer_info[next_to_clean]:\n"
1149 	      "  time_stamp           <%lx>\n"
1150 	      "  next_to_watch        <%x>\n"
1151 	      "  jiffies              <%lx>\n"
1152 	      "  next_to_watch.status <%x>\n"
1153 	      "MAC Status             <%x>\n"
1154 	      "PHY Status             <%x>\n"
1155 	      "PHY 1000BASE-T Status  <%x>\n"
1156 	      "PHY Extended Status    <%x>\n"
1157 	      "PCI Status             <%x>\n",
1158 	      readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1159 	      tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1160 	      eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1161 	      phy_status, phy_1000t_status, phy_ext_status, pci_status);
1162 
1163 	e1000e_dump(adapter);
1164 
1165 	/* Suggest workaround for known h/w issue */
1166 	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1167 		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1168 }
1169 
1170 /**
1171  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1172  * @work: pointer to work struct
1173  *
1174  * This work function polls the TSYNCTXCTL valid bit to determine when a
1175  * timestamp has been taken for the current stored skb.  The timestamp must
1176  * be for this skb because only one such packet is allowed in the queue.
1177  */
1178 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1179 {
1180 	struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1181 						     tx_hwtstamp_work);
1182 	struct e1000_hw *hw = &adapter->hw;
1183 
1184 	if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1185 		struct skb_shared_hwtstamps shhwtstamps;
1186 		u64 txstmp;
1187 
1188 		txstmp = er32(TXSTMPL);
1189 		txstmp |= (u64)er32(TXSTMPH) << 32;
1190 
1191 		e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1192 
1193 		skb_tstamp_tx(adapter->tx_hwtstamp_skb, &shhwtstamps);
1194 		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1195 		adapter->tx_hwtstamp_skb = NULL;
1196 	} else if (time_after(jiffies, adapter->tx_hwtstamp_start
1197 			      + adapter->tx_timeout_factor * HZ)) {
1198 		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1199 		adapter->tx_hwtstamp_skb = NULL;
1200 		adapter->tx_hwtstamp_timeouts++;
1201 		e_warn("clearing Tx timestamp hang\n");
1202 	} else {
1203 		/* reschedule to check later */
1204 		schedule_work(&adapter->tx_hwtstamp_work);
1205 	}
1206 }
1207 
1208 /**
1209  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1210  * @tx_ring: Tx descriptor ring
1211  *
1212  * the return value indicates whether actual cleaning was done, there
1213  * is no guarantee that everything was cleaned
1214  **/
1215 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1216 {
1217 	struct e1000_adapter *adapter = tx_ring->adapter;
1218 	struct net_device *netdev = adapter->netdev;
1219 	struct e1000_hw *hw = &adapter->hw;
1220 	struct e1000_tx_desc *tx_desc, *eop_desc;
1221 	struct e1000_buffer *buffer_info;
1222 	unsigned int i, eop;
1223 	unsigned int count = 0;
1224 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1225 	unsigned int bytes_compl = 0, pkts_compl = 0;
1226 
1227 	i = tx_ring->next_to_clean;
1228 	eop = tx_ring->buffer_info[i].next_to_watch;
1229 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1230 
1231 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1232 	       (count < tx_ring->count)) {
1233 		bool cleaned = false;
1234 
1235 		dma_rmb();		/* read buffer_info after eop_desc */
1236 		for (; !cleaned; count++) {
1237 			tx_desc = E1000_TX_DESC(*tx_ring, i);
1238 			buffer_info = &tx_ring->buffer_info[i];
1239 			cleaned = (i == eop);
1240 
1241 			if (cleaned) {
1242 				total_tx_packets += buffer_info->segs;
1243 				total_tx_bytes += buffer_info->bytecount;
1244 				if (buffer_info->skb) {
1245 					bytes_compl += buffer_info->skb->len;
1246 					pkts_compl++;
1247 				}
1248 			}
1249 
1250 			e1000_put_txbuf(tx_ring, buffer_info);
1251 			tx_desc->upper.data = 0;
1252 
1253 			i++;
1254 			if (i == tx_ring->count)
1255 				i = 0;
1256 		}
1257 
1258 		if (i == tx_ring->next_to_use)
1259 			break;
1260 		eop = tx_ring->buffer_info[i].next_to_watch;
1261 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1262 	}
1263 
1264 	tx_ring->next_to_clean = i;
1265 
1266 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1267 
1268 #define TX_WAKE_THRESHOLD 32
1269 	if (count && netif_carrier_ok(netdev) &&
1270 	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1271 		/* Make sure that anybody stopping the queue after this
1272 		 * sees the new next_to_clean.
1273 		 */
1274 		smp_mb();
1275 
1276 		if (netif_queue_stopped(netdev) &&
1277 		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1278 			netif_wake_queue(netdev);
1279 			++adapter->restart_queue;
1280 		}
1281 	}
1282 
1283 	if (adapter->detect_tx_hung) {
1284 		/* Detect a transmit hang in hardware, this serializes the
1285 		 * check with the clearing of time_stamp and movement of i
1286 		 */
1287 		adapter->detect_tx_hung = false;
1288 		if (tx_ring->buffer_info[i].time_stamp &&
1289 		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1290 			       + (adapter->tx_timeout_factor * HZ)) &&
1291 		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1292 			schedule_work(&adapter->print_hang_task);
1293 		else
1294 			adapter->tx_hang_recheck = false;
1295 	}
1296 	adapter->total_tx_bytes += total_tx_bytes;
1297 	adapter->total_tx_packets += total_tx_packets;
1298 	return count < tx_ring->count;
1299 }
1300 
1301 /**
1302  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1303  * @rx_ring: Rx descriptor ring
1304  *
1305  * the return value indicates whether actual cleaning was done, there
1306  * is no guarantee that everything was cleaned
1307  **/
1308 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1309 				  int work_to_do)
1310 {
1311 	struct e1000_adapter *adapter = rx_ring->adapter;
1312 	struct e1000_hw *hw = &adapter->hw;
1313 	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1314 	struct net_device *netdev = adapter->netdev;
1315 	struct pci_dev *pdev = adapter->pdev;
1316 	struct e1000_buffer *buffer_info, *next_buffer;
1317 	struct e1000_ps_page *ps_page;
1318 	struct sk_buff *skb;
1319 	unsigned int i, j;
1320 	u32 length, staterr;
1321 	int cleaned_count = 0;
1322 	bool cleaned = false;
1323 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1324 
1325 	i = rx_ring->next_to_clean;
1326 	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1327 	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1328 	buffer_info = &rx_ring->buffer_info[i];
1329 
1330 	while (staterr & E1000_RXD_STAT_DD) {
1331 		if (*work_done >= work_to_do)
1332 			break;
1333 		(*work_done)++;
1334 		skb = buffer_info->skb;
1335 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1336 
1337 		/* in the packet split case this is header only */
1338 		prefetch(skb->data - NET_IP_ALIGN);
1339 
1340 		i++;
1341 		if (i == rx_ring->count)
1342 			i = 0;
1343 		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1344 		prefetch(next_rxd);
1345 
1346 		next_buffer = &rx_ring->buffer_info[i];
1347 
1348 		cleaned = true;
1349 		cleaned_count++;
1350 		dma_unmap_single(&pdev->dev, buffer_info->dma,
1351 				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1352 		buffer_info->dma = 0;
1353 
1354 		/* see !EOP comment in other Rx routine */
1355 		if (!(staterr & E1000_RXD_STAT_EOP))
1356 			adapter->flags2 |= FLAG2_IS_DISCARDING;
1357 
1358 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1359 			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1360 			dev_kfree_skb_irq(skb);
1361 			if (staterr & E1000_RXD_STAT_EOP)
1362 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1363 			goto next_desc;
1364 		}
1365 
1366 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1367 			     !(netdev->features & NETIF_F_RXALL))) {
1368 			dev_kfree_skb_irq(skb);
1369 			goto next_desc;
1370 		}
1371 
1372 		length = le16_to_cpu(rx_desc->wb.middle.length0);
1373 
1374 		if (!length) {
1375 			e_dbg("Last part of the packet spanning multiple descriptors\n");
1376 			dev_kfree_skb_irq(skb);
1377 			goto next_desc;
1378 		}
1379 
1380 		/* Good Receive */
1381 		skb_put(skb, length);
1382 
1383 		{
1384 			/* this looks ugly, but it seems compiler issues make
1385 			 * it more efficient than reusing j
1386 			 */
1387 			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1388 
1389 			/* page alloc/put takes too long and effects small
1390 			 * packet throughput, so unsplit small packets and
1391 			 * save the alloc/put only valid in softirq (napi)
1392 			 * context to call kmap_*
1393 			 */
1394 			if (l1 && (l1 <= copybreak) &&
1395 			    ((length + l1) <= adapter->rx_ps_bsize0)) {
1396 				u8 *vaddr;
1397 
1398 				ps_page = &buffer_info->ps_pages[0];
1399 
1400 				/* there is no documentation about how to call
1401 				 * kmap_atomic, so we can't hold the mapping
1402 				 * very long
1403 				 */
1404 				dma_sync_single_for_cpu(&pdev->dev,
1405 							ps_page->dma,
1406 							PAGE_SIZE,
1407 							DMA_FROM_DEVICE);
1408 				vaddr = kmap_atomic(ps_page->page);
1409 				memcpy(skb_tail_pointer(skb), vaddr, l1);
1410 				kunmap_atomic(vaddr);
1411 				dma_sync_single_for_device(&pdev->dev,
1412 							   ps_page->dma,
1413 							   PAGE_SIZE,
1414 							   DMA_FROM_DEVICE);
1415 
1416 				/* remove the CRC */
1417 				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1418 					if (!(netdev->features & NETIF_F_RXFCS))
1419 						l1 -= 4;
1420 				}
1421 
1422 				skb_put(skb, l1);
1423 				goto copydone;
1424 			}	/* if */
1425 		}
1426 
1427 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1428 			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1429 			if (!length)
1430 				break;
1431 
1432 			ps_page = &buffer_info->ps_pages[j];
1433 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1434 				       DMA_FROM_DEVICE);
1435 			ps_page->dma = 0;
1436 			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1437 			ps_page->page = NULL;
1438 			skb->len += length;
1439 			skb->data_len += length;
1440 			skb->truesize += PAGE_SIZE;
1441 		}
1442 
1443 		/* strip the ethernet crc, problem is we're using pages now so
1444 		 * this whole operation can get a little cpu intensive
1445 		 */
1446 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1447 			if (!(netdev->features & NETIF_F_RXFCS))
1448 				pskb_trim(skb, skb->len - 4);
1449 		}
1450 
1451 copydone:
1452 		total_rx_bytes += skb->len;
1453 		total_rx_packets++;
1454 
1455 		e1000_rx_checksum(adapter, staterr, skb);
1456 
1457 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1458 
1459 		if (rx_desc->wb.upper.header_status &
1460 		    cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1461 			adapter->rx_hdr_split++;
1462 
1463 		e1000_receive_skb(adapter, netdev, skb, staterr,
1464 				  rx_desc->wb.middle.vlan);
1465 
1466 next_desc:
1467 		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1468 		buffer_info->skb = NULL;
1469 
1470 		/* return some buffers to hardware, one at a time is too slow */
1471 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1472 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1473 					      GFP_ATOMIC);
1474 			cleaned_count = 0;
1475 		}
1476 
1477 		/* use prefetched values */
1478 		rx_desc = next_rxd;
1479 		buffer_info = next_buffer;
1480 
1481 		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1482 	}
1483 	rx_ring->next_to_clean = i;
1484 
1485 	cleaned_count = e1000_desc_unused(rx_ring);
1486 	if (cleaned_count)
1487 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1488 
1489 	adapter->total_rx_bytes += total_rx_bytes;
1490 	adapter->total_rx_packets += total_rx_packets;
1491 	return cleaned;
1492 }
1493 
1494 /**
1495  * e1000_consume_page - helper function
1496  **/
1497 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1498 			       u16 length)
1499 {
1500 	bi->page = NULL;
1501 	skb->len += length;
1502 	skb->data_len += length;
1503 	skb->truesize += PAGE_SIZE;
1504 }
1505 
1506 /**
1507  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1508  * @adapter: board private structure
1509  *
1510  * the return value indicates whether actual cleaning was done, there
1511  * is no guarantee that everything was cleaned
1512  **/
1513 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1514 				     int work_to_do)
1515 {
1516 	struct e1000_adapter *adapter = rx_ring->adapter;
1517 	struct net_device *netdev = adapter->netdev;
1518 	struct pci_dev *pdev = adapter->pdev;
1519 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1520 	struct e1000_buffer *buffer_info, *next_buffer;
1521 	u32 length, staterr;
1522 	unsigned int i;
1523 	int cleaned_count = 0;
1524 	bool cleaned = false;
1525 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1526 	struct skb_shared_info *shinfo;
1527 
1528 	i = rx_ring->next_to_clean;
1529 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1530 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1531 	buffer_info = &rx_ring->buffer_info[i];
1532 
1533 	while (staterr & E1000_RXD_STAT_DD) {
1534 		struct sk_buff *skb;
1535 
1536 		if (*work_done >= work_to_do)
1537 			break;
1538 		(*work_done)++;
1539 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1540 
1541 		skb = buffer_info->skb;
1542 		buffer_info->skb = NULL;
1543 
1544 		++i;
1545 		if (i == rx_ring->count)
1546 			i = 0;
1547 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1548 		prefetch(next_rxd);
1549 
1550 		next_buffer = &rx_ring->buffer_info[i];
1551 
1552 		cleaned = true;
1553 		cleaned_count++;
1554 		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1555 			       DMA_FROM_DEVICE);
1556 		buffer_info->dma = 0;
1557 
1558 		length = le16_to_cpu(rx_desc->wb.upper.length);
1559 
1560 		/* errors is only valid for DD + EOP descriptors */
1561 		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1562 			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1563 			      !(netdev->features & NETIF_F_RXALL)))) {
1564 			/* recycle both page and skb */
1565 			buffer_info->skb = skb;
1566 			/* an error means any chain goes out the window too */
1567 			if (rx_ring->rx_skb_top)
1568 				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1569 			rx_ring->rx_skb_top = NULL;
1570 			goto next_desc;
1571 		}
1572 #define rxtop (rx_ring->rx_skb_top)
1573 		if (!(staterr & E1000_RXD_STAT_EOP)) {
1574 			/* this descriptor is only the beginning (or middle) */
1575 			if (!rxtop) {
1576 				/* this is the beginning of a chain */
1577 				rxtop = skb;
1578 				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1579 						   0, length);
1580 			} else {
1581 				/* this is the middle of a chain */
1582 				shinfo = skb_shinfo(rxtop);
1583 				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1584 						   buffer_info->page, 0,
1585 						   length);
1586 				/* re-use the skb, only consumed the page */
1587 				buffer_info->skb = skb;
1588 			}
1589 			e1000_consume_page(buffer_info, rxtop, length);
1590 			goto next_desc;
1591 		} else {
1592 			if (rxtop) {
1593 				/* end of the chain */
1594 				shinfo = skb_shinfo(rxtop);
1595 				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1596 						   buffer_info->page, 0,
1597 						   length);
1598 				/* re-use the current skb, we only consumed the
1599 				 * page
1600 				 */
1601 				buffer_info->skb = skb;
1602 				skb = rxtop;
1603 				rxtop = NULL;
1604 				e1000_consume_page(buffer_info, skb, length);
1605 			} else {
1606 				/* no chain, got EOP, this buf is the packet
1607 				 * copybreak to save the put_page/alloc_page
1608 				 */
1609 				if (length <= copybreak &&
1610 				    skb_tailroom(skb) >= length) {
1611 					u8 *vaddr;
1612 					vaddr = kmap_atomic(buffer_info->page);
1613 					memcpy(skb_tail_pointer(skb), vaddr,
1614 					       length);
1615 					kunmap_atomic(vaddr);
1616 					/* re-use the page, so don't erase
1617 					 * buffer_info->page
1618 					 */
1619 					skb_put(skb, length);
1620 				} else {
1621 					skb_fill_page_desc(skb, 0,
1622 							   buffer_info->page, 0,
1623 							   length);
1624 					e1000_consume_page(buffer_info, skb,
1625 							   length);
1626 				}
1627 			}
1628 		}
1629 
1630 		/* Receive Checksum Offload */
1631 		e1000_rx_checksum(adapter, staterr, skb);
1632 
1633 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1634 
1635 		/* probably a little skewed due to removing CRC */
1636 		total_rx_bytes += skb->len;
1637 		total_rx_packets++;
1638 
1639 		/* eth type trans needs skb->data to point to something */
1640 		if (!pskb_may_pull(skb, ETH_HLEN)) {
1641 			e_err("pskb_may_pull failed.\n");
1642 			dev_kfree_skb_irq(skb);
1643 			goto next_desc;
1644 		}
1645 
1646 		e1000_receive_skb(adapter, netdev, skb, staterr,
1647 				  rx_desc->wb.upper.vlan);
1648 
1649 next_desc:
1650 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1651 
1652 		/* return some buffers to hardware, one at a time is too slow */
1653 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1654 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1655 					      GFP_ATOMIC);
1656 			cleaned_count = 0;
1657 		}
1658 
1659 		/* use prefetched values */
1660 		rx_desc = next_rxd;
1661 		buffer_info = next_buffer;
1662 
1663 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1664 	}
1665 	rx_ring->next_to_clean = i;
1666 
1667 	cleaned_count = e1000_desc_unused(rx_ring);
1668 	if (cleaned_count)
1669 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1670 
1671 	adapter->total_rx_bytes += total_rx_bytes;
1672 	adapter->total_rx_packets += total_rx_packets;
1673 	return cleaned;
1674 }
1675 
1676 /**
1677  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1678  * @rx_ring: Rx descriptor ring
1679  **/
1680 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1681 {
1682 	struct e1000_adapter *adapter = rx_ring->adapter;
1683 	struct e1000_buffer *buffer_info;
1684 	struct e1000_ps_page *ps_page;
1685 	struct pci_dev *pdev = adapter->pdev;
1686 	unsigned int i, j;
1687 
1688 	/* Free all the Rx ring sk_buffs */
1689 	for (i = 0; i < rx_ring->count; i++) {
1690 		buffer_info = &rx_ring->buffer_info[i];
1691 		if (buffer_info->dma) {
1692 			if (adapter->clean_rx == e1000_clean_rx_irq)
1693 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1694 						 adapter->rx_buffer_len,
1695 						 DMA_FROM_DEVICE);
1696 			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1697 				dma_unmap_page(&pdev->dev, buffer_info->dma,
1698 					       PAGE_SIZE, DMA_FROM_DEVICE);
1699 			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1700 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1701 						 adapter->rx_ps_bsize0,
1702 						 DMA_FROM_DEVICE);
1703 			buffer_info->dma = 0;
1704 		}
1705 
1706 		if (buffer_info->page) {
1707 			put_page(buffer_info->page);
1708 			buffer_info->page = NULL;
1709 		}
1710 
1711 		if (buffer_info->skb) {
1712 			dev_kfree_skb(buffer_info->skb);
1713 			buffer_info->skb = NULL;
1714 		}
1715 
1716 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1717 			ps_page = &buffer_info->ps_pages[j];
1718 			if (!ps_page->page)
1719 				break;
1720 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1721 				       DMA_FROM_DEVICE);
1722 			ps_page->dma = 0;
1723 			put_page(ps_page->page);
1724 			ps_page->page = NULL;
1725 		}
1726 	}
1727 
1728 	/* there also may be some cached data from a chained receive */
1729 	if (rx_ring->rx_skb_top) {
1730 		dev_kfree_skb(rx_ring->rx_skb_top);
1731 		rx_ring->rx_skb_top = NULL;
1732 	}
1733 
1734 	/* Zero out the descriptor ring */
1735 	memset(rx_ring->desc, 0, rx_ring->size);
1736 
1737 	rx_ring->next_to_clean = 0;
1738 	rx_ring->next_to_use = 0;
1739 	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1740 
1741 	writel(0, rx_ring->head);
1742 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
1743 		e1000e_update_rdt_wa(rx_ring, 0);
1744 	else
1745 		writel(0, rx_ring->tail);
1746 }
1747 
1748 static void e1000e_downshift_workaround(struct work_struct *work)
1749 {
1750 	struct e1000_adapter *adapter = container_of(work,
1751 						     struct e1000_adapter,
1752 						     downshift_task);
1753 
1754 	if (test_bit(__E1000_DOWN, &adapter->state))
1755 		return;
1756 
1757 	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1758 }
1759 
1760 /**
1761  * e1000_intr_msi - Interrupt Handler
1762  * @irq: interrupt number
1763  * @data: pointer to a network interface device structure
1764  **/
1765 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1766 {
1767 	struct net_device *netdev = data;
1768 	struct e1000_adapter *adapter = netdev_priv(netdev);
1769 	struct e1000_hw *hw = &adapter->hw;
1770 	u32 icr = er32(ICR);
1771 
1772 	/* read ICR disables interrupts using IAM */
1773 	if (icr & E1000_ICR_LSC) {
1774 		hw->mac.get_link_status = true;
1775 		/* ICH8 workaround-- Call gig speed drop workaround on cable
1776 		 * disconnect (LSC) before accessing any PHY registers
1777 		 */
1778 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1779 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1780 			schedule_work(&adapter->downshift_task);
1781 
1782 		/* 80003ES2LAN workaround-- For packet buffer work-around on
1783 		 * link down event; disable receives here in the ISR and reset
1784 		 * adapter in watchdog
1785 		 */
1786 		if (netif_carrier_ok(netdev) &&
1787 		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1788 			/* disable receives */
1789 			u32 rctl = er32(RCTL);
1790 
1791 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1792 			adapter->flags |= FLAG_RESTART_NOW;
1793 		}
1794 		/* guard against interrupt when we're going down */
1795 		if (!test_bit(__E1000_DOWN, &adapter->state))
1796 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1797 	}
1798 
1799 	/* Reset on uncorrectable ECC error */
1800 	if ((icr & E1000_ICR_ECCER) && ((hw->mac.type == e1000_pch_lpt) ||
1801 					(hw->mac.type == e1000_pch_spt))) {
1802 		u32 pbeccsts = er32(PBECCSTS);
1803 
1804 		adapter->corr_errors +=
1805 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1806 		adapter->uncorr_errors +=
1807 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1808 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1809 
1810 		/* Do the reset outside of interrupt context */
1811 		schedule_work(&adapter->reset_task);
1812 
1813 		/* return immediately since reset is imminent */
1814 		return IRQ_HANDLED;
1815 	}
1816 
1817 	if (napi_schedule_prep(&adapter->napi)) {
1818 		adapter->total_tx_bytes = 0;
1819 		adapter->total_tx_packets = 0;
1820 		adapter->total_rx_bytes = 0;
1821 		adapter->total_rx_packets = 0;
1822 		__napi_schedule(&adapter->napi);
1823 	}
1824 
1825 	return IRQ_HANDLED;
1826 }
1827 
1828 /**
1829  * e1000_intr - Interrupt Handler
1830  * @irq: interrupt number
1831  * @data: pointer to a network interface device structure
1832  **/
1833 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1834 {
1835 	struct net_device *netdev = data;
1836 	struct e1000_adapter *adapter = netdev_priv(netdev);
1837 	struct e1000_hw *hw = &adapter->hw;
1838 	u32 rctl, icr = er32(ICR);
1839 
1840 	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1841 		return IRQ_NONE;	/* Not our interrupt */
1842 
1843 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1844 	 * not set, then the adapter didn't send an interrupt
1845 	 */
1846 	if (!(icr & E1000_ICR_INT_ASSERTED))
1847 		return IRQ_NONE;
1848 
1849 	/* Interrupt Auto-Mask...upon reading ICR,
1850 	 * interrupts are masked.  No need for the
1851 	 * IMC write
1852 	 */
1853 
1854 	if (icr & E1000_ICR_LSC) {
1855 		hw->mac.get_link_status = true;
1856 		/* ICH8 workaround-- Call gig speed drop workaround on cable
1857 		 * disconnect (LSC) before accessing any PHY registers
1858 		 */
1859 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1860 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1861 			schedule_work(&adapter->downshift_task);
1862 
1863 		/* 80003ES2LAN workaround--
1864 		 * For packet buffer work-around on link down event;
1865 		 * disable receives here in the ISR and
1866 		 * reset adapter in watchdog
1867 		 */
1868 		if (netif_carrier_ok(netdev) &&
1869 		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1870 			/* disable receives */
1871 			rctl = er32(RCTL);
1872 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1873 			adapter->flags |= FLAG_RESTART_NOW;
1874 		}
1875 		/* guard against interrupt when we're going down */
1876 		if (!test_bit(__E1000_DOWN, &adapter->state))
1877 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1878 	}
1879 
1880 	/* Reset on uncorrectable ECC error */
1881 	if ((icr & E1000_ICR_ECCER) && ((hw->mac.type == e1000_pch_lpt) ||
1882 					(hw->mac.type == e1000_pch_spt))) {
1883 		u32 pbeccsts = er32(PBECCSTS);
1884 
1885 		adapter->corr_errors +=
1886 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1887 		adapter->uncorr_errors +=
1888 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1889 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1890 
1891 		/* Do the reset outside of interrupt context */
1892 		schedule_work(&adapter->reset_task);
1893 
1894 		/* return immediately since reset is imminent */
1895 		return IRQ_HANDLED;
1896 	}
1897 
1898 	if (napi_schedule_prep(&adapter->napi)) {
1899 		adapter->total_tx_bytes = 0;
1900 		adapter->total_tx_packets = 0;
1901 		adapter->total_rx_bytes = 0;
1902 		adapter->total_rx_packets = 0;
1903 		__napi_schedule(&adapter->napi);
1904 	}
1905 
1906 	return IRQ_HANDLED;
1907 }
1908 
1909 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1910 {
1911 	struct net_device *netdev = data;
1912 	struct e1000_adapter *adapter = netdev_priv(netdev);
1913 	struct e1000_hw *hw = &adapter->hw;
1914 	u32 icr = er32(ICR);
1915 
1916 	if (!(icr & E1000_ICR_INT_ASSERTED)) {
1917 		if (!test_bit(__E1000_DOWN, &adapter->state))
1918 			ew32(IMS, E1000_IMS_OTHER);
1919 		return IRQ_NONE;
1920 	}
1921 
1922 	if (icr & adapter->eiac_mask)
1923 		ew32(ICS, (icr & adapter->eiac_mask));
1924 
1925 	if (icr & E1000_ICR_OTHER) {
1926 		if (!(icr & E1000_ICR_LSC))
1927 			goto no_link_interrupt;
1928 		hw->mac.get_link_status = true;
1929 		/* guard against interrupt when we're going down */
1930 		if (!test_bit(__E1000_DOWN, &adapter->state))
1931 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1932 	}
1933 
1934 no_link_interrupt:
1935 	if (!test_bit(__E1000_DOWN, &adapter->state))
1936 		ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1937 
1938 	return IRQ_HANDLED;
1939 }
1940 
1941 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1942 {
1943 	struct net_device *netdev = data;
1944 	struct e1000_adapter *adapter = netdev_priv(netdev);
1945 	struct e1000_hw *hw = &adapter->hw;
1946 	struct e1000_ring *tx_ring = adapter->tx_ring;
1947 
1948 	adapter->total_tx_bytes = 0;
1949 	adapter->total_tx_packets = 0;
1950 
1951 	if (!e1000_clean_tx_irq(tx_ring))
1952 		/* Ring was not completely cleaned, so fire another interrupt */
1953 		ew32(ICS, tx_ring->ims_val);
1954 
1955 	return IRQ_HANDLED;
1956 }
1957 
1958 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1959 {
1960 	struct net_device *netdev = data;
1961 	struct e1000_adapter *adapter = netdev_priv(netdev);
1962 	struct e1000_ring *rx_ring = adapter->rx_ring;
1963 
1964 	/* Write the ITR value calculated at the end of the
1965 	 * previous interrupt.
1966 	 */
1967 	if (rx_ring->set_itr) {
1968 		writel(1000000000 / (rx_ring->itr_val * 256),
1969 		       rx_ring->itr_register);
1970 		rx_ring->set_itr = 0;
1971 	}
1972 
1973 	if (napi_schedule_prep(&adapter->napi)) {
1974 		adapter->total_rx_bytes = 0;
1975 		adapter->total_rx_packets = 0;
1976 		__napi_schedule(&adapter->napi);
1977 	}
1978 	return IRQ_HANDLED;
1979 }
1980 
1981 /**
1982  * e1000_configure_msix - Configure MSI-X hardware
1983  *
1984  * e1000_configure_msix sets up the hardware to properly
1985  * generate MSI-X interrupts.
1986  **/
1987 static void e1000_configure_msix(struct e1000_adapter *adapter)
1988 {
1989 	struct e1000_hw *hw = &adapter->hw;
1990 	struct e1000_ring *rx_ring = adapter->rx_ring;
1991 	struct e1000_ring *tx_ring = adapter->tx_ring;
1992 	int vector = 0;
1993 	u32 ctrl_ext, ivar = 0;
1994 
1995 	adapter->eiac_mask = 0;
1996 
1997 	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1998 	if (hw->mac.type == e1000_82574) {
1999 		u32 rfctl = er32(RFCTL);
2000 
2001 		rfctl |= E1000_RFCTL_ACK_DIS;
2002 		ew32(RFCTL, rfctl);
2003 	}
2004 
2005 	/* Configure Rx vector */
2006 	rx_ring->ims_val = E1000_IMS_RXQ0;
2007 	adapter->eiac_mask |= rx_ring->ims_val;
2008 	if (rx_ring->itr_val)
2009 		writel(1000000000 / (rx_ring->itr_val * 256),
2010 		       rx_ring->itr_register);
2011 	else
2012 		writel(1, rx_ring->itr_register);
2013 	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
2014 
2015 	/* Configure Tx vector */
2016 	tx_ring->ims_val = E1000_IMS_TXQ0;
2017 	vector++;
2018 	if (tx_ring->itr_val)
2019 		writel(1000000000 / (tx_ring->itr_val * 256),
2020 		       tx_ring->itr_register);
2021 	else
2022 		writel(1, tx_ring->itr_register);
2023 	adapter->eiac_mask |= tx_ring->ims_val;
2024 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2025 
2026 	/* set vector for Other Causes, e.g. link changes */
2027 	vector++;
2028 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2029 	if (rx_ring->itr_val)
2030 		writel(1000000000 / (rx_ring->itr_val * 256),
2031 		       hw->hw_addr + E1000_EITR_82574(vector));
2032 	else
2033 		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2034 
2035 	/* Cause Tx interrupts on every write back */
2036 	ivar |= (1 << 31);
2037 
2038 	ew32(IVAR, ivar);
2039 
2040 	/* enable MSI-X PBA support */
2041 	ctrl_ext = er32(CTRL_EXT);
2042 	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
2043 
2044 	/* Auto-Mask Other interrupts upon ICR read */
2045 	ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
2046 	ctrl_ext |= E1000_CTRL_EXT_EIAME;
2047 	ew32(CTRL_EXT, ctrl_ext);
2048 	e1e_flush();
2049 }
2050 
2051 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2052 {
2053 	if (adapter->msix_entries) {
2054 		pci_disable_msix(adapter->pdev);
2055 		kfree(adapter->msix_entries);
2056 		adapter->msix_entries = NULL;
2057 	} else if (adapter->flags & FLAG_MSI_ENABLED) {
2058 		pci_disable_msi(adapter->pdev);
2059 		adapter->flags &= ~FLAG_MSI_ENABLED;
2060 	}
2061 }
2062 
2063 /**
2064  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2065  *
2066  * Attempt to configure interrupts using the best available
2067  * capabilities of the hardware and kernel.
2068  **/
2069 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2070 {
2071 	int err;
2072 	int i;
2073 
2074 	switch (adapter->int_mode) {
2075 	case E1000E_INT_MODE_MSIX:
2076 		if (adapter->flags & FLAG_HAS_MSIX) {
2077 			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2078 			adapter->msix_entries = kcalloc(adapter->num_vectors,
2079 							sizeof(struct
2080 							       msix_entry),
2081 							GFP_KERNEL);
2082 			if (adapter->msix_entries) {
2083 				struct e1000_adapter *a = adapter;
2084 
2085 				for (i = 0; i < adapter->num_vectors; i++)
2086 					adapter->msix_entries[i].entry = i;
2087 
2088 				err = pci_enable_msix_range(a->pdev,
2089 							    a->msix_entries,
2090 							    a->num_vectors,
2091 							    a->num_vectors);
2092 				if (err > 0)
2093 					return;
2094 			}
2095 			/* MSI-X failed, so fall through and try MSI */
2096 			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2097 			e1000e_reset_interrupt_capability(adapter);
2098 		}
2099 		adapter->int_mode = E1000E_INT_MODE_MSI;
2100 		/* Fall through */
2101 	case E1000E_INT_MODE_MSI:
2102 		if (!pci_enable_msi(adapter->pdev)) {
2103 			adapter->flags |= FLAG_MSI_ENABLED;
2104 		} else {
2105 			adapter->int_mode = E1000E_INT_MODE_LEGACY;
2106 			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2107 		}
2108 		/* Fall through */
2109 	case E1000E_INT_MODE_LEGACY:
2110 		/* Don't do anything; this is the system default */
2111 		break;
2112 	}
2113 
2114 	/* store the number of vectors being used */
2115 	adapter->num_vectors = 1;
2116 }
2117 
2118 /**
2119  * e1000_request_msix - Initialize MSI-X interrupts
2120  *
2121  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2122  * kernel.
2123  **/
2124 static int e1000_request_msix(struct e1000_adapter *adapter)
2125 {
2126 	struct net_device *netdev = adapter->netdev;
2127 	int err = 0, vector = 0;
2128 
2129 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2130 		snprintf(adapter->rx_ring->name,
2131 			 sizeof(adapter->rx_ring->name) - 1,
2132 			 "%s-rx-0", netdev->name);
2133 	else
2134 		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2135 	err = request_irq(adapter->msix_entries[vector].vector,
2136 			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2137 			  netdev);
2138 	if (err)
2139 		return err;
2140 	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2141 	    E1000_EITR_82574(vector);
2142 	adapter->rx_ring->itr_val = adapter->itr;
2143 	vector++;
2144 
2145 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2146 		snprintf(adapter->tx_ring->name,
2147 			 sizeof(adapter->tx_ring->name) - 1,
2148 			 "%s-tx-0", netdev->name);
2149 	else
2150 		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2151 	err = request_irq(adapter->msix_entries[vector].vector,
2152 			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2153 			  netdev);
2154 	if (err)
2155 		return err;
2156 	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2157 	    E1000_EITR_82574(vector);
2158 	adapter->tx_ring->itr_val = adapter->itr;
2159 	vector++;
2160 
2161 	err = request_irq(adapter->msix_entries[vector].vector,
2162 			  e1000_msix_other, 0, netdev->name, netdev);
2163 	if (err)
2164 		return err;
2165 
2166 	e1000_configure_msix(adapter);
2167 
2168 	return 0;
2169 }
2170 
2171 /**
2172  * e1000_request_irq - initialize interrupts
2173  *
2174  * Attempts to configure interrupts using the best available
2175  * capabilities of the hardware and kernel.
2176  **/
2177 static int e1000_request_irq(struct e1000_adapter *adapter)
2178 {
2179 	struct net_device *netdev = adapter->netdev;
2180 	int err;
2181 
2182 	if (adapter->msix_entries) {
2183 		err = e1000_request_msix(adapter);
2184 		if (!err)
2185 			return err;
2186 		/* fall back to MSI */
2187 		e1000e_reset_interrupt_capability(adapter);
2188 		adapter->int_mode = E1000E_INT_MODE_MSI;
2189 		e1000e_set_interrupt_capability(adapter);
2190 	}
2191 	if (adapter->flags & FLAG_MSI_ENABLED) {
2192 		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2193 				  netdev->name, netdev);
2194 		if (!err)
2195 			return err;
2196 
2197 		/* fall back to legacy interrupt */
2198 		e1000e_reset_interrupt_capability(adapter);
2199 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2200 	}
2201 
2202 	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2203 			  netdev->name, netdev);
2204 	if (err)
2205 		e_err("Unable to allocate interrupt, Error: %d\n", err);
2206 
2207 	return err;
2208 }
2209 
2210 static void e1000_free_irq(struct e1000_adapter *adapter)
2211 {
2212 	struct net_device *netdev = adapter->netdev;
2213 
2214 	if (adapter->msix_entries) {
2215 		int vector = 0;
2216 
2217 		free_irq(adapter->msix_entries[vector].vector, netdev);
2218 		vector++;
2219 
2220 		free_irq(adapter->msix_entries[vector].vector, netdev);
2221 		vector++;
2222 
2223 		/* Other Causes interrupt vector */
2224 		free_irq(adapter->msix_entries[vector].vector, netdev);
2225 		return;
2226 	}
2227 
2228 	free_irq(adapter->pdev->irq, netdev);
2229 }
2230 
2231 /**
2232  * e1000_irq_disable - Mask off interrupt generation on the NIC
2233  **/
2234 static void e1000_irq_disable(struct e1000_adapter *adapter)
2235 {
2236 	struct e1000_hw *hw = &adapter->hw;
2237 
2238 	ew32(IMC, ~0);
2239 	if (adapter->msix_entries)
2240 		ew32(EIAC_82574, 0);
2241 	e1e_flush();
2242 
2243 	if (adapter->msix_entries) {
2244 		int i;
2245 
2246 		for (i = 0; i < adapter->num_vectors; i++)
2247 			synchronize_irq(adapter->msix_entries[i].vector);
2248 	} else {
2249 		synchronize_irq(adapter->pdev->irq);
2250 	}
2251 }
2252 
2253 /**
2254  * e1000_irq_enable - Enable default interrupt generation settings
2255  **/
2256 static void e1000_irq_enable(struct e1000_adapter *adapter)
2257 {
2258 	struct e1000_hw *hw = &adapter->hw;
2259 
2260 	if (adapter->msix_entries) {
2261 		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2262 		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
2263 	} else if ((hw->mac.type == e1000_pch_lpt) ||
2264 		   (hw->mac.type == e1000_pch_spt)) {
2265 		ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2266 	} else {
2267 		ew32(IMS, IMS_ENABLE_MASK);
2268 	}
2269 	e1e_flush();
2270 }
2271 
2272 /**
2273  * e1000e_get_hw_control - get control of the h/w from f/w
2274  * @adapter: address of board private structure
2275  *
2276  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2277  * For ASF and Pass Through versions of f/w this means that
2278  * the driver is loaded. For AMT version (only with 82573)
2279  * of the f/w this means that the network i/f is open.
2280  **/
2281 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2282 {
2283 	struct e1000_hw *hw = &adapter->hw;
2284 	u32 ctrl_ext;
2285 	u32 swsm;
2286 
2287 	/* Let firmware know the driver has taken over */
2288 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2289 		swsm = er32(SWSM);
2290 		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2291 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2292 		ctrl_ext = er32(CTRL_EXT);
2293 		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2294 	}
2295 }
2296 
2297 /**
2298  * e1000e_release_hw_control - release control of the h/w to f/w
2299  * @adapter: address of board private structure
2300  *
2301  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2302  * For ASF and Pass Through versions of f/w this means that the
2303  * driver is no longer loaded. For AMT version (only with 82573) i
2304  * of the f/w this means that the network i/f is closed.
2305  *
2306  **/
2307 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2308 {
2309 	struct e1000_hw *hw = &adapter->hw;
2310 	u32 ctrl_ext;
2311 	u32 swsm;
2312 
2313 	/* Let firmware taken over control of h/w */
2314 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2315 		swsm = er32(SWSM);
2316 		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2317 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2318 		ctrl_ext = er32(CTRL_EXT);
2319 		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2320 	}
2321 }
2322 
2323 /**
2324  * e1000_alloc_ring_dma - allocate memory for a ring structure
2325  **/
2326 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2327 				struct e1000_ring *ring)
2328 {
2329 	struct pci_dev *pdev = adapter->pdev;
2330 
2331 	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2332 					GFP_KERNEL);
2333 	if (!ring->desc)
2334 		return -ENOMEM;
2335 
2336 	return 0;
2337 }
2338 
2339 /**
2340  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2341  * @tx_ring: Tx descriptor ring
2342  *
2343  * Return 0 on success, negative on failure
2344  **/
2345 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2346 {
2347 	struct e1000_adapter *adapter = tx_ring->adapter;
2348 	int err = -ENOMEM, size;
2349 
2350 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2351 	tx_ring->buffer_info = vzalloc(size);
2352 	if (!tx_ring->buffer_info)
2353 		goto err;
2354 
2355 	/* round up to nearest 4K */
2356 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2357 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2358 
2359 	err = e1000_alloc_ring_dma(adapter, tx_ring);
2360 	if (err)
2361 		goto err;
2362 
2363 	tx_ring->next_to_use = 0;
2364 	tx_ring->next_to_clean = 0;
2365 
2366 	return 0;
2367 err:
2368 	vfree(tx_ring->buffer_info);
2369 	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2370 	return err;
2371 }
2372 
2373 /**
2374  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2375  * @rx_ring: Rx descriptor ring
2376  *
2377  * Returns 0 on success, negative on failure
2378  **/
2379 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2380 {
2381 	struct e1000_adapter *adapter = rx_ring->adapter;
2382 	struct e1000_buffer *buffer_info;
2383 	int i, size, desc_len, err = -ENOMEM;
2384 
2385 	size = sizeof(struct e1000_buffer) * rx_ring->count;
2386 	rx_ring->buffer_info = vzalloc(size);
2387 	if (!rx_ring->buffer_info)
2388 		goto err;
2389 
2390 	for (i = 0; i < rx_ring->count; i++) {
2391 		buffer_info = &rx_ring->buffer_info[i];
2392 		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2393 						sizeof(struct e1000_ps_page),
2394 						GFP_KERNEL);
2395 		if (!buffer_info->ps_pages)
2396 			goto err_pages;
2397 	}
2398 
2399 	desc_len = sizeof(union e1000_rx_desc_packet_split);
2400 
2401 	/* Round up to nearest 4K */
2402 	rx_ring->size = rx_ring->count * desc_len;
2403 	rx_ring->size = ALIGN(rx_ring->size, 4096);
2404 
2405 	err = e1000_alloc_ring_dma(adapter, rx_ring);
2406 	if (err)
2407 		goto err_pages;
2408 
2409 	rx_ring->next_to_clean = 0;
2410 	rx_ring->next_to_use = 0;
2411 	rx_ring->rx_skb_top = NULL;
2412 
2413 	return 0;
2414 
2415 err_pages:
2416 	for (i = 0; i < rx_ring->count; i++) {
2417 		buffer_info = &rx_ring->buffer_info[i];
2418 		kfree(buffer_info->ps_pages);
2419 	}
2420 err:
2421 	vfree(rx_ring->buffer_info);
2422 	e_err("Unable to allocate memory for the receive descriptor ring\n");
2423 	return err;
2424 }
2425 
2426 /**
2427  * e1000_clean_tx_ring - Free Tx Buffers
2428  * @tx_ring: Tx descriptor ring
2429  **/
2430 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2431 {
2432 	struct e1000_adapter *adapter = tx_ring->adapter;
2433 	struct e1000_buffer *buffer_info;
2434 	unsigned long size;
2435 	unsigned int i;
2436 
2437 	for (i = 0; i < tx_ring->count; i++) {
2438 		buffer_info = &tx_ring->buffer_info[i];
2439 		e1000_put_txbuf(tx_ring, buffer_info);
2440 	}
2441 
2442 	netdev_reset_queue(adapter->netdev);
2443 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2444 	memset(tx_ring->buffer_info, 0, size);
2445 
2446 	memset(tx_ring->desc, 0, tx_ring->size);
2447 
2448 	tx_ring->next_to_use = 0;
2449 	tx_ring->next_to_clean = 0;
2450 
2451 	writel(0, tx_ring->head);
2452 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2453 		e1000e_update_tdt_wa(tx_ring, 0);
2454 	else
2455 		writel(0, tx_ring->tail);
2456 }
2457 
2458 /**
2459  * e1000e_free_tx_resources - Free Tx Resources per Queue
2460  * @tx_ring: Tx descriptor ring
2461  *
2462  * Free all transmit software resources
2463  **/
2464 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2465 {
2466 	struct e1000_adapter *adapter = tx_ring->adapter;
2467 	struct pci_dev *pdev = adapter->pdev;
2468 
2469 	e1000_clean_tx_ring(tx_ring);
2470 
2471 	vfree(tx_ring->buffer_info);
2472 	tx_ring->buffer_info = NULL;
2473 
2474 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2475 			  tx_ring->dma);
2476 	tx_ring->desc = NULL;
2477 }
2478 
2479 /**
2480  * e1000e_free_rx_resources - Free Rx Resources
2481  * @rx_ring: Rx descriptor ring
2482  *
2483  * Free all receive software resources
2484  **/
2485 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2486 {
2487 	struct e1000_adapter *adapter = rx_ring->adapter;
2488 	struct pci_dev *pdev = adapter->pdev;
2489 	int i;
2490 
2491 	e1000_clean_rx_ring(rx_ring);
2492 
2493 	for (i = 0; i < rx_ring->count; i++)
2494 		kfree(rx_ring->buffer_info[i].ps_pages);
2495 
2496 	vfree(rx_ring->buffer_info);
2497 	rx_ring->buffer_info = NULL;
2498 
2499 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2500 			  rx_ring->dma);
2501 	rx_ring->desc = NULL;
2502 }
2503 
2504 /**
2505  * e1000_update_itr - update the dynamic ITR value based on statistics
2506  * @adapter: pointer to adapter
2507  * @itr_setting: current adapter->itr
2508  * @packets: the number of packets during this measurement interval
2509  * @bytes: the number of bytes during this measurement interval
2510  *
2511  *      Stores a new ITR value based on packets and byte
2512  *      counts during the last interrupt.  The advantage of per interrupt
2513  *      computation is faster updates and more accurate ITR for the current
2514  *      traffic pattern.  Constants in this function were computed
2515  *      based on theoretical maximum wire speed and thresholds were set based
2516  *      on testing data as well as attempting to minimize response time
2517  *      while increasing bulk throughput.  This functionality is controlled
2518  *      by the InterruptThrottleRate module parameter.
2519  **/
2520 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2521 {
2522 	unsigned int retval = itr_setting;
2523 
2524 	if (packets == 0)
2525 		return itr_setting;
2526 
2527 	switch (itr_setting) {
2528 	case lowest_latency:
2529 		/* handle TSO and jumbo frames */
2530 		if (bytes / packets > 8000)
2531 			retval = bulk_latency;
2532 		else if ((packets < 5) && (bytes > 512))
2533 			retval = low_latency;
2534 		break;
2535 	case low_latency:	/* 50 usec aka 20000 ints/s */
2536 		if (bytes > 10000) {
2537 			/* this if handles the TSO accounting */
2538 			if (bytes / packets > 8000)
2539 				retval = bulk_latency;
2540 			else if ((packets < 10) || ((bytes / packets) > 1200))
2541 				retval = bulk_latency;
2542 			else if ((packets > 35))
2543 				retval = lowest_latency;
2544 		} else if (bytes / packets > 2000) {
2545 			retval = bulk_latency;
2546 		} else if (packets <= 2 && bytes < 512) {
2547 			retval = lowest_latency;
2548 		}
2549 		break;
2550 	case bulk_latency:	/* 250 usec aka 4000 ints/s */
2551 		if (bytes > 25000) {
2552 			if (packets > 35)
2553 				retval = low_latency;
2554 		} else if (bytes < 6000) {
2555 			retval = low_latency;
2556 		}
2557 		break;
2558 	}
2559 
2560 	return retval;
2561 }
2562 
2563 static void e1000_set_itr(struct e1000_adapter *adapter)
2564 {
2565 	u16 current_itr;
2566 	u32 new_itr = adapter->itr;
2567 
2568 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2569 	if (adapter->link_speed != SPEED_1000) {
2570 		current_itr = 0;
2571 		new_itr = 4000;
2572 		goto set_itr_now;
2573 	}
2574 
2575 	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2576 		new_itr = 0;
2577 		goto set_itr_now;
2578 	}
2579 
2580 	adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2581 					   adapter->total_tx_packets,
2582 					   adapter->total_tx_bytes);
2583 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2584 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2585 		adapter->tx_itr = low_latency;
2586 
2587 	adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2588 					   adapter->total_rx_packets,
2589 					   adapter->total_rx_bytes);
2590 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2591 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2592 		adapter->rx_itr = low_latency;
2593 
2594 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2595 
2596 	/* counts and packets in update_itr are dependent on these numbers */
2597 	switch (current_itr) {
2598 	case lowest_latency:
2599 		new_itr = 70000;
2600 		break;
2601 	case low_latency:
2602 		new_itr = 20000;	/* aka hwitr = ~200 */
2603 		break;
2604 	case bulk_latency:
2605 		new_itr = 4000;
2606 		break;
2607 	default:
2608 		break;
2609 	}
2610 
2611 set_itr_now:
2612 	if (new_itr != adapter->itr) {
2613 		/* this attempts to bias the interrupt rate towards Bulk
2614 		 * by adding intermediate steps when interrupt rate is
2615 		 * increasing
2616 		 */
2617 		new_itr = new_itr > adapter->itr ?
2618 		    min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2619 		adapter->itr = new_itr;
2620 		adapter->rx_ring->itr_val = new_itr;
2621 		if (adapter->msix_entries)
2622 			adapter->rx_ring->set_itr = 1;
2623 		else
2624 			e1000e_write_itr(adapter, new_itr);
2625 	}
2626 }
2627 
2628 /**
2629  * e1000e_write_itr - write the ITR value to the appropriate registers
2630  * @adapter: address of board private structure
2631  * @itr: new ITR value to program
2632  *
2633  * e1000e_write_itr determines if the adapter is in MSI-X mode
2634  * and, if so, writes the EITR registers with the ITR value.
2635  * Otherwise, it writes the ITR value into the ITR register.
2636  **/
2637 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2638 {
2639 	struct e1000_hw *hw = &adapter->hw;
2640 	u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2641 
2642 	if (adapter->msix_entries) {
2643 		int vector;
2644 
2645 		for (vector = 0; vector < adapter->num_vectors; vector++)
2646 			writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2647 	} else {
2648 		ew32(ITR, new_itr);
2649 	}
2650 }
2651 
2652 /**
2653  * e1000_alloc_queues - Allocate memory for all rings
2654  * @adapter: board private structure to initialize
2655  **/
2656 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2657 {
2658 	int size = sizeof(struct e1000_ring);
2659 
2660 	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2661 	if (!adapter->tx_ring)
2662 		goto err;
2663 	adapter->tx_ring->count = adapter->tx_ring_count;
2664 	adapter->tx_ring->adapter = adapter;
2665 
2666 	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2667 	if (!adapter->rx_ring)
2668 		goto err;
2669 	adapter->rx_ring->count = adapter->rx_ring_count;
2670 	adapter->rx_ring->adapter = adapter;
2671 
2672 	return 0;
2673 err:
2674 	e_err("Unable to allocate memory for queues\n");
2675 	kfree(adapter->rx_ring);
2676 	kfree(adapter->tx_ring);
2677 	return -ENOMEM;
2678 }
2679 
2680 /**
2681  * e1000e_poll - NAPI Rx polling callback
2682  * @napi: struct associated with this polling callback
2683  * @weight: number of packets driver is allowed to process this poll
2684  **/
2685 static int e1000e_poll(struct napi_struct *napi, int weight)
2686 {
2687 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2688 						     napi);
2689 	struct e1000_hw *hw = &adapter->hw;
2690 	struct net_device *poll_dev = adapter->netdev;
2691 	int tx_cleaned = 1, work_done = 0;
2692 
2693 	adapter = netdev_priv(poll_dev);
2694 
2695 	if (!adapter->msix_entries ||
2696 	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2697 		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2698 
2699 	adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2700 
2701 	if (!tx_cleaned)
2702 		work_done = weight;
2703 
2704 	/* If weight not fully consumed, exit the polling mode */
2705 	if (work_done < weight) {
2706 		if (adapter->itr_setting & 3)
2707 			e1000_set_itr(adapter);
2708 		napi_complete(napi);
2709 		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2710 			if (adapter->msix_entries)
2711 				ew32(IMS, adapter->rx_ring->ims_val);
2712 			else
2713 				e1000_irq_enable(adapter);
2714 		}
2715 	}
2716 
2717 	return work_done;
2718 }
2719 
2720 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2721 				 __always_unused __be16 proto, u16 vid)
2722 {
2723 	struct e1000_adapter *adapter = netdev_priv(netdev);
2724 	struct e1000_hw *hw = &adapter->hw;
2725 	u32 vfta, index;
2726 
2727 	/* don't update vlan cookie if already programmed */
2728 	if ((adapter->hw.mng_cookie.status &
2729 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2730 	    (vid == adapter->mng_vlan_id))
2731 		return 0;
2732 
2733 	/* add VID to filter table */
2734 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2735 		index = (vid >> 5) & 0x7F;
2736 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2737 		vfta |= (1 << (vid & 0x1F));
2738 		hw->mac.ops.write_vfta(hw, index, vfta);
2739 	}
2740 
2741 	set_bit(vid, adapter->active_vlans);
2742 
2743 	return 0;
2744 }
2745 
2746 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2747 				  __always_unused __be16 proto, u16 vid)
2748 {
2749 	struct e1000_adapter *adapter = netdev_priv(netdev);
2750 	struct e1000_hw *hw = &adapter->hw;
2751 	u32 vfta, index;
2752 
2753 	if ((adapter->hw.mng_cookie.status &
2754 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2755 	    (vid == adapter->mng_vlan_id)) {
2756 		/* release control to f/w */
2757 		e1000e_release_hw_control(adapter);
2758 		return 0;
2759 	}
2760 
2761 	/* remove VID from filter table */
2762 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2763 		index = (vid >> 5) & 0x7F;
2764 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2765 		vfta &= ~(1 << (vid & 0x1F));
2766 		hw->mac.ops.write_vfta(hw, index, vfta);
2767 	}
2768 
2769 	clear_bit(vid, adapter->active_vlans);
2770 
2771 	return 0;
2772 }
2773 
2774 /**
2775  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2776  * @adapter: board private structure to initialize
2777  **/
2778 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2779 {
2780 	struct net_device *netdev = adapter->netdev;
2781 	struct e1000_hw *hw = &adapter->hw;
2782 	u32 rctl;
2783 
2784 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2785 		/* disable VLAN receive filtering */
2786 		rctl = er32(RCTL);
2787 		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2788 		ew32(RCTL, rctl);
2789 
2790 		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2791 			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2792 					       adapter->mng_vlan_id);
2793 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2794 		}
2795 	}
2796 }
2797 
2798 /**
2799  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2800  * @adapter: board private structure to initialize
2801  **/
2802 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2803 {
2804 	struct e1000_hw *hw = &adapter->hw;
2805 	u32 rctl;
2806 
2807 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2808 		/* enable VLAN receive filtering */
2809 		rctl = er32(RCTL);
2810 		rctl |= E1000_RCTL_VFE;
2811 		rctl &= ~E1000_RCTL_CFIEN;
2812 		ew32(RCTL, rctl);
2813 	}
2814 }
2815 
2816 /**
2817  * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2818  * @adapter: board private structure to initialize
2819  **/
2820 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2821 {
2822 	struct e1000_hw *hw = &adapter->hw;
2823 	u32 ctrl;
2824 
2825 	/* disable VLAN tag insert/strip */
2826 	ctrl = er32(CTRL);
2827 	ctrl &= ~E1000_CTRL_VME;
2828 	ew32(CTRL, ctrl);
2829 }
2830 
2831 /**
2832  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2833  * @adapter: board private structure to initialize
2834  **/
2835 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2836 {
2837 	struct e1000_hw *hw = &adapter->hw;
2838 	u32 ctrl;
2839 
2840 	/* enable VLAN tag insert/strip */
2841 	ctrl = er32(CTRL);
2842 	ctrl |= E1000_CTRL_VME;
2843 	ew32(CTRL, ctrl);
2844 }
2845 
2846 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2847 {
2848 	struct net_device *netdev = adapter->netdev;
2849 	u16 vid = adapter->hw.mng_cookie.vlan_id;
2850 	u16 old_vid = adapter->mng_vlan_id;
2851 
2852 	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2853 		e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2854 		adapter->mng_vlan_id = vid;
2855 	}
2856 
2857 	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2858 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2859 }
2860 
2861 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2862 {
2863 	u16 vid;
2864 
2865 	e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2866 
2867 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2868 	    e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2869 }
2870 
2871 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2872 {
2873 	struct e1000_hw *hw = &adapter->hw;
2874 	u32 manc, manc2h, mdef, i, j;
2875 
2876 	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2877 		return;
2878 
2879 	manc = er32(MANC);
2880 
2881 	/* enable receiving management packets to the host. this will probably
2882 	 * generate destination unreachable messages from the host OS, but
2883 	 * the packets will be handled on SMBUS
2884 	 */
2885 	manc |= E1000_MANC_EN_MNG2HOST;
2886 	manc2h = er32(MANC2H);
2887 
2888 	switch (hw->mac.type) {
2889 	default:
2890 		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2891 		break;
2892 	case e1000_82574:
2893 	case e1000_82583:
2894 		/* Check if IPMI pass-through decision filter already exists;
2895 		 * if so, enable it.
2896 		 */
2897 		for (i = 0, j = 0; i < 8; i++) {
2898 			mdef = er32(MDEF(i));
2899 
2900 			/* Ignore filters with anything other than IPMI ports */
2901 			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2902 				continue;
2903 
2904 			/* Enable this decision filter in MANC2H */
2905 			if (mdef)
2906 				manc2h |= (1 << i);
2907 
2908 			j |= mdef;
2909 		}
2910 
2911 		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2912 			break;
2913 
2914 		/* Create new decision filter in an empty filter */
2915 		for (i = 0, j = 0; i < 8; i++)
2916 			if (er32(MDEF(i)) == 0) {
2917 				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2918 					       E1000_MDEF_PORT_664));
2919 				manc2h |= (1 << 1);
2920 				j++;
2921 				break;
2922 			}
2923 
2924 		if (!j)
2925 			e_warn("Unable to create IPMI pass-through filter\n");
2926 		break;
2927 	}
2928 
2929 	ew32(MANC2H, manc2h);
2930 	ew32(MANC, manc);
2931 }
2932 
2933 /**
2934  * e1000_configure_tx - Configure Transmit Unit after Reset
2935  * @adapter: board private structure
2936  *
2937  * Configure the Tx unit of the MAC after a reset.
2938  **/
2939 static void e1000_configure_tx(struct e1000_adapter *adapter)
2940 {
2941 	struct e1000_hw *hw = &adapter->hw;
2942 	struct e1000_ring *tx_ring = adapter->tx_ring;
2943 	u64 tdba;
2944 	u32 tdlen, tctl, tarc;
2945 
2946 	/* Setup the HW Tx Head and Tail descriptor pointers */
2947 	tdba = tx_ring->dma;
2948 	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2949 	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2950 	ew32(TDBAH(0), (tdba >> 32));
2951 	ew32(TDLEN(0), tdlen);
2952 	ew32(TDH(0), 0);
2953 	ew32(TDT(0), 0);
2954 	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2955 	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2956 
2957 	/* Set the Tx Interrupt Delay register */
2958 	ew32(TIDV, adapter->tx_int_delay);
2959 	/* Tx irq moderation */
2960 	ew32(TADV, adapter->tx_abs_int_delay);
2961 
2962 	if (adapter->flags2 & FLAG2_DMA_BURST) {
2963 		u32 txdctl = er32(TXDCTL(0));
2964 
2965 		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2966 			    E1000_TXDCTL_WTHRESH);
2967 		/* set up some performance related parameters to encourage the
2968 		 * hardware to use the bus more efficiently in bursts, depends
2969 		 * on the tx_int_delay to be enabled,
2970 		 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2971 		 * hthresh = 1 ==> prefetch when one or more available
2972 		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2973 		 * BEWARE: this seems to work but should be considered first if
2974 		 * there are Tx hangs or other Tx related bugs
2975 		 */
2976 		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2977 		ew32(TXDCTL(0), txdctl);
2978 	}
2979 	/* erratum work around: set txdctl the same for both queues */
2980 	ew32(TXDCTL(1), er32(TXDCTL(0)));
2981 
2982 	/* Program the Transmit Control Register */
2983 	tctl = er32(TCTL);
2984 	tctl &= ~E1000_TCTL_CT;
2985 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2986 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2987 
2988 	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2989 		tarc = er32(TARC(0));
2990 		/* set the speed mode bit, we'll clear it if we're not at
2991 		 * gigabit link later
2992 		 */
2993 #define SPEED_MODE_BIT (1 << 21)
2994 		tarc |= SPEED_MODE_BIT;
2995 		ew32(TARC(0), tarc);
2996 	}
2997 
2998 	/* errata: program both queues to unweighted RR */
2999 	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
3000 		tarc = er32(TARC(0));
3001 		tarc |= 1;
3002 		ew32(TARC(0), tarc);
3003 		tarc = er32(TARC(1));
3004 		tarc |= 1;
3005 		ew32(TARC(1), tarc);
3006 	}
3007 
3008 	/* Setup Transmit Descriptor Settings for eop descriptor */
3009 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
3010 
3011 	/* only set IDE if we are delaying interrupts using the timers */
3012 	if (adapter->tx_int_delay)
3013 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3014 
3015 	/* enable Report Status bit */
3016 	adapter->txd_cmd |= E1000_TXD_CMD_RS;
3017 
3018 	ew32(TCTL, tctl);
3019 
3020 	hw->mac.ops.config_collision_dist(hw);
3021 
3022 	/* SPT Si errata workaround to avoid data corruption */
3023 	if (hw->mac.type == e1000_pch_spt) {
3024 		u32 reg_val;
3025 
3026 		reg_val = er32(IOSFPC);
3027 		reg_val |= E1000_RCTL_RDMTS_HEX;
3028 		ew32(IOSFPC, reg_val);
3029 
3030 		reg_val = er32(TARC(0));
3031 		reg_val |= E1000_TARC0_CB_MULTIQ_3_REQ;
3032 		ew32(TARC(0), reg_val);
3033 	}
3034 }
3035 
3036 /**
3037  * e1000_setup_rctl - configure the receive control registers
3038  * @adapter: Board private structure
3039  **/
3040 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3041 			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3042 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3043 {
3044 	struct e1000_hw *hw = &adapter->hw;
3045 	u32 rctl, rfctl;
3046 	u32 pages = 0;
3047 
3048 	/* Workaround Si errata on PCHx - configure jumbo frame flow.
3049 	 * If jumbo frames not set, program related MAC/PHY registers
3050 	 * to h/w defaults
3051 	 */
3052 	if (hw->mac.type >= e1000_pch2lan) {
3053 		s32 ret_val;
3054 
3055 		if (adapter->netdev->mtu > ETH_DATA_LEN)
3056 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3057 		else
3058 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3059 
3060 		if (ret_val)
3061 			e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3062 	}
3063 
3064 	/* Program MC offset vector base */
3065 	rctl = er32(RCTL);
3066 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3067 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3068 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3069 	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3070 
3071 	/* Do not Store bad packets */
3072 	rctl &= ~E1000_RCTL_SBP;
3073 
3074 	/* Enable Long Packet receive */
3075 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
3076 		rctl &= ~E1000_RCTL_LPE;
3077 	else
3078 		rctl |= E1000_RCTL_LPE;
3079 
3080 	/* Some systems expect that the CRC is included in SMBUS traffic. The
3081 	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3082 	 * host memory when this is enabled
3083 	 */
3084 	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3085 		rctl |= E1000_RCTL_SECRC;
3086 
3087 	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3088 	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3089 		u16 phy_data;
3090 
3091 		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3092 		phy_data &= 0xfff8;
3093 		phy_data |= (1 << 2);
3094 		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3095 
3096 		e1e_rphy(hw, 22, &phy_data);
3097 		phy_data &= 0x0fff;
3098 		phy_data |= (1 << 14);
3099 		e1e_wphy(hw, 0x10, 0x2823);
3100 		e1e_wphy(hw, 0x11, 0x0003);
3101 		e1e_wphy(hw, 22, phy_data);
3102 	}
3103 
3104 	/* Setup buffer sizes */
3105 	rctl &= ~E1000_RCTL_SZ_4096;
3106 	rctl |= E1000_RCTL_BSEX;
3107 	switch (adapter->rx_buffer_len) {
3108 	case 2048:
3109 	default:
3110 		rctl |= E1000_RCTL_SZ_2048;
3111 		rctl &= ~E1000_RCTL_BSEX;
3112 		break;
3113 	case 4096:
3114 		rctl |= E1000_RCTL_SZ_4096;
3115 		break;
3116 	case 8192:
3117 		rctl |= E1000_RCTL_SZ_8192;
3118 		break;
3119 	case 16384:
3120 		rctl |= E1000_RCTL_SZ_16384;
3121 		break;
3122 	}
3123 
3124 	/* Enable Extended Status in all Receive Descriptors */
3125 	rfctl = er32(RFCTL);
3126 	rfctl |= E1000_RFCTL_EXTEN;
3127 	ew32(RFCTL, rfctl);
3128 
3129 	/* 82571 and greater support packet-split where the protocol
3130 	 * header is placed in skb->data and the packet data is
3131 	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3132 	 * In the case of a non-split, skb->data is linearly filled,
3133 	 * followed by the page buffers.  Therefore, skb->data is
3134 	 * sized to hold the largest protocol header.
3135 	 *
3136 	 * allocations using alloc_page take too long for regular MTU
3137 	 * so only enable packet split for jumbo frames
3138 	 *
3139 	 * Using pages when the page size is greater than 16k wastes
3140 	 * a lot of memory, since we allocate 3 pages at all times
3141 	 * per packet.
3142 	 */
3143 	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3144 	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3145 		adapter->rx_ps_pages = pages;
3146 	else
3147 		adapter->rx_ps_pages = 0;
3148 
3149 	if (adapter->rx_ps_pages) {
3150 		u32 psrctl = 0;
3151 
3152 		/* Enable Packet split descriptors */
3153 		rctl |= E1000_RCTL_DTYP_PS;
3154 
3155 		psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3156 
3157 		switch (adapter->rx_ps_pages) {
3158 		case 3:
3159 			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3160 			/* fall-through */
3161 		case 2:
3162 			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3163 			/* fall-through */
3164 		case 1:
3165 			psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3166 			break;
3167 		}
3168 
3169 		ew32(PSRCTL, psrctl);
3170 	}
3171 
3172 	/* This is useful for sniffing bad packets. */
3173 	if (adapter->netdev->features & NETIF_F_RXALL) {
3174 		/* UPE and MPE will be handled by normal PROMISC logic
3175 		 * in e1000e_set_rx_mode
3176 		 */
3177 		rctl |= (E1000_RCTL_SBP |	/* Receive bad packets */
3178 			 E1000_RCTL_BAM |	/* RX All Bcast Pkts */
3179 			 E1000_RCTL_PMCF);	/* RX All MAC Ctrl Pkts */
3180 
3181 		rctl &= ~(E1000_RCTL_VFE |	/* Disable VLAN filter */
3182 			  E1000_RCTL_DPF |	/* Allow filtered pause */
3183 			  E1000_RCTL_CFIEN);	/* Dis VLAN CFIEN Filter */
3184 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3185 		 * and that breaks VLANs.
3186 		 */
3187 	}
3188 
3189 	ew32(RCTL, rctl);
3190 	/* just started the receive unit, no need to restart */
3191 	adapter->flags &= ~FLAG_RESTART_NOW;
3192 }
3193 
3194 /**
3195  * e1000_configure_rx - Configure Receive Unit after Reset
3196  * @adapter: board private structure
3197  *
3198  * Configure the Rx unit of the MAC after a reset.
3199  **/
3200 static void e1000_configure_rx(struct e1000_adapter *adapter)
3201 {
3202 	struct e1000_hw *hw = &adapter->hw;
3203 	struct e1000_ring *rx_ring = adapter->rx_ring;
3204 	u64 rdba;
3205 	u32 rdlen, rctl, rxcsum, ctrl_ext;
3206 
3207 	if (adapter->rx_ps_pages) {
3208 		/* this is a 32 byte descriptor */
3209 		rdlen = rx_ring->count *
3210 		    sizeof(union e1000_rx_desc_packet_split);
3211 		adapter->clean_rx = e1000_clean_rx_irq_ps;
3212 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3213 	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3214 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3215 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3216 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3217 	} else {
3218 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3219 		adapter->clean_rx = e1000_clean_rx_irq;
3220 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3221 	}
3222 
3223 	/* disable receives while setting up the descriptors */
3224 	rctl = er32(RCTL);
3225 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3226 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3227 	e1e_flush();
3228 	usleep_range(10000, 20000);
3229 
3230 	if (adapter->flags2 & FLAG2_DMA_BURST) {
3231 		/* set the writeback threshold (only takes effect if the RDTR
3232 		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3233 		 * enable prefetching of 0x20 Rx descriptors
3234 		 * granularity = 01
3235 		 * wthresh = 04,
3236 		 * hthresh = 04,
3237 		 * pthresh = 0x20
3238 		 */
3239 		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3240 		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3241 
3242 		/* override the delay timers for enabling bursting, only if
3243 		 * the value was not set by the user via module options
3244 		 */
3245 		if (adapter->rx_int_delay == DEFAULT_RDTR)
3246 			adapter->rx_int_delay = BURST_RDTR;
3247 		if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3248 			adapter->rx_abs_int_delay = BURST_RADV;
3249 	}
3250 
3251 	/* set the Receive Delay Timer Register */
3252 	ew32(RDTR, adapter->rx_int_delay);
3253 
3254 	/* irq moderation */
3255 	ew32(RADV, adapter->rx_abs_int_delay);
3256 	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3257 		e1000e_write_itr(adapter, adapter->itr);
3258 
3259 	ctrl_ext = er32(CTRL_EXT);
3260 	/* Auto-Mask interrupts upon ICR access */
3261 	ctrl_ext |= E1000_CTRL_EXT_IAME;
3262 	ew32(IAM, 0xffffffff);
3263 	ew32(CTRL_EXT, ctrl_ext);
3264 	e1e_flush();
3265 
3266 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3267 	 * the Base and Length of the Rx Descriptor Ring
3268 	 */
3269 	rdba = rx_ring->dma;
3270 	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3271 	ew32(RDBAH(0), (rdba >> 32));
3272 	ew32(RDLEN(0), rdlen);
3273 	ew32(RDH(0), 0);
3274 	ew32(RDT(0), 0);
3275 	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3276 	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3277 
3278 	/* Enable Receive Checksum Offload for TCP and UDP */
3279 	rxcsum = er32(RXCSUM);
3280 	if (adapter->netdev->features & NETIF_F_RXCSUM)
3281 		rxcsum |= E1000_RXCSUM_TUOFL;
3282 	else
3283 		rxcsum &= ~E1000_RXCSUM_TUOFL;
3284 	ew32(RXCSUM, rxcsum);
3285 
3286 	/* With jumbo frames, excessive C-state transition latencies result
3287 	 * in dropped transactions.
3288 	 */
3289 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
3290 		u32 lat =
3291 		    ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3292 		     adapter->max_frame_size) * 8 / 1000;
3293 
3294 		if (adapter->flags & FLAG_IS_ICH) {
3295 			u32 rxdctl = er32(RXDCTL(0));
3296 
3297 			ew32(RXDCTL(0), rxdctl | 0x3);
3298 		}
3299 
3300 		pm_qos_update_request(&adapter->pm_qos_req, lat);
3301 	} else {
3302 		pm_qos_update_request(&adapter->pm_qos_req,
3303 				      PM_QOS_DEFAULT_VALUE);
3304 	}
3305 
3306 	/* Enable Receives */
3307 	ew32(RCTL, rctl);
3308 }
3309 
3310 /**
3311  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3312  * @netdev: network interface device structure
3313  *
3314  * Writes multicast address list to the MTA hash table.
3315  * Returns: -ENOMEM on failure
3316  *                0 on no addresses written
3317  *                X on writing X addresses to MTA
3318  */
3319 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3320 {
3321 	struct e1000_adapter *adapter = netdev_priv(netdev);
3322 	struct e1000_hw *hw = &adapter->hw;
3323 	struct netdev_hw_addr *ha;
3324 	u8 *mta_list;
3325 	int i;
3326 
3327 	if (netdev_mc_empty(netdev)) {
3328 		/* nothing to program, so clear mc list */
3329 		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3330 		return 0;
3331 	}
3332 
3333 	mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3334 	if (!mta_list)
3335 		return -ENOMEM;
3336 
3337 	/* update_mc_addr_list expects a packed array of only addresses. */
3338 	i = 0;
3339 	netdev_for_each_mc_addr(ha, netdev)
3340 	    memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3341 
3342 	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3343 	kfree(mta_list);
3344 
3345 	return netdev_mc_count(netdev);
3346 }
3347 
3348 /**
3349  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3350  * @netdev: network interface device structure
3351  *
3352  * Writes unicast address list to the RAR table.
3353  * Returns: -ENOMEM on failure/insufficient address space
3354  *                0 on no addresses written
3355  *                X on writing X addresses to the RAR table
3356  **/
3357 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3358 {
3359 	struct e1000_adapter *adapter = netdev_priv(netdev);
3360 	struct e1000_hw *hw = &adapter->hw;
3361 	unsigned int rar_entries;
3362 	int count = 0;
3363 
3364 	rar_entries = hw->mac.ops.rar_get_count(hw);
3365 
3366 	/* save a rar entry for our hardware address */
3367 	rar_entries--;
3368 
3369 	/* save a rar entry for the LAA workaround */
3370 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3371 		rar_entries--;
3372 
3373 	/* return ENOMEM indicating insufficient memory for addresses */
3374 	if (netdev_uc_count(netdev) > rar_entries)
3375 		return -ENOMEM;
3376 
3377 	if (!netdev_uc_empty(netdev) && rar_entries) {
3378 		struct netdev_hw_addr *ha;
3379 
3380 		/* write the addresses in reverse order to avoid write
3381 		 * combining
3382 		 */
3383 		netdev_for_each_uc_addr(ha, netdev) {
3384 			int rval;
3385 
3386 			if (!rar_entries)
3387 				break;
3388 			rval = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3389 			if (rval < 0)
3390 				return -ENOMEM;
3391 			count++;
3392 		}
3393 	}
3394 
3395 	/* zero out the remaining RAR entries not used above */
3396 	for (; rar_entries > 0; rar_entries--) {
3397 		ew32(RAH(rar_entries), 0);
3398 		ew32(RAL(rar_entries), 0);
3399 	}
3400 	e1e_flush();
3401 
3402 	return count;
3403 }
3404 
3405 /**
3406  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3407  * @netdev: network interface device structure
3408  *
3409  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3410  * address list or the network interface flags are updated.  This routine is
3411  * responsible for configuring the hardware for proper unicast, multicast,
3412  * promiscuous mode, and all-multi behavior.
3413  **/
3414 static void e1000e_set_rx_mode(struct net_device *netdev)
3415 {
3416 	struct e1000_adapter *adapter = netdev_priv(netdev);
3417 	struct e1000_hw *hw = &adapter->hw;
3418 	u32 rctl;
3419 
3420 	if (pm_runtime_suspended(netdev->dev.parent))
3421 		return;
3422 
3423 	/* Check for Promiscuous and All Multicast modes */
3424 	rctl = er32(RCTL);
3425 
3426 	/* clear the affected bits */
3427 	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3428 
3429 	if (netdev->flags & IFF_PROMISC) {
3430 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3431 		/* Do not hardware filter VLANs in promisc mode */
3432 		e1000e_vlan_filter_disable(adapter);
3433 	} else {
3434 		int count;
3435 
3436 		if (netdev->flags & IFF_ALLMULTI) {
3437 			rctl |= E1000_RCTL_MPE;
3438 		} else {
3439 			/* Write addresses to the MTA, if the attempt fails
3440 			 * then we should just turn on promiscuous mode so
3441 			 * that we can at least receive multicast traffic
3442 			 */
3443 			count = e1000e_write_mc_addr_list(netdev);
3444 			if (count < 0)
3445 				rctl |= E1000_RCTL_MPE;
3446 		}
3447 		e1000e_vlan_filter_enable(adapter);
3448 		/* Write addresses to available RAR registers, if there is not
3449 		 * sufficient space to store all the addresses then enable
3450 		 * unicast promiscuous mode
3451 		 */
3452 		count = e1000e_write_uc_addr_list(netdev);
3453 		if (count < 0)
3454 			rctl |= E1000_RCTL_UPE;
3455 	}
3456 
3457 	ew32(RCTL, rctl);
3458 
3459 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3460 		e1000e_vlan_strip_enable(adapter);
3461 	else
3462 		e1000e_vlan_strip_disable(adapter);
3463 }
3464 
3465 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3466 {
3467 	struct e1000_hw *hw = &adapter->hw;
3468 	u32 mrqc, rxcsum;
3469 	u32 rss_key[10];
3470 	int i;
3471 
3472 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3473 	for (i = 0; i < 10; i++)
3474 		ew32(RSSRK(i), rss_key[i]);
3475 
3476 	/* Direct all traffic to queue 0 */
3477 	for (i = 0; i < 32; i++)
3478 		ew32(RETA(i), 0);
3479 
3480 	/* Disable raw packet checksumming so that RSS hash is placed in
3481 	 * descriptor on writeback.
3482 	 */
3483 	rxcsum = er32(RXCSUM);
3484 	rxcsum |= E1000_RXCSUM_PCSD;
3485 
3486 	ew32(RXCSUM, rxcsum);
3487 
3488 	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3489 		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3490 		E1000_MRQC_RSS_FIELD_IPV6 |
3491 		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3492 		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3493 
3494 	ew32(MRQC, mrqc);
3495 }
3496 
3497 /**
3498  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3499  * @adapter: board private structure
3500  * @timinca: pointer to returned time increment attributes
3501  *
3502  * Get attributes for incrementing the System Time Register SYSTIML/H at
3503  * the default base frequency, and set the cyclecounter shift value.
3504  **/
3505 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3506 {
3507 	struct e1000_hw *hw = &adapter->hw;
3508 	u32 incvalue, incperiod, shift;
3509 
3510 	/* Make sure clock is enabled on I217/I218/I219  before checking
3511 	 * the frequency
3512 	 */
3513 	if (((hw->mac.type == e1000_pch_lpt) ||
3514 	     (hw->mac.type == e1000_pch_spt)) &&
3515 	    !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3516 	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3517 		u32 fextnvm7 = er32(FEXTNVM7);
3518 
3519 		if (!(fextnvm7 & (1 << 0))) {
3520 			ew32(FEXTNVM7, fextnvm7 | (1 << 0));
3521 			e1e_flush();
3522 		}
3523 	}
3524 
3525 	switch (hw->mac.type) {
3526 	case e1000_pch2lan:
3527 	case e1000_pch_lpt:
3528 		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3529 			/* Stable 96MHz frequency */
3530 			incperiod = INCPERIOD_96MHz;
3531 			incvalue = INCVALUE_96MHz;
3532 			shift = INCVALUE_SHIFT_96MHz;
3533 			adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHz;
3534 		} else {
3535 			/* Stable 25MHz frequency */
3536 			incperiod = INCPERIOD_25MHz;
3537 			incvalue = INCVALUE_25MHz;
3538 			shift = INCVALUE_SHIFT_25MHz;
3539 			adapter->cc.shift = shift;
3540 		}
3541 		break;
3542 	case e1000_pch_spt:
3543 		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3544 			/* Stable 24MHz frequency */
3545 			incperiod = INCPERIOD_24MHz;
3546 			incvalue = INCVALUE_24MHz;
3547 			shift = INCVALUE_SHIFT_24MHz;
3548 			adapter->cc.shift = shift;
3549 			break;
3550 		}
3551 		return -EINVAL;
3552 	case e1000_82574:
3553 	case e1000_82583:
3554 		/* Stable 25MHz frequency */
3555 		incperiod = INCPERIOD_25MHz;
3556 		incvalue = INCVALUE_25MHz;
3557 		shift = INCVALUE_SHIFT_25MHz;
3558 		adapter->cc.shift = shift;
3559 		break;
3560 	default:
3561 		return -EINVAL;
3562 	}
3563 
3564 	*timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3565 		    ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3566 
3567 	return 0;
3568 }
3569 
3570 /**
3571  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3572  * @adapter: board private structure
3573  *
3574  * Outgoing time stamping can be enabled and disabled. Play nice and
3575  * disable it when requested, although it shouldn't cause any overhead
3576  * when no packet needs it. At most one packet in the queue may be
3577  * marked for time stamping, otherwise it would be impossible to tell
3578  * for sure to which packet the hardware time stamp belongs.
3579  *
3580  * Incoming time stamping has to be configured via the hardware filters.
3581  * Not all combinations are supported, in particular event type has to be
3582  * specified. Matching the kind of event packet is not supported, with the
3583  * exception of "all V2 events regardless of level 2 or 4".
3584  **/
3585 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3586 				  struct hwtstamp_config *config)
3587 {
3588 	struct e1000_hw *hw = &adapter->hw;
3589 	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3590 	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3591 	u32 rxmtrl = 0;
3592 	u16 rxudp = 0;
3593 	bool is_l4 = false;
3594 	bool is_l2 = false;
3595 	u32 regval;
3596 	s32 ret_val;
3597 
3598 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3599 		return -EINVAL;
3600 
3601 	/* flags reserved for future extensions - must be zero */
3602 	if (config->flags)
3603 		return -EINVAL;
3604 
3605 	switch (config->tx_type) {
3606 	case HWTSTAMP_TX_OFF:
3607 		tsync_tx_ctl = 0;
3608 		break;
3609 	case HWTSTAMP_TX_ON:
3610 		break;
3611 	default:
3612 		return -ERANGE;
3613 	}
3614 
3615 	switch (config->rx_filter) {
3616 	case HWTSTAMP_FILTER_NONE:
3617 		tsync_rx_ctl = 0;
3618 		break;
3619 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3620 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3621 		rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3622 		is_l4 = true;
3623 		break;
3624 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3625 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3626 		rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3627 		is_l4 = true;
3628 		break;
3629 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3630 		/* Also time stamps V2 L2 Path Delay Request/Response */
3631 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3632 		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3633 		is_l2 = true;
3634 		break;
3635 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3636 		/* Also time stamps V2 L2 Path Delay Request/Response. */
3637 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3638 		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3639 		is_l2 = true;
3640 		break;
3641 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3642 		/* Hardware cannot filter just V2 L4 Sync messages;
3643 		 * fall-through to V2 (both L2 and L4) Sync.
3644 		 */
3645 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3646 		/* Also time stamps V2 Path Delay Request/Response. */
3647 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3648 		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3649 		is_l2 = true;
3650 		is_l4 = true;
3651 		break;
3652 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3653 		/* Hardware cannot filter just V2 L4 Delay Request messages;
3654 		 * fall-through to V2 (both L2 and L4) Delay Request.
3655 		 */
3656 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3657 		/* Also time stamps V2 Path Delay Request/Response. */
3658 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3659 		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3660 		is_l2 = true;
3661 		is_l4 = true;
3662 		break;
3663 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3664 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3665 		/* Hardware cannot filter just V2 L4 or L2 Event messages;
3666 		 * fall-through to all V2 (both L2 and L4) Events.
3667 		 */
3668 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3669 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3670 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3671 		is_l2 = true;
3672 		is_l4 = true;
3673 		break;
3674 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3675 		/* For V1, the hardware can only filter Sync messages or
3676 		 * Delay Request messages but not both so fall-through to
3677 		 * time stamp all packets.
3678 		 */
3679 	case HWTSTAMP_FILTER_ALL:
3680 		is_l2 = true;
3681 		is_l4 = true;
3682 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3683 		config->rx_filter = HWTSTAMP_FILTER_ALL;
3684 		break;
3685 	default:
3686 		return -ERANGE;
3687 	}
3688 
3689 	adapter->hwtstamp_config = *config;
3690 
3691 	/* enable/disable Tx h/w time stamping */
3692 	regval = er32(TSYNCTXCTL);
3693 	regval &= ~E1000_TSYNCTXCTL_ENABLED;
3694 	regval |= tsync_tx_ctl;
3695 	ew32(TSYNCTXCTL, regval);
3696 	if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3697 	    (regval & E1000_TSYNCTXCTL_ENABLED)) {
3698 		e_err("Timesync Tx Control register not set as expected\n");
3699 		return -EAGAIN;
3700 	}
3701 
3702 	/* enable/disable Rx h/w time stamping */
3703 	regval = er32(TSYNCRXCTL);
3704 	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3705 	regval |= tsync_rx_ctl;
3706 	ew32(TSYNCRXCTL, regval);
3707 	if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3708 				 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3709 	    (regval & (E1000_TSYNCRXCTL_ENABLED |
3710 		       E1000_TSYNCRXCTL_TYPE_MASK))) {
3711 		e_err("Timesync Rx Control register not set as expected\n");
3712 		return -EAGAIN;
3713 	}
3714 
3715 	/* L2: define ethertype filter for time stamped packets */
3716 	if (is_l2)
3717 		rxmtrl |= ETH_P_1588;
3718 
3719 	/* define which PTP packets get time stamped */
3720 	ew32(RXMTRL, rxmtrl);
3721 
3722 	/* Filter by destination port */
3723 	if (is_l4) {
3724 		rxudp = PTP_EV_PORT;
3725 		cpu_to_be16s(&rxudp);
3726 	}
3727 	ew32(RXUDP, rxudp);
3728 
3729 	e1e_flush();
3730 
3731 	/* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3732 	er32(RXSTMPH);
3733 	er32(TXSTMPH);
3734 
3735 	/* Get and set the System Time Register SYSTIM base frequency */
3736 	ret_val = e1000e_get_base_timinca(adapter, &regval);
3737 	if (ret_val)
3738 		return ret_val;
3739 	ew32(TIMINCA, regval);
3740 
3741 	/* reset the ns time counter */
3742 	timecounter_init(&adapter->tc, &adapter->cc,
3743 			 ktime_to_ns(ktime_get_real()));
3744 
3745 	return 0;
3746 }
3747 
3748 /**
3749  * e1000_configure - configure the hardware for Rx and Tx
3750  * @adapter: private board structure
3751  **/
3752 static void e1000_configure(struct e1000_adapter *adapter)
3753 {
3754 	struct e1000_ring *rx_ring = adapter->rx_ring;
3755 
3756 	e1000e_set_rx_mode(adapter->netdev);
3757 
3758 	e1000_restore_vlan(adapter);
3759 	e1000_init_manageability_pt(adapter);
3760 
3761 	e1000_configure_tx(adapter);
3762 
3763 	if (adapter->netdev->features & NETIF_F_RXHASH)
3764 		e1000e_setup_rss_hash(adapter);
3765 	e1000_setup_rctl(adapter);
3766 	e1000_configure_rx(adapter);
3767 	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3768 }
3769 
3770 /**
3771  * e1000e_power_up_phy - restore link in case the phy was powered down
3772  * @adapter: address of board private structure
3773  *
3774  * The phy may be powered down to save power and turn off link when the
3775  * driver is unloaded and wake on lan is not enabled (among others)
3776  * *** this routine MUST be followed by a call to e1000e_reset ***
3777  **/
3778 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3779 {
3780 	if (adapter->hw.phy.ops.power_up)
3781 		adapter->hw.phy.ops.power_up(&adapter->hw);
3782 
3783 	adapter->hw.mac.ops.setup_link(&adapter->hw);
3784 }
3785 
3786 /**
3787  * e1000_power_down_phy - Power down the PHY
3788  *
3789  * Power down the PHY so no link is implied when interface is down.
3790  * The PHY cannot be powered down if management or WoL is active.
3791  */
3792 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3793 {
3794 	if (adapter->hw.phy.ops.power_down)
3795 		adapter->hw.phy.ops.power_down(&adapter->hw);
3796 }
3797 
3798 /**
3799  * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3800  *
3801  * We want to clear all pending descriptors from the TX ring.
3802  * zeroing happens when the HW reads the regs. We  assign the ring itself as
3803  * the data of the next descriptor. We don't care about the data we are about
3804  * to reset the HW.
3805  */
3806 static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3807 {
3808 	struct e1000_hw *hw = &adapter->hw;
3809 	struct e1000_ring *tx_ring = adapter->tx_ring;
3810 	struct e1000_tx_desc *tx_desc = NULL;
3811 	u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3812 	u16 size = 512;
3813 
3814 	tctl = er32(TCTL);
3815 	ew32(TCTL, tctl | E1000_TCTL_EN);
3816 	tdt = er32(TDT(0));
3817 	BUG_ON(tdt != tx_ring->next_to_use);
3818 	tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3819 	tx_desc->buffer_addr = tx_ring->dma;
3820 
3821 	tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3822 	tx_desc->upper.data = 0;
3823 	/* flush descriptors to memory before notifying the HW */
3824 	wmb();
3825 	tx_ring->next_to_use++;
3826 	if (tx_ring->next_to_use == tx_ring->count)
3827 		tx_ring->next_to_use = 0;
3828 	ew32(TDT(0), tx_ring->next_to_use);
3829 	mmiowb();
3830 	usleep_range(200, 250);
3831 }
3832 
3833 /**
3834  * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3835  *
3836  * Mark all descriptors in the RX ring as consumed and disable the rx ring
3837  */
3838 static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3839 {
3840 	u32 rctl, rxdctl;
3841 	struct e1000_hw *hw = &adapter->hw;
3842 
3843 	rctl = er32(RCTL);
3844 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3845 	e1e_flush();
3846 	usleep_range(100, 150);
3847 
3848 	rxdctl = er32(RXDCTL(0));
3849 	/* zero the lower 14 bits (prefetch and host thresholds) */
3850 	rxdctl &= 0xffffc000;
3851 
3852 	/* update thresholds: prefetch threshold to 31, host threshold to 1
3853 	 * and make sure the granularity is "descriptors" and not "cache lines"
3854 	 */
3855 	rxdctl |= (0x1F | (1 << 8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3856 
3857 	ew32(RXDCTL(0), rxdctl);
3858 	/* momentarily enable the RX ring for the changes to take effect */
3859 	ew32(RCTL, rctl | E1000_RCTL_EN);
3860 	e1e_flush();
3861 	usleep_range(100, 150);
3862 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3863 }
3864 
3865 /**
3866  * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3867  *
3868  * In i219, the descriptor rings must be emptied before resetting the HW
3869  * or before changing the device state to D3 during runtime (runtime PM).
3870  *
3871  * Failure to do this will cause the HW to enter a unit hang state which can
3872  * only be released by PCI reset on the device
3873  *
3874  */
3875 
3876 static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3877 {
3878 	u16 hang_state;
3879 	u32 fext_nvm11, tdlen;
3880 	struct e1000_hw *hw = &adapter->hw;
3881 
3882 	/* First, disable MULR fix in FEXTNVM11 */
3883 	fext_nvm11 = er32(FEXTNVM11);
3884 	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3885 	ew32(FEXTNVM11, fext_nvm11);
3886 	/* do nothing if we're not in faulty state, or if the queue is empty */
3887 	tdlen = er32(TDLEN(0));
3888 	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3889 			     &hang_state);
3890 	if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3891 		return;
3892 	e1000_flush_tx_ring(adapter);
3893 	/* recheck, maybe the fault is caused by the rx ring */
3894 	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3895 			     &hang_state);
3896 	if (hang_state & FLUSH_DESC_REQUIRED)
3897 		e1000_flush_rx_ring(adapter);
3898 }
3899 
3900 /**
3901  * e1000e_reset - bring the hardware into a known good state
3902  *
3903  * This function boots the hardware and enables some settings that
3904  * require a configuration cycle of the hardware - those cannot be
3905  * set/changed during runtime. After reset the device needs to be
3906  * properly configured for Rx, Tx etc.
3907  */
3908 void e1000e_reset(struct e1000_adapter *adapter)
3909 {
3910 	struct e1000_mac_info *mac = &adapter->hw.mac;
3911 	struct e1000_fc_info *fc = &adapter->hw.fc;
3912 	struct e1000_hw *hw = &adapter->hw;
3913 	u32 tx_space, min_tx_space, min_rx_space;
3914 	u32 pba = adapter->pba;
3915 	u16 hwm;
3916 
3917 	/* reset Packet Buffer Allocation to default */
3918 	ew32(PBA, pba);
3919 
3920 	if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3921 		/* To maintain wire speed transmits, the Tx FIFO should be
3922 		 * large enough to accommodate two full transmit packets,
3923 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3924 		 * the Rx FIFO should be large enough to accommodate at least
3925 		 * one full receive packet and is similarly rounded up and
3926 		 * expressed in KB.
3927 		 */
3928 		pba = er32(PBA);
3929 		/* upper 16 bits has Tx packet buffer allocation size in KB */
3930 		tx_space = pba >> 16;
3931 		/* lower 16 bits has Rx packet buffer allocation size in KB */
3932 		pba &= 0xffff;
3933 		/* the Tx fifo also stores 16 bytes of information about the Tx
3934 		 * but don't include ethernet FCS because hardware appends it
3935 		 */
3936 		min_tx_space = (adapter->max_frame_size +
3937 				sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3938 		min_tx_space = ALIGN(min_tx_space, 1024);
3939 		min_tx_space >>= 10;
3940 		/* software strips receive CRC, so leave room for it */
3941 		min_rx_space = adapter->max_frame_size;
3942 		min_rx_space = ALIGN(min_rx_space, 1024);
3943 		min_rx_space >>= 10;
3944 
3945 		/* If current Tx allocation is less than the min Tx FIFO size,
3946 		 * and the min Tx FIFO size is less than the current Rx FIFO
3947 		 * allocation, take space away from current Rx allocation
3948 		 */
3949 		if ((tx_space < min_tx_space) &&
3950 		    ((min_tx_space - tx_space) < pba)) {
3951 			pba -= min_tx_space - tx_space;
3952 
3953 			/* if short on Rx space, Rx wins and must trump Tx
3954 			 * adjustment
3955 			 */
3956 			if (pba < min_rx_space)
3957 				pba = min_rx_space;
3958 		}
3959 
3960 		ew32(PBA, pba);
3961 	}
3962 
3963 	/* flow control settings
3964 	 *
3965 	 * The high water mark must be low enough to fit one full frame
3966 	 * (or the size used for early receive) above it in the Rx FIFO.
3967 	 * Set it to the lower of:
3968 	 * - 90% of the Rx FIFO size, and
3969 	 * - the full Rx FIFO size minus one full frame
3970 	 */
3971 	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3972 		fc->pause_time = 0xFFFF;
3973 	else
3974 		fc->pause_time = E1000_FC_PAUSE_TIME;
3975 	fc->send_xon = true;
3976 	fc->current_mode = fc->requested_mode;
3977 
3978 	switch (hw->mac.type) {
3979 	case e1000_ich9lan:
3980 	case e1000_ich10lan:
3981 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3982 			pba = 14;
3983 			ew32(PBA, pba);
3984 			fc->high_water = 0x2800;
3985 			fc->low_water = fc->high_water - 8;
3986 			break;
3987 		}
3988 		/* fall-through */
3989 	default:
3990 		hwm = min(((pba << 10) * 9 / 10),
3991 			  ((pba << 10) - adapter->max_frame_size));
3992 
3993 		fc->high_water = hwm & E1000_FCRTH_RTH;	/* 8-byte granularity */
3994 		fc->low_water = fc->high_water - 8;
3995 		break;
3996 	case e1000_pchlan:
3997 		/* Workaround PCH LOM adapter hangs with certain network
3998 		 * loads.  If hangs persist, try disabling Tx flow control.
3999 		 */
4000 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4001 			fc->high_water = 0x3500;
4002 			fc->low_water = 0x1500;
4003 		} else {
4004 			fc->high_water = 0x5000;
4005 			fc->low_water = 0x3000;
4006 		}
4007 		fc->refresh_time = 0x1000;
4008 		break;
4009 	case e1000_pch2lan:
4010 	case e1000_pch_lpt:
4011 	case e1000_pch_spt:
4012 		fc->refresh_time = 0x0400;
4013 
4014 		if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4015 			fc->high_water = 0x05C20;
4016 			fc->low_water = 0x05048;
4017 			fc->pause_time = 0x0650;
4018 			break;
4019 		}
4020 
4021 		pba = 14;
4022 		ew32(PBA, pba);
4023 		fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4024 		fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4025 		break;
4026 	}
4027 
4028 	/* Alignment of Tx data is on an arbitrary byte boundary with the
4029 	 * maximum size per Tx descriptor limited only to the transmit
4030 	 * allocation of the packet buffer minus 96 bytes with an upper
4031 	 * limit of 24KB due to receive synchronization limitations.
4032 	 */
4033 	adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4034 				       24 << 10);
4035 
4036 	/* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4037 	 * fit in receive buffer.
4038 	 */
4039 	if (adapter->itr_setting & 0x3) {
4040 		if ((adapter->max_frame_size * 2) > (pba << 10)) {
4041 			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4042 				dev_info(&adapter->pdev->dev,
4043 					 "Interrupt Throttle Rate off\n");
4044 				adapter->flags2 |= FLAG2_DISABLE_AIM;
4045 				e1000e_write_itr(adapter, 0);
4046 			}
4047 		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4048 			dev_info(&adapter->pdev->dev,
4049 				 "Interrupt Throttle Rate on\n");
4050 			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4051 			adapter->itr = 20000;
4052 			e1000e_write_itr(adapter, adapter->itr);
4053 		}
4054 	}
4055 
4056 	if (hw->mac.type == e1000_pch_spt)
4057 		e1000_flush_desc_rings(adapter);
4058 	/* Allow time for pending master requests to run */
4059 	mac->ops.reset_hw(hw);
4060 
4061 	/* For parts with AMT enabled, let the firmware know
4062 	 * that the network interface is in control
4063 	 */
4064 	if (adapter->flags & FLAG_HAS_AMT)
4065 		e1000e_get_hw_control(adapter);
4066 
4067 	ew32(WUC, 0);
4068 
4069 	if (mac->ops.init_hw(hw))
4070 		e_err("Hardware Error\n");
4071 
4072 	e1000_update_mng_vlan(adapter);
4073 
4074 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4075 	ew32(VET, ETH_P_8021Q);
4076 
4077 	e1000e_reset_adaptive(hw);
4078 
4079 	/* initialize systim and reset the ns time counter */
4080 	e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
4081 
4082 	/* Set EEE advertisement as appropriate */
4083 	if (adapter->flags2 & FLAG2_HAS_EEE) {
4084 		s32 ret_val;
4085 		u16 adv_addr;
4086 
4087 		switch (hw->phy.type) {
4088 		case e1000_phy_82579:
4089 			adv_addr = I82579_EEE_ADVERTISEMENT;
4090 			break;
4091 		case e1000_phy_i217:
4092 			adv_addr = I217_EEE_ADVERTISEMENT;
4093 			break;
4094 		default:
4095 			dev_err(&adapter->pdev->dev,
4096 				"Invalid PHY type setting EEE advertisement\n");
4097 			return;
4098 		}
4099 
4100 		ret_val = hw->phy.ops.acquire(hw);
4101 		if (ret_val) {
4102 			dev_err(&adapter->pdev->dev,
4103 				"EEE advertisement - unable to acquire PHY\n");
4104 			return;
4105 		}
4106 
4107 		e1000_write_emi_reg_locked(hw, adv_addr,
4108 					   hw->dev_spec.ich8lan.eee_disable ?
4109 					   0 : adapter->eee_advert);
4110 
4111 		hw->phy.ops.release(hw);
4112 	}
4113 
4114 	if (!netif_running(adapter->netdev) &&
4115 	    !test_bit(__E1000_TESTING, &adapter->state))
4116 		e1000_power_down_phy(adapter);
4117 
4118 	e1000_get_phy_info(hw);
4119 
4120 	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4121 	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4122 		u16 phy_data = 0;
4123 		/* speed up time to link by disabling smart power down, ignore
4124 		 * the return value of this function because there is nothing
4125 		 * different we would do if it failed
4126 		 */
4127 		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4128 		phy_data &= ~IGP02E1000_PM_SPD;
4129 		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4130 	}
4131 	if (hw->mac.type == e1000_pch_spt && adapter->int_mode == 0) {
4132 		u32 reg;
4133 
4134 		/* Fextnvm7 @ 0xe4[2] = 1 */
4135 		reg = er32(FEXTNVM7);
4136 		reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4137 		ew32(FEXTNVM7, reg);
4138 		/* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4139 		reg = er32(FEXTNVM9);
4140 		reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4141 		       E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4142 		ew32(FEXTNVM9, reg);
4143 	}
4144 
4145 }
4146 
4147 int e1000e_up(struct e1000_adapter *adapter)
4148 {
4149 	struct e1000_hw *hw = &adapter->hw;
4150 
4151 	/* hardware has been reset, we need to reload some things */
4152 	e1000_configure(adapter);
4153 
4154 	clear_bit(__E1000_DOWN, &adapter->state);
4155 
4156 	if (adapter->msix_entries)
4157 		e1000_configure_msix(adapter);
4158 	e1000_irq_enable(adapter);
4159 
4160 	netif_start_queue(adapter->netdev);
4161 
4162 	/* fire a link change interrupt to start the watchdog */
4163 	if (adapter->msix_entries)
4164 		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
4165 	else
4166 		ew32(ICS, E1000_ICS_LSC);
4167 
4168 	return 0;
4169 }
4170 
4171 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4172 {
4173 	struct e1000_hw *hw = &adapter->hw;
4174 
4175 	if (!(adapter->flags2 & FLAG2_DMA_BURST))
4176 		return;
4177 
4178 	/* flush pending descriptor writebacks to memory */
4179 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4180 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4181 
4182 	/* execute the writes immediately */
4183 	e1e_flush();
4184 
4185 	/* due to rare timing issues, write to TIDV/RDTR again to ensure the
4186 	 * write is successful
4187 	 */
4188 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4189 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4190 
4191 	/* execute the writes immediately */
4192 	e1e_flush();
4193 }
4194 
4195 static void e1000e_update_stats(struct e1000_adapter *adapter);
4196 
4197 /**
4198  * e1000e_down - quiesce the device and optionally reset the hardware
4199  * @adapter: board private structure
4200  * @reset: boolean flag to reset the hardware or not
4201  */
4202 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4203 {
4204 	struct net_device *netdev = adapter->netdev;
4205 	struct e1000_hw *hw = &adapter->hw;
4206 	u32 tctl, rctl;
4207 
4208 	/* signal that we're down so the interrupt handler does not
4209 	 * reschedule our watchdog timer
4210 	 */
4211 	set_bit(__E1000_DOWN, &adapter->state);
4212 
4213 	netif_carrier_off(netdev);
4214 
4215 	/* disable receives in the hardware */
4216 	rctl = er32(RCTL);
4217 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4218 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
4219 	/* flush and sleep below */
4220 
4221 	netif_stop_queue(netdev);
4222 
4223 	/* disable transmits in the hardware */
4224 	tctl = er32(TCTL);
4225 	tctl &= ~E1000_TCTL_EN;
4226 	ew32(TCTL, tctl);
4227 
4228 	/* flush both disables and wait for them to finish */
4229 	e1e_flush();
4230 	usleep_range(10000, 20000);
4231 
4232 	e1000_irq_disable(adapter);
4233 
4234 	napi_synchronize(&adapter->napi);
4235 
4236 	del_timer_sync(&adapter->watchdog_timer);
4237 	del_timer_sync(&adapter->phy_info_timer);
4238 
4239 	spin_lock(&adapter->stats64_lock);
4240 	e1000e_update_stats(adapter);
4241 	spin_unlock(&adapter->stats64_lock);
4242 
4243 	e1000e_flush_descriptors(adapter);
4244 
4245 	adapter->link_speed = 0;
4246 	adapter->link_duplex = 0;
4247 
4248 	/* Disable Si errata workaround on PCHx for jumbo frame flow */
4249 	if ((hw->mac.type >= e1000_pch2lan) &&
4250 	    (adapter->netdev->mtu > ETH_DATA_LEN) &&
4251 	    e1000_lv_jumbo_workaround_ich8lan(hw, false))
4252 		e_dbg("failed to disable jumbo frame workaround mode\n");
4253 
4254 	if (!pci_channel_offline(adapter->pdev)) {
4255 		if (reset)
4256 			e1000e_reset(adapter);
4257 		else if (hw->mac.type == e1000_pch_spt)
4258 			e1000_flush_desc_rings(adapter);
4259 	}
4260 	e1000_clean_tx_ring(adapter->tx_ring);
4261 	e1000_clean_rx_ring(adapter->rx_ring);
4262 }
4263 
4264 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4265 {
4266 	might_sleep();
4267 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4268 		usleep_range(1000, 2000);
4269 	e1000e_down(adapter, true);
4270 	e1000e_up(adapter);
4271 	clear_bit(__E1000_RESETTING, &adapter->state);
4272 }
4273 
4274 /**
4275  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4276  * @cc: cyclecounter structure
4277  **/
4278 static cycle_t e1000e_cyclecounter_read(const struct cyclecounter *cc)
4279 {
4280 	struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4281 						     cc);
4282 	struct e1000_hw *hw = &adapter->hw;
4283 	cycle_t systim, systim_next;
4284 	/* SYSTIMH latching upon SYSTIML read does not work well. To fix that
4285 	 * we don't want to allow overflow of SYSTIML and a change to SYSTIMH
4286 	 * to occur between reads, so if we read a vale close to overflow, we
4287 	 * wait for overflow to occur and read both registers when its safe.
4288 	 */
4289 	u32 systim_overflow_latch_fix = 0x3FFFFFFF;
4290 
4291 	do {
4292 		systim = (cycle_t)er32(SYSTIML);
4293 	} while (systim > systim_overflow_latch_fix);
4294 	systim |= (cycle_t)er32(SYSTIMH) << 32;
4295 
4296 	if ((hw->mac.type == e1000_82574) || (hw->mac.type == e1000_82583)) {
4297 		u64 incvalue, time_delta, rem, temp;
4298 		int i;
4299 
4300 		/* errata for 82574/82583 possible bad bits read from SYSTIMH/L
4301 		 * check to see that the time is incrementing at a reasonable
4302 		 * rate and is a multiple of incvalue
4303 		 */
4304 		incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4305 		for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4306 			/* latch SYSTIMH on read of SYSTIML */
4307 			systim_next = (cycle_t)er32(SYSTIML);
4308 			systim_next |= (cycle_t)er32(SYSTIMH) << 32;
4309 
4310 			time_delta = systim_next - systim;
4311 			temp = time_delta;
4312 			rem = do_div(temp, incvalue);
4313 
4314 			systim = systim_next;
4315 
4316 			if ((time_delta < E1000_82574_SYSTIM_EPSILON) &&
4317 			    (rem == 0))
4318 				break;
4319 		}
4320 	}
4321 	return systim;
4322 }
4323 
4324 /**
4325  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4326  * @adapter: board private structure to initialize
4327  *
4328  * e1000_sw_init initializes the Adapter private data structure.
4329  * Fields are initialized based on PCI device information and
4330  * OS network device settings (MTU size).
4331  **/
4332 static int e1000_sw_init(struct e1000_adapter *adapter)
4333 {
4334 	struct net_device *netdev = adapter->netdev;
4335 
4336 	adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4337 	adapter->rx_ps_bsize0 = 128;
4338 	adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4339 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4340 	adapter->tx_ring_count = E1000_DEFAULT_TXD;
4341 	adapter->rx_ring_count = E1000_DEFAULT_RXD;
4342 
4343 	spin_lock_init(&adapter->stats64_lock);
4344 
4345 	e1000e_set_interrupt_capability(adapter);
4346 
4347 	if (e1000_alloc_queues(adapter))
4348 		return -ENOMEM;
4349 
4350 	/* Setup hardware time stamping cyclecounter */
4351 	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4352 		adapter->cc.read = e1000e_cyclecounter_read;
4353 		adapter->cc.mask = CYCLECOUNTER_MASK(64);
4354 		adapter->cc.mult = 1;
4355 		/* cc.shift set in e1000e_get_base_tininca() */
4356 
4357 		spin_lock_init(&adapter->systim_lock);
4358 		INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4359 	}
4360 
4361 	/* Explicitly disable IRQ since the NIC can be in any state. */
4362 	e1000_irq_disable(adapter);
4363 
4364 	set_bit(__E1000_DOWN, &adapter->state);
4365 	return 0;
4366 }
4367 
4368 /**
4369  * e1000_intr_msi_test - Interrupt Handler
4370  * @irq: interrupt number
4371  * @data: pointer to a network interface device structure
4372  **/
4373 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4374 {
4375 	struct net_device *netdev = data;
4376 	struct e1000_adapter *adapter = netdev_priv(netdev);
4377 	struct e1000_hw *hw = &adapter->hw;
4378 	u32 icr = er32(ICR);
4379 
4380 	e_dbg("icr is %08X\n", icr);
4381 	if (icr & E1000_ICR_RXSEQ) {
4382 		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4383 		/* Force memory writes to complete before acknowledging the
4384 		 * interrupt is handled.
4385 		 */
4386 		wmb();
4387 	}
4388 
4389 	return IRQ_HANDLED;
4390 }
4391 
4392 /**
4393  * e1000_test_msi_interrupt - Returns 0 for successful test
4394  * @adapter: board private struct
4395  *
4396  * code flow taken from tg3.c
4397  **/
4398 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4399 {
4400 	struct net_device *netdev = adapter->netdev;
4401 	struct e1000_hw *hw = &adapter->hw;
4402 	int err;
4403 
4404 	/* poll_enable hasn't been called yet, so don't need disable */
4405 	/* clear any pending events */
4406 	er32(ICR);
4407 
4408 	/* free the real vector and request a test handler */
4409 	e1000_free_irq(adapter);
4410 	e1000e_reset_interrupt_capability(adapter);
4411 
4412 	/* Assume that the test fails, if it succeeds then the test
4413 	 * MSI irq handler will unset this flag
4414 	 */
4415 	adapter->flags |= FLAG_MSI_TEST_FAILED;
4416 
4417 	err = pci_enable_msi(adapter->pdev);
4418 	if (err)
4419 		goto msi_test_failed;
4420 
4421 	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4422 			  netdev->name, netdev);
4423 	if (err) {
4424 		pci_disable_msi(adapter->pdev);
4425 		goto msi_test_failed;
4426 	}
4427 
4428 	/* Force memory writes to complete before enabling and firing an
4429 	 * interrupt.
4430 	 */
4431 	wmb();
4432 
4433 	e1000_irq_enable(adapter);
4434 
4435 	/* fire an unusual interrupt on the test handler */
4436 	ew32(ICS, E1000_ICS_RXSEQ);
4437 	e1e_flush();
4438 	msleep(100);
4439 
4440 	e1000_irq_disable(adapter);
4441 
4442 	rmb();			/* read flags after interrupt has been fired */
4443 
4444 	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4445 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
4446 		e_info("MSI interrupt test failed, using legacy interrupt.\n");
4447 	} else {
4448 		e_dbg("MSI interrupt test succeeded!\n");
4449 	}
4450 
4451 	free_irq(adapter->pdev->irq, netdev);
4452 	pci_disable_msi(adapter->pdev);
4453 
4454 msi_test_failed:
4455 	e1000e_set_interrupt_capability(adapter);
4456 	return e1000_request_irq(adapter);
4457 }
4458 
4459 /**
4460  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4461  * @adapter: board private struct
4462  *
4463  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4464  **/
4465 static int e1000_test_msi(struct e1000_adapter *adapter)
4466 {
4467 	int err;
4468 	u16 pci_cmd;
4469 
4470 	if (!(adapter->flags & FLAG_MSI_ENABLED))
4471 		return 0;
4472 
4473 	/* disable SERR in case the MSI write causes a master abort */
4474 	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4475 	if (pci_cmd & PCI_COMMAND_SERR)
4476 		pci_write_config_word(adapter->pdev, PCI_COMMAND,
4477 				      pci_cmd & ~PCI_COMMAND_SERR);
4478 
4479 	err = e1000_test_msi_interrupt(adapter);
4480 
4481 	/* re-enable SERR */
4482 	if (pci_cmd & PCI_COMMAND_SERR) {
4483 		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4484 		pci_cmd |= PCI_COMMAND_SERR;
4485 		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4486 	}
4487 
4488 	return err;
4489 }
4490 
4491 /**
4492  * e1000_open - Called when a network interface is made active
4493  * @netdev: network interface device structure
4494  *
4495  * Returns 0 on success, negative value on failure
4496  *
4497  * The open entry point is called when a network interface is made
4498  * active by the system (IFF_UP).  At this point all resources needed
4499  * for transmit and receive operations are allocated, the interrupt
4500  * handler is registered with the OS, the watchdog timer is started,
4501  * and the stack is notified that the interface is ready.
4502  **/
4503 static int e1000_open(struct net_device *netdev)
4504 {
4505 	struct e1000_adapter *adapter = netdev_priv(netdev);
4506 	struct e1000_hw *hw = &adapter->hw;
4507 	struct pci_dev *pdev = adapter->pdev;
4508 	int err;
4509 
4510 	/* disallow open during test */
4511 	if (test_bit(__E1000_TESTING, &adapter->state))
4512 		return -EBUSY;
4513 
4514 	pm_runtime_get_sync(&pdev->dev);
4515 
4516 	netif_carrier_off(netdev);
4517 
4518 	/* allocate transmit descriptors */
4519 	err = e1000e_setup_tx_resources(adapter->tx_ring);
4520 	if (err)
4521 		goto err_setup_tx;
4522 
4523 	/* allocate receive descriptors */
4524 	err = e1000e_setup_rx_resources(adapter->rx_ring);
4525 	if (err)
4526 		goto err_setup_rx;
4527 
4528 	/* If AMT is enabled, let the firmware know that the network
4529 	 * interface is now open and reset the part to a known state.
4530 	 */
4531 	if (adapter->flags & FLAG_HAS_AMT) {
4532 		e1000e_get_hw_control(adapter);
4533 		e1000e_reset(adapter);
4534 	}
4535 
4536 	e1000e_power_up_phy(adapter);
4537 
4538 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4539 	if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4540 		e1000_update_mng_vlan(adapter);
4541 
4542 	/* DMA latency requirement to workaround jumbo issue */
4543 	pm_qos_add_request(&adapter->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4544 			   PM_QOS_DEFAULT_VALUE);
4545 
4546 	/* before we allocate an interrupt, we must be ready to handle it.
4547 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4548 	 * as soon as we call pci_request_irq, so we have to setup our
4549 	 * clean_rx handler before we do so.
4550 	 */
4551 	e1000_configure(adapter);
4552 
4553 	err = e1000_request_irq(adapter);
4554 	if (err)
4555 		goto err_req_irq;
4556 
4557 	/* Work around PCIe errata with MSI interrupts causing some chipsets to
4558 	 * ignore e1000e MSI messages, which means we need to test our MSI
4559 	 * interrupt now
4560 	 */
4561 	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4562 		err = e1000_test_msi(adapter);
4563 		if (err) {
4564 			e_err("Interrupt allocation failed\n");
4565 			goto err_req_irq;
4566 		}
4567 	}
4568 
4569 	/* From here on the code is the same as e1000e_up() */
4570 	clear_bit(__E1000_DOWN, &adapter->state);
4571 
4572 	napi_enable(&adapter->napi);
4573 
4574 	e1000_irq_enable(adapter);
4575 
4576 	adapter->tx_hang_recheck = false;
4577 	netif_start_queue(netdev);
4578 
4579 	hw->mac.get_link_status = true;
4580 	pm_runtime_put(&pdev->dev);
4581 
4582 	/* fire a link status change interrupt to start the watchdog */
4583 	if (adapter->msix_entries)
4584 		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
4585 	else
4586 		ew32(ICS, E1000_ICS_LSC);
4587 
4588 	return 0;
4589 
4590 err_req_irq:
4591 	e1000e_release_hw_control(adapter);
4592 	e1000_power_down_phy(adapter);
4593 	e1000e_free_rx_resources(adapter->rx_ring);
4594 err_setup_rx:
4595 	e1000e_free_tx_resources(adapter->tx_ring);
4596 err_setup_tx:
4597 	e1000e_reset(adapter);
4598 	pm_runtime_put_sync(&pdev->dev);
4599 
4600 	return err;
4601 }
4602 
4603 /**
4604  * e1000_close - Disables a network interface
4605  * @netdev: network interface device structure
4606  *
4607  * Returns 0, this is not allowed to fail
4608  *
4609  * The close entry point is called when an interface is de-activated
4610  * by the OS.  The hardware is still under the drivers control, but
4611  * needs to be disabled.  A global MAC reset is issued to stop the
4612  * hardware, and all transmit and receive resources are freed.
4613  **/
4614 static int e1000_close(struct net_device *netdev)
4615 {
4616 	struct e1000_adapter *adapter = netdev_priv(netdev);
4617 	struct pci_dev *pdev = adapter->pdev;
4618 	int count = E1000_CHECK_RESET_COUNT;
4619 
4620 	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4621 		usleep_range(10000, 20000);
4622 
4623 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4624 
4625 	pm_runtime_get_sync(&pdev->dev);
4626 
4627 	if (!test_bit(__E1000_DOWN, &adapter->state)) {
4628 		e1000e_down(adapter, true);
4629 		e1000_free_irq(adapter);
4630 
4631 		/* Link status message must follow this format */
4632 		pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4633 	}
4634 
4635 	napi_disable(&adapter->napi);
4636 
4637 	e1000e_free_tx_resources(adapter->tx_ring);
4638 	e1000e_free_rx_resources(adapter->rx_ring);
4639 
4640 	/* kill manageability vlan ID if supported, but not if a vlan with
4641 	 * the same ID is registered on the host OS (let 8021q kill it)
4642 	 */
4643 	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4644 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4645 				       adapter->mng_vlan_id);
4646 
4647 	/* If AMT is enabled, let the firmware know that the network
4648 	 * interface is now closed
4649 	 */
4650 	if ((adapter->flags & FLAG_HAS_AMT) &&
4651 	    !test_bit(__E1000_TESTING, &adapter->state))
4652 		e1000e_release_hw_control(adapter);
4653 
4654 	pm_qos_remove_request(&adapter->pm_qos_req);
4655 
4656 	pm_runtime_put_sync(&pdev->dev);
4657 
4658 	return 0;
4659 }
4660 
4661 /**
4662  * e1000_set_mac - Change the Ethernet Address of the NIC
4663  * @netdev: network interface device structure
4664  * @p: pointer to an address structure
4665  *
4666  * Returns 0 on success, negative on failure
4667  **/
4668 static int e1000_set_mac(struct net_device *netdev, void *p)
4669 {
4670 	struct e1000_adapter *adapter = netdev_priv(netdev);
4671 	struct e1000_hw *hw = &adapter->hw;
4672 	struct sockaddr *addr = p;
4673 
4674 	if (!is_valid_ether_addr(addr->sa_data))
4675 		return -EADDRNOTAVAIL;
4676 
4677 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4678 	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4679 
4680 	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4681 
4682 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4683 		/* activate the work around */
4684 		e1000e_set_laa_state_82571(&adapter->hw, 1);
4685 
4686 		/* Hold a copy of the LAA in RAR[14] This is done so that
4687 		 * between the time RAR[0] gets clobbered  and the time it
4688 		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4689 		 * of the RARs and no incoming packets directed to this port
4690 		 * are dropped. Eventually the LAA will be in RAR[0] and
4691 		 * RAR[14]
4692 		 */
4693 		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4694 				    adapter->hw.mac.rar_entry_count - 1);
4695 	}
4696 
4697 	return 0;
4698 }
4699 
4700 /**
4701  * e1000e_update_phy_task - work thread to update phy
4702  * @work: pointer to our work struct
4703  *
4704  * this worker thread exists because we must acquire a
4705  * semaphore to read the phy, which we could msleep while
4706  * waiting for it, and we can't msleep in a timer.
4707  **/
4708 static void e1000e_update_phy_task(struct work_struct *work)
4709 {
4710 	struct e1000_adapter *adapter = container_of(work,
4711 						     struct e1000_adapter,
4712 						     update_phy_task);
4713 	struct e1000_hw *hw = &adapter->hw;
4714 
4715 	if (test_bit(__E1000_DOWN, &adapter->state))
4716 		return;
4717 
4718 	e1000_get_phy_info(hw);
4719 
4720 	/* Enable EEE on 82579 after link up */
4721 	if (hw->phy.type >= e1000_phy_82579)
4722 		e1000_set_eee_pchlan(hw);
4723 }
4724 
4725 /**
4726  * e1000_update_phy_info - timre call-back to update PHY info
4727  * @data: pointer to adapter cast into an unsigned long
4728  *
4729  * Need to wait a few seconds after link up to get diagnostic information from
4730  * the phy
4731  **/
4732 static void e1000_update_phy_info(unsigned long data)
4733 {
4734 	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4735 
4736 	if (test_bit(__E1000_DOWN, &adapter->state))
4737 		return;
4738 
4739 	schedule_work(&adapter->update_phy_task);
4740 }
4741 
4742 /**
4743  * e1000e_update_phy_stats - Update the PHY statistics counters
4744  * @adapter: board private structure
4745  *
4746  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4747  **/
4748 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4749 {
4750 	struct e1000_hw *hw = &adapter->hw;
4751 	s32 ret_val;
4752 	u16 phy_data;
4753 
4754 	ret_val = hw->phy.ops.acquire(hw);
4755 	if (ret_val)
4756 		return;
4757 
4758 	/* A page set is expensive so check if already on desired page.
4759 	 * If not, set to the page with the PHY status registers.
4760 	 */
4761 	hw->phy.addr = 1;
4762 	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4763 					   &phy_data);
4764 	if (ret_val)
4765 		goto release;
4766 	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4767 		ret_val = hw->phy.ops.set_page(hw,
4768 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4769 		if (ret_val)
4770 			goto release;
4771 	}
4772 
4773 	/* Single Collision Count */
4774 	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4775 	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4776 	if (!ret_val)
4777 		adapter->stats.scc += phy_data;
4778 
4779 	/* Excessive Collision Count */
4780 	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4781 	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4782 	if (!ret_val)
4783 		adapter->stats.ecol += phy_data;
4784 
4785 	/* Multiple Collision Count */
4786 	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4787 	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4788 	if (!ret_val)
4789 		adapter->stats.mcc += phy_data;
4790 
4791 	/* Late Collision Count */
4792 	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4793 	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4794 	if (!ret_val)
4795 		adapter->stats.latecol += phy_data;
4796 
4797 	/* Collision Count - also used for adaptive IFS */
4798 	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4799 	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4800 	if (!ret_val)
4801 		hw->mac.collision_delta = phy_data;
4802 
4803 	/* Defer Count */
4804 	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4805 	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4806 	if (!ret_val)
4807 		adapter->stats.dc += phy_data;
4808 
4809 	/* Transmit with no CRS */
4810 	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4811 	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4812 	if (!ret_val)
4813 		adapter->stats.tncrs += phy_data;
4814 
4815 release:
4816 	hw->phy.ops.release(hw);
4817 }
4818 
4819 /**
4820  * e1000e_update_stats - Update the board statistics counters
4821  * @adapter: board private structure
4822  **/
4823 static void e1000e_update_stats(struct e1000_adapter *adapter)
4824 {
4825 	struct net_device *netdev = adapter->netdev;
4826 	struct e1000_hw *hw = &adapter->hw;
4827 	struct pci_dev *pdev = adapter->pdev;
4828 
4829 	/* Prevent stats update while adapter is being reset, or if the pci
4830 	 * connection is down.
4831 	 */
4832 	if (adapter->link_speed == 0)
4833 		return;
4834 	if (pci_channel_offline(pdev))
4835 		return;
4836 
4837 	adapter->stats.crcerrs += er32(CRCERRS);
4838 	adapter->stats.gprc += er32(GPRC);
4839 	adapter->stats.gorc += er32(GORCL);
4840 	er32(GORCH);		/* Clear gorc */
4841 	adapter->stats.bprc += er32(BPRC);
4842 	adapter->stats.mprc += er32(MPRC);
4843 	adapter->stats.roc += er32(ROC);
4844 
4845 	adapter->stats.mpc += er32(MPC);
4846 
4847 	/* Half-duplex statistics */
4848 	if (adapter->link_duplex == HALF_DUPLEX) {
4849 		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4850 			e1000e_update_phy_stats(adapter);
4851 		} else {
4852 			adapter->stats.scc += er32(SCC);
4853 			adapter->stats.ecol += er32(ECOL);
4854 			adapter->stats.mcc += er32(MCC);
4855 			adapter->stats.latecol += er32(LATECOL);
4856 			adapter->stats.dc += er32(DC);
4857 
4858 			hw->mac.collision_delta = er32(COLC);
4859 
4860 			if ((hw->mac.type != e1000_82574) &&
4861 			    (hw->mac.type != e1000_82583))
4862 				adapter->stats.tncrs += er32(TNCRS);
4863 		}
4864 		adapter->stats.colc += hw->mac.collision_delta;
4865 	}
4866 
4867 	adapter->stats.xonrxc += er32(XONRXC);
4868 	adapter->stats.xontxc += er32(XONTXC);
4869 	adapter->stats.xoffrxc += er32(XOFFRXC);
4870 	adapter->stats.xofftxc += er32(XOFFTXC);
4871 	adapter->stats.gptc += er32(GPTC);
4872 	adapter->stats.gotc += er32(GOTCL);
4873 	er32(GOTCH);		/* Clear gotc */
4874 	adapter->stats.rnbc += er32(RNBC);
4875 	adapter->stats.ruc += er32(RUC);
4876 
4877 	adapter->stats.mptc += er32(MPTC);
4878 	adapter->stats.bptc += er32(BPTC);
4879 
4880 	/* used for adaptive IFS */
4881 
4882 	hw->mac.tx_packet_delta = er32(TPT);
4883 	adapter->stats.tpt += hw->mac.tx_packet_delta;
4884 
4885 	adapter->stats.algnerrc += er32(ALGNERRC);
4886 	adapter->stats.rxerrc += er32(RXERRC);
4887 	adapter->stats.cexterr += er32(CEXTERR);
4888 	adapter->stats.tsctc += er32(TSCTC);
4889 	adapter->stats.tsctfc += er32(TSCTFC);
4890 
4891 	/* Fill out the OS statistics structure */
4892 	netdev->stats.multicast = adapter->stats.mprc;
4893 	netdev->stats.collisions = adapter->stats.colc;
4894 
4895 	/* Rx Errors */
4896 
4897 	/* RLEC on some newer hardware can be incorrect so build
4898 	 * our own version based on RUC and ROC
4899 	 */
4900 	netdev->stats.rx_errors = adapter->stats.rxerrc +
4901 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
4902 	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
4903 	netdev->stats.rx_length_errors = adapter->stats.ruc +
4904 	    adapter->stats.roc;
4905 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4906 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4907 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
4908 
4909 	/* Tx Errors */
4910 	netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
4911 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4912 	netdev->stats.tx_window_errors = adapter->stats.latecol;
4913 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4914 
4915 	/* Tx Dropped needs to be maintained elsewhere */
4916 
4917 	/* Management Stats */
4918 	adapter->stats.mgptc += er32(MGTPTC);
4919 	adapter->stats.mgprc += er32(MGTPRC);
4920 	adapter->stats.mgpdc += er32(MGTPDC);
4921 
4922 	/* Correctable ECC Errors */
4923 	if ((hw->mac.type == e1000_pch_lpt) ||
4924 	    (hw->mac.type == e1000_pch_spt)) {
4925 		u32 pbeccsts = er32(PBECCSTS);
4926 
4927 		adapter->corr_errors +=
4928 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
4929 		adapter->uncorr_errors +=
4930 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
4931 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
4932 	}
4933 }
4934 
4935 /**
4936  * e1000_phy_read_status - Update the PHY register status snapshot
4937  * @adapter: board private structure
4938  **/
4939 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4940 {
4941 	struct e1000_hw *hw = &adapter->hw;
4942 	struct e1000_phy_regs *phy = &adapter->phy_regs;
4943 
4944 	if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
4945 	    (er32(STATUS) & E1000_STATUS_LU) &&
4946 	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4947 		int ret_val;
4948 
4949 		ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
4950 		ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
4951 		ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
4952 		ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
4953 		ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
4954 		ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
4955 		ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
4956 		ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
4957 		if (ret_val)
4958 			e_warn("Error reading PHY register\n");
4959 	} else {
4960 		/* Do not read PHY registers if link is not up
4961 		 * Set values to typical power-on defaults
4962 		 */
4963 		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4964 		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4965 			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4966 			     BMSR_ERCAP);
4967 		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4968 				  ADVERTISE_ALL | ADVERTISE_CSMA);
4969 		phy->lpa = 0;
4970 		phy->expansion = EXPANSION_ENABLENPAGE;
4971 		phy->ctrl1000 = ADVERTISE_1000FULL;
4972 		phy->stat1000 = 0;
4973 		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4974 	}
4975 }
4976 
4977 static void e1000_print_link_info(struct e1000_adapter *adapter)
4978 {
4979 	struct e1000_hw *hw = &adapter->hw;
4980 	u32 ctrl = er32(CTRL);
4981 
4982 	/* Link status message must follow this format for user tools */
4983 	pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4984 		adapter->netdev->name, adapter->link_speed,
4985 		adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4986 		(ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4987 		(ctrl & E1000_CTRL_RFCE) ? "Rx" :
4988 		(ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4989 }
4990 
4991 static bool e1000e_has_link(struct e1000_adapter *adapter)
4992 {
4993 	struct e1000_hw *hw = &adapter->hw;
4994 	bool link_active = false;
4995 	s32 ret_val = 0;
4996 
4997 	/* get_link_status is set on LSC (link status) interrupt or
4998 	 * Rx sequence error interrupt.  get_link_status will stay
4999 	 * false until the check_for_link establishes link
5000 	 * for copper adapters ONLY
5001 	 */
5002 	switch (hw->phy.media_type) {
5003 	case e1000_media_type_copper:
5004 		if (hw->mac.get_link_status) {
5005 			ret_val = hw->mac.ops.check_for_link(hw);
5006 			link_active = !hw->mac.get_link_status;
5007 		} else {
5008 			link_active = true;
5009 		}
5010 		break;
5011 	case e1000_media_type_fiber:
5012 		ret_val = hw->mac.ops.check_for_link(hw);
5013 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5014 		break;
5015 	case e1000_media_type_internal_serdes:
5016 		ret_val = hw->mac.ops.check_for_link(hw);
5017 		link_active = adapter->hw.mac.serdes_has_link;
5018 		break;
5019 	default:
5020 	case e1000_media_type_unknown:
5021 		break;
5022 	}
5023 
5024 	if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5025 	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5026 		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5027 		e_info("Gigabit has been disabled, downgrading speed\n");
5028 	}
5029 
5030 	return link_active;
5031 }
5032 
5033 static void e1000e_enable_receives(struct e1000_adapter *adapter)
5034 {
5035 	/* make sure the receive unit is started */
5036 	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5037 	    (adapter->flags & FLAG_RESTART_NOW)) {
5038 		struct e1000_hw *hw = &adapter->hw;
5039 		u32 rctl = er32(RCTL);
5040 
5041 		ew32(RCTL, rctl | E1000_RCTL_EN);
5042 		adapter->flags &= ~FLAG_RESTART_NOW;
5043 	}
5044 }
5045 
5046 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5047 {
5048 	struct e1000_hw *hw = &adapter->hw;
5049 
5050 	/* With 82574 controllers, PHY needs to be checked periodically
5051 	 * for hung state and reset, if two calls return true
5052 	 */
5053 	if (e1000_check_phy_82574(hw))
5054 		adapter->phy_hang_count++;
5055 	else
5056 		adapter->phy_hang_count = 0;
5057 
5058 	if (adapter->phy_hang_count > 1) {
5059 		adapter->phy_hang_count = 0;
5060 		e_dbg("PHY appears hung - resetting\n");
5061 		schedule_work(&adapter->reset_task);
5062 	}
5063 }
5064 
5065 /**
5066  * e1000_watchdog - Timer Call-back
5067  * @data: pointer to adapter cast into an unsigned long
5068  **/
5069 static void e1000_watchdog(unsigned long data)
5070 {
5071 	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
5072 
5073 	/* Do the rest outside of interrupt context */
5074 	schedule_work(&adapter->watchdog_task);
5075 
5076 	/* TODO: make this use queue_delayed_work() */
5077 }
5078 
5079 static void e1000_watchdog_task(struct work_struct *work)
5080 {
5081 	struct e1000_adapter *adapter = container_of(work,
5082 						     struct e1000_adapter,
5083 						     watchdog_task);
5084 	struct net_device *netdev = adapter->netdev;
5085 	struct e1000_mac_info *mac = &adapter->hw.mac;
5086 	struct e1000_phy_info *phy = &adapter->hw.phy;
5087 	struct e1000_ring *tx_ring = adapter->tx_ring;
5088 	struct e1000_hw *hw = &adapter->hw;
5089 	u32 link, tctl;
5090 
5091 	if (test_bit(__E1000_DOWN, &adapter->state))
5092 		return;
5093 
5094 	link = e1000e_has_link(adapter);
5095 	if ((netif_carrier_ok(netdev)) && link) {
5096 		/* Cancel scheduled suspend requests. */
5097 		pm_runtime_resume(netdev->dev.parent);
5098 
5099 		e1000e_enable_receives(adapter);
5100 		goto link_up;
5101 	}
5102 
5103 	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5104 	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5105 		e1000_update_mng_vlan(adapter);
5106 
5107 	if (link) {
5108 		if (!netif_carrier_ok(netdev)) {
5109 			bool txb2b = true;
5110 
5111 			/* Cancel scheduled suspend requests. */
5112 			pm_runtime_resume(netdev->dev.parent);
5113 
5114 			/* update snapshot of PHY registers on LSC */
5115 			e1000_phy_read_status(adapter);
5116 			mac->ops.get_link_up_info(&adapter->hw,
5117 						  &adapter->link_speed,
5118 						  &adapter->link_duplex);
5119 			e1000_print_link_info(adapter);
5120 
5121 			/* check if SmartSpeed worked */
5122 			e1000e_check_downshift(hw);
5123 			if (phy->speed_downgraded)
5124 				netdev_warn(netdev,
5125 					    "Link Speed was downgraded by SmartSpeed\n");
5126 
5127 			/* On supported PHYs, check for duplex mismatch only
5128 			 * if link has autonegotiated at 10/100 half
5129 			 */
5130 			if ((hw->phy.type == e1000_phy_igp_3 ||
5131 			     hw->phy.type == e1000_phy_bm) &&
5132 			    hw->mac.autoneg &&
5133 			    (adapter->link_speed == SPEED_10 ||
5134 			     adapter->link_speed == SPEED_100) &&
5135 			    (adapter->link_duplex == HALF_DUPLEX)) {
5136 				u16 autoneg_exp;
5137 
5138 				e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5139 
5140 				if (!(autoneg_exp & EXPANSION_NWAY))
5141 					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5142 			}
5143 
5144 			/* adjust timeout factor according to speed/duplex */
5145 			adapter->tx_timeout_factor = 1;
5146 			switch (adapter->link_speed) {
5147 			case SPEED_10:
5148 				txb2b = false;
5149 				adapter->tx_timeout_factor = 16;
5150 				break;
5151 			case SPEED_100:
5152 				txb2b = false;
5153 				adapter->tx_timeout_factor = 10;
5154 				break;
5155 			}
5156 
5157 			/* workaround: re-program speed mode bit after
5158 			 * link-up event
5159 			 */
5160 			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5161 			    !txb2b) {
5162 				u32 tarc0;
5163 
5164 				tarc0 = er32(TARC(0));
5165 				tarc0 &= ~SPEED_MODE_BIT;
5166 				ew32(TARC(0), tarc0);
5167 			}
5168 
5169 			/* disable TSO for pcie and 10/100 speeds, to avoid
5170 			 * some hardware issues
5171 			 */
5172 			if (!(adapter->flags & FLAG_TSO_FORCE)) {
5173 				switch (adapter->link_speed) {
5174 				case SPEED_10:
5175 				case SPEED_100:
5176 					e_info("10/100 speed: disabling TSO\n");
5177 					netdev->features &= ~NETIF_F_TSO;
5178 					netdev->features &= ~NETIF_F_TSO6;
5179 					break;
5180 				case SPEED_1000:
5181 					netdev->features |= NETIF_F_TSO;
5182 					netdev->features |= NETIF_F_TSO6;
5183 					break;
5184 				default:
5185 					/* oops */
5186 					break;
5187 				}
5188 			}
5189 
5190 			/* enable transmits in the hardware, need to do this
5191 			 * after setting TARC(0)
5192 			 */
5193 			tctl = er32(TCTL);
5194 			tctl |= E1000_TCTL_EN;
5195 			ew32(TCTL, tctl);
5196 
5197 			/* Perform any post-link-up configuration before
5198 			 * reporting link up.
5199 			 */
5200 			if (phy->ops.cfg_on_link_up)
5201 				phy->ops.cfg_on_link_up(hw);
5202 
5203 			netif_carrier_on(netdev);
5204 
5205 			if (!test_bit(__E1000_DOWN, &adapter->state))
5206 				mod_timer(&adapter->phy_info_timer,
5207 					  round_jiffies(jiffies + 2 * HZ));
5208 		}
5209 	} else {
5210 		if (netif_carrier_ok(netdev)) {
5211 			adapter->link_speed = 0;
5212 			adapter->link_duplex = 0;
5213 			/* Link status message must follow this format */
5214 			pr_info("%s NIC Link is Down\n", adapter->netdev->name);
5215 			netif_carrier_off(netdev);
5216 			if (!test_bit(__E1000_DOWN, &adapter->state))
5217 				mod_timer(&adapter->phy_info_timer,
5218 					  round_jiffies(jiffies + 2 * HZ));
5219 
5220 			/* 8000ES2LAN requires a Rx packet buffer work-around
5221 			 * on link down event; reset the controller to flush
5222 			 * the Rx packet buffer.
5223 			 */
5224 			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5225 				adapter->flags |= FLAG_RESTART_NOW;
5226 			else
5227 				pm_schedule_suspend(netdev->dev.parent,
5228 						    LINK_TIMEOUT);
5229 		}
5230 	}
5231 
5232 link_up:
5233 	spin_lock(&adapter->stats64_lock);
5234 	e1000e_update_stats(adapter);
5235 
5236 	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5237 	adapter->tpt_old = adapter->stats.tpt;
5238 	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5239 	adapter->colc_old = adapter->stats.colc;
5240 
5241 	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5242 	adapter->gorc_old = adapter->stats.gorc;
5243 	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5244 	adapter->gotc_old = adapter->stats.gotc;
5245 	spin_unlock(&adapter->stats64_lock);
5246 
5247 	/* If the link is lost the controller stops DMA, but
5248 	 * if there is queued Tx work it cannot be done.  So
5249 	 * reset the controller to flush the Tx packet buffers.
5250 	 */
5251 	if (!netif_carrier_ok(netdev) &&
5252 	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5253 		adapter->flags |= FLAG_RESTART_NOW;
5254 
5255 	/* If reset is necessary, do it outside of interrupt context. */
5256 	if (adapter->flags & FLAG_RESTART_NOW) {
5257 		schedule_work(&adapter->reset_task);
5258 		/* return immediately since reset is imminent */
5259 		return;
5260 	}
5261 
5262 	e1000e_update_adaptive(&adapter->hw);
5263 
5264 	/* Simple mode for Interrupt Throttle Rate (ITR) */
5265 	if (adapter->itr_setting == 4) {
5266 		/* Symmetric Tx/Rx gets a reduced ITR=2000;
5267 		 * Total asymmetrical Tx or Rx gets ITR=8000;
5268 		 * everyone else is between 2000-8000.
5269 		 */
5270 		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5271 		u32 dif = (adapter->gotc > adapter->gorc ?
5272 			   adapter->gotc - adapter->gorc :
5273 			   adapter->gorc - adapter->gotc) / 10000;
5274 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5275 
5276 		e1000e_write_itr(adapter, itr);
5277 	}
5278 
5279 	/* Cause software interrupt to ensure Rx ring is cleaned */
5280 	if (adapter->msix_entries)
5281 		ew32(ICS, adapter->rx_ring->ims_val);
5282 	else
5283 		ew32(ICS, E1000_ICS_RXDMT0);
5284 
5285 	/* flush pending descriptors to memory before detecting Tx hang */
5286 	e1000e_flush_descriptors(adapter);
5287 
5288 	/* Force detection of hung controller every watchdog period */
5289 	adapter->detect_tx_hung = true;
5290 
5291 	/* With 82571 controllers, LAA may be overwritten due to controller
5292 	 * reset from the other port. Set the appropriate LAA in RAR[0]
5293 	 */
5294 	if (e1000e_get_laa_state_82571(hw))
5295 		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5296 
5297 	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5298 		e1000e_check_82574_phy_workaround(adapter);
5299 
5300 	/* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5301 	if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5302 		if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5303 		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5304 			er32(RXSTMPH);
5305 			adapter->rx_hwtstamp_cleared++;
5306 		} else {
5307 			adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5308 		}
5309 	}
5310 
5311 	/* Reset the timer */
5312 	if (!test_bit(__E1000_DOWN, &adapter->state))
5313 		mod_timer(&adapter->watchdog_timer,
5314 			  round_jiffies(jiffies + 2 * HZ));
5315 }
5316 
5317 #define E1000_TX_FLAGS_CSUM		0x00000001
5318 #define E1000_TX_FLAGS_VLAN		0x00000002
5319 #define E1000_TX_FLAGS_TSO		0x00000004
5320 #define E1000_TX_FLAGS_IPV4		0x00000008
5321 #define E1000_TX_FLAGS_NO_FCS		0x00000010
5322 #define E1000_TX_FLAGS_HWTSTAMP		0x00000020
5323 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
5324 #define E1000_TX_FLAGS_VLAN_SHIFT	16
5325 
5326 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5327 		     __be16 protocol)
5328 {
5329 	struct e1000_context_desc *context_desc;
5330 	struct e1000_buffer *buffer_info;
5331 	unsigned int i;
5332 	u32 cmd_length = 0;
5333 	u16 ipcse = 0, mss;
5334 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
5335 	int err;
5336 
5337 	if (!skb_is_gso(skb))
5338 		return 0;
5339 
5340 	err = skb_cow_head(skb, 0);
5341 	if (err < 0)
5342 		return err;
5343 
5344 	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5345 	mss = skb_shinfo(skb)->gso_size;
5346 	if (protocol == htons(ETH_P_IP)) {
5347 		struct iphdr *iph = ip_hdr(skb);
5348 		iph->tot_len = 0;
5349 		iph->check = 0;
5350 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5351 							 0, IPPROTO_TCP, 0);
5352 		cmd_length = E1000_TXD_CMD_IP;
5353 		ipcse = skb_transport_offset(skb) - 1;
5354 	} else if (skb_is_gso_v6(skb)) {
5355 		ipv6_hdr(skb)->payload_len = 0;
5356 		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5357 						       &ipv6_hdr(skb)->daddr,
5358 						       0, IPPROTO_TCP, 0);
5359 		ipcse = 0;
5360 	}
5361 	ipcss = skb_network_offset(skb);
5362 	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5363 	tucss = skb_transport_offset(skb);
5364 	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5365 
5366 	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5367 		       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5368 
5369 	i = tx_ring->next_to_use;
5370 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5371 	buffer_info = &tx_ring->buffer_info[i];
5372 
5373 	context_desc->lower_setup.ip_fields.ipcss = ipcss;
5374 	context_desc->lower_setup.ip_fields.ipcso = ipcso;
5375 	context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5376 	context_desc->upper_setup.tcp_fields.tucss = tucss;
5377 	context_desc->upper_setup.tcp_fields.tucso = tucso;
5378 	context_desc->upper_setup.tcp_fields.tucse = 0;
5379 	context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5380 	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5381 	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5382 
5383 	buffer_info->time_stamp = jiffies;
5384 	buffer_info->next_to_watch = i;
5385 
5386 	i++;
5387 	if (i == tx_ring->count)
5388 		i = 0;
5389 	tx_ring->next_to_use = i;
5390 
5391 	return 1;
5392 }
5393 
5394 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5395 			  __be16 protocol)
5396 {
5397 	struct e1000_adapter *adapter = tx_ring->adapter;
5398 	struct e1000_context_desc *context_desc;
5399 	struct e1000_buffer *buffer_info;
5400 	unsigned int i;
5401 	u8 css;
5402 	u32 cmd_len = E1000_TXD_CMD_DEXT;
5403 
5404 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5405 		return false;
5406 
5407 	switch (protocol) {
5408 	case cpu_to_be16(ETH_P_IP):
5409 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5410 			cmd_len |= E1000_TXD_CMD_TCP;
5411 		break;
5412 	case cpu_to_be16(ETH_P_IPV6):
5413 		/* XXX not handling all IPV6 headers */
5414 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5415 			cmd_len |= E1000_TXD_CMD_TCP;
5416 		break;
5417 	default:
5418 		if (unlikely(net_ratelimit()))
5419 			e_warn("checksum_partial proto=%x!\n",
5420 			       be16_to_cpu(protocol));
5421 		break;
5422 	}
5423 
5424 	css = skb_checksum_start_offset(skb);
5425 
5426 	i = tx_ring->next_to_use;
5427 	buffer_info = &tx_ring->buffer_info[i];
5428 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5429 
5430 	context_desc->lower_setup.ip_config = 0;
5431 	context_desc->upper_setup.tcp_fields.tucss = css;
5432 	context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5433 	context_desc->upper_setup.tcp_fields.tucse = 0;
5434 	context_desc->tcp_seg_setup.data = 0;
5435 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5436 
5437 	buffer_info->time_stamp = jiffies;
5438 	buffer_info->next_to_watch = i;
5439 
5440 	i++;
5441 	if (i == tx_ring->count)
5442 		i = 0;
5443 	tx_ring->next_to_use = i;
5444 
5445 	return true;
5446 }
5447 
5448 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5449 			unsigned int first, unsigned int max_per_txd,
5450 			unsigned int nr_frags)
5451 {
5452 	struct e1000_adapter *adapter = tx_ring->adapter;
5453 	struct pci_dev *pdev = adapter->pdev;
5454 	struct e1000_buffer *buffer_info;
5455 	unsigned int len = skb_headlen(skb);
5456 	unsigned int offset = 0, size, count = 0, i;
5457 	unsigned int f, bytecount, segs;
5458 
5459 	i = tx_ring->next_to_use;
5460 
5461 	while (len) {
5462 		buffer_info = &tx_ring->buffer_info[i];
5463 		size = min(len, max_per_txd);
5464 
5465 		buffer_info->length = size;
5466 		buffer_info->time_stamp = jiffies;
5467 		buffer_info->next_to_watch = i;
5468 		buffer_info->dma = dma_map_single(&pdev->dev,
5469 						  skb->data + offset,
5470 						  size, DMA_TO_DEVICE);
5471 		buffer_info->mapped_as_page = false;
5472 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5473 			goto dma_error;
5474 
5475 		len -= size;
5476 		offset += size;
5477 		count++;
5478 
5479 		if (len) {
5480 			i++;
5481 			if (i == tx_ring->count)
5482 				i = 0;
5483 		}
5484 	}
5485 
5486 	for (f = 0; f < nr_frags; f++) {
5487 		const struct skb_frag_struct *frag;
5488 
5489 		frag = &skb_shinfo(skb)->frags[f];
5490 		len = skb_frag_size(frag);
5491 		offset = 0;
5492 
5493 		while (len) {
5494 			i++;
5495 			if (i == tx_ring->count)
5496 				i = 0;
5497 
5498 			buffer_info = &tx_ring->buffer_info[i];
5499 			size = min(len, max_per_txd);
5500 
5501 			buffer_info->length = size;
5502 			buffer_info->time_stamp = jiffies;
5503 			buffer_info->next_to_watch = i;
5504 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5505 							    offset, size,
5506 							    DMA_TO_DEVICE);
5507 			buffer_info->mapped_as_page = true;
5508 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5509 				goto dma_error;
5510 
5511 			len -= size;
5512 			offset += size;
5513 			count++;
5514 		}
5515 	}
5516 
5517 	segs = skb_shinfo(skb)->gso_segs ? : 1;
5518 	/* multiply data chunks by size of headers */
5519 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5520 
5521 	tx_ring->buffer_info[i].skb = skb;
5522 	tx_ring->buffer_info[i].segs = segs;
5523 	tx_ring->buffer_info[i].bytecount = bytecount;
5524 	tx_ring->buffer_info[first].next_to_watch = i;
5525 
5526 	return count;
5527 
5528 dma_error:
5529 	dev_err(&pdev->dev, "Tx DMA map failed\n");
5530 	buffer_info->dma = 0;
5531 	if (count)
5532 		count--;
5533 
5534 	while (count--) {
5535 		if (i == 0)
5536 			i += tx_ring->count;
5537 		i--;
5538 		buffer_info = &tx_ring->buffer_info[i];
5539 		e1000_put_txbuf(tx_ring, buffer_info);
5540 	}
5541 
5542 	return 0;
5543 }
5544 
5545 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5546 {
5547 	struct e1000_adapter *adapter = tx_ring->adapter;
5548 	struct e1000_tx_desc *tx_desc = NULL;
5549 	struct e1000_buffer *buffer_info;
5550 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5551 	unsigned int i;
5552 
5553 	if (tx_flags & E1000_TX_FLAGS_TSO) {
5554 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5555 		    E1000_TXD_CMD_TSE;
5556 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5557 
5558 		if (tx_flags & E1000_TX_FLAGS_IPV4)
5559 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5560 	}
5561 
5562 	if (tx_flags & E1000_TX_FLAGS_CSUM) {
5563 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5564 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5565 	}
5566 
5567 	if (tx_flags & E1000_TX_FLAGS_VLAN) {
5568 		txd_lower |= E1000_TXD_CMD_VLE;
5569 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5570 	}
5571 
5572 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5573 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
5574 
5575 	if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5576 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5577 		txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5578 	}
5579 
5580 	i = tx_ring->next_to_use;
5581 
5582 	do {
5583 		buffer_info = &tx_ring->buffer_info[i];
5584 		tx_desc = E1000_TX_DESC(*tx_ring, i);
5585 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5586 		tx_desc->lower.data = cpu_to_le32(txd_lower |
5587 						  buffer_info->length);
5588 		tx_desc->upper.data = cpu_to_le32(txd_upper);
5589 
5590 		i++;
5591 		if (i == tx_ring->count)
5592 			i = 0;
5593 	} while (--count > 0);
5594 
5595 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5596 
5597 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5598 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5599 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5600 
5601 	/* Force memory writes to complete before letting h/w
5602 	 * know there are new descriptors to fetch.  (Only
5603 	 * applicable for weak-ordered memory model archs,
5604 	 * such as IA-64).
5605 	 */
5606 	wmb();
5607 
5608 	tx_ring->next_to_use = i;
5609 }
5610 
5611 #define MINIMUM_DHCP_PACKET_SIZE 282
5612 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5613 				    struct sk_buff *skb)
5614 {
5615 	struct e1000_hw *hw = &adapter->hw;
5616 	u16 length, offset;
5617 
5618 	if (skb_vlan_tag_present(skb) &&
5619 	    !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5620 	      (adapter->hw.mng_cookie.status &
5621 	       E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5622 		return 0;
5623 
5624 	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5625 		return 0;
5626 
5627 	if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5628 		return 0;
5629 
5630 	{
5631 		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5632 		struct udphdr *udp;
5633 
5634 		if (ip->protocol != IPPROTO_UDP)
5635 			return 0;
5636 
5637 		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5638 		if (ntohs(udp->dest) != 67)
5639 			return 0;
5640 
5641 		offset = (u8 *)udp + 8 - skb->data;
5642 		length = skb->len - offset;
5643 		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5644 	}
5645 
5646 	return 0;
5647 }
5648 
5649 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5650 {
5651 	struct e1000_adapter *adapter = tx_ring->adapter;
5652 
5653 	netif_stop_queue(adapter->netdev);
5654 	/* Herbert's original patch had:
5655 	 *  smp_mb__after_netif_stop_queue();
5656 	 * but since that doesn't exist yet, just open code it.
5657 	 */
5658 	smp_mb();
5659 
5660 	/* We need to check again in a case another CPU has just
5661 	 * made room available.
5662 	 */
5663 	if (e1000_desc_unused(tx_ring) < size)
5664 		return -EBUSY;
5665 
5666 	/* A reprieve! */
5667 	netif_start_queue(adapter->netdev);
5668 	++adapter->restart_queue;
5669 	return 0;
5670 }
5671 
5672 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5673 {
5674 	BUG_ON(size > tx_ring->count);
5675 
5676 	if (e1000_desc_unused(tx_ring) >= size)
5677 		return 0;
5678 	return __e1000_maybe_stop_tx(tx_ring, size);
5679 }
5680 
5681 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5682 				    struct net_device *netdev)
5683 {
5684 	struct e1000_adapter *adapter = netdev_priv(netdev);
5685 	struct e1000_ring *tx_ring = adapter->tx_ring;
5686 	unsigned int first;
5687 	unsigned int tx_flags = 0;
5688 	unsigned int len = skb_headlen(skb);
5689 	unsigned int nr_frags;
5690 	unsigned int mss;
5691 	int count = 0;
5692 	int tso;
5693 	unsigned int f;
5694 	__be16 protocol = vlan_get_protocol(skb);
5695 
5696 	if (test_bit(__E1000_DOWN, &adapter->state)) {
5697 		dev_kfree_skb_any(skb);
5698 		return NETDEV_TX_OK;
5699 	}
5700 
5701 	if (skb->len <= 0) {
5702 		dev_kfree_skb_any(skb);
5703 		return NETDEV_TX_OK;
5704 	}
5705 
5706 	/* The minimum packet size with TCTL.PSP set is 17 bytes so
5707 	 * pad skb in order to meet this minimum size requirement
5708 	 */
5709 	if (skb_put_padto(skb, 17))
5710 		return NETDEV_TX_OK;
5711 
5712 	mss = skb_shinfo(skb)->gso_size;
5713 	if (mss) {
5714 		u8 hdr_len;
5715 
5716 		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5717 		 * points to just header, pull a few bytes of payload from
5718 		 * frags into skb->data
5719 		 */
5720 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5721 		/* we do this workaround for ES2LAN, but it is un-necessary,
5722 		 * avoiding it could save a lot of cycles
5723 		 */
5724 		if (skb->data_len && (hdr_len == len)) {
5725 			unsigned int pull_size;
5726 
5727 			pull_size = min_t(unsigned int, 4, skb->data_len);
5728 			if (!__pskb_pull_tail(skb, pull_size)) {
5729 				e_err("__pskb_pull_tail failed.\n");
5730 				dev_kfree_skb_any(skb);
5731 				return NETDEV_TX_OK;
5732 			}
5733 			len = skb_headlen(skb);
5734 		}
5735 	}
5736 
5737 	/* reserve a descriptor for the offload context */
5738 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5739 		count++;
5740 	count++;
5741 
5742 	count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5743 
5744 	nr_frags = skb_shinfo(skb)->nr_frags;
5745 	for (f = 0; f < nr_frags; f++)
5746 		count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5747 				      adapter->tx_fifo_limit);
5748 
5749 	if (adapter->hw.mac.tx_pkt_filtering)
5750 		e1000_transfer_dhcp_info(adapter, skb);
5751 
5752 	/* need: count + 2 desc gap to keep tail from touching
5753 	 * head, otherwise try next time
5754 	 */
5755 	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5756 		return NETDEV_TX_BUSY;
5757 
5758 	if (skb_vlan_tag_present(skb)) {
5759 		tx_flags |= E1000_TX_FLAGS_VLAN;
5760 		tx_flags |= (skb_vlan_tag_get(skb) <<
5761 			     E1000_TX_FLAGS_VLAN_SHIFT);
5762 	}
5763 
5764 	first = tx_ring->next_to_use;
5765 
5766 	tso = e1000_tso(tx_ring, skb, protocol);
5767 	if (tso < 0) {
5768 		dev_kfree_skb_any(skb);
5769 		return NETDEV_TX_OK;
5770 	}
5771 
5772 	if (tso)
5773 		tx_flags |= E1000_TX_FLAGS_TSO;
5774 	else if (e1000_tx_csum(tx_ring, skb, protocol))
5775 		tx_flags |= E1000_TX_FLAGS_CSUM;
5776 
5777 	/* Old method was to assume IPv4 packet by default if TSO was enabled.
5778 	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5779 	 * no longer assume, we must.
5780 	 */
5781 	if (protocol == htons(ETH_P_IP))
5782 		tx_flags |= E1000_TX_FLAGS_IPV4;
5783 
5784 	if (unlikely(skb->no_fcs))
5785 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5786 
5787 	/* if count is 0 then mapping error has occurred */
5788 	count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5789 			     nr_frags);
5790 	if (count) {
5791 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5792 		    (adapter->flags & FLAG_HAS_HW_TIMESTAMP) &&
5793 		    !adapter->tx_hwtstamp_skb) {
5794 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5795 			tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5796 			adapter->tx_hwtstamp_skb = skb_get(skb);
5797 			adapter->tx_hwtstamp_start = jiffies;
5798 			schedule_work(&adapter->tx_hwtstamp_work);
5799 		} else {
5800 			skb_tx_timestamp(skb);
5801 		}
5802 
5803 		netdev_sent_queue(netdev, skb->len);
5804 		e1000_tx_queue(tx_ring, tx_flags, count);
5805 		/* Make sure there is space in the ring for the next send. */
5806 		e1000_maybe_stop_tx(tx_ring,
5807 				    (MAX_SKB_FRAGS *
5808 				     DIV_ROUND_UP(PAGE_SIZE,
5809 						  adapter->tx_fifo_limit) + 2));
5810 
5811 		if (!skb->xmit_more ||
5812 		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5813 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5814 				e1000e_update_tdt_wa(tx_ring,
5815 						     tx_ring->next_to_use);
5816 			else
5817 				writel(tx_ring->next_to_use, tx_ring->tail);
5818 
5819 			/* we need this if more than one processor can write
5820 			 * to our tail at a time, it synchronizes IO on
5821 			 *IA64/Altix systems
5822 			 */
5823 			mmiowb();
5824 		}
5825 	} else {
5826 		dev_kfree_skb_any(skb);
5827 		tx_ring->buffer_info[first].time_stamp = 0;
5828 		tx_ring->next_to_use = first;
5829 	}
5830 
5831 	return NETDEV_TX_OK;
5832 }
5833 
5834 /**
5835  * e1000_tx_timeout - Respond to a Tx Hang
5836  * @netdev: network interface device structure
5837  **/
5838 static void e1000_tx_timeout(struct net_device *netdev)
5839 {
5840 	struct e1000_adapter *adapter = netdev_priv(netdev);
5841 
5842 	/* Do the reset outside of interrupt context */
5843 	adapter->tx_timeout_count++;
5844 	schedule_work(&adapter->reset_task);
5845 }
5846 
5847 static void e1000_reset_task(struct work_struct *work)
5848 {
5849 	struct e1000_adapter *adapter;
5850 	adapter = container_of(work, struct e1000_adapter, reset_task);
5851 
5852 	/* don't run the task if already down */
5853 	if (test_bit(__E1000_DOWN, &adapter->state))
5854 		return;
5855 
5856 	if (!(adapter->flags & FLAG_RESTART_NOW)) {
5857 		e1000e_dump(adapter);
5858 		e_err("Reset adapter unexpectedly\n");
5859 	}
5860 	e1000e_reinit_locked(adapter);
5861 }
5862 
5863 /**
5864  * e1000_get_stats64 - Get System Network Statistics
5865  * @netdev: network interface device structure
5866  * @stats: rtnl_link_stats64 pointer
5867  *
5868  * Returns the address of the device statistics structure.
5869  **/
5870 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5871 					     struct rtnl_link_stats64 *stats)
5872 {
5873 	struct e1000_adapter *adapter = netdev_priv(netdev);
5874 
5875 	memset(stats, 0, sizeof(struct rtnl_link_stats64));
5876 	spin_lock(&adapter->stats64_lock);
5877 	e1000e_update_stats(adapter);
5878 	/* Fill out the OS statistics structure */
5879 	stats->rx_bytes = adapter->stats.gorc;
5880 	stats->rx_packets = adapter->stats.gprc;
5881 	stats->tx_bytes = adapter->stats.gotc;
5882 	stats->tx_packets = adapter->stats.gptc;
5883 	stats->multicast = adapter->stats.mprc;
5884 	stats->collisions = adapter->stats.colc;
5885 
5886 	/* Rx Errors */
5887 
5888 	/* RLEC on some newer hardware can be incorrect so build
5889 	 * our own version based on RUC and ROC
5890 	 */
5891 	stats->rx_errors = adapter->stats.rxerrc +
5892 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5893 	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5894 	stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5895 	stats->rx_crc_errors = adapter->stats.crcerrs;
5896 	stats->rx_frame_errors = adapter->stats.algnerrc;
5897 	stats->rx_missed_errors = adapter->stats.mpc;
5898 
5899 	/* Tx Errors */
5900 	stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5901 	stats->tx_aborted_errors = adapter->stats.ecol;
5902 	stats->tx_window_errors = adapter->stats.latecol;
5903 	stats->tx_carrier_errors = adapter->stats.tncrs;
5904 
5905 	/* Tx Dropped needs to be maintained elsewhere */
5906 
5907 	spin_unlock(&adapter->stats64_lock);
5908 	return stats;
5909 }
5910 
5911 /**
5912  * e1000_change_mtu - Change the Maximum Transfer Unit
5913  * @netdev: network interface device structure
5914  * @new_mtu: new value for maximum frame size
5915  *
5916  * Returns 0 on success, negative on failure
5917  **/
5918 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5919 {
5920 	struct e1000_adapter *adapter = netdev_priv(netdev);
5921 	int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
5922 
5923 	/* Jumbo frame support */
5924 	if ((max_frame > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) &&
5925 	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5926 		e_err("Jumbo Frames not supported.\n");
5927 		return -EINVAL;
5928 	}
5929 
5930 	/* Supported frame sizes */
5931 	if ((new_mtu < (VLAN_ETH_ZLEN + ETH_FCS_LEN)) ||
5932 	    (max_frame > adapter->max_hw_frame_size)) {
5933 		e_err("Unsupported MTU setting\n");
5934 		return -EINVAL;
5935 	}
5936 
5937 	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5938 	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5939 	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5940 	    (new_mtu > ETH_DATA_LEN)) {
5941 		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5942 		return -EINVAL;
5943 	}
5944 
5945 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5946 		usleep_range(1000, 2000);
5947 	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5948 	adapter->max_frame_size = max_frame;
5949 	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5950 	netdev->mtu = new_mtu;
5951 
5952 	pm_runtime_get_sync(netdev->dev.parent);
5953 
5954 	if (netif_running(netdev))
5955 		e1000e_down(adapter, true);
5956 
5957 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5958 	 * means we reserve 2 more, this pushes us to allocate from the next
5959 	 * larger slab size.
5960 	 * i.e. RXBUFFER_2048 --> size-4096 slab
5961 	 * However with the new *_jumbo_rx* routines, jumbo receives will use
5962 	 * fragmented skbs
5963 	 */
5964 
5965 	if (max_frame <= 2048)
5966 		adapter->rx_buffer_len = 2048;
5967 	else
5968 		adapter->rx_buffer_len = 4096;
5969 
5970 	/* adjust allocation if LPE protects us, and we aren't using SBP */
5971 	if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
5972 		adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
5973 
5974 	if (netif_running(netdev))
5975 		e1000e_up(adapter);
5976 	else
5977 		e1000e_reset(adapter);
5978 
5979 	pm_runtime_put_sync(netdev->dev.parent);
5980 
5981 	clear_bit(__E1000_RESETTING, &adapter->state);
5982 
5983 	return 0;
5984 }
5985 
5986 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5987 			   int cmd)
5988 {
5989 	struct e1000_adapter *adapter = netdev_priv(netdev);
5990 	struct mii_ioctl_data *data = if_mii(ifr);
5991 
5992 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
5993 		return -EOPNOTSUPP;
5994 
5995 	switch (cmd) {
5996 	case SIOCGMIIPHY:
5997 		data->phy_id = adapter->hw.phy.addr;
5998 		break;
5999 	case SIOCGMIIREG:
6000 		e1000_phy_read_status(adapter);
6001 
6002 		switch (data->reg_num & 0x1F) {
6003 		case MII_BMCR:
6004 			data->val_out = adapter->phy_regs.bmcr;
6005 			break;
6006 		case MII_BMSR:
6007 			data->val_out = adapter->phy_regs.bmsr;
6008 			break;
6009 		case MII_PHYSID1:
6010 			data->val_out = (adapter->hw.phy.id >> 16);
6011 			break;
6012 		case MII_PHYSID2:
6013 			data->val_out = (adapter->hw.phy.id & 0xFFFF);
6014 			break;
6015 		case MII_ADVERTISE:
6016 			data->val_out = adapter->phy_regs.advertise;
6017 			break;
6018 		case MII_LPA:
6019 			data->val_out = adapter->phy_regs.lpa;
6020 			break;
6021 		case MII_EXPANSION:
6022 			data->val_out = adapter->phy_regs.expansion;
6023 			break;
6024 		case MII_CTRL1000:
6025 			data->val_out = adapter->phy_regs.ctrl1000;
6026 			break;
6027 		case MII_STAT1000:
6028 			data->val_out = adapter->phy_regs.stat1000;
6029 			break;
6030 		case MII_ESTATUS:
6031 			data->val_out = adapter->phy_regs.estatus;
6032 			break;
6033 		default:
6034 			return -EIO;
6035 		}
6036 		break;
6037 	case SIOCSMIIREG:
6038 	default:
6039 		return -EOPNOTSUPP;
6040 	}
6041 	return 0;
6042 }
6043 
6044 /**
6045  * e1000e_hwtstamp_ioctl - control hardware time stamping
6046  * @netdev: network interface device structure
6047  * @ifreq: interface request
6048  *
6049  * Outgoing time stamping can be enabled and disabled. Play nice and
6050  * disable it when requested, although it shouldn't cause any overhead
6051  * when no packet needs it. At most one packet in the queue may be
6052  * marked for time stamping, otherwise it would be impossible to tell
6053  * for sure to which packet the hardware time stamp belongs.
6054  *
6055  * Incoming time stamping has to be configured via the hardware filters.
6056  * Not all combinations are supported, in particular event type has to be
6057  * specified. Matching the kind of event packet is not supported, with the
6058  * exception of "all V2 events regardless of level 2 or 4".
6059  **/
6060 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6061 {
6062 	struct e1000_adapter *adapter = netdev_priv(netdev);
6063 	struct hwtstamp_config config;
6064 	int ret_val;
6065 
6066 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6067 		return -EFAULT;
6068 
6069 	ret_val = e1000e_config_hwtstamp(adapter, &config);
6070 	if (ret_val)
6071 		return ret_val;
6072 
6073 	switch (config.rx_filter) {
6074 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6075 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6076 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
6077 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6078 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6079 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6080 		/* With V2 type filters which specify a Sync or Delay Request,
6081 		 * Path Delay Request/Response messages are also time stamped
6082 		 * by hardware so notify the caller the requested packets plus
6083 		 * some others are time stamped.
6084 		 */
6085 		config.rx_filter = HWTSTAMP_FILTER_SOME;
6086 		break;
6087 	default:
6088 		break;
6089 	}
6090 
6091 	return copy_to_user(ifr->ifr_data, &config,
6092 			    sizeof(config)) ? -EFAULT : 0;
6093 }
6094 
6095 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6096 {
6097 	struct e1000_adapter *adapter = netdev_priv(netdev);
6098 
6099 	return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6100 			    sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6101 }
6102 
6103 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6104 {
6105 	switch (cmd) {
6106 	case SIOCGMIIPHY:
6107 	case SIOCGMIIREG:
6108 	case SIOCSMIIREG:
6109 		return e1000_mii_ioctl(netdev, ifr, cmd);
6110 	case SIOCSHWTSTAMP:
6111 		return e1000e_hwtstamp_set(netdev, ifr);
6112 	case SIOCGHWTSTAMP:
6113 		return e1000e_hwtstamp_get(netdev, ifr);
6114 	default:
6115 		return -EOPNOTSUPP;
6116 	}
6117 }
6118 
6119 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6120 {
6121 	struct e1000_hw *hw = &adapter->hw;
6122 	u32 i, mac_reg, wuc;
6123 	u16 phy_reg, wuc_enable;
6124 	int retval;
6125 
6126 	/* copy MAC RARs to PHY RARs */
6127 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6128 
6129 	retval = hw->phy.ops.acquire(hw);
6130 	if (retval) {
6131 		e_err("Could not acquire PHY\n");
6132 		return retval;
6133 	}
6134 
6135 	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6136 	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6137 	if (retval)
6138 		goto release;
6139 
6140 	/* copy MAC MTA to PHY MTA - only needed for pchlan */
6141 	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6142 		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6143 		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6144 					   (u16)(mac_reg & 0xFFFF));
6145 		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6146 					   (u16)((mac_reg >> 16) & 0xFFFF));
6147 	}
6148 
6149 	/* configure PHY Rx Control register */
6150 	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6151 	mac_reg = er32(RCTL);
6152 	if (mac_reg & E1000_RCTL_UPE)
6153 		phy_reg |= BM_RCTL_UPE;
6154 	if (mac_reg & E1000_RCTL_MPE)
6155 		phy_reg |= BM_RCTL_MPE;
6156 	phy_reg &= ~(BM_RCTL_MO_MASK);
6157 	if (mac_reg & E1000_RCTL_MO_3)
6158 		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6159 			    << BM_RCTL_MO_SHIFT);
6160 	if (mac_reg & E1000_RCTL_BAM)
6161 		phy_reg |= BM_RCTL_BAM;
6162 	if (mac_reg & E1000_RCTL_PMCF)
6163 		phy_reg |= BM_RCTL_PMCF;
6164 	mac_reg = er32(CTRL);
6165 	if (mac_reg & E1000_CTRL_RFCE)
6166 		phy_reg |= BM_RCTL_RFCE;
6167 	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6168 
6169 	wuc = E1000_WUC_PME_EN;
6170 	if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6171 		wuc |= E1000_WUC_APME;
6172 
6173 	/* enable PHY wakeup in MAC register */
6174 	ew32(WUFC, wufc);
6175 	ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6176 		   E1000_WUC_PME_STATUS | wuc));
6177 
6178 	/* configure and enable PHY wakeup in PHY registers */
6179 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6180 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6181 
6182 	/* activate PHY wakeup */
6183 	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6184 	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6185 	if (retval)
6186 		e_err("Could not set PHY Host Wakeup bit\n");
6187 release:
6188 	hw->phy.ops.release(hw);
6189 
6190 	return retval;
6191 }
6192 
6193 static void e1000e_flush_lpic(struct pci_dev *pdev)
6194 {
6195 	struct net_device *netdev = pci_get_drvdata(pdev);
6196 	struct e1000_adapter *adapter = netdev_priv(netdev);
6197 	struct e1000_hw *hw = &adapter->hw;
6198 	u32 ret_val;
6199 
6200 	pm_runtime_get_sync(netdev->dev.parent);
6201 
6202 	ret_val = hw->phy.ops.acquire(hw);
6203 	if (ret_val)
6204 		goto fl_out;
6205 
6206 	pr_info("EEE TX LPI TIMER: %08X\n",
6207 		er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6208 
6209 	hw->phy.ops.release(hw);
6210 
6211 fl_out:
6212 	pm_runtime_put_sync(netdev->dev.parent);
6213 }
6214 
6215 static int e1000e_pm_freeze(struct device *dev)
6216 {
6217 	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6218 	struct e1000_adapter *adapter = netdev_priv(netdev);
6219 
6220 	netif_device_detach(netdev);
6221 
6222 	if (netif_running(netdev)) {
6223 		int count = E1000_CHECK_RESET_COUNT;
6224 
6225 		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6226 			usleep_range(10000, 20000);
6227 
6228 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6229 
6230 		/* Quiesce the device without resetting the hardware */
6231 		e1000e_down(adapter, false);
6232 		e1000_free_irq(adapter);
6233 	}
6234 	e1000e_reset_interrupt_capability(adapter);
6235 
6236 	/* Allow time for pending master requests to run */
6237 	e1000e_disable_pcie_master(&adapter->hw);
6238 
6239 	return 0;
6240 }
6241 
6242 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6243 {
6244 	struct net_device *netdev = pci_get_drvdata(pdev);
6245 	struct e1000_adapter *adapter = netdev_priv(netdev);
6246 	struct e1000_hw *hw = &adapter->hw;
6247 	u32 ctrl, ctrl_ext, rctl, status;
6248 	/* Runtime suspend should only enable wakeup for link changes */
6249 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6250 	int retval = 0;
6251 
6252 	status = er32(STATUS);
6253 	if (status & E1000_STATUS_LU)
6254 		wufc &= ~E1000_WUFC_LNKC;
6255 
6256 	if (wufc) {
6257 		e1000_setup_rctl(adapter);
6258 		e1000e_set_rx_mode(netdev);
6259 
6260 		/* turn on all-multi mode if wake on multicast is enabled */
6261 		if (wufc & E1000_WUFC_MC) {
6262 			rctl = er32(RCTL);
6263 			rctl |= E1000_RCTL_MPE;
6264 			ew32(RCTL, rctl);
6265 		}
6266 
6267 		ctrl = er32(CTRL);
6268 		ctrl |= E1000_CTRL_ADVD3WUC;
6269 		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6270 			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6271 		ew32(CTRL, ctrl);
6272 
6273 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6274 		    adapter->hw.phy.media_type ==
6275 		    e1000_media_type_internal_serdes) {
6276 			/* keep the laser running in D3 */
6277 			ctrl_ext = er32(CTRL_EXT);
6278 			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6279 			ew32(CTRL_EXT, ctrl_ext);
6280 		}
6281 
6282 		if (!runtime)
6283 			e1000e_power_up_phy(adapter);
6284 
6285 		if (adapter->flags & FLAG_IS_ICH)
6286 			e1000_suspend_workarounds_ich8lan(&adapter->hw);
6287 
6288 		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6289 			/* enable wakeup by the PHY */
6290 			retval = e1000_init_phy_wakeup(adapter, wufc);
6291 			if (retval)
6292 				return retval;
6293 		} else {
6294 			/* enable wakeup by the MAC */
6295 			ew32(WUFC, wufc);
6296 			ew32(WUC, E1000_WUC_PME_EN);
6297 		}
6298 	} else {
6299 		ew32(WUC, 0);
6300 		ew32(WUFC, 0);
6301 
6302 		e1000_power_down_phy(adapter);
6303 	}
6304 
6305 	if (adapter->hw.phy.type == e1000_phy_igp_3) {
6306 		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6307 	} else if ((hw->mac.type == e1000_pch_lpt) ||
6308 		   (hw->mac.type == e1000_pch_spt)) {
6309 		if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6310 			/* ULP does not support wake from unicast, multicast
6311 			 * or broadcast.
6312 			 */
6313 			retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6314 
6315 		if (retval)
6316 			return retval;
6317 	}
6318 
6319 
6320 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6321 	 * would have already happened in close and is redundant.
6322 	 */
6323 	e1000e_release_hw_control(adapter);
6324 
6325 	pci_clear_master(pdev);
6326 
6327 	/* The pci-e switch on some quad port adapters will report a
6328 	 * correctable error when the MAC transitions from D0 to D3.  To
6329 	 * prevent this we need to mask off the correctable errors on the
6330 	 * downstream port of the pci-e switch.
6331 	 *
6332 	 * We don't have the associated upstream bridge while assigning
6333 	 * the PCI device into guest. For example, the KVM on power is
6334 	 * one of the cases.
6335 	 */
6336 	if (adapter->flags & FLAG_IS_QUAD_PORT) {
6337 		struct pci_dev *us_dev = pdev->bus->self;
6338 		u16 devctl;
6339 
6340 		if (!us_dev)
6341 			return 0;
6342 
6343 		pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6344 		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6345 					   (devctl & ~PCI_EXP_DEVCTL_CERE));
6346 
6347 		pci_save_state(pdev);
6348 		pci_prepare_to_sleep(pdev);
6349 
6350 		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6351 	}
6352 
6353 	return 0;
6354 }
6355 
6356 /**
6357  * __e1000e_disable_aspm - Disable ASPM states
6358  * @pdev: pointer to PCI device struct
6359  * @state: bit-mask of ASPM states to disable
6360  * @locked: indication if this context holds pci_bus_sem locked.
6361  *
6362  * Some devices *must* have certain ASPM states disabled per hardware errata.
6363  **/
6364 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6365 {
6366 	struct pci_dev *parent = pdev->bus->self;
6367 	u16 aspm_dis_mask = 0;
6368 	u16 pdev_aspmc, parent_aspmc;
6369 
6370 	switch (state) {
6371 	case PCIE_LINK_STATE_L0S:
6372 	case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6373 		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6374 		/* fall-through - can't have L1 without L0s */
6375 	case PCIE_LINK_STATE_L1:
6376 		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6377 		break;
6378 	default:
6379 		return;
6380 	}
6381 
6382 	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6383 	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6384 
6385 	if (parent) {
6386 		pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6387 					  &parent_aspmc);
6388 		parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6389 	}
6390 
6391 	/* Nothing to do if the ASPM states to be disabled already are */
6392 	if (!(pdev_aspmc & aspm_dis_mask) &&
6393 	    (!parent || !(parent_aspmc & aspm_dis_mask)))
6394 		return;
6395 
6396 	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6397 		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6398 		 "L0s" : "",
6399 		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6400 		 "L1" : "");
6401 
6402 #ifdef CONFIG_PCIEASPM
6403 	if (locked)
6404 		pci_disable_link_state_locked(pdev, state);
6405 	else
6406 		pci_disable_link_state(pdev, state);
6407 
6408 	/* Double-check ASPM control.  If not disabled by the above, the
6409 	 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6410 	 * not enabled); override by writing PCI config space directly.
6411 	 */
6412 	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6413 	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6414 
6415 	if (!(aspm_dis_mask & pdev_aspmc))
6416 		return;
6417 #endif
6418 
6419 	/* Both device and parent should have the same ASPM setting.
6420 	 * Disable ASPM in downstream component first and then upstream.
6421 	 */
6422 	pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6423 
6424 	if (parent)
6425 		pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6426 					   aspm_dis_mask);
6427 }
6428 
6429 /**
6430  * e1000e_disable_aspm - Disable ASPM states.
6431  * @pdev: pointer to PCI device struct
6432  * @state: bit-mask of ASPM states to disable
6433  *
6434  * This function acquires the pci_bus_sem!
6435  * Some devices *must* have certain ASPM states disabled per hardware errata.
6436  **/
6437 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6438 {
6439 	__e1000e_disable_aspm(pdev, state, 0);
6440 }
6441 
6442 /**
6443  * e1000e_disable_aspm_locked   Disable ASPM states.
6444  * @pdev: pointer to PCI device struct
6445  * @state: bit-mask of ASPM states to disable
6446  *
6447  * This function must be called with pci_bus_sem acquired!
6448  * Some devices *must* have certain ASPM states disabled per hardware errata.
6449  **/
6450 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6451 {
6452 	__e1000e_disable_aspm(pdev, state, 1);
6453 }
6454 
6455 #ifdef CONFIG_PM
6456 static int __e1000_resume(struct pci_dev *pdev)
6457 {
6458 	struct net_device *netdev = pci_get_drvdata(pdev);
6459 	struct e1000_adapter *adapter = netdev_priv(netdev);
6460 	struct e1000_hw *hw = &adapter->hw;
6461 	u16 aspm_disable_flag = 0;
6462 
6463 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6464 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6465 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6466 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6467 	if (aspm_disable_flag)
6468 		e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
6469 
6470 	pci_set_master(pdev);
6471 
6472 	if (hw->mac.type >= e1000_pch2lan)
6473 		e1000_resume_workarounds_pchlan(&adapter->hw);
6474 
6475 	e1000e_power_up_phy(adapter);
6476 
6477 	/* report the system wakeup cause from S3/S4 */
6478 	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6479 		u16 phy_data;
6480 
6481 		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6482 		if (phy_data) {
6483 			e_info("PHY Wakeup cause - %s\n",
6484 			       phy_data & E1000_WUS_EX ? "Unicast Packet" :
6485 			       phy_data & E1000_WUS_MC ? "Multicast Packet" :
6486 			       phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6487 			       phy_data & E1000_WUS_MAG ? "Magic Packet" :
6488 			       phy_data & E1000_WUS_LNKC ?
6489 			       "Link Status Change" : "other");
6490 		}
6491 		e1e_wphy(&adapter->hw, BM_WUS, ~0);
6492 	} else {
6493 		u32 wus = er32(WUS);
6494 
6495 		if (wus) {
6496 			e_info("MAC Wakeup cause - %s\n",
6497 			       wus & E1000_WUS_EX ? "Unicast Packet" :
6498 			       wus & E1000_WUS_MC ? "Multicast Packet" :
6499 			       wus & E1000_WUS_BC ? "Broadcast Packet" :
6500 			       wus & E1000_WUS_MAG ? "Magic Packet" :
6501 			       wus & E1000_WUS_LNKC ? "Link Status Change" :
6502 			       "other");
6503 		}
6504 		ew32(WUS, ~0);
6505 	}
6506 
6507 	e1000e_reset(adapter);
6508 
6509 	e1000_init_manageability_pt(adapter);
6510 
6511 	/* If the controller has AMT, do not set DRV_LOAD until the interface
6512 	 * is up.  For all other cases, let the f/w know that the h/w is now
6513 	 * under the control of the driver.
6514 	 */
6515 	if (!(adapter->flags & FLAG_HAS_AMT))
6516 		e1000e_get_hw_control(adapter);
6517 
6518 	return 0;
6519 }
6520 
6521 #ifdef CONFIG_PM_SLEEP
6522 static int e1000e_pm_thaw(struct device *dev)
6523 {
6524 	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6525 	struct e1000_adapter *adapter = netdev_priv(netdev);
6526 
6527 	e1000e_set_interrupt_capability(adapter);
6528 	if (netif_running(netdev)) {
6529 		u32 err = e1000_request_irq(adapter);
6530 
6531 		if (err)
6532 			return err;
6533 
6534 		e1000e_up(adapter);
6535 	}
6536 
6537 	netif_device_attach(netdev);
6538 
6539 	return 0;
6540 }
6541 
6542 static int e1000e_pm_suspend(struct device *dev)
6543 {
6544 	struct pci_dev *pdev = to_pci_dev(dev);
6545 
6546 	e1000e_flush_lpic(pdev);
6547 
6548 	e1000e_pm_freeze(dev);
6549 
6550 	return __e1000_shutdown(pdev, false);
6551 }
6552 
6553 static int e1000e_pm_resume(struct device *dev)
6554 {
6555 	struct pci_dev *pdev = to_pci_dev(dev);
6556 	int rc;
6557 
6558 	rc = __e1000_resume(pdev);
6559 	if (rc)
6560 		return rc;
6561 
6562 	return e1000e_pm_thaw(dev);
6563 }
6564 #endif /* CONFIG_PM_SLEEP */
6565 
6566 static int e1000e_pm_runtime_idle(struct device *dev)
6567 {
6568 	struct pci_dev *pdev = to_pci_dev(dev);
6569 	struct net_device *netdev = pci_get_drvdata(pdev);
6570 	struct e1000_adapter *adapter = netdev_priv(netdev);
6571 	u16 eee_lp;
6572 
6573 	eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6574 
6575 	if (!e1000e_has_link(adapter)) {
6576 		adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6577 		pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6578 	}
6579 
6580 	return -EBUSY;
6581 }
6582 
6583 static int e1000e_pm_runtime_resume(struct device *dev)
6584 {
6585 	struct pci_dev *pdev = to_pci_dev(dev);
6586 	struct net_device *netdev = pci_get_drvdata(pdev);
6587 	struct e1000_adapter *adapter = netdev_priv(netdev);
6588 	int rc;
6589 
6590 	rc = __e1000_resume(pdev);
6591 	if (rc)
6592 		return rc;
6593 
6594 	if (netdev->flags & IFF_UP)
6595 		rc = e1000e_up(adapter);
6596 
6597 	return rc;
6598 }
6599 
6600 static int e1000e_pm_runtime_suspend(struct device *dev)
6601 {
6602 	struct pci_dev *pdev = to_pci_dev(dev);
6603 	struct net_device *netdev = pci_get_drvdata(pdev);
6604 	struct e1000_adapter *adapter = netdev_priv(netdev);
6605 
6606 	if (netdev->flags & IFF_UP) {
6607 		int count = E1000_CHECK_RESET_COUNT;
6608 
6609 		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6610 			usleep_range(10000, 20000);
6611 
6612 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6613 
6614 		/* Down the device without resetting the hardware */
6615 		e1000e_down(adapter, false);
6616 	}
6617 
6618 	if (__e1000_shutdown(pdev, true)) {
6619 		e1000e_pm_runtime_resume(dev);
6620 		return -EBUSY;
6621 	}
6622 
6623 	return 0;
6624 }
6625 #endif /* CONFIG_PM */
6626 
6627 static void e1000_shutdown(struct pci_dev *pdev)
6628 {
6629 	e1000e_flush_lpic(pdev);
6630 
6631 	e1000e_pm_freeze(&pdev->dev);
6632 
6633 	__e1000_shutdown(pdev, false);
6634 }
6635 
6636 #ifdef CONFIG_NET_POLL_CONTROLLER
6637 
6638 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6639 {
6640 	struct net_device *netdev = data;
6641 	struct e1000_adapter *adapter = netdev_priv(netdev);
6642 
6643 	if (adapter->msix_entries) {
6644 		int vector, msix_irq;
6645 
6646 		vector = 0;
6647 		msix_irq = adapter->msix_entries[vector].vector;
6648 		disable_irq(msix_irq);
6649 		e1000_intr_msix_rx(msix_irq, netdev);
6650 		enable_irq(msix_irq);
6651 
6652 		vector++;
6653 		msix_irq = adapter->msix_entries[vector].vector;
6654 		disable_irq(msix_irq);
6655 		e1000_intr_msix_tx(msix_irq, netdev);
6656 		enable_irq(msix_irq);
6657 
6658 		vector++;
6659 		msix_irq = adapter->msix_entries[vector].vector;
6660 		disable_irq(msix_irq);
6661 		e1000_msix_other(msix_irq, netdev);
6662 		enable_irq(msix_irq);
6663 	}
6664 
6665 	return IRQ_HANDLED;
6666 }
6667 
6668 /**
6669  * e1000_netpoll
6670  * @netdev: network interface device structure
6671  *
6672  * Polling 'interrupt' - used by things like netconsole to send skbs
6673  * without having to re-enable interrupts. It's not called while
6674  * the interrupt routine is executing.
6675  */
6676 static void e1000_netpoll(struct net_device *netdev)
6677 {
6678 	struct e1000_adapter *adapter = netdev_priv(netdev);
6679 
6680 	switch (adapter->int_mode) {
6681 	case E1000E_INT_MODE_MSIX:
6682 		e1000_intr_msix(adapter->pdev->irq, netdev);
6683 		break;
6684 	case E1000E_INT_MODE_MSI:
6685 		disable_irq(adapter->pdev->irq);
6686 		e1000_intr_msi(adapter->pdev->irq, netdev);
6687 		enable_irq(adapter->pdev->irq);
6688 		break;
6689 	default:		/* E1000E_INT_MODE_LEGACY */
6690 		disable_irq(adapter->pdev->irq);
6691 		e1000_intr(adapter->pdev->irq, netdev);
6692 		enable_irq(adapter->pdev->irq);
6693 		break;
6694 	}
6695 }
6696 #endif
6697 
6698 /**
6699  * e1000_io_error_detected - called when PCI error is detected
6700  * @pdev: Pointer to PCI device
6701  * @state: The current pci connection state
6702  *
6703  * This function is called after a PCI bus error affecting
6704  * this device has been detected.
6705  */
6706 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6707 						pci_channel_state_t state)
6708 {
6709 	struct net_device *netdev = pci_get_drvdata(pdev);
6710 	struct e1000_adapter *adapter = netdev_priv(netdev);
6711 
6712 	netif_device_detach(netdev);
6713 
6714 	if (state == pci_channel_io_perm_failure)
6715 		return PCI_ERS_RESULT_DISCONNECT;
6716 
6717 	if (netif_running(netdev))
6718 		e1000e_down(adapter, true);
6719 	pci_disable_device(pdev);
6720 
6721 	/* Request a slot slot reset. */
6722 	return PCI_ERS_RESULT_NEED_RESET;
6723 }
6724 
6725 /**
6726  * e1000_io_slot_reset - called after the pci bus has been reset.
6727  * @pdev: Pointer to PCI device
6728  *
6729  * Restart the card from scratch, as if from a cold-boot. Implementation
6730  * resembles the first-half of the e1000e_pm_resume routine.
6731  */
6732 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6733 {
6734 	struct net_device *netdev = pci_get_drvdata(pdev);
6735 	struct e1000_adapter *adapter = netdev_priv(netdev);
6736 	struct e1000_hw *hw = &adapter->hw;
6737 	u16 aspm_disable_flag = 0;
6738 	int err;
6739 	pci_ers_result_t result;
6740 
6741 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6742 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6743 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6744 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6745 	if (aspm_disable_flag)
6746 		e1000e_disable_aspm(pdev, aspm_disable_flag);
6747 
6748 	err = pci_enable_device_mem(pdev);
6749 	if (err) {
6750 		dev_err(&pdev->dev,
6751 			"Cannot re-enable PCI device after reset.\n");
6752 		result = PCI_ERS_RESULT_DISCONNECT;
6753 	} else {
6754 		pdev->state_saved = true;
6755 		pci_restore_state(pdev);
6756 		pci_set_master(pdev);
6757 
6758 		pci_enable_wake(pdev, PCI_D3hot, 0);
6759 		pci_enable_wake(pdev, PCI_D3cold, 0);
6760 
6761 		e1000e_reset(adapter);
6762 		ew32(WUS, ~0);
6763 		result = PCI_ERS_RESULT_RECOVERED;
6764 	}
6765 
6766 	pci_cleanup_aer_uncorrect_error_status(pdev);
6767 
6768 	return result;
6769 }
6770 
6771 /**
6772  * e1000_io_resume - called when traffic can start flowing again.
6773  * @pdev: Pointer to PCI device
6774  *
6775  * This callback is called when the error recovery driver tells us that
6776  * its OK to resume normal operation. Implementation resembles the
6777  * second-half of the e1000e_pm_resume routine.
6778  */
6779 static void e1000_io_resume(struct pci_dev *pdev)
6780 {
6781 	struct net_device *netdev = pci_get_drvdata(pdev);
6782 	struct e1000_adapter *adapter = netdev_priv(netdev);
6783 
6784 	e1000_init_manageability_pt(adapter);
6785 
6786 	if (netif_running(netdev)) {
6787 		if (e1000e_up(adapter)) {
6788 			dev_err(&pdev->dev,
6789 				"can't bring device back up after reset\n");
6790 			return;
6791 		}
6792 	}
6793 
6794 	netif_device_attach(netdev);
6795 
6796 	/* If the controller has AMT, do not set DRV_LOAD until the interface
6797 	 * is up.  For all other cases, let the f/w know that the h/w is now
6798 	 * under the control of the driver.
6799 	 */
6800 	if (!(adapter->flags & FLAG_HAS_AMT))
6801 		e1000e_get_hw_control(adapter);
6802 }
6803 
6804 static void e1000_print_device_info(struct e1000_adapter *adapter)
6805 {
6806 	struct e1000_hw *hw = &adapter->hw;
6807 	struct net_device *netdev = adapter->netdev;
6808 	u32 ret_val;
6809 	u8 pba_str[E1000_PBANUM_LENGTH];
6810 
6811 	/* print bus type/speed/width info */
6812 	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6813 	       /* bus width */
6814 	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6815 		"Width x1"),
6816 	       /* MAC address */
6817 	       netdev->dev_addr);
6818 	e_info("Intel(R) PRO/%s Network Connection\n",
6819 	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6820 	ret_val = e1000_read_pba_string_generic(hw, pba_str,
6821 						E1000_PBANUM_LENGTH);
6822 	if (ret_val)
6823 		strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6824 	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6825 	       hw->mac.type, hw->phy.type, pba_str);
6826 }
6827 
6828 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6829 {
6830 	struct e1000_hw *hw = &adapter->hw;
6831 	int ret_val;
6832 	u16 buf = 0;
6833 
6834 	if (hw->mac.type != e1000_82573)
6835 		return;
6836 
6837 	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6838 	le16_to_cpus(&buf);
6839 	if (!ret_val && (!(buf & (1 << 0)))) {
6840 		/* Deep Smart Power Down (DSPD) */
6841 		dev_warn(&adapter->pdev->dev,
6842 			 "Warning: detected DSPD enabled in EEPROM\n");
6843 	}
6844 }
6845 
6846 static netdev_features_t e1000_fix_features(struct net_device *netdev,
6847 					    netdev_features_t features)
6848 {
6849 	struct e1000_adapter *adapter = netdev_priv(netdev);
6850 	struct e1000_hw *hw = &adapter->hw;
6851 
6852 	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6853 	if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
6854 		features &= ~NETIF_F_RXFCS;
6855 
6856 	return features;
6857 }
6858 
6859 static int e1000_set_features(struct net_device *netdev,
6860 			      netdev_features_t features)
6861 {
6862 	struct e1000_adapter *adapter = netdev_priv(netdev);
6863 	netdev_features_t changed = features ^ netdev->features;
6864 
6865 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6866 		adapter->flags |= FLAG_TSO_FORCE;
6867 
6868 	if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6869 			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6870 			 NETIF_F_RXALL)))
6871 		return 0;
6872 
6873 	if (changed & NETIF_F_RXFCS) {
6874 		if (features & NETIF_F_RXFCS) {
6875 			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6876 		} else {
6877 			/* We need to take it back to defaults, which might mean
6878 			 * stripping is still disabled at the adapter level.
6879 			 */
6880 			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6881 				adapter->flags2 |= FLAG2_CRC_STRIPPING;
6882 			else
6883 				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6884 		}
6885 	}
6886 
6887 	netdev->features = features;
6888 
6889 	if (netif_running(netdev))
6890 		e1000e_reinit_locked(adapter);
6891 	else
6892 		e1000e_reset(adapter);
6893 
6894 	return 0;
6895 }
6896 
6897 static const struct net_device_ops e1000e_netdev_ops = {
6898 	.ndo_open		= e1000_open,
6899 	.ndo_stop		= e1000_close,
6900 	.ndo_start_xmit		= e1000_xmit_frame,
6901 	.ndo_get_stats64	= e1000e_get_stats64,
6902 	.ndo_set_rx_mode	= e1000e_set_rx_mode,
6903 	.ndo_set_mac_address	= e1000_set_mac,
6904 	.ndo_change_mtu		= e1000_change_mtu,
6905 	.ndo_do_ioctl		= e1000_ioctl,
6906 	.ndo_tx_timeout		= e1000_tx_timeout,
6907 	.ndo_validate_addr	= eth_validate_addr,
6908 
6909 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
6910 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
6911 #ifdef CONFIG_NET_POLL_CONTROLLER
6912 	.ndo_poll_controller	= e1000_netpoll,
6913 #endif
6914 	.ndo_set_features = e1000_set_features,
6915 	.ndo_fix_features = e1000_fix_features,
6916 };
6917 
6918 /**
6919  * e1000_probe - Device Initialization Routine
6920  * @pdev: PCI device information struct
6921  * @ent: entry in e1000_pci_tbl
6922  *
6923  * Returns 0 on success, negative on failure
6924  *
6925  * e1000_probe initializes an adapter identified by a pci_dev structure.
6926  * The OS initialization, configuring of the adapter private structure,
6927  * and a hardware reset occur.
6928  **/
6929 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
6930 {
6931 	struct net_device *netdev;
6932 	struct e1000_adapter *adapter;
6933 	struct e1000_hw *hw;
6934 	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6935 	resource_size_t mmio_start, mmio_len;
6936 	resource_size_t flash_start, flash_len;
6937 	static int cards_found;
6938 	u16 aspm_disable_flag = 0;
6939 	int bars, i, err, pci_using_dac;
6940 	u16 eeprom_data = 0;
6941 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
6942 	s32 rval = 0;
6943 
6944 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6945 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6946 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6947 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6948 	if (aspm_disable_flag)
6949 		e1000e_disable_aspm(pdev, aspm_disable_flag);
6950 
6951 	err = pci_enable_device_mem(pdev);
6952 	if (err)
6953 		return err;
6954 
6955 	pci_using_dac = 0;
6956 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6957 	if (!err) {
6958 		pci_using_dac = 1;
6959 	} else {
6960 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
6961 		if (err) {
6962 			dev_err(&pdev->dev,
6963 				"No usable DMA configuration, aborting\n");
6964 			goto err_dma;
6965 		}
6966 	}
6967 
6968 	bars = pci_select_bars(pdev, IORESOURCE_MEM);
6969 	err = pci_request_selected_regions_exclusive(pdev, bars,
6970 						     e1000e_driver_name);
6971 	if (err)
6972 		goto err_pci_reg;
6973 
6974 	/* AER (Advanced Error Reporting) hooks */
6975 	pci_enable_pcie_error_reporting(pdev);
6976 
6977 	pci_set_master(pdev);
6978 	/* PCI config space info */
6979 	err = pci_save_state(pdev);
6980 	if (err)
6981 		goto err_alloc_etherdev;
6982 
6983 	err = -ENOMEM;
6984 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6985 	if (!netdev)
6986 		goto err_alloc_etherdev;
6987 
6988 	SET_NETDEV_DEV(netdev, &pdev->dev);
6989 
6990 	netdev->irq = pdev->irq;
6991 
6992 	pci_set_drvdata(pdev, netdev);
6993 	adapter = netdev_priv(netdev);
6994 	hw = &adapter->hw;
6995 	adapter->netdev = netdev;
6996 	adapter->pdev = pdev;
6997 	adapter->ei = ei;
6998 	adapter->pba = ei->pba;
6999 	adapter->flags = ei->flags;
7000 	adapter->flags2 = ei->flags2;
7001 	adapter->hw.adapter = adapter;
7002 	adapter->hw.mac.type = ei->mac;
7003 	adapter->max_hw_frame_size = ei->max_hw_frame_size;
7004 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7005 
7006 	mmio_start = pci_resource_start(pdev, 0);
7007 	mmio_len = pci_resource_len(pdev, 0);
7008 
7009 	err = -EIO;
7010 	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7011 	if (!adapter->hw.hw_addr)
7012 		goto err_ioremap;
7013 
7014 	if ((adapter->flags & FLAG_HAS_FLASH) &&
7015 	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7016 	    (hw->mac.type < e1000_pch_spt)) {
7017 		flash_start = pci_resource_start(pdev, 1);
7018 		flash_len = pci_resource_len(pdev, 1);
7019 		adapter->hw.flash_address = ioremap(flash_start, flash_len);
7020 		if (!adapter->hw.flash_address)
7021 			goto err_flashmap;
7022 	}
7023 
7024 	/* Set default EEE advertisement */
7025 	if (adapter->flags2 & FLAG2_HAS_EEE)
7026 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7027 
7028 	/* construct the net_device struct */
7029 	netdev->netdev_ops = &e1000e_netdev_ops;
7030 	e1000e_set_ethtool_ops(netdev);
7031 	netdev->watchdog_timeo = 5 * HZ;
7032 	netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
7033 	strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7034 
7035 	netdev->mem_start = mmio_start;
7036 	netdev->mem_end = mmio_start + mmio_len;
7037 
7038 	adapter->bd_number = cards_found++;
7039 
7040 	e1000e_check_options(adapter);
7041 
7042 	/* setup adapter struct */
7043 	err = e1000_sw_init(adapter);
7044 	if (err)
7045 		goto err_sw_init;
7046 
7047 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7048 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7049 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7050 
7051 	err = ei->get_variants(adapter);
7052 	if (err)
7053 		goto err_hw_init;
7054 
7055 	if ((adapter->flags & FLAG_IS_ICH) &&
7056 	    (adapter->flags & FLAG_READ_ONLY_NVM) &&
7057 	    (hw->mac.type < e1000_pch_spt))
7058 		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7059 
7060 	hw->mac.ops.get_bus_info(&adapter->hw);
7061 
7062 	adapter->hw.phy.autoneg_wait_to_complete = 0;
7063 
7064 	/* Copper options */
7065 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7066 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
7067 		adapter->hw.phy.disable_polarity_correction = 0;
7068 		adapter->hw.phy.ms_type = e1000_ms_hw_default;
7069 	}
7070 
7071 	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7072 		dev_info(&pdev->dev,
7073 			 "PHY reset is blocked due to SOL/IDER session.\n");
7074 
7075 	/* Set initial default active device features */
7076 	netdev->features = (NETIF_F_SG |
7077 			    NETIF_F_HW_VLAN_CTAG_RX |
7078 			    NETIF_F_HW_VLAN_CTAG_TX |
7079 			    NETIF_F_TSO |
7080 			    NETIF_F_TSO6 |
7081 			    NETIF_F_RXHASH |
7082 			    NETIF_F_RXCSUM |
7083 			    NETIF_F_HW_CSUM);
7084 
7085 	/* Set user-changeable features (subset of all device features) */
7086 	netdev->hw_features = netdev->features;
7087 	netdev->hw_features |= NETIF_F_RXFCS;
7088 	netdev->priv_flags |= IFF_SUPP_NOFCS;
7089 	netdev->hw_features |= NETIF_F_RXALL;
7090 
7091 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7092 		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7093 
7094 	netdev->vlan_features |= (NETIF_F_SG |
7095 				  NETIF_F_TSO |
7096 				  NETIF_F_TSO6 |
7097 				  NETIF_F_HW_CSUM);
7098 
7099 	netdev->priv_flags |= IFF_UNICAST_FLT;
7100 
7101 	if (pci_using_dac) {
7102 		netdev->features |= NETIF_F_HIGHDMA;
7103 		netdev->vlan_features |= NETIF_F_HIGHDMA;
7104 	}
7105 
7106 	if (e1000e_enable_mng_pass_thru(&adapter->hw))
7107 		adapter->flags |= FLAG_MNG_PT_ENABLED;
7108 
7109 	/* before reading the NVM, reset the controller to
7110 	 * put the device in a known good starting state
7111 	 */
7112 	adapter->hw.mac.ops.reset_hw(&adapter->hw);
7113 
7114 	/* systems with ASPM and others may see the checksum fail on the first
7115 	 * attempt. Let's give it a few tries
7116 	 */
7117 	for (i = 0;; i++) {
7118 		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7119 			break;
7120 		if (i == 2) {
7121 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7122 			err = -EIO;
7123 			goto err_eeprom;
7124 		}
7125 	}
7126 
7127 	e1000_eeprom_checks(adapter);
7128 
7129 	/* copy the MAC address */
7130 	if (e1000e_read_mac_addr(&adapter->hw))
7131 		dev_err(&pdev->dev,
7132 			"NVM Read Error while reading MAC address\n");
7133 
7134 	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
7135 
7136 	if (!is_valid_ether_addr(netdev->dev_addr)) {
7137 		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7138 			netdev->dev_addr);
7139 		err = -EIO;
7140 		goto err_eeprom;
7141 	}
7142 
7143 	init_timer(&adapter->watchdog_timer);
7144 	adapter->watchdog_timer.function = e1000_watchdog;
7145 	adapter->watchdog_timer.data = (unsigned long)adapter;
7146 
7147 	init_timer(&adapter->phy_info_timer);
7148 	adapter->phy_info_timer.function = e1000_update_phy_info;
7149 	adapter->phy_info_timer.data = (unsigned long)adapter;
7150 
7151 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
7152 	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7153 	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7154 	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7155 	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7156 
7157 	/* Initialize link parameters. User can change them with ethtool */
7158 	adapter->hw.mac.autoneg = 1;
7159 	adapter->fc_autoneg = true;
7160 	adapter->hw.fc.requested_mode = e1000_fc_default;
7161 	adapter->hw.fc.current_mode = e1000_fc_default;
7162 	adapter->hw.phy.autoneg_advertised = 0x2f;
7163 
7164 	/* Initial Wake on LAN setting - If APM wake is enabled in
7165 	 * the EEPROM, enable the ACPI Magic Packet filter
7166 	 */
7167 	if (adapter->flags & FLAG_APME_IN_WUC) {
7168 		/* APME bit in EEPROM is mapped to WUC.APME */
7169 		eeprom_data = er32(WUC);
7170 		eeprom_apme_mask = E1000_WUC_APME;
7171 		if ((hw->mac.type > e1000_ich10lan) &&
7172 		    (eeprom_data & E1000_WUC_PHY_WAKE))
7173 			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7174 	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7175 		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7176 		    (adapter->hw.bus.func == 1))
7177 			rval = e1000_read_nvm(&adapter->hw,
7178 					      NVM_INIT_CONTROL3_PORT_B,
7179 					      1, &eeprom_data);
7180 		else
7181 			rval = e1000_read_nvm(&adapter->hw,
7182 					      NVM_INIT_CONTROL3_PORT_A,
7183 					      1, &eeprom_data);
7184 	}
7185 
7186 	/* fetch WoL from EEPROM */
7187 	if (rval)
7188 		e_dbg("NVM read error getting WoL initial values: %d\n", rval);
7189 	else if (eeprom_data & eeprom_apme_mask)
7190 		adapter->eeprom_wol |= E1000_WUFC_MAG;
7191 
7192 	/* now that we have the eeprom settings, apply the special cases
7193 	 * where the eeprom may be wrong or the board simply won't support
7194 	 * wake on lan on a particular port
7195 	 */
7196 	if (!(adapter->flags & FLAG_HAS_WOL))
7197 		adapter->eeprom_wol = 0;
7198 
7199 	/* initialize the wol settings based on the eeprom settings */
7200 	adapter->wol = adapter->eeprom_wol;
7201 
7202 	/* make sure adapter isn't asleep if manageability is enabled */
7203 	if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7204 	    (hw->mac.ops.check_mng_mode(hw)))
7205 		device_wakeup_enable(&pdev->dev);
7206 
7207 	/* save off EEPROM version number */
7208 	rval = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7209 
7210 	if (rval) {
7211 		e_dbg("NVM read error getting EEPROM version: %d\n", rval);
7212 		adapter->eeprom_vers = 0;
7213 	}
7214 
7215 	/* reset the hardware with the new settings */
7216 	e1000e_reset(adapter);
7217 
7218 	/* If the controller has AMT, do not set DRV_LOAD until the interface
7219 	 * is up.  For all other cases, let the f/w know that the h/w is now
7220 	 * under the control of the driver.
7221 	 */
7222 	if (!(adapter->flags & FLAG_HAS_AMT))
7223 		e1000e_get_hw_control(adapter);
7224 
7225 	strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7226 	err = register_netdev(netdev);
7227 	if (err)
7228 		goto err_register;
7229 
7230 	/* carrier off reporting is important to ethtool even BEFORE open */
7231 	netif_carrier_off(netdev);
7232 
7233 	/* init PTP hardware clock */
7234 	e1000e_ptp_init(adapter);
7235 
7236 	e1000_print_device_info(adapter);
7237 
7238 	if (pci_dev_run_wake(pdev))
7239 		pm_runtime_put_noidle(&pdev->dev);
7240 
7241 	return 0;
7242 
7243 err_register:
7244 	if (!(adapter->flags & FLAG_HAS_AMT))
7245 		e1000e_release_hw_control(adapter);
7246 err_eeprom:
7247 	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7248 		e1000_phy_hw_reset(&adapter->hw);
7249 err_hw_init:
7250 	kfree(adapter->tx_ring);
7251 	kfree(adapter->rx_ring);
7252 err_sw_init:
7253 	if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7254 		iounmap(adapter->hw.flash_address);
7255 	e1000e_reset_interrupt_capability(adapter);
7256 err_flashmap:
7257 	iounmap(adapter->hw.hw_addr);
7258 err_ioremap:
7259 	free_netdev(netdev);
7260 err_alloc_etherdev:
7261 	pci_release_selected_regions(pdev,
7262 				     pci_select_bars(pdev, IORESOURCE_MEM));
7263 err_pci_reg:
7264 err_dma:
7265 	pci_disable_device(pdev);
7266 	return err;
7267 }
7268 
7269 /**
7270  * e1000_remove - Device Removal Routine
7271  * @pdev: PCI device information struct
7272  *
7273  * e1000_remove is called by the PCI subsystem to alert the driver
7274  * that it should release a PCI device.  The could be caused by a
7275  * Hot-Plug event, or because the driver is going to be removed from
7276  * memory.
7277  **/
7278 static void e1000_remove(struct pci_dev *pdev)
7279 {
7280 	struct net_device *netdev = pci_get_drvdata(pdev);
7281 	struct e1000_adapter *adapter = netdev_priv(netdev);
7282 	bool down = test_bit(__E1000_DOWN, &adapter->state);
7283 
7284 	e1000e_ptp_remove(adapter);
7285 
7286 	/* The timers may be rescheduled, so explicitly disable them
7287 	 * from being rescheduled.
7288 	 */
7289 	if (!down)
7290 		set_bit(__E1000_DOWN, &adapter->state);
7291 	del_timer_sync(&adapter->watchdog_timer);
7292 	del_timer_sync(&adapter->phy_info_timer);
7293 
7294 	cancel_work_sync(&adapter->reset_task);
7295 	cancel_work_sync(&adapter->watchdog_task);
7296 	cancel_work_sync(&adapter->downshift_task);
7297 	cancel_work_sync(&adapter->update_phy_task);
7298 	cancel_work_sync(&adapter->print_hang_task);
7299 
7300 	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7301 		cancel_work_sync(&adapter->tx_hwtstamp_work);
7302 		if (adapter->tx_hwtstamp_skb) {
7303 			dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
7304 			adapter->tx_hwtstamp_skb = NULL;
7305 		}
7306 	}
7307 
7308 	/* Don't lie to e1000_close() down the road. */
7309 	if (!down)
7310 		clear_bit(__E1000_DOWN, &adapter->state);
7311 	unregister_netdev(netdev);
7312 
7313 	if (pci_dev_run_wake(pdev))
7314 		pm_runtime_get_noresume(&pdev->dev);
7315 
7316 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7317 	 * would have already happened in close and is redundant.
7318 	 */
7319 	e1000e_release_hw_control(adapter);
7320 
7321 	e1000e_reset_interrupt_capability(adapter);
7322 	kfree(adapter->tx_ring);
7323 	kfree(adapter->rx_ring);
7324 
7325 	iounmap(adapter->hw.hw_addr);
7326 	if ((adapter->hw.flash_address) &&
7327 	    (adapter->hw.mac.type < e1000_pch_spt))
7328 		iounmap(adapter->hw.flash_address);
7329 	pci_release_selected_regions(pdev,
7330 				     pci_select_bars(pdev, IORESOURCE_MEM));
7331 
7332 	free_netdev(netdev);
7333 
7334 	/* AER disable */
7335 	pci_disable_pcie_error_reporting(pdev);
7336 
7337 	pci_disable_device(pdev);
7338 }
7339 
7340 /* PCI Error Recovery (ERS) */
7341 static const struct pci_error_handlers e1000_err_handler = {
7342 	.error_detected = e1000_io_error_detected,
7343 	.slot_reset = e1000_io_slot_reset,
7344 	.resume = e1000_io_resume,
7345 };
7346 
7347 static const struct pci_device_id e1000_pci_tbl[] = {
7348 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7349 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7350 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7351 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7352 	  board_82571 },
7353 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7354 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7355 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7356 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7357 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7358 
7359 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7360 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7361 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7362 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7363 
7364 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7365 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7366 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7367 
7368 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7369 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7370 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7371 
7372 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7373 	  board_80003es2lan },
7374 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7375 	  board_80003es2lan },
7376 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7377 	  board_80003es2lan },
7378 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7379 	  board_80003es2lan },
7380 
7381 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7382 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7383 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7384 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7385 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7386 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7387 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7388 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7389 
7390 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7391 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7392 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7393 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7394 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7395 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7396 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7397 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7398 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7399 
7400 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7401 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7402 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7403 
7404 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7405 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7406 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7407 
7408 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7409 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7410 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7411 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7412 
7413 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7414 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7415 
7416 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7417 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7418 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7419 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7420 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7421 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7422 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7423 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7424 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7425 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7426 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7427 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7428 
7429 	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
7430 };
7431 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7432 
7433 static const struct dev_pm_ops e1000_pm_ops = {
7434 #ifdef CONFIG_PM_SLEEP
7435 	.suspend	= e1000e_pm_suspend,
7436 	.resume		= e1000e_pm_resume,
7437 	.freeze		= e1000e_pm_freeze,
7438 	.thaw		= e1000e_pm_thaw,
7439 	.poweroff	= e1000e_pm_suspend,
7440 	.restore	= e1000e_pm_resume,
7441 #endif
7442 	SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7443 			   e1000e_pm_runtime_idle)
7444 };
7445 
7446 /* PCI Device API Driver */
7447 static struct pci_driver e1000_driver = {
7448 	.name     = e1000e_driver_name,
7449 	.id_table = e1000_pci_tbl,
7450 	.probe    = e1000_probe,
7451 	.remove   = e1000_remove,
7452 	.driver   = {
7453 		.pm = &e1000_pm_ops,
7454 	},
7455 	.shutdown = e1000_shutdown,
7456 	.err_handler = &e1000_err_handler
7457 };
7458 
7459 /**
7460  * e1000_init_module - Driver Registration Routine
7461  *
7462  * e1000_init_module is the first routine called when the driver is
7463  * loaded. All it does is register with the PCI subsystem.
7464  **/
7465 static int __init e1000_init_module(void)
7466 {
7467 	int ret;
7468 
7469 	pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7470 		e1000e_driver_version);
7471 	pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7472 	ret = pci_register_driver(&e1000_driver);
7473 
7474 	return ret;
7475 }
7476 module_init(e1000_init_module);
7477 
7478 /**
7479  * e1000_exit_module - Driver Exit Cleanup Routine
7480  *
7481  * e1000_exit_module is called just before the driver is removed
7482  * from memory.
7483  **/
7484 static void __exit e1000_exit_module(void)
7485 {
7486 	pci_unregister_driver(&e1000_driver);
7487 }
7488 module_exit(e1000_exit_module);
7489 
7490 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7491 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7492 MODULE_LICENSE("GPL");
7493 MODULE_VERSION(DRV_VERSION);
7494 
7495 /* netdev.c */
7496