xref: /linux/drivers/net/ethernet/intel/e1000e/netdev.c (revision a508da6cc0093171833efb8376b00473f24221b9)
1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/interrupt.h>
40 #include <linux/tcp.h>
41 #include <linux/ipv6.h>
42 #include <linux/slab.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <linux/mii.h>
46 #include <linux/ethtool.h>
47 #include <linux/if_vlan.h>
48 #include <linux/cpu.h>
49 #include <linux/smp.h>
50 #include <linux/pm_qos.h>
51 #include <linux/pm_runtime.h>
52 #include <linux/aer.h>
53 #include <linux/prefetch.h>
54 
55 #include "e1000.h"
56 
57 #define DRV_EXTRAVERSION "-k"
58 
59 #define DRV_VERSION "2.0.0" DRV_EXTRAVERSION
60 char e1000e_driver_name[] = "e1000e";
61 const char e1000e_driver_version[] = DRV_VERSION;
62 
63 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
64 static int debug = -1;
65 module_param(debug, int, 0);
66 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
67 
68 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);
69 
70 static const struct e1000_info *e1000_info_tbl[] = {
71 	[board_82571]		= &e1000_82571_info,
72 	[board_82572]		= &e1000_82572_info,
73 	[board_82573]		= &e1000_82573_info,
74 	[board_82574]		= &e1000_82574_info,
75 	[board_82583]		= &e1000_82583_info,
76 	[board_80003es2lan]	= &e1000_es2_info,
77 	[board_ich8lan]		= &e1000_ich8_info,
78 	[board_ich9lan]		= &e1000_ich9_info,
79 	[board_ich10lan]	= &e1000_ich10_info,
80 	[board_pchlan]		= &e1000_pch_info,
81 	[board_pch2lan]		= &e1000_pch2_info,
82 	[board_pch_lpt]		= &e1000_pch_lpt_info,
83 };
84 
85 struct e1000_reg_info {
86 	u32 ofs;
87 	char *name;
88 };
89 
90 #define E1000_RDFH	0x02410	/* Rx Data FIFO Head - RW */
91 #define E1000_RDFT	0x02418	/* Rx Data FIFO Tail - RW */
92 #define E1000_RDFHS	0x02420	/* Rx Data FIFO Head Saved - RW */
93 #define E1000_RDFTS	0x02428	/* Rx Data FIFO Tail Saved - RW */
94 #define E1000_RDFPC	0x02430	/* Rx Data FIFO Packet Count - RW */
95 
96 #define E1000_TDFH	0x03410	/* Tx Data FIFO Head - RW */
97 #define E1000_TDFT	0x03418	/* Tx Data FIFO Tail - RW */
98 #define E1000_TDFHS	0x03420	/* Tx Data FIFO Head Saved - RW */
99 #define E1000_TDFTS	0x03428	/* Tx Data FIFO Tail Saved - RW */
100 #define E1000_TDFPC	0x03430	/* Tx Data FIFO Packet Count - RW */
101 
102 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
103 
104 	/* General Registers */
105 	{E1000_CTRL, "CTRL"},
106 	{E1000_STATUS, "STATUS"},
107 	{E1000_CTRL_EXT, "CTRL_EXT"},
108 
109 	/* Interrupt Registers */
110 	{E1000_ICR, "ICR"},
111 
112 	/* Rx Registers */
113 	{E1000_RCTL, "RCTL"},
114 	{E1000_RDLEN(0), "RDLEN"},
115 	{E1000_RDH(0), "RDH"},
116 	{E1000_RDT(0), "RDT"},
117 	{E1000_RDTR, "RDTR"},
118 	{E1000_RXDCTL(0), "RXDCTL"},
119 	{E1000_ERT, "ERT"},
120 	{E1000_RDBAL(0), "RDBAL"},
121 	{E1000_RDBAH(0), "RDBAH"},
122 	{E1000_RDFH, "RDFH"},
123 	{E1000_RDFT, "RDFT"},
124 	{E1000_RDFHS, "RDFHS"},
125 	{E1000_RDFTS, "RDFTS"},
126 	{E1000_RDFPC, "RDFPC"},
127 
128 	/* Tx Registers */
129 	{E1000_TCTL, "TCTL"},
130 	{E1000_TDBAL(0), "TDBAL"},
131 	{E1000_TDBAH(0), "TDBAH"},
132 	{E1000_TDLEN(0), "TDLEN"},
133 	{E1000_TDH(0), "TDH"},
134 	{E1000_TDT(0), "TDT"},
135 	{E1000_TIDV, "TIDV"},
136 	{E1000_TXDCTL(0), "TXDCTL"},
137 	{E1000_TADV, "TADV"},
138 	{E1000_TARC(0), "TARC"},
139 	{E1000_TDFH, "TDFH"},
140 	{E1000_TDFT, "TDFT"},
141 	{E1000_TDFHS, "TDFHS"},
142 	{E1000_TDFTS, "TDFTS"},
143 	{E1000_TDFPC, "TDFPC"},
144 
145 	/* List Terminator */
146 	{0, NULL}
147 };
148 
149 /*
150  * e1000_regdump - register printout routine
151  */
152 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
153 {
154 	int n = 0;
155 	char rname[16];
156 	u32 regs[8];
157 
158 	switch (reginfo->ofs) {
159 	case E1000_RXDCTL(0):
160 		for (n = 0; n < 2; n++)
161 			regs[n] = __er32(hw, E1000_RXDCTL(n));
162 		break;
163 	case E1000_TXDCTL(0):
164 		for (n = 0; n < 2; n++)
165 			regs[n] = __er32(hw, E1000_TXDCTL(n));
166 		break;
167 	case E1000_TARC(0):
168 		for (n = 0; n < 2; n++)
169 			regs[n] = __er32(hw, E1000_TARC(n));
170 		break;
171 	default:
172 		pr_info("%-15s %08x\n",
173 			reginfo->name, __er32(hw, reginfo->ofs));
174 		return;
175 	}
176 
177 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
178 	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
179 }
180 
181 /*
182  * e1000e_dump - Print registers, Tx-ring and Rx-ring
183  */
184 static void e1000e_dump(struct e1000_adapter *adapter)
185 {
186 	struct net_device *netdev = adapter->netdev;
187 	struct e1000_hw *hw = &adapter->hw;
188 	struct e1000_reg_info *reginfo;
189 	struct e1000_ring *tx_ring = adapter->tx_ring;
190 	struct e1000_tx_desc *tx_desc;
191 	struct my_u0 {
192 		__le64 a;
193 		__le64 b;
194 	} *u0;
195 	struct e1000_buffer *buffer_info;
196 	struct e1000_ring *rx_ring = adapter->rx_ring;
197 	union e1000_rx_desc_packet_split *rx_desc_ps;
198 	union e1000_rx_desc_extended *rx_desc;
199 	struct my_u1 {
200 		__le64 a;
201 		__le64 b;
202 		__le64 c;
203 		__le64 d;
204 	} *u1;
205 	u32 staterr;
206 	int i = 0;
207 
208 	if (!netif_msg_hw(adapter))
209 		return;
210 
211 	/* Print netdevice Info */
212 	if (netdev) {
213 		dev_info(&adapter->pdev->dev, "Net device Info\n");
214 		pr_info("Device Name     state            trans_start      last_rx\n");
215 		pr_info("%-15s %016lX %016lX %016lX\n",
216 			netdev->name, netdev->state, netdev->trans_start,
217 			netdev->last_rx);
218 	}
219 
220 	/* Print Registers */
221 	dev_info(&adapter->pdev->dev, "Register Dump\n");
222 	pr_info(" Register Name   Value\n");
223 	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
224 	     reginfo->name; reginfo++) {
225 		e1000_regdump(hw, reginfo);
226 	}
227 
228 	/* Print Tx Ring Summary */
229 	if (!netdev || !netif_running(netdev))
230 		return;
231 
232 	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
233 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
234 	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
235 	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
236 		0, tx_ring->next_to_use, tx_ring->next_to_clean,
237 		(unsigned long long)buffer_info->dma,
238 		buffer_info->length,
239 		buffer_info->next_to_watch,
240 		(unsigned long long)buffer_info->time_stamp);
241 
242 	/* Print Tx Ring */
243 	if (!netif_msg_tx_done(adapter))
244 		goto rx_ring_summary;
245 
246 	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
247 
248 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
249 	 *
250 	 * Legacy Transmit Descriptor
251 	 *   +--------------------------------------------------------------+
252 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
253 	 *   +--------------------------------------------------------------+
254 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
255 	 *   +--------------------------------------------------------------+
256 	 *   63       48 47        36 35    32 31     24 23    16 15        0
257 	 *
258 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
259 	 *   63      48 47    40 39       32 31             16 15    8 7      0
260 	 *   +----------------------------------------------------------------+
261 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
262 	 *   +----------------------------------------------------------------+
263 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
264 	 *   +----------------------------------------------------------------+
265 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
266 	 *
267 	 * Extended Data Descriptor (DTYP=0x1)
268 	 *   +----------------------------------------------------------------+
269 	 * 0 |                     Buffer Address [63:0]                      |
270 	 *   +----------------------------------------------------------------+
271 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
272 	 *   +----------------------------------------------------------------+
273 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
274 	 */
275 	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
276 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
277 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
278 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
279 		const char *next_desc;
280 		tx_desc = E1000_TX_DESC(*tx_ring, i);
281 		buffer_info = &tx_ring->buffer_info[i];
282 		u0 = (struct my_u0 *)tx_desc;
283 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
284 			next_desc = " NTC/U";
285 		else if (i == tx_ring->next_to_use)
286 			next_desc = " NTU";
287 		else if (i == tx_ring->next_to_clean)
288 			next_desc = " NTC";
289 		else
290 			next_desc = "";
291 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
292 			(!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
293 			 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
294 			i,
295 			(unsigned long long)le64_to_cpu(u0->a),
296 			(unsigned long long)le64_to_cpu(u0->b),
297 			(unsigned long long)buffer_info->dma,
298 			buffer_info->length, buffer_info->next_to_watch,
299 			(unsigned long long)buffer_info->time_stamp,
300 			buffer_info->skb, next_desc);
301 
302 		if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
303 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
304 				       16, 1, phys_to_virt(buffer_info->dma),
305 				       buffer_info->length, true);
306 	}
307 
308 	/* Print Rx Ring Summary */
309 rx_ring_summary:
310 	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
311 	pr_info("Queue [NTU] [NTC]\n");
312 	pr_info(" %5d %5X %5X\n",
313 		0, rx_ring->next_to_use, rx_ring->next_to_clean);
314 
315 	/* Print Rx Ring */
316 	if (!netif_msg_rx_status(adapter))
317 		return;
318 
319 	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
320 	switch (adapter->rx_ps_pages) {
321 	case 1:
322 	case 2:
323 	case 3:
324 		/* [Extended] Packet Split Receive Descriptor Format
325 		 *
326 		 *    +-----------------------------------------------------+
327 		 *  0 |                Buffer Address 0 [63:0]              |
328 		 *    +-----------------------------------------------------+
329 		 *  8 |                Buffer Address 1 [63:0]              |
330 		 *    +-----------------------------------------------------+
331 		 * 16 |                Buffer Address 2 [63:0]              |
332 		 *    +-----------------------------------------------------+
333 		 * 24 |                Buffer Address 3 [63:0]              |
334 		 *    +-----------------------------------------------------+
335 		 */
336 		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
337 		/* [Extended] Receive Descriptor (Write-Back) Format
338 		 *
339 		 *   63       48 47    32 31     13 12    8 7    4 3        0
340 		 *   +------------------------------------------------------+
341 		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
342 		 *   | Checksum | Ident  |         | Queue |      |  Type   |
343 		 *   +------------------------------------------------------+
344 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
345 		 *   +------------------------------------------------------+
346 		 *   63       48 47    32 31            20 19               0
347 		 */
348 		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
349 		for (i = 0; i < rx_ring->count; i++) {
350 			const char *next_desc;
351 			buffer_info = &rx_ring->buffer_info[i];
352 			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
353 			u1 = (struct my_u1 *)rx_desc_ps;
354 			staterr =
355 			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
356 
357 			if (i == rx_ring->next_to_use)
358 				next_desc = " NTU";
359 			else if (i == rx_ring->next_to_clean)
360 				next_desc = " NTC";
361 			else
362 				next_desc = "";
363 
364 			if (staterr & E1000_RXD_STAT_DD) {
365 				/* Descriptor Done */
366 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
367 					"RWB", i,
368 					(unsigned long long)le64_to_cpu(u1->a),
369 					(unsigned long long)le64_to_cpu(u1->b),
370 					(unsigned long long)le64_to_cpu(u1->c),
371 					(unsigned long long)le64_to_cpu(u1->d),
372 					buffer_info->skb, next_desc);
373 			} else {
374 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
375 					"R  ", i,
376 					(unsigned long long)le64_to_cpu(u1->a),
377 					(unsigned long long)le64_to_cpu(u1->b),
378 					(unsigned long long)le64_to_cpu(u1->c),
379 					(unsigned long long)le64_to_cpu(u1->d),
380 					(unsigned long long)buffer_info->dma,
381 					buffer_info->skb, next_desc);
382 
383 				if (netif_msg_pktdata(adapter))
384 					print_hex_dump(KERN_INFO, "",
385 						DUMP_PREFIX_ADDRESS, 16, 1,
386 						phys_to_virt(buffer_info->dma),
387 						adapter->rx_ps_bsize0, true);
388 			}
389 		}
390 		break;
391 	default:
392 	case 0:
393 		/* Extended Receive Descriptor (Read) Format
394 		 *
395 		 *   +-----------------------------------------------------+
396 		 * 0 |                Buffer Address [63:0]                |
397 		 *   +-----------------------------------------------------+
398 		 * 8 |                      Reserved                       |
399 		 *   +-----------------------------------------------------+
400 		 */
401 		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
402 		/* Extended Receive Descriptor (Write-Back) Format
403 		 *
404 		 *   63       48 47    32 31    24 23            4 3        0
405 		 *   +------------------------------------------------------+
406 		 *   |     RSS Hash      |        |               |         |
407 		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
408 		 *   | Packet   | IP     |        |               |  Type   |
409 		 *   | Checksum | Ident  |        |               |         |
410 		 *   +------------------------------------------------------+
411 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
412 		 *   +------------------------------------------------------+
413 		 *   63       48 47    32 31            20 19               0
414 		 */
415 		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
416 
417 		for (i = 0; i < rx_ring->count; i++) {
418 			const char *next_desc;
419 
420 			buffer_info = &rx_ring->buffer_info[i];
421 			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
422 			u1 = (struct my_u1 *)rx_desc;
423 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
424 
425 			if (i == rx_ring->next_to_use)
426 				next_desc = " NTU";
427 			else if (i == rx_ring->next_to_clean)
428 				next_desc = " NTC";
429 			else
430 				next_desc = "";
431 
432 			if (staterr & E1000_RXD_STAT_DD) {
433 				/* Descriptor Done */
434 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
435 					"RWB", i,
436 					(unsigned long long)le64_to_cpu(u1->a),
437 					(unsigned long long)le64_to_cpu(u1->b),
438 					buffer_info->skb, next_desc);
439 			} else {
440 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
441 					"R  ", i,
442 					(unsigned long long)le64_to_cpu(u1->a),
443 					(unsigned long long)le64_to_cpu(u1->b),
444 					(unsigned long long)buffer_info->dma,
445 					buffer_info->skb, next_desc);
446 
447 				if (netif_msg_pktdata(adapter))
448 					print_hex_dump(KERN_INFO, "",
449 						       DUMP_PREFIX_ADDRESS, 16,
450 						       1,
451 						       phys_to_virt
452 						       (buffer_info->dma),
453 						       adapter->rx_buffer_len,
454 						       true);
455 			}
456 		}
457 	}
458 }
459 
460 /**
461  * e1000_desc_unused - calculate if we have unused descriptors
462  **/
463 static int e1000_desc_unused(struct e1000_ring *ring)
464 {
465 	if (ring->next_to_clean > ring->next_to_use)
466 		return ring->next_to_clean - ring->next_to_use - 1;
467 
468 	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
469 }
470 
471 /**
472  * e1000_receive_skb - helper function to handle Rx indications
473  * @adapter: board private structure
474  * @status: descriptor status field as written by hardware
475  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
476  * @skb: pointer to sk_buff to be indicated to stack
477  **/
478 static void e1000_receive_skb(struct e1000_adapter *adapter,
479 			      struct net_device *netdev, struct sk_buff *skb,
480 			      u8 status, __le16 vlan)
481 {
482 	u16 tag = le16_to_cpu(vlan);
483 	skb->protocol = eth_type_trans(skb, netdev);
484 
485 	if (status & E1000_RXD_STAT_VP)
486 		__vlan_hwaccel_put_tag(skb, tag);
487 
488 	napi_gro_receive(&adapter->napi, skb);
489 }
490 
491 /**
492  * e1000_rx_checksum - Receive Checksum Offload
493  * @adapter: board private structure
494  * @status_err: receive descriptor status and error fields
495  * @csum: receive descriptor csum field
496  * @sk_buff: socket buffer with received data
497  **/
498 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
499 			      __le16 csum, struct sk_buff *skb)
500 {
501 	u16 status = (u16)status_err;
502 	u8 errors = (u8)(status_err >> 24);
503 
504 	skb_checksum_none_assert(skb);
505 
506 	/* Rx checksum disabled */
507 	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
508 		return;
509 
510 	/* Ignore Checksum bit is set */
511 	if (status & E1000_RXD_STAT_IXSM)
512 		return;
513 
514 	/* TCP/UDP checksum error bit is set */
515 	if (errors & E1000_RXD_ERR_TCPE) {
516 		/* let the stack verify checksum errors */
517 		adapter->hw_csum_err++;
518 		return;
519 	}
520 
521 	/* TCP/UDP Checksum has not been calculated */
522 	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
523 		return;
524 
525 	/* It must be a TCP or UDP packet with a valid checksum */
526 	if (status & E1000_RXD_STAT_TCPCS) {
527 		/* TCP checksum is good */
528 		skb->ip_summed = CHECKSUM_UNNECESSARY;
529 	} else {
530 		/*
531 		 * IP fragment with UDP payload
532 		 * Hardware complements the payload checksum, so we undo it
533 		 * and then put the value in host order for further stack use.
534 		 */
535 		__sum16 sum = (__force __sum16)swab16((__force u16)csum);
536 		skb->csum = csum_unfold(~sum);
537 		skb->ip_summed = CHECKSUM_COMPLETE;
538 	}
539 	adapter->hw_csum_good++;
540 }
541 
542 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
543 {
544 	struct e1000_adapter *adapter = rx_ring->adapter;
545 	struct e1000_hw *hw = &adapter->hw;
546 	s32 ret_val = __ew32_prepare(hw);
547 
548 	writel(i, rx_ring->tail);
549 
550 	if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
551 		u32 rctl = er32(RCTL);
552 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
553 		e_err("ME firmware caused invalid RDT - resetting\n");
554 		schedule_work(&adapter->reset_task);
555 	}
556 }
557 
558 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
559 {
560 	struct e1000_adapter *adapter = tx_ring->adapter;
561 	struct e1000_hw *hw = &adapter->hw;
562 	s32 ret_val = __ew32_prepare(hw);
563 
564 	writel(i, tx_ring->tail);
565 
566 	if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
567 		u32 tctl = er32(TCTL);
568 		ew32(TCTL, tctl & ~E1000_TCTL_EN);
569 		e_err("ME firmware caused invalid TDT - resetting\n");
570 		schedule_work(&adapter->reset_task);
571 	}
572 }
573 
574 /**
575  * e1000_alloc_rx_buffers - Replace used receive buffers
576  * @rx_ring: Rx descriptor ring
577  **/
578 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
579 				   int cleaned_count, gfp_t gfp)
580 {
581 	struct e1000_adapter *adapter = rx_ring->adapter;
582 	struct net_device *netdev = adapter->netdev;
583 	struct pci_dev *pdev = adapter->pdev;
584 	union e1000_rx_desc_extended *rx_desc;
585 	struct e1000_buffer *buffer_info;
586 	struct sk_buff *skb;
587 	unsigned int i;
588 	unsigned int bufsz = adapter->rx_buffer_len;
589 
590 	i = rx_ring->next_to_use;
591 	buffer_info = &rx_ring->buffer_info[i];
592 
593 	while (cleaned_count--) {
594 		skb = buffer_info->skb;
595 		if (skb) {
596 			skb_trim(skb, 0);
597 			goto map_skb;
598 		}
599 
600 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
601 		if (!skb) {
602 			/* Better luck next round */
603 			adapter->alloc_rx_buff_failed++;
604 			break;
605 		}
606 
607 		buffer_info->skb = skb;
608 map_skb:
609 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
610 						  adapter->rx_buffer_len,
611 						  DMA_FROM_DEVICE);
612 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
613 			dev_err(&pdev->dev, "Rx DMA map failed\n");
614 			adapter->rx_dma_failed++;
615 			break;
616 		}
617 
618 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
619 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
620 
621 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
622 			/*
623 			 * Force memory writes to complete before letting h/w
624 			 * know there are new descriptors to fetch.  (Only
625 			 * applicable for weak-ordered memory model archs,
626 			 * such as IA-64).
627 			 */
628 			wmb();
629 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
630 				e1000e_update_rdt_wa(rx_ring, i);
631 			else
632 				writel(i, rx_ring->tail);
633 		}
634 		i++;
635 		if (i == rx_ring->count)
636 			i = 0;
637 		buffer_info = &rx_ring->buffer_info[i];
638 	}
639 
640 	rx_ring->next_to_use = i;
641 }
642 
643 /**
644  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
645  * @rx_ring: Rx descriptor ring
646  **/
647 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
648 				      int cleaned_count, gfp_t gfp)
649 {
650 	struct e1000_adapter *adapter = rx_ring->adapter;
651 	struct net_device *netdev = adapter->netdev;
652 	struct pci_dev *pdev = adapter->pdev;
653 	union e1000_rx_desc_packet_split *rx_desc;
654 	struct e1000_buffer *buffer_info;
655 	struct e1000_ps_page *ps_page;
656 	struct sk_buff *skb;
657 	unsigned int i, j;
658 
659 	i = rx_ring->next_to_use;
660 	buffer_info = &rx_ring->buffer_info[i];
661 
662 	while (cleaned_count--) {
663 		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
664 
665 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
666 			ps_page = &buffer_info->ps_pages[j];
667 			if (j >= adapter->rx_ps_pages) {
668 				/* all unused desc entries get hw null ptr */
669 				rx_desc->read.buffer_addr[j + 1] =
670 				    ~cpu_to_le64(0);
671 				continue;
672 			}
673 			if (!ps_page->page) {
674 				ps_page->page = alloc_page(gfp);
675 				if (!ps_page->page) {
676 					adapter->alloc_rx_buff_failed++;
677 					goto no_buffers;
678 				}
679 				ps_page->dma = dma_map_page(&pdev->dev,
680 							    ps_page->page,
681 							    0, PAGE_SIZE,
682 							    DMA_FROM_DEVICE);
683 				if (dma_mapping_error(&pdev->dev,
684 						      ps_page->dma)) {
685 					dev_err(&adapter->pdev->dev,
686 						"Rx DMA page map failed\n");
687 					adapter->rx_dma_failed++;
688 					goto no_buffers;
689 				}
690 			}
691 			/*
692 			 * Refresh the desc even if buffer_addrs
693 			 * didn't change because each write-back
694 			 * erases this info.
695 			 */
696 			rx_desc->read.buffer_addr[j + 1] =
697 			    cpu_to_le64(ps_page->dma);
698 		}
699 
700 		skb = __netdev_alloc_skb_ip_align(netdev,
701 						  adapter->rx_ps_bsize0,
702 						  gfp);
703 
704 		if (!skb) {
705 			adapter->alloc_rx_buff_failed++;
706 			break;
707 		}
708 
709 		buffer_info->skb = skb;
710 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
711 						  adapter->rx_ps_bsize0,
712 						  DMA_FROM_DEVICE);
713 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
714 			dev_err(&pdev->dev, "Rx DMA map failed\n");
715 			adapter->rx_dma_failed++;
716 			/* cleanup skb */
717 			dev_kfree_skb_any(skb);
718 			buffer_info->skb = NULL;
719 			break;
720 		}
721 
722 		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
723 
724 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
725 			/*
726 			 * Force memory writes to complete before letting h/w
727 			 * know there are new descriptors to fetch.  (Only
728 			 * applicable for weak-ordered memory model archs,
729 			 * such as IA-64).
730 			 */
731 			wmb();
732 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
733 				e1000e_update_rdt_wa(rx_ring, i << 1);
734 			else
735 				writel(i << 1, rx_ring->tail);
736 		}
737 
738 		i++;
739 		if (i == rx_ring->count)
740 			i = 0;
741 		buffer_info = &rx_ring->buffer_info[i];
742 	}
743 
744 no_buffers:
745 	rx_ring->next_to_use = i;
746 }
747 
748 /**
749  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
750  * @rx_ring: Rx descriptor ring
751  * @cleaned_count: number of buffers to allocate this pass
752  **/
753 
754 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
755 					 int cleaned_count, gfp_t gfp)
756 {
757 	struct e1000_adapter *adapter = rx_ring->adapter;
758 	struct net_device *netdev = adapter->netdev;
759 	struct pci_dev *pdev = adapter->pdev;
760 	union e1000_rx_desc_extended *rx_desc;
761 	struct e1000_buffer *buffer_info;
762 	struct sk_buff *skb;
763 	unsigned int i;
764 	unsigned int bufsz = 256 - 16 /* for skb_reserve */;
765 
766 	i = rx_ring->next_to_use;
767 	buffer_info = &rx_ring->buffer_info[i];
768 
769 	while (cleaned_count--) {
770 		skb = buffer_info->skb;
771 		if (skb) {
772 			skb_trim(skb, 0);
773 			goto check_page;
774 		}
775 
776 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
777 		if (unlikely(!skb)) {
778 			/* Better luck next round */
779 			adapter->alloc_rx_buff_failed++;
780 			break;
781 		}
782 
783 		buffer_info->skb = skb;
784 check_page:
785 		/* allocate a new page if necessary */
786 		if (!buffer_info->page) {
787 			buffer_info->page = alloc_page(gfp);
788 			if (unlikely(!buffer_info->page)) {
789 				adapter->alloc_rx_buff_failed++;
790 				break;
791 			}
792 		}
793 
794 		if (!buffer_info->dma)
795 			buffer_info->dma = dma_map_page(&pdev->dev,
796 			                                buffer_info->page, 0,
797 			                                PAGE_SIZE,
798 							DMA_FROM_DEVICE);
799 
800 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
801 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
802 
803 		if (unlikely(++i == rx_ring->count))
804 			i = 0;
805 		buffer_info = &rx_ring->buffer_info[i];
806 	}
807 
808 	if (likely(rx_ring->next_to_use != i)) {
809 		rx_ring->next_to_use = i;
810 		if (unlikely(i-- == 0))
811 			i = (rx_ring->count - 1);
812 
813 		/* Force memory writes to complete before letting h/w
814 		 * know there are new descriptors to fetch.  (Only
815 		 * applicable for weak-ordered memory model archs,
816 		 * such as IA-64). */
817 		wmb();
818 		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
819 			e1000e_update_rdt_wa(rx_ring, i);
820 		else
821 			writel(i, rx_ring->tail);
822 	}
823 }
824 
825 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
826 				 struct sk_buff *skb)
827 {
828 	if (netdev->features & NETIF_F_RXHASH)
829 		skb->rxhash = le32_to_cpu(rss);
830 }
831 
832 /**
833  * e1000_clean_rx_irq - Send received data up the network stack
834  * @rx_ring: Rx descriptor ring
835  *
836  * the return value indicates whether actual cleaning was done, there
837  * is no guarantee that everything was cleaned
838  **/
839 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
840 			       int work_to_do)
841 {
842 	struct e1000_adapter *adapter = rx_ring->adapter;
843 	struct net_device *netdev = adapter->netdev;
844 	struct pci_dev *pdev = adapter->pdev;
845 	struct e1000_hw *hw = &adapter->hw;
846 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
847 	struct e1000_buffer *buffer_info, *next_buffer;
848 	u32 length, staterr;
849 	unsigned int i;
850 	int cleaned_count = 0;
851 	bool cleaned = false;
852 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
853 
854 	i = rx_ring->next_to_clean;
855 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
856 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
857 	buffer_info = &rx_ring->buffer_info[i];
858 
859 	while (staterr & E1000_RXD_STAT_DD) {
860 		struct sk_buff *skb;
861 
862 		if (*work_done >= work_to_do)
863 			break;
864 		(*work_done)++;
865 		rmb();	/* read descriptor and rx_buffer_info after status DD */
866 
867 		skb = buffer_info->skb;
868 		buffer_info->skb = NULL;
869 
870 		prefetch(skb->data - NET_IP_ALIGN);
871 
872 		i++;
873 		if (i == rx_ring->count)
874 			i = 0;
875 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
876 		prefetch(next_rxd);
877 
878 		next_buffer = &rx_ring->buffer_info[i];
879 
880 		cleaned = true;
881 		cleaned_count++;
882 		dma_unmap_single(&pdev->dev,
883 				 buffer_info->dma,
884 				 adapter->rx_buffer_len,
885 				 DMA_FROM_DEVICE);
886 		buffer_info->dma = 0;
887 
888 		length = le16_to_cpu(rx_desc->wb.upper.length);
889 
890 		/*
891 		 * !EOP means multiple descriptors were used to store a single
892 		 * packet, if that's the case we need to toss it.  In fact, we
893 		 * need to toss every packet with the EOP bit clear and the
894 		 * next frame that _does_ have the EOP bit set, as it is by
895 		 * definition only a frame fragment
896 		 */
897 		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
898 			adapter->flags2 |= FLAG2_IS_DISCARDING;
899 
900 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
901 			/* All receives must fit into a single buffer */
902 			e_dbg("Receive packet consumed multiple buffers\n");
903 			/* recycle */
904 			buffer_info->skb = skb;
905 			if (staterr & E1000_RXD_STAT_EOP)
906 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
907 			goto next_desc;
908 		}
909 
910 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
911 			     !(netdev->features & NETIF_F_RXALL))) {
912 			/* recycle */
913 			buffer_info->skb = skb;
914 			goto next_desc;
915 		}
916 
917 		/* adjust length to remove Ethernet CRC */
918 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
919 			/* If configured to store CRC, don't subtract FCS,
920 			 * but keep the FCS bytes out of the total_rx_bytes
921 			 * counter
922 			 */
923 			if (netdev->features & NETIF_F_RXFCS)
924 				total_rx_bytes -= 4;
925 			else
926 				length -= 4;
927 		}
928 
929 		total_rx_bytes += length;
930 		total_rx_packets++;
931 
932 		/*
933 		 * code added for copybreak, this should improve
934 		 * performance for small packets with large amounts
935 		 * of reassembly being done in the stack
936 		 */
937 		if (length < copybreak) {
938 			struct sk_buff *new_skb =
939 			    netdev_alloc_skb_ip_align(netdev, length);
940 			if (new_skb) {
941 				skb_copy_to_linear_data_offset(new_skb,
942 							       -NET_IP_ALIGN,
943 							       (skb->data -
944 								NET_IP_ALIGN),
945 							       (length +
946 								NET_IP_ALIGN));
947 				/* save the skb in buffer_info as good */
948 				buffer_info->skb = skb;
949 				skb = new_skb;
950 			}
951 			/* else just continue with the old one */
952 		}
953 		/* end copybreak code */
954 		skb_put(skb, length);
955 
956 		/* Receive Checksum Offload */
957 		e1000_rx_checksum(adapter, staterr,
958 				  rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
959 
960 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
961 
962 		e1000_receive_skb(adapter, netdev, skb, staterr,
963 				  rx_desc->wb.upper.vlan);
964 
965 next_desc:
966 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
967 
968 		/* return some buffers to hardware, one at a time is too slow */
969 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
970 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
971 					      GFP_ATOMIC);
972 			cleaned_count = 0;
973 		}
974 
975 		/* use prefetched values */
976 		rx_desc = next_rxd;
977 		buffer_info = next_buffer;
978 
979 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
980 	}
981 	rx_ring->next_to_clean = i;
982 
983 	cleaned_count = e1000_desc_unused(rx_ring);
984 	if (cleaned_count)
985 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
986 
987 	adapter->total_rx_bytes += total_rx_bytes;
988 	adapter->total_rx_packets += total_rx_packets;
989 	return cleaned;
990 }
991 
992 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
993 			    struct e1000_buffer *buffer_info)
994 {
995 	struct e1000_adapter *adapter = tx_ring->adapter;
996 
997 	if (buffer_info->dma) {
998 		if (buffer_info->mapped_as_page)
999 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1000 				       buffer_info->length, DMA_TO_DEVICE);
1001 		else
1002 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1003 					 buffer_info->length, DMA_TO_DEVICE);
1004 		buffer_info->dma = 0;
1005 	}
1006 	if (buffer_info->skb) {
1007 		dev_kfree_skb_any(buffer_info->skb);
1008 		buffer_info->skb = NULL;
1009 	}
1010 	buffer_info->time_stamp = 0;
1011 }
1012 
1013 static void e1000_print_hw_hang(struct work_struct *work)
1014 {
1015 	struct e1000_adapter *adapter = container_of(work,
1016 	                                             struct e1000_adapter,
1017 	                                             print_hang_task);
1018 	struct net_device *netdev = adapter->netdev;
1019 	struct e1000_ring *tx_ring = adapter->tx_ring;
1020 	unsigned int i = tx_ring->next_to_clean;
1021 	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1022 	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1023 	struct e1000_hw *hw = &adapter->hw;
1024 	u16 phy_status, phy_1000t_status, phy_ext_status;
1025 	u16 pci_status;
1026 
1027 	if (test_bit(__E1000_DOWN, &adapter->state))
1028 		return;
1029 
1030 	if (!adapter->tx_hang_recheck &&
1031 	    (adapter->flags2 & FLAG2_DMA_BURST)) {
1032 		/*
1033 		 * May be block on write-back, flush and detect again
1034 		 * flush pending descriptor writebacks to memory
1035 		 */
1036 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1037 		/* execute the writes immediately */
1038 		e1e_flush();
1039 		/*
1040 		 * Due to rare timing issues, write to TIDV again to ensure
1041 		 * the write is successful
1042 		 */
1043 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1044 		/* execute the writes immediately */
1045 		e1e_flush();
1046 		adapter->tx_hang_recheck = true;
1047 		return;
1048 	}
1049 	/* Real hang detected */
1050 	adapter->tx_hang_recheck = false;
1051 	netif_stop_queue(netdev);
1052 
1053 	e1e_rphy(hw, PHY_STATUS, &phy_status);
1054 	e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
1055 	e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
1056 
1057 	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1058 
1059 	/* detected Hardware unit hang */
1060 	e_err("Detected Hardware Unit Hang:\n"
1061 	      "  TDH                  <%x>\n"
1062 	      "  TDT                  <%x>\n"
1063 	      "  next_to_use          <%x>\n"
1064 	      "  next_to_clean        <%x>\n"
1065 	      "buffer_info[next_to_clean]:\n"
1066 	      "  time_stamp           <%lx>\n"
1067 	      "  next_to_watch        <%x>\n"
1068 	      "  jiffies              <%lx>\n"
1069 	      "  next_to_watch.status <%x>\n"
1070 	      "MAC Status             <%x>\n"
1071 	      "PHY Status             <%x>\n"
1072 	      "PHY 1000BASE-T Status  <%x>\n"
1073 	      "PHY Extended Status    <%x>\n"
1074 	      "PCI Status             <%x>\n",
1075 	      readl(tx_ring->head),
1076 	      readl(tx_ring->tail),
1077 	      tx_ring->next_to_use,
1078 	      tx_ring->next_to_clean,
1079 	      tx_ring->buffer_info[eop].time_stamp,
1080 	      eop,
1081 	      jiffies,
1082 	      eop_desc->upper.fields.status,
1083 	      er32(STATUS),
1084 	      phy_status,
1085 	      phy_1000t_status,
1086 	      phy_ext_status,
1087 	      pci_status);
1088 
1089 	/* Suggest workaround for known h/w issue */
1090 	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1091 		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1092 }
1093 
1094 /**
1095  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1096  * @tx_ring: Tx descriptor ring
1097  *
1098  * the return value indicates whether actual cleaning was done, there
1099  * is no guarantee that everything was cleaned
1100  **/
1101 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1102 {
1103 	struct e1000_adapter *adapter = tx_ring->adapter;
1104 	struct net_device *netdev = adapter->netdev;
1105 	struct e1000_hw *hw = &adapter->hw;
1106 	struct e1000_tx_desc *tx_desc, *eop_desc;
1107 	struct e1000_buffer *buffer_info;
1108 	unsigned int i, eop;
1109 	unsigned int count = 0;
1110 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1111 	unsigned int bytes_compl = 0, pkts_compl = 0;
1112 
1113 	i = tx_ring->next_to_clean;
1114 	eop = tx_ring->buffer_info[i].next_to_watch;
1115 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1116 
1117 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1118 	       (count < tx_ring->count)) {
1119 		bool cleaned = false;
1120 		rmb(); /* read buffer_info after eop_desc */
1121 		for (; !cleaned; count++) {
1122 			tx_desc = E1000_TX_DESC(*tx_ring, i);
1123 			buffer_info = &tx_ring->buffer_info[i];
1124 			cleaned = (i == eop);
1125 
1126 			if (cleaned) {
1127 				total_tx_packets += buffer_info->segs;
1128 				total_tx_bytes += buffer_info->bytecount;
1129 				if (buffer_info->skb) {
1130 					bytes_compl += buffer_info->skb->len;
1131 					pkts_compl++;
1132 				}
1133 			}
1134 
1135 			e1000_put_txbuf(tx_ring, buffer_info);
1136 			tx_desc->upper.data = 0;
1137 
1138 			i++;
1139 			if (i == tx_ring->count)
1140 				i = 0;
1141 		}
1142 
1143 		if (i == tx_ring->next_to_use)
1144 			break;
1145 		eop = tx_ring->buffer_info[i].next_to_watch;
1146 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1147 	}
1148 
1149 	tx_ring->next_to_clean = i;
1150 
1151 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1152 
1153 #define TX_WAKE_THRESHOLD 32
1154 	if (count && netif_carrier_ok(netdev) &&
1155 	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1156 		/* Make sure that anybody stopping the queue after this
1157 		 * sees the new next_to_clean.
1158 		 */
1159 		smp_mb();
1160 
1161 		if (netif_queue_stopped(netdev) &&
1162 		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1163 			netif_wake_queue(netdev);
1164 			++adapter->restart_queue;
1165 		}
1166 	}
1167 
1168 	if (adapter->detect_tx_hung) {
1169 		/*
1170 		 * Detect a transmit hang in hardware, this serializes the
1171 		 * check with the clearing of time_stamp and movement of i
1172 		 */
1173 		adapter->detect_tx_hung = false;
1174 		if (tx_ring->buffer_info[i].time_stamp &&
1175 		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1176 			       + (adapter->tx_timeout_factor * HZ)) &&
1177 		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1178 			schedule_work(&adapter->print_hang_task);
1179 		else
1180 			adapter->tx_hang_recheck = false;
1181 	}
1182 	adapter->total_tx_bytes += total_tx_bytes;
1183 	adapter->total_tx_packets += total_tx_packets;
1184 	return count < tx_ring->count;
1185 }
1186 
1187 /**
1188  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1189  * @rx_ring: Rx descriptor ring
1190  *
1191  * the return value indicates whether actual cleaning was done, there
1192  * is no guarantee that everything was cleaned
1193  **/
1194 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1195 				  int work_to_do)
1196 {
1197 	struct e1000_adapter *adapter = rx_ring->adapter;
1198 	struct e1000_hw *hw = &adapter->hw;
1199 	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1200 	struct net_device *netdev = adapter->netdev;
1201 	struct pci_dev *pdev = adapter->pdev;
1202 	struct e1000_buffer *buffer_info, *next_buffer;
1203 	struct e1000_ps_page *ps_page;
1204 	struct sk_buff *skb;
1205 	unsigned int i, j;
1206 	u32 length, staterr;
1207 	int cleaned_count = 0;
1208 	bool cleaned = false;
1209 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1210 
1211 	i = rx_ring->next_to_clean;
1212 	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1213 	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1214 	buffer_info = &rx_ring->buffer_info[i];
1215 
1216 	while (staterr & E1000_RXD_STAT_DD) {
1217 		if (*work_done >= work_to_do)
1218 			break;
1219 		(*work_done)++;
1220 		skb = buffer_info->skb;
1221 		rmb();	/* read descriptor and rx_buffer_info after status DD */
1222 
1223 		/* in the packet split case this is header only */
1224 		prefetch(skb->data - NET_IP_ALIGN);
1225 
1226 		i++;
1227 		if (i == rx_ring->count)
1228 			i = 0;
1229 		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1230 		prefetch(next_rxd);
1231 
1232 		next_buffer = &rx_ring->buffer_info[i];
1233 
1234 		cleaned = true;
1235 		cleaned_count++;
1236 		dma_unmap_single(&pdev->dev, buffer_info->dma,
1237 				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1238 		buffer_info->dma = 0;
1239 
1240 		/* see !EOP comment in other Rx routine */
1241 		if (!(staterr & E1000_RXD_STAT_EOP))
1242 			adapter->flags2 |= FLAG2_IS_DISCARDING;
1243 
1244 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1245 			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1246 			dev_kfree_skb_irq(skb);
1247 			if (staterr & E1000_RXD_STAT_EOP)
1248 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1249 			goto next_desc;
1250 		}
1251 
1252 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1253 			     !(netdev->features & NETIF_F_RXALL))) {
1254 			dev_kfree_skb_irq(skb);
1255 			goto next_desc;
1256 		}
1257 
1258 		length = le16_to_cpu(rx_desc->wb.middle.length0);
1259 
1260 		if (!length) {
1261 			e_dbg("Last part of the packet spanning multiple descriptors\n");
1262 			dev_kfree_skb_irq(skb);
1263 			goto next_desc;
1264 		}
1265 
1266 		/* Good Receive */
1267 		skb_put(skb, length);
1268 
1269 		{
1270 			/*
1271 			 * this looks ugly, but it seems compiler issues make
1272 			 * it more efficient than reusing j
1273 			 */
1274 			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1275 
1276 			/*
1277 			 * page alloc/put takes too long and effects small
1278 			 * packet throughput, so unsplit small packets and
1279 			 * save the alloc/put only valid in softirq (napi)
1280 			 * context to call kmap_*
1281 			 */
1282 			if (l1 && (l1 <= copybreak) &&
1283 			    ((length + l1) <= adapter->rx_ps_bsize0)) {
1284 				u8 *vaddr;
1285 
1286 				ps_page = &buffer_info->ps_pages[0];
1287 
1288 				/*
1289 				 * there is no documentation about how to call
1290 				 * kmap_atomic, so we can't hold the mapping
1291 				 * very long
1292 				 */
1293 				dma_sync_single_for_cpu(&pdev->dev,
1294 							ps_page->dma,
1295 							PAGE_SIZE,
1296 							DMA_FROM_DEVICE);
1297 				vaddr = kmap_atomic(ps_page->page);
1298 				memcpy(skb_tail_pointer(skb), vaddr, l1);
1299 				kunmap_atomic(vaddr);
1300 				dma_sync_single_for_device(&pdev->dev,
1301 							   ps_page->dma,
1302 							   PAGE_SIZE,
1303 							   DMA_FROM_DEVICE);
1304 
1305 				/* remove the CRC */
1306 				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1307 					if (!(netdev->features & NETIF_F_RXFCS))
1308 						l1 -= 4;
1309 				}
1310 
1311 				skb_put(skb, l1);
1312 				goto copydone;
1313 			} /* if */
1314 		}
1315 
1316 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1317 			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1318 			if (!length)
1319 				break;
1320 
1321 			ps_page = &buffer_info->ps_pages[j];
1322 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1323 				       DMA_FROM_DEVICE);
1324 			ps_page->dma = 0;
1325 			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1326 			ps_page->page = NULL;
1327 			skb->len += length;
1328 			skb->data_len += length;
1329 			skb->truesize += PAGE_SIZE;
1330 		}
1331 
1332 		/* strip the ethernet crc, problem is we're using pages now so
1333 		 * this whole operation can get a little cpu intensive
1334 		 */
1335 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1336 			if (!(netdev->features & NETIF_F_RXFCS))
1337 				pskb_trim(skb, skb->len - 4);
1338 		}
1339 
1340 copydone:
1341 		total_rx_bytes += skb->len;
1342 		total_rx_packets++;
1343 
1344 		e1000_rx_checksum(adapter, staterr,
1345 				  rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
1346 
1347 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1348 
1349 		if (rx_desc->wb.upper.header_status &
1350 			   cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1351 			adapter->rx_hdr_split++;
1352 
1353 		e1000_receive_skb(adapter, netdev, skb,
1354 				  staterr, rx_desc->wb.middle.vlan);
1355 
1356 next_desc:
1357 		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1358 		buffer_info->skb = NULL;
1359 
1360 		/* return some buffers to hardware, one at a time is too slow */
1361 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1362 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1363 					      GFP_ATOMIC);
1364 			cleaned_count = 0;
1365 		}
1366 
1367 		/* use prefetched values */
1368 		rx_desc = next_rxd;
1369 		buffer_info = next_buffer;
1370 
1371 		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1372 	}
1373 	rx_ring->next_to_clean = i;
1374 
1375 	cleaned_count = e1000_desc_unused(rx_ring);
1376 	if (cleaned_count)
1377 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1378 
1379 	adapter->total_rx_bytes += total_rx_bytes;
1380 	adapter->total_rx_packets += total_rx_packets;
1381 	return cleaned;
1382 }
1383 
1384 /**
1385  * e1000_consume_page - helper function
1386  **/
1387 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1388                                u16 length)
1389 {
1390 	bi->page = NULL;
1391 	skb->len += length;
1392 	skb->data_len += length;
1393 	skb->truesize += PAGE_SIZE;
1394 }
1395 
1396 /**
1397  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1398  * @adapter: board private structure
1399  *
1400  * the return value indicates whether actual cleaning was done, there
1401  * is no guarantee that everything was cleaned
1402  **/
1403 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1404 				     int work_to_do)
1405 {
1406 	struct e1000_adapter *adapter = rx_ring->adapter;
1407 	struct net_device *netdev = adapter->netdev;
1408 	struct pci_dev *pdev = adapter->pdev;
1409 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1410 	struct e1000_buffer *buffer_info, *next_buffer;
1411 	u32 length, staterr;
1412 	unsigned int i;
1413 	int cleaned_count = 0;
1414 	bool cleaned = false;
1415 	unsigned int total_rx_bytes=0, total_rx_packets=0;
1416 
1417 	i = rx_ring->next_to_clean;
1418 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1419 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1420 	buffer_info = &rx_ring->buffer_info[i];
1421 
1422 	while (staterr & E1000_RXD_STAT_DD) {
1423 		struct sk_buff *skb;
1424 
1425 		if (*work_done >= work_to_do)
1426 			break;
1427 		(*work_done)++;
1428 		rmb();	/* read descriptor and rx_buffer_info after status DD */
1429 
1430 		skb = buffer_info->skb;
1431 		buffer_info->skb = NULL;
1432 
1433 		++i;
1434 		if (i == rx_ring->count)
1435 			i = 0;
1436 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1437 		prefetch(next_rxd);
1438 
1439 		next_buffer = &rx_ring->buffer_info[i];
1440 
1441 		cleaned = true;
1442 		cleaned_count++;
1443 		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1444 			       DMA_FROM_DEVICE);
1445 		buffer_info->dma = 0;
1446 
1447 		length = le16_to_cpu(rx_desc->wb.upper.length);
1448 
1449 		/* errors is only valid for DD + EOP descriptors */
1450 		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1451 			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1452 			      !(netdev->features & NETIF_F_RXALL)))) {
1453 			/* recycle both page and skb */
1454 			buffer_info->skb = skb;
1455 			/* an error means any chain goes out the window too */
1456 			if (rx_ring->rx_skb_top)
1457 				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1458 			rx_ring->rx_skb_top = NULL;
1459 			goto next_desc;
1460 		}
1461 
1462 #define rxtop (rx_ring->rx_skb_top)
1463 		if (!(staterr & E1000_RXD_STAT_EOP)) {
1464 			/* this descriptor is only the beginning (or middle) */
1465 			if (!rxtop) {
1466 				/* this is the beginning of a chain */
1467 				rxtop = skb;
1468 				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1469 				                   0, length);
1470 			} else {
1471 				/* this is the middle of a chain */
1472 				skb_fill_page_desc(rxtop,
1473 				    skb_shinfo(rxtop)->nr_frags,
1474 				    buffer_info->page, 0, length);
1475 				/* re-use the skb, only consumed the page */
1476 				buffer_info->skb = skb;
1477 			}
1478 			e1000_consume_page(buffer_info, rxtop, length);
1479 			goto next_desc;
1480 		} else {
1481 			if (rxtop) {
1482 				/* end of the chain */
1483 				skb_fill_page_desc(rxtop,
1484 				    skb_shinfo(rxtop)->nr_frags,
1485 				    buffer_info->page, 0, length);
1486 				/* re-use the current skb, we only consumed the
1487 				 * page */
1488 				buffer_info->skb = skb;
1489 				skb = rxtop;
1490 				rxtop = NULL;
1491 				e1000_consume_page(buffer_info, skb, length);
1492 			} else {
1493 				/* no chain, got EOP, this buf is the packet
1494 				 * copybreak to save the put_page/alloc_page */
1495 				if (length <= copybreak &&
1496 				    skb_tailroom(skb) >= length) {
1497 					u8 *vaddr;
1498 					vaddr = kmap_atomic(buffer_info->page);
1499 					memcpy(skb_tail_pointer(skb), vaddr,
1500 					       length);
1501 					kunmap_atomic(vaddr);
1502 					/* re-use the page, so don't erase
1503 					 * buffer_info->page */
1504 					skb_put(skb, length);
1505 				} else {
1506 					skb_fill_page_desc(skb, 0,
1507 					                   buffer_info->page, 0,
1508 				                           length);
1509 					e1000_consume_page(buffer_info, skb,
1510 					                   length);
1511 				}
1512 			}
1513 		}
1514 
1515 		/* Receive Checksum Offload XXX recompute due to CRC strip? */
1516 		e1000_rx_checksum(adapter, staterr,
1517 				  rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
1518 
1519 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1520 
1521 		/* probably a little skewed due to removing CRC */
1522 		total_rx_bytes += skb->len;
1523 		total_rx_packets++;
1524 
1525 		/* eth type trans needs skb->data to point to something */
1526 		if (!pskb_may_pull(skb, ETH_HLEN)) {
1527 			e_err("pskb_may_pull failed.\n");
1528 			dev_kfree_skb_irq(skb);
1529 			goto next_desc;
1530 		}
1531 
1532 		e1000_receive_skb(adapter, netdev, skb, staterr,
1533 				  rx_desc->wb.upper.vlan);
1534 
1535 next_desc:
1536 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1537 
1538 		/* return some buffers to hardware, one at a time is too slow */
1539 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1540 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1541 					      GFP_ATOMIC);
1542 			cleaned_count = 0;
1543 		}
1544 
1545 		/* use prefetched values */
1546 		rx_desc = next_rxd;
1547 		buffer_info = next_buffer;
1548 
1549 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1550 	}
1551 	rx_ring->next_to_clean = i;
1552 
1553 	cleaned_count = e1000_desc_unused(rx_ring);
1554 	if (cleaned_count)
1555 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1556 
1557 	adapter->total_rx_bytes += total_rx_bytes;
1558 	adapter->total_rx_packets += total_rx_packets;
1559 	return cleaned;
1560 }
1561 
1562 /**
1563  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1564  * @rx_ring: Rx descriptor ring
1565  **/
1566 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1567 {
1568 	struct e1000_adapter *adapter = rx_ring->adapter;
1569 	struct e1000_buffer *buffer_info;
1570 	struct e1000_ps_page *ps_page;
1571 	struct pci_dev *pdev = adapter->pdev;
1572 	unsigned int i, j;
1573 
1574 	/* Free all the Rx ring sk_buffs */
1575 	for (i = 0; i < rx_ring->count; i++) {
1576 		buffer_info = &rx_ring->buffer_info[i];
1577 		if (buffer_info->dma) {
1578 			if (adapter->clean_rx == e1000_clean_rx_irq)
1579 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1580 						 adapter->rx_buffer_len,
1581 						 DMA_FROM_DEVICE);
1582 			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1583 				dma_unmap_page(&pdev->dev, buffer_info->dma,
1584 				               PAGE_SIZE,
1585 					       DMA_FROM_DEVICE);
1586 			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1587 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1588 						 adapter->rx_ps_bsize0,
1589 						 DMA_FROM_DEVICE);
1590 			buffer_info->dma = 0;
1591 		}
1592 
1593 		if (buffer_info->page) {
1594 			put_page(buffer_info->page);
1595 			buffer_info->page = NULL;
1596 		}
1597 
1598 		if (buffer_info->skb) {
1599 			dev_kfree_skb(buffer_info->skb);
1600 			buffer_info->skb = NULL;
1601 		}
1602 
1603 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1604 			ps_page = &buffer_info->ps_pages[j];
1605 			if (!ps_page->page)
1606 				break;
1607 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1608 				       DMA_FROM_DEVICE);
1609 			ps_page->dma = 0;
1610 			put_page(ps_page->page);
1611 			ps_page->page = NULL;
1612 		}
1613 	}
1614 
1615 	/* there also may be some cached data from a chained receive */
1616 	if (rx_ring->rx_skb_top) {
1617 		dev_kfree_skb(rx_ring->rx_skb_top);
1618 		rx_ring->rx_skb_top = NULL;
1619 	}
1620 
1621 	/* Zero out the descriptor ring */
1622 	memset(rx_ring->desc, 0, rx_ring->size);
1623 
1624 	rx_ring->next_to_clean = 0;
1625 	rx_ring->next_to_use = 0;
1626 	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1627 
1628 	writel(0, rx_ring->head);
1629 	if (rx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
1630 		e1000e_update_rdt_wa(rx_ring, 0);
1631 	else
1632 		writel(0, rx_ring->tail);
1633 }
1634 
1635 static void e1000e_downshift_workaround(struct work_struct *work)
1636 {
1637 	struct e1000_adapter *adapter = container_of(work,
1638 					struct e1000_adapter, downshift_task);
1639 
1640 	if (test_bit(__E1000_DOWN, &adapter->state))
1641 		return;
1642 
1643 	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1644 }
1645 
1646 /**
1647  * e1000_intr_msi - Interrupt Handler
1648  * @irq: interrupt number
1649  * @data: pointer to a network interface device structure
1650  **/
1651 static irqreturn_t e1000_intr_msi(int irq, void *data)
1652 {
1653 	struct net_device *netdev = data;
1654 	struct e1000_adapter *adapter = netdev_priv(netdev);
1655 	struct e1000_hw *hw = &adapter->hw;
1656 	u32 icr = er32(ICR);
1657 
1658 	/*
1659 	 * read ICR disables interrupts using IAM
1660 	 */
1661 
1662 	if (icr & E1000_ICR_LSC) {
1663 		hw->mac.get_link_status = true;
1664 		/*
1665 		 * ICH8 workaround-- Call gig speed drop workaround on cable
1666 		 * disconnect (LSC) before accessing any PHY registers
1667 		 */
1668 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1669 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1670 			schedule_work(&adapter->downshift_task);
1671 
1672 		/*
1673 		 * 80003ES2LAN workaround-- For packet buffer work-around on
1674 		 * link down event; disable receives here in the ISR and reset
1675 		 * adapter in watchdog
1676 		 */
1677 		if (netif_carrier_ok(netdev) &&
1678 		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1679 			/* disable receives */
1680 			u32 rctl = er32(RCTL);
1681 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1682 			adapter->flags |= FLAG_RX_RESTART_NOW;
1683 		}
1684 		/* guard against interrupt when we're going down */
1685 		if (!test_bit(__E1000_DOWN, &adapter->state))
1686 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1687 	}
1688 
1689 	if (napi_schedule_prep(&adapter->napi)) {
1690 		adapter->total_tx_bytes = 0;
1691 		adapter->total_tx_packets = 0;
1692 		adapter->total_rx_bytes = 0;
1693 		adapter->total_rx_packets = 0;
1694 		__napi_schedule(&adapter->napi);
1695 	}
1696 
1697 	return IRQ_HANDLED;
1698 }
1699 
1700 /**
1701  * e1000_intr - Interrupt Handler
1702  * @irq: interrupt number
1703  * @data: pointer to a network interface device structure
1704  **/
1705 static irqreturn_t e1000_intr(int irq, void *data)
1706 {
1707 	struct net_device *netdev = data;
1708 	struct e1000_adapter *adapter = netdev_priv(netdev);
1709 	struct e1000_hw *hw = &adapter->hw;
1710 	u32 rctl, icr = er32(ICR);
1711 
1712 	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1713 		return IRQ_NONE;  /* Not our interrupt */
1714 
1715 	/*
1716 	 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1717 	 * not set, then the adapter didn't send an interrupt
1718 	 */
1719 	if (!(icr & E1000_ICR_INT_ASSERTED))
1720 		return IRQ_NONE;
1721 
1722 	/*
1723 	 * Interrupt Auto-Mask...upon reading ICR,
1724 	 * interrupts are masked.  No need for the
1725 	 * IMC write
1726 	 */
1727 
1728 	if (icr & E1000_ICR_LSC) {
1729 		hw->mac.get_link_status = true;
1730 		/*
1731 		 * ICH8 workaround-- Call gig speed drop workaround on cable
1732 		 * disconnect (LSC) before accessing any PHY registers
1733 		 */
1734 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1735 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1736 			schedule_work(&adapter->downshift_task);
1737 
1738 		/*
1739 		 * 80003ES2LAN workaround--
1740 		 * For packet buffer work-around on link down event;
1741 		 * disable receives here in the ISR and
1742 		 * reset adapter in watchdog
1743 		 */
1744 		if (netif_carrier_ok(netdev) &&
1745 		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1746 			/* disable receives */
1747 			rctl = er32(RCTL);
1748 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1749 			adapter->flags |= FLAG_RX_RESTART_NOW;
1750 		}
1751 		/* guard against interrupt when we're going down */
1752 		if (!test_bit(__E1000_DOWN, &adapter->state))
1753 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1754 	}
1755 
1756 	if (napi_schedule_prep(&adapter->napi)) {
1757 		adapter->total_tx_bytes = 0;
1758 		adapter->total_tx_packets = 0;
1759 		adapter->total_rx_bytes = 0;
1760 		adapter->total_rx_packets = 0;
1761 		__napi_schedule(&adapter->napi);
1762 	}
1763 
1764 	return IRQ_HANDLED;
1765 }
1766 
1767 static irqreturn_t e1000_msix_other(int irq, void *data)
1768 {
1769 	struct net_device *netdev = data;
1770 	struct e1000_adapter *adapter = netdev_priv(netdev);
1771 	struct e1000_hw *hw = &adapter->hw;
1772 	u32 icr = er32(ICR);
1773 
1774 	if (!(icr & E1000_ICR_INT_ASSERTED)) {
1775 		if (!test_bit(__E1000_DOWN, &adapter->state))
1776 			ew32(IMS, E1000_IMS_OTHER);
1777 		return IRQ_NONE;
1778 	}
1779 
1780 	if (icr & adapter->eiac_mask)
1781 		ew32(ICS, (icr & adapter->eiac_mask));
1782 
1783 	if (icr & E1000_ICR_OTHER) {
1784 		if (!(icr & E1000_ICR_LSC))
1785 			goto no_link_interrupt;
1786 		hw->mac.get_link_status = true;
1787 		/* guard against interrupt when we're going down */
1788 		if (!test_bit(__E1000_DOWN, &adapter->state))
1789 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1790 	}
1791 
1792 no_link_interrupt:
1793 	if (!test_bit(__E1000_DOWN, &adapter->state))
1794 		ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1795 
1796 	return IRQ_HANDLED;
1797 }
1798 
1799 
1800 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1801 {
1802 	struct net_device *netdev = data;
1803 	struct e1000_adapter *adapter = netdev_priv(netdev);
1804 	struct e1000_hw *hw = &adapter->hw;
1805 	struct e1000_ring *tx_ring = adapter->tx_ring;
1806 
1807 
1808 	adapter->total_tx_bytes = 0;
1809 	adapter->total_tx_packets = 0;
1810 
1811 	if (!e1000_clean_tx_irq(tx_ring))
1812 		/* Ring was not completely cleaned, so fire another interrupt */
1813 		ew32(ICS, tx_ring->ims_val);
1814 
1815 	return IRQ_HANDLED;
1816 }
1817 
1818 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1819 {
1820 	struct net_device *netdev = data;
1821 	struct e1000_adapter *adapter = netdev_priv(netdev);
1822 	struct e1000_ring *rx_ring = adapter->rx_ring;
1823 
1824 	/* Write the ITR value calculated at the end of the
1825 	 * previous interrupt.
1826 	 */
1827 	if (rx_ring->set_itr) {
1828 		writel(1000000000 / (rx_ring->itr_val * 256),
1829 		       rx_ring->itr_register);
1830 		rx_ring->set_itr = 0;
1831 	}
1832 
1833 	if (napi_schedule_prep(&adapter->napi)) {
1834 		adapter->total_rx_bytes = 0;
1835 		adapter->total_rx_packets = 0;
1836 		__napi_schedule(&adapter->napi);
1837 	}
1838 	return IRQ_HANDLED;
1839 }
1840 
1841 /**
1842  * e1000_configure_msix - Configure MSI-X hardware
1843  *
1844  * e1000_configure_msix sets up the hardware to properly
1845  * generate MSI-X interrupts.
1846  **/
1847 static void e1000_configure_msix(struct e1000_adapter *adapter)
1848 {
1849 	struct e1000_hw *hw = &adapter->hw;
1850 	struct e1000_ring *rx_ring = adapter->rx_ring;
1851 	struct e1000_ring *tx_ring = adapter->tx_ring;
1852 	int vector = 0;
1853 	u32 ctrl_ext, ivar = 0;
1854 
1855 	adapter->eiac_mask = 0;
1856 
1857 	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1858 	if (hw->mac.type == e1000_82574) {
1859 		u32 rfctl = er32(RFCTL);
1860 		rfctl |= E1000_RFCTL_ACK_DIS;
1861 		ew32(RFCTL, rfctl);
1862 	}
1863 
1864 #define E1000_IVAR_INT_ALLOC_VALID	0x8
1865 	/* Configure Rx vector */
1866 	rx_ring->ims_val = E1000_IMS_RXQ0;
1867 	adapter->eiac_mask |= rx_ring->ims_val;
1868 	if (rx_ring->itr_val)
1869 		writel(1000000000 / (rx_ring->itr_val * 256),
1870 		       rx_ring->itr_register);
1871 	else
1872 		writel(1, rx_ring->itr_register);
1873 	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1874 
1875 	/* Configure Tx vector */
1876 	tx_ring->ims_val = E1000_IMS_TXQ0;
1877 	vector++;
1878 	if (tx_ring->itr_val)
1879 		writel(1000000000 / (tx_ring->itr_val * 256),
1880 		       tx_ring->itr_register);
1881 	else
1882 		writel(1, tx_ring->itr_register);
1883 	adapter->eiac_mask |= tx_ring->ims_val;
1884 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1885 
1886 	/* set vector for Other Causes, e.g. link changes */
1887 	vector++;
1888 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1889 	if (rx_ring->itr_val)
1890 		writel(1000000000 / (rx_ring->itr_val * 256),
1891 		       hw->hw_addr + E1000_EITR_82574(vector));
1892 	else
1893 		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1894 
1895 	/* Cause Tx interrupts on every write back */
1896 	ivar |= (1 << 31);
1897 
1898 	ew32(IVAR, ivar);
1899 
1900 	/* enable MSI-X PBA support */
1901 	ctrl_ext = er32(CTRL_EXT);
1902 	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1903 
1904 	/* Auto-Mask Other interrupts upon ICR read */
1905 #define E1000_EIAC_MASK_82574   0x01F00000
1906 	ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1907 	ctrl_ext |= E1000_CTRL_EXT_EIAME;
1908 	ew32(CTRL_EXT, ctrl_ext);
1909 	e1e_flush();
1910 }
1911 
1912 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1913 {
1914 	if (adapter->msix_entries) {
1915 		pci_disable_msix(adapter->pdev);
1916 		kfree(adapter->msix_entries);
1917 		adapter->msix_entries = NULL;
1918 	} else if (adapter->flags & FLAG_MSI_ENABLED) {
1919 		pci_disable_msi(adapter->pdev);
1920 		adapter->flags &= ~FLAG_MSI_ENABLED;
1921 	}
1922 }
1923 
1924 /**
1925  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1926  *
1927  * Attempt to configure interrupts using the best available
1928  * capabilities of the hardware and kernel.
1929  **/
1930 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1931 {
1932 	int err;
1933 	int i;
1934 
1935 	switch (adapter->int_mode) {
1936 	case E1000E_INT_MODE_MSIX:
1937 		if (adapter->flags & FLAG_HAS_MSIX) {
1938 			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
1939 			adapter->msix_entries = kcalloc(adapter->num_vectors,
1940 						      sizeof(struct msix_entry),
1941 						      GFP_KERNEL);
1942 			if (adapter->msix_entries) {
1943 				for (i = 0; i < adapter->num_vectors; i++)
1944 					adapter->msix_entries[i].entry = i;
1945 
1946 				err = pci_enable_msix(adapter->pdev,
1947 						      adapter->msix_entries,
1948 						      adapter->num_vectors);
1949 				if (err == 0)
1950 					return;
1951 			}
1952 			/* MSI-X failed, so fall through and try MSI */
1953 			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
1954 			e1000e_reset_interrupt_capability(adapter);
1955 		}
1956 		adapter->int_mode = E1000E_INT_MODE_MSI;
1957 		/* Fall through */
1958 	case E1000E_INT_MODE_MSI:
1959 		if (!pci_enable_msi(adapter->pdev)) {
1960 			adapter->flags |= FLAG_MSI_ENABLED;
1961 		} else {
1962 			adapter->int_mode = E1000E_INT_MODE_LEGACY;
1963 			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
1964 		}
1965 		/* Fall through */
1966 	case E1000E_INT_MODE_LEGACY:
1967 		/* Don't do anything; this is the system default */
1968 		break;
1969 	}
1970 
1971 	/* store the number of vectors being used */
1972 	adapter->num_vectors = 1;
1973 }
1974 
1975 /**
1976  * e1000_request_msix - Initialize MSI-X interrupts
1977  *
1978  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1979  * kernel.
1980  **/
1981 static int e1000_request_msix(struct e1000_adapter *adapter)
1982 {
1983 	struct net_device *netdev = adapter->netdev;
1984 	int err = 0, vector = 0;
1985 
1986 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
1987 		snprintf(adapter->rx_ring->name,
1988 			 sizeof(adapter->rx_ring->name) - 1,
1989 			 "%s-rx-0", netdev->name);
1990 	else
1991 		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1992 	err = request_irq(adapter->msix_entries[vector].vector,
1993 			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1994 			  netdev);
1995 	if (err)
1996 		return err;
1997 	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
1998 	    E1000_EITR_82574(vector);
1999 	adapter->rx_ring->itr_val = adapter->itr;
2000 	vector++;
2001 
2002 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2003 		snprintf(adapter->tx_ring->name,
2004 			 sizeof(adapter->tx_ring->name) - 1,
2005 			 "%s-tx-0", netdev->name);
2006 	else
2007 		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2008 	err = request_irq(adapter->msix_entries[vector].vector,
2009 			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2010 			  netdev);
2011 	if (err)
2012 		return err;
2013 	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2014 	    E1000_EITR_82574(vector);
2015 	adapter->tx_ring->itr_val = adapter->itr;
2016 	vector++;
2017 
2018 	err = request_irq(adapter->msix_entries[vector].vector,
2019 			  e1000_msix_other, 0, netdev->name, netdev);
2020 	if (err)
2021 		return err;
2022 
2023 	e1000_configure_msix(adapter);
2024 
2025 	return 0;
2026 }
2027 
2028 /**
2029  * e1000_request_irq - initialize interrupts
2030  *
2031  * Attempts to configure interrupts using the best available
2032  * capabilities of the hardware and kernel.
2033  **/
2034 static int e1000_request_irq(struct e1000_adapter *adapter)
2035 {
2036 	struct net_device *netdev = adapter->netdev;
2037 	int err;
2038 
2039 	if (adapter->msix_entries) {
2040 		err = e1000_request_msix(adapter);
2041 		if (!err)
2042 			return err;
2043 		/* fall back to MSI */
2044 		e1000e_reset_interrupt_capability(adapter);
2045 		adapter->int_mode = E1000E_INT_MODE_MSI;
2046 		e1000e_set_interrupt_capability(adapter);
2047 	}
2048 	if (adapter->flags & FLAG_MSI_ENABLED) {
2049 		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2050 				  netdev->name, netdev);
2051 		if (!err)
2052 			return err;
2053 
2054 		/* fall back to legacy interrupt */
2055 		e1000e_reset_interrupt_capability(adapter);
2056 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2057 	}
2058 
2059 	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2060 			  netdev->name, netdev);
2061 	if (err)
2062 		e_err("Unable to allocate interrupt, Error: %d\n", err);
2063 
2064 	return err;
2065 }
2066 
2067 static void e1000_free_irq(struct e1000_adapter *adapter)
2068 {
2069 	struct net_device *netdev = adapter->netdev;
2070 
2071 	if (adapter->msix_entries) {
2072 		int vector = 0;
2073 
2074 		free_irq(adapter->msix_entries[vector].vector, netdev);
2075 		vector++;
2076 
2077 		free_irq(adapter->msix_entries[vector].vector, netdev);
2078 		vector++;
2079 
2080 		/* Other Causes interrupt vector */
2081 		free_irq(adapter->msix_entries[vector].vector, netdev);
2082 		return;
2083 	}
2084 
2085 	free_irq(adapter->pdev->irq, netdev);
2086 }
2087 
2088 /**
2089  * e1000_irq_disable - Mask off interrupt generation on the NIC
2090  **/
2091 static void e1000_irq_disable(struct e1000_adapter *adapter)
2092 {
2093 	struct e1000_hw *hw = &adapter->hw;
2094 
2095 	ew32(IMC, ~0);
2096 	if (adapter->msix_entries)
2097 		ew32(EIAC_82574, 0);
2098 	e1e_flush();
2099 
2100 	if (adapter->msix_entries) {
2101 		int i;
2102 		for (i = 0; i < adapter->num_vectors; i++)
2103 			synchronize_irq(adapter->msix_entries[i].vector);
2104 	} else {
2105 		synchronize_irq(adapter->pdev->irq);
2106 	}
2107 }
2108 
2109 /**
2110  * e1000_irq_enable - Enable default interrupt generation settings
2111  **/
2112 static void e1000_irq_enable(struct e1000_adapter *adapter)
2113 {
2114 	struct e1000_hw *hw = &adapter->hw;
2115 
2116 	if (adapter->msix_entries) {
2117 		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2118 		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
2119 	} else {
2120 		ew32(IMS, IMS_ENABLE_MASK);
2121 	}
2122 	e1e_flush();
2123 }
2124 
2125 /**
2126  * e1000e_get_hw_control - get control of the h/w from f/w
2127  * @adapter: address of board private structure
2128  *
2129  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2130  * For ASF and Pass Through versions of f/w this means that
2131  * the driver is loaded. For AMT version (only with 82573)
2132  * of the f/w this means that the network i/f is open.
2133  **/
2134 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2135 {
2136 	struct e1000_hw *hw = &adapter->hw;
2137 	u32 ctrl_ext;
2138 	u32 swsm;
2139 
2140 	/* Let firmware know the driver has taken over */
2141 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2142 		swsm = er32(SWSM);
2143 		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2144 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2145 		ctrl_ext = er32(CTRL_EXT);
2146 		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2147 	}
2148 }
2149 
2150 /**
2151  * e1000e_release_hw_control - release control of the h/w to f/w
2152  * @adapter: address of board private structure
2153  *
2154  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2155  * For ASF and Pass Through versions of f/w this means that the
2156  * driver is no longer loaded. For AMT version (only with 82573) i
2157  * of the f/w this means that the network i/f is closed.
2158  *
2159  **/
2160 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2161 {
2162 	struct e1000_hw *hw = &adapter->hw;
2163 	u32 ctrl_ext;
2164 	u32 swsm;
2165 
2166 	/* Let firmware taken over control of h/w */
2167 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2168 		swsm = er32(SWSM);
2169 		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2170 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2171 		ctrl_ext = er32(CTRL_EXT);
2172 		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2173 	}
2174 }
2175 
2176 /**
2177  * @e1000_alloc_ring - allocate memory for a ring structure
2178  **/
2179 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2180 				struct e1000_ring *ring)
2181 {
2182 	struct pci_dev *pdev = adapter->pdev;
2183 
2184 	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2185 					GFP_KERNEL);
2186 	if (!ring->desc)
2187 		return -ENOMEM;
2188 
2189 	return 0;
2190 }
2191 
2192 /**
2193  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2194  * @tx_ring: Tx descriptor ring
2195  *
2196  * Return 0 on success, negative on failure
2197  **/
2198 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2199 {
2200 	struct e1000_adapter *adapter = tx_ring->adapter;
2201 	int err = -ENOMEM, size;
2202 
2203 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2204 	tx_ring->buffer_info = vzalloc(size);
2205 	if (!tx_ring->buffer_info)
2206 		goto err;
2207 
2208 	/* round up to nearest 4K */
2209 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2210 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2211 
2212 	err = e1000_alloc_ring_dma(adapter, tx_ring);
2213 	if (err)
2214 		goto err;
2215 
2216 	tx_ring->next_to_use = 0;
2217 	tx_ring->next_to_clean = 0;
2218 
2219 	return 0;
2220 err:
2221 	vfree(tx_ring->buffer_info);
2222 	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2223 	return err;
2224 }
2225 
2226 /**
2227  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2228  * @rx_ring: Rx descriptor ring
2229  *
2230  * Returns 0 on success, negative on failure
2231  **/
2232 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2233 {
2234 	struct e1000_adapter *adapter = rx_ring->adapter;
2235 	struct e1000_buffer *buffer_info;
2236 	int i, size, desc_len, err = -ENOMEM;
2237 
2238 	size = sizeof(struct e1000_buffer) * rx_ring->count;
2239 	rx_ring->buffer_info = vzalloc(size);
2240 	if (!rx_ring->buffer_info)
2241 		goto err;
2242 
2243 	for (i = 0; i < rx_ring->count; i++) {
2244 		buffer_info = &rx_ring->buffer_info[i];
2245 		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2246 						sizeof(struct e1000_ps_page),
2247 						GFP_KERNEL);
2248 		if (!buffer_info->ps_pages)
2249 			goto err_pages;
2250 	}
2251 
2252 	desc_len = sizeof(union e1000_rx_desc_packet_split);
2253 
2254 	/* Round up to nearest 4K */
2255 	rx_ring->size = rx_ring->count * desc_len;
2256 	rx_ring->size = ALIGN(rx_ring->size, 4096);
2257 
2258 	err = e1000_alloc_ring_dma(adapter, rx_ring);
2259 	if (err)
2260 		goto err_pages;
2261 
2262 	rx_ring->next_to_clean = 0;
2263 	rx_ring->next_to_use = 0;
2264 	rx_ring->rx_skb_top = NULL;
2265 
2266 	return 0;
2267 
2268 err_pages:
2269 	for (i = 0; i < rx_ring->count; i++) {
2270 		buffer_info = &rx_ring->buffer_info[i];
2271 		kfree(buffer_info->ps_pages);
2272 	}
2273 err:
2274 	vfree(rx_ring->buffer_info);
2275 	e_err("Unable to allocate memory for the receive descriptor ring\n");
2276 	return err;
2277 }
2278 
2279 /**
2280  * e1000_clean_tx_ring - Free Tx Buffers
2281  * @tx_ring: Tx descriptor ring
2282  **/
2283 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2284 {
2285 	struct e1000_adapter *adapter = tx_ring->adapter;
2286 	struct e1000_buffer *buffer_info;
2287 	unsigned long size;
2288 	unsigned int i;
2289 
2290 	for (i = 0; i < tx_ring->count; i++) {
2291 		buffer_info = &tx_ring->buffer_info[i];
2292 		e1000_put_txbuf(tx_ring, buffer_info);
2293 	}
2294 
2295 	netdev_reset_queue(adapter->netdev);
2296 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2297 	memset(tx_ring->buffer_info, 0, size);
2298 
2299 	memset(tx_ring->desc, 0, tx_ring->size);
2300 
2301 	tx_ring->next_to_use = 0;
2302 	tx_ring->next_to_clean = 0;
2303 
2304 	writel(0, tx_ring->head);
2305 	if (tx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2306 		e1000e_update_tdt_wa(tx_ring, 0);
2307 	else
2308 		writel(0, tx_ring->tail);
2309 }
2310 
2311 /**
2312  * e1000e_free_tx_resources - Free Tx Resources per Queue
2313  * @tx_ring: Tx descriptor ring
2314  *
2315  * Free all transmit software resources
2316  **/
2317 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2318 {
2319 	struct e1000_adapter *adapter = tx_ring->adapter;
2320 	struct pci_dev *pdev = adapter->pdev;
2321 
2322 	e1000_clean_tx_ring(tx_ring);
2323 
2324 	vfree(tx_ring->buffer_info);
2325 	tx_ring->buffer_info = NULL;
2326 
2327 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2328 			  tx_ring->dma);
2329 	tx_ring->desc = NULL;
2330 }
2331 
2332 /**
2333  * e1000e_free_rx_resources - Free Rx Resources
2334  * @rx_ring: Rx descriptor ring
2335  *
2336  * Free all receive software resources
2337  **/
2338 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2339 {
2340 	struct e1000_adapter *adapter = rx_ring->adapter;
2341 	struct pci_dev *pdev = adapter->pdev;
2342 	int i;
2343 
2344 	e1000_clean_rx_ring(rx_ring);
2345 
2346 	for (i = 0; i < rx_ring->count; i++)
2347 		kfree(rx_ring->buffer_info[i].ps_pages);
2348 
2349 	vfree(rx_ring->buffer_info);
2350 	rx_ring->buffer_info = NULL;
2351 
2352 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2353 			  rx_ring->dma);
2354 	rx_ring->desc = NULL;
2355 }
2356 
2357 /**
2358  * e1000_update_itr - update the dynamic ITR value based on statistics
2359  * @adapter: pointer to adapter
2360  * @itr_setting: current adapter->itr
2361  * @packets: the number of packets during this measurement interval
2362  * @bytes: the number of bytes during this measurement interval
2363  *
2364  *      Stores a new ITR value based on packets and byte
2365  *      counts during the last interrupt.  The advantage of per interrupt
2366  *      computation is faster updates and more accurate ITR for the current
2367  *      traffic pattern.  Constants in this function were computed
2368  *      based on theoretical maximum wire speed and thresholds were set based
2369  *      on testing data as well as attempting to minimize response time
2370  *      while increasing bulk throughput.  This functionality is controlled
2371  *      by the InterruptThrottleRate module parameter.
2372  **/
2373 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2374 				     u16 itr_setting, int packets,
2375 				     int bytes)
2376 {
2377 	unsigned int retval = itr_setting;
2378 
2379 	if (packets == 0)
2380 		return itr_setting;
2381 
2382 	switch (itr_setting) {
2383 	case lowest_latency:
2384 		/* handle TSO and jumbo frames */
2385 		if (bytes/packets > 8000)
2386 			retval = bulk_latency;
2387 		else if ((packets < 5) && (bytes > 512))
2388 			retval = low_latency;
2389 		break;
2390 	case low_latency:  /* 50 usec aka 20000 ints/s */
2391 		if (bytes > 10000) {
2392 			/* this if handles the TSO accounting */
2393 			if (bytes/packets > 8000)
2394 				retval = bulk_latency;
2395 			else if ((packets < 10) || ((bytes/packets) > 1200))
2396 				retval = bulk_latency;
2397 			else if ((packets > 35))
2398 				retval = lowest_latency;
2399 		} else if (bytes/packets > 2000) {
2400 			retval = bulk_latency;
2401 		} else if (packets <= 2 && bytes < 512) {
2402 			retval = lowest_latency;
2403 		}
2404 		break;
2405 	case bulk_latency: /* 250 usec aka 4000 ints/s */
2406 		if (bytes > 25000) {
2407 			if (packets > 35)
2408 				retval = low_latency;
2409 		} else if (bytes < 6000) {
2410 			retval = low_latency;
2411 		}
2412 		break;
2413 	}
2414 
2415 	return retval;
2416 }
2417 
2418 static void e1000_set_itr(struct e1000_adapter *adapter)
2419 {
2420 	struct e1000_hw *hw = &adapter->hw;
2421 	u16 current_itr;
2422 	u32 new_itr = adapter->itr;
2423 
2424 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2425 	if (adapter->link_speed != SPEED_1000) {
2426 		current_itr = 0;
2427 		new_itr = 4000;
2428 		goto set_itr_now;
2429 	}
2430 
2431 	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2432 		new_itr = 0;
2433 		goto set_itr_now;
2434 	}
2435 
2436 	adapter->tx_itr = e1000_update_itr(adapter,
2437 				    adapter->tx_itr,
2438 				    adapter->total_tx_packets,
2439 				    adapter->total_tx_bytes);
2440 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2441 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2442 		adapter->tx_itr = low_latency;
2443 
2444 	adapter->rx_itr = e1000_update_itr(adapter,
2445 				    adapter->rx_itr,
2446 				    adapter->total_rx_packets,
2447 				    adapter->total_rx_bytes);
2448 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2449 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2450 		adapter->rx_itr = low_latency;
2451 
2452 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2453 
2454 	switch (current_itr) {
2455 	/* counts and packets in update_itr are dependent on these numbers */
2456 	case lowest_latency:
2457 		new_itr = 70000;
2458 		break;
2459 	case low_latency:
2460 		new_itr = 20000; /* aka hwitr = ~200 */
2461 		break;
2462 	case bulk_latency:
2463 		new_itr = 4000;
2464 		break;
2465 	default:
2466 		break;
2467 	}
2468 
2469 set_itr_now:
2470 	if (new_itr != adapter->itr) {
2471 		/*
2472 		 * this attempts to bias the interrupt rate towards Bulk
2473 		 * by adding intermediate steps when interrupt rate is
2474 		 * increasing
2475 		 */
2476 		new_itr = new_itr > adapter->itr ?
2477 			     min(adapter->itr + (new_itr >> 2), new_itr) :
2478 			     new_itr;
2479 		adapter->itr = new_itr;
2480 		adapter->rx_ring->itr_val = new_itr;
2481 		if (adapter->msix_entries)
2482 			adapter->rx_ring->set_itr = 1;
2483 		else
2484 			if (new_itr)
2485 				ew32(ITR, 1000000000 / (new_itr * 256));
2486 			else
2487 				ew32(ITR, 0);
2488 	}
2489 }
2490 
2491 /**
2492  * e1000_alloc_queues - Allocate memory for all rings
2493  * @adapter: board private structure to initialize
2494  **/
2495 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
2496 {
2497 	int size = sizeof(struct e1000_ring);
2498 
2499 	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2500 	if (!adapter->tx_ring)
2501 		goto err;
2502 	adapter->tx_ring->count = adapter->tx_ring_count;
2503 	adapter->tx_ring->adapter = adapter;
2504 
2505 	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2506 	if (!adapter->rx_ring)
2507 		goto err;
2508 	adapter->rx_ring->count = adapter->rx_ring_count;
2509 	adapter->rx_ring->adapter = adapter;
2510 
2511 	return 0;
2512 err:
2513 	e_err("Unable to allocate memory for queues\n");
2514 	kfree(adapter->rx_ring);
2515 	kfree(adapter->tx_ring);
2516 	return -ENOMEM;
2517 }
2518 
2519 /**
2520  * e1000e_poll - NAPI Rx polling callback
2521  * @napi: struct associated with this polling callback
2522  * @weight: number of packets driver is allowed to process this poll
2523  **/
2524 static int e1000e_poll(struct napi_struct *napi, int weight)
2525 {
2526 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2527 						     napi);
2528 	struct e1000_hw *hw = &adapter->hw;
2529 	struct net_device *poll_dev = adapter->netdev;
2530 	int tx_cleaned = 1, work_done = 0;
2531 
2532 	adapter = netdev_priv(poll_dev);
2533 
2534 	if (!adapter->msix_entries ||
2535 	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2536 		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2537 
2538 	adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2539 
2540 	if (!tx_cleaned)
2541 		work_done = weight;
2542 
2543 	/* If weight not fully consumed, exit the polling mode */
2544 	if (work_done < weight) {
2545 		if (adapter->itr_setting & 3)
2546 			e1000_set_itr(adapter);
2547 		napi_complete(napi);
2548 		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2549 			if (adapter->msix_entries)
2550 				ew32(IMS, adapter->rx_ring->ims_val);
2551 			else
2552 				e1000_irq_enable(adapter);
2553 		}
2554 	}
2555 
2556 	return work_done;
2557 }
2558 
2559 static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2560 {
2561 	struct e1000_adapter *adapter = netdev_priv(netdev);
2562 	struct e1000_hw *hw = &adapter->hw;
2563 	u32 vfta, index;
2564 
2565 	/* don't update vlan cookie if already programmed */
2566 	if ((adapter->hw.mng_cookie.status &
2567 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2568 	    (vid == adapter->mng_vlan_id))
2569 		return 0;
2570 
2571 	/* add VID to filter table */
2572 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2573 		index = (vid >> 5) & 0x7F;
2574 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2575 		vfta |= (1 << (vid & 0x1F));
2576 		hw->mac.ops.write_vfta(hw, index, vfta);
2577 	}
2578 
2579 	set_bit(vid, adapter->active_vlans);
2580 
2581 	return 0;
2582 }
2583 
2584 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2585 {
2586 	struct e1000_adapter *adapter = netdev_priv(netdev);
2587 	struct e1000_hw *hw = &adapter->hw;
2588 	u32 vfta, index;
2589 
2590 	if ((adapter->hw.mng_cookie.status &
2591 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2592 	    (vid == adapter->mng_vlan_id)) {
2593 		/* release control to f/w */
2594 		e1000e_release_hw_control(adapter);
2595 		return 0;
2596 	}
2597 
2598 	/* remove VID from filter table */
2599 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2600 		index = (vid >> 5) & 0x7F;
2601 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2602 		vfta &= ~(1 << (vid & 0x1F));
2603 		hw->mac.ops.write_vfta(hw, index, vfta);
2604 	}
2605 
2606 	clear_bit(vid, adapter->active_vlans);
2607 
2608 	return 0;
2609 }
2610 
2611 /**
2612  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2613  * @adapter: board private structure to initialize
2614  **/
2615 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2616 {
2617 	struct net_device *netdev = adapter->netdev;
2618 	struct e1000_hw *hw = &adapter->hw;
2619 	u32 rctl;
2620 
2621 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2622 		/* disable VLAN receive filtering */
2623 		rctl = er32(RCTL);
2624 		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2625 		ew32(RCTL, rctl);
2626 
2627 		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2628 			e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2629 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2630 		}
2631 	}
2632 }
2633 
2634 /**
2635  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2636  * @adapter: board private structure to initialize
2637  **/
2638 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2639 {
2640 	struct e1000_hw *hw = &adapter->hw;
2641 	u32 rctl;
2642 
2643 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2644 		/* enable VLAN receive filtering */
2645 		rctl = er32(RCTL);
2646 		rctl |= E1000_RCTL_VFE;
2647 		rctl &= ~E1000_RCTL_CFIEN;
2648 		ew32(RCTL, rctl);
2649 	}
2650 }
2651 
2652 /**
2653  * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2654  * @adapter: board private structure to initialize
2655  **/
2656 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2657 {
2658 	struct e1000_hw *hw = &adapter->hw;
2659 	u32 ctrl;
2660 
2661 	/* disable VLAN tag insert/strip */
2662 	ctrl = er32(CTRL);
2663 	ctrl &= ~E1000_CTRL_VME;
2664 	ew32(CTRL, ctrl);
2665 }
2666 
2667 /**
2668  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2669  * @adapter: board private structure to initialize
2670  **/
2671 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2672 {
2673 	struct e1000_hw *hw = &adapter->hw;
2674 	u32 ctrl;
2675 
2676 	/* enable VLAN tag insert/strip */
2677 	ctrl = er32(CTRL);
2678 	ctrl |= E1000_CTRL_VME;
2679 	ew32(CTRL, ctrl);
2680 }
2681 
2682 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2683 {
2684 	struct net_device *netdev = adapter->netdev;
2685 	u16 vid = adapter->hw.mng_cookie.vlan_id;
2686 	u16 old_vid = adapter->mng_vlan_id;
2687 
2688 	if (adapter->hw.mng_cookie.status &
2689 	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2690 		e1000_vlan_rx_add_vid(netdev, vid);
2691 		adapter->mng_vlan_id = vid;
2692 	}
2693 
2694 	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2695 		e1000_vlan_rx_kill_vid(netdev, old_vid);
2696 }
2697 
2698 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2699 {
2700 	u16 vid;
2701 
2702 	e1000_vlan_rx_add_vid(adapter->netdev, 0);
2703 
2704 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2705 		e1000_vlan_rx_add_vid(adapter->netdev, vid);
2706 }
2707 
2708 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2709 {
2710 	struct e1000_hw *hw = &adapter->hw;
2711 	u32 manc, manc2h, mdef, i, j;
2712 
2713 	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2714 		return;
2715 
2716 	manc = er32(MANC);
2717 
2718 	/*
2719 	 * enable receiving management packets to the host. this will probably
2720 	 * generate destination unreachable messages from the host OS, but
2721 	 * the packets will be handled on SMBUS
2722 	 */
2723 	manc |= E1000_MANC_EN_MNG2HOST;
2724 	manc2h = er32(MANC2H);
2725 
2726 	switch (hw->mac.type) {
2727 	default:
2728 		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2729 		break;
2730 	case e1000_82574:
2731 	case e1000_82583:
2732 		/*
2733 		 * Check if IPMI pass-through decision filter already exists;
2734 		 * if so, enable it.
2735 		 */
2736 		for (i = 0, j = 0; i < 8; i++) {
2737 			mdef = er32(MDEF(i));
2738 
2739 			/* Ignore filters with anything other than IPMI ports */
2740 			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2741 				continue;
2742 
2743 			/* Enable this decision filter in MANC2H */
2744 			if (mdef)
2745 				manc2h |= (1 << i);
2746 
2747 			j |= mdef;
2748 		}
2749 
2750 		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2751 			break;
2752 
2753 		/* Create new decision filter in an empty filter */
2754 		for (i = 0, j = 0; i < 8; i++)
2755 			if (er32(MDEF(i)) == 0) {
2756 				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2757 					       E1000_MDEF_PORT_664));
2758 				manc2h |= (1 << 1);
2759 				j++;
2760 				break;
2761 			}
2762 
2763 		if (!j)
2764 			e_warn("Unable to create IPMI pass-through filter\n");
2765 		break;
2766 	}
2767 
2768 	ew32(MANC2H, manc2h);
2769 	ew32(MANC, manc);
2770 }
2771 
2772 /**
2773  * e1000_configure_tx - Configure Transmit Unit after Reset
2774  * @adapter: board private structure
2775  *
2776  * Configure the Tx unit of the MAC after a reset.
2777  **/
2778 static void e1000_configure_tx(struct e1000_adapter *adapter)
2779 {
2780 	struct e1000_hw *hw = &adapter->hw;
2781 	struct e1000_ring *tx_ring = adapter->tx_ring;
2782 	u64 tdba;
2783 	u32 tdlen, tarc;
2784 
2785 	/* Setup the HW Tx Head and Tail descriptor pointers */
2786 	tdba = tx_ring->dma;
2787 	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2788 	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2789 	ew32(TDBAH(0), (tdba >> 32));
2790 	ew32(TDLEN(0), tdlen);
2791 	ew32(TDH(0), 0);
2792 	ew32(TDT(0), 0);
2793 	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2794 	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2795 
2796 	/* Set the Tx Interrupt Delay register */
2797 	ew32(TIDV, adapter->tx_int_delay);
2798 	/* Tx irq moderation */
2799 	ew32(TADV, adapter->tx_abs_int_delay);
2800 
2801 	if (adapter->flags2 & FLAG2_DMA_BURST) {
2802 		u32 txdctl = er32(TXDCTL(0));
2803 		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2804 			    E1000_TXDCTL_WTHRESH);
2805 		/*
2806 		 * set up some performance related parameters to encourage the
2807 		 * hardware to use the bus more efficiently in bursts, depends
2808 		 * on the tx_int_delay to be enabled,
2809 		 * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
2810 		 * hthresh = 1 ==> prefetch when one or more available
2811 		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2812 		 * BEWARE: this seems to work but should be considered first if
2813 		 * there are Tx hangs or other Tx related bugs
2814 		 */
2815 		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2816 		ew32(TXDCTL(0), txdctl);
2817 	}
2818 	/* erratum work around: set txdctl the same for both queues */
2819 	ew32(TXDCTL(1), er32(TXDCTL(0)));
2820 
2821 	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2822 		tarc = er32(TARC(0));
2823 		/*
2824 		 * set the speed mode bit, we'll clear it if we're not at
2825 		 * gigabit link later
2826 		 */
2827 #define SPEED_MODE_BIT (1 << 21)
2828 		tarc |= SPEED_MODE_BIT;
2829 		ew32(TARC(0), tarc);
2830 	}
2831 
2832 	/* errata: program both queues to unweighted RR */
2833 	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2834 		tarc = er32(TARC(0));
2835 		tarc |= 1;
2836 		ew32(TARC(0), tarc);
2837 		tarc = er32(TARC(1));
2838 		tarc |= 1;
2839 		ew32(TARC(1), tarc);
2840 	}
2841 
2842 	/* Setup Transmit Descriptor Settings for eop descriptor */
2843 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2844 
2845 	/* only set IDE if we are delaying interrupts using the timers */
2846 	if (adapter->tx_int_delay)
2847 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2848 
2849 	/* enable Report Status bit */
2850 	adapter->txd_cmd |= E1000_TXD_CMD_RS;
2851 
2852 	hw->mac.ops.config_collision_dist(hw);
2853 }
2854 
2855 /**
2856  * e1000_setup_rctl - configure the receive control registers
2857  * @adapter: Board private structure
2858  **/
2859 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2860 			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2861 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2862 {
2863 	struct e1000_hw *hw = &adapter->hw;
2864 	u32 rctl, rfctl;
2865 	u32 pages = 0;
2866 
2867 	/* Workaround Si errata on PCHx - configure jumbo frame flow */
2868 	if (hw->mac.type >= e1000_pch2lan) {
2869 		s32 ret_val;
2870 
2871 		if (adapter->netdev->mtu > ETH_DATA_LEN)
2872 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
2873 		else
2874 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2875 
2876 		if (ret_val)
2877 			e_dbg("failed to enable jumbo frame workaround mode\n");
2878 	}
2879 
2880 	/* Program MC offset vector base */
2881 	rctl = er32(RCTL);
2882 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2883 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2884 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2885 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2886 
2887 	/* Do not Store bad packets */
2888 	rctl &= ~E1000_RCTL_SBP;
2889 
2890 	/* Enable Long Packet receive */
2891 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
2892 		rctl &= ~E1000_RCTL_LPE;
2893 	else
2894 		rctl |= E1000_RCTL_LPE;
2895 
2896 	/* Some systems expect that the CRC is included in SMBUS traffic. The
2897 	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
2898 	 * host memory when this is enabled
2899 	 */
2900 	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2901 		rctl |= E1000_RCTL_SECRC;
2902 
2903 	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2904 	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2905 		u16 phy_data;
2906 
2907 		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2908 		phy_data &= 0xfff8;
2909 		phy_data |= (1 << 2);
2910 		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2911 
2912 		e1e_rphy(hw, 22, &phy_data);
2913 		phy_data &= 0x0fff;
2914 		phy_data |= (1 << 14);
2915 		e1e_wphy(hw, 0x10, 0x2823);
2916 		e1e_wphy(hw, 0x11, 0x0003);
2917 		e1e_wphy(hw, 22, phy_data);
2918 	}
2919 
2920 	/* Setup buffer sizes */
2921 	rctl &= ~E1000_RCTL_SZ_4096;
2922 	rctl |= E1000_RCTL_BSEX;
2923 	switch (adapter->rx_buffer_len) {
2924 	case 2048:
2925 	default:
2926 		rctl |= E1000_RCTL_SZ_2048;
2927 		rctl &= ~E1000_RCTL_BSEX;
2928 		break;
2929 	case 4096:
2930 		rctl |= E1000_RCTL_SZ_4096;
2931 		break;
2932 	case 8192:
2933 		rctl |= E1000_RCTL_SZ_8192;
2934 		break;
2935 	case 16384:
2936 		rctl |= E1000_RCTL_SZ_16384;
2937 		break;
2938 	}
2939 
2940 	/* Enable Extended Status in all Receive Descriptors */
2941 	rfctl = er32(RFCTL);
2942 	rfctl |= E1000_RFCTL_EXTEN;
2943 	ew32(RFCTL, rfctl);
2944 
2945 	/*
2946 	 * 82571 and greater support packet-split where the protocol
2947 	 * header is placed in skb->data and the packet data is
2948 	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2949 	 * In the case of a non-split, skb->data is linearly filled,
2950 	 * followed by the page buffers.  Therefore, skb->data is
2951 	 * sized to hold the largest protocol header.
2952 	 *
2953 	 * allocations using alloc_page take too long for regular MTU
2954 	 * so only enable packet split for jumbo frames
2955 	 *
2956 	 * Using pages when the page size is greater than 16k wastes
2957 	 * a lot of memory, since we allocate 3 pages at all times
2958 	 * per packet.
2959 	 */
2960 	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2961 	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2962 		adapter->rx_ps_pages = pages;
2963 	else
2964 		adapter->rx_ps_pages = 0;
2965 
2966 	if (adapter->rx_ps_pages) {
2967 		u32 psrctl = 0;
2968 
2969 		/* Enable Packet split descriptors */
2970 		rctl |= E1000_RCTL_DTYP_PS;
2971 
2972 		psrctl |= adapter->rx_ps_bsize0 >>
2973 			E1000_PSRCTL_BSIZE0_SHIFT;
2974 
2975 		switch (adapter->rx_ps_pages) {
2976 		case 3:
2977 			psrctl |= PAGE_SIZE <<
2978 				E1000_PSRCTL_BSIZE3_SHIFT;
2979 		case 2:
2980 			psrctl |= PAGE_SIZE <<
2981 				E1000_PSRCTL_BSIZE2_SHIFT;
2982 		case 1:
2983 			psrctl |= PAGE_SIZE >>
2984 				E1000_PSRCTL_BSIZE1_SHIFT;
2985 			break;
2986 		}
2987 
2988 		ew32(PSRCTL, psrctl);
2989 	}
2990 
2991 	/* This is useful for sniffing bad packets. */
2992 	if (adapter->netdev->features & NETIF_F_RXALL) {
2993 		/* UPE and MPE will be handled by normal PROMISC logic
2994 		 * in e1000e_set_rx_mode */
2995 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
2996 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
2997 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
2998 
2999 		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3000 			  E1000_RCTL_DPF | /* Allow filtered pause */
3001 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3002 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3003 		 * and that breaks VLANs.
3004 		 */
3005 	}
3006 
3007 	ew32(RCTL, rctl);
3008 	/* just started the receive unit, no need to restart */
3009 	adapter->flags &= ~FLAG_RX_RESTART_NOW;
3010 }
3011 
3012 /**
3013  * e1000_configure_rx - Configure Receive Unit after Reset
3014  * @adapter: board private structure
3015  *
3016  * Configure the Rx unit of the MAC after a reset.
3017  **/
3018 static void e1000_configure_rx(struct e1000_adapter *adapter)
3019 {
3020 	struct e1000_hw *hw = &adapter->hw;
3021 	struct e1000_ring *rx_ring = adapter->rx_ring;
3022 	u64 rdba;
3023 	u32 rdlen, rctl, rxcsum, ctrl_ext;
3024 
3025 	if (adapter->rx_ps_pages) {
3026 		/* this is a 32 byte descriptor */
3027 		rdlen = rx_ring->count *
3028 		    sizeof(union e1000_rx_desc_packet_split);
3029 		adapter->clean_rx = e1000_clean_rx_irq_ps;
3030 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3031 	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3032 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3033 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3034 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3035 	} else {
3036 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3037 		adapter->clean_rx = e1000_clean_rx_irq;
3038 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3039 	}
3040 
3041 	/* disable receives while setting up the descriptors */
3042 	rctl = er32(RCTL);
3043 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3044 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3045 	e1e_flush();
3046 	usleep_range(10000, 20000);
3047 
3048 	if (adapter->flags2 & FLAG2_DMA_BURST) {
3049 		/*
3050 		 * set the writeback threshold (only takes effect if the RDTR
3051 		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3052 		 * enable prefetching of 0x20 Rx descriptors
3053 		 * granularity = 01
3054 		 * wthresh = 04,
3055 		 * hthresh = 04,
3056 		 * pthresh = 0x20
3057 		 */
3058 		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3059 		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3060 
3061 		/*
3062 		 * override the delay timers for enabling bursting, only if
3063 		 * the value was not set by the user via module options
3064 		 */
3065 		if (adapter->rx_int_delay == DEFAULT_RDTR)
3066 			adapter->rx_int_delay = BURST_RDTR;
3067 		if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3068 			adapter->rx_abs_int_delay = BURST_RADV;
3069 	}
3070 
3071 	/* set the Receive Delay Timer Register */
3072 	ew32(RDTR, adapter->rx_int_delay);
3073 
3074 	/* irq moderation */
3075 	ew32(RADV, adapter->rx_abs_int_delay);
3076 	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3077 		ew32(ITR, 1000000000 / (adapter->itr * 256));
3078 
3079 	ctrl_ext = er32(CTRL_EXT);
3080 	/* Auto-Mask interrupts upon ICR access */
3081 	ctrl_ext |= E1000_CTRL_EXT_IAME;
3082 	ew32(IAM, 0xffffffff);
3083 	ew32(CTRL_EXT, ctrl_ext);
3084 	e1e_flush();
3085 
3086 	/*
3087 	 * Setup the HW Rx Head and Tail Descriptor Pointers and
3088 	 * the Base and Length of the Rx Descriptor Ring
3089 	 */
3090 	rdba = rx_ring->dma;
3091 	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3092 	ew32(RDBAH(0), (rdba >> 32));
3093 	ew32(RDLEN(0), rdlen);
3094 	ew32(RDH(0), 0);
3095 	ew32(RDT(0), 0);
3096 	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3097 	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3098 
3099 	/* Enable Receive Checksum Offload for TCP and UDP */
3100 	rxcsum = er32(RXCSUM);
3101 	if (adapter->netdev->features & NETIF_F_RXCSUM) {
3102 		rxcsum |= E1000_RXCSUM_TUOFL;
3103 
3104 		/*
3105 		 * IPv4 payload checksum for UDP fragments must be
3106 		 * used in conjunction with packet-split.
3107 		 */
3108 		if (adapter->rx_ps_pages)
3109 			rxcsum |= E1000_RXCSUM_IPPCSE;
3110 	} else {
3111 		rxcsum &= ~E1000_RXCSUM_TUOFL;
3112 		/* no need to clear IPPCSE as it defaults to 0 */
3113 	}
3114 	ew32(RXCSUM, rxcsum);
3115 
3116 	if (adapter->hw.mac.type == e1000_pch2lan) {
3117 		/*
3118 		 * With jumbo frames, excessive C-state transition
3119 		 * latencies result in dropped transactions.
3120 		 */
3121 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3122 			u32 rxdctl = er32(RXDCTL(0));
3123 			ew32(RXDCTL(0), rxdctl | 0x3);
3124 			pm_qos_update_request(&adapter->netdev->pm_qos_req, 55);
3125 		} else {
3126 			pm_qos_update_request(&adapter->netdev->pm_qos_req,
3127 					      PM_QOS_DEFAULT_VALUE);
3128 		}
3129 	}
3130 
3131 	/* Enable Receives */
3132 	ew32(RCTL, rctl);
3133 }
3134 
3135 /**
3136  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3137  * @netdev: network interface device structure
3138  *
3139  * Writes multicast address list to the MTA hash table.
3140  * Returns: -ENOMEM on failure
3141  *                0 on no addresses written
3142  *                X on writing X addresses to MTA
3143  */
3144 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3145 {
3146 	struct e1000_adapter *adapter = netdev_priv(netdev);
3147 	struct e1000_hw *hw = &adapter->hw;
3148 	struct netdev_hw_addr *ha;
3149 	u8 *mta_list;
3150 	int i;
3151 
3152 	if (netdev_mc_empty(netdev)) {
3153 		/* nothing to program, so clear mc list */
3154 		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3155 		return 0;
3156 	}
3157 
3158 	mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3159 	if (!mta_list)
3160 		return -ENOMEM;
3161 
3162 	/* update_mc_addr_list expects a packed array of only addresses. */
3163 	i = 0;
3164 	netdev_for_each_mc_addr(ha, netdev)
3165 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3166 
3167 	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3168 	kfree(mta_list);
3169 
3170 	return netdev_mc_count(netdev);
3171 }
3172 
3173 /**
3174  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3175  * @netdev: network interface device structure
3176  *
3177  * Writes unicast address list to the RAR table.
3178  * Returns: -ENOMEM on failure/insufficient address space
3179  *                0 on no addresses written
3180  *                X on writing X addresses to the RAR table
3181  **/
3182 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3183 {
3184 	struct e1000_adapter *adapter = netdev_priv(netdev);
3185 	struct e1000_hw *hw = &adapter->hw;
3186 	unsigned int rar_entries = hw->mac.rar_entry_count;
3187 	int count = 0;
3188 
3189 	/* save a rar entry for our hardware address */
3190 	rar_entries--;
3191 
3192 	/* save a rar entry for the LAA workaround */
3193 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3194 		rar_entries--;
3195 
3196 	/* return ENOMEM indicating insufficient memory for addresses */
3197 	if (netdev_uc_count(netdev) > rar_entries)
3198 		return -ENOMEM;
3199 
3200 	if (!netdev_uc_empty(netdev) && rar_entries) {
3201 		struct netdev_hw_addr *ha;
3202 
3203 		/*
3204 		 * write the addresses in reverse order to avoid write
3205 		 * combining
3206 		 */
3207 		netdev_for_each_uc_addr(ha, netdev) {
3208 			if (!rar_entries)
3209 				break;
3210 			hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3211 			count++;
3212 		}
3213 	}
3214 
3215 	/* zero out the remaining RAR entries not used above */
3216 	for (; rar_entries > 0; rar_entries--) {
3217 		ew32(RAH(rar_entries), 0);
3218 		ew32(RAL(rar_entries), 0);
3219 	}
3220 	e1e_flush();
3221 
3222 	return count;
3223 }
3224 
3225 /**
3226  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3227  * @netdev: network interface device structure
3228  *
3229  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3230  * address list or the network interface flags are updated.  This routine is
3231  * responsible for configuring the hardware for proper unicast, multicast,
3232  * promiscuous mode, and all-multi behavior.
3233  **/
3234 static void e1000e_set_rx_mode(struct net_device *netdev)
3235 {
3236 	struct e1000_adapter *adapter = netdev_priv(netdev);
3237 	struct e1000_hw *hw = &adapter->hw;
3238 	u32 rctl;
3239 
3240 	/* Check for Promiscuous and All Multicast modes */
3241 	rctl = er32(RCTL);
3242 
3243 	/* clear the affected bits */
3244 	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3245 
3246 	if (netdev->flags & IFF_PROMISC) {
3247 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3248 		/* Do not hardware filter VLANs in promisc mode */
3249 		e1000e_vlan_filter_disable(adapter);
3250 	} else {
3251 		int count;
3252 
3253 		if (netdev->flags & IFF_ALLMULTI) {
3254 			rctl |= E1000_RCTL_MPE;
3255 		} else {
3256 			/*
3257 			 * Write addresses to the MTA, if the attempt fails
3258 			 * then we should just turn on promiscuous mode so
3259 			 * that we can at least receive multicast traffic
3260 			 */
3261 			count = e1000e_write_mc_addr_list(netdev);
3262 			if (count < 0)
3263 				rctl |= E1000_RCTL_MPE;
3264 		}
3265 		e1000e_vlan_filter_enable(adapter);
3266 		/*
3267 		 * Write addresses to available RAR registers, if there is not
3268 		 * sufficient space to store all the addresses then enable
3269 		 * unicast promiscuous mode
3270 		 */
3271 		count = e1000e_write_uc_addr_list(netdev);
3272 		if (count < 0)
3273 			rctl |= E1000_RCTL_UPE;
3274 	}
3275 
3276 	ew32(RCTL, rctl);
3277 
3278 	if (netdev->features & NETIF_F_HW_VLAN_RX)
3279 		e1000e_vlan_strip_enable(adapter);
3280 	else
3281 		e1000e_vlan_strip_disable(adapter);
3282 }
3283 
3284 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3285 {
3286 	struct e1000_hw *hw = &adapter->hw;
3287 	u32 mrqc, rxcsum;
3288 	int i;
3289 	static const u32 rsskey[10] = {
3290 		0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
3291 		0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
3292 	};
3293 
3294 	/* Fill out hash function seed */
3295 	for (i = 0; i < 10; i++)
3296 		ew32(RSSRK(i), rsskey[i]);
3297 
3298 	/* Direct all traffic to queue 0 */
3299 	for (i = 0; i < 32; i++)
3300 		ew32(RETA(i), 0);
3301 
3302 	/*
3303 	 * Disable raw packet checksumming so that RSS hash is placed in
3304 	 * descriptor on writeback.
3305 	 */
3306 	rxcsum = er32(RXCSUM);
3307 	rxcsum |= E1000_RXCSUM_PCSD;
3308 
3309 	ew32(RXCSUM, rxcsum);
3310 
3311 	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3312 		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3313 		E1000_MRQC_RSS_FIELD_IPV6 |
3314 		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3315 		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3316 
3317 	ew32(MRQC, mrqc);
3318 }
3319 
3320 /**
3321  * e1000_configure - configure the hardware for Rx and Tx
3322  * @adapter: private board structure
3323  **/
3324 static void e1000_configure(struct e1000_adapter *adapter)
3325 {
3326 	struct e1000_ring *rx_ring = adapter->rx_ring;
3327 
3328 	e1000e_set_rx_mode(adapter->netdev);
3329 
3330 	e1000_restore_vlan(adapter);
3331 	e1000_init_manageability_pt(adapter);
3332 
3333 	e1000_configure_tx(adapter);
3334 
3335 	if (adapter->netdev->features & NETIF_F_RXHASH)
3336 		e1000e_setup_rss_hash(adapter);
3337 	e1000_setup_rctl(adapter);
3338 	e1000_configure_rx(adapter);
3339 	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3340 }
3341 
3342 /**
3343  * e1000e_power_up_phy - restore link in case the phy was powered down
3344  * @adapter: address of board private structure
3345  *
3346  * The phy may be powered down to save power and turn off link when the
3347  * driver is unloaded and wake on lan is not enabled (among others)
3348  * *** this routine MUST be followed by a call to e1000e_reset ***
3349  **/
3350 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3351 {
3352 	if (adapter->hw.phy.ops.power_up)
3353 		adapter->hw.phy.ops.power_up(&adapter->hw);
3354 
3355 	adapter->hw.mac.ops.setup_link(&adapter->hw);
3356 }
3357 
3358 /**
3359  * e1000_power_down_phy - Power down the PHY
3360  *
3361  * Power down the PHY so no link is implied when interface is down.
3362  * The PHY cannot be powered down if management or WoL is active.
3363  */
3364 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3365 {
3366 	/* WoL is enabled */
3367 	if (adapter->wol)
3368 		return;
3369 
3370 	if (adapter->hw.phy.ops.power_down)
3371 		adapter->hw.phy.ops.power_down(&adapter->hw);
3372 }
3373 
3374 /**
3375  * e1000e_reset - bring the hardware into a known good state
3376  *
3377  * This function boots the hardware and enables some settings that
3378  * require a configuration cycle of the hardware - those cannot be
3379  * set/changed during runtime. After reset the device needs to be
3380  * properly configured for Rx, Tx etc.
3381  */
3382 void e1000e_reset(struct e1000_adapter *adapter)
3383 {
3384 	struct e1000_mac_info *mac = &adapter->hw.mac;
3385 	struct e1000_fc_info *fc = &adapter->hw.fc;
3386 	struct e1000_hw *hw = &adapter->hw;
3387 	u32 tx_space, min_tx_space, min_rx_space;
3388 	u32 pba = adapter->pba;
3389 	u16 hwm;
3390 
3391 	/* reset Packet Buffer Allocation to default */
3392 	ew32(PBA, pba);
3393 
3394 	if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3395 		/*
3396 		 * To maintain wire speed transmits, the Tx FIFO should be
3397 		 * large enough to accommodate two full transmit packets,
3398 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3399 		 * the Rx FIFO should be large enough to accommodate at least
3400 		 * one full receive packet and is similarly rounded up and
3401 		 * expressed in KB.
3402 		 */
3403 		pba = er32(PBA);
3404 		/* upper 16 bits has Tx packet buffer allocation size in KB */
3405 		tx_space = pba >> 16;
3406 		/* lower 16 bits has Rx packet buffer allocation size in KB */
3407 		pba &= 0xffff;
3408 		/*
3409 		 * the Tx fifo also stores 16 bytes of information about the Tx
3410 		 * but don't include ethernet FCS because hardware appends it
3411 		 */
3412 		min_tx_space = (adapter->max_frame_size +
3413 				sizeof(struct e1000_tx_desc) -
3414 				ETH_FCS_LEN) * 2;
3415 		min_tx_space = ALIGN(min_tx_space, 1024);
3416 		min_tx_space >>= 10;
3417 		/* software strips receive CRC, so leave room for it */
3418 		min_rx_space = adapter->max_frame_size;
3419 		min_rx_space = ALIGN(min_rx_space, 1024);
3420 		min_rx_space >>= 10;
3421 
3422 		/*
3423 		 * If current Tx allocation is less than the min Tx FIFO size,
3424 		 * and the min Tx FIFO size is less than the current Rx FIFO
3425 		 * allocation, take space away from current Rx allocation
3426 		 */
3427 		if ((tx_space < min_tx_space) &&
3428 		    ((min_tx_space - tx_space) < pba)) {
3429 			pba -= min_tx_space - tx_space;
3430 
3431 			/*
3432 			 * if short on Rx space, Rx wins and must trump Tx
3433 			 * adjustment or use Early Receive if available
3434 			 */
3435 			if (pba < min_rx_space)
3436 				pba = min_rx_space;
3437 		}
3438 
3439 		ew32(PBA, pba);
3440 	}
3441 
3442 	/*
3443 	 * flow control settings
3444 	 *
3445 	 * The high water mark must be low enough to fit one full frame
3446 	 * (or the size used for early receive) above it in the Rx FIFO.
3447 	 * Set it to the lower of:
3448 	 * - 90% of the Rx FIFO size, and
3449 	 * - the full Rx FIFO size minus one full frame
3450 	 */
3451 	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3452 		fc->pause_time = 0xFFFF;
3453 	else
3454 		fc->pause_time = E1000_FC_PAUSE_TIME;
3455 	fc->send_xon = true;
3456 	fc->current_mode = fc->requested_mode;
3457 
3458 	switch (hw->mac.type) {
3459 	case e1000_ich9lan:
3460 	case e1000_ich10lan:
3461 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3462 			pba = 14;
3463 			ew32(PBA, pba);
3464 			fc->high_water = 0x2800;
3465 			fc->low_water = fc->high_water - 8;
3466 			break;
3467 		}
3468 		/* fall-through */
3469 	default:
3470 		hwm = min(((pba << 10) * 9 / 10),
3471 			  ((pba << 10) - adapter->max_frame_size));
3472 
3473 		fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3474 		fc->low_water = fc->high_water - 8;
3475 		break;
3476 	case e1000_pchlan:
3477 		/*
3478 		 * Workaround PCH LOM adapter hangs with certain network
3479 		 * loads.  If hangs persist, try disabling Tx flow control.
3480 		 */
3481 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3482 			fc->high_water = 0x3500;
3483 			fc->low_water  = 0x1500;
3484 		} else {
3485 			fc->high_water = 0x5000;
3486 			fc->low_water  = 0x3000;
3487 		}
3488 		fc->refresh_time = 0x1000;
3489 		break;
3490 	case e1000_pch2lan:
3491 	case e1000_pch_lpt:
3492 		fc->high_water = 0x05C20;
3493 		fc->low_water = 0x05048;
3494 		fc->pause_time = 0x0650;
3495 		fc->refresh_time = 0x0400;
3496 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3497 			pba = 14;
3498 			ew32(PBA, pba);
3499 		}
3500 		break;
3501 	}
3502 
3503 	/*
3504 	 * Disable Adaptive Interrupt Moderation if 2 full packets cannot
3505 	 * fit in receive buffer.
3506 	 */
3507 	if (adapter->itr_setting & 0x3) {
3508 		if ((adapter->max_frame_size * 2) > (pba << 10)) {
3509 			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3510 				dev_info(&adapter->pdev->dev,
3511 					"Interrupt Throttle Rate turned off\n");
3512 				adapter->flags2 |= FLAG2_DISABLE_AIM;
3513 				ew32(ITR, 0);
3514 			}
3515 		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3516 			dev_info(&adapter->pdev->dev,
3517 				 "Interrupt Throttle Rate turned on\n");
3518 			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3519 			adapter->itr = 20000;
3520 			ew32(ITR, 1000000000 / (adapter->itr * 256));
3521 		}
3522 	}
3523 
3524 	/* Allow time for pending master requests to run */
3525 	mac->ops.reset_hw(hw);
3526 
3527 	/*
3528 	 * For parts with AMT enabled, let the firmware know
3529 	 * that the network interface is in control
3530 	 */
3531 	if (adapter->flags & FLAG_HAS_AMT)
3532 		e1000e_get_hw_control(adapter);
3533 
3534 	ew32(WUC, 0);
3535 
3536 	if (mac->ops.init_hw(hw))
3537 		e_err("Hardware Error\n");
3538 
3539 	e1000_update_mng_vlan(adapter);
3540 
3541 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3542 	ew32(VET, ETH_P_8021Q);
3543 
3544 	e1000e_reset_adaptive(hw);
3545 
3546 	if (!netif_running(adapter->netdev) &&
3547 	    !test_bit(__E1000_TESTING, &adapter->state)) {
3548 		e1000_power_down_phy(adapter);
3549 		return;
3550 	}
3551 
3552 	e1000_get_phy_info(hw);
3553 
3554 	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3555 	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3556 		u16 phy_data = 0;
3557 		/*
3558 		 * speed up time to link by disabling smart power down, ignore
3559 		 * the return value of this function because there is nothing
3560 		 * different we would do if it failed
3561 		 */
3562 		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3563 		phy_data &= ~IGP02E1000_PM_SPD;
3564 		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3565 	}
3566 }
3567 
3568 int e1000e_up(struct e1000_adapter *adapter)
3569 {
3570 	struct e1000_hw *hw = &adapter->hw;
3571 
3572 	/* hardware has been reset, we need to reload some things */
3573 	e1000_configure(adapter);
3574 
3575 	clear_bit(__E1000_DOWN, &adapter->state);
3576 
3577 	if (adapter->msix_entries)
3578 		e1000_configure_msix(adapter);
3579 	e1000_irq_enable(adapter);
3580 
3581 	netif_start_queue(adapter->netdev);
3582 
3583 	/* fire a link change interrupt to start the watchdog */
3584 	if (adapter->msix_entries)
3585 		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3586 	else
3587 		ew32(ICS, E1000_ICS_LSC);
3588 
3589 	return 0;
3590 }
3591 
3592 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
3593 {
3594 	struct e1000_hw *hw = &adapter->hw;
3595 
3596 	if (!(adapter->flags2 & FLAG2_DMA_BURST))
3597 		return;
3598 
3599 	/* flush pending descriptor writebacks to memory */
3600 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3601 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3602 
3603 	/* execute the writes immediately */
3604 	e1e_flush();
3605 
3606 	/*
3607 	 * due to rare timing issues, write to TIDV/RDTR again to ensure the
3608 	 * write is successful
3609 	 */
3610 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3611 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3612 
3613 	/* execute the writes immediately */
3614 	e1e_flush();
3615 }
3616 
3617 static void e1000e_update_stats(struct e1000_adapter *adapter);
3618 
3619 void e1000e_down(struct e1000_adapter *adapter)
3620 {
3621 	struct net_device *netdev = adapter->netdev;
3622 	struct e1000_hw *hw = &adapter->hw;
3623 	u32 tctl, rctl;
3624 
3625 	/*
3626 	 * signal that we're down so the interrupt handler does not
3627 	 * reschedule our watchdog timer
3628 	 */
3629 	set_bit(__E1000_DOWN, &adapter->state);
3630 
3631 	/* disable receives in the hardware */
3632 	rctl = er32(RCTL);
3633 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3634 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3635 	/* flush and sleep below */
3636 
3637 	netif_stop_queue(netdev);
3638 
3639 	/* disable transmits in the hardware */
3640 	tctl = er32(TCTL);
3641 	tctl &= ~E1000_TCTL_EN;
3642 	ew32(TCTL, tctl);
3643 
3644 	/* flush both disables and wait for them to finish */
3645 	e1e_flush();
3646 	usleep_range(10000, 20000);
3647 
3648 	e1000_irq_disable(adapter);
3649 
3650 	del_timer_sync(&adapter->watchdog_timer);
3651 	del_timer_sync(&adapter->phy_info_timer);
3652 
3653 	netif_carrier_off(netdev);
3654 
3655 	spin_lock(&adapter->stats64_lock);
3656 	e1000e_update_stats(adapter);
3657 	spin_unlock(&adapter->stats64_lock);
3658 
3659 	e1000e_flush_descriptors(adapter);
3660 	e1000_clean_tx_ring(adapter->tx_ring);
3661 	e1000_clean_rx_ring(adapter->rx_ring);
3662 
3663 	adapter->link_speed = 0;
3664 	adapter->link_duplex = 0;
3665 
3666 	if (!pci_channel_offline(adapter->pdev))
3667 		e1000e_reset(adapter);
3668 
3669 	/*
3670 	 * TODO: for power management, we could drop the link and
3671 	 * pci_disable_device here.
3672 	 */
3673 }
3674 
3675 void e1000e_reinit_locked(struct e1000_adapter *adapter)
3676 {
3677 	might_sleep();
3678 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3679 		usleep_range(1000, 2000);
3680 	e1000e_down(adapter);
3681 	e1000e_up(adapter);
3682 	clear_bit(__E1000_RESETTING, &adapter->state);
3683 }
3684 
3685 /**
3686  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
3687  * @adapter: board private structure to initialize
3688  *
3689  * e1000_sw_init initializes the Adapter private data structure.
3690  * Fields are initialized based on PCI device information and
3691  * OS network device settings (MTU size).
3692  **/
3693 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
3694 {
3695 	struct net_device *netdev = adapter->netdev;
3696 
3697 	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
3698 	adapter->rx_ps_bsize0 = 128;
3699 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
3700 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3701 	adapter->tx_ring_count = E1000_DEFAULT_TXD;
3702 	adapter->rx_ring_count = E1000_DEFAULT_RXD;
3703 
3704 	spin_lock_init(&adapter->stats64_lock);
3705 
3706 	e1000e_set_interrupt_capability(adapter);
3707 
3708 	if (e1000_alloc_queues(adapter))
3709 		return -ENOMEM;
3710 
3711 	/* Explicitly disable IRQ since the NIC can be in any state. */
3712 	e1000_irq_disable(adapter);
3713 
3714 	set_bit(__E1000_DOWN, &adapter->state);
3715 	return 0;
3716 }
3717 
3718 /**
3719  * e1000_intr_msi_test - Interrupt Handler
3720  * @irq: interrupt number
3721  * @data: pointer to a network interface device structure
3722  **/
3723 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
3724 {
3725 	struct net_device *netdev = data;
3726 	struct e1000_adapter *adapter = netdev_priv(netdev);
3727 	struct e1000_hw *hw = &adapter->hw;
3728 	u32 icr = er32(ICR);
3729 
3730 	e_dbg("icr is %08X\n", icr);
3731 	if (icr & E1000_ICR_RXSEQ) {
3732 		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
3733 		wmb();
3734 	}
3735 
3736 	return IRQ_HANDLED;
3737 }
3738 
3739 /**
3740  * e1000_test_msi_interrupt - Returns 0 for successful test
3741  * @adapter: board private struct
3742  *
3743  * code flow taken from tg3.c
3744  **/
3745 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
3746 {
3747 	struct net_device *netdev = adapter->netdev;
3748 	struct e1000_hw *hw = &adapter->hw;
3749 	int err;
3750 
3751 	/* poll_enable hasn't been called yet, so don't need disable */
3752 	/* clear any pending events */
3753 	er32(ICR);
3754 
3755 	/* free the real vector and request a test handler */
3756 	e1000_free_irq(adapter);
3757 	e1000e_reset_interrupt_capability(adapter);
3758 
3759 	/* Assume that the test fails, if it succeeds then the test
3760 	 * MSI irq handler will unset this flag */
3761 	adapter->flags |= FLAG_MSI_TEST_FAILED;
3762 
3763 	err = pci_enable_msi(adapter->pdev);
3764 	if (err)
3765 		goto msi_test_failed;
3766 
3767 	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3768 			  netdev->name, netdev);
3769 	if (err) {
3770 		pci_disable_msi(adapter->pdev);
3771 		goto msi_test_failed;
3772 	}
3773 
3774 	wmb();
3775 
3776 	e1000_irq_enable(adapter);
3777 
3778 	/* fire an unusual interrupt on the test handler */
3779 	ew32(ICS, E1000_ICS_RXSEQ);
3780 	e1e_flush();
3781 	msleep(100);
3782 
3783 	e1000_irq_disable(adapter);
3784 
3785 	rmb();
3786 
3787 	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3788 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
3789 		e_info("MSI interrupt test failed, using legacy interrupt.\n");
3790 	} else {
3791 		e_dbg("MSI interrupt test succeeded!\n");
3792 	}
3793 
3794 	free_irq(adapter->pdev->irq, netdev);
3795 	pci_disable_msi(adapter->pdev);
3796 
3797 msi_test_failed:
3798 	e1000e_set_interrupt_capability(adapter);
3799 	return e1000_request_irq(adapter);
3800 }
3801 
3802 /**
3803  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3804  * @adapter: board private struct
3805  *
3806  * code flow taken from tg3.c, called with e1000 interrupts disabled.
3807  **/
3808 static int e1000_test_msi(struct e1000_adapter *adapter)
3809 {
3810 	int err;
3811 	u16 pci_cmd;
3812 
3813 	if (!(adapter->flags & FLAG_MSI_ENABLED))
3814 		return 0;
3815 
3816 	/* disable SERR in case the MSI write causes a master abort */
3817 	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3818 	if (pci_cmd & PCI_COMMAND_SERR)
3819 		pci_write_config_word(adapter->pdev, PCI_COMMAND,
3820 				      pci_cmd & ~PCI_COMMAND_SERR);
3821 
3822 	err = e1000_test_msi_interrupt(adapter);
3823 
3824 	/* re-enable SERR */
3825 	if (pci_cmd & PCI_COMMAND_SERR) {
3826 		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3827 		pci_cmd |= PCI_COMMAND_SERR;
3828 		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3829 	}
3830 
3831 	return err;
3832 }
3833 
3834 /**
3835  * e1000_open - Called when a network interface is made active
3836  * @netdev: network interface device structure
3837  *
3838  * Returns 0 on success, negative value on failure
3839  *
3840  * The open entry point is called when a network interface is made
3841  * active by the system (IFF_UP).  At this point all resources needed
3842  * for transmit and receive operations are allocated, the interrupt
3843  * handler is registered with the OS, the watchdog timer is started,
3844  * and the stack is notified that the interface is ready.
3845  **/
3846 static int e1000_open(struct net_device *netdev)
3847 {
3848 	struct e1000_adapter *adapter = netdev_priv(netdev);
3849 	struct e1000_hw *hw = &adapter->hw;
3850 	struct pci_dev *pdev = adapter->pdev;
3851 	int err;
3852 
3853 	/* disallow open during test */
3854 	if (test_bit(__E1000_TESTING, &adapter->state))
3855 		return -EBUSY;
3856 
3857 	pm_runtime_get_sync(&pdev->dev);
3858 
3859 	netif_carrier_off(netdev);
3860 
3861 	/* allocate transmit descriptors */
3862 	err = e1000e_setup_tx_resources(adapter->tx_ring);
3863 	if (err)
3864 		goto err_setup_tx;
3865 
3866 	/* allocate receive descriptors */
3867 	err = e1000e_setup_rx_resources(adapter->rx_ring);
3868 	if (err)
3869 		goto err_setup_rx;
3870 
3871 	/*
3872 	 * If AMT is enabled, let the firmware know that the network
3873 	 * interface is now open and reset the part to a known state.
3874 	 */
3875 	if (adapter->flags & FLAG_HAS_AMT) {
3876 		e1000e_get_hw_control(adapter);
3877 		e1000e_reset(adapter);
3878 	}
3879 
3880 	e1000e_power_up_phy(adapter);
3881 
3882 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3883 	if ((adapter->hw.mng_cookie.status &
3884 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3885 		e1000_update_mng_vlan(adapter);
3886 
3887 	/* DMA latency requirement to workaround jumbo issue */
3888 	if (adapter->hw.mac.type == e1000_pch2lan)
3889 		pm_qos_add_request(&adapter->netdev->pm_qos_req,
3890 				   PM_QOS_CPU_DMA_LATENCY,
3891 				   PM_QOS_DEFAULT_VALUE);
3892 
3893 	/*
3894 	 * before we allocate an interrupt, we must be ready to handle it.
3895 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3896 	 * as soon as we call pci_request_irq, so we have to setup our
3897 	 * clean_rx handler before we do so.
3898 	 */
3899 	e1000_configure(adapter);
3900 
3901 	err = e1000_request_irq(adapter);
3902 	if (err)
3903 		goto err_req_irq;
3904 
3905 	/*
3906 	 * Work around PCIe errata with MSI interrupts causing some chipsets to
3907 	 * ignore e1000e MSI messages, which means we need to test our MSI
3908 	 * interrupt now
3909 	 */
3910 	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3911 		err = e1000_test_msi(adapter);
3912 		if (err) {
3913 			e_err("Interrupt allocation failed\n");
3914 			goto err_req_irq;
3915 		}
3916 	}
3917 
3918 	/* From here on the code is the same as e1000e_up() */
3919 	clear_bit(__E1000_DOWN, &adapter->state);
3920 
3921 	napi_enable(&adapter->napi);
3922 
3923 	e1000_irq_enable(adapter);
3924 
3925 	adapter->tx_hang_recheck = false;
3926 	netif_start_queue(netdev);
3927 
3928 	adapter->idle_check = true;
3929 	pm_runtime_put(&pdev->dev);
3930 
3931 	/* fire a link status change interrupt to start the watchdog */
3932 	if (adapter->msix_entries)
3933 		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3934 	else
3935 		ew32(ICS, E1000_ICS_LSC);
3936 
3937 	return 0;
3938 
3939 err_req_irq:
3940 	e1000e_release_hw_control(adapter);
3941 	e1000_power_down_phy(adapter);
3942 	e1000e_free_rx_resources(adapter->rx_ring);
3943 err_setup_rx:
3944 	e1000e_free_tx_resources(adapter->tx_ring);
3945 err_setup_tx:
3946 	e1000e_reset(adapter);
3947 	pm_runtime_put_sync(&pdev->dev);
3948 
3949 	return err;
3950 }
3951 
3952 /**
3953  * e1000_close - Disables a network interface
3954  * @netdev: network interface device structure
3955  *
3956  * Returns 0, this is not allowed to fail
3957  *
3958  * The close entry point is called when an interface is de-activated
3959  * by the OS.  The hardware is still under the drivers control, but
3960  * needs to be disabled.  A global MAC reset is issued to stop the
3961  * hardware, and all transmit and receive resources are freed.
3962  **/
3963 static int e1000_close(struct net_device *netdev)
3964 {
3965 	struct e1000_adapter *adapter = netdev_priv(netdev);
3966 	struct pci_dev *pdev = adapter->pdev;
3967 	int count = E1000_CHECK_RESET_COUNT;
3968 
3969 	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
3970 		usleep_range(10000, 20000);
3971 
3972 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3973 
3974 	pm_runtime_get_sync(&pdev->dev);
3975 
3976 	napi_disable(&adapter->napi);
3977 
3978 	if (!test_bit(__E1000_DOWN, &adapter->state)) {
3979 		e1000e_down(adapter);
3980 		e1000_free_irq(adapter);
3981 	}
3982 	e1000_power_down_phy(adapter);
3983 
3984 	e1000e_free_tx_resources(adapter->tx_ring);
3985 	e1000e_free_rx_resources(adapter->rx_ring);
3986 
3987 	/*
3988 	 * kill manageability vlan ID if supported, but not if a vlan with
3989 	 * the same ID is registered on the host OS (let 8021q kill it)
3990 	 */
3991 	if (adapter->hw.mng_cookie.status &
3992 	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
3993 		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3994 
3995 	/*
3996 	 * If AMT is enabled, let the firmware know that the network
3997 	 * interface is now closed
3998 	 */
3999 	if ((adapter->flags & FLAG_HAS_AMT) &&
4000 	    !test_bit(__E1000_TESTING, &adapter->state))
4001 		e1000e_release_hw_control(adapter);
4002 
4003 	if (adapter->hw.mac.type == e1000_pch2lan)
4004 		pm_qos_remove_request(&adapter->netdev->pm_qos_req);
4005 
4006 	pm_runtime_put_sync(&pdev->dev);
4007 
4008 	return 0;
4009 }
4010 /**
4011  * e1000_set_mac - Change the Ethernet Address of the NIC
4012  * @netdev: network interface device structure
4013  * @p: pointer to an address structure
4014  *
4015  * Returns 0 on success, negative on failure
4016  **/
4017 static int e1000_set_mac(struct net_device *netdev, void *p)
4018 {
4019 	struct e1000_adapter *adapter = netdev_priv(netdev);
4020 	struct e1000_hw *hw = &adapter->hw;
4021 	struct sockaddr *addr = p;
4022 
4023 	if (!is_valid_ether_addr(addr->sa_data))
4024 		return -EADDRNOTAVAIL;
4025 
4026 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4027 	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4028 
4029 	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4030 
4031 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4032 		/* activate the work around */
4033 		e1000e_set_laa_state_82571(&adapter->hw, 1);
4034 
4035 		/*
4036 		 * Hold a copy of the LAA in RAR[14] This is done so that
4037 		 * between the time RAR[0] gets clobbered  and the time it
4038 		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4039 		 * of the RARs and no incoming packets directed to this port
4040 		 * are dropped. Eventually the LAA will be in RAR[0] and
4041 		 * RAR[14]
4042 		 */
4043 		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4044 				    adapter->hw.mac.rar_entry_count - 1);
4045 	}
4046 
4047 	return 0;
4048 }
4049 
4050 /**
4051  * e1000e_update_phy_task - work thread to update phy
4052  * @work: pointer to our work struct
4053  *
4054  * this worker thread exists because we must acquire a
4055  * semaphore to read the phy, which we could msleep while
4056  * waiting for it, and we can't msleep in a timer.
4057  **/
4058 static void e1000e_update_phy_task(struct work_struct *work)
4059 {
4060 	struct e1000_adapter *adapter = container_of(work,
4061 					struct e1000_adapter, update_phy_task);
4062 
4063 	if (test_bit(__E1000_DOWN, &adapter->state))
4064 		return;
4065 
4066 	e1000_get_phy_info(&adapter->hw);
4067 }
4068 
4069 /*
4070  * Need to wait a few seconds after link up to get diagnostic information from
4071  * the phy
4072  */
4073 static void e1000_update_phy_info(unsigned long data)
4074 {
4075 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4076 
4077 	if (test_bit(__E1000_DOWN, &adapter->state))
4078 		return;
4079 
4080 	schedule_work(&adapter->update_phy_task);
4081 }
4082 
4083 /**
4084  * e1000e_update_phy_stats - Update the PHY statistics counters
4085  * @adapter: board private structure
4086  *
4087  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4088  **/
4089 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4090 {
4091 	struct e1000_hw *hw = &adapter->hw;
4092 	s32 ret_val;
4093 	u16 phy_data;
4094 
4095 	ret_val = hw->phy.ops.acquire(hw);
4096 	if (ret_val)
4097 		return;
4098 
4099 	/*
4100 	 * A page set is expensive so check if already on desired page.
4101 	 * If not, set to the page with the PHY status registers.
4102 	 */
4103 	hw->phy.addr = 1;
4104 	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4105 					   &phy_data);
4106 	if (ret_val)
4107 		goto release;
4108 	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4109 		ret_val = hw->phy.ops.set_page(hw,
4110 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4111 		if (ret_val)
4112 			goto release;
4113 	}
4114 
4115 	/* Single Collision Count */
4116 	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4117 	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4118 	if (!ret_val)
4119 		adapter->stats.scc += phy_data;
4120 
4121 	/* Excessive Collision Count */
4122 	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4123 	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4124 	if (!ret_val)
4125 		adapter->stats.ecol += phy_data;
4126 
4127 	/* Multiple Collision Count */
4128 	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4129 	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4130 	if (!ret_val)
4131 		adapter->stats.mcc += phy_data;
4132 
4133 	/* Late Collision Count */
4134 	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4135 	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4136 	if (!ret_val)
4137 		adapter->stats.latecol += phy_data;
4138 
4139 	/* Collision Count - also used for adaptive IFS */
4140 	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4141 	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4142 	if (!ret_val)
4143 		hw->mac.collision_delta = phy_data;
4144 
4145 	/* Defer Count */
4146 	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4147 	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4148 	if (!ret_val)
4149 		adapter->stats.dc += phy_data;
4150 
4151 	/* Transmit with no CRS */
4152 	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4153 	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4154 	if (!ret_val)
4155 		adapter->stats.tncrs += phy_data;
4156 
4157 release:
4158 	hw->phy.ops.release(hw);
4159 }
4160 
4161 /**
4162  * e1000e_update_stats - Update the board statistics counters
4163  * @adapter: board private structure
4164  **/
4165 static void e1000e_update_stats(struct e1000_adapter *adapter)
4166 {
4167 	struct net_device *netdev = adapter->netdev;
4168 	struct e1000_hw *hw = &adapter->hw;
4169 	struct pci_dev *pdev = adapter->pdev;
4170 
4171 	/*
4172 	 * Prevent stats update while adapter is being reset, or if the pci
4173 	 * connection is down.
4174 	 */
4175 	if (adapter->link_speed == 0)
4176 		return;
4177 	if (pci_channel_offline(pdev))
4178 		return;
4179 
4180 	adapter->stats.crcerrs += er32(CRCERRS);
4181 	adapter->stats.gprc += er32(GPRC);
4182 	adapter->stats.gorc += er32(GORCL);
4183 	er32(GORCH); /* Clear gorc */
4184 	adapter->stats.bprc += er32(BPRC);
4185 	adapter->stats.mprc += er32(MPRC);
4186 	adapter->stats.roc += er32(ROC);
4187 
4188 	adapter->stats.mpc += er32(MPC);
4189 
4190 	/* Half-duplex statistics */
4191 	if (adapter->link_duplex == HALF_DUPLEX) {
4192 		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4193 			e1000e_update_phy_stats(adapter);
4194 		} else {
4195 			adapter->stats.scc += er32(SCC);
4196 			adapter->stats.ecol += er32(ECOL);
4197 			adapter->stats.mcc += er32(MCC);
4198 			adapter->stats.latecol += er32(LATECOL);
4199 			adapter->stats.dc += er32(DC);
4200 
4201 			hw->mac.collision_delta = er32(COLC);
4202 
4203 			if ((hw->mac.type != e1000_82574) &&
4204 			    (hw->mac.type != e1000_82583))
4205 				adapter->stats.tncrs += er32(TNCRS);
4206 		}
4207 		adapter->stats.colc += hw->mac.collision_delta;
4208 	}
4209 
4210 	adapter->stats.xonrxc += er32(XONRXC);
4211 	adapter->stats.xontxc += er32(XONTXC);
4212 	adapter->stats.xoffrxc += er32(XOFFRXC);
4213 	adapter->stats.xofftxc += er32(XOFFTXC);
4214 	adapter->stats.gptc += er32(GPTC);
4215 	adapter->stats.gotc += er32(GOTCL);
4216 	er32(GOTCH); /* Clear gotc */
4217 	adapter->stats.rnbc += er32(RNBC);
4218 	adapter->stats.ruc += er32(RUC);
4219 
4220 	adapter->stats.mptc += er32(MPTC);
4221 	adapter->stats.bptc += er32(BPTC);
4222 
4223 	/* used for adaptive IFS */
4224 
4225 	hw->mac.tx_packet_delta = er32(TPT);
4226 	adapter->stats.tpt += hw->mac.tx_packet_delta;
4227 
4228 	adapter->stats.algnerrc += er32(ALGNERRC);
4229 	adapter->stats.rxerrc += er32(RXERRC);
4230 	adapter->stats.cexterr += er32(CEXTERR);
4231 	adapter->stats.tsctc += er32(TSCTC);
4232 	adapter->stats.tsctfc += er32(TSCTFC);
4233 
4234 	/* Fill out the OS statistics structure */
4235 	netdev->stats.multicast = adapter->stats.mprc;
4236 	netdev->stats.collisions = adapter->stats.colc;
4237 
4238 	/* Rx Errors */
4239 
4240 	/*
4241 	 * RLEC on some newer hardware can be incorrect so build
4242 	 * our own version based on RUC and ROC
4243 	 */
4244 	netdev->stats.rx_errors = adapter->stats.rxerrc +
4245 		adapter->stats.crcerrs + adapter->stats.algnerrc +
4246 		adapter->stats.ruc + adapter->stats.roc +
4247 		adapter->stats.cexterr;
4248 	netdev->stats.rx_length_errors = adapter->stats.ruc +
4249 					      adapter->stats.roc;
4250 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4251 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4252 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
4253 
4254 	/* Tx Errors */
4255 	netdev->stats.tx_errors = adapter->stats.ecol +
4256 				       adapter->stats.latecol;
4257 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4258 	netdev->stats.tx_window_errors = adapter->stats.latecol;
4259 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4260 
4261 	/* Tx Dropped needs to be maintained elsewhere */
4262 
4263 	/* Management Stats */
4264 	adapter->stats.mgptc += er32(MGTPTC);
4265 	adapter->stats.mgprc += er32(MGTPRC);
4266 	adapter->stats.mgpdc += er32(MGTPDC);
4267 }
4268 
4269 /**
4270  * e1000_phy_read_status - Update the PHY register status snapshot
4271  * @adapter: board private structure
4272  **/
4273 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4274 {
4275 	struct e1000_hw *hw = &adapter->hw;
4276 	struct e1000_phy_regs *phy = &adapter->phy_regs;
4277 
4278 	if ((er32(STATUS) & E1000_STATUS_LU) &&
4279 	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4280 		int ret_val;
4281 
4282 		ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
4283 		ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
4284 		ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
4285 		ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
4286 		ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
4287 		ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
4288 		ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
4289 		ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
4290 		if (ret_val)
4291 			e_warn("Error reading PHY register\n");
4292 	} else {
4293 		/*
4294 		 * Do not read PHY registers if link is not up
4295 		 * Set values to typical power-on defaults
4296 		 */
4297 		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4298 		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4299 			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4300 			     BMSR_ERCAP);
4301 		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4302 				  ADVERTISE_ALL | ADVERTISE_CSMA);
4303 		phy->lpa = 0;
4304 		phy->expansion = EXPANSION_ENABLENPAGE;
4305 		phy->ctrl1000 = ADVERTISE_1000FULL;
4306 		phy->stat1000 = 0;
4307 		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4308 	}
4309 }
4310 
4311 static void e1000_print_link_info(struct e1000_adapter *adapter)
4312 {
4313 	struct e1000_hw *hw = &adapter->hw;
4314 	u32 ctrl = er32(CTRL);
4315 
4316 	/* Link status message must follow this format for user tools */
4317 	printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4318 		adapter->netdev->name,
4319 		adapter->link_speed,
4320 		adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4321 		(ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4322 		(ctrl & E1000_CTRL_RFCE) ? "Rx" :
4323 		(ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4324 }
4325 
4326 static bool e1000e_has_link(struct e1000_adapter *adapter)
4327 {
4328 	struct e1000_hw *hw = &adapter->hw;
4329 	bool link_active = false;
4330 	s32 ret_val = 0;
4331 
4332 	/*
4333 	 * get_link_status is set on LSC (link status) interrupt or
4334 	 * Rx sequence error interrupt.  get_link_status will stay
4335 	 * false until the check_for_link establishes link
4336 	 * for copper adapters ONLY
4337 	 */
4338 	switch (hw->phy.media_type) {
4339 	case e1000_media_type_copper:
4340 		if (hw->mac.get_link_status) {
4341 			ret_val = hw->mac.ops.check_for_link(hw);
4342 			link_active = !hw->mac.get_link_status;
4343 		} else {
4344 			link_active = true;
4345 		}
4346 		break;
4347 	case e1000_media_type_fiber:
4348 		ret_val = hw->mac.ops.check_for_link(hw);
4349 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4350 		break;
4351 	case e1000_media_type_internal_serdes:
4352 		ret_val = hw->mac.ops.check_for_link(hw);
4353 		link_active = adapter->hw.mac.serdes_has_link;
4354 		break;
4355 	default:
4356 	case e1000_media_type_unknown:
4357 		break;
4358 	}
4359 
4360 	if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4361 	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4362 		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4363 		e_info("Gigabit has been disabled, downgrading speed\n");
4364 	}
4365 
4366 	return link_active;
4367 }
4368 
4369 static void e1000e_enable_receives(struct e1000_adapter *adapter)
4370 {
4371 	/* make sure the receive unit is started */
4372 	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4373 	    (adapter->flags & FLAG_RX_RESTART_NOW)) {
4374 		struct e1000_hw *hw = &adapter->hw;
4375 		u32 rctl = er32(RCTL);
4376 		ew32(RCTL, rctl | E1000_RCTL_EN);
4377 		adapter->flags &= ~FLAG_RX_RESTART_NOW;
4378 	}
4379 }
4380 
4381 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4382 {
4383 	struct e1000_hw *hw = &adapter->hw;
4384 
4385 	/*
4386 	 * With 82574 controllers, PHY needs to be checked periodically
4387 	 * for hung state and reset, if two calls return true
4388 	 */
4389 	if (e1000_check_phy_82574(hw))
4390 		adapter->phy_hang_count++;
4391 	else
4392 		adapter->phy_hang_count = 0;
4393 
4394 	if (adapter->phy_hang_count > 1) {
4395 		adapter->phy_hang_count = 0;
4396 		schedule_work(&adapter->reset_task);
4397 	}
4398 }
4399 
4400 /**
4401  * e1000_watchdog - Timer Call-back
4402  * @data: pointer to adapter cast into an unsigned long
4403  **/
4404 static void e1000_watchdog(unsigned long data)
4405 {
4406 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4407 
4408 	/* Do the rest outside of interrupt context */
4409 	schedule_work(&adapter->watchdog_task);
4410 
4411 	/* TODO: make this use queue_delayed_work() */
4412 }
4413 
4414 static void e1000_watchdog_task(struct work_struct *work)
4415 {
4416 	struct e1000_adapter *adapter = container_of(work,
4417 					struct e1000_adapter, watchdog_task);
4418 	struct net_device *netdev = adapter->netdev;
4419 	struct e1000_mac_info *mac = &adapter->hw.mac;
4420 	struct e1000_phy_info *phy = &adapter->hw.phy;
4421 	struct e1000_ring *tx_ring = adapter->tx_ring;
4422 	struct e1000_hw *hw = &adapter->hw;
4423 	u32 link, tctl;
4424 
4425 	if (test_bit(__E1000_DOWN, &adapter->state))
4426 		return;
4427 
4428 	link = e1000e_has_link(adapter);
4429 	if ((netif_carrier_ok(netdev)) && link) {
4430 		/* Cancel scheduled suspend requests. */
4431 		pm_runtime_resume(netdev->dev.parent);
4432 
4433 		e1000e_enable_receives(adapter);
4434 		goto link_up;
4435 	}
4436 
4437 	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4438 	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4439 		e1000_update_mng_vlan(adapter);
4440 
4441 	if (link) {
4442 		if (!netif_carrier_ok(netdev)) {
4443 			bool txb2b = true;
4444 
4445 			/* Cancel scheduled suspend requests. */
4446 			pm_runtime_resume(netdev->dev.parent);
4447 
4448 			/* update snapshot of PHY registers on LSC */
4449 			e1000_phy_read_status(adapter);
4450 			mac->ops.get_link_up_info(&adapter->hw,
4451 						   &adapter->link_speed,
4452 						   &adapter->link_duplex);
4453 			e1000_print_link_info(adapter);
4454 			/*
4455 			 * On supported PHYs, check for duplex mismatch only
4456 			 * if link has autonegotiated at 10/100 half
4457 			 */
4458 			if ((hw->phy.type == e1000_phy_igp_3 ||
4459 			     hw->phy.type == e1000_phy_bm) &&
4460 			    (hw->mac.autoneg == true) &&
4461 			    (adapter->link_speed == SPEED_10 ||
4462 			     adapter->link_speed == SPEED_100) &&
4463 			    (adapter->link_duplex == HALF_DUPLEX)) {
4464 				u16 autoneg_exp;
4465 
4466 				e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
4467 
4468 				if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
4469 					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
4470 			}
4471 
4472 			/* adjust timeout factor according to speed/duplex */
4473 			adapter->tx_timeout_factor = 1;
4474 			switch (adapter->link_speed) {
4475 			case SPEED_10:
4476 				txb2b = false;
4477 				adapter->tx_timeout_factor = 16;
4478 				break;
4479 			case SPEED_100:
4480 				txb2b = false;
4481 				adapter->tx_timeout_factor = 10;
4482 				break;
4483 			}
4484 
4485 			/*
4486 			 * workaround: re-program speed mode bit after
4487 			 * link-up event
4488 			 */
4489 			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4490 			    !txb2b) {
4491 				u32 tarc0;
4492 				tarc0 = er32(TARC(0));
4493 				tarc0 &= ~SPEED_MODE_BIT;
4494 				ew32(TARC(0), tarc0);
4495 			}
4496 
4497 			/*
4498 			 * disable TSO for pcie and 10/100 speeds, to avoid
4499 			 * some hardware issues
4500 			 */
4501 			if (!(adapter->flags & FLAG_TSO_FORCE)) {
4502 				switch (adapter->link_speed) {
4503 				case SPEED_10:
4504 				case SPEED_100:
4505 					e_info("10/100 speed: disabling TSO\n");
4506 					netdev->features &= ~NETIF_F_TSO;
4507 					netdev->features &= ~NETIF_F_TSO6;
4508 					break;
4509 				case SPEED_1000:
4510 					netdev->features |= NETIF_F_TSO;
4511 					netdev->features |= NETIF_F_TSO6;
4512 					break;
4513 				default:
4514 					/* oops */
4515 					break;
4516 				}
4517 			}
4518 
4519 			/*
4520 			 * enable transmits in the hardware, need to do this
4521 			 * after setting TARC(0)
4522 			 */
4523 			tctl = er32(TCTL);
4524 			tctl |= E1000_TCTL_EN;
4525 			ew32(TCTL, tctl);
4526 
4527                         /*
4528 			 * Perform any post-link-up configuration before
4529 			 * reporting link up.
4530 			 */
4531 			if (phy->ops.cfg_on_link_up)
4532 				phy->ops.cfg_on_link_up(hw);
4533 
4534 			netif_carrier_on(netdev);
4535 
4536 			if (!test_bit(__E1000_DOWN, &adapter->state))
4537 				mod_timer(&adapter->phy_info_timer,
4538 					  round_jiffies(jiffies + 2 * HZ));
4539 		}
4540 	} else {
4541 		if (netif_carrier_ok(netdev)) {
4542 			adapter->link_speed = 0;
4543 			adapter->link_duplex = 0;
4544 			/* Link status message must follow this format */
4545 			printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
4546 			       adapter->netdev->name);
4547 			netif_carrier_off(netdev);
4548 			if (!test_bit(__E1000_DOWN, &adapter->state))
4549 				mod_timer(&adapter->phy_info_timer,
4550 					  round_jiffies(jiffies + 2 * HZ));
4551 
4552 			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
4553 				schedule_work(&adapter->reset_task);
4554 			else
4555 				pm_schedule_suspend(netdev->dev.parent,
4556 							LINK_TIMEOUT);
4557 		}
4558 	}
4559 
4560 link_up:
4561 	spin_lock(&adapter->stats64_lock);
4562 	e1000e_update_stats(adapter);
4563 
4564 	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
4565 	adapter->tpt_old = adapter->stats.tpt;
4566 	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
4567 	adapter->colc_old = adapter->stats.colc;
4568 
4569 	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
4570 	adapter->gorc_old = adapter->stats.gorc;
4571 	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
4572 	adapter->gotc_old = adapter->stats.gotc;
4573 	spin_unlock(&adapter->stats64_lock);
4574 
4575 	e1000e_update_adaptive(&adapter->hw);
4576 
4577 	if (!netif_carrier_ok(netdev) &&
4578 	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) {
4579 		/*
4580 		 * We've lost link, so the controller stops DMA,
4581 		 * but we've got queued Tx work that's never going
4582 		 * to get done, so reset controller to flush Tx.
4583 		 * (Do the reset outside of interrupt context).
4584 		 */
4585 		schedule_work(&adapter->reset_task);
4586 		/* return immediately since reset is imminent */
4587 		return;
4588 	}
4589 
4590 	/* Simple mode for Interrupt Throttle Rate (ITR) */
4591 	if (adapter->itr_setting == 4) {
4592 		/*
4593 		 * Symmetric Tx/Rx gets a reduced ITR=2000;
4594 		 * Total asymmetrical Tx or Rx gets ITR=8000;
4595 		 * everyone else is between 2000-8000.
4596 		 */
4597 		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
4598 		u32 dif = (adapter->gotc > adapter->gorc ?
4599 			    adapter->gotc - adapter->gorc :
4600 			    adapter->gorc - adapter->gotc) / 10000;
4601 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
4602 
4603 		ew32(ITR, 1000000000 / (itr * 256));
4604 	}
4605 
4606 	/* Cause software interrupt to ensure Rx ring is cleaned */
4607 	if (adapter->msix_entries)
4608 		ew32(ICS, adapter->rx_ring->ims_val);
4609 	else
4610 		ew32(ICS, E1000_ICS_RXDMT0);
4611 
4612 	/* flush pending descriptors to memory before detecting Tx hang */
4613 	e1000e_flush_descriptors(adapter);
4614 
4615 	/* Force detection of hung controller every watchdog period */
4616 	adapter->detect_tx_hung = true;
4617 
4618 	/*
4619 	 * With 82571 controllers, LAA may be overwritten due to controller
4620 	 * reset from the other port. Set the appropriate LAA in RAR[0]
4621 	 */
4622 	if (e1000e_get_laa_state_82571(hw))
4623 		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
4624 
4625 	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
4626 		e1000e_check_82574_phy_workaround(adapter);
4627 
4628 	/* Reset the timer */
4629 	if (!test_bit(__E1000_DOWN, &adapter->state))
4630 		mod_timer(&adapter->watchdog_timer,
4631 			  round_jiffies(jiffies + 2 * HZ));
4632 }
4633 
4634 #define E1000_TX_FLAGS_CSUM		0x00000001
4635 #define E1000_TX_FLAGS_VLAN		0x00000002
4636 #define E1000_TX_FLAGS_TSO		0x00000004
4637 #define E1000_TX_FLAGS_IPV4		0x00000008
4638 #define E1000_TX_FLAGS_NO_FCS		0x00000010
4639 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
4640 #define E1000_TX_FLAGS_VLAN_SHIFT	16
4641 
4642 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb)
4643 {
4644 	struct e1000_context_desc *context_desc;
4645 	struct e1000_buffer *buffer_info;
4646 	unsigned int i;
4647 	u32 cmd_length = 0;
4648 	u16 ipcse = 0, tucse, mss;
4649 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
4650 
4651 	if (!skb_is_gso(skb))
4652 		return 0;
4653 
4654 	if (skb_header_cloned(skb)) {
4655 		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4656 
4657 		if (err)
4658 			return err;
4659 	}
4660 
4661 	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4662 	mss = skb_shinfo(skb)->gso_size;
4663 	if (skb->protocol == htons(ETH_P_IP)) {
4664 		struct iphdr *iph = ip_hdr(skb);
4665 		iph->tot_len = 0;
4666 		iph->check = 0;
4667 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
4668 		                                         0, IPPROTO_TCP, 0);
4669 		cmd_length = E1000_TXD_CMD_IP;
4670 		ipcse = skb_transport_offset(skb) - 1;
4671 	} else if (skb_is_gso_v6(skb)) {
4672 		ipv6_hdr(skb)->payload_len = 0;
4673 		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4674 		                                       &ipv6_hdr(skb)->daddr,
4675 		                                       0, IPPROTO_TCP, 0);
4676 		ipcse = 0;
4677 	}
4678 	ipcss = skb_network_offset(skb);
4679 	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
4680 	tucss = skb_transport_offset(skb);
4681 	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
4682 	tucse = 0;
4683 
4684 	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
4685 	               E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
4686 
4687 	i = tx_ring->next_to_use;
4688 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4689 	buffer_info = &tx_ring->buffer_info[i];
4690 
4691 	context_desc->lower_setup.ip_fields.ipcss  = ipcss;
4692 	context_desc->lower_setup.ip_fields.ipcso  = ipcso;
4693 	context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
4694 	context_desc->upper_setup.tcp_fields.tucss = tucss;
4695 	context_desc->upper_setup.tcp_fields.tucso = tucso;
4696 	context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
4697 	context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
4698 	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
4699 	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
4700 
4701 	buffer_info->time_stamp = jiffies;
4702 	buffer_info->next_to_watch = i;
4703 
4704 	i++;
4705 	if (i == tx_ring->count)
4706 		i = 0;
4707 	tx_ring->next_to_use = i;
4708 
4709 	return 1;
4710 }
4711 
4712 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb)
4713 {
4714 	struct e1000_adapter *adapter = tx_ring->adapter;
4715 	struct e1000_context_desc *context_desc;
4716 	struct e1000_buffer *buffer_info;
4717 	unsigned int i;
4718 	u8 css;
4719 	u32 cmd_len = E1000_TXD_CMD_DEXT;
4720 	__be16 protocol;
4721 
4722 	if (skb->ip_summed != CHECKSUM_PARTIAL)
4723 		return 0;
4724 
4725 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
4726 		protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
4727 	else
4728 		protocol = skb->protocol;
4729 
4730 	switch (protocol) {
4731 	case cpu_to_be16(ETH_P_IP):
4732 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
4733 			cmd_len |= E1000_TXD_CMD_TCP;
4734 		break;
4735 	case cpu_to_be16(ETH_P_IPV6):
4736 		/* XXX not handling all IPV6 headers */
4737 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
4738 			cmd_len |= E1000_TXD_CMD_TCP;
4739 		break;
4740 	default:
4741 		if (unlikely(net_ratelimit()))
4742 			e_warn("checksum_partial proto=%x!\n",
4743 			       be16_to_cpu(protocol));
4744 		break;
4745 	}
4746 
4747 	css = skb_checksum_start_offset(skb);
4748 
4749 	i = tx_ring->next_to_use;
4750 	buffer_info = &tx_ring->buffer_info[i];
4751 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4752 
4753 	context_desc->lower_setup.ip_config = 0;
4754 	context_desc->upper_setup.tcp_fields.tucss = css;
4755 	context_desc->upper_setup.tcp_fields.tucso =
4756 				css + skb->csum_offset;
4757 	context_desc->upper_setup.tcp_fields.tucse = 0;
4758 	context_desc->tcp_seg_setup.data = 0;
4759 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
4760 
4761 	buffer_info->time_stamp = jiffies;
4762 	buffer_info->next_to_watch = i;
4763 
4764 	i++;
4765 	if (i == tx_ring->count)
4766 		i = 0;
4767 	tx_ring->next_to_use = i;
4768 
4769 	return 1;
4770 }
4771 
4772 #define E1000_MAX_PER_TXD	8192
4773 #define E1000_MAX_TXD_PWR	12
4774 
4775 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
4776 			unsigned int first, unsigned int max_per_txd,
4777 			unsigned int nr_frags, unsigned int mss)
4778 {
4779 	struct e1000_adapter *adapter = tx_ring->adapter;
4780 	struct pci_dev *pdev = adapter->pdev;
4781 	struct e1000_buffer *buffer_info;
4782 	unsigned int len = skb_headlen(skb);
4783 	unsigned int offset = 0, size, count = 0, i;
4784 	unsigned int f, bytecount, segs;
4785 
4786 	i = tx_ring->next_to_use;
4787 
4788 	while (len) {
4789 		buffer_info = &tx_ring->buffer_info[i];
4790 		size = min(len, max_per_txd);
4791 
4792 		buffer_info->length = size;
4793 		buffer_info->time_stamp = jiffies;
4794 		buffer_info->next_to_watch = i;
4795 		buffer_info->dma = dma_map_single(&pdev->dev,
4796 						  skb->data + offset,
4797 						  size, DMA_TO_DEVICE);
4798 		buffer_info->mapped_as_page = false;
4799 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4800 			goto dma_error;
4801 
4802 		len -= size;
4803 		offset += size;
4804 		count++;
4805 
4806 		if (len) {
4807 			i++;
4808 			if (i == tx_ring->count)
4809 				i = 0;
4810 		}
4811 	}
4812 
4813 	for (f = 0; f < nr_frags; f++) {
4814 		const struct skb_frag_struct *frag;
4815 
4816 		frag = &skb_shinfo(skb)->frags[f];
4817 		len = skb_frag_size(frag);
4818 		offset = 0;
4819 
4820 		while (len) {
4821 			i++;
4822 			if (i == tx_ring->count)
4823 				i = 0;
4824 
4825 			buffer_info = &tx_ring->buffer_info[i];
4826 			size = min(len, max_per_txd);
4827 
4828 			buffer_info->length = size;
4829 			buffer_info->time_stamp = jiffies;
4830 			buffer_info->next_to_watch = i;
4831 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
4832 						offset, size, DMA_TO_DEVICE);
4833 			buffer_info->mapped_as_page = true;
4834 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4835 				goto dma_error;
4836 
4837 			len -= size;
4838 			offset += size;
4839 			count++;
4840 		}
4841 	}
4842 
4843 	segs = skb_shinfo(skb)->gso_segs ? : 1;
4844 	/* multiply data chunks by size of headers */
4845 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
4846 
4847 	tx_ring->buffer_info[i].skb = skb;
4848 	tx_ring->buffer_info[i].segs = segs;
4849 	tx_ring->buffer_info[i].bytecount = bytecount;
4850 	tx_ring->buffer_info[first].next_to_watch = i;
4851 
4852 	return count;
4853 
4854 dma_error:
4855 	dev_err(&pdev->dev, "Tx DMA map failed\n");
4856 	buffer_info->dma = 0;
4857 	if (count)
4858 		count--;
4859 
4860 	while (count--) {
4861 		if (i == 0)
4862 			i += tx_ring->count;
4863 		i--;
4864 		buffer_info = &tx_ring->buffer_info[i];
4865 		e1000_put_txbuf(tx_ring, buffer_info);
4866 	}
4867 
4868 	return 0;
4869 }
4870 
4871 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
4872 {
4873 	struct e1000_adapter *adapter = tx_ring->adapter;
4874 	struct e1000_tx_desc *tx_desc = NULL;
4875 	struct e1000_buffer *buffer_info;
4876 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
4877 	unsigned int i;
4878 
4879 	if (tx_flags & E1000_TX_FLAGS_TSO) {
4880 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
4881 			     E1000_TXD_CMD_TSE;
4882 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4883 
4884 		if (tx_flags & E1000_TX_FLAGS_IPV4)
4885 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
4886 	}
4887 
4888 	if (tx_flags & E1000_TX_FLAGS_CSUM) {
4889 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
4890 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4891 	}
4892 
4893 	if (tx_flags & E1000_TX_FLAGS_VLAN) {
4894 		txd_lower |= E1000_TXD_CMD_VLE;
4895 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
4896 	}
4897 
4898 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
4899 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
4900 
4901 	i = tx_ring->next_to_use;
4902 
4903 	do {
4904 		buffer_info = &tx_ring->buffer_info[i];
4905 		tx_desc = E1000_TX_DESC(*tx_ring, i);
4906 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4907 		tx_desc->lower.data =
4908 			cpu_to_le32(txd_lower | buffer_info->length);
4909 		tx_desc->upper.data = cpu_to_le32(txd_upper);
4910 
4911 		i++;
4912 		if (i == tx_ring->count)
4913 			i = 0;
4914 	} while (--count > 0);
4915 
4916 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
4917 
4918 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
4919 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
4920 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
4921 
4922 	/*
4923 	 * Force memory writes to complete before letting h/w
4924 	 * know there are new descriptors to fetch.  (Only
4925 	 * applicable for weak-ordered memory model archs,
4926 	 * such as IA-64).
4927 	 */
4928 	wmb();
4929 
4930 	tx_ring->next_to_use = i;
4931 
4932 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
4933 		e1000e_update_tdt_wa(tx_ring, i);
4934 	else
4935 		writel(i, tx_ring->tail);
4936 
4937 	/*
4938 	 * we need this if more than one processor can write to our tail
4939 	 * at a time, it synchronizes IO on IA64/Altix systems
4940 	 */
4941 	mmiowb();
4942 }
4943 
4944 #define MINIMUM_DHCP_PACKET_SIZE 282
4945 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
4946 				    struct sk_buff *skb)
4947 {
4948 	struct e1000_hw *hw =  &adapter->hw;
4949 	u16 length, offset;
4950 
4951 	if (vlan_tx_tag_present(skb)) {
4952 		if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
4953 		    (adapter->hw.mng_cookie.status &
4954 			E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
4955 			return 0;
4956 	}
4957 
4958 	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
4959 		return 0;
4960 
4961 	if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
4962 		return 0;
4963 
4964 	{
4965 		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4966 		struct udphdr *udp;
4967 
4968 		if (ip->protocol != IPPROTO_UDP)
4969 			return 0;
4970 
4971 		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4972 		if (ntohs(udp->dest) != 67)
4973 			return 0;
4974 
4975 		offset = (u8 *)udp + 8 - skb->data;
4976 		length = skb->len - offset;
4977 		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4978 	}
4979 
4980 	return 0;
4981 }
4982 
4983 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
4984 {
4985 	struct e1000_adapter *adapter = tx_ring->adapter;
4986 
4987 	netif_stop_queue(adapter->netdev);
4988 	/*
4989 	 * Herbert's original patch had:
4990 	 *  smp_mb__after_netif_stop_queue();
4991 	 * but since that doesn't exist yet, just open code it.
4992 	 */
4993 	smp_mb();
4994 
4995 	/*
4996 	 * We need to check again in a case another CPU has just
4997 	 * made room available.
4998 	 */
4999 	if (e1000_desc_unused(tx_ring) < size)
5000 		return -EBUSY;
5001 
5002 	/* A reprieve! */
5003 	netif_start_queue(adapter->netdev);
5004 	++adapter->restart_queue;
5005 	return 0;
5006 }
5007 
5008 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5009 {
5010 	if (e1000_desc_unused(tx_ring) >= size)
5011 		return 0;
5012 	return __e1000_maybe_stop_tx(tx_ring, size);
5013 }
5014 
5015 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1)
5016 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5017 				    struct net_device *netdev)
5018 {
5019 	struct e1000_adapter *adapter = netdev_priv(netdev);
5020 	struct e1000_ring *tx_ring = adapter->tx_ring;
5021 	unsigned int first;
5022 	unsigned int max_per_txd = E1000_MAX_PER_TXD;
5023 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
5024 	unsigned int tx_flags = 0;
5025 	unsigned int len = skb_headlen(skb);
5026 	unsigned int nr_frags;
5027 	unsigned int mss;
5028 	int count = 0;
5029 	int tso;
5030 	unsigned int f;
5031 
5032 	if (test_bit(__E1000_DOWN, &adapter->state)) {
5033 		dev_kfree_skb_any(skb);
5034 		return NETDEV_TX_OK;
5035 	}
5036 
5037 	if (skb->len <= 0) {
5038 		dev_kfree_skb_any(skb);
5039 		return NETDEV_TX_OK;
5040 	}
5041 
5042 	mss = skb_shinfo(skb)->gso_size;
5043 	/*
5044 	 * The controller does a simple calculation to
5045 	 * make sure there is enough room in the FIFO before
5046 	 * initiating the DMA for each buffer.  The calc is:
5047 	 * 4 = ceil(buffer len/mss).  To make sure we don't
5048 	 * overrun the FIFO, adjust the max buffer len if mss
5049 	 * drops.
5050 	 */
5051 	if (mss) {
5052 		u8 hdr_len;
5053 		max_per_txd = min(mss << 2, max_per_txd);
5054 		max_txd_pwr = fls(max_per_txd) - 1;
5055 
5056 		/*
5057 		 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
5058 		 * points to just header, pull a few bytes of payload from
5059 		 * frags into skb->data
5060 		 */
5061 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5062 		/*
5063 		 * we do this workaround for ES2LAN, but it is un-necessary,
5064 		 * avoiding it could save a lot of cycles
5065 		 */
5066 		if (skb->data_len && (hdr_len == len)) {
5067 			unsigned int pull_size;
5068 
5069 			pull_size = min_t(unsigned int, 4, skb->data_len);
5070 			if (!__pskb_pull_tail(skb, pull_size)) {
5071 				e_err("__pskb_pull_tail failed.\n");
5072 				dev_kfree_skb_any(skb);
5073 				return NETDEV_TX_OK;
5074 			}
5075 			len = skb_headlen(skb);
5076 		}
5077 	}
5078 
5079 	/* reserve a descriptor for the offload context */
5080 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5081 		count++;
5082 	count++;
5083 
5084 	count += TXD_USE_COUNT(len, max_txd_pwr);
5085 
5086 	nr_frags = skb_shinfo(skb)->nr_frags;
5087 	for (f = 0; f < nr_frags; f++)
5088 		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5089 				       max_txd_pwr);
5090 
5091 	if (adapter->hw.mac.tx_pkt_filtering)
5092 		e1000_transfer_dhcp_info(adapter, skb);
5093 
5094 	/*
5095 	 * need: count + 2 desc gap to keep tail from touching
5096 	 * head, otherwise try next time
5097 	 */
5098 	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5099 		return NETDEV_TX_BUSY;
5100 
5101 	if (vlan_tx_tag_present(skb)) {
5102 		tx_flags |= E1000_TX_FLAGS_VLAN;
5103 		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
5104 	}
5105 
5106 	first = tx_ring->next_to_use;
5107 
5108 	tso = e1000_tso(tx_ring, skb);
5109 	if (tso < 0) {
5110 		dev_kfree_skb_any(skb);
5111 		return NETDEV_TX_OK;
5112 	}
5113 
5114 	if (tso)
5115 		tx_flags |= E1000_TX_FLAGS_TSO;
5116 	else if (e1000_tx_csum(tx_ring, skb))
5117 		tx_flags |= E1000_TX_FLAGS_CSUM;
5118 
5119 	/*
5120 	 * Old method was to assume IPv4 packet by default if TSO was enabled.
5121 	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5122 	 * no longer assume, we must.
5123 	 */
5124 	if (skb->protocol == htons(ETH_P_IP))
5125 		tx_flags |= E1000_TX_FLAGS_IPV4;
5126 
5127 	if (unlikely(skb->no_fcs))
5128 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5129 
5130 	/* if count is 0 then mapping error has occurred */
5131 	count = e1000_tx_map(tx_ring, skb, first, max_per_txd, nr_frags, mss);
5132 	if (count) {
5133 		skb_tx_timestamp(skb);
5134 
5135 		netdev_sent_queue(netdev, skb->len);
5136 		e1000_tx_queue(tx_ring, tx_flags, count);
5137 		/* Make sure there is space in the ring for the next send. */
5138 		e1000_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 2);
5139 
5140 	} else {
5141 		dev_kfree_skb_any(skb);
5142 		tx_ring->buffer_info[first].time_stamp = 0;
5143 		tx_ring->next_to_use = first;
5144 	}
5145 
5146 	return NETDEV_TX_OK;
5147 }
5148 
5149 /**
5150  * e1000_tx_timeout - Respond to a Tx Hang
5151  * @netdev: network interface device structure
5152  **/
5153 static void e1000_tx_timeout(struct net_device *netdev)
5154 {
5155 	struct e1000_adapter *adapter = netdev_priv(netdev);
5156 
5157 	/* Do the reset outside of interrupt context */
5158 	adapter->tx_timeout_count++;
5159 	schedule_work(&adapter->reset_task);
5160 }
5161 
5162 static void e1000_reset_task(struct work_struct *work)
5163 {
5164 	struct e1000_adapter *adapter;
5165 	adapter = container_of(work, struct e1000_adapter, reset_task);
5166 
5167 	/* don't run the task if already down */
5168 	if (test_bit(__E1000_DOWN, &adapter->state))
5169 		return;
5170 
5171 	if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5172 	      (adapter->flags & FLAG_RX_RESTART_NOW))) {
5173 		e1000e_dump(adapter);
5174 		e_err("Reset adapter\n");
5175 	}
5176 	e1000e_reinit_locked(adapter);
5177 }
5178 
5179 /**
5180  * e1000_get_stats64 - Get System Network Statistics
5181  * @netdev: network interface device structure
5182  * @stats: rtnl_link_stats64 pointer
5183  *
5184  * Returns the address of the device statistics structure.
5185  **/
5186 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5187                                              struct rtnl_link_stats64 *stats)
5188 {
5189 	struct e1000_adapter *adapter = netdev_priv(netdev);
5190 
5191 	memset(stats, 0, sizeof(struct rtnl_link_stats64));
5192 	spin_lock(&adapter->stats64_lock);
5193 	e1000e_update_stats(adapter);
5194 	/* Fill out the OS statistics structure */
5195 	stats->rx_bytes = adapter->stats.gorc;
5196 	stats->rx_packets = adapter->stats.gprc;
5197 	stats->tx_bytes = adapter->stats.gotc;
5198 	stats->tx_packets = adapter->stats.gptc;
5199 	stats->multicast = adapter->stats.mprc;
5200 	stats->collisions = adapter->stats.colc;
5201 
5202 	/* Rx Errors */
5203 
5204 	/*
5205 	 * RLEC on some newer hardware can be incorrect so build
5206 	 * our own version based on RUC and ROC
5207 	 */
5208 	stats->rx_errors = adapter->stats.rxerrc +
5209 		adapter->stats.crcerrs + adapter->stats.algnerrc +
5210 		adapter->stats.ruc + adapter->stats.roc +
5211 		adapter->stats.cexterr;
5212 	stats->rx_length_errors = adapter->stats.ruc +
5213 					      adapter->stats.roc;
5214 	stats->rx_crc_errors = adapter->stats.crcerrs;
5215 	stats->rx_frame_errors = adapter->stats.algnerrc;
5216 	stats->rx_missed_errors = adapter->stats.mpc;
5217 
5218 	/* Tx Errors */
5219 	stats->tx_errors = adapter->stats.ecol +
5220 				       adapter->stats.latecol;
5221 	stats->tx_aborted_errors = adapter->stats.ecol;
5222 	stats->tx_window_errors = adapter->stats.latecol;
5223 	stats->tx_carrier_errors = adapter->stats.tncrs;
5224 
5225 	/* Tx Dropped needs to be maintained elsewhere */
5226 
5227 	spin_unlock(&adapter->stats64_lock);
5228 	return stats;
5229 }
5230 
5231 /**
5232  * e1000_change_mtu - Change the Maximum Transfer Unit
5233  * @netdev: network interface device structure
5234  * @new_mtu: new value for maximum frame size
5235  *
5236  * Returns 0 on success, negative on failure
5237  **/
5238 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5239 {
5240 	struct e1000_adapter *adapter = netdev_priv(netdev);
5241 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
5242 
5243 	/* Jumbo frame support */
5244 	if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
5245 		if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5246 			e_err("Jumbo Frames not supported.\n");
5247 			return -EINVAL;
5248 		}
5249 
5250 		/*
5251 		 * IP payload checksum (enabled with jumbos/packet-split when
5252 		 * Rx checksum is enabled) and generation of RSS hash is
5253 		 * mutually exclusive in the hardware.
5254 		 */
5255 		if ((netdev->features & NETIF_F_RXCSUM) &&
5256 		    (netdev->features & NETIF_F_RXHASH)) {
5257 			e_err("Jumbo frames cannot be enabled when both receive checksum offload and receive hashing are enabled.  Disable one of the receive offload features before enabling jumbos.\n");
5258 			return -EINVAL;
5259 		}
5260 	}
5261 
5262 	/* Supported frame sizes */
5263 	if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
5264 	    (max_frame > adapter->max_hw_frame_size)) {
5265 		e_err("Unsupported MTU setting\n");
5266 		return -EINVAL;
5267 	}
5268 
5269 	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5270 	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5271 	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5272 	    (new_mtu > ETH_DATA_LEN)) {
5273 		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5274 		return -EINVAL;
5275 	}
5276 
5277 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5278 		usleep_range(1000, 2000);
5279 	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5280 	adapter->max_frame_size = max_frame;
5281 	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5282 	netdev->mtu = new_mtu;
5283 	if (netif_running(netdev))
5284 		e1000e_down(adapter);
5285 
5286 	/*
5287 	 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5288 	 * means we reserve 2 more, this pushes us to allocate from the next
5289 	 * larger slab size.
5290 	 * i.e. RXBUFFER_2048 --> size-4096 slab
5291 	 * However with the new *_jumbo_rx* routines, jumbo receives will use
5292 	 * fragmented skbs
5293 	 */
5294 
5295 	if (max_frame <= 2048)
5296 		adapter->rx_buffer_len = 2048;
5297 	else
5298 		adapter->rx_buffer_len = 4096;
5299 
5300 	/* adjust allocation if LPE protects us, and we aren't using SBP */
5301 	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
5302 	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
5303 		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5304 					 + ETH_FCS_LEN;
5305 
5306 	if (netif_running(netdev))
5307 		e1000e_up(adapter);
5308 	else
5309 		e1000e_reset(adapter);
5310 
5311 	clear_bit(__E1000_RESETTING, &adapter->state);
5312 
5313 	return 0;
5314 }
5315 
5316 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5317 			   int cmd)
5318 {
5319 	struct e1000_adapter *adapter = netdev_priv(netdev);
5320 	struct mii_ioctl_data *data = if_mii(ifr);
5321 
5322 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
5323 		return -EOPNOTSUPP;
5324 
5325 	switch (cmd) {
5326 	case SIOCGMIIPHY:
5327 		data->phy_id = adapter->hw.phy.addr;
5328 		break;
5329 	case SIOCGMIIREG:
5330 		e1000_phy_read_status(adapter);
5331 
5332 		switch (data->reg_num & 0x1F) {
5333 		case MII_BMCR:
5334 			data->val_out = adapter->phy_regs.bmcr;
5335 			break;
5336 		case MII_BMSR:
5337 			data->val_out = adapter->phy_regs.bmsr;
5338 			break;
5339 		case MII_PHYSID1:
5340 			data->val_out = (adapter->hw.phy.id >> 16);
5341 			break;
5342 		case MII_PHYSID2:
5343 			data->val_out = (adapter->hw.phy.id & 0xFFFF);
5344 			break;
5345 		case MII_ADVERTISE:
5346 			data->val_out = adapter->phy_regs.advertise;
5347 			break;
5348 		case MII_LPA:
5349 			data->val_out = adapter->phy_regs.lpa;
5350 			break;
5351 		case MII_EXPANSION:
5352 			data->val_out = adapter->phy_regs.expansion;
5353 			break;
5354 		case MII_CTRL1000:
5355 			data->val_out = adapter->phy_regs.ctrl1000;
5356 			break;
5357 		case MII_STAT1000:
5358 			data->val_out = adapter->phy_regs.stat1000;
5359 			break;
5360 		case MII_ESTATUS:
5361 			data->val_out = adapter->phy_regs.estatus;
5362 			break;
5363 		default:
5364 			return -EIO;
5365 		}
5366 		break;
5367 	case SIOCSMIIREG:
5368 	default:
5369 		return -EOPNOTSUPP;
5370 	}
5371 	return 0;
5372 }
5373 
5374 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5375 {
5376 	switch (cmd) {
5377 	case SIOCGMIIPHY:
5378 	case SIOCGMIIREG:
5379 	case SIOCSMIIREG:
5380 		return e1000_mii_ioctl(netdev, ifr, cmd);
5381 	default:
5382 		return -EOPNOTSUPP;
5383 	}
5384 }
5385 
5386 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5387 {
5388 	struct e1000_hw *hw = &adapter->hw;
5389 	u32 i, mac_reg;
5390 	u16 phy_reg, wuc_enable;
5391 	int retval = 0;
5392 
5393 	/* copy MAC RARs to PHY RARs */
5394 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5395 
5396 	retval = hw->phy.ops.acquire(hw);
5397 	if (retval) {
5398 		e_err("Could not acquire PHY\n");
5399 		return retval;
5400 	}
5401 
5402 	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5403 	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5404 	if (retval)
5405 		goto release;
5406 
5407 	/* copy MAC MTA to PHY MTA - only needed for pchlan */
5408 	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5409 		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5410 		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
5411 					   (u16)(mac_reg & 0xFFFF));
5412 		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
5413 					   (u16)((mac_reg >> 16) & 0xFFFF));
5414 	}
5415 
5416 	/* configure PHY Rx Control register */
5417 	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5418 	mac_reg = er32(RCTL);
5419 	if (mac_reg & E1000_RCTL_UPE)
5420 		phy_reg |= BM_RCTL_UPE;
5421 	if (mac_reg & E1000_RCTL_MPE)
5422 		phy_reg |= BM_RCTL_MPE;
5423 	phy_reg &= ~(BM_RCTL_MO_MASK);
5424 	if (mac_reg & E1000_RCTL_MO_3)
5425 		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5426 				<< BM_RCTL_MO_SHIFT);
5427 	if (mac_reg & E1000_RCTL_BAM)
5428 		phy_reg |= BM_RCTL_BAM;
5429 	if (mac_reg & E1000_RCTL_PMCF)
5430 		phy_reg |= BM_RCTL_PMCF;
5431 	mac_reg = er32(CTRL);
5432 	if (mac_reg & E1000_CTRL_RFCE)
5433 		phy_reg |= BM_RCTL_RFCE;
5434 	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5435 
5436 	/* enable PHY wakeup in MAC register */
5437 	ew32(WUFC, wufc);
5438 	ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
5439 
5440 	/* configure and enable PHY wakeup in PHY registers */
5441 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
5442 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5443 
5444 	/* activate PHY wakeup */
5445 	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
5446 	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5447 	if (retval)
5448 		e_err("Could not set PHY Host Wakeup bit\n");
5449 release:
5450 	hw->phy.ops.release(hw);
5451 
5452 	return retval;
5453 }
5454 
5455 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
5456 			    bool runtime)
5457 {
5458 	struct net_device *netdev = pci_get_drvdata(pdev);
5459 	struct e1000_adapter *adapter = netdev_priv(netdev);
5460 	struct e1000_hw *hw = &adapter->hw;
5461 	u32 ctrl, ctrl_ext, rctl, status;
5462 	/* Runtime suspend should only enable wakeup for link changes */
5463 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5464 	int retval = 0;
5465 
5466 	netif_device_detach(netdev);
5467 
5468 	if (netif_running(netdev)) {
5469 		int count = E1000_CHECK_RESET_COUNT;
5470 
5471 		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
5472 			usleep_range(10000, 20000);
5473 
5474 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
5475 		e1000e_down(adapter);
5476 		e1000_free_irq(adapter);
5477 	}
5478 	e1000e_reset_interrupt_capability(adapter);
5479 
5480 	retval = pci_save_state(pdev);
5481 	if (retval)
5482 		return retval;
5483 
5484 	status = er32(STATUS);
5485 	if (status & E1000_STATUS_LU)
5486 		wufc &= ~E1000_WUFC_LNKC;
5487 
5488 	if (wufc) {
5489 		e1000_setup_rctl(adapter);
5490 		e1000e_set_rx_mode(netdev);
5491 
5492 		/* turn on all-multi mode if wake on multicast is enabled */
5493 		if (wufc & E1000_WUFC_MC) {
5494 			rctl = er32(RCTL);
5495 			rctl |= E1000_RCTL_MPE;
5496 			ew32(RCTL, rctl);
5497 		}
5498 
5499 		ctrl = er32(CTRL);
5500 		/* advertise wake from D3Cold */
5501 		#define E1000_CTRL_ADVD3WUC 0x00100000
5502 		/* phy power management enable */
5503 		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5504 		ctrl |= E1000_CTRL_ADVD3WUC;
5505 		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
5506 			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5507 		ew32(CTRL, ctrl);
5508 
5509 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
5510 		    adapter->hw.phy.media_type ==
5511 		    e1000_media_type_internal_serdes) {
5512 			/* keep the laser running in D3 */
5513 			ctrl_ext = er32(CTRL_EXT);
5514 			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5515 			ew32(CTRL_EXT, ctrl_ext);
5516 		}
5517 
5518 		if (adapter->flags & FLAG_IS_ICH)
5519 			e1000_suspend_workarounds_ich8lan(&adapter->hw);
5520 
5521 		/* Allow time for pending master requests to run */
5522 		e1000e_disable_pcie_master(&adapter->hw);
5523 
5524 		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5525 			/* enable wakeup by the PHY */
5526 			retval = e1000_init_phy_wakeup(adapter, wufc);
5527 			if (retval)
5528 				return retval;
5529 		} else {
5530 			/* enable wakeup by the MAC */
5531 			ew32(WUFC, wufc);
5532 			ew32(WUC, E1000_WUC_PME_EN);
5533 		}
5534 	} else {
5535 		ew32(WUC, 0);
5536 		ew32(WUFC, 0);
5537 	}
5538 
5539 	*enable_wake = !!wufc;
5540 
5541 	/* make sure adapter isn't asleep if manageability is enabled */
5542 	if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
5543 	    (hw->mac.ops.check_mng_mode(hw)))
5544 		*enable_wake = true;
5545 
5546 	if (adapter->hw.phy.type == e1000_phy_igp_3)
5547 		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
5548 
5549 	/*
5550 	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
5551 	 * would have already happened in close and is redundant.
5552 	 */
5553 	e1000e_release_hw_control(adapter);
5554 
5555 	pci_disable_device(pdev);
5556 
5557 	return 0;
5558 }
5559 
5560 static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
5561 {
5562 	if (sleep && wake) {
5563 		pci_prepare_to_sleep(pdev);
5564 		return;
5565 	}
5566 
5567 	pci_wake_from_d3(pdev, wake);
5568 	pci_set_power_state(pdev, PCI_D3hot);
5569 }
5570 
5571 static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
5572                                     bool wake)
5573 {
5574 	struct net_device *netdev = pci_get_drvdata(pdev);
5575 	struct e1000_adapter *adapter = netdev_priv(netdev);
5576 
5577 	/*
5578 	 * The pci-e switch on some quad port adapters will report a
5579 	 * correctable error when the MAC transitions from D0 to D3.  To
5580 	 * prevent this we need to mask off the correctable errors on the
5581 	 * downstream port of the pci-e switch.
5582 	 */
5583 	if (adapter->flags & FLAG_IS_QUAD_PORT) {
5584 		struct pci_dev *us_dev = pdev->bus->self;
5585 		int pos = pci_pcie_cap(us_dev);
5586 		u16 devctl;
5587 
5588 		pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
5589 		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
5590 		                      (devctl & ~PCI_EXP_DEVCTL_CERE));
5591 
5592 		e1000_power_off(pdev, sleep, wake);
5593 
5594 		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
5595 	} else {
5596 		e1000_power_off(pdev, sleep, wake);
5597 	}
5598 }
5599 
5600 #ifdef CONFIG_PCIEASPM
5601 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5602 {
5603 	pci_disable_link_state_locked(pdev, state);
5604 }
5605 #else
5606 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5607 {
5608 	int pos;
5609 	u16 reg16;
5610 
5611 	/*
5612 	 * Both device and parent should have the same ASPM setting.
5613 	 * Disable ASPM in downstream component first and then upstream.
5614 	 */
5615 	pos = pci_pcie_cap(pdev);
5616 	pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
5617 	reg16 &= ~state;
5618 	pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);
5619 
5620 	if (!pdev->bus->self)
5621 		return;
5622 
5623 	pos = pci_pcie_cap(pdev->bus->self);
5624 	pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
5625 	reg16 &= ~state;
5626 	pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
5627 }
5628 #endif
5629 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5630 {
5631 	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
5632 		 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
5633 		 (state & PCIE_LINK_STATE_L1) ? "L1" : "");
5634 
5635 	__e1000e_disable_aspm(pdev, state);
5636 }
5637 
5638 #ifdef CONFIG_PM
5639 static bool e1000e_pm_ready(struct e1000_adapter *adapter)
5640 {
5641 	return !!adapter->tx_ring->buffer_info;
5642 }
5643 
5644 static int __e1000_resume(struct pci_dev *pdev)
5645 {
5646 	struct net_device *netdev = pci_get_drvdata(pdev);
5647 	struct e1000_adapter *adapter = netdev_priv(netdev);
5648 	struct e1000_hw *hw = &adapter->hw;
5649 	u16 aspm_disable_flag = 0;
5650 	u32 err;
5651 
5652 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
5653 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
5654 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5655 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
5656 	if (aspm_disable_flag)
5657 		e1000e_disable_aspm(pdev, aspm_disable_flag);
5658 
5659 	pci_set_power_state(pdev, PCI_D0);
5660 	pci_restore_state(pdev);
5661 	pci_save_state(pdev);
5662 
5663 	e1000e_set_interrupt_capability(adapter);
5664 	if (netif_running(netdev)) {
5665 		err = e1000_request_irq(adapter);
5666 		if (err)
5667 			return err;
5668 	}
5669 
5670 	if (hw->mac.type >= e1000_pch2lan)
5671 		e1000_resume_workarounds_pchlan(&adapter->hw);
5672 
5673 	e1000e_power_up_phy(adapter);
5674 
5675 	/* report the system wakeup cause from S3/S4 */
5676 	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5677 		u16 phy_data;
5678 
5679 		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
5680 		if (phy_data) {
5681 			e_info("PHY Wakeup cause - %s\n",
5682 				phy_data & E1000_WUS_EX ? "Unicast Packet" :
5683 				phy_data & E1000_WUS_MC ? "Multicast Packet" :
5684 				phy_data & E1000_WUS_BC ? "Broadcast Packet" :
5685 				phy_data & E1000_WUS_MAG ? "Magic Packet" :
5686 				phy_data & E1000_WUS_LNKC ?
5687 				"Link Status Change" : "other");
5688 		}
5689 		e1e_wphy(&adapter->hw, BM_WUS, ~0);
5690 	} else {
5691 		u32 wus = er32(WUS);
5692 		if (wus) {
5693 			e_info("MAC Wakeup cause - %s\n",
5694 				wus & E1000_WUS_EX ? "Unicast Packet" :
5695 				wus & E1000_WUS_MC ? "Multicast Packet" :
5696 				wus & E1000_WUS_BC ? "Broadcast Packet" :
5697 				wus & E1000_WUS_MAG ? "Magic Packet" :
5698 				wus & E1000_WUS_LNKC ? "Link Status Change" :
5699 				"other");
5700 		}
5701 		ew32(WUS, ~0);
5702 	}
5703 
5704 	e1000e_reset(adapter);
5705 
5706 	e1000_init_manageability_pt(adapter);
5707 
5708 	if (netif_running(netdev))
5709 		e1000e_up(adapter);
5710 
5711 	netif_device_attach(netdev);
5712 
5713 	/*
5714 	 * If the controller has AMT, do not set DRV_LOAD until the interface
5715 	 * is up.  For all other cases, let the f/w know that the h/w is now
5716 	 * under the control of the driver.
5717 	 */
5718 	if (!(adapter->flags & FLAG_HAS_AMT))
5719 		e1000e_get_hw_control(adapter);
5720 
5721 	return 0;
5722 }
5723 
5724 #ifdef CONFIG_PM_SLEEP
5725 static int e1000_suspend(struct device *dev)
5726 {
5727 	struct pci_dev *pdev = to_pci_dev(dev);
5728 	int retval;
5729 	bool wake;
5730 
5731 	retval = __e1000_shutdown(pdev, &wake, false);
5732 	if (!retval)
5733 		e1000_complete_shutdown(pdev, true, wake);
5734 
5735 	return retval;
5736 }
5737 
5738 static int e1000_resume(struct device *dev)
5739 {
5740 	struct pci_dev *pdev = to_pci_dev(dev);
5741 	struct net_device *netdev = pci_get_drvdata(pdev);
5742 	struct e1000_adapter *adapter = netdev_priv(netdev);
5743 
5744 	if (e1000e_pm_ready(adapter))
5745 		adapter->idle_check = true;
5746 
5747 	return __e1000_resume(pdev);
5748 }
5749 #endif /* CONFIG_PM_SLEEP */
5750 
5751 #ifdef CONFIG_PM_RUNTIME
5752 static int e1000_runtime_suspend(struct device *dev)
5753 {
5754 	struct pci_dev *pdev = to_pci_dev(dev);
5755 	struct net_device *netdev = pci_get_drvdata(pdev);
5756 	struct e1000_adapter *adapter = netdev_priv(netdev);
5757 
5758 	if (e1000e_pm_ready(adapter)) {
5759 		bool wake;
5760 
5761 		__e1000_shutdown(pdev, &wake, true);
5762 	}
5763 
5764 	return 0;
5765 }
5766 
5767 static int e1000_idle(struct device *dev)
5768 {
5769 	struct pci_dev *pdev = to_pci_dev(dev);
5770 	struct net_device *netdev = pci_get_drvdata(pdev);
5771 	struct e1000_adapter *adapter = netdev_priv(netdev);
5772 
5773 	if (!e1000e_pm_ready(adapter))
5774 		return 0;
5775 
5776 	if (adapter->idle_check) {
5777 		adapter->idle_check = false;
5778 		if (!e1000e_has_link(adapter))
5779 			pm_schedule_suspend(dev, MSEC_PER_SEC);
5780 	}
5781 
5782 	return -EBUSY;
5783 }
5784 
5785 static int e1000_runtime_resume(struct device *dev)
5786 {
5787 	struct pci_dev *pdev = to_pci_dev(dev);
5788 	struct net_device *netdev = pci_get_drvdata(pdev);
5789 	struct e1000_adapter *adapter = netdev_priv(netdev);
5790 
5791 	if (!e1000e_pm_ready(adapter))
5792 		return 0;
5793 
5794 	adapter->idle_check = !dev->power.runtime_auto;
5795 	return __e1000_resume(pdev);
5796 }
5797 #endif /* CONFIG_PM_RUNTIME */
5798 #endif /* CONFIG_PM */
5799 
5800 static void e1000_shutdown(struct pci_dev *pdev)
5801 {
5802 	bool wake = false;
5803 
5804 	__e1000_shutdown(pdev, &wake, false);
5805 
5806 	if (system_state == SYSTEM_POWER_OFF)
5807 		e1000_complete_shutdown(pdev, false, wake);
5808 }
5809 
5810 #ifdef CONFIG_NET_POLL_CONTROLLER
5811 
5812 static irqreturn_t e1000_intr_msix(int irq, void *data)
5813 {
5814 	struct net_device *netdev = data;
5815 	struct e1000_adapter *adapter = netdev_priv(netdev);
5816 
5817 	if (adapter->msix_entries) {
5818 		int vector, msix_irq;
5819 
5820 		vector = 0;
5821 		msix_irq = adapter->msix_entries[vector].vector;
5822 		disable_irq(msix_irq);
5823 		e1000_intr_msix_rx(msix_irq, netdev);
5824 		enable_irq(msix_irq);
5825 
5826 		vector++;
5827 		msix_irq = adapter->msix_entries[vector].vector;
5828 		disable_irq(msix_irq);
5829 		e1000_intr_msix_tx(msix_irq, netdev);
5830 		enable_irq(msix_irq);
5831 
5832 		vector++;
5833 		msix_irq = adapter->msix_entries[vector].vector;
5834 		disable_irq(msix_irq);
5835 		e1000_msix_other(msix_irq, netdev);
5836 		enable_irq(msix_irq);
5837 	}
5838 
5839 	return IRQ_HANDLED;
5840 }
5841 
5842 /*
5843  * Polling 'interrupt' - used by things like netconsole to send skbs
5844  * without having to re-enable interrupts. It's not called while
5845  * the interrupt routine is executing.
5846  */
5847 static void e1000_netpoll(struct net_device *netdev)
5848 {
5849 	struct e1000_adapter *adapter = netdev_priv(netdev);
5850 
5851 	switch (adapter->int_mode) {
5852 	case E1000E_INT_MODE_MSIX:
5853 		e1000_intr_msix(adapter->pdev->irq, netdev);
5854 		break;
5855 	case E1000E_INT_MODE_MSI:
5856 		disable_irq(adapter->pdev->irq);
5857 		e1000_intr_msi(adapter->pdev->irq, netdev);
5858 		enable_irq(adapter->pdev->irq);
5859 		break;
5860 	default: /* E1000E_INT_MODE_LEGACY */
5861 		disable_irq(adapter->pdev->irq);
5862 		e1000_intr(adapter->pdev->irq, netdev);
5863 		enable_irq(adapter->pdev->irq);
5864 		break;
5865 	}
5866 }
5867 #endif
5868 
5869 /**
5870  * e1000_io_error_detected - called when PCI error is detected
5871  * @pdev: Pointer to PCI device
5872  * @state: The current pci connection state
5873  *
5874  * This function is called after a PCI bus error affecting
5875  * this device has been detected.
5876  */
5877 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5878 						pci_channel_state_t state)
5879 {
5880 	struct net_device *netdev = pci_get_drvdata(pdev);
5881 	struct e1000_adapter *adapter = netdev_priv(netdev);
5882 
5883 	netif_device_detach(netdev);
5884 
5885 	if (state == pci_channel_io_perm_failure)
5886 		return PCI_ERS_RESULT_DISCONNECT;
5887 
5888 	if (netif_running(netdev))
5889 		e1000e_down(adapter);
5890 	pci_disable_device(pdev);
5891 
5892 	/* Request a slot slot reset. */
5893 	return PCI_ERS_RESULT_NEED_RESET;
5894 }
5895 
5896 /**
5897  * e1000_io_slot_reset - called after the pci bus has been reset.
5898  * @pdev: Pointer to PCI device
5899  *
5900  * Restart the card from scratch, as if from a cold-boot. Implementation
5901  * resembles the first-half of the e1000_resume routine.
5902  */
5903 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5904 {
5905 	struct net_device *netdev = pci_get_drvdata(pdev);
5906 	struct e1000_adapter *adapter = netdev_priv(netdev);
5907 	struct e1000_hw *hw = &adapter->hw;
5908 	u16 aspm_disable_flag = 0;
5909 	int err;
5910 	pci_ers_result_t result;
5911 
5912 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
5913 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
5914 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5915 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
5916 	if (aspm_disable_flag)
5917 		e1000e_disable_aspm(pdev, aspm_disable_flag);
5918 
5919 	err = pci_enable_device_mem(pdev);
5920 	if (err) {
5921 		dev_err(&pdev->dev,
5922 			"Cannot re-enable PCI device after reset.\n");
5923 		result = PCI_ERS_RESULT_DISCONNECT;
5924 	} else {
5925 		pci_set_master(pdev);
5926 		pdev->state_saved = true;
5927 		pci_restore_state(pdev);
5928 
5929 		pci_enable_wake(pdev, PCI_D3hot, 0);
5930 		pci_enable_wake(pdev, PCI_D3cold, 0);
5931 
5932 		e1000e_reset(adapter);
5933 		ew32(WUS, ~0);
5934 		result = PCI_ERS_RESULT_RECOVERED;
5935 	}
5936 
5937 	pci_cleanup_aer_uncorrect_error_status(pdev);
5938 
5939 	return result;
5940 }
5941 
5942 /**
5943  * e1000_io_resume - called when traffic can start flowing again.
5944  * @pdev: Pointer to PCI device
5945  *
5946  * This callback is called when the error recovery driver tells us that
5947  * its OK to resume normal operation. Implementation resembles the
5948  * second-half of the e1000_resume routine.
5949  */
5950 static void e1000_io_resume(struct pci_dev *pdev)
5951 {
5952 	struct net_device *netdev = pci_get_drvdata(pdev);
5953 	struct e1000_adapter *adapter = netdev_priv(netdev);
5954 
5955 	e1000_init_manageability_pt(adapter);
5956 
5957 	if (netif_running(netdev)) {
5958 		if (e1000e_up(adapter)) {
5959 			dev_err(&pdev->dev,
5960 				"can't bring device back up after reset\n");
5961 			return;
5962 		}
5963 	}
5964 
5965 	netif_device_attach(netdev);
5966 
5967 	/*
5968 	 * If the controller has AMT, do not set DRV_LOAD until the interface
5969 	 * is up.  For all other cases, let the f/w know that the h/w is now
5970 	 * under the control of the driver.
5971 	 */
5972 	if (!(adapter->flags & FLAG_HAS_AMT))
5973 		e1000e_get_hw_control(adapter);
5974 
5975 }
5976 
5977 static void e1000_print_device_info(struct e1000_adapter *adapter)
5978 {
5979 	struct e1000_hw *hw = &adapter->hw;
5980 	struct net_device *netdev = adapter->netdev;
5981 	u32 ret_val;
5982 	u8 pba_str[E1000_PBANUM_LENGTH];
5983 
5984 	/* print bus type/speed/width info */
5985 	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
5986 	       /* bus width */
5987 	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
5988 	        "Width x1"),
5989 	       /* MAC address */
5990 	       netdev->dev_addr);
5991 	e_info("Intel(R) PRO/%s Network Connection\n",
5992 	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
5993 	ret_val = e1000_read_pba_string_generic(hw, pba_str,
5994 						E1000_PBANUM_LENGTH);
5995 	if (ret_val)
5996 		strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
5997 	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
5998 	       hw->mac.type, hw->phy.type, pba_str);
5999 }
6000 
6001 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6002 {
6003 	struct e1000_hw *hw = &adapter->hw;
6004 	int ret_val;
6005 	u16 buf = 0;
6006 
6007 	if (hw->mac.type != e1000_82573)
6008 		return;
6009 
6010 	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6011 	le16_to_cpus(&buf);
6012 	if (!ret_val && (!(buf & (1 << 0)))) {
6013 		/* Deep Smart Power Down (DSPD) */
6014 		dev_warn(&adapter->pdev->dev,
6015 			 "Warning: detected DSPD enabled in EEPROM\n");
6016 	}
6017 }
6018 
6019 static int e1000_set_features(struct net_device *netdev,
6020 			      netdev_features_t features)
6021 {
6022 	struct e1000_adapter *adapter = netdev_priv(netdev);
6023 	netdev_features_t changed = features ^ netdev->features;
6024 
6025 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6026 		adapter->flags |= FLAG_TSO_FORCE;
6027 
6028 	if (!(changed & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX |
6029 			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6030 			 NETIF_F_RXALL)))
6031 		return 0;
6032 
6033 	/*
6034 	 * IP payload checksum (enabled with jumbos/packet-split when Rx
6035 	 * checksum is enabled) and generation of RSS hash is mutually
6036 	 * exclusive in the hardware.
6037 	 */
6038 	if (adapter->rx_ps_pages &&
6039 	    (features & NETIF_F_RXCSUM) && (features & NETIF_F_RXHASH)) {
6040 		e_err("Enabling both receive checksum offload and receive hashing is not possible with jumbo frames.  Disable jumbos or enable only one of the receive offload features.\n");
6041 		return -EINVAL;
6042 	}
6043 
6044 	if (changed & NETIF_F_RXFCS) {
6045 		if (features & NETIF_F_RXFCS) {
6046 			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6047 		} else {
6048 			/* We need to take it back to defaults, which might mean
6049 			 * stripping is still disabled at the adapter level.
6050 			 */
6051 			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6052 				adapter->flags2 |= FLAG2_CRC_STRIPPING;
6053 			else
6054 				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6055 		}
6056 	}
6057 
6058 	netdev->features = features;
6059 
6060 	if (netif_running(netdev))
6061 		e1000e_reinit_locked(adapter);
6062 	else
6063 		e1000e_reset(adapter);
6064 
6065 	return 0;
6066 }
6067 
6068 static const struct net_device_ops e1000e_netdev_ops = {
6069 	.ndo_open		= e1000_open,
6070 	.ndo_stop		= e1000_close,
6071 	.ndo_start_xmit		= e1000_xmit_frame,
6072 	.ndo_get_stats64	= e1000e_get_stats64,
6073 	.ndo_set_rx_mode	= e1000e_set_rx_mode,
6074 	.ndo_set_mac_address	= e1000_set_mac,
6075 	.ndo_change_mtu		= e1000_change_mtu,
6076 	.ndo_do_ioctl		= e1000_ioctl,
6077 	.ndo_tx_timeout		= e1000_tx_timeout,
6078 	.ndo_validate_addr	= eth_validate_addr,
6079 
6080 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
6081 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
6082 #ifdef CONFIG_NET_POLL_CONTROLLER
6083 	.ndo_poll_controller	= e1000_netpoll,
6084 #endif
6085 	.ndo_set_features = e1000_set_features,
6086 };
6087 
6088 /**
6089  * e1000_probe - Device Initialization Routine
6090  * @pdev: PCI device information struct
6091  * @ent: entry in e1000_pci_tbl
6092  *
6093  * Returns 0 on success, negative on failure
6094  *
6095  * e1000_probe initializes an adapter identified by a pci_dev structure.
6096  * The OS initialization, configuring of the adapter private structure,
6097  * and a hardware reset occur.
6098  **/
6099 static int __devinit e1000_probe(struct pci_dev *pdev,
6100 				 const struct pci_device_id *ent)
6101 {
6102 	struct net_device *netdev;
6103 	struct e1000_adapter *adapter;
6104 	struct e1000_hw *hw;
6105 	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6106 	resource_size_t mmio_start, mmio_len;
6107 	resource_size_t flash_start, flash_len;
6108 	static int cards_found;
6109 	u16 aspm_disable_flag = 0;
6110 	int i, err, pci_using_dac;
6111 	u16 eeprom_data = 0;
6112 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
6113 
6114 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6115 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6116 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6117 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6118 	if (aspm_disable_flag)
6119 		e1000e_disable_aspm(pdev, aspm_disable_flag);
6120 
6121 	err = pci_enable_device_mem(pdev);
6122 	if (err)
6123 		return err;
6124 
6125 	pci_using_dac = 0;
6126 	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
6127 	if (!err) {
6128 		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
6129 		if (!err)
6130 			pci_using_dac = 1;
6131 	} else {
6132 		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
6133 		if (err) {
6134 			err = dma_set_coherent_mask(&pdev->dev,
6135 						    DMA_BIT_MASK(32));
6136 			if (err) {
6137 				dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
6138 				goto err_dma;
6139 			}
6140 		}
6141 	}
6142 
6143 	err = pci_request_selected_regions_exclusive(pdev,
6144 	                                  pci_select_bars(pdev, IORESOURCE_MEM),
6145 	                                  e1000e_driver_name);
6146 	if (err)
6147 		goto err_pci_reg;
6148 
6149 	/* AER (Advanced Error Reporting) hooks */
6150 	pci_enable_pcie_error_reporting(pdev);
6151 
6152 	pci_set_master(pdev);
6153 	/* PCI config space info */
6154 	err = pci_save_state(pdev);
6155 	if (err)
6156 		goto err_alloc_etherdev;
6157 
6158 	err = -ENOMEM;
6159 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6160 	if (!netdev)
6161 		goto err_alloc_etherdev;
6162 
6163 	SET_NETDEV_DEV(netdev, &pdev->dev);
6164 
6165 	netdev->irq = pdev->irq;
6166 
6167 	pci_set_drvdata(pdev, netdev);
6168 	adapter = netdev_priv(netdev);
6169 	hw = &adapter->hw;
6170 	adapter->netdev = netdev;
6171 	adapter->pdev = pdev;
6172 	adapter->ei = ei;
6173 	adapter->pba = ei->pba;
6174 	adapter->flags = ei->flags;
6175 	adapter->flags2 = ei->flags2;
6176 	adapter->hw.adapter = adapter;
6177 	adapter->hw.mac.type = ei->mac;
6178 	adapter->max_hw_frame_size = ei->max_hw_frame_size;
6179 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6180 
6181 	mmio_start = pci_resource_start(pdev, 0);
6182 	mmio_len = pci_resource_len(pdev, 0);
6183 
6184 	err = -EIO;
6185 	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
6186 	if (!adapter->hw.hw_addr)
6187 		goto err_ioremap;
6188 
6189 	if ((adapter->flags & FLAG_HAS_FLASH) &&
6190 	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
6191 		flash_start = pci_resource_start(pdev, 1);
6192 		flash_len = pci_resource_len(pdev, 1);
6193 		adapter->hw.flash_address = ioremap(flash_start, flash_len);
6194 		if (!adapter->hw.flash_address)
6195 			goto err_flashmap;
6196 	}
6197 
6198 	/* construct the net_device struct */
6199 	netdev->netdev_ops		= &e1000e_netdev_ops;
6200 	e1000e_set_ethtool_ops(netdev);
6201 	netdev->watchdog_timeo		= 5 * HZ;
6202 	netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
6203 	strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
6204 
6205 	netdev->mem_start = mmio_start;
6206 	netdev->mem_end = mmio_start + mmio_len;
6207 
6208 	adapter->bd_number = cards_found++;
6209 
6210 	e1000e_check_options(adapter);
6211 
6212 	/* setup adapter struct */
6213 	err = e1000_sw_init(adapter);
6214 	if (err)
6215 		goto err_sw_init;
6216 
6217 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6218 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
6219 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6220 
6221 	err = ei->get_variants(adapter);
6222 	if (err)
6223 		goto err_hw_init;
6224 
6225 	if ((adapter->flags & FLAG_IS_ICH) &&
6226 	    (adapter->flags & FLAG_READ_ONLY_NVM))
6227 		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
6228 
6229 	hw->mac.ops.get_bus_info(&adapter->hw);
6230 
6231 	adapter->hw.phy.autoneg_wait_to_complete = 0;
6232 
6233 	/* Copper options */
6234 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6235 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
6236 		adapter->hw.phy.disable_polarity_correction = 0;
6237 		adapter->hw.phy.ms_type = e1000_ms_hw_default;
6238 	}
6239 
6240 	if (hw->phy.ops.check_reset_block(hw))
6241 		e_info("PHY reset is blocked due to SOL/IDER session.\n");
6242 
6243 	/* Set initial default active device features */
6244 	netdev->features = (NETIF_F_SG |
6245 			    NETIF_F_HW_VLAN_RX |
6246 			    NETIF_F_HW_VLAN_TX |
6247 			    NETIF_F_TSO |
6248 			    NETIF_F_TSO6 |
6249 			    NETIF_F_RXHASH |
6250 			    NETIF_F_RXCSUM |
6251 			    NETIF_F_HW_CSUM);
6252 
6253 	/* Set user-changeable features (subset of all device features) */
6254 	netdev->hw_features = netdev->features;
6255 	netdev->hw_features |= NETIF_F_RXFCS;
6256 	netdev->priv_flags |= IFF_SUPP_NOFCS;
6257 	netdev->hw_features |= NETIF_F_RXALL;
6258 
6259 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
6260 		netdev->features |= NETIF_F_HW_VLAN_FILTER;
6261 
6262 	netdev->vlan_features |= (NETIF_F_SG |
6263 				  NETIF_F_TSO |
6264 				  NETIF_F_TSO6 |
6265 				  NETIF_F_HW_CSUM);
6266 
6267 	netdev->priv_flags |= IFF_UNICAST_FLT;
6268 
6269 	if (pci_using_dac) {
6270 		netdev->features |= NETIF_F_HIGHDMA;
6271 		netdev->vlan_features |= NETIF_F_HIGHDMA;
6272 	}
6273 
6274 	if (e1000e_enable_mng_pass_thru(&adapter->hw))
6275 		adapter->flags |= FLAG_MNG_PT_ENABLED;
6276 
6277 	/*
6278 	 * before reading the NVM, reset the controller to
6279 	 * put the device in a known good starting state
6280 	 */
6281 	adapter->hw.mac.ops.reset_hw(&adapter->hw);
6282 
6283 	/*
6284 	 * systems with ASPM and others may see the checksum fail on the first
6285 	 * attempt. Let's give it a few tries
6286 	 */
6287 	for (i = 0;; i++) {
6288 		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
6289 			break;
6290 		if (i == 2) {
6291 			e_err("The NVM Checksum Is Not Valid\n");
6292 			err = -EIO;
6293 			goto err_eeprom;
6294 		}
6295 	}
6296 
6297 	e1000_eeprom_checks(adapter);
6298 
6299 	/* copy the MAC address */
6300 	if (e1000e_read_mac_addr(&adapter->hw))
6301 		e_err("NVM Read Error while reading MAC address\n");
6302 
6303 	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
6304 	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
6305 
6306 	if (!is_valid_ether_addr(netdev->perm_addr)) {
6307 		e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
6308 		err = -EIO;
6309 		goto err_eeprom;
6310 	}
6311 
6312 	init_timer(&adapter->watchdog_timer);
6313 	adapter->watchdog_timer.function = e1000_watchdog;
6314 	adapter->watchdog_timer.data = (unsigned long) adapter;
6315 
6316 	init_timer(&adapter->phy_info_timer);
6317 	adapter->phy_info_timer.function = e1000_update_phy_info;
6318 	adapter->phy_info_timer.data = (unsigned long) adapter;
6319 
6320 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
6321 	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6322 	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
6323 	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6324 	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6325 
6326 	/* Initialize link parameters. User can change them with ethtool */
6327 	adapter->hw.mac.autoneg = 1;
6328 	adapter->fc_autoneg = true;
6329 	adapter->hw.fc.requested_mode = e1000_fc_default;
6330 	adapter->hw.fc.current_mode = e1000_fc_default;
6331 	adapter->hw.phy.autoneg_advertised = 0x2f;
6332 
6333 	/* ring size defaults */
6334 	adapter->rx_ring->count = 256;
6335 	adapter->tx_ring->count = 256;
6336 
6337 	/*
6338 	 * Initial Wake on LAN setting - If APM wake is enabled in
6339 	 * the EEPROM, enable the ACPI Magic Packet filter
6340 	 */
6341 	if (adapter->flags & FLAG_APME_IN_WUC) {
6342 		/* APME bit in EEPROM is mapped to WUC.APME */
6343 		eeprom_data = er32(WUC);
6344 		eeprom_apme_mask = E1000_WUC_APME;
6345 		if ((hw->mac.type > e1000_ich10lan) &&
6346 		    (eeprom_data & E1000_WUC_PHY_WAKE))
6347 			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6348 	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
6349 		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
6350 		    (adapter->hw.bus.func == 1))
6351 			e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_B,
6352 				       1, &eeprom_data);
6353 		else
6354 			e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_A,
6355 				       1, &eeprom_data);
6356 	}
6357 
6358 	/* fetch WoL from EEPROM */
6359 	if (eeprom_data & eeprom_apme_mask)
6360 		adapter->eeprom_wol |= E1000_WUFC_MAG;
6361 
6362 	/*
6363 	 * now that we have the eeprom settings, apply the special cases
6364 	 * where the eeprom may be wrong or the board simply won't support
6365 	 * wake on lan on a particular port
6366 	 */
6367 	if (!(adapter->flags & FLAG_HAS_WOL))
6368 		adapter->eeprom_wol = 0;
6369 
6370 	/* initialize the wol settings based on the eeprom settings */
6371 	adapter->wol = adapter->eeprom_wol;
6372 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
6373 
6374 	/* save off EEPROM version number */
6375 	e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
6376 
6377 	/* reset the hardware with the new settings */
6378 	e1000e_reset(adapter);
6379 
6380 	/*
6381 	 * If the controller has AMT, do not set DRV_LOAD until the interface
6382 	 * is up.  For all other cases, let the f/w know that the h/w is now
6383 	 * under the control of the driver.
6384 	 */
6385 	if (!(adapter->flags & FLAG_HAS_AMT))
6386 		e1000e_get_hw_control(adapter);
6387 
6388 	strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
6389 	err = register_netdev(netdev);
6390 	if (err)
6391 		goto err_register;
6392 
6393 	/* carrier off reporting is important to ethtool even BEFORE open */
6394 	netif_carrier_off(netdev);
6395 
6396 	e1000_print_device_info(adapter);
6397 
6398 	if (pci_dev_run_wake(pdev))
6399 		pm_runtime_put_noidle(&pdev->dev);
6400 
6401 	return 0;
6402 
6403 err_register:
6404 	if (!(adapter->flags & FLAG_HAS_AMT))
6405 		e1000e_release_hw_control(adapter);
6406 err_eeprom:
6407 	if (!hw->phy.ops.check_reset_block(hw))
6408 		e1000_phy_hw_reset(&adapter->hw);
6409 err_hw_init:
6410 	kfree(adapter->tx_ring);
6411 	kfree(adapter->rx_ring);
6412 err_sw_init:
6413 	if (adapter->hw.flash_address)
6414 		iounmap(adapter->hw.flash_address);
6415 	e1000e_reset_interrupt_capability(adapter);
6416 err_flashmap:
6417 	iounmap(adapter->hw.hw_addr);
6418 err_ioremap:
6419 	free_netdev(netdev);
6420 err_alloc_etherdev:
6421 	pci_release_selected_regions(pdev,
6422 	                             pci_select_bars(pdev, IORESOURCE_MEM));
6423 err_pci_reg:
6424 err_dma:
6425 	pci_disable_device(pdev);
6426 	return err;
6427 }
6428 
6429 /**
6430  * e1000_remove - Device Removal Routine
6431  * @pdev: PCI device information struct
6432  *
6433  * e1000_remove is called by the PCI subsystem to alert the driver
6434  * that it should release a PCI device.  The could be caused by a
6435  * Hot-Plug event, or because the driver is going to be removed from
6436  * memory.
6437  **/
6438 static void __devexit e1000_remove(struct pci_dev *pdev)
6439 {
6440 	struct net_device *netdev = pci_get_drvdata(pdev);
6441 	struct e1000_adapter *adapter = netdev_priv(netdev);
6442 	bool down = test_bit(__E1000_DOWN, &adapter->state);
6443 
6444 	/*
6445 	 * The timers may be rescheduled, so explicitly disable them
6446 	 * from being rescheduled.
6447 	 */
6448 	if (!down)
6449 		set_bit(__E1000_DOWN, &adapter->state);
6450 	del_timer_sync(&adapter->watchdog_timer);
6451 	del_timer_sync(&adapter->phy_info_timer);
6452 
6453 	cancel_work_sync(&adapter->reset_task);
6454 	cancel_work_sync(&adapter->watchdog_task);
6455 	cancel_work_sync(&adapter->downshift_task);
6456 	cancel_work_sync(&adapter->update_phy_task);
6457 	cancel_work_sync(&adapter->print_hang_task);
6458 
6459 	if (!(netdev->flags & IFF_UP))
6460 		e1000_power_down_phy(adapter);
6461 
6462 	/* Don't lie to e1000_close() down the road. */
6463 	if (!down)
6464 		clear_bit(__E1000_DOWN, &adapter->state);
6465 	unregister_netdev(netdev);
6466 
6467 	if (pci_dev_run_wake(pdev))
6468 		pm_runtime_get_noresume(&pdev->dev);
6469 
6470 	/*
6471 	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
6472 	 * would have already happened in close and is redundant.
6473 	 */
6474 	e1000e_release_hw_control(adapter);
6475 
6476 	e1000e_reset_interrupt_capability(adapter);
6477 	kfree(adapter->tx_ring);
6478 	kfree(adapter->rx_ring);
6479 
6480 	iounmap(adapter->hw.hw_addr);
6481 	if (adapter->hw.flash_address)
6482 		iounmap(adapter->hw.flash_address);
6483 	pci_release_selected_regions(pdev,
6484 	                             pci_select_bars(pdev, IORESOURCE_MEM));
6485 
6486 	free_netdev(netdev);
6487 
6488 	/* AER disable */
6489 	pci_disable_pcie_error_reporting(pdev);
6490 
6491 	pci_disable_device(pdev);
6492 }
6493 
6494 /* PCI Error Recovery (ERS) */
6495 static struct pci_error_handlers e1000_err_handler = {
6496 	.error_detected = e1000_io_error_detected,
6497 	.slot_reset = e1000_io_slot_reset,
6498 	.resume = e1000_io_resume,
6499 };
6500 
6501 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6502 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
6503 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
6504 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
6505 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
6506 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
6507 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6508 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
6509 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
6510 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6511 
6512 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
6513 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
6514 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
6515 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6516 
6517 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
6518 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
6519 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6520 
6521 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6522 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6523 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6524 
6525 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
6526 	  board_80003es2lan },
6527 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
6528 	  board_80003es2lan },
6529 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
6530 	  board_80003es2lan },
6531 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
6532 	  board_80003es2lan },
6533 
6534 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
6535 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
6536 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
6537 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
6538 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
6539 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
6540 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
6541 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6542 
6543 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
6544 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
6545 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
6546 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
6547 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6548 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6549 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
6550 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
6551 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
6552 
6553 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
6554 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
6555 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6556 
6557 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
6558 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6559 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6560 
6561 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
6562 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
6563 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
6564 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
6565 
6566 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
6567 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
6568 
6569 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
6570 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
6571 
6572 	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
6573 };
6574 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
6575 
6576 #ifdef CONFIG_PM
6577 static const struct dev_pm_ops e1000_pm_ops = {
6578 	SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
6579 	SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
6580 				e1000_runtime_resume, e1000_idle)
6581 };
6582 #endif
6583 
6584 /* PCI Device API Driver */
6585 static struct pci_driver e1000_driver = {
6586 	.name     = e1000e_driver_name,
6587 	.id_table = e1000_pci_tbl,
6588 	.probe    = e1000_probe,
6589 	.remove   = __devexit_p(e1000_remove),
6590 #ifdef CONFIG_PM
6591 	.driver   = {
6592 		.pm = &e1000_pm_ops,
6593 	},
6594 #endif
6595 	.shutdown = e1000_shutdown,
6596 	.err_handler = &e1000_err_handler
6597 };
6598 
6599 /**
6600  * e1000_init_module - Driver Registration Routine
6601  *
6602  * e1000_init_module is the first routine called when the driver is
6603  * loaded. All it does is register with the PCI subsystem.
6604  **/
6605 static int __init e1000_init_module(void)
6606 {
6607 	int ret;
6608 	pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
6609 		e1000e_driver_version);
6610 	pr_info("Copyright(c) 1999 - 2012 Intel Corporation.\n");
6611 	ret = pci_register_driver(&e1000_driver);
6612 
6613 	return ret;
6614 }
6615 module_init(e1000_init_module);
6616 
6617 /**
6618  * e1000_exit_module - Driver Exit Cleanup Routine
6619  *
6620  * e1000_exit_module is called just before the driver is removed
6621  * from memory.
6622  **/
6623 static void __exit e1000_exit_module(void)
6624 {
6625 	pci_unregister_driver(&e1000_driver);
6626 }
6627 module_exit(e1000_exit_module);
6628 
6629 
6630 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
6631 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
6632 MODULE_LICENSE("GPL");
6633 MODULE_VERSION(DRV_VERSION);
6634 
6635 /* netdev.c */
6636