xref: /linux/drivers/net/ethernet/intel/e1000e/netdev.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/pci.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/delay.h>
13 #include <linux/netdevice.h>
14 #include <linux/interrupt.h>
15 #include <linux/tcp.h>
16 #include <linux/ipv6.h>
17 #include <linux/slab.h>
18 #include <net/checksum.h>
19 #include <net/ip6_checksum.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/cpu.h>
23 #include <linux/smp.h>
24 #include <linux/pm_qos.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/prefetch.h>
27 #include <linux/suspend.h>
28 
29 #include "e1000.h"
30 #define CREATE_TRACE_POINTS
31 #include "e1000e_trace.h"
32 
33 char e1000e_driver_name[] = "e1000e";
34 
35 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
36 static int debug = -1;
37 module_param(debug, int, 0);
38 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
39 
40 static const struct e1000_info *e1000_info_tbl[] = {
41 	[board_82571]		= &e1000_82571_info,
42 	[board_82572]		= &e1000_82572_info,
43 	[board_82573]		= &e1000_82573_info,
44 	[board_82574]		= &e1000_82574_info,
45 	[board_82583]		= &e1000_82583_info,
46 	[board_80003es2lan]	= &e1000_es2_info,
47 	[board_ich8lan]		= &e1000_ich8_info,
48 	[board_ich9lan]		= &e1000_ich9_info,
49 	[board_ich10lan]	= &e1000_ich10_info,
50 	[board_pchlan]		= &e1000_pch_info,
51 	[board_pch2lan]		= &e1000_pch2_info,
52 	[board_pch_lpt]		= &e1000_pch_lpt_info,
53 	[board_pch_spt]		= &e1000_pch_spt_info,
54 	[board_pch_cnp]		= &e1000_pch_cnp_info,
55 	[board_pch_tgp]		= &e1000_pch_tgp_info,
56 	[board_pch_adp]		= &e1000_pch_adp_info,
57 	[board_pch_mtp]		= &e1000_pch_mtp_info,
58 };
59 
60 struct e1000_reg_info {
61 	u32 ofs;
62 	char *name;
63 };
64 
65 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
66 	/* General Registers */
67 	{E1000_CTRL, "CTRL"},
68 	{E1000_STATUS, "STATUS"},
69 	{E1000_CTRL_EXT, "CTRL_EXT"},
70 
71 	/* Interrupt Registers */
72 	{E1000_ICR, "ICR"},
73 
74 	/* Rx Registers */
75 	{E1000_RCTL, "RCTL"},
76 	{E1000_RDLEN(0), "RDLEN"},
77 	{E1000_RDH(0), "RDH"},
78 	{E1000_RDT(0), "RDT"},
79 	{E1000_RDTR, "RDTR"},
80 	{E1000_RXDCTL(0), "RXDCTL"},
81 	{E1000_ERT, "ERT"},
82 	{E1000_RDBAL(0), "RDBAL"},
83 	{E1000_RDBAH(0), "RDBAH"},
84 	{E1000_RDFH, "RDFH"},
85 	{E1000_RDFT, "RDFT"},
86 	{E1000_RDFHS, "RDFHS"},
87 	{E1000_RDFTS, "RDFTS"},
88 	{E1000_RDFPC, "RDFPC"},
89 
90 	/* Tx Registers */
91 	{E1000_TCTL, "TCTL"},
92 	{E1000_TDBAL(0), "TDBAL"},
93 	{E1000_TDBAH(0), "TDBAH"},
94 	{E1000_TDLEN(0), "TDLEN"},
95 	{E1000_TDH(0), "TDH"},
96 	{E1000_TDT(0), "TDT"},
97 	{E1000_TIDV, "TIDV"},
98 	{E1000_TXDCTL(0), "TXDCTL"},
99 	{E1000_TADV, "TADV"},
100 	{E1000_TARC(0), "TARC"},
101 	{E1000_TDFH, "TDFH"},
102 	{E1000_TDFT, "TDFT"},
103 	{E1000_TDFHS, "TDFHS"},
104 	{E1000_TDFTS, "TDFTS"},
105 	{E1000_TDFPC, "TDFPC"},
106 
107 	/* List Terminator */
108 	{0, NULL}
109 };
110 
111 /**
112  * __ew32_prepare - prepare to write to MAC CSR register on certain parts
113  * @hw: pointer to the HW structure
114  *
115  * When updating the MAC CSR registers, the Manageability Engine (ME) could
116  * be accessing the registers at the same time.  Normally, this is handled in
117  * h/w by an arbiter but on some parts there is a bug that acknowledges Host
118  * accesses later than it should which could result in the register to have
119  * an incorrect value.  Workaround this by checking the FWSM register which
120  * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
121  * and try again a number of times.
122  **/
123 static void __ew32_prepare(struct e1000_hw *hw)
124 {
125 	s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
126 
127 	while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
128 		udelay(50);
129 }
130 
131 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
132 {
133 	if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
134 		__ew32_prepare(hw);
135 
136 	writel(val, hw->hw_addr + reg);
137 }
138 
139 /**
140  * e1000_regdump - register printout routine
141  * @hw: pointer to the HW structure
142  * @reginfo: pointer to the register info table
143  **/
144 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
145 {
146 	int n = 0;
147 	char rname[16];
148 	u32 regs[8];
149 
150 	switch (reginfo->ofs) {
151 	case E1000_RXDCTL(0):
152 		for (n = 0; n < 2; n++)
153 			regs[n] = __er32(hw, E1000_RXDCTL(n));
154 		break;
155 	case E1000_TXDCTL(0):
156 		for (n = 0; n < 2; n++)
157 			regs[n] = __er32(hw, E1000_TXDCTL(n));
158 		break;
159 	case E1000_TARC(0):
160 		for (n = 0; n < 2; n++)
161 			regs[n] = __er32(hw, E1000_TARC(n));
162 		break;
163 	default:
164 		pr_info("%-15s %08x\n",
165 			reginfo->name, __er32(hw, reginfo->ofs));
166 		return;
167 	}
168 
169 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
170 	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
171 }
172 
173 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
174 				 struct e1000_buffer *bi)
175 {
176 	int i;
177 	struct e1000_ps_page *ps_page;
178 
179 	for (i = 0; i < adapter->rx_ps_pages; i++) {
180 		ps_page = &bi->ps_pages[i];
181 
182 		if (ps_page->page) {
183 			pr_info("packet dump for ps_page %d:\n", i);
184 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
185 				       16, 1, page_address(ps_page->page),
186 				       PAGE_SIZE, true);
187 		}
188 	}
189 }
190 
191 /**
192  * e1000e_dump - Print registers, Tx-ring and Rx-ring
193  * @adapter: board private structure
194  **/
195 static void e1000e_dump(struct e1000_adapter *adapter)
196 {
197 	struct net_device *netdev = adapter->netdev;
198 	struct e1000_hw *hw = &adapter->hw;
199 	struct e1000_reg_info *reginfo;
200 	struct e1000_ring *tx_ring = adapter->tx_ring;
201 	struct e1000_tx_desc *tx_desc;
202 	struct my_u0 {
203 		__le64 a;
204 		__le64 b;
205 	} *u0;
206 	struct e1000_buffer *buffer_info;
207 	struct e1000_ring *rx_ring = adapter->rx_ring;
208 	union e1000_rx_desc_packet_split *rx_desc_ps;
209 	union e1000_rx_desc_extended *rx_desc;
210 	struct my_u1 {
211 		__le64 a;
212 		__le64 b;
213 		__le64 c;
214 		__le64 d;
215 	} *u1;
216 	u32 staterr;
217 	int i = 0;
218 
219 	if (!netif_msg_hw(adapter))
220 		return;
221 
222 	/* Print netdevice Info */
223 	if (netdev) {
224 		dev_info(&adapter->pdev->dev, "Net device Info\n");
225 		pr_info("Device Name     state            trans_start\n");
226 		pr_info("%-15s %016lX %016lX\n", netdev->name,
227 			netdev->state, dev_trans_start(netdev));
228 	}
229 
230 	/* Print Registers */
231 	dev_info(&adapter->pdev->dev, "Register Dump\n");
232 	pr_info(" Register Name   Value\n");
233 	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
234 	     reginfo->name; reginfo++) {
235 		e1000_regdump(hw, reginfo);
236 	}
237 
238 	/* Print Tx Ring Summary */
239 	if (!netdev || !netif_running(netdev))
240 		return;
241 
242 	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
243 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
244 	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
245 	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
246 		0, tx_ring->next_to_use, tx_ring->next_to_clean,
247 		(unsigned long long)buffer_info->dma,
248 		buffer_info->length,
249 		buffer_info->next_to_watch,
250 		(unsigned long long)buffer_info->time_stamp);
251 
252 	/* Print Tx Ring */
253 	if (!netif_msg_tx_done(adapter))
254 		goto rx_ring_summary;
255 
256 	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
257 
258 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
259 	 *
260 	 * Legacy Transmit Descriptor
261 	 *   +--------------------------------------------------------------+
262 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
263 	 *   +--------------------------------------------------------------+
264 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
265 	 *   +--------------------------------------------------------------+
266 	 *   63       48 47        36 35    32 31     24 23    16 15        0
267 	 *
268 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
269 	 *   63      48 47    40 39       32 31             16 15    8 7      0
270 	 *   +----------------------------------------------------------------+
271 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
272 	 *   +----------------------------------------------------------------+
273 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
274 	 *   +----------------------------------------------------------------+
275 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
276 	 *
277 	 * Extended Data Descriptor (DTYP=0x1)
278 	 *   +----------------------------------------------------------------+
279 	 * 0 |                     Buffer Address [63:0]                      |
280 	 *   +----------------------------------------------------------------+
281 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
282 	 *   +----------------------------------------------------------------+
283 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
284 	 */
285 	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
286 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
287 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
288 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
289 		const char *next_desc;
290 		tx_desc = E1000_TX_DESC(*tx_ring, i);
291 		buffer_info = &tx_ring->buffer_info[i];
292 		u0 = (struct my_u0 *)tx_desc;
293 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
294 			next_desc = " NTC/U";
295 		else if (i == tx_ring->next_to_use)
296 			next_desc = " NTU";
297 		else if (i == tx_ring->next_to_clean)
298 			next_desc = " NTC";
299 		else
300 			next_desc = "";
301 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
302 			(!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
303 			 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
304 			i,
305 			(unsigned long long)le64_to_cpu(u0->a),
306 			(unsigned long long)le64_to_cpu(u0->b),
307 			(unsigned long long)buffer_info->dma,
308 			buffer_info->length, buffer_info->next_to_watch,
309 			(unsigned long long)buffer_info->time_stamp,
310 			buffer_info->skb, next_desc);
311 
312 		if (netif_msg_pktdata(adapter) && buffer_info->skb)
313 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
314 				       16, 1, buffer_info->skb->data,
315 				       buffer_info->skb->len, true);
316 	}
317 
318 	/* Print Rx Ring Summary */
319 rx_ring_summary:
320 	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
321 	pr_info("Queue [NTU] [NTC]\n");
322 	pr_info(" %5d %5X %5X\n",
323 		0, rx_ring->next_to_use, rx_ring->next_to_clean);
324 
325 	/* Print Rx Ring */
326 	if (!netif_msg_rx_status(adapter))
327 		return;
328 
329 	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
330 	switch (adapter->rx_ps_pages) {
331 	case 1:
332 	case 2:
333 	case 3:
334 		/* [Extended] Packet Split Receive Descriptor Format
335 		 *
336 		 *    +-----------------------------------------------------+
337 		 *  0 |                Buffer Address 0 [63:0]              |
338 		 *    +-----------------------------------------------------+
339 		 *  8 |                Buffer Address 1 [63:0]              |
340 		 *    +-----------------------------------------------------+
341 		 * 16 |                Buffer Address 2 [63:0]              |
342 		 *    +-----------------------------------------------------+
343 		 * 24 |                Buffer Address 3 [63:0]              |
344 		 *    +-----------------------------------------------------+
345 		 */
346 		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
347 		/* [Extended] Receive Descriptor (Write-Back) Format
348 		 *
349 		 *   63       48 47    32 31     13 12    8 7    4 3        0
350 		 *   +------------------------------------------------------+
351 		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
352 		 *   | Checksum | Ident  |         | Queue |      |  Type   |
353 		 *   +------------------------------------------------------+
354 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
355 		 *   +------------------------------------------------------+
356 		 *   63       48 47    32 31            20 19               0
357 		 */
358 		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
359 		for (i = 0; i < rx_ring->count; i++) {
360 			const char *next_desc;
361 			buffer_info = &rx_ring->buffer_info[i];
362 			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
363 			u1 = (struct my_u1 *)rx_desc_ps;
364 			staterr =
365 			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
366 
367 			if (i == rx_ring->next_to_use)
368 				next_desc = " NTU";
369 			else if (i == rx_ring->next_to_clean)
370 				next_desc = " NTC";
371 			else
372 				next_desc = "";
373 
374 			if (staterr & E1000_RXD_STAT_DD) {
375 				/* Descriptor Done */
376 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
377 					"RWB", i,
378 					(unsigned long long)le64_to_cpu(u1->a),
379 					(unsigned long long)le64_to_cpu(u1->b),
380 					(unsigned long long)le64_to_cpu(u1->c),
381 					(unsigned long long)le64_to_cpu(u1->d),
382 					buffer_info->skb, next_desc);
383 			} else {
384 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
385 					"R  ", i,
386 					(unsigned long long)le64_to_cpu(u1->a),
387 					(unsigned long long)le64_to_cpu(u1->b),
388 					(unsigned long long)le64_to_cpu(u1->c),
389 					(unsigned long long)le64_to_cpu(u1->d),
390 					(unsigned long long)buffer_info->dma,
391 					buffer_info->skb, next_desc);
392 
393 				if (netif_msg_pktdata(adapter))
394 					e1000e_dump_ps_pages(adapter,
395 							     buffer_info);
396 			}
397 		}
398 		break;
399 	default:
400 	case 0:
401 		/* Extended Receive Descriptor (Read) Format
402 		 *
403 		 *   +-----------------------------------------------------+
404 		 * 0 |                Buffer Address [63:0]                |
405 		 *   +-----------------------------------------------------+
406 		 * 8 |                      Reserved                       |
407 		 *   +-----------------------------------------------------+
408 		 */
409 		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
410 		/* Extended Receive Descriptor (Write-Back) Format
411 		 *
412 		 *   63       48 47    32 31    24 23            4 3        0
413 		 *   +------------------------------------------------------+
414 		 *   |     RSS Hash      |        |               |         |
415 		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
416 		 *   | Packet   | IP     |        |               |  Type   |
417 		 *   | Checksum | Ident  |        |               |         |
418 		 *   +------------------------------------------------------+
419 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
420 		 *   +------------------------------------------------------+
421 		 *   63       48 47    32 31            20 19               0
422 		 */
423 		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
424 
425 		for (i = 0; i < rx_ring->count; i++) {
426 			const char *next_desc;
427 
428 			buffer_info = &rx_ring->buffer_info[i];
429 			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
430 			u1 = (struct my_u1 *)rx_desc;
431 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
432 
433 			if (i == rx_ring->next_to_use)
434 				next_desc = " NTU";
435 			else if (i == rx_ring->next_to_clean)
436 				next_desc = " NTC";
437 			else
438 				next_desc = "";
439 
440 			if (staterr & E1000_RXD_STAT_DD) {
441 				/* Descriptor Done */
442 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
443 					"RWB", i,
444 					(unsigned long long)le64_to_cpu(u1->a),
445 					(unsigned long long)le64_to_cpu(u1->b),
446 					buffer_info->skb, next_desc);
447 			} else {
448 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
449 					"R  ", i,
450 					(unsigned long long)le64_to_cpu(u1->a),
451 					(unsigned long long)le64_to_cpu(u1->b),
452 					(unsigned long long)buffer_info->dma,
453 					buffer_info->skb, next_desc);
454 
455 				if (netif_msg_pktdata(adapter) &&
456 				    buffer_info->skb)
457 					print_hex_dump(KERN_INFO, "",
458 						       DUMP_PREFIX_ADDRESS, 16,
459 						       1,
460 						       buffer_info->skb->data,
461 						       adapter->rx_buffer_len,
462 						       true);
463 			}
464 		}
465 	}
466 }
467 
468 /**
469  * e1000_desc_unused - calculate if we have unused descriptors
470  * @ring: pointer to ring struct to perform calculation on
471  **/
472 static int e1000_desc_unused(struct e1000_ring *ring)
473 {
474 	if (ring->next_to_clean > ring->next_to_use)
475 		return ring->next_to_clean - ring->next_to_use - 1;
476 
477 	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
478 }
479 
480 /**
481  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
482  * @adapter: board private structure
483  * @hwtstamps: time stamp structure to update
484  * @systim: unsigned 64bit system time value.
485  *
486  * Convert the system time value stored in the RX/TXSTMP registers into a
487  * hwtstamp which can be used by the upper level time stamping functions.
488  *
489  * The 'systim_lock' spinlock is used to protect the consistency of the
490  * system time value. This is needed because reading the 64 bit time
491  * value involves reading two 32 bit registers. The first read latches the
492  * value.
493  **/
494 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
495 				      struct skb_shared_hwtstamps *hwtstamps,
496 				      u64 systim)
497 {
498 	u64 ns;
499 	unsigned long flags;
500 
501 	spin_lock_irqsave(&adapter->systim_lock, flags);
502 	ns = timecounter_cyc2time(&adapter->tc, systim);
503 	spin_unlock_irqrestore(&adapter->systim_lock, flags);
504 
505 	memset(hwtstamps, 0, sizeof(*hwtstamps));
506 	hwtstamps->hwtstamp = ns_to_ktime(ns);
507 }
508 
509 /**
510  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
511  * @adapter: board private structure
512  * @status: descriptor extended error and status field
513  * @skb: particular skb to include time stamp
514  *
515  * If the time stamp is valid, convert it into the timecounter ns value
516  * and store that result into the shhwtstamps structure which is passed
517  * up the network stack.
518  **/
519 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
520 			       struct sk_buff *skb)
521 {
522 	struct e1000_hw *hw = &adapter->hw;
523 	u64 rxstmp;
524 
525 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
526 	    !(status & E1000_RXDEXT_STATERR_TST) ||
527 	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
528 		return;
529 
530 	/* The Rx time stamp registers contain the time stamp.  No other
531 	 * received packet will be time stamped until the Rx time stamp
532 	 * registers are read.  Because only one packet can be time stamped
533 	 * at a time, the register values must belong to this packet and
534 	 * therefore none of the other additional attributes need to be
535 	 * compared.
536 	 */
537 	rxstmp = (u64)er32(RXSTMPL);
538 	rxstmp |= (u64)er32(RXSTMPH) << 32;
539 	e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
540 
541 	adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
542 }
543 
544 /**
545  * e1000_receive_skb - helper function to handle Rx indications
546  * @adapter: board private structure
547  * @netdev: pointer to netdev struct
548  * @staterr: descriptor extended error and status field as written by hardware
549  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
550  * @skb: pointer to sk_buff to be indicated to stack
551  **/
552 static void e1000_receive_skb(struct e1000_adapter *adapter,
553 			      struct net_device *netdev, struct sk_buff *skb,
554 			      u32 staterr, __le16 vlan)
555 {
556 	u16 tag = le16_to_cpu(vlan);
557 
558 	e1000e_rx_hwtstamp(adapter, staterr, skb);
559 
560 	skb->protocol = eth_type_trans(skb, netdev);
561 
562 	if (staterr & E1000_RXD_STAT_VP)
563 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
564 
565 	napi_gro_receive(&adapter->napi, skb);
566 }
567 
568 /**
569  * e1000_rx_checksum - Receive Checksum Offload
570  * @adapter: board private structure
571  * @status_err: receive descriptor status and error fields
572  * @skb: socket buffer with received data
573  **/
574 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
575 			      struct sk_buff *skb)
576 {
577 	u16 status = (u16)status_err;
578 	u8 errors = (u8)(status_err >> 24);
579 
580 	skb_checksum_none_assert(skb);
581 
582 	/* Rx checksum disabled */
583 	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
584 		return;
585 
586 	/* Ignore Checksum bit is set */
587 	if (status & E1000_RXD_STAT_IXSM)
588 		return;
589 
590 	/* TCP/UDP checksum error bit or IP checksum error bit is set */
591 	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
592 		/* let the stack verify checksum errors */
593 		adapter->hw_csum_err++;
594 		return;
595 	}
596 
597 	/* TCP/UDP Checksum has not been calculated */
598 	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
599 		return;
600 
601 	/* It must be a TCP or UDP packet with a valid checksum */
602 	skb->ip_summed = CHECKSUM_UNNECESSARY;
603 	adapter->hw_csum_good++;
604 }
605 
606 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
607 {
608 	struct e1000_adapter *adapter = rx_ring->adapter;
609 	struct e1000_hw *hw = &adapter->hw;
610 
611 	__ew32_prepare(hw);
612 	writel(i, rx_ring->tail);
613 
614 	if (unlikely(i != readl(rx_ring->tail))) {
615 		u32 rctl = er32(RCTL);
616 
617 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
618 		e_err("ME firmware caused invalid RDT - resetting\n");
619 		schedule_work(&adapter->reset_task);
620 	}
621 }
622 
623 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
624 {
625 	struct e1000_adapter *adapter = tx_ring->adapter;
626 	struct e1000_hw *hw = &adapter->hw;
627 
628 	__ew32_prepare(hw);
629 	writel(i, tx_ring->tail);
630 
631 	if (unlikely(i != readl(tx_ring->tail))) {
632 		u32 tctl = er32(TCTL);
633 
634 		ew32(TCTL, tctl & ~E1000_TCTL_EN);
635 		e_err("ME firmware caused invalid TDT - resetting\n");
636 		schedule_work(&adapter->reset_task);
637 	}
638 }
639 
640 /**
641  * e1000_alloc_rx_buffers - Replace used receive buffers
642  * @rx_ring: Rx descriptor ring
643  * @cleaned_count: number to reallocate
644  * @gfp: flags for allocation
645  **/
646 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
647 				   int cleaned_count, gfp_t gfp)
648 {
649 	struct e1000_adapter *adapter = rx_ring->adapter;
650 	struct net_device *netdev = adapter->netdev;
651 	struct pci_dev *pdev = adapter->pdev;
652 	union e1000_rx_desc_extended *rx_desc;
653 	struct e1000_buffer *buffer_info;
654 	struct sk_buff *skb;
655 	unsigned int i;
656 	unsigned int bufsz = adapter->rx_buffer_len;
657 
658 	i = rx_ring->next_to_use;
659 	buffer_info = &rx_ring->buffer_info[i];
660 
661 	while (cleaned_count--) {
662 		skb = buffer_info->skb;
663 		if (skb) {
664 			skb_trim(skb, 0);
665 			goto map_skb;
666 		}
667 
668 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
669 		if (!skb) {
670 			/* Better luck next round */
671 			adapter->alloc_rx_buff_failed++;
672 			break;
673 		}
674 
675 		buffer_info->skb = skb;
676 map_skb:
677 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
678 						  adapter->rx_buffer_len,
679 						  DMA_FROM_DEVICE);
680 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
681 			dev_err(&pdev->dev, "Rx DMA map failed\n");
682 			adapter->rx_dma_failed++;
683 			break;
684 		}
685 
686 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
687 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
688 
689 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
690 			/* Force memory writes to complete before letting h/w
691 			 * know there are new descriptors to fetch.  (Only
692 			 * applicable for weak-ordered memory model archs,
693 			 * such as IA-64).
694 			 */
695 			wmb();
696 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
697 				e1000e_update_rdt_wa(rx_ring, i);
698 			else
699 				writel(i, rx_ring->tail);
700 		}
701 		i++;
702 		if (i == rx_ring->count)
703 			i = 0;
704 		buffer_info = &rx_ring->buffer_info[i];
705 	}
706 
707 	rx_ring->next_to_use = i;
708 }
709 
710 /**
711  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
712  * @rx_ring: Rx descriptor ring
713  * @cleaned_count: number to reallocate
714  * @gfp: flags for allocation
715  **/
716 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
717 				      int cleaned_count, gfp_t gfp)
718 {
719 	struct e1000_adapter *adapter = rx_ring->adapter;
720 	struct net_device *netdev = adapter->netdev;
721 	struct pci_dev *pdev = adapter->pdev;
722 	union e1000_rx_desc_packet_split *rx_desc;
723 	struct e1000_buffer *buffer_info;
724 	struct e1000_ps_page *ps_page;
725 	struct sk_buff *skb;
726 	unsigned int i, j;
727 
728 	i = rx_ring->next_to_use;
729 	buffer_info = &rx_ring->buffer_info[i];
730 
731 	while (cleaned_count--) {
732 		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
733 
734 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
735 			ps_page = &buffer_info->ps_pages[j];
736 			if (j >= adapter->rx_ps_pages) {
737 				/* all unused desc entries get hw null ptr */
738 				rx_desc->read.buffer_addr[j + 1] =
739 				    ~cpu_to_le64(0);
740 				continue;
741 			}
742 			if (!ps_page->page) {
743 				ps_page->page = alloc_page(gfp);
744 				if (!ps_page->page) {
745 					adapter->alloc_rx_buff_failed++;
746 					goto no_buffers;
747 				}
748 				ps_page->dma = dma_map_page(&pdev->dev,
749 							    ps_page->page,
750 							    0, PAGE_SIZE,
751 							    DMA_FROM_DEVICE);
752 				if (dma_mapping_error(&pdev->dev,
753 						      ps_page->dma)) {
754 					dev_err(&adapter->pdev->dev,
755 						"Rx DMA page map failed\n");
756 					adapter->rx_dma_failed++;
757 					goto no_buffers;
758 				}
759 			}
760 			/* Refresh the desc even if buffer_addrs
761 			 * didn't change because each write-back
762 			 * erases this info.
763 			 */
764 			rx_desc->read.buffer_addr[j + 1] =
765 			    cpu_to_le64(ps_page->dma);
766 		}
767 
768 		skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
769 						  gfp);
770 
771 		if (!skb) {
772 			adapter->alloc_rx_buff_failed++;
773 			break;
774 		}
775 
776 		buffer_info->skb = skb;
777 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
778 						  adapter->rx_ps_bsize0,
779 						  DMA_FROM_DEVICE);
780 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
781 			dev_err(&pdev->dev, "Rx DMA map failed\n");
782 			adapter->rx_dma_failed++;
783 			/* cleanup skb */
784 			dev_kfree_skb_any(skb);
785 			buffer_info->skb = NULL;
786 			break;
787 		}
788 
789 		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
790 
791 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
792 			/* Force memory writes to complete before letting h/w
793 			 * know there are new descriptors to fetch.  (Only
794 			 * applicable for weak-ordered memory model archs,
795 			 * such as IA-64).
796 			 */
797 			wmb();
798 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
799 				e1000e_update_rdt_wa(rx_ring, i << 1);
800 			else
801 				writel(i << 1, rx_ring->tail);
802 		}
803 
804 		i++;
805 		if (i == rx_ring->count)
806 			i = 0;
807 		buffer_info = &rx_ring->buffer_info[i];
808 	}
809 
810 no_buffers:
811 	rx_ring->next_to_use = i;
812 }
813 
814 /**
815  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
816  * @rx_ring: Rx descriptor ring
817  * @cleaned_count: number of buffers to allocate this pass
818  * @gfp: flags for allocation
819  **/
820 
821 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
822 					 int cleaned_count, gfp_t gfp)
823 {
824 	struct e1000_adapter *adapter = rx_ring->adapter;
825 	struct net_device *netdev = adapter->netdev;
826 	struct pci_dev *pdev = adapter->pdev;
827 	union e1000_rx_desc_extended *rx_desc;
828 	struct e1000_buffer *buffer_info;
829 	struct sk_buff *skb;
830 	unsigned int i;
831 	unsigned int bufsz = 256 - 16;	/* for skb_reserve */
832 
833 	i = rx_ring->next_to_use;
834 	buffer_info = &rx_ring->buffer_info[i];
835 
836 	while (cleaned_count--) {
837 		skb = buffer_info->skb;
838 		if (skb) {
839 			skb_trim(skb, 0);
840 			goto check_page;
841 		}
842 
843 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
844 		if (unlikely(!skb)) {
845 			/* Better luck next round */
846 			adapter->alloc_rx_buff_failed++;
847 			break;
848 		}
849 
850 		buffer_info->skb = skb;
851 check_page:
852 		/* allocate a new page if necessary */
853 		if (!buffer_info->page) {
854 			buffer_info->page = alloc_page(gfp);
855 			if (unlikely(!buffer_info->page)) {
856 				adapter->alloc_rx_buff_failed++;
857 				break;
858 			}
859 		}
860 
861 		if (!buffer_info->dma) {
862 			buffer_info->dma = dma_map_page(&pdev->dev,
863 							buffer_info->page, 0,
864 							PAGE_SIZE,
865 							DMA_FROM_DEVICE);
866 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
867 				adapter->alloc_rx_buff_failed++;
868 				break;
869 			}
870 		}
871 
872 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
873 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
874 
875 		if (unlikely(++i == rx_ring->count))
876 			i = 0;
877 		buffer_info = &rx_ring->buffer_info[i];
878 	}
879 
880 	if (likely(rx_ring->next_to_use != i)) {
881 		rx_ring->next_to_use = i;
882 		if (unlikely(i-- == 0))
883 			i = (rx_ring->count - 1);
884 
885 		/* Force memory writes to complete before letting h/w
886 		 * know there are new descriptors to fetch.  (Only
887 		 * applicable for weak-ordered memory model archs,
888 		 * such as IA-64).
889 		 */
890 		wmb();
891 		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
892 			e1000e_update_rdt_wa(rx_ring, i);
893 		else
894 			writel(i, rx_ring->tail);
895 	}
896 }
897 
898 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
899 				 struct sk_buff *skb)
900 {
901 	if (netdev->features & NETIF_F_RXHASH)
902 		skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
903 }
904 
905 /**
906  * e1000_clean_rx_irq - Send received data up the network stack
907  * @rx_ring: Rx descriptor ring
908  * @work_done: output parameter for indicating completed work
909  * @work_to_do: how many packets we can clean
910  *
911  * the return value indicates whether actual cleaning was done, there
912  * is no guarantee that everything was cleaned
913  **/
914 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
915 			       int work_to_do)
916 {
917 	struct e1000_adapter *adapter = rx_ring->adapter;
918 	struct net_device *netdev = adapter->netdev;
919 	struct pci_dev *pdev = adapter->pdev;
920 	struct e1000_hw *hw = &adapter->hw;
921 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
922 	struct e1000_buffer *buffer_info, *next_buffer;
923 	u32 length, staterr;
924 	unsigned int i;
925 	int cleaned_count = 0;
926 	bool cleaned = false;
927 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
928 
929 	i = rx_ring->next_to_clean;
930 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
931 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
932 	buffer_info = &rx_ring->buffer_info[i];
933 
934 	while (staterr & E1000_RXD_STAT_DD) {
935 		struct sk_buff *skb;
936 
937 		if (*work_done >= work_to_do)
938 			break;
939 		(*work_done)++;
940 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
941 
942 		skb = buffer_info->skb;
943 		buffer_info->skb = NULL;
944 
945 		prefetch(skb->data - NET_IP_ALIGN);
946 
947 		i++;
948 		if (i == rx_ring->count)
949 			i = 0;
950 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
951 		prefetch(next_rxd);
952 
953 		next_buffer = &rx_ring->buffer_info[i];
954 
955 		cleaned = true;
956 		cleaned_count++;
957 		dma_unmap_single(&pdev->dev, buffer_info->dma,
958 				 adapter->rx_buffer_len, DMA_FROM_DEVICE);
959 		buffer_info->dma = 0;
960 
961 		length = le16_to_cpu(rx_desc->wb.upper.length);
962 
963 		/* !EOP means multiple descriptors were used to store a single
964 		 * packet, if that's the case we need to toss it.  In fact, we
965 		 * need to toss every packet with the EOP bit clear and the
966 		 * next frame that _does_ have the EOP bit set, as it is by
967 		 * definition only a frame fragment
968 		 */
969 		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
970 			adapter->flags2 |= FLAG2_IS_DISCARDING;
971 
972 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
973 			/* All receives must fit into a single buffer */
974 			e_dbg("Receive packet consumed multiple buffers\n");
975 			/* recycle */
976 			buffer_info->skb = skb;
977 			if (staterr & E1000_RXD_STAT_EOP)
978 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
979 			goto next_desc;
980 		}
981 
982 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
983 			     !(netdev->features & NETIF_F_RXALL))) {
984 			/* recycle */
985 			buffer_info->skb = skb;
986 			goto next_desc;
987 		}
988 
989 		/* adjust length to remove Ethernet CRC */
990 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
991 			/* If configured to store CRC, don't subtract FCS,
992 			 * but keep the FCS bytes out of the total_rx_bytes
993 			 * counter
994 			 */
995 			if (netdev->features & NETIF_F_RXFCS)
996 				total_rx_bytes -= 4;
997 			else
998 				length -= 4;
999 		}
1000 
1001 		total_rx_bytes += length;
1002 		total_rx_packets++;
1003 
1004 		/* code added for copybreak, this should improve
1005 		 * performance for small packets with large amounts
1006 		 * of reassembly being done in the stack
1007 		 */
1008 		if (length < copybreak) {
1009 			struct sk_buff *new_skb =
1010 				napi_alloc_skb(&adapter->napi, length);
1011 			if (new_skb) {
1012 				skb_copy_to_linear_data_offset(new_skb,
1013 							       -NET_IP_ALIGN,
1014 							       (skb->data -
1015 								NET_IP_ALIGN),
1016 							       (length +
1017 								NET_IP_ALIGN));
1018 				/* save the skb in buffer_info as good */
1019 				buffer_info->skb = skb;
1020 				skb = new_skb;
1021 			}
1022 			/* else just continue with the old one */
1023 		}
1024 		/* end copybreak code */
1025 		skb_put(skb, length);
1026 
1027 		/* Receive Checksum Offload */
1028 		e1000_rx_checksum(adapter, staterr, skb);
1029 
1030 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1031 
1032 		e1000_receive_skb(adapter, netdev, skb, staterr,
1033 				  rx_desc->wb.upper.vlan);
1034 
1035 next_desc:
1036 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1037 
1038 		/* return some buffers to hardware, one at a time is too slow */
1039 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1040 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1041 					      GFP_ATOMIC);
1042 			cleaned_count = 0;
1043 		}
1044 
1045 		/* use prefetched values */
1046 		rx_desc = next_rxd;
1047 		buffer_info = next_buffer;
1048 
1049 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1050 	}
1051 	rx_ring->next_to_clean = i;
1052 
1053 	cleaned_count = e1000_desc_unused(rx_ring);
1054 	if (cleaned_count)
1055 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1056 
1057 	adapter->total_rx_bytes += total_rx_bytes;
1058 	adapter->total_rx_packets += total_rx_packets;
1059 	return cleaned;
1060 }
1061 
1062 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1063 			    struct e1000_buffer *buffer_info,
1064 			    bool drop)
1065 {
1066 	struct e1000_adapter *adapter = tx_ring->adapter;
1067 
1068 	if (buffer_info->dma) {
1069 		if (buffer_info->mapped_as_page)
1070 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1071 				       buffer_info->length, DMA_TO_DEVICE);
1072 		else
1073 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1074 					 buffer_info->length, DMA_TO_DEVICE);
1075 		buffer_info->dma = 0;
1076 	}
1077 	if (buffer_info->skb) {
1078 		if (drop)
1079 			dev_kfree_skb_any(buffer_info->skb);
1080 		else
1081 			dev_consume_skb_any(buffer_info->skb);
1082 		buffer_info->skb = NULL;
1083 	}
1084 	buffer_info->time_stamp = 0;
1085 }
1086 
1087 static void e1000_print_hw_hang(struct work_struct *work)
1088 {
1089 	struct e1000_adapter *adapter = container_of(work,
1090 						     struct e1000_adapter,
1091 						     print_hang_task);
1092 	struct net_device *netdev = adapter->netdev;
1093 	struct e1000_ring *tx_ring = adapter->tx_ring;
1094 	unsigned int i = tx_ring->next_to_clean;
1095 	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1096 	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1097 	struct e1000_hw *hw = &adapter->hw;
1098 	u16 phy_status, phy_1000t_status, phy_ext_status;
1099 	u16 pci_status;
1100 
1101 	if (test_bit(__E1000_DOWN, &adapter->state))
1102 		return;
1103 
1104 	if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1105 		/* May be block on write-back, flush and detect again
1106 		 * flush pending descriptor writebacks to memory
1107 		 */
1108 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1109 		/* execute the writes immediately */
1110 		e1e_flush();
1111 		/* Due to rare timing issues, write to TIDV again to ensure
1112 		 * the write is successful
1113 		 */
1114 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1115 		/* execute the writes immediately */
1116 		e1e_flush();
1117 		adapter->tx_hang_recheck = true;
1118 		return;
1119 	}
1120 	adapter->tx_hang_recheck = false;
1121 
1122 	if (er32(TDH(0)) == er32(TDT(0))) {
1123 		e_dbg("false hang detected, ignoring\n");
1124 		return;
1125 	}
1126 
1127 	/* Real hang detected */
1128 	netif_stop_queue(netdev);
1129 
1130 	e1e_rphy(hw, MII_BMSR, &phy_status);
1131 	e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1132 	e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1133 
1134 	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1135 
1136 	/* detected Hardware unit hang */
1137 	e_err("Detected Hardware Unit Hang:\n"
1138 	      "  TDH                  <%x>\n"
1139 	      "  TDT                  <%x>\n"
1140 	      "  next_to_use          <%x>\n"
1141 	      "  next_to_clean        <%x>\n"
1142 	      "buffer_info[next_to_clean]:\n"
1143 	      "  time_stamp           <%lx>\n"
1144 	      "  next_to_watch        <%x>\n"
1145 	      "  jiffies              <%lx>\n"
1146 	      "  next_to_watch.status <%x>\n"
1147 	      "MAC Status             <%x>\n"
1148 	      "PHY Status             <%x>\n"
1149 	      "PHY 1000BASE-T Status  <%x>\n"
1150 	      "PHY Extended Status    <%x>\n"
1151 	      "PCI Status             <%x>\n",
1152 	      readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1153 	      tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1154 	      eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1155 	      phy_status, phy_1000t_status, phy_ext_status, pci_status);
1156 
1157 	e1000e_dump(adapter);
1158 
1159 	/* Suggest workaround for known h/w issue */
1160 	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1161 		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1162 }
1163 
1164 /**
1165  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1166  * @work: pointer to work struct
1167  *
1168  * This work function polls the TSYNCTXCTL valid bit to determine when a
1169  * timestamp has been taken for the current stored skb.  The timestamp must
1170  * be for this skb because only one such packet is allowed in the queue.
1171  */
1172 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1173 {
1174 	struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1175 						     tx_hwtstamp_work);
1176 	struct e1000_hw *hw = &adapter->hw;
1177 
1178 	if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1179 		struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1180 		struct skb_shared_hwtstamps shhwtstamps;
1181 		u64 txstmp;
1182 
1183 		txstmp = er32(TXSTMPL);
1184 		txstmp |= (u64)er32(TXSTMPH) << 32;
1185 
1186 		e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1187 
1188 		/* Clear the global tx_hwtstamp_skb pointer and force writes
1189 		 * prior to notifying the stack of a Tx timestamp.
1190 		 */
1191 		adapter->tx_hwtstamp_skb = NULL;
1192 		wmb(); /* force write prior to skb_tstamp_tx */
1193 
1194 		skb_tstamp_tx(skb, &shhwtstamps);
1195 		dev_consume_skb_any(skb);
1196 	} else if (time_after(jiffies, adapter->tx_hwtstamp_start
1197 			      + adapter->tx_timeout_factor * HZ)) {
1198 		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1199 		adapter->tx_hwtstamp_skb = NULL;
1200 		adapter->tx_hwtstamp_timeouts++;
1201 		e_warn("clearing Tx timestamp hang\n");
1202 	} else {
1203 		/* reschedule to check later */
1204 		schedule_work(&adapter->tx_hwtstamp_work);
1205 	}
1206 }
1207 
1208 /**
1209  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1210  * @tx_ring: Tx descriptor ring
1211  *
1212  * the return value indicates whether actual cleaning was done, there
1213  * is no guarantee that everything was cleaned
1214  **/
1215 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1216 {
1217 	struct e1000_adapter *adapter = tx_ring->adapter;
1218 	struct net_device *netdev = adapter->netdev;
1219 	struct e1000_hw *hw = &adapter->hw;
1220 	struct e1000_tx_desc *tx_desc, *eop_desc;
1221 	struct e1000_buffer *buffer_info;
1222 	unsigned int i, eop;
1223 	unsigned int count = 0;
1224 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1225 	unsigned int bytes_compl = 0, pkts_compl = 0;
1226 
1227 	i = tx_ring->next_to_clean;
1228 	eop = tx_ring->buffer_info[i].next_to_watch;
1229 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1230 
1231 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1232 	       (count < tx_ring->count)) {
1233 		bool cleaned = false;
1234 
1235 		dma_rmb();		/* read buffer_info after eop_desc */
1236 		for (; !cleaned; count++) {
1237 			tx_desc = E1000_TX_DESC(*tx_ring, i);
1238 			buffer_info = &tx_ring->buffer_info[i];
1239 			cleaned = (i == eop);
1240 
1241 			if (cleaned) {
1242 				total_tx_packets += buffer_info->segs;
1243 				total_tx_bytes += buffer_info->bytecount;
1244 				if (buffer_info->skb) {
1245 					bytes_compl += buffer_info->skb->len;
1246 					pkts_compl++;
1247 				}
1248 			}
1249 
1250 			e1000_put_txbuf(tx_ring, buffer_info, false);
1251 			tx_desc->upper.data = 0;
1252 
1253 			i++;
1254 			if (i == tx_ring->count)
1255 				i = 0;
1256 		}
1257 
1258 		if (i == tx_ring->next_to_use)
1259 			break;
1260 		eop = tx_ring->buffer_info[i].next_to_watch;
1261 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1262 	}
1263 
1264 	tx_ring->next_to_clean = i;
1265 
1266 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1267 
1268 #define TX_WAKE_THRESHOLD 32
1269 	if (count && netif_carrier_ok(netdev) &&
1270 	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1271 		/* Make sure that anybody stopping the queue after this
1272 		 * sees the new next_to_clean.
1273 		 */
1274 		smp_mb();
1275 
1276 		if (netif_queue_stopped(netdev) &&
1277 		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1278 			netif_wake_queue(netdev);
1279 			++adapter->restart_queue;
1280 		}
1281 	}
1282 
1283 	if (adapter->detect_tx_hung) {
1284 		/* Detect a transmit hang in hardware, this serializes the
1285 		 * check with the clearing of time_stamp and movement of i
1286 		 */
1287 		adapter->detect_tx_hung = false;
1288 		if (tx_ring->buffer_info[i].time_stamp &&
1289 		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1290 			       + (adapter->tx_timeout_factor * HZ)) &&
1291 		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1292 			schedule_work(&adapter->print_hang_task);
1293 		else
1294 			adapter->tx_hang_recheck = false;
1295 	}
1296 	adapter->total_tx_bytes += total_tx_bytes;
1297 	adapter->total_tx_packets += total_tx_packets;
1298 	return count < tx_ring->count;
1299 }
1300 
1301 /**
1302  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1303  * @rx_ring: Rx descriptor ring
1304  * @work_done: output parameter for indicating completed work
1305  * @work_to_do: how many packets we can clean
1306  *
1307  * the return value indicates whether actual cleaning was done, there
1308  * is no guarantee that everything was cleaned
1309  **/
1310 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1311 				  int work_to_do)
1312 {
1313 	struct e1000_adapter *adapter = rx_ring->adapter;
1314 	struct e1000_hw *hw = &adapter->hw;
1315 	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1316 	struct net_device *netdev = adapter->netdev;
1317 	struct pci_dev *pdev = adapter->pdev;
1318 	struct e1000_buffer *buffer_info, *next_buffer;
1319 	struct e1000_ps_page *ps_page;
1320 	struct sk_buff *skb;
1321 	unsigned int i, j;
1322 	u32 length, staterr;
1323 	int cleaned_count = 0;
1324 	bool cleaned = false;
1325 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1326 
1327 	i = rx_ring->next_to_clean;
1328 	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1329 	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1330 	buffer_info = &rx_ring->buffer_info[i];
1331 
1332 	while (staterr & E1000_RXD_STAT_DD) {
1333 		if (*work_done >= work_to_do)
1334 			break;
1335 		(*work_done)++;
1336 		skb = buffer_info->skb;
1337 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1338 
1339 		/* in the packet split case this is header only */
1340 		prefetch(skb->data - NET_IP_ALIGN);
1341 
1342 		i++;
1343 		if (i == rx_ring->count)
1344 			i = 0;
1345 		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1346 		prefetch(next_rxd);
1347 
1348 		next_buffer = &rx_ring->buffer_info[i];
1349 
1350 		cleaned = true;
1351 		cleaned_count++;
1352 		dma_unmap_single(&pdev->dev, buffer_info->dma,
1353 				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1354 		buffer_info->dma = 0;
1355 
1356 		/* see !EOP comment in other Rx routine */
1357 		if (!(staterr & E1000_RXD_STAT_EOP))
1358 			adapter->flags2 |= FLAG2_IS_DISCARDING;
1359 
1360 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1361 			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1362 			dev_kfree_skb_irq(skb);
1363 			if (staterr & E1000_RXD_STAT_EOP)
1364 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1365 			goto next_desc;
1366 		}
1367 
1368 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1369 			     !(netdev->features & NETIF_F_RXALL))) {
1370 			dev_kfree_skb_irq(skb);
1371 			goto next_desc;
1372 		}
1373 
1374 		length = le16_to_cpu(rx_desc->wb.middle.length0);
1375 
1376 		if (!length) {
1377 			e_dbg("Last part of the packet spanning multiple descriptors\n");
1378 			dev_kfree_skb_irq(skb);
1379 			goto next_desc;
1380 		}
1381 
1382 		/* Good Receive */
1383 		skb_put(skb, length);
1384 
1385 		{
1386 			/* this looks ugly, but it seems compiler issues make
1387 			 * it more efficient than reusing j
1388 			 */
1389 			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1390 
1391 			/* page alloc/put takes too long and effects small
1392 			 * packet throughput, so unsplit small packets and
1393 			 * save the alloc/put
1394 			 */
1395 			if (l1 && (l1 <= copybreak) &&
1396 			    ((length + l1) <= adapter->rx_ps_bsize0)) {
1397 				ps_page = &buffer_info->ps_pages[0];
1398 
1399 				dma_sync_single_for_cpu(&pdev->dev,
1400 							ps_page->dma,
1401 							PAGE_SIZE,
1402 							DMA_FROM_DEVICE);
1403 				memcpy(skb_tail_pointer(skb),
1404 				       page_address(ps_page->page), l1);
1405 				dma_sync_single_for_device(&pdev->dev,
1406 							   ps_page->dma,
1407 							   PAGE_SIZE,
1408 							   DMA_FROM_DEVICE);
1409 
1410 				/* remove the CRC */
1411 				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1412 					if (!(netdev->features & NETIF_F_RXFCS))
1413 						l1 -= 4;
1414 				}
1415 
1416 				skb_put(skb, l1);
1417 				goto copydone;
1418 			}	/* if */
1419 		}
1420 
1421 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1422 			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1423 			if (!length)
1424 				break;
1425 
1426 			ps_page = &buffer_info->ps_pages[j];
1427 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1428 				       DMA_FROM_DEVICE);
1429 			ps_page->dma = 0;
1430 			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1431 			ps_page->page = NULL;
1432 			skb->len += length;
1433 			skb->data_len += length;
1434 			skb->truesize += PAGE_SIZE;
1435 		}
1436 
1437 		/* strip the ethernet crc, problem is we're using pages now so
1438 		 * this whole operation can get a little cpu intensive
1439 		 */
1440 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1441 			if (!(netdev->features & NETIF_F_RXFCS))
1442 				pskb_trim(skb, skb->len - 4);
1443 		}
1444 
1445 copydone:
1446 		total_rx_bytes += skb->len;
1447 		total_rx_packets++;
1448 
1449 		e1000_rx_checksum(adapter, staterr, skb);
1450 
1451 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1452 
1453 		if (rx_desc->wb.upper.header_status &
1454 		    cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1455 			adapter->rx_hdr_split++;
1456 
1457 		e1000_receive_skb(adapter, netdev, skb, staterr,
1458 				  rx_desc->wb.middle.vlan);
1459 
1460 next_desc:
1461 		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1462 		buffer_info->skb = NULL;
1463 
1464 		/* return some buffers to hardware, one at a time is too slow */
1465 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1466 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1467 					      GFP_ATOMIC);
1468 			cleaned_count = 0;
1469 		}
1470 
1471 		/* use prefetched values */
1472 		rx_desc = next_rxd;
1473 		buffer_info = next_buffer;
1474 
1475 		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1476 	}
1477 	rx_ring->next_to_clean = i;
1478 
1479 	cleaned_count = e1000_desc_unused(rx_ring);
1480 	if (cleaned_count)
1481 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1482 
1483 	adapter->total_rx_bytes += total_rx_bytes;
1484 	adapter->total_rx_packets += total_rx_packets;
1485 	return cleaned;
1486 }
1487 
1488 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1489 			       u16 length)
1490 {
1491 	bi->page = NULL;
1492 	skb->len += length;
1493 	skb->data_len += length;
1494 	skb->truesize += PAGE_SIZE;
1495 }
1496 
1497 /**
1498  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1499  * @rx_ring: Rx descriptor ring
1500  * @work_done: output parameter for indicating completed work
1501  * @work_to_do: how many packets we can clean
1502  *
1503  * the return value indicates whether actual cleaning was done, there
1504  * is no guarantee that everything was cleaned
1505  **/
1506 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1507 				     int work_to_do)
1508 {
1509 	struct e1000_adapter *adapter = rx_ring->adapter;
1510 	struct net_device *netdev = adapter->netdev;
1511 	struct pci_dev *pdev = adapter->pdev;
1512 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1513 	struct e1000_buffer *buffer_info, *next_buffer;
1514 	u32 length, staterr;
1515 	unsigned int i;
1516 	int cleaned_count = 0;
1517 	bool cleaned = false;
1518 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1519 	struct skb_shared_info *shinfo;
1520 
1521 	i = rx_ring->next_to_clean;
1522 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1523 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1524 	buffer_info = &rx_ring->buffer_info[i];
1525 
1526 	while (staterr & E1000_RXD_STAT_DD) {
1527 		struct sk_buff *skb;
1528 
1529 		if (*work_done >= work_to_do)
1530 			break;
1531 		(*work_done)++;
1532 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1533 
1534 		skb = buffer_info->skb;
1535 		buffer_info->skb = NULL;
1536 
1537 		++i;
1538 		if (i == rx_ring->count)
1539 			i = 0;
1540 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1541 		prefetch(next_rxd);
1542 
1543 		next_buffer = &rx_ring->buffer_info[i];
1544 
1545 		cleaned = true;
1546 		cleaned_count++;
1547 		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1548 			       DMA_FROM_DEVICE);
1549 		buffer_info->dma = 0;
1550 
1551 		length = le16_to_cpu(rx_desc->wb.upper.length);
1552 
1553 		/* errors is only valid for DD + EOP descriptors */
1554 		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1555 			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1556 			      !(netdev->features & NETIF_F_RXALL)))) {
1557 			/* recycle both page and skb */
1558 			buffer_info->skb = skb;
1559 			/* an error means any chain goes out the window too */
1560 			if (rx_ring->rx_skb_top)
1561 				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1562 			rx_ring->rx_skb_top = NULL;
1563 			goto next_desc;
1564 		}
1565 #define rxtop (rx_ring->rx_skb_top)
1566 		if (!(staterr & E1000_RXD_STAT_EOP)) {
1567 			/* this descriptor is only the beginning (or middle) */
1568 			if (!rxtop) {
1569 				/* this is the beginning of a chain */
1570 				rxtop = skb;
1571 				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1572 						   0, length);
1573 			} else {
1574 				/* this is the middle of a chain */
1575 				shinfo = skb_shinfo(rxtop);
1576 				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1577 						   buffer_info->page, 0,
1578 						   length);
1579 				/* re-use the skb, only consumed the page */
1580 				buffer_info->skb = skb;
1581 			}
1582 			e1000_consume_page(buffer_info, rxtop, length);
1583 			goto next_desc;
1584 		} else {
1585 			if (rxtop) {
1586 				/* end of the chain */
1587 				shinfo = skb_shinfo(rxtop);
1588 				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1589 						   buffer_info->page, 0,
1590 						   length);
1591 				/* re-use the current skb, we only consumed the
1592 				 * page
1593 				 */
1594 				buffer_info->skb = skb;
1595 				skb = rxtop;
1596 				rxtop = NULL;
1597 				e1000_consume_page(buffer_info, skb, length);
1598 			} else {
1599 				/* no chain, got EOP, this buf is the packet
1600 				 * copybreak to save the put_page/alloc_page
1601 				 */
1602 				if (length <= copybreak &&
1603 				    skb_tailroom(skb) >= length) {
1604 					memcpy(skb_tail_pointer(skb),
1605 					       page_address(buffer_info->page),
1606 					       length);
1607 					/* re-use the page, so don't erase
1608 					 * buffer_info->page
1609 					 */
1610 					skb_put(skb, length);
1611 				} else {
1612 					skb_fill_page_desc(skb, 0,
1613 							   buffer_info->page, 0,
1614 							   length);
1615 					e1000_consume_page(buffer_info, skb,
1616 							   length);
1617 				}
1618 			}
1619 		}
1620 
1621 		/* Receive Checksum Offload */
1622 		e1000_rx_checksum(adapter, staterr, skb);
1623 
1624 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1625 
1626 		/* probably a little skewed due to removing CRC */
1627 		total_rx_bytes += skb->len;
1628 		total_rx_packets++;
1629 
1630 		/* eth type trans needs skb->data to point to something */
1631 		if (!pskb_may_pull(skb, ETH_HLEN)) {
1632 			e_err("pskb_may_pull failed.\n");
1633 			dev_kfree_skb_irq(skb);
1634 			goto next_desc;
1635 		}
1636 
1637 		e1000_receive_skb(adapter, netdev, skb, staterr,
1638 				  rx_desc->wb.upper.vlan);
1639 
1640 next_desc:
1641 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1642 
1643 		/* return some buffers to hardware, one at a time is too slow */
1644 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1645 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1646 					      GFP_ATOMIC);
1647 			cleaned_count = 0;
1648 		}
1649 
1650 		/* use prefetched values */
1651 		rx_desc = next_rxd;
1652 		buffer_info = next_buffer;
1653 
1654 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1655 	}
1656 	rx_ring->next_to_clean = i;
1657 
1658 	cleaned_count = e1000_desc_unused(rx_ring);
1659 	if (cleaned_count)
1660 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1661 
1662 	adapter->total_rx_bytes += total_rx_bytes;
1663 	adapter->total_rx_packets += total_rx_packets;
1664 	return cleaned;
1665 }
1666 
1667 /**
1668  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1669  * @rx_ring: Rx descriptor ring
1670  **/
1671 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1672 {
1673 	struct e1000_adapter *adapter = rx_ring->adapter;
1674 	struct e1000_buffer *buffer_info;
1675 	struct e1000_ps_page *ps_page;
1676 	struct pci_dev *pdev = adapter->pdev;
1677 	unsigned int i, j;
1678 
1679 	/* Free all the Rx ring sk_buffs */
1680 	for (i = 0; i < rx_ring->count; i++) {
1681 		buffer_info = &rx_ring->buffer_info[i];
1682 		if (buffer_info->dma) {
1683 			if (adapter->clean_rx == e1000_clean_rx_irq)
1684 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1685 						 adapter->rx_buffer_len,
1686 						 DMA_FROM_DEVICE);
1687 			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1688 				dma_unmap_page(&pdev->dev, buffer_info->dma,
1689 					       PAGE_SIZE, DMA_FROM_DEVICE);
1690 			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1691 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1692 						 adapter->rx_ps_bsize0,
1693 						 DMA_FROM_DEVICE);
1694 			buffer_info->dma = 0;
1695 		}
1696 
1697 		if (buffer_info->page) {
1698 			put_page(buffer_info->page);
1699 			buffer_info->page = NULL;
1700 		}
1701 
1702 		if (buffer_info->skb) {
1703 			dev_kfree_skb(buffer_info->skb);
1704 			buffer_info->skb = NULL;
1705 		}
1706 
1707 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1708 			ps_page = &buffer_info->ps_pages[j];
1709 			if (!ps_page->page)
1710 				break;
1711 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1712 				       DMA_FROM_DEVICE);
1713 			ps_page->dma = 0;
1714 			put_page(ps_page->page);
1715 			ps_page->page = NULL;
1716 		}
1717 	}
1718 
1719 	/* there also may be some cached data from a chained receive */
1720 	if (rx_ring->rx_skb_top) {
1721 		dev_kfree_skb(rx_ring->rx_skb_top);
1722 		rx_ring->rx_skb_top = NULL;
1723 	}
1724 
1725 	/* Zero out the descriptor ring */
1726 	memset(rx_ring->desc, 0, rx_ring->size);
1727 
1728 	rx_ring->next_to_clean = 0;
1729 	rx_ring->next_to_use = 0;
1730 	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1731 }
1732 
1733 static void e1000e_downshift_workaround(struct work_struct *work)
1734 {
1735 	struct e1000_adapter *adapter = container_of(work,
1736 						     struct e1000_adapter,
1737 						     downshift_task);
1738 
1739 	if (test_bit(__E1000_DOWN, &adapter->state))
1740 		return;
1741 
1742 	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1743 }
1744 
1745 /**
1746  * e1000_intr_msi - Interrupt Handler
1747  * @irq: interrupt number
1748  * @data: pointer to a network interface device structure
1749  **/
1750 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1751 {
1752 	struct net_device *netdev = data;
1753 	struct e1000_adapter *adapter = netdev_priv(netdev);
1754 	struct e1000_hw *hw = &adapter->hw;
1755 	u32 icr = er32(ICR);
1756 
1757 	/* read ICR disables interrupts using IAM */
1758 	if (icr & E1000_ICR_LSC) {
1759 		hw->mac.get_link_status = true;
1760 		/* ICH8 workaround-- Call gig speed drop workaround on cable
1761 		 * disconnect (LSC) before accessing any PHY registers
1762 		 */
1763 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1764 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1765 			schedule_work(&adapter->downshift_task);
1766 
1767 		/* 80003ES2LAN workaround-- For packet buffer work-around on
1768 		 * link down event; disable receives here in the ISR and reset
1769 		 * adapter in watchdog
1770 		 */
1771 		if (netif_carrier_ok(netdev) &&
1772 		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1773 			/* disable receives */
1774 			u32 rctl = er32(RCTL);
1775 
1776 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1777 			adapter->flags |= FLAG_RESTART_NOW;
1778 		}
1779 		/* guard against interrupt when we're going down */
1780 		if (!test_bit(__E1000_DOWN, &adapter->state))
1781 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1782 	}
1783 
1784 	/* Reset on uncorrectable ECC error */
1785 	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1786 		u32 pbeccsts = er32(PBECCSTS);
1787 
1788 		adapter->corr_errors +=
1789 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1790 		adapter->uncorr_errors +=
1791 		    FIELD_GET(E1000_PBECCSTS_UNCORR_ERR_CNT_MASK, pbeccsts);
1792 
1793 		/* Do the reset outside of interrupt context */
1794 		schedule_work(&adapter->reset_task);
1795 
1796 		/* return immediately since reset is imminent */
1797 		return IRQ_HANDLED;
1798 	}
1799 
1800 	if (napi_schedule_prep(&adapter->napi)) {
1801 		adapter->total_tx_bytes = 0;
1802 		adapter->total_tx_packets = 0;
1803 		adapter->total_rx_bytes = 0;
1804 		adapter->total_rx_packets = 0;
1805 		__napi_schedule(&adapter->napi);
1806 	}
1807 
1808 	return IRQ_HANDLED;
1809 }
1810 
1811 /**
1812  * e1000_intr - Interrupt Handler
1813  * @irq: interrupt number
1814  * @data: pointer to a network interface device structure
1815  **/
1816 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1817 {
1818 	struct net_device *netdev = data;
1819 	struct e1000_adapter *adapter = netdev_priv(netdev);
1820 	struct e1000_hw *hw = &adapter->hw;
1821 	u32 rctl, icr = er32(ICR);
1822 
1823 	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1824 		return IRQ_NONE;	/* Not our interrupt */
1825 
1826 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1827 	 * not set, then the adapter didn't send an interrupt
1828 	 */
1829 	if (!(icr & E1000_ICR_INT_ASSERTED))
1830 		return IRQ_NONE;
1831 
1832 	/* Interrupt Auto-Mask...upon reading ICR,
1833 	 * interrupts are masked.  No need for the
1834 	 * IMC write
1835 	 */
1836 
1837 	if (icr & E1000_ICR_LSC) {
1838 		hw->mac.get_link_status = true;
1839 		/* ICH8 workaround-- Call gig speed drop workaround on cable
1840 		 * disconnect (LSC) before accessing any PHY registers
1841 		 */
1842 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1843 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1844 			schedule_work(&adapter->downshift_task);
1845 
1846 		/* 80003ES2LAN workaround--
1847 		 * For packet buffer work-around on link down event;
1848 		 * disable receives here in the ISR and
1849 		 * reset adapter in watchdog
1850 		 */
1851 		if (netif_carrier_ok(netdev) &&
1852 		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1853 			/* disable receives */
1854 			rctl = er32(RCTL);
1855 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1856 			adapter->flags |= FLAG_RESTART_NOW;
1857 		}
1858 		/* guard against interrupt when we're going down */
1859 		if (!test_bit(__E1000_DOWN, &adapter->state))
1860 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1861 	}
1862 
1863 	/* Reset on uncorrectable ECC error */
1864 	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1865 		u32 pbeccsts = er32(PBECCSTS);
1866 
1867 		adapter->corr_errors +=
1868 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1869 		adapter->uncorr_errors +=
1870 		    FIELD_GET(E1000_PBECCSTS_UNCORR_ERR_CNT_MASK, pbeccsts);
1871 
1872 		/* Do the reset outside of interrupt context */
1873 		schedule_work(&adapter->reset_task);
1874 
1875 		/* return immediately since reset is imminent */
1876 		return IRQ_HANDLED;
1877 	}
1878 
1879 	if (napi_schedule_prep(&adapter->napi)) {
1880 		adapter->total_tx_bytes = 0;
1881 		adapter->total_tx_packets = 0;
1882 		adapter->total_rx_bytes = 0;
1883 		adapter->total_rx_packets = 0;
1884 		__napi_schedule(&adapter->napi);
1885 	}
1886 
1887 	return IRQ_HANDLED;
1888 }
1889 
1890 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1891 {
1892 	struct net_device *netdev = data;
1893 	struct e1000_adapter *adapter = netdev_priv(netdev);
1894 	struct e1000_hw *hw = &adapter->hw;
1895 	u32 icr = er32(ICR);
1896 
1897 	if (icr & adapter->eiac_mask)
1898 		ew32(ICS, (icr & adapter->eiac_mask));
1899 
1900 	if (icr & E1000_ICR_LSC) {
1901 		hw->mac.get_link_status = true;
1902 		/* guard against interrupt when we're going down */
1903 		if (!test_bit(__E1000_DOWN, &adapter->state))
1904 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1905 	}
1906 
1907 	if (!test_bit(__E1000_DOWN, &adapter->state))
1908 		ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
1909 
1910 	return IRQ_HANDLED;
1911 }
1912 
1913 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1914 {
1915 	struct net_device *netdev = data;
1916 	struct e1000_adapter *adapter = netdev_priv(netdev);
1917 	struct e1000_hw *hw = &adapter->hw;
1918 	struct e1000_ring *tx_ring = adapter->tx_ring;
1919 
1920 	adapter->total_tx_bytes = 0;
1921 	adapter->total_tx_packets = 0;
1922 
1923 	if (!e1000_clean_tx_irq(tx_ring))
1924 		/* Ring was not completely cleaned, so fire another interrupt */
1925 		ew32(ICS, tx_ring->ims_val);
1926 
1927 	if (!test_bit(__E1000_DOWN, &adapter->state))
1928 		ew32(IMS, adapter->tx_ring->ims_val);
1929 
1930 	return IRQ_HANDLED;
1931 }
1932 
1933 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1934 {
1935 	struct net_device *netdev = data;
1936 	struct e1000_adapter *adapter = netdev_priv(netdev);
1937 	struct e1000_ring *rx_ring = adapter->rx_ring;
1938 
1939 	/* Write the ITR value calculated at the end of the
1940 	 * previous interrupt.
1941 	 */
1942 	if (rx_ring->set_itr) {
1943 		u32 itr = rx_ring->itr_val ?
1944 			  1000000000 / (rx_ring->itr_val * 256) : 0;
1945 
1946 		writel(itr, rx_ring->itr_register);
1947 		rx_ring->set_itr = 0;
1948 	}
1949 
1950 	if (napi_schedule_prep(&adapter->napi)) {
1951 		adapter->total_rx_bytes = 0;
1952 		adapter->total_rx_packets = 0;
1953 		__napi_schedule(&adapter->napi);
1954 	}
1955 	return IRQ_HANDLED;
1956 }
1957 
1958 /**
1959  * e1000_configure_msix - Configure MSI-X hardware
1960  * @adapter: board private structure
1961  *
1962  * e1000_configure_msix sets up the hardware to properly
1963  * generate MSI-X interrupts.
1964  **/
1965 static void e1000_configure_msix(struct e1000_adapter *adapter)
1966 {
1967 	struct e1000_hw *hw = &adapter->hw;
1968 	struct e1000_ring *rx_ring = adapter->rx_ring;
1969 	struct e1000_ring *tx_ring = adapter->tx_ring;
1970 	int vector = 0;
1971 	u32 ctrl_ext, ivar = 0;
1972 
1973 	adapter->eiac_mask = 0;
1974 
1975 	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1976 	if (hw->mac.type == e1000_82574) {
1977 		u32 rfctl = er32(RFCTL);
1978 
1979 		rfctl |= E1000_RFCTL_ACK_DIS;
1980 		ew32(RFCTL, rfctl);
1981 	}
1982 
1983 	/* Configure Rx vector */
1984 	rx_ring->ims_val = E1000_IMS_RXQ0;
1985 	adapter->eiac_mask |= rx_ring->ims_val;
1986 	if (rx_ring->itr_val)
1987 		writel(1000000000 / (rx_ring->itr_val * 256),
1988 		       rx_ring->itr_register);
1989 	else
1990 		writel(1, rx_ring->itr_register);
1991 	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1992 
1993 	/* Configure Tx vector */
1994 	tx_ring->ims_val = E1000_IMS_TXQ0;
1995 	vector++;
1996 	if (tx_ring->itr_val)
1997 		writel(1000000000 / (tx_ring->itr_val * 256),
1998 		       tx_ring->itr_register);
1999 	else
2000 		writel(1, tx_ring->itr_register);
2001 	adapter->eiac_mask |= tx_ring->ims_val;
2002 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2003 
2004 	/* set vector for Other Causes, e.g. link changes */
2005 	vector++;
2006 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2007 	if (rx_ring->itr_val)
2008 		writel(1000000000 / (rx_ring->itr_val * 256),
2009 		       hw->hw_addr + E1000_EITR_82574(vector));
2010 	else
2011 		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2012 
2013 	/* Cause Tx interrupts on every write back */
2014 	ivar |= BIT(31);
2015 
2016 	ew32(IVAR, ivar);
2017 
2018 	/* enable MSI-X PBA support */
2019 	ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2020 	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2021 	ew32(CTRL_EXT, ctrl_ext);
2022 	e1e_flush();
2023 }
2024 
2025 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2026 {
2027 	if (adapter->msix_entries) {
2028 		pci_disable_msix(adapter->pdev);
2029 		kfree(adapter->msix_entries);
2030 		adapter->msix_entries = NULL;
2031 	} else if (adapter->flags & FLAG_MSI_ENABLED) {
2032 		pci_disable_msi(adapter->pdev);
2033 		adapter->flags &= ~FLAG_MSI_ENABLED;
2034 	}
2035 }
2036 
2037 /**
2038  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2039  * @adapter: board private structure
2040  *
2041  * Attempt to configure interrupts using the best available
2042  * capabilities of the hardware and kernel.
2043  **/
2044 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2045 {
2046 	int err;
2047 	int i;
2048 
2049 	switch (adapter->int_mode) {
2050 	case E1000E_INT_MODE_MSIX:
2051 		if (adapter->flags & FLAG_HAS_MSIX) {
2052 			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2053 			adapter->msix_entries = kcalloc(adapter->num_vectors,
2054 							sizeof(struct
2055 							       msix_entry),
2056 							GFP_KERNEL);
2057 			if (adapter->msix_entries) {
2058 				struct e1000_adapter *a = adapter;
2059 
2060 				for (i = 0; i < adapter->num_vectors; i++)
2061 					adapter->msix_entries[i].entry = i;
2062 
2063 				err = pci_enable_msix_range(a->pdev,
2064 							    a->msix_entries,
2065 							    a->num_vectors,
2066 							    a->num_vectors);
2067 				if (err > 0)
2068 					return;
2069 			}
2070 			/* MSI-X failed, so fall through and try MSI */
2071 			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2072 			e1000e_reset_interrupt_capability(adapter);
2073 		}
2074 		adapter->int_mode = E1000E_INT_MODE_MSI;
2075 		fallthrough;
2076 	case E1000E_INT_MODE_MSI:
2077 		if (!pci_enable_msi(adapter->pdev)) {
2078 			adapter->flags |= FLAG_MSI_ENABLED;
2079 		} else {
2080 			adapter->int_mode = E1000E_INT_MODE_LEGACY;
2081 			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2082 		}
2083 		fallthrough;
2084 	case E1000E_INT_MODE_LEGACY:
2085 		/* Don't do anything; this is the system default */
2086 		break;
2087 	}
2088 
2089 	/* store the number of vectors being used */
2090 	adapter->num_vectors = 1;
2091 }
2092 
2093 /**
2094  * e1000_request_msix - Initialize MSI-X interrupts
2095  * @adapter: board private structure
2096  *
2097  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2098  * kernel.
2099  **/
2100 static int e1000_request_msix(struct e1000_adapter *adapter)
2101 {
2102 	struct net_device *netdev = adapter->netdev;
2103 	int err = 0, vector = 0;
2104 
2105 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2106 		snprintf(adapter->rx_ring->name,
2107 			 sizeof(adapter->rx_ring->name) - 1,
2108 			 "%.14s-rx-0", netdev->name);
2109 	else
2110 		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2111 	err = request_irq(adapter->msix_entries[vector].vector,
2112 			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2113 			  netdev);
2114 	if (err)
2115 		return err;
2116 	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2117 	    E1000_EITR_82574(vector);
2118 	adapter->rx_ring->itr_val = adapter->itr;
2119 	vector++;
2120 
2121 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2122 		snprintf(adapter->tx_ring->name,
2123 			 sizeof(adapter->tx_ring->name) - 1,
2124 			 "%.14s-tx-0", netdev->name);
2125 	else
2126 		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2127 	err = request_irq(adapter->msix_entries[vector].vector,
2128 			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2129 			  netdev);
2130 	if (err)
2131 		return err;
2132 	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2133 	    E1000_EITR_82574(vector);
2134 	adapter->tx_ring->itr_val = adapter->itr;
2135 	vector++;
2136 
2137 	err = request_irq(adapter->msix_entries[vector].vector,
2138 			  e1000_msix_other, 0, netdev->name, netdev);
2139 	if (err)
2140 		return err;
2141 
2142 	e1000_configure_msix(adapter);
2143 
2144 	return 0;
2145 }
2146 
2147 /**
2148  * e1000_request_irq - initialize interrupts
2149  * @adapter: board private structure
2150  *
2151  * Attempts to configure interrupts using the best available
2152  * capabilities of the hardware and kernel.
2153  **/
2154 static int e1000_request_irq(struct e1000_adapter *adapter)
2155 {
2156 	struct net_device *netdev = adapter->netdev;
2157 	int err;
2158 
2159 	if (adapter->msix_entries) {
2160 		err = e1000_request_msix(adapter);
2161 		if (!err)
2162 			return err;
2163 		/* fall back to MSI */
2164 		e1000e_reset_interrupt_capability(adapter);
2165 		adapter->int_mode = E1000E_INT_MODE_MSI;
2166 		e1000e_set_interrupt_capability(adapter);
2167 	}
2168 	if (adapter->flags & FLAG_MSI_ENABLED) {
2169 		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2170 				  netdev->name, netdev);
2171 		if (!err)
2172 			return err;
2173 
2174 		/* fall back to legacy interrupt */
2175 		e1000e_reset_interrupt_capability(adapter);
2176 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2177 	}
2178 
2179 	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2180 			  netdev->name, netdev);
2181 	if (err)
2182 		e_err("Unable to allocate interrupt, Error: %d\n", err);
2183 
2184 	return err;
2185 }
2186 
2187 static void e1000_free_irq(struct e1000_adapter *adapter)
2188 {
2189 	struct net_device *netdev = adapter->netdev;
2190 
2191 	if (adapter->msix_entries) {
2192 		int vector = 0;
2193 
2194 		free_irq(adapter->msix_entries[vector].vector, netdev);
2195 		vector++;
2196 
2197 		free_irq(adapter->msix_entries[vector].vector, netdev);
2198 		vector++;
2199 
2200 		/* Other Causes interrupt vector */
2201 		free_irq(adapter->msix_entries[vector].vector, netdev);
2202 		return;
2203 	}
2204 
2205 	free_irq(adapter->pdev->irq, netdev);
2206 }
2207 
2208 /**
2209  * e1000_irq_disable - Mask off interrupt generation on the NIC
2210  * @adapter: board private structure
2211  **/
2212 static void e1000_irq_disable(struct e1000_adapter *adapter)
2213 {
2214 	struct e1000_hw *hw = &adapter->hw;
2215 
2216 	ew32(IMC, ~0);
2217 	if (adapter->msix_entries)
2218 		ew32(EIAC_82574, 0);
2219 	e1e_flush();
2220 
2221 	if (adapter->msix_entries) {
2222 		int i;
2223 
2224 		for (i = 0; i < adapter->num_vectors; i++)
2225 			synchronize_irq(adapter->msix_entries[i].vector);
2226 	} else {
2227 		synchronize_irq(adapter->pdev->irq);
2228 	}
2229 }
2230 
2231 /**
2232  * e1000_irq_enable - Enable default interrupt generation settings
2233  * @adapter: board private structure
2234  **/
2235 static void e1000_irq_enable(struct e1000_adapter *adapter)
2236 {
2237 	struct e1000_hw *hw = &adapter->hw;
2238 
2239 	if (adapter->msix_entries) {
2240 		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2241 		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2242 		     IMS_OTHER_MASK);
2243 	} else if (hw->mac.type >= e1000_pch_lpt) {
2244 		ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2245 	} else {
2246 		ew32(IMS, IMS_ENABLE_MASK);
2247 	}
2248 	e1e_flush();
2249 }
2250 
2251 /**
2252  * e1000e_get_hw_control - get control of the h/w from f/w
2253  * @adapter: address of board private structure
2254  *
2255  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2256  * For ASF and Pass Through versions of f/w this means that
2257  * the driver is loaded. For AMT version (only with 82573)
2258  * of the f/w this means that the network i/f is open.
2259  **/
2260 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2261 {
2262 	struct e1000_hw *hw = &adapter->hw;
2263 	u32 ctrl_ext;
2264 	u32 swsm;
2265 
2266 	/* Let firmware know the driver has taken over */
2267 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2268 		swsm = er32(SWSM);
2269 		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2270 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2271 		ctrl_ext = er32(CTRL_EXT);
2272 		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2273 	}
2274 }
2275 
2276 /**
2277  * e1000e_release_hw_control - release control of the h/w to f/w
2278  * @adapter: address of board private structure
2279  *
2280  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2281  * For ASF and Pass Through versions of f/w this means that the
2282  * driver is no longer loaded. For AMT version (only with 82573) i
2283  * of the f/w this means that the network i/f is closed.
2284  *
2285  **/
2286 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2287 {
2288 	struct e1000_hw *hw = &adapter->hw;
2289 	u32 ctrl_ext;
2290 	u32 swsm;
2291 
2292 	/* Let firmware taken over control of h/w */
2293 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2294 		swsm = er32(SWSM);
2295 		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2296 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2297 		ctrl_ext = er32(CTRL_EXT);
2298 		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2299 	}
2300 }
2301 
2302 /**
2303  * e1000_alloc_ring_dma - allocate memory for a ring structure
2304  * @adapter: board private structure
2305  * @ring: ring struct for which to allocate dma
2306  **/
2307 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2308 				struct e1000_ring *ring)
2309 {
2310 	struct pci_dev *pdev = adapter->pdev;
2311 
2312 	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2313 					GFP_KERNEL);
2314 	if (!ring->desc)
2315 		return -ENOMEM;
2316 
2317 	return 0;
2318 }
2319 
2320 /**
2321  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2322  * @tx_ring: Tx descriptor ring
2323  *
2324  * Return 0 on success, negative on failure
2325  **/
2326 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2327 {
2328 	struct e1000_adapter *adapter = tx_ring->adapter;
2329 	int err = -ENOMEM, size;
2330 
2331 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2332 	tx_ring->buffer_info = vzalloc(size);
2333 	if (!tx_ring->buffer_info)
2334 		goto err;
2335 
2336 	/* round up to nearest 4K */
2337 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2338 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2339 
2340 	err = e1000_alloc_ring_dma(adapter, tx_ring);
2341 	if (err)
2342 		goto err;
2343 
2344 	tx_ring->next_to_use = 0;
2345 	tx_ring->next_to_clean = 0;
2346 
2347 	return 0;
2348 err:
2349 	vfree(tx_ring->buffer_info);
2350 	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2351 	return err;
2352 }
2353 
2354 /**
2355  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2356  * @rx_ring: Rx descriptor ring
2357  *
2358  * Returns 0 on success, negative on failure
2359  **/
2360 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2361 {
2362 	struct e1000_adapter *adapter = rx_ring->adapter;
2363 	struct e1000_buffer *buffer_info;
2364 	int i, size, desc_len, err = -ENOMEM;
2365 
2366 	size = sizeof(struct e1000_buffer) * rx_ring->count;
2367 	rx_ring->buffer_info = vzalloc(size);
2368 	if (!rx_ring->buffer_info)
2369 		goto err;
2370 
2371 	for (i = 0; i < rx_ring->count; i++) {
2372 		buffer_info = &rx_ring->buffer_info[i];
2373 		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2374 						sizeof(struct e1000_ps_page),
2375 						GFP_KERNEL);
2376 		if (!buffer_info->ps_pages)
2377 			goto err_pages;
2378 	}
2379 
2380 	desc_len = sizeof(union e1000_rx_desc_packet_split);
2381 
2382 	/* Round up to nearest 4K */
2383 	rx_ring->size = rx_ring->count * desc_len;
2384 	rx_ring->size = ALIGN(rx_ring->size, 4096);
2385 
2386 	err = e1000_alloc_ring_dma(adapter, rx_ring);
2387 	if (err)
2388 		goto err_pages;
2389 
2390 	rx_ring->next_to_clean = 0;
2391 	rx_ring->next_to_use = 0;
2392 	rx_ring->rx_skb_top = NULL;
2393 
2394 	return 0;
2395 
2396 err_pages:
2397 	for (i = 0; i < rx_ring->count; i++) {
2398 		buffer_info = &rx_ring->buffer_info[i];
2399 		kfree(buffer_info->ps_pages);
2400 	}
2401 err:
2402 	vfree(rx_ring->buffer_info);
2403 	e_err("Unable to allocate memory for the receive descriptor ring\n");
2404 	return err;
2405 }
2406 
2407 /**
2408  * e1000_clean_tx_ring - Free Tx Buffers
2409  * @tx_ring: Tx descriptor ring
2410  **/
2411 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2412 {
2413 	struct e1000_adapter *adapter = tx_ring->adapter;
2414 	struct e1000_buffer *buffer_info;
2415 	unsigned long size;
2416 	unsigned int i;
2417 
2418 	for (i = 0; i < tx_ring->count; i++) {
2419 		buffer_info = &tx_ring->buffer_info[i];
2420 		e1000_put_txbuf(tx_ring, buffer_info, false);
2421 	}
2422 
2423 	netdev_reset_queue(adapter->netdev);
2424 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2425 	memset(tx_ring->buffer_info, 0, size);
2426 
2427 	memset(tx_ring->desc, 0, tx_ring->size);
2428 
2429 	tx_ring->next_to_use = 0;
2430 	tx_ring->next_to_clean = 0;
2431 }
2432 
2433 /**
2434  * e1000e_free_tx_resources - Free Tx Resources per Queue
2435  * @tx_ring: Tx descriptor ring
2436  *
2437  * Free all transmit software resources
2438  **/
2439 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2440 {
2441 	struct e1000_adapter *adapter = tx_ring->adapter;
2442 	struct pci_dev *pdev = adapter->pdev;
2443 
2444 	e1000_clean_tx_ring(tx_ring);
2445 
2446 	vfree(tx_ring->buffer_info);
2447 	tx_ring->buffer_info = NULL;
2448 
2449 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2450 			  tx_ring->dma);
2451 	tx_ring->desc = NULL;
2452 }
2453 
2454 /**
2455  * e1000e_free_rx_resources - Free Rx Resources
2456  * @rx_ring: Rx descriptor ring
2457  *
2458  * Free all receive software resources
2459  **/
2460 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2461 {
2462 	struct e1000_adapter *adapter = rx_ring->adapter;
2463 	struct pci_dev *pdev = adapter->pdev;
2464 	int i;
2465 
2466 	e1000_clean_rx_ring(rx_ring);
2467 
2468 	for (i = 0; i < rx_ring->count; i++)
2469 		kfree(rx_ring->buffer_info[i].ps_pages);
2470 
2471 	vfree(rx_ring->buffer_info);
2472 	rx_ring->buffer_info = NULL;
2473 
2474 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2475 			  rx_ring->dma);
2476 	rx_ring->desc = NULL;
2477 }
2478 
2479 /**
2480  * e1000_update_itr - update the dynamic ITR value based on statistics
2481  * @itr_setting: current adapter->itr
2482  * @packets: the number of packets during this measurement interval
2483  * @bytes: the number of bytes during this measurement interval
2484  *
2485  *      Stores a new ITR value based on packets and byte
2486  *      counts during the last interrupt.  The advantage of per interrupt
2487  *      computation is faster updates and more accurate ITR for the current
2488  *      traffic pattern.  Constants in this function were computed
2489  *      based on theoretical maximum wire speed and thresholds were set based
2490  *      on testing data as well as attempting to minimize response time
2491  *      while increasing bulk throughput.  This functionality is controlled
2492  *      by the InterruptThrottleRate module parameter.
2493  **/
2494 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2495 {
2496 	unsigned int retval = itr_setting;
2497 
2498 	if (packets == 0)
2499 		return itr_setting;
2500 
2501 	switch (itr_setting) {
2502 	case lowest_latency:
2503 		/* handle TSO and jumbo frames */
2504 		if (bytes / packets > 8000)
2505 			retval = bulk_latency;
2506 		else if ((packets < 5) && (bytes > 512))
2507 			retval = low_latency;
2508 		break;
2509 	case low_latency:	/* 50 usec aka 20000 ints/s */
2510 		if (bytes > 10000) {
2511 			/* this if handles the TSO accounting */
2512 			if (bytes / packets > 8000)
2513 				retval = bulk_latency;
2514 			else if ((packets < 10) || ((bytes / packets) > 1200))
2515 				retval = bulk_latency;
2516 			else if ((packets > 35))
2517 				retval = lowest_latency;
2518 		} else if (bytes / packets > 2000) {
2519 			retval = bulk_latency;
2520 		} else if (packets <= 2 && bytes < 512) {
2521 			retval = lowest_latency;
2522 		}
2523 		break;
2524 	case bulk_latency:	/* 250 usec aka 4000 ints/s */
2525 		if (bytes > 25000) {
2526 			if (packets > 35)
2527 				retval = low_latency;
2528 		} else if (bytes < 6000) {
2529 			retval = low_latency;
2530 		}
2531 		break;
2532 	}
2533 
2534 	return retval;
2535 }
2536 
2537 static void e1000_set_itr(struct e1000_adapter *adapter)
2538 {
2539 	u16 current_itr;
2540 	u32 new_itr = adapter->itr;
2541 
2542 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2543 	if (adapter->link_speed != SPEED_1000) {
2544 		new_itr = 4000;
2545 		goto set_itr_now;
2546 	}
2547 
2548 	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2549 		new_itr = 0;
2550 		goto set_itr_now;
2551 	}
2552 
2553 	adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2554 					   adapter->total_tx_packets,
2555 					   adapter->total_tx_bytes);
2556 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2557 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2558 		adapter->tx_itr = low_latency;
2559 
2560 	adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2561 					   adapter->total_rx_packets,
2562 					   adapter->total_rx_bytes);
2563 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2564 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2565 		adapter->rx_itr = low_latency;
2566 
2567 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2568 
2569 	/* counts and packets in update_itr are dependent on these numbers */
2570 	switch (current_itr) {
2571 	case lowest_latency:
2572 		new_itr = 70000;
2573 		break;
2574 	case low_latency:
2575 		new_itr = 20000;	/* aka hwitr = ~200 */
2576 		break;
2577 	case bulk_latency:
2578 		new_itr = 4000;
2579 		break;
2580 	default:
2581 		break;
2582 	}
2583 
2584 set_itr_now:
2585 	if (new_itr != adapter->itr) {
2586 		/* this attempts to bias the interrupt rate towards Bulk
2587 		 * by adding intermediate steps when interrupt rate is
2588 		 * increasing
2589 		 */
2590 		new_itr = new_itr > adapter->itr ?
2591 		    min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2592 		adapter->itr = new_itr;
2593 		adapter->rx_ring->itr_val = new_itr;
2594 		if (adapter->msix_entries)
2595 			adapter->rx_ring->set_itr = 1;
2596 		else
2597 			e1000e_write_itr(adapter, new_itr);
2598 	}
2599 }
2600 
2601 /**
2602  * e1000e_write_itr - write the ITR value to the appropriate registers
2603  * @adapter: address of board private structure
2604  * @itr: new ITR value to program
2605  *
2606  * e1000e_write_itr determines if the adapter is in MSI-X mode
2607  * and, if so, writes the EITR registers with the ITR value.
2608  * Otherwise, it writes the ITR value into the ITR register.
2609  **/
2610 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2611 {
2612 	struct e1000_hw *hw = &adapter->hw;
2613 	u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2614 
2615 	if (adapter->msix_entries) {
2616 		int vector;
2617 
2618 		for (vector = 0; vector < adapter->num_vectors; vector++)
2619 			writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2620 	} else {
2621 		ew32(ITR, new_itr);
2622 	}
2623 }
2624 
2625 /**
2626  * e1000_alloc_queues - Allocate memory for all rings
2627  * @adapter: board private structure to initialize
2628  **/
2629 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2630 {
2631 	int size = sizeof(struct e1000_ring);
2632 
2633 	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2634 	if (!adapter->tx_ring)
2635 		goto err;
2636 	adapter->tx_ring->count = adapter->tx_ring_count;
2637 	adapter->tx_ring->adapter = adapter;
2638 
2639 	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2640 	if (!adapter->rx_ring)
2641 		goto err;
2642 	adapter->rx_ring->count = adapter->rx_ring_count;
2643 	adapter->rx_ring->adapter = adapter;
2644 
2645 	return 0;
2646 err:
2647 	e_err("Unable to allocate memory for queues\n");
2648 	kfree(adapter->rx_ring);
2649 	kfree(adapter->tx_ring);
2650 	return -ENOMEM;
2651 }
2652 
2653 /**
2654  * e1000e_poll - NAPI Rx polling callback
2655  * @napi: struct associated with this polling callback
2656  * @budget: number of packets driver is allowed to process this poll
2657  **/
2658 static int e1000e_poll(struct napi_struct *napi, int budget)
2659 {
2660 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2661 						     napi);
2662 	struct e1000_hw *hw = &adapter->hw;
2663 	struct net_device *poll_dev = adapter->netdev;
2664 	int tx_cleaned = 1, work_done = 0;
2665 
2666 	adapter = netdev_priv(poll_dev);
2667 
2668 	if (!adapter->msix_entries ||
2669 	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2670 		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2671 
2672 	adapter->clean_rx(adapter->rx_ring, &work_done, budget);
2673 
2674 	if (!tx_cleaned || work_done == budget)
2675 		return budget;
2676 
2677 	/* Exit the polling mode, but don't re-enable interrupts if stack might
2678 	 * poll us due to busy-polling
2679 	 */
2680 	if (likely(napi_complete_done(napi, work_done))) {
2681 		if (adapter->itr_setting & 3)
2682 			e1000_set_itr(adapter);
2683 		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2684 			if (adapter->msix_entries)
2685 				ew32(IMS, adapter->rx_ring->ims_val);
2686 			else
2687 				e1000_irq_enable(adapter);
2688 		}
2689 	}
2690 
2691 	return work_done;
2692 }
2693 
2694 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2695 				 __always_unused __be16 proto, u16 vid)
2696 {
2697 	struct e1000_adapter *adapter = netdev_priv(netdev);
2698 	struct e1000_hw *hw = &adapter->hw;
2699 	u32 vfta, index;
2700 
2701 	/* don't update vlan cookie if already programmed */
2702 	if ((adapter->hw.mng_cookie.status &
2703 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2704 	    (vid == adapter->mng_vlan_id))
2705 		return 0;
2706 
2707 	/* add VID to filter table */
2708 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2709 		index = (vid >> 5) & 0x7F;
2710 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2711 		vfta |= BIT((vid & 0x1F));
2712 		hw->mac.ops.write_vfta(hw, index, vfta);
2713 	}
2714 
2715 	set_bit(vid, adapter->active_vlans);
2716 
2717 	return 0;
2718 }
2719 
2720 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2721 				  __always_unused __be16 proto, u16 vid)
2722 {
2723 	struct e1000_adapter *adapter = netdev_priv(netdev);
2724 	struct e1000_hw *hw = &adapter->hw;
2725 	u32 vfta, index;
2726 
2727 	if ((adapter->hw.mng_cookie.status &
2728 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2729 	    (vid == adapter->mng_vlan_id)) {
2730 		/* release control to f/w */
2731 		e1000e_release_hw_control(adapter);
2732 		return 0;
2733 	}
2734 
2735 	/* remove VID from filter table */
2736 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2737 		index = (vid >> 5) & 0x7F;
2738 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2739 		vfta &= ~BIT((vid & 0x1F));
2740 		hw->mac.ops.write_vfta(hw, index, vfta);
2741 	}
2742 
2743 	clear_bit(vid, adapter->active_vlans);
2744 
2745 	return 0;
2746 }
2747 
2748 /**
2749  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2750  * @adapter: board private structure to initialize
2751  **/
2752 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2753 {
2754 	struct net_device *netdev = adapter->netdev;
2755 	struct e1000_hw *hw = &adapter->hw;
2756 	u32 rctl;
2757 
2758 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2759 		/* disable VLAN receive filtering */
2760 		rctl = er32(RCTL);
2761 		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2762 		ew32(RCTL, rctl);
2763 
2764 		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2765 			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2766 					       adapter->mng_vlan_id);
2767 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2768 		}
2769 	}
2770 }
2771 
2772 /**
2773  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2774  * @adapter: board private structure to initialize
2775  **/
2776 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2777 {
2778 	struct e1000_hw *hw = &adapter->hw;
2779 	u32 rctl;
2780 
2781 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2782 		/* enable VLAN receive filtering */
2783 		rctl = er32(RCTL);
2784 		rctl |= E1000_RCTL_VFE;
2785 		rctl &= ~E1000_RCTL_CFIEN;
2786 		ew32(RCTL, rctl);
2787 	}
2788 }
2789 
2790 /**
2791  * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2792  * @adapter: board private structure to initialize
2793  **/
2794 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2795 {
2796 	struct e1000_hw *hw = &adapter->hw;
2797 	u32 ctrl;
2798 
2799 	/* disable VLAN tag insert/strip */
2800 	ctrl = er32(CTRL);
2801 	ctrl &= ~E1000_CTRL_VME;
2802 	ew32(CTRL, ctrl);
2803 }
2804 
2805 /**
2806  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2807  * @adapter: board private structure to initialize
2808  **/
2809 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2810 {
2811 	struct e1000_hw *hw = &adapter->hw;
2812 	u32 ctrl;
2813 
2814 	/* enable VLAN tag insert/strip */
2815 	ctrl = er32(CTRL);
2816 	ctrl |= E1000_CTRL_VME;
2817 	ew32(CTRL, ctrl);
2818 }
2819 
2820 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2821 {
2822 	struct net_device *netdev = adapter->netdev;
2823 	u16 vid = adapter->hw.mng_cookie.vlan_id;
2824 	u16 old_vid = adapter->mng_vlan_id;
2825 
2826 	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2827 		e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2828 		adapter->mng_vlan_id = vid;
2829 	}
2830 
2831 	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2832 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2833 }
2834 
2835 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2836 {
2837 	u16 vid;
2838 
2839 	e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2840 
2841 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2842 	    e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2843 }
2844 
2845 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2846 {
2847 	struct e1000_hw *hw = &adapter->hw;
2848 	u32 manc, manc2h, mdef, i, j;
2849 
2850 	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2851 		return;
2852 
2853 	manc = er32(MANC);
2854 
2855 	/* enable receiving management packets to the host. this will probably
2856 	 * generate destination unreachable messages from the host OS, but
2857 	 * the packets will be handled on SMBUS
2858 	 */
2859 	manc |= E1000_MANC_EN_MNG2HOST;
2860 	manc2h = er32(MANC2H);
2861 
2862 	switch (hw->mac.type) {
2863 	default:
2864 		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2865 		break;
2866 	case e1000_82574:
2867 	case e1000_82583:
2868 		/* Check if IPMI pass-through decision filter already exists;
2869 		 * if so, enable it.
2870 		 */
2871 		for (i = 0, j = 0; i < 8; i++) {
2872 			mdef = er32(MDEF(i));
2873 
2874 			/* Ignore filters with anything other than IPMI ports */
2875 			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2876 				continue;
2877 
2878 			/* Enable this decision filter in MANC2H */
2879 			if (mdef)
2880 				manc2h |= BIT(i);
2881 
2882 			j |= mdef;
2883 		}
2884 
2885 		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2886 			break;
2887 
2888 		/* Create new decision filter in an empty filter */
2889 		for (i = 0, j = 0; i < 8; i++)
2890 			if (er32(MDEF(i)) == 0) {
2891 				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2892 					       E1000_MDEF_PORT_664));
2893 				manc2h |= BIT(1);
2894 				j++;
2895 				break;
2896 			}
2897 
2898 		if (!j)
2899 			e_warn("Unable to create IPMI pass-through filter\n");
2900 		break;
2901 	}
2902 
2903 	ew32(MANC2H, manc2h);
2904 	ew32(MANC, manc);
2905 }
2906 
2907 /**
2908  * e1000_configure_tx - Configure Transmit Unit after Reset
2909  * @adapter: board private structure
2910  *
2911  * Configure the Tx unit of the MAC after a reset.
2912  **/
2913 static void e1000_configure_tx(struct e1000_adapter *adapter)
2914 {
2915 	struct e1000_hw *hw = &adapter->hw;
2916 	struct e1000_ring *tx_ring = adapter->tx_ring;
2917 	u64 tdba;
2918 	u32 tdlen, tctl, tarc;
2919 
2920 	/* Setup the HW Tx Head and Tail descriptor pointers */
2921 	tdba = tx_ring->dma;
2922 	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2923 	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2924 	ew32(TDBAH(0), (tdba >> 32));
2925 	ew32(TDLEN(0), tdlen);
2926 	ew32(TDH(0), 0);
2927 	ew32(TDT(0), 0);
2928 	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2929 	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2930 
2931 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2932 		e1000e_update_tdt_wa(tx_ring, 0);
2933 
2934 	/* Set the Tx Interrupt Delay register */
2935 	ew32(TIDV, adapter->tx_int_delay);
2936 	/* Tx irq moderation */
2937 	ew32(TADV, adapter->tx_abs_int_delay);
2938 
2939 	if (adapter->flags2 & FLAG2_DMA_BURST) {
2940 		u32 txdctl = er32(TXDCTL(0));
2941 
2942 		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2943 			    E1000_TXDCTL_WTHRESH);
2944 		/* set up some performance related parameters to encourage the
2945 		 * hardware to use the bus more efficiently in bursts, depends
2946 		 * on the tx_int_delay to be enabled,
2947 		 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2948 		 * hthresh = 1 ==> prefetch when one or more available
2949 		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2950 		 * BEWARE: this seems to work but should be considered first if
2951 		 * there are Tx hangs or other Tx related bugs
2952 		 */
2953 		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2954 		ew32(TXDCTL(0), txdctl);
2955 	}
2956 	/* erratum work around: set txdctl the same for both queues */
2957 	ew32(TXDCTL(1), er32(TXDCTL(0)));
2958 
2959 	/* Program the Transmit Control Register */
2960 	tctl = er32(TCTL);
2961 	tctl &= ~E1000_TCTL_CT;
2962 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2963 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2964 
2965 	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2966 		tarc = er32(TARC(0));
2967 		/* set the speed mode bit, we'll clear it if we're not at
2968 		 * gigabit link later
2969 		 */
2970 #define SPEED_MODE_BIT BIT(21)
2971 		tarc |= SPEED_MODE_BIT;
2972 		ew32(TARC(0), tarc);
2973 	}
2974 
2975 	/* errata: program both queues to unweighted RR */
2976 	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2977 		tarc = er32(TARC(0));
2978 		tarc |= 1;
2979 		ew32(TARC(0), tarc);
2980 		tarc = er32(TARC(1));
2981 		tarc |= 1;
2982 		ew32(TARC(1), tarc);
2983 	}
2984 
2985 	/* Setup Transmit Descriptor Settings for eop descriptor */
2986 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2987 
2988 	/* only set IDE if we are delaying interrupts using the timers */
2989 	if (adapter->tx_int_delay)
2990 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2991 
2992 	/* enable Report Status bit */
2993 	adapter->txd_cmd |= E1000_TXD_CMD_RS;
2994 
2995 	ew32(TCTL, tctl);
2996 
2997 	hw->mac.ops.config_collision_dist(hw);
2998 
2999 	/* SPT and KBL Si errata workaround to avoid data corruption */
3000 	if (hw->mac.type == e1000_pch_spt) {
3001 		u32 reg_val;
3002 
3003 		reg_val = er32(IOSFPC);
3004 		reg_val |= E1000_RCTL_RDMTS_HEX;
3005 		ew32(IOSFPC, reg_val);
3006 
3007 		reg_val = er32(TARC(0));
3008 		/* SPT and KBL Si errata workaround to avoid Tx hang.
3009 		 * Dropping the number of outstanding requests from
3010 		 * 3 to 2 in order to avoid a buffer overrun.
3011 		 */
3012 		reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3013 		reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3014 		ew32(TARC(0), reg_val);
3015 	}
3016 }
3017 
3018 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3019 			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3020 
3021 /**
3022  * e1000_setup_rctl - configure the receive control registers
3023  * @adapter: Board private structure
3024  **/
3025 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3026 {
3027 	struct e1000_hw *hw = &adapter->hw;
3028 	u32 rctl, rfctl;
3029 	u32 pages = 0;
3030 
3031 	/* Workaround Si errata on PCHx - configure jumbo frame flow.
3032 	 * If jumbo frames not set, program related MAC/PHY registers
3033 	 * to h/w defaults
3034 	 */
3035 	if (hw->mac.type >= e1000_pch2lan) {
3036 		s32 ret_val;
3037 
3038 		if (adapter->netdev->mtu > ETH_DATA_LEN)
3039 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3040 		else
3041 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3042 
3043 		if (ret_val)
3044 			e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3045 	}
3046 
3047 	/* Program MC offset vector base */
3048 	rctl = er32(RCTL);
3049 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3050 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3051 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3052 	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3053 
3054 	/* Do not Store bad packets */
3055 	rctl &= ~E1000_RCTL_SBP;
3056 
3057 	/* Enable Long Packet receive */
3058 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
3059 		rctl &= ~E1000_RCTL_LPE;
3060 	else
3061 		rctl |= E1000_RCTL_LPE;
3062 
3063 	/* Some systems expect that the CRC is included in SMBUS traffic. The
3064 	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3065 	 * host memory when this is enabled
3066 	 */
3067 	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3068 		rctl |= E1000_RCTL_SECRC;
3069 
3070 	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3071 	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3072 		u16 phy_data;
3073 
3074 		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3075 		phy_data &= 0xfff8;
3076 		phy_data |= BIT(2);
3077 		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3078 
3079 		e1e_rphy(hw, 22, &phy_data);
3080 		phy_data &= 0x0fff;
3081 		phy_data |= BIT(14);
3082 		e1e_wphy(hw, 0x10, 0x2823);
3083 		e1e_wphy(hw, 0x11, 0x0003);
3084 		e1e_wphy(hw, 22, phy_data);
3085 	}
3086 
3087 	/* Setup buffer sizes */
3088 	rctl &= ~E1000_RCTL_SZ_4096;
3089 	rctl |= E1000_RCTL_BSEX;
3090 	switch (adapter->rx_buffer_len) {
3091 	case 2048:
3092 	default:
3093 		rctl |= E1000_RCTL_SZ_2048;
3094 		rctl &= ~E1000_RCTL_BSEX;
3095 		break;
3096 	case 4096:
3097 		rctl |= E1000_RCTL_SZ_4096;
3098 		break;
3099 	case 8192:
3100 		rctl |= E1000_RCTL_SZ_8192;
3101 		break;
3102 	case 16384:
3103 		rctl |= E1000_RCTL_SZ_16384;
3104 		break;
3105 	}
3106 
3107 	/* Enable Extended Status in all Receive Descriptors */
3108 	rfctl = er32(RFCTL);
3109 	rfctl |= E1000_RFCTL_EXTEN;
3110 	ew32(RFCTL, rfctl);
3111 
3112 	/* 82571 and greater support packet-split where the protocol
3113 	 * header is placed in skb->data and the packet data is
3114 	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3115 	 * In the case of a non-split, skb->data is linearly filled,
3116 	 * followed by the page buffers.  Therefore, skb->data is
3117 	 * sized to hold the largest protocol header.
3118 	 *
3119 	 * allocations using alloc_page take too long for regular MTU
3120 	 * so only enable packet split for jumbo frames
3121 	 *
3122 	 * Using pages when the page size is greater than 16k wastes
3123 	 * a lot of memory, since we allocate 3 pages at all times
3124 	 * per packet.
3125 	 */
3126 	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3127 	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3128 		adapter->rx_ps_pages = pages;
3129 	else
3130 		adapter->rx_ps_pages = 0;
3131 
3132 	if (adapter->rx_ps_pages) {
3133 		u32 psrctl = 0;
3134 
3135 		/* Enable Packet split descriptors */
3136 		rctl |= E1000_RCTL_DTYP_PS;
3137 
3138 		psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3139 
3140 		switch (adapter->rx_ps_pages) {
3141 		case 3:
3142 			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3143 			fallthrough;
3144 		case 2:
3145 			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3146 			fallthrough;
3147 		case 1:
3148 			psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3149 			break;
3150 		}
3151 
3152 		ew32(PSRCTL, psrctl);
3153 	}
3154 
3155 	/* This is useful for sniffing bad packets. */
3156 	if (adapter->netdev->features & NETIF_F_RXALL) {
3157 		/* UPE and MPE will be handled by normal PROMISC logic
3158 		 * in e1000e_set_rx_mode
3159 		 */
3160 		rctl |= (E1000_RCTL_SBP |	/* Receive bad packets */
3161 			 E1000_RCTL_BAM |	/* RX All Bcast Pkts */
3162 			 E1000_RCTL_PMCF);	/* RX All MAC Ctrl Pkts */
3163 
3164 		rctl &= ~(E1000_RCTL_VFE |	/* Disable VLAN filter */
3165 			  E1000_RCTL_DPF |	/* Allow filtered pause */
3166 			  E1000_RCTL_CFIEN);	/* Dis VLAN CFIEN Filter */
3167 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3168 		 * and that breaks VLANs.
3169 		 */
3170 	}
3171 
3172 	ew32(RCTL, rctl);
3173 	/* just started the receive unit, no need to restart */
3174 	adapter->flags &= ~FLAG_RESTART_NOW;
3175 }
3176 
3177 /**
3178  * e1000_configure_rx - Configure Receive Unit after Reset
3179  * @adapter: board private structure
3180  *
3181  * Configure the Rx unit of the MAC after a reset.
3182  **/
3183 static void e1000_configure_rx(struct e1000_adapter *adapter)
3184 {
3185 	struct e1000_hw *hw = &adapter->hw;
3186 	struct e1000_ring *rx_ring = adapter->rx_ring;
3187 	u64 rdba;
3188 	u32 rdlen, rctl, rxcsum, ctrl_ext;
3189 
3190 	if (adapter->rx_ps_pages) {
3191 		/* this is a 32 byte descriptor */
3192 		rdlen = rx_ring->count *
3193 		    sizeof(union e1000_rx_desc_packet_split);
3194 		adapter->clean_rx = e1000_clean_rx_irq_ps;
3195 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3196 	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3197 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3198 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3199 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3200 	} else {
3201 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3202 		adapter->clean_rx = e1000_clean_rx_irq;
3203 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3204 	}
3205 
3206 	/* disable receives while setting up the descriptors */
3207 	rctl = er32(RCTL);
3208 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3209 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3210 	e1e_flush();
3211 	usleep_range(10000, 11000);
3212 
3213 	if (adapter->flags2 & FLAG2_DMA_BURST) {
3214 		/* set the writeback threshold (only takes effect if the RDTR
3215 		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3216 		 * enable prefetching of 0x20 Rx descriptors
3217 		 * granularity = 01
3218 		 * wthresh = 04,
3219 		 * hthresh = 04,
3220 		 * pthresh = 0x20
3221 		 */
3222 		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3223 		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3224 	}
3225 
3226 	/* set the Receive Delay Timer Register */
3227 	ew32(RDTR, adapter->rx_int_delay);
3228 
3229 	/* irq moderation */
3230 	ew32(RADV, adapter->rx_abs_int_delay);
3231 	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3232 		e1000e_write_itr(adapter, adapter->itr);
3233 
3234 	ctrl_ext = er32(CTRL_EXT);
3235 	/* Auto-Mask interrupts upon ICR access */
3236 	ctrl_ext |= E1000_CTRL_EXT_IAME;
3237 	ew32(IAM, 0xffffffff);
3238 	ew32(CTRL_EXT, ctrl_ext);
3239 	e1e_flush();
3240 
3241 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3242 	 * the Base and Length of the Rx Descriptor Ring
3243 	 */
3244 	rdba = rx_ring->dma;
3245 	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3246 	ew32(RDBAH(0), (rdba >> 32));
3247 	ew32(RDLEN(0), rdlen);
3248 	ew32(RDH(0), 0);
3249 	ew32(RDT(0), 0);
3250 	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3251 	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3252 
3253 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3254 		e1000e_update_rdt_wa(rx_ring, 0);
3255 
3256 	/* Enable Receive Checksum Offload for TCP and UDP */
3257 	rxcsum = er32(RXCSUM);
3258 	if (adapter->netdev->features & NETIF_F_RXCSUM)
3259 		rxcsum |= E1000_RXCSUM_TUOFL;
3260 	else
3261 		rxcsum &= ~E1000_RXCSUM_TUOFL;
3262 	ew32(RXCSUM, rxcsum);
3263 
3264 	/* With jumbo frames, excessive C-state transition latencies result
3265 	 * in dropped transactions.
3266 	 */
3267 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
3268 		u32 lat =
3269 		    ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3270 		     adapter->max_frame_size) * 8 / 1000;
3271 
3272 		if (adapter->flags & FLAG_IS_ICH) {
3273 			u32 rxdctl = er32(RXDCTL(0));
3274 
3275 			ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
3276 		}
3277 
3278 		dev_info(&adapter->pdev->dev,
3279 			 "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3280 		cpu_latency_qos_update_request(&adapter->pm_qos_req, lat);
3281 	} else {
3282 		cpu_latency_qos_update_request(&adapter->pm_qos_req,
3283 					       PM_QOS_DEFAULT_VALUE);
3284 	}
3285 
3286 	/* Enable Receives */
3287 	ew32(RCTL, rctl);
3288 }
3289 
3290 /**
3291  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3292  * @netdev: network interface device structure
3293  *
3294  * Writes multicast address list to the MTA hash table.
3295  * Returns: -ENOMEM on failure
3296  *                0 on no addresses written
3297  *                X on writing X addresses to MTA
3298  */
3299 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3300 {
3301 	struct e1000_adapter *adapter = netdev_priv(netdev);
3302 	struct e1000_hw *hw = &adapter->hw;
3303 	struct netdev_hw_addr *ha;
3304 	u8 *mta_list;
3305 	int i;
3306 
3307 	if (netdev_mc_empty(netdev)) {
3308 		/* nothing to program, so clear mc list */
3309 		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3310 		return 0;
3311 	}
3312 
3313 	mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC);
3314 	if (!mta_list)
3315 		return -ENOMEM;
3316 
3317 	/* update_mc_addr_list expects a packed array of only addresses. */
3318 	i = 0;
3319 	netdev_for_each_mc_addr(ha, netdev)
3320 	    memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3321 
3322 	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3323 	kfree(mta_list);
3324 
3325 	return netdev_mc_count(netdev);
3326 }
3327 
3328 /**
3329  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3330  * @netdev: network interface device structure
3331  *
3332  * Writes unicast address list to the RAR table.
3333  * Returns: -ENOMEM on failure/insufficient address space
3334  *                0 on no addresses written
3335  *                X on writing X addresses to the RAR table
3336  **/
3337 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3338 {
3339 	struct e1000_adapter *adapter = netdev_priv(netdev);
3340 	struct e1000_hw *hw = &adapter->hw;
3341 	unsigned int rar_entries;
3342 	int count = 0;
3343 
3344 	rar_entries = hw->mac.ops.rar_get_count(hw);
3345 
3346 	/* save a rar entry for our hardware address */
3347 	rar_entries--;
3348 
3349 	/* save a rar entry for the LAA workaround */
3350 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3351 		rar_entries--;
3352 
3353 	/* return ENOMEM indicating insufficient memory for addresses */
3354 	if (netdev_uc_count(netdev) > rar_entries)
3355 		return -ENOMEM;
3356 
3357 	if (!netdev_uc_empty(netdev) && rar_entries) {
3358 		struct netdev_hw_addr *ha;
3359 
3360 		/* write the addresses in reverse order to avoid write
3361 		 * combining
3362 		 */
3363 		netdev_for_each_uc_addr(ha, netdev) {
3364 			int ret_val;
3365 
3366 			if (!rar_entries)
3367 				break;
3368 			ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3369 			if (ret_val < 0)
3370 				return -ENOMEM;
3371 			count++;
3372 		}
3373 	}
3374 
3375 	/* zero out the remaining RAR entries not used above */
3376 	for (; rar_entries > 0; rar_entries--) {
3377 		ew32(RAH(rar_entries), 0);
3378 		ew32(RAL(rar_entries), 0);
3379 	}
3380 	e1e_flush();
3381 
3382 	return count;
3383 }
3384 
3385 /**
3386  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3387  * @netdev: network interface device structure
3388  *
3389  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3390  * address list or the network interface flags are updated.  This routine is
3391  * responsible for configuring the hardware for proper unicast, multicast,
3392  * promiscuous mode, and all-multi behavior.
3393  **/
3394 static void e1000e_set_rx_mode(struct net_device *netdev)
3395 {
3396 	struct e1000_adapter *adapter = netdev_priv(netdev);
3397 	struct e1000_hw *hw = &adapter->hw;
3398 	u32 rctl;
3399 
3400 	if (pm_runtime_suspended(netdev->dev.parent))
3401 		return;
3402 
3403 	/* Check for Promiscuous and All Multicast modes */
3404 	rctl = er32(RCTL);
3405 
3406 	/* clear the affected bits */
3407 	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3408 
3409 	if (netdev->flags & IFF_PROMISC) {
3410 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3411 		/* Do not hardware filter VLANs in promisc mode */
3412 		e1000e_vlan_filter_disable(adapter);
3413 	} else {
3414 		int count;
3415 
3416 		if (netdev->flags & IFF_ALLMULTI) {
3417 			rctl |= E1000_RCTL_MPE;
3418 		} else {
3419 			/* Write addresses to the MTA, if the attempt fails
3420 			 * then we should just turn on promiscuous mode so
3421 			 * that we can at least receive multicast traffic
3422 			 */
3423 			count = e1000e_write_mc_addr_list(netdev);
3424 			if (count < 0)
3425 				rctl |= E1000_RCTL_MPE;
3426 		}
3427 		e1000e_vlan_filter_enable(adapter);
3428 		/* Write addresses to available RAR registers, if there is not
3429 		 * sufficient space to store all the addresses then enable
3430 		 * unicast promiscuous mode
3431 		 */
3432 		count = e1000e_write_uc_addr_list(netdev);
3433 		if (count < 0)
3434 			rctl |= E1000_RCTL_UPE;
3435 	}
3436 
3437 	ew32(RCTL, rctl);
3438 
3439 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3440 		e1000e_vlan_strip_enable(adapter);
3441 	else
3442 		e1000e_vlan_strip_disable(adapter);
3443 }
3444 
3445 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3446 {
3447 	struct e1000_hw *hw = &adapter->hw;
3448 	u32 mrqc, rxcsum;
3449 	u32 rss_key[10];
3450 	int i;
3451 
3452 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3453 	for (i = 0; i < 10; i++)
3454 		ew32(RSSRK(i), rss_key[i]);
3455 
3456 	/* Direct all traffic to queue 0 */
3457 	for (i = 0; i < 32; i++)
3458 		ew32(RETA(i), 0);
3459 
3460 	/* Disable raw packet checksumming so that RSS hash is placed in
3461 	 * descriptor on writeback.
3462 	 */
3463 	rxcsum = er32(RXCSUM);
3464 	rxcsum |= E1000_RXCSUM_PCSD;
3465 
3466 	ew32(RXCSUM, rxcsum);
3467 
3468 	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3469 		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3470 		E1000_MRQC_RSS_FIELD_IPV6 |
3471 		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3472 		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3473 
3474 	ew32(MRQC, mrqc);
3475 }
3476 
3477 /**
3478  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3479  * @adapter: board private structure
3480  * @timinca: pointer to returned time increment attributes
3481  *
3482  * Get attributes for incrementing the System Time Register SYSTIML/H at
3483  * the default base frequency, and set the cyclecounter shift value.
3484  **/
3485 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3486 {
3487 	struct e1000_hw *hw = &adapter->hw;
3488 	u32 incvalue, incperiod, shift;
3489 
3490 	/* Make sure clock is enabled on I217/I218/I219  before checking
3491 	 * the frequency
3492 	 */
3493 	if ((hw->mac.type >= e1000_pch_lpt) &&
3494 	    !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3495 	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3496 		u32 fextnvm7 = er32(FEXTNVM7);
3497 
3498 		if (!(fextnvm7 & BIT(0))) {
3499 			ew32(FEXTNVM7, fextnvm7 | BIT(0));
3500 			e1e_flush();
3501 		}
3502 	}
3503 
3504 	switch (hw->mac.type) {
3505 	case e1000_pch2lan:
3506 		/* Stable 96MHz frequency */
3507 		incperiod = INCPERIOD_96MHZ;
3508 		incvalue = INCVALUE_96MHZ;
3509 		shift = INCVALUE_SHIFT_96MHZ;
3510 		adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3511 		break;
3512 	case e1000_pch_lpt:
3513 		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3514 			/* Stable 96MHz frequency */
3515 			incperiod = INCPERIOD_96MHZ;
3516 			incvalue = INCVALUE_96MHZ;
3517 			shift = INCVALUE_SHIFT_96MHZ;
3518 			adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3519 		} else {
3520 			/* Stable 25MHz frequency */
3521 			incperiod = INCPERIOD_25MHZ;
3522 			incvalue = INCVALUE_25MHZ;
3523 			shift = INCVALUE_SHIFT_25MHZ;
3524 			adapter->cc.shift = shift;
3525 		}
3526 		break;
3527 	case e1000_pch_spt:
3528 		/* Stable 24MHz frequency */
3529 		incperiod = INCPERIOD_24MHZ;
3530 		incvalue = INCVALUE_24MHZ;
3531 		shift = INCVALUE_SHIFT_24MHZ;
3532 		adapter->cc.shift = shift;
3533 		break;
3534 	case e1000_pch_cnp:
3535 	case e1000_pch_tgp:
3536 	case e1000_pch_adp:
3537 	case e1000_pch_mtp:
3538 	case e1000_pch_lnp:
3539 	case e1000_pch_ptp:
3540 	case e1000_pch_nvp:
3541 		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3542 			/* Stable 24MHz frequency */
3543 			incperiod = INCPERIOD_24MHZ;
3544 			incvalue = INCVALUE_24MHZ;
3545 			shift = INCVALUE_SHIFT_24MHZ;
3546 			adapter->cc.shift = shift;
3547 		} else {
3548 			/* Stable 38400KHz frequency */
3549 			incperiod = INCPERIOD_38400KHZ;
3550 			incvalue = INCVALUE_38400KHZ;
3551 			shift = INCVALUE_SHIFT_38400KHZ;
3552 			adapter->cc.shift = shift;
3553 		}
3554 		break;
3555 	case e1000_82574:
3556 	case e1000_82583:
3557 		/* Stable 25MHz frequency */
3558 		incperiod = INCPERIOD_25MHZ;
3559 		incvalue = INCVALUE_25MHZ;
3560 		shift = INCVALUE_SHIFT_25MHZ;
3561 		adapter->cc.shift = shift;
3562 		break;
3563 	default:
3564 		return -EINVAL;
3565 	}
3566 
3567 	*timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3568 		    ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3569 
3570 	return 0;
3571 }
3572 
3573 /**
3574  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3575  * @adapter: board private structure
3576  * @config: timestamp configuration
3577  *
3578  * Outgoing time stamping can be enabled and disabled. Play nice and
3579  * disable it when requested, although it shouldn't cause any overhead
3580  * when no packet needs it. At most one packet in the queue may be
3581  * marked for time stamping, otherwise it would be impossible to tell
3582  * for sure to which packet the hardware time stamp belongs.
3583  *
3584  * Incoming time stamping has to be configured via the hardware filters.
3585  * Not all combinations are supported, in particular event type has to be
3586  * specified. Matching the kind of event packet is not supported, with the
3587  * exception of "all V2 events regardless of level 2 or 4".
3588  **/
3589 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3590 				  struct hwtstamp_config *config)
3591 {
3592 	struct e1000_hw *hw = &adapter->hw;
3593 	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3594 	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3595 	u32 rxmtrl = 0;
3596 	u16 rxudp = 0;
3597 	bool is_l4 = false;
3598 	bool is_l2 = false;
3599 	u32 regval;
3600 
3601 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3602 		return -EINVAL;
3603 
3604 	switch (config->tx_type) {
3605 	case HWTSTAMP_TX_OFF:
3606 		tsync_tx_ctl = 0;
3607 		break;
3608 	case HWTSTAMP_TX_ON:
3609 		break;
3610 	default:
3611 		return -ERANGE;
3612 	}
3613 
3614 	switch (config->rx_filter) {
3615 	case HWTSTAMP_FILTER_NONE:
3616 		tsync_rx_ctl = 0;
3617 		break;
3618 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3619 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3620 		rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3621 		is_l4 = true;
3622 		break;
3623 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3624 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3625 		rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3626 		is_l4 = true;
3627 		break;
3628 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3629 		/* Also time stamps V2 L2 Path Delay Request/Response */
3630 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3631 		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3632 		is_l2 = true;
3633 		break;
3634 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3635 		/* Also time stamps V2 L2 Path Delay Request/Response. */
3636 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3637 		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3638 		is_l2 = true;
3639 		break;
3640 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3641 		/* Hardware cannot filter just V2 L4 Sync messages */
3642 		fallthrough;
3643 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3644 		/* Also time stamps V2 Path Delay Request/Response. */
3645 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3646 		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3647 		is_l2 = true;
3648 		is_l4 = true;
3649 		break;
3650 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3651 		/* Hardware cannot filter just V2 L4 Delay Request messages */
3652 		fallthrough;
3653 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3654 		/* Also time stamps V2 Path Delay Request/Response. */
3655 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3656 		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3657 		is_l2 = true;
3658 		is_l4 = true;
3659 		break;
3660 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3661 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3662 		/* Hardware cannot filter just V2 L4 or L2 Event messages */
3663 		fallthrough;
3664 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3665 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3666 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3667 		is_l2 = true;
3668 		is_l4 = true;
3669 		break;
3670 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3671 		/* For V1, the hardware can only filter Sync messages or
3672 		 * Delay Request messages but not both so fall-through to
3673 		 * time stamp all packets.
3674 		 */
3675 		fallthrough;
3676 	case HWTSTAMP_FILTER_NTP_ALL:
3677 	case HWTSTAMP_FILTER_ALL:
3678 		is_l2 = true;
3679 		is_l4 = true;
3680 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3681 		config->rx_filter = HWTSTAMP_FILTER_ALL;
3682 		break;
3683 	default:
3684 		return -ERANGE;
3685 	}
3686 
3687 	adapter->hwtstamp_config = *config;
3688 
3689 	/* enable/disable Tx h/w time stamping */
3690 	regval = er32(TSYNCTXCTL);
3691 	regval &= ~E1000_TSYNCTXCTL_ENABLED;
3692 	regval |= tsync_tx_ctl;
3693 	ew32(TSYNCTXCTL, regval);
3694 	if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3695 	    (regval & E1000_TSYNCTXCTL_ENABLED)) {
3696 		e_err("Timesync Tx Control register not set as expected\n");
3697 		return -EAGAIN;
3698 	}
3699 
3700 	/* enable/disable Rx h/w time stamping */
3701 	regval = er32(TSYNCRXCTL);
3702 	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3703 	regval |= tsync_rx_ctl;
3704 	ew32(TSYNCRXCTL, regval);
3705 	if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3706 				 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3707 	    (regval & (E1000_TSYNCRXCTL_ENABLED |
3708 		       E1000_TSYNCRXCTL_TYPE_MASK))) {
3709 		e_err("Timesync Rx Control register not set as expected\n");
3710 		return -EAGAIN;
3711 	}
3712 
3713 	/* L2: define ethertype filter for time stamped packets */
3714 	if (is_l2)
3715 		rxmtrl |= ETH_P_1588;
3716 
3717 	/* define which PTP packets get time stamped */
3718 	ew32(RXMTRL, rxmtrl);
3719 
3720 	/* Filter by destination port */
3721 	if (is_l4) {
3722 		rxudp = PTP_EV_PORT;
3723 		cpu_to_be16s(&rxudp);
3724 	}
3725 	ew32(RXUDP, rxudp);
3726 
3727 	e1e_flush();
3728 
3729 	/* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3730 	er32(RXSTMPH);
3731 	er32(TXSTMPH);
3732 
3733 	return 0;
3734 }
3735 
3736 /**
3737  * e1000_configure - configure the hardware for Rx and Tx
3738  * @adapter: private board structure
3739  **/
3740 static void e1000_configure(struct e1000_adapter *adapter)
3741 {
3742 	struct e1000_ring *rx_ring = adapter->rx_ring;
3743 
3744 	e1000e_set_rx_mode(adapter->netdev);
3745 
3746 	e1000_restore_vlan(adapter);
3747 	e1000_init_manageability_pt(adapter);
3748 
3749 	e1000_configure_tx(adapter);
3750 
3751 	if (adapter->netdev->features & NETIF_F_RXHASH)
3752 		e1000e_setup_rss_hash(adapter);
3753 	e1000_setup_rctl(adapter);
3754 	e1000_configure_rx(adapter);
3755 	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3756 }
3757 
3758 /**
3759  * e1000e_power_up_phy - restore link in case the phy was powered down
3760  * @adapter: address of board private structure
3761  *
3762  * The phy may be powered down to save power and turn off link when the
3763  * driver is unloaded and wake on lan is not enabled (among others)
3764  * *** this routine MUST be followed by a call to e1000e_reset ***
3765  **/
3766 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3767 {
3768 	if (adapter->hw.phy.ops.power_up)
3769 		adapter->hw.phy.ops.power_up(&adapter->hw);
3770 
3771 	adapter->hw.mac.ops.setup_link(&adapter->hw);
3772 }
3773 
3774 /**
3775  * e1000_power_down_phy - Power down the PHY
3776  * @adapter: board private structure
3777  *
3778  * Power down the PHY so no link is implied when interface is down.
3779  * The PHY cannot be powered down if management or WoL is active.
3780  */
3781 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3782 {
3783 	if (adapter->hw.phy.ops.power_down)
3784 		adapter->hw.phy.ops.power_down(&adapter->hw);
3785 }
3786 
3787 /**
3788  * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3789  * @adapter: board private structure
3790  *
3791  * We want to clear all pending descriptors from the TX ring.
3792  * zeroing happens when the HW reads the regs. We  assign the ring itself as
3793  * the data of the next descriptor. We don't care about the data we are about
3794  * to reset the HW.
3795  */
3796 static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3797 {
3798 	struct e1000_hw *hw = &adapter->hw;
3799 	struct e1000_ring *tx_ring = adapter->tx_ring;
3800 	struct e1000_tx_desc *tx_desc = NULL;
3801 	u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3802 	u16 size = 512;
3803 
3804 	tctl = er32(TCTL);
3805 	ew32(TCTL, tctl | E1000_TCTL_EN);
3806 	tdt = er32(TDT(0));
3807 	BUG_ON(tdt != tx_ring->next_to_use);
3808 	tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3809 	tx_desc->buffer_addr = cpu_to_le64(tx_ring->dma);
3810 
3811 	tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3812 	tx_desc->upper.data = 0;
3813 	/* flush descriptors to memory before notifying the HW */
3814 	wmb();
3815 	tx_ring->next_to_use++;
3816 	if (tx_ring->next_to_use == tx_ring->count)
3817 		tx_ring->next_to_use = 0;
3818 	ew32(TDT(0), tx_ring->next_to_use);
3819 	usleep_range(200, 250);
3820 }
3821 
3822 /**
3823  * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3824  * @adapter: board private structure
3825  *
3826  * Mark all descriptors in the RX ring as consumed and disable the rx ring
3827  */
3828 static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3829 {
3830 	u32 rctl, rxdctl;
3831 	struct e1000_hw *hw = &adapter->hw;
3832 
3833 	rctl = er32(RCTL);
3834 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3835 	e1e_flush();
3836 	usleep_range(100, 150);
3837 
3838 	rxdctl = er32(RXDCTL(0));
3839 	/* zero the lower 14 bits (prefetch and host thresholds) */
3840 	rxdctl &= 0xffffc000;
3841 
3842 	/* update thresholds: prefetch threshold to 31, host threshold to 1
3843 	 * and make sure the granularity is "descriptors" and not "cache lines"
3844 	 */
3845 	rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3846 
3847 	ew32(RXDCTL(0), rxdctl);
3848 	/* momentarily enable the RX ring for the changes to take effect */
3849 	ew32(RCTL, rctl | E1000_RCTL_EN);
3850 	e1e_flush();
3851 	usleep_range(100, 150);
3852 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3853 }
3854 
3855 /**
3856  * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3857  * @adapter: board private structure
3858  *
3859  * In i219, the descriptor rings must be emptied before resetting the HW
3860  * or before changing the device state to D3 during runtime (runtime PM).
3861  *
3862  * Failure to do this will cause the HW to enter a unit hang state which can
3863  * only be released by PCI reset on the device
3864  *
3865  */
3866 
3867 static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3868 {
3869 	u16 hang_state;
3870 	u32 fext_nvm11, tdlen;
3871 	struct e1000_hw *hw = &adapter->hw;
3872 
3873 	/* First, disable MULR fix in FEXTNVM11 */
3874 	fext_nvm11 = er32(FEXTNVM11);
3875 	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3876 	ew32(FEXTNVM11, fext_nvm11);
3877 	/* do nothing if we're not in faulty state, or if the queue is empty */
3878 	tdlen = er32(TDLEN(0));
3879 	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3880 			     &hang_state);
3881 	if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3882 		return;
3883 	e1000_flush_tx_ring(adapter);
3884 	/* recheck, maybe the fault is caused by the rx ring */
3885 	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3886 			     &hang_state);
3887 	if (hang_state & FLUSH_DESC_REQUIRED)
3888 		e1000_flush_rx_ring(adapter);
3889 }
3890 
3891 /**
3892  * e1000e_systim_reset - reset the timesync registers after a hardware reset
3893  * @adapter: board private structure
3894  *
3895  * When the MAC is reset, all hardware bits for timesync will be reset to the
3896  * default values. This function will restore the settings last in place.
3897  * Since the clock SYSTIME registers are reset, we will simply restore the
3898  * cyclecounter to the kernel real clock time.
3899  **/
3900 static void e1000e_systim_reset(struct e1000_adapter *adapter)
3901 {
3902 	struct ptp_clock_info *info = &adapter->ptp_clock_info;
3903 	struct e1000_hw *hw = &adapter->hw;
3904 	unsigned long flags;
3905 	u32 timinca;
3906 	s32 ret_val;
3907 
3908 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3909 		return;
3910 
3911 	if (info->adjfine) {
3912 		/* restore the previous ptp frequency delta */
3913 		ret_val = info->adjfine(info, adapter->ptp_delta);
3914 	} else {
3915 		/* set the default base frequency if no adjustment possible */
3916 		ret_val = e1000e_get_base_timinca(adapter, &timinca);
3917 		if (!ret_val)
3918 			ew32(TIMINCA, timinca);
3919 	}
3920 
3921 	if (ret_val) {
3922 		dev_warn(&adapter->pdev->dev,
3923 			 "Failed to restore TIMINCA clock rate delta: %d\n",
3924 			 ret_val);
3925 		return;
3926 	}
3927 
3928 	/* reset the systim ns time counter */
3929 	spin_lock_irqsave(&adapter->systim_lock, flags);
3930 	timecounter_init(&adapter->tc, &adapter->cc,
3931 			 ktime_to_ns(ktime_get_real()));
3932 	spin_unlock_irqrestore(&adapter->systim_lock, flags);
3933 
3934 	/* restore the previous hwtstamp configuration settings */
3935 	e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3936 }
3937 
3938 /**
3939  * e1000e_reset - bring the hardware into a known good state
3940  * @adapter: board private structure
3941  *
3942  * This function boots the hardware and enables some settings that
3943  * require a configuration cycle of the hardware - those cannot be
3944  * set/changed during runtime. After reset the device needs to be
3945  * properly configured for Rx, Tx etc.
3946  */
3947 void e1000e_reset(struct e1000_adapter *adapter)
3948 {
3949 	struct e1000_mac_info *mac = &adapter->hw.mac;
3950 	struct e1000_fc_info *fc = &adapter->hw.fc;
3951 	struct e1000_hw *hw = &adapter->hw;
3952 	u32 tx_space, min_tx_space, min_rx_space;
3953 	u32 pba = adapter->pba;
3954 	u16 hwm;
3955 
3956 	/* reset Packet Buffer Allocation to default */
3957 	ew32(PBA, pba);
3958 
3959 	if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3960 		/* To maintain wire speed transmits, the Tx FIFO should be
3961 		 * large enough to accommodate two full transmit packets,
3962 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3963 		 * the Rx FIFO should be large enough to accommodate at least
3964 		 * one full receive packet and is similarly rounded up and
3965 		 * expressed in KB.
3966 		 */
3967 		pba = er32(PBA);
3968 		/* upper 16 bits has Tx packet buffer allocation size in KB */
3969 		tx_space = pba >> 16;
3970 		/* lower 16 bits has Rx packet buffer allocation size in KB */
3971 		pba &= 0xffff;
3972 		/* the Tx fifo also stores 16 bytes of information about the Tx
3973 		 * but don't include ethernet FCS because hardware appends it
3974 		 */
3975 		min_tx_space = (adapter->max_frame_size +
3976 				sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3977 		min_tx_space = ALIGN(min_tx_space, 1024);
3978 		min_tx_space >>= 10;
3979 		/* software strips receive CRC, so leave room for it */
3980 		min_rx_space = adapter->max_frame_size;
3981 		min_rx_space = ALIGN(min_rx_space, 1024);
3982 		min_rx_space >>= 10;
3983 
3984 		/* If current Tx allocation is less than the min Tx FIFO size,
3985 		 * and the min Tx FIFO size is less than the current Rx FIFO
3986 		 * allocation, take space away from current Rx allocation
3987 		 */
3988 		if ((tx_space < min_tx_space) &&
3989 		    ((min_tx_space - tx_space) < pba)) {
3990 			pba -= min_tx_space - tx_space;
3991 
3992 			/* if short on Rx space, Rx wins and must trump Tx
3993 			 * adjustment
3994 			 */
3995 			if (pba < min_rx_space)
3996 				pba = min_rx_space;
3997 		}
3998 
3999 		ew32(PBA, pba);
4000 	}
4001 
4002 	/* flow control settings
4003 	 *
4004 	 * The high water mark must be low enough to fit one full frame
4005 	 * (or the size used for early receive) above it in the Rx FIFO.
4006 	 * Set it to the lower of:
4007 	 * - 90% of the Rx FIFO size, and
4008 	 * - the full Rx FIFO size minus one full frame
4009 	 */
4010 	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4011 		fc->pause_time = 0xFFFF;
4012 	else
4013 		fc->pause_time = E1000_FC_PAUSE_TIME;
4014 	fc->send_xon = true;
4015 	fc->current_mode = fc->requested_mode;
4016 
4017 	switch (hw->mac.type) {
4018 	case e1000_ich9lan:
4019 	case e1000_ich10lan:
4020 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4021 			pba = 14;
4022 			ew32(PBA, pba);
4023 			fc->high_water = 0x2800;
4024 			fc->low_water = fc->high_water - 8;
4025 			break;
4026 		}
4027 		fallthrough;
4028 	default:
4029 		hwm = min(((pba << 10) * 9 / 10),
4030 			  ((pba << 10) - adapter->max_frame_size));
4031 
4032 		fc->high_water = hwm & E1000_FCRTH_RTH;	/* 8-byte granularity */
4033 		fc->low_water = fc->high_water - 8;
4034 		break;
4035 	case e1000_pchlan:
4036 		/* Workaround PCH LOM adapter hangs with certain network
4037 		 * loads.  If hangs persist, try disabling Tx flow control.
4038 		 */
4039 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4040 			fc->high_water = 0x3500;
4041 			fc->low_water = 0x1500;
4042 		} else {
4043 			fc->high_water = 0x5000;
4044 			fc->low_water = 0x3000;
4045 		}
4046 		fc->refresh_time = 0x1000;
4047 		break;
4048 	case e1000_pch2lan:
4049 	case e1000_pch_lpt:
4050 	case e1000_pch_spt:
4051 	case e1000_pch_cnp:
4052 	case e1000_pch_tgp:
4053 	case e1000_pch_adp:
4054 	case e1000_pch_mtp:
4055 	case e1000_pch_lnp:
4056 	case e1000_pch_ptp:
4057 	case e1000_pch_nvp:
4058 		fc->refresh_time = 0xFFFF;
4059 		fc->pause_time = 0xFFFF;
4060 
4061 		if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4062 			fc->high_water = 0x05C20;
4063 			fc->low_water = 0x05048;
4064 			break;
4065 		}
4066 
4067 		pba = 14;
4068 		ew32(PBA, pba);
4069 		fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4070 		fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4071 		break;
4072 	}
4073 
4074 	/* Alignment of Tx data is on an arbitrary byte boundary with the
4075 	 * maximum size per Tx descriptor limited only to the transmit
4076 	 * allocation of the packet buffer minus 96 bytes with an upper
4077 	 * limit of 24KB due to receive synchronization limitations.
4078 	 */
4079 	adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4080 				       24 << 10);
4081 
4082 	/* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4083 	 * fit in receive buffer.
4084 	 */
4085 	if (adapter->itr_setting & 0x3) {
4086 		if ((adapter->max_frame_size * 2) > (pba << 10)) {
4087 			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4088 				dev_info(&adapter->pdev->dev,
4089 					 "Interrupt Throttle Rate off\n");
4090 				adapter->flags2 |= FLAG2_DISABLE_AIM;
4091 				e1000e_write_itr(adapter, 0);
4092 			}
4093 		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4094 			dev_info(&adapter->pdev->dev,
4095 				 "Interrupt Throttle Rate on\n");
4096 			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4097 			adapter->itr = 20000;
4098 			e1000e_write_itr(adapter, adapter->itr);
4099 		}
4100 	}
4101 
4102 	if (hw->mac.type >= e1000_pch_spt)
4103 		e1000_flush_desc_rings(adapter);
4104 	/* Allow time for pending master requests to run */
4105 	mac->ops.reset_hw(hw);
4106 
4107 	/* For parts with AMT enabled, let the firmware know
4108 	 * that the network interface is in control
4109 	 */
4110 	if (adapter->flags & FLAG_HAS_AMT)
4111 		e1000e_get_hw_control(adapter);
4112 
4113 	ew32(WUC, 0);
4114 
4115 	if (mac->ops.init_hw(hw))
4116 		e_err("Hardware Error\n");
4117 
4118 	e1000_update_mng_vlan(adapter);
4119 
4120 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4121 	ew32(VET, ETH_P_8021Q);
4122 
4123 	e1000e_reset_adaptive(hw);
4124 
4125 	/* restore systim and hwtstamp settings */
4126 	e1000e_systim_reset(adapter);
4127 
4128 	/* Set EEE advertisement as appropriate */
4129 	if (adapter->flags2 & FLAG2_HAS_EEE) {
4130 		s32 ret_val;
4131 		u16 adv_addr;
4132 
4133 		switch (hw->phy.type) {
4134 		case e1000_phy_82579:
4135 			adv_addr = I82579_EEE_ADVERTISEMENT;
4136 			break;
4137 		case e1000_phy_i217:
4138 			adv_addr = I217_EEE_ADVERTISEMENT;
4139 			break;
4140 		default:
4141 			dev_err(&adapter->pdev->dev,
4142 				"Invalid PHY type setting EEE advertisement\n");
4143 			return;
4144 		}
4145 
4146 		ret_val = hw->phy.ops.acquire(hw);
4147 		if (ret_val) {
4148 			dev_err(&adapter->pdev->dev,
4149 				"EEE advertisement - unable to acquire PHY\n");
4150 			return;
4151 		}
4152 
4153 		e1000_write_emi_reg_locked(hw, adv_addr,
4154 					   hw->dev_spec.ich8lan.eee_disable ?
4155 					   0 : adapter->eee_advert);
4156 
4157 		hw->phy.ops.release(hw);
4158 	}
4159 
4160 	if (!netif_running(adapter->netdev) &&
4161 	    !test_bit(__E1000_TESTING, &adapter->state))
4162 		e1000_power_down_phy(adapter);
4163 
4164 	e1000_get_phy_info(hw);
4165 
4166 	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4167 	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4168 		u16 phy_data = 0;
4169 		/* speed up time to link by disabling smart power down, ignore
4170 		 * the return value of this function because there is nothing
4171 		 * different we would do if it failed
4172 		 */
4173 		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4174 		phy_data &= ~IGP02E1000_PM_SPD;
4175 		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4176 	}
4177 	if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4178 		u32 reg;
4179 
4180 		/* Fextnvm7 @ 0xe4[2] = 1 */
4181 		reg = er32(FEXTNVM7);
4182 		reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4183 		ew32(FEXTNVM7, reg);
4184 		/* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4185 		reg = er32(FEXTNVM9);
4186 		reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4187 		       E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4188 		ew32(FEXTNVM9, reg);
4189 	}
4190 
4191 }
4192 
4193 /**
4194  * e1000e_trigger_lsc - trigger an LSC interrupt
4195  * @adapter: board private structure
4196  *
4197  * Fire a link status change interrupt to start the watchdog.
4198  **/
4199 static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4200 {
4201 	struct e1000_hw *hw = &adapter->hw;
4202 
4203 	if (adapter->msix_entries)
4204 		ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4205 	else
4206 		ew32(ICS, E1000_ICS_LSC);
4207 }
4208 
4209 void e1000e_up(struct e1000_adapter *adapter)
4210 {
4211 	/* hardware has been reset, we need to reload some things */
4212 	e1000_configure(adapter);
4213 
4214 	clear_bit(__E1000_DOWN, &adapter->state);
4215 
4216 	if (adapter->msix_entries)
4217 		e1000_configure_msix(adapter);
4218 	e1000_irq_enable(adapter);
4219 
4220 	/* Tx queue started by watchdog timer when link is up */
4221 
4222 	e1000e_trigger_lsc(adapter);
4223 }
4224 
4225 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4226 {
4227 	struct e1000_hw *hw = &adapter->hw;
4228 
4229 	if (!(adapter->flags2 & FLAG2_DMA_BURST))
4230 		return;
4231 
4232 	/* flush pending descriptor writebacks to memory */
4233 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4234 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4235 
4236 	/* execute the writes immediately */
4237 	e1e_flush();
4238 
4239 	/* due to rare timing issues, write to TIDV/RDTR again to ensure the
4240 	 * write is successful
4241 	 */
4242 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4243 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4244 
4245 	/* execute the writes immediately */
4246 	e1e_flush();
4247 }
4248 
4249 static void e1000e_update_stats(struct e1000_adapter *adapter);
4250 
4251 /**
4252  * e1000e_down - quiesce the device and optionally reset the hardware
4253  * @adapter: board private structure
4254  * @reset: boolean flag to reset the hardware or not
4255  */
4256 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4257 {
4258 	struct net_device *netdev = adapter->netdev;
4259 	struct e1000_hw *hw = &adapter->hw;
4260 	u32 tctl, rctl;
4261 
4262 	/* signal that we're down so the interrupt handler does not
4263 	 * reschedule our watchdog timer
4264 	 */
4265 	set_bit(__E1000_DOWN, &adapter->state);
4266 
4267 	netif_carrier_off(netdev);
4268 
4269 	/* disable receives in the hardware */
4270 	rctl = er32(RCTL);
4271 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4272 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
4273 	/* flush and sleep below */
4274 
4275 	netif_stop_queue(netdev);
4276 
4277 	/* disable transmits in the hardware */
4278 	tctl = er32(TCTL);
4279 	tctl &= ~E1000_TCTL_EN;
4280 	ew32(TCTL, tctl);
4281 
4282 	/* flush both disables and wait for them to finish */
4283 	e1e_flush();
4284 	usleep_range(10000, 11000);
4285 
4286 	e1000_irq_disable(adapter);
4287 
4288 	napi_synchronize(&adapter->napi);
4289 
4290 	del_timer_sync(&adapter->watchdog_timer);
4291 	del_timer_sync(&adapter->phy_info_timer);
4292 
4293 	spin_lock(&adapter->stats64_lock);
4294 	e1000e_update_stats(adapter);
4295 	spin_unlock(&adapter->stats64_lock);
4296 
4297 	e1000e_flush_descriptors(adapter);
4298 
4299 	adapter->link_speed = 0;
4300 	adapter->link_duplex = 0;
4301 
4302 	/* Disable Si errata workaround on PCHx for jumbo frame flow */
4303 	if ((hw->mac.type >= e1000_pch2lan) &&
4304 	    (adapter->netdev->mtu > ETH_DATA_LEN) &&
4305 	    e1000_lv_jumbo_workaround_ich8lan(hw, false))
4306 		e_dbg("failed to disable jumbo frame workaround mode\n");
4307 
4308 	if (!pci_channel_offline(adapter->pdev)) {
4309 		if (reset)
4310 			e1000e_reset(adapter);
4311 		else if (hw->mac.type >= e1000_pch_spt)
4312 			e1000_flush_desc_rings(adapter);
4313 	}
4314 	e1000_clean_tx_ring(adapter->tx_ring);
4315 	e1000_clean_rx_ring(adapter->rx_ring);
4316 }
4317 
4318 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4319 {
4320 	might_sleep();
4321 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4322 		usleep_range(1000, 1100);
4323 	e1000e_down(adapter, true);
4324 	e1000e_up(adapter);
4325 	clear_bit(__E1000_RESETTING, &adapter->state);
4326 }
4327 
4328 /**
4329  * e1000e_sanitize_systim - sanitize raw cycle counter reads
4330  * @hw: pointer to the HW structure
4331  * @systim: PHC time value read, sanitized and returned
4332  * @sts: structure to hold system time before and after reading SYSTIML,
4333  * may be NULL
4334  *
4335  * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4336  * check to see that the time is incrementing at a reasonable
4337  * rate and is a multiple of incvalue.
4338  **/
4339 static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim,
4340 				  struct ptp_system_timestamp *sts)
4341 {
4342 	u64 time_delta, rem, temp;
4343 	u64 systim_next;
4344 	u32 incvalue;
4345 	int i;
4346 
4347 	incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4348 	for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4349 		/* latch SYSTIMH on read of SYSTIML */
4350 		ptp_read_system_prets(sts);
4351 		systim_next = (u64)er32(SYSTIML);
4352 		ptp_read_system_postts(sts);
4353 		systim_next |= (u64)er32(SYSTIMH) << 32;
4354 
4355 		time_delta = systim_next - systim;
4356 		temp = time_delta;
4357 		/* VMWare users have seen incvalue of zero, don't div / 0 */
4358 		rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4359 
4360 		systim = systim_next;
4361 
4362 		if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4363 			break;
4364 	}
4365 
4366 	return systim;
4367 }
4368 
4369 /**
4370  * e1000e_read_systim - read SYSTIM register
4371  * @adapter: board private structure
4372  * @sts: structure which will contain system time before and after reading
4373  * SYSTIML, may be NULL
4374  **/
4375 u64 e1000e_read_systim(struct e1000_adapter *adapter,
4376 		       struct ptp_system_timestamp *sts)
4377 {
4378 	struct e1000_hw *hw = &adapter->hw;
4379 	u32 systimel, systimel_2, systimeh;
4380 	u64 systim;
4381 	/* SYSTIMH latching upon SYSTIML read does not work well.
4382 	 * This means that if SYSTIML overflows after we read it but before
4383 	 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4384 	 * will experience a huge non linear increment in the systime value
4385 	 * to fix that we test for overflow and if true, we re-read systime.
4386 	 */
4387 	ptp_read_system_prets(sts);
4388 	systimel = er32(SYSTIML);
4389 	ptp_read_system_postts(sts);
4390 	systimeh = er32(SYSTIMH);
4391 	/* Is systimel is so large that overflow is possible? */
4392 	if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4393 		ptp_read_system_prets(sts);
4394 		systimel_2 = er32(SYSTIML);
4395 		ptp_read_system_postts(sts);
4396 		if (systimel > systimel_2) {
4397 			/* There was an overflow, read again SYSTIMH, and use
4398 			 * systimel_2
4399 			 */
4400 			systimeh = er32(SYSTIMH);
4401 			systimel = systimel_2;
4402 		}
4403 	}
4404 	systim = (u64)systimel;
4405 	systim |= (u64)systimeh << 32;
4406 
4407 	if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4408 		systim = e1000e_sanitize_systim(hw, systim, sts);
4409 
4410 	return systim;
4411 }
4412 
4413 /**
4414  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4415  * @cc: cyclecounter structure
4416  **/
4417 static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4418 {
4419 	struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4420 						     cc);
4421 
4422 	return e1000e_read_systim(adapter, NULL);
4423 }
4424 
4425 /**
4426  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4427  * @adapter: board private structure to initialize
4428  *
4429  * e1000_sw_init initializes the Adapter private data structure.
4430  * Fields are initialized based on PCI device information and
4431  * OS network device settings (MTU size).
4432  **/
4433 static int e1000_sw_init(struct e1000_adapter *adapter)
4434 {
4435 	struct net_device *netdev = adapter->netdev;
4436 
4437 	adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4438 	adapter->rx_ps_bsize0 = 128;
4439 	adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4440 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4441 	adapter->tx_ring_count = E1000_DEFAULT_TXD;
4442 	adapter->rx_ring_count = E1000_DEFAULT_RXD;
4443 
4444 	spin_lock_init(&adapter->stats64_lock);
4445 
4446 	e1000e_set_interrupt_capability(adapter);
4447 
4448 	if (e1000_alloc_queues(adapter))
4449 		return -ENOMEM;
4450 
4451 	/* Setup hardware time stamping cyclecounter */
4452 	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4453 		adapter->cc.read = e1000e_cyclecounter_read;
4454 		adapter->cc.mask = CYCLECOUNTER_MASK(64);
4455 		adapter->cc.mult = 1;
4456 		/* cc.shift set in e1000e_get_base_tininca() */
4457 
4458 		spin_lock_init(&adapter->systim_lock);
4459 		INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4460 	}
4461 
4462 	/* Explicitly disable IRQ since the NIC can be in any state. */
4463 	e1000_irq_disable(adapter);
4464 
4465 	set_bit(__E1000_DOWN, &adapter->state);
4466 	return 0;
4467 }
4468 
4469 /**
4470  * e1000_intr_msi_test - Interrupt Handler
4471  * @irq: interrupt number
4472  * @data: pointer to a network interface device structure
4473  **/
4474 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4475 {
4476 	struct net_device *netdev = data;
4477 	struct e1000_adapter *adapter = netdev_priv(netdev);
4478 	struct e1000_hw *hw = &adapter->hw;
4479 	u32 icr = er32(ICR);
4480 
4481 	e_dbg("icr is %08X\n", icr);
4482 	if (icr & E1000_ICR_RXSEQ) {
4483 		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4484 		/* Force memory writes to complete before acknowledging the
4485 		 * interrupt is handled.
4486 		 */
4487 		wmb();
4488 	}
4489 
4490 	return IRQ_HANDLED;
4491 }
4492 
4493 /**
4494  * e1000_test_msi_interrupt - Returns 0 for successful test
4495  * @adapter: board private struct
4496  *
4497  * code flow taken from tg3.c
4498  **/
4499 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4500 {
4501 	struct net_device *netdev = adapter->netdev;
4502 	struct e1000_hw *hw = &adapter->hw;
4503 	int err;
4504 
4505 	/* poll_enable hasn't been called yet, so don't need disable */
4506 	/* clear any pending events */
4507 	er32(ICR);
4508 
4509 	/* free the real vector and request a test handler */
4510 	e1000_free_irq(adapter);
4511 	e1000e_reset_interrupt_capability(adapter);
4512 
4513 	/* Assume that the test fails, if it succeeds then the test
4514 	 * MSI irq handler will unset this flag
4515 	 */
4516 	adapter->flags |= FLAG_MSI_TEST_FAILED;
4517 
4518 	err = pci_enable_msi(adapter->pdev);
4519 	if (err)
4520 		goto msi_test_failed;
4521 
4522 	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4523 			  netdev->name, netdev);
4524 	if (err) {
4525 		pci_disable_msi(adapter->pdev);
4526 		goto msi_test_failed;
4527 	}
4528 
4529 	/* Force memory writes to complete before enabling and firing an
4530 	 * interrupt.
4531 	 */
4532 	wmb();
4533 
4534 	e1000_irq_enable(adapter);
4535 
4536 	/* fire an unusual interrupt on the test handler */
4537 	ew32(ICS, E1000_ICS_RXSEQ);
4538 	e1e_flush();
4539 	msleep(100);
4540 
4541 	e1000_irq_disable(adapter);
4542 
4543 	rmb();			/* read flags after interrupt has been fired */
4544 
4545 	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4546 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
4547 		e_info("MSI interrupt test failed, using legacy interrupt.\n");
4548 	} else {
4549 		e_dbg("MSI interrupt test succeeded!\n");
4550 	}
4551 
4552 	free_irq(adapter->pdev->irq, netdev);
4553 	pci_disable_msi(adapter->pdev);
4554 
4555 msi_test_failed:
4556 	e1000e_set_interrupt_capability(adapter);
4557 	return e1000_request_irq(adapter);
4558 }
4559 
4560 /**
4561  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4562  * @adapter: board private struct
4563  *
4564  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4565  **/
4566 static int e1000_test_msi(struct e1000_adapter *adapter)
4567 {
4568 	int err;
4569 	u16 pci_cmd;
4570 
4571 	if (!(adapter->flags & FLAG_MSI_ENABLED))
4572 		return 0;
4573 
4574 	/* disable SERR in case the MSI write causes a master abort */
4575 	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4576 	if (pci_cmd & PCI_COMMAND_SERR)
4577 		pci_write_config_word(adapter->pdev, PCI_COMMAND,
4578 				      pci_cmd & ~PCI_COMMAND_SERR);
4579 
4580 	err = e1000_test_msi_interrupt(adapter);
4581 
4582 	/* re-enable SERR */
4583 	if (pci_cmd & PCI_COMMAND_SERR) {
4584 		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4585 		pci_cmd |= PCI_COMMAND_SERR;
4586 		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4587 	}
4588 
4589 	return err;
4590 }
4591 
4592 /**
4593  * e1000e_open - Called when a network interface is made active
4594  * @netdev: network interface device structure
4595  *
4596  * Returns 0 on success, negative value on failure
4597  *
4598  * The open entry point is called when a network interface is made
4599  * active by the system (IFF_UP).  At this point all resources needed
4600  * for transmit and receive operations are allocated, the interrupt
4601  * handler is registered with the OS, the watchdog timer is started,
4602  * and the stack is notified that the interface is ready.
4603  **/
4604 int e1000e_open(struct net_device *netdev)
4605 {
4606 	struct e1000_adapter *adapter = netdev_priv(netdev);
4607 	struct e1000_hw *hw = &adapter->hw;
4608 	struct pci_dev *pdev = adapter->pdev;
4609 	int err;
4610 	int irq;
4611 
4612 	/* disallow open during test */
4613 	if (test_bit(__E1000_TESTING, &adapter->state))
4614 		return -EBUSY;
4615 
4616 	pm_runtime_get_sync(&pdev->dev);
4617 
4618 	netif_carrier_off(netdev);
4619 	netif_stop_queue(netdev);
4620 
4621 	/* allocate transmit descriptors */
4622 	err = e1000e_setup_tx_resources(adapter->tx_ring);
4623 	if (err)
4624 		goto err_setup_tx;
4625 
4626 	/* allocate receive descriptors */
4627 	err = e1000e_setup_rx_resources(adapter->rx_ring);
4628 	if (err)
4629 		goto err_setup_rx;
4630 
4631 	/* If AMT is enabled, let the firmware know that the network
4632 	 * interface is now open and reset the part to a known state.
4633 	 */
4634 	if (adapter->flags & FLAG_HAS_AMT) {
4635 		e1000e_get_hw_control(adapter);
4636 		e1000e_reset(adapter);
4637 	}
4638 
4639 	e1000e_power_up_phy(adapter);
4640 
4641 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4642 	if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4643 		e1000_update_mng_vlan(adapter);
4644 
4645 	/* DMA latency requirement to workaround jumbo issue */
4646 	cpu_latency_qos_add_request(&adapter->pm_qos_req, PM_QOS_DEFAULT_VALUE);
4647 
4648 	/* before we allocate an interrupt, we must be ready to handle it.
4649 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4650 	 * as soon as we call pci_request_irq, so we have to setup our
4651 	 * clean_rx handler before we do so.
4652 	 */
4653 	e1000_configure(adapter);
4654 
4655 	err = e1000_request_irq(adapter);
4656 	if (err)
4657 		goto err_req_irq;
4658 
4659 	/* Work around PCIe errata with MSI interrupts causing some chipsets to
4660 	 * ignore e1000e MSI messages, which means we need to test our MSI
4661 	 * interrupt now
4662 	 */
4663 	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4664 		err = e1000_test_msi(adapter);
4665 		if (err) {
4666 			e_err("Interrupt allocation failed\n");
4667 			goto err_req_irq;
4668 		}
4669 	}
4670 
4671 	/* From here on the code is the same as e1000e_up() */
4672 	clear_bit(__E1000_DOWN, &adapter->state);
4673 
4674 	if (adapter->int_mode == E1000E_INT_MODE_MSIX)
4675 		irq = adapter->msix_entries[0].vector;
4676 	else
4677 		irq = adapter->pdev->irq;
4678 
4679 	netif_napi_set_irq(&adapter->napi, irq);
4680 	napi_enable(&adapter->napi);
4681 	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_RX, &adapter->napi);
4682 	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_TX, &adapter->napi);
4683 
4684 	e1000_irq_enable(adapter);
4685 
4686 	adapter->tx_hang_recheck = false;
4687 
4688 	hw->mac.get_link_status = true;
4689 	pm_runtime_put(&pdev->dev);
4690 
4691 	e1000e_trigger_lsc(adapter);
4692 
4693 	return 0;
4694 
4695 err_req_irq:
4696 	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4697 	e1000e_release_hw_control(adapter);
4698 	e1000_power_down_phy(adapter);
4699 	e1000e_free_rx_resources(adapter->rx_ring);
4700 err_setup_rx:
4701 	e1000e_free_tx_resources(adapter->tx_ring);
4702 err_setup_tx:
4703 	e1000e_reset(adapter);
4704 	pm_runtime_put_sync(&pdev->dev);
4705 
4706 	return err;
4707 }
4708 
4709 /**
4710  * e1000e_close - Disables a network interface
4711  * @netdev: network interface device structure
4712  *
4713  * Returns 0, this is not allowed to fail
4714  *
4715  * The close entry point is called when an interface is de-activated
4716  * by the OS.  The hardware is still under the drivers control, but
4717  * needs to be disabled.  A global MAC reset is issued to stop the
4718  * hardware, and all transmit and receive resources are freed.
4719  **/
4720 int e1000e_close(struct net_device *netdev)
4721 {
4722 	struct e1000_adapter *adapter = netdev_priv(netdev);
4723 	struct pci_dev *pdev = adapter->pdev;
4724 	int count = E1000_CHECK_RESET_COUNT;
4725 
4726 	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4727 		usleep_range(10000, 11000);
4728 
4729 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4730 
4731 	pm_runtime_get_sync(&pdev->dev);
4732 
4733 	if (netif_device_present(netdev)) {
4734 		e1000e_down(adapter, true);
4735 		e1000_free_irq(adapter);
4736 
4737 		/* Link status message must follow this format */
4738 		netdev_info(netdev, "NIC Link is Down\n");
4739 	}
4740 
4741 	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_RX, NULL);
4742 	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_TX, NULL);
4743 	napi_disable(&adapter->napi);
4744 
4745 	e1000e_free_tx_resources(adapter->tx_ring);
4746 	e1000e_free_rx_resources(adapter->rx_ring);
4747 
4748 	/* kill manageability vlan ID if supported, but not if a vlan with
4749 	 * the same ID is registered on the host OS (let 8021q kill it)
4750 	 */
4751 	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4752 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4753 				       adapter->mng_vlan_id);
4754 
4755 	/* If AMT is enabled, let the firmware know that the network
4756 	 * interface is now closed
4757 	 */
4758 	if ((adapter->flags & FLAG_HAS_AMT) &&
4759 	    !test_bit(__E1000_TESTING, &adapter->state))
4760 		e1000e_release_hw_control(adapter);
4761 
4762 	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4763 
4764 	pm_runtime_put_sync(&pdev->dev);
4765 
4766 	return 0;
4767 }
4768 
4769 /**
4770  * e1000_set_mac - Change the Ethernet Address of the NIC
4771  * @netdev: network interface device structure
4772  * @p: pointer to an address structure
4773  *
4774  * Returns 0 on success, negative on failure
4775  **/
4776 static int e1000_set_mac(struct net_device *netdev, void *p)
4777 {
4778 	struct e1000_adapter *adapter = netdev_priv(netdev);
4779 	struct e1000_hw *hw = &adapter->hw;
4780 	struct sockaddr *addr = p;
4781 
4782 	if (!is_valid_ether_addr(addr->sa_data))
4783 		return -EADDRNOTAVAIL;
4784 
4785 	eth_hw_addr_set(netdev, addr->sa_data);
4786 	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4787 
4788 	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4789 
4790 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4791 		/* activate the work around */
4792 		e1000e_set_laa_state_82571(&adapter->hw, 1);
4793 
4794 		/* Hold a copy of the LAA in RAR[14] This is done so that
4795 		 * between the time RAR[0] gets clobbered  and the time it
4796 		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4797 		 * of the RARs and no incoming packets directed to this port
4798 		 * are dropped. Eventually the LAA will be in RAR[0] and
4799 		 * RAR[14]
4800 		 */
4801 		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4802 				    adapter->hw.mac.rar_entry_count - 1);
4803 	}
4804 
4805 	return 0;
4806 }
4807 
4808 /**
4809  * e1000e_update_phy_task - work thread to update phy
4810  * @work: pointer to our work struct
4811  *
4812  * this worker thread exists because we must acquire a
4813  * semaphore to read the phy, which we could msleep while
4814  * waiting for it, and we can't msleep in a timer.
4815  **/
4816 static void e1000e_update_phy_task(struct work_struct *work)
4817 {
4818 	struct e1000_adapter *adapter = container_of(work,
4819 						     struct e1000_adapter,
4820 						     update_phy_task);
4821 	struct e1000_hw *hw = &adapter->hw;
4822 
4823 	if (test_bit(__E1000_DOWN, &adapter->state))
4824 		return;
4825 
4826 	e1000_get_phy_info(hw);
4827 
4828 	/* Enable EEE on 82579 after link up */
4829 	if (hw->phy.type >= e1000_phy_82579)
4830 		e1000_set_eee_pchlan(hw);
4831 }
4832 
4833 /**
4834  * e1000_update_phy_info - timre call-back to update PHY info
4835  * @t: pointer to timer_list containing private info adapter
4836  *
4837  * Need to wait a few seconds after link up to get diagnostic information from
4838  * the phy
4839  **/
4840 static void e1000_update_phy_info(struct timer_list *t)
4841 {
4842 	struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4843 
4844 	if (test_bit(__E1000_DOWN, &adapter->state))
4845 		return;
4846 
4847 	schedule_work(&adapter->update_phy_task);
4848 }
4849 
4850 /**
4851  * e1000e_update_phy_stats - Update the PHY statistics counters
4852  * @adapter: board private structure
4853  *
4854  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4855  **/
4856 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4857 {
4858 	struct e1000_hw *hw = &adapter->hw;
4859 	s32 ret_val;
4860 	u16 phy_data;
4861 
4862 	ret_val = hw->phy.ops.acquire(hw);
4863 	if (ret_val)
4864 		return;
4865 
4866 	/* A page set is expensive so check if already on desired page.
4867 	 * If not, set to the page with the PHY status registers.
4868 	 */
4869 	hw->phy.addr = 1;
4870 	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4871 					   &phy_data);
4872 	if (ret_val)
4873 		goto release;
4874 	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4875 		ret_val = hw->phy.ops.set_page(hw,
4876 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4877 		if (ret_val)
4878 			goto release;
4879 	}
4880 
4881 	/* Single Collision Count */
4882 	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4883 	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4884 	if (!ret_val)
4885 		adapter->stats.scc += phy_data;
4886 
4887 	/* Excessive Collision Count */
4888 	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4889 	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4890 	if (!ret_val)
4891 		adapter->stats.ecol += phy_data;
4892 
4893 	/* Multiple Collision Count */
4894 	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4895 	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4896 	if (!ret_val)
4897 		adapter->stats.mcc += phy_data;
4898 
4899 	/* Late Collision Count */
4900 	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4901 	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4902 	if (!ret_val)
4903 		adapter->stats.latecol += phy_data;
4904 
4905 	/* Collision Count - also used for adaptive IFS */
4906 	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4907 	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4908 	if (!ret_val)
4909 		hw->mac.collision_delta = phy_data;
4910 
4911 	/* Defer Count */
4912 	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4913 	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4914 	if (!ret_val)
4915 		adapter->stats.dc += phy_data;
4916 
4917 	/* Transmit with no CRS */
4918 	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4919 	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4920 	if (!ret_val)
4921 		adapter->stats.tncrs += phy_data;
4922 
4923 release:
4924 	hw->phy.ops.release(hw);
4925 }
4926 
4927 /**
4928  * e1000e_update_stats - Update the board statistics counters
4929  * @adapter: board private structure
4930  **/
4931 static void e1000e_update_stats(struct e1000_adapter *adapter)
4932 {
4933 	struct net_device *netdev = adapter->netdev;
4934 	struct e1000_hw *hw = &adapter->hw;
4935 	struct pci_dev *pdev = adapter->pdev;
4936 
4937 	/* Prevent stats update while adapter is being reset, or if the pci
4938 	 * connection is down.
4939 	 */
4940 	if (adapter->link_speed == 0)
4941 		return;
4942 	if (pci_channel_offline(pdev))
4943 		return;
4944 
4945 	adapter->stats.crcerrs += er32(CRCERRS);
4946 	adapter->stats.gprc += er32(GPRC);
4947 	adapter->stats.gorc += er32(GORCL);
4948 	er32(GORCH);		/* Clear gorc */
4949 	adapter->stats.bprc += er32(BPRC);
4950 	adapter->stats.mprc += er32(MPRC);
4951 	adapter->stats.roc += er32(ROC);
4952 
4953 	adapter->stats.mpc += er32(MPC);
4954 
4955 	/* Half-duplex statistics */
4956 	if (adapter->link_duplex == HALF_DUPLEX) {
4957 		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4958 			e1000e_update_phy_stats(adapter);
4959 		} else {
4960 			adapter->stats.scc += er32(SCC);
4961 			adapter->stats.ecol += er32(ECOL);
4962 			adapter->stats.mcc += er32(MCC);
4963 			adapter->stats.latecol += er32(LATECOL);
4964 			adapter->stats.dc += er32(DC);
4965 
4966 			hw->mac.collision_delta = er32(COLC);
4967 
4968 			if ((hw->mac.type != e1000_82574) &&
4969 			    (hw->mac.type != e1000_82583))
4970 				adapter->stats.tncrs += er32(TNCRS);
4971 		}
4972 		adapter->stats.colc += hw->mac.collision_delta;
4973 	}
4974 
4975 	adapter->stats.xonrxc += er32(XONRXC);
4976 	adapter->stats.xontxc += er32(XONTXC);
4977 	adapter->stats.xoffrxc += er32(XOFFRXC);
4978 	adapter->stats.xofftxc += er32(XOFFTXC);
4979 	adapter->stats.gptc += er32(GPTC);
4980 	adapter->stats.gotc += er32(GOTCL);
4981 	er32(GOTCH);		/* Clear gotc */
4982 	adapter->stats.rnbc += er32(RNBC);
4983 	adapter->stats.ruc += er32(RUC);
4984 
4985 	adapter->stats.mptc += er32(MPTC);
4986 	adapter->stats.bptc += er32(BPTC);
4987 
4988 	/* used for adaptive IFS */
4989 
4990 	hw->mac.tx_packet_delta = er32(TPT);
4991 	adapter->stats.tpt += hw->mac.tx_packet_delta;
4992 
4993 	adapter->stats.algnerrc += er32(ALGNERRC);
4994 	adapter->stats.rxerrc += er32(RXERRC);
4995 	adapter->stats.cexterr += er32(CEXTERR);
4996 	adapter->stats.tsctc += er32(TSCTC);
4997 	adapter->stats.tsctfc += er32(TSCTFC);
4998 
4999 	/* Fill out the OS statistics structure */
5000 	netdev->stats.multicast = adapter->stats.mprc;
5001 	netdev->stats.collisions = adapter->stats.colc;
5002 
5003 	/* Rx Errors */
5004 
5005 	/* RLEC on some newer hardware can be incorrect so build
5006 	 * our own version based on RUC and ROC
5007 	 */
5008 	netdev->stats.rx_errors = adapter->stats.rxerrc +
5009 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5010 	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5011 	netdev->stats.rx_length_errors = adapter->stats.ruc +
5012 	    adapter->stats.roc;
5013 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
5014 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
5015 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
5016 
5017 	/* Tx Errors */
5018 	netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5019 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5020 	netdev->stats.tx_window_errors = adapter->stats.latecol;
5021 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5022 
5023 	/* Tx Dropped needs to be maintained elsewhere */
5024 
5025 	/* Management Stats */
5026 	adapter->stats.mgptc += er32(MGTPTC);
5027 	adapter->stats.mgprc += er32(MGTPRC);
5028 	adapter->stats.mgpdc += er32(MGTPDC);
5029 
5030 	/* Correctable ECC Errors */
5031 	if (hw->mac.type >= e1000_pch_lpt) {
5032 		u32 pbeccsts = er32(PBECCSTS);
5033 
5034 		adapter->corr_errors +=
5035 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5036 		adapter->uncorr_errors +=
5037 		    FIELD_GET(E1000_PBECCSTS_UNCORR_ERR_CNT_MASK, pbeccsts);
5038 	}
5039 }
5040 
5041 /**
5042  * e1000_phy_read_status - Update the PHY register status snapshot
5043  * @adapter: board private structure
5044  **/
5045 static void e1000_phy_read_status(struct e1000_adapter *adapter)
5046 {
5047 	struct e1000_hw *hw = &adapter->hw;
5048 	struct e1000_phy_regs *phy = &adapter->phy_regs;
5049 
5050 	if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5051 	    (er32(STATUS) & E1000_STATUS_LU) &&
5052 	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5053 		int ret_val;
5054 
5055 		ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5056 		ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5057 		ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5058 		ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5059 		ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5060 		ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5061 		ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5062 		ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5063 		if (ret_val)
5064 			e_warn("Error reading PHY register\n");
5065 	} else {
5066 		/* Do not read PHY registers if link is not up
5067 		 * Set values to typical power-on defaults
5068 		 */
5069 		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5070 		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5071 			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5072 			     BMSR_ERCAP);
5073 		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5074 				  ADVERTISE_ALL | ADVERTISE_CSMA);
5075 		phy->lpa = 0;
5076 		phy->expansion = EXPANSION_ENABLENPAGE;
5077 		phy->ctrl1000 = ADVERTISE_1000FULL;
5078 		phy->stat1000 = 0;
5079 		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5080 	}
5081 }
5082 
5083 static void e1000_print_link_info(struct e1000_adapter *adapter)
5084 {
5085 	struct e1000_hw *hw = &adapter->hw;
5086 	u32 ctrl = er32(CTRL);
5087 
5088 	/* Link status message must follow this format for user tools */
5089 	netdev_info(adapter->netdev,
5090 		    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5091 		    adapter->link_speed,
5092 		    adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5093 		    (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5094 		    (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5095 		    (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5096 }
5097 
5098 static bool e1000e_has_link(struct e1000_adapter *adapter)
5099 {
5100 	struct e1000_hw *hw = &adapter->hw;
5101 	bool link_active = false;
5102 	s32 ret_val = 0;
5103 
5104 	/* get_link_status is set on LSC (link status) interrupt or
5105 	 * Rx sequence error interrupt.  get_link_status will stay
5106 	 * true until the check_for_link establishes link
5107 	 * for copper adapters ONLY
5108 	 */
5109 	switch (hw->phy.media_type) {
5110 	case e1000_media_type_copper:
5111 		if (hw->mac.get_link_status) {
5112 			ret_val = hw->mac.ops.check_for_link(hw);
5113 			link_active = !hw->mac.get_link_status;
5114 		} else {
5115 			link_active = true;
5116 		}
5117 		break;
5118 	case e1000_media_type_fiber:
5119 		ret_val = hw->mac.ops.check_for_link(hw);
5120 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5121 		break;
5122 	case e1000_media_type_internal_serdes:
5123 		ret_val = hw->mac.ops.check_for_link(hw);
5124 		link_active = hw->mac.serdes_has_link;
5125 		break;
5126 	default:
5127 	case e1000_media_type_unknown:
5128 		break;
5129 	}
5130 
5131 	if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5132 	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5133 		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5134 		e_info("Gigabit has been disabled, downgrading speed\n");
5135 	}
5136 
5137 	return link_active;
5138 }
5139 
5140 static void e1000e_enable_receives(struct e1000_adapter *adapter)
5141 {
5142 	/* make sure the receive unit is started */
5143 	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5144 	    (adapter->flags & FLAG_RESTART_NOW)) {
5145 		struct e1000_hw *hw = &adapter->hw;
5146 		u32 rctl = er32(RCTL);
5147 
5148 		ew32(RCTL, rctl | E1000_RCTL_EN);
5149 		adapter->flags &= ~FLAG_RESTART_NOW;
5150 	}
5151 }
5152 
5153 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5154 {
5155 	struct e1000_hw *hw = &adapter->hw;
5156 
5157 	/* With 82574 controllers, PHY needs to be checked periodically
5158 	 * for hung state and reset, if two calls return true
5159 	 */
5160 	if (e1000_check_phy_82574(hw))
5161 		adapter->phy_hang_count++;
5162 	else
5163 		adapter->phy_hang_count = 0;
5164 
5165 	if (adapter->phy_hang_count > 1) {
5166 		adapter->phy_hang_count = 0;
5167 		e_dbg("PHY appears hung - resetting\n");
5168 		schedule_work(&adapter->reset_task);
5169 	}
5170 }
5171 
5172 /**
5173  * e1000_watchdog - Timer Call-back
5174  * @t: pointer to timer_list containing private info adapter
5175  **/
5176 static void e1000_watchdog(struct timer_list *t)
5177 {
5178 	struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5179 
5180 	/* Do the rest outside of interrupt context */
5181 	schedule_work(&adapter->watchdog_task);
5182 
5183 	/* TODO: make this use queue_delayed_work() */
5184 }
5185 
5186 static void e1000_watchdog_task(struct work_struct *work)
5187 {
5188 	struct e1000_adapter *adapter = container_of(work,
5189 						     struct e1000_adapter,
5190 						     watchdog_task);
5191 	struct net_device *netdev = adapter->netdev;
5192 	struct e1000_mac_info *mac = &adapter->hw.mac;
5193 	struct e1000_phy_info *phy = &adapter->hw.phy;
5194 	struct e1000_ring *tx_ring = adapter->tx_ring;
5195 	u32 dmoff_exit_timeout = 100, tries = 0;
5196 	struct e1000_hw *hw = &adapter->hw;
5197 	u32 link, tctl, pcim_state;
5198 
5199 	if (test_bit(__E1000_DOWN, &adapter->state))
5200 		return;
5201 
5202 	link = e1000e_has_link(adapter);
5203 	if ((netif_carrier_ok(netdev)) && link) {
5204 		/* Cancel scheduled suspend requests. */
5205 		pm_runtime_resume(netdev->dev.parent);
5206 
5207 		e1000e_enable_receives(adapter);
5208 		goto link_up;
5209 	}
5210 
5211 	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5212 	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5213 		e1000_update_mng_vlan(adapter);
5214 
5215 	if (link) {
5216 		if (!netif_carrier_ok(netdev)) {
5217 			bool txb2b = true;
5218 
5219 			/* Cancel scheduled suspend requests. */
5220 			pm_runtime_resume(netdev->dev.parent);
5221 
5222 			/* Checking if MAC is in DMoff state*/
5223 			if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
5224 				pcim_state = er32(STATUS);
5225 				while (pcim_state & E1000_STATUS_PCIM_STATE) {
5226 					if (tries++ == dmoff_exit_timeout) {
5227 						e_dbg("Error in exiting dmoff\n");
5228 						break;
5229 					}
5230 					usleep_range(10000, 20000);
5231 					pcim_state = er32(STATUS);
5232 
5233 					/* Checking if MAC exited DMoff state */
5234 					if (!(pcim_state & E1000_STATUS_PCIM_STATE))
5235 						e1000_phy_hw_reset(&adapter->hw);
5236 				}
5237 			}
5238 
5239 			/* update snapshot of PHY registers on LSC */
5240 			e1000_phy_read_status(adapter);
5241 			mac->ops.get_link_up_info(&adapter->hw,
5242 						  &adapter->link_speed,
5243 						  &adapter->link_duplex);
5244 			e1000_print_link_info(adapter);
5245 
5246 			/* check if SmartSpeed worked */
5247 			e1000e_check_downshift(hw);
5248 			if (phy->speed_downgraded)
5249 				netdev_warn(netdev,
5250 					    "Link Speed was downgraded by SmartSpeed\n");
5251 
5252 			/* On supported PHYs, check for duplex mismatch only
5253 			 * if link has autonegotiated at 10/100 half
5254 			 */
5255 			if ((hw->phy.type == e1000_phy_igp_3 ||
5256 			     hw->phy.type == e1000_phy_bm) &&
5257 			    hw->mac.autoneg &&
5258 			    (adapter->link_speed == SPEED_10 ||
5259 			     adapter->link_speed == SPEED_100) &&
5260 			    (adapter->link_duplex == HALF_DUPLEX)) {
5261 				u16 autoneg_exp;
5262 
5263 				e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5264 
5265 				if (!(autoneg_exp & EXPANSION_NWAY))
5266 					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5267 			}
5268 
5269 			/* adjust timeout factor according to speed/duplex */
5270 			adapter->tx_timeout_factor = 1;
5271 			switch (adapter->link_speed) {
5272 			case SPEED_10:
5273 				txb2b = false;
5274 				adapter->tx_timeout_factor = 16;
5275 				break;
5276 			case SPEED_100:
5277 				txb2b = false;
5278 				adapter->tx_timeout_factor = 10;
5279 				break;
5280 			}
5281 
5282 			/* workaround: re-program speed mode bit after
5283 			 * link-up event
5284 			 */
5285 			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5286 			    !txb2b) {
5287 				u32 tarc0;
5288 
5289 				tarc0 = er32(TARC(0));
5290 				tarc0 &= ~SPEED_MODE_BIT;
5291 				ew32(TARC(0), tarc0);
5292 			}
5293 
5294 			/* enable transmits in the hardware, need to do this
5295 			 * after setting TARC(0)
5296 			 */
5297 			tctl = er32(TCTL);
5298 			tctl |= E1000_TCTL_EN;
5299 			ew32(TCTL, tctl);
5300 
5301 			/* Perform any post-link-up configuration before
5302 			 * reporting link up.
5303 			 */
5304 			if (phy->ops.cfg_on_link_up)
5305 				phy->ops.cfg_on_link_up(hw);
5306 
5307 			netif_wake_queue(netdev);
5308 			netif_carrier_on(netdev);
5309 
5310 			if (!test_bit(__E1000_DOWN, &adapter->state))
5311 				mod_timer(&adapter->phy_info_timer,
5312 					  round_jiffies(jiffies + 2 * HZ));
5313 		}
5314 	} else {
5315 		if (netif_carrier_ok(netdev)) {
5316 			adapter->link_speed = 0;
5317 			adapter->link_duplex = 0;
5318 			/* Link status message must follow this format */
5319 			netdev_info(netdev, "NIC Link is Down\n");
5320 			netif_carrier_off(netdev);
5321 			netif_stop_queue(netdev);
5322 			if (!test_bit(__E1000_DOWN, &adapter->state))
5323 				mod_timer(&adapter->phy_info_timer,
5324 					  round_jiffies(jiffies + 2 * HZ));
5325 
5326 			/* 8000ES2LAN requires a Rx packet buffer work-around
5327 			 * on link down event; reset the controller to flush
5328 			 * the Rx packet buffer.
5329 			 */
5330 			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5331 				adapter->flags |= FLAG_RESTART_NOW;
5332 			else
5333 				pm_schedule_suspend(netdev->dev.parent,
5334 						    LINK_TIMEOUT);
5335 		}
5336 	}
5337 
5338 link_up:
5339 	spin_lock(&adapter->stats64_lock);
5340 	e1000e_update_stats(adapter);
5341 
5342 	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5343 	adapter->tpt_old = adapter->stats.tpt;
5344 	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5345 	adapter->colc_old = adapter->stats.colc;
5346 
5347 	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5348 	adapter->gorc_old = adapter->stats.gorc;
5349 	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5350 	adapter->gotc_old = adapter->stats.gotc;
5351 	spin_unlock(&adapter->stats64_lock);
5352 
5353 	/* If the link is lost the controller stops DMA, but
5354 	 * if there is queued Tx work it cannot be done.  So
5355 	 * reset the controller to flush the Tx packet buffers.
5356 	 */
5357 	if (!netif_carrier_ok(netdev) &&
5358 	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5359 		adapter->flags |= FLAG_RESTART_NOW;
5360 
5361 	/* If reset is necessary, do it outside of interrupt context. */
5362 	if (adapter->flags & FLAG_RESTART_NOW) {
5363 		schedule_work(&adapter->reset_task);
5364 		/* return immediately since reset is imminent */
5365 		return;
5366 	}
5367 
5368 	e1000e_update_adaptive(&adapter->hw);
5369 
5370 	/* Simple mode for Interrupt Throttle Rate (ITR) */
5371 	if (adapter->itr_setting == 4) {
5372 		/* Symmetric Tx/Rx gets a reduced ITR=2000;
5373 		 * Total asymmetrical Tx or Rx gets ITR=8000;
5374 		 * everyone else is between 2000-8000.
5375 		 */
5376 		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5377 		u32 dif = (adapter->gotc > adapter->gorc ?
5378 			   adapter->gotc - adapter->gorc :
5379 			   adapter->gorc - adapter->gotc) / 10000;
5380 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5381 
5382 		e1000e_write_itr(adapter, itr);
5383 	}
5384 
5385 	/* Cause software interrupt to ensure Rx ring is cleaned */
5386 	if (adapter->msix_entries)
5387 		ew32(ICS, adapter->rx_ring->ims_val);
5388 	else
5389 		ew32(ICS, E1000_ICS_RXDMT0);
5390 
5391 	/* flush pending descriptors to memory before detecting Tx hang */
5392 	e1000e_flush_descriptors(adapter);
5393 
5394 	/* Force detection of hung controller every watchdog period */
5395 	adapter->detect_tx_hung = true;
5396 
5397 	/* With 82571 controllers, LAA may be overwritten due to controller
5398 	 * reset from the other port. Set the appropriate LAA in RAR[0]
5399 	 */
5400 	if (e1000e_get_laa_state_82571(hw))
5401 		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5402 
5403 	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5404 		e1000e_check_82574_phy_workaround(adapter);
5405 
5406 	/* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5407 	if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5408 		if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5409 		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5410 			er32(RXSTMPH);
5411 			adapter->rx_hwtstamp_cleared++;
5412 		} else {
5413 			adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5414 		}
5415 	}
5416 
5417 	/* Reset the timer */
5418 	if (!test_bit(__E1000_DOWN, &adapter->state))
5419 		mod_timer(&adapter->watchdog_timer,
5420 			  round_jiffies(jiffies + 2 * HZ));
5421 }
5422 
5423 #define E1000_TX_FLAGS_CSUM		0x00000001
5424 #define E1000_TX_FLAGS_VLAN		0x00000002
5425 #define E1000_TX_FLAGS_TSO		0x00000004
5426 #define E1000_TX_FLAGS_IPV4		0x00000008
5427 #define E1000_TX_FLAGS_NO_FCS		0x00000010
5428 #define E1000_TX_FLAGS_HWTSTAMP		0x00000020
5429 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
5430 #define E1000_TX_FLAGS_VLAN_SHIFT	16
5431 
5432 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5433 		     __be16 protocol)
5434 {
5435 	struct e1000_context_desc *context_desc;
5436 	struct e1000_buffer *buffer_info;
5437 	unsigned int i;
5438 	u32 cmd_length = 0;
5439 	u16 ipcse = 0, mss;
5440 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
5441 	int err;
5442 
5443 	if (!skb_is_gso(skb))
5444 		return 0;
5445 
5446 	err = skb_cow_head(skb, 0);
5447 	if (err < 0)
5448 		return err;
5449 
5450 	hdr_len = skb_tcp_all_headers(skb);
5451 	mss = skb_shinfo(skb)->gso_size;
5452 	if (protocol == htons(ETH_P_IP)) {
5453 		struct iphdr *iph = ip_hdr(skb);
5454 		iph->tot_len = 0;
5455 		iph->check = 0;
5456 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5457 							 0, IPPROTO_TCP, 0);
5458 		cmd_length = E1000_TXD_CMD_IP;
5459 		ipcse = skb_transport_offset(skb) - 1;
5460 	} else if (skb_is_gso_v6(skb)) {
5461 		tcp_v6_gso_csum_prep(skb);
5462 		ipcse = 0;
5463 	}
5464 	ipcss = skb_network_offset(skb);
5465 	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5466 	tucss = skb_transport_offset(skb);
5467 	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5468 
5469 	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5470 		       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5471 
5472 	i = tx_ring->next_to_use;
5473 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5474 	buffer_info = &tx_ring->buffer_info[i];
5475 
5476 	context_desc->lower_setup.ip_fields.ipcss = ipcss;
5477 	context_desc->lower_setup.ip_fields.ipcso = ipcso;
5478 	context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5479 	context_desc->upper_setup.tcp_fields.tucss = tucss;
5480 	context_desc->upper_setup.tcp_fields.tucso = tucso;
5481 	context_desc->upper_setup.tcp_fields.tucse = 0;
5482 	context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5483 	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5484 	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5485 
5486 	buffer_info->time_stamp = jiffies;
5487 	buffer_info->next_to_watch = i;
5488 
5489 	i++;
5490 	if (i == tx_ring->count)
5491 		i = 0;
5492 	tx_ring->next_to_use = i;
5493 
5494 	return 1;
5495 }
5496 
5497 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5498 			  __be16 protocol)
5499 {
5500 	struct e1000_adapter *adapter = tx_ring->adapter;
5501 	struct e1000_context_desc *context_desc;
5502 	struct e1000_buffer *buffer_info;
5503 	unsigned int i;
5504 	u8 css;
5505 	u32 cmd_len = E1000_TXD_CMD_DEXT;
5506 
5507 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5508 		return false;
5509 
5510 	switch (protocol) {
5511 	case cpu_to_be16(ETH_P_IP):
5512 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5513 			cmd_len |= E1000_TXD_CMD_TCP;
5514 		break;
5515 	case cpu_to_be16(ETH_P_IPV6):
5516 		/* XXX not handling all IPV6 headers */
5517 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5518 			cmd_len |= E1000_TXD_CMD_TCP;
5519 		break;
5520 	default:
5521 		if (unlikely(net_ratelimit()))
5522 			e_warn("checksum_partial proto=%x!\n",
5523 			       be16_to_cpu(protocol));
5524 		break;
5525 	}
5526 
5527 	css = skb_checksum_start_offset(skb);
5528 
5529 	i = tx_ring->next_to_use;
5530 	buffer_info = &tx_ring->buffer_info[i];
5531 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5532 
5533 	context_desc->lower_setup.ip_config = 0;
5534 	context_desc->upper_setup.tcp_fields.tucss = css;
5535 	context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5536 	context_desc->upper_setup.tcp_fields.tucse = 0;
5537 	context_desc->tcp_seg_setup.data = 0;
5538 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5539 
5540 	buffer_info->time_stamp = jiffies;
5541 	buffer_info->next_to_watch = i;
5542 
5543 	i++;
5544 	if (i == tx_ring->count)
5545 		i = 0;
5546 	tx_ring->next_to_use = i;
5547 
5548 	return true;
5549 }
5550 
5551 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5552 			unsigned int first, unsigned int max_per_txd,
5553 			unsigned int nr_frags)
5554 {
5555 	struct e1000_adapter *adapter = tx_ring->adapter;
5556 	struct pci_dev *pdev = adapter->pdev;
5557 	struct e1000_buffer *buffer_info;
5558 	unsigned int len = skb_headlen(skb);
5559 	unsigned int offset = 0, size, count = 0, i;
5560 	unsigned int f, bytecount, segs;
5561 
5562 	i = tx_ring->next_to_use;
5563 
5564 	while (len) {
5565 		buffer_info = &tx_ring->buffer_info[i];
5566 		size = min(len, max_per_txd);
5567 
5568 		buffer_info->length = size;
5569 		buffer_info->time_stamp = jiffies;
5570 		buffer_info->next_to_watch = i;
5571 		buffer_info->dma = dma_map_single(&pdev->dev,
5572 						  skb->data + offset,
5573 						  size, DMA_TO_DEVICE);
5574 		buffer_info->mapped_as_page = false;
5575 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5576 			goto dma_error;
5577 
5578 		len -= size;
5579 		offset += size;
5580 		count++;
5581 
5582 		if (len) {
5583 			i++;
5584 			if (i == tx_ring->count)
5585 				i = 0;
5586 		}
5587 	}
5588 
5589 	for (f = 0; f < nr_frags; f++) {
5590 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
5591 
5592 		len = skb_frag_size(frag);
5593 		offset = 0;
5594 
5595 		while (len) {
5596 			i++;
5597 			if (i == tx_ring->count)
5598 				i = 0;
5599 
5600 			buffer_info = &tx_ring->buffer_info[i];
5601 			size = min(len, max_per_txd);
5602 
5603 			buffer_info->length = size;
5604 			buffer_info->time_stamp = jiffies;
5605 			buffer_info->next_to_watch = i;
5606 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5607 							    offset, size,
5608 							    DMA_TO_DEVICE);
5609 			buffer_info->mapped_as_page = true;
5610 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5611 				goto dma_error;
5612 
5613 			len -= size;
5614 			offset += size;
5615 			count++;
5616 		}
5617 	}
5618 
5619 	segs = skb_shinfo(skb)->gso_segs ? : 1;
5620 	/* multiply data chunks by size of headers */
5621 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5622 
5623 	tx_ring->buffer_info[i].skb = skb;
5624 	tx_ring->buffer_info[i].segs = segs;
5625 	tx_ring->buffer_info[i].bytecount = bytecount;
5626 	tx_ring->buffer_info[first].next_to_watch = i;
5627 
5628 	return count;
5629 
5630 dma_error:
5631 	dev_err(&pdev->dev, "Tx DMA map failed\n");
5632 	buffer_info->dma = 0;
5633 	if (count)
5634 		count--;
5635 
5636 	while (count--) {
5637 		if (i == 0)
5638 			i += tx_ring->count;
5639 		i--;
5640 		buffer_info = &tx_ring->buffer_info[i];
5641 		e1000_put_txbuf(tx_ring, buffer_info, true);
5642 	}
5643 
5644 	return 0;
5645 }
5646 
5647 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5648 {
5649 	struct e1000_adapter *adapter = tx_ring->adapter;
5650 	struct e1000_tx_desc *tx_desc = NULL;
5651 	struct e1000_buffer *buffer_info;
5652 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5653 	unsigned int i;
5654 
5655 	if (tx_flags & E1000_TX_FLAGS_TSO) {
5656 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5657 		    E1000_TXD_CMD_TSE;
5658 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5659 
5660 		if (tx_flags & E1000_TX_FLAGS_IPV4)
5661 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5662 	}
5663 
5664 	if (tx_flags & E1000_TX_FLAGS_CSUM) {
5665 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5666 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5667 	}
5668 
5669 	if (tx_flags & E1000_TX_FLAGS_VLAN) {
5670 		txd_lower |= E1000_TXD_CMD_VLE;
5671 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5672 	}
5673 
5674 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5675 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
5676 
5677 	if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5678 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5679 		txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5680 	}
5681 
5682 	i = tx_ring->next_to_use;
5683 
5684 	do {
5685 		buffer_info = &tx_ring->buffer_info[i];
5686 		tx_desc = E1000_TX_DESC(*tx_ring, i);
5687 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5688 		tx_desc->lower.data = cpu_to_le32(txd_lower |
5689 						  buffer_info->length);
5690 		tx_desc->upper.data = cpu_to_le32(txd_upper);
5691 
5692 		i++;
5693 		if (i == tx_ring->count)
5694 			i = 0;
5695 	} while (--count > 0);
5696 
5697 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5698 
5699 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5700 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5701 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5702 
5703 	/* Force memory writes to complete before letting h/w
5704 	 * know there are new descriptors to fetch.  (Only
5705 	 * applicable for weak-ordered memory model archs,
5706 	 * such as IA-64).
5707 	 */
5708 	wmb();
5709 
5710 	tx_ring->next_to_use = i;
5711 }
5712 
5713 #define MINIMUM_DHCP_PACKET_SIZE 282
5714 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5715 				    struct sk_buff *skb)
5716 {
5717 	struct e1000_hw *hw = &adapter->hw;
5718 	u16 length, offset;
5719 
5720 	if (skb_vlan_tag_present(skb) &&
5721 	    !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5722 	      (adapter->hw.mng_cookie.status &
5723 	       E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5724 		return 0;
5725 
5726 	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5727 		return 0;
5728 
5729 	if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5730 		return 0;
5731 
5732 	{
5733 		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5734 		struct udphdr *udp;
5735 
5736 		if (ip->protocol != IPPROTO_UDP)
5737 			return 0;
5738 
5739 		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5740 		if (ntohs(udp->dest) != 67)
5741 			return 0;
5742 
5743 		offset = (u8 *)udp + 8 - skb->data;
5744 		length = skb->len - offset;
5745 		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5746 	}
5747 
5748 	return 0;
5749 }
5750 
5751 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5752 {
5753 	struct e1000_adapter *adapter = tx_ring->adapter;
5754 
5755 	netif_stop_queue(adapter->netdev);
5756 	/* Herbert's original patch had:
5757 	 *  smp_mb__after_netif_stop_queue();
5758 	 * but since that doesn't exist yet, just open code it.
5759 	 */
5760 	smp_mb();
5761 
5762 	/* We need to check again in a case another CPU has just
5763 	 * made room available.
5764 	 */
5765 	if (e1000_desc_unused(tx_ring) < size)
5766 		return -EBUSY;
5767 
5768 	/* A reprieve! */
5769 	netif_start_queue(adapter->netdev);
5770 	++adapter->restart_queue;
5771 	return 0;
5772 }
5773 
5774 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5775 {
5776 	BUG_ON(size > tx_ring->count);
5777 
5778 	if (e1000_desc_unused(tx_ring) >= size)
5779 		return 0;
5780 	return __e1000_maybe_stop_tx(tx_ring, size);
5781 }
5782 
5783 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5784 				    struct net_device *netdev)
5785 {
5786 	struct e1000_adapter *adapter = netdev_priv(netdev);
5787 	struct e1000_ring *tx_ring = adapter->tx_ring;
5788 	unsigned int first;
5789 	unsigned int tx_flags = 0;
5790 	unsigned int len = skb_headlen(skb);
5791 	unsigned int nr_frags;
5792 	unsigned int mss;
5793 	int count = 0;
5794 	int tso;
5795 	unsigned int f;
5796 	__be16 protocol = vlan_get_protocol(skb);
5797 
5798 	if (test_bit(__E1000_DOWN, &adapter->state)) {
5799 		dev_kfree_skb_any(skb);
5800 		return NETDEV_TX_OK;
5801 	}
5802 
5803 	if (skb->len <= 0) {
5804 		dev_kfree_skb_any(skb);
5805 		return NETDEV_TX_OK;
5806 	}
5807 
5808 	/* The minimum packet size with TCTL.PSP set is 17 bytes so
5809 	 * pad skb in order to meet this minimum size requirement
5810 	 */
5811 	if (skb_put_padto(skb, 17))
5812 		return NETDEV_TX_OK;
5813 
5814 	mss = skb_shinfo(skb)->gso_size;
5815 	if (mss) {
5816 		u8 hdr_len;
5817 
5818 		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5819 		 * points to just header, pull a few bytes of payload from
5820 		 * frags into skb->data
5821 		 */
5822 		hdr_len = skb_tcp_all_headers(skb);
5823 		/* we do this workaround for ES2LAN, but it is un-necessary,
5824 		 * avoiding it could save a lot of cycles
5825 		 */
5826 		if (skb->data_len && (hdr_len == len)) {
5827 			unsigned int pull_size;
5828 
5829 			pull_size = min_t(unsigned int, 4, skb->data_len);
5830 			if (!__pskb_pull_tail(skb, pull_size)) {
5831 				e_err("__pskb_pull_tail failed.\n");
5832 				dev_kfree_skb_any(skb);
5833 				return NETDEV_TX_OK;
5834 			}
5835 			len = skb_headlen(skb);
5836 		}
5837 	}
5838 
5839 	/* reserve a descriptor for the offload context */
5840 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5841 		count++;
5842 	count++;
5843 
5844 	count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5845 
5846 	nr_frags = skb_shinfo(skb)->nr_frags;
5847 	for (f = 0; f < nr_frags; f++)
5848 		count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5849 				      adapter->tx_fifo_limit);
5850 
5851 	if (adapter->hw.mac.tx_pkt_filtering)
5852 		e1000_transfer_dhcp_info(adapter, skb);
5853 
5854 	/* need: count + 2 desc gap to keep tail from touching
5855 	 * head, otherwise try next time
5856 	 */
5857 	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5858 		return NETDEV_TX_BUSY;
5859 
5860 	if (skb_vlan_tag_present(skb)) {
5861 		tx_flags |= E1000_TX_FLAGS_VLAN;
5862 		tx_flags |= (skb_vlan_tag_get(skb) <<
5863 			     E1000_TX_FLAGS_VLAN_SHIFT);
5864 	}
5865 
5866 	first = tx_ring->next_to_use;
5867 
5868 	tso = e1000_tso(tx_ring, skb, protocol);
5869 	if (tso < 0) {
5870 		dev_kfree_skb_any(skb);
5871 		return NETDEV_TX_OK;
5872 	}
5873 
5874 	if (tso)
5875 		tx_flags |= E1000_TX_FLAGS_TSO;
5876 	else if (e1000_tx_csum(tx_ring, skb, protocol))
5877 		tx_flags |= E1000_TX_FLAGS_CSUM;
5878 
5879 	/* Old method was to assume IPv4 packet by default if TSO was enabled.
5880 	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5881 	 * no longer assume, we must.
5882 	 */
5883 	if (protocol == htons(ETH_P_IP))
5884 		tx_flags |= E1000_TX_FLAGS_IPV4;
5885 
5886 	if (unlikely(skb->no_fcs))
5887 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5888 
5889 	/* if count is 0 then mapping error has occurred */
5890 	count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5891 			     nr_frags);
5892 	if (count) {
5893 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5894 		    (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5895 			if (!adapter->tx_hwtstamp_skb) {
5896 				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5897 				tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5898 				adapter->tx_hwtstamp_skb = skb_get(skb);
5899 				adapter->tx_hwtstamp_start = jiffies;
5900 				schedule_work(&adapter->tx_hwtstamp_work);
5901 			} else {
5902 				adapter->tx_hwtstamp_skipped++;
5903 			}
5904 		}
5905 
5906 		skb_tx_timestamp(skb);
5907 
5908 		netdev_sent_queue(netdev, skb->len);
5909 		e1000_tx_queue(tx_ring, tx_flags, count);
5910 		/* Make sure there is space in the ring for the next send. */
5911 		e1000_maybe_stop_tx(tx_ring,
5912 				    ((MAX_SKB_FRAGS + 1) *
5913 				     DIV_ROUND_UP(PAGE_SIZE,
5914 						  adapter->tx_fifo_limit) + 4));
5915 
5916 		if (!netdev_xmit_more() ||
5917 		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5918 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5919 				e1000e_update_tdt_wa(tx_ring,
5920 						     tx_ring->next_to_use);
5921 			else
5922 				writel(tx_ring->next_to_use, tx_ring->tail);
5923 		}
5924 	} else {
5925 		dev_kfree_skb_any(skb);
5926 		tx_ring->buffer_info[first].time_stamp = 0;
5927 		tx_ring->next_to_use = first;
5928 	}
5929 
5930 	return NETDEV_TX_OK;
5931 }
5932 
5933 /**
5934  * e1000_tx_timeout - Respond to a Tx Hang
5935  * @netdev: network interface device structure
5936  * @txqueue: index of the hung queue (unused)
5937  **/
5938 static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
5939 {
5940 	struct e1000_adapter *adapter = netdev_priv(netdev);
5941 
5942 	/* Do the reset outside of interrupt context */
5943 	adapter->tx_timeout_count++;
5944 	schedule_work(&adapter->reset_task);
5945 }
5946 
5947 static void e1000_reset_task(struct work_struct *work)
5948 {
5949 	struct e1000_adapter *adapter;
5950 	adapter = container_of(work, struct e1000_adapter, reset_task);
5951 
5952 	rtnl_lock();
5953 	/* don't run the task if already down */
5954 	if (test_bit(__E1000_DOWN, &adapter->state)) {
5955 		rtnl_unlock();
5956 		return;
5957 	}
5958 
5959 	if (!(adapter->flags & FLAG_RESTART_NOW)) {
5960 		e1000e_dump(adapter);
5961 		e_err("Reset adapter unexpectedly\n");
5962 	}
5963 	e1000e_reinit_locked(adapter);
5964 	rtnl_unlock();
5965 }
5966 
5967 /**
5968  * e1000e_get_stats64 - Get System Network Statistics
5969  * @netdev: network interface device structure
5970  * @stats: rtnl_link_stats64 pointer
5971  *
5972  * Returns the address of the device statistics structure.
5973  **/
5974 void e1000e_get_stats64(struct net_device *netdev,
5975 			struct rtnl_link_stats64 *stats)
5976 {
5977 	struct e1000_adapter *adapter = netdev_priv(netdev);
5978 
5979 	spin_lock(&adapter->stats64_lock);
5980 	e1000e_update_stats(adapter);
5981 	/* Fill out the OS statistics structure */
5982 	stats->rx_bytes = adapter->stats.gorc;
5983 	stats->rx_packets = adapter->stats.gprc;
5984 	stats->tx_bytes = adapter->stats.gotc;
5985 	stats->tx_packets = adapter->stats.gptc;
5986 	stats->multicast = adapter->stats.mprc;
5987 	stats->collisions = adapter->stats.colc;
5988 
5989 	/* Rx Errors */
5990 
5991 	/* RLEC on some newer hardware can be incorrect so build
5992 	 * our own version based on RUC and ROC
5993 	 */
5994 	stats->rx_errors = adapter->stats.rxerrc +
5995 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5996 	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5997 	stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5998 	stats->rx_crc_errors = adapter->stats.crcerrs;
5999 	stats->rx_frame_errors = adapter->stats.algnerrc;
6000 	stats->rx_missed_errors = adapter->stats.mpc;
6001 
6002 	/* Tx Errors */
6003 	stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
6004 	stats->tx_aborted_errors = adapter->stats.ecol;
6005 	stats->tx_window_errors = adapter->stats.latecol;
6006 	stats->tx_carrier_errors = adapter->stats.tncrs;
6007 
6008 	/* Tx Dropped needs to be maintained elsewhere */
6009 
6010 	spin_unlock(&adapter->stats64_lock);
6011 }
6012 
6013 /**
6014  * e1000_change_mtu - Change the Maximum Transfer Unit
6015  * @netdev: network interface device structure
6016  * @new_mtu: new value for maximum frame size
6017  *
6018  * Returns 0 on success, negative on failure
6019  **/
6020 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6021 {
6022 	struct e1000_adapter *adapter = netdev_priv(netdev);
6023 	int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6024 
6025 	/* Jumbo frame support */
6026 	if ((new_mtu > ETH_DATA_LEN) &&
6027 	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6028 		e_err("Jumbo Frames not supported.\n");
6029 		return -EINVAL;
6030 	}
6031 
6032 	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6033 	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6034 	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6035 	    (new_mtu > ETH_DATA_LEN)) {
6036 		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6037 		return -EINVAL;
6038 	}
6039 
6040 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6041 		usleep_range(1000, 1100);
6042 	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6043 	adapter->max_frame_size = max_frame;
6044 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
6045 		   netdev->mtu, new_mtu);
6046 	WRITE_ONCE(netdev->mtu, new_mtu);
6047 
6048 	pm_runtime_get_sync(netdev->dev.parent);
6049 
6050 	if (netif_running(netdev))
6051 		e1000e_down(adapter, true);
6052 
6053 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6054 	 * means we reserve 2 more, this pushes us to allocate from the next
6055 	 * larger slab size.
6056 	 * i.e. RXBUFFER_2048 --> size-4096 slab
6057 	 * However with the new *_jumbo_rx* routines, jumbo receives will use
6058 	 * fragmented skbs
6059 	 */
6060 
6061 	if (max_frame <= 2048)
6062 		adapter->rx_buffer_len = 2048;
6063 	else
6064 		adapter->rx_buffer_len = 4096;
6065 
6066 	/* adjust allocation if LPE protects us, and we aren't using SBP */
6067 	if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6068 		adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6069 
6070 	if (netif_running(netdev))
6071 		e1000e_up(adapter);
6072 	else
6073 		e1000e_reset(adapter);
6074 
6075 	pm_runtime_put_sync(netdev->dev.parent);
6076 
6077 	clear_bit(__E1000_RESETTING, &adapter->state);
6078 
6079 	return 0;
6080 }
6081 
6082 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6083 			   int cmd)
6084 {
6085 	struct e1000_adapter *adapter = netdev_priv(netdev);
6086 	struct mii_ioctl_data *data = if_mii(ifr);
6087 
6088 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6089 		return -EOPNOTSUPP;
6090 
6091 	switch (cmd) {
6092 	case SIOCGMIIPHY:
6093 		data->phy_id = adapter->hw.phy.addr;
6094 		break;
6095 	case SIOCGMIIREG:
6096 		e1000_phy_read_status(adapter);
6097 
6098 		switch (data->reg_num & 0x1F) {
6099 		case MII_BMCR:
6100 			data->val_out = adapter->phy_regs.bmcr;
6101 			break;
6102 		case MII_BMSR:
6103 			data->val_out = adapter->phy_regs.bmsr;
6104 			break;
6105 		case MII_PHYSID1:
6106 			data->val_out = (adapter->hw.phy.id >> 16);
6107 			break;
6108 		case MII_PHYSID2:
6109 			data->val_out = (adapter->hw.phy.id & 0xFFFF);
6110 			break;
6111 		case MII_ADVERTISE:
6112 			data->val_out = adapter->phy_regs.advertise;
6113 			break;
6114 		case MII_LPA:
6115 			data->val_out = adapter->phy_regs.lpa;
6116 			break;
6117 		case MII_EXPANSION:
6118 			data->val_out = adapter->phy_regs.expansion;
6119 			break;
6120 		case MII_CTRL1000:
6121 			data->val_out = adapter->phy_regs.ctrl1000;
6122 			break;
6123 		case MII_STAT1000:
6124 			data->val_out = adapter->phy_regs.stat1000;
6125 			break;
6126 		case MII_ESTATUS:
6127 			data->val_out = adapter->phy_regs.estatus;
6128 			break;
6129 		default:
6130 			return -EIO;
6131 		}
6132 		break;
6133 	case SIOCSMIIREG:
6134 	default:
6135 		return -EOPNOTSUPP;
6136 	}
6137 	return 0;
6138 }
6139 
6140 /**
6141  * e1000e_hwtstamp_set - control hardware time stamping
6142  * @netdev: network interface device structure
6143  * @ifr: interface request
6144  *
6145  * Outgoing time stamping can be enabled and disabled. Play nice and
6146  * disable it when requested, although it shouldn't cause any overhead
6147  * when no packet needs it. At most one packet in the queue may be
6148  * marked for time stamping, otherwise it would be impossible to tell
6149  * for sure to which packet the hardware time stamp belongs.
6150  *
6151  * Incoming time stamping has to be configured via the hardware filters.
6152  * Not all combinations are supported, in particular event type has to be
6153  * specified. Matching the kind of event packet is not supported, with the
6154  * exception of "all V2 events regardless of level 2 or 4".
6155  **/
6156 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6157 {
6158 	struct e1000_adapter *adapter = netdev_priv(netdev);
6159 	struct hwtstamp_config config;
6160 	int ret_val;
6161 
6162 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6163 		return -EFAULT;
6164 
6165 	ret_val = e1000e_config_hwtstamp(adapter, &config);
6166 	if (ret_val)
6167 		return ret_val;
6168 
6169 	switch (config.rx_filter) {
6170 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6171 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6172 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
6173 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6174 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6175 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6176 		/* With V2 type filters which specify a Sync or Delay Request,
6177 		 * Path Delay Request/Response messages are also time stamped
6178 		 * by hardware so notify the caller the requested packets plus
6179 		 * some others are time stamped.
6180 		 */
6181 		config.rx_filter = HWTSTAMP_FILTER_SOME;
6182 		break;
6183 	default:
6184 		break;
6185 	}
6186 
6187 	return copy_to_user(ifr->ifr_data, &config,
6188 			    sizeof(config)) ? -EFAULT : 0;
6189 }
6190 
6191 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6192 {
6193 	struct e1000_adapter *adapter = netdev_priv(netdev);
6194 
6195 	return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6196 			    sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6197 }
6198 
6199 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6200 {
6201 	switch (cmd) {
6202 	case SIOCGMIIPHY:
6203 	case SIOCGMIIREG:
6204 	case SIOCSMIIREG:
6205 		return e1000_mii_ioctl(netdev, ifr, cmd);
6206 	case SIOCSHWTSTAMP:
6207 		return e1000e_hwtstamp_set(netdev, ifr);
6208 	case SIOCGHWTSTAMP:
6209 		return e1000e_hwtstamp_get(netdev, ifr);
6210 	default:
6211 		return -EOPNOTSUPP;
6212 	}
6213 }
6214 
6215 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6216 {
6217 	struct e1000_hw *hw = &adapter->hw;
6218 	u32 i, mac_reg, wuc;
6219 	u16 phy_reg, wuc_enable;
6220 	int retval;
6221 
6222 	/* copy MAC RARs to PHY RARs */
6223 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6224 
6225 	retval = hw->phy.ops.acquire(hw);
6226 	if (retval) {
6227 		e_err("Could not acquire PHY\n");
6228 		return retval;
6229 	}
6230 
6231 	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6232 	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6233 	if (retval)
6234 		goto release;
6235 
6236 	/* copy MAC MTA to PHY MTA - only needed for pchlan */
6237 	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6238 		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6239 		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6240 					   (u16)(mac_reg & 0xFFFF));
6241 		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6242 					   (u16)((mac_reg >> 16) & 0xFFFF));
6243 	}
6244 
6245 	/* configure PHY Rx Control register */
6246 	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6247 	mac_reg = er32(RCTL);
6248 	if (mac_reg & E1000_RCTL_UPE)
6249 		phy_reg |= BM_RCTL_UPE;
6250 	if (mac_reg & E1000_RCTL_MPE)
6251 		phy_reg |= BM_RCTL_MPE;
6252 	phy_reg &= ~(BM_RCTL_MO_MASK);
6253 	if (mac_reg & E1000_RCTL_MO_3)
6254 		phy_reg |= (FIELD_GET(E1000_RCTL_MO_3, mac_reg)
6255 			    << BM_RCTL_MO_SHIFT);
6256 	if (mac_reg & E1000_RCTL_BAM)
6257 		phy_reg |= BM_RCTL_BAM;
6258 	if (mac_reg & E1000_RCTL_PMCF)
6259 		phy_reg |= BM_RCTL_PMCF;
6260 	mac_reg = er32(CTRL);
6261 	if (mac_reg & E1000_CTRL_RFCE)
6262 		phy_reg |= BM_RCTL_RFCE;
6263 	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6264 
6265 	wuc = E1000_WUC_PME_EN;
6266 	if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6267 		wuc |= E1000_WUC_APME;
6268 
6269 	/* enable PHY wakeup in MAC register */
6270 	ew32(WUFC, wufc);
6271 	ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6272 		   E1000_WUC_PME_STATUS | wuc));
6273 
6274 	/* configure and enable PHY wakeup in PHY registers */
6275 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6276 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6277 
6278 	/* activate PHY wakeup */
6279 	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6280 	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6281 	if (retval)
6282 		e_err("Could not set PHY Host Wakeup bit\n");
6283 release:
6284 	hw->phy.ops.release(hw);
6285 
6286 	return retval;
6287 }
6288 
6289 static void e1000e_flush_lpic(struct pci_dev *pdev)
6290 {
6291 	struct net_device *netdev = pci_get_drvdata(pdev);
6292 	struct e1000_adapter *adapter = netdev_priv(netdev);
6293 	struct e1000_hw *hw = &adapter->hw;
6294 	u32 ret_val;
6295 
6296 	pm_runtime_get_sync(netdev->dev.parent);
6297 
6298 	ret_val = hw->phy.ops.acquire(hw);
6299 	if (ret_val)
6300 		goto fl_out;
6301 
6302 	pr_info("EEE TX LPI TIMER: %08X\n",
6303 		er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6304 
6305 	hw->phy.ops.release(hw);
6306 
6307 fl_out:
6308 	pm_runtime_put_sync(netdev->dev.parent);
6309 }
6310 
6311 /* S0ix implementation */
6312 static void e1000e_s0ix_entry_flow(struct e1000_adapter *adapter)
6313 {
6314 	struct e1000_hw *hw = &adapter->hw;
6315 	u32 mac_data;
6316 	u16 phy_data;
6317 
6318 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
6319 	    hw->mac.type >= e1000_pch_adp) {
6320 		/* Request ME configure the device for S0ix */
6321 		mac_data = er32(H2ME);
6322 		mac_data |= E1000_H2ME_START_DPG;
6323 		mac_data &= ~E1000_H2ME_EXIT_DPG;
6324 		trace_e1000e_trace_mac_register(mac_data);
6325 		ew32(H2ME, mac_data);
6326 	} else {
6327 		/* Request driver configure the device to S0ix */
6328 		/* Disable the periodic inband message,
6329 		 * don't request PCIe clock in K1 page770_17[10:9] = 10b
6330 		 */
6331 		e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6332 		phy_data &= ~HV_PM_CTRL_K1_CLK_REQ;
6333 		phy_data |= BIT(10);
6334 		e1e_wphy(hw, HV_PM_CTRL, phy_data);
6335 
6336 		/* Make sure we don't exit K1 every time a new packet arrives
6337 		 * 772_29[5] = 1 CS_Mode_Stay_In_K1
6338 		 */
6339 		e1e_rphy(hw, I217_CGFREG, &phy_data);
6340 		phy_data |= BIT(5);
6341 		e1e_wphy(hw, I217_CGFREG, phy_data);
6342 
6343 		/* Change the MAC/PHY interface to SMBus
6344 		 * Force the SMBus in PHY page769_23[0] = 1
6345 		 * Force the SMBus in MAC CTRL_EXT[11] = 1
6346 		 */
6347 		e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6348 		phy_data |= CV_SMB_CTRL_FORCE_SMBUS;
6349 		e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6350 		mac_data = er32(CTRL_EXT);
6351 		mac_data |= E1000_CTRL_EXT_FORCE_SMBUS;
6352 		ew32(CTRL_EXT, mac_data);
6353 
6354 		/* DFT control: PHY bit: page769_20[0] = 1
6355 		 * page769_20[7] - PHY PLL stop
6356 		 * page769_20[8] - PHY go to the electrical idle
6357 		 * page769_20[9] - PHY serdes disable
6358 		 * Gate PPW via EXTCNF_CTRL - set 0x0F00[7] = 1
6359 		 */
6360 		e1e_rphy(hw, I82579_DFT_CTRL, &phy_data);
6361 		phy_data |= BIT(0);
6362 		phy_data |= BIT(7);
6363 		phy_data |= BIT(8);
6364 		phy_data |= BIT(9);
6365 		e1e_wphy(hw, I82579_DFT_CTRL, phy_data);
6366 
6367 		mac_data = er32(EXTCNF_CTRL);
6368 		mac_data |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
6369 		ew32(EXTCNF_CTRL, mac_data);
6370 
6371 		/* Disable disconnected cable conditioning for Power Gating */
6372 		mac_data = er32(DPGFR);
6373 		mac_data |= BIT(2);
6374 		ew32(DPGFR, mac_data);
6375 
6376 		/* Enable the Dynamic Clock Gating in the DMA and MAC */
6377 		mac_data = er32(CTRL_EXT);
6378 		mac_data |= E1000_CTRL_EXT_DMA_DYN_CLK_EN;
6379 		ew32(CTRL_EXT, mac_data);
6380 	}
6381 
6382 	/* Enable the Dynamic Power Gating in the MAC */
6383 	mac_data = er32(FEXTNVM7);
6384 	mac_data |= BIT(22);
6385 	ew32(FEXTNVM7, mac_data);
6386 
6387 	/* Don't wake from dynamic Power Gating with clock request */
6388 	mac_data = er32(FEXTNVM12);
6389 	mac_data |= BIT(12);
6390 	ew32(FEXTNVM12, mac_data);
6391 
6392 	/* Ungate PGCB clock */
6393 	mac_data = er32(FEXTNVM9);
6394 	mac_data &= ~BIT(28);
6395 	ew32(FEXTNVM9, mac_data);
6396 
6397 	/* Enable K1 off to enable mPHY Power Gating */
6398 	mac_data = er32(FEXTNVM6);
6399 	mac_data |= BIT(31);
6400 	ew32(FEXTNVM6, mac_data);
6401 
6402 	/* Enable mPHY power gating for any link and speed */
6403 	mac_data = er32(FEXTNVM8);
6404 	mac_data |= BIT(9);
6405 	ew32(FEXTNVM8, mac_data);
6406 
6407 	/* No MAC DPG gating SLP_S0 in modern standby
6408 	 * Switch the logic of the lanphypc to use PMC counter
6409 	 */
6410 	mac_data = er32(FEXTNVM5);
6411 	mac_data |= BIT(7);
6412 	ew32(FEXTNVM5, mac_data);
6413 
6414 	/* Disable the time synchronization clock */
6415 	mac_data = er32(FEXTNVM7);
6416 	mac_data |= BIT(31);
6417 	mac_data &= ~BIT(0);
6418 	ew32(FEXTNVM7, mac_data);
6419 
6420 	/* Dynamic Power Gating Enable */
6421 	mac_data = er32(CTRL_EXT);
6422 	mac_data |= BIT(3);
6423 	ew32(CTRL_EXT, mac_data);
6424 
6425 	/* Check MAC Tx/Rx packet buffer pointers.
6426 	 * Reset MAC Tx/Rx packet buffer pointers to suppress any
6427 	 * pending traffic indication that would prevent power gating.
6428 	 */
6429 	mac_data = er32(TDFH);
6430 	if (mac_data)
6431 		ew32(TDFH, 0);
6432 	mac_data = er32(TDFT);
6433 	if (mac_data)
6434 		ew32(TDFT, 0);
6435 	mac_data = er32(TDFHS);
6436 	if (mac_data)
6437 		ew32(TDFHS, 0);
6438 	mac_data = er32(TDFTS);
6439 	if (mac_data)
6440 		ew32(TDFTS, 0);
6441 	mac_data = er32(TDFPC);
6442 	if (mac_data)
6443 		ew32(TDFPC, 0);
6444 	mac_data = er32(RDFH);
6445 	if (mac_data)
6446 		ew32(RDFH, 0);
6447 	mac_data = er32(RDFT);
6448 	if (mac_data)
6449 		ew32(RDFT, 0);
6450 	mac_data = er32(RDFHS);
6451 	if (mac_data)
6452 		ew32(RDFHS, 0);
6453 	mac_data = er32(RDFTS);
6454 	if (mac_data)
6455 		ew32(RDFTS, 0);
6456 	mac_data = er32(RDFPC);
6457 	if (mac_data)
6458 		ew32(RDFPC, 0);
6459 }
6460 
6461 static void e1000e_s0ix_exit_flow(struct e1000_adapter *adapter)
6462 {
6463 	struct e1000_hw *hw = &adapter->hw;
6464 	bool firmware_bug = false;
6465 	u32 mac_data;
6466 	u16 phy_data;
6467 	u32 i = 0;
6468 
6469 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
6470 	    hw->mac.type >= e1000_pch_adp) {
6471 		/* Keep the GPT clock enabled for CSME */
6472 		mac_data = er32(FEXTNVM);
6473 		mac_data |= BIT(3);
6474 		ew32(FEXTNVM, mac_data);
6475 		/* Request ME unconfigure the device from S0ix */
6476 		mac_data = er32(H2ME);
6477 		mac_data &= ~E1000_H2ME_START_DPG;
6478 		mac_data |= E1000_H2ME_EXIT_DPG;
6479 		trace_e1000e_trace_mac_register(mac_data);
6480 		ew32(H2ME, mac_data);
6481 
6482 		/* Poll up to 2.5 seconds for ME to unconfigure DPG.
6483 		 * If this takes more than 1 second, show a warning indicating a
6484 		 * firmware bug
6485 		 */
6486 		while (!(er32(EXFWSM) & E1000_EXFWSM_DPG_EXIT_DONE)) {
6487 			if (i > 100 && !firmware_bug)
6488 				firmware_bug = true;
6489 
6490 			if (i++ == 250) {
6491 				e_dbg("Timeout (firmware bug): %d msec\n",
6492 				      i * 10);
6493 				break;
6494 			}
6495 
6496 			usleep_range(10000, 11000);
6497 		}
6498 		if (firmware_bug)
6499 			e_warn("DPG_EXIT_DONE took %d msec. This is a firmware bug\n",
6500 			       i * 10);
6501 		else
6502 			e_dbg("DPG_EXIT_DONE cleared after %d msec\n", i * 10);
6503 	} else {
6504 		/* Request driver unconfigure the device from S0ix */
6505 
6506 		/* Cancel disable disconnected cable conditioning
6507 		 * for Power Gating
6508 		 */
6509 		mac_data = er32(DPGFR);
6510 		mac_data &= ~BIT(2);
6511 		ew32(DPGFR, mac_data);
6512 
6513 		/* Disable the Dynamic Clock Gating in the DMA and MAC */
6514 		mac_data = er32(CTRL_EXT);
6515 		mac_data &= 0xFFF7FFFF;
6516 		ew32(CTRL_EXT, mac_data);
6517 
6518 		/* Enable the periodic inband message,
6519 		 * Request PCIe clock in K1 page770_17[10:9] =01b
6520 		 */
6521 		e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6522 		phy_data &= 0xFBFF;
6523 		phy_data |= HV_PM_CTRL_K1_CLK_REQ;
6524 		e1e_wphy(hw, HV_PM_CTRL, phy_data);
6525 
6526 		/* Return back configuration
6527 		 * 772_29[5] = 0 CS_Mode_Stay_In_K1
6528 		 */
6529 		e1e_rphy(hw, I217_CGFREG, &phy_data);
6530 		phy_data &= 0xFFDF;
6531 		e1e_wphy(hw, I217_CGFREG, phy_data);
6532 
6533 		/* Change the MAC/PHY interface to Kumeran
6534 		 * Unforce the SMBus in PHY page769_23[0] = 0
6535 		 * Unforce the SMBus in MAC CTRL_EXT[11] = 0
6536 		 */
6537 		e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6538 		phy_data &= ~CV_SMB_CTRL_FORCE_SMBUS;
6539 		e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6540 		mac_data = er32(CTRL_EXT);
6541 		mac_data &= ~E1000_CTRL_EXT_FORCE_SMBUS;
6542 		ew32(CTRL_EXT, mac_data);
6543 	}
6544 
6545 	/* Disable Dynamic Power Gating */
6546 	mac_data = er32(CTRL_EXT);
6547 	mac_data &= 0xFFFFFFF7;
6548 	ew32(CTRL_EXT, mac_data);
6549 
6550 	/* Enable the time synchronization clock */
6551 	mac_data = er32(FEXTNVM7);
6552 	mac_data &= ~BIT(31);
6553 	mac_data |= BIT(0);
6554 	ew32(FEXTNVM7, mac_data);
6555 
6556 	/* Disable the Dynamic Power Gating in the MAC */
6557 	mac_data = er32(FEXTNVM7);
6558 	mac_data &= 0xFFBFFFFF;
6559 	ew32(FEXTNVM7, mac_data);
6560 
6561 	/* Disable mPHY power gating for any link and speed */
6562 	mac_data = er32(FEXTNVM8);
6563 	mac_data &= ~BIT(9);
6564 	ew32(FEXTNVM8, mac_data);
6565 
6566 	/* Disable K1 off */
6567 	mac_data = er32(FEXTNVM6);
6568 	mac_data &= ~BIT(31);
6569 	ew32(FEXTNVM6, mac_data);
6570 
6571 	/* Disable Ungate PGCB clock */
6572 	mac_data = er32(FEXTNVM9);
6573 	mac_data |= BIT(28);
6574 	ew32(FEXTNVM9, mac_data);
6575 
6576 	/* Cancel not waking from dynamic
6577 	 * Power Gating with clock request
6578 	 */
6579 	mac_data = er32(FEXTNVM12);
6580 	mac_data &= ~BIT(12);
6581 	ew32(FEXTNVM12, mac_data);
6582 
6583 	/* Revert the lanphypc logic to use the internal Gbe counter
6584 	 * and not the PMC counter
6585 	 */
6586 	mac_data = er32(FEXTNVM5);
6587 	mac_data &= 0xFFFFFF7F;
6588 	ew32(FEXTNVM5, mac_data);
6589 }
6590 
6591 static int e1000e_pm_freeze(struct device *dev)
6592 {
6593 	struct net_device *netdev = dev_get_drvdata(dev);
6594 	struct e1000_adapter *adapter = netdev_priv(netdev);
6595 	bool present;
6596 
6597 	rtnl_lock();
6598 
6599 	present = netif_device_present(netdev);
6600 	netif_device_detach(netdev);
6601 
6602 	if (present && netif_running(netdev)) {
6603 		int count = E1000_CHECK_RESET_COUNT;
6604 
6605 		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6606 			usleep_range(10000, 11000);
6607 
6608 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6609 
6610 		/* Quiesce the device without resetting the hardware */
6611 		e1000e_down(adapter, false);
6612 		e1000_free_irq(adapter);
6613 	}
6614 	rtnl_unlock();
6615 
6616 	e1000e_reset_interrupt_capability(adapter);
6617 
6618 	/* Allow time for pending master requests to run */
6619 	e1000e_disable_pcie_master(&adapter->hw);
6620 
6621 	return 0;
6622 }
6623 
6624 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6625 {
6626 	struct net_device *netdev = pci_get_drvdata(pdev);
6627 	struct e1000_adapter *adapter = netdev_priv(netdev);
6628 	struct e1000_hw *hw = &adapter->hw;
6629 	u32 ctrl, ctrl_ext, rctl, status, wufc;
6630 	int retval = 0;
6631 
6632 	/* Runtime suspend should only enable wakeup for link changes */
6633 	if (runtime)
6634 		wufc = E1000_WUFC_LNKC;
6635 	else if (device_may_wakeup(&pdev->dev))
6636 		wufc = adapter->wol;
6637 	else
6638 		wufc = 0;
6639 
6640 	status = er32(STATUS);
6641 	if (status & E1000_STATUS_LU)
6642 		wufc &= ~E1000_WUFC_LNKC;
6643 
6644 	if (wufc) {
6645 		e1000_setup_rctl(adapter);
6646 		e1000e_set_rx_mode(netdev);
6647 
6648 		/* turn on all-multi mode if wake on multicast is enabled */
6649 		if (wufc & E1000_WUFC_MC) {
6650 			rctl = er32(RCTL);
6651 			rctl |= E1000_RCTL_MPE;
6652 			ew32(RCTL, rctl);
6653 		}
6654 
6655 		ctrl = er32(CTRL);
6656 		ctrl |= E1000_CTRL_ADVD3WUC;
6657 		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6658 			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6659 		ew32(CTRL, ctrl);
6660 
6661 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6662 		    adapter->hw.phy.media_type ==
6663 		    e1000_media_type_internal_serdes) {
6664 			/* keep the laser running in D3 */
6665 			ctrl_ext = er32(CTRL_EXT);
6666 			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6667 			ew32(CTRL_EXT, ctrl_ext);
6668 		}
6669 
6670 		if (!runtime)
6671 			e1000e_power_up_phy(adapter);
6672 
6673 		if (adapter->flags & FLAG_IS_ICH)
6674 			e1000_suspend_workarounds_ich8lan(&adapter->hw);
6675 
6676 		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6677 			/* enable wakeup by the PHY */
6678 			retval = e1000_init_phy_wakeup(adapter, wufc);
6679 			if (retval) {
6680 				e_err("Failed to enable wakeup\n");
6681 				goto skip_phy_configurations;
6682 			}
6683 		} else {
6684 			/* enable wakeup by the MAC */
6685 			ew32(WUFC, wufc);
6686 			ew32(WUC, E1000_WUC_PME_EN);
6687 		}
6688 	} else {
6689 		ew32(WUC, 0);
6690 		ew32(WUFC, 0);
6691 
6692 		e1000_power_down_phy(adapter);
6693 	}
6694 
6695 	if (adapter->hw.phy.type == e1000_phy_igp_3) {
6696 		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6697 	} else if (hw->mac.type >= e1000_pch_lpt) {
6698 		if (wufc && !(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC))) {
6699 			/* ULP does not support wake from unicast, multicast
6700 			 * or broadcast.
6701 			 */
6702 			retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6703 			if (retval) {
6704 				e_err("Failed to enable ULP\n");
6705 				goto skip_phy_configurations;
6706 			}
6707 		}
6708 	}
6709 
6710 	/* Ensure that the appropriate bits are set in LPI_CTRL
6711 	 * for EEE in Sx
6712 	 */
6713 	if ((hw->phy.type >= e1000_phy_i217) &&
6714 	    adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6715 		u16 lpi_ctrl = 0;
6716 
6717 		retval = hw->phy.ops.acquire(hw);
6718 		if (!retval) {
6719 			retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6720 						 &lpi_ctrl);
6721 			if (!retval) {
6722 				if (adapter->eee_advert &
6723 				    hw->dev_spec.ich8lan.eee_lp_ability &
6724 				    I82579_EEE_100_SUPPORTED)
6725 					lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6726 				if (adapter->eee_advert &
6727 				    hw->dev_spec.ich8lan.eee_lp_ability &
6728 				    I82579_EEE_1000_SUPPORTED)
6729 					lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6730 
6731 				retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6732 							 lpi_ctrl);
6733 			}
6734 		}
6735 		hw->phy.ops.release(hw);
6736 	}
6737 
6738 skip_phy_configurations:
6739 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6740 	 * would have already happened in close and is redundant.
6741 	 */
6742 	e1000e_release_hw_control(adapter);
6743 
6744 	pci_clear_master(pdev);
6745 
6746 	/* The pci-e switch on some quad port adapters will report a
6747 	 * correctable error when the MAC transitions from D0 to D3.  To
6748 	 * prevent this we need to mask off the correctable errors on the
6749 	 * downstream port of the pci-e switch.
6750 	 *
6751 	 * We don't have the associated upstream bridge while assigning
6752 	 * the PCI device into guest. For example, the KVM on power is
6753 	 * one of the cases.
6754 	 */
6755 	if (adapter->flags & FLAG_IS_QUAD_PORT) {
6756 		struct pci_dev *us_dev = pdev->bus->self;
6757 		u16 devctl;
6758 
6759 		if (!us_dev)
6760 			return 0;
6761 
6762 		pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6763 		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6764 					   (devctl & ~PCI_EXP_DEVCTL_CERE));
6765 
6766 		pci_save_state(pdev);
6767 		pci_prepare_to_sleep(pdev);
6768 
6769 		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6770 	}
6771 
6772 	return 0;
6773 }
6774 
6775 /**
6776  * __e1000e_disable_aspm - Disable ASPM states
6777  * @pdev: pointer to PCI device struct
6778  * @state: bit-mask of ASPM states to disable
6779  * @locked: indication if this context holds pci_bus_sem locked.
6780  *
6781  * Some devices *must* have certain ASPM states disabled per hardware errata.
6782  **/
6783 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6784 {
6785 	struct pci_dev *parent = pdev->bus->self;
6786 	u16 aspm_dis_mask = 0;
6787 	u16 pdev_aspmc, parent_aspmc;
6788 
6789 	switch (state) {
6790 	case PCIE_LINK_STATE_L0S:
6791 	case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6792 		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6793 		fallthrough; /* can't have L1 without L0s */
6794 	case PCIE_LINK_STATE_L1:
6795 		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6796 		break;
6797 	default:
6798 		return;
6799 	}
6800 
6801 	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6802 	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6803 
6804 	if (parent) {
6805 		pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6806 					  &parent_aspmc);
6807 		parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6808 	}
6809 
6810 	/* Nothing to do if the ASPM states to be disabled already are */
6811 	if (!(pdev_aspmc & aspm_dis_mask) &&
6812 	    (!parent || !(parent_aspmc & aspm_dis_mask)))
6813 		return;
6814 
6815 	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6816 		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6817 		 "L0s" : "",
6818 		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6819 		 "L1" : "");
6820 
6821 #ifdef CONFIG_PCIEASPM
6822 	if (locked)
6823 		pci_disable_link_state_locked(pdev, state);
6824 	else
6825 		pci_disable_link_state(pdev, state);
6826 
6827 	/* Double-check ASPM control.  If not disabled by the above, the
6828 	 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6829 	 * not enabled); override by writing PCI config space directly.
6830 	 */
6831 	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6832 	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6833 
6834 	if (!(aspm_dis_mask & pdev_aspmc))
6835 		return;
6836 #endif
6837 
6838 	/* Both device and parent should have the same ASPM setting.
6839 	 * Disable ASPM in downstream component first and then upstream.
6840 	 */
6841 	pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6842 
6843 	if (parent)
6844 		pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6845 					   aspm_dis_mask);
6846 }
6847 
6848 /**
6849  * e1000e_disable_aspm - Disable ASPM states.
6850  * @pdev: pointer to PCI device struct
6851  * @state: bit-mask of ASPM states to disable
6852  *
6853  * This function acquires the pci_bus_sem!
6854  * Some devices *must* have certain ASPM states disabled per hardware errata.
6855  **/
6856 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6857 {
6858 	__e1000e_disable_aspm(pdev, state, 0);
6859 }
6860 
6861 /**
6862  * e1000e_disable_aspm_locked - Disable ASPM states.
6863  * @pdev: pointer to PCI device struct
6864  * @state: bit-mask of ASPM states to disable
6865  *
6866  * This function must be called with pci_bus_sem acquired!
6867  * Some devices *must* have certain ASPM states disabled per hardware errata.
6868  **/
6869 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6870 {
6871 	__e1000e_disable_aspm(pdev, state, 1);
6872 }
6873 
6874 static int e1000e_pm_thaw(struct device *dev)
6875 {
6876 	struct net_device *netdev = dev_get_drvdata(dev);
6877 	struct e1000_adapter *adapter = netdev_priv(netdev);
6878 	int rc = 0;
6879 
6880 	e1000e_set_interrupt_capability(adapter);
6881 
6882 	rtnl_lock();
6883 	if (netif_running(netdev)) {
6884 		rc = e1000_request_irq(adapter);
6885 		if (rc)
6886 			goto err_irq;
6887 
6888 		e1000e_up(adapter);
6889 	}
6890 
6891 	netif_device_attach(netdev);
6892 err_irq:
6893 	rtnl_unlock();
6894 
6895 	return rc;
6896 }
6897 
6898 static int __e1000_resume(struct pci_dev *pdev)
6899 {
6900 	struct net_device *netdev = pci_get_drvdata(pdev);
6901 	struct e1000_adapter *adapter = netdev_priv(netdev);
6902 	struct e1000_hw *hw = &adapter->hw;
6903 	u16 aspm_disable_flag = 0;
6904 
6905 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6906 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6907 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6908 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6909 	if (aspm_disable_flag)
6910 		e1000e_disable_aspm(pdev, aspm_disable_flag);
6911 
6912 	pci_set_master(pdev);
6913 
6914 	if (hw->mac.type >= e1000_pch2lan)
6915 		e1000_resume_workarounds_pchlan(&adapter->hw);
6916 
6917 	e1000e_power_up_phy(adapter);
6918 
6919 	/* report the system wakeup cause from S3/S4 */
6920 	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6921 		u16 phy_data;
6922 
6923 		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6924 		if (phy_data) {
6925 			e_info("PHY Wakeup cause - %s\n",
6926 			       phy_data & E1000_WUS_EX ? "Unicast Packet" :
6927 			       phy_data & E1000_WUS_MC ? "Multicast Packet" :
6928 			       phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6929 			       phy_data & E1000_WUS_MAG ? "Magic Packet" :
6930 			       phy_data & E1000_WUS_LNKC ?
6931 			       "Link Status Change" : "other");
6932 		}
6933 		e1e_wphy(&adapter->hw, BM_WUS, ~0);
6934 	} else {
6935 		u32 wus = er32(WUS);
6936 
6937 		if (wus) {
6938 			e_info("MAC Wakeup cause - %s\n",
6939 			       wus & E1000_WUS_EX ? "Unicast Packet" :
6940 			       wus & E1000_WUS_MC ? "Multicast Packet" :
6941 			       wus & E1000_WUS_BC ? "Broadcast Packet" :
6942 			       wus & E1000_WUS_MAG ? "Magic Packet" :
6943 			       wus & E1000_WUS_LNKC ? "Link Status Change" :
6944 			       "other");
6945 		}
6946 		ew32(WUS, ~0);
6947 	}
6948 
6949 	e1000e_reset(adapter);
6950 
6951 	e1000_init_manageability_pt(adapter);
6952 
6953 	/* If the controller has AMT, do not set DRV_LOAD until the interface
6954 	 * is up.  For all other cases, let the f/w know that the h/w is now
6955 	 * under the control of the driver.
6956 	 */
6957 	if (!(adapter->flags & FLAG_HAS_AMT))
6958 		e1000e_get_hw_control(adapter);
6959 
6960 	return 0;
6961 }
6962 
6963 static int e1000e_pm_prepare(struct device *dev)
6964 {
6965 	return pm_runtime_suspended(dev) &&
6966 		pm_suspend_via_firmware();
6967 }
6968 
6969 static int e1000e_pm_suspend(struct device *dev)
6970 {
6971 	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6972 	struct e1000_adapter *adapter = netdev_priv(netdev);
6973 	struct pci_dev *pdev = to_pci_dev(dev);
6974 	int rc;
6975 
6976 	e1000e_flush_lpic(pdev);
6977 
6978 	e1000e_pm_freeze(dev);
6979 
6980 	rc = __e1000_shutdown(pdev, false);
6981 	if (!rc) {
6982 		/* Introduce S0ix implementation */
6983 		if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
6984 			e1000e_s0ix_entry_flow(adapter);
6985 	}
6986 
6987 	return 0;
6988 }
6989 
6990 static int e1000e_pm_resume(struct device *dev)
6991 {
6992 	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6993 	struct e1000_adapter *adapter = netdev_priv(netdev);
6994 	struct pci_dev *pdev = to_pci_dev(dev);
6995 	int rc;
6996 
6997 	/* Introduce S0ix implementation */
6998 	if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
6999 		e1000e_s0ix_exit_flow(adapter);
7000 
7001 	rc = __e1000_resume(pdev);
7002 	if (rc)
7003 		return rc;
7004 
7005 	return e1000e_pm_thaw(dev);
7006 }
7007 
7008 static __maybe_unused int e1000e_pm_runtime_idle(struct device *dev)
7009 {
7010 	struct net_device *netdev = dev_get_drvdata(dev);
7011 	struct e1000_adapter *adapter = netdev_priv(netdev);
7012 	u16 eee_lp;
7013 
7014 	eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
7015 
7016 	if (!e1000e_has_link(adapter)) {
7017 		adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
7018 		pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
7019 	}
7020 
7021 	return -EBUSY;
7022 }
7023 
7024 static int e1000e_pm_runtime_resume(struct device *dev)
7025 {
7026 	struct pci_dev *pdev = to_pci_dev(dev);
7027 	struct net_device *netdev = pci_get_drvdata(pdev);
7028 	struct e1000_adapter *adapter = netdev_priv(netdev);
7029 	int rc;
7030 
7031 	pdev->pme_poll = true;
7032 
7033 	rc = __e1000_resume(pdev);
7034 	if (rc)
7035 		return rc;
7036 
7037 	if (netdev->flags & IFF_UP)
7038 		e1000e_up(adapter);
7039 
7040 	return rc;
7041 }
7042 
7043 static int e1000e_pm_runtime_suspend(struct device *dev)
7044 {
7045 	struct pci_dev *pdev = to_pci_dev(dev);
7046 	struct net_device *netdev = pci_get_drvdata(pdev);
7047 	struct e1000_adapter *adapter = netdev_priv(netdev);
7048 
7049 	if (netdev->flags & IFF_UP) {
7050 		int count = E1000_CHECK_RESET_COUNT;
7051 
7052 		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
7053 			usleep_range(10000, 11000);
7054 
7055 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
7056 
7057 		/* Down the device without resetting the hardware */
7058 		e1000e_down(adapter, false);
7059 	}
7060 
7061 	if (__e1000_shutdown(pdev, true)) {
7062 		e1000e_pm_runtime_resume(dev);
7063 		return -EBUSY;
7064 	}
7065 
7066 	return 0;
7067 }
7068 
7069 static void e1000_shutdown(struct pci_dev *pdev)
7070 {
7071 	e1000e_flush_lpic(pdev);
7072 
7073 	e1000e_pm_freeze(&pdev->dev);
7074 
7075 	__e1000_shutdown(pdev, false);
7076 }
7077 
7078 #ifdef CONFIG_NET_POLL_CONTROLLER
7079 
7080 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
7081 {
7082 	struct net_device *netdev = data;
7083 	struct e1000_adapter *adapter = netdev_priv(netdev);
7084 
7085 	if (adapter->msix_entries) {
7086 		int vector, msix_irq;
7087 
7088 		vector = 0;
7089 		msix_irq = adapter->msix_entries[vector].vector;
7090 		if (disable_hardirq(msix_irq))
7091 			e1000_intr_msix_rx(msix_irq, netdev);
7092 		enable_irq(msix_irq);
7093 
7094 		vector++;
7095 		msix_irq = adapter->msix_entries[vector].vector;
7096 		if (disable_hardirq(msix_irq))
7097 			e1000_intr_msix_tx(msix_irq, netdev);
7098 		enable_irq(msix_irq);
7099 
7100 		vector++;
7101 		msix_irq = adapter->msix_entries[vector].vector;
7102 		if (disable_hardirq(msix_irq))
7103 			e1000_msix_other(msix_irq, netdev);
7104 		enable_irq(msix_irq);
7105 	}
7106 
7107 	return IRQ_HANDLED;
7108 }
7109 
7110 /**
7111  * e1000_netpoll
7112  * @netdev: network interface device structure
7113  *
7114  * Polling 'interrupt' - used by things like netconsole to send skbs
7115  * without having to re-enable interrupts. It's not called while
7116  * the interrupt routine is executing.
7117  */
7118 static void e1000_netpoll(struct net_device *netdev)
7119 {
7120 	struct e1000_adapter *adapter = netdev_priv(netdev);
7121 
7122 	switch (adapter->int_mode) {
7123 	case E1000E_INT_MODE_MSIX:
7124 		e1000_intr_msix(adapter->pdev->irq, netdev);
7125 		break;
7126 	case E1000E_INT_MODE_MSI:
7127 		if (disable_hardirq(adapter->pdev->irq))
7128 			e1000_intr_msi(adapter->pdev->irq, netdev);
7129 		enable_irq(adapter->pdev->irq);
7130 		break;
7131 	default:		/* E1000E_INT_MODE_LEGACY */
7132 		if (disable_hardirq(adapter->pdev->irq))
7133 			e1000_intr(adapter->pdev->irq, netdev);
7134 		enable_irq(adapter->pdev->irq);
7135 		break;
7136 	}
7137 }
7138 #endif
7139 
7140 /**
7141  * e1000_io_error_detected - called when PCI error is detected
7142  * @pdev: Pointer to PCI device
7143  * @state: The current pci connection state
7144  *
7145  * This function is called after a PCI bus error affecting
7146  * this device has been detected.
7147  */
7148 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
7149 						pci_channel_state_t state)
7150 {
7151 	e1000e_pm_freeze(&pdev->dev);
7152 
7153 	if (state == pci_channel_io_perm_failure)
7154 		return PCI_ERS_RESULT_DISCONNECT;
7155 
7156 	pci_disable_device(pdev);
7157 
7158 	/* Request a slot reset. */
7159 	return PCI_ERS_RESULT_NEED_RESET;
7160 }
7161 
7162 /**
7163  * e1000_io_slot_reset - called after the pci bus has been reset.
7164  * @pdev: Pointer to PCI device
7165  *
7166  * Restart the card from scratch, as if from a cold-boot. Implementation
7167  * resembles the first-half of the e1000e_pm_resume routine.
7168  */
7169 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
7170 {
7171 	struct net_device *netdev = pci_get_drvdata(pdev);
7172 	struct e1000_adapter *adapter = netdev_priv(netdev);
7173 	struct e1000_hw *hw = &adapter->hw;
7174 	u16 aspm_disable_flag = 0;
7175 	int err;
7176 	pci_ers_result_t result;
7177 
7178 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
7179 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7180 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
7181 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7182 	if (aspm_disable_flag)
7183 		e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
7184 
7185 	err = pci_enable_device_mem(pdev);
7186 	if (err) {
7187 		dev_err(&pdev->dev,
7188 			"Cannot re-enable PCI device after reset.\n");
7189 		result = PCI_ERS_RESULT_DISCONNECT;
7190 	} else {
7191 		pdev->state_saved = true;
7192 		pci_restore_state(pdev);
7193 		pci_set_master(pdev);
7194 
7195 		pci_enable_wake(pdev, PCI_D3hot, 0);
7196 		pci_enable_wake(pdev, PCI_D3cold, 0);
7197 
7198 		e1000e_reset(adapter);
7199 		ew32(WUS, ~0);
7200 		result = PCI_ERS_RESULT_RECOVERED;
7201 	}
7202 
7203 	return result;
7204 }
7205 
7206 /**
7207  * e1000_io_resume - called when traffic can start flowing again.
7208  * @pdev: Pointer to PCI device
7209  *
7210  * This callback is called when the error recovery driver tells us that
7211  * its OK to resume normal operation. Implementation resembles the
7212  * second-half of the e1000e_pm_resume routine.
7213  */
7214 static void e1000_io_resume(struct pci_dev *pdev)
7215 {
7216 	struct net_device *netdev = pci_get_drvdata(pdev);
7217 	struct e1000_adapter *adapter = netdev_priv(netdev);
7218 
7219 	e1000_init_manageability_pt(adapter);
7220 
7221 	e1000e_pm_thaw(&pdev->dev);
7222 
7223 	/* If the controller has AMT, do not set DRV_LOAD until the interface
7224 	 * is up.  For all other cases, let the f/w know that the h/w is now
7225 	 * under the control of the driver.
7226 	 */
7227 	if (!(adapter->flags & FLAG_HAS_AMT))
7228 		e1000e_get_hw_control(adapter);
7229 }
7230 
7231 static void e1000_print_device_info(struct e1000_adapter *adapter)
7232 {
7233 	struct e1000_hw *hw = &adapter->hw;
7234 	struct net_device *netdev = adapter->netdev;
7235 	u32 ret_val;
7236 	u8 pba_str[E1000_PBANUM_LENGTH];
7237 
7238 	/* print bus type/speed/width info */
7239 	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
7240 	       /* bus width */
7241 	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
7242 		"Width x1"),
7243 	       /* MAC address */
7244 	       netdev->dev_addr);
7245 	e_info("Intel(R) PRO/%s Network Connection\n",
7246 	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
7247 	ret_val = e1000_read_pba_string_generic(hw, pba_str,
7248 						E1000_PBANUM_LENGTH);
7249 	if (ret_val)
7250 		strscpy((char *)pba_str, "Unknown", sizeof(pba_str));
7251 	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
7252 	       hw->mac.type, hw->phy.type, pba_str);
7253 }
7254 
7255 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
7256 {
7257 	struct e1000_hw *hw = &adapter->hw;
7258 	int ret_val;
7259 	u16 buf = 0;
7260 
7261 	if (hw->mac.type != e1000_82573)
7262 		return;
7263 
7264 	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
7265 	le16_to_cpus(&buf);
7266 	if (!ret_val && (!(buf & BIT(0)))) {
7267 		/* Deep Smart Power Down (DSPD) */
7268 		dev_warn(&adapter->pdev->dev,
7269 			 "Warning: detected DSPD enabled in EEPROM\n");
7270 	}
7271 }
7272 
7273 static netdev_features_t e1000_fix_features(struct net_device *netdev,
7274 					    netdev_features_t features)
7275 {
7276 	struct e1000_adapter *adapter = netdev_priv(netdev);
7277 	struct e1000_hw *hw = &adapter->hw;
7278 
7279 	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
7280 	if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
7281 		features &= ~NETIF_F_RXFCS;
7282 
7283 	/* Since there is no support for separate Rx/Tx vlan accel
7284 	 * enable/disable make sure Tx flag is always in same state as Rx.
7285 	 */
7286 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
7287 		features |= NETIF_F_HW_VLAN_CTAG_TX;
7288 	else
7289 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
7290 
7291 	return features;
7292 }
7293 
7294 static int e1000_set_features(struct net_device *netdev,
7295 			      netdev_features_t features)
7296 {
7297 	struct e1000_adapter *adapter = netdev_priv(netdev);
7298 	netdev_features_t changed = features ^ netdev->features;
7299 
7300 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
7301 		adapter->flags |= FLAG_TSO_FORCE;
7302 
7303 	if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
7304 			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
7305 			 NETIF_F_RXALL)))
7306 		return 0;
7307 
7308 	if (changed & NETIF_F_RXFCS) {
7309 		if (features & NETIF_F_RXFCS) {
7310 			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7311 		} else {
7312 			/* We need to take it back to defaults, which might mean
7313 			 * stripping is still disabled at the adapter level.
7314 			 */
7315 			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
7316 				adapter->flags2 |= FLAG2_CRC_STRIPPING;
7317 			else
7318 				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7319 		}
7320 	}
7321 
7322 	netdev->features = features;
7323 
7324 	if (netif_running(netdev))
7325 		e1000e_reinit_locked(adapter);
7326 	else
7327 		e1000e_reset(adapter);
7328 
7329 	return 1;
7330 }
7331 
7332 static const struct net_device_ops e1000e_netdev_ops = {
7333 	.ndo_open		= e1000e_open,
7334 	.ndo_stop		= e1000e_close,
7335 	.ndo_start_xmit		= e1000_xmit_frame,
7336 	.ndo_get_stats64	= e1000e_get_stats64,
7337 	.ndo_set_rx_mode	= e1000e_set_rx_mode,
7338 	.ndo_set_mac_address	= e1000_set_mac,
7339 	.ndo_change_mtu		= e1000_change_mtu,
7340 	.ndo_eth_ioctl		= e1000_ioctl,
7341 	.ndo_tx_timeout		= e1000_tx_timeout,
7342 	.ndo_validate_addr	= eth_validate_addr,
7343 
7344 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
7345 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
7346 #ifdef CONFIG_NET_POLL_CONTROLLER
7347 	.ndo_poll_controller	= e1000_netpoll,
7348 #endif
7349 	.ndo_set_features = e1000_set_features,
7350 	.ndo_fix_features = e1000_fix_features,
7351 	.ndo_features_check	= passthru_features_check,
7352 };
7353 
7354 /**
7355  * e1000_probe - Device Initialization Routine
7356  * @pdev: PCI device information struct
7357  * @ent: entry in e1000_pci_tbl
7358  *
7359  * Returns 0 on success, negative on failure
7360  *
7361  * e1000_probe initializes an adapter identified by a pci_dev structure.
7362  * The OS initialization, configuring of the adapter private structure,
7363  * and a hardware reset occur.
7364  **/
7365 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7366 {
7367 	struct net_device *netdev;
7368 	struct e1000_adapter *adapter;
7369 	struct e1000_hw *hw;
7370 	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7371 	resource_size_t mmio_start, mmio_len;
7372 	resource_size_t flash_start, flash_len;
7373 	static int cards_found;
7374 	u16 aspm_disable_flag = 0;
7375 	u16 eeprom_data = 0;
7376 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
7377 	int bars, i, err;
7378 	s32 ret_val = 0;
7379 
7380 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7381 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7382 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7383 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7384 	if (aspm_disable_flag)
7385 		e1000e_disable_aspm(pdev, aspm_disable_flag);
7386 
7387 	err = pci_enable_device_mem(pdev);
7388 	if (err)
7389 		return err;
7390 
7391 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7392 	if (err) {
7393 		dev_err(&pdev->dev,
7394 			"No usable DMA configuration, aborting\n");
7395 		goto err_dma;
7396 	}
7397 
7398 	bars = pci_select_bars(pdev, IORESOURCE_MEM);
7399 	err = pci_request_selected_regions_exclusive(pdev, bars,
7400 						     e1000e_driver_name);
7401 	if (err)
7402 		goto err_pci_reg;
7403 
7404 	pci_set_master(pdev);
7405 	/* PCI config space info */
7406 	err = pci_save_state(pdev);
7407 	if (err)
7408 		goto err_alloc_etherdev;
7409 
7410 	err = -ENOMEM;
7411 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7412 	if (!netdev)
7413 		goto err_alloc_etherdev;
7414 
7415 	SET_NETDEV_DEV(netdev, &pdev->dev);
7416 
7417 	netdev->irq = pdev->irq;
7418 
7419 	pci_set_drvdata(pdev, netdev);
7420 	adapter = netdev_priv(netdev);
7421 	hw = &adapter->hw;
7422 	adapter->netdev = netdev;
7423 	adapter->pdev = pdev;
7424 	adapter->ei = ei;
7425 	adapter->pba = ei->pba;
7426 	adapter->flags = ei->flags;
7427 	adapter->flags2 = ei->flags2;
7428 	adapter->hw.adapter = adapter;
7429 	adapter->hw.mac.type = ei->mac;
7430 	adapter->max_hw_frame_size = ei->max_hw_frame_size;
7431 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7432 
7433 	mmio_start = pci_resource_start(pdev, 0);
7434 	mmio_len = pci_resource_len(pdev, 0);
7435 
7436 	err = -EIO;
7437 	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7438 	if (!adapter->hw.hw_addr)
7439 		goto err_ioremap;
7440 
7441 	if ((adapter->flags & FLAG_HAS_FLASH) &&
7442 	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7443 	    (hw->mac.type < e1000_pch_spt)) {
7444 		flash_start = pci_resource_start(pdev, 1);
7445 		flash_len = pci_resource_len(pdev, 1);
7446 		adapter->hw.flash_address = ioremap(flash_start, flash_len);
7447 		if (!adapter->hw.flash_address)
7448 			goto err_flashmap;
7449 	}
7450 
7451 	/* Set default EEE advertisement */
7452 	if (adapter->flags2 & FLAG2_HAS_EEE)
7453 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7454 
7455 	/* construct the net_device struct */
7456 	netdev->netdev_ops = &e1000e_netdev_ops;
7457 	e1000e_set_ethtool_ops(netdev);
7458 	netdev->watchdog_timeo = 5 * HZ;
7459 	netif_napi_add(netdev, &adapter->napi, e1000e_poll);
7460 	strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7461 
7462 	netdev->mem_start = mmio_start;
7463 	netdev->mem_end = mmio_start + mmio_len;
7464 
7465 	adapter->bd_number = cards_found++;
7466 
7467 	e1000e_check_options(adapter);
7468 
7469 	/* setup adapter struct */
7470 	err = e1000_sw_init(adapter);
7471 	if (err)
7472 		goto err_sw_init;
7473 
7474 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7475 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7476 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7477 
7478 	err = ei->get_variants(adapter);
7479 	if (err)
7480 		goto err_hw_init;
7481 
7482 	if ((adapter->flags & FLAG_IS_ICH) &&
7483 	    (adapter->flags & FLAG_READ_ONLY_NVM) &&
7484 	    (hw->mac.type < e1000_pch_spt))
7485 		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7486 
7487 	hw->mac.ops.get_bus_info(&adapter->hw);
7488 
7489 	adapter->hw.phy.autoneg_wait_to_complete = 0;
7490 
7491 	/* Copper options */
7492 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7493 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
7494 		adapter->hw.phy.disable_polarity_correction = 0;
7495 		adapter->hw.phy.ms_type = e1000_ms_hw_default;
7496 	}
7497 
7498 	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7499 		dev_info(&pdev->dev,
7500 			 "PHY reset is blocked due to SOL/IDER session.\n");
7501 
7502 	/* Set initial default active device features */
7503 	netdev->features = (NETIF_F_SG |
7504 			    NETIF_F_HW_VLAN_CTAG_RX |
7505 			    NETIF_F_HW_VLAN_CTAG_TX |
7506 			    NETIF_F_TSO |
7507 			    NETIF_F_TSO6 |
7508 			    NETIF_F_RXHASH |
7509 			    NETIF_F_RXCSUM |
7510 			    NETIF_F_HW_CSUM);
7511 
7512 	/* disable TSO for pcie and 10/100 speeds to avoid
7513 	 * some hardware issues and for i219 to fix transfer
7514 	 * speed being capped at 60%
7515 	 */
7516 	if (!(adapter->flags & FLAG_TSO_FORCE)) {
7517 		switch (adapter->link_speed) {
7518 		case SPEED_10:
7519 		case SPEED_100:
7520 			e_info("10/100 speed: disabling TSO\n");
7521 			netdev->features &= ~NETIF_F_TSO;
7522 			netdev->features &= ~NETIF_F_TSO6;
7523 			break;
7524 		case SPEED_1000:
7525 			netdev->features |= NETIF_F_TSO;
7526 			netdev->features |= NETIF_F_TSO6;
7527 			break;
7528 		default:
7529 			/* oops */
7530 			break;
7531 		}
7532 		if (hw->mac.type == e1000_pch_spt) {
7533 			netdev->features &= ~NETIF_F_TSO;
7534 			netdev->features &= ~NETIF_F_TSO6;
7535 		}
7536 	}
7537 
7538 	/* Set user-changeable features (subset of all device features) */
7539 	netdev->hw_features = netdev->features;
7540 	netdev->hw_features |= NETIF_F_RXFCS;
7541 	netdev->priv_flags |= IFF_SUPP_NOFCS;
7542 	netdev->hw_features |= NETIF_F_RXALL;
7543 
7544 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7545 		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7546 
7547 	netdev->vlan_features |= (NETIF_F_SG |
7548 				  NETIF_F_TSO |
7549 				  NETIF_F_TSO6 |
7550 				  NETIF_F_HW_CSUM);
7551 
7552 	netdev->priv_flags |= IFF_UNICAST_FLT;
7553 
7554 	netdev->features |= NETIF_F_HIGHDMA;
7555 	netdev->vlan_features |= NETIF_F_HIGHDMA;
7556 
7557 	/* MTU range: 68 - max_hw_frame_size */
7558 	netdev->min_mtu = ETH_MIN_MTU;
7559 	netdev->max_mtu = adapter->max_hw_frame_size -
7560 			  (VLAN_ETH_HLEN + ETH_FCS_LEN);
7561 
7562 	if (e1000e_enable_mng_pass_thru(&adapter->hw))
7563 		adapter->flags |= FLAG_MNG_PT_ENABLED;
7564 
7565 	/* before reading the NVM, reset the controller to
7566 	 * put the device in a known good starting state
7567 	 */
7568 	adapter->hw.mac.ops.reset_hw(&adapter->hw);
7569 
7570 	/* systems with ASPM and others may see the checksum fail on the first
7571 	 * attempt. Let's give it a few tries
7572 	 */
7573 	for (i = 0;; i++) {
7574 		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7575 			break;
7576 		if (i == 2) {
7577 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7578 			err = -EIO;
7579 			goto err_eeprom;
7580 		}
7581 	}
7582 
7583 	e1000_eeprom_checks(adapter);
7584 
7585 	/* copy the MAC address */
7586 	if (e1000e_read_mac_addr(&adapter->hw))
7587 		dev_err(&pdev->dev,
7588 			"NVM Read Error while reading MAC address\n");
7589 
7590 	eth_hw_addr_set(netdev, adapter->hw.mac.addr);
7591 
7592 	if (!is_valid_ether_addr(netdev->dev_addr)) {
7593 		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7594 			netdev->dev_addr);
7595 		err = -EIO;
7596 		goto err_eeprom;
7597 	}
7598 
7599 	timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7600 	timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
7601 
7602 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
7603 	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7604 	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7605 	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7606 	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7607 
7608 	/* Initialize link parameters. User can change them with ethtool */
7609 	adapter->hw.mac.autoneg = 1;
7610 	adapter->fc_autoneg = true;
7611 	adapter->hw.fc.requested_mode = e1000_fc_default;
7612 	adapter->hw.fc.current_mode = e1000_fc_default;
7613 	adapter->hw.phy.autoneg_advertised = 0x2f;
7614 
7615 	/* Initial Wake on LAN setting - If APM wake is enabled in
7616 	 * the EEPROM, enable the ACPI Magic Packet filter
7617 	 */
7618 	if (adapter->flags & FLAG_APME_IN_WUC) {
7619 		/* APME bit in EEPROM is mapped to WUC.APME */
7620 		eeprom_data = er32(WUC);
7621 		eeprom_apme_mask = E1000_WUC_APME;
7622 		if ((hw->mac.type > e1000_ich10lan) &&
7623 		    (eeprom_data & E1000_WUC_PHY_WAKE))
7624 			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7625 	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7626 		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7627 		    (adapter->hw.bus.func == 1))
7628 			ret_val = e1000_read_nvm(&adapter->hw,
7629 					      NVM_INIT_CONTROL3_PORT_B,
7630 					      1, &eeprom_data);
7631 		else
7632 			ret_val = e1000_read_nvm(&adapter->hw,
7633 					      NVM_INIT_CONTROL3_PORT_A,
7634 					      1, &eeprom_data);
7635 	}
7636 
7637 	/* fetch WoL from EEPROM */
7638 	if (ret_val)
7639 		e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7640 	else if (eeprom_data & eeprom_apme_mask)
7641 		adapter->eeprom_wol |= E1000_WUFC_MAG;
7642 
7643 	/* now that we have the eeprom settings, apply the special cases
7644 	 * where the eeprom may be wrong or the board simply won't support
7645 	 * wake on lan on a particular port
7646 	 */
7647 	if (!(adapter->flags & FLAG_HAS_WOL))
7648 		adapter->eeprom_wol = 0;
7649 
7650 	/* initialize the wol settings based on the eeprom settings */
7651 	adapter->wol = adapter->eeprom_wol;
7652 
7653 	/* make sure adapter isn't asleep if manageability is enabled */
7654 	if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7655 	    (hw->mac.ops.check_mng_mode(hw)))
7656 		device_wakeup_enable(&pdev->dev);
7657 
7658 	/* save off EEPROM version number */
7659 	ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7660 
7661 	if (ret_val) {
7662 		e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7663 		adapter->eeprom_vers = 0;
7664 	}
7665 
7666 	/* init PTP hardware clock */
7667 	e1000e_ptp_init(adapter);
7668 
7669 	/* reset the hardware with the new settings */
7670 	e1000e_reset(adapter);
7671 
7672 	/* If the controller has AMT, do not set DRV_LOAD until the interface
7673 	 * is up.  For all other cases, let the f/w know that the h/w is now
7674 	 * under the control of the driver.
7675 	 */
7676 	if (!(adapter->flags & FLAG_HAS_AMT))
7677 		e1000e_get_hw_control(adapter);
7678 
7679 	if (hw->mac.type >= e1000_pch_cnp)
7680 		adapter->flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
7681 
7682 	strscpy(netdev->name, "eth%d", sizeof(netdev->name));
7683 	err = register_netdev(netdev);
7684 	if (err)
7685 		goto err_register;
7686 
7687 	/* carrier off reporting is important to ethtool even BEFORE open */
7688 	netif_carrier_off(netdev);
7689 
7690 	e1000_print_device_info(adapter);
7691 
7692 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_SMART_PREPARE);
7693 
7694 	if (pci_dev_run_wake(pdev))
7695 		pm_runtime_put_noidle(&pdev->dev);
7696 
7697 	return 0;
7698 
7699 err_register:
7700 	if (!(adapter->flags & FLAG_HAS_AMT))
7701 		e1000e_release_hw_control(adapter);
7702 err_eeprom:
7703 	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7704 		e1000_phy_hw_reset(&adapter->hw);
7705 err_hw_init:
7706 	kfree(adapter->tx_ring);
7707 	kfree(adapter->rx_ring);
7708 err_sw_init:
7709 	if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7710 		iounmap(adapter->hw.flash_address);
7711 	e1000e_reset_interrupt_capability(adapter);
7712 err_flashmap:
7713 	iounmap(adapter->hw.hw_addr);
7714 err_ioremap:
7715 	free_netdev(netdev);
7716 err_alloc_etherdev:
7717 	pci_release_mem_regions(pdev);
7718 err_pci_reg:
7719 err_dma:
7720 	pci_disable_device(pdev);
7721 	return err;
7722 }
7723 
7724 /**
7725  * e1000_remove - Device Removal Routine
7726  * @pdev: PCI device information struct
7727  *
7728  * e1000_remove is called by the PCI subsystem to alert the driver
7729  * that it should release a PCI device.  This could be caused by a
7730  * Hot-Plug event, or because the driver is going to be removed from
7731  * memory.
7732  **/
7733 static void e1000_remove(struct pci_dev *pdev)
7734 {
7735 	struct net_device *netdev = pci_get_drvdata(pdev);
7736 	struct e1000_adapter *adapter = netdev_priv(netdev);
7737 
7738 	e1000e_ptp_remove(adapter);
7739 
7740 	/* The timers may be rescheduled, so explicitly disable them
7741 	 * from being rescheduled.
7742 	 */
7743 	set_bit(__E1000_DOWN, &adapter->state);
7744 	del_timer_sync(&adapter->watchdog_timer);
7745 	del_timer_sync(&adapter->phy_info_timer);
7746 
7747 	cancel_work_sync(&adapter->reset_task);
7748 	cancel_work_sync(&adapter->watchdog_task);
7749 	cancel_work_sync(&adapter->downshift_task);
7750 	cancel_work_sync(&adapter->update_phy_task);
7751 	cancel_work_sync(&adapter->print_hang_task);
7752 
7753 	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7754 		cancel_work_sync(&adapter->tx_hwtstamp_work);
7755 		if (adapter->tx_hwtstamp_skb) {
7756 			dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7757 			adapter->tx_hwtstamp_skb = NULL;
7758 		}
7759 	}
7760 
7761 	unregister_netdev(netdev);
7762 
7763 	if (pci_dev_run_wake(pdev))
7764 		pm_runtime_get_noresume(&pdev->dev);
7765 
7766 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7767 	 * would have already happened in close and is redundant.
7768 	 */
7769 	e1000e_release_hw_control(adapter);
7770 
7771 	e1000e_reset_interrupt_capability(adapter);
7772 	kfree(adapter->tx_ring);
7773 	kfree(adapter->rx_ring);
7774 
7775 	iounmap(adapter->hw.hw_addr);
7776 	if ((adapter->hw.flash_address) &&
7777 	    (adapter->hw.mac.type < e1000_pch_spt))
7778 		iounmap(adapter->hw.flash_address);
7779 	pci_release_mem_regions(pdev);
7780 
7781 	free_netdev(netdev);
7782 
7783 	pci_disable_device(pdev);
7784 }
7785 
7786 /* PCI Error Recovery (ERS) */
7787 static const struct pci_error_handlers e1000_err_handler = {
7788 	.error_detected = e1000_io_error_detected,
7789 	.slot_reset = e1000_io_slot_reset,
7790 	.resume = e1000_io_resume,
7791 };
7792 
7793 static const struct pci_device_id e1000_pci_tbl[] = {
7794 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7795 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7796 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7797 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7798 	  board_82571 },
7799 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7800 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7801 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7802 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7803 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7804 
7805 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7806 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7807 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7808 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7809 
7810 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7811 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7812 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7813 
7814 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7815 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7816 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7817 
7818 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7819 	  board_80003es2lan },
7820 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7821 	  board_80003es2lan },
7822 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7823 	  board_80003es2lan },
7824 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7825 	  board_80003es2lan },
7826 
7827 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7828 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7829 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7830 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7831 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7832 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7833 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7834 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7835 
7836 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7837 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7838 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7839 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7840 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7841 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7842 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7843 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7844 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7845 
7846 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7847 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7848 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7849 
7850 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7851 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7852 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7853 
7854 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7855 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7856 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7857 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7858 
7859 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7860 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7861 
7862 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7863 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7864 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7865 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7866 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7867 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7868 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7869 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7870 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7871 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7872 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7873 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7874 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7875 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7876 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7877 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7878 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7879 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7880 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7881 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7882 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7883 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7884 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7885 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7886 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7887 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM10), board_pch_cnp },
7888 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V10), board_pch_cnp },
7889 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM11), board_pch_cnp },
7890 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V11), board_pch_cnp },
7891 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM12), board_pch_spt },
7892 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V12), board_pch_spt },
7893 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM13), board_pch_tgp },
7894 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V13), board_pch_tgp },
7895 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM14), board_pch_tgp },
7896 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V14), board_pch_tgp },
7897 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM15), board_pch_tgp },
7898 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V15), board_pch_tgp },
7899 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM23), board_pch_adp },
7900 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V23), board_pch_adp },
7901 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM16), board_pch_adp },
7902 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V16), board_pch_adp },
7903 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM17), board_pch_adp },
7904 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V17), board_pch_adp },
7905 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM22), board_pch_adp },
7906 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V22), board_pch_adp },
7907 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM19), board_pch_adp },
7908 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V19), board_pch_adp },
7909 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM18), board_pch_mtp },
7910 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V18), board_pch_mtp },
7911 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM20), board_pch_mtp },
7912 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V20), board_pch_mtp },
7913 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM21), board_pch_mtp },
7914 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V21), board_pch_mtp },
7915 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ARL_I219_LM24), board_pch_mtp },
7916 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ARL_I219_V24), board_pch_mtp },
7917 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM25), board_pch_mtp },
7918 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V25), board_pch_mtp },
7919 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM26), board_pch_mtp },
7920 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V26), board_pch_mtp },
7921 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM27), board_pch_mtp },
7922 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V27), board_pch_mtp },
7923 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_NVL_I219_LM29), board_pch_mtp },
7924 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_NVL_I219_V29), board_pch_mtp },
7925 
7926 	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
7927 };
7928 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7929 
7930 static const struct dev_pm_ops e1000e_pm_ops = {
7931 	.prepare	= e1000e_pm_prepare,
7932 	.suspend	= e1000e_pm_suspend,
7933 	.resume		= e1000e_pm_resume,
7934 	.freeze		= e1000e_pm_freeze,
7935 	.thaw		= e1000e_pm_thaw,
7936 	.poweroff	= e1000e_pm_suspend,
7937 	.restore	= e1000e_pm_resume,
7938 	RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7939 		       e1000e_pm_runtime_idle)
7940 };
7941 
7942 /* PCI Device API Driver */
7943 static struct pci_driver e1000_driver = {
7944 	.name     = e1000e_driver_name,
7945 	.id_table = e1000_pci_tbl,
7946 	.probe    = e1000_probe,
7947 	.remove   = e1000_remove,
7948 	.driver.pm = pm_ptr(&e1000e_pm_ops),
7949 	.shutdown = e1000_shutdown,
7950 	.err_handler = &e1000_err_handler
7951 };
7952 
7953 /**
7954  * e1000_init_module - Driver Registration Routine
7955  *
7956  * e1000_init_module is the first routine called when the driver is
7957  * loaded. All it does is register with the PCI subsystem.
7958  **/
7959 static int __init e1000_init_module(void)
7960 {
7961 	pr_info("Intel(R) PRO/1000 Network Driver\n");
7962 	pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7963 
7964 	return pci_register_driver(&e1000_driver);
7965 }
7966 module_init(e1000_init_module);
7967 
7968 /**
7969  * e1000_exit_module - Driver Exit Cleanup Routine
7970  *
7971  * e1000_exit_module is called just before the driver is removed
7972  * from memory.
7973  **/
7974 static void __exit e1000_exit_module(void)
7975 {
7976 	pci_unregister_driver(&e1000_driver);
7977 }
7978 module_exit(e1000_exit_module);
7979 
7980 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7981 MODULE_LICENSE("GPL v2");
7982 
7983 /* netdev.c */
7984