xref: /linux/drivers/net/ethernet/intel/e1000e/ich8lan.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21 
22 /* 82562G 10/100 Network Connection
23  * 82562G-2 10/100 Network Connection
24  * 82562GT 10/100 Network Connection
25  * 82562GT-2 10/100 Network Connection
26  * 82562V 10/100 Network Connection
27  * 82562V-2 10/100 Network Connection
28  * 82566DC-2 Gigabit Network Connection
29  * 82566DC Gigabit Network Connection
30  * 82566DM-2 Gigabit Network Connection
31  * 82566DM Gigabit Network Connection
32  * 82566MC Gigabit Network Connection
33  * 82566MM Gigabit Network Connection
34  * 82567LM Gigabit Network Connection
35  * 82567LF Gigabit Network Connection
36  * 82567V Gigabit Network Connection
37  * 82567LM-2 Gigabit Network Connection
38  * 82567LF-2 Gigabit Network Connection
39  * 82567V-2 Gigabit Network Connection
40  * 82567LF-3 Gigabit Network Connection
41  * 82567LM-3 Gigabit Network Connection
42  * 82567LM-4 Gigabit Network Connection
43  * 82577LM Gigabit Network Connection
44  * 82577LC Gigabit Network Connection
45  * 82578DM Gigabit Network Connection
46  * 82578DC Gigabit Network Connection
47  * 82579LM Gigabit Network Connection
48  * 82579V Gigabit Network Connection
49  * Ethernet Connection I217-LM
50  * Ethernet Connection I217-V
51  * Ethernet Connection I218-V
52  * Ethernet Connection I218-LM
53  * Ethernet Connection (2) I218-LM
54  * Ethernet Connection (2) I218-V
55  * Ethernet Connection (3) I218-LM
56  * Ethernet Connection (3) I218-V
57  */
58 
59 #include "e1000.h"
60 
61 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
62 /* Offset 04h HSFSTS */
63 union ich8_hws_flash_status {
64 	struct ich8_hsfsts {
65 		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
66 		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
67 		u16 dael:1;	/* bit 2 Direct Access error Log */
68 		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
69 		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
70 		u16 reserved1:2;	/* bit 13:6 Reserved */
71 		u16 reserved2:6;	/* bit 13:6 Reserved */
72 		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
73 		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
74 	} hsf_status;
75 	u16 regval;
76 };
77 
78 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
79 /* Offset 06h FLCTL */
80 union ich8_hws_flash_ctrl {
81 	struct ich8_hsflctl {
82 		u16 flcgo:1;	/* 0 Flash Cycle Go */
83 		u16 flcycle:2;	/* 2:1 Flash Cycle */
84 		u16 reserved:5;	/* 7:3 Reserved  */
85 		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
86 		u16 flockdn:6;	/* 15:10 Reserved */
87 	} hsf_ctrl;
88 	u16 regval;
89 };
90 
91 /* ICH Flash Region Access Permissions */
92 union ich8_hws_flash_regacc {
93 	struct ich8_flracc {
94 		u32 grra:8;	/* 0:7 GbE region Read Access */
95 		u32 grwa:8;	/* 8:15 GbE region Write Access */
96 		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
97 		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
98 	} hsf_flregacc;
99 	u16 regval;
100 };
101 
102 /* ICH Flash Protected Region */
103 union ich8_flash_protected_range {
104 	struct ich8_pr {
105 		u32 base:13;	/* 0:12 Protected Range Base */
106 		u32 reserved1:2;	/* 13:14 Reserved */
107 		u32 rpe:1;	/* 15 Read Protection Enable */
108 		u32 limit:13;	/* 16:28 Protected Range Limit */
109 		u32 reserved2:2;	/* 29:30 Reserved */
110 		u32 wpe:1;	/* 31 Write Protection Enable */
111 	} range;
112 	u32 regval;
113 };
114 
115 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
116 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
118 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
119 						u32 offset, u8 byte);
120 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
121 					 u8 *data);
122 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
123 					 u16 *data);
124 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
125 					 u8 size, u16 *data);
126 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
127 					   u32 *data);
128 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
129 					  u32 offset, u32 *data);
130 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
131 					    u32 offset, u32 data);
132 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
133 						 u32 offset, u32 dword);
134 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
135 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
136 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
137 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
138 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
139 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
140 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
141 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
142 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
143 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
144 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
145 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
146 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
147 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
148 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
149 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
150 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
151 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
152 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
153 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
154 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
155 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
156 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
157 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
158 
159 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
160 {
161 	return readw(hw->flash_address + reg);
162 }
163 
164 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
165 {
166 	return readl(hw->flash_address + reg);
167 }
168 
169 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
170 {
171 	writew(val, hw->flash_address + reg);
172 }
173 
174 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
175 {
176 	writel(val, hw->flash_address + reg);
177 }
178 
179 #define er16flash(reg)		__er16flash(hw, (reg))
180 #define er32flash(reg)		__er32flash(hw, (reg))
181 #define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
182 #define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
183 
184 /**
185  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
186  *  @hw: pointer to the HW structure
187  *
188  *  Test access to the PHY registers by reading the PHY ID registers.  If
189  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
190  *  otherwise assume the read PHY ID is correct if it is valid.
191  *
192  *  Assumes the sw/fw/hw semaphore is already acquired.
193  **/
194 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
195 {
196 	u16 phy_reg = 0;
197 	u32 phy_id = 0;
198 	s32 ret_val = 0;
199 	u16 retry_count;
200 	u32 mac_reg = 0;
201 
202 	for (retry_count = 0; retry_count < 2; retry_count++) {
203 		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
204 		if (ret_val || (phy_reg == 0xFFFF))
205 			continue;
206 		phy_id = (u32)(phy_reg << 16);
207 
208 		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
209 		if (ret_val || (phy_reg == 0xFFFF)) {
210 			phy_id = 0;
211 			continue;
212 		}
213 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
214 		break;
215 	}
216 
217 	if (hw->phy.id) {
218 		if (hw->phy.id == phy_id)
219 			goto out;
220 	} else if (phy_id) {
221 		hw->phy.id = phy_id;
222 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
223 		goto out;
224 	}
225 
226 	/* In case the PHY needs to be in mdio slow mode,
227 	 * set slow mode and try to get the PHY id again.
228 	 */
229 	if (hw->mac.type < e1000_pch_lpt) {
230 		hw->phy.ops.release(hw);
231 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
232 		if (!ret_val)
233 			ret_val = e1000e_get_phy_id(hw);
234 		hw->phy.ops.acquire(hw);
235 	}
236 
237 	if (ret_val)
238 		return false;
239 out:
240 	if (hw->mac.type >= e1000_pch_lpt) {
241 		/* Only unforce SMBus if ME is not active */
242 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
243 			/* Unforce SMBus mode in PHY */
244 			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
245 			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
246 			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
247 
248 			/* Unforce SMBus mode in MAC */
249 			mac_reg = er32(CTRL_EXT);
250 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
251 			ew32(CTRL_EXT, mac_reg);
252 		}
253 	}
254 
255 	return true;
256 }
257 
258 /**
259  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
260  *  @hw: pointer to the HW structure
261  *
262  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
263  *  used to reset the PHY to a quiescent state when necessary.
264  **/
265 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
266 {
267 	u32 mac_reg;
268 
269 	/* Set Phy Config Counter to 50msec */
270 	mac_reg = er32(FEXTNVM3);
271 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
272 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
273 	ew32(FEXTNVM3, mac_reg);
274 
275 	/* Toggle LANPHYPC Value bit */
276 	mac_reg = er32(CTRL);
277 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
278 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
279 	ew32(CTRL, mac_reg);
280 	e1e_flush();
281 	usleep_range(10, 20);
282 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
283 	ew32(CTRL, mac_reg);
284 	e1e_flush();
285 
286 	if (hw->mac.type < e1000_pch_lpt) {
287 		msleep(50);
288 	} else {
289 		u16 count = 20;
290 
291 		do {
292 			usleep_range(5000, 10000);
293 		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
294 
295 		msleep(30);
296 	}
297 }
298 
299 /**
300  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
301  *  @hw: pointer to the HW structure
302  *
303  *  Workarounds/flow necessary for PHY initialization during driver load
304  *  and resume paths.
305  **/
306 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
307 {
308 	struct e1000_adapter *adapter = hw->adapter;
309 	u32 mac_reg, fwsm = er32(FWSM);
310 	s32 ret_val;
311 
312 	/* Gate automatic PHY configuration by hardware on managed and
313 	 * non-managed 82579 and newer adapters.
314 	 */
315 	e1000_gate_hw_phy_config_ich8lan(hw, true);
316 
317 	/* It is not possible to be certain of the current state of ULP
318 	 * so forcibly disable it.
319 	 */
320 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
321 	e1000_disable_ulp_lpt_lp(hw, true);
322 
323 	ret_val = hw->phy.ops.acquire(hw);
324 	if (ret_val) {
325 		e_dbg("Failed to initialize PHY flow\n");
326 		goto out;
327 	}
328 
329 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
330 	 * inaccessible and resetting the PHY is not blocked, toggle the
331 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
332 	 */
333 	switch (hw->mac.type) {
334 	case e1000_pch_lpt:
335 	case e1000_pch_spt:
336 	case e1000_pch_cnp:
337 		if (e1000_phy_is_accessible_pchlan(hw))
338 			break;
339 
340 		/* Before toggling LANPHYPC, see if PHY is accessible by
341 		 * forcing MAC to SMBus mode first.
342 		 */
343 		mac_reg = er32(CTRL_EXT);
344 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
345 		ew32(CTRL_EXT, mac_reg);
346 
347 		/* Wait 50 milliseconds for MAC to finish any retries
348 		 * that it might be trying to perform from previous
349 		 * attempts to acknowledge any phy read requests.
350 		 */
351 		msleep(50);
352 
353 		/* fall-through */
354 	case e1000_pch2lan:
355 		if (e1000_phy_is_accessible_pchlan(hw))
356 			break;
357 
358 		/* fall-through */
359 	case e1000_pchlan:
360 		if ((hw->mac.type == e1000_pchlan) &&
361 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
362 			break;
363 
364 		if (hw->phy.ops.check_reset_block(hw)) {
365 			e_dbg("Required LANPHYPC toggle blocked by ME\n");
366 			ret_val = -E1000_ERR_PHY;
367 			break;
368 		}
369 
370 		/* Toggle LANPHYPC Value bit */
371 		e1000_toggle_lanphypc_pch_lpt(hw);
372 		if (hw->mac.type >= e1000_pch_lpt) {
373 			if (e1000_phy_is_accessible_pchlan(hw))
374 				break;
375 
376 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
377 			 * so ensure that the MAC is also out of SMBus mode
378 			 */
379 			mac_reg = er32(CTRL_EXT);
380 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
381 			ew32(CTRL_EXT, mac_reg);
382 
383 			if (e1000_phy_is_accessible_pchlan(hw))
384 				break;
385 
386 			ret_val = -E1000_ERR_PHY;
387 		}
388 		break;
389 	default:
390 		break;
391 	}
392 
393 	hw->phy.ops.release(hw);
394 	if (!ret_val) {
395 
396 		/* Check to see if able to reset PHY.  Print error if not */
397 		if (hw->phy.ops.check_reset_block(hw)) {
398 			e_err("Reset blocked by ME\n");
399 			goto out;
400 		}
401 
402 		/* Reset the PHY before any access to it.  Doing so, ensures
403 		 * that the PHY is in a known good state before we read/write
404 		 * PHY registers.  The generic reset is sufficient here,
405 		 * because we haven't determined the PHY type yet.
406 		 */
407 		ret_val = e1000e_phy_hw_reset_generic(hw);
408 		if (ret_val)
409 			goto out;
410 
411 		/* On a successful reset, possibly need to wait for the PHY
412 		 * to quiesce to an accessible state before returning control
413 		 * to the calling function.  If the PHY does not quiesce, then
414 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
415 		 *  the PHY is in.
416 		 */
417 		ret_val = hw->phy.ops.check_reset_block(hw);
418 		if (ret_val)
419 			e_err("ME blocked access to PHY after reset\n");
420 	}
421 
422 out:
423 	/* Ungate automatic PHY configuration on non-managed 82579 */
424 	if ((hw->mac.type == e1000_pch2lan) &&
425 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
426 		usleep_range(10000, 20000);
427 		e1000_gate_hw_phy_config_ich8lan(hw, false);
428 	}
429 
430 	return ret_val;
431 }
432 
433 /**
434  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
435  *  @hw: pointer to the HW structure
436  *
437  *  Initialize family-specific PHY parameters and function pointers.
438  **/
439 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
440 {
441 	struct e1000_phy_info *phy = &hw->phy;
442 	s32 ret_val;
443 
444 	phy->addr = 1;
445 	phy->reset_delay_us = 100;
446 
447 	phy->ops.set_page = e1000_set_page_igp;
448 	phy->ops.read_reg = e1000_read_phy_reg_hv;
449 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
450 	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
451 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
452 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
453 	phy->ops.write_reg = e1000_write_phy_reg_hv;
454 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
455 	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
456 	phy->ops.power_up = e1000_power_up_phy_copper;
457 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
458 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
459 
460 	phy->id = e1000_phy_unknown;
461 
462 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
463 	if (ret_val)
464 		return ret_val;
465 
466 	if (phy->id == e1000_phy_unknown)
467 		switch (hw->mac.type) {
468 		default:
469 			ret_val = e1000e_get_phy_id(hw);
470 			if (ret_val)
471 				return ret_val;
472 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
473 				break;
474 			/* fall-through */
475 		case e1000_pch2lan:
476 		case e1000_pch_lpt:
477 		case e1000_pch_spt:
478 		case e1000_pch_cnp:
479 			/* In case the PHY needs to be in mdio slow mode,
480 			 * set slow mode and try to get the PHY id again.
481 			 */
482 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
483 			if (ret_val)
484 				return ret_val;
485 			ret_val = e1000e_get_phy_id(hw);
486 			if (ret_val)
487 				return ret_val;
488 			break;
489 		}
490 	phy->type = e1000e_get_phy_type_from_id(phy->id);
491 
492 	switch (phy->type) {
493 	case e1000_phy_82577:
494 	case e1000_phy_82579:
495 	case e1000_phy_i217:
496 		phy->ops.check_polarity = e1000_check_polarity_82577;
497 		phy->ops.force_speed_duplex =
498 		    e1000_phy_force_speed_duplex_82577;
499 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
500 		phy->ops.get_info = e1000_get_phy_info_82577;
501 		phy->ops.commit = e1000e_phy_sw_reset;
502 		break;
503 	case e1000_phy_82578:
504 		phy->ops.check_polarity = e1000_check_polarity_m88;
505 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
506 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
507 		phy->ops.get_info = e1000e_get_phy_info_m88;
508 		break;
509 	default:
510 		ret_val = -E1000_ERR_PHY;
511 		break;
512 	}
513 
514 	return ret_val;
515 }
516 
517 /**
518  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
519  *  @hw: pointer to the HW structure
520  *
521  *  Initialize family-specific PHY parameters and function pointers.
522  **/
523 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
524 {
525 	struct e1000_phy_info *phy = &hw->phy;
526 	s32 ret_val;
527 	u16 i = 0;
528 
529 	phy->addr = 1;
530 	phy->reset_delay_us = 100;
531 
532 	phy->ops.power_up = e1000_power_up_phy_copper;
533 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
534 
535 	/* We may need to do this twice - once for IGP and if that fails,
536 	 * we'll set BM func pointers and try again
537 	 */
538 	ret_val = e1000e_determine_phy_address(hw);
539 	if (ret_val) {
540 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
541 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
542 		ret_val = e1000e_determine_phy_address(hw);
543 		if (ret_val) {
544 			e_dbg("Cannot determine PHY addr. Erroring out\n");
545 			return ret_val;
546 		}
547 	}
548 
549 	phy->id = 0;
550 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
551 	       (i++ < 100)) {
552 		usleep_range(1000, 2000);
553 		ret_val = e1000e_get_phy_id(hw);
554 		if (ret_val)
555 			return ret_val;
556 	}
557 
558 	/* Verify phy id */
559 	switch (phy->id) {
560 	case IGP03E1000_E_PHY_ID:
561 		phy->type = e1000_phy_igp_3;
562 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
563 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
564 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
565 		phy->ops.get_info = e1000e_get_phy_info_igp;
566 		phy->ops.check_polarity = e1000_check_polarity_igp;
567 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
568 		break;
569 	case IFE_E_PHY_ID:
570 	case IFE_PLUS_E_PHY_ID:
571 	case IFE_C_E_PHY_ID:
572 		phy->type = e1000_phy_ife;
573 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
574 		phy->ops.get_info = e1000_get_phy_info_ife;
575 		phy->ops.check_polarity = e1000_check_polarity_ife;
576 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
577 		break;
578 	case BME1000_E_PHY_ID:
579 		phy->type = e1000_phy_bm;
580 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
581 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
582 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
583 		phy->ops.commit = e1000e_phy_sw_reset;
584 		phy->ops.get_info = e1000e_get_phy_info_m88;
585 		phy->ops.check_polarity = e1000_check_polarity_m88;
586 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
587 		break;
588 	default:
589 		return -E1000_ERR_PHY;
590 	}
591 
592 	return 0;
593 }
594 
595 /**
596  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
597  *  @hw: pointer to the HW structure
598  *
599  *  Initialize family-specific NVM parameters and function
600  *  pointers.
601  **/
602 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
603 {
604 	struct e1000_nvm_info *nvm = &hw->nvm;
605 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
606 	u32 gfpreg, sector_base_addr, sector_end_addr;
607 	u16 i;
608 	u32 nvm_size;
609 
610 	nvm->type = e1000_nvm_flash_sw;
611 
612 	if (hw->mac.type >= e1000_pch_spt) {
613 		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
614 		 * STRAP register. This is because in SPT the GbE Flash region
615 		 * is no longer accessed through the flash registers. Instead,
616 		 * the mechanism has changed, and the Flash region access
617 		 * registers are now implemented in GbE memory space.
618 		 */
619 		nvm->flash_base_addr = 0;
620 		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
621 		    * NVM_SIZE_MULTIPLIER;
622 		nvm->flash_bank_size = nvm_size / 2;
623 		/* Adjust to word count */
624 		nvm->flash_bank_size /= sizeof(u16);
625 		/* Set the base address for flash register access */
626 		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
627 	} else {
628 		/* Can't read flash registers if register set isn't mapped. */
629 		if (!hw->flash_address) {
630 			e_dbg("ERROR: Flash registers not mapped\n");
631 			return -E1000_ERR_CONFIG;
632 		}
633 
634 		gfpreg = er32flash(ICH_FLASH_GFPREG);
635 
636 		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
637 		 * Add 1 to sector_end_addr since this sector is included in
638 		 * the overall size.
639 		 */
640 		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
641 		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
642 
643 		/* flash_base_addr is byte-aligned */
644 		nvm->flash_base_addr = sector_base_addr
645 		    << FLASH_SECTOR_ADDR_SHIFT;
646 
647 		/* find total size of the NVM, then cut in half since the total
648 		 * size represents two separate NVM banks.
649 		 */
650 		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
651 					<< FLASH_SECTOR_ADDR_SHIFT);
652 		nvm->flash_bank_size /= 2;
653 		/* Adjust to word count */
654 		nvm->flash_bank_size /= sizeof(u16);
655 	}
656 
657 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
658 
659 	/* Clear shadow ram */
660 	for (i = 0; i < nvm->word_size; i++) {
661 		dev_spec->shadow_ram[i].modified = false;
662 		dev_spec->shadow_ram[i].value = 0xFFFF;
663 	}
664 
665 	return 0;
666 }
667 
668 /**
669  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
670  *  @hw: pointer to the HW structure
671  *
672  *  Initialize family-specific MAC parameters and function
673  *  pointers.
674  **/
675 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
676 {
677 	struct e1000_mac_info *mac = &hw->mac;
678 
679 	/* Set media type function pointer */
680 	hw->phy.media_type = e1000_media_type_copper;
681 
682 	/* Set mta register count */
683 	mac->mta_reg_count = 32;
684 	/* Set rar entry count */
685 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
686 	if (mac->type == e1000_ich8lan)
687 		mac->rar_entry_count--;
688 	/* FWSM register */
689 	mac->has_fwsm = true;
690 	/* ARC subsystem not supported */
691 	mac->arc_subsystem_valid = false;
692 	/* Adaptive IFS supported */
693 	mac->adaptive_ifs = true;
694 
695 	/* LED and other operations */
696 	switch (mac->type) {
697 	case e1000_ich8lan:
698 	case e1000_ich9lan:
699 	case e1000_ich10lan:
700 		/* check management mode */
701 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
702 		/* ID LED init */
703 		mac->ops.id_led_init = e1000e_id_led_init_generic;
704 		/* blink LED */
705 		mac->ops.blink_led = e1000e_blink_led_generic;
706 		/* setup LED */
707 		mac->ops.setup_led = e1000e_setup_led_generic;
708 		/* cleanup LED */
709 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
710 		/* turn on/off LED */
711 		mac->ops.led_on = e1000_led_on_ich8lan;
712 		mac->ops.led_off = e1000_led_off_ich8lan;
713 		break;
714 	case e1000_pch2lan:
715 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
716 		mac->ops.rar_set = e1000_rar_set_pch2lan;
717 		/* fall-through */
718 	case e1000_pch_lpt:
719 	case e1000_pch_spt:
720 	case e1000_pch_cnp:
721 	case e1000_pchlan:
722 		/* check management mode */
723 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
724 		/* ID LED init */
725 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
726 		/* setup LED */
727 		mac->ops.setup_led = e1000_setup_led_pchlan;
728 		/* cleanup LED */
729 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
730 		/* turn on/off LED */
731 		mac->ops.led_on = e1000_led_on_pchlan;
732 		mac->ops.led_off = e1000_led_off_pchlan;
733 		break;
734 	default:
735 		break;
736 	}
737 
738 	if (mac->type >= e1000_pch_lpt) {
739 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
740 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
741 		mac->ops.setup_physical_interface =
742 		    e1000_setup_copper_link_pch_lpt;
743 		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
744 	}
745 
746 	/* Enable PCS Lock-loss workaround for ICH8 */
747 	if (mac->type == e1000_ich8lan)
748 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
749 
750 	return 0;
751 }
752 
753 /**
754  *  __e1000_access_emi_reg_locked - Read/write EMI register
755  *  @hw: pointer to the HW structure
756  *  @addr: EMI address to program
757  *  @data: pointer to value to read/write from/to the EMI address
758  *  @read: boolean flag to indicate read or write
759  *
760  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
761  **/
762 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
763 					 u16 *data, bool read)
764 {
765 	s32 ret_val;
766 
767 	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
768 	if (ret_val)
769 		return ret_val;
770 
771 	if (read)
772 		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
773 	else
774 		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
775 
776 	return ret_val;
777 }
778 
779 /**
780  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
781  *  @hw: pointer to the HW structure
782  *  @addr: EMI address to program
783  *  @data: value to be read from the EMI address
784  *
785  *  Assumes the SW/FW/HW Semaphore is already acquired.
786  **/
787 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
788 {
789 	return __e1000_access_emi_reg_locked(hw, addr, data, true);
790 }
791 
792 /**
793  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
794  *  @hw: pointer to the HW structure
795  *  @addr: EMI address to program
796  *  @data: value to be written to the EMI address
797  *
798  *  Assumes the SW/FW/HW Semaphore is already acquired.
799  **/
800 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
801 {
802 	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
803 }
804 
805 /**
806  *  e1000_set_eee_pchlan - Enable/disable EEE support
807  *  @hw: pointer to the HW structure
808  *
809  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
810  *  the link and the EEE capabilities of the link partner.  The LPI Control
811  *  register bits will remain set only if/when link is up.
812  *
813  *  EEE LPI must not be asserted earlier than one second after link is up.
814  *  On 82579, EEE LPI should not be enabled until such time otherwise there
815  *  can be link issues with some switches.  Other devices can have EEE LPI
816  *  enabled immediately upon link up since they have a timer in hardware which
817  *  prevents LPI from being asserted too early.
818  **/
819 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
820 {
821 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
822 	s32 ret_val;
823 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
824 
825 	switch (hw->phy.type) {
826 	case e1000_phy_82579:
827 		lpa = I82579_EEE_LP_ABILITY;
828 		pcs_status = I82579_EEE_PCS_STATUS;
829 		adv_addr = I82579_EEE_ADVERTISEMENT;
830 		break;
831 	case e1000_phy_i217:
832 		lpa = I217_EEE_LP_ABILITY;
833 		pcs_status = I217_EEE_PCS_STATUS;
834 		adv_addr = I217_EEE_ADVERTISEMENT;
835 		break;
836 	default:
837 		return 0;
838 	}
839 
840 	ret_val = hw->phy.ops.acquire(hw);
841 	if (ret_val)
842 		return ret_val;
843 
844 	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
845 	if (ret_val)
846 		goto release;
847 
848 	/* Clear bits that enable EEE in various speeds */
849 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
850 
851 	/* Enable EEE if not disabled by user */
852 	if (!dev_spec->eee_disable) {
853 		/* Save off link partner's EEE ability */
854 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
855 						    &dev_spec->eee_lp_ability);
856 		if (ret_val)
857 			goto release;
858 
859 		/* Read EEE advertisement */
860 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
861 		if (ret_val)
862 			goto release;
863 
864 		/* Enable EEE only for speeds in which the link partner is
865 		 * EEE capable and for which we advertise EEE.
866 		 */
867 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
868 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
869 
870 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
871 			e1e_rphy_locked(hw, MII_LPA, &data);
872 			if (data & LPA_100FULL)
873 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
874 			else
875 				/* EEE is not supported in 100Half, so ignore
876 				 * partner's EEE in 100 ability if full-duplex
877 				 * is not advertised.
878 				 */
879 				dev_spec->eee_lp_ability &=
880 				    ~I82579_EEE_100_SUPPORTED;
881 		}
882 	}
883 
884 	if (hw->phy.type == e1000_phy_82579) {
885 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
886 						    &data);
887 		if (ret_val)
888 			goto release;
889 
890 		data &= ~I82579_LPI_100_PLL_SHUT;
891 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
892 						     data);
893 	}
894 
895 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
896 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
897 	if (ret_val)
898 		goto release;
899 
900 	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
901 release:
902 	hw->phy.ops.release(hw);
903 
904 	return ret_val;
905 }
906 
907 /**
908  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
909  *  @hw:   pointer to the HW structure
910  *  @link: link up bool flag
911  *
912  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
913  *  preventing further DMA write requests.  Workaround the issue by disabling
914  *  the de-assertion of the clock request when in 1Gpbs mode.
915  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
916  *  speeds in order to avoid Tx hangs.
917  **/
918 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
919 {
920 	u32 fextnvm6 = er32(FEXTNVM6);
921 	u32 status = er32(STATUS);
922 	s32 ret_val = 0;
923 	u16 reg;
924 
925 	if (link && (status & E1000_STATUS_SPEED_1000)) {
926 		ret_val = hw->phy.ops.acquire(hw);
927 		if (ret_val)
928 			return ret_val;
929 
930 		ret_val =
931 		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
932 						&reg);
933 		if (ret_val)
934 			goto release;
935 
936 		ret_val =
937 		    e1000e_write_kmrn_reg_locked(hw,
938 						 E1000_KMRNCTRLSTA_K1_CONFIG,
939 						 reg &
940 						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
941 		if (ret_val)
942 			goto release;
943 
944 		usleep_range(10, 20);
945 
946 		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
947 
948 		ret_val =
949 		    e1000e_write_kmrn_reg_locked(hw,
950 						 E1000_KMRNCTRLSTA_K1_CONFIG,
951 						 reg);
952 release:
953 		hw->phy.ops.release(hw);
954 	} else {
955 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
956 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
957 
958 		if ((hw->phy.revision > 5) || !link ||
959 		    ((status & E1000_STATUS_SPEED_100) &&
960 		     (status & E1000_STATUS_FD)))
961 			goto update_fextnvm6;
962 
963 		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
964 		if (ret_val)
965 			return ret_val;
966 
967 		/* Clear link status transmit timeout */
968 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
969 
970 		if (status & E1000_STATUS_SPEED_100) {
971 			/* Set inband Tx timeout to 5x10us for 100Half */
972 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
973 
974 			/* Do not extend the K1 entry latency for 100Half */
975 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
976 		} else {
977 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
978 			reg |= 50 <<
979 			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
980 
981 			/* Extend the K1 entry latency for 10 Mbps */
982 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
983 		}
984 
985 		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
986 		if (ret_val)
987 			return ret_val;
988 
989 update_fextnvm6:
990 		ew32(FEXTNVM6, fextnvm6);
991 	}
992 
993 	return ret_val;
994 }
995 
996 /**
997  *  e1000_platform_pm_pch_lpt - Set platform power management values
998  *  @hw: pointer to the HW structure
999  *  @link: bool indicating link status
1000  *
1001  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1002  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1003  *  when link is up (which must not exceed the maximum latency supported
1004  *  by the platform), otherwise specify there is no LTR requirement.
1005  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1006  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1007  *  Capability register set, on this device LTR is set by writing the
1008  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1009  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1010  *  message to the PMC.
1011  **/
1012 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1013 {
1014 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1015 	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1016 	u16 lat_enc = 0;	/* latency encoded */
1017 
1018 	if (link) {
1019 		u16 speed, duplex, scale = 0;
1020 		u16 max_snoop, max_nosnoop;
1021 		u16 max_ltr_enc;	/* max LTR latency encoded */
1022 		u64 value;
1023 		u32 rxa;
1024 
1025 		if (!hw->adapter->max_frame_size) {
1026 			e_dbg("max_frame_size not set.\n");
1027 			return -E1000_ERR_CONFIG;
1028 		}
1029 
1030 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1031 		if (!speed) {
1032 			e_dbg("Speed not set.\n");
1033 			return -E1000_ERR_CONFIG;
1034 		}
1035 
1036 		/* Rx Packet Buffer Allocation size (KB) */
1037 		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1038 
1039 		/* Determine the maximum latency tolerated by the device.
1040 		 *
1041 		 * Per the PCIe spec, the tolerated latencies are encoded as
1042 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1043 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1044 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1045 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1046 		 */
1047 		rxa *= 512;
1048 		value = (rxa > hw->adapter->max_frame_size) ?
1049 			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1050 			0;
1051 
1052 		while (value > PCI_LTR_VALUE_MASK) {
1053 			scale++;
1054 			value = DIV_ROUND_UP(value, BIT(5));
1055 		}
1056 		if (scale > E1000_LTRV_SCALE_MAX) {
1057 			e_dbg("Invalid LTR latency scale %d\n", scale);
1058 			return -E1000_ERR_CONFIG;
1059 		}
1060 		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1061 
1062 		/* Determine the maximum latency tolerated by the platform */
1063 		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1064 				     &max_snoop);
1065 		pci_read_config_word(hw->adapter->pdev,
1066 				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1067 		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1068 
1069 		if (lat_enc > max_ltr_enc)
1070 			lat_enc = max_ltr_enc;
1071 	}
1072 
1073 	/* Set Snoop and No-Snoop latencies the same */
1074 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1075 	ew32(LTRV, reg);
1076 
1077 	return 0;
1078 }
1079 
1080 /**
1081  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1082  *  @hw: pointer to the HW structure
1083  *  @to_sx: boolean indicating a system power state transition to Sx
1084  *
1085  *  When link is down, configure ULP mode to significantly reduce the power
1086  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1087  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1088  *  system, configure the ULP mode by software.
1089  */
1090 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1091 {
1092 	u32 mac_reg;
1093 	s32 ret_val = 0;
1094 	u16 phy_reg;
1095 	u16 oem_reg = 0;
1096 
1097 	if ((hw->mac.type < e1000_pch_lpt) ||
1098 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1099 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1100 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1101 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1102 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1103 		return 0;
1104 
1105 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1106 		/* Request ME configure ULP mode in the PHY */
1107 		mac_reg = er32(H2ME);
1108 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1109 		ew32(H2ME, mac_reg);
1110 
1111 		goto out;
1112 	}
1113 
1114 	if (!to_sx) {
1115 		int i = 0;
1116 
1117 		/* Poll up to 5 seconds for Cable Disconnected indication */
1118 		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1119 			/* Bail if link is re-acquired */
1120 			if (er32(STATUS) & E1000_STATUS_LU)
1121 				return -E1000_ERR_PHY;
1122 
1123 			if (i++ == 100)
1124 				break;
1125 
1126 			msleep(50);
1127 		}
1128 		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1129 		      (er32(FEXT) &
1130 		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1131 	}
1132 
1133 	ret_val = hw->phy.ops.acquire(hw);
1134 	if (ret_val)
1135 		goto out;
1136 
1137 	/* Force SMBus mode in PHY */
1138 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1139 	if (ret_val)
1140 		goto release;
1141 	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1142 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1143 
1144 	/* Force SMBus mode in MAC */
1145 	mac_reg = er32(CTRL_EXT);
1146 	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1147 	ew32(CTRL_EXT, mac_reg);
1148 
1149 	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1150 	 * LPLU and disable Gig speed when entering ULP
1151 	 */
1152 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1153 		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1154 						       &oem_reg);
1155 		if (ret_val)
1156 			goto release;
1157 
1158 		phy_reg = oem_reg;
1159 		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1160 
1161 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1162 							phy_reg);
1163 
1164 		if (ret_val)
1165 			goto release;
1166 	}
1167 
1168 	/* Set Inband ULP Exit, Reset to SMBus mode and
1169 	 * Disable SMBus Release on PERST# in PHY
1170 	 */
1171 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1172 	if (ret_val)
1173 		goto release;
1174 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1175 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1176 	if (to_sx) {
1177 		if (er32(WUFC) & E1000_WUFC_LNKC)
1178 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1179 		else
1180 			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1181 
1182 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1183 		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1184 	} else {
1185 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1186 		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1187 		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1188 	}
1189 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1190 
1191 	/* Set Disable SMBus Release on PERST# in MAC */
1192 	mac_reg = er32(FEXTNVM7);
1193 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1194 	ew32(FEXTNVM7, mac_reg);
1195 
1196 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1197 	phy_reg |= I218_ULP_CONFIG1_START;
1198 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1199 
1200 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1201 	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1202 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1203 							oem_reg);
1204 		if (ret_val)
1205 			goto release;
1206 	}
1207 
1208 release:
1209 	hw->phy.ops.release(hw);
1210 out:
1211 	if (ret_val)
1212 		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1213 	else
1214 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1215 
1216 	return ret_val;
1217 }
1218 
1219 /**
1220  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1221  *  @hw: pointer to the HW structure
1222  *  @force: boolean indicating whether or not to force disabling ULP
1223  *
1224  *  Un-configure ULP mode when link is up, the system is transitioned from
1225  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1226  *  system, poll for an indication from ME that ULP has been un-configured.
1227  *  If not on an ME enabled system, un-configure the ULP mode by software.
1228  *
1229  *  During nominal operation, this function is called when link is acquired
1230  *  to disable ULP mode (force=false); otherwise, for example when unloading
1231  *  the driver or during Sx->S0 transitions, this is called with force=true
1232  *  to forcibly disable ULP.
1233  */
1234 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1235 {
1236 	s32 ret_val = 0;
1237 	u32 mac_reg;
1238 	u16 phy_reg;
1239 	int i = 0;
1240 
1241 	if ((hw->mac.type < e1000_pch_lpt) ||
1242 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1243 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1244 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1245 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1246 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1247 		return 0;
1248 
1249 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1250 		if (force) {
1251 			/* Request ME un-configure ULP mode in the PHY */
1252 			mac_reg = er32(H2ME);
1253 			mac_reg &= ~E1000_H2ME_ULP;
1254 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1255 			ew32(H2ME, mac_reg);
1256 		}
1257 
1258 		/* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
1259 		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1260 			if (i++ == 30) {
1261 				ret_val = -E1000_ERR_PHY;
1262 				goto out;
1263 			}
1264 
1265 			usleep_range(10000, 20000);
1266 		}
1267 		e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1268 
1269 		if (force) {
1270 			mac_reg = er32(H2ME);
1271 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1272 			ew32(H2ME, mac_reg);
1273 		} else {
1274 			/* Clear H2ME.ULP after ME ULP configuration */
1275 			mac_reg = er32(H2ME);
1276 			mac_reg &= ~E1000_H2ME_ULP;
1277 			ew32(H2ME, mac_reg);
1278 		}
1279 
1280 		goto out;
1281 	}
1282 
1283 	ret_val = hw->phy.ops.acquire(hw);
1284 	if (ret_val)
1285 		goto out;
1286 
1287 	if (force)
1288 		/* Toggle LANPHYPC Value bit */
1289 		e1000_toggle_lanphypc_pch_lpt(hw);
1290 
1291 	/* Unforce SMBus mode in PHY */
1292 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1293 	if (ret_val) {
1294 		/* The MAC might be in PCIe mode, so temporarily force to
1295 		 * SMBus mode in order to access the PHY.
1296 		 */
1297 		mac_reg = er32(CTRL_EXT);
1298 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1299 		ew32(CTRL_EXT, mac_reg);
1300 
1301 		msleep(50);
1302 
1303 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1304 						       &phy_reg);
1305 		if (ret_val)
1306 			goto release;
1307 	}
1308 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1309 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1310 
1311 	/* Unforce SMBus mode in MAC */
1312 	mac_reg = er32(CTRL_EXT);
1313 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1314 	ew32(CTRL_EXT, mac_reg);
1315 
1316 	/* When ULP mode was previously entered, K1 was disabled by the
1317 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1318 	 */
1319 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1320 	if (ret_val)
1321 		goto release;
1322 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1323 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1324 
1325 	/* Clear ULP enabled configuration */
1326 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1327 	if (ret_val)
1328 		goto release;
1329 	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1330 		     I218_ULP_CONFIG1_STICKY_ULP |
1331 		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1332 		     I218_ULP_CONFIG1_WOL_HOST |
1333 		     I218_ULP_CONFIG1_INBAND_EXIT |
1334 		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1335 		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1336 		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1337 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1338 
1339 	/* Commit ULP changes by starting auto ULP configuration */
1340 	phy_reg |= I218_ULP_CONFIG1_START;
1341 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1342 
1343 	/* Clear Disable SMBus Release on PERST# in MAC */
1344 	mac_reg = er32(FEXTNVM7);
1345 	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1346 	ew32(FEXTNVM7, mac_reg);
1347 
1348 release:
1349 	hw->phy.ops.release(hw);
1350 	if (force) {
1351 		e1000_phy_hw_reset(hw);
1352 		msleep(50);
1353 	}
1354 out:
1355 	if (ret_val)
1356 		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1357 	else
1358 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1359 
1360 	return ret_val;
1361 }
1362 
1363 /**
1364  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1365  *  @hw: pointer to the HW structure
1366  *
1367  *  Checks to see of the link status of the hardware has changed.  If a
1368  *  change in link status has been detected, then we read the PHY registers
1369  *  to get the current speed/duplex if link exists.
1370  **/
1371 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1372 {
1373 	struct e1000_mac_info *mac = &hw->mac;
1374 	s32 ret_val, tipg_reg = 0;
1375 	u16 emi_addr, emi_val = 0;
1376 	bool link;
1377 	u16 phy_reg;
1378 
1379 	/* We only want to go out to the PHY registers to see if Auto-Neg
1380 	 * has completed and/or if our link status has changed.  The
1381 	 * get_link_status flag is set upon receiving a Link Status
1382 	 * Change or Rx Sequence Error interrupt.
1383 	 */
1384 	if (!mac->get_link_status)
1385 		return 0;
1386 
1387 	/* First we want to see if the MII Status Register reports
1388 	 * link.  If so, then we want to get the current speed/duplex
1389 	 * of the PHY.
1390 	 */
1391 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1392 	if (ret_val)
1393 		return ret_val;
1394 
1395 	if (hw->mac.type == e1000_pchlan) {
1396 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1397 		if (ret_val)
1398 			return ret_val;
1399 	}
1400 
1401 	/* When connected at 10Mbps half-duplex, some parts are excessively
1402 	 * aggressive resulting in many collisions. To avoid this, increase
1403 	 * the IPG and reduce Rx latency in the PHY.
1404 	 */
1405 	if ((hw->mac.type >= e1000_pch2lan) && link) {
1406 		u16 speed, duplex;
1407 
1408 		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1409 		tipg_reg = er32(TIPG);
1410 		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1411 
1412 		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1413 			tipg_reg |= 0xFF;
1414 			/* Reduce Rx latency in analog PHY */
1415 			emi_val = 0;
1416 		} else if (hw->mac.type >= e1000_pch_spt &&
1417 			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1418 			tipg_reg |= 0xC;
1419 			emi_val = 1;
1420 		} else {
1421 
1422 			/* Roll back the default values */
1423 			tipg_reg |= 0x08;
1424 			emi_val = 1;
1425 		}
1426 
1427 		ew32(TIPG, tipg_reg);
1428 
1429 		ret_val = hw->phy.ops.acquire(hw);
1430 		if (ret_val)
1431 			return ret_val;
1432 
1433 		if (hw->mac.type == e1000_pch2lan)
1434 			emi_addr = I82579_RX_CONFIG;
1435 		else
1436 			emi_addr = I217_RX_CONFIG;
1437 		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1438 
1439 		if (hw->mac.type >= e1000_pch_lpt) {
1440 			u16 phy_reg;
1441 
1442 			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1443 			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1444 			if (speed == SPEED_100 || speed == SPEED_10)
1445 				phy_reg |= 0x3E8;
1446 			else
1447 				phy_reg |= 0xFA;
1448 			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1449 		}
1450 		hw->phy.ops.release(hw);
1451 
1452 		if (ret_val)
1453 			return ret_val;
1454 
1455 		if (hw->mac.type >= e1000_pch_spt) {
1456 			u16 data;
1457 			u16 ptr_gap;
1458 
1459 			if (speed == SPEED_1000) {
1460 				ret_val = hw->phy.ops.acquire(hw);
1461 				if (ret_val)
1462 					return ret_val;
1463 
1464 				ret_val = e1e_rphy_locked(hw,
1465 							  PHY_REG(776, 20),
1466 							  &data);
1467 				if (ret_val) {
1468 					hw->phy.ops.release(hw);
1469 					return ret_val;
1470 				}
1471 
1472 				ptr_gap = (data & (0x3FF << 2)) >> 2;
1473 				if (ptr_gap < 0x18) {
1474 					data &= ~(0x3FF << 2);
1475 					data |= (0x18 << 2);
1476 					ret_val =
1477 					    e1e_wphy_locked(hw,
1478 							    PHY_REG(776, 20),
1479 							    data);
1480 				}
1481 				hw->phy.ops.release(hw);
1482 				if (ret_val)
1483 					return ret_val;
1484 			} else {
1485 				ret_val = hw->phy.ops.acquire(hw);
1486 				if (ret_val)
1487 					return ret_val;
1488 
1489 				ret_val = e1e_wphy_locked(hw,
1490 							  PHY_REG(776, 20),
1491 							  0xC023);
1492 				hw->phy.ops.release(hw);
1493 				if (ret_val)
1494 					return ret_val;
1495 
1496 			}
1497 		}
1498 	}
1499 
1500 	/* I217 Packet Loss issue:
1501 	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1502 	 * on power up.
1503 	 * Set the Beacon Duration for I217 to 8 usec
1504 	 */
1505 	if (hw->mac.type >= e1000_pch_lpt) {
1506 		u32 mac_reg;
1507 
1508 		mac_reg = er32(FEXTNVM4);
1509 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1510 		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1511 		ew32(FEXTNVM4, mac_reg);
1512 	}
1513 
1514 	/* Work-around I218 hang issue */
1515 	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1516 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1517 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1518 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1519 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1520 		if (ret_val)
1521 			return ret_val;
1522 	}
1523 	if (hw->mac.type >= e1000_pch_lpt) {
1524 		/* Set platform power management values for
1525 		 * Latency Tolerance Reporting (LTR)
1526 		 */
1527 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1528 		if (ret_val)
1529 			return ret_val;
1530 	}
1531 
1532 	/* Clear link partner's EEE ability */
1533 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1534 
1535 	if (hw->mac.type >= e1000_pch_lpt) {
1536 		u32 fextnvm6 = er32(FEXTNVM6);
1537 
1538 		if (hw->mac.type == e1000_pch_spt) {
1539 			/* FEXTNVM6 K1-off workaround - for SPT only */
1540 			u32 pcieanacfg = er32(PCIEANACFG);
1541 
1542 			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1543 				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1544 			else
1545 				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1546 		}
1547 
1548 		ew32(FEXTNVM6, fextnvm6);
1549 	}
1550 
1551 	if (!link)
1552 		return 0;	/* No link detected */
1553 
1554 	mac->get_link_status = false;
1555 
1556 	switch (hw->mac.type) {
1557 	case e1000_pch2lan:
1558 		ret_val = e1000_k1_workaround_lv(hw);
1559 		if (ret_val)
1560 			return ret_val;
1561 		/* fall-thru */
1562 	case e1000_pchlan:
1563 		if (hw->phy.type == e1000_phy_82578) {
1564 			ret_val = e1000_link_stall_workaround_hv(hw);
1565 			if (ret_val)
1566 				return ret_val;
1567 		}
1568 
1569 		/* Workaround for PCHx parts in half-duplex:
1570 		 * Set the number of preambles removed from the packet
1571 		 * when it is passed from the PHY to the MAC to prevent
1572 		 * the MAC from misinterpreting the packet type.
1573 		 */
1574 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1575 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1576 
1577 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1578 			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1579 
1580 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1581 		break;
1582 	default:
1583 		break;
1584 	}
1585 
1586 	/* Check if there was DownShift, must be checked
1587 	 * immediately after link-up
1588 	 */
1589 	e1000e_check_downshift(hw);
1590 
1591 	/* Enable/Disable EEE after link up */
1592 	if (hw->phy.type > e1000_phy_82579) {
1593 		ret_val = e1000_set_eee_pchlan(hw);
1594 		if (ret_val)
1595 			return ret_val;
1596 	}
1597 
1598 	/* If we are forcing speed/duplex, then we simply return since
1599 	 * we have already determined whether we have link or not.
1600 	 */
1601 	if (!mac->autoneg)
1602 		return -E1000_ERR_CONFIG;
1603 
1604 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1605 	 * of MAC speed/duplex configuration.  So we only need to
1606 	 * configure Collision Distance in the MAC.
1607 	 */
1608 	mac->ops.config_collision_dist(hw);
1609 
1610 	/* Configure Flow Control now that Auto-Neg has completed.
1611 	 * First, we need to restore the desired flow control
1612 	 * settings because we may have had to re-autoneg with a
1613 	 * different link partner.
1614 	 */
1615 	ret_val = e1000e_config_fc_after_link_up(hw);
1616 	if (ret_val)
1617 		e_dbg("Error configuring flow control\n");
1618 
1619 	return ret_val;
1620 }
1621 
1622 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1623 {
1624 	struct e1000_hw *hw = &adapter->hw;
1625 	s32 rc;
1626 
1627 	rc = e1000_init_mac_params_ich8lan(hw);
1628 	if (rc)
1629 		return rc;
1630 
1631 	rc = e1000_init_nvm_params_ich8lan(hw);
1632 	if (rc)
1633 		return rc;
1634 
1635 	switch (hw->mac.type) {
1636 	case e1000_ich8lan:
1637 	case e1000_ich9lan:
1638 	case e1000_ich10lan:
1639 		rc = e1000_init_phy_params_ich8lan(hw);
1640 		break;
1641 	case e1000_pchlan:
1642 	case e1000_pch2lan:
1643 	case e1000_pch_lpt:
1644 	case e1000_pch_spt:
1645 	case e1000_pch_cnp:
1646 		rc = e1000_init_phy_params_pchlan(hw);
1647 		break;
1648 	default:
1649 		break;
1650 	}
1651 	if (rc)
1652 		return rc;
1653 
1654 	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1655 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1656 	 */
1657 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1658 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1659 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1660 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1661 		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1662 
1663 		hw->mac.ops.blink_led = NULL;
1664 	}
1665 
1666 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1667 	    (adapter->hw.phy.type != e1000_phy_ife))
1668 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1669 
1670 	/* Enable workaround for 82579 w/ ME enabled */
1671 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1672 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1673 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1674 
1675 	return 0;
1676 }
1677 
1678 static DEFINE_MUTEX(nvm_mutex);
1679 
1680 /**
1681  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1682  *  @hw: pointer to the HW structure
1683  *
1684  *  Acquires the mutex for performing NVM operations.
1685  **/
1686 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1687 {
1688 	mutex_lock(&nvm_mutex);
1689 
1690 	return 0;
1691 }
1692 
1693 /**
1694  *  e1000_release_nvm_ich8lan - Release NVM mutex
1695  *  @hw: pointer to the HW structure
1696  *
1697  *  Releases the mutex used while performing NVM operations.
1698  **/
1699 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1700 {
1701 	mutex_unlock(&nvm_mutex);
1702 }
1703 
1704 /**
1705  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1706  *  @hw: pointer to the HW structure
1707  *
1708  *  Acquires the software control flag for performing PHY and select
1709  *  MAC CSR accesses.
1710  **/
1711 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1712 {
1713 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1714 	s32 ret_val = 0;
1715 
1716 	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1717 			     &hw->adapter->state)) {
1718 		e_dbg("contention for Phy access\n");
1719 		return -E1000_ERR_PHY;
1720 	}
1721 
1722 	while (timeout) {
1723 		extcnf_ctrl = er32(EXTCNF_CTRL);
1724 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1725 			break;
1726 
1727 		mdelay(1);
1728 		timeout--;
1729 	}
1730 
1731 	if (!timeout) {
1732 		e_dbg("SW has already locked the resource.\n");
1733 		ret_val = -E1000_ERR_CONFIG;
1734 		goto out;
1735 	}
1736 
1737 	timeout = SW_FLAG_TIMEOUT;
1738 
1739 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1740 	ew32(EXTCNF_CTRL, extcnf_ctrl);
1741 
1742 	while (timeout) {
1743 		extcnf_ctrl = er32(EXTCNF_CTRL);
1744 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1745 			break;
1746 
1747 		mdelay(1);
1748 		timeout--;
1749 	}
1750 
1751 	if (!timeout) {
1752 		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1753 		      er32(FWSM), extcnf_ctrl);
1754 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1755 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1756 		ret_val = -E1000_ERR_CONFIG;
1757 		goto out;
1758 	}
1759 
1760 out:
1761 	if (ret_val)
1762 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1763 
1764 	return ret_val;
1765 }
1766 
1767 /**
1768  *  e1000_release_swflag_ich8lan - Release software control flag
1769  *  @hw: pointer to the HW structure
1770  *
1771  *  Releases the software control flag for performing PHY and select
1772  *  MAC CSR accesses.
1773  **/
1774 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1775 {
1776 	u32 extcnf_ctrl;
1777 
1778 	extcnf_ctrl = er32(EXTCNF_CTRL);
1779 
1780 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1781 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1782 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1783 	} else {
1784 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1785 	}
1786 
1787 	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1788 }
1789 
1790 /**
1791  *  e1000_check_mng_mode_ich8lan - Checks management mode
1792  *  @hw: pointer to the HW structure
1793  *
1794  *  This checks if the adapter has any manageability enabled.
1795  *  This is a function pointer entry point only called by read/write
1796  *  routines for the PHY and NVM parts.
1797  **/
1798 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1799 {
1800 	u32 fwsm;
1801 
1802 	fwsm = er32(FWSM);
1803 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1804 		((fwsm & E1000_FWSM_MODE_MASK) ==
1805 		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1806 }
1807 
1808 /**
1809  *  e1000_check_mng_mode_pchlan - Checks management mode
1810  *  @hw: pointer to the HW structure
1811  *
1812  *  This checks if the adapter has iAMT enabled.
1813  *  This is a function pointer entry point only called by read/write
1814  *  routines for the PHY and NVM parts.
1815  **/
1816 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1817 {
1818 	u32 fwsm;
1819 
1820 	fwsm = er32(FWSM);
1821 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1822 	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1823 }
1824 
1825 /**
1826  *  e1000_rar_set_pch2lan - Set receive address register
1827  *  @hw: pointer to the HW structure
1828  *  @addr: pointer to the receive address
1829  *  @index: receive address array register
1830  *
1831  *  Sets the receive address array register at index to the address passed
1832  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1833  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1834  *  Use SHRA[0-3] in place of those reserved for ME.
1835  **/
1836 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1837 {
1838 	u32 rar_low, rar_high;
1839 
1840 	/* HW expects these in little endian so we reverse the byte order
1841 	 * from network order (big endian) to little endian
1842 	 */
1843 	rar_low = ((u32)addr[0] |
1844 		   ((u32)addr[1] << 8) |
1845 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1846 
1847 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1848 
1849 	/* If MAC address zero, no need to set the AV bit */
1850 	if (rar_low || rar_high)
1851 		rar_high |= E1000_RAH_AV;
1852 
1853 	if (index == 0) {
1854 		ew32(RAL(index), rar_low);
1855 		e1e_flush();
1856 		ew32(RAH(index), rar_high);
1857 		e1e_flush();
1858 		return 0;
1859 	}
1860 
1861 	/* RAR[1-6] are owned by manageability.  Skip those and program the
1862 	 * next address into the SHRA register array.
1863 	 */
1864 	if (index < (u32)(hw->mac.rar_entry_count)) {
1865 		s32 ret_val;
1866 
1867 		ret_val = e1000_acquire_swflag_ich8lan(hw);
1868 		if (ret_val)
1869 			goto out;
1870 
1871 		ew32(SHRAL(index - 1), rar_low);
1872 		e1e_flush();
1873 		ew32(SHRAH(index - 1), rar_high);
1874 		e1e_flush();
1875 
1876 		e1000_release_swflag_ich8lan(hw);
1877 
1878 		/* verify the register updates */
1879 		if ((er32(SHRAL(index - 1)) == rar_low) &&
1880 		    (er32(SHRAH(index - 1)) == rar_high))
1881 			return 0;
1882 
1883 		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1884 		      (index - 1), er32(FWSM));
1885 	}
1886 
1887 out:
1888 	e_dbg("Failed to write receive address at index %d\n", index);
1889 	return -E1000_ERR_CONFIG;
1890 }
1891 
1892 /**
1893  *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1894  *  @hw: pointer to the HW structure
1895  *
1896  *  Get the number of available receive registers that the Host can
1897  *  program. SHRA[0-10] are the shared receive address registers
1898  *  that are shared between the Host and manageability engine (ME).
1899  *  ME can reserve any number of addresses and the host needs to be
1900  *  able to tell how many available registers it has access to.
1901  **/
1902 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1903 {
1904 	u32 wlock_mac;
1905 	u32 num_entries;
1906 
1907 	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1908 	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1909 
1910 	switch (wlock_mac) {
1911 	case 0:
1912 		/* All SHRA[0..10] and RAR[0] available */
1913 		num_entries = hw->mac.rar_entry_count;
1914 		break;
1915 	case 1:
1916 		/* Only RAR[0] available */
1917 		num_entries = 1;
1918 		break;
1919 	default:
1920 		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1921 		num_entries = wlock_mac + 1;
1922 		break;
1923 	}
1924 
1925 	return num_entries;
1926 }
1927 
1928 /**
1929  *  e1000_rar_set_pch_lpt - Set receive address registers
1930  *  @hw: pointer to the HW structure
1931  *  @addr: pointer to the receive address
1932  *  @index: receive address array register
1933  *
1934  *  Sets the receive address register array at index to the address passed
1935  *  in by addr. For LPT, RAR[0] is the base address register that is to
1936  *  contain the MAC address. SHRA[0-10] are the shared receive address
1937  *  registers that are shared between the Host and manageability engine (ME).
1938  **/
1939 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1940 {
1941 	u32 rar_low, rar_high;
1942 	u32 wlock_mac;
1943 
1944 	/* HW expects these in little endian so we reverse the byte order
1945 	 * from network order (big endian) to little endian
1946 	 */
1947 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1948 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1949 
1950 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1951 
1952 	/* If MAC address zero, no need to set the AV bit */
1953 	if (rar_low || rar_high)
1954 		rar_high |= E1000_RAH_AV;
1955 
1956 	if (index == 0) {
1957 		ew32(RAL(index), rar_low);
1958 		e1e_flush();
1959 		ew32(RAH(index), rar_high);
1960 		e1e_flush();
1961 		return 0;
1962 	}
1963 
1964 	/* The manageability engine (ME) can lock certain SHRAR registers that
1965 	 * it is using - those registers are unavailable for use.
1966 	 */
1967 	if (index < hw->mac.rar_entry_count) {
1968 		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1969 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1970 
1971 		/* Check if all SHRAR registers are locked */
1972 		if (wlock_mac == 1)
1973 			goto out;
1974 
1975 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1976 			s32 ret_val;
1977 
1978 			ret_val = e1000_acquire_swflag_ich8lan(hw);
1979 
1980 			if (ret_val)
1981 				goto out;
1982 
1983 			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1984 			e1e_flush();
1985 			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1986 			e1e_flush();
1987 
1988 			e1000_release_swflag_ich8lan(hw);
1989 
1990 			/* verify the register updates */
1991 			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1992 			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1993 				return 0;
1994 		}
1995 	}
1996 
1997 out:
1998 	e_dbg("Failed to write receive address at index %d\n", index);
1999 	return -E1000_ERR_CONFIG;
2000 }
2001 
2002 /**
2003  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2004  *  @hw: pointer to the HW structure
2005  *
2006  *  Checks if firmware is blocking the reset of the PHY.
2007  *  This is a function pointer entry point only called by
2008  *  reset routines.
2009  **/
2010 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2011 {
2012 	bool blocked = false;
2013 	int i = 0;
2014 
2015 	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2016 	       (i++ < 30))
2017 		usleep_range(10000, 20000);
2018 	return blocked ? E1000_BLK_PHY_RESET : 0;
2019 }
2020 
2021 /**
2022  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2023  *  @hw: pointer to the HW structure
2024  *
2025  *  Assumes semaphore already acquired.
2026  *
2027  **/
2028 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2029 {
2030 	u16 phy_data;
2031 	u32 strap = er32(STRAP);
2032 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2033 	    E1000_STRAP_SMT_FREQ_SHIFT;
2034 	s32 ret_val;
2035 
2036 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2037 
2038 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2039 	if (ret_val)
2040 		return ret_val;
2041 
2042 	phy_data &= ~HV_SMB_ADDR_MASK;
2043 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2044 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2045 
2046 	if (hw->phy.type == e1000_phy_i217) {
2047 		/* Restore SMBus frequency */
2048 		if (freq--) {
2049 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2050 			phy_data |= (freq & BIT(0)) <<
2051 			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2052 			phy_data |= (freq & BIT(1)) <<
2053 			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2054 		} else {
2055 			e_dbg("Unsupported SMB frequency in PHY\n");
2056 		}
2057 	}
2058 
2059 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2060 }
2061 
2062 /**
2063  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2064  *  @hw:   pointer to the HW structure
2065  *
2066  *  SW should configure the LCD from the NVM extended configuration region
2067  *  as a workaround for certain parts.
2068  **/
2069 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2070 {
2071 	struct e1000_phy_info *phy = &hw->phy;
2072 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2073 	s32 ret_val = 0;
2074 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2075 
2076 	/* Initialize the PHY from the NVM on ICH platforms.  This
2077 	 * is needed due to an issue where the NVM configuration is
2078 	 * not properly autoloaded after power transitions.
2079 	 * Therefore, after each PHY reset, we will load the
2080 	 * configuration data out of the NVM manually.
2081 	 */
2082 	switch (hw->mac.type) {
2083 	case e1000_ich8lan:
2084 		if (phy->type != e1000_phy_igp_3)
2085 			return ret_val;
2086 
2087 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2088 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2089 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2090 			break;
2091 		}
2092 		/* Fall-thru */
2093 	case e1000_pchlan:
2094 	case e1000_pch2lan:
2095 	case e1000_pch_lpt:
2096 	case e1000_pch_spt:
2097 	case e1000_pch_cnp:
2098 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2099 		break;
2100 	default:
2101 		return ret_val;
2102 	}
2103 
2104 	ret_val = hw->phy.ops.acquire(hw);
2105 	if (ret_val)
2106 		return ret_val;
2107 
2108 	data = er32(FEXTNVM);
2109 	if (!(data & sw_cfg_mask))
2110 		goto release;
2111 
2112 	/* Make sure HW does not configure LCD from PHY
2113 	 * extended configuration before SW configuration
2114 	 */
2115 	data = er32(EXTCNF_CTRL);
2116 	if ((hw->mac.type < e1000_pch2lan) &&
2117 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2118 		goto release;
2119 
2120 	cnf_size = er32(EXTCNF_SIZE);
2121 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2122 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2123 	if (!cnf_size)
2124 		goto release;
2125 
2126 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2127 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2128 
2129 	if (((hw->mac.type == e1000_pchlan) &&
2130 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2131 	    (hw->mac.type > e1000_pchlan)) {
2132 		/* HW configures the SMBus address and LEDs when the
2133 		 * OEM and LCD Write Enable bits are set in the NVM.
2134 		 * When both NVM bits are cleared, SW will configure
2135 		 * them instead.
2136 		 */
2137 		ret_val = e1000_write_smbus_addr(hw);
2138 		if (ret_val)
2139 			goto release;
2140 
2141 		data = er32(LEDCTL);
2142 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2143 							(u16)data);
2144 		if (ret_val)
2145 			goto release;
2146 	}
2147 
2148 	/* Configure LCD from extended configuration region. */
2149 
2150 	/* cnf_base_addr is in DWORD */
2151 	word_addr = (u16)(cnf_base_addr << 1);
2152 
2153 	for (i = 0; i < cnf_size; i++) {
2154 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2155 		if (ret_val)
2156 			goto release;
2157 
2158 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2159 					 1, &reg_addr);
2160 		if (ret_val)
2161 			goto release;
2162 
2163 		/* Save off the PHY page for future writes. */
2164 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2165 			phy_page = reg_data;
2166 			continue;
2167 		}
2168 
2169 		reg_addr &= PHY_REG_MASK;
2170 		reg_addr |= phy_page;
2171 
2172 		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2173 		if (ret_val)
2174 			goto release;
2175 	}
2176 
2177 release:
2178 	hw->phy.ops.release(hw);
2179 	return ret_val;
2180 }
2181 
2182 /**
2183  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2184  *  @hw:   pointer to the HW structure
2185  *  @link: link up bool flag
2186  *
2187  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2188  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2189  *  If link is down, the function will restore the default K1 setting located
2190  *  in the NVM.
2191  **/
2192 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2193 {
2194 	s32 ret_val = 0;
2195 	u16 status_reg = 0;
2196 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2197 
2198 	if (hw->mac.type != e1000_pchlan)
2199 		return 0;
2200 
2201 	/* Wrap the whole flow with the sw flag */
2202 	ret_val = hw->phy.ops.acquire(hw);
2203 	if (ret_val)
2204 		return ret_val;
2205 
2206 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2207 	if (link) {
2208 		if (hw->phy.type == e1000_phy_82578) {
2209 			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2210 						  &status_reg);
2211 			if (ret_val)
2212 				goto release;
2213 
2214 			status_reg &= (BM_CS_STATUS_LINK_UP |
2215 				       BM_CS_STATUS_RESOLVED |
2216 				       BM_CS_STATUS_SPEED_MASK);
2217 
2218 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2219 					   BM_CS_STATUS_RESOLVED |
2220 					   BM_CS_STATUS_SPEED_1000))
2221 				k1_enable = false;
2222 		}
2223 
2224 		if (hw->phy.type == e1000_phy_82577) {
2225 			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2226 			if (ret_val)
2227 				goto release;
2228 
2229 			status_reg &= (HV_M_STATUS_LINK_UP |
2230 				       HV_M_STATUS_AUTONEG_COMPLETE |
2231 				       HV_M_STATUS_SPEED_MASK);
2232 
2233 			if (status_reg == (HV_M_STATUS_LINK_UP |
2234 					   HV_M_STATUS_AUTONEG_COMPLETE |
2235 					   HV_M_STATUS_SPEED_1000))
2236 				k1_enable = false;
2237 		}
2238 
2239 		/* Link stall fix for link up */
2240 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2241 		if (ret_val)
2242 			goto release;
2243 
2244 	} else {
2245 		/* Link stall fix for link down */
2246 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2247 		if (ret_val)
2248 			goto release;
2249 	}
2250 
2251 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2252 
2253 release:
2254 	hw->phy.ops.release(hw);
2255 
2256 	return ret_val;
2257 }
2258 
2259 /**
2260  *  e1000_configure_k1_ich8lan - Configure K1 power state
2261  *  @hw: pointer to the HW structure
2262  *  @enable: K1 state to configure
2263  *
2264  *  Configure the K1 power state based on the provided parameter.
2265  *  Assumes semaphore already acquired.
2266  *
2267  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2268  **/
2269 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2270 {
2271 	s32 ret_val;
2272 	u32 ctrl_reg = 0;
2273 	u32 ctrl_ext = 0;
2274 	u32 reg = 0;
2275 	u16 kmrn_reg = 0;
2276 
2277 	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2278 					      &kmrn_reg);
2279 	if (ret_val)
2280 		return ret_val;
2281 
2282 	if (k1_enable)
2283 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2284 	else
2285 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2286 
2287 	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2288 					       kmrn_reg);
2289 	if (ret_val)
2290 		return ret_val;
2291 
2292 	usleep_range(20, 40);
2293 	ctrl_ext = er32(CTRL_EXT);
2294 	ctrl_reg = er32(CTRL);
2295 
2296 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2297 	reg |= E1000_CTRL_FRCSPD;
2298 	ew32(CTRL, reg);
2299 
2300 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2301 	e1e_flush();
2302 	usleep_range(20, 40);
2303 	ew32(CTRL, ctrl_reg);
2304 	ew32(CTRL_EXT, ctrl_ext);
2305 	e1e_flush();
2306 	usleep_range(20, 40);
2307 
2308 	return 0;
2309 }
2310 
2311 /**
2312  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2313  *  @hw:       pointer to the HW structure
2314  *  @d0_state: boolean if entering d0 or d3 device state
2315  *
2316  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2317  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2318  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2319  **/
2320 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2321 {
2322 	s32 ret_val = 0;
2323 	u32 mac_reg;
2324 	u16 oem_reg;
2325 
2326 	if (hw->mac.type < e1000_pchlan)
2327 		return ret_val;
2328 
2329 	ret_val = hw->phy.ops.acquire(hw);
2330 	if (ret_val)
2331 		return ret_val;
2332 
2333 	if (hw->mac.type == e1000_pchlan) {
2334 		mac_reg = er32(EXTCNF_CTRL);
2335 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2336 			goto release;
2337 	}
2338 
2339 	mac_reg = er32(FEXTNVM);
2340 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2341 		goto release;
2342 
2343 	mac_reg = er32(PHY_CTRL);
2344 
2345 	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2346 	if (ret_val)
2347 		goto release;
2348 
2349 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2350 
2351 	if (d0_state) {
2352 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2353 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2354 
2355 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2356 			oem_reg |= HV_OEM_BITS_LPLU;
2357 	} else {
2358 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2359 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2360 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2361 
2362 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2363 			       E1000_PHY_CTRL_NOND0A_LPLU))
2364 			oem_reg |= HV_OEM_BITS_LPLU;
2365 	}
2366 
2367 	/* Set Restart auto-neg to activate the bits */
2368 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2369 	    !hw->phy.ops.check_reset_block(hw))
2370 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2371 
2372 	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2373 
2374 release:
2375 	hw->phy.ops.release(hw);
2376 
2377 	return ret_val;
2378 }
2379 
2380 /**
2381  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2382  *  @hw:   pointer to the HW structure
2383  **/
2384 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2385 {
2386 	s32 ret_val;
2387 	u16 data;
2388 
2389 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2390 	if (ret_val)
2391 		return ret_val;
2392 
2393 	data |= HV_KMRN_MDIO_SLOW;
2394 
2395 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2396 
2397 	return ret_val;
2398 }
2399 
2400 /**
2401  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2402  *  done after every PHY reset.
2403  **/
2404 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2405 {
2406 	s32 ret_val = 0;
2407 	u16 phy_data;
2408 
2409 	if (hw->mac.type != e1000_pchlan)
2410 		return 0;
2411 
2412 	/* Set MDIO slow mode before any other MDIO access */
2413 	if (hw->phy.type == e1000_phy_82577) {
2414 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2415 		if (ret_val)
2416 			return ret_val;
2417 	}
2418 
2419 	if (((hw->phy.type == e1000_phy_82577) &&
2420 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2421 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2422 		/* Disable generation of early preamble */
2423 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2424 		if (ret_val)
2425 			return ret_val;
2426 
2427 		/* Preamble tuning for SSC */
2428 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2429 		if (ret_val)
2430 			return ret_val;
2431 	}
2432 
2433 	if (hw->phy.type == e1000_phy_82578) {
2434 		/* Return registers to default by doing a soft reset then
2435 		 * writing 0x3140 to the control register.
2436 		 */
2437 		if (hw->phy.revision < 2) {
2438 			e1000e_phy_sw_reset(hw);
2439 			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2440 		}
2441 	}
2442 
2443 	/* Select page 0 */
2444 	ret_val = hw->phy.ops.acquire(hw);
2445 	if (ret_val)
2446 		return ret_val;
2447 
2448 	hw->phy.addr = 1;
2449 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2450 	hw->phy.ops.release(hw);
2451 	if (ret_val)
2452 		return ret_val;
2453 
2454 	/* Configure the K1 Si workaround during phy reset assuming there is
2455 	 * link so that it disables K1 if link is in 1Gbps.
2456 	 */
2457 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2458 	if (ret_val)
2459 		return ret_val;
2460 
2461 	/* Workaround for link disconnects on a busy hub in half duplex */
2462 	ret_val = hw->phy.ops.acquire(hw);
2463 	if (ret_val)
2464 		return ret_val;
2465 	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2466 	if (ret_val)
2467 		goto release;
2468 	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2469 	if (ret_val)
2470 		goto release;
2471 
2472 	/* set MSE higher to enable link to stay up when noise is high */
2473 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2474 release:
2475 	hw->phy.ops.release(hw);
2476 
2477 	return ret_val;
2478 }
2479 
2480 /**
2481  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2482  *  @hw:   pointer to the HW structure
2483  **/
2484 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2485 {
2486 	u32 mac_reg;
2487 	u16 i, phy_reg = 0;
2488 	s32 ret_val;
2489 
2490 	ret_val = hw->phy.ops.acquire(hw);
2491 	if (ret_val)
2492 		return;
2493 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2494 	if (ret_val)
2495 		goto release;
2496 
2497 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2498 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2499 		mac_reg = er32(RAL(i));
2500 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2501 					   (u16)(mac_reg & 0xFFFF));
2502 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2503 					   (u16)((mac_reg >> 16) & 0xFFFF));
2504 
2505 		mac_reg = er32(RAH(i));
2506 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2507 					   (u16)(mac_reg & 0xFFFF));
2508 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2509 					   (u16)((mac_reg & E1000_RAH_AV)
2510 						 >> 16));
2511 	}
2512 
2513 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2514 
2515 release:
2516 	hw->phy.ops.release(hw);
2517 }
2518 
2519 /**
2520  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2521  *  with 82579 PHY
2522  *  @hw: pointer to the HW structure
2523  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2524  **/
2525 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2526 {
2527 	s32 ret_val = 0;
2528 	u16 phy_reg, data;
2529 	u32 mac_reg;
2530 	u16 i;
2531 
2532 	if (hw->mac.type < e1000_pch2lan)
2533 		return 0;
2534 
2535 	/* disable Rx path while enabling/disabling workaround */
2536 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2537 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2538 	if (ret_val)
2539 		return ret_val;
2540 
2541 	if (enable) {
2542 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2543 		 * SHRAL/H) and initial CRC values to the MAC
2544 		 */
2545 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2546 			u8 mac_addr[ETH_ALEN] = { 0 };
2547 			u32 addr_high, addr_low;
2548 
2549 			addr_high = er32(RAH(i));
2550 			if (!(addr_high & E1000_RAH_AV))
2551 				continue;
2552 			addr_low = er32(RAL(i));
2553 			mac_addr[0] = (addr_low & 0xFF);
2554 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2555 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2556 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2557 			mac_addr[4] = (addr_high & 0xFF);
2558 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2559 
2560 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2561 		}
2562 
2563 		/* Write Rx addresses to the PHY */
2564 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2565 
2566 		/* Enable jumbo frame workaround in the MAC */
2567 		mac_reg = er32(FFLT_DBG);
2568 		mac_reg &= ~BIT(14);
2569 		mac_reg |= (7 << 15);
2570 		ew32(FFLT_DBG, mac_reg);
2571 
2572 		mac_reg = er32(RCTL);
2573 		mac_reg |= E1000_RCTL_SECRC;
2574 		ew32(RCTL, mac_reg);
2575 
2576 		ret_val = e1000e_read_kmrn_reg(hw,
2577 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2578 					       &data);
2579 		if (ret_val)
2580 			return ret_val;
2581 		ret_val = e1000e_write_kmrn_reg(hw,
2582 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2583 						data | BIT(0));
2584 		if (ret_val)
2585 			return ret_val;
2586 		ret_val = e1000e_read_kmrn_reg(hw,
2587 					       E1000_KMRNCTRLSTA_HD_CTRL,
2588 					       &data);
2589 		if (ret_val)
2590 			return ret_val;
2591 		data &= ~(0xF << 8);
2592 		data |= (0xB << 8);
2593 		ret_val = e1000e_write_kmrn_reg(hw,
2594 						E1000_KMRNCTRLSTA_HD_CTRL,
2595 						data);
2596 		if (ret_val)
2597 			return ret_val;
2598 
2599 		/* Enable jumbo frame workaround in the PHY */
2600 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2601 		data &= ~(0x7F << 5);
2602 		data |= (0x37 << 5);
2603 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2604 		if (ret_val)
2605 			return ret_val;
2606 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2607 		data &= ~BIT(13);
2608 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2609 		if (ret_val)
2610 			return ret_val;
2611 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2612 		data &= ~(0x3FF << 2);
2613 		data |= (E1000_TX_PTR_GAP << 2);
2614 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2615 		if (ret_val)
2616 			return ret_val;
2617 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2618 		if (ret_val)
2619 			return ret_val;
2620 		e1e_rphy(hw, HV_PM_CTRL, &data);
2621 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2622 		if (ret_val)
2623 			return ret_val;
2624 	} else {
2625 		/* Write MAC register values back to h/w defaults */
2626 		mac_reg = er32(FFLT_DBG);
2627 		mac_reg &= ~(0xF << 14);
2628 		ew32(FFLT_DBG, mac_reg);
2629 
2630 		mac_reg = er32(RCTL);
2631 		mac_reg &= ~E1000_RCTL_SECRC;
2632 		ew32(RCTL, mac_reg);
2633 
2634 		ret_val = e1000e_read_kmrn_reg(hw,
2635 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2636 					       &data);
2637 		if (ret_val)
2638 			return ret_val;
2639 		ret_val = e1000e_write_kmrn_reg(hw,
2640 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2641 						data & ~BIT(0));
2642 		if (ret_val)
2643 			return ret_val;
2644 		ret_val = e1000e_read_kmrn_reg(hw,
2645 					       E1000_KMRNCTRLSTA_HD_CTRL,
2646 					       &data);
2647 		if (ret_val)
2648 			return ret_val;
2649 		data &= ~(0xF << 8);
2650 		data |= (0xB << 8);
2651 		ret_val = e1000e_write_kmrn_reg(hw,
2652 						E1000_KMRNCTRLSTA_HD_CTRL,
2653 						data);
2654 		if (ret_val)
2655 			return ret_val;
2656 
2657 		/* Write PHY register values back to h/w defaults */
2658 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2659 		data &= ~(0x7F << 5);
2660 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2661 		if (ret_val)
2662 			return ret_val;
2663 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2664 		data |= BIT(13);
2665 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2666 		if (ret_val)
2667 			return ret_val;
2668 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2669 		data &= ~(0x3FF << 2);
2670 		data |= (0x8 << 2);
2671 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2672 		if (ret_val)
2673 			return ret_val;
2674 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2675 		if (ret_val)
2676 			return ret_val;
2677 		e1e_rphy(hw, HV_PM_CTRL, &data);
2678 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2679 		if (ret_val)
2680 			return ret_val;
2681 	}
2682 
2683 	/* re-enable Rx path after enabling/disabling workaround */
2684 	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2685 }
2686 
2687 /**
2688  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2689  *  done after every PHY reset.
2690  **/
2691 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2692 {
2693 	s32 ret_val = 0;
2694 
2695 	if (hw->mac.type != e1000_pch2lan)
2696 		return 0;
2697 
2698 	/* Set MDIO slow mode before any other MDIO access */
2699 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2700 	if (ret_val)
2701 		return ret_val;
2702 
2703 	ret_val = hw->phy.ops.acquire(hw);
2704 	if (ret_val)
2705 		return ret_val;
2706 	/* set MSE higher to enable link to stay up when noise is high */
2707 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2708 	if (ret_val)
2709 		goto release;
2710 	/* drop link after 5 times MSE threshold was reached */
2711 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2712 release:
2713 	hw->phy.ops.release(hw);
2714 
2715 	return ret_val;
2716 }
2717 
2718 /**
2719  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2720  *  @hw:   pointer to the HW structure
2721  *
2722  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2723  *  Disable K1 in 1000Mbps and 100Mbps
2724  **/
2725 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2726 {
2727 	s32 ret_val = 0;
2728 	u16 status_reg = 0;
2729 
2730 	if (hw->mac.type != e1000_pch2lan)
2731 		return 0;
2732 
2733 	/* Set K1 beacon duration based on 10Mbs speed */
2734 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2735 	if (ret_val)
2736 		return ret_val;
2737 
2738 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2739 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2740 		if (status_reg &
2741 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2742 			u16 pm_phy_reg;
2743 
2744 			/* LV 1G/100 Packet drop issue wa  */
2745 			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2746 			if (ret_val)
2747 				return ret_val;
2748 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2749 			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2750 			if (ret_val)
2751 				return ret_val;
2752 		} else {
2753 			u32 mac_reg;
2754 
2755 			mac_reg = er32(FEXTNVM4);
2756 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2757 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2758 			ew32(FEXTNVM4, mac_reg);
2759 		}
2760 	}
2761 
2762 	return ret_val;
2763 }
2764 
2765 /**
2766  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2767  *  @hw:   pointer to the HW structure
2768  *  @gate: boolean set to true to gate, false to ungate
2769  *
2770  *  Gate/ungate the automatic PHY configuration via hardware; perform
2771  *  the configuration via software instead.
2772  **/
2773 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2774 {
2775 	u32 extcnf_ctrl;
2776 
2777 	if (hw->mac.type < e1000_pch2lan)
2778 		return;
2779 
2780 	extcnf_ctrl = er32(EXTCNF_CTRL);
2781 
2782 	if (gate)
2783 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2784 	else
2785 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2786 
2787 	ew32(EXTCNF_CTRL, extcnf_ctrl);
2788 }
2789 
2790 /**
2791  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2792  *  @hw: pointer to the HW structure
2793  *
2794  *  Check the appropriate indication the MAC has finished configuring the
2795  *  PHY after a software reset.
2796  **/
2797 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2798 {
2799 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2800 
2801 	/* Wait for basic configuration completes before proceeding */
2802 	do {
2803 		data = er32(STATUS);
2804 		data &= E1000_STATUS_LAN_INIT_DONE;
2805 		usleep_range(100, 200);
2806 	} while ((!data) && --loop);
2807 
2808 	/* If basic configuration is incomplete before the above loop
2809 	 * count reaches 0, loading the configuration from NVM will
2810 	 * leave the PHY in a bad state possibly resulting in no link.
2811 	 */
2812 	if (loop == 0)
2813 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2814 
2815 	/* Clear the Init Done bit for the next init event */
2816 	data = er32(STATUS);
2817 	data &= ~E1000_STATUS_LAN_INIT_DONE;
2818 	ew32(STATUS, data);
2819 }
2820 
2821 /**
2822  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2823  *  @hw: pointer to the HW structure
2824  **/
2825 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2826 {
2827 	s32 ret_val = 0;
2828 	u16 reg;
2829 
2830 	if (hw->phy.ops.check_reset_block(hw))
2831 		return 0;
2832 
2833 	/* Allow time for h/w to get to quiescent state after reset */
2834 	usleep_range(10000, 20000);
2835 
2836 	/* Perform any necessary post-reset workarounds */
2837 	switch (hw->mac.type) {
2838 	case e1000_pchlan:
2839 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2840 		if (ret_val)
2841 			return ret_val;
2842 		break;
2843 	case e1000_pch2lan:
2844 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2845 		if (ret_val)
2846 			return ret_val;
2847 		break;
2848 	default:
2849 		break;
2850 	}
2851 
2852 	/* Clear the host wakeup bit after lcd reset */
2853 	if (hw->mac.type >= e1000_pchlan) {
2854 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2855 		reg &= ~BM_WUC_HOST_WU_BIT;
2856 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2857 	}
2858 
2859 	/* Configure the LCD with the extended configuration region in NVM */
2860 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2861 	if (ret_val)
2862 		return ret_val;
2863 
2864 	/* Configure the LCD with the OEM bits in NVM */
2865 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2866 
2867 	if (hw->mac.type == e1000_pch2lan) {
2868 		/* Ungate automatic PHY configuration on non-managed 82579 */
2869 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2870 			usleep_range(10000, 20000);
2871 			e1000_gate_hw_phy_config_ich8lan(hw, false);
2872 		}
2873 
2874 		/* Set EEE LPI Update Timer to 200usec */
2875 		ret_val = hw->phy.ops.acquire(hw);
2876 		if (ret_val)
2877 			return ret_val;
2878 		ret_val = e1000_write_emi_reg_locked(hw,
2879 						     I82579_LPI_UPDATE_TIMER,
2880 						     0x1387);
2881 		hw->phy.ops.release(hw);
2882 	}
2883 
2884 	return ret_val;
2885 }
2886 
2887 /**
2888  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2889  *  @hw: pointer to the HW structure
2890  *
2891  *  Resets the PHY
2892  *  This is a function pointer entry point called by drivers
2893  *  or other shared routines.
2894  **/
2895 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2896 {
2897 	s32 ret_val = 0;
2898 
2899 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2900 	if ((hw->mac.type == e1000_pch2lan) &&
2901 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2902 		e1000_gate_hw_phy_config_ich8lan(hw, true);
2903 
2904 	ret_val = e1000e_phy_hw_reset_generic(hw);
2905 	if (ret_val)
2906 		return ret_val;
2907 
2908 	return e1000_post_phy_reset_ich8lan(hw);
2909 }
2910 
2911 /**
2912  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2913  *  @hw: pointer to the HW structure
2914  *  @active: true to enable LPLU, false to disable
2915  *
2916  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2917  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2918  *  the phy speed. This function will manually set the LPLU bit and restart
2919  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2920  *  since it configures the same bit.
2921  **/
2922 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2923 {
2924 	s32 ret_val;
2925 	u16 oem_reg;
2926 
2927 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2928 	if (ret_val)
2929 		return ret_val;
2930 
2931 	if (active)
2932 		oem_reg |= HV_OEM_BITS_LPLU;
2933 	else
2934 		oem_reg &= ~HV_OEM_BITS_LPLU;
2935 
2936 	if (!hw->phy.ops.check_reset_block(hw))
2937 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2938 
2939 	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2940 }
2941 
2942 /**
2943  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2944  *  @hw: pointer to the HW structure
2945  *  @active: true to enable LPLU, false to disable
2946  *
2947  *  Sets the LPLU D0 state according to the active flag.  When
2948  *  activating LPLU this function also disables smart speed
2949  *  and vice versa.  LPLU will not be activated unless the
2950  *  device autonegotiation advertisement meets standards of
2951  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2952  *  This is a function pointer entry point only called by
2953  *  PHY setup routines.
2954  **/
2955 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2956 {
2957 	struct e1000_phy_info *phy = &hw->phy;
2958 	u32 phy_ctrl;
2959 	s32 ret_val = 0;
2960 	u16 data;
2961 
2962 	if (phy->type == e1000_phy_ife)
2963 		return 0;
2964 
2965 	phy_ctrl = er32(PHY_CTRL);
2966 
2967 	if (active) {
2968 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2969 		ew32(PHY_CTRL, phy_ctrl);
2970 
2971 		if (phy->type != e1000_phy_igp_3)
2972 			return 0;
2973 
2974 		/* Call gig speed drop workaround on LPLU before accessing
2975 		 * any PHY registers
2976 		 */
2977 		if (hw->mac.type == e1000_ich8lan)
2978 			e1000e_gig_downshift_workaround_ich8lan(hw);
2979 
2980 		/* When LPLU is enabled, we should disable SmartSpeed */
2981 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2982 		if (ret_val)
2983 			return ret_val;
2984 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2985 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2986 		if (ret_val)
2987 			return ret_val;
2988 	} else {
2989 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2990 		ew32(PHY_CTRL, phy_ctrl);
2991 
2992 		if (phy->type != e1000_phy_igp_3)
2993 			return 0;
2994 
2995 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2996 		 * during Dx states where the power conservation is most
2997 		 * important.  During driver activity we should enable
2998 		 * SmartSpeed, so performance is maintained.
2999 		 */
3000 		if (phy->smart_speed == e1000_smart_speed_on) {
3001 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3002 					   &data);
3003 			if (ret_val)
3004 				return ret_val;
3005 
3006 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3007 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3008 					   data);
3009 			if (ret_val)
3010 				return ret_val;
3011 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3012 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3013 					   &data);
3014 			if (ret_val)
3015 				return ret_val;
3016 
3017 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3018 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3019 					   data);
3020 			if (ret_val)
3021 				return ret_val;
3022 		}
3023 	}
3024 
3025 	return 0;
3026 }
3027 
3028 /**
3029  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3030  *  @hw: pointer to the HW structure
3031  *  @active: true to enable LPLU, false to disable
3032  *
3033  *  Sets the LPLU D3 state according to the active flag.  When
3034  *  activating LPLU this function also disables smart speed
3035  *  and vice versa.  LPLU will not be activated unless the
3036  *  device autonegotiation advertisement meets standards of
3037  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3038  *  This is a function pointer entry point only called by
3039  *  PHY setup routines.
3040  **/
3041 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3042 {
3043 	struct e1000_phy_info *phy = &hw->phy;
3044 	u32 phy_ctrl;
3045 	s32 ret_val = 0;
3046 	u16 data;
3047 
3048 	phy_ctrl = er32(PHY_CTRL);
3049 
3050 	if (!active) {
3051 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3052 		ew32(PHY_CTRL, phy_ctrl);
3053 
3054 		if (phy->type != e1000_phy_igp_3)
3055 			return 0;
3056 
3057 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3058 		 * during Dx states where the power conservation is most
3059 		 * important.  During driver activity we should enable
3060 		 * SmartSpeed, so performance is maintained.
3061 		 */
3062 		if (phy->smart_speed == e1000_smart_speed_on) {
3063 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3064 					   &data);
3065 			if (ret_val)
3066 				return ret_val;
3067 
3068 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3069 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3070 					   data);
3071 			if (ret_val)
3072 				return ret_val;
3073 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3074 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3075 					   &data);
3076 			if (ret_val)
3077 				return ret_val;
3078 
3079 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3080 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3081 					   data);
3082 			if (ret_val)
3083 				return ret_val;
3084 		}
3085 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3086 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3087 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3088 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3089 		ew32(PHY_CTRL, phy_ctrl);
3090 
3091 		if (phy->type != e1000_phy_igp_3)
3092 			return 0;
3093 
3094 		/* Call gig speed drop workaround on LPLU before accessing
3095 		 * any PHY registers
3096 		 */
3097 		if (hw->mac.type == e1000_ich8lan)
3098 			e1000e_gig_downshift_workaround_ich8lan(hw);
3099 
3100 		/* When LPLU is enabled, we should disable SmartSpeed */
3101 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3102 		if (ret_val)
3103 			return ret_val;
3104 
3105 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3106 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3107 	}
3108 
3109 	return ret_val;
3110 }
3111 
3112 /**
3113  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3114  *  @hw: pointer to the HW structure
3115  *  @bank:  pointer to the variable that returns the active bank
3116  *
3117  *  Reads signature byte from the NVM using the flash access registers.
3118  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3119  **/
3120 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3121 {
3122 	u32 eecd;
3123 	struct e1000_nvm_info *nvm = &hw->nvm;
3124 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3125 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3126 	u32 nvm_dword = 0;
3127 	u8 sig_byte = 0;
3128 	s32 ret_val;
3129 
3130 	switch (hw->mac.type) {
3131 	case e1000_pch_spt:
3132 	case e1000_pch_cnp:
3133 		bank1_offset = nvm->flash_bank_size;
3134 		act_offset = E1000_ICH_NVM_SIG_WORD;
3135 
3136 		/* set bank to 0 in case flash read fails */
3137 		*bank = 0;
3138 
3139 		/* Check bank 0 */
3140 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3141 							 &nvm_dword);
3142 		if (ret_val)
3143 			return ret_val;
3144 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3145 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3146 		    E1000_ICH_NVM_SIG_VALUE) {
3147 			*bank = 0;
3148 			return 0;
3149 		}
3150 
3151 		/* Check bank 1 */
3152 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3153 							 bank1_offset,
3154 							 &nvm_dword);
3155 		if (ret_val)
3156 			return ret_val;
3157 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3158 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3159 		    E1000_ICH_NVM_SIG_VALUE) {
3160 			*bank = 1;
3161 			return 0;
3162 		}
3163 
3164 		e_dbg("ERROR: No valid NVM bank present\n");
3165 		return -E1000_ERR_NVM;
3166 	case e1000_ich8lan:
3167 	case e1000_ich9lan:
3168 		eecd = er32(EECD);
3169 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3170 		    E1000_EECD_SEC1VAL_VALID_MASK) {
3171 			if (eecd & E1000_EECD_SEC1VAL)
3172 				*bank = 1;
3173 			else
3174 				*bank = 0;
3175 
3176 			return 0;
3177 		}
3178 		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3179 		/* fall-thru */
3180 	default:
3181 		/* set bank to 0 in case flash read fails */
3182 		*bank = 0;
3183 
3184 		/* Check bank 0 */
3185 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3186 							&sig_byte);
3187 		if (ret_val)
3188 			return ret_val;
3189 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3190 		    E1000_ICH_NVM_SIG_VALUE) {
3191 			*bank = 0;
3192 			return 0;
3193 		}
3194 
3195 		/* Check bank 1 */
3196 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3197 							bank1_offset,
3198 							&sig_byte);
3199 		if (ret_val)
3200 			return ret_val;
3201 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3202 		    E1000_ICH_NVM_SIG_VALUE) {
3203 			*bank = 1;
3204 			return 0;
3205 		}
3206 
3207 		e_dbg("ERROR: No valid NVM bank present\n");
3208 		return -E1000_ERR_NVM;
3209 	}
3210 }
3211 
3212 /**
3213  *  e1000_read_nvm_spt - NVM access for SPT
3214  *  @hw: pointer to the HW structure
3215  *  @offset: The offset (in bytes) of the word(s) to read.
3216  *  @words: Size of data to read in words.
3217  *  @data: pointer to the word(s) to read at offset.
3218  *
3219  *  Reads a word(s) from the NVM
3220  **/
3221 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3222 			      u16 *data)
3223 {
3224 	struct e1000_nvm_info *nvm = &hw->nvm;
3225 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3226 	u32 act_offset;
3227 	s32 ret_val = 0;
3228 	u32 bank = 0;
3229 	u32 dword = 0;
3230 	u16 offset_to_read;
3231 	u16 i;
3232 
3233 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3234 	    (words == 0)) {
3235 		e_dbg("nvm parameter(s) out of bounds\n");
3236 		ret_val = -E1000_ERR_NVM;
3237 		goto out;
3238 	}
3239 
3240 	nvm->ops.acquire(hw);
3241 
3242 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3243 	if (ret_val) {
3244 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3245 		bank = 0;
3246 	}
3247 
3248 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3249 	act_offset += offset;
3250 
3251 	ret_val = 0;
3252 
3253 	for (i = 0; i < words; i += 2) {
3254 		if (words - i == 1) {
3255 			if (dev_spec->shadow_ram[offset + i].modified) {
3256 				data[i] =
3257 				    dev_spec->shadow_ram[offset + i].value;
3258 			} else {
3259 				offset_to_read = act_offset + i -
3260 				    ((act_offset + i) % 2);
3261 				ret_val =
3262 				  e1000_read_flash_dword_ich8lan(hw,
3263 								 offset_to_read,
3264 								 &dword);
3265 				if (ret_val)
3266 					break;
3267 				if ((act_offset + i) % 2 == 0)
3268 					data[i] = (u16)(dword & 0xFFFF);
3269 				else
3270 					data[i] = (u16)((dword >> 16) & 0xFFFF);
3271 			}
3272 		} else {
3273 			offset_to_read = act_offset + i;
3274 			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3275 			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3276 				ret_val =
3277 				  e1000_read_flash_dword_ich8lan(hw,
3278 								 offset_to_read,
3279 								 &dword);
3280 				if (ret_val)
3281 					break;
3282 			}
3283 			if (dev_spec->shadow_ram[offset + i].modified)
3284 				data[i] =
3285 				    dev_spec->shadow_ram[offset + i].value;
3286 			else
3287 				data[i] = (u16)(dword & 0xFFFF);
3288 			if (dev_spec->shadow_ram[offset + i].modified)
3289 				data[i + 1] =
3290 				    dev_spec->shadow_ram[offset + i + 1].value;
3291 			else
3292 				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3293 		}
3294 	}
3295 
3296 	nvm->ops.release(hw);
3297 
3298 out:
3299 	if (ret_val)
3300 		e_dbg("NVM read error: %d\n", ret_val);
3301 
3302 	return ret_val;
3303 }
3304 
3305 /**
3306  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3307  *  @hw: pointer to the HW structure
3308  *  @offset: The offset (in bytes) of the word(s) to read.
3309  *  @words: Size of data to read in words
3310  *  @data: Pointer to the word(s) to read at offset.
3311  *
3312  *  Reads a word(s) from the NVM using the flash access registers.
3313  **/
3314 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3315 				  u16 *data)
3316 {
3317 	struct e1000_nvm_info *nvm = &hw->nvm;
3318 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3319 	u32 act_offset;
3320 	s32 ret_val = 0;
3321 	u32 bank = 0;
3322 	u16 i, word;
3323 
3324 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3325 	    (words == 0)) {
3326 		e_dbg("nvm parameter(s) out of bounds\n");
3327 		ret_val = -E1000_ERR_NVM;
3328 		goto out;
3329 	}
3330 
3331 	nvm->ops.acquire(hw);
3332 
3333 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3334 	if (ret_val) {
3335 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3336 		bank = 0;
3337 	}
3338 
3339 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3340 	act_offset += offset;
3341 
3342 	ret_val = 0;
3343 	for (i = 0; i < words; i++) {
3344 		if (dev_spec->shadow_ram[offset + i].modified) {
3345 			data[i] = dev_spec->shadow_ram[offset + i].value;
3346 		} else {
3347 			ret_val = e1000_read_flash_word_ich8lan(hw,
3348 								act_offset + i,
3349 								&word);
3350 			if (ret_val)
3351 				break;
3352 			data[i] = word;
3353 		}
3354 	}
3355 
3356 	nvm->ops.release(hw);
3357 
3358 out:
3359 	if (ret_val)
3360 		e_dbg("NVM read error: %d\n", ret_val);
3361 
3362 	return ret_val;
3363 }
3364 
3365 /**
3366  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3367  *  @hw: pointer to the HW structure
3368  *
3369  *  This function does initial flash setup so that a new read/write/erase cycle
3370  *  can be started.
3371  **/
3372 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3373 {
3374 	union ich8_hws_flash_status hsfsts;
3375 	s32 ret_val = -E1000_ERR_NVM;
3376 
3377 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3378 
3379 	/* Check if the flash descriptor is valid */
3380 	if (!hsfsts.hsf_status.fldesvalid) {
3381 		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3382 		return -E1000_ERR_NVM;
3383 	}
3384 
3385 	/* Clear FCERR and DAEL in hw status by writing 1 */
3386 	hsfsts.hsf_status.flcerr = 1;
3387 	hsfsts.hsf_status.dael = 1;
3388 	if (hw->mac.type >= e1000_pch_spt)
3389 		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3390 	else
3391 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3392 
3393 	/* Either we should have a hardware SPI cycle in progress
3394 	 * bit to check against, in order to start a new cycle or
3395 	 * FDONE bit should be changed in the hardware so that it
3396 	 * is 1 after hardware reset, which can then be used as an
3397 	 * indication whether a cycle is in progress or has been
3398 	 * completed.
3399 	 */
3400 
3401 	if (!hsfsts.hsf_status.flcinprog) {
3402 		/* There is no cycle running at present,
3403 		 * so we can start a cycle.
3404 		 * Begin by setting Flash Cycle Done.
3405 		 */
3406 		hsfsts.hsf_status.flcdone = 1;
3407 		if (hw->mac.type >= e1000_pch_spt)
3408 			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3409 		else
3410 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3411 		ret_val = 0;
3412 	} else {
3413 		s32 i;
3414 
3415 		/* Otherwise poll for sometime so the current
3416 		 * cycle has a chance to end before giving up.
3417 		 */
3418 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3419 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3420 			if (!hsfsts.hsf_status.flcinprog) {
3421 				ret_val = 0;
3422 				break;
3423 			}
3424 			udelay(1);
3425 		}
3426 		if (!ret_val) {
3427 			/* Successful in waiting for previous cycle to timeout,
3428 			 * now set the Flash Cycle Done.
3429 			 */
3430 			hsfsts.hsf_status.flcdone = 1;
3431 			if (hw->mac.type >= e1000_pch_spt)
3432 				ew32flash(ICH_FLASH_HSFSTS,
3433 					  hsfsts.regval & 0xFFFF);
3434 			else
3435 				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3436 		} else {
3437 			e_dbg("Flash controller busy, cannot get access\n");
3438 		}
3439 	}
3440 
3441 	return ret_val;
3442 }
3443 
3444 /**
3445  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3446  *  @hw: pointer to the HW structure
3447  *  @timeout: maximum time to wait for completion
3448  *
3449  *  This function starts a flash cycle and waits for its completion.
3450  **/
3451 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3452 {
3453 	union ich8_hws_flash_ctrl hsflctl;
3454 	union ich8_hws_flash_status hsfsts;
3455 	u32 i = 0;
3456 
3457 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3458 	if (hw->mac.type >= e1000_pch_spt)
3459 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3460 	else
3461 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3462 	hsflctl.hsf_ctrl.flcgo = 1;
3463 
3464 	if (hw->mac.type >= e1000_pch_spt)
3465 		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3466 	else
3467 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3468 
3469 	/* wait till FDONE bit is set to 1 */
3470 	do {
3471 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3472 		if (hsfsts.hsf_status.flcdone)
3473 			break;
3474 		udelay(1);
3475 	} while (i++ < timeout);
3476 
3477 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3478 		return 0;
3479 
3480 	return -E1000_ERR_NVM;
3481 }
3482 
3483 /**
3484  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3485  *  @hw: pointer to the HW structure
3486  *  @offset: offset to data location
3487  *  @data: pointer to the location for storing the data
3488  *
3489  *  Reads the flash dword at offset into data.  Offset is converted
3490  *  to bytes before read.
3491  **/
3492 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3493 					  u32 *data)
3494 {
3495 	/* Must convert word offset into bytes. */
3496 	offset <<= 1;
3497 	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3498 }
3499 
3500 /**
3501  *  e1000_read_flash_word_ich8lan - Read word from flash
3502  *  @hw: pointer to the HW structure
3503  *  @offset: offset to data location
3504  *  @data: pointer to the location for storing the data
3505  *
3506  *  Reads the flash word at offset into data.  Offset is converted
3507  *  to bytes before read.
3508  **/
3509 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3510 					 u16 *data)
3511 {
3512 	/* Must convert offset into bytes. */
3513 	offset <<= 1;
3514 
3515 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3516 }
3517 
3518 /**
3519  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3520  *  @hw: pointer to the HW structure
3521  *  @offset: The offset of the byte to read.
3522  *  @data: Pointer to a byte to store the value read.
3523  *
3524  *  Reads a single byte from the NVM using the flash access registers.
3525  **/
3526 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3527 					 u8 *data)
3528 {
3529 	s32 ret_val;
3530 	u16 word = 0;
3531 
3532 	/* In SPT, only 32 bits access is supported,
3533 	 * so this function should not be called.
3534 	 */
3535 	if (hw->mac.type >= e1000_pch_spt)
3536 		return -E1000_ERR_NVM;
3537 	else
3538 		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3539 
3540 	if (ret_val)
3541 		return ret_val;
3542 
3543 	*data = (u8)word;
3544 
3545 	return 0;
3546 }
3547 
3548 /**
3549  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3550  *  @hw: pointer to the HW structure
3551  *  @offset: The offset (in bytes) of the byte or word to read.
3552  *  @size: Size of data to read, 1=byte 2=word
3553  *  @data: Pointer to the word to store the value read.
3554  *
3555  *  Reads a byte or word from the NVM using the flash access registers.
3556  **/
3557 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3558 					 u8 size, u16 *data)
3559 {
3560 	union ich8_hws_flash_status hsfsts;
3561 	union ich8_hws_flash_ctrl hsflctl;
3562 	u32 flash_linear_addr;
3563 	u32 flash_data = 0;
3564 	s32 ret_val = -E1000_ERR_NVM;
3565 	u8 count = 0;
3566 
3567 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3568 		return -E1000_ERR_NVM;
3569 
3570 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3571 			     hw->nvm.flash_base_addr);
3572 
3573 	do {
3574 		udelay(1);
3575 		/* Steps */
3576 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3577 		if (ret_val)
3578 			break;
3579 
3580 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3581 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3582 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3583 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3584 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3585 
3586 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3587 
3588 		ret_val =
3589 		    e1000_flash_cycle_ich8lan(hw,
3590 					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3591 
3592 		/* Check if FCERR is set to 1, if set to 1, clear it
3593 		 * and try the whole sequence a few more times, else
3594 		 * read in (shift in) the Flash Data0, the order is
3595 		 * least significant byte first msb to lsb
3596 		 */
3597 		if (!ret_val) {
3598 			flash_data = er32flash(ICH_FLASH_FDATA0);
3599 			if (size == 1)
3600 				*data = (u8)(flash_data & 0x000000FF);
3601 			else if (size == 2)
3602 				*data = (u16)(flash_data & 0x0000FFFF);
3603 			break;
3604 		} else {
3605 			/* If we've gotten here, then things are probably
3606 			 * completely hosed, but if the error condition is
3607 			 * detected, it won't hurt to give it another try...
3608 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3609 			 */
3610 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3611 			if (hsfsts.hsf_status.flcerr) {
3612 				/* Repeat for some time before giving up. */
3613 				continue;
3614 			} else if (!hsfsts.hsf_status.flcdone) {
3615 				e_dbg("Timeout error - flash cycle did not complete.\n");
3616 				break;
3617 			}
3618 		}
3619 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3620 
3621 	return ret_val;
3622 }
3623 
3624 /**
3625  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3626  *  @hw: pointer to the HW structure
3627  *  @offset: The offset (in bytes) of the dword to read.
3628  *  @data: Pointer to the dword to store the value read.
3629  *
3630  *  Reads a byte or word from the NVM using the flash access registers.
3631  **/
3632 
3633 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3634 					   u32 *data)
3635 {
3636 	union ich8_hws_flash_status hsfsts;
3637 	union ich8_hws_flash_ctrl hsflctl;
3638 	u32 flash_linear_addr;
3639 	s32 ret_val = -E1000_ERR_NVM;
3640 	u8 count = 0;
3641 
3642 	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3643 		return -E1000_ERR_NVM;
3644 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3645 			     hw->nvm.flash_base_addr);
3646 
3647 	do {
3648 		udelay(1);
3649 		/* Steps */
3650 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3651 		if (ret_val)
3652 			break;
3653 		/* In SPT, This register is in Lan memory space, not flash.
3654 		 * Therefore, only 32 bit access is supported
3655 		 */
3656 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3657 
3658 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3659 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3660 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3661 		/* In SPT, This register is in Lan memory space, not flash.
3662 		 * Therefore, only 32 bit access is supported
3663 		 */
3664 		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3665 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3666 
3667 		ret_val =
3668 		   e1000_flash_cycle_ich8lan(hw,
3669 					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3670 
3671 		/* Check if FCERR is set to 1, if set to 1, clear it
3672 		 * and try the whole sequence a few more times, else
3673 		 * read in (shift in) the Flash Data0, the order is
3674 		 * least significant byte first msb to lsb
3675 		 */
3676 		if (!ret_val) {
3677 			*data = er32flash(ICH_FLASH_FDATA0);
3678 			break;
3679 		} else {
3680 			/* If we've gotten here, then things are probably
3681 			 * completely hosed, but if the error condition is
3682 			 * detected, it won't hurt to give it another try...
3683 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3684 			 */
3685 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3686 			if (hsfsts.hsf_status.flcerr) {
3687 				/* Repeat for some time before giving up. */
3688 				continue;
3689 			} else if (!hsfsts.hsf_status.flcdone) {
3690 				e_dbg("Timeout error - flash cycle did not complete.\n");
3691 				break;
3692 			}
3693 		}
3694 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3695 
3696 	return ret_val;
3697 }
3698 
3699 /**
3700  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3701  *  @hw: pointer to the HW structure
3702  *  @offset: The offset (in bytes) of the word(s) to write.
3703  *  @words: Size of data to write in words
3704  *  @data: Pointer to the word(s) to write at offset.
3705  *
3706  *  Writes a byte or word to the NVM using the flash access registers.
3707  **/
3708 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3709 				   u16 *data)
3710 {
3711 	struct e1000_nvm_info *nvm = &hw->nvm;
3712 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3713 	u16 i;
3714 
3715 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3716 	    (words == 0)) {
3717 		e_dbg("nvm parameter(s) out of bounds\n");
3718 		return -E1000_ERR_NVM;
3719 	}
3720 
3721 	nvm->ops.acquire(hw);
3722 
3723 	for (i = 0; i < words; i++) {
3724 		dev_spec->shadow_ram[offset + i].modified = true;
3725 		dev_spec->shadow_ram[offset + i].value = data[i];
3726 	}
3727 
3728 	nvm->ops.release(hw);
3729 
3730 	return 0;
3731 }
3732 
3733 /**
3734  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3735  *  @hw: pointer to the HW structure
3736  *
3737  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3738  *  which writes the checksum to the shadow ram.  The changes in the shadow
3739  *  ram are then committed to the EEPROM by processing each bank at a time
3740  *  checking for the modified bit and writing only the pending changes.
3741  *  After a successful commit, the shadow ram is cleared and is ready for
3742  *  future writes.
3743  **/
3744 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3745 {
3746 	struct e1000_nvm_info *nvm = &hw->nvm;
3747 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3748 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3749 	s32 ret_val;
3750 	u32 dword = 0;
3751 
3752 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3753 	if (ret_val)
3754 		goto out;
3755 
3756 	if (nvm->type != e1000_nvm_flash_sw)
3757 		goto out;
3758 
3759 	nvm->ops.acquire(hw);
3760 
3761 	/* We're writing to the opposite bank so if we're on bank 1,
3762 	 * write to bank 0 etc.  We also need to erase the segment that
3763 	 * is going to be written
3764 	 */
3765 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3766 	if (ret_val) {
3767 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3768 		bank = 0;
3769 	}
3770 
3771 	if (bank == 0) {
3772 		new_bank_offset = nvm->flash_bank_size;
3773 		old_bank_offset = 0;
3774 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3775 		if (ret_val)
3776 			goto release;
3777 	} else {
3778 		old_bank_offset = nvm->flash_bank_size;
3779 		new_bank_offset = 0;
3780 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3781 		if (ret_val)
3782 			goto release;
3783 	}
3784 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3785 		/* Determine whether to write the value stored
3786 		 * in the other NVM bank or a modified value stored
3787 		 * in the shadow RAM
3788 		 */
3789 		ret_val = e1000_read_flash_dword_ich8lan(hw,
3790 							 i + old_bank_offset,
3791 							 &dword);
3792 
3793 		if (dev_spec->shadow_ram[i].modified) {
3794 			dword &= 0xffff0000;
3795 			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3796 		}
3797 		if (dev_spec->shadow_ram[i + 1].modified) {
3798 			dword &= 0x0000ffff;
3799 			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3800 				  << 16);
3801 		}
3802 		if (ret_val)
3803 			break;
3804 
3805 		/* If the word is 0x13, then make sure the signature bits
3806 		 * (15:14) are 11b until the commit has completed.
3807 		 * This will allow us to write 10b which indicates the
3808 		 * signature is valid.  We want to do this after the write
3809 		 * has completed so that we don't mark the segment valid
3810 		 * while the write is still in progress
3811 		 */
3812 		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3813 			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3814 
3815 		/* Convert offset to bytes. */
3816 		act_offset = (i + new_bank_offset) << 1;
3817 
3818 		usleep_range(100, 200);
3819 
3820 		/* Write the data to the new bank. Offset in words */
3821 		act_offset = i + new_bank_offset;
3822 		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3823 								dword);
3824 		if (ret_val)
3825 			break;
3826 	}
3827 
3828 	/* Don't bother writing the segment valid bits if sector
3829 	 * programming failed.
3830 	 */
3831 	if (ret_val) {
3832 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3833 		e_dbg("Flash commit failed.\n");
3834 		goto release;
3835 	}
3836 
3837 	/* Finally validate the new segment by setting bit 15:14
3838 	 * to 10b in word 0x13 , this can be done without an
3839 	 * erase as well since these bits are 11 to start with
3840 	 * and we need to change bit 14 to 0b
3841 	 */
3842 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3843 
3844 	/*offset in words but we read dword */
3845 	--act_offset;
3846 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3847 
3848 	if (ret_val)
3849 		goto release;
3850 
3851 	dword &= 0xBFFFFFFF;
3852 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3853 
3854 	if (ret_val)
3855 		goto release;
3856 
3857 	/* And invalidate the previously valid segment by setting
3858 	 * its signature word (0x13) high_byte to 0b. This can be
3859 	 * done without an erase because flash erase sets all bits
3860 	 * to 1's. We can write 1's to 0's without an erase
3861 	 */
3862 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3863 
3864 	/* offset in words but we read dword */
3865 	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3866 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3867 
3868 	if (ret_val)
3869 		goto release;
3870 
3871 	dword &= 0x00FFFFFF;
3872 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3873 
3874 	if (ret_val)
3875 		goto release;
3876 
3877 	/* Great!  Everything worked, we can now clear the cached entries. */
3878 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3879 		dev_spec->shadow_ram[i].modified = false;
3880 		dev_spec->shadow_ram[i].value = 0xFFFF;
3881 	}
3882 
3883 release:
3884 	nvm->ops.release(hw);
3885 
3886 	/* Reload the EEPROM, or else modifications will not appear
3887 	 * until after the next adapter reset.
3888 	 */
3889 	if (!ret_val) {
3890 		nvm->ops.reload(hw);
3891 		usleep_range(10000, 20000);
3892 	}
3893 
3894 out:
3895 	if (ret_val)
3896 		e_dbg("NVM update error: %d\n", ret_val);
3897 
3898 	return ret_val;
3899 }
3900 
3901 /**
3902  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3903  *  @hw: pointer to the HW structure
3904  *
3905  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3906  *  which writes the checksum to the shadow ram.  The changes in the shadow
3907  *  ram are then committed to the EEPROM by processing each bank at a time
3908  *  checking for the modified bit and writing only the pending changes.
3909  *  After a successful commit, the shadow ram is cleared and is ready for
3910  *  future writes.
3911  **/
3912 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3913 {
3914 	struct e1000_nvm_info *nvm = &hw->nvm;
3915 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3916 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3917 	s32 ret_val;
3918 	u16 data = 0;
3919 
3920 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3921 	if (ret_val)
3922 		goto out;
3923 
3924 	if (nvm->type != e1000_nvm_flash_sw)
3925 		goto out;
3926 
3927 	nvm->ops.acquire(hw);
3928 
3929 	/* We're writing to the opposite bank so if we're on bank 1,
3930 	 * write to bank 0 etc.  We also need to erase the segment that
3931 	 * is going to be written
3932 	 */
3933 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3934 	if (ret_val) {
3935 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3936 		bank = 0;
3937 	}
3938 
3939 	if (bank == 0) {
3940 		new_bank_offset = nvm->flash_bank_size;
3941 		old_bank_offset = 0;
3942 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3943 		if (ret_val)
3944 			goto release;
3945 	} else {
3946 		old_bank_offset = nvm->flash_bank_size;
3947 		new_bank_offset = 0;
3948 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3949 		if (ret_val)
3950 			goto release;
3951 	}
3952 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3953 		if (dev_spec->shadow_ram[i].modified) {
3954 			data = dev_spec->shadow_ram[i].value;
3955 		} else {
3956 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
3957 								old_bank_offset,
3958 								&data);
3959 			if (ret_val)
3960 				break;
3961 		}
3962 
3963 		/* If the word is 0x13, then make sure the signature bits
3964 		 * (15:14) are 11b until the commit has completed.
3965 		 * This will allow us to write 10b which indicates the
3966 		 * signature is valid.  We want to do this after the write
3967 		 * has completed so that we don't mark the segment valid
3968 		 * while the write is still in progress
3969 		 */
3970 		if (i == E1000_ICH_NVM_SIG_WORD)
3971 			data |= E1000_ICH_NVM_SIG_MASK;
3972 
3973 		/* Convert offset to bytes. */
3974 		act_offset = (i + new_bank_offset) << 1;
3975 
3976 		usleep_range(100, 200);
3977 		/* Write the bytes to the new bank. */
3978 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3979 							       act_offset,
3980 							       (u8)data);
3981 		if (ret_val)
3982 			break;
3983 
3984 		usleep_range(100, 200);
3985 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3986 							       act_offset + 1,
3987 							       (u8)(data >> 8));
3988 		if (ret_val)
3989 			break;
3990 	}
3991 
3992 	/* Don't bother writing the segment valid bits if sector
3993 	 * programming failed.
3994 	 */
3995 	if (ret_val) {
3996 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3997 		e_dbg("Flash commit failed.\n");
3998 		goto release;
3999 	}
4000 
4001 	/* Finally validate the new segment by setting bit 15:14
4002 	 * to 10b in word 0x13 , this can be done without an
4003 	 * erase as well since these bits are 11 to start with
4004 	 * and we need to change bit 14 to 0b
4005 	 */
4006 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4007 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4008 	if (ret_val)
4009 		goto release;
4010 
4011 	data &= 0xBFFF;
4012 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4013 						       act_offset * 2 + 1,
4014 						       (u8)(data >> 8));
4015 	if (ret_val)
4016 		goto release;
4017 
4018 	/* And invalidate the previously valid segment by setting
4019 	 * its signature word (0x13) high_byte to 0b. This can be
4020 	 * done without an erase because flash erase sets all bits
4021 	 * to 1's. We can write 1's to 0's without an erase
4022 	 */
4023 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4024 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4025 	if (ret_val)
4026 		goto release;
4027 
4028 	/* Great!  Everything worked, we can now clear the cached entries. */
4029 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4030 		dev_spec->shadow_ram[i].modified = false;
4031 		dev_spec->shadow_ram[i].value = 0xFFFF;
4032 	}
4033 
4034 release:
4035 	nvm->ops.release(hw);
4036 
4037 	/* Reload the EEPROM, or else modifications will not appear
4038 	 * until after the next adapter reset.
4039 	 */
4040 	if (!ret_val) {
4041 		nvm->ops.reload(hw);
4042 		usleep_range(10000, 20000);
4043 	}
4044 
4045 out:
4046 	if (ret_val)
4047 		e_dbg("NVM update error: %d\n", ret_val);
4048 
4049 	return ret_val;
4050 }
4051 
4052 /**
4053  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4054  *  @hw: pointer to the HW structure
4055  *
4056  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4057  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4058  *  calculated, in which case we need to calculate the checksum and set bit 6.
4059  **/
4060 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4061 {
4062 	s32 ret_val;
4063 	u16 data;
4064 	u16 word;
4065 	u16 valid_csum_mask;
4066 
4067 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4068 	 * the checksum needs to be fixed.  This bit is an indication that
4069 	 * the NVM was prepared by OEM software and did not calculate
4070 	 * the checksum...a likely scenario.
4071 	 */
4072 	switch (hw->mac.type) {
4073 	case e1000_pch_lpt:
4074 	case e1000_pch_spt:
4075 	case e1000_pch_cnp:
4076 		word = NVM_COMPAT;
4077 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4078 		break;
4079 	default:
4080 		word = NVM_FUTURE_INIT_WORD1;
4081 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4082 		break;
4083 	}
4084 
4085 	ret_val = e1000_read_nvm(hw, word, 1, &data);
4086 	if (ret_val)
4087 		return ret_val;
4088 
4089 	if (!(data & valid_csum_mask)) {
4090 		data |= valid_csum_mask;
4091 		ret_val = e1000_write_nvm(hw, word, 1, &data);
4092 		if (ret_val)
4093 			return ret_val;
4094 		ret_val = e1000e_update_nvm_checksum(hw);
4095 		if (ret_val)
4096 			return ret_val;
4097 	}
4098 
4099 	return e1000e_validate_nvm_checksum_generic(hw);
4100 }
4101 
4102 /**
4103  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4104  *  @hw: pointer to the HW structure
4105  *
4106  *  To prevent malicious write/erase of the NVM, set it to be read-only
4107  *  so that the hardware ignores all write/erase cycles of the NVM via
4108  *  the flash control registers.  The shadow-ram copy of the NVM will
4109  *  still be updated, however any updates to this copy will not stick
4110  *  across driver reloads.
4111  **/
4112 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4113 {
4114 	struct e1000_nvm_info *nvm = &hw->nvm;
4115 	union ich8_flash_protected_range pr0;
4116 	union ich8_hws_flash_status hsfsts;
4117 	u32 gfpreg;
4118 
4119 	nvm->ops.acquire(hw);
4120 
4121 	gfpreg = er32flash(ICH_FLASH_GFPREG);
4122 
4123 	/* Write-protect GbE Sector of NVM */
4124 	pr0.regval = er32flash(ICH_FLASH_PR0);
4125 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4126 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4127 	pr0.range.wpe = true;
4128 	ew32flash(ICH_FLASH_PR0, pr0.regval);
4129 
4130 	/* Lock down a subset of GbE Flash Control Registers, e.g.
4131 	 * PR0 to prevent the write-protection from being lifted.
4132 	 * Once FLOCKDN is set, the registers protected by it cannot
4133 	 * be written until FLOCKDN is cleared by a hardware reset.
4134 	 */
4135 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4136 	hsfsts.hsf_status.flockdn = true;
4137 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4138 
4139 	nvm->ops.release(hw);
4140 }
4141 
4142 /**
4143  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4144  *  @hw: pointer to the HW structure
4145  *  @offset: The offset (in bytes) of the byte/word to read.
4146  *  @size: Size of data to read, 1=byte 2=word
4147  *  @data: The byte(s) to write to the NVM.
4148  *
4149  *  Writes one/two bytes to the NVM using the flash access registers.
4150  **/
4151 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4152 					  u8 size, u16 data)
4153 {
4154 	union ich8_hws_flash_status hsfsts;
4155 	union ich8_hws_flash_ctrl hsflctl;
4156 	u32 flash_linear_addr;
4157 	u32 flash_data = 0;
4158 	s32 ret_val;
4159 	u8 count = 0;
4160 
4161 	if (hw->mac.type >= e1000_pch_spt) {
4162 		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4163 			return -E1000_ERR_NVM;
4164 	} else {
4165 		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4166 			return -E1000_ERR_NVM;
4167 	}
4168 
4169 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4170 			     hw->nvm.flash_base_addr);
4171 
4172 	do {
4173 		udelay(1);
4174 		/* Steps */
4175 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4176 		if (ret_val)
4177 			break;
4178 		/* In SPT, This register is in Lan memory space, not
4179 		 * flash.  Therefore, only 32 bit access is supported
4180 		 */
4181 		if (hw->mac.type >= e1000_pch_spt)
4182 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4183 		else
4184 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4185 
4186 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4187 		hsflctl.hsf_ctrl.fldbcount = size - 1;
4188 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4189 		/* In SPT, This register is in Lan memory space,
4190 		 * not flash.  Therefore, only 32 bit access is
4191 		 * supported
4192 		 */
4193 		if (hw->mac.type >= e1000_pch_spt)
4194 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4195 		else
4196 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4197 
4198 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4199 
4200 		if (size == 1)
4201 			flash_data = (u32)data & 0x00FF;
4202 		else
4203 			flash_data = (u32)data;
4204 
4205 		ew32flash(ICH_FLASH_FDATA0, flash_data);
4206 
4207 		/* check if FCERR is set to 1 , if set to 1, clear it
4208 		 * and try the whole sequence a few more times else done
4209 		 */
4210 		ret_val =
4211 		    e1000_flash_cycle_ich8lan(hw,
4212 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4213 		if (!ret_val)
4214 			break;
4215 
4216 		/* If we're here, then things are most likely
4217 		 * completely hosed, but if the error condition
4218 		 * is detected, it won't hurt to give it another
4219 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4220 		 */
4221 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4222 		if (hsfsts.hsf_status.flcerr)
4223 			/* Repeat for some time before giving up. */
4224 			continue;
4225 		if (!hsfsts.hsf_status.flcdone) {
4226 			e_dbg("Timeout error - flash cycle did not complete.\n");
4227 			break;
4228 		}
4229 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4230 
4231 	return ret_val;
4232 }
4233 
4234 /**
4235 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4236 *  @hw: pointer to the HW structure
4237 *  @offset: The offset (in bytes) of the dwords to read.
4238 *  @data: The 4 bytes to write to the NVM.
4239 *
4240 *  Writes one/two/four bytes to the NVM using the flash access registers.
4241 **/
4242 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4243 					    u32 data)
4244 {
4245 	union ich8_hws_flash_status hsfsts;
4246 	union ich8_hws_flash_ctrl hsflctl;
4247 	u32 flash_linear_addr;
4248 	s32 ret_val;
4249 	u8 count = 0;
4250 
4251 	if (hw->mac.type >= e1000_pch_spt) {
4252 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4253 			return -E1000_ERR_NVM;
4254 	}
4255 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4256 			     hw->nvm.flash_base_addr);
4257 	do {
4258 		udelay(1);
4259 		/* Steps */
4260 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4261 		if (ret_val)
4262 			break;
4263 
4264 		/* In SPT, This register is in Lan memory space, not
4265 		 * flash.  Therefore, only 32 bit access is supported
4266 		 */
4267 		if (hw->mac.type >= e1000_pch_spt)
4268 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4269 			    >> 16;
4270 		else
4271 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4272 
4273 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4274 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4275 
4276 		/* In SPT, This register is in Lan memory space,
4277 		 * not flash.  Therefore, only 32 bit access is
4278 		 * supported
4279 		 */
4280 		if (hw->mac.type >= e1000_pch_spt)
4281 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4282 		else
4283 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4284 
4285 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4286 
4287 		ew32flash(ICH_FLASH_FDATA0, data);
4288 
4289 		/* check if FCERR is set to 1 , if set to 1, clear it
4290 		 * and try the whole sequence a few more times else done
4291 		 */
4292 		ret_val =
4293 		   e1000_flash_cycle_ich8lan(hw,
4294 					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4295 
4296 		if (!ret_val)
4297 			break;
4298 
4299 		/* If we're here, then things are most likely
4300 		 * completely hosed, but if the error condition
4301 		 * is detected, it won't hurt to give it another
4302 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4303 		 */
4304 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4305 
4306 		if (hsfsts.hsf_status.flcerr)
4307 			/* Repeat for some time before giving up. */
4308 			continue;
4309 		if (!hsfsts.hsf_status.flcdone) {
4310 			e_dbg("Timeout error - flash cycle did not complete.\n");
4311 			break;
4312 		}
4313 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4314 
4315 	return ret_val;
4316 }
4317 
4318 /**
4319  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4320  *  @hw: pointer to the HW structure
4321  *  @offset: The index of the byte to read.
4322  *  @data: The byte to write to the NVM.
4323  *
4324  *  Writes a single byte to the NVM using the flash access registers.
4325  **/
4326 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4327 					  u8 data)
4328 {
4329 	u16 word = (u16)data;
4330 
4331 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4332 }
4333 
4334 /**
4335 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4336 *  @hw: pointer to the HW structure
4337 *  @offset: The offset of the word to write.
4338 *  @dword: The dword to write to the NVM.
4339 *
4340 *  Writes a single dword to the NVM using the flash access registers.
4341 *  Goes through a retry algorithm before giving up.
4342 **/
4343 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4344 						 u32 offset, u32 dword)
4345 {
4346 	s32 ret_val;
4347 	u16 program_retries;
4348 
4349 	/* Must convert word offset into bytes. */
4350 	offset <<= 1;
4351 	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4352 
4353 	if (!ret_val)
4354 		return ret_val;
4355 	for (program_retries = 0; program_retries < 100; program_retries++) {
4356 		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4357 		usleep_range(100, 200);
4358 		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4359 		if (!ret_val)
4360 			break;
4361 	}
4362 	if (program_retries == 100)
4363 		return -E1000_ERR_NVM;
4364 
4365 	return 0;
4366 }
4367 
4368 /**
4369  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4370  *  @hw: pointer to the HW structure
4371  *  @offset: The offset of the byte to write.
4372  *  @byte: The byte to write to the NVM.
4373  *
4374  *  Writes a single byte to the NVM using the flash access registers.
4375  *  Goes through a retry algorithm before giving up.
4376  **/
4377 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4378 						u32 offset, u8 byte)
4379 {
4380 	s32 ret_val;
4381 	u16 program_retries;
4382 
4383 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4384 	if (!ret_val)
4385 		return ret_val;
4386 
4387 	for (program_retries = 0; program_retries < 100; program_retries++) {
4388 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4389 		usleep_range(100, 200);
4390 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4391 		if (!ret_val)
4392 			break;
4393 	}
4394 	if (program_retries == 100)
4395 		return -E1000_ERR_NVM;
4396 
4397 	return 0;
4398 }
4399 
4400 /**
4401  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4402  *  @hw: pointer to the HW structure
4403  *  @bank: 0 for first bank, 1 for second bank, etc.
4404  *
4405  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4406  *  bank N is 4096 * N + flash_reg_addr.
4407  **/
4408 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4409 {
4410 	struct e1000_nvm_info *nvm = &hw->nvm;
4411 	union ich8_hws_flash_status hsfsts;
4412 	union ich8_hws_flash_ctrl hsflctl;
4413 	u32 flash_linear_addr;
4414 	/* bank size is in 16bit words - adjust to bytes */
4415 	u32 flash_bank_size = nvm->flash_bank_size * 2;
4416 	s32 ret_val;
4417 	s32 count = 0;
4418 	s32 j, iteration, sector_size;
4419 
4420 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4421 
4422 	/* Determine HW Sector size: Read BERASE bits of hw flash status
4423 	 * register
4424 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4425 	 *     consecutive sectors.  The start index for the nth Hw sector
4426 	 *     can be calculated as = bank * 4096 + n * 256
4427 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4428 	 *     The start index for the nth Hw sector can be calculated
4429 	 *     as = bank * 4096
4430 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4431 	 *     (ich9 only, otherwise error condition)
4432 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4433 	 */
4434 	switch (hsfsts.hsf_status.berasesz) {
4435 	case 0:
4436 		/* Hw sector size 256 */
4437 		sector_size = ICH_FLASH_SEG_SIZE_256;
4438 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4439 		break;
4440 	case 1:
4441 		sector_size = ICH_FLASH_SEG_SIZE_4K;
4442 		iteration = 1;
4443 		break;
4444 	case 2:
4445 		sector_size = ICH_FLASH_SEG_SIZE_8K;
4446 		iteration = 1;
4447 		break;
4448 	case 3:
4449 		sector_size = ICH_FLASH_SEG_SIZE_64K;
4450 		iteration = 1;
4451 		break;
4452 	default:
4453 		return -E1000_ERR_NVM;
4454 	}
4455 
4456 	/* Start with the base address, then add the sector offset. */
4457 	flash_linear_addr = hw->nvm.flash_base_addr;
4458 	flash_linear_addr += (bank) ? flash_bank_size : 0;
4459 
4460 	for (j = 0; j < iteration; j++) {
4461 		do {
4462 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4463 
4464 			/* Steps */
4465 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4466 			if (ret_val)
4467 				return ret_val;
4468 
4469 			/* Write a value 11 (block Erase) in Flash
4470 			 * Cycle field in hw flash control
4471 			 */
4472 			if (hw->mac.type >= e1000_pch_spt)
4473 				hsflctl.regval =
4474 				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4475 			else
4476 				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4477 
4478 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4479 			if (hw->mac.type >= e1000_pch_spt)
4480 				ew32flash(ICH_FLASH_HSFSTS,
4481 					  hsflctl.regval << 16);
4482 			else
4483 				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4484 
4485 			/* Write the last 24 bits of an index within the
4486 			 * block into Flash Linear address field in Flash
4487 			 * Address.
4488 			 */
4489 			flash_linear_addr += (j * sector_size);
4490 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4491 
4492 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4493 			if (!ret_val)
4494 				break;
4495 
4496 			/* Check if FCERR is set to 1.  If 1,
4497 			 * clear it and try the whole sequence
4498 			 * a few more times else Done
4499 			 */
4500 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4501 			if (hsfsts.hsf_status.flcerr)
4502 				/* repeat for some time before giving up */
4503 				continue;
4504 			else if (!hsfsts.hsf_status.flcdone)
4505 				return ret_val;
4506 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4507 	}
4508 
4509 	return 0;
4510 }
4511 
4512 /**
4513  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4514  *  @hw: pointer to the HW structure
4515  *  @data: Pointer to the LED settings
4516  *
4517  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4518  *  settings is all 0's or F's, set the LED default to a valid LED default
4519  *  setting.
4520  **/
4521 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4522 {
4523 	s32 ret_val;
4524 
4525 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4526 	if (ret_val) {
4527 		e_dbg("NVM Read Error\n");
4528 		return ret_val;
4529 	}
4530 
4531 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4532 		*data = ID_LED_DEFAULT_ICH8LAN;
4533 
4534 	return 0;
4535 }
4536 
4537 /**
4538  *  e1000_id_led_init_pchlan - store LED configurations
4539  *  @hw: pointer to the HW structure
4540  *
4541  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4542  *  the PHY LED configuration register.
4543  *
4544  *  PCH also does not have an "always on" or "always off" mode which
4545  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4546  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4547  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4548  *  link based on logic in e1000_led_[on|off]_pchlan().
4549  **/
4550 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4551 {
4552 	struct e1000_mac_info *mac = &hw->mac;
4553 	s32 ret_val;
4554 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4555 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4556 	u16 data, i, temp, shift;
4557 
4558 	/* Get default ID LED modes */
4559 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4560 	if (ret_val)
4561 		return ret_val;
4562 
4563 	mac->ledctl_default = er32(LEDCTL);
4564 	mac->ledctl_mode1 = mac->ledctl_default;
4565 	mac->ledctl_mode2 = mac->ledctl_default;
4566 
4567 	for (i = 0; i < 4; i++) {
4568 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4569 		shift = (i * 5);
4570 		switch (temp) {
4571 		case ID_LED_ON1_DEF2:
4572 		case ID_LED_ON1_ON2:
4573 		case ID_LED_ON1_OFF2:
4574 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4575 			mac->ledctl_mode1 |= (ledctl_on << shift);
4576 			break;
4577 		case ID_LED_OFF1_DEF2:
4578 		case ID_LED_OFF1_ON2:
4579 		case ID_LED_OFF1_OFF2:
4580 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4581 			mac->ledctl_mode1 |= (ledctl_off << shift);
4582 			break;
4583 		default:
4584 			/* Do nothing */
4585 			break;
4586 		}
4587 		switch (temp) {
4588 		case ID_LED_DEF1_ON2:
4589 		case ID_LED_ON1_ON2:
4590 		case ID_LED_OFF1_ON2:
4591 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4592 			mac->ledctl_mode2 |= (ledctl_on << shift);
4593 			break;
4594 		case ID_LED_DEF1_OFF2:
4595 		case ID_LED_ON1_OFF2:
4596 		case ID_LED_OFF1_OFF2:
4597 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4598 			mac->ledctl_mode2 |= (ledctl_off << shift);
4599 			break;
4600 		default:
4601 			/* Do nothing */
4602 			break;
4603 		}
4604 	}
4605 
4606 	return 0;
4607 }
4608 
4609 /**
4610  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4611  *  @hw: pointer to the HW structure
4612  *
4613  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4614  *  register, so the the bus width is hard coded.
4615  **/
4616 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4617 {
4618 	struct e1000_bus_info *bus = &hw->bus;
4619 	s32 ret_val;
4620 
4621 	ret_val = e1000e_get_bus_info_pcie(hw);
4622 
4623 	/* ICH devices are "PCI Express"-ish.  They have
4624 	 * a configuration space, but do not contain
4625 	 * PCI Express Capability registers, so bus width
4626 	 * must be hardcoded.
4627 	 */
4628 	if (bus->width == e1000_bus_width_unknown)
4629 		bus->width = e1000_bus_width_pcie_x1;
4630 
4631 	return ret_val;
4632 }
4633 
4634 /**
4635  *  e1000_reset_hw_ich8lan - Reset the hardware
4636  *  @hw: pointer to the HW structure
4637  *
4638  *  Does a full reset of the hardware which includes a reset of the PHY and
4639  *  MAC.
4640  **/
4641 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4642 {
4643 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4644 	u16 kum_cfg;
4645 	u32 ctrl, reg;
4646 	s32 ret_val;
4647 
4648 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4649 	 * on the last TLP read/write transaction when MAC is reset.
4650 	 */
4651 	ret_val = e1000e_disable_pcie_master(hw);
4652 	if (ret_val)
4653 		e_dbg("PCI-E Master disable polling has failed.\n");
4654 
4655 	e_dbg("Masking off all interrupts\n");
4656 	ew32(IMC, 0xffffffff);
4657 
4658 	/* Disable the Transmit and Receive units.  Then delay to allow
4659 	 * any pending transactions to complete before we hit the MAC
4660 	 * with the global reset.
4661 	 */
4662 	ew32(RCTL, 0);
4663 	ew32(TCTL, E1000_TCTL_PSP);
4664 	e1e_flush();
4665 
4666 	usleep_range(10000, 20000);
4667 
4668 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4669 	if (hw->mac.type == e1000_ich8lan) {
4670 		/* Set Tx and Rx buffer allocation to 8k apiece. */
4671 		ew32(PBA, E1000_PBA_8K);
4672 		/* Set Packet Buffer Size to 16k. */
4673 		ew32(PBS, E1000_PBS_16K);
4674 	}
4675 
4676 	if (hw->mac.type == e1000_pchlan) {
4677 		/* Save the NVM K1 bit setting */
4678 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4679 		if (ret_val)
4680 			return ret_val;
4681 
4682 		if (kum_cfg & E1000_NVM_K1_ENABLE)
4683 			dev_spec->nvm_k1_enabled = true;
4684 		else
4685 			dev_spec->nvm_k1_enabled = false;
4686 	}
4687 
4688 	ctrl = er32(CTRL);
4689 
4690 	if (!hw->phy.ops.check_reset_block(hw)) {
4691 		/* Full-chip reset requires MAC and PHY reset at the same
4692 		 * time to make sure the interface between MAC and the
4693 		 * external PHY is reset.
4694 		 */
4695 		ctrl |= E1000_CTRL_PHY_RST;
4696 
4697 		/* Gate automatic PHY configuration by hardware on
4698 		 * non-managed 82579
4699 		 */
4700 		if ((hw->mac.type == e1000_pch2lan) &&
4701 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4702 			e1000_gate_hw_phy_config_ich8lan(hw, true);
4703 	}
4704 	ret_val = e1000_acquire_swflag_ich8lan(hw);
4705 	e_dbg("Issuing a global reset to ich8lan\n");
4706 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4707 	/* cannot issue a flush here because it hangs the hardware */
4708 	msleep(20);
4709 
4710 	/* Set Phy Config Counter to 50msec */
4711 	if (hw->mac.type == e1000_pch2lan) {
4712 		reg = er32(FEXTNVM3);
4713 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4714 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4715 		ew32(FEXTNVM3, reg);
4716 	}
4717 
4718 	if (!ret_val)
4719 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4720 
4721 	if (ctrl & E1000_CTRL_PHY_RST) {
4722 		ret_val = hw->phy.ops.get_cfg_done(hw);
4723 		if (ret_val)
4724 			return ret_val;
4725 
4726 		ret_val = e1000_post_phy_reset_ich8lan(hw);
4727 		if (ret_val)
4728 			return ret_val;
4729 	}
4730 
4731 	/* For PCH, this write will make sure that any noise
4732 	 * will be detected as a CRC error and be dropped rather than show up
4733 	 * as a bad packet to the DMA engine.
4734 	 */
4735 	if (hw->mac.type == e1000_pchlan)
4736 		ew32(CRC_OFFSET, 0x65656565);
4737 
4738 	ew32(IMC, 0xffffffff);
4739 	er32(ICR);
4740 
4741 	reg = er32(KABGTXD);
4742 	reg |= E1000_KABGTXD_BGSQLBIAS;
4743 	ew32(KABGTXD, reg);
4744 
4745 	return 0;
4746 }
4747 
4748 /**
4749  *  e1000_init_hw_ich8lan - Initialize the hardware
4750  *  @hw: pointer to the HW structure
4751  *
4752  *  Prepares the hardware for transmit and receive by doing the following:
4753  *   - initialize hardware bits
4754  *   - initialize LED identification
4755  *   - setup receive address registers
4756  *   - setup flow control
4757  *   - setup transmit descriptors
4758  *   - clear statistics
4759  **/
4760 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4761 {
4762 	struct e1000_mac_info *mac = &hw->mac;
4763 	u32 ctrl_ext, txdctl, snoop;
4764 	s32 ret_val;
4765 	u16 i;
4766 
4767 	e1000_initialize_hw_bits_ich8lan(hw);
4768 
4769 	/* Initialize identification LED */
4770 	ret_val = mac->ops.id_led_init(hw);
4771 	/* An error is not fatal and we should not stop init due to this */
4772 	if (ret_val)
4773 		e_dbg("Error initializing identification LED\n");
4774 
4775 	/* Setup the receive address. */
4776 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4777 
4778 	/* Zero out the Multicast HASH table */
4779 	e_dbg("Zeroing the MTA\n");
4780 	for (i = 0; i < mac->mta_reg_count; i++)
4781 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4782 
4783 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4784 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4785 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4786 	 */
4787 	if (hw->phy.type == e1000_phy_82578) {
4788 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4789 		i &= ~BM_WUC_HOST_WU_BIT;
4790 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4791 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4792 		if (ret_val)
4793 			return ret_val;
4794 	}
4795 
4796 	/* Setup link and flow control */
4797 	ret_val = mac->ops.setup_link(hw);
4798 
4799 	/* Set the transmit descriptor write-back policy for both queues */
4800 	txdctl = er32(TXDCTL(0));
4801 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4802 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4803 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4804 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4805 	ew32(TXDCTL(0), txdctl);
4806 	txdctl = er32(TXDCTL(1));
4807 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4808 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4809 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4810 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4811 	ew32(TXDCTL(1), txdctl);
4812 
4813 	/* ICH8 has opposite polarity of no_snoop bits.
4814 	 * By default, we should use snoop behavior.
4815 	 */
4816 	if (mac->type == e1000_ich8lan)
4817 		snoop = PCIE_ICH8_SNOOP_ALL;
4818 	else
4819 		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4820 	e1000e_set_pcie_no_snoop(hw, snoop);
4821 
4822 	ctrl_ext = er32(CTRL_EXT);
4823 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4824 	ew32(CTRL_EXT, ctrl_ext);
4825 
4826 	/* Clear all of the statistics registers (clear on read).  It is
4827 	 * important that we do this after we have tried to establish link
4828 	 * because the symbol error count will increment wildly if there
4829 	 * is no link.
4830 	 */
4831 	e1000_clear_hw_cntrs_ich8lan(hw);
4832 
4833 	return ret_val;
4834 }
4835 
4836 /**
4837  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4838  *  @hw: pointer to the HW structure
4839  *
4840  *  Sets/Clears required hardware bits necessary for correctly setting up the
4841  *  hardware for transmit and receive.
4842  **/
4843 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4844 {
4845 	u32 reg;
4846 
4847 	/* Extended Device Control */
4848 	reg = er32(CTRL_EXT);
4849 	reg |= BIT(22);
4850 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4851 	if (hw->mac.type >= e1000_pchlan)
4852 		reg |= E1000_CTRL_EXT_PHYPDEN;
4853 	ew32(CTRL_EXT, reg);
4854 
4855 	/* Transmit Descriptor Control 0 */
4856 	reg = er32(TXDCTL(0));
4857 	reg |= BIT(22);
4858 	ew32(TXDCTL(0), reg);
4859 
4860 	/* Transmit Descriptor Control 1 */
4861 	reg = er32(TXDCTL(1));
4862 	reg |= BIT(22);
4863 	ew32(TXDCTL(1), reg);
4864 
4865 	/* Transmit Arbitration Control 0 */
4866 	reg = er32(TARC(0));
4867 	if (hw->mac.type == e1000_ich8lan)
4868 		reg |= BIT(28) | BIT(29);
4869 	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4870 	ew32(TARC(0), reg);
4871 
4872 	/* Transmit Arbitration Control 1 */
4873 	reg = er32(TARC(1));
4874 	if (er32(TCTL) & E1000_TCTL_MULR)
4875 		reg &= ~BIT(28);
4876 	else
4877 		reg |= BIT(28);
4878 	reg |= BIT(24) | BIT(26) | BIT(30);
4879 	ew32(TARC(1), reg);
4880 
4881 	/* Device Status */
4882 	if (hw->mac.type == e1000_ich8lan) {
4883 		reg = er32(STATUS);
4884 		reg &= ~BIT(31);
4885 		ew32(STATUS, reg);
4886 	}
4887 
4888 	/* work-around descriptor data corruption issue during nfs v2 udp
4889 	 * traffic, just disable the nfs filtering capability
4890 	 */
4891 	reg = er32(RFCTL);
4892 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4893 
4894 	/* Disable IPv6 extension header parsing because some malformed
4895 	 * IPv6 headers can hang the Rx.
4896 	 */
4897 	if (hw->mac.type == e1000_ich8lan)
4898 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4899 	ew32(RFCTL, reg);
4900 
4901 	/* Enable ECC on Lynxpoint */
4902 	if (hw->mac.type >= e1000_pch_lpt) {
4903 		reg = er32(PBECCSTS);
4904 		reg |= E1000_PBECCSTS_ECC_ENABLE;
4905 		ew32(PBECCSTS, reg);
4906 
4907 		reg = er32(CTRL);
4908 		reg |= E1000_CTRL_MEHE;
4909 		ew32(CTRL, reg);
4910 	}
4911 }
4912 
4913 /**
4914  *  e1000_setup_link_ich8lan - Setup flow control and link settings
4915  *  @hw: pointer to the HW structure
4916  *
4917  *  Determines which flow control settings to use, then configures flow
4918  *  control.  Calls the appropriate media-specific link configuration
4919  *  function.  Assuming the adapter has a valid link partner, a valid link
4920  *  should be established.  Assumes the hardware has previously been reset
4921  *  and the transmitter and receiver are not enabled.
4922  **/
4923 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4924 {
4925 	s32 ret_val;
4926 
4927 	if (hw->phy.ops.check_reset_block(hw))
4928 		return 0;
4929 
4930 	/* ICH parts do not have a word in the NVM to determine
4931 	 * the default flow control setting, so we explicitly
4932 	 * set it to full.
4933 	 */
4934 	if (hw->fc.requested_mode == e1000_fc_default) {
4935 		/* Workaround h/w hang when Tx flow control enabled */
4936 		if (hw->mac.type == e1000_pchlan)
4937 			hw->fc.requested_mode = e1000_fc_rx_pause;
4938 		else
4939 			hw->fc.requested_mode = e1000_fc_full;
4940 	}
4941 
4942 	/* Save off the requested flow control mode for use later.  Depending
4943 	 * on the link partner's capabilities, we may or may not use this mode.
4944 	 */
4945 	hw->fc.current_mode = hw->fc.requested_mode;
4946 
4947 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4948 
4949 	/* Continue to configure the copper link. */
4950 	ret_val = hw->mac.ops.setup_physical_interface(hw);
4951 	if (ret_val)
4952 		return ret_val;
4953 
4954 	ew32(FCTTV, hw->fc.pause_time);
4955 	if ((hw->phy.type == e1000_phy_82578) ||
4956 	    (hw->phy.type == e1000_phy_82579) ||
4957 	    (hw->phy.type == e1000_phy_i217) ||
4958 	    (hw->phy.type == e1000_phy_82577)) {
4959 		ew32(FCRTV_PCH, hw->fc.refresh_time);
4960 
4961 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4962 				   hw->fc.pause_time);
4963 		if (ret_val)
4964 			return ret_val;
4965 	}
4966 
4967 	return e1000e_set_fc_watermarks(hw);
4968 }
4969 
4970 /**
4971  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4972  *  @hw: pointer to the HW structure
4973  *
4974  *  Configures the kumeran interface to the PHY to wait the appropriate time
4975  *  when polling the PHY, then call the generic setup_copper_link to finish
4976  *  configuring the copper link.
4977  **/
4978 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4979 {
4980 	u32 ctrl;
4981 	s32 ret_val;
4982 	u16 reg_data;
4983 
4984 	ctrl = er32(CTRL);
4985 	ctrl |= E1000_CTRL_SLU;
4986 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4987 	ew32(CTRL, ctrl);
4988 
4989 	/* Set the mac to wait the maximum time between each iteration
4990 	 * and increase the max iterations when polling the phy;
4991 	 * this fixes erroneous timeouts at 10Mbps.
4992 	 */
4993 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
4994 	if (ret_val)
4995 		return ret_val;
4996 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4997 				       &reg_data);
4998 	if (ret_val)
4999 		return ret_val;
5000 	reg_data |= 0x3F;
5001 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5002 					reg_data);
5003 	if (ret_val)
5004 		return ret_val;
5005 
5006 	switch (hw->phy.type) {
5007 	case e1000_phy_igp_3:
5008 		ret_val = e1000e_copper_link_setup_igp(hw);
5009 		if (ret_val)
5010 			return ret_val;
5011 		break;
5012 	case e1000_phy_bm:
5013 	case e1000_phy_82578:
5014 		ret_val = e1000e_copper_link_setup_m88(hw);
5015 		if (ret_val)
5016 			return ret_val;
5017 		break;
5018 	case e1000_phy_82577:
5019 	case e1000_phy_82579:
5020 		ret_val = e1000_copper_link_setup_82577(hw);
5021 		if (ret_val)
5022 			return ret_val;
5023 		break;
5024 	case e1000_phy_ife:
5025 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5026 		if (ret_val)
5027 			return ret_val;
5028 
5029 		reg_data &= ~IFE_PMC_AUTO_MDIX;
5030 
5031 		switch (hw->phy.mdix) {
5032 		case 1:
5033 			reg_data &= ~IFE_PMC_FORCE_MDIX;
5034 			break;
5035 		case 2:
5036 			reg_data |= IFE_PMC_FORCE_MDIX;
5037 			break;
5038 		case 0:
5039 		default:
5040 			reg_data |= IFE_PMC_AUTO_MDIX;
5041 			break;
5042 		}
5043 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5044 		if (ret_val)
5045 			return ret_val;
5046 		break;
5047 	default:
5048 		break;
5049 	}
5050 
5051 	return e1000e_setup_copper_link(hw);
5052 }
5053 
5054 /**
5055  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5056  *  @hw: pointer to the HW structure
5057  *
5058  *  Calls the PHY specific link setup function and then calls the
5059  *  generic setup_copper_link to finish configuring the link for
5060  *  Lynxpoint PCH devices
5061  **/
5062 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5063 {
5064 	u32 ctrl;
5065 	s32 ret_val;
5066 
5067 	ctrl = er32(CTRL);
5068 	ctrl |= E1000_CTRL_SLU;
5069 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5070 	ew32(CTRL, ctrl);
5071 
5072 	ret_val = e1000_copper_link_setup_82577(hw);
5073 	if (ret_val)
5074 		return ret_val;
5075 
5076 	return e1000e_setup_copper_link(hw);
5077 }
5078 
5079 /**
5080  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5081  *  @hw: pointer to the HW structure
5082  *  @speed: pointer to store current link speed
5083  *  @duplex: pointer to store the current link duplex
5084  *
5085  *  Calls the generic get_speed_and_duplex to retrieve the current link
5086  *  information and then calls the Kumeran lock loss workaround for links at
5087  *  gigabit speeds.
5088  **/
5089 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5090 					  u16 *duplex)
5091 {
5092 	s32 ret_val;
5093 
5094 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5095 	if (ret_val)
5096 		return ret_val;
5097 
5098 	if ((hw->mac.type == e1000_ich8lan) &&
5099 	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5100 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5101 	}
5102 
5103 	return ret_val;
5104 }
5105 
5106 /**
5107  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5108  *  @hw: pointer to the HW structure
5109  *
5110  *  Work-around for 82566 Kumeran PCS lock loss:
5111  *  On link status change (i.e. PCI reset, speed change) and link is up and
5112  *  speed is gigabit-
5113  *    0) if workaround is optionally disabled do nothing
5114  *    1) wait 1ms for Kumeran link to come up
5115  *    2) check Kumeran Diagnostic register PCS lock loss bit
5116  *    3) if not set the link is locked (all is good), otherwise...
5117  *    4) reset the PHY
5118  *    5) repeat up to 10 times
5119  *  Note: this is only called for IGP3 copper when speed is 1gb.
5120  **/
5121 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5122 {
5123 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5124 	u32 phy_ctrl;
5125 	s32 ret_val;
5126 	u16 i, data;
5127 	bool link;
5128 
5129 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5130 		return 0;
5131 
5132 	/* Make sure link is up before proceeding.  If not just return.
5133 	 * Attempting this while link is negotiating fouled up link
5134 	 * stability
5135 	 */
5136 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5137 	if (!link)
5138 		return 0;
5139 
5140 	for (i = 0; i < 10; i++) {
5141 		/* read once to clear */
5142 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5143 		if (ret_val)
5144 			return ret_val;
5145 		/* and again to get new status */
5146 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5147 		if (ret_val)
5148 			return ret_val;
5149 
5150 		/* check for PCS lock */
5151 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5152 			return 0;
5153 
5154 		/* Issue PHY reset */
5155 		e1000_phy_hw_reset(hw);
5156 		mdelay(5);
5157 	}
5158 	/* Disable GigE link negotiation */
5159 	phy_ctrl = er32(PHY_CTRL);
5160 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5161 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5162 	ew32(PHY_CTRL, phy_ctrl);
5163 
5164 	/* Call gig speed drop workaround on Gig disable before accessing
5165 	 * any PHY registers
5166 	 */
5167 	e1000e_gig_downshift_workaround_ich8lan(hw);
5168 
5169 	/* unable to acquire PCS lock */
5170 	return -E1000_ERR_PHY;
5171 }
5172 
5173 /**
5174  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5175  *  @hw: pointer to the HW structure
5176  *  @state: boolean value used to set the current Kumeran workaround state
5177  *
5178  *  If ICH8, set the current Kumeran workaround state (enabled - true
5179  *  /disabled - false).
5180  **/
5181 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5182 						  bool state)
5183 {
5184 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5185 
5186 	if (hw->mac.type != e1000_ich8lan) {
5187 		e_dbg("Workaround applies to ICH8 only.\n");
5188 		return;
5189 	}
5190 
5191 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5192 }
5193 
5194 /**
5195  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5196  *  @hw: pointer to the HW structure
5197  *
5198  *  Workaround for 82566 power-down on D3 entry:
5199  *    1) disable gigabit link
5200  *    2) write VR power-down enable
5201  *    3) read it back
5202  *  Continue if successful, else issue LCD reset and repeat
5203  **/
5204 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5205 {
5206 	u32 reg;
5207 	u16 data;
5208 	u8 retry = 0;
5209 
5210 	if (hw->phy.type != e1000_phy_igp_3)
5211 		return;
5212 
5213 	/* Try the workaround twice (if needed) */
5214 	do {
5215 		/* Disable link */
5216 		reg = er32(PHY_CTRL);
5217 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5218 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5219 		ew32(PHY_CTRL, reg);
5220 
5221 		/* Call gig speed drop workaround on Gig disable before
5222 		 * accessing any PHY registers
5223 		 */
5224 		if (hw->mac.type == e1000_ich8lan)
5225 			e1000e_gig_downshift_workaround_ich8lan(hw);
5226 
5227 		/* Write VR power-down enable */
5228 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5229 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5230 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5231 
5232 		/* Read it back and test */
5233 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5234 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5235 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5236 			break;
5237 
5238 		/* Issue PHY reset and repeat at most one more time */
5239 		reg = er32(CTRL);
5240 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5241 		retry++;
5242 	} while (retry);
5243 }
5244 
5245 /**
5246  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5247  *  @hw: pointer to the HW structure
5248  *
5249  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5250  *  LPLU, Gig disable, MDIC PHY reset):
5251  *    1) Set Kumeran Near-end loopback
5252  *    2) Clear Kumeran Near-end loopback
5253  *  Should only be called for ICH8[m] devices with any 1G Phy.
5254  **/
5255 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5256 {
5257 	s32 ret_val;
5258 	u16 reg_data;
5259 
5260 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5261 		return;
5262 
5263 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5264 				       &reg_data);
5265 	if (ret_val)
5266 		return;
5267 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5268 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5269 					reg_data);
5270 	if (ret_val)
5271 		return;
5272 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5273 	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5274 }
5275 
5276 /**
5277  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5278  *  @hw: pointer to the HW structure
5279  *
5280  *  During S0 to Sx transition, it is possible the link remains at gig
5281  *  instead of negotiating to a lower speed.  Before going to Sx, set
5282  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5283  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5284  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5285  *  needs to be written.
5286  *  Parts that support (and are linked to a partner which support) EEE in
5287  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5288  *  than 10Mbps w/o EEE.
5289  **/
5290 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5291 {
5292 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5293 	u32 phy_ctrl;
5294 	s32 ret_val;
5295 
5296 	phy_ctrl = er32(PHY_CTRL);
5297 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5298 
5299 	if (hw->phy.type == e1000_phy_i217) {
5300 		u16 phy_reg, device_id = hw->adapter->pdev->device;
5301 
5302 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5303 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5304 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5305 		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5306 		    (hw->mac.type >= e1000_pch_spt)) {
5307 			u32 fextnvm6 = er32(FEXTNVM6);
5308 
5309 			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5310 		}
5311 
5312 		ret_val = hw->phy.ops.acquire(hw);
5313 		if (ret_val)
5314 			goto out;
5315 
5316 		if (!dev_spec->eee_disable) {
5317 			u16 eee_advert;
5318 
5319 			ret_val =
5320 			    e1000_read_emi_reg_locked(hw,
5321 						      I217_EEE_ADVERTISEMENT,
5322 						      &eee_advert);
5323 			if (ret_val)
5324 				goto release;
5325 
5326 			/* Disable LPLU if both link partners support 100BaseT
5327 			 * EEE and 100Full is advertised on both ends of the
5328 			 * link, and enable Auto Enable LPI since there will
5329 			 * be no driver to enable LPI while in Sx.
5330 			 */
5331 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5332 			    (dev_spec->eee_lp_ability &
5333 			     I82579_EEE_100_SUPPORTED) &&
5334 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5335 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5336 					      E1000_PHY_CTRL_NOND0A_LPLU);
5337 
5338 				/* Set Auto Enable LPI after link up */
5339 				e1e_rphy_locked(hw,
5340 						I217_LPI_GPIO_CTRL, &phy_reg);
5341 				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5342 				e1e_wphy_locked(hw,
5343 						I217_LPI_GPIO_CTRL, phy_reg);
5344 			}
5345 		}
5346 
5347 		/* For i217 Intel Rapid Start Technology support,
5348 		 * when the system is going into Sx and no manageability engine
5349 		 * is present, the driver must configure proxy to reset only on
5350 		 * power good.  LPI (Low Power Idle) state must also reset only
5351 		 * on power good, as well as the MTA (Multicast table array).
5352 		 * The SMBus release must also be disabled on LCD reset.
5353 		 */
5354 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5355 			/* Enable proxy to reset only on power good. */
5356 			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5357 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5358 			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5359 
5360 			/* Set bit enable LPI (EEE) to reset only on
5361 			 * power good.
5362 			 */
5363 			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5364 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5365 			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5366 
5367 			/* Disable the SMB release on LCD reset. */
5368 			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5369 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5370 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5371 		}
5372 
5373 		/* Enable MTA to reset for Intel Rapid Start Technology
5374 		 * Support
5375 		 */
5376 		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5377 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5378 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5379 
5380 release:
5381 		hw->phy.ops.release(hw);
5382 	}
5383 out:
5384 	ew32(PHY_CTRL, phy_ctrl);
5385 
5386 	if (hw->mac.type == e1000_ich8lan)
5387 		e1000e_gig_downshift_workaround_ich8lan(hw);
5388 
5389 	if (hw->mac.type >= e1000_pchlan) {
5390 		e1000_oem_bits_config_ich8lan(hw, false);
5391 
5392 		/* Reset PHY to activate OEM bits on 82577/8 */
5393 		if (hw->mac.type == e1000_pchlan)
5394 			e1000e_phy_hw_reset_generic(hw);
5395 
5396 		ret_val = hw->phy.ops.acquire(hw);
5397 		if (ret_val)
5398 			return;
5399 		e1000_write_smbus_addr(hw);
5400 		hw->phy.ops.release(hw);
5401 	}
5402 }
5403 
5404 /**
5405  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5406  *  @hw: pointer to the HW structure
5407  *
5408  *  During Sx to S0 transitions on non-managed devices or managed devices
5409  *  on which PHY resets are not blocked, if the PHY registers cannot be
5410  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5411  *  the PHY.
5412  *  On i217, setup Intel Rapid Start Technology.
5413  **/
5414 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5415 {
5416 	s32 ret_val;
5417 
5418 	if (hw->mac.type < e1000_pch2lan)
5419 		return;
5420 
5421 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5422 	if (ret_val) {
5423 		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5424 		return;
5425 	}
5426 
5427 	/* For i217 Intel Rapid Start Technology support when the system
5428 	 * is transitioning from Sx and no manageability engine is present
5429 	 * configure SMBus to restore on reset, disable proxy, and enable
5430 	 * the reset on MTA (Multicast table array).
5431 	 */
5432 	if (hw->phy.type == e1000_phy_i217) {
5433 		u16 phy_reg;
5434 
5435 		ret_val = hw->phy.ops.acquire(hw);
5436 		if (ret_val) {
5437 			e_dbg("Failed to setup iRST\n");
5438 			return;
5439 		}
5440 
5441 		/* Clear Auto Enable LPI after link up */
5442 		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5443 		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5444 		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5445 
5446 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5447 			/* Restore clear on SMB if no manageability engine
5448 			 * is present
5449 			 */
5450 			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5451 			if (ret_val)
5452 				goto release;
5453 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5454 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5455 
5456 			/* Disable Proxy */
5457 			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5458 		}
5459 		/* Enable reset on MTA */
5460 		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5461 		if (ret_val)
5462 			goto release;
5463 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5464 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5465 release:
5466 		if (ret_val)
5467 			e_dbg("Error %d in resume workarounds\n", ret_val);
5468 		hw->phy.ops.release(hw);
5469 	}
5470 }
5471 
5472 /**
5473  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5474  *  @hw: pointer to the HW structure
5475  *
5476  *  Return the LED back to the default configuration.
5477  **/
5478 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5479 {
5480 	if (hw->phy.type == e1000_phy_ife)
5481 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5482 
5483 	ew32(LEDCTL, hw->mac.ledctl_default);
5484 	return 0;
5485 }
5486 
5487 /**
5488  *  e1000_led_on_ich8lan - Turn LEDs on
5489  *  @hw: pointer to the HW structure
5490  *
5491  *  Turn on the LEDs.
5492  **/
5493 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5494 {
5495 	if (hw->phy.type == e1000_phy_ife)
5496 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5497 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5498 
5499 	ew32(LEDCTL, hw->mac.ledctl_mode2);
5500 	return 0;
5501 }
5502 
5503 /**
5504  *  e1000_led_off_ich8lan - Turn LEDs off
5505  *  @hw: pointer to the HW structure
5506  *
5507  *  Turn off the LEDs.
5508  **/
5509 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5510 {
5511 	if (hw->phy.type == e1000_phy_ife)
5512 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5513 				(IFE_PSCL_PROBE_MODE |
5514 				 IFE_PSCL_PROBE_LEDS_OFF));
5515 
5516 	ew32(LEDCTL, hw->mac.ledctl_mode1);
5517 	return 0;
5518 }
5519 
5520 /**
5521  *  e1000_setup_led_pchlan - Configures SW controllable LED
5522  *  @hw: pointer to the HW structure
5523  *
5524  *  This prepares the SW controllable LED for use.
5525  **/
5526 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5527 {
5528 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5529 }
5530 
5531 /**
5532  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5533  *  @hw: pointer to the HW structure
5534  *
5535  *  Return the LED back to the default configuration.
5536  **/
5537 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5538 {
5539 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5540 }
5541 
5542 /**
5543  *  e1000_led_on_pchlan - Turn LEDs on
5544  *  @hw: pointer to the HW structure
5545  *
5546  *  Turn on the LEDs.
5547  **/
5548 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5549 {
5550 	u16 data = (u16)hw->mac.ledctl_mode2;
5551 	u32 i, led;
5552 
5553 	/* If no link, then turn LED on by setting the invert bit
5554 	 * for each LED that's mode is "link_up" in ledctl_mode2.
5555 	 */
5556 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5557 		for (i = 0; i < 3; i++) {
5558 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5559 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5560 			    E1000_LEDCTL_MODE_LINK_UP)
5561 				continue;
5562 			if (led & E1000_PHY_LED0_IVRT)
5563 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5564 			else
5565 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5566 		}
5567 	}
5568 
5569 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5570 }
5571 
5572 /**
5573  *  e1000_led_off_pchlan - Turn LEDs off
5574  *  @hw: pointer to the HW structure
5575  *
5576  *  Turn off the LEDs.
5577  **/
5578 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5579 {
5580 	u16 data = (u16)hw->mac.ledctl_mode1;
5581 	u32 i, led;
5582 
5583 	/* If no link, then turn LED off by clearing the invert bit
5584 	 * for each LED that's mode is "link_up" in ledctl_mode1.
5585 	 */
5586 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5587 		for (i = 0; i < 3; i++) {
5588 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5589 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5590 			    E1000_LEDCTL_MODE_LINK_UP)
5591 				continue;
5592 			if (led & E1000_PHY_LED0_IVRT)
5593 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5594 			else
5595 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5596 		}
5597 	}
5598 
5599 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5600 }
5601 
5602 /**
5603  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5604  *  @hw: pointer to the HW structure
5605  *
5606  *  Read appropriate register for the config done bit for completion status
5607  *  and configure the PHY through s/w for EEPROM-less parts.
5608  *
5609  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5610  *  config done bit, so only an error is logged and continues.  If we were
5611  *  to return with error, EEPROM-less silicon would not be able to be reset
5612  *  or change link.
5613  **/
5614 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5615 {
5616 	s32 ret_val = 0;
5617 	u32 bank = 0;
5618 	u32 status;
5619 
5620 	e1000e_get_cfg_done_generic(hw);
5621 
5622 	/* Wait for indication from h/w that it has completed basic config */
5623 	if (hw->mac.type >= e1000_ich10lan) {
5624 		e1000_lan_init_done_ich8lan(hw);
5625 	} else {
5626 		ret_val = e1000e_get_auto_rd_done(hw);
5627 		if (ret_val) {
5628 			/* When auto config read does not complete, do not
5629 			 * return with an error. This can happen in situations
5630 			 * where there is no eeprom and prevents getting link.
5631 			 */
5632 			e_dbg("Auto Read Done did not complete\n");
5633 			ret_val = 0;
5634 		}
5635 	}
5636 
5637 	/* Clear PHY Reset Asserted bit */
5638 	status = er32(STATUS);
5639 	if (status & E1000_STATUS_PHYRA)
5640 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5641 	else
5642 		e_dbg("PHY Reset Asserted not set - needs delay\n");
5643 
5644 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5645 	if (hw->mac.type <= e1000_ich9lan) {
5646 		if (!(er32(EECD) & E1000_EECD_PRES) &&
5647 		    (hw->phy.type == e1000_phy_igp_3)) {
5648 			e1000e_phy_init_script_igp3(hw);
5649 		}
5650 	} else {
5651 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5652 			/* Maybe we should do a basic PHY config */
5653 			e_dbg("EEPROM not present\n");
5654 			ret_val = -E1000_ERR_CONFIG;
5655 		}
5656 	}
5657 
5658 	return ret_val;
5659 }
5660 
5661 /**
5662  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5663  * @hw: pointer to the HW structure
5664  *
5665  * In the case of a PHY power down to save power, or to turn off link during a
5666  * driver unload, or wake on lan is not enabled, remove the link.
5667  **/
5668 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5669 {
5670 	/* If the management interface is not enabled, then power down */
5671 	if (!(hw->mac.ops.check_mng_mode(hw) ||
5672 	      hw->phy.ops.check_reset_block(hw)))
5673 		e1000_power_down_phy_copper(hw);
5674 }
5675 
5676 /**
5677  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5678  *  @hw: pointer to the HW structure
5679  *
5680  *  Clears hardware counters specific to the silicon family and calls
5681  *  clear_hw_cntrs_generic to clear all general purpose counters.
5682  **/
5683 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5684 {
5685 	u16 phy_data;
5686 	s32 ret_val;
5687 
5688 	e1000e_clear_hw_cntrs_base(hw);
5689 
5690 	er32(ALGNERRC);
5691 	er32(RXERRC);
5692 	er32(TNCRS);
5693 	er32(CEXTERR);
5694 	er32(TSCTC);
5695 	er32(TSCTFC);
5696 
5697 	er32(MGTPRC);
5698 	er32(MGTPDC);
5699 	er32(MGTPTC);
5700 
5701 	er32(IAC);
5702 	er32(ICRXOC);
5703 
5704 	/* Clear PHY statistics registers */
5705 	if ((hw->phy.type == e1000_phy_82578) ||
5706 	    (hw->phy.type == e1000_phy_82579) ||
5707 	    (hw->phy.type == e1000_phy_i217) ||
5708 	    (hw->phy.type == e1000_phy_82577)) {
5709 		ret_val = hw->phy.ops.acquire(hw);
5710 		if (ret_val)
5711 			return;
5712 		ret_val = hw->phy.ops.set_page(hw,
5713 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5714 		if (ret_val)
5715 			goto release;
5716 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5717 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5718 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5719 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5720 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5721 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5722 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5723 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5724 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5725 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5726 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5727 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5728 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5729 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5730 release:
5731 		hw->phy.ops.release(hw);
5732 	}
5733 }
5734 
5735 static const struct e1000_mac_operations ich8_mac_ops = {
5736 	/* check_mng_mode dependent on mac type */
5737 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5738 	/* cleanup_led dependent on mac type */
5739 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5740 	.get_bus_info		= e1000_get_bus_info_ich8lan,
5741 	.set_lan_id		= e1000_set_lan_id_single_port,
5742 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5743 	/* led_on dependent on mac type */
5744 	/* led_off dependent on mac type */
5745 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5746 	.reset_hw		= e1000_reset_hw_ich8lan,
5747 	.init_hw		= e1000_init_hw_ich8lan,
5748 	.setup_link		= e1000_setup_link_ich8lan,
5749 	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5750 	/* id_led_init dependent on mac type */
5751 	.config_collision_dist	= e1000e_config_collision_dist_generic,
5752 	.rar_set		= e1000e_rar_set_generic,
5753 	.rar_get_count		= e1000e_rar_get_count_generic,
5754 };
5755 
5756 static const struct e1000_phy_operations ich8_phy_ops = {
5757 	.acquire		= e1000_acquire_swflag_ich8lan,
5758 	.check_reset_block	= e1000_check_reset_block_ich8lan,
5759 	.commit			= NULL,
5760 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5761 	.get_cable_length	= e1000e_get_cable_length_igp_2,
5762 	.read_reg		= e1000e_read_phy_reg_igp,
5763 	.release		= e1000_release_swflag_ich8lan,
5764 	.reset			= e1000_phy_hw_reset_ich8lan,
5765 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5766 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5767 	.write_reg		= e1000e_write_phy_reg_igp,
5768 };
5769 
5770 static const struct e1000_nvm_operations ich8_nvm_ops = {
5771 	.acquire		= e1000_acquire_nvm_ich8lan,
5772 	.read			= e1000_read_nvm_ich8lan,
5773 	.release		= e1000_release_nvm_ich8lan,
5774 	.reload			= e1000e_reload_nvm_generic,
5775 	.update			= e1000_update_nvm_checksum_ich8lan,
5776 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5777 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5778 	.write			= e1000_write_nvm_ich8lan,
5779 };
5780 
5781 static const struct e1000_nvm_operations spt_nvm_ops = {
5782 	.acquire		= e1000_acquire_nvm_ich8lan,
5783 	.release		= e1000_release_nvm_ich8lan,
5784 	.read			= e1000_read_nvm_spt,
5785 	.update			= e1000_update_nvm_checksum_spt,
5786 	.reload			= e1000e_reload_nvm_generic,
5787 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5788 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5789 	.write			= e1000_write_nvm_ich8lan,
5790 };
5791 
5792 const struct e1000_info e1000_ich8_info = {
5793 	.mac			= e1000_ich8lan,
5794 	.flags			= FLAG_HAS_WOL
5795 				  | FLAG_IS_ICH
5796 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5797 				  | FLAG_HAS_AMT
5798 				  | FLAG_HAS_FLASH
5799 				  | FLAG_APME_IN_WUC,
5800 	.pba			= 8,
5801 	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5802 	.get_variants		= e1000_get_variants_ich8lan,
5803 	.mac_ops		= &ich8_mac_ops,
5804 	.phy_ops		= &ich8_phy_ops,
5805 	.nvm_ops		= &ich8_nvm_ops,
5806 };
5807 
5808 const struct e1000_info e1000_ich9_info = {
5809 	.mac			= e1000_ich9lan,
5810 	.flags			= FLAG_HAS_JUMBO_FRAMES
5811 				  | FLAG_IS_ICH
5812 				  | FLAG_HAS_WOL
5813 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5814 				  | FLAG_HAS_AMT
5815 				  | FLAG_HAS_FLASH
5816 				  | FLAG_APME_IN_WUC,
5817 	.pba			= 18,
5818 	.max_hw_frame_size	= DEFAULT_JUMBO,
5819 	.get_variants		= e1000_get_variants_ich8lan,
5820 	.mac_ops		= &ich8_mac_ops,
5821 	.phy_ops		= &ich8_phy_ops,
5822 	.nvm_ops		= &ich8_nvm_ops,
5823 };
5824 
5825 const struct e1000_info e1000_ich10_info = {
5826 	.mac			= e1000_ich10lan,
5827 	.flags			= FLAG_HAS_JUMBO_FRAMES
5828 				  | FLAG_IS_ICH
5829 				  | FLAG_HAS_WOL
5830 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5831 				  | FLAG_HAS_AMT
5832 				  | FLAG_HAS_FLASH
5833 				  | FLAG_APME_IN_WUC,
5834 	.pba			= 18,
5835 	.max_hw_frame_size	= DEFAULT_JUMBO,
5836 	.get_variants		= e1000_get_variants_ich8lan,
5837 	.mac_ops		= &ich8_mac_ops,
5838 	.phy_ops		= &ich8_phy_ops,
5839 	.nvm_ops		= &ich8_nvm_ops,
5840 };
5841 
5842 const struct e1000_info e1000_pch_info = {
5843 	.mac			= e1000_pchlan,
5844 	.flags			= FLAG_IS_ICH
5845 				  | FLAG_HAS_WOL
5846 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5847 				  | FLAG_HAS_AMT
5848 				  | FLAG_HAS_FLASH
5849 				  | FLAG_HAS_JUMBO_FRAMES
5850 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5851 				  | FLAG_APME_IN_WUC,
5852 	.flags2			= FLAG2_HAS_PHY_STATS,
5853 	.pba			= 26,
5854 	.max_hw_frame_size	= 4096,
5855 	.get_variants		= e1000_get_variants_ich8lan,
5856 	.mac_ops		= &ich8_mac_ops,
5857 	.phy_ops		= &ich8_phy_ops,
5858 	.nvm_ops		= &ich8_nvm_ops,
5859 };
5860 
5861 const struct e1000_info e1000_pch2_info = {
5862 	.mac			= e1000_pch2lan,
5863 	.flags			= FLAG_IS_ICH
5864 				  | FLAG_HAS_WOL
5865 				  | FLAG_HAS_HW_TIMESTAMP
5866 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5867 				  | FLAG_HAS_AMT
5868 				  | FLAG_HAS_FLASH
5869 				  | FLAG_HAS_JUMBO_FRAMES
5870 				  | FLAG_APME_IN_WUC,
5871 	.flags2			= FLAG2_HAS_PHY_STATS
5872 				  | FLAG2_HAS_EEE
5873 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5874 	.pba			= 26,
5875 	.max_hw_frame_size	= 9022,
5876 	.get_variants		= e1000_get_variants_ich8lan,
5877 	.mac_ops		= &ich8_mac_ops,
5878 	.phy_ops		= &ich8_phy_ops,
5879 	.nvm_ops		= &ich8_nvm_ops,
5880 };
5881 
5882 const struct e1000_info e1000_pch_lpt_info = {
5883 	.mac			= e1000_pch_lpt,
5884 	.flags			= FLAG_IS_ICH
5885 				  | FLAG_HAS_WOL
5886 				  | FLAG_HAS_HW_TIMESTAMP
5887 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5888 				  | FLAG_HAS_AMT
5889 				  | FLAG_HAS_FLASH
5890 				  | FLAG_HAS_JUMBO_FRAMES
5891 				  | FLAG_APME_IN_WUC,
5892 	.flags2			= FLAG2_HAS_PHY_STATS
5893 				  | FLAG2_HAS_EEE
5894 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5895 	.pba			= 26,
5896 	.max_hw_frame_size	= 9022,
5897 	.get_variants		= e1000_get_variants_ich8lan,
5898 	.mac_ops		= &ich8_mac_ops,
5899 	.phy_ops		= &ich8_phy_ops,
5900 	.nvm_ops		= &ich8_nvm_ops,
5901 };
5902 
5903 const struct e1000_info e1000_pch_spt_info = {
5904 	.mac			= e1000_pch_spt,
5905 	.flags			= FLAG_IS_ICH
5906 				  | FLAG_HAS_WOL
5907 				  | FLAG_HAS_HW_TIMESTAMP
5908 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5909 				  | FLAG_HAS_AMT
5910 				  | FLAG_HAS_FLASH
5911 				  | FLAG_HAS_JUMBO_FRAMES
5912 				  | FLAG_APME_IN_WUC,
5913 	.flags2			= FLAG2_HAS_PHY_STATS
5914 				  | FLAG2_HAS_EEE,
5915 	.pba			= 26,
5916 	.max_hw_frame_size	= 9022,
5917 	.get_variants		= e1000_get_variants_ich8lan,
5918 	.mac_ops		= &ich8_mac_ops,
5919 	.phy_ops		= &ich8_phy_ops,
5920 	.nvm_ops		= &spt_nvm_ops,
5921 };
5922 
5923 const struct e1000_info e1000_pch_cnp_info = {
5924 	.mac			= e1000_pch_cnp,
5925 	.flags			= FLAG_IS_ICH
5926 				  | FLAG_HAS_WOL
5927 				  | FLAG_HAS_HW_TIMESTAMP
5928 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5929 				  | FLAG_HAS_AMT
5930 				  | FLAG_HAS_FLASH
5931 				  | FLAG_HAS_JUMBO_FRAMES
5932 				  | FLAG_APME_IN_WUC,
5933 	.flags2			= FLAG2_HAS_PHY_STATS
5934 				  | FLAG2_HAS_EEE,
5935 	.pba			= 26,
5936 	.max_hw_frame_size	= 9022,
5937 	.get_variants		= e1000_get_variants_ich8lan,
5938 	.mac_ops		= &ich8_mac_ops,
5939 	.phy_ops		= &ich8_phy_ops,
5940 	.nvm_ops		= &spt_nvm_ops,
5941 };
5942