1 /* Intel PRO/1000 Linux driver 2 * Copyright(c) 1999 - 2015 Intel Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * The full GNU General Public License is included in this distribution in 14 * the file called "COPYING". 15 * 16 * Contact Information: 17 * Linux NICS <linux.nics@intel.com> 18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 20 */ 21 22 /* 82562G 10/100 Network Connection 23 * 82562G-2 10/100 Network Connection 24 * 82562GT 10/100 Network Connection 25 * 82562GT-2 10/100 Network Connection 26 * 82562V 10/100 Network Connection 27 * 82562V-2 10/100 Network Connection 28 * 82566DC-2 Gigabit Network Connection 29 * 82566DC Gigabit Network Connection 30 * 82566DM-2 Gigabit Network Connection 31 * 82566DM Gigabit Network Connection 32 * 82566MC Gigabit Network Connection 33 * 82566MM Gigabit Network Connection 34 * 82567LM Gigabit Network Connection 35 * 82567LF Gigabit Network Connection 36 * 82567V Gigabit Network Connection 37 * 82567LM-2 Gigabit Network Connection 38 * 82567LF-2 Gigabit Network Connection 39 * 82567V-2 Gigabit Network Connection 40 * 82567LF-3 Gigabit Network Connection 41 * 82567LM-3 Gigabit Network Connection 42 * 82567LM-4 Gigabit Network Connection 43 * 82577LM Gigabit Network Connection 44 * 82577LC Gigabit Network Connection 45 * 82578DM Gigabit Network Connection 46 * 82578DC Gigabit Network Connection 47 * 82579LM Gigabit Network Connection 48 * 82579V Gigabit Network Connection 49 * Ethernet Connection I217-LM 50 * Ethernet Connection I217-V 51 * Ethernet Connection I218-V 52 * Ethernet Connection I218-LM 53 * Ethernet Connection (2) I218-LM 54 * Ethernet Connection (2) I218-V 55 * Ethernet Connection (3) I218-LM 56 * Ethernet Connection (3) I218-V 57 */ 58 59 #include "e1000.h" 60 61 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */ 62 /* Offset 04h HSFSTS */ 63 union ich8_hws_flash_status { 64 struct ich8_hsfsts { 65 u16 flcdone:1; /* bit 0 Flash Cycle Done */ 66 u16 flcerr:1; /* bit 1 Flash Cycle Error */ 67 u16 dael:1; /* bit 2 Direct Access error Log */ 68 u16 berasesz:2; /* bit 4:3 Sector Erase Size */ 69 u16 flcinprog:1; /* bit 5 flash cycle in Progress */ 70 u16 reserved1:2; /* bit 13:6 Reserved */ 71 u16 reserved2:6; /* bit 13:6 Reserved */ 72 u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */ 73 u16 flockdn:1; /* bit 15 Flash Config Lock-Down */ 74 } hsf_status; 75 u16 regval; 76 }; 77 78 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */ 79 /* Offset 06h FLCTL */ 80 union ich8_hws_flash_ctrl { 81 struct ich8_hsflctl { 82 u16 flcgo:1; /* 0 Flash Cycle Go */ 83 u16 flcycle:2; /* 2:1 Flash Cycle */ 84 u16 reserved:5; /* 7:3 Reserved */ 85 u16 fldbcount:2; /* 9:8 Flash Data Byte Count */ 86 u16 flockdn:6; /* 15:10 Reserved */ 87 } hsf_ctrl; 88 u16 regval; 89 }; 90 91 /* ICH Flash Region Access Permissions */ 92 union ich8_hws_flash_regacc { 93 struct ich8_flracc { 94 u32 grra:8; /* 0:7 GbE region Read Access */ 95 u32 grwa:8; /* 8:15 GbE region Write Access */ 96 u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */ 97 u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */ 98 } hsf_flregacc; 99 u16 regval; 100 }; 101 102 /* ICH Flash Protected Region */ 103 union ich8_flash_protected_range { 104 struct ich8_pr { 105 u32 base:13; /* 0:12 Protected Range Base */ 106 u32 reserved1:2; /* 13:14 Reserved */ 107 u32 rpe:1; /* 15 Read Protection Enable */ 108 u32 limit:13; /* 16:28 Protected Range Limit */ 109 u32 reserved2:2; /* 29:30 Reserved */ 110 u32 wpe:1; /* 31 Write Protection Enable */ 111 } range; 112 u32 regval; 113 }; 114 115 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw); 116 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw); 117 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank); 118 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, 119 u32 offset, u8 byte); 120 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, 121 u8 *data); 122 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, 123 u16 *data); 124 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 125 u8 size, u16 *data); 126 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, 127 u32 *data); 128 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, 129 u32 offset, u32 *data); 130 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, 131 u32 offset, u32 data); 132 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw, 133 u32 offset, u32 dword); 134 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw); 135 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw); 136 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw); 137 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw); 138 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw); 139 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw); 140 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw); 141 static s32 e1000_led_on_pchlan(struct e1000_hw *hw); 142 static s32 e1000_led_off_pchlan(struct e1000_hw *hw); 143 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active); 144 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw); 145 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw); 146 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link); 147 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw); 148 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw); 149 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw); 150 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index); 151 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index); 152 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw); 153 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw); 154 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate); 155 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force); 156 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw); 157 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state); 158 159 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg) 160 { 161 return readw(hw->flash_address + reg); 162 } 163 164 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg) 165 { 166 return readl(hw->flash_address + reg); 167 } 168 169 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val) 170 { 171 writew(val, hw->flash_address + reg); 172 } 173 174 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val) 175 { 176 writel(val, hw->flash_address + reg); 177 } 178 179 #define er16flash(reg) __er16flash(hw, (reg)) 180 #define er32flash(reg) __er32flash(hw, (reg)) 181 #define ew16flash(reg, val) __ew16flash(hw, (reg), (val)) 182 #define ew32flash(reg, val) __ew32flash(hw, (reg), (val)) 183 184 /** 185 * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers 186 * @hw: pointer to the HW structure 187 * 188 * Test access to the PHY registers by reading the PHY ID registers. If 189 * the PHY ID is already known (e.g. resume path) compare it with known ID, 190 * otherwise assume the read PHY ID is correct if it is valid. 191 * 192 * Assumes the sw/fw/hw semaphore is already acquired. 193 **/ 194 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw) 195 { 196 u16 phy_reg = 0; 197 u32 phy_id = 0; 198 s32 ret_val = 0; 199 u16 retry_count; 200 u32 mac_reg = 0; 201 202 for (retry_count = 0; retry_count < 2; retry_count++) { 203 ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg); 204 if (ret_val || (phy_reg == 0xFFFF)) 205 continue; 206 phy_id = (u32)(phy_reg << 16); 207 208 ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg); 209 if (ret_val || (phy_reg == 0xFFFF)) { 210 phy_id = 0; 211 continue; 212 } 213 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK); 214 break; 215 } 216 217 if (hw->phy.id) { 218 if (hw->phy.id == phy_id) 219 goto out; 220 } else if (phy_id) { 221 hw->phy.id = phy_id; 222 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK); 223 goto out; 224 } 225 226 /* In case the PHY needs to be in mdio slow mode, 227 * set slow mode and try to get the PHY id again. 228 */ 229 if (hw->mac.type < e1000_pch_lpt) { 230 hw->phy.ops.release(hw); 231 ret_val = e1000_set_mdio_slow_mode_hv(hw); 232 if (!ret_val) 233 ret_val = e1000e_get_phy_id(hw); 234 hw->phy.ops.acquire(hw); 235 } 236 237 if (ret_val) 238 return false; 239 out: 240 if (hw->mac.type >= e1000_pch_lpt) { 241 /* Only unforce SMBus if ME is not active */ 242 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 243 /* Unforce SMBus mode in PHY */ 244 e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg); 245 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS; 246 e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg); 247 248 /* Unforce SMBus mode in MAC */ 249 mac_reg = er32(CTRL_EXT); 250 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; 251 ew32(CTRL_EXT, mac_reg); 252 } 253 } 254 255 return true; 256 } 257 258 /** 259 * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value 260 * @hw: pointer to the HW structure 261 * 262 * Toggling the LANPHYPC pin value fully power-cycles the PHY and is 263 * used to reset the PHY to a quiescent state when necessary. 264 **/ 265 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw) 266 { 267 u32 mac_reg; 268 269 /* Set Phy Config Counter to 50msec */ 270 mac_reg = er32(FEXTNVM3); 271 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; 272 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; 273 ew32(FEXTNVM3, mac_reg); 274 275 /* Toggle LANPHYPC Value bit */ 276 mac_reg = er32(CTRL); 277 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE; 278 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE; 279 ew32(CTRL, mac_reg); 280 e1e_flush(); 281 usleep_range(10, 20); 282 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE; 283 ew32(CTRL, mac_reg); 284 e1e_flush(); 285 286 if (hw->mac.type < e1000_pch_lpt) { 287 msleep(50); 288 } else { 289 u16 count = 20; 290 291 do { 292 usleep_range(5000, 10000); 293 } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--); 294 295 msleep(30); 296 } 297 } 298 299 /** 300 * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds 301 * @hw: pointer to the HW structure 302 * 303 * Workarounds/flow necessary for PHY initialization during driver load 304 * and resume paths. 305 **/ 306 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw) 307 { 308 struct e1000_adapter *adapter = hw->adapter; 309 u32 mac_reg, fwsm = er32(FWSM); 310 s32 ret_val; 311 312 /* Gate automatic PHY configuration by hardware on managed and 313 * non-managed 82579 and newer adapters. 314 */ 315 e1000_gate_hw_phy_config_ich8lan(hw, true); 316 317 /* It is not possible to be certain of the current state of ULP 318 * so forcibly disable it. 319 */ 320 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown; 321 e1000_disable_ulp_lpt_lp(hw, true); 322 323 ret_val = hw->phy.ops.acquire(hw); 324 if (ret_val) { 325 e_dbg("Failed to initialize PHY flow\n"); 326 goto out; 327 } 328 329 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is 330 * inaccessible and resetting the PHY is not blocked, toggle the 331 * LANPHYPC Value bit to force the interconnect to PCIe mode. 332 */ 333 switch (hw->mac.type) { 334 case e1000_pch_lpt: 335 case e1000_pch_spt: 336 case e1000_pch_cnp: 337 if (e1000_phy_is_accessible_pchlan(hw)) 338 break; 339 340 /* Before toggling LANPHYPC, see if PHY is accessible by 341 * forcing MAC to SMBus mode first. 342 */ 343 mac_reg = er32(CTRL_EXT); 344 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; 345 ew32(CTRL_EXT, mac_reg); 346 347 /* Wait 50 milliseconds for MAC to finish any retries 348 * that it might be trying to perform from previous 349 * attempts to acknowledge any phy read requests. 350 */ 351 msleep(50); 352 353 /* fall-through */ 354 case e1000_pch2lan: 355 if (e1000_phy_is_accessible_pchlan(hw)) 356 break; 357 358 /* fall-through */ 359 case e1000_pchlan: 360 if ((hw->mac.type == e1000_pchlan) && 361 (fwsm & E1000_ICH_FWSM_FW_VALID)) 362 break; 363 364 if (hw->phy.ops.check_reset_block(hw)) { 365 e_dbg("Required LANPHYPC toggle blocked by ME\n"); 366 ret_val = -E1000_ERR_PHY; 367 break; 368 } 369 370 /* Toggle LANPHYPC Value bit */ 371 e1000_toggle_lanphypc_pch_lpt(hw); 372 if (hw->mac.type >= e1000_pch_lpt) { 373 if (e1000_phy_is_accessible_pchlan(hw)) 374 break; 375 376 /* Toggling LANPHYPC brings the PHY out of SMBus mode 377 * so ensure that the MAC is also out of SMBus mode 378 */ 379 mac_reg = er32(CTRL_EXT); 380 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; 381 ew32(CTRL_EXT, mac_reg); 382 383 if (e1000_phy_is_accessible_pchlan(hw)) 384 break; 385 386 ret_val = -E1000_ERR_PHY; 387 } 388 break; 389 default: 390 break; 391 } 392 393 hw->phy.ops.release(hw); 394 if (!ret_val) { 395 396 /* Check to see if able to reset PHY. Print error if not */ 397 if (hw->phy.ops.check_reset_block(hw)) { 398 e_err("Reset blocked by ME\n"); 399 goto out; 400 } 401 402 /* Reset the PHY before any access to it. Doing so, ensures 403 * that the PHY is in a known good state before we read/write 404 * PHY registers. The generic reset is sufficient here, 405 * because we haven't determined the PHY type yet. 406 */ 407 ret_val = e1000e_phy_hw_reset_generic(hw); 408 if (ret_val) 409 goto out; 410 411 /* On a successful reset, possibly need to wait for the PHY 412 * to quiesce to an accessible state before returning control 413 * to the calling function. If the PHY does not quiesce, then 414 * return E1000E_BLK_PHY_RESET, as this is the condition that 415 * the PHY is in. 416 */ 417 ret_val = hw->phy.ops.check_reset_block(hw); 418 if (ret_val) 419 e_err("ME blocked access to PHY after reset\n"); 420 } 421 422 out: 423 /* Ungate automatic PHY configuration on non-managed 82579 */ 424 if ((hw->mac.type == e1000_pch2lan) && 425 !(fwsm & E1000_ICH_FWSM_FW_VALID)) { 426 usleep_range(10000, 20000); 427 e1000_gate_hw_phy_config_ich8lan(hw, false); 428 } 429 430 return ret_val; 431 } 432 433 /** 434 * e1000_init_phy_params_pchlan - Initialize PHY function pointers 435 * @hw: pointer to the HW structure 436 * 437 * Initialize family-specific PHY parameters and function pointers. 438 **/ 439 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw) 440 { 441 struct e1000_phy_info *phy = &hw->phy; 442 s32 ret_val; 443 444 phy->addr = 1; 445 phy->reset_delay_us = 100; 446 447 phy->ops.set_page = e1000_set_page_igp; 448 phy->ops.read_reg = e1000_read_phy_reg_hv; 449 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked; 450 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv; 451 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan; 452 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan; 453 phy->ops.write_reg = e1000_write_phy_reg_hv; 454 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked; 455 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv; 456 phy->ops.power_up = e1000_power_up_phy_copper; 457 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; 458 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 459 460 phy->id = e1000_phy_unknown; 461 462 ret_val = e1000_init_phy_workarounds_pchlan(hw); 463 if (ret_val) 464 return ret_val; 465 466 if (phy->id == e1000_phy_unknown) 467 switch (hw->mac.type) { 468 default: 469 ret_val = e1000e_get_phy_id(hw); 470 if (ret_val) 471 return ret_val; 472 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK)) 473 break; 474 /* fall-through */ 475 case e1000_pch2lan: 476 case e1000_pch_lpt: 477 case e1000_pch_spt: 478 case e1000_pch_cnp: 479 /* In case the PHY needs to be in mdio slow mode, 480 * set slow mode and try to get the PHY id again. 481 */ 482 ret_val = e1000_set_mdio_slow_mode_hv(hw); 483 if (ret_val) 484 return ret_val; 485 ret_val = e1000e_get_phy_id(hw); 486 if (ret_val) 487 return ret_val; 488 break; 489 } 490 phy->type = e1000e_get_phy_type_from_id(phy->id); 491 492 switch (phy->type) { 493 case e1000_phy_82577: 494 case e1000_phy_82579: 495 case e1000_phy_i217: 496 phy->ops.check_polarity = e1000_check_polarity_82577; 497 phy->ops.force_speed_duplex = 498 e1000_phy_force_speed_duplex_82577; 499 phy->ops.get_cable_length = e1000_get_cable_length_82577; 500 phy->ops.get_info = e1000_get_phy_info_82577; 501 phy->ops.commit = e1000e_phy_sw_reset; 502 break; 503 case e1000_phy_82578: 504 phy->ops.check_polarity = e1000_check_polarity_m88; 505 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; 506 phy->ops.get_cable_length = e1000e_get_cable_length_m88; 507 phy->ops.get_info = e1000e_get_phy_info_m88; 508 break; 509 default: 510 ret_val = -E1000_ERR_PHY; 511 break; 512 } 513 514 return ret_val; 515 } 516 517 /** 518 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers 519 * @hw: pointer to the HW structure 520 * 521 * Initialize family-specific PHY parameters and function pointers. 522 **/ 523 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw) 524 { 525 struct e1000_phy_info *phy = &hw->phy; 526 s32 ret_val; 527 u16 i = 0; 528 529 phy->addr = 1; 530 phy->reset_delay_us = 100; 531 532 phy->ops.power_up = e1000_power_up_phy_copper; 533 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; 534 535 /* We may need to do this twice - once for IGP and if that fails, 536 * we'll set BM func pointers and try again 537 */ 538 ret_val = e1000e_determine_phy_address(hw); 539 if (ret_val) { 540 phy->ops.write_reg = e1000e_write_phy_reg_bm; 541 phy->ops.read_reg = e1000e_read_phy_reg_bm; 542 ret_val = e1000e_determine_phy_address(hw); 543 if (ret_val) { 544 e_dbg("Cannot determine PHY addr. Erroring out\n"); 545 return ret_val; 546 } 547 } 548 549 phy->id = 0; 550 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) && 551 (i++ < 100)) { 552 usleep_range(1000, 2000); 553 ret_val = e1000e_get_phy_id(hw); 554 if (ret_val) 555 return ret_val; 556 } 557 558 /* Verify phy id */ 559 switch (phy->id) { 560 case IGP03E1000_E_PHY_ID: 561 phy->type = e1000_phy_igp_3; 562 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 563 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked; 564 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked; 565 phy->ops.get_info = e1000e_get_phy_info_igp; 566 phy->ops.check_polarity = e1000_check_polarity_igp; 567 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp; 568 break; 569 case IFE_E_PHY_ID: 570 case IFE_PLUS_E_PHY_ID: 571 case IFE_C_E_PHY_ID: 572 phy->type = e1000_phy_ife; 573 phy->autoneg_mask = E1000_ALL_NOT_GIG; 574 phy->ops.get_info = e1000_get_phy_info_ife; 575 phy->ops.check_polarity = e1000_check_polarity_ife; 576 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife; 577 break; 578 case BME1000_E_PHY_ID: 579 phy->type = e1000_phy_bm; 580 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 581 phy->ops.read_reg = e1000e_read_phy_reg_bm; 582 phy->ops.write_reg = e1000e_write_phy_reg_bm; 583 phy->ops.commit = e1000e_phy_sw_reset; 584 phy->ops.get_info = e1000e_get_phy_info_m88; 585 phy->ops.check_polarity = e1000_check_polarity_m88; 586 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; 587 break; 588 default: 589 return -E1000_ERR_PHY; 590 } 591 592 return 0; 593 } 594 595 /** 596 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers 597 * @hw: pointer to the HW structure 598 * 599 * Initialize family-specific NVM parameters and function 600 * pointers. 601 **/ 602 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw) 603 { 604 struct e1000_nvm_info *nvm = &hw->nvm; 605 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 606 u32 gfpreg, sector_base_addr, sector_end_addr; 607 u16 i; 608 u32 nvm_size; 609 610 nvm->type = e1000_nvm_flash_sw; 611 612 if (hw->mac.type >= e1000_pch_spt) { 613 /* in SPT, gfpreg doesn't exist. NVM size is taken from the 614 * STRAP register. This is because in SPT the GbE Flash region 615 * is no longer accessed through the flash registers. Instead, 616 * the mechanism has changed, and the Flash region access 617 * registers are now implemented in GbE memory space. 618 */ 619 nvm->flash_base_addr = 0; 620 nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1) 621 * NVM_SIZE_MULTIPLIER; 622 nvm->flash_bank_size = nvm_size / 2; 623 /* Adjust to word count */ 624 nvm->flash_bank_size /= sizeof(u16); 625 /* Set the base address for flash register access */ 626 hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR; 627 } else { 628 /* Can't read flash registers if register set isn't mapped. */ 629 if (!hw->flash_address) { 630 e_dbg("ERROR: Flash registers not mapped\n"); 631 return -E1000_ERR_CONFIG; 632 } 633 634 gfpreg = er32flash(ICH_FLASH_GFPREG); 635 636 /* sector_X_addr is a "sector"-aligned address (4096 bytes) 637 * Add 1 to sector_end_addr since this sector is included in 638 * the overall size. 639 */ 640 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK; 641 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1; 642 643 /* flash_base_addr is byte-aligned */ 644 nvm->flash_base_addr = sector_base_addr 645 << FLASH_SECTOR_ADDR_SHIFT; 646 647 /* find total size of the NVM, then cut in half since the total 648 * size represents two separate NVM banks. 649 */ 650 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr) 651 << FLASH_SECTOR_ADDR_SHIFT); 652 nvm->flash_bank_size /= 2; 653 /* Adjust to word count */ 654 nvm->flash_bank_size /= sizeof(u16); 655 } 656 657 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS; 658 659 /* Clear shadow ram */ 660 for (i = 0; i < nvm->word_size; i++) { 661 dev_spec->shadow_ram[i].modified = false; 662 dev_spec->shadow_ram[i].value = 0xFFFF; 663 } 664 665 return 0; 666 } 667 668 /** 669 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers 670 * @hw: pointer to the HW structure 671 * 672 * Initialize family-specific MAC parameters and function 673 * pointers. 674 **/ 675 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw) 676 { 677 struct e1000_mac_info *mac = &hw->mac; 678 679 /* Set media type function pointer */ 680 hw->phy.media_type = e1000_media_type_copper; 681 682 /* Set mta register count */ 683 mac->mta_reg_count = 32; 684 /* Set rar entry count */ 685 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES; 686 if (mac->type == e1000_ich8lan) 687 mac->rar_entry_count--; 688 /* FWSM register */ 689 mac->has_fwsm = true; 690 /* ARC subsystem not supported */ 691 mac->arc_subsystem_valid = false; 692 /* Adaptive IFS supported */ 693 mac->adaptive_ifs = true; 694 695 /* LED and other operations */ 696 switch (mac->type) { 697 case e1000_ich8lan: 698 case e1000_ich9lan: 699 case e1000_ich10lan: 700 /* check management mode */ 701 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan; 702 /* ID LED init */ 703 mac->ops.id_led_init = e1000e_id_led_init_generic; 704 /* blink LED */ 705 mac->ops.blink_led = e1000e_blink_led_generic; 706 /* setup LED */ 707 mac->ops.setup_led = e1000e_setup_led_generic; 708 /* cleanup LED */ 709 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan; 710 /* turn on/off LED */ 711 mac->ops.led_on = e1000_led_on_ich8lan; 712 mac->ops.led_off = e1000_led_off_ich8lan; 713 break; 714 case e1000_pch2lan: 715 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES; 716 mac->ops.rar_set = e1000_rar_set_pch2lan; 717 /* fall-through */ 718 case e1000_pch_lpt: 719 case e1000_pch_spt: 720 case e1000_pch_cnp: 721 case e1000_pchlan: 722 /* check management mode */ 723 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan; 724 /* ID LED init */ 725 mac->ops.id_led_init = e1000_id_led_init_pchlan; 726 /* setup LED */ 727 mac->ops.setup_led = e1000_setup_led_pchlan; 728 /* cleanup LED */ 729 mac->ops.cleanup_led = e1000_cleanup_led_pchlan; 730 /* turn on/off LED */ 731 mac->ops.led_on = e1000_led_on_pchlan; 732 mac->ops.led_off = e1000_led_off_pchlan; 733 break; 734 default: 735 break; 736 } 737 738 if (mac->type >= e1000_pch_lpt) { 739 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES; 740 mac->ops.rar_set = e1000_rar_set_pch_lpt; 741 mac->ops.setup_physical_interface = 742 e1000_setup_copper_link_pch_lpt; 743 mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt; 744 } 745 746 /* Enable PCS Lock-loss workaround for ICH8 */ 747 if (mac->type == e1000_ich8lan) 748 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true); 749 750 return 0; 751 } 752 753 /** 754 * __e1000_access_emi_reg_locked - Read/write EMI register 755 * @hw: pointer to the HW structure 756 * @addr: EMI address to program 757 * @data: pointer to value to read/write from/to the EMI address 758 * @read: boolean flag to indicate read or write 759 * 760 * This helper function assumes the SW/FW/HW Semaphore is already acquired. 761 **/ 762 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address, 763 u16 *data, bool read) 764 { 765 s32 ret_val; 766 767 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address); 768 if (ret_val) 769 return ret_val; 770 771 if (read) 772 ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data); 773 else 774 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data); 775 776 return ret_val; 777 } 778 779 /** 780 * e1000_read_emi_reg_locked - Read Extended Management Interface register 781 * @hw: pointer to the HW structure 782 * @addr: EMI address to program 783 * @data: value to be read from the EMI address 784 * 785 * Assumes the SW/FW/HW Semaphore is already acquired. 786 **/ 787 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data) 788 { 789 return __e1000_access_emi_reg_locked(hw, addr, data, true); 790 } 791 792 /** 793 * e1000_write_emi_reg_locked - Write Extended Management Interface register 794 * @hw: pointer to the HW structure 795 * @addr: EMI address to program 796 * @data: value to be written to the EMI address 797 * 798 * Assumes the SW/FW/HW Semaphore is already acquired. 799 **/ 800 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data) 801 { 802 return __e1000_access_emi_reg_locked(hw, addr, &data, false); 803 } 804 805 /** 806 * e1000_set_eee_pchlan - Enable/disable EEE support 807 * @hw: pointer to the HW structure 808 * 809 * Enable/disable EEE based on setting in dev_spec structure, the duplex of 810 * the link and the EEE capabilities of the link partner. The LPI Control 811 * register bits will remain set only if/when link is up. 812 * 813 * EEE LPI must not be asserted earlier than one second after link is up. 814 * On 82579, EEE LPI should not be enabled until such time otherwise there 815 * can be link issues with some switches. Other devices can have EEE LPI 816 * enabled immediately upon link up since they have a timer in hardware which 817 * prevents LPI from being asserted too early. 818 **/ 819 s32 e1000_set_eee_pchlan(struct e1000_hw *hw) 820 { 821 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 822 s32 ret_val; 823 u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data; 824 825 switch (hw->phy.type) { 826 case e1000_phy_82579: 827 lpa = I82579_EEE_LP_ABILITY; 828 pcs_status = I82579_EEE_PCS_STATUS; 829 adv_addr = I82579_EEE_ADVERTISEMENT; 830 break; 831 case e1000_phy_i217: 832 lpa = I217_EEE_LP_ABILITY; 833 pcs_status = I217_EEE_PCS_STATUS; 834 adv_addr = I217_EEE_ADVERTISEMENT; 835 break; 836 default: 837 return 0; 838 } 839 840 ret_val = hw->phy.ops.acquire(hw); 841 if (ret_val) 842 return ret_val; 843 844 ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl); 845 if (ret_val) 846 goto release; 847 848 /* Clear bits that enable EEE in various speeds */ 849 lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK; 850 851 /* Enable EEE if not disabled by user */ 852 if (!dev_spec->eee_disable) { 853 /* Save off link partner's EEE ability */ 854 ret_val = e1000_read_emi_reg_locked(hw, lpa, 855 &dev_spec->eee_lp_ability); 856 if (ret_val) 857 goto release; 858 859 /* Read EEE advertisement */ 860 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv); 861 if (ret_val) 862 goto release; 863 864 /* Enable EEE only for speeds in which the link partner is 865 * EEE capable and for which we advertise EEE. 866 */ 867 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED) 868 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE; 869 870 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) { 871 e1e_rphy_locked(hw, MII_LPA, &data); 872 if (data & LPA_100FULL) 873 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE; 874 else 875 /* EEE is not supported in 100Half, so ignore 876 * partner's EEE in 100 ability if full-duplex 877 * is not advertised. 878 */ 879 dev_spec->eee_lp_ability &= 880 ~I82579_EEE_100_SUPPORTED; 881 } 882 } 883 884 if (hw->phy.type == e1000_phy_82579) { 885 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT, 886 &data); 887 if (ret_val) 888 goto release; 889 890 data &= ~I82579_LPI_100_PLL_SHUT; 891 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT, 892 data); 893 } 894 895 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */ 896 ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data); 897 if (ret_val) 898 goto release; 899 900 ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl); 901 release: 902 hw->phy.ops.release(hw); 903 904 return ret_val; 905 } 906 907 /** 908 * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP 909 * @hw: pointer to the HW structure 910 * @link: link up bool flag 911 * 912 * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications 913 * preventing further DMA write requests. Workaround the issue by disabling 914 * the de-assertion of the clock request when in 1Gpbs mode. 915 * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link 916 * speeds in order to avoid Tx hangs. 917 **/ 918 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link) 919 { 920 u32 fextnvm6 = er32(FEXTNVM6); 921 u32 status = er32(STATUS); 922 s32 ret_val = 0; 923 u16 reg; 924 925 if (link && (status & E1000_STATUS_SPEED_1000)) { 926 ret_val = hw->phy.ops.acquire(hw); 927 if (ret_val) 928 return ret_val; 929 930 ret_val = 931 e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, 932 ®); 933 if (ret_val) 934 goto release; 935 936 ret_val = 937 e1000e_write_kmrn_reg_locked(hw, 938 E1000_KMRNCTRLSTA_K1_CONFIG, 939 reg & 940 ~E1000_KMRNCTRLSTA_K1_ENABLE); 941 if (ret_val) 942 goto release; 943 944 usleep_range(10, 20); 945 946 ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK); 947 948 ret_val = 949 e1000e_write_kmrn_reg_locked(hw, 950 E1000_KMRNCTRLSTA_K1_CONFIG, 951 reg); 952 release: 953 hw->phy.ops.release(hw); 954 } else { 955 /* clear FEXTNVM6 bit 8 on link down or 10/100 */ 956 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK; 957 958 if ((hw->phy.revision > 5) || !link || 959 ((status & E1000_STATUS_SPEED_100) && 960 (status & E1000_STATUS_FD))) 961 goto update_fextnvm6; 962 963 ret_val = e1e_rphy(hw, I217_INBAND_CTRL, ®); 964 if (ret_val) 965 return ret_val; 966 967 /* Clear link status transmit timeout */ 968 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK; 969 970 if (status & E1000_STATUS_SPEED_100) { 971 /* Set inband Tx timeout to 5x10us for 100Half */ 972 reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT; 973 974 /* Do not extend the K1 entry latency for 100Half */ 975 fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION; 976 } else { 977 /* Set inband Tx timeout to 50x10us for 10Full/Half */ 978 reg |= 50 << 979 I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT; 980 981 /* Extend the K1 entry latency for 10 Mbps */ 982 fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION; 983 } 984 985 ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg); 986 if (ret_val) 987 return ret_val; 988 989 update_fextnvm6: 990 ew32(FEXTNVM6, fextnvm6); 991 } 992 993 return ret_val; 994 } 995 996 /** 997 * e1000_platform_pm_pch_lpt - Set platform power management values 998 * @hw: pointer to the HW structure 999 * @link: bool indicating link status 1000 * 1001 * Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like" 1002 * GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed 1003 * when link is up (which must not exceed the maximum latency supported 1004 * by the platform), otherwise specify there is no LTR requirement. 1005 * Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop 1006 * latencies in the LTR Extended Capability Structure in the PCIe Extended 1007 * Capability register set, on this device LTR is set by writing the 1008 * equivalent snoop/no-snoop latencies in the LTRV register in the MAC and 1009 * set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB) 1010 * message to the PMC. 1011 **/ 1012 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link) 1013 { 1014 u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) | 1015 link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND; 1016 u16 lat_enc = 0; /* latency encoded */ 1017 1018 if (link) { 1019 u16 speed, duplex, scale = 0; 1020 u16 max_snoop, max_nosnoop; 1021 u16 max_ltr_enc; /* max LTR latency encoded */ 1022 u64 value; 1023 u32 rxa; 1024 1025 if (!hw->adapter->max_frame_size) { 1026 e_dbg("max_frame_size not set.\n"); 1027 return -E1000_ERR_CONFIG; 1028 } 1029 1030 hw->mac.ops.get_link_up_info(hw, &speed, &duplex); 1031 if (!speed) { 1032 e_dbg("Speed not set.\n"); 1033 return -E1000_ERR_CONFIG; 1034 } 1035 1036 /* Rx Packet Buffer Allocation size (KB) */ 1037 rxa = er32(PBA) & E1000_PBA_RXA_MASK; 1038 1039 /* Determine the maximum latency tolerated by the device. 1040 * 1041 * Per the PCIe spec, the tolerated latencies are encoded as 1042 * a 3-bit encoded scale (only 0-5 are valid) multiplied by 1043 * a 10-bit value (0-1023) to provide a range from 1 ns to 1044 * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns, 1045 * 1=2^5ns, 2=2^10ns,...5=2^25ns. 1046 */ 1047 rxa *= 512; 1048 value = (rxa > hw->adapter->max_frame_size) ? 1049 (rxa - hw->adapter->max_frame_size) * (16000 / speed) : 1050 0; 1051 1052 while (value > PCI_LTR_VALUE_MASK) { 1053 scale++; 1054 value = DIV_ROUND_UP(value, BIT(5)); 1055 } 1056 if (scale > E1000_LTRV_SCALE_MAX) { 1057 e_dbg("Invalid LTR latency scale %d\n", scale); 1058 return -E1000_ERR_CONFIG; 1059 } 1060 lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value); 1061 1062 /* Determine the maximum latency tolerated by the platform */ 1063 pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT, 1064 &max_snoop); 1065 pci_read_config_word(hw->adapter->pdev, 1066 E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop); 1067 max_ltr_enc = max_t(u16, max_snoop, max_nosnoop); 1068 1069 if (lat_enc > max_ltr_enc) 1070 lat_enc = max_ltr_enc; 1071 } 1072 1073 /* Set Snoop and No-Snoop latencies the same */ 1074 reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT); 1075 ew32(LTRV, reg); 1076 1077 return 0; 1078 } 1079 1080 /** 1081 * e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP 1082 * @hw: pointer to the HW structure 1083 * @to_sx: boolean indicating a system power state transition to Sx 1084 * 1085 * When link is down, configure ULP mode to significantly reduce the power 1086 * to the PHY. If on a Manageability Engine (ME) enabled system, tell the 1087 * ME firmware to start the ULP configuration. If not on an ME enabled 1088 * system, configure the ULP mode by software. 1089 */ 1090 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx) 1091 { 1092 u32 mac_reg; 1093 s32 ret_val = 0; 1094 u16 phy_reg; 1095 u16 oem_reg = 0; 1096 1097 if ((hw->mac.type < e1000_pch_lpt) || 1098 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) || 1099 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) || 1100 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) || 1101 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) || 1102 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on)) 1103 return 0; 1104 1105 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) { 1106 /* Request ME configure ULP mode in the PHY */ 1107 mac_reg = er32(H2ME); 1108 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS; 1109 ew32(H2ME, mac_reg); 1110 1111 goto out; 1112 } 1113 1114 if (!to_sx) { 1115 int i = 0; 1116 1117 /* Poll up to 5 seconds for Cable Disconnected indication */ 1118 while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) { 1119 /* Bail if link is re-acquired */ 1120 if (er32(STATUS) & E1000_STATUS_LU) 1121 return -E1000_ERR_PHY; 1122 1123 if (i++ == 100) 1124 break; 1125 1126 msleep(50); 1127 } 1128 e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n", 1129 (er32(FEXT) & 1130 E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50); 1131 } 1132 1133 ret_val = hw->phy.ops.acquire(hw); 1134 if (ret_val) 1135 goto out; 1136 1137 /* Force SMBus mode in PHY */ 1138 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg); 1139 if (ret_val) 1140 goto release; 1141 phy_reg |= CV_SMB_CTRL_FORCE_SMBUS; 1142 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg); 1143 1144 /* Force SMBus mode in MAC */ 1145 mac_reg = er32(CTRL_EXT); 1146 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; 1147 ew32(CTRL_EXT, mac_reg); 1148 1149 /* Si workaround for ULP entry flow on i127/rev6 h/w. Enable 1150 * LPLU and disable Gig speed when entering ULP 1151 */ 1152 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) { 1153 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS, 1154 &oem_reg); 1155 if (ret_val) 1156 goto release; 1157 1158 phy_reg = oem_reg; 1159 phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS; 1160 1161 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS, 1162 phy_reg); 1163 1164 if (ret_val) 1165 goto release; 1166 } 1167 1168 /* Set Inband ULP Exit, Reset to SMBus mode and 1169 * Disable SMBus Release on PERST# in PHY 1170 */ 1171 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg); 1172 if (ret_val) 1173 goto release; 1174 phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS | 1175 I218_ULP_CONFIG1_DISABLE_SMB_PERST); 1176 if (to_sx) { 1177 if (er32(WUFC) & E1000_WUFC_LNKC) 1178 phy_reg |= I218_ULP_CONFIG1_WOL_HOST; 1179 else 1180 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST; 1181 1182 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP; 1183 phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT; 1184 } else { 1185 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT; 1186 phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP; 1187 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST; 1188 } 1189 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1190 1191 /* Set Disable SMBus Release on PERST# in MAC */ 1192 mac_reg = er32(FEXTNVM7); 1193 mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST; 1194 ew32(FEXTNVM7, mac_reg); 1195 1196 /* Commit ULP changes in PHY by starting auto ULP configuration */ 1197 phy_reg |= I218_ULP_CONFIG1_START; 1198 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1199 1200 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) && 1201 to_sx && (er32(STATUS) & E1000_STATUS_LU)) { 1202 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS, 1203 oem_reg); 1204 if (ret_val) 1205 goto release; 1206 } 1207 1208 release: 1209 hw->phy.ops.release(hw); 1210 out: 1211 if (ret_val) 1212 e_dbg("Error in ULP enable flow: %d\n", ret_val); 1213 else 1214 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on; 1215 1216 return ret_val; 1217 } 1218 1219 /** 1220 * e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP 1221 * @hw: pointer to the HW structure 1222 * @force: boolean indicating whether or not to force disabling ULP 1223 * 1224 * Un-configure ULP mode when link is up, the system is transitioned from 1225 * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled 1226 * system, poll for an indication from ME that ULP has been un-configured. 1227 * If not on an ME enabled system, un-configure the ULP mode by software. 1228 * 1229 * During nominal operation, this function is called when link is acquired 1230 * to disable ULP mode (force=false); otherwise, for example when unloading 1231 * the driver or during Sx->S0 transitions, this is called with force=true 1232 * to forcibly disable ULP. 1233 */ 1234 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force) 1235 { 1236 s32 ret_val = 0; 1237 u32 mac_reg; 1238 u16 phy_reg; 1239 int i = 0; 1240 1241 if ((hw->mac.type < e1000_pch_lpt) || 1242 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) || 1243 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) || 1244 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) || 1245 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) || 1246 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off)) 1247 return 0; 1248 1249 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) { 1250 if (force) { 1251 /* Request ME un-configure ULP mode in the PHY */ 1252 mac_reg = er32(H2ME); 1253 mac_reg &= ~E1000_H2ME_ULP; 1254 mac_reg |= E1000_H2ME_ENFORCE_SETTINGS; 1255 ew32(H2ME, mac_reg); 1256 } 1257 1258 /* Poll up to 300msec for ME to clear ULP_CFG_DONE. */ 1259 while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) { 1260 if (i++ == 30) { 1261 ret_val = -E1000_ERR_PHY; 1262 goto out; 1263 } 1264 1265 usleep_range(10000, 20000); 1266 } 1267 e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10); 1268 1269 if (force) { 1270 mac_reg = er32(H2ME); 1271 mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS; 1272 ew32(H2ME, mac_reg); 1273 } else { 1274 /* Clear H2ME.ULP after ME ULP configuration */ 1275 mac_reg = er32(H2ME); 1276 mac_reg &= ~E1000_H2ME_ULP; 1277 ew32(H2ME, mac_reg); 1278 } 1279 1280 goto out; 1281 } 1282 1283 ret_val = hw->phy.ops.acquire(hw); 1284 if (ret_val) 1285 goto out; 1286 1287 if (force) 1288 /* Toggle LANPHYPC Value bit */ 1289 e1000_toggle_lanphypc_pch_lpt(hw); 1290 1291 /* Unforce SMBus mode in PHY */ 1292 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg); 1293 if (ret_val) { 1294 /* The MAC might be in PCIe mode, so temporarily force to 1295 * SMBus mode in order to access the PHY. 1296 */ 1297 mac_reg = er32(CTRL_EXT); 1298 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; 1299 ew32(CTRL_EXT, mac_reg); 1300 1301 msleep(50); 1302 1303 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, 1304 &phy_reg); 1305 if (ret_val) 1306 goto release; 1307 } 1308 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS; 1309 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg); 1310 1311 /* Unforce SMBus mode in MAC */ 1312 mac_reg = er32(CTRL_EXT); 1313 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; 1314 ew32(CTRL_EXT, mac_reg); 1315 1316 /* When ULP mode was previously entered, K1 was disabled by the 1317 * hardware. Re-Enable K1 in the PHY when exiting ULP. 1318 */ 1319 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg); 1320 if (ret_val) 1321 goto release; 1322 phy_reg |= HV_PM_CTRL_K1_ENABLE; 1323 e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg); 1324 1325 /* Clear ULP enabled configuration */ 1326 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg); 1327 if (ret_val) 1328 goto release; 1329 phy_reg &= ~(I218_ULP_CONFIG1_IND | 1330 I218_ULP_CONFIG1_STICKY_ULP | 1331 I218_ULP_CONFIG1_RESET_TO_SMBUS | 1332 I218_ULP_CONFIG1_WOL_HOST | 1333 I218_ULP_CONFIG1_INBAND_EXIT | 1334 I218_ULP_CONFIG1_EN_ULP_LANPHYPC | 1335 I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST | 1336 I218_ULP_CONFIG1_DISABLE_SMB_PERST); 1337 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1338 1339 /* Commit ULP changes by starting auto ULP configuration */ 1340 phy_reg |= I218_ULP_CONFIG1_START; 1341 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1342 1343 /* Clear Disable SMBus Release on PERST# in MAC */ 1344 mac_reg = er32(FEXTNVM7); 1345 mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST; 1346 ew32(FEXTNVM7, mac_reg); 1347 1348 release: 1349 hw->phy.ops.release(hw); 1350 if (force) { 1351 e1000_phy_hw_reset(hw); 1352 msleep(50); 1353 } 1354 out: 1355 if (ret_val) 1356 e_dbg("Error in ULP disable flow: %d\n", ret_val); 1357 else 1358 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off; 1359 1360 return ret_val; 1361 } 1362 1363 /** 1364 * e1000_check_for_copper_link_ich8lan - Check for link (Copper) 1365 * @hw: pointer to the HW structure 1366 * 1367 * Checks to see of the link status of the hardware has changed. If a 1368 * change in link status has been detected, then we read the PHY registers 1369 * to get the current speed/duplex if link exists. 1370 **/ 1371 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw) 1372 { 1373 struct e1000_mac_info *mac = &hw->mac; 1374 s32 ret_val, tipg_reg = 0; 1375 u16 emi_addr, emi_val = 0; 1376 bool link; 1377 u16 phy_reg; 1378 1379 /* We only want to go out to the PHY registers to see if Auto-Neg 1380 * has completed and/or if our link status has changed. The 1381 * get_link_status flag is set upon receiving a Link Status 1382 * Change or Rx Sequence Error interrupt. 1383 */ 1384 if (!mac->get_link_status) 1385 return 0; 1386 1387 /* First we want to see if the MII Status Register reports 1388 * link. If so, then we want to get the current speed/duplex 1389 * of the PHY. 1390 */ 1391 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 1392 if (ret_val) 1393 return ret_val; 1394 1395 if (hw->mac.type == e1000_pchlan) { 1396 ret_val = e1000_k1_gig_workaround_hv(hw, link); 1397 if (ret_val) 1398 return ret_val; 1399 } 1400 1401 /* When connected at 10Mbps half-duplex, some parts are excessively 1402 * aggressive resulting in many collisions. To avoid this, increase 1403 * the IPG and reduce Rx latency in the PHY. 1404 */ 1405 if ((hw->mac.type >= e1000_pch2lan) && link) { 1406 u16 speed, duplex; 1407 1408 e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex); 1409 tipg_reg = er32(TIPG); 1410 tipg_reg &= ~E1000_TIPG_IPGT_MASK; 1411 1412 if (duplex == HALF_DUPLEX && speed == SPEED_10) { 1413 tipg_reg |= 0xFF; 1414 /* Reduce Rx latency in analog PHY */ 1415 emi_val = 0; 1416 } else if (hw->mac.type >= e1000_pch_spt && 1417 duplex == FULL_DUPLEX && speed != SPEED_1000) { 1418 tipg_reg |= 0xC; 1419 emi_val = 1; 1420 } else { 1421 1422 /* Roll back the default values */ 1423 tipg_reg |= 0x08; 1424 emi_val = 1; 1425 } 1426 1427 ew32(TIPG, tipg_reg); 1428 1429 ret_val = hw->phy.ops.acquire(hw); 1430 if (ret_val) 1431 return ret_val; 1432 1433 if (hw->mac.type == e1000_pch2lan) 1434 emi_addr = I82579_RX_CONFIG; 1435 else 1436 emi_addr = I217_RX_CONFIG; 1437 ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val); 1438 1439 if (hw->mac.type >= e1000_pch_lpt) { 1440 u16 phy_reg; 1441 1442 e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg); 1443 phy_reg &= ~I217_PLL_CLOCK_GATE_MASK; 1444 if (speed == SPEED_100 || speed == SPEED_10) 1445 phy_reg |= 0x3E8; 1446 else 1447 phy_reg |= 0xFA; 1448 e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg); 1449 } 1450 hw->phy.ops.release(hw); 1451 1452 if (ret_val) 1453 return ret_val; 1454 1455 if (hw->mac.type >= e1000_pch_spt) { 1456 u16 data; 1457 u16 ptr_gap; 1458 1459 if (speed == SPEED_1000) { 1460 ret_val = hw->phy.ops.acquire(hw); 1461 if (ret_val) 1462 return ret_val; 1463 1464 ret_val = e1e_rphy_locked(hw, 1465 PHY_REG(776, 20), 1466 &data); 1467 if (ret_val) { 1468 hw->phy.ops.release(hw); 1469 return ret_val; 1470 } 1471 1472 ptr_gap = (data & (0x3FF << 2)) >> 2; 1473 if (ptr_gap < 0x18) { 1474 data &= ~(0x3FF << 2); 1475 data |= (0x18 << 2); 1476 ret_val = 1477 e1e_wphy_locked(hw, 1478 PHY_REG(776, 20), 1479 data); 1480 } 1481 hw->phy.ops.release(hw); 1482 if (ret_val) 1483 return ret_val; 1484 } else { 1485 ret_val = hw->phy.ops.acquire(hw); 1486 if (ret_val) 1487 return ret_val; 1488 1489 ret_val = e1e_wphy_locked(hw, 1490 PHY_REG(776, 20), 1491 0xC023); 1492 hw->phy.ops.release(hw); 1493 if (ret_val) 1494 return ret_val; 1495 1496 } 1497 } 1498 } 1499 1500 /* I217 Packet Loss issue: 1501 * ensure that FEXTNVM4 Beacon Duration is set correctly 1502 * on power up. 1503 * Set the Beacon Duration for I217 to 8 usec 1504 */ 1505 if (hw->mac.type >= e1000_pch_lpt) { 1506 u32 mac_reg; 1507 1508 mac_reg = er32(FEXTNVM4); 1509 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; 1510 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC; 1511 ew32(FEXTNVM4, mac_reg); 1512 } 1513 1514 /* Work-around I218 hang issue */ 1515 if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) || 1516 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) || 1517 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) || 1518 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) { 1519 ret_val = e1000_k1_workaround_lpt_lp(hw, link); 1520 if (ret_val) 1521 return ret_val; 1522 } 1523 if (hw->mac.type >= e1000_pch_lpt) { 1524 /* Set platform power management values for 1525 * Latency Tolerance Reporting (LTR) 1526 */ 1527 ret_val = e1000_platform_pm_pch_lpt(hw, link); 1528 if (ret_val) 1529 return ret_val; 1530 } 1531 1532 /* Clear link partner's EEE ability */ 1533 hw->dev_spec.ich8lan.eee_lp_ability = 0; 1534 1535 if (hw->mac.type >= e1000_pch_lpt) { 1536 u32 fextnvm6 = er32(FEXTNVM6); 1537 1538 if (hw->mac.type == e1000_pch_spt) { 1539 /* FEXTNVM6 K1-off workaround - for SPT only */ 1540 u32 pcieanacfg = er32(PCIEANACFG); 1541 1542 if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE) 1543 fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE; 1544 else 1545 fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE; 1546 } 1547 1548 ew32(FEXTNVM6, fextnvm6); 1549 } 1550 1551 if (!link) 1552 return 0; /* No link detected */ 1553 1554 mac->get_link_status = false; 1555 1556 switch (hw->mac.type) { 1557 case e1000_pch2lan: 1558 ret_val = e1000_k1_workaround_lv(hw); 1559 if (ret_val) 1560 return ret_val; 1561 /* fall-thru */ 1562 case e1000_pchlan: 1563 if (hw->phy.type == e1000_phy_82578) { 1564 ret_val = e1000_link_stall_workaround_hv(hw); 1565 if (ret_val) 1566 return ret_val; 1567 } 1568 1569 /* Workaround for PCHx parts in half-duplex: 1570 * Set the number of preambles removed from the packet 1571 * when it is passed from the PHY to the MAC to prevent 1572 * the MAC from misinterpreting the packet type. 1573 */ 1574 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg); 1575 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK; 1576 1577 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD) 1578 phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT); 1579 1580 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg); 1581 break; 1582 default: 1583 break; 1584 } 1585 1586 /* Check if there was DownShift, must be checked 1587 * immediately after link-up 1588 */ 1589 e1000e_check_downshift(hw); 1590 1591 /* Enable/Disable EEE after link up */ 1592 if (hw->phy.type > e1000_phy_82579) { 1593 ret_val = e1000_set_eee_pchlan(hw); 1594 if (ret_val) 1595 return ret_val; 1596 } 1597 1598 /* If we are forcing speed/duplex, then we simply return since 1599 * we have already determined whether we have link or not. 1600 */ 1601 if (!mac->autoneg) 1602 return -E1000_ERR_CONFIG; 1603 1604 /* Auto-Neg is enabled. Auto Speed Detection takes care 1605 * of MAC speed/duplex configuration. So we only need to 1606 * configure Collision Distance in the MAC. 1607 */ 1608 mac->ops.config_collision_dist(hw); 1609 1610 /* Configure Flow Control now that Auto-Neg has completed. 1611 * First, we need to restore the desired flow control 1612 * settings because we may have had to re-autoneg with a 1613 * different link partner. 1614 */ 1615 ret_val = e1000e_config_fc_after_link_up(hw); 1616 if (ret_val) 1617 e_dbg("Error configuring flow control\n"); 1618 1619 return ret_val; 1620 } 1621 1622 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter) 1623 { 1624 struct e1000_hw *hw = &adapter->hw; 1625 s32 rc; 1626 1627 rc = e1000_init_mac_params_ich8lan(hw); 1628 if (rc) 1629 return rc; 1630 1631 rc = e1000_init_nvm_params_ich8lan(hw); 1632 if (rc) 1633 return rc; 1634 1635 switch (hw->mac.type) { 1636 case e1000_ich8lan: 1637 case e1000_ich9lan: 1638 case e1000_ich10lan: 1639 rc = e1000_init_phy_params_ich8lan(hw); 1640 break; 1641 case e1000_pchlan: 1642 case e1000_pch2lan: 1643 case e1000_pch_lpt: 1644 case e1000_pch_spt: 1645 case e1000_pch_cnp: 1646 rc = e1000_init_phy_params_pchlan(hw); 1647 break; 1648 default: 1649 break; 1650 } 1651 if (rc) 1652 return rc; 1653 1654 /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or 1655 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT). 1656 */ 1657 if ((adapter->hw.phy.type == e1000_phy_ife) || 1658 ((adapter->hw.mac.type >= e1000_pch2lan) && 1659 (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) { 1660 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES; 1661 adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN; 1662 1663 hw->mac.ops.blink_led = NULL; 1664 } 1665 1666 if ((adapter->hw.mac.type == e1000_ich8lan) && 1667 (adapter->hw.phy.type != e1000_phy_ife)) 1668 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP; 1669 1670 /* Enable workaround for 82579 w/ ME enabled */ 1671 if ((adapter->hw.mac.type == e1000_pch2lan) && 1672 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) 1673 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA; 1674 1675 return 0; 1676 } 1677 1678 static DEFINE_MUTEX(nvm_mutex); 1679 1680 /** 1681 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex 1682 * @hw: pointer to the HW structure 1683 * 1684 * Acquires the mutex for performing NVM operations. 1685 **/ 1686 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw) 1687 { 1688 mutex_lock(&nvm_mutex); 1689 1690 return 0; 1691 } 1692 1693 /** 1694 * e1000_release_nvm_ich8lan - Release NVM mutex 1695 * @hw: pointer to the HW structure 1696 * 1697 * Releases the mutex used while performing NVM operations. 1698 **/ 1699 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw) 1700 { 1701 mutex_unlock(&nvm_mutex); 1702 } 1703 1704 /** 1705 * e1000_acquire_swflag_ich8lan - Acquire software control flag 1706 * @hw: pointer to the HW structure 1707 * 1708 * Acquires the software control flag for performing PHY and select 1709 * MAC CSR accesses. 1710 **/ 1711 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw) 1712 { 1713 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT; 1714 s32 ret_val = 0; 1715 1716 if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE, 1717 &hw->adapter->state)) { 1718 e_dbg("contention for Phy access\n"); 1719 return -E1000_ERR_PHY; 1720 } 1721 1722 while (timeout) { 1723 extcnf_ctrl = er32(EXTCNF_CTRL); 1724 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)) 1725 break; 1726 1727 mdelay(1); 1728 timeout--; 1729 } 1730 1731 if (!timeout) { 1732 e_dbg("SW has already locked the resource.\n"); 1733 ret_val = -E1000_ERR_CONFIG; 1734 goto out; 1735 } 1736 1737 timeout = SW_FLAG_TIMEOUT; 1738 1739 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; 1740 ew32(EXTCNF_CTRL, extcnf_ctrl); 1741 1742 while (timeout) { 1743 extcnf_ctrl = er32(EXTCNF_CTRL); 1744 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) 1745 break; 1746 1747 mdelay(1); 1748 timeout--; 1749 } 1750 1751 if (!timeout) { 1752 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n", 1753 er32(FWSM), extcnf_ctrl); 1754 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; 1755 ew32(EXTCNF_CTRL, extcnf_ctrl); 1756 ret_val = -E1000_ERR_CONFIG; 1757 goto out; 1758 } 1759 1760 out: 1761 if (ret_val) 1762 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); 1763 1764 return ret_val; 1765 } 1766 1767 /** 1768 * e1000_release_swflag_ich8lan - Release software control flag 1769 * @hw: pointer to the HW structure 1770 * 1771 * Releases the software control flag for performing PHY and select 1772 * MAC CSR accesses. 1773 **/ 1774 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw) 1775 { 1776 u32 extcnf_ctrl; 1777 1778 extcnf_ctrl = er32(EXTCNF_CTRL); 1779 1780 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) { 1781 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; 1782 ew32(EXTCNF_CTRL, extcnf_ctrl); 1783 } else { 1784 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n"); 1785 } 1786 1787 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); 1788 } 1789 1790 /** 1791 * e1000_check_mng_mode_ich8lan - Checks management mode 1792 * @hw: pointer to the HW structure 1793 * 1794 * This checks if the adapter has any manageability enabled. 1795 * This is a function pointer entry point only called by read/write 1796 * routines for the PHY and NVM parts. 1797 **/ 1798 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw) 1799 { 1800 u32 fwsm; 1801 1802 fwsm = er32(FWSM); 1803 return (fwsm & E1000_ICH_FWSM_FW_VALID) && 1804 ((fwsm & E1000_FWSM_MODE_MASK) == 1805 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); 1806 } 1807 1808 /** 1809 * e1000_check_mng_mode_pchlan - Checks management mode 1810 * @hw: pointer to the HW structure 1811 * 1812 * This checks if the adapter has iAMT enabled. 1813 * This is a function pointer entry point only called by read/write 1814 * routines for the PHY and NVM parts. 1815 **/ 1816 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw) 1817 { 1818 u32 fwsm; 1819 1820 fwsm = er32(FWSM); 1821 return (fwsm & E1000_ICH_FWSM_FW_VALID) && 1822 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); 1823 } 1824 1825 /** 1826 * e1000_rar_set_pch2lan - Set receive address register 1827 * @hw: pointer to the HW structure 1828 * @addr: pointer to the receive address 1829 * @index: receive address array register 1830 * 1831 * Sets the receive address array register at index to the address passed 1832 * in by addr. For 82579, RAR[0] is the base address register that is to 1833 * contain the MAC address but RAR[1-6] are reserved for manageability (ME). 1834 * Use SHRA[0-3] in place of those reserved for ME. 1835 **/ 1836 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index) 1837 { 1838 u32 rar_low, rar_high; 1839 1840 /* HW expects these in little endian so we reverse the byte order 1841 * from network order (big endian) to little endian 1842 */ 1843 rar_low = ((u32)addr[0] | 1844 ((u32)addr[1] << 8) | 1845 ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); 1846 1847 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); 1848 1849 /* If MAC address zero, no need to set the AV bit */ 1850 if (rar_low || rar_high) 1851 rar_high |= E1000_RAH_AV; 1852 1853 if (index == 0) { 1854 ew32(RAL(index), rar_low); 1855 e1e_flush(); 1856 ew32(RAH(index), rar_high); 1857 e1e_flush(); 1858 return 0; 1859 } 1860 1861 /* RAR[1-6] are owned by manageability. Skip those and program the 1862 * next address into the SHRA register array. 1863 */ 1864 if (index < (u32)(hw->mac.rar_entry_count)) { 1865 s32 ret_val; 1866 1867 ret_val = e1000_acquire_swflag_ich8lan(hw); 1868 if (ret_val) 1869 goto out; 1870 1871 ew32(SHRAL(index - 1), rar_low); 1872 e1e_flush(); 1873 ew32(SHRAH(index - 1), rar_high); 1874 e1e_flush(); 1875 1876 e1000_release_swflag_ich8lan(hw); 1877 1878 /* verify the register updates */ 1879 if ((er32(SHRAL(index - 1)) == rar_low) && 1880 (er32(SHRAH(index - 1)) == rar_high)) 1881 return 0; 1882 1883 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n", 1884 (index - 1), er32(FWSM)); 1885 } 1886 1887 out: 1888 e_dbg("Failed to write receive address at index %d\n", index); 1889 return -E1000_ERR_CONFIG; 1890 } 1891 1892 /** 1893 * e1000_rar_get_count_pch_lpt - Get the number of available SHRA 1894 * @hw: pointer to the HW structure 1895 * 1896 * Get the number of available receive registers that the Host can 1897 * program. SHRA[0-10] are the shared receive address registers 1898 * that are shared between the Host and manageability engine (ME). 1899 * ME can reserve any number of addresses and the host needs to be 1900 * able to tell how many available registers it has access to. 1901 **/ 1902 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw) 1903 { 1904 u32 wlock_mac; 1905 u32 num_entries; 1906 1907 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK; 1908 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT; 1909 1910 switch (wlock_mac) { 1911 case 0: 1912 /* All SHRA[0..10] and RAR[0] available */ 1913 num_entries = hw->mac.rar_entry_count; 1914 break; 1915 case 1: 1916 /* Only RAR[0] available */ 1917 num_entries = 1; 1918 break; 1919 default: 1920 /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */ 1921 num_entries = wlock_mac + 1; 1922 break; 1923 } 1924 1925 return num_entries; 1926 } 1927 1928 /** 1929 * e1000_rar_set_pch_lpt - Set receive address registers 1930 * @hw: pointer to the HW structure 1931 * @addr: pointer to the receive address 1932 * @index: receive address array register 1933 * 1934 * Sets the receive address register array at index to the address passed 1935 * in by addr. For LPT, RAR[0] is the base address register that is to 1936 * contain the MAC address. SHRA[0-10] are the shared receive address 1937 * registers that are shared between the Host and manageability engine (ME). 1938 **/ 1939 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index) 1940 { 1941 u32 rar_low, rar_high; 1942 u32 wlock_mac; 1943 1944 /* HW expects these in little endian so we reverse the byte order 1945 * from network order (big endian) to little endian 1946 */ 1947 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) | 1948 ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); 1949 1950 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); 1951 1952 /* If MAC address zero, no need to set the AV bit */ 1953 if (rar_low || rar_high) 1954 rar_high |= E1000_RAH_AV; 1955 1956 if (index == 0) { 1957 ew32(RAL(index), rar_low); 1958 e1e_flush(); 1959 ew32(RAH(index), rar_high); 1960 e1e_flush(); 1961 return 0; 1962 } 1963 1964 /* The manageability engine (ME) can lock certain SHRAR registers that 1965 * it is using - those registers are unavailable for use. 1966 */ 1967 if (index < hw->mac.rar_entry_count) { 1968 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK; 1969 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT; 1970 1971 /* Check if all SHRAR registers are locked */ 1972 if (wlock_mac == 1) 1973 goto out; 1974 1975 if ((wlock_mac == 0) || (index <= wlock_mac)) { 1976 s32 ret_val; 1977 1978 ret_val = e1000_acquire_swflag_ich8lan(hw); 1979 1980 if (ret_val) 1981 goto out; 1982 1983 ew32(SHRAL_PCH_LPT(index - 1), rar_low); 1984 e1e_flush(); 1985 ew32(SHRAH_PCH_LPT(index - 1), rar_high); 1986 e1e_flush(); 1987 1988 e1000_release_swflag_ich8lan(hw); 1989 1990 /* verify the register updates */ 1991 if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) && 1992 (er32(SHRAH_PCH_LPT(index - 1)) == rar_high)) 1993 return 0; 1994 } 1995 } 1996 1997 out: 1998 e_dbg("Failed to write receive address at index %d\n", index); 1999 return -E1000_ERR_CONFIG; 2000 } 2001 2002 /** 2003 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked 2004 * @hw: pointer to the HW structure 2005 * 2006 * Checks if firmware is blocking the reset of the PHY. 2007 * This is a function pointer entry point only called by 2008 * reset routines. 2009 **/ 2010 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw) 2011 { 2012 bool blocked = false; 2013 int i = 0; 2014 2015 while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) && 2016 (i++ < 30)) 2017 usleep_range(10000, 20000); 2018 return blocked ? E1000_BLK_PHY_RESET : 0; 2019 } 2020 2021 /** 2022 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states 2023 * @hw: pointer to the HW structure 2024 * 2025 * Assumes semaphore already acquired. 2026 * 2027 **/ 2028 static s32 e1000_write_smbus_addr(struct e1000_hw *hw) 2029 { 2030 u16 phy_data; 2031 u32 strap = er32(STRAP); 2032 u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >> 2033 E1000_STRAP_SMT_FREQ_SHIFT; 2034 s32 ret_val; 2035 2036 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK; 2037 2038 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data); 2039 if (ret_val) 2040 return ret_val; 2041 2042 phy_data &= ~HV_SMB_ADDR_MASK; 2043 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT); 2044 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID; 2045 2046 if (hw->phy.type == e1000_phy_i217) { 2047 /* Restore SMBus frequency */ 2048 if (freq--) { 2049 phy_data &= ~HV_SMB_ADDR_FREQ_MASK; 2050 phy_data |= (freq & BIT(0)) << 2051 HV_SMB_ADDR_FREQ_LOW_SHIFT; 2052 phy_data |= (freq & BIT(1)) << 2053 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1); 2054 } else { 2055 e_dbg("Unsupported SMB frequency in PHY\n"); 2056 } 2057 } 2058 2059 return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data); 2060 } 2061 2062 /** 2063 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration 2064 * @hw: pointer to the HW structure 2065 * 2066 * SW should configure the LCD from the NVM extended configuration region 2067 * as a workaround for certain parts. 2068 **/ 2069 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw) 2070 { 2071 struct e1000_phy_info *phy = &hw->phy; 2072 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask; 2073 s32 ret_val = 0; 2074 u16 word_addr, reg_data, reg_addr, phy_page = 0; 2075 2076 /* Initialize the PHY from the NVM on ICH platforms. This 2077 * is needed due to an issue where the NVM configuration is 2078 * not properly autoloaded after power transitions. 2079 * Therefore, after each PHY reset, we will load the 2080 * configuration data out of the NVM manually. 2081 */ 2082 switch (hw->mac.type) { 2083 case e1000_ich8lan: 2084 if (phy->type != e1000_phy_igp_3) 2085 return ret_val; 2086 2087 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) || 2088 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) { 2089 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG; 2090 break; 2091 } 2092 /* Fall-thru */ 2093 case e1000_pchlan: 2094 case e1000_pch2lan: 2095 case e1000_pch_lpt: 2096 case e1000_pch_spt: 2097 case e1000_pch_cnp: 2098 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M; 2099 break; 2100 default: 2101 return ret_val; 2102 } 2103 2104 ret_val = hw->phy.ops.acquire(hw); 2105 if (ret_val) 2106 return ret_val; 2107 2108 data = er32(FEXTNVM); 2109 if (!(data & sw_cfg_mask)) 2110 goto release; 2111 2112 /* Make sure HW does not configure LCD from PHY 2113 * extended configuration before SW configuration 2114 */ 2115 data = er32(EXTCNF_CTRL); 2116 if ((hw->mac.type < e1000_pch2lan) && 2117 (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)) 2118 goto release; 2119 2120 cnf_size = er32(EXTCNF_SIZE); 2121 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK; 2122 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT; 2123 if (!cnf_size) 2124 goto release; 2125 2126 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK; 2127 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT; 2128 2129 if (((hw->mac.type == e1000_pchlan) && 2130 !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) || 2131 (hw->mac.type > e1000_pchlan)) { 2132 /* HW configures the SMBus address and LEDs when the 2133 * OEM and LCD Write Enable bits are set in the NVM. 2134 * When both NVM bits are cleared, SW will configure 2135 * them instead. 2136 */ 2137 ret_val = e1000_write_smbus_addr(hw); 2138 if (ret_val) 2139 goto release; 2140 2141 data = er32(LEDCTL); 2142 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG, 2143 (u16)data); 2144 if (ret_val) 2145 goto release; 2146 } 2147 2148 /* Configure LCD from extended configuration region. */ 2149 2150 /* cnf_base_addr is in DWORD */ 2151 word_addr = (u16)(cnf_base_addr << 1); 2152 2153 for (i = 0; i < cnf_size; i++) { 2154 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, ®_data); 2155 if (ret_val) 2156 goto release; 2157 2158 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1), 2159 1, ®_addr); 2160 if (ret_val) 2161 goto release; 2162 2163 /* Save off the PHY page for future writes. */ 2164 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) { 2165 phy_page = reg_data; 2166 continue; 2167 } 2168 2169 reg_addr &= PHY_REG_MASK; 2170 reg_addr |= phy_page; 2171 2172 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data); 2173 if (ret_val) 2174 goto release; 2175 } 2176 2177 release: 2178 hw->phy.ops.release(hw); 2179 return ret_val; 2180 } 2181 2182 /** 2183 * e1000_k1_gig_workaround_hv - K1 Si workaround 2184 * @hw: pointer to the HW structure 2185 * @link: link up bool flag 2186 * 2187 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning 2188 * from a lower speed. This workaround disables K1 whenever link is at 1Gig 2189 * If link is down, the function will restore the default K1 setting located 2190 * in the NVM. 2191 **/ 2192 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link) 2193 { 2194 s32 ret_val = 0; 2195 u16 status_reg = 0; 2196 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled; 2197 2198 if (hw->mac.type != e1000_pchlan) 2199 return 0; 2200 2201 /* Wrap the whole flow with the sw flag */ 2202 ret_val = hw->phy.ops.acquire(hw); 2203 if (ret_val) 2204 return ret_val; 2205 2206 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */ 2207 if (link) { 2208 if (hw->phy.type == e1000_phy_82578) { 2209 ret_val = e1e_rphy_locked(hw, BM_CS_STATUS, 2210 &status_reg); 2211 if (ret_val) 2212 goto release; 2213 2214 status_reg &= (BM_CS_STATUS_LINK_UP | 2215 BM_CS_STATUS_RESOLVED | 2216 BM_CS_STATUS_SPEED_MASK); 2217 2218 if (status_reg == (BM_CS_STATUS_LINK_UP | 2219 BM_CS_STATUS_RESOLVED | 2220 BM_CS_STATUS_SPEED_1000)) 2221 k1_enable = false; 2222 } 2223 2224 if (hw->phy.type == e1000_phy_82577) { 2225 ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg); 2226 if (ret_val) 2227 goto release; 2228 2229 status_reg &= (HV_M_STATUS_LINK_UP | 2230 HV_M_STATUS_AUTONEG_COMPLETE | 2231 HV_M_STATUS_SPEED_MASK); 2232 2233 if (status_reg == (HV_M_STATUS_LINK_UP | 2234 HV_M_STATUS_AUTONEG_COMPLETE | 2235 HV_M_STATUS_SPEED_1000)) 2236 k1_enable = false; 2237 } 2238 2239 /* Link stall fix for link up */ 2240 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100); 2241 if (ret_val) 2242 goto release; 2243 2244 } else { 2245 /* Link stall fix for link down */ 2246 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100); 2247 if (ret_val) 2248 goto release; 2249 } 2250 2251 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable); 2252 2253 release: 2254 hw->phy.ops.release(hw); 2255 2256 return ret_val; 2257 } 2258 2259 /** 2260 * e1000_configure_k1_ich8lan - Configure K1 power state 2261 * @hw: pointer to the HW structure 2262 * @enable: K1 state to configure 2263 * 2264 * Configure the K1 power state based on the provided parameter. 2265 * Assumes semaphore already acquired. 2266 * 2267 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 2268 **/ 2269 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable) 2270 { 2271 s32 ret_val; 2272 u32 ctrl_reg = 0; 2273 u32 ctrl_ext = 0; 2274 u32 reg = 0; 2275 u16 kmrn_reg = 0; 2276 2277 ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, 2278 &kmrn_reg); 2279 if (ret_val) 2280 return ret_val; 2281 2282 if (k1_enable) 2283 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE; 2284 else 2285 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE; 2286 2287 ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, 2288 kmrn_reg); 2289 if (ret_val) 2290 return ret_val; 2291 2292 usleep_range(20, 40); 2293 ctrl_ext = er32(CTRL_EXT); 2294 ctrl_reg = er32(CTRL); 2295 2296 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 2297 reg |= E1000_CTRL_FRCSPD; 2298 ew32(CTRL, reg); 2299 2300 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS); 2301 e1e_flush(); 2302 usleep_range(20, 40); 2303 ew32(CTRL, ctrl_reg); 2304 ew32(CTRL_EXT, ctrl_ext); 2305 e1e_flush(); 2306 usleep_range(20, 40); 2307 2308 return 0; 2309 } 2310 2311 /** 2312 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration 2313 * @hw: pointer to the HW structure 2314 * @d0_state: boolean if entering d0 or d3 device state 2315 * 2316 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are 2317 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit 2318 * in NVM determines whether HW should configure LPLU and Gbe Disable. 2319 **/ 2320 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state) 2321 { 2322 s32 ret_val = 0; 2323 u32 mac_reg; 2324 u16 oem_reg; 2325 2326 if (hw->mac.type < e1000_pchlan) 2327 return ret_val; 2328 2329 ret_val = hw->phy.ops.acquire(hw); 2330 if (ret_val) 2331 return ret_val; 2332 2333 if (hw->mac.type == e1000_pchlan) { 2334 mac_reg = er32(EXTCNF_CTRL); 2335 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) 2336 goto release; 2337 } 2338 2339 mac_reg = er32(FEXTNVM); 2340 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M)) 2341 goto release; 2342 2343 mac_reg = er32(PHY_CTRL); 2344 2345 ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg); 2346 if (ret_val) 2347 goto release; 2348 2349 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU); 2350 2351 if (d0_state) { 2352 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE) 2353 oem_reg |= HV_OEM_BITS_GBE_DIS; 2354 2355 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU) 2356 oem_reg |= HV_OEM_BITS_LPLU; 2357 } else { 2358 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE | 2359 E1000_PHY_CTRL_NOND0A_GBE_DISABLE)) 2360 oem_reg |= HV_OEM_BITS_GBE_DIS; 2361 2362 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU | 2363 E1000_PHY_CTRL_NOND0A_LPLU)) 2364 oem_reg |= HV_OEM_BITS_LPLU; 2365 } 2366 2367 /* Set Restart auto-neg to activate the bits */ 2368 if ((d0_state || (hw->mac.type != e1000_pchlan)) && 2369 !hw->phy.ops.check_reset_block(hw)) 2370 oem_reg |= HV_OEM_BITS_RESTART_AN; 2371 2372 ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg); 2373 2374 release: 2375 hw->phy.ops.release(hw); 2376 2377 return ret_val; 2378 } 2379 2380 /** 2381 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode 2382 * @hw: pointer to the HW structure 2383 **/ 2384 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw) 2385 { 2386 s32 ret_val; 2387 u16 data; 2388 2389 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data); 2390 if (ret_val) 2391 return ret_val; 2392 2393 data |= HV_KMRN_MDIO_SLOW; 2394 2395 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data); 2396 2397 return ret_val; 2398 } 2399 2400 /** 2401 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be 2402 * done after every PHY reset. 2403 **/ 2404 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw) 2405 { 2406 s32 ret_val = 0; 2407 u16 phy_data; 2408 2409 if (hw->mac.type != e1000_pchlan) 2410 return 0; 2411 2412 /* Set MDIO slow mode before any other MDIO access */ 2413 if (hw->phy.type == e1000_phy_82577) { 2414 ret_val = e1000_set_mdio_slow_mode_hv(hw); 2415 if (ret_val) 2416 return ret_val; 2417 } 2418 2419 if (((hw->phy.type == e1000_phy_82577) && 2420 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) || 2421 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) { 2422 /* Disable generation of early preamble */ 2423 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431); 2424 if (ret_val) 2425 return ret_val; 2426 2427 /* Preamble tuning for SSC */ 2428 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204); 2429 if (ret_val) 2430 return ret_val; 2431 } 2432 2433 if (hw->phy.type == e1000_phy_82578) { 2434 /* Return registers to default by doing a soft reset then 2435 * writing 0x3140 to the control register. 2436 */ 2437 if (hw->phy.revision < 2) { 2438 e1000e_phy_sw_reset(hw); 2439 ret_val = e1e_wphy(hw, MII_BMCR, 0x3140); 2440 } 2441 } 2442 2443 /* Select page 0 */ 2444 ret_val = hw->phy.ops.acquire(hw); 2445 if (ret_val) 2446 return ret_val; 2447 2448 hw->phy.addr = 1; 2449 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0); 2450 hw->phy.ops.release(hw); 2451 if (ret_val) 2452 return ret_val; 2453 2454 /* Configure the K1 Si workaround during phy reset assuming there is 2455 * link so that it disables K1 if link is in 1Gbps. 2456 */ 2457 ret_val = e1000_k1_gig_workaround_hv(hw, true); 2458 if (ret_val) 2459 return ret_val; 2460 2461 /* Workaround for link disconnects on a busy hub in half duplex */ 2462 ret_val = hw->phy.ops.acquire(hw); 2463 if (ret_val) 2464 return ret_val; 2465 ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data); 2466 if (ret_val) 2467 goto release; 2468 ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF); 2469 if (ret_val) 2470 goto release; 2471 2472 /* set MSE higher to enable link to stay up when noise is high */ 2473 ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034); 2474 release: 2475 hw->phy.ops.release(hw); 2476 2477 return ret_val; 2478 } 2479 2480 /** 2481 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY 2482 * @hw: pointer to the HW structure 2483 **/ 2484 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw) 2485 { 2486 u32 mac_reg; 2487 u16 i, phy_reg = 0; 2488 s32 ret_val; 2489 2490 ret_val = hw->phy.ops.acquire(hw); 2491 if (ret_val) 2492 return; 2493 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); 2494 if (ret_val) 2495 goto release; 2496 2497 /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */ 2498 for (i = 0; i < (hw->mac.rar_entry_count); i++) { 2499 mac_reg = er32(RAL(i)); 2500 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i), 2501 (u16)(mac_reg & 0xFFFF)); 2502 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i), 2503 (u16)((mac_reg >> 16) & 0xFFFF)); 2504 2505 mac_reg = er32(RAH(i)); 2506 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i), 2507 (u16)(mac_reg & 0xFFFF)); 2508 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i), 2509 (u16)((mac_reg & E1000_RAH_AV) 2510 >> 16)); 2511 } 2512 2513 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); 2514 2515 release: 2516 hw->phy.ops.release(hw); 2517 } 2518 2519 /** 2520 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation 2521 * with 82579 PHY 2522 * @hw: pointer to the HW structure 2523 * @enable: flag to enable/disable workaround when enabling/disabling jumbos 2524 **/ 2525 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable) 2526 { 2527 s32 ret_val = 0; 2528 u16 phy_reg, data; 2529 u32 mac_reg; 2530 u16 i; 2531 2532 if (hw->mac.type < e1000_pch2lan) 2533 return 0; 2534 2535 /* disable Rx path while enabling/disabling workaround */ 2536 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); 2537 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14)); 2538 if (ret_val) 2539 return ret_val; 2540 2541 if (enable) { 2542 /* Write Rx addresses (rar_entry_count for RAL/H, and 2543 * SHRAL/H) and initial CRC values to the MAC 2544 */ 2545 for (i = 0; i < hw->mac.rar_entry_count; i++) { 2546 u8 mac_addr[ETH_ALEN] = { 0 }; 2547 u32 addr_high, addr_low; 2548 2549 addr_high = er32(RAH(i)); 2550 if (!(addr_high & E1000_RAH_AV)) 2551 continue; 2552 addr_low = er32(RAL(i)); 2553 mac_addr[0] = (addr_low & 0xFF); 2554 mac_addr[1] = ((addr_low >> 8) & 0xFF); 2555 mac_addr[2] = ((addr_low >> 16) & 0xFF); 2556 mac_addr[3] = ((addr_low >> 24) & 0xFF); 2557 mac_addr[4] = (addr_high & 0xFF); 2558 mac_addr[5] = ((addr_high >> 8) & 0xFF); 2559 2560 ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr)); 2561 } 2562 2563 /* Write Rx addresses to the PHY */ 2564 e1000_copy_rx_addrs_to_phy_ich8lan(hw); 2565 2566 /* Enable jumbo frame workaround in the MAC */ 2567 mac_reg = er32(FFLT_DBG); 2568 mac_reg &= ~BIT(14); 2569 mac_reg |= (7 << 15); 2570 ew32(FFLT_DBG, mac_reg); 2571 2572 mac_reg = er32(RCTL); 2573 mac_reg |= E1000_RCTL_SECRC; 2574 ew32(RCTL, mac_reg); 2575 2576 ret_val = e1000e_read_kmrn_reg(hw, 2577 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2578 &data); 2579 if (ret_val) 2580 return ret_val; 2581 ret_val = e1000e_write_kmrn_reg(hw, 2582 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2583 data | BIT(0)); 2584 if (ret_val) 2585 return ret_val; 2586 ret_val = e1000e_read_kmrn_reg(hw, 2587 E1000_KMRNCTRLSTA_HD_CTRL, 2588 &data); 2589 if (ret_val) 2590 return ret_val; 2591 data &= ~(0xF << 8); 2592 data |= (0xB << 8); 2593 ret_val = e1000e_write_kmrn_reg(hw, 2594 E1000_KMRNCTRLSTA_HD_CTRL, 2595 data); 2596 if (ret_val) 2597 return ret_val; 2598 2599 /* Enable jumbo frame workaround in the PHY */ 2600 e1e_rphy(hw, PHY_REG(769, 23), &data); 2601 data &= ~(0x7F << 5); 2602 data |= (0x37 << 5); 2603 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); 2604 if (ret_val) 2605 return ret_val; 2606 e1e_rphy(hw, PHY_REG(769, 16), &data); 2607 data &= ~BIT(13); 2608 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); 2609 if (ret_val) 2610 return ret_val; 2611 e1e_rphy(hw, PHY_REG(776, 20), &data); 2612 data &= ~(0x3FF << 2); 2613 data |= (E1000_TX_PTR_GAP << 2); 2614 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); 2615 if (ret_val) 2616 return ret_val; 2617 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100); 2618 if (ret_val) 2619 return ret_val; 2620 e1e_rphy(hw, HV_PM_CTRL, &data); 2621 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10)); 2622 if (ret_val) 2623 return ret_val; 2624 } else { 2625 /* Write MAC register values back to h/w defaults */ 2626 mac_reg = er32(FFLT_DBG); 2627 mac_reg &= ~(0xF << 14); 2628 ew32(FFLT_DBG, mac_reg); 2629 2630 mac_reg = er32(RCTL); 2631 mac_reg &= ~E1000_RCTL_SECRC; 2632 ew32(RCTL, mac_reg); 2633 2634 ret_val = e1000e_read_kmrn_reg(hw, 2635 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2636 &data); 2637 if (ret_val) 2638 return ret_val; 2639 ret_val = e1000e_write_kmrn_reg(hw, 2640 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2641 data & ~BIT(0)); 2642 if (ret_val) 2643 return ret_val; 2644 ret_val = e1000e_read_kmrn_reg(hw, 2645 E1000_KMRNCTRLSTA_HD_CTRL, 2646 &data); 2647 if (ret_val) 2648 return ret_val; 2649 data &= ~(0xF << 8); 2650 data |= (0xB << 8); 2651 ret_val = e1000e_write_kmrn_reg(hw, 2652 E1000_KMRNCTRLSTA_HD_CTRL, 2653 data); 2654 if (ret_val) 2655 return ret_val; 2656 2657 /* Write PHY register values back to h/w defaults */ 2658 e1e_rphy(hw, PHY_REG(769, 23), &data); 2659 data &= ~(0x7F << 5); 2660 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); 2661 if (ret_val) 2662 return ret_val; 2663 e1e_rphy(hw, PHY_REG(769, 16), &data); 2664 data |= BIT(13); 2665 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); 2666 if (ret_val) 2667 return ret_val; 2668 e1e_rphy(hw, PHY_REG(776, 20), &data); 2669 data &= ~(0x3FF << 2); 2670 data |= (0x8 << 2); 2671 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); 2672 if (ret_val) 2673 return ret_val; 2674 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00); 2675 if (ret_val) 2676 return ret_val; 2677 e1e_rphy(hw, HV_PM_CTRL, &data); 2678 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10)); 2679 if (ret_val) 2680 return ret_val; 2681 } 2682 2683 /* re-enable Rx path after enabling/disabling workaround */ 2684 return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14)); 2685 } 2686 2687 /** 2688 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be 2689 * done after every PHY reset. 2690 **/ 2691 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw) 2692 { 2693 s32 ret_val = 0; 2694 2695 if (hw->mac.type != e1000_pch2lan) 2696 return 0; 2697 2698 /* Set MDIO slow mode before any other MDIO access */ 2699 ret_val = e1000_set_mdio_slow_mode_hv(hw); 2700 if (ret_val) 2701 return ret_val; 2702 2703 ret_val = hw->phy.ops.acquire(hw); 2704 if (ret_val) 2705 return ret_val; 2706 /* set MSE higher to enable link to stay up when noise is high */ 2707 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034); 2708 if (ret_val) 2709 goto release; 2710 /* drop link after 5 times MSE threshold was reached */ 2711 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005); 2712 release: 2713 hw->phy.ops.release(hw); 2714 2715 return ret_val; 2716 } 2717 2718 /** 2719 * e1000_k1_gig_workaround_lv - K1 Si workaround 2720 * @hw: pointer to the HW structure 2721 * 2722 * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps 2723 * Disable K1 in 1000Mbps and 100Mbps 2724 **/ 2725 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw) 2726 { 2727 s32 ret_val = 0; 2728 u16 status_reg = 0; 2729 2730 if (hw->mac.type != e1000_pch2lan) 2731 return 0; 2732 2733 /* Set K1 beacon duration based on 10Mbs speed */ 2734 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg); 2735 if (ret_val) 2736 return ret_val; 2737 2738 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) 2739 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) { 2740 if (status_reg & 2741 (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) { 2742 u16 pm_phy_reg; 2743 2744 /* LV 1G/100 Packet drop issue wa */ 2745 ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg); 2746 if (ret_val) 2747 return ret_val; 2748 pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE; 2749 ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg); 2750 if (ret_val) 2751 return ret_val; 2752 } else { 2753 u32 mac_reg; 2754 2755 mac_reg = er32(FEXTNVM4); 2756 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; 2757 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC; 2758 ew32(FEXTNVM4, mac_reg); 2759 } 2760 } 2761 2762 return ret_val; 2763 } 2764 2765 /** 2766 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware 2767 * @hw: pointer to the HW structure 2768 * @gate: boolean set to true to gate, false to ungate 2769 * 2770 * Gate/ungate the automatic PHY configuration via hardware; perform 2771 * the configuration via software instead. 2772 **/ 2773 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate) 2774 { 2775 u32 extcnf_ctrl; 2776 2777 if (hw->mac.type < e1000_pch2lan) 2778 return; 2779 2780 extcnf_ctrl = er32(EXTCNF_CTRL); 2781 2782 if (gate) 2783 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG; 2784 else 2785 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG; 2786 2787 ew32(EXTCNF_CTRL, extcnf_ctrl); 2788 } 2789 2790 /** 2791 * e1000_lan_init_done_ich8lan - Check for PHY config completion 2792 * @hw: pointer to the HW structure 2793 * 2794 * Check the appropriate indication the MAC has finished configuring the 2795 * PHY after a software reset. 2796 **/ 2797 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw) 2798 { 2799 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT; 2800 2801 /* Wait for basic configuration completes before proceeding */ 2802 do { 2803 data = er32(STATUS); 2804 data &= E1000_STATUS_LAN_INIT_DONE; 2805 usleep_range(100, 200); 2806 } while ((!data) && --loop); 2807 2808 /* If basic configuration is incomplete before the above loop 2809 * count reaches 0, loading the configuration from NVM will 2810 * leave the PHY in a bad state possibly resulting in no link. 2811 */ 2812 if (loop == 0) 2813 e_dbg("LAN_INIT_DONE not set, increase timeout\n"); 2814 2815 /* Clear the Init Done bit for the next init event */ 2816 data = er32(STATUS); 2817 data &= ~E1000_STATUS_LAN_INIT_DONE; 2818 ew32(STATUS, data); 2819 } 2820 2821 /** 2822 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset 2823 * @hw: pointer to the HW structure 2824 **/ 2825 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw) 2826 { 2827 s32 ret_val = 0; 2828 u16 reg; 2829 2830 if (hw->phy.ops.check_reset_block(hw)) 2831 return 0; 2832 2833 /* Allow time for h/w to get to quiescent state after reset */ 2834 usleep_range(10000, 20000); 2835 2836 /* Perform any necessary post-reset workarounds */ 2837 switch (hw->mac.type) { 2838 case e1000_pchlan: 2839 ret_val = e1000_hv_phy_workarounds_ich8lan(hw); 2840 if (ret_val) 2841 return ret_val; 2842 break; 2843 case e1000_pch2lan: 2844 ret_val = e1000_lv_phy_workarounds_ich8lan(hw); 2845 if (ret_val) 2846 return ret_val; 2847 break; 2848 default: 2849 break; 2850 } 2851 2852 /* Clear the host wakeup bit after lcd reset */ 2853 if (hw->mac.type >= e1000_pchlan) { 2854 e1e_rphy(hw, BM_PORT_GEN_CFG, ®); 2855 reg &= ~BM_WUC_HOST_WU_BIT; 2856 e1e_wphy(hw, BM_PORT_GEN_CFG, reg); 2857 } 2858 2859 /* Configure the LCD with the extended configuration region in NVM */ 2860 ret_val = e1000_sw_lcd_config_ich8lan(hw); 2861 if (ret_val) 2862 return ret_val; 2863 2864 /* Configure the LCD with the OEM bits in NVM */ 2865 ret_val = e1000_oem_bits_config_ich8lan(hw, true); 2866 2867 if (hw->mac.type == e1000_pch2lan) { 2868 /* Ungate automatic PHY configuration on non-managed 82579 */ 2869 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 2870 usleep_range(10000, 20000); 2871 e1000_gate_hw_phy_config_ich8lan(hw, false); 2872 } 2873 2874 /* Set EEE LPI Update Timer to 200usec */ 2875 ret_val = hw->phy.ops.acquire(hw); 2876 if (ret_val) 2877 return ret_val; 2878 ret_val = e1000_write_emi_reg_locked(hw, 2879 I82579_LPI_UPDATE_TIMER, 2880 0x1387); 2881 hw->phy.ops.release(hw); 2882 } 2883 2884 return ret_val; 2885 } 2886 2887 /** 2888 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset 2889 * @hw: pointer to the HW structure 2890 * 2891 * Resets the PHY 2892 * This is a function pointer entry point called by drivers 2893 * or other shared routines. 2894 **/ 2895 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw) 2896 { 2897 s32 ret_val = 0; 2898 2899 /* Gate automatic PHY configuration by hardware on non-managed 82579 */ 2900 if ((hw->mac.type == e1000_pch2lan) && 2901 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) 2902 e1000_gate_hw_phy_config_ich8lan(hw, true); 2903 2904 ret_val = e1000e_phy_hw_reset_generic(hw); 2905 if (ret_val) 2906 return ret_val; 2907 2908 return e1000_post_phy_reset_ich8lan(hw); 2909 } 2910 2911 /** 2912 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state 2913 * @hw: pointer to the HW structure 2914 * @active: true to enable LPLU, false to disable 2915 * 2916 * Sets the LPLU state according to the active flag. For PCH, if OEM write 2917 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set 2918 * the phy speed. This function will manually set the LPLU bit and restart 2919 * auto-neg as hw would do. D3 and D0 LPLU will call the same function 2920 * since it configures the same bit. 2921 **/ 2922 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active) 2923 { 2924 s32 ret_val; 2925 u16 oem_reg; 2926 2927 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg); 2928 if (ret_val) 2929 return ret_val; 2930 2931 if (active) 2932 oem_reg |= HV_OEM_BITS_LPLU; 2933 else 2934 oem_reg &= ~HV_OEM_BITS_LPLU; 2935 2936 if (!hw->phy.ops.check_reset_block(hw)) 2937 oem_reg |= HV_OEM_BITS_RESTART_AN; 2938 2939 return e1e_wphy(hw, HV_OEM_BITS, oem_reg); 2940 } 2941 2942 /** 2943 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state 2944 * @hw: pointer to the HW structure 2945 * @active: true to enable LPLU, false to disable 2946 * 2947 * Sets the LPLU D0 state according to the active flag. When 2948 * activating LPLU this function also disables smart speed 2949 * and vice versa. LPLU will not be activated unless the 2950 * device autonegotiation advertisement meets standards of 2951 * either 10 or 10/100 or 10/100/1000 at all duplexes. 2952 * This is a function pointer entry point only called by 2953 * PHY setup routines. 2954 **/ 2955 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active) 2956 { 2957 struct e1000_phy_info *phy = &hw->phy; 2958 u32 phy_ctrl; 2959 s32 ret_val = 0; 2960 u16 data; 2961 2962 if (phy->type == e1000_phy_ife) 2963 return 0; 2964 2965 phy_ctrl = er32(PHY_CTRL); 2966 2967 if (active) { 2968 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; 2969 ew32(PHY_CTRL, phy_ctrl); 2970 2971 if (phy->type != e1000_phy_igp_3) 2972 return 0; 2973 2974 /* Call gig speed drop workaround on LPLU before accessing 2975 * any PHY registers 2976 */ 2977 if (hw->mac.type == e1000_ich8lan) 2978 e1000e_gig_downshift_workaround_ich8lan(hw); 2979 2980 /* When LPLU is enabled, we should disable SmartSpeed */ 2981 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); 2982 if (ret_val) 2983 return ret_val; 2984 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 2985 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); 2986 if (ret_val) 2987 return ret_val; 2988 } else { 2989 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; 2990 ew32(PHY_CTRL, phy_ctrl); 2991 2992 if (phy->type != e1000_phy_igp_3) 2993 return 0; 2994 2995 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 2996 * during Dx states where the power conservation is most 2997 * important. During driver activity we should enable 2998 * SmartSpeed, so performance is maintained. 2999 */ 3000 if (phy->smart_speed == e1000_smart_speed_on) { 3001 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3002 &data); 3003 if (ret_val) 3004 return ret_val; 3005 3006 data |= IGP01E1000_PSCFR_SMART_SPEED; 3007 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3008 data); 3009 if (ret_val) 3010 return ret_val; 3011 } else if (phy->smart_speed == e1000_smart_speed_off) { 3012 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3013 &data); 3014 if (ret_val) 3015 return ret_val; 3016 3017 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 3018 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3019 data); 3020 if (ret_val) 3021 return ret_val; 3022 } 3023 } 3024 3025 return 0; 3026 } 3027 3028 /** 3029 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state 3030 * @hw: pointer to the HW structure 3031 * @active: true to enable LPLU, false to disable 3032 * 3033 * Sets the LPLU D3 state according to the active flag. When 3034 * activating LPLU this function also disables smart speed 3035 * and vice versa. LPLU will not be activated unless the 3036 * device autonegotiation advertisement meets standards of 3037 * either 10 or 10/100 or 10/100/1000 at all duplexes. 3038 * This is a function pointer entry point only called by 3039 * PHY setup routines. 3040 **/ 3041 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active) 3042 { 3043 struct e1000_phy_info *phy = &hw->phy; 3044 u32 phy_ctrl; 3045 s32 ret_val = 0; 3046 u16 data; 3047 3048 phy_ctrl = er32(PHY_CTRL); 3049 3050 if (!active) { 3051 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; 3052 ew32(PHY_CTRL, phy_ctrl); 3053 3054 if (phy->type != e1000_phy_igp_3) 3055 return 0; 3056 3057 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 3058 * during Dx states where the power conservation is most 3059 * important. During driver activity we should enable 3060 * SmartSpeed, so performance is maintained. 3061 */ 3062 if (phy->smart_speed == e1000_smart_speed_on) { 3063 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3064 &data); 3065 if (ret_val) 3066 return ret_val; 3067 3068 data |= IGP01E1000_PSCFR_SMART_SPEED; 3069 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3070 data); 3071 if (ret_val) 3072 return ret_val; 3073 } else if (phy->smart_speed == e1000_smart_speed_off) { 3074 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3075 &data); 3076 if (ret_val) 3077 return ret_val; 3078 3079 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 3080 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3081 data); 3082 if (ret_val) 3083 return ret_val; 3084 } 3085 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || 3086 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || 3087 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { 3088 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; 3089 ew32(PHY_CTRL, phy_ctrl); 3090 3091 if (phy->type != e1000_phy_igp_3) 3092 return 0; 3093 3094 /* Call gig speed drop workaround on LPLU before accessing 3095 * any PHY registers 3096 */ 3097 if (hw->mac.type == e1000_ich8lan) 3098 e1000e_gig_downshift_workaround_ich8lan(hw); 3099 3100 /* When LPLU is enabled, we should disable SmartSpeed */ 3101 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); 3102 if (ret_val) 3103 return ret_val; 3104 3105 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 3106 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); 3107 } 3108 3109 return ret_val; 3110 } 3111 3112 /** 3113 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1 3114 * @hw: pointer to the HW structure 3115 * @bank: pointer to the variable that returns the active bank 3116 * 3117 * Reads signature byte from the NVM using the flash access registers. 3118 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank. 3119 **/ 3120 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank) 3121 { 3122 u32 eecd; 3123 struct e1000_nvm_info *nvm = &hw->nvm; 3124 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16); 3125 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1; 3126 u32 nvm_dword = 0; 3127 u8 sig_byte = 0; 3128 s32 ret_val; 3129 3130 switch (hw->mac.type) { 3131 case e1000_pch_spt: 3132 case e1000_pch_cnp: 3133 bank1_offset = nvm->flash_bank_size; 3134 act_offset = E1000_ICH_NVM_SIG_WORD; 3135 3136 /* set bank to 0 in case flash read fails */ 3137 *bank = 0; 3138 3139 /* Check bank 0 */ 3140 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, 3141 &nvm_dword); 3142 if (ret_val) 3143 return ret_val; 3144 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8); 3145 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 3146 E1000_ICH_NVM_SIG_VALUE) { 3147 *bank = 0; 3148 return 0; 3149 } 3150 3151 /* Check bank 1 */ 3152 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset + 3153 bank1_offset, 3154 &nvm_dword); 3155 if (ret_val) 3156 return ret_val; 3157 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8); 3158 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 3159 E1000_ICH_NVM_SIG_VALUE) { 3160 *bank = 1; 3161 return 0; 3162 } 3163 3164 e_dbg("ERROR: No valid NVM bank present\n"); 3165 return -E1000_ERR_NVM; 3166 case e1000_ich8lan: 3167 case e1000_ich9lan: 3168 eecd = er32(EECD); 3169 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) == 3170 E1000_EECD_SEC1VAL_VALID_MASK) { 3171 if (eecd & E1000_EECD_SEC1VAL) 3172 *bank = 1; 3173 else 3174 *bank = 0; 3175 3176 return 0; 3177 } 3178 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n"); 3179 /* fall-thru */ 3180 default: 3181 /* set bank to 0 in case flash read fails */ 3182 *bank = 0; 3183 3184 /* Check bank 0 */ 3185 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset, 3186 &sig_byte); 3187 if (ret_val) 3188 return ret_val; 3189 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 3190 E1000_ICH_NVM_SIG_VALUE) { 3191 *bank = 0; 3192 return 0; 3193 } 3194 3195 /* Check bank 1 */ 3196 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset + 3197 bank1_offset, 3198 &sig_byte); 3199 if (ret_val) 3200 return ret_val; 3201 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 3202 E1000_ICH_NVM_SIG_VALUE) { 3203 *bank = 1; 3204 return 0; 3205 } 3206 3207 e_dbg("ERROR: No valid NVM bank present\n"); 3208 return -E1000_ERR_NVM; 3209 } 3210 } 3211 3212 /** 3213 * e1000_read_nvm_spt - NVM access for SPT 3214 * @hw: pointer to the HW structure 3215 * @offset: The offset (in bytes) of the word(s) to read. 3216 * @words: Size of data to read in words. 3217 * @data: pointer to the word(s) to read at offset. 3218 * 3219 * Reads a word(s) from the NVM 3220 **/ 3221 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words, 3222 u16 *data) 3223 { 3224 struct e1000_nvm_info *nvm = &hw->nvm; 3225 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3226 u32 act_offset; 3227 s32 ret_val = 0; 3228 u32 bank = 0; 3229 u32 dword = 0; 3230 u16 offset_to_read; 3231 u16 i; 3232 3233 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || 3234 (words == 0)) { 3235 e_dbg("nvm parameter(s) out of bounds\n"); 3236 ret_val = -E1000_ERR_NVM; 3237 goto out; 3238 } 3239 3240 nvm->ops.acquire(hw); 3241 3242 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 3243 if (ret_val) { 3244 e_dbg("Could not detect valid bank, assuming bank 0\n"); 3245 bank = 0; 3246 } 3247 3248 act_offset = (bank) ? nvm->flash_bank_size : 0; 3249 act_offset += offset; 3250 3251 ret_val = 0; 3252 3253 for (i = 0; i < words; i += 2) { 3254 if (words - i == 1) { 3255 if (dev_spec->shadow_ram[offset + i].modified) { 3256 data[i] = 3257 dev_spec->shadow_ram[offset + i].value; 3258 } else { 3259 offset_to_read = act_offset + i - 3260 ((act_offset + i) % 2); 3261 ret_val = 3262 e1000_read_flash_dword_ich8lan(hw, 3263 offset_to_read, 3264 &dword); 3265 if (ret_val) 3266 break; 3267 if ((act_offset + i) % 2 == 0) 3268 data[i] = (u16)(dword & 0xFFFF); 3269 else 3270 data[i] = (u16)((dword >> 16) & 0xFFFF); 3271 } 3272 } else { 3273 offset_to_read = act_offset + i; 3274 if (!(dev_spec->shadow_ram[offset + i].modified) || 3275 !(dev_spec->shadow_ram[offset + i + 1].modified)) { 3276 ret_val = 3277 e1000_read_flash_dword_ich8lan(hw, 3278 offset_to_read, 3279 &dword); 3280 if (ret_val) 3281 break; 3282 } 3283 if (dev_spec->shadow_ram[offset + i].modified) 3284 data[i] = 3285 dev_spec->shadow_ram[offset + i].value; 3286 else 3287 data[i] = (u16)(dword & 0xFFFF); 3288 if (dev_spec->shadow_ram[offset + i].modified) 3289 data[i + 1] = 3290 dev_spec->shadow_ram[offset + i + 1].value; 3291 else 3292 data[i + 1] = (u16)(dword >> 16 & 0xFFFF); 3293 } 3294 } 3295 3296 nvm->ops.release(hw); 3297 3298 out: 3299 if (ret_val) 3300 e_dbg("NVM read error: %d\n", ret_val); 3301 3302 return ret_val; 3303 } 3304 3305 /** 3306 * e1000_read_nvm_ich8lan - Read word(s) from the NVM 3307 * @hw: pointer to the HW structure 3308 * @offset: The offset (in bytes) of the word(s) to read. 3309 * @words: Size of data to read in words 3310 * @data: Pointer to the word(s) to read at offset. 3311 * 3312 * Reads a word(s) from the NVM using the flash access registers. 3313 **/ 3314 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, 3315 u16 *data) 3316 { 3317 struct e1000_nvm_info *nvm = &hw->nvm; 3318 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3319 u32 act_offset; 3320 s32 ret_val = 0; 3321 u32 bank = 0; 3322 u16 i, word; 3323 3324 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || 3325 (words == 0)) { 3326 e_dbg("nvm parameter(s) out of bounds\n"); 3327 ret_val = -E1000_ERR_NVM; 3328 goto out; 3329 } 3330 3331 nvm->ops.acquire(hw); 3332 3333 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 3334 if (ret_val) { 3335 e_dbg("Could not detect valid bank, assuming bank 0\n"); 3336 bank = 0; 3337 } 3338 3339 act_offset = (bank) ? nvm->flash_bank_size : 0; 3340 act_offset += offset; 3341 3342 ret_val = 0; 3343 for (i = 0; i < words; i++) { 3344 if (dev_spec->shadow_ram[offset + i].modified) { 3345 data[i] = dev_spec->shadow_ram[offset + i].value; 3346 } else { 3347 ret_val = e1000_read_flash_word_ich8lan(hw, 3348 act_offset + i, 3349 &word); 3350 if (ret_val) 3351 break; 3352 data[i] = word; 3353 } 3354 } 3355 3356 nvm->ops.release(hw); 3357 3358 out: 3359 if (ret_val) 3360 e_dbg("NVM read error: %d\n", ret_val); 3361 3362 return ret_val; 3363 } 3364 3365 /** 3366 * e1000_flash_cycle_init_ich8lan - Initialize flash 3367 * @hw: pointer to the HW structure 3368 * 3369 * This function does initial flash setup so that a new read/write/erase cycle 3370 * can be started. 3371 **/ 3372 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw) 3373 { 3374 union ich8_hws_flash_status hsfsts; 3375 s32 ret_val = -E1000_ERR_NVM; 3376 3377 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3378 3379 /* Check if the flash descriptor is valid */ 3380 if (!hsfsts.hsf_status.fldesvalid) { 3381 e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n"); 3382 return -E1000_ERR_NVM; 3383 } 3384 3385 /* Clear FCERR and DAEL in hw status by writing 1 */ 3386 hsfsts.hsf_status.flcerr = 1; 3387 hsfsts.hsf_status.dael = 1; 3388 if (hw->mac.type >= e1000_pch_spt) 3389 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF); 3390 else 3391 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); 3392 3393 /* Either we should have a hardware SPI cycle in progress 3394 * bit to check against, in order to start a new cycle or 3395 * FDONE bit should be changed in the hardware so that it 3396 * is 1 after hardware reset, which can then be used as an 3397 * indication whether a cycle is in progress or has been 3398 * completed. 3399 */ 3400 3401 if (!hsfsts.hsf_status.flcinprog) { 3402 /* There is no cycle running at present, 3403 * so we can start a cycle. 3404 * Begin by setting Flash Cycle Done. 3405 */ 3406 hsfsts.hsf_status.flcdone = 1; 3407 if (hw->mac.type >= e1000_pch_spt) 3408 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF); 3409 else 3410 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); 3411 ret_val = 0; 3412 } else { 3413 s32 i; 3414 3415 /* Otherwise poll for sometime so the current 3416 * cycle has a chance to end before giving up. 3417 */ 3418 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) { 3419 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3420 if (!hsfsts.hsf_status.flcinprog) { 3421 ret_val = 0; 3422 break; 3423 } 3424 udelay(1); 3425 } 3426 if (!ret_val) { 3427 /* Successful in waiting for previous cycle to timeout, 3428 * now set the Flash Cycle Done. 3429 */ 3430 hsfsts.hsf_status.flcdone = 1; 3431 if (hw->mac.type >= e1000_pch_spt) 3432 ew32flash(ICH_FLASH_HSFSTS, 3433 hsfsts.regval & 0xFFFF); 3434 else 3435 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); 3436 } else { 3437 e_dbg("Flash controller busy, cannot get access\n"); 3438 } 3439 } 3440 3441 return ret_val; 3442 } 3443 3444 /** 3445 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase) 3446 * @hw: pointer to the HW structure 3447 * @timeout: maximum time to wait for completion 3448 * 3449 * This function starts a flash cycle and waits for its completion. 3450 **/ 3451 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout) 3452 { 3453 union ich8_hws_flash_ctrl hsflctl; 3454 union ich8_hws_flash_status hsfsts; 3455 u32 i = 0; 3456 3457 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ 3458 if (hw->mac.type >= e1000_pch_spt) 3459 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16; 3460 else 3461 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 3462 hsflctl.hsf_ctrl.flcgo = 1; 3463 3464 if (hw->mac.type >= e1000_pch_spt) 3465 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16); 3466 else 3467 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 3468 3469 /* wait till FDONE bit is set to 1 */ 3470 do { 3471 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3472 if (hsfsts.hsf_status.flcdone) 3473 break; 3474 udelay(1); 3475 } while (i++ < timeout); 3476 3477 if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr) 3478 return 0; 3479 3480 return -E1000_ERR_NVM; 3481 } 3482 3483 /** 3484 * e1000_read_flash_dword_ich8lan - Read dword from flash 3485 * @hw: pointer to the HW structure 3486 * @offset: offset to data location 3487 * @data: pointer to the location for storing the data 3488 * 3489 * Reads the flash dword at offset into data. Offset is converted 3490 * to bytes before read. 3491 **/ 3492 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset, 3493 u32 *data) 3494 { 3495 /* Must convert word offset into bytes. */ 3496 offset <<= 1; 3497 return e1000_read_flash_data32_ich8lan(hw, offset, data); 3498 } 3499 3500 /** 3501 * e1000_read_flash_word_ich8lan - Read word from flash 3502 * @hw: pointer to the HW structure 3503 * @offset: offset to data location 3504 * @data: pointer to the location for storing the data 3505 * 3506 * Reads the flash word at offset into data. Offset is converted 3507 * to bytes before read. 3508 **/ 3509 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, 3510 u16 *data) 3511 { 3512 /* Must convert offset into bytes. */ 3513 offset <<= 1; 3514 3515 return e1000_read_flash_data_ich8lan(hw, offset, 2, data); 3516 } 3517 3518 /** 3519 * e1000_read_flash_byte_ich8lan - Read byte from flash 3520 * @hw: pointer to the HW structure 3521 * @offset: The offset of the byte to read. 3522 * @data: Pointer to a byte to store the value read. 3523 * 3524 * Reads a single byte from the NVM using the flash access registers. 3525 **/ 3526 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, 3527 u8 *data) 3528 { 3529 s32 ret_val; 3530 u16 word = 0; 3531 3532 /* In SPT, only 32 bits access is supported, 3533 * so this function should not be called. 3534 */ 3535 if (hw->mac.type >= e1000_pch_spt) 3536 return -E1000_ERR_NVM; 3537 else 3538 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word); 3539 3540 if (ret_val) 3541 return ret_val; 3542 3543 *data = (u8)word; 3544 3545 return 0; 3546 } 3547 3548 /** 3549 * e1000_read_flash_data_ich8lan - Read byte or word from NVM 3550 * @hw: pointer to the HW structure 3551 * @offset: The offset (in bytes) of the byte or word to read. 3552 * @size: Size of data to read, 1=byte 2=word 3553 * @data: Pointer to the word to store the value read. 3554 * 3555 * Reads a byte or word from the NVM using the flash access registers. 3556 **/ 3557 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 3558 u8 size, u16 *data) 3559 { 3560 union ich8_hws_flash_status hsfsts; 3561 union ich8_hws_flash_ctrl hsflctl; 3562 u32 flash_linear_addr; 3563 u32 flash_data = 0; 3564 s32 ret_val = -E1000_ERR_NVM; 3565 u8 count = 0; 3566 3567 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) 3568 return -E1000_ERR_NVM; 3569 3570 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 3571 hw->nvm.flash_base_addr); 3572 3573 do { 3574 udelay(1); 3575 /* Steps */ 3576 ret_val = e1000_flash_cycle_init_ich8lan(hw); 3577 if (ret_val) 3578 break; 3579 3580 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 3581 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ 3582 hsflctl.hsf_ctrl.fldbcount = size - 1; 3583 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; 3584 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 3585 3586 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 3587 3588 ret_val = 3589 e1000_flash_cycle_ich8lan(hw, 3590 ICH_FLASH_READ_COMMAND_TIMEOUT); 3591 3592 /* Check if FCERR is set to 1, if set to 1, clear it 3593 * and try the whole sequence a few more times, else 3594 * read in (shift in) the Flash Data0, the order is 3595 * least significant byte first msb to lsb 3596 */ 3597 if (!ret_val) { 3598 flash_data = er32flash(ICH_FLASH_FDATA0); 3599 if (size == 1) 3600 *data = (u8)(flash_data & 0x000000FF); 3601 else if (size == 2) 3602 *data = (u16)(flash_data & 0x0000FFFF); 3603 break; 3604 } else { 3605 /* If we've gotten here, then things are probably 3606 * completely hosed, but if the error condition is 3607 * detected, it won't hurt to give it another try... 3608 * ICH_FLASH_CYCLE_REPEAT_COUNT times. 3609 */ 3610 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3611 if (hsfsts.hsf_status.flcerr) { 3612 /* Repeat for some time before giving up. */ 3613 continue; 3614 } else if (!hsfsts.hsf_status.flcdone) { 3615 e_dbg("Timeout error - flash cycle did not complete.\n"); 3616 break; 3617 } 3618 } 3619 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 3620 3621 return ret_val; 3622 } 3623 3624 /** 3625 * e1000_read_flash_data32_ich8lan - Read dword from NVM 3626 * @hw: pointer to the HW structure 3627 * @offset: The offset (in bytes) of the dword to read. 3628 * @data: Pointer to the dword to store the value read. 3629 * 3630 * Reads a byte or word from the NVM using the flash access registers. 3631 **/ 3632 3633 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, 3634 u32 *data) 3635 { 3636 union ich8_hws_flash_status hsfsts; 3637 union ich8_hws_flash_ctrl hsflctl; 3638 u32 flash_linear_addr; 3639 s32 ret_val = -E1000_ERR_NVM; 3640 u8 count = 0; 3641 3642 if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt) 3643 return -E1000_ERR_NVM; 3644 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 3645 hw->nvm.flash_base_addr); 3646 3647 do { 3648 udelay(1); 3649 /* Steps */ 3650 ret_val = e1000_flash_cycle_init_ich8lan(hw); 3651 if (ret_val) 3652 break; 3653 /* In SPT, This register is in Lan memory space, not flash. 3654 * Therefore, only 32 bit access is supported 3655 */ 3656 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16; 3657 3658 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ 3659 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1; 3660 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; 3661 /* In SPT, This register is in Lan memory space, not flash. 3662 * Therefore, only 32 bit access is supported 3663 */ 3664 ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16); 3665 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 3666 3667 ret_val = 3668 e1000_flash_cycle_ich8lan(hw, 3669 ICH_FLASH_READ_COMMAND_TIMEOUT); 3670 3671 /* Check if FCERR is set to 1, if set to 1, clear it 3672 * and try the whole sequence a few more times, else 3673 * read in (shift in) the Flash Data0, the order is 3674 * least significant byte first msb to lsb 3675 */ 3676 if (!ret_val) { 3677 *data = er32flash(ICH_FLASH_FDATA0); 3678 break; 3679 } else { 3680 /* If we've gotten here, then things are probably 3681 * completely hosed, but if the error condition is 3682 * detected, it won't hurt to give it another try... 3683 * ICH_FLASH_CYCLE_REPEAT_COUNT times. 3684 */ 3685 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3686 if (hsfsts.hsf_status.flcerr) { 3687 /* Repeat for some time before giving up. */ 3688 continue; 3689 } else if (!hsfsts.hsf_status.flcdone) { 3690 e_dbg("Timeout error - flash cycle did not complete.\n"); 3691 break; 3692 } 3693 } 3694 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 3695 3696 return ret_val; 3697 } 3698 3699 /** 3700 * e1000_write_nvm_ich8lan - Write word(s) to the NVM 3701 * @hw: pointer to the HW structure 3702 * @offset: The offset (in bytes) of the word(s) to write. 3703 * @words: Size of data to write in words 3704 * @data: Pointer to the word(s) to write at offset. 3705 * 3706 * Writes a byte or word to the NVM using the flash access registers. 3707 **/ 3708 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, 3709 u16 *data) 3710 { 3711 struct e1000_nvm_info *nvm = &hw->nvm; 3712 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3713 u16 i; 3714 3715 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || 3716 (words == 0)) { 3717 e_dbg("nvm parameter(s) out of bounds\n"); 3718 return -E1000_ERR_NVM; 3719 } 3720 3721 nvm->ops.acquire(hw); 3722 3723 for (i = 0; i < words; i++) { 3724 dev_spec->shadow_ram[offset + i].modified = true; 3725 dev_spec->shadow_ram[offset + i].value = data[i]; 3726 } 3727 3728 nvm->ops.release(hw); 3729 3730 return 0; 3731 } 3732 3733 /** 3734 * e1000_update_nvm_checksum_spt - Update the checksum for NVM 3735 * @hw: pointer to the HW structure 3736 * 3737 * The NVM checksum is updated by calling the generic update_nvm_checksum, 3738 * which writes the checksum to the shadow ram. The changes in the shadow 3739 * ram are then committed to the EEPROM by processing each bank at a time 3740 * checking for the modified bit and writing only the pending changes. 3741 * After a successful commit, the shadow ram is cleared and is ready for 3742 * future writes. 3743 **/ 3744 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw) 3745 { 3746 struct e1000_nvm_info *nvm = &hw->nvm; 3747 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3748 u32 i, act_offset, new_bank_offset, old_bank_offset, bank; 3749 s32 ret_val; 3750 u32 dword = 0; 3751 3752 ret_val = e1000e_update_nvm_checksum_generic(hw); 3753 if (ret_val) 3754 goto out; 3755 3756 if (nvm->type != e1000_nvm_flash_sw) 3757 goto out; 3758 3759 nvm->ops.acquire(hw); 3760 3761 /* We're writing to the opposite bank so if we're on bank 1, 3762 * write to bank 0 etc. We also need to erase the segment that 3763 * is going to be written 3764 */ 3765 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 3766 if (ret_val) { 3767 e_dbg("Could not detect valid bank, assuming bank 0\n"); 3768 bank = 0; 3769 } 3770 3771 if (bank == 0) { 3772 new_bank_offset = nvm->flash_bank_size; 3773 old_bank_offset = 0; 3774 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); 3775 if (ret_val) 3776 goto release; 3777 } else { 3778 old_bank_offset = nvm->flash_bank_size; 3779 new_bank_offset = 0; 3780 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); 3781 if (ret_val) 3782 goto release; 3783 } 3784 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) { 3785 /* Determine whether to write the value stored 3786 * in the other NVM bank or a modified value stored 3787 * in the shadow RAM 3788 */ 3789 ret_val = e1000_read_flash_dword_ich8lan(hw, 3790 i + old_bank_offset, 3791 &dword); 3792 3793 if (dev_spec->shadow_ram[i].modified) { 3794 dword &= 0xffff0000; 3795 dword |= (dev_spec->shadow_ram[i].value & 0xffff); 3796 } 3797 if (dev_spec->shadow_ram[i + 1].modified) { 3798 dword &= 0x0000ffff; 3799 dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff) 3800 << 16); 3801 } 3802 if (ret_val) 3803 break; 3804 3805 /* If the word is 0x13, then make sure the signature bits 3806 * (15:14) are 11b until the commit has completed. 3807 * This will allow us to write 10b which indicates the 3808 * signature is valid. We want to do this after the write 3809 * has completed so that we don't mark the segment valid 3810 * while the write is still in progress 3811 */ 3812 if (i == E1000_ICH_NVM_SIG_WORD - 1) 3813 dword |= E1000_ICH_NVM_SIG_MASK << 16; 3814 3815 /* Convert offset to bytes. */ 3816 act_offset = (i + new_bank_offset) << 1; 3817 3818 usleep_range(100, 200); 3819 3820 /* Write the data to the new bank. Offset in words */ 3821 act_offset = i + new_bank_offset; 3822 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, 3823 dword); 3824 if (ret_val) 3825 break; 3826 } 3827 3828 /* Don't bother writing the segment valid bits if sector 3829 * programming failed. 3830 */ 3831 if (ret_val) { 3832 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */ 3833 e_dbg("Flash commit failed.\n"); 3834 goto release; 3835 } 3836 3837 /* Finally validate the new segment by setting bit 15:14 3838 * to 10b in word 0x13 , this can be done without an 3839 * erase as well since these bits are 11 to start with 3840 * and we need to change bit 14 to 0b 3841 */ 3842 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; 3843 3844 /*offset in words but we read dword */ 3845 --act_offset; 3846 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword); 3847 3848 if (ret_val) 3849 goto release; 3850 3851 dword &= 0xBFFFFFFF; 3852 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword); 3853 3854 if (ret_val) 3855 goto release; 3856 3857 /* And invalidate the previously valid segment by setting 3858 * its signature word (0x13) high_byte to 0b. This can be 3859 * done without an erase because flash erase sets all bits 3860 * to 1's. We can write 1's to 0's without an erase 3861 */ 3862 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; 3863 3864 /* offset in words but we read dword */ 3865 act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1; 3866 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword); 3867 3868 if (ret_val) 3869 goto release; 3870 3871 dword &= 0x00FFFFFF; 3872 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword); 3873 3874 if (ret_val) 3875 goto release; 3876 3877 /* Great! Everything worked, we can now clear the cached entries. */ 3878 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { 3879 dev_spec->shadow_ram[i].modified = false; 3880 dev_spec->shadow_ram[i].value = 0xFFFF; 3881 } 3882 3883 release: 3884 nvm->ops.release(hw); 3885 3886 /* Reload the EEPROM, or else modifications will not appear 3887 * until after the next adapter reset. 3888 */ 3889 if (!ret_val) { 3890 nvm->ops.reload(hw); 3891 usleep_range(10000, 20000); 3892 } 3893 3894 out: 3895 if (ret_val) 3896 e_dbg("NVM update error: %d\n", ret_val); 3897 3898 return ret_val; 3899 } 3900 3901 /** 3902 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM 3903 * @hw: pointer to the HW structure 3904 * 3905 * The NVM checksum is updated by calling the generic update_nvm_checksum, 3906 * which writes the checksum to the shadow ram. The changes in the shadow 3907 * ram are then committed to the EEPROM by processing each bank at a time 3908 * checking for the modified bit and writing only the pending changes. 3909 * After a successful commit, the shadow ram is cleared and is ready for 3910 * future writes. 3911 **/ 3912 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw) 3913 { 3914 struct e1000_nvm_info *nvm = &hw->nvm; 3915 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3916 u32 i, act_offset, new_bank_offset, old_bank_offset, bank; 3917 s32 ret_val; 3918 u16 data = 0; 3919 3920 ret_val = e1000e_update_nvm_checksum_generic(hw); 3921 if (ret_val) 3922 goto out; 3923 3924 if (nvm->type != e1000_nvm_flash_sw) 3925 goto out; 3926 3927 nvm->ops.acquire(hw); 3928 3929 /* We're writing to the opposite bank so if we're on bank 1, 3930 * write to bank 0 etc. We also need to erase the segment that 3931 * is going to be written 3932 */ 3933 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 3934 if (ret_val) { 3935 e_dbg("Could not detect valid bank, assuming bank 0\n"); 3936 bank = 0; 3937 } 3938 3939 if (bank == 0) { 3940 new_bank_offset = nvm->flash_bank_size; 3941 old_bank_offset = 0; 3942 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); 3943 if (ret_val) 3944 goto release; 3945 } else { 3946 old_bank_offset = nvm->flash_bank_size; 3947 new_bank_offset = 0; 3948 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); 3949 if (ret_val) 3950 goto release; 3951 } 3952 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { 3953 if (dev_spec->shadow_ram[i].modified) { 3954 data = dev_spec->shadow_ram[i].value; 3955 } else { 3956 ret_val = e1000_read_flash_word_ich8lan(hw, i + 3957 old_bank_offset, 3958 &data); 3959 if (ret_val) 3960 break; 3961 } 3962 3963 /* If the word is 0x13, then make sure the signature bits 3964 * (15:14) are 11b until the commit has completed. 3965 * This will allow us to write 10b which indicates the 3966 * signature is valid. We want to do this after the write 3967 * has completed so that we don't mark the segment valid 3968 * while the write is still in progress 3969 */ 3970 if (i == E1000_ICH_NVM_SIG_WORD) 3971 data |= E1000_ICH_NVM_SIG_MASK; 3972 3973 /* Convert offset to bytes. */ 3974 act_offset = (i + new_bank_offset) << 1; 3975 3976 usleep_range(100, 200); 3977 /* Write the bytes to the new bank. */ 3978 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, 3979 act_offset, 3980 (u8)data); 3981 if (ret_val) 3982 break; 3983 3984 usleep_range(100, 200); 3985 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, 3986 act_offset + 1, 3987 (u8)(data >> 8)); 3988 if (ret_val) 3989 break; 3990 } 3991 3992 /* Don't bother writing the segment valid bits if sector 3993 * programming failed. 3994 */ 3995 if (ret_val) { 3996 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */ 3997 e_dbg("Flash commit failed.\n"); 3998 goto release; 3999 } 4000 4001 /* Finally validate the new segment by setting bit 15:14 4002 * to 10b in word 0x13 , this can be done without an 4003 * erase as well since these bits are 11 to start with 4004 * and we need to change bit 14 to 0b 4005 */ 4006 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; 4007 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data); 4008 if (ret_val) 4009 goto release; 4010 4011 data &= 0xBFFF; 4012 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, 4013 act_offset * 2 + 1, 4014 (u8)(data >> 8)); 4015 if (ret_val) 4016 goto release; 4017 4018 /* And invalidate the previously valid segment by setting 4019 * its signature word (0x13) high_byte to 0b. This can be 4020 * done without an erase because flash erase sets all bits 4021 * to 1's. We can write 1's to 0's without an erase 4022 */ 4023 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; 4024 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0); 4025 if (ret_val) 4026 goto release; 4027 4028 /* Great! Everything worked, we can now clear the cached entries. */ 4029 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { 4030 dev_spec->shadow_ram[i].modified = false; 4031 dev_spec->shadow_ram[i].value = 0xFFFF; 4032 } 4033 4034 release: 4035 nvm->ops.release(hw); 4036 4037 /* Reload the EEPROM, or else modifications will not appear 4038 * until after the next adapter reset. 4039 */ 4040 if (!ret_val) { 4041 nvm->ops.reload(hw); 4042 usleep_range(10000, 20000); 4043 } 4044 4045 out: 4046 if (ret_val) 4047 e_dbg("NVM update error: %d\n", ret_val); 4048 4049 return ret_val; 4050 } 4051 4052 /** 4053 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum 4054 * @hw: pointer to the HW structure 4055 * 4056 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19. 4057 * If the bit is 0, that the EEPROM had been modified, but the checksum was not 4058 * calculated, in which case we need to calculate the checksum and set bit 6. 4059 **/ 4060 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw) 4061 { 4062 s32 ret_val; 4063 u16 data; 4064 u16 word; 4065 u16 valid_csum_mask; 4066 4067 /* Read NVM and check Invalid Image CSUM bit. If this bit is 0, 4068 * the checksum needs to be fixed. This bit is an indication that 4069 * the NVM was prepared by OEM software and did not calculate 4070 * the checksum...a likely scenario. 4071 */ 4072 switch (hw->mac.type) { 4073 case e1000_pch_lpt: 4074 case e1000_pch_spt: 4075 case e1000_pch_cnp: 4076 word = NVM_COMPAT; 4077 valid_csum_mask = NVM_COMPAT_VALID_CSUM; 4078 break; 4079 default: 4080 word = NVM_FUTURE_INIT_WORD1; 4081 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM; 4082 break; 4083 } 4084 4085 ret_val = e1000_read_nvm(hw, word, 1, &data); 4086 if (ret_val) 4087 return ret_val; 4088 4089 if (!(data & valid_csum_mask)) { 4090 data |= valid_csum_mask; 4091 ret_val = e1000_write_nvm(hw, word, 1, &data); 4092 if (ret_val) 4093 return ret_val; 4094 ret_val = e1000e_update_nvm_checksum(hw); 4095 if (ret_val) 4096 return ret_val; 4097 } 4098 4099 return e1000e_validate_nvm_checksum_generic(hw); 4100 } 4101 4102 /** 4103 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only 4104 * @hw: pointer to the HW structure 4105 * 4106 * To prevent malicious write/erase of the NVM, set it to be read-only 4107 * so that the hardware ignores all write/erase cycles of the NVM via 4108 * the flash control registers. The shadow-ram copy of the NVM will 4109 * still be updated, however any updates to this copy will not stick 4110 * across driver reloads. 4111 **/ 4112 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw) 4113 { 4114 struct e1000_nvm_info *nvm = &hw->nvm; 4115 union ich8_flash_protected_range pr0; 4116 union ich8_hws_flash_status hsfsts; 4117 u32 gfpreg; 4118 4119 nvm->ops.acquire(hw); 4120 4121 gfpreg = er32flash(ICH_FLASH_GFPREG); 4122 4123 /* Write-protect GbE Sector of NVM */ 4124 pr0.regval = er32flash(ICH_FLASH_PR0); 4125 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK; 4126 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK); 4127 pr0.range.wpe = true; 4128 ew32flash(ICH_FLASH_PR0, pr0.regval); 4129 4130 /* Lock down a subset of GbE Flash Control Registers, e.g. 4131 * PR0 to prevent the write-protection from being lifted. 4132 * Once FLOCKDN is set, the registers protected by it cannot 4133 * be written until FLOCKDN is cleared by a hardware reset. 4134 */ 4135 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4136 hsfsts.hsf_status.flockdn = true; 4137 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval); 4138 4139 nvm->ops.release(hw); 4140 } 4141 4142 /** 4143 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM 4144 * @hw: pointer to the HW structure 4145 * @offset: The offset (in bytes) of the byte/word to read. 4146 * @size: Size of data to read, 1=byte 2=word 4147 * @data: The byte(s) to write to the NVM. 4148 * 4149 * Writes one/two bytes to the NVM using the flash access registers. 4150 **/ 4151 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 4152 u8 size, u16 data) 4153 { 4154 union ich8_hws_flash_status hsfsts; 4155 union ich8_hws_flash_ctrl hsflctl; 4156 u32 flash_linear_addr; 4157 u32 flash_data = 0; 4158 s32 ret_val; 4159 u8 count = 0; 4160 4161 if (hw->mac.type >= e1000_pch_spt) { 4162 if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK) 4163 return -E1000_ERR_NVM; 4164 } else { 4165 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) 4166 return -E1000_ERR_NVM; 4167 } 4168 4169 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 4170 hw->nvm.flash_base_addr); 4171 4172 do { 4173 udelay(1); 4174 /* Steps */ 4175 ret_val = e1000_flash_cycle_init_ich8lan(hw); 4176 if (ret_val) 4177 break; 4178 /* In SPT, This register is in Lan memory space, not 4179 * flash. Therefore, only 32 bit access is supported 4180 */ 4181 if (hw->mac.type >= e1000_pch_spt) 4182 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16; 4183 else 4184 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 4185 4186 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ 4187 hsflctl.hsf_ctrl.fldbcount = size - 1; 4188 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; 4189 /* In SPT, This register is in Lan memory space, 4190 * not flash. Therefore, only 32 bit access is 4191 * supported 4192 */ 4193 if (hw->mac.type >= e1000_pch_spt) 4194 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16); 4195 else 4196 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 4197 4198 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 4199 4200 if (size == 1) 4201 flash_data = (u32)data & 0x00FF; 4202 else 4203 flash_data = (u32)data; 4204 4205 ew32flash(ICH_FLASH_FDATA0, flash_data); 4206 4207 /* check if FCERR is set to 1 , if set to 1, clear it 4208 * and try the whole sequence a few more times else done 4209 */ 4210 ret_val = 4211 e1000_flash_cycle_ich8lan(hw, 4212 ICH_FLASH_WRITE_COMMAND_TIMEOUT); 4213 if (!ret_val) 4214 break; 4215 4216 /* If we're here, then things are most likely 4217 * completely hosed, but if the error condition 4218 * is detected, it won't hurt to give it another 4219 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. 4220 */ 4221 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4222 if (hsfsts.hsf_status.flcerr) 4223 /* Repeat for some time before giving up. */ 4224 continue; 4225 if (!hsfsts.hsf_status.flcdone) { 4226 e_dbg("Timeout error - flash cycle did not complete.\n"); 4227 break; 4228 } 4229 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 4230 4231 return ret_val; 4232 } 4233 4234 /** 4235 * e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM 4236 * @hw: pointer to the HW structure 4237 * @offset: The offset (in bytes) of the dwords to read. 4238 * @data: The 4 bytes to write to the NVM. 4239 * 4240 * Writes one/two/four bytes to the NVM using the flash access registers. 4241 **/ 4242 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, 4243 u32 data) 4244 { 4245 union ich8_hws_flash_status hsfsts; 4246 union ich8_hws_flash_ctrl hsflctl; 4247 u32 flash_linear_addr; 4248 s32 ret_val; 4249 u8 count = 0; 4250 4251 if (hw->mac.type >= e1000_pch_spt) { 4252 if (offset > ICH_FLASH_LINEAR_ADDR_MASK) 4253 return -E1000_ERR_NVM; 4254 } 4255 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 4256 hw->nvm.flash_base_addr); 4257 do { 4258 udelay(1); 4259 /* Steps */ 4260 ret_val = e1000_flash_cycle_init_ich8lan(hw); 4261 if (ret_val) 4262 break; 4263 4264 /* In SPT, This register is in Lan memory space, not 4265 * flash. Therefore, only 32 bit access is supported 4266 */ 4267 if (hw->mac.type >= e1000_pch_spt) 4268 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) 4269 >> 16; 4270 else 4271 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 4272 4273 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1; 4274 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; 4275 4276 /* In SPT, This register is in Lan memory space, 4277 * not flash. Therefore, only 32 bit access is 4278 * supported 4279 */ 4280 if (hw->mac.type >= e1000_pch_spt) 4281 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16); 4282 else 4283 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 4284 4285 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 4286 4287 ew32flash(ICH_FLASH_FDATA0, data); 4288 4289 /* check if FCERR is set to 1 , if set to 1, clear it 4290 * and try the whole sequence a few more times else done 4291 */ 4292 ret_val = 4293 e1000_flash_cycle_ich8lan(hw, 4294 ICH_FLASH_WRITE_COMMAND_TIMEOUT); 4295 4296 if (!ret_val) 4297 break; 4298 4299 /* If we're here, then things are most likely 4300 * completely hosed, but if the error condition 4301 * is detected, it won't hurt to give it another 4302 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. 4303 */ 4304 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4305 4306 if (hsfsts.hsf_status.flcerr) 4307 /* Repeat for some time before giving up. */ 4308 continue; 4309 if (!hsfsts.hsf_status.flcdone) { 4310 e_dbg("Timeout error - flash cycle did not complete.\n"); 4311 break; 4312 } 4313 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 4314 4315 return ret_val; 4316 } 4317 4318 /** 4319 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM 4320 * @hw: pointer to the HW structure 4321 * @offset: The index of the byte to read. 4322 * @data: The byte to write to the NVM. 4323 * 4324 * Writes a single byte to the NVM using the flash access registers. 4325 **/ 4326 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, 4327 u8 data) 4328 { 4329 u16 word = (u16)data; 4330 4331 return e1000_write_flash_data_ich8lan(hw, offset, 1, word); 4332 } 4333 4334 /** 4335 * e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM 4336 * @hw: pointer to the HW structure 4337 * @offset: The offset of the word to write. 4338 * @dword: The dword to write to the NVM. 4339 * 4340 * Writes a single dword to the NVM using the flash access registers. 4341 * Goes through a retry algorithm before giving up. 4342 **/ 4343 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw, 4344 u32 offset, u32 dword) 4345 { 4346 s32 ret_val; 4347 u16 program_retries; 4348 4349 /* Must convert word offset into bytes. */ 4350 offset <<= 1; 4351 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword); 4352 4353 if (!ret_val) 4354 return ret_val; 4355 for (program_retries = 0; program_retries < 100; program_retries++) { 4356 e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset); 4357 usleep_range(100, 200); 4358 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword); 4359 if (!ret_val) 4360 break; 4361 } 4362 if (program_retries == 100) 4363 return -E1000_ERR_NVM; 4364 4365 return 0; 4366 } 4367 4368 /** 4369 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM 4370 * @hw: pointer to the HW structure 4371 * @offset: The offset of the byte to write. 4372 * @byte: The byte to write to the NVM. 4373 * 4374 * Writes a single byte to the NVM using the flash access registers. 4375 * Goes through a retry algorithm before giving up. 4376 **/ 4377 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, 4378 u32 offset, u8 byte) 4379 { 4380 s32 ret_val; 4381 u16 program_retries; 4382 4383 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); 4384 if (!ret_val) 4385 return ret_val; 4386 4387 for (program_retries = 0; program_retries < 100; program_retries++) { 4388 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset); 4389 usleep_range(100, 200); 4390 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); 4391 if (!ret_val) 4392 break; 4393 } 4394 if (program_retries == 100) 4395 return -E1000_ERR_NVM; 4396 4397 return 0; 4398 } 4399 4400 /** 4401 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM 4402 * @hw: pointer to the HW structure 4403 * @bank: 0 for first bank, 1 for second bank, etc. 4404 * 4405 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based. 4406 * bank N is 4096 * N + flash_reg_addr. 4407 **/ 4408 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank) 4409 { 4410 struct e1000_nvm_info *nvm = &hw->nvm; 4411 union ich8_hws_flash_status hsfsts; 4412 union ich8_hws_flash_ctrl hsflctl; 4413 u32 flash_linear_addr; 4414 /* bank size is in 16bit words - adjust to bytes */ 4415 u32 flash_bank_size = nvm->flash_bank_size * 2; 4416 s32 ret_val; 4417 s32 count = 0; 4418 s32 j, iteration, sector_size; 4419 4420 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4421 4422 /* Determine HW Sector size: Read BERASE bits of hw flash status 4423 * register 4424 * 00: The Hw sector is 256 bytes, hence we need to erase 16 4425 * consecutive sectors. The start index for the nth Hw sector 4426 * can be calculated as = bank * 4096 + n * 256 4427 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. 4428 * The start index for the nth Hw sector can be calculated 4429 * as = bank * 4096 4430 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192 4431 * (ich9 only, otherwise error condition) 4432 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536 4433 */ 4434 switch (hsfsts.hsf_status.berasesz) { 4435 case 0: 4436 /* Hw sector size 256 */ 4437 sector_size = ICH_FLASH_SEG_SIZE_256; 4438 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256; 4439 break; 4440 case 1: 4441 sector_size = ICH_FLASH_SEG_SIZE_4K; 4442 iteration = 1; 4443 break; 4444 case 2: 4445 sector_size = ICH_FLASH_SEG_SIZE_8K; 4446 iteration = 1; 4447 break; 4448 case 3: 4449 sector_size = ICH_FLASH_SEG_SIZE_64K; 4450 iteration = 1; 4451 break; 4452 default: 4453 return -E1000_ERR_NVM; 4454 } 4455 4456 /* Start with the base address, then add the sector offset. */ 4457 flash_linear_addr = hw->nvm.flash_base_addr; 4458 flash_linear_addr += (bank) ? flash_bank_size : 0; 4459 4460 for (j = 0; j < iteration; j++) { 4461 do { 4462 u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT; 4463 4464 /* Steps */ 4465 ret_val = e1000_flash_cycle_init_ich8lan(hw); 4466 if (ret_val) 4467 return ret_val; 4468 4469 /* Write a value 11 (block Erase) in Flash 4470 * Cycle field in hw flash control 4471 */ 4472 if (hw->mac.type >= e1000_pch_spt) 4473 hsflctl.regval = 4474 er32flash(ICH_FLASH_HSFSTS) >> 16; 4475 else 4476 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 4477 4478 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; 4479 if (hw->mac.type >= e1000_pch_spt) 4480 ew32flash(ICH_FLASH_HSFSTS, 4481 hsflctl.regval << 16); 4482 else 4483 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 4484 4485 /* Write the last 24 bits of an index within the 4486 * block into Flash Linear address field in Flash 4487 * Address. 4488 */ 4489 flash_linear_addr += (j * sector_size); 4490 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 4491 4492 ret_val = e1000_flash_cycle_ich8lan(hw, timeout); 4493 if (!ret_val) 4494 break; 4495 4496 /* Check if FCERR is set to 1. If 1, 4497 * clear it and try the whole sequence 4498 * a few more times else Done 4499 */ 4500 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4501 if (hsfsts.hsf_status.flcerr) 4502 /* repeat for some time before giving up */ 4503 continue; 4504 else if (!hsfsts.hsf_status.flcdone) 4505 return ret_val; 4506 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT); 4507 } 4508 4509 return 0; 4510 } 4511 4512 /** 4513 * e1000_valid_led_default_ich8lan - Set the default LED settings 4514 * @hw: pointer to the HW structure 4515 * @data: Pointer to the LED settings 4516 * 4517 * Reads the LED default settings from the NVM to data. If the NVM LED 4518 * settings is all 0's or F's, set the LED default to a valid LED default 4519 * setting. 4520 **/ 4521 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data) 4522 { 4523 s32 ret_val; 4524 4525 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); 4526 if (ret_val) { 4527 e_dbg("NVM Read Error\n"); 4528 return ret_val; 4529 } 4530 4531 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) 4532 *data = ID_LED_DEFAULT_ICH8LAN; 4533 4534 return 0; 4535 } 4536 4537 /** 4538 * e1000_id_led_init_pchlan - store LED configurations 4539 * @hw: pointer to the HW structure 4540 * 4541 * PCH does not control LEDs via the LEDCTL register, rather it uses 4542 * the PHY LED configuration register. 4543 * 4544 * PCH also does not have an "always on" or "always off" mode which 4545 * complicates the ID feature. Instead of using the "on" mode to indicate 4546 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()), 4547 * use "link_up" mode. The LEDs will still ID on request if there is no 4548 * link based on logic in e1000_led_[on|off]_pchlan(). 4549 **/ 4550 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw) 4551 { 4552 struct e1000_mac_info *mac = &hw->mac; 4553 s32 ret_val; 4554 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP; 4555 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT; 4556 u16 data, i, temp, shift; 4557 4558 /* Get default ID LED modes */ 4559 ret_val = hw->nvm.ops.valid_led_default(hw, &data); 4560 if (ret_val) 4561 return ret_val; 4562 4563 mac->ledctl_default = er32(LEDCTL); 4564 mac->ledctl_mode1 = mac->ledctl_default; 4565 mac->ledctl_mode2 = mac->ledctl_default; 4566 4567 for (i = 0; i < 4; i++) { 4568 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK; 4569 shift = (i * 5); 4570 switch (temp) { 4571 case ID_LED_ON1_DEF2: 4572 case ID_LED_ON1_ON2: 4573 case ID_LED_ON1_OFF2: 4574 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); 4575 mac->ledctl_mode1 |= (ledctl_on << shift); 4576 break; 4577 case ID_LED_OFF1_DEF2: 4578 case ID_LED_OFF1_ON2: 4579 case ID_LED_OFF1_OFF2: 4580 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); 4581 mac->ledctl_mode1 |= (ledctl_off << shift); 4582 break; 4583 default: 4584 /* Do nothing */ 4585 break; 4586 } 4587 switch (temp) { 4588 case ID_LED_DEF1_ON2: 4589 case ID_LED_ON1_ON2: 4590 case ID_LED_OFF1_ON2: 4591 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); 4592 mac->ledctl_mode2 |= (ledctl_on << shift); 4593 break; 4594 case ID_LED_DEF1_OFF2: 4595 case ID_LED_ON1_OFF2: 4596 case ID_LED_OFF1_OFF2: 4597 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); 4598 mac->ledctl_mode2 |= (ledctl_off << shift); 4599 break; 4600 default: 4601 /* Do nothing */ 4602 break; 4603 } 4604 } 4605 4606 return 0; 4607 } 4608 4609 /** 4610 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width 4611 * @hw: pointer to the HW structure 4612 * 4613 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability 4614 * register, so the the bus width is hard coded. 4615 **/ 4616 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw) 4617 { 4618 struct e1000_bus_info *bus = &hw->bus; 4619 s32 ret_val; 4620 4621 ret_val = e1000e_get_bus_info_pcie(hw); 4622 4623 /* ICH devices are "PCI Express"-ish. They have 4624 * a configuration space, but do not contain 4625 * PCI Express Capability registers, so bus width 4626 * must be hardcoded. 4627 */ 4628 if (bus->width == e1000_bus_width_unknown) 4629 bus->width = e1000_bus_width_pcie_x1; 4630 4631 return ret_val; 4632 } 4633 4634 /** 4635 * e1000_reset_hw_ich8lan - Reset the hardware 4636 * @hw: pointer to the HW structure 4637 * 4638 * Does a full reset of the hardware which includes a reset of the PHY and 4639 * MAC. 4640 **/ 4641 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw) 4642 { 4643 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 4644 u16 kum_cfg; 4645 u32 ctrl, reg; 4646 s32 ret_val; 4647 4648 /* Prevent the PCI-E bus from sticking if there is no TLP connection 4649 * on the last TLP read/write transaction when MAC is reset. 4650 */ 4651 ret_val = e1000e_disable_pcie_master(hw); 4652 if (ret_val) 4653 e_dbg("PCI-E Master disable polling has failed.\n"); 4654 4655 e_dbg("Masking off all interrupts\n"); 4656 ew32(IMC, 0xffffffff); 4657 4658 /* Disable the Transmit and Receive units. Then delay to allow 4659 * any pending transactions to complete before we hit the MAC 4660 * with the global reset. 4661 */ 4662 ew32(RCTL, 0); 4663 ew32(TCTL, E1000_TCTL_PSP); 4664 e1e_flush(); 4665 4666 usleep_range(10000, 20000); 4667 4668 /* Workaround for ICH8 bit corruption issue in FIFO memory */ 4669 if (hw->mac.type == e1000_ich8lan) { 4670 /* Set Tx and Rx buffer allocation to 8k apiece. */ 4671 ew32(PBA, E1000_PBA_8K); 4672 /* Set Packet Buffer Size to 16k. */ 4673 ew32(PBS, E1000_PBS_16K); 4674 } 4675 4676 if (hw->mac.type == e1000_pchlan) { 4677 /* Save the NVM K1 bit setting */ 4678 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg); 4679 if (ret_val) 4680 return ret_val; 4681 4682 if (kum_cfg & E1000_NVM_K1_ENABLE) 4683 dev_spec->nvm_k1_enabled = true; 4684 else 4685 dev_spec->nvm_k1_enabled = false; 4686 } 4687 4688 ctrl = er32(CTRL); 4689 4690 if (!hw->phy.ops.check_reset_block(hw)) { 4691 /* Full-chip reset requires MAC and PHY reset at the same 4692 * time to make sure the interface between MAC and the 4693 * external PHY is reset. 4694 */ 4695 ctrl |= E1000_CTRL_PHY_RST; 4696 4697 /* Gate automatic PHY configuration by hardware on 4698 * non-managed 82579 4699 */ 4700 if ((hw->mac.type == e1000_pch2lan) && 4701 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) 4702 e1000_gate_hw_phy_config_ich8lan(hw, true); 4703 } 4704 ret_val = e1000_acquire_swflag_ich8lan(hw); 4705 e_dbg("Issuing a global reset to ich8lan\n"); 4706 ew32(CTRL, (ctrl | E1000_CTRL_RST)); 4707 /* cannot issue a flush here because it hangs the hardware */ 4708 msleep(20); 4709 4710 /* Set Phy Config Counter to 50msec */ 4711 if (hw->mac.type == e1000_pch2lan) { 4712 reg = er32(FEXTNVM3); 4713 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; 4714 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; 4715 ew32(FEXTNVM3, reg); 4716 } 4717 4718 if (!ret_val) 4719 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); 4720 4721 if (ctrl & E1000_CTRL_PHY_RST) { 4722 ret_val = hw->phy.ops.get_cfg_done(hw); 4723 if (ret_val) 4724 return ret_val; 4725 4726 ret_val = e1000_post_phy_reset_ich8lan(hw); 4727 if (ret_val) 4728 return ret_val; 4729 } 4730 4731 /* For PCH, this write will make sure that any noise 4732 * will be detected as a CRC error and be dropped rather than show up 4733 * as a bad packet to the DMA engine. 4734 */ 4735 if (hw->mac.type == e1000_pchlan) 4736 ew32(CRC_OFFSET, 0x65656565); 4737 4738 ew32(IMC, 0xffffffff); 4739 er32(ICR); 4740 4741 reg = er32(KABGTXD); 4742 reg |= E1000_KABGTXD_BGSQLBIAS; 4743 ew32(KABGTXD, reg); 4744 4745 return 0; 4746 } 4747 4748 /** 4749 * e1000_init_hw_ich8lan - Initialize the hardware 4750 * @hw: pointer to the HW structure 4751 * 4752 * Prepares the hardware for transmit and receive by doing the following: 4753 * - initialize hardware bits 4754 * - initialize LED identification 4755 * - setup receive address registers 4756 * - setup flow control 4757 * - setup transmit descriptors 4758 * - clear statistics 4759 **/ 4760 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw) 4761 { 4762 struct e1000_mac_info *mac = &hw->mac; 4763 u32 ctrl_ext, txdctl, snoop; 4764 s32 ret_val; 4765 u16 i; 4766 4767 e1000_initialize_hw_bits_ich8lan(hw); 4768 4769 /* Initialize identification LED */ 4770 ret_val = mac->ops.id_led_init(hw); 4771 /* An error is not fatal and we should not stop init due to this */ 4772 if (ret_val) 4773 e_dbg("Error initializing identification LED\n"); 4774 4775 /* Setup the receive address. */ 4776 e1000e_init_rx_addrs(hw, mac->rar_entry_count); 4777 4778 /* Zero out the Multicast HASH table */ 4779 e_dbg("Zeroing the MTA\n"); 4780 for (i = 0; i < mac->mta_reg_count; i++) 4781 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); 4782 4783 /* The 82578 Rx buffer will stall if wakeup is enabled in host and 4784 * the ME. Disable wakeup by clearing the host wakeup bit. 4785 * Reset the phy after disabling host wakeup to reset the Rx buffer. 4786 */ 4787 if (hw->phy.type == e1000_phy_82578) { 4788 e1e_rphy(hw, BM_PORT_GEN_CFG, &i); 4789 i &= ~BM_WUC_HOST_WU_BIT; 4790 e1e_wphy(hw, BM_PORT_GEN_CFG, i); 4791 ret_val = e1000_phy_hw_reset_ich8lan(hw); 4792 if (ret_val) 4793 return ret_val; 4794 } 4795 4796 /* Setup link and flow control */ 4797 ret_val = mac->ops.setup_link(hw); 4798 4799 /* Set the transmit descriptor write-back policy for both queues */ 4800 txdctl = er32(TXDCTL(0)); 4801 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) | 4802 E1000_TXDCTL_FULL_TX_DESC_WB); 4803 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) | 4804 E1000_TXDCTL_MAX_TX_DESC_PREFETCH); 4805 ew32(TXDCTL(0), txdctl); 4806 txdctl = er32(TXDCTL(1)); 4807 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) | 4808 E1000_TXDCTL_FULL_TX_DESC_WB); 4809 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) | 4810 E1000_TXDCTL_MAX_TX_DESC_PREFETCH); 4811 ew32(TXDCTL(1), txdctl); 4812 4813 /* ICH8 has opposite polarity of no_snoop bits. 4814 * By default, we should use snoop behavior. 4815 */ 4816 if (mac->type == e1000_ich8lan) 4817 snoop = PCIE_ICH8_SNOOP_ALL; 4818 else 4819 snoop = (u32)~(PCIE_NO_SNOOP_ALL); 4820 e1000e_set_pcie_no_snoop(hw, snoop); 4821 4822 ctrl_ext = er32(CTRL_EXT); 4823 ctrl_ext |= E1000_CTRL_EXT_RO_DIS; 4824 ew32(CTRL_EXT, ctrl_ext); 4825 4826 /* Clear all of the statistics registers (clear on read). It is 4827 * important that we do this after we have tried to establish link 4828 * because the symbol error count will increment wildly if there 4829 * is no link. 4830 */ 4831 e1000_clear_hw_cntrs_ich8lan(hw); 4832 4833 return ret_val; 4834 } 4835 4836 /** 4837 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits 4838 * @hw: pointer to the HW structure 4839 * 4840 * Sets/Clears required hardware bits necessary for correctly setting up the 4841 * hardware for transmit and receive. 4842 **/ 4843 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw) 4844 { 4845 u32 reg; 4846 4847 /* Extended Device Control */ 4848 reg = er32(CTRL_EXT); 4849 reg |= BIT(22); 4850 /* Enable PHY low-power state when MAC is at D3 w/o WoL */ 4851 if (hw->mac.type >= e1000_pchlan) 4852 reg |= E1000_CTRL_EXT_PHYPDEN; 4853 ew32(CTRL_EXT, reg); 4854 4855 /* Transmit Descriptor Control 0 */ 4856 reg = er32(TXDCTL(0)); 4857 reg |= BIT(22); 4858 ew32(TXDCTL(0), reg); 4859 4860 /* Transmit Descriptor Control 1 */ 4861 reg = er32(TXDCTL(1)); 4862 reg |= BIT(22); 4863 ew32(TXDCTL(1), reg); 4864 4865 /* Transmit Arbitration Control 0 */ 4866 reg = er32(TARC(0)); 4867 if (hw->mac.type == e1000_ich8lan) 4868 reg |= BIT(28) | BIT(29); 4869 reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27); 4870 ew32(TARC(0), reg); 4871 4872 /* Transmit Arbitration Control 1 */ 4873 reg = er32(TARC(1)); 4874 if (er32(TCTL) & E1000_TCTL_MULR) 4875 reg &= ~BIT(28); 4876 else 4877 reg |= BIT(28); 4878 reg |= BIT(24) | BIT(26) | BIT(30); 4879 ew32(TARC(1), reg); 4880 4881 /* Device Status */ 4882 if (hw->mac.type == e1000_ich8lan) { 4883 reg = er32(STATUS); 4884 reg &= ~BIT(31); 4885 ew32(STATUS, reg); 4886 } 4887 4888 /* work-around descriptor data corruption issue during nfs v2 udp 4889 * traffic, just disable the nfs filtering capability 4890 */ 4891 reg = er32(RFCTL); 4892 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS); 4893 4894 /* Disable IPv6 extension header parsing because some malformed 4895 * IPv6 headers can hang the Rx. 4896 */ 4897 if (hw->mac.type == e1000_ich8lan) 4898 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS); 4899 ew32(RFCTL, reg); 4900 4901 /* Enable ECC on Lynxpoint */ 4902 if (hw->mac.type >= e1000_pch_lpt) { 4903 reg = er32(PBECCSTS); 4904 reg |= E1000_PBECCSTS_ECC_ENABLE; 4905 ew32(PBECCSTS, reg); 4906 4907 reg = er32(CTRL); 4908 reg |= E1000_CTRL_MEHE; 4909 ew32(CTRL, reg); 4910 } 4911 } 4912 4913 /** 4914 * e1000_setup_link_ich8lan - Setup flow control and link settings 4915 * @hw: pointer to the HW structure 4916 * 4917 * Determines which flow control settings to use, then configures flow 4918 * control. Calls the appropriate media-specific link configuration 4919 * function. Assuming the adapter has a valid link partner, a valid link 4920 * should be established. Assumes the hardware has previously been reset 4921 * and the transmitter and receiver are not enabled. 4922 **/ 4923 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw) 4924 { 4925 s32 ret_val; 4926 4927 if (hw->phy.ops.check_reset_block(hw)) 4928 return 0; 4929 4930 /* ICH parts do not have a word in the NVM to determine 4931 * the default flow control setting, so we explicitly 4932 * set it to full. 4933 */ 4934 if (hw->fc.requested_mode == e1000_fc_default) { 4935 /* Workaround h/w hang when Tx flow control enabled */ 4936 if (hw->mac.type == e1000_pchlan) 4937 hw->fc.requested_mode = e1000_fc_rx_pause; 4938 else 4939 hw->fc.requested_mode = e1000_fc_full; 4940 } 4941 4942 /* Save off the requested flow control mode for use later. Depending 4943 * on the link partner's capabilities, we may or may not use this mode. 4944 */ 4945 hw->fc.current_mode = hw->fc.requested_mode; 4946 4947 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode); 4948 4949 /* Continue to configure the copper link. */ 4950 ret_val = hw->mac.ops.setup_physical_interface(hw); 4951 if (ret_val) 4952 return ret_val; 4953 4954 ew32(FCTTV, hw->fc.pause_time); 4955 if ((hw->phy.type == e1000_phy_82578) || 4956 (hw->phy.type == e1000_phy_82579) || 4957 (hw->phy.type == e1000_phy_i217) || 4958 (hw->phy.type == e1000_phy_82577)) { 4959 ew32(FCRTV_PCH, hw->fc.refresh_time); 4960 4961 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27), 4962 hw->fc.pause_time); 4963 if (ret_val) 4964 return ret_val; 4965 } 4966 4967 return e1000e_set_fc_watermarks(hw); 4968 } 4969 4970 /** 4971 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface 4972 * @hw: pointer to the HW structure 4973 * 4974 * Configures the kumeran interface to the PHY to wait the appropriate time 4975 * when polling the PHY, then call the generic setup_copper_link to finish 4976 * configuring the copper link. 4977 **/ 4978 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw) 4979 { 4980 u32 ctrl; 4981 s32 ret_val; 4982 u16 reg_data; 4983 4984 ctrl = er32(CTRL); 4985 ctrl |= E1000_CTRL_SLU; 4986 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 4987 ew32(CTRL, ctrl); 4988 4989 /* Set the mac to wait the maximum time between each iteration 4990 * and increase the max iterations when polling the phy; 4991 * this fixes erroneous timeouts at 10Mbps. 4992 */ 4993 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF); 4994 if (ret_val) 4995 return ret_val; 4996 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, 4997 ®_data); 4998 if (ret_val) 4999 return ret_val; 5000 reg_data |= 0x3F; 5001 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, 5002 reg_data); 5003 if (ret_val) 5004 return ret_val; 5005 5006 switch (hw->phy.type) { 5007 case e1000_phy_igp_3: 5008 ret_val = e1000e_copper_link_setup_igp(hw); 5009 if (ret_val) 5010 return ret_val; 5011 break; 5012 case e1000_phy_bm: 5013 case e1000_phy_82578: 5014 ret_val = e1000e_copper_link_setup_m88(hw); 5015 if (ret_val) 5016 return ret_val; 5017 break; 5018 case e1000_phy_82577: 5019 case e1000_phy_82579: 5020 ret_val = e1000_copper_link_setup_82577(hw); 5021 if (ret_val) 5022 return ret_val; 5023 break; 5024 case e1000_phy_ife: 5025 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, ®_data); 5026 if (ret_val) 5027 return ret_val; 5028 5029 reg_data &= ~IFE_PMC_AUTO_MDIX; 5030 5031 switch (hw->phy.mdix) { 5032 case 1: 5033 reg_data &= ~IFE_PMC_FORCE_MDIX; 5034 break; 5035 case 2: 5036 reg_data |= IFE_PMC_FORCE_MDIX; 5037 break; 5038 case 0: 5039 default: 5040 reg_data |= IFE_PMC_AUTO_MDIX; 5041 break; 5042 } 5043 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data); 5044 if (ret_val) 5045 return ret_val; 5046 break; 5047 default: 5048 break; 5049 } 5050 5051 return e1000e_setup_copper_link(hw); 5052 } 5053 5054 /** 5055 * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface 5056 * @hw: pointer to the HW structure 5057 * 5058 * Calls the PHY specific link setup function and then calls the 5059 * generic setup_copper_link to finish configuring the link for 5060 * Lynxpoint PCH devices 5061 **/ 5062 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw) 5063 { 5064 u32 ctrl; 5065 s32 ret_val; 5066 5067 ctrl = er32(CTRL); 5068 ctrl |= E1000_CTRL_SLU; 5069 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 5070 ew32(CTRL, ctrl); 5071 5072 ret_val = e1000_copper_link_setup_82577(hw); 5073 if (ret_val) 5074 return ret_val; 5075 5076 return e1000e_setup_copper_link(hw); 5077 } 5078 5079 /** 5080 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex 5081 * @hw: pointer to the HW structure 5082 * @speed: pointer to store current link speed 5083 * @duplex: pointer to store the current link duplex 5084 * 5085 * Calls the generic get_speed_and_duplex to retrieve the current link 5086 * information and then calls the Kumeran lock loss workaround for links at 5087 * gigabit speeds. 5088 **/ 5089 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed, 5090 u16 *duplex) 5091 { 5092 s32 ret_val; 5093 5094 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex); 5095 if (ret_val) 5096 return ret_val; 5097 5098 if ((hw->mac.type == e1000_ich8lan) && 5099 (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) { 5100 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw); 5101 } 5102 5103 return ret_val; 5104 } 5105 5106 /** 5107 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround 5108 * @hw: pointer to the HW structure 5109 * 5110 * Work-around for 82566 Kumeran PCS lock loss: 5111 * On link status change (i.e. PCI reset, speed change) and link is up and 5112 * speed is gigabit- 5113 * 0) if workaround is optionally disabled do nothing 5114 * 1) wait 1ms for Kumeran link to come up 5115 * 2) check Kumeran Diagnostic register PCS lock loss bit 5116 * 3) if not set the link is locked (all is good), otherwise... 5117 * 4) reset the PHY 5118 * 5) repeat up to 10 times 5119 * Note: this is only called for IGP3 copper when speed is 1gb. 5120 **/ 5121 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw) 5122 { 5123 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 5124 u32 phy_ctrl; 5125 s32 ret_val; 5126 u16 i, data; 5127 bool link; 5128 5129 if (!dev_spec->kmrn_lock_loss_workaround_enabled) 5130 return 0; 5131 5132 /* Make sure link is up before proceeding. If not just return. 5133 * Attempting this while link is negotiating fouled up link 5134 * stability 5135 */ 5136 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 5137 if (!link) 5138 return 0; 5139 5140 for (i = 0; i < 10; i++) { 5141 /* read once to clear */ 5142 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); 5143 if (ret_val) 5144 return ret_val; 5145 /* and again to get new status */ 5146 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); 5147 if (ret_val) 5148 return ret_val; 5149 5150 /* check for PCS lock */ 5151 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) 5152 return 0; 5153 5154 /* Issue PHY reset */ 5155 e1000_phy_hw_reset(hw); 5156 mdelay(5); 5157 } 5158 /* Disable GigE link negotiation */ 5159 phy_ctrl = er32(PHY_CTRL); 5160 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE | 5161 E1000_PHY_CTRL_NOND0A_GBE_DISABLE); 5162 ew32(PHY_CTRL, phy_ctrl); 5163 5164 /* Call gig speed drop workaround on Gig disable before accessing 5165 * any PHY registers 5166 */ 5167 e1000e_gig_downshift_workaround_ich8lan(hw); 5168 5169 /* unable to acquire PCS lock */ 5170 return -E1000_ERR_PHY; 5171 } 5172 5173 /** 5174 * e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state 5175 * @hw: pointer to the HW structure 5176 * @state: boolean value used to set the current Kumeran workaround state 5177 * 5178 * If ICH8, set the current Kumeran workaround state (enabled - true 5179 * /disabled - false). 5180 **/ 5181 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw, 5182 bool state) 5183 { 5184 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 5185 5186 if (hw->mac.type != e1000_ich8lan) { 5187 e_dbg("Workaround applies to ICH8 only.\n"); 5188 return; 5189 } 5190 5191 dev_spec->kmrn_lock_loss_workaround_enabled = state; 5192 } 5193 5194 /** 5195 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3 5196 * @hw: pointer to the HW structure 5197 * 5198 * Workaround for 82566 power-down on D3 entry: 5199 * 1) disable gigabit link 5200 * 2) write VR power-down enable 5201 * 3) read it back 5202 * Continue if successful, else issue LCD reset and repeat 5203 **/ 5204 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw) 5205 { 5206 u32 reg; 5207 u16 data; 5208 u8 retry = 0; 5209 5210 if (hw->phy.type != e1000_phy_igp_3) 5211 return; 5212 5213 /* Try the workaround twice (if needed) */ 5214 do { 5215 /* Disable link */ 5216 reg = er32(PHY_CTRL); 5217 reg |= (E1000_PHY_CTRL_GBE_DISABLE | 5218 E1000_PHY_CTRL_NOND0A_GBE_DISABLE); 5219 ew32(PHY_CTRL, reg); 5220 5221 /* Call gig speed drop workaround on Gig disable before 5222 * accessing any PHY registers 5223 */ 5224 if (hw->mac.type == e1000_ich8lan) 5225 e1000e_gig_downshift_workaround_ich8lan(hw); 5226 5227 /* Write VR power-down enable */ 5228 e1e_rphy(hw, IGP3_VR_CTRL, &data); 5229 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; 5230 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN); 5231 5232 /* Read it back and test */ 5233 e1e_rphy(hw, IGP3_VR_CTRL, &data); 5234 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; 5235 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry) 5236 break; 5237 5238 /* Issue PHY reset and repeat at most one more time */ 5239 reg = er32(CTRL); 5240 ew32(CTRL, reg | E1000_CTRL_PHY_RST); 5241 retry++; 5242 } while (retry); 5243 } 5244 5245 /** 5246 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working 5247 * @hw: pointer to the HW structure 5248 * 5249 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC), 5250 * LPLU, Gig disable, MDIC PHY reset): 5251 * 1) Set Kumeran Near-end loopback 5252 * 2) Clear Kumeran Near-end loopback 5253 * Should only be called for ICH8[m] devices with any 1G Phy. 5254 **/ 5255 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw) 5256 { 5257 s32 ret_val; 5258 u16 reg_data; 5259 5260 if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife)) 5261 return; 5262 5263 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, 5264 ®_data); 5265 if (ret_val) 5266 return; 5267 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK; 5268 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, 5269 reg_data); 5270 if (ret_val) 5271 return; 5272 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK; 5273 e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data); 5274 } 5275 5276 /** 5277 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx 5278 * @hw: pointer to the HW structure 5279 * 5280 * During S0 to Sx transition, it is possible the link remains at gig 5281 * instead of negotiating to a lower speed. Before going to Sx, set 5282 * 'Gig Disable' to force link speed negotiation to a lower speed based on 5283 * the LPLU setting in the NVM or custom setting. For PCH and newer parts, 5284 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also 5285 * needs to be written. 5286 * Parts that support (and are linked to a partner which support) EEE in 5287 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power 5288 * than 10Mbps w/o EEE. 5289 **/ 5290 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw) 5291 { 5292 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 5293 u32 phy_ctrl; 5294 s32 ret_val; 5295 5296 phy_ctrl = er32(PHY_CTRL); 5297 phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE; 5298 5299 if (hw->phy.type == e1000_phy_i217) { 5300 u16 phy_reg, device_id = hw->adapter->pdev->device; 5301 5302 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) || 5303 (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) || 5304 (device_id == E1000_DEV_ID_PCH_I218_LM3) || 5305 (device_id == E1000_DEV_ID_PCH_I218_V3) || 5306 (hw->mac.type >= e1000_pch_spt)) { 5307 u32 fextnvm6 = er32(FEXTNVM6); 5308 5309 ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK); 5310 } 5311 5312 ret_val = hw->phy.ops.acquire(hw); 5313 if (ret_val) 5314 goto out; 5315 5316 if (!dev_spec->eee_disable) { 5317 u16 eee_advert; 5318 5319 ret_val = 5320 e1000_read_emi_reg_locked(hw, 5321 I217_EEE_ADVERTISEMENT, 5322 &eee_advert); 5323 if (ret_val) 5324 goto release; 5325 5326 /* Disable LPLU if both link partners support 100BaseT 5327 * EEE and 100Full is advertised on both ends of the 5328 * link, and enable Auto Enable LPI since there will 5329 * be no driver to enable LPI while in Sx. 5330 */ 5331 if ((eee_advert & I82579_EEE_100_SUPPORTED) && 5332 (dev_spec->eee_lp_ability & 5333 I82579_EEE_100_SUPPORTED) && 5334 (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) { 5335 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU | 5336 E1000_PHY_CTRL_NOND0A_LPLU); 5337 5338 /* Set Auto Enable LPI after link up */ 5339 e1e_rphy_locked(hw, 5340 I217_LPI_GPIO_CTRL, &phy_reg); 5341 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI; 5342 e1e_wphy_locked(hw, 5343 I217_LPI_GPIO_CTRL, phy_reg); 5344 } 5345 } 5346 5347 /* For i217 Intel Rapid Start Technology support, 5348 * when the system is going into Sx and no manageability engine 5349 * is present, the driver must configure proxy to reset only on 5350 * power good. LPI (Low Power Idle) state must also reset only 5351 * on power good, as well as the MTA (Multicast table array). 5352 * The SMBus release must also be disabled on LCD reset. 5353 */ 5354 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 5355 /* Enable proxy to reset only on power good. */ 5356 e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg); 5357 phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE; 5358 e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg); 5359 5360 /* Set bit enable LPI (EEE) to reset only on 5361 * power good. 5362 */ 5363 e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg); 5364 phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET; 5365 e1e_wphy_locked(hw, I217_SxCTRL, phy_reg); 5366 5367 /* Disable the SMB release on LCD reset. */ 5368 e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg); 5369 phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE; 5370 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg); 5371 } 5372 5373 /* Enable MTA to reset for Intel Rapid Start Technology 5374 * Support 5375 */ 5376 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg); 5377 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET; 5378 e1e_wphy_locked(hw, I217_CGFREG, phy_reg); 5379 5380 release: 5381 hw->phy.ops.release(hw); 5382 } 5383 out: 5384 ew32(PHY_CTRL, phy_ctrl); 5385 5386 if (hw->mac.type == e1000_ich8lan) 5387 e1000e_gig_downshift_workaround_ich8lan(hw); 5388 5389 if (hw->mac.type >= e1000_pchlan) { 5390 e1000_oem_bits_config_ich8lan(hw, false); 5391 5392 /* Reset PHY to activate OEM bits on 82577/8 */ 5393 if (hw->mac.type == e1000_pchlan) 5394 e1000e_phy_hw_reset_generic(hw); 5395 5396 ret_val = hw->phy.ops.acquire(hw); 5397 if (ret_val) 5398 return; 5399 e1000_write_smbus_addr(hw); 5400 hw->phy.ops.release(hw); 5401 } 5402 } 5403 5404 /** 5405 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0 5406 * @hw: pointer to the HW structure 5407 * 5408 * During Sx to S0 transitions on non-managed devices or managed devices 5409 * on which PHY resets are not blocked, if the PHY registers cannot be 5410 * accessed properly by the s/w toggle the LANPHYPC value to power cycle 5411 * the PHY. 5412 * On i217, setup Intel Rapid Start Technology. 5413 **/ 5414 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw) 5415 { 5416 s32 ret_val; 5417 5418 if (hw->mac.type < e1000_pch2lan) 5419 return; 5420 5421 ret_val = e1000_init_phy_workarounds_pchlan(hw); 5422 if (ret_val) { 5423 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val); 5424 return; 5425 } 5426 5427 /* For i217 Intel Rapid Start Technology support when the system 5428 * is transitioning from Sx and no manageability engine is present 5429 * configure SMBus to restore on reset, disable proxy, and enable 5430 * the reset on MTA (Multicast table array). 5431 */ 5432 if (hw->phy.type == e1000_phy_i217) { 5433 u16 phy_reg; 5434 5435 ret_val = hw->phy.ops.acquire(hw); 5436 if (ret_val) { 5437 e_dbg("Failed to setup iRST\n"); 5438 return; 5439 } 5440 5441 /* Clear Auto Enable LPI after link up */ 5442 e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg); 5443 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI; 5444 e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg); 5445 5446 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 5447 /* Restore clear on SMB if no manageability engine 5448 * is present 5449 */ 5450 ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg); 5451 if (ret_val) 5452 goto release; 5453 phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE; 5454 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg); 5455 5456 /* Disable Proxy */ 5457 e1e_wphy_locked(hw, I217_PROXY_CTRL, 0); 5458 } 5459 /* Enable reset on MTA */ 5460 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg); 5461 if (ret_val) 5462 goto release; 5463 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET; 5464 e1e_wphy_locked(hw, I217_CGFREG, phy_reg); 5465 release: 5466 if (ret_val) 5467 e_dbg("Error %d in resume workarounds\n", ret_val); 5468 hw->phy.ops.release(hw); 5469 } 5470 } 5471 5472 /** 5473 * e1000_cleanup_led_ich8lan - Restore the default LED operation 5474 * @hw: pointer to the HW structure 5475 * 5476 * Return the LED back to the default configuration. 5477 **/ 5478 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw) 5479 { 5480 if (hw->phy.type == e1000_phy_ife) 5481 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); 5482 5483 ew32(LEDCTL, hw->mac.ledctl_default); 5484 return 0; 5485 } 5486 5487 /** 5488 * e1000_led_on_ich8lan - Turn LEDs on 5489 * @hw: pointer to the HW structure 5490 * 5491 * Turn on the LEDs. 5492 **/ 5493 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw) 5494 { 5495 if (hw->phy.type == e1000_phy_ife) 5496 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 5497 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); 5498 5499 ew32(LEDCTL, hw->mac.ledctl_mode2); 5500 return 0; 5501 } 5502 5503 /** 5504 * e1000_led_off_ich8lan - Turn LEDs off 5505 * @hw: pointer to the HW structure 5506 * 5507 * Turn off the LEDs. 5508 **/ 5509 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw) 5510 { 5511 if (hw->phy.type == e1000_phy_ife) 5512 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 5513 (IFE_PSCL_PROBE_MODE | 5514 IFE_PSCL_PROBE_LEDS_OFF)); 5515 5516 ew32(LEDCTL, hw->mac.ledctl_mode1); 5517 return 0; 5518 } 5519 5520 /** 5521 * e1000_setup_led_pchlan - Configures SW controllable LED 5522 * @hw: pointer to the HW structure 5523 * 5524 * This prepares the SW controllable LED for use. 5525 **/ 5526 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw) 5527 { 5528 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1); 5529 } 5530 5531 /** 5532 * e1000_cleanup_led_pchlan - Restore the default LED operation 5533 * @hw: pointer to the HW structure 5534 * 5535 * Return the LED back to the default configuration. 5536 **/ 5537 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw) 5538 { 5539 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default); 5540 } 5541 5542 /** 5543 * e1000_led_on_pchlan - Turn LEDs on 5544 * @hw: pointer to the HW structure 5545 * 5546 * Turn on the LEDs. 5547 **/ 5548 static s32 e1000_led_on_pchlan(struct e1000_hw *hw) 5549 { 5550 u16 data = (u16)hw->mac.ledctl_mode2; 5551 u32 i, led; 5552 5553 /* If no link, then turn LED on by setting the invert bit 5554 * for each LED that's mode is "link_up" in ledctl_mode2. 5555 */ 5556 if (!(er32(STATUS) & E1000_STATUS_LU)) { 5557 for (i = 0; i < 3; i++) { 5558 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; 5559 if ((led & E1000_PHY_LED0_MODE_MASK) != 5560 E1000_LEDCTL_MODE_LINK_UP) 5561 continue; 5562 if (led & E1000_PHY_LED0_IVRT) 5563 data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); 5564 else 5565 data |= (E1000_PHY_LED0_IVRT << (i * 5)); 5566 } 5567 } 5568 5569 return e1e_wphy(hw, HV_LED_CONFIG, data); 5570 } 5571 5572 /** 5573 * e1000_led_off_pchlan - Turn LEDs off 5574 * @hw: pointer to the HW structure 5575 * 5576 * Turn off the LEDs. 5577 **/ 5578 static s32 e1000_led_off_pchlan(struct e1000_hw *hw) 5579 { 5580 u16 data = (u16)hw->mac.ledctl_mode1; 5581 u32 i, led; 5582 5583 /* If no link, then turn LED off by clearing the invert bit 5584 * for each LED that's mode is "link_up" in ledctl_mode1. 5585 */ 5586 if (!(er32(STATUS) & E1000_STATUS_LU)) { 5587 for (i = 0; i < 3; i++) { 5588 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; 5589 if ((led & E1000_PHY_LED0_MODE_MASK) != 5590 E1000_LEDCTL_MODE_LINK_UP) 5591 continue; 5592 if (led & E1000_PHY_LED0_IVRT) 5593 data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); 5594 else 5595 data |= (E1000_PHY_LED0_IVRT << (i * 5)); 5596 } 5597 } 5598 5599 return e1e_wphy(hw, HV_LED_CONFIG, data); 5600 } 5601 5602 /** 5603 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset 5604 * @hw: pointer to the HW structure 5605 * 5606 * Read appropriate register for the config done bit for completion status 5607 * and configure the PHY through s/w for EEPROM-less parts. 5608 * 5609 * NOTE: some silicon which is EEPROM-less will fail trying to read the 5610 * config done bit, so only an error is logged and continues. If we were 5611 * to return with error, EEPROM-less silicon would not be able to be reset 5612 * or change link. 5613 **/ 5614 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw) 5615 { 5616 s32 ret_val = 0; 5617 u32 bank = 0; 5618 u32 status; 5619 5620 e1000e_get_cfg_done_generic(hw); 5621 5622 /* Wait for indication from h/w that it has completed basic config */ 5623 if (hw->mac.type >= e1000_ich10lan) { 5624 e1000_lan_init_done_ich8lan(hw); 5625 } else { 5626 ret_val = e1000e_get_auto_rd_done(hw); 5627 if (ret_val) { 5628 /* When auto config read does not complete, do not 5629 * return with an error. This can happen in situations 5630 * where there is no eeprom and prevents getting link. 5631 */ 5632 e_dbg("Auto Read Done did not complete\n"); 5633 ret_val = 0; 5634 } 5635 } 5636 5637 /* Clear PHY Reset Asserted bit */ 5638 status = er32(STATUS); 5639 if (status & E1000_STATUS_PHYRA) 5640 ew32(STATUS, status & ~E1000_STATUS_PHYRA); 5641 else 5642 e_dbg("PHY Reset Asserted not set - needs delay\n"); 5643 5644 /* If EEPROM is not marked present, init the IGP 3 PHY manually */ 5645 if (hw->mac.type <= e1000_ich9lan) { 5646 if (!(er32(EECD) & E1000_EECD_PRES) && 5647 (hw->phy.type == e1000_phy_igp_3)) { 5648 e1000e_phy_init_script_igp3(hw); 5649 } 5650 } else { 5651 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) { 5652 /* Maybe we should do a basic PHY config */ 5653 e_dbg("EEPROM not present\n"); 5654 ret_val = -E1000_ERR_CONFIG; 5655 } 5656 } 5657 5658 return ret_val; 5659 } 5660 5661 /** 5662 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down 5663 * @hw: pointer to the HW structure 5664 * 5665 * In the case of a PHY power down to save power, or to turn off link during a 5666 * driver unload, or wake on lan is not enabled, remove the link. 5667 **/ 5668 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw) 5669 { 5670 /* If the management interface is not enabled, then power down */ 5671 if (!(hw->mac.ops.check_mng_mode(hw) || 5672 hw->phy.ops.check_reset_block(hw))) 5673 e1000_power_down_phy_copper(hw); 5674 } 5675 5676 /** 5677 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters 5678 * @hw: pointer to the HW structure 5679 * 5680 * Clears hardware counters specific to the silicon family and calls 5681 * clear_hw_cntrs_generic to clear all general purpose counters. 5682 **/ 5683 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw) 5684 { 5685 u16 phy_data; 5686 s32 ret_val; 5687 5688 e1000e_clear_hw_cntrs_base(hw); 5689 5690 er32(ALGNERRC); 5691 er32(RXERRC); 5692 er32(TNCRS); 5693 er32(CEXTERR); 5694 er32(TSCTC); 5695 er32(TSCTFC); 5696 5697 er32(MGTPRC); 5698 er32(MGTPDC); 5699 er32(MGTPTC); 5700 5701 er32(IAC); 5702 er32(ICRXOC); 5703 5704 /* Clear PHY statistics registers */ 5705 if ((hw->phy.type == e1000_phy_82578) || 5706 (hw->phy.type == e1000_phy_82579) || 5707 (hw->phy.type == e1000_phy_i217) || 5708 (hw->phy.type == e1000_phy_82577)) { 5709 ret_val = hw->phy.ops.acquire(hw); 5710 if (ret_val) 5711 return; 5712 ret_val = hw->phy.ops.set_page(hw, 5713 HV_STATS_PAGE << IGP_PAGE_SHIFT); 5714 if (ret_val) 5715 goto release; 5716 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data); 5717 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data); 5718 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data); 5719 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data); 5720 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data); 5721 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data); 5722 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data); 5723 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data); 5724 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data); 5725 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data); 5726 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data); 5727 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data); 5728 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data); 5729 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data); 5730 release: 5731 hw->phy.ops.release(hw); 5732 } 5733 } 5734 5735 static const struct e1000_mac_operations ich8_mac_ops = { 5736 /* check_mng_mode dependent on mac type */ 5737 .check_for_link = e1000_check_for_copper_link_ich8lan, 5738 /* cleanup_led dependent on mac type */ 5739 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan, 5740 .get_bus_info = e1000_get_bus_info_ich8lan, 5741 .set_lan_id = e1000_set_lan_id_single_port, 5742 .get_link_up_info = e1000_get_link_up_info_ich8lan, 5743 /* led_on dependent on mac type */ 5744 /* led_off dependent on mac type */ 5745 .update_mc_addr_list = e1000e_update_mc_addr_list_generic, 5746 .reset_hw = e1000_reset_hw_ich8lan, 5747 .init_hw = e1000_init_hw_ich8lan, 5748 .setup_link = e1000_setup_link_ich8lan, 5749 .setup_physical_interface = e1000_setup_copper_link_ich8lan, 5750 /* id_led_init dependent on mac type */ 5751 .config_collision_dist = e1000e_config_collision_dist_generic, 5752 .rar_set = e1000e_rar_set_generic, 5753 .rar_get_count = e1000e_rar_get_count_generic, 5754 }; 5755 5756 static const struct e1000_phy_operations ich8_phy_ops = { 5757 .acquire = e1000_acquire_swflag_ich8lan, 5758 .check_reset_block = e1000_check_reset_block_ich8lan, 5759 .commit = NULL, 5760 .get_cfg_done = e1000_get_cfg_done_ich8lan, 5761 .get_cable_length = e1000e_get_cable_length_igp_2, 5762 .read_reg = e1000e_read_phy_reg_igp, 5763 .release = e1000_release_swflag_ich8lan, 5764 .reset = e1000_phy_hw_reset_ich8lan, 5765 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan, 5766 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan, 5767 .write_reg = e1000e_write_phy_reg_igp, 5768 }; 5769 5770 static const struct e1000_nvm_operations ich8_nvm_ops = { 5771 .acquire = e1000_acquire_nvm_ich8lan, 5772 .read = e1000_read_nvm_ich8lan, 5773 .release = e1000_release_nvm_ich8lan, 5774 .reload = e1000e_reload_nvm_generic, 5775 .update = e1000_update_nvm_checksum_ich8lan, 5776 .valid_led_default = e1000_valid_led_default_ich8lan, 5777 .validate = e1000_validate_nvm_checksum_ich8lan, 5778 .write = e1000_write_nvm_ich8lan, 5779 }; 5780 5781 static const struct e1000_nvm_operations spt_nvm_ops = { 5782 .acquire = e1000_acquire_nvm_ich8lan, 5783 .release = e1000_release_nvm_ich8lan, 5784 .read = e1000_read_nvm_spt, 5785 .update = e1000_update_nvm_checksum_spt, 5786 .reload = e1000e_reload_nvm_generic, 5787 .valid_led_default = e1000_valid_led_default_ich8lan, 5788 .validate = e1000_validate_nvm_checksum_ich8lan, 5789 .write = e1000_write_nvm_ich8lan, 5790 }; 5791 5792 const struct e1000_info e1000_ich8_info = { 5793 .mac = e1000_ich8lan, 5794 .flags = FLAG_HAS_WOL 5795 | FLAG_IS_ICH 5796 | FLAG_HAS_CTRLEXT_ON_LOAD 5797 | FLAG_HAS_AMT 5798 | FLAG_HAS_FLASH 5799 | FLAG_APME_IN_WUC, 5800 .pba = 8, 5801 .max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN, 5802 .get_variants = e1000_get_variants_ich8lan, 5803 .mac_ops = &ich8_mac_ops, 5804 .phy_ops = &ich8_phy_ops, 5805 .nvm_ops = &ich8_nvm_ops, 5806 }; 5807 5808 const struct e1000_info e1000_ich9_info = { 5809 .mac = e1000_ich9lan, 5810 .flags = FLAG_HAS_JUMBO_FRAMES 5811 | FLAG_IS_ICH 5812 | FLAG_HAS_WOL 5813 | FLAG_HAS_CTRLEXT_ON_LOAD 5814 | FLAG_HAS_AMT 5815 | FLAG_HAS_FLASH 5816 | FLAG_APME_IN_WUC, 5817 .pba = 18, 5818 .max_hw_frame_size = DEFAULT_JUMBO, 5819 .get_variants = e1000_get_variants_ich8lan, 5820 .mac_ops = &ich8_mac_ops, 5821 .phy_ops = &ich8_phy_ops, 5822 .nvm_ops = &ich8_nvm_ops, 5823 }; 5824 5825 const struct e1000_info e1000_ich10_info = { 5826 .mac = e1000_ich10lan, 5827 .flags = FLAG_HAS_JUMBO_FRAMES 5828 | FLAG_IS_ICH 5829 | FLAG_HAS_WOL 5830 | FLAG_HAS_CTRLEXT_ON_LOAD 5831 | FLAG_HAS_AMT 5832 | FLAG_HAS_FLASH 5833 | FLAG_APME_IN_WUC, 5834 .pba = 18, 5835 .max_hw_frame_size = DEFAULT_JUMBO, 5836 .get_variants = e1000_get_variants_ich8lan, 5837 .mac_ops = &ich8_mac_ops, 5838 .phy_ops = &ich8_phy_ops, 5839 .nvm_ops = &ich8_nvm_ops, 5840 }; 5841 5842 const struct e1000_info e1000_pch_info = { 5843 .mac = e1000_pchlan, 5844 .flags = FLAG_IS_ICH 5845 | FLAG_HAS_WOL 5846 | FLAG_HAS_CTRLEXT_ON_LOAD 5847 | FLAG_HAS_AMT 5848 | FLAG_HAS_FLASH 5849 | FLAG_HAS_JUMBO_FRAMES 5850 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */ 5851 | FLAG_APME_IN_WUC, 5852 .flags2 = FLAG2_HAS_PHY_STATS, 5853 .pba = 26, 5854 .max_hw_frame_size = 4096, 5855 .get_variants = e1000_get_variants_ich8lan, 5856 .mac_ops = &ich8_mac_ops, 5857 .phy_ops = &ich8_phy_ops, 5858 .nvm_ops = &ich8_nvm_ops, 5859 }; 5860 5861 const struct e1000_info e1000_pch2_info = { 5862 .mac = e1000_pch2lan, 5863 .flags = FLAG_IS_ICH 5864 | FLAG_HAS_WOL 5865 | FLAG_HAS_HW_TIMESTAMP 5866 | FLAG_HAS_CTRLEXT_ON_LOAD 5867 | FLAG_HAS_AMT 5868 | FLAG_HAS_FLASH 5869 | FLAG_HAS_JUMBO_FRAMES 5870 | FLAG_APME_IN_WUC, 5871 .flags2 = FLAG2_HAS_PHY_STATS 5872 | FLAG2_HAS_EEE 5873 | FLAG2_CHECK_SYSTIM_OVERFLOW, 5874 .pba = 26, 5875 .max_hw_frame_size = 9022, 5876 .get_variants = e1000_get_variants_ich8lan, 5877 .mac_ops = &ich8_mac_ops, 5878 .phy_ops = &ich8_phy_ops, 5879 .nvm_ops = &ich8_nvm_ops, 5880 }; 5881 5882 const struct e1000_info e1000_pch_lpt_info = { 5883 .mac = e1000_pch_lpt, 5884 .flags = FLAG_IS_ICH 5885 | FLAG_HAS_WOL 5886 | FLAG_HAS_HW_TIMESTAMP 5887 | FLAG_HAS_CTRLEXT_ON_LOAD 5888 | FLAG_HAS_AMT 5889 | FLAG_HAS_FLASH 5890 | FLAG_HAS_JUMBO_FRAMES 5891 | FLAG_APME_IN_WUC, 5892 .flags2 = FLAG2_HAS_PHY_STATS 5893 | FLAG2_HAS_EEE 5894 | FLAG2_CHECK_SYSTIM_OVERFLOW, 5895 .pba = 26, 5896 .max_hw_frame_size = 9022, 5897 .get_variants = e1000_get_variants_ich8lan, 5898 .mac_ops = &ich8_mac_ops, 5899 .phy_ops = &ich8_phy_ops, 5900 .nvm_ops = &ich8_nvm_ops, 5901 }; 5902 5903 const struct e1000_info e1000_pch_spt_info = { 5904 .mac = e1000_pch_spt, 5905 .flags = FLAG_IS_ICH 5906 | FLAG_HAS_WOL 5907 | FLAG_HAS_HW_TIMESTAMP 5908 | FLAG_HAS_CTRLEXT_ON_LOAD 5909 | FLAG_HAS_AMT 5910 | FLAG_HAS_FLASH 5911 | FLAG_HAS_JUMBO_FRAMES 5912 | FLAG_APME_IN_WUC, 5913 .flags2 = FLAG2_HAS_PHY_STATS 5914 | FLAG2_HAS_EEE, 5915 .pba = 26, 5916 .max_hw_frame_size = 9022, 5917 .get_variants = e1000_get_variants_ich8lan, 5918 .mac_ops = &ich8_mac_ops, 5919 .phy_ops = &ich8_phy_ops, 5920 .nvm_ops = &spt_nvm_ops, 5921 }; 5922 5923 const struct e1000_info e1000_pch_cnp_info = { 5924 .mac = e1000_pch_cnp, 5925 .flags = FLAG_IS_ICH 5926 | FLAG_HAS_WOL 5927 | FLAG_HAS_HW_TIMESTAMP 5928 | FLAG_HAS_CTRLEXT_ON_LOAD 5929 | FLAG_HAS_AMT 5930 | FLAG_HAS_FLASH 5931 | FLAG_HAS_JUMBO_FRAMES 5932 | FLAG_APME_IN_WUC, 5933 .flags2 = FLAG2_HAS_PHY_STATS 5934 | FLAG2_HAS_EEE, 5935 .pba = 26, 5936 .max_hw_frame_size = 9022, 5937 .get_variants = e1000_get_variants_ich8lan, 5938 .mac_ops = &ich8_mac_ops, 5939 .phy_ops = &ich8_phy_ops, 5940 .nvm_ops = &spt_nvm_ops, 5941 }; 5942