xref: /linux/drivers/net/ethernet/intel/e1000e/ich8lan.c (revision dc221294719ae0f28cc260cc37edd439161088a9)
1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2011 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 /*
30  * 82562G 10/100 Network Connection
31  * 82562G-2 10/100 Network Connection
32  * 82562GT 10/100 Network Connection
33  * 82562GT-2 10/100 Network Connection
34  * 82562V 10/100 Network Connection
35  * 82562V-2 10/100 Network Connection
36  * 82566DC-2 Gigabit Network Connection
37  * 82566DC Gigabit Network Connection
38  * 82566DM-2 Gigabit Network Connection
39  * 82566DM Gigabit Network Connection
40  * 82566MC Gigabit Network Connection
41  * 82566MM Gigabit Network Connection
42  * 82567LM Gigabit Network Connection
43  * 82567LF Gigabit Network Connection
44  * 82567V Gigabit Network Connection
45  * 82567LM-2 Gigabit Network Connection
46  * 82567LF-2 Gigabit Network Connection
47  * 82567V-2 Gigabit Network Connection
48  * 82567LF-3 Gigabit Network Connection
49  * 82567LM-3 Gigabit Network Connection
50  * 82567LM-4 Gigabit Network Connection
51  * 82577LM Gigabit Network Connection
52  * 82577LC Gigabit Network Connection
53  * 82578DM Gigabit Network Connection
54  * 82578DC Gigabit Network Connection
55  * 82579LM Gigabit Network Connection
56  * 82579V Gigabit Network Connection
57  */
58 
59 #include "e1000.h"
60 
61 #define ICH_FLASH_GFPREG		0x0000
62 #define ICH_FLASH_HSFSTS		0x0004
63 #define ICH_FLASH_HSFCTL		0x0006
64 #define ICH_FLASH_FADDR			0x0008
65 #define ICH_FLASH_FDATA0		0x0010
66 #define ICH_FLASH_PR0			0x0074
67 
68 #define ICH_FLASH_READ_COMMAND_TIMEOUT	500
69 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT	500
70 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT	3000000
71 #define ICH_FLASH_LINEAR_ADDR_MASK	0x00FFFFFF
72 #define ICH_FLASH_CYCLE_REPEAT_COUNT	10
73 
74 #define ICH_CYCLE_READ			0
75 #define ICH_CYCLE_WRITE			2
76 #define ICH_CYCLE_ERASE			3
77 
78 #define FLASH_GFPREG_BASE_MASK		0x1FFF
79 #define FLASH_SECTOR_ADDR_SHIFT		12
80 
81 #define ICH_FLASH_SEG_SIZE_256		256
82 #define ICH_FLASH_SEG_SIZE_4K		4096
83 #define ICH_FLASH_SEG_SIZE_8K		8192
84 #define ICH_FLASH_SEG_SIZE_64K		65536
85 
86 
87 #define E1000_ICH_FWSM_RSPCIPHY	0x00000040 /* Reset PHY on PCI Reset */
88 /* FW established a valid mode */
89 #define E1000_ICH_FWSM_FW_VALID		0x00008000
90 
91 #define E1000_ICH_MNG_IAMT_MODE		0x2
92 
93 #define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
94 				 (ID_LED_DEF1_OFF2 <<  8) | \
95 				 (ID_LED_DEF1_ON2  <<  4) | \
96 				 (ID_LED_DEF1_DEF2))
97 
98 #define E1000_ICH_NVM_SIG_WORD		0x13
99 #define E1000_ICH_NVM_SIG_MASK		0xC000
100 #define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
101 #define E1000_ICH_NVM_SIG_VALUE         0x80
102 
103 #define E1000_ICH8_LAN_INIT_TIMEOUT	1500
104 
105 #define E1000_FEXTNVM_SW_CONFIG		1
106 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
107 
108 #define E1000_FEXTNVM4_BEACON_DURATION_MASK    0x7
109 #define E1000_FEXTNVM4_BEACON_DURATION_8USEC   0x7
110 #define E1000_FEXTNVM4_BEACON_DURATION_16USEC  0x3
111 
112 #define PCIE_ICH8_SNOOP_ALL		PCIE_NO_SNOOP_ALL
113 
114 #define E1000_ICH_RAR_ENTRIES		7
115 
116 #define PHY_PAGE_SHIFT 5
117 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
118 			   ((reg) & MAX_PHY_REG_ADDRESS))
119 #define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
120 #define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
121 
122 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS	0x0002
123 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
124 #define IGP3_VR_CTRL_MODE_SHUTDOWN	0x0200
125 
126 #define HV_LED_CONFIG		PHY_REG(768, 30) /* LED Configuration */
127 
128 #define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */
129 
130 /* SMBus Address Phy Register */
131 #define HV_SMB_ADDR            PHY_REG(768, 26)
132 #define HV_SMB_ADDR_MASK       0x007F
133 #define HV_SMB_ADDR_PEC_EN     0x0200
134 #define HV_SMB_ADDR_VALID      0x0080
135 
136 /* PHY Power Management Control */
137 #define HV_PM_CTRL		PHY_REG(770, 17)
138 
139 /* PHY Low Power Idle Control */
140 #define I82579_LPI_CTRL				PHY_REG(772, 20)
141 #define I82579_LPI_CTRL_ENABLE_MASK		0x6000
142 #define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT	0x80
143 
144 /* EMI Registers */
145 #define I82579_EMI_ADDR         0x10
146 #define I82579_EMI_DATA         0x11
147 #define I82579_LPI_UPDATE_TIMER 0x4805	/* in 40ns units + 40 ns base value */
148 
149 /* Strapping Option Register - RO */
150 #define E1000_STRAP                     0x0000C
151 #define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
152 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
153 
154 /* OEM Bits Phy Register */
155 #define HV_OEM_BITS            PHY_REG(768, 25)
156 #define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
157 #define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
158 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
159 
160 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
161 #define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */
162 
163 /* KMRN Mode Control */
164 #define HV_KMRN_MODE_CTRL      PHY_REG(769, 16)
165 #define HV_KMRN_MDIO_SLOW      0x0400
166 
167 /* KMRN FIFO Control and Status */
168 #define HV_KMRN_FIFO_CTRLSTA                  PHY_REG(770, 16)
169 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK    0x7000
170 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT   12
171 
172 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
173 /* Offset 04h HSFSTS */
174 union ich8_hws_flash_status {
175 	struct ich8_hsfsts {
176 		u16 flcdone    :1; /* bit 0 Flash Cycle Done */
177 		u16 flcerr     :1; /* bit 1 Flash Cycle Error */
178 		u16 dael       :1; /* bit 2 Direct Access error Log */
179 		u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
180 		u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
181 		u16 reserved1  :2; /* bit 13:6 Reserved */
182 		u16 reserved2  :6; /* bit 13:6 Reserved */
183 		u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
184 		u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
185 	} hsf_status;
186 	u16 regval;
187 };
188 
189 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
190 /* Offset 06h FLCTL */
191 union ich8_hws_flash_ctrl {
192 	struct ich8_hsflctl {
193 		u16 flcgo      :1;   /* 0 Flash Cycle Go */
194 		u16 flcycle    :2;   /* 2:1 Flash Cycle */
195 		u16 reserved   :5;   /* 7:3 Reserved  */
196 		u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
197 		u16 flockdn    :6;   /* 15:10 Reserved */
198 	} hsf_ctrl;
199 	u16 regval;
200 };
201 
202 /* ICH Flash Region Access Permissions */
203 union ich8_hws_flash_regacc {
204 	struct ich8_flracc {
205 		u32 grra      :8; /* 0:7 GbE region Read Access */
206 		u32 grwa      :8; /* 8:15 GbE region Write Access */
207 		u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
208 		u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
209 	} hsf_flregacc;
210 	u16 regval;
211 };
212 
213 /* ICH Flash Protected Region */
214 union ich8_flash_protected_range {
215 	struct ich8_pr {
216 		u32 base:13;     /* 0:12 Protected Range Base */
217 		u32 reserved1:2; /* 13:14 Reserved */
218 		u32 rpe:1;       /* 15 Read Protection Enable */
219 		u32 limit:13;    /* 16:28 Protected Range Limit */
220 		u32 reserved2:2; /* 29:30 Reserved */
221 		u32 wpe:1;       /* 31 Write Protection Enable */
222 	} range;
223 	u32 regval;
224 };
225 
226 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
227 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
228 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
229 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
230 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
231 						u32 offset, u8 byte);
232 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
233 					 u8 *data);
234 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
235 					 u16 *data);
236 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
237 					 u8 size, u16 *data);
238 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
239 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
240 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
241 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
242 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
243 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
244 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
245 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
246 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
247 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
248 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
249 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
250 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
251 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
252 static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
253 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
254 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
255 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
256 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
257 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
258 
259 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
260 {
261 	return readw(hw->flash_address + reg);
262 }
263 
264 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
265 {
266 	return readl(hw->flash_address + reg);
267 }
268 
269 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
270 {
271 	writew(val, hw->flash_address + reg);
272 }
273 
274 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
275 {
276 	writel(val, hw->flash_address + reg);
277 }
278 
279 #define er16flash(reg)		__er16flash(hw, (reg))
280 #define er32flash(reg)		__er32flash(hw, (reg))
281 #define ew16flash(reg,val)	__ew16flash(hw, (reg), (val))
282 #define ew32flash(reg,val)	__ew32flash(hw, (reg), (val))
283 
284 static void e1000_toggle_lanphypc_value_ich8lan(struct e1000_hw *hw)
285 {
286 	u32 ctrl;
287 
288 	ctrl = er32(CTRL);
289 	ctrl |= E1000_CTRL_LANPHYPC_OVERRIDE;
290 	ctrl &= ~E1000_CTRL_LANPHYPC_VALUE;
291 	ew32(CTRL, ctrl);
292 	e1e_flush();
293 	udelay(10);
294 	ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
295 	ew32(CTRL, ctrl);
296 }
297 
298 /**
299  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
300  *  @hw: pointer to the HW structure
301  *
302  *  Initialize family-specific PHY parameters and function pointers.
303  **/
304 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
305 {
306 	struct e1000_phy_info *phy = &hw->phy;
307 	u32 fwsm;
308 	s32 ret_val = 0;
309 
310 	phy->addr                     = 1;
311 	phy->reset_delay_us           = 100;
312 
313 	phy->ops.set_page             = e1000_set_page_igp;
314 	phy->ops.read_reg             = e1000_read_phy_reg_hv;
315 	phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
316 	phy->ops.read_reg_page        = e1000_read_phy_reg_page_hv;
317 	phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
318 	phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
319 	phy->ops.write_reg            = e1000_write_phy_reg_hv;
320 	phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
321 	phy->ops.write_reg_page       = e1000_write_phy_reg_page_hv;
322 	phy->ops.power_up             = e1000_power_up_phy_copper;
323 	phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
324 	phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
325 
326 	/*
327 	 * The MAC-PHY interconnect may still be in SMBus mode
328 	 * after Sx->S0.  If the manageability engine (ME) is
329 	 * disabled, then toggle the LANPHYPC Value bit to force
330 	 * the interconnect to PCIe mode.
331 	 */
332 	fwsm = er32(FWSM);
333 	if (!(fwsm & E1000_ICH_FWSM_FW_VALID) && !e1000_check_reset_block(hw)) {
334 		e1000_toggle_lanphypc_value_ich8lan(hw);
335 		msleep(50);
336 
337 		/*
338 		 * Gate automatic PHY configuration by hardware on
339 		 * non-managed 82579
340 		 */
341 		if (hw->mac.type == e1000_pch2lan)
342 			e1000_gate_hw_phy_config_ich8lan(hw, true);
343 	}
344 
345 	/*
346 	 * Reset the PHY before any access to it.  Doing so, ensures that
347 	 * the PHY is in a known good state before we read/write PHY registers.
348 	 * The generic reset is sufficient here, because we haven't determined
349 	 * the PHY type yet.
350 	 */
351 	ret_val = e1000e_phy_hw_reset_generic(hw);
352 	if (ret_val)
353 		goto out;
354 
355 	/* Ungate automatic PHY configuration on non-managed 82579 */
356 	if ((hw->mac.type == e1000_pch2lan) &&
357 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
358 		usleep_range(10000, 20000);
359 		e1000_gate_hw_phy_config_ich8lan(hw, false);
360 	}
361 
362 	phy->id = e1000_phy_unknown;
363 	switch (hw->mac.type) {
364 	default:
365 		ret_val = e1000e_get_phy_id(hw);
366 		if (ret_val)
367 			goto out;
368 		if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
369 			break;
370 		/* fall-through */
371 	case e1000_pch2lan:
372 		/*
373 		 * In case the PHY needs to be in mdio slow mode,
374 		 * set slow mode and try to get the PHY id again.
375 		 */
376 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
377 		if (ret_val)
378 			goto out;
379 		ret_val = e1000e_get_phy_id(hw);
380 		if (ret_val)
381 			goto out;
382 		break;
383 	}
384 	phy->type = e1000e_get_phy_type_from_id(phy->id);
385 
386 	switch (phy->type) {
387 	case e1000_phy_82577:
388 	case e1000_phy_82579:
389 		phy->ops.check_polarity = e1000_check_polarity_82577;
390 		phy->ops.force_speed_duplex =
391 		    e1000_phy_force_speed_duplex_82577;
392 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
393 		phy->ops.get_info = e1000_get_phy_info_82577;
394 		phy->ops.commit = e1000e_phy_sw_reset;
395 		break;
396 	case e1000_phy_82578:
397 		phy->ops.check_polarity = e1000_check_polarity_m88;
398 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
399 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
400 		phy->ops.get_info = e1000e_get_phy_info_m88;
401 		break;
402 	default:
403 		ret_val = -E1000_ERR_PHY;
404 		break;
405 	}
406 
407 out:
408 	return ret_val;
409 }
410 
411 /**
412  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
413  *  @hw: pointer to the HW structure
414  *
415  *  Initialize family-specific PHY parameters and function pointers.
416  **/
417 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
418 {
419 	struct e1000_phy_info *phy = &hw->phy;
420 	s32 ret_val;
421 	u16 i = 0;
422 
423 	phy->addr			= 1;
424 	phy->reset_delay_us		= 100;
425 
426 	phy->ops.power_up               = e1000_power_up_phy_copper;
427 	phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;
428 
429 	/*
430 	 * We may need to do this twice - once for IGP and if that fails,
431 	 * we'll set BM func pointers and try again
432 	 */
433 	ret_val = e1000e_determine_phy_address(hw);
434 	if (ret_val) {
435 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
436 		phy->ops.read_reg  = e1000e_read_phy_reg_bm;
437 		ret_val = e1000e_determine_phy_address(hw);
438 		if (ret_val) {
439 			e_dbg("Cannot determine PHY addr. Erroring out\n");
440 			return ret_val;
441 		}
442 	}
443 
444 	phy->id = 0;
445 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
446 	       (i++ < 100)) {
447 		usleep_range(1000, 2000);
448 		ret_val = e1000e_get_phy_id(hw);
449 		if (ret_val)
450 			return ret_val;
451 	}
452 
453 	/* Verify phy id */
454 	switch (phy->id) {
455 	case IGP03E1000_E_PHY_ID:
456 		phy->type = e1000_phy_igp_3;
457 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
458 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
459 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
460 		phy->ops.get_info = e1000e_get_phy_info_igp;
461 		phy->ops.check_polarity = e1000_check_polarity_igp;
462 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
463 		break;
464 	case IFE_E_PHY_ID:
465 	case IFE_PLUS_E_PHY_ID:
466 	case IFE_C_E_PHY_ID:
467 		phy->type = e1000_phy_ife;
468 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
469 		phy->ops.get_info = e1000_get_phy_info_ife;
470 		phy->ops.check_polarity = e1000_check_polarity_ife;
471 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
472 		break;
473 	case BME1000_E_PHY_ID:
474 		phy->type = e1000_phy_bm;
475 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
476 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
477 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
478 		phy->ops.commit = e1000e_phy_sw_reset;
479 		phy->ops.get_info = e1000e_get_phy_info_m88;
480 		phy->ops.check_polarity = e1000_check_polarity_m88;
481 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
482 		break;
483 	default:
484 		return -E1000_ERR_PHY;
485 		break;
486 	}
487 
488 	return 0;
489 }
490 
491 /**
492  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
493  *  @hw: pointer to the HW structure
494  *
495  *  Initialize family-specific NVM parameters and function
496  *  pointers.
497  **/
498 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
499 {
500 	struct e1000_nvm_info *nvm = &hw->nvm;
501 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
502 	u32 gfpreg, sector_base_addr, sector_end_addr;
503 	u16 i;
504 
505 	/* Can't read flash registers if the register set isn't mapped. */
506 	if (!hw->flash_address) {
507 		e_dbg("ERROR: Flash registers not mapped\n");
508 		return -E1000_ERR_CONFIG;
509 	}
510 
511 	nvm->type = e1000_nvm_flash_sw;
512 
513 	gfpreg = er32flash(ICH_FLASH_GFPREG);
514 
515 	/*
516 	 * sector_X_addr is a "sector"-aligned address (4096 bytes)
517 	 * Add 1 to sector_end_addr since this sector is included in
518 	 * the overall size.
519 	 */
520 	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
521 	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
522 
523 	/* flash_base_addr is byte-aligned */
524 	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
525 
526 	/*
527 	 * find total size of the NVM, then cut in half since the total
528 	 * size represents two separate NVM banks.
529 	 */
530 	nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
531 				<< FLASH_SECTOR_ADDR_SHIFT;
532 	nvm->flash_bank_size /= 2;
533 	/* Adjust to word count */
534 	nvm->flash_bank_size /= sizeof(u16);
535 
536 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
537 
538 	/* Clear shadow ram */
539 	for (i = 0; i < nvm->word_size; i++) {
540 		dev_spec->shadow_ram[i].modified = false;
541 		dev_spec->shadow_ram[i].value    = 0xFFFF;
542 	}
543 
544 	return 0;
545 }
546 
547 /**
548  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
549  *  @hw: pointer to the HW structure
550  *
551  *  Initialize family-specific MAC parameters and function
552  *  pointers.
553  **/
554 static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
555 {
556 	struct e1000_hw *hw = &adapter->hw;
557 	struct e1000_mac_info *mac = &hw->mac;
558 
559 	/* Set media type function pointer */
560 	hw->phy.media_type = e1000_media_type_copper;
561 
562 	/* Set mta register count */
563 	mac->mta_reg_count = 32;
564 	/* Set rar entry count */
565 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
566 	if (mac->type == e1000_ich8lan)
567 		mac->rar_entry_count--;
568 	/* FWSM register */
569 	mac->has_fwsm = true;
570 	/* ARC subsystem not supported */
571 	mac->arc_subsystem_valid = false;
572 	/* Adaptive IFS supported */
573 	mac->adaptive_ifs = true;
574 
575 	/* LED operations */
576 	switch (mac->type) {
577 	case e1000_ich8lan:
578 	case e1000_ich9lan:
579 	case e1000_ich10lan:
580 		/* check management mode */
581 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
582 		/* ID LED init */
583 		mac->ops.id_led_init = e1000e_id_led_init;
584 		/* blink LED */
585 		mac->ops.blink_led = e1000e_blink_led_generic;
586 		/* setup LED */
587 		mac->ops.setup_led = e1000e_setup_led_generic;
588 		/* cleanup LED */
589 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
590 		/* turn on/off LED */
591 		mac->ops.led_on = e1000_led_on_ich8lan;
592 		mac->ops.led_off = e1000_led_off_ich8lan;
593 		break;
594 	case e1000_pchlan:
595 	case e1000_pch2lan:
596 		/* check management mode */
597 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
598 		/* ID LED init */
599 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
600 		/* setup LED */
601 		mac->ops.setup_led = e1000_setup_led_pchlan;
602 		/* cleanup LED */
603 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
604 		/* turn on/off LED */
605 		mac->ops.led_on = e1000_led_on_pchlan;
606 		mac->ops.led_off = e1000_led_off_pchlan;
607 		break;
608 	default:
609 		break;
610 	}
611 
612 	/* Enable PCS Lock-loss workaround for ICH8 */
613 	if (mac->type == e1000_ich8lan)
614 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
615 
616 	/* Gate automatic PHY configuration by hardware on managed 82579 */
617 	if ((mac->type == e1000_pch2lan) &&
618 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
619 		e1000_gate_hw_phy_config_ich8lan(hw, true);
620 
621 	return 0;
622 }
623 
624 /**
625  *  e1000_set_eee_pchlan - Enable/disable EEE support
626  *  @hw: pointer to the HW structure
627  *
628  *  Enable/disable EEE based on setting in dev_spec structure.  The bits in
629  *  the LPI Control register will remain set only if/when link is up.
630  **/
631 static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
632 {
633 	s32 ret_val = 0;
634 	u16 phy_reg;
635 
636 	if (hw->phy.type != e1000_phy_82579)
637 		goto out;
638 
639 	ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
640 	if (ret_val)
641 		goto out;
642 
643 	if (hw->dev_spec.ich8lan.eee_disable)
644 		phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
645 	else
646 		phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
647 
648 	ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
649 out:
650 	return ret_val;
651 }
652 
653 /**
654  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
655  *  @hw: pointer to the HW structure
656  *
657  *  Checks to see of the link status of the hardware has changed.  If a
658  *  change in link status has been detected, then we read the PHY registers
659  *  to get the current speed/duplex if link exists.
660  **/
661 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
662 {
663 	struct e1000_mac_info *mac = &hw->mac;
664 	s32 ret_val;
665 	bool link;
666 	u16 phy_reg;
667 
668 	/*
669 	 * We only want to go out to the PHY registers to see if Auto-Neg
670 	 * has completed and/or if our link status has changed.  The
671 	 * get_link_status flag is set upon receiving a Link Status
672 	 * Change or Rx Sequence Error interrupt.
673 	 */
674 	if (!mac->get_link_status) {
675 		ret_val = 0;
676 		goto out;
677 	}
678 
679 	/*
680 	 * First we want to see if the MII Status Register reports
681 	 * link.  If so, then we want to get the current speed/duplex
682 	 * of the PHY.
683 	 */
684 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
685 	if (ret_val)
686 		goto out;
687 
688 	if (hw->mac.type == e1000_pchlan) {
689 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
690 		if (ret_val)
691 			goto out;
692 	}
693 
694 	if (!link)
695 		goto out; /* No link detected */
696 
697 	mac->get_link_status = false;
698 
699 	switch (hw->mac.type) {
700 	case e1000_pch2lan:
701 		ret_val = e1000_k1_workaround_lv(hw);
702 		if (ret_val)
703 			goto out;
704 		/* fall-thru */
705 	case e1000_pchlan:
706 		if (hw->phy.type == e1000_phy_82578) {
707 			ret_val = e1000_link_stall_workaround_hv(hw);
708 			if (ret_val)
709 				goto out;
710 		}
711 
712 		/*
713 		 * Workaround for PCHx parts in half-duplex:
714 		 * Set the number of preambles removed from the packet
715 		 * when it is passed from the PHY to the MAC to prevent
716 		 * the MAC from misinterpreting the packet type.
717 		 */
718 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
719 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
720 
721 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
722 			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
723 
724 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
725 		break;
726 	default:
727 		break;
728 	}
729 
730 	/*
731 	 * Check if there was DownShift, must be checked
732 	 * immediately after link-up
733 	 */
734 	e1000e_check_downshift(hw);
735 
736 	/* Enable/Disable EEE after link up */
737 	ret_val = e1000_set_eee_pchlan(hw);
738 	if (ret_val)
739 		goto out;
740 
741 	/*
742 	 * If we are forcing speed/duplex, then we simply return since
743 	 * we have already determined whether we have link or not.
744 	 */
745 	if (!mac->autoneg) {
746 		ret_val = -E1000_ERR_CONFIG;
747 		goto out;
748 	}
749 
750 	/*
751 	 * Auto-Neg is enabled.  Auto Speed Detection takes care
752 	 * of MAC speed/duplex configuration.  So we only need to
753 	 * configure Collision Distance in the MAC.
754 	 */
755 	e1000e_config_collision_dist(hw);
756 
757 	/*
758 	 * Configure Flow Control now that Auto-Neg has completed.
759 	 * First, we need to restore the desired flow control
760 	 * settings because we may have had to re-autoneg with a
761 	 * different link partner.
762 	 */
763 	ret_val = e1000e_config_fc_after_link_up(hw);
764 	if (ret_val)
765 		e_dbg("Error configuring flow control\n");
766 
767 out:
768 	return ret_val;
769 }
770 
771 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
772 {
773 	struct e1000_hw *hw = &adapter->hw;
774 	s32 rc;
775 
776 	rc = e1000_init_mac_params_ich8lan(adapter);
777 	if (rc)
778 		return rc;
779 
780 	rc = e1000_init_nvm_params_ich8lan(hw);
781 	if (rc)
782 		return rc;
783 
784 	switch (hw->mac.type) {
785 	case e1000_ich8lan:
786 	case e1000_ich9lan:
787 	case e1000_ich10lan:
788 		rc = e1000_init_phy_params_ich8lan(hw);
789 		break;
790 	case e1000_pchlan:
791 	case e1000_pch2lan:
792 		rc = e1000_init_phy_params_pchlan(hw);
793 		break;
794 	default:
795 		break;
796 	}
797 	if (rc)
798 		return rc;
799 
800 	/*
801 	 * Disable Jumbo Frame support on parts with Intel 10/100 PHY or
802 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
803 	 */
804 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
805 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
806 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
807 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
808 		adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
809 
810 		hw->mac.ops.blink_led = NULL;
811 	}
812 
813 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
814 	    (adapter->hw.phy.type == e1000_phy_igp_3))
815 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
816 
817 	/* Enable workaround for 82579 w/ ME enabled */
818 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
819 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
820 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
821 
822 	/* Disable EEE by default until IEEE802.3az spec is finalized */
823 	if (adapter->flags2 & FLAG2_HAS_EEE)
824 		adapter->hw.dev_spec.ich8lan.eee_disable = true;
825 
826 	return 0;
827 }
828 
829 static DEFINE_MUTEX(nvm_mutex);
830 
831 /**
832  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
833  *  @hw: pointer to the HW structure
834  *
835  *  Acquires the mutex for performing NVM operations.
836  **/
837 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
838 {
839 	mutex_lock(&nvm_mutex);
840 
841 	return 0;
842 }
843 
844 /**
845  *  e1000_release_nvm_ich8lan - Release NVM mutex
846  *  @hw: pointer to the HW structure
847  *
848  *  Releases the mutex used while performing NVM operations.
849  **/
850 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
851 {
852 	mutex_unlock(&nvm_mutex);
853 }
854 
855 static DEFINE_MUTEX(swflag_mutex);
856 
857 /**
858  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
859  *  @hw: pointer to the HW structure
860  *
861  *  Acquires the software control flag for performing PHY and select
862  *  MAC CSR accesses.
863  **/
864 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
865 {
866 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
867 	s32 ret_val = 0;
868 
869 	mutex_lock(&swflag_mutex);
870 
871 	while (timeout) {
872 		extcnf_ctrl = er32(EXTCNF_CTRL);
873 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
874 			break;
875 
876 		mdelay(1);
877 		timeout--;
878 	}
879 
880 	if (!timeout) {
881 		e_dbg("SW/FW/HW has locked the resource for too long.\n");
882 		ret_val = -E1000_ERR_CONFIG;
883 		goto out;
884 	}
885 
886 	timeout = SW_FLAG_TIMEOUT;
887 
888 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
889 	ew32(EXTCNF_CTRL, extcnf_ctrl);
890 
891 	while (timeout) {
892 		extcnf_ctrl = er32(EXTCNF_CTRL);
893 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
894 			break;
895 
896 		mdelay(1);
897 		timeout--;
898 	}
899 
900 	if (!timeout) {
901 		e_dbg("Failed to acquire the semaphore.\n");
902 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
903 		ew32(EXTCNF_CTRL, extcnf_ctrl);
904 		ret_val = -E1000_ERR_CONFIG;
905 		goto out;
906 	}
907 
908 out:
909 	if (ret_val)
910 		mutex_unlock(&swflag_mutex);
911 
912 	return ret_val;
913 }
914 
915 /**
916  *  e1000_release_swflag_ich8lan - Release software control flag
917  *  @hw: pointer to the HW structure
918  *
919  *  Releases the software control flag for performing PHY and select
920  *  MAC CSR accesses.
921  **/
922 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
923 {
924 	u32 extcnf_ctrl;
925 
926 	extcnf_ctrl = er32(EXTCNF_CTRL);
927 
928 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
929 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
930 		ew32(EXTCNF_CTRL, extcnf_ctrl);
931 	} else {
932 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
933 	}
934 
935 	mutex_unlock(&swflag_mutex);
936 }
937 
938 /**
939  *  e1000_check_mng_mode_ich8lan - Checks management mode
940  *  @hw: pointer to the HW structure
941  *
942  *  This checks if the adapter has any manageability enabled.
943  *  This is a function pointer entry point only called by read/write
944  *  routines for the PHY and NVM parts.
945  **/
946 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
947 {
948 	u32 fwsm;
949 
950 	fwsm = er32(FWSM);
951 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
952 	       ((fwsm & E1000_FWSM_MODE_MASK) ==
953 		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
954 }
955 
956 /**
957  *  e1000_check_mng_mode_pchlan - Checks management mode
958  *  @hw: pointer to the HW structure
959  *
960  *  This checks if the adapter has iAMT enabled.
961  *  This is a function pointer entry point only called by read/write
962  *  routines for the PHY and NVM parts.
963  **/
964 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
965 {
966 	u32 fwsm;
967 
968 	fwsm = er32(FWSM);
969 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
970 	       (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
971 }
972 
973 /**
974  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
975  *  @hw: pointer to the HW structure
976  *
977  *  Checks if firmware is blocking the reset of the PHY.
978  *  This is a function pointer entry point only called by
979  *  reset routines.
980  **/
981 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
982 {
983 	u32 fwsm;
984 
985 	fwsm = er32(FWSM);
986 
987 	return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
988 }
989 
990 /**
991  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
992  *  @hw: pointer to the HW structure
993  *
994  *  Assumes semaphore already acquired.
995  *
996  **/
997 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
998 {
999 	u16 phy_data;
1000 	u32 strap = er32(STRAP);
1001 	s32 ret_val = 0;
1002 
1003 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1004 
1005 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1006 	if (ret_val)
1007 		goto out;
1008 
1009 	phy_data &= ~HV_SMB_ADDR_MASK;
1010 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1011 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1012 	ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1013 
1014 out:
1015 	return ret_val;
1016 }
1017 
1018 /**
1019  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1020  *  @hw:   pointer to the HW structure
1021  *
1022  *  SW should configure the LCD from the NVM extended configuration region
1023  *  as a workaround for certain parts.
1024  **/
1025 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1026 {
1027 	struct e1000_phy_info *phy = &hw->phy;
1028 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1029 	s32 ret_val = 0;
1030 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
1031 
1032 	/*
1033 	 * Initialize the PHY from the NVM on ICH platforms.  This
1034 	 * is needed due to an issue where the NVM configuration is
1035 	 * not properly autoloaded after power transitions.
1036 	 * Therefore, after each PHY reset, we will load the
1037 	 * configuration data out of the NVM manually.
1038 	 */
1039 	switch (hw->mac.type) {
1040 	case e1000_ich8lan:
1041 		if (phy->type != e1000_phy_igp_3)
1042 			return ret_val;
1043 
1044 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1045 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1046 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1047 			break;
1048 		}
1049 		/* Fall-thru */
1050 	case e1000_pchlan:
1051 	case e1000_pch2lan:
1052 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1053 		break;
1054 	default:
1055 		return ret_val;
1056 	}
1057 
1058 	ret_val = hw->phy.ops.acquire(hw);
1059 	if (ret_val)
1060 		return ret_val;
1061 
1062 	data = er32(FEXTNVM);
1063 	if (!(data & sw_cfg_mask))
1064 		goto out;
1065 
1066 	/*
1067 	 * Make sure HW does not configure LCD from PHY
1068 	 * extended configuration before SW configuration
1069 	 */
1070 	data = er32(EXTCNF_CTRL);
1071 	if (!(hw->mac.type == e1000_pch2lan)) {
1072 		if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
1073 			goto out;
1074 	}
1075 
1076 	cnf_size = er32(EXTCNF_SIZE);
1077 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1078 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1079 	if (!cnf_size)
1080 		goto out;
1081 
1082 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1083 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1084 
1085 	if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
1086 	    (hw->mac.type == e1000_pchlan)) ||
1087 	     (hw->mac.type == e1000_pch2lan)) {
1088 		/*
1089 		 * HW configures the SMBus address and LEDs when the
1090 		 * OEM and LCD Write Enable bits are set in the NVM.
1091 		 * When both NVM bits are cleared, SW will configure
1092 		 * them instead.
1093 		 */
1094 		ret_val = e1000_write_smbus_addr(hw);
1095 		if (ret_val)
1096 			goto out;
1097 
1098 		data = er32(LEDCTL);
1099 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1100 							(u16)data);
1101 		if (ret_val)
1102 			goto out;
1103 	}
1104 
1105 	/* Configure LCD from extended configuration region. */
1106 
1107 	/* cnf_base_addr is in DWORD */
1108 	word_addr = (u16)(cnf_base_addr << 1);
1109 
1110 	for (i = 0; i < cnf_size; i++) {
1111 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
1112 					 &reg_data);
1113 		if (ret_val)
1114 			goto out;
1115 
1116 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1117 					 1, &reg_addr);
1118 		if (ret_val)
1119 			goto out;
1120 
1121 		/* Save off the PHY page for future writes. */
1122 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1123 			phy_page = reg_data;
1124 			continue;
1125 		}
1126 
1127 		reg_addr &= PHY_REG_MASK;
1128 		reg_addr |= phy_page;
1129 
1130 		ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
1131 						    reg_data);
1132 		if (ret_val)
1133 			goto out;
1134 	}
1135 
1136 out:
1137 	hw->phy.ops.release(hw);
1138 	return ret_val;
1139 }
1140 
1141 /**
1142  *  e1000_k1_gig_workaround_hv - K1 Si workaround
1143  *  @hw:   pointer to the HW structure
1144  *  @link: link up bool flag
1145  *
1146  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1147  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
1148  *  If link is down, the function will restore the default K1 setting located
1149  *  in the NVM.
1150  **/
1151 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1152 {
1153 	s32 ret_val = 0;
1154 	u16 status_reg = 0;
1155 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1156 
1157 	if (hw->mac.type != e1000_pchlan)
1158 		goto out;
1159 
1160 	/* Wrap the whole flow with the sw flag */
1161 	ret_val = hw->phy.ops.acquire(hw);
1162 	if (ret_val)
1163 		goto out;
1164 
1165 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1166 	if (link) {
1167 		if (hw->phy.type == e1000_phy_82578) {
1168 			ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
1169 			                                          &status_reg);
1170 			if (ret_val)
1171 				goto release;
1172 
1173 			status_reg &= BM_CS_STATUS_LINK_UP |
1174 			              BM_CS_STATUS_RESOLVED |
1175 			              BM_CS_STATUS_SPEED_MASK;
1176 
1177 			if (status_reg == (BM_CS_STATUS_LINK_UP |
1178 			                   BM_CS_STATUS_RESOLVED |
1179 			                   BM_CS_STATUS_SPEED_1000))
1180 				k1_enable = false;
1181 		}
1182 
1183 		if (hw->phy.type == e1000_phy_82577) {
1184 			ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
1185 			                                          &status_reg);
1186 			if (ret_val)
1187 				goto release;
1188 
1189 			status_reg &= HV_M_STATUS_LINK_UP |
1190 			              HV_M_STATUS_AUTONEG_COMPLETE |
1191 			              HV_M_STATUS_SPEED_MASK;
1192 
1193 			if (status_reg == (HV_M_STATUS_LINK_UP |
1194 			                   HV_M_STATUS_AUTONEG_COMPLETE |
1195 			                   HV_M_STATUS_SPEED_1000))
1196 				k1_enable = false;
1197 		}
1198 
1199 		/* Link stall fix for link up */
1200 		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1201 		                                           0x0100);
1202 		if (ret_val)
1203 			goto release;
1204 
1205 	} else {
1206 		/* Link stall fix for link down */
1207 		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1208 		                                           0x4100);
1209 		if (ret_val)
1210 			goto release;
1211 	}
1212 
1213 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1214 
1215 release:
1216 	hw->phy.ops.release(hw);
1217 out:
1218 	return ret_val;
1219 }
1220 
1221 /**
1222  *  e1000_configure_k1_ich8lan - Configure K1 power state
1223  *  @hw: pointer to the HW structure
1224  *  @enable: K1 state to configure
1225  *
1226  *  Configure the K1 power state based on the provided parameter.
1227  *  Assumes semaphore already acquired.
1228  *
1229  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1230  **/
1231 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1232 {
1233 	s32 ret_val = 0;
1234 	u32 ctrl_reg = 0;
1235 	u32 ctrl_ext = 0;
1236 	u32 reg = 0;
1237 	u16 kmrn_reg = 0;
1238 
1239 	ret_val = e1000e_read_kmrn_reg_locked(hw,
1240 	                                     E1000_KMRNCTRLSTA_K1_CONFIG,
1241 	                                     &kmrn_reg);
1242 	if (ret_val)
1243 		goto out;
1244 
1245 	if (k1_enable)
1246 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1247 	else
1248 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1249 
1250 	ret_val = e1000e_write_kmrn_reg_locked(hw,
1251 	                                      E1000_KMRNCTRLSTA_K1_CONFIG,
1252 	                                      kmrn_reg);
1253 	if (ret_val)
1254 		goto out;
1255 
1256 	udelay(20);
1257 	ctrl_ext = er32(CTRL_EXT);
1258 	ctrl_reg = er32(CTRL);
1259 
1260 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1261 	reg |= E1000_CTRL_FRCSPD;
1262 	ew32(CTRL, reg);
1263 
1264 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1265 	e1e_flush();
1266 	udelay(20);
1267 	ew32(CTRL, ctrl_reg);
1268 	ew32(CTRL_EXT, ctrl_ext);
1269 	e1e_flush();
1270 	udelay(20);
1271 
1272 out:
1273 	return ret_val;
1274 }
1275 
1276 /**
1277  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1278  *  @hw:       pointer to the HW structure
1279  *  @d0_state: boolean if entering d0 or d3 device state
1280  *
1281  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1282  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
1283  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
1284  **/
1285 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1286 {
1287 	s32 ret_val = 0;
1288 	u32 mac_reg;
1289 	u16 oem_reg;
1290 
1291 	if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan))
1292 		return ret_val;
1293 
1294 	ret_val = hw->phy.ops.acquire(hw);
1295 	if (ret_val)
1296 		return ret_val;
1297 
1298 	if (!(hw->mac.type == e1000_pch2lan)) {
1299 		mac_reg = er32(EXTCNF_CTRL);
1300 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1301 			goto out;
1302 	}
1303 
1304 	mac_reg = er32(FEXTNVM);
1305 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1306 		goto out;
1307 
1308 	mac_reg = er32(PHY_CTRL);
1309 
1310 	ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
1311 	if (ret_val)
1312 		goto out;
1313 
1314 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1315 
1316 	if (d0_state) {
1317 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1318 			oem_reg |= HV_OEM_BITS_GBE_DIS;
1319 
1320 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1321 			oem_reg |= HV_OEM_BITS_LPLU;
1322 	} else {
1323 		if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE)
1324 			oem_reg |= HV_OEM_BITS_GBE_DIS;
1325 
1326 		if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU)
1327 			oem_reg |= HV_OEM_BITS_LPLU;
1328 	}
1329 	/* Restart auto-neg to activate the bits */
1330 	if (!e1000_check_reset_block(hw))
1331 		oem_reg |= HV_OEM_BITS_RESTART_AN;
1332 	ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
1333 
1334 out:
1335 	hw->phy.ops.release(hw);
1336 
1337 	return ret_val;
1338 }
1339 
1340 
1341 /**
1342  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1343  *  @hw:   pointer to the HW structure
1344  **/
1345 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1346 {
1347 	s32 ret_val;
1348 	u16 data;
1349 
1350 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1351 	if (ret_val)
1352 		return ret_val;
1353 
1354 	data |= HV_KMRN_MDIO_SLOW;
1355 
1356 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1357 
1358 	return ret_val;
1359 }
1360 
1361 /**
1362  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1363  *  done after every PHY reset.
1364  **/
1365 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1366 {
1367 	s32 ret_val = 0;
1368 	u16 phy_data;
1369 
1370 	if (hw->mac.type != e1000_pchlan)
1371 		return ret_val;
1372 
1373 	/* Set MDIO slow mode before any other MDIO access */
1374 	if (hw->phy.type == e1000_phy_82577) {
1375 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
1376 		if (ret_val)
1377 			goto out;
1378 	}
1379 
1380 	if (((hw->phy.type == e1000_phy_82577) &&
1381 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1382 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1383 		/* Disable generation of early preamble */
1384 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1385 		if (ret_val)
1386 			return ret_val;
1387 
1388 		/* Preamble tuning for SSC */
1389 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
1390 		if (ret_val)
1391 			return ret_val;
1392 	}
1393 
1394 	if (hw->phy.type == e1000_phy_82578) {
1395 		/*
1396 		 * Return registers to default by doing a soft reset then
1397 		 * writing 0x3140 to the control register.
1398 		 */
1399 		if (hw->phy.revision < 2) {
1400 			e1000e_phy_sw_reset(hw);
1401 			ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1402 		}
1403 	}
1404 
1405 	/* Select page 0 */
1406 	ret_val = hw->phy.ops.acquire(hw);
1407 	if (ret_val)
1408 		return ret_val;
1409 
1410 	hw->phy.addr = 1;
1411 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1412 	hw->phy.ops.release(hw);
1413 	if (ret_val)
1414 		goto out;
1415 
1416 	/*
1417 	 * Configure the K1 Si workaround during phy reset assuming there is
1418 	 * link so that it disables K1 if link is in 1Gbps.
1419 	 */
1420 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
1421 	if (ret_val)
1422 		goto out;
1423 
1424 	/* Workaround for link disconnects on a busy hub in half duplex */
1425 	ret_val = hw->phy.ops.acquire(hw);
1426 	if (ret_val)
1427 		goto out;
1428 	ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
1429 	if (ret_val)
1430 		goto release;
1431 	ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
1432 					       phy_data & 0x00FF);
1433 release:
1434 	hw->phy.ops.release(hw);
1435 out:
1436 	return ret_val;
1437 }
1438 
1439 /**
1440  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1441  *  @hw:   pointer to the HW structure
1442  **/
1443 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1444 {
1445 	u32 mac_reg;
1446 	u16 i, phy_reg = 0;
1447 	s32 ret_val;
1448 
1449 	ret_val = hw->phy.ops.acquire(hw);
1450 	if (ret_val)
1451 		return;
1452 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1453 	if (ret_val)
1454 		goto release;
1455 
1456 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1457 	for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1458 		mac_reg = er32(RAL(i));
1459 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
1460 					   (u16)(mac_reg & 0xFFFF));
1461 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
1462 					   (u16)((mac_reg >> 16) & 0xFFFF));
1463 
1464 		mac_reg = er32(RAH(i));
1465 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
1466 					   (u16)(mac_reg & 0xFFFF));
1467 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
1468 					   (u16)((mac_reg & E1000_RAH_AV)
1469 						 >> 16));
1470 	}
1471 
1472 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1473 
1474 release:
1475 	hw->phy.ops.release(hw);
1476 }
1477 
1478 /**
1479  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1480  *  with 82579 PHY
1481  *  @hw: pointer to the HW structure
1482  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
1483  **/
1484 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1485 {
1486 	s32 ret_val = 0;
1487 	u16 phy_reg, data;
1488 	u32 mac_reg;
1489 	u16 i;
1490 
1491 	if (hw->mac.type != e1000_pch2lan)
1492 		goto out;
1493 
1494 	/* disable Rx path while enabling/disabling workaround */
1495 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1496 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1497 	if (ret_val)
1498 		goto out;
1499 
1500 	if (enable) {
1501 		/*
1502 		 * Write Rx addresses (rar_entry_count for RAL/H, +4 for
1503 		 * SHRAL/H) and initial CRC values to the MAC
1504 		 */
1505 		for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1506 			u8 mac_addr[ETH_ALEN] = {0};
1507 			u32 addr_high, addr_low;
1508 
1509 			addr_high = er32(RAH(i));
1510 			if (!(addr_high & E1000_RAH_AV))
1511 				continue;
1512 			addr_low = er32(RAL(i));
1513 			mac_addr[0] = (addr_low & 0xFF);
1514 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
1515 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
1516 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
1517 			mac_addr[4] = (addr_high & 0xFF);
1518 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
1519 
1520 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
1521 		}
1522 
1523 		/* Write Rx addresses to the PHY */
1524 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
1525 
1526 		/* Enable jumbo frame workaround in the MAC */
1527 		mac_reg = er32(FFLT_DBG);
1528 		mac_reg &= ~(1 << 14);
1529 		mac_reg |= (7 << 15);
1530 		ew32(FFLT_DBG, mac_reg);
1531 
1532 		mac_reg = er32(RCTL);
1533 		mac_reg |= E1000_RCTL_SECRC;
1534 		ew32(RCTL, mac_reg);
1535 
1536 		ret_val = e1000e_read_kmrn_reg(hw,
1537 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1538 						&data);
1539 		if (ret_val)
1540 			goto out;
1541 		ret_val = e1000e_write_kmrn_reg(hw,
1542 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1543 						data | (1 << 0));
1544 		if (ret_val)
1545 			goto out;
1546 		ret_val = e1000e_read_kmrn_reg(hw,
1547 						E1000_KMRNCTRLSTA_HD_CTRL,
1548 						&data);
1549 		if (ret_val)
1550 			goto out;
1551 		data &= ~(0xF << 8);
1552 		data |= (0xB << 8);
1553 		ret_val = e1000e_write_kmrn_reg(hw,
1554 						E1000_KMRNCTRLSTA_HD_CTRL,
1555 						data);
1556 		if (ret_val)
1557 			goto out;
1558 
1559 		/* Enable jumbo frame workaround in the PHY */
1560 		e1e_rphy(hw, PHY_REG(769, 23), &data);
1561 		data &= ~(0x7F << 5);
1562 		data |= (0x37 << 5);
1563 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1564 		if (ret_val)
1565 			goto out;
1566 		e1e_rphy(hw, PHY_REG(769, 16), &data);
1567 		data &= ~(1 << 13);
1568 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1569 		if (ret_val)
1570 			goto out;
1571 		e1e_rphy(hw, PHY_REG(776, 20), &data);
1572 		data &= ~(0x3FF << 2);
1573 		data |= (0x1A << 2);
1574 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1575 		if (ret_val)
1576 			goto out;
1577 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xFE00);
1578 		if (ret_val)
1579 			goto out;
1580 		e1e_rphy(hw, HV_PM_CTRL, &data);
1581 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
1582 		if (ret_val)
1583 			goto out;
1584 	} else {
1585 		/* Write MAC register values back to h/w defaults */
1586 		mac_reg = er32(FFLT_DBG);
1587 		mac_reg &= ~(0xF << 14);
1588 		ew32(FFLT_DBG, mac_reg);
1589 
1590 		mac_reg = er32(RCTL);
1591 		mac_reg &= ~E1000_RCTL_SECRC;
1592 		ew32(RCTL, mac_reg);
1593 
1594 		ret_val = e1000e_read_kmrn_reg(hw,
1595 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1596 						&data);
1597 		if (ret_val)
1598 			goto out;
1599 		ret_val = e1000e_write_kmrn_reg(hw,
1600 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1601 						data & ~(1 << 0));
1602 		if (ret_val)
1603 			goto out;
1604 		ret_val = e1000e_read_kmrn_reg(hw,
1605 						E1000_KMRNCTRLSTA_HD_CTRL,
1606 						&data);
1607 		if (ret_val)
1608 			goto out;
1609 		data &= ~(0xF << 8);
1610 		data |= (0xB << 8);
1611 		ret_val = e1000e_write_kmrn_reg(hw,
1612 						E1000_KMRNCTRLSTA_HD_CTRL,
1613 						data);
1614 		if (ret_val)
1615 			goto out;
1616 
1617 		/* Write PHY register values back to h/w defaults */
1618 		e1e_rphy(hw, PHY_REG(769, 23), &data);
1619 		data &= ~(0x7F << 5);
1620 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1621 		if (ret_val)
1622 			goto out;
1623 		e1e_rphy(hw, PHY_REG(769, 16), &data);
1624 		data |= (1 << 13);
1625 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1626 		if (ret_val)
1627 			goto out;
1628 		e1e_rphy(hw, PHY_REG(776, 20), &data);
1629 		data &= ~(0x3FF << 2);
1630 		data |= (0x8 << 2);
1631 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1632 		if (ret_val)
1633 			goto out;
1634 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
1635 		if (ret_val)
1636 			goto out;
1637 		e1e_rphy(hw, HV_PM_CTRL, &data);
1638 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
1639 		if (ret_val)
1640 			goto out;
1641 	}
1642 
1643 	/* re-enable Rx path after enabling/disabling workaround */
1644 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
1645 
1646 out:
1647 	return ret_val;
1648 }
1649 
1650 /**
1651  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1652  *  done after every PHY reset.
1653  **/
1654 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1655 {
1656 	s32 ret_val = 0;
1657 
1658 	if (hw->mac.type != e1000_pch2lan)
1659 		goto out;
1660 
1661 	/* Set MDIO slow mode before any other MDIO access */
1662 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
1663 
1664 out:
1665 	return ret_val;
1666 }
1667 
1668 /**
1669  *  e1000_k1_gig_workaround_lv - K1 Si workaround
1670  *  @hw:   pointer to the HW structure
1671  *
1672  *  Workaround to set the K1 beacon duration for 82579 parts
1673  **/
1674 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
1675 {
1676 	s32 ret_val = 0;
1677 	u16 status_reg = 0;
1678 	u32 mac_reg;
1679 	u16 phy_reg;
1680 
1681 	if (hw->mac.type != e1000_pch2lan)
1682 		goto out;
1683 
1684 	/* Set K1 beacon duration based on 1Gbps speed or otherwise */
1685 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
1686 	if (ret_val)
1687 		goto out;
1688 
1689 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
1690 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
1691 		mac_reg = er32(FEXTNVM4);
1692 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1693 
1694 		ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
1695 		if (ret_val)
1696 			goto out;
1697 
1698 		if (status_reg & HV_M_STATUS_SPEED_1000) {
1699 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1700 			phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
1701 		} else {
1702 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
1703 			phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
1704 		}
1705 		ew32(FEXTNVM4, mac_reg);
1706 		ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
1707 	}
1708 
1709 out:
1710 	return ret_val;
1711 }
1712 
1713 /**
1714  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
1715  *  @hw:   pointer to the HW structure
1716  *  @gate: boolean set to true to gate, false to ungate
1717  *
1718  *  Gate/ungate the automatic PHY configuration via hardware; perform
1719  *  the configuration via software instead.
1720  **/
1721 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
1722 {
1723 	u32 extcnf_ctrl;
1724 
1725 	if (hw->mac.type != e1000_pch2lan)
1726 		return;
1727 
1728 	extcnf_ctrl = er32(EXTCNF_CTRL);
1729 
1730 	if (gate)
1731 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1732 	else
1733 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1734 
1735 	ew32(EXTCNF_CTRL, extcnf_ctrl);
1736 	return;
1737 }
1738 
1739 /**
1740  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
1741  *  @hw: pointer to the HW structure
1742  *
1743  *  Check the appropriate indication the MAC has finished configuring the
1744  *  PHY after a software reset.
1745  **/
1746 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
1747 {
1748 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
1749 
1750 	/* Wait for basic configuration completes before proceeding */
1751 	do {
1752 		data = er32(STATUS);
1753 		data &= E1000_STATUS_LAN_INIT_DONE;
1754 		udelay(100);
1755 	} while ((!data) && --loop);
1756 
1757 	/*
1758 	 * If basic configuration is incomplete before the above loop
1759 	 * count reaches 0, loading the configuration from NVM will
1760 	 * leave the PHY in a bad state possibly resulting in no link.
1761 	 */
1762 	if (loop == 0)
1763 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
1764 
1765 	/* Clear the Init Done bit for the next init event */
1766 	data = er32(STATUS);
1767 	data &= ~E1000_STATUS_LAN_INIT_DONE;
1768 	ew32(STATUS, data);
1769 }
1770 
1771 /**
1772  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
1773  *  @hw: pointer to the HW structure
1774  **/
1775 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
1776 {
1777 	s32 ret_val = 0;
1778 	u16 reg;
1779 
1780 	if (e1000_check_reset_block(hw))
1781 		goto out;
1782 
1783 	/* Allow time for h/w to get to quiescent state after reset */
1784 	usleep_range(10000, 20000);
1785 
1786 	/* Perform any necessary post-reset workarounds */
1787 	switch (hw->mac.type) {
1788 	case e1000_pchlan:
1789 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
1790 		if (ret_val)
1791 			goto out;
1792 		break;
1793 	case e1000_pch2lan:
1794 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
1795 		if (ret_val)
1796 			goto out;
1797 		break;
1798 	default:
1799 		break;
1800 	}
1801 
1802 	/* Clear the host wakeup bit after lcd reset */
1803 	if (hw->mac.type >= e1000_pchlan) {
1804 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
1805 		reg &= ~BM_WUC_HOST_WU_BIT;
1806 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
1807 	}
1808 
1809 	/* Configure the LCD with the extended configuration region in NVM */
1810 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
1811 	if (ret_val)
1812 		goto out;
1813 
1814 	/* Configure the LCD with the OEM bits in NVM */
1815 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
1816 
1817 	if (hw->mac.type == e1000_pch2lan) {
1818 		/* Ungate automatic PHY configuration on non-managed 82579 */
1819 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
1820 			usleep_range(10000, 20000);
1821 			e1000_gate_hw_phy_config_ich8lan(hw, false);
1822 		}
1823 
1824 		/* Set EEE LPI Update Timer to 200usec */
1825 		ret_val = hw->phy.ops.acquire(hw);
1826 		if (ret_val)
1827 			goto out;
1828 		ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
1829 						       I82579_LPI_UPDATE_TIMER);
1830 		if (ret_val)
1831 			goto release;
1832 		ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
1833 						       0x1387);
1834 release:
1835 		hw->phy.ops.release(hw);
1836 	}
1837 
1838 out:
1839 	return ret_val;
1840 }
1841 
1842 /**
1843  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1844  *  @hw: pointer to the HW structure
1845  *
1846  *  Resets the PHY
1847  *  This is a function pointer entry point called by drivers
1848  *  or other shared routines.
1849  **/
1850 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
1851 {
1852 	s32 ret_val = 0;
1853 
1854 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
1855 	if ((hw->mac.type == e1000_pch2lan) &&
1856 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1857 		e1000_gate_hw_phy_config_ich8lan(hw, true);
1858 
1859 	ret_val = e1000e_phy_hw_reset_generic(hw);
1860 	if (ret_val)
1861 		goto out;
1862 
1863 	ret_val = e1000_post_phy_reset_ich8lan(hw);
1864 
1865 out:
1866 	return ret_val;
1867 }
1868 
1869 /**
1870  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1871  *  @hw: pointer to the HW structure
1872  *  @active: true to enable LPLU, false to disable
1873  *
1874  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
1875  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1876  *  the phy speed. This function will manually set the LPLU bit and restart
1877  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
1878  *  since it configures the same bit.
1879  **/
1880 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
1881 {
1882 	s32 ret_val = 0;
1883 	u16 oem_reg;
1884 
1885 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
1886 	if (ret_val)
1887 		goto out;
1888 
1889 	if (active)
1890 		oem_reg |= HV_OEM_BITS_LPLU;
1891 	else
1892 		oem_reg &= ~HV_OEM_BITS_LPLU;
1893 
1894 	oem_reg |= HV_OEM_BITS_RESTART_AN;
1895 	ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
1896 
1897 out:
1898 	return ret_val;
1899 }
1900 
1901 /**
1902  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1903  *  @hw: pointer to the HW structure
1904  *  @active: true to enable LPLU, false to disable
1905  *
1906  *  Sets the LPLU D0 state according to the active flag.  When
1907  *  activating LPLU this function also disables smart speed
1908  *  and vice versa.  LPLU will not be activated unless the
1909  *  device autonegotiation advertisement meets standards of
1910  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1911  *  This is a function pointer entry point only called by
1912  *  PHY setup routines.
1913  **/
1914 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1915 {
1916 	struct e1000_phy_info *phy = &hw->phy;
1917 	u32 phy_ctrl;
1918 	s32 ret_val = 0;
1919 	u16 data;
1920 
1921 	if (phy->type == e1000_phy_ife)
1922 		return ret_val;
1923 
1924 	phy_ctrl = er32(PHY_CTRL);
1925 
1926 	if (active) {
1927 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1928 		ew32(PHY_CTRL, phy_ctrl);
1929 
1930 		if (phy->type != e1000_phy_igp_3)
1931 			return 0;
1932 
1933 		/*
1934 		 * Call gig speed drop workaround on LPLU before accessing
1935 		 * any PHY registers
1936 		 */
1937 		if (hw->mac.type == e1000_ich8lan)
1938 			e1000e_gig_downshift_workaround_ich8lan(hw);
1939 
1940 		/* When LPLU is enabled, we should disable SmartSpeed */
1941 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1942 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1943 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1944 		if (ret_val)
1945 			return ret_val;
1946 	} else {
1947 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1948 		ew32(PHY_CTRL, phy_ctrl);
1949 
1950 		if (phy->type != e1000_phy_igp_3)
1951 			return 0;
1952 
1953 		/*
1954 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1955 		 * during Dx states where the power conservation is most
1956 		 * important.  During driver activity we should enable
1957 		 * SmartSpeed, so performance is maintained.
1958 		 */
1959 		if (phy->smart_speed == e1000_smart_speed_on) {
1960 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1961 					   &data);
1962 			if (ret_val)
1963 				return ret_val;
1964 
1965 			data |= IGP01E1000_PSCFR_SMART_SPEED;
1966 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1967 					   data);
1968 			if (ret_val)
1969 				return ret_val;
1970 		} else if (phy->smart_speed == e1000_smart_speed_off) {
1971 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1972 					   &data);
1973 			if (ret_val)
1974 				return ret_val;
1975 
1976 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1977 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1978 					   data);
1979 			if (ret_val)
1980 				return ret_val;
1981 		}
1982 	}
1983 
1984 	return 0;
1985 }
1986 
1987 /**
1988  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1989  *  @hw: pointer to the HW structure
1990  *  @active: true to enable LPLU, false to disable
1991  *
1992  *  Sets the LPLU D3 state according to the active flag.  When
1993  *  activating LPLU this function also disables smart speed
1994  *  and vice versa.  LPLU will not be activated unless the
1995  *  device autonegotiation advertisement meets standards of
1996  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1997  *  This is a function pointer entry point only called by
1998  *  PHY setup routines.
1999  **/
2000 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2001 {
2002 	struct e1000_phy_info *phy = &hw->phy;
2003 	u32 phy_ctrl;
2004 	s32 ret_val;
2005 	u16 data;
2006 
2007 	phy_ctrl = er32(PHY_CTRL);
2008 
2009 	if (!active) {
2010 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2011 		ew32(PHY_CTRL, phy_ctrl);
2012 
2013 		if (phy->type != e1000_phy_igp_3)
2014 			return 0;
2015 
2016 		/*
2017 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2018 		 * during Dx states where the power conservation is most
2019 		 * important.  During driver activity we should enable
2020 		 * SmartSpeed, so performance is maintained.
2021 		 */
2022 		if (phy->smart_speed == e1000_smart_speed_on) {
2023 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2024 					   &data);
2025 			if (ret_val)
2026 				return ret_val;
2027 
2028 			data |= IGP01E1000_PSCFR_SMART_SPEED;
2029 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2030 					   data);
2031 			if (ret_val)
2032 				return ret_val;
2033 		} else if (phy->smart_speed == e1000_smart_speed_off) {
2034 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2035 					   &data);
2036 			if (ret_val)
2037 				return ret_val;
2038 
2039 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2040 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2041 					   data);
2042 			if (ret_val)
2043 				return ret_val;
2044 		}
2045 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2046 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2047 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2048 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2049 		ew32(PHY_CTRL, phy_ctrl);
2050 
2051 		if (phy->type != e1000_phy_igp_3)
2052 			return 0;
2053 
2054 		/*
2055 		 * Call gig speed drop workaround on LPLU before accessing
2056 		 * any PHY registers
2057 		 */
2058 		if (hw->mac.type == e1000_ich8lan)
2059 			e1000e_gig_downshift_workaround_ich8lan(hw);
2060 
2061 		/* When LPLU is enabled, we should disable SmartSpeed */
2062 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2063 		if (ret_val)
2064 			return ret_val;
2065 
2066 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2067 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2068 	}
2069 
2070 	return 0;
2071 }
2072 
2073 /**
2074  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2075  *  @hw: pointer to the HW structure
2076  *  @bank:  pointer to the variable that returns the active bank
2077  *
2078  *  Reads signature byte from the NVM using the flash access registers.
2079  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2080  **/
2081 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2082 {
2083 	u32 eecd;
2084 	struct e1000_nvm_info *nvm = &hw->nvm;
2085 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2086 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2087 	u8 sig_byte = 0;
2088 	s32 ret_val = 0;
2089 
2090 	switch (hw->mac.type) {
2091 	case e1000_ich8lan:
2092 	case e1000_ich9lan:
2093 		eecd = er32(EECD);
2094 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2095 		    E1000_EECD_SEC1VAL_VALID_MASK) {
2096 			if (eecd & E1000_EECD_SEC1VAL)
2097 				*bank = 1;
2098 			else
2099 				*bank = 0;
2100 
2101 			return 0;
2102 		}
2103 		e_dbg("Unable to determine valid NVM bank via EEC - "
2104 		       "reading flash signature\n");
2105 		/* fall-thru */
2106 	default:
2107 		/* set bank to 0 in case flash read fails */
2108 		*bank = 0;
2109 
2110 		/* Check bank 0 */
2111 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2112 		                                        &sig_byte);
2113 		if (ret_val)
2114 			return ret_val;
2115 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2116 		    E1000_ICH_NVM_SIG_VALUE) {
2117 			*bank = 0;
2118 			return 0;
2119 		}
2120 
2121 		/* Check bank 1 */
2122 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2123 		                                        bank1_offset,
2124 		                                        &sig_byte);
2125 		if (ret_val)
2126 			return ret_val;
2127 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2128 		    E1000_ICH_NVM_SIG_VALUE) {
2129 			*bank = 1;
2130 			return 0;
2131 		}
2132 
2133 		e_dbg("ERROR: No valid NVM bank present\n");
2134 		return -E1000_ERR_NVM;
2135 	}
2136 
2137 	return 0;
2138 }
2139 
2140 /**
2141  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
2142  *  @hw: pointer to the HW structure
2143  *  @offset: The offset (in bytes) of the word(s) to read.
2144  *  @words: Size of data to read in words
2145  *  @data: Pointer to the word(s) to read at offset.
2146  *
2147  *  Reads a word(s) from the NVM using the flash access registers.
2148  **/
2149 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2150 				  u16 *data)
2151 {
2152 	struct e1000_nvm_info *nvm = &hw->nvm;
2153 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2154 	u32 act_offset;
2155 	s32 ret_val = 0;
2156 	u32 bank = 0;
2157 	u16 i, word;
2158 
2159 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2160 	    (words == 0)) {
2161 		e_dbg("nvm parameter(s) out of bounds\n");
2162 		ret_val = -E1000_ERR_NVM;
2163 		goto out;
2164 	}
2165 
2166 	nvm->ops.acquire(hw);
2167 
2168 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2169 	if (ret_val) {
2170 		e_dbg("Could not detect valid bank, assuming bank 0\n");
2171 		bank = 0;
2172 	}
2173 
2174 	act_offset = (bank) ? nvm->flash_bank_size : 0;
2175 	act_offset += offset;
2176 
2177 	ret_val = 0;
2178 	for (i = 0; i < words; i++) {
2179 		if (dev_spec->shadow_ram[offset+i].modified) {
2180 			data[i] = dev_spec->shadow_ram[offset+i].value;
2181 		} else {
2182 			ret_val = e1000_read_flash_word_ich8lan(hw,
2183 								act_offset + i,
2184 								&word);
2185 			if (ret_val)
2186 				break;
2187 			data[i] = word;
2188 		}
2189 	}
2190 
2191 	nvm->ops.release(hw);
2192 
2193 out:
2194 	if (ret_val)
2195 		e_dbg("NVM read error: %d\n", ret_val);
2196 
2197 	return ret_val;
2198 }
2199 
2200 /**
2201  *  e1000_flash_cycle_init_ich8lan - Initialize flash
2202  *  @hw: pointer to the HW structure
2203  *
2204  *  This function does initial flash setup so that a new read/write/erase cycle
2205  *  can be started.
2206  **/
2207 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2208 {
2209 	union ich8_hws_flash_status hsfsts;
2210 	s32 ret_val = -E1000_ERR_NVM;
2211 
2212 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2213 
2214 	/* Check if the flash descriptor is valid */
2215 	if (hsfsts.hsf_status.fldesvalid == 0) {
2216 		e_dbg("Flash descriptor invalid.  "
2217 			 "SW Sequencing must be used.\n");
2218 		return -E1000_ERR_NVM;
2219 	}
2220 
2221 	/* Clear FCERR and DAEL in hw status by writing 1 */
2222 	hsfsts.hsf_status.flcerr = 1;
2223 	hsfsts.hsf_status.dael = 1;
2224 
2225 	ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2226 
2227 	/*
2228 	 * Either we should have a hardware SPI cycle in progress
2229 	 * bit to check against, in order to start a new cycle or
2230 	 * FDONE bit should be changed in the hardware so that it
2231 	 * is 1 after hardware reset, which can then be used as an
2232 	 * indication whether a cycle is in progress or has been
2233 	 * completed.
2234 	 */
2235 
2236 	if (hsfsts.hsf_status.flcinprog == 0) {
2237 		/*
2238 		 * There is no cycle running at present,
2239 		 * so we can start a cycle.
2240 		 * Begin by setting Flash Cycle Done.
2241 		 */
2242 		hsfsts.hsf_status.flcdone = 1;
2243 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2244 		ret_val = 0;
2245 	} else {
2246 		s32 i = 0;
2247 
2248 		/*
2249 		 * Otherwise poll for sometime so the current
2250 		 * cycle has a chance to end before giving up.
2251 		 */
2252 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2253 			hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
2254 			if (hsfsts.hsf_status.flcinprog == 0) {
2255 				ret_val = 0;
2256 				break;
2257 			}
2258 			udelay(1);
2259 		}
2260 		if (ret_val == 0) {
2261 			/*
2262 			 * Successful in waiting for previous cycle to timeout,
2263 			 * now set the Flash Cycle Done.
2264 			 */
2265 			hsfsts.hsf_status.flcdone = 1;
2266 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2267 		} else {
2268 			e_dbg("Flash controller busy, cannot get access\n");
2269 		}
2270 	}
2271 
2272 	return ret_val;
2273 }
2274 
2275 /**
2276  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2277  *  @hw: pointer to the HW structure
2278  *  @timeout: maximum time to wait for completion
2279  *
2280  *  This function starts a flash cycle and waits for its completion.
2281  **/
2282 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2283 {
2284 	union ich8_hws_flash_ctrl hsflctl;
2285 	union ich8_hws_flash_status hsfsts;
2286 	s32 ret_val = -E1000_ERR_NVM;
2287 	u32 i = 0;
2288 
2289 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2290 	hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2291 	hsflctl.hsf_ctrl.flcgo = 1;
2292 	ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2293 
2294 	/* wait till FDONE bit is set to 1 */
2295 	do {
2296 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2297 		if (hsfsts.hsf_status.flcdone == 1)
2298 			break;
2299 		udelay(1);
2300 	} while (i++ < timeout);
2301 
2302 	if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
2303 		return 0;
2304 
2305 	return ret_val;
2306 }
2307 
2308 /**
2309  *  e1000_read_flash_word_ich8lan - Read word from flash
2310  *  @hw: pointer to the HW structure
2311  *  @offset: offset to data location
2312  *  @data: pointer to the location for storing the data
2313  *
2314  *  Reads the flash word at offset into data.  Offset is converted
2315  *  to bytes before read.
2316  **/
2317 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2318 					 u16 *data)
2319 {
2320 	/* Must convert offset into bytes. */
2321 	offset <<= 1;
2322 
2323 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2324 }
2325 
2326 /**
2327  *  e1000_read_flash_byte_ich8lan - Read byte from flash
2328  *  @hw: pointer to the HW structure
2329  *  @offset: The offset of the byte to read.
2330  *  @data: Pointer to a byte to store the value read.
2331  *
2332  *  Reads a single byte from the NVM using the flash access registers.
2333  **/
2334 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2335 					 u8 *data)
2336 {
2337 	s32 ret_val;
2338 	u16 word = 0;
2339 
2340 	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
2341 	if (ret_val)
2342 		return ret_val;
2343 
2344 	*data = (u8)word;
2345 
2346 	return 0;
2347 }
2348 
2349 /**
2350  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
2351  *  @hw: pointer to the HW structure
2352  *  @offset: The offset (in bytes) of the byte or word to read.
2353  *  @size: Size of data to read, 1=byte 2=word
2354  *  @data: Pointer to the word to store the value read.
2355  *
2356  *  Reads a byte or word from the NVM using the flash access registers.
2357  **/
2358 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2359 					 u8 size, u16 *data)
2360 {
2361 	union ich8_hws_flash_status hsfsts;
2362 	union ich8_hws_flash_ctrl hsflctl;
2363 	u32 flash_linear_addr;
2364 	u32 flash_data = 0;
2365 	s32 ret_val = -E1000_ERR_NVM;
2366 	u8 count = 0;
2367 
2368 	if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2369 		return -E1000_ERR_NVM;
2370 
2371 	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2372 			    hw->nvm.flash_base_addr;
2373 
2374 	do {
2375 		udelay(1);
2376 		/* Steps */
2377 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
2378 		if (ret_val != 0)
2379 			break;
2380 
2381 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2382 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2383 		hsflctl.hsf_ctrl.fldbcount = size - 1;
2384 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2385 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2386 
2387 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2388 
2389 		ret_val = e1000_flash_cycle_ich8lan(hw,
2390 						ICH_FLASH_READ_COMMAND_TIMEOUT);
2391 
2392 		/*
2393 		 * Check if FCERR is set to 1, if set to 1, clear it
2394 		 * and try the whole sequence a few more times, else
2395 		 * read in (shift in) the Flash Data0, the order is
2396 		 * least significant byte first msb to lsb
2397 		 */
2398 		if (ret_val == 0) {
2399 			flash_data = er32flash(ICH_FLASH_FDATA0);
2400 			if (size == 1)
2401 				*data = (u8)(flash_data & 0x000000FF);
2402 			else if (size == 2)
2403 				*data = (u16)(flash_data & 0x0000FFFF);
2404 			break;
2405 		} else {
2406 			/*
2407 			 * If we've gotten here, then things are probably
2408 			 * completely hosed, but if the error condition is
2409 			 * detected, it won't hurt to give it another try...
2410 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2411 			 */
2412 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2413 			if (hsfsts.hsf_status.flcerr == 1) {
2414 				/* Repeat for some time before giving up. */
2415 				continue;
2416 			} else if (hsfsts.hsf_status.flcdone == 0) {
2417 				e_dbg("Timeout error - flash cycle "
2418 					 "did not complete.\n");
2419 				break;
2420 			}
2421 		}
2422 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2423 
2424 	return ret_val;
2425 }
2426 
2427 /**
2428  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
2429  *  @hw: pointer to the HW structure
2430  *  @offset: The offset (in bytes) of the word(s) to write.
2431  *  @words: Size of data to write in words
2432  *  @data: Pointer to the word(s) to write at offset.
2433  *
2434  *  Writes a byte or word to the NVM using the flash access registers.
2435  **/
2436 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2437 				   u16 *data)
2438 {
2439 	struct e1000_nvm_info *nvm = &hw->nvm;
2440 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2441 	u16 i;
2442 
2443 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2444 	    (words == 0)) {
2445 		e_dbg("nvm parameter(s) out of bounds\n");
2446 		return -E1000_ERR_NVM;
2447 	}
2448 
2449 	nvm->ops.acquire(hw);
2450 
2451 	for (i = 0; i < words; i++) {
2452 		dev_spec->shadow_ram[offset+i].modified = true;
2453 		dev_spec->shadow_ram[offset+i].value = data[i];
2454 	}
2455 
2456 	nvm->ops.release(hw);
2457 
2458 	return 0;
2459 }
2460 
2461 /**
2462  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2463  *  @hw: pointer to the HW structure
2464  *
2465  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
2466  *  which writes the checksum to the shadow ram.  The changes in the shadow
2467  *  ram are then committed to the EEPROM by processing each bank at a time
2468  *  checking for the modified bit and writing only the pending changes.
2469  *  After a successful commit, the shadow ram is cleared and is ready for
2470  *  future writes.
2471  **/
2472 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2473 {
2474 	struct e1000_nvm_info *nvm = &hw->nvm;
2475 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2476 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2477 	s32 ret_val;
2478 	u16 data;
2479 
2480 	ret_val = e1000e_update_nvm_checksum_generic(hw);
2481 	if (ret_val)
2482 		goto out;
2483 
2484 	if (nvm->type != e1000_nvm_flash_sw)
2485 		goto out;
2486 
2487 	nvm->ops.acquire(hw);
2488 
2489 	/*
2490 	 * We're writing to the opposite bank so if we're on bank 1,
2491 	 * write to bank 0 etc.  We also need to erase the segment that
2492 	 * is going to be written
2493 	 */
2494 	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2495 	if (ret_val) {
2496 		e_dbg("Could not detect valid bank, assuming bank 0\n");
2497 		bank = 0;
2498 	}
2499 
2500 	if (bank == 0) {
2501 		new_bank_offset = nvm->flash_bank_size;
2502 		old_bank_offset = 0;
2503 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2504 		if (ret_val)
2505 			goto release;
2506 	} else {
2507 		old_bank_offset = nvm->flash_bank_size;
2508 		new_bank_offset = 0;
2509 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2510 		if (ret_val)
2511 			goto release;
2512 	}
2513 
2514 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2515 		/*
2516 		 * Determine whether to write the value stored
2517 		 * in the other NVM bank or a modified value stored
2518 		 * in the shadow RAM
2519 		 */
2520 		if (dev_spec->shadow_ram[i].modified) {
2521 			data = dev_spec->shadow_ram[i].value;
2522 		} else {
2523 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
2524 			                                        old_bank_offset,
2525 			                                        &data);
2526 			if (ret_val)
2527 				break;
2528 		}
2529 
2530 		/*
2531 		 * If the word is 0x13, then make sure the signature bits
2532 		 * (15:14) are 11b until the commit has completed.
2533 		 * This will allow us to write 10b which indicates the
2534 		 * signature is valid.  We want to do this after the write
2535 		 * has completed so that we don't mark the segment valid
2536 		 * while the write is still in progress
2537 		 */
2538 		if (i == E1000_ICH_NVM_SIG_WORD)
2539 			data |= E1000_ICH_NVM_SIG_MASK;
2540 
2541 		/* Convert offset to bytes. */
2542 		act_offset = (i + new_bank_offset) << 1;
2543 
2544 		udelay(100);
2545 		/* Write the bytes to the new bank. */
2546 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2547 							       act_offset,
2548 							       (u8)data);
2549 		if (ret_val)
2550 			break;
2551 
2552 		udelay(100);
2553 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2554 							  act_offset + 1,
2555 							  (u8)(data >> 8));
2556 		if (ret_val)
2557 			break;
2558 	}
2559 
2560 	/*
2561 	 * Don't bother writing the segment valid bits if sector
2562 	 * programming failed.
2563 	 */
2564 	if (ret_val) {
2565 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2566 		e_dbg("Flash commit failed.\n");
2567 		goto release;
2568 	}
2569 
2570 	/*
2571 	 * Finally validate the new segment by setting bit 15:14
2572 	 * to 10b in word 0x13 , this can be done without an
2573 	 * erase as well since these bits are 11 to start with
2574 	 * and we need to change bit 14 to 0b
2575 	 */
2576 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2577 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2578 	if (ret_val)
2579 		goto release;
2580 
2581 	data &= 0xBFFF;
2582 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2583 						       act_offset * 2 + 1,
2584 						       (u8)(data >> 8));
2585 	if (ret_val)
2586 		goto release;
2587 
2588 	/*
2589 	 * And invalidate the previously valid segment by setting
2590 	 * its signature word (0x13) high_byte to 0b. This can be
2591 	 * done without an erase because flash erase sets all bits
2592 	 * to 1's. We can write 1's to 0's without an erase
2593 	 */
2594 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2595 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2596 	if (ret_val)
2597 		goto release;
2598 
2599 	/* Great!  Everything worked, we can now clear the cached entries. */
2600 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2601 		dev_spec->shadow_ram[i].modified = false;
2602 		dev_spec->shadow_ram[i].value = 0xFFFF;
2603 	}
2604 
2605 release:
2606 	nvm->ops.release(hw);
2607 
2608 	/*
2609 	 * Reload the EEPROM, or else modifications will not appear
2610 	 * until after the next adapter reset.
2611 	 */
2612 	if (!ret_val) {
2613 		e1000e_reload_nvm(hw);
2614 		usleep_range(10000, 20000);
2615 	}
2616 
2617 out:
2618 	if (ret_val)
2619 		e_dbg("NVM update error: %d\n", ret_val);
2620 
2621 	return ret_val;
2622 }
2623 
2624 /**
2625  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2626  *  @hw: pointer to the HW structure
2627  *
2628  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2629  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
2630  *  calculated, in which case we need to calculate the checksum and set bit 6.
2631  **/
2632 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2633 {
2634 	s32 ret_val;
2635 	u16 data;
2636 
2637 	/*
2638 	 * Read 0x19 and check bit 6.  If this bit is 0, the checksum
2639 	 * needs to be fixed.  This bit is an indication that the NVM
2640 	 * was prepared by OEM software and did not calculate the
2641 	 * checksum...a likely scenario.
2642 	 */
2643 	ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
2644 	if (ret_val)
2645 		return ret_val;
2646 
2647 	if ((data & 0x40) == 0) {
2648 		data |= 0x40;
2649 		ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
2650 		if (ret_val)
2651 			return ret_val;
2652 		ret_val = e1000e_update_nvm_checksum(hw);
2653 		if (ret_val)
2654 			return ret_val;
2655 	}
2656 
2657 	return e1000e_validate_nvm_checksum_generic(hw);
2658 }
2659 
2660 /**
2661  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2662  *  @hw: pointer to the HW structure
2663  *
2664  *  To prevent malicious write/erase of the NVM, set it to be read-only
2665  *  so that the hardware ignores all write/erase cycles of the NVM via
2666  *  the flash control registers.  The shadow-ram copy of the NVM will
2667  *  still be updated, however any updates to this copy will not stick
2668  *  across driver reloads.
2669  **/
2670 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2671 {
2672 	struct e1000_nvm_info *nvm = &hw->nvm;
2673 	union ich8_flash_protected_range pr0;
2674 	union ich8_hws_flash_status hsfsts;
2675 	u32 gfpreg;
2676 
2677 	nvm->ops.acquire(hw);
2678 
2679 	gfpreg = er32flash(ICH_FLASH_GFPREG);
2680 
2681 	/* Write-protect GbE Sector of NVM */
2682 	pr0.regval = er32flash(ICH_FLASH_PR0);
2683 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2684 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
2685 	pr0.range.wpe = true;
2686 	ew32flash(ICH_FLASH_PR0, pr0.regval);
2687 
2688 	/*
2689 	 * Lock down a subset of GbE Flash Control Registers, e.g.
2690 	 * PR0 to prevent the write-protection from being lifted.
2691 	 * Once FLOCKDN is set, the registers protected by it cannot
2692 	 * be written until FLOCKDN is cleared by a hardware reset.
2693 	 */
2694 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2695 	hsfsts.hsf_status.flockdn = true;
2696 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2697 
2698 	nvm->ops.release(hw);
2699 }
2700 
2701 /**
2702  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2703  *  @hw: pointer to the HW structure
2704  *  @offset: The offset (in bytes) of the byte/word to read.
2705  *  @size: Size of data to read, 1=byte 2=word
2706  *  @data: The byte(s) to write to the NVM.
2707  *
2708  *  Writes one/two bytes to the NVM using the flash access registers.
2709  **/
2710 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2711 					  u8 size, u16 data)
2712 {
2713 	union ich8_hws_flash_status hsfsts;
2714 	union ich8_hws_flash_ctrl hsflctl;
2715 	u32 flash_linear_addr;
2716 	u32 flash_data = 0;
2717 	s32 ret_val;
2718 	u8 count = 0;
2719 
2720 	if (size < 1 || size > 2 || data > size * 0xff ||
2721 	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
2722 		return -E1000_ERR_NVM;
2723 
2724 	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2725 			    hw->nvm.flash_base_addr;
2726 
2727 	do {
2728 		udelay(1);
2729 		/* Steps */
2730 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
2731 		if (ret_val)
2732 			break;
2733 
2734 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2735 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2736 		hsflctl.hsf_ctrl.fldbcount = size -1;
2737 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
2738 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2739 
2740 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2741 
2742 		if (size == 1)
2743 			flash_data = (u32)data & 0x00FF;
2744 		else
2745 			flash_data = (u32)data;
2746 
2747 		ew32flash(ICH_FLASH_FDATA0, flash_data);
2748 
2749 		/*
2750 		 * check if FCERR is set to 1 , if set to 1, clear it
2751 		 * and try the whole sequence a few more times else done
2752 		 */
2753 		ret_val = e1000_flash_cycle_ich8lan(hw,
2754 					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
2755 		if (!ret_val)
2756 			break;
2757 
2758 		/*
2759 		 * If we're here, then things are most likely
2760 		 * completely hosed, but if the error condition
2761 		 * is detected, it won't hurt to give it another
2762 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2763 		 */
2764 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2765 		if (hsfsts.hsf_status.flcerr == 1)
2766 			/* Repeat for some time before giving up. */
2767 			continue;
2768 		if (hsfsts.hsf_status.flcdone == 0) {
2769 			e_dbg("Timeout error - flash cycle "
2770 				 "did not complete.");
2771 			break;
2772 		}
2773 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2774 
2775 	return ret_val;
2776 }
2777 
2778 /**
2779  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2780  *  @hw: pointer to the HW structure
2781  *  @offset: The index of the byte to read.
2782  *  @data: The byte to write to the NVM.
2783  *
2784  *  Writes a single byte to the NVM using the flash access registers.
2785  **/
2786 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2787 					  u8 data)
2788 {
2789 	u16 word = (u16)data;
2790 
2791 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
2792 }
2793 
2794 /**
2795  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2796  *  @hw: pointer to the HW structure
2797  *  @offset: The offset of the byte to write.
2798  *  @byte: The byte to write to the NVM.
2799  *
2800  *  Writes a single byte to the NVM using the flash access registers.
2801  *  Goes through a retry algorithm before giving up.
2802  **/
2803 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
2804 						u32 offset, u8 byte)
2805 {
2806 	s32 ret_val;
2807 	u16 program_retries;
2808 
2809 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2810 	if (!ret_val)
2811 		return ret_val;
2812 
2813 	for (program_retries = 0; program_retries < 100; program_retries++) {
2814 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
2815 		udelay(100);
2816 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2817 		if (!ret_val)
2818 			break;
2819 	}
2820 	if (program_retries == 100)
2821 		return -E1000_ERR_NVM;
2822 
2823 	return 0;
2824 }
2825 
2826 /**
2827  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2828  *  @hw: pointer to the HW structure
2829  *  @bank: 0 for first bank, 1 for second bank, etc.
2830  *
2831  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2832  *  bank N is 4096 * N + flash_reg_addr.
2833  **/
2834 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2835 {
2836 	struct e1000_nvm_info *nvm = &hw->nvm;
2837 	union ich8_hws_flash_status hsfsts;
2838 	union ich8_hws_flash_ctrl hsflctl;
2839 	u32 flash_linear_addr;
2840 	/* bank size is in 16bit words - adjust to bytes */
2841 	u32 flash_bank_size = nvm->flash_bank_size * 2;
2842 	s32 ret_val;
2843 	s32 count = 0;
2844 	s32 j, iteration, sector_size;
2845 
2846 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2847 
2848 	/*
2849 	 * Determine HW Sector size: Read BERASE bits of hw flash status
2850 	 * register
2851 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
2852 	 *     consecutive sectors.  The start index for the nth Hw sector
2853 	 *     can be calculated as = bank * 4096 + n * 256
2854 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2855 	 *     The start index for the nth Hw sector can be calculated
2856 	 *     as = bank * 4096
2857 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2858 	 *     (ich9 only, otherwise error condition)
2859 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2860 	 */
2861 	switch (hsfsts.hsf_status.berasesz) {
2862 	case 0:
2863 		/* Hw sector size 256 */
2864 		sector_size = ICH_FLASH_SEG_SIZE_256;
2865 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
2866 		break;
2867 	case 1:
2868 		sector_size = ICH_FLASH_SEG_SIZE_4K;
2869 		iteration = 1;
2870 		break;
2871 	case 2:
2872 		sector_size = ICH_FLASH_SEG_SIZE_8K;
2873 		iteration = 1;
2874 		break;
2875 	case 3:
2876 		sector_size = ICH_FLASH_SEG_SIZE_64K;
2877 		iteration = 1;
2878 		break;
2879 	default:
2880 		return -E1000_ERR_NVM;
2881 	}
2882 
2883 	/* Start with the base address, then add the sector offset. */
2884 	flash_linear_addr = hw->nvm.flash_base_addr;
2885 	flash_linear_addr += (bank) ? flash_bank_size : 0;
2886 
2887 	for (j = 0; j < iteration ; j++) {
2888 		do {
2889 			/* Steps */
2890 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
2891 			if (ret_val)
2892 				return ret_val;
2893 
2894 			/*
2895 			 * Write a value 11 (block Erase) in Flash
2896 			 * Cycle field in hw flash control
2897 			 */
2898 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2899 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
2900 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2901 
2902 			/*
2903 			 * Write the last 24 bits of an index within the
2904 			 * block into Flash Linear address field in Flash
2905 			 * Address.
2906 			 */
2907 			flash_linear_addr += (j * sector_size);
2908 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2909 
2910 			ret_val = e1000_flash_cycle_ich8lan(hw,
2911 					       ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2912 			if (ret_val == 0)
2913 				break;
2914 
2915 			/*
2916 			 * Check if FCERR is set to 1.  If 1,
2917 			 * clear it and try the whole sequence
2918 			 * a few more times else Done
2919 			 */
2920 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2921 			if (hsfsts.hsf_status.flcerr == 1)
2922 				/* repeat for some time before giving up */
2923 				continue;
2924 			else if (hsfsts.hsf_status.flcdone == 0)
2925 				return ret_val;
2926 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2927 	}
2928 
2929 	return 0;
2930 }
2931 
2932 /**
2933  *  e1000_valid_led_default_ich8lan - Set the default LED settings
2934  *  @hw: pointer to the HW structure
2935  *  @data: Pointer to the LED settings
2936  *
2937  *  Reads the LED default settings from the NVM to data.  If the NVM LED
2938  *  settings is all 0's or F's, set the LED default to a valid LED default
2939  *  setting.
2940  **/
2941 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2942 {
2943 	s32 ret_val;
2944 
2945 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2946 	if (ret_val) {
2947 		e_dbg("NVM Read Error\n");
2948 		return ret_val;
2949 	}
2950 
2951 	if (*data == ID_LED_RESERVED_0000 ||
2952 	    *data == ID_LED_RESERVED_FFFF)
2953 		*data = ID_LED_DEFAULT_ICH8LAN;
2954 
2955 	return 0;
2956 }
2957 
2958 /**
2959  *  e1000_id_led_init_pchlan - store LED configurations
2960  *  @hw: pointer to the HW structure
2961  *
2962  *  PCH does not control LEDs via the LEDCTL register, rather it uses
2963  *  the PHY LED configuration register.
2964  *
2965  *  PCH also does not have an "always on" or "always off" mode which
2966  *  complicates the ID feature.  Instead of using the "on" mode to indicate
2967  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2968  *  use "link_up" mode.  The LEDs will still ID on request if there is no
2969  *  link based on logic in e1000_led_[on|off]_pchlan().
2970  **/
2971 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2972 {
2973 	struct e1000_mac_info *mac = &hw->mac;
2974 	s32 ret_val;
2975 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2976 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2977 	u16 data, i, temp, shift;
2978 
2979 	/* Get default ID LED modes */
2980 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2981 	if (ret_val)
2982 		goto out;
2983 
2984 	mac->ledctl_default = er32(LEDCTL);
2985 	mac->ledctl_mode1 = mac->ledctl_default;
2986 	mac->ledctl_mode2 = mac->ledctl_default;
2987 
2988 	for (i = 0; i < 4; i++) {
2989 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2990 		shift = (i * 5);
2991 		switch (temp) {
2992 		case ID_LED_ON1_DEF2:
2993 		case ID_LED_ON1_ON2:
2994 		case ID_LED_ON1_OFF2:
2995 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2996 			mac->ledctl_mode1 |= (ledctl_on << shift);
2997 			break;
2998 		case ID_LED_OFF1_DEF2:
2999 		case ID_LED_OFF1_ON2:
3000 		case ID_LED_OFF1_OFF2:
3001 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3002 			mac->ledctl_mode1 |= (ledctl_off << shift);
3003 			break;
3004 		default:
3005 			/* Do nothing */
3006 			break;
3007 		}
3008 		switch (temp) {
3009 		case ID_LED_DEF1_ON2:
3010 		case ID_LED_ON1_ON2:
3011 		case ID_LED_OFF1_ON2:
3012 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3013 			mac->ledctl_mode2 |= (ledctl_on << shift);
3014 			break;
3015 		case ID_LED_DEF1_OFF2:
3016 		case ID_LED_ON1_OFF2:
3017 		case ID_LED_OFF1_OFF2:
3018 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3019 			mac->ledctl_mode2 |= (ledctl_off << shift);
3020 			break;
3021 		default:
3022 			/* Do nothing */
3023 			break;
3024 		}
3025 	}
3026 
3027 out:
3028 	return ret_val;
3029 }
3030 
3031 /**
3032  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3033  *  @hw: pointer to the HW structure
3034  *
3035  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3036  *  register, so the the bus width is hard coded.
3037  **/
3038 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3039 {
3040 	struct e1000_bus_info *bus = &hw->bus;
3041 	s32 ret_val;
3042 
3043 	ret_val = e1000e_get_bus_info_pcie(hw);
3044 
3045 	/*
3046 	 * ICH devices are "PCI Express"-ish.  They have
3047 	 * a configuration space, but do not contain
3048 	 * PCI Express Capability registers, so bus width
3049 	 * must be hardcoded.
3050 	 */
3051 	if (bus->width == e1000_bus_width_unknown)
3052 		bus->width = e1000_bus_width_pcie_x1;
3053 
3054 	return ret_val;
3055 }
3056 
3057 /**
3058  *  e1000_reset_hw_ich8lan - Reset the hardware
3059  *  @hw: pointer to the HW structure
3060  *
3061  *  Does a full reset of the hardware which includes a reset of the PHY and
3062  *  MAC.
3063  **/
3064 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3065 {
3066 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3067 	u16 reg;
3068 	u32 ctrl, kab;
3069 	s32 ret_val;
3070 
3071 	/*
3072 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
3073 	 * on the last TLP read/write transaction when MAC is reset.
3074 	 */
3075 	ret_val = e1000e_disable_pcie_master(hw);
3076 	if (ret_val)
3077 		e_dbg("PCI-E Master disable polling has failed.\n");
3078 
3079 	e_dbg("Masking off all interrupts\n");
3080 	ew32(IMC, 0xffffffff);
3081 
3082 	/*
3083 	 * Disable the Transmit and Receive units.  Then delay to allow
3084 	 * any pending transactions to complete before we hit the MAC
3085 	 * with the global reset.
3086 	 */
3087 	ew32(RCTL, 0);
3088 	ew32(TCTL, E1000_TCTL_PSP);
3089 	e1e_flush();
3090 
3091 	usleep_range(10000, 20000);
3092 
3093 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
3094 	if (hw->mac.type == e1000_ich8lan) {
3095 		/* Set Tx and Rx buffer allocation to 8k apiece. */
3096 		ew32(PBA, E1000_PBA_8K);
3097 		/* Set Packet Buffer Size to 16k. */
3098 		ew32(PBS, E1000_PBS_16K);
3099 	}
3100 
3101 	if (hw->mac.type == e1000_pchlan) {
3102 		/* Save the NVM K1 bit setting*/
3103 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
3104 		if (ret_val)
3105 			return ret_val;
3106 
3107 		if (reg & E1000_NVM_K1_ENABLE)
3108 			dev_spec->nvm_k1_enabled = true;
3109 		else
3110 			dev_spec->nvm_k1_enabled = false;
3111 	}
3112 
3113 	ctrl = er32(CTRL);
3114 
3115 	if (!e1000_check_reset_block(hw)) {
3116 		/*
3117 		 * Full-chip reset requires MAC and PHY reset at the same
3118 		 * time to make sure the interface between MAC and the
3119 		 * external PHY is reset.
3120 		 */
3121 		ctrl |= E1000_CTRL_PHY_RST;
3122 
3123 		/*
3124 		 * Gate automatic PHY configuration by hardware on
3125 		 * non-managed 82579
3126 		 */
3127 		if ((hw->mac.type == e1000_pch2lan) &&
3128 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3129 			e1000_gate_hw_phy_config_ich8lan(hw, true);
3130 	}
3131 	ret_val = e1000_acquire_swflag_ich8lan(hw);
3132 	e_dbg("Issuing a global reset to ich8lan\n");
3133 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
3134 	/* cannot issue a flush here because it hangs the hardware */
3135 	msleep(20);
3136 
3137 	if (!ret_val)
3138 		mutex_unlock(&swflag_mutex);
3139 
3140 	if (ctrl & E1000_CTRL_PHY_RST) {
3141 		ret_val = hw->phy.ops.get_cfg_done(hw);
3142 		if (ret_val)
3143 			goto out;
3144 
3145 		ret_val = e1000_post_phy_reset_ich8lan(hw);
3146 		if (ret_val)
3147 			goto out;
3148 	}
3149 
3150 	/*
3151 	 * For PCH, this write will make sure that any noise
3152 	 * will be detected as a CRC error and be dropped rather than show up
3153 	 * as a bad packet to the DMA engine.
3154 	 */
3155 	if (hw->mac.type == e1000_pchlan)
3156 		ew32(CRC_OFFSET, 0x65656565);
3157 
3158 	ew32(IMC, 0xffffffff);
3159 	er32(ICR);
3160 
3161 	kab = er32(KABGTXD);
3162 	kab |= E1000_KABGTXD_BGSQLBIAS;
3163 	ew32(KABGTXD, kab);
3164 
3165 out:
3166 	return ret_val;
3167 }
3168 
3169 /**
3170  *  e1000_init_hw_ich8lan - Initialize the hardware
3171  *  @hw: pointer to the HW structure
3172  *
3173  *  Prepares the hardware for transmit and receive by doing the following:
3174  *   - initialize hardware bits
3175  *   - initialize LED identification
3176  *   - setup receive address registers
3177  *   - setup flow control
3178  *   - setup transmit descriptors
3179  *   - clear statistics
3180  **/
3181 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3182 {
3183 	struct e1000_mac_info *mac = &hw->mac;
3184 	u32 ctrl_ext, txdctl, snoop;
3185 	s32 ret_val;
3186 	u16 i;
3187 
3188 	e1000_initialize_hw_bits_ich8lan(hw);
3189 
3190 	/* Initialize identification LED */
3191 	ret_val = mac->ops.id_led_init(hw);
3192 	if (ret_val)
3193 		e_dbg("Error initializing identification LED\n");
3194 		/* This is not fatal and we should not stop init due to this */
3195 
3196 	/* Setup the receive address. */
3197 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3198 
3199 	/* Zero out the Multicast HASH table */
3200 	e_dbg("Zeroing the MTA\n");
3201 	for (i = 0; i < mac->mta_reg_count; i++)
3202 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3203 
3204 	/*
3205 	 * The 82578 Rx buffer will stall if wakeup is enabled in host and
3206 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
3207 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
3208 	 */
3209 	if (hw->phy.type == e1000_phy_82578) {
3210 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
3211 		i &= ~BM_WUC_HOST_WU_BIT;
3212 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
3213 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
3214 		if (ret_val)
3215 			return ret_val;
3216 	}
3217 
3218 	/* Setup link and flow control */
3219 	ret_val = e1000_setup_link_ich8lan(hw);
3220 
3221 	/* Set the transmit descriptor write-back policy for both queues */
3222 	txdctl = er32(TXDCTL(0));
3223 	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3224 		 E1000_TXDCTL_FULL_TX_DESC_WB;
3225 	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3226 		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3227 	ew32(TXDCTL(0), txdctl);
3228 	txdctl = er32(TXDCTL(1));
3229 	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3230 		 E1000_TXDCTL_FULL_TX_DESC_WB;
3231 	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3232 		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3233 	ew32(TXDCTL(1), txdctl);
3234 
3235 	/*
3236 	 * ICH8 has opposite polarity of no_snoop bits.
3237 	 * By default, we should use snoop behavior.
3238 	 */
3239 	if (mac->type == e1000_ich8lan)
3240 		snoop = PCIE_ICH8_SNOOP_ALL;
3241 	else
3242 		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
3243 	e1000e_set_pcie_no_snoop(hw, snoop);
3244 
3245 	ctrl_ext = er32(CTRL_EXT);
3246 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3247 	ew32(CTRL_EXT, ctrl_ext);
3248 
3249 	/*
3250 	 * Clear all of the statistics registers (clear on read).  It is
3251 	 * important that we do this after we have tried to establish link
3252 	 * because the symbol error count will increment wildly if there
3253 	 * is no link.
3254 	 */
3255 	e1000_clear_hw_cntrs_ich8lan(hw);
3256 
3257 	return 0;
3258 }
3259 /**
3260  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3261  *  @hw: pointer to the HW structure
3262  *
3263  *  Sets/Clears required hardware bits necessary for correctly setting up the
3264  *  hardware for transmit and receive.
3265  **/
3266 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3267 {
3268 	u32 reg;
3269 
3270 	/* Extended Device Control */
3271 	reg = er32(CTRL_EXT);
3272 	reg |= (1 << 22);
3273 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
3274 	if (hw->mac.type >= e1000_pchlan)
3275 		reg |= E1000_CTRL_EXT_PHYPDEN;
3276 	ew32(CTRL_EXT, reg);
3277 
3278 	/* Transmit Descriptor Control 0 */
3279 	reg = er32(TXDCTL(0));
3280 	reg |= (1 << 22);
3281 	ew32(TXDCTL(0), reg);
3282 
3283 	/* Transmit Descriptor Control 1 */
3284 	reg = er32(TXDCTL(1));
3285 	reg |= (1 << 22);
3286 	ew32(TXDCTL(1), reg);
3287 
3288 	/* Transmit Arbitration Control 0 */
3289 	reg = er32(TARC(0));
3290 	if (hw->mac.type == e1000_ich8lan)
3291 		reg |= (1 << 28) | (1 << 29);
3292 	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3293 	ew32(TARC(0), reg);
3294 
3295 	/* Transmit Arbitration Control 1 */
3296 	reg = er32(TARC(1));
3297 	if (er32(TCTL) & E1000_TCTL_MULR)
3298 		reg &= ~(1 << 28);
3299 	else
3300 		reg |= (1 << 28);
3301 	reg |= (1 << 24) | (1 << 26) | (1 << 30);
3302 	ew32(TARC(1), reg);
3303 
3304 	/* Device Status */
3305 	if (hw->mac.type == e1000_ich8lan) {
3306 		reg = er32(STATUS);
3307 		reg &= ~(1 << 31);
3308 		ew32(STATUS, reg);
3309 	}
3310 
3311 	/*
3312 	 * work-around descriptor data corruption issue during nfs v2 udp
3313 	 * traffic, just disable the nfs filtering capability
3314 	 */
3315 	reg = er32(RFCTL);
3316 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
3317 	ew32(RFCTL, reg);
3318 }
3319 
3320 /**
3321  *  e1000_setup_link_ich8lan - Setup flow control and link settings
3322  *  @hw: pointer to the HW structure
3323  *
3324  *  Determines which flow control settings to use, then configures flow
3325  *  control.  Calls the appropriate media-specific link configuration
3326  *  function.  Assuming the adapter has a valid link partner, a valid link
3327  *  should be established.  Assumes the hardware has previously been reset
3328  *  and the transmitter and receiver are not enabled.
3329  **/
3330 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3331 {
3332 	s32 ret_val;
3333 
3334 	if (e1000_check_reset_block(hw))
3335 		return 0;
3336 
3337 	/*
3338 	 * ICH parts do not have a word in the NVM to determine
3339 	 * the default flow control setting, so we explicitly
3340 	 * set it to full.
3341 	 */
3342 	if (hw->fc.requested_mode == e1000_fc_default) {
3343 		/* Workaround h/w hang when Tx flow control enabled */
3344 		if (hw->mac.type == e1000_pchlan)
3345 			hw->fc.requested_mode = e1000_fc_rx_pause;
3346 		else
3347 			hw->fc.requested_mode = e1000_fc_full;
3348 	}
3349 
3350 	/*
3351 	 * Save off the requested flow control mode for use later.  Depending
3352 	 * on the link partner's capabilities, we may or may not use this mode.
3353 	 */
3354 	hw->fc.current_mode = hw->fc.requested_mode;
3355 
3356 	e_dbg("After fix-ups FlowControl is now = %x\n",
3357 		hw->fc.current_mode);
3358 
3359 	/* Continue to configure the copper link. */
3360 	ret_val = e1000_setup_copper_link_ich8lan(hw);
3361 	if (ret_val)
3362 		return ret_val;
3363 
3364 	ew32(FCTTV, hw->fc.pause_time);
3365 	if ((hw->phy.type == e1000_phy_82578) ||
3366 	    (hw->phy.type == e1000_phy_82579) ||
3367 	    (hw->phy.type == e1000_phy_82577)) {
3368 		ew32(FCRTV_PCH, hw->fc.refresh_time);
3369 
3370 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
3371 				   hw->fc.pause_time);
3372 		if (ret_val)
3373 			return ret_val;
3374 	}
3375 
3376 	return e1000e_set_fc_watermarks(hw);
3377 }
3378 
3379 /**
3380  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3381  *  @hw: pointer to the HW structure
3382  *
3383  *  Configures the kumeran interface to the PHY to wait the appropriate time
3384  *  when polling the PHY, then call the generic setup_copper_link to finish
3385  *  configuring the copper link.
3386  **/
3387 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3388 {
3389 	u32 ctrl;
3390 	s32 ret_val;
3391 	u16 reg_data;
3392 
3393 	ctrl = er32(CTRL);
3394 	ctrl |= E1000_CTRL_SLU;
3395 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3396 	ew32(CTRL, ctrl);
3397 
3398 	/*
3399 	 * Set the mac to wait the maximum time between each iteration
3400 	 * and increase the max iterations when polling the phy;
3401 	 * this fixes erroneous timeouts at 10Mbps.
3402 	 */
3403 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3404 	if (ret_val)
3405 		return ret_val;
3406 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3407 	                               &reg_data);
3408 	if (ret_val)
3409 		return ret_val;
3410 	reg_data |= 0x3F;
3411 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3412 	                                reg_data);
3413 	if (ret_val)
3414 		return ret_val;
3415 
3416 	switch (hw->phy.type) {
3417 	case e1000_phy_igp_3:
3418 		ret_val = e1000e_copper_link_setup_igp(hw);
3419 		if (ret_val)
3420 			return ret_val;
3421 		break;
3422 	case e1000_phy_bm:
3423 	case e1000_phy_82578:
3424 		ret_val = e1000e_copper_link_setup_m88(hw);
3425 		if (ret_val)
3426 			return ret_val;
3427 		break;
3428 	case e1000_phy_82577:
3429 	case e1000_phy_82579:
3430 		ret_val = e1000_copper_link_setup_82577(hw);
3431 		if (ret_val)
3432 			return ret_val;
3433 		break;
3434 	case e1000_phy_ife:
3435 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
3436 		if (ret_val)
3437 			return ret_val;
3438 
3439 		reg_data &= ~IFE_PMC_AUTO_MDIX;
3440 
3441 		switch (hw->phy.mdix) {
3442 		case 1:
3443 			reg_data &= ~IFE_PMC_FORCE_MDIX;
3444 			break;
3445 		case 2:
3446 			reg_data |= IFE_PMC_FORCE_MDIX;
3447 			break;
3448 		case 0:
3449 		default:
3450 			reg_data |= IFE_PMC_AUTO_MDIX;
3451 			break;
3452 		}
3453 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
3454 		if (ret_val)
3455 			return ret_val;
3456 		break;
3457 	default:
3458 		break;
3459 	}
3460 	return e1000e_setup_copper_link(hw);
3461 }
3462 
3463 /**
3464  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3465  *  @hw: pointer to the HW structure
3466  *  @speed: pointer to store current link speed
3467  *  @duplex: pointer to store the current link duplex
3468  *
3469  *  Calls the generic get_speed_and_duplex to retrieve the current link
3470  *  information and then calls the Kumeran lock loss workaround for links at
3471  *  gigabit speeds.
3472  **/
3473 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3474 					  u16 *duplex)
3475 {
3476 	s32 ret_val;
3477 
3478 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3479 	if (ret_val)
3480 		return ret_val;
3481 
3482 	if ((hw->mac.type == e1000_ich8lan) &&
3483 	    (hw->phy.type == e1000_phy_igp_3) &&
3484 	    (*speed == SPEED_1000)) {
3485 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3486 	}
3487 
3488 	return ret_val;
3489 }
3490 
3491 /**
3492  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3493  *  @hw: pointer to the HW structure
3494  *
3495  *  Work-around for 82566 Kumeran PCS lock loss:
3496  *  On link status change (i.e. PCI reset, speed change) and link is up and
3497  *  speed is gigabit-
3498  *    0) if workaround is optionally disabled do nothing
3499  *    1) wait 1ms for Kumeran link to come up
3500  *    2) check Kumeran Diagnostic register PCS lock loss bit
3501  *    3) if not set the link is locked (all is good), otherwise...
3502  *    4) reset the PHY
3503  *    5) repeat up to 10 times
3504  *  Note: this is only called for IGP3 copper when speed is 1gb.
3505  **/
3506 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3507 {
3508 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3509 	u32 phy_ctrl;
3510 	s32 ret_val;
3511 	u16 i, data;
3512 	bool link;
3513 
3514 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3515 		return 0;
3516 
3517 	/*
3518 	 * Make sure link is up before proceeding.  If not just return.
3519 	 * Attempting this while link is negotiating fouled up link
3520 	 * stability
3521 	 */
3522 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3523 	if (!link)
3524 		return 0;
3525 
3526 	for (i = 0; i < 10; i++) {
3527 		/* read once to clear */
3528 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3529 		if (ret_val)
3530 			return ret_val;
3531 		/* and again to get new status */
3532 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3533 		if (ret_val)
3534 			return ret_val;
3535 
3536 		/* check for PCS lock */
3537 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3538 			return 0;
3539 
3540 		/* Issue PHY reset */
3541 		e1000_phy_hw_reset(hw);
3542 		mdelay(5);
3543 	}
3544 	/* Disable GigE link negotiation */
3545 	phy_ctrl = er32(PHY_CTRL);
3546 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3547 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3548 	ew32(PHY_CTRL, phy_ctrl);
3549 
3550 	/*
3551 	 * Call gig speed drop workaround on Gig disable before accessing
3552 	 * any PHY registers
3553 	 */
3554 	e1000e_gig_downshift_workaround_ich8lan(hw);
3555 
3556 	/* unable to acquire PCS lock */
3557 	return -E1000_ERR_PHY;
3558 }
3559 
3560 /**
3561  *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3562  *  @hw: pointer to the HW structure
3563  *  @state: boolean value used to set the current Kumeran workaround state
3564  *
3565  *  If ICH8, set the current Kumeran workaround state (enabled - true
3566  *  /disabled - false).
3567  **/
3568 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3569 						 bool state)
3570 {
3571 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3572 
3573 	if (hw->mac.type != e1000_ich8lan) {
3574 		e_dbg("Workaround applies to ICH8 only.\n");
3575 		return;
3576 	}
3577 
3578 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
3579 }
3580 
3581 /**
3582  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3583  *  @hw: pointer to the HW structure
3584  *
3585  *  Workaround for 82566 power-down on D3 entry:
3586  *    1) disable gigabit link
3587  *    2) write VR power-down enable
3588  *    3) read it back
3589  *  Continue if successful, else issue LCD reset and repeat
3590  **/
3591 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3592 {
3593 	u32 reg;
3594 	u16 data;
3595 	u8  retry = 0;
3596 
3597 	if (hw->phy.type != e1000_phy_igp_3)
3598 		return;
3599 
3600 	/* Try the workaround twice (if needed) */
3601 	do {
3602 		/* Disable link */
3603 		reg = er32(PHY_CTRL);
3604 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3605 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3606 		ew32(PHY_CTRL, reg);
3607 
3608 		/*
3609 		 * Call gig speed drop workaround on Gig disable before
3610 		 * accessing any PHY registers
3611 		 */
3612 		if (hw->mac.type == e1000_ich8lan)
3613 			e1000e_gig_downshift_workaround_ich8lan(hw);
3614 
3615 		/* Write VR power-down enable */
3616 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
3617 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3618 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3619 
3620 		/* Read it back and test */
3621 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
3622 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3623 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3624 			break;
3625 
3626 		/* Issue PHY reset and repeat at most one more time */
3627 		reg = er32(CTRL);
3628 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3629 		retry++;
3630 	} while (retry);
3631 }
3632 
3633 /**
3634  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3635  *  @hw: pointer to the HW structure
3636  *
3637  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3638  *  LPLU, Gig disable, MDIC PHY reset):
3639  *    1) Set Kumeran Near-end loopback
3640  *    2) Clear Kumeran Near-end loopback
3641  *  Should only be called for ICH8[m] devices with IGP_3 Phy.
3642  **/
3643 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3644 {
3645 	s32 ret_val;
3646 	u16 reg_data;
3647 
3648 	if ((hw->mac.type != e1000_ich8lan) ||
3649 	    (hw->phy.type != e1000_phy_igp_3))
3650 		return;
3651 
3652 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3653 				      &reg_data);
3654 	if (ret_val)
3655 		return;
3656 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3657 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3658 				       reg_data);
3659 	if (ret_val)
3660 		return;
3661 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3662 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3663 				       reg_data);
3664 }
3665 
3666 /**
3667  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
3668  *  @hw: pointer to the HW structure
3669  *
3670  *  During S0 to Sx transition, it is possible the link remains at gig
3671  *  instead of negotiating to a lower speed.  Before going to Sx, set
3672  *  'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
3673  *  to a lower speed.  For PCH and newer parts, the OEM bits PHY register
3674  *  (LED, GbE disable and LPLU configurations) also needs to be written.
3675  **/
3676 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
3677 {
3678 	u32 phy_ctrl;
3679 	s32 ret_val;
3680 
3681 	phy_ctrl = er32(PHY_CTRL);
3682 	phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU | E1000_PHY_CTRL_GBE_DISABLE;
3683 	ew32(PHY_CTRL, phy_ctrl);
3684 
3685 	if (hw->mac.type >= e1000_pchlan) {
3686 		e1000_oem_bits_config_ich8lan(hw, false);
3687 		ret_val = hw->phy.ops.acquire(hw);
3688 		if (ret_val)
3689 			return;
3690 		e1000_write_smbus_addr(hw);
3691 		hw->phy.ops.release(hw);
3692 	}
3693 }
3694 
3695 /**
3696  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
3697  *  @hw: pointer to the HW structure
3698  *
3699  *  During Sx to S0 transitions on non-managed devices or managed devices
3700  *  on which PHY resets are not blocked, if the PHY registers cannot be
3701  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
3702  *  the PHY.
3703  **/
3704 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
3705 {
3706 	u32 fwsm;
3707 
3708 	if (hw->mac.type != e1000_pch2lan)
3709 		return;
3710 
3711 	fwsm = er32(FWSM);
3712 	if (!(fwsm & E1000_ICH_FWSM_FW_VALID) || !e1000_check_reset_block(hw)) {
3713 		u16 phy_id1, phy_id2;
3714 		s32 ret_val;
3715 
3716 		ret_val = hw->phy.ops.acquire(hw);
3717 		if (ret_val) {
3718 			e_dbg("Failed to acquire PHY semaphore in resume\n");
3719 			return;
3720 		}
3721 
3722 		/* Test access to the PHY registers by reading the ID regs */
3723 		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_id1);
3724 		if (ret_val)
3725 			goto release;
3726 		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_id2);
3727 		if (ret_val)
3728 			goto release;
3729 
3730 		if (hw->phy.id == ((u32)(phy_id1 << 16) |
3731 				   (u32)(phy_id2 & PHY_REVISION_MASK)))
3732 			goto release;
3733 
3734 		e1000_toggle_lanphypc_value_ich8lan(hw);
3735 
3736 		hw->phy.ops.release(hw);
3737 		msleep(50);
3738 		e1000_phy_hw_reset(hw);
3739 		msleep(50);
3740 		return;
3741 	}
3742 
3743 release:
3744 	hw->phy.ops.release(hw);
3745 
3746 	return;
3747 }
3748 
3749 /**
3750  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
3751  *  @hw: pointer to the HW structure
3752  *
3753  *  Return the LED back to the default configuration.
3754  **/
3755 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
3756 {
3757 	if (hw->phy.type == e1000_phy_ife)
3758 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
3759 
3760 	ew32(LEDCTL, hw->mac.ledctl_default);
3761 	return 0;
3762 }
3763 
3764 /**
3765  *  e1000_led_on_ich8lan - Turn LEDs on
3766  *  @hw: pointer to the HW structure
3767  *
3768  *  Turn on the LEDs.
3769  **/
3770 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
3771 {
3772 	if (hw->phy.type == e1000_phy_ife)
3773 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3774 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
3775 
3776 	ew32(LEDCTL, hw->mac.ledctl_mode2);
3777 	return 0;
3778 }
3779 
3780 /**
3781  *  e1000_led_off_ich8lan - Turn LEDs off
3782  *  @hw: pointer to the HW structure
3783  *
3784  *  Turn off the LEDs.
3785  **/
3786 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
3787 {
3788 	if (hw->phy.type == e1000_phy_ife)
3789 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3790 				(IFE_PSCL_PROBE_MODE |
3791 				 IFE_PSCL_PROBE_LEDS_OFF));
3792 
3793 	ew32(LEDCTL, hw->mac.ledctl_mode1);
3794 	return 0;
3795 }
3796 
3797 /**
3798  *  e1000_setup_led_pchlan - Configures SW controllable LED
3799  *  @hw: pointer to the HW structure
3800  *
3801  *  This prepares the SW controllable LED for use.
3802  **/
3803 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
3804 {
3805 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
3806 }
3807 
3808 /**
3809  *  e1000_cleanup_led_pchlan - Restore the default LED operation
3810  *  @hw: pointer to the HW structure
3811  *
3812  *  Return the LED back to the default configuration.
3813  **/
3814 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
3815 {
3816 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
3817 }
3818 
3819 /**
3820  *  e1000_led_on_pchlan - Turn LEDs on
3821  *  @hw: pointer to the HW structure
3822  *
3823  *  Turn on the LEDs.
3824  **/
3825 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
3826 {
3827 	u16 data = (u16)hw->mac.ledctl_mode2;
3828 	u32 i, led;
3829 
3830 	/*
3831 	 * If no link, then turn LED on by setting the invert bit
3832 	 * for each LED that's mode is "link_up" in ledctl_mode2.
3833 	 */
3834 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
3835 		for (i = 0; i < 3; i++) {
3836 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3837 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
3838 			    E1000_LEDCTL_MODE_LINK_UP)
3839 				continue;
3840 			if (led & E1000_PHY_LED0_IVRT)
3841 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3842 			else
3843 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
3844 		}
3845 	}
3846 
3847 	return e1e_wphy(hw, HV_LED_CONFIG, data);
3848 }
3849 
3850 /**
3851  *  e1000_led_off_pchlan - Turn LEDs off
3852  *  @hw: pointer to the HW structure
3853  *
3854  *  Turn off the LEDs.
3855  **/
3856 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
3857 {
3858 	u16 data = (u16)hw->mac.ledctl_mode1;
3859 	u32 i, led;
3860 
3861 	/*
3862 	 * If no link, then turn LED off by clearing the invert bit
3863 	 * for each LED that's mode is "link_up" in ledctl_mode1.
3864 	 */
3865 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
3866 		for (i = 0; i < 3; i++) {
3867 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3868 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
3869 			    E1000_LEDCTL_MODE_LINK_UP)
3870 				continue;
3871 			if (led & E1000_PHY_LED0_IVRT)
3872 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3873 			else
3874 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
3875 		}
3876 	}
3877 
3878 	return e1e_wphy(hw, HV_LED_CONFIG, data);
3879 }
3880 
3881 /**
3882  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
3883  *  @hw: pointer to the HW structure
3884  *
3885  *  Read appropriate register for the config done bit for completion status
3886  *  and configure the PHY through s/w for EEPROM-less parts.
3887  *
3888  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
3889  *  config done bit, so only an error is logged and continues.  If we were
3890  *  to return with error, EEPROM-less silicon would not be able to be reset
3891  *  or change link.
3892  **/
3893 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
3894 {
3895 	s32 ret_val = 0;
3896 	u32 bank = 0;
3897 	u32 status;
3898 
3899 	e1000e_get_cfg_done(hw);
3900 
3901 	/* Wait for indication from h/w that it has completed basic config */
3902 	if (hw->mac.type >= e1000_ich10lan) {
3903 		e1000_lan_init_done_ich8lan(hw);
3904 	} else {
3905 		ret_val = e1000e_get_auto_rd_done(hw);
3906 		if (ret_val) {
3907 			/*
3908 			 * When auto config read does not complete, do not
3909 			 * return with an error. This can happen in situations
3910 			 * where there is no eeprom and prevents getting link.
3911 			 */
3912 			e_dbg("Auto Read Done did not complete\n");
3913 			ret_val = 0;
3914 		}
3915 	}
3916 
3917 	/* Clear PHY Reset Asserted bit */
3918 	status = er32(STATUS);
3919 	if (status & E1000_STATUS_PHYRA)
3920 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
3921 	else
3922 		e_dbg("PHY Reset Asserted not set - needs delay\n");
3923 
3924 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
3925 	if (hw->mac.type <= e1000_ich9lan) {
3926 		if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
3927 		    (hw->phy.type == e1000_phy_igp_3)) {
3928 			e1000e_phy_init_script_igp3(hw);
3929 		}
3930 	} else {
3931 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
3932 			/* Maybe we should do a basic PHY config */
3933 			e_dbg("EEPROM not present\n");
3934 			ret_val = -E1000_ERR_CONFIG;
3935 		}
3936 	}
3937 
3938 	return ret_val;
3939 }
3940 
3941 /**
3942  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
3943  * @hw: pointer to the HW structure
3944  *
3945  * In the case of a PHY power down to save power, or to turn off link during a
3946  * driver unload, or wake on lan is not enabled, remove the link.
3947  **/
3948 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
3949 {
3950 	/* If the management interface is not enabled, then power down */
3951 	if (!(hw->mac.ops.check_mng_mode(hw) ||
3952 	      hw->phy.ops.check_reset_block(hw)))
3953 		e1000_power_down_phy_copper(hw);
3954 }
3955 
3956 /**
3957  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3958  *  @hw: pointer to the HW structure
3959  *
3960  *  Clears hardware counters specific to the silicon family and calls
3961  *  clear_hw_cntrs_generic to clear all general purpose counters.
3962  **/
3963 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
3964 {
3965 	u16 phy_data;
3966 	s32 ret_val;
3967 
3968 	e1000e_clear_hw_cntrs_base(hw);
3969 
3970 	er32(ALGNERRC);
3971 	er32(RXERRC);
3972 	er32(TNCRS);
3973 	er32(CEXTERR);
3974 	er32(TSCTC);
3975 	er32(TSCTFC);
3976 
3977 	er32(MGTPRC);
3978 	er32(MGTPDC);
3979 	er32(MGTPTC);
3980 
3981 	er32(IAC);
3982 	er32(ICRXOC);
3983 
3984 	/* Clear PHY statistics registers */
3985 	if ((hw->phy.type == e1000_phy_82578) ||
3986 	    (hw->phy.type == e1000_phy_82579) ||
3987 	    (hw->phy.type == e1000_phy_82577)) {
3988 		ret_val = hw->phy.ops.acquire(hw);
3989 		if (ret_val)
3990 			return;
3991 		ret_val = hw->phy.ops.set_page(hw,
3992 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
3993 		if (ret_val)
3994 			goto release;
3995 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
3996 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
3997 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
3998 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
3999 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4000 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4001 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4002 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4003 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4004 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4005 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4006 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4007 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4008 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4009 release:
4010 		hw->phy.ops.release(hw);
4011 	}
4012 }
4013 
4014 static struct e1000_mac_operations ich8_mac_ops = {
4015 	.id_led_init		= e1000e_id_led_init,
4016 	/* check_mng_mode dependent on mac type */
4017 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
4018 	/* cleanup_led dependent on mac type */
4019 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
4020 	.get_bus_info		= e1000_get_bus_info_ich8lan,
4021 	.set_lan_id		= e1000_set_lan_id_single_port,
4022 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
4023 	/* led_on dependent on mac type */
4024 	/* led_off dependent on mac type */
4025 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
4026 	.reset_hw		= e1000_reset_hw_ich8lan,
4027 	.init_hw		= e1000_init_hw_ich8lan,
4028 	.setup_link		= e1000_setup_link_ich8lan,
4029 	.setup_physical_interface= e1000_setup_copper_link_ich8lan,
4030 	/* id_led_init dependent on mac type */
4031 };
4032 
4033 static struct e1000_phy_operations ich8_phy_ops = {
4034 	.acquire		= e1000_acquire_swflag_ich8lan,
4035 	.check_reset_block	= e1000_check_reset_block_ich8lan,
4036 	.commit			= NULL,
4037 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
4038 	.get_cable_length	= e1000e_get_cable_length_igp_2,
4039 	.read_reg		= e1000e_read_phy_reg_igp,
4040 	.release		= e1000_release_swflag_ich8lan,
4041 	.reset			= e1000_phy_hw_reset_ich8lan,
4042 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
4043 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
4044 	.write_reg		= e1000e_write_phy_reg_igp,
4045 };
4046 
4047 static struct e1000_nvm_operations ich8_nvm_ops = {
4048 	.acquire		= e1000_acquire_nvm_ich8lan,
4049 	.read		 	= e1000_read_nvm_ich8lan,
4050 	.release		= e1000_release_nvm_ich8lan,
4051 	.update			= e1000_update_nvm_checksum_ich8lan,
4052 	.valid_led_default	= e1000_valid_led_default_ich8lan,
4053 	.validate		= e1000_validate_nvm_checksum_ich8lan,
4054 	.write			= e1000_write_nvm_ich8lan,
4055 };
4056 
4057 struct e1000_info e1000_ich8_info = {
4058 	.mac			= e1000_ich8lan,
4059 	.flags			= FLAG_HAS_WOL
4060 				  | FLAG_IS_ICH
4061 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4062 				  | FLAG_HAS_AMT
4063 				  | FLAG_HAS_FLASH
4064 				  | FLAG_APME_IN_WUC,
4065 	.pba			= 8,
4066 	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
4067 	.get_variants		= e1000_get_variants_ich8lan,
4068 	.mac_ops		= &ich8_mac_ops,
4069 	.phy_ops		= &ich8_phy_ops,
4070 	.nvm_ops		= &ich8_nvm_ops,
4071 };
4072 
4073 struct e1000_info e1000_ich9_info = {
4074 	.mac			= e1000_ich9lan,
4075 	.flags			= FLAG_HAS_JUMBO_FRAMES
4076 				  | FLAG_IS_ICH
4077 				  | FLAG_HAS_WOL
4078 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4079 				  | FLAG_HAS_AMT
4080 				  | FLAG_HAS_ERT
4081 				  | FLAG_HAS_FLASH
4082 				  | FLAG_APME_IN_WUC,
4083 	.pba			= 10,
4084 	.max_hw_frame_size	= DEFAULT_JUMBO,
4085 	.get_variants		= e1000_get_variants_ich8lan,
4086 	.mac_ops		= &ich8_mac_ops,
4087 	.phy_ops		= &ich8_phy_ops,
4088 	.nvm_ops		= &ich8_nvm_ops,
4089 };
4090 
4091 struct e1000_info e1000_ich10_info = {
4092 	.mac			= e1000_ich10lan,
4093 	.flags			= FLAG_HAS_JUMBO_FRAMES
4094 				  | FLAG_IS_ICH
4095 				  | FLAG_HAS_WOL
4096 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4097 				  | FLAG_HAS_AMT
4098 				  | FLAG_HAS_ERT
4099 				  | FLAG_HAS_FLASH
4100 				  | FLAG_APME_IN_WUC,
4101 	.pba			= 10,
4102 	.max_hw_frame_size	= DEFAULT_JUMBO,
4103 	.get_variants		= e1000_get_variants_ich8lan,
4104 	.mac_ops		= &ich8_mac_ops,
4105 	.phy_ops		= &ich8_phy_ops,
4106 	.nvm_ops		= &ich8_nvm_ops,
4107 };
4108 
4109 struct e1000_info e1000_pch_info = {
4110 	.mac			= e1000_pchlan,
4111 	.flags			= FLAG_IS_ICH
4112 				  | FLAG_HAS_WOL
4113 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4114 				  | FLAG_HAS_AMT
4115 				  | FLAG_HAS_FLASH
4116 				  | FLAG_HAS_JUMBO_FRAMES
4117 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
4118 				  | FLAG_APME_IN_WUC,
4119 	.flags2			= FLAG2_HAS_PHY_STATS,
4120 	.pba			= 26,
4121 	.max_hw_frame_size	= 4096,
4122 	.get_variants		= e1000_get_variants_ich8lan,
4123 	.mac_ops		= &ich8_mac_ops,
4124 	.phy_ops		= &ich8_phy_ops,
4125 	.nvm_ops		= &ich8_nvm_ops,
4126 };
4127 
4128 struct e1000_info e1000_pch2_info = {
4129 	.mac			= e1000_pch2lan,
4130 	.flags			= FLAG_IS_ICH
4131 				  | FLAG_HAS_WOL
4132 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4133 				  | FLAG_HAS_AMT
4134 				  | FLAG_HAS_FLASH
4135 				  | FLAG_HAS_JUMBO_FRAMES
4136 				  | FLAG_APME_IN_WUC,
4137 	.flags2			= FLAG2_HAS_PHY_STATS
4138 				  | FLAG2_HAS_EEE,
4139 	.pba			= 26,
4140 	.max_hw_frame_size	= DEFAULT_JUMBO,
4141 	.get_variants		= e1000_get_variants_ich8lan,
4142 	.mac_ops		= &ich8_mac_ops,
4143 	.phy_ops		= &ich8_phy_ops,
4144 	.nvm_ops		= &ich8_nvm_ops,
4145 };
4146