xref: /linux/drivers/net/ethernet/intel/e1000e/ich8lan.c (revision b0d5c81e872ed21de1e56feb0fa6e4161da7be61)
1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21 
22 /* 82562G 10/100 Network Connection
23  * 82562G-2 10/100 Network Connection
24  * 82562GT 10/100 Network Connection
25  * 82562GT-2 10/100 Network Connection
26  * 82562V 10/100 Network Connection
27  * 82562V-2 10/100 Network Connection
28  * 82566DC-2 Gigabit Network Connection
29  * 82566DC Gigabit Network Connection
30  * 82566DM-2 Gigabit Network Connection
31  * 82566DM Gigabit Network Connection
32  * 82566MC Gigabit Network Connection
33  * 82566MM Gigabit Network Connection
34  * 82567LM Gigabit Network Connection
35  * 82567LF Gigabit Network Connection
36  * 82567V Gigabit Network Connection
37  * 82567LM-2 Gigabit Network Connection
38  * 82567LF-2 Gigabit Network Connection
39  * 82567V-2 Gigabit Network Connection
40  * 82567LF-3 Gigabit Network Connection
41  * 82567LM-3 Gigabit Network Connection
42  * 82567LM-4 Gigabit Network Connection
43  * 82577LM Gigabit Network Connection
44  * 82577LC Gigabit Network Connection
45  * 82578DM Gigabit Network Connection
46  * 82578DC Gigabit Network Connection
47  * 82579LM Gigabit Network Connection
48  * 82579V Gigabit Network Connection
49  * Ethernet Connection I217-LM
50  * Ethernet Connection I217-V
51  * Ethernet Connection I218-V
52  * Ethernet Connection I218-LM
53  * Ethernet Connection (2) I218-LM
54  * Ethernet Connection (2) I218-V
55  * Ethernet Connection (3) I218-LM
56  * Ethernet Connection (3) I218-V
57  */
58 
59 #include "e1000.h"
60 
61 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
62 /* Offset 04h HSFSTS */
63 union ich8_hws_flash_status {
64 	struct ich8_hsfsts {
65 		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
66 		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
67 		u16 dael:1;	/* bit 2 Direct Access error Log */
68 		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
69 		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
70 		u16 reserved1:2;	/* bit 13:6 Reserved */
71 		u16 reserved2:6;	/* bit 13:6 Reserved */
72 		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
73 		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
74 	} hsf_status;
75 	u16 regval;
76 };
77 
78 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
79 /* Offset 06h FLCTL */
80 union ich8_hws_flash_ctrl {
81 	struct ich8_hsflctl {
82 		u16 flcgo:1;	/* 0 Flash Cycle Go */
83 		u16 flcycle:2;	/* 2:1 Flash Cycle */
84 		u16 reserved:5;	/* 7:3 Reserved  */
85 		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
86 		u16 flockdn:6;	/* 15:10 Reserved */
87 	} hsf_ctrl;
88 	u16 regval;
89 };
90 
91 /* ICH Flash Region Access Permissions */
92 union ich8_hws_flash_regacc {
93 	struct ich8_flracc {
94 		u32 grra:8;	/* 0:7 GbE region Read Access */
95 		u32 grwa:8;	/* 8:15 GbE region Write Access */
96 		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
97 		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
98 	} hsf_flregacc;
99 	u16 regval;
100 };
101 
102 /* ICH Flash Protected Region */
103 union ich8_flash_protected_range {
104 	struct ich8_pr {
105 		u32 base:13;	/* 0:12 Protected Range Base */
106 		u32 reserved1:2;	/* 13:14 Reserved */
107 		u32 rpe:1;	/* 15 Read Protection Enable */
108 		u32 limit:13;	/* 16:28 Protected Range Limit */
109 		u32 reserved2:2;	/* 29:30 Reserved */
110 		u32 wpe:1;	/* 31 Write Protection Enable */
111 	} range;
112 	u32 regval;
113 };
114 
115 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
116 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
118 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
119 						u32 offset, u8 byte);
120 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
121 					 u8 *data);
122 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
123 					 u16 *data);
124 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
125 					 u8 size, u16 *data);
126 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
127 					   u32 *data);
128 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
129 					  u32 offset, u32 *data);
130 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
131 					    u32 offset, u32 data);
132 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
133 						 u32 offset, u32 dword);
134 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
135 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
136 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
137 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
138 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
139 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
140 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
141 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
142 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
143 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
144 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
145 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
146 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
147 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
148 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
149 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
150 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
151 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
152 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
153 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
154 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
155 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
156 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
157 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
158 
159 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
160 {
161 	return readw(hw->flash_address + reg);
162 }
163 
164 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
165 {
166 	return readl(hw->flash_address + reg);
167 }
168 
169 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
170 {
171 	writew(val, hw->flash_address + reg);
172 }
173 
174 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
175 {
176 	writel(val, hw->flash_address + reg);
177 }
178 
179 #define er16flash(reg)		__er16flash(hw, (reg))
180 #define er32flash(reg)		__er32flash(hw, (reg))
181 #define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
182 #define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
183 
184 /**
185  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
186  *  @hw: pointer to the HW structure
187  *
188  *  Test access to the PHY registers by reading the PHY ID registers.  If
189  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
190  *  otherwise assume the read PHY ID is correct if it is valid.
191  *
192  *  Assumes the sw/fw/hw semaphore is already acquired.
193  **/
194 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
195 {
196 	u16 phy_reg = 0;
197 	u32 phy_id = 0;
198 	s32 ret_val = 0;
199 	u16 retry_count;
200 	u32 mac_reg = 0;
201 
202 	for (retry_count = 0; retry_count < 2; retry_count++) {
203 		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
204 		if (ret_val || (phy_reg == 0xFFFF))
205 			continue;
206 		phy_id = (u32)(phy_reg << 16);
207 
208 		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
209 		if (ret_val || (phy_reg == 0xFFFF)) {
210 			phy_id = 0;
211 			continue;
212 		}
213 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
214 		break;
215 	}
216 
217 	if (hw->phy.id) {
218 		if (hw->phy.id == phy_id)
219 			goto out;
220 	} else if (phy_id) {
221 		hw->phy.id = phy_id;
222 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
223 		goto out;
224 	}
225 
226 	/* In case the PHY needs to be in mdio slow mode,
227 	 * set slow mode and try to get the PHY id again.
228 	 */
229 	if (hw->mac.type < e1000_pch_lpt) {
230 		hw->phy.ops.release(hw);
231 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
232 		if (!ret_val)
233 			ret_val = e1000e_get_phy_id(hw);
234 		hw->phy.ops.acquire(hw);
235 	}
236 
237 	if (ret_val)
238 		return false;
239 out:
240 	if (hw->mac.type >= e1000_pch_lpt) {
241 		/* Only unforce SMBus if ME is not active */
242 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
243 			/* Unforce SMBus mode in PHY */
244 			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
245 			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
246 			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
247 
248 			/* Unforce SMBus mode in MAC */
249 			mac_reg = er32(CTRL_EXT);
250 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
251 			ew32(CTRL_EXT, mac_reg);
252 		}
253 	}
254 
255 	return true;
256 }
257 
258 /**
259  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
260  *  @hw: pointer to the HW structure
261  *
262  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
263  *  used to reset the PHY to a quiescent state when necessary.
264  **/
265 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
266 {
267 	u32 mac_reg;
268 
269 	/* Set Phy Config Counter to 50msec */
270 	mac_reg = er32(FEXTNVM3);
271 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
272 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
273 	ew32(FEXTNVM3, mac_reg);
274 
275 	/* Toggle LANPHYPC Value bit */
276 	mac_reg = er32(CTRL);
277 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
278 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
279 	ew32(CTRL, mac_reg);
280 	e1e_flush();
281 	usleep_range(10, 20);
282 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
283 	ew32(CTRL, mac_reg);
284 	e1e_flush();
285 
286 	if (hw->mac.type < e1000_pch_lpt) {
287 		msleep(50);
288 	} else {
289 		u16 count = 20;
290 
291 		do {
292 			usleep_range(5000, 10000);
293 		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
294 
295 		msleep(30);
296 	}
297 }
298 
299 /**
300  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
301  *  @hw: pointer to the HW structure
302  *
303  *  Workarounds/flow necessary for PHY initialization during driver load
304  *  and resume paths.
305  **/
306 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
307 {
308 	struct e1000_adapter *adapter = hw->adapter;
309 	u32 mac_reg, fwsm = er32(FWSM);
310 	s32 ret_val;
311 
312 	/* Gate automatic PHY configuration by hardware on managed and
313 	 * non-managed 82579 and newer adapters.
314 	 */
315 	e1000_gate_hw_phy_config_ich8lan(hw, true);
316 
317 	/* It is not possible to be certain of the current state of ULP
318 	 * so forcibly disable it.
319 	 */
320 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
321 	e1000_disable_ulp_lpt_lp(hw, true);
322 
323 	ret_val = hw->phy.ops.acquire(hw);
324 	if (ret_val) {
325 		e_dbg("Failed to initialize PHY flow\n");
326 		goto out;
327 	}
328 
329 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
330 	 * inaccessible and resetting the PHY is not blocked, toggle the
331 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
332 	 */
333 	switch (hw->mac.type) {
334 	case e1000_pch_lpt:
335 	case e1000_pch_spt:
336 	case e1000_pch_cnp:
337 		if (e1000_phy_is_accessible_pchlan(hw))
338 			break;
339 
340 		/* Before toggling LANPHYPC, see if PHY is accessible by
341 		 * forcing MAC to SMBus mode first.
342 		 */
343 		mac_reg = er32(CTRL_EXT);
344 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
345 		ew32(CTRL_EXT, mac_reg);
346 
347 		/* Wait 50 milliseconds for MAC to finish any retries
348 		 * that it might be trying to perform from previous
349 		 * attempts to acknowledge any phy read requests.
350 		 */
351 		msleep(50);
352 
353 		/* fall-through */
354 	case e1000_pch2lan:
355 		if (e1000_phy_is_accessible_pchlan(hw))
356 			break;
357 
358 		/* fall-through */
359 	case e1000_pchlan:
360 		if ((hw->mac.type == e1000_pchlan) &&
361 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
362 			break;
363 
364 		if (hw->phy.ops.check_reset_block(hw)) {
365 			e_dbg("Required LANPHYPC toggle blocked by ME\n");
366 			ret_val = -E1000_ERR_PHY;
367 			break;
368 		}
369 
370 		/* Toggle LANPHYPC Value bit */
371 		e1000_toggle_lanphypc_pch_lpt(hw);
372 		if (hw->mac.type >= e1000_pch_lpt) {
373 			if (e1000_phy_is_accessible_pchlan(hw))
374 				break;
375 
376 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
377 			 * so ensure that the MAC is also out of SMBus mode
378 			 */
379 			mac_reg = er32(CTRL_EXT);
380 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
381 			ew32(CTRL_EXT, mac_reg);
382 
383 			if (e1000_phy_is_accessible_pchlan(hw))
384 				break;
385 
386 			ret_val = -E1000_ERR_PHY;
387 		}
388 		break;
389 	default:
390 		break;
391 	}
392 
393 	hw->phy.ops.release(hw);
394 	if (!ret_val) {
395 
396 		/* Check to see if able to reset PHY.  Print error if not */
397 		if (hw->phy.ops.check_reset_block(hw)) {
398 			e_err("Reset blocked by ME\n");
399 			goto out;
400 		}
401 
402 		/* Reset the PHY before any access to it.  Doing so, ensures
403 		 * that the PHY is in a known good state before we read/write
404 		 * PHY registers.  The generic reset is sufficient here,
405 		 * because we haven't determined the PHY type yet.
406 		 */
407 		ret_val = e1000e_phy_hw_reset_generic(hw);
408 		if (ret_val)
409 			goto out;
410 
411 		/* On a successful reset, possibly need to wait for the PHY
412 		 * to quiesce to an accessible state before returning control
413 		 * to the calling function.  If the PHY does not quiesce, then
414 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
415 		 *  the PHY is in.
416 		 */
417 		ret_val = hw->phy.ops.check_reset_block(hw);
418 		if (ret_val)
419 			e_err("ME blocked access to PHY after reset\n");
420 	}
421 
422 out:
423 	/* Ungate automatic PHY configuration on non-managed 82579 */
424 	if ((hw->mac.type == e1000_pch2lan) &&
425 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
426 		usleep_range(10000, 20000);
427 		e1000_gate_hw_phy_config_ich8lan(hw, false);
428 	}
429 
430 	return ret_val;
431 }
432 
433 /**
434  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
435  *  @hw: pointer to the HW structure
436  *
437  *  Initialize family-specific PHY parameters and function pointers.
438  **/
439 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
440 {
441 	struct e1000_phy_info *phy = &hw->phy;
442 	s32 ret_val;
443 
444 	phy->addr = 1;
445 	phy->reset_delay_us = 100;
446 
447 	phy->ops.set_page = e1000_set_page_igp;
448 	phy->ops.read_reg = e1000_read_phy_reg_hv;
449 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
450 	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
451 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
452 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
453 	phy->ops.write_reg = e1000_write_phy_reg_hv;
454 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
455 	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
456 	phy->ops.power_up = e1000_power_up_phy_copper;
457 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
458 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
459 
460 	phy->id = e1000_phy_unknown;
461 
462 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
463 	if (ret_val)
464 		return ret_val;
465 
466 	if (phy->id == e1000_phy_unknown)
467 		switch (hw->mac.type) {
468 		default:
469 			ret_val = e1000e_get_phy_id(hw);
470 			if (ret_val)
471 				return ret_val;
472 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
473 				break;
474 			/* fall-through */
475 		case e1000_pch2lan:
476 		case e1000_pch_lpt:
477 		case e1000_pch_spt:
478 		case e1000_pch_cnp:
479 			/* In case the PHY needs to be in mdio slow mode,
480 			 * set slow mode and try to get the PHY id again.
481 			 */
482 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
483 			if (ret_val)
484 				return ret_val;
485 			ret_val = e1000e_get_phy_id(hw);
486 			if (ret_val)
487 				return ret_val;
488 			break;
489 		}
490 	phy->type = e1000e_get_phy_type_from_id(phy->id);
491 
492 	switch (phy->type) {
493 	case e1000_phy_82577:
494 	case e1000_phy_82579:
495 	case e1000_phy_i217:
496 		phy->ops.check_polarity = e1000_check_polarity_82577;
497 		phy->ops.force_speed_duplex =
498 		    e1000_phy_force_speed_duplex_82577;
499 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
500 		phy->ops.get_info = e1000_get_phy_info_82577;
501 		phy->ops.commit = e1000e_phy_sw_reset;
502 		break;
503 	case e1000_phy_82578:
504 		phy->ops.check_polarity = e1000_check_polarity_m88;
505 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
506 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
507 		phy->ops.get_info = e1000e_get_phy_info_m88;
508 		break;
509 	default:
510 		ret_val = -E1000_ERR_PHY;
511 		break;
512 	}
513 
514 	return ret_val;
515 }
516 
517 /**
518  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
519  *  @hw: pointer to the HW structure
520  *
521  *  Initialize family-specific PHY parameters and function pointers.
522  **/
523 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
524 {
525 	struct e1000_phy_info *phy = &hw->phy;
526 	s32 ret_val;
527 	u16 i = 0;
528 
529 	phy->addr = 1;
530 	phy->reset_delay_us = 100;
531 
532 	phy->ops.power_up = e1000_power_up_phy_copper;
533 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
534 
535 	/* We may need to do this twice - once for IGP and if that fails,
536 	 * we'll set BM func pointers and try again
537 	 */
538 	ret_val = e1000e_determine_phy_address(hw);
539 	if (ret_val) {
540 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
541 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
542 		ret_val = e1000e_determine_phy_address(hw);
543 		if (ret_val) {
544 			e_dbg("Cannot determine PHY addr. Erroring out\n");
545 			return ret_val;
546 		}
547 	}
548 
549 	phy->id = 0;
550 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
551 	       (i++ < 100)) {
552 		usleep_range(1000, 2000);
553 		ret_val = e1000e_get_phy_id(hw);
554 		if (ret_val)
555 			return ret_val;
556 	}
557 
558 	/* Verify phy id */
559 	switch (phy->id) {
560 	case IGP03E1000_E_PHY_ID:
561 		phy->type = e1000_phy_igp_3;
562 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
563 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
564 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
565 		phy->ops.get_info = e1000e_get_phy_info_igp;
566 		phy->ops.check_polarity = e1000_check_polarity_igp;
567 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
568 		break;
569 	case IFE_E_PHY_ID:
570 	case IFE_PLUS_E_PHY_ID:
571 	case IFE_C_E_PHY_ID:
572 		phy->type = e1000_phy_ife;
573 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
574 		phy->ops.get_info = e1000_get_phy_info_ife;
575 		phy->ops.check_polarity = e1000_check_polarity_ife;
576 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
577 		break;
578 	case BME1000_E_PHY_ID:
579 		phy->type = e1000_phy_bm;
580 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
581 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
582 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
583 		phy->ops.commit = e1000e_phy_sw_reset;
584 		phy->ops.get_info = e1000e_get_phy_info_m88;
585 		phy->ops.check_polarity = e1000_check_polarity_m88;
586 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
587 		break;
588 	default:
589 		return -E1000_ERR_PHY;
590 	}
591 
592 	return 0;
593 }
594 
595 /**
596  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
597  *  @hw: pointer to the HW structure
598  *
599  *  Initialize family-specific NVM parameters and function
600  *  pointers.
601  **/
602 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
603 {
604 	struct e1000_nvm_info *nvm = &hw->nvm;
605 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
606 	u32 gfpreg, sector_base_addr, sector_end_addr;
607 	u16 i;
608 	u32 nvm_size;
609 
610 	nvm->type = e1000_nvm_flash_sw;
611 
612 	if (hw->mac.type >= e1000_pch_spt) {
613 		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
614 		 * STRAP register. This is because in SPT the GbE Flash region
615 		 * is no longer accessed through the flash registers. Instead,
616 		 * the mechanism has changed, and the Flash region access
617 		 * registers are now implemented in GbE memory space.
618 		 */
619 		nvm->flash_base_addr = 0;
620 		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
621 		    * NVM_SIZE_MULTIPLIER;
622 		nvm->flash_bank_size = nvm_size / 2;
623 		/* Adjust to word count */
624 		nvm->flash_bank_size /= sizeof(u16);
625 		/* Set the base address for flash register access */
626 		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
627 	} else {
628 		/* Can't read flash registers if register set isn't mapped. */
629 		if (!hw->flash_address) {
630 			e_dbg("ERROR: Flash registers not mapped\n");
631 			return -E1000_ERR_CONFIG;
632 		}
633 
634 		gfpreg = er32flash(ICH_FLASH_GFPREG);
635 
636 		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
637 		 * Add 1 to sector_end_addr since this sector is included in
638 		 * the overall size.
639 		 */
640 		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
641 		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
642 
643 		/* flash_base_addr is byte-aligned */
644 		nvm->flash_base_addr = sector_base_addr
645 		    << FLASH_SECTOR_ADDR_SHIFT;
646 
647 		/* find total size of the NVM, then cut in half since the total
648 		 * size represents two separate NVM banks.
649 		 */
650 		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
651 					<< FLASH_SECTOR_ADDR_SHIFT);
652 		nvm->flash_bank_size /= 2;
653 		/* Adjust to word count */
654 		nvm->flash_bank_size /= sizeof(u16);
655 	}
656 
657 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
658 
659 	/* Clear shadow ram */
660 	for (i = 0; i < nvm->word_size; i++) {
661 		dev_spec->shadow_ram[i].modified = false;
662 		dev_spec->shadow_ram[i].value = 0xFFFF;
663 	}
664 
665 	return 0;
666 }
667 
668 /**
669  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
670  *  @hw: pointer to the HW structure
671  *
672  *  Initialize family-specific MAC parameters and function
673  *  pointers.
674  **/
675 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
676 {
677 	struct e1000_mac_info *mac = &hw->mac;
678 
679 	/* Set media type function pointer */
680 	hw->phy.media_type = e1000_media_type_copper;
681 
682 	/* Set mta register count */
683 	mac->mta_reg_count = 32;
684 	/* Set rar entry count */
685 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
686 	if (mac->type == e1000_ich8lan)
687 		mac->rar_entry_count--;
688 	/* FWSM register */
689 	mac->has_fwsm = true;
690 	/* ARC subsystem not supported */
691 	mac->arc_subsystem_valid = false;
692 	/* Adaptive IFS supported */
693 	mac->adaptive_ifs = true;
694 
695 	/* LED and other operations */
696 	switch (mac->type) {
697 	case e1000_ich8lan:
698 	case e1000_ich9lan:
699 	case e1000_ich10lan:
700 		/* check management mode */
701 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
702 		/* ID LED init */
703 		mac->ops.id_led_init = e1000e_id_led_init_generic;
704 		/* blink LED */
705 		mac->ops.blink_led = e1000e_blink_led_generic;
706 		/* setup LED */
707 		mac->ops.setup_led = e1000e_setup_led_generic;
708 		/* cleanup LED */
709 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
710 		/* turn on/off LED */
711 		mac->ops.led_on = e1000_led_on_ich8lan;
712 		mac->ops.led_off = e1000_led_off_ich8lan;
713 		break;
714 	case e1000_pch2lan:
715 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
716 		mac->ops.rar_set = e1000_rar_set_pch2lan;
717 		/* fall-through */
718 	case e1000_pch_lpt:
719 	case e1000_pch_spt:
720 	case e1000_pch_cnp:
721 	case e1000_pchlan:
722 		/* check management mode */
723 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
724 		/* ID LED init */
725 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
726 		/* setup LED */
727 		mac->ops.setup_led = e1000_setup_led_pchlan;
728 		/* cleanup LED */
729 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
730 		/* turn on/off LED */
731 		mac->ops.led_on = e1000_led_on_pchlan;
732 		mac->ops.led_off = e1000_led_off_pchlan;
733 		break;
734 	default:
735 		break;
736 	}
737 
738 	if (mac->type >= e1000_pch_lpt) {
739 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
740 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
741 		mac->ops.setup_physical_interface =
742 		    e1000_setup_copper_link_pch_lpt;
743 		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
744 	}
745 
746 	/* Enable PCS Lock-loss workaround for ICH8 */
747 	if (mac->type == e1000_ich8lan)
748 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
749 
750 	return 0;
751 }
752 
753 /**
754  *  __e1000_access_emi_reg_locked - Read/write EMI register
755  *  @hw: pointer to the HW structure
756  *  @addr: EMI address to program
757  *  @data: pointer to value to read/write from/to the EMI address
758  *  @read: boolean flag to indicate read or write
759  *
760  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
761  **/
762 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
763 					 u16 *data, bool read)
764 {
765 	s32 ret_val;
766 
767 	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
768 	if (ret_val)
769 		return ret_val;
770 
771 	if (read)
772 		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
773 	else
774 		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
775 
776 	return ret_val;
777 }
778 
779 /**
780  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
781  *  @hw: pointer to the HW structure
782  *  @addr: EMI address to program
783  *  @data: value to be read from the EMI address
784  *
785  *  Assumes the SW/FW/HW Semaphore is already acquired.
786  **/
787 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
788 {
789 	return __e1000_access_emi_reg_locked(hw, addr, data, true);
790 }
791 
792 /**
793  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
794  *  @hw: pointer to the HW structure
795  *  @addr: EMI address to program
796  *  @data: value to be written to the EMI address
797  *
798  *  Assumes the SW/FW/HW Semaphore is already acquired.
799  **/
800 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
801 {
802 	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
803 }
804 
805 /**
806  *  e1000_set_eee_pchlan - Enable/disable EEE support
807  *  @hw: pointer to the HW structure
808  *
809  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
810  *  the link and the EEE capabilities of the link partner.  The LPI Control
811  *  register bits will remain set only if/when link is up.
812  *
813  *  EEE LPI must not be asserted earlier than one second after link is up.
814  *  On 82579, EEE LPI should not be enabled until such time otherwise there
815  *  can be link issues with some switches.  Other devices can have EEE LPI
816  *  enabled immediately upon link up since they have a timer in hardware which
817  *  prevents LPI from being asserted too early.
818  **/
819 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
820 {
821 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
822 	s32 ret_val;
823 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
824 
825 	switch (hw->phy.type) {
826 	case e1000_phy_82579:
827 		lpa = I82579_EEE_LP_ABILITY;
828 		pcs_status = I82579_EEE_PCS_STATUS;
829 		adv_addr = I82579_EEE_ADVERTISEMENT;
830 		break;
831 	case e1000_phy_i217:
832 		lpa = I217_EEE_LP_ABILITY;
833 		pcs_status = I217_EEE_PCS_STATUS;
834 		adv_addr = I217_EEE_ADVERTISEMENT;
835 		break;
836 	default:
837 		return 0;
838 	}
839 
840 	ret_val = hw->phy.ops.acquire(hw);
841 	if (ret_val)
842 		return ret_val;
843 
844 	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
845 	if (ret_val)
846 		goto release;
847 
848 	/* Clear bits that enable EEE in various speeds */
849 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
850 
851 	/* Enable EEE if not disabled by user */
852 	if (!dev_spec->eee_disable) {
853 		/* Save off link partner's EEE ability */
854 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
855 						    &dev_spec->eee_lp_ability);
856 		if (ret_val)
857 			goto release;
858 
859 		/* Read EEE advertisement */
860 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
861 		if (ret_val)
862 			goto release;
863 
864 		/* Enable EEE only for speeds in which the link partner is
865 		 * EEE capable and for which we advertise EEE.
866 		 */
867 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
868 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
869 
870 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
871 			e1e_rphy_locked(hw, MII_LPA, &data);
872 			if (data & LPA_100FULL)
873 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
874 			else
875 				/* EEE is not supported in 100Half, so ignore
876 				 * partner's EEE in 100 ability if full-duplex
877 				 * is not advertised.
878 				 */
879 				dev_spec->eee_lp_ability &=
880 				    ~I82579_EEE_100_SUPPORTED;
881 		}
882 	}
883 
884 	if (hw->phy.type == e1000_phy_82579) {
885 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
886 						    &data);
887 		if (ret_val)
888 			goto release;
889 
890 		data &= ~I82579_LPI_100_PLL_SHUT;
891 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
892 						     data);
893 	}
894 
895 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
896 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
897 	if (ret_val)
898 		goto release;
899 
900 	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
901 release:
902 	hw->phy.ops.release(hw);
903 
904 	return ret_val;
905 }
906 
907 /**
908  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
909  *  @hw:   pointer to the HW structure
910  *  @link: link up bool flag
911  *
912  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
913  *  preventing further DMA write requests.  Workaround the issue by disabling
914  *  the de-assertion of the clock request when in 1Gpbs mode.
915  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
916  *  speeds in order to avoid Tx hangs.
917  **/
918 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
919 {
920 	u32 fextnvm6 = er32(FEXTNVM6);
921 	u32 status = er32(STATUS);
922 	s32 ret_val = 0;
923 	u16 reg;
924 
925 	if (link && (status & E1000_STATUS_SPEED_1000)) {
926 		ret_val = hw->phy.ops.acquire(hw);
927 		if (ret_val)
928 			return ret_val;
929 
930 		ret_val =
931 		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
932 						&reg);
933 		if (ret_val)
934 			goto release;
935 
936 		ret_val =
937 		    e1000e_write_kmrn_reg_locked(hw,
938 						 E1000_KMRNCTRLSTA_K1_CONFIG,
939 						 reg &
940 						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
941 		if (ret_val)
942 			goto release;
943 
944 		usleep_range(10, 20);
945 
946 		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
947 
948 		ret_val =
949 		    e1000e_write_kmrn_reg_locked(hw,
950 						 E1000_KMRNCTRLSTA_K1_CONFIG,
951 						 reg);
952 release:
953 		hw->phy.ops.release(hw);
954 	} else {
955 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
956 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
957 
958 		if ((hw->phy.revision > 5) || !link ||
959 		    ((status & E1000_STATUS_SPEED_100) &&
960 		     (status & E1000_STATUS_FD)))
961 			goto update_fextnvm6;
962 
963 		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
964 		if (ret_val)
965 			return ret_val;
966 
967 		/* Clear link status transmit timeout */
968 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
969 
970 		if (status & E1000_STATUS_SPEED_100) {
971 			/* Set inband Tx timeout to 5x10us for 100Half */
972 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
973 
974 			/* Do not extend the K1 entry latency for 100Half */
975 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
976 		} else {
977 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
978 			reg |= 50 <<
979 			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
980 
981 			/* Extend the K1 entry latency for 10 Mbps */
982 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
983 		}
984 
985 		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
986 		if (ret_val)
987 			return ret_val;
988 
989 update_fextnvm6:
990 		ew32(FEXTNVM6, fextnvm6);
991 	}
992 
993 	return ret_val;
994 }
995 
996 /**
997  *  e1000_platform_pm_pch_lpt - Set platform power management values
998  *  @hw: pointer to the HW structure
999  *  @link: bool indicating link status
1000  *
1001  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1002  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1003  *  when link is up (which must not exceed the maximum latency supported
1004  *  by the platform), otherwise specify there is no LTR requirement.
1005  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1006  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1007  *  Capability register set, on this device LTR is set by writing the
1008  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1009  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1010  *  message to the PMC.
1011  **/
1012 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1013 {
1014 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1015 	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1016 	u16 lat_enc = 0;	/* latency encoded */
1017 
1018 	if (link) {
1019 		u16 speed, duplex, scale = 0;
1020 		u16 max_snoop, max_nosnoop;
1021 		u16 max_ltr_enc;	/* max LTR latency encoded */
1022 		u64 value;
1023 		u32 rxa;
1024 
1025 		if (!hw->adapter->max_frame_size) {
1026 			e_dbg("max_frame_size not set.\n");
1027 			return -E1000_ERR_CONFIG;
1028 		}
1029 
1030 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1031 		if (!speed) {
1032 			e_dbg("Speed not set.\n");
1033 			return -E1000_ERR_CONFIG;
1034 		}
1035 
1036 		/* Rx Packet Buffer Allocation size (KB) */
1037 		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1038 
1039 		/* Determine the maximum latency tolerated by the device.
1040 		 *
1041 		 * Per the PCIe spec, the tolerated latencies are encoded as
1042 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1043 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1044 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1045 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1046 		 */
1047 		rxa *= 512;
1048 		value = (rxa > hw->adapter->max_frame_size) ?
1049 			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1050 			0;
1051 
1052 		while (value > PCI_LTR_VALUE_MASK) {
1053 			scale++;
1054 			value = DIV_ROUND_UP(value, BIT(5));
1055 		}
1056 		if (scale > E1000_LTRV_SCALE_MAX) {
1057 			e_dbg("Invalid LTR latency scale %d\n", scale);
1058 			return -E1000_ERR_CONFIG;
1059 		}
1060 		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1061 
1062 		/* Determine the maximum latency tolerated by the platform */
1063 		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1064 				     &max_snoop);
1065 		pci_read_config_word(hw->adapter->pdev,
1066 				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1067 		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1068 
1069 		if (lat_enc > max_ltr_enc)
1070 			lat_enc = max_ltr_enc;
1071 	}
1072 
1073 	/* Set Snoop and No-Snoop latencies the same */
1074 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1075 	ew32(LTRV, reg);
1076 
1077 	return 0;
1078 }
1079 
1080 /**
1081  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1082  *  @hw: pointer to the HW structure
1083  *  @to_sx: boolean indicating a system power state transition to Sx
1084  *
1085  *  When link is down, configure ULP mode to significantly reduce the power
1086  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1087  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1088  *  system, configure the ULP mode by software.
1089  */
1090 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1091 {
1092 	u32 mac_reg;
1093 	s32 ret_val = 0;
1094 	u16 phy_reg;
1095 	u16 oem_reg = 0;
1096 
1097 	if ((hw->mac.type < e1000_pch_lpt) ||
1098 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1099 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1100 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1101 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1102 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1103 		return 0;
1104 
1105 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1106 		/* Request ME configure ULP mode in the PHY */
1107 		mac_reg = er32(H2ME);
1108 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1109 		ew32(H2ME, mac_reg);
1110 
1111 		goto out;
1112 	}
1113 
1114 	if (!to_sx) {
1115 		int i = 0;
1116 
1117 		/* Poll up to 5 seconds for Cable Disconnected indication */
1118 		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1119 			/* Bail if link is re-acquired */
1120 			if (er32(STATUS) & E1000_STATUS_LU)
1121 				return -E1000_ERR_PHY;
1122 
1123 			if (i++ == 100)
1124 				break;
1125 
1126 			msleep(50);
1127 		}
1128 		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1129 		      (er32(FEXT) &
1130 		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1131 	}
1132 
1133 	ret_val = hw->phy.ops.acquire(hw);
1134 	if (ret_val)
1135 		goto out;
1136 
1137 	/* Force SMBus mode in PHY */
1138 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1139 	if (ret_val)
1140 		goto release;
1141 	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1142 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1143 
1144 	/* Force SMBus mode in MAC */
1145 	mac_reg = er32(CTRL_EXT);
1146 	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1147 	ew32(CTRL_EXT, mac_reg);
1148 
1149 	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1150 	 * LPLU and disable Gig speed when entering ULP
1151 	 */
1152 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1153 		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1154 						       &oem_reg);
1155 		if (ret_val)
1156 			goto release;
1157 
1158 		phy_reg = oem_reg;
1159 		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1160 
1161 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1162 							phy_reg);
1163 
1164 		if (ret_val)
1165 			goto release;
1166 	}
1167 
1168 	/* Set Inband ULP Exit, Reset to SMBus mode and
1169 	 * Disable SMBus Release on PERST# in PHY
1170 	 */
1171 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1172 	if (ret_val)
1173 		goto release;
1174 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1175 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1176 	if (to_sx) {
1177 		if (er32(WUFC) & E1000_WUFC_LNKC)
1178 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1179 		else
1180 			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1181 
1182 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1183 		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1184 	} else {
1185 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1186 		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1187 		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1188 	}
1189 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1190 
1191 	/* Set Disable SMBus Release on PERST# in MAC */
1192 	mac_reg = er32(FEXTNVM7);
1193 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1194 	ew32(FEXTNVM7, mac_reg);
1195 
1196 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1197 	phy_reg |= I218_ULP_CONFIG1_START;
1198 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1199 
1200 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1201 	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1202 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1203 							oem_reg);
1204 		if (ret_val)
1205 			goto release;
1206 	}
1207 
1208 release:
1209 	hw->phy.ops.release(hw);
1210 out:
1211 	if (ret_val)
1212 		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1213 	else
1214 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1215 
1216 	return ret_val;
1217 }
1218 
1219 /**
1220  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1221  *  @hw: pointer to the HW structure
1222  *  @force: boolean indicating whether or not to force disabling ULP
1223  *
1224  *  Un-configure ULP mode when link is up, the system is transitioned from
1225  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1226  *  system, poll for an indication from ME that ULP has been un-configured.
1227  *  If not on an ME enabled system, un-configure the ULP mode by software.
1228  *
1229  *  During nominal operation, this function is called when link is acquired
1230  *  to disable ULP mode (force=false); otherwise, for example when unloading
1231  *  the driver or during Sx->S0 transitions, this is called with force=true
1232  *  to forcibly disable ULP.
1233  */
1234 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1235 {
1236 	s32 ret_val = 0;
1237 	u32 mac_reg;
1238 	u16 phy_reg;
1239 	int i = 0;
1240 
1241 	if ((hw->mac.type < e1000_pch_lpt) ||
1242 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1243 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1244 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1245 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1246 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1247 		return 0;
1248 
1249 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1250 		if (force) {
1251 			/* Request ME un-configure ULP mode in the PHY */
1252 			mac_reg = er32(H2ME);
1253 			mac_reg &= ~E1000_H2ME_ULP;
1254 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1255 			ew32(H2ME, mac_reg);
1256 		}
1257 
1258 		/* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
1259 		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1260 			if (i++ == 30) {
1261 				ret_val = -E1000_ERR_PHY;
1262 				goto out;
1263 			}
1264 
1265 			usleep_range(10000, 20000);
1266 		}
1267 		e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1268 
1269 		if (force) {
1270 			mac_reg = er32(H2ME);
1271 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1272 			ew32(H2ME, mac_reg);
1273 		} else {
1274 			/* Clear H2ME.ULP after ME ULP configuration */
1275 			mac_reg = er32(H2ME);
1276 			mac_reg &= ~E1000_H2ME_ULP;
1277 			ew32(H2ME, mac_reg);
1278 		}
1279 
1280 		goto out;
1281 	}
1282 
1283 	ret_val = hw->phy.ops.acquire(hw);
1284 	if (ret_val)
1285 		goto out;
1286 
1287 	if (force)
1288 		/* Toggle LANPHYPC Value bit */
1289 		e1000_toggle_lanphypc_pch_lpt(hw);
1290 
1291 	/* Unforce SMBus mode in PHY */
1292 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1293 	if (ret_val) {
1294 		/* The MAC might be in PCIe mode, so temporarily force to
1295 		 * SMBus mode in order to access the PHY.
1296 		 */
1297 		mac_reg = er32(CTRL_EXT);
1298 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1299 		ew32(CTRL_EXT, mac_reg);
1300 
1301 		msleep(50);
1302 
1303 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1304 						       &phy_reg);
1305 		if (ret_val)
1306 			goto release;
1307 	}
1308 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1309 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1310 
1311 	/* Unforce SMBus mode in MAC */
1312 	mac_reg = er32(CTRL_EXT);
1313 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1314 	ew32(CTRL_EXT, mac_reg);
1315 
1316 	/* When ULP mode was previously entered, K1 was disabled by the
1317 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1318 	 */
1319 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1320 	if (ret_val)
1321 		goto release;
1322 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1323 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1324 
1325 	/* Clear ULP enabled configuration */
1326 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1327 	if (ret_val)
1328 		goto release;
1329 	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1330 		     I218_ULP_CONFIG1_STICKY_ULP |
1331 		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1332 		     I218_ULP_CONFIG1_WOL_HOST |
1333 		     I218_ULP_CONFIG1_INBAND_EXIT |
1334 		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1335 		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1336 		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1337 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1338 
1339 	/* Commit ULP changes by starting auto ULP configuration */
1340 	phy_reg |= I218_ULP_CONFIG1_START;
1341 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1342 
1343 	/* Clear Disable SMBus Release on PERST# in MAC */
1344 	mac_reg = er32(FEXTNVM7);
1345 	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1346 	ew32(FEXTNVM7, mac_reg);
1347 
1348 release:
1349 	hw->phy.ops.release(hw);
1350 	if (force) {
1351 		e1000_phy_hw_reset(hw);
1352 		msleep(50);
1353 	}
1354 out:
1355 	if (ret_val)
1356 		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1357 	else
1358 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1359 
1360 	return ret_val;
1361 }
1362 
1363 /**
1364  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1365  *  @hw: pointer to the HW structure
1366  *
1367  *  Checks to see of the link status of the hardware has changed.  If a
1368  *  change in link status has been detected, then we read the PHY registers
1369  *  to get the current speed/duplex if link exists.
1370  **/
1371 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1372 {
1373 	struct e1000_mac_info *mac = &hw->mac;
1374 	s32 ret_val, tipg_reg = 0;
1375 	u16 emi_addr, emi_val = 0;
1376 	bool link;
1377 	u16 phy_reg;
1378 
1379 	/* We only want to go out to the PHY registers to see if Auto-Neg
1380 	 * has completed and/or if our link status has changed.  The
1381 	 * get_link_status flag is set upon receiving a Link Status
1382 	 * Change or Rx Sequence Error interrupt.
1383 	 */
1384 	if (!mac->get_link_status)
1385 		return 0;
1386 	mac->get_link_status = false;
1387 
1388 	/* First we want to see if the MII Status Register reports
1389 	 * link.  If so, then we want to get the current speed/duplex
1390 	 * of the PHY.
1391 	 */
1392 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1393 	if (ret_val)
1394 		goto out;
1395 
1396 	if (hw->mac.type == e1000_pchlan) {
1397 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1398 		if (ret_val)
1399 			goto out;
1400 	}
1401 
1402 	/* When connected at 10Mbps half-duplex, some parts are excessively
1403 	 * aggressive resulting in many collisions. To avoid this, increase
1404 	 * the IPG and reduce Rx latency in the PHY.
1405 	 */
1406 	if ((hw->mac.type >= e1000_pch2lan) && link) {
1407 		u16 speed, duplex;
1408 
1409 		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1410 		tipg_reg = er32(TIPG);
1411 		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1412 
1413 		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1414 			tipg_reg |= 0xFF;
1415 			/* Reduce Rx latency in analog PHY */
1416 			emi_val = 0;
1417 		} else if (hw->mac.type >= e1000_pch_spt &&
1418 			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1419 			tipg_reg |= 0xC;
1420 			emi_val = 1;
1421 		} else {
1422 
1423 			/* Roll back the default values */
1424 			tipg_reg |= 0x08;
1425 			emi_val = 1;
1426 		}
1427 
1428 		ew32(TIPG, tipg_reg);
1429 
1430 		ret_val = hw->phy.ops.acquire(hw);
1431 		if (ret_val)
1432 			goto out;
1433 
1434 		if (hw->mac.type == e1000_pch2lan)
1435 			emi_addr = I82579_RX_CONFIG;
1436 		else
1437 			emi_addr = I217_RX_CONFIG;
1438 		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1439 
1440 		if (hw->mac.type >= e1000_pch_lpt) {
1441 			u16 phy_reg;
1442 
1443 			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1444 			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1445 			if (speed == SPEED_100 || speed == SPEED_10)
1446 				phy_reg |= 0x3E8;
1447 			else
1448 				phy_reg |= 0xFA;
1449 			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1450 		}
1451 		hw->phy.ops.release(hw);
1452 
1453 		if (ret_val)
1454 			goto out;
1455 
1456 		if (hw->mac.type >= e1000_pch_spt) {
1457 			u16 data;
1458 			u16 ptr_gap;
1459 
1460 			if (speed == SPEED_1000) {
1461 				ret_val = hw->phy.ops.acquire(hw);
1462 				if (ret_val)
1463 					goto out;
1464 
1465 				ret_val = e1e_rphy_locked(hw,
1466 							  PHY_REG(776, 20),
1467 							  &data);
1468 				if (ret_val) {
1469 					hw->phy.ops.release(hw);
1470 					goto out;
1471 				}
1472 
1473 				ptr_gap = (data & (0x3FF << 2)) >> 2;
1474 				if (ptr_gap < 0x18) {
1475 					data &= ~(0x3FF << 2);
1476 					data |= (0x18 << 2);
1477 					ret_val =
1478 					    e1e_wphy_locked(hw,
1479 							    PHY_REG(776, 20),
1480 							    data);
1481 				}
1482 				hw->phy.ops.release(hw);
1483 				if (ret_val)
1484 					goto out;
1485 			} else {
1486 				ret_val = hw->phy.ops.acquire(hw);
1487 				if (ret_val)
1488 					goto out;
1489 
1490 				ret_val = e1e_wphy_locked(hw,
1491 							  PHY_REG(776, 20),
1492 							  0xC023);
1493 				hw->phy.ops.release(hw);
1494 				if (ret_val)
1495 					goto out;
1496 
1497 			}
1498 		}
1499 	}
1500 
1501 	/* I217 Packet Loss issue:
1502 	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1503 	 * on power up.
1504 	 * Set the Beacon Duration for I217 to 8 usec
1505 	 */
1506 	if (hw->mac.type >= e1000_pch_lpt) {
1507 		u32 mac_reg;
1508 
1509 		mac_reg = er32(FEXTNVM4);
1510 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1511 		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1512 		ew32(FEXTNVM4, mac_reg);
1513 	}
1514 
1515 	/* Work-around I218 hang issue */
1516 	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1517 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1518 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1519 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1520 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1521 		if (ret_val)
1522 			goto out;
1523 	}
1524 	if (hw->mac.type >= e1000_pch_lpt) {
1525 		/* Set platform power management values for
1526 		 * Latency Tolerance Reporting (LTR)
1527 		 */
1528 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1529 		if (ret_val)
1530 			goto out;
1531 	}
1532 
1533 	/* Clear link partner's EEE ability */
1534 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1535 
1536 	if (hw->mac.type >= e1000_pch_lpt) {
1537 		u32 fextnvm6 = er32(FEXTNVM6);
1538 
1539 		if (hw->mac.type == e1000_pch_spt) {
1540 			/* FEXTNVM6 K1-off workaround - for SPT only */
1541 			u32 pcieanacfg = er32(PCIEANACFG);
1542 
1543 			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1544 				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1545 			else
1546 				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1547 		}
1548 
1549 		ew32(FEXTNVM6, fextnvm6);
1550 	}
1551 
1552 	if (!link)
1553 		goto out;
1554 
1555 	switch (hw->mac.type) {
1556 	case e1000_pch2lan:
1557 		ret_val = e1000_k1_workaround_lv(hw);
1558 		if (ret_val)
1559 			return ret_val;
1560 		/* fall-thru */
1561 	case e1000_pchlan:
1562 		if (hw->phy.type == e1000_phy_82578) {
1563 			ret_val = e1000_link_stall_workaround_hv(hw);
1564 			if (ret_val)
1565 				return ret_val;
1566 		}
1567 
1568 		/* Workaround for PCHx parts in half-duplex:
1569 		 * Set the number of preambles removed from the packet
1570 		 * when it is passed from the PHY to the MAC to prevent
1571 		 * the MAC from misinterpreting the packet type.
1572 		 */
1573 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1574 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1575 
1576 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1577 			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1578 
1579 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1580 		break;
1581 	default:
1582 		break;
1583 	}
1584 
1585 	/* Check if there was DownShift, must be checked
1586 	 * immediately after link-up
1587 	 */
1588 	e1000e_check_downshift(hw);
1589 
1590 	/* Enable/Disable EEE after link up */
1591 	if (hw->phy.type > e1000_phy_82579) {
1592 		ret_val = e1000_set_eee_pchlan(hw);
1593 		if (ret_val)
1594 			return ret_val;
1595 	}
1596 
1597 	/* If we are forcing speed/duplex, then we simply return since
1598 	 * we have already determined whether we have link or not.
1599 	 */
1600 	if (!mac->autoneg)
1601 		return -E1000_ERR_CONFIG;
1602 
1603 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1604 	 * of MAC speed/duplex configuration.  So we only need to
1605 	 * configure Collision Distance in the MAC.
1606 	 */
1607 	mac->ops.config_collision_dist(hw);
1608 
1609 	/* Configure Flow Control now that Auto-Neg has completed.
1610 	 * First, we need to restore the desired flow control
1611 	 * settings because we may have had to re-autoneg with a
1612 	 * different link partner.
1613 	 */
1614 	ret_val = e1000e_config_fc_after_link_up(hw);
1615 	if (ret_val)
1616 		e_dbg("Error configuring flow control\n");
1617 
1618 	return ret_val;
1619 
1620 out:
1621 	mac->get_link_status = true;
1622 	return ret_val;
1623 }
1624 
1625 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1626 {
1627 	struct e1000_hw *hw = &adapter->hw;
1628 	s32 rc;
1629 
1630 	rc = e1000_init_mac_params_ich8lan(hw);
1631 	if (rc)
1632 		return rc;
1633 
1634 	rc = e1000_init_nvm_params_ich8lan(hw);
1635 	if (rc)
1636 		return rc;
1637 
1638 	switch (hw->mac.type) {
1639 	case e1000_ich8lan:
1640 	case e1000_ich9lan:
1641 	case e1000_ich10lan:
1642 		rc = e1000_init_phy_params_ich8lan(hw);
1643 		break;
1644 	case e1000_pchlan:
1645 	case e1000_pch2lan:
1646 	case e1000_pch_lpt:
1647 	case e1000_pch_spt:
1648 	case e1000_pch_cnp:
1649 		rc = e1000_init_phy_params_pchlan(hw);
1650 		break;
1651 	default:
1652 		break;
1653 	}
1654 	if (rc)
1655 		return rc;
1656 
1657 	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1658 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1659 	 */
1660 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1661 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1662 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1663 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1664 		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1665 
1666 		hw->mac.ops.blink_led = NULL;
1667 	}
1668 
1669 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1670 	    (adapter->hw.phy.type != e1000_phy_ife))
1671 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1672 
1673 	/* Enable workaround for 82579 w/ ME enabled */
1674 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1675 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1676 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1677 
1678 	return 0;
1679 }
1680 
1681 static DEFINE_MUTEX(nvm_mutex);
1682 
1683 /**
1684  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1685  *  @hw: pointer to the HW structure
1686  *
1687  *  Acquires the mutex for performing NVM operations.
1688  **/
1689 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1690 {
1691 	mutex_lock(&nvm_mutex);
1692 
1693 	return 0;
1694 }
1695 
1696 /**
1697  *  e1000_release_nvm_ich8lan - Release NVM mutex
1698  *  @hw: pointer to the HW structure
1699  *
1700  *  Releases the mutex used while performing NVM operations.
1701  **/
1702 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1703 {
1704 	mutex_unlock(&nvm_mutex);
1705 }
1706 
1707 /**
1708  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1709  *  @hw: pointer to the HW structure
1710  *
1711  *  Acquires the software control flag for performing PHY and select
1712  *  MAC CSR accesses.
1713  **/
1714 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1715 {
1716 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1717 	s32 ret_val = 0;
1718 
1719 	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1720 			     &hw->adapter->state)) {
1721 		e_dbg("contention for Phy access\n");
1722 		return -E1000_ERR_PHY;
1723 	}
1724 
1725 	while (timeout) {
1726 		extcnf_ctrl = er32(EXTCNF_CTRL);
1727 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1728 			break;
1729 
1730 		mdelay(1);
1731 		timeout--;
1732 	}
1733 
1734 	if (!timeout) {
1735 		e_dbg("SW has already locked the resource.\n");
1736 		ret_val = -E1000_ERR_CONFIG;
1737 		goto out;
1738 	}
1739 
1740 	timeout = SW_FLAG_TIMEOUT;
1741 
1742 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1743 	ew32(EXTCNF_CTRL, extcnf_ctrl);
1744 
1745 	while (timeout) {
1746 		extcnf_ctrl = er32(EXTCNF_CTRL);
1747 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1748 			break;
1749 
1750 		mdelay(1);
1751 		timeout--;
1752 	}
1753 
1754 	if (!timeout) {
1755 		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1756 		      er32(FWSM), extcnf_ctrl);
1757 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1758 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1759 		ret_val = -E1000_ERR_CONFIG;
1760 		goto out;
1761 	}
1762 
1763 out:
1764 	if (ret_val)
1765 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1766 
1767 	return ret_val;
1768 }
1769 
1770 /**
1771  *  e1000_release_swflag_ich8lan - Release software control flag
1772  *  @hw: pointer to the HW structure
1773  *
1774  *  Releases the software control flag for performing PHY and select
1775  *  MAC CSR accesses.
1776  **/
1777 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1778 {
1779 	u32 extcnf_ctrl;
1780 
1781 	extcnf_ctrl = er32(EXTCNF_CTRL);
1782 
1783 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1784 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1785 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1786 	} else {
1787 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1788 	}
1789 
1790 	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1791 }
1792 
1793 /**
1794  *  e1000_check_mng_mode_ich8lan - Checks management mode
1795  *  @hw: pointer to the HW structure
1796  *
1797  *  This checks if the adapter has any manageability enabled.
1798  *  This is a function pointer entry point only called by read/write
1799  *  routines for the PHY and NVM parts.
1800  **/
1801 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1802 {
1803 	u32 fwsm;
1804 
1805 	fwsm = er32(FWSM);
1806 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1807 		((fwsm & E1000_FWSM_MODE_MASK) ==
1808 		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1809 }
1810 
1811 /**
1812  *  e1000_check_mng_mode_pchlan - Checks management mode
1813  *  @hw: pointer to the HW structure
1814  *
1815  *  This checks if the adapter has iAMT enabled.
1816  *  This is a function pointer entry point only called by read/write
1817  *  routines for the PHY and NVM parts.
1818  **/
1819 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1820 {
1821 	u32 fwsm;
1822 
1823 	fwsm = er32(FWSM);
1824 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1825 	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1826 }
1827 
1828 /**
1829  *  e1000_rar_set_pch2lan - Set receive address register
1830  *  @hw: pointer to the HW structure
1831  *  @addr: pointer to the receive address
1832  *  @index: receive address array register
1833  *
1834  *  Sets the receive address array register at index to the address passed
1835  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1836  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1837  *  Use SHRA[0-3] in place of those reserved for ME.
1838  **/
1839 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1840 {
1841 	u32 rar_low, rar_high;
1842 
1843 	/* HW expects these in little endian so we reverse the byte order
1844 	 * from network order (big endian) to little endian
1845 	 */
1846 	rar_low = ((u32)addr[0] |
1847 		   ((u32)addr[1] << 8) |
1848 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1849 
1850 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1851 
1852 	/* If MAC address zero, no need to set the AV bit */
1853 	if (rar_low || rar_high)
1854 		rar_high |= E1000_RAH_AV;
1855 
1856 	if (index == 0) {
1857 		ew32(RAL(index), rar_low);
1858 		e1e_flush();
1859 		ew32(RAH(index), rar_high);
1860 		e1e_flush();
1861 		return 0;
1862 	}
1863 
1864 	/* RAR[1-6] are owned by manageability.  Skip those and program the
1865 	 * next address into the SHRA register array.
1866 	 */
1867 	if (index < (u32)(hw->mac.rar_entry_count)) {
1868 		s32 ret_val;
1869 
1870 		ret_val = e1000_acquire_swflag_ich8lan(hw);
1871 		if (ret_val)
1872 			goto out;
1873 
1874 		ew32(SHRAL(index - 1), rar_low);
1875 		e1e_flush();
1876 		ew32(SHRAH(index - 1), rar_high);
1877 		e1e_flush();
1878 
1879 		e1000_release_swflag_ich8lan(hw);
1880 
1881 		/* verify the register updates */
1882 		if ((er32(SHRAL(index - 1)) == rar_low) &&
1883 		    (er32(SHRAH(index - 1)) == rar_high))
1884 			return 0;
1885 
1886 		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1887 		      (index - 1), er32(FWSM));
1888 	}
1889 
1890 out:
1891 	e_dbg("Failed to write receive address at index %d\n", index);
1892 	return -E1000_ERR_CONFIG;
1893 }
1894 
1895 /**
1896  *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1897  *  @hw: pointer to the HW structure
1898  *
1899  *  Get the number of available receive registers that the Host can
1900  *  program. SHRA[0-10] are the shared receive address registers
1901  *  that are shared between the Host and manageability engine (ME).
1902  *  ME can reserve any number of addresses and the host needs to be
1903  *  able to tell how many available registers it has access to.
1904  **/
1905 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1906 {
1907 	u32 wlock_mac;
1908 	u32 num_entries;
1909 
1910 	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1911 	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1912 
1913 	switch (wlock_mac) {
1914 	case 0:
1915 		/* All SHRA[0..10] and RAR[0] available */
1916 		num_entries = hw->mac.rar_entry_count;
1917 		break;
1918 	case 1:
1919 		/* Only RAR[0] available */
1920 		num_entries = 1;
1921 		break;
1922 	default:
1923 		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1924 		num_entries = wlock_mac + 1;
1925 		break;
1926 	}
1927 
1928 	return num_entries;
1929 }
1930 
1931 /**
1932  *  e1000_rar_set_pch_lpt - Set receive address registers
1933  *  @hw: pointer to the HW structure
1934  *  @addr: pointer to the receive address
1935  *  @index: receive address array register
1936  *
1937  *  Sets the receive address register array at index to the address passed
1938  *  in by addr. For LPT, RAR[0] is the base address register that is to
1939  *  contain the MAC address. SHRA[0-10] are the shared receive address
1940  *  registers that are shared between the Host and manageability engine (ME).
1941  **/
1942 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1943 {
1944 	u32 rar_low, rar_high;
1945 	u32 wlock_mac;
1946 
1947 	/* HW expects these in little endian so we reverse the byte order
1948 	 * from network order (big endian) to little endian
1949 	 */
1950 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1951 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1952 
1953 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1954 
1955 	/* If MAC address zero, no need to set the AV bit */
1956 	if (rar_low || rar_high)
1957 		rar_high |= E1000_RAH_AV;
1958 
1959 	if (index == 0) {
1960 		ew32(RAL(index), rar_low);
1961 		e1e_flush();
1962 		ew32(RAH(index), rar_high);
1963 		e1e_flush();
1964 		return 0;
1965 	}
1966 
1967 	/* The manageability engine (ME) can lock certain SHRAR registers that
1968 	 * it is using - those registers are unavailable for use.
1969 	 */
1970 	if (index < hw->mac.rar_entry_count) {
1971 		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1972 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1973 
1974 		/* Check if all SHRAR registers are locked */
1975 		if (wlock_mac == 1)
1976 			goto out;
1977 
1978 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1979 			s32 ret_val;
1980 
1981 			ret_val = e1000_acquire_swflag_ich8lan(hw);
1982 
1983 			if (ret_val)
1984 				goto out;
1985 
1986 			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1987 			e1e_flush();
1988 			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1989 			e1e_flush();
1990 
1991 			e1000_release_swflag_ich8lan(hw);
1992 
1993 			/* verify the register updates */
1994 			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1995 			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1996 				return 0;
1997 		}
1998 	}
1999 
2000 out:
2001 	e_dbg("Failed to write receive address at index %d\n", index);
2002 	return -E1000_ERR_CONFIG;
2003 }
2004 
2005 /**
2006  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2007  *  @hw: pointer to the HW structure
2008  *
2009  *  Checks if firmware is blocking the reset of the PHY.
2010  *  This is a function pointer entry point only called by
2011  *  reset routines.
2012  **/
2013 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2014 {
2015 	bool blocked = false;
2016 	int i = 0;
2017 
2018 	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2019 	       (i++ < 30))
2020 		usleep_range(10000, 20000);
2021 	return blocked ? E1000_BLK_PHY_RESET : 0;
2022 }
2023 
2024 /**
2025  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2026  *  @hw: pointer to the HW structure
2027  *
2028  *  Assumes semaphore already acquired.
2029  *
2030  **/
2031 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2032 {
2033 	u16 phy_data;
2034 	u32 strap = er32(STRAP);
2035 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2036 	    E1000_STRAP_SMT_FREQ_SHIFT;
2037 	s32 ret_val;
2038 
2039 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2040 
2041 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2042 	if (ret_val)
2043 		return ret_val;
2044 
2045 	phy_data &= ~HV_SMB_ADDR_MASK;
2046 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2047 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2048 
2049 	if (hw->phy.type == e1000_phy_i217) {
2050 		/* Restore SMBus frequency */
2051 		if (freq--) {
2052 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2053 			phy_data |= (freq & BIT(0)) <<
2054 			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2055 			phy_data |= (freq & BIT(1)) <<
2056 			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2057 		} else {
2058 			e_dbg("Unsupported SMB frequency in PHY\n");
2059 		}
2060 	}
2061 
2062 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2063 }
2064 
2065 /**
2066  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2067  *  @hw:   pointer to the HW structure
2068  *
2069  *  SW should configure the LCD from the NVM extended configuration region
2070  *  as a workaround for certain parts.
2071  **/
2072 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2073 {
2074 	struct e1000_phy_info *phy = &hw->phy;
2075 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2076 	s32 ret_val = 0;
2077 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2078 
2079 	/* Initialize the PHY from the NVM on ICH platforms.  This
2080 	 * is needed due to an issue where the NVM configuration is
2081 	 * not properly autoloaded after power transitions.
2082 	 * Therefore, after each PHY reset, we will load the
2083 	 * configuration data out of the NVM manually.
2084 	 */
2085 	switch (hw->mac.type) {
2086 	case e1000_ich8lan:
2087 		if (phy->type != e1000_phy_igp_3)
2088 			return ret_val;
2089 
2090 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2091 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2092 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2093 			break;
2094 		}
2095 		/* Fall-thru */
2096 	case e1000_pchlan:
2097 	case e1000_pch2lan:
2098 	case e1000_pch_lpt:
2099 	case e1000_pch_spt:
2100 	case e1000_pch_cnp:
2101 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2102 		break;
2103 	default:
2104 		return ret_val;
2105 	}
2106 
2107 	ret_val = hw->phy.ops.acquire(hw);
2108 	if (ret_val)
2109 		return ret_val;
2110 
2111 	data = er32(FEXTNVM);
2112 	if (!(data & sw_cfg_mask))
2113 		goto release;
2114 
2115 	/* Make sure HW does not configure LCD from PHY
2116 	 * extended configuration before SW configuration
2117 	 */
2118 	data = er32(EXTCNF_CTRL);
2119 	if ((hw->mac.type < e1000_pch2lan) &&
2120 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2121 		goto release;
2122 
2123 	cnf_size = er32(EXTCNF_SIZE);
2124 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2125 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2126 	if (!cnf_size)
2127 		goto release;
2128 
2129 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2130 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2131 
2132 	if (((hw->mac.type == e1000_pchlan) &&
2133 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2134 	    (hw->mac.type > e1000_pchlan)) {
2135 		/* HW configures the SMBus address and LEDs when the
2136 		 * OEM and LCD Write Enable bits are set in the NVM.
2137 		 * When both NVM bits are cleared, SW will configure
2138 		 * them instead.
2139 		 */
2140 		ret_val = e1000_write_smbus_addr(hw);
2141 		if (ret_val)
2142 			goto release;
2143 
2144 		data = er32(LEDCTL);
2145 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2146 							(u16)data);
2147 		if (ret_val)
2148 			goto release;
2149 	}
2150 
2151 	/* Configure LCD from extended configuration region. */
2152 
2153 	/* cnf_base_addr is in DWORD */
2154 	word_addr = (u16)(cnf_base_addr << 1);
2155 
2156 	for (i = 0; i < cnf_size; i++) {
2157 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2158 		if (ret_val)
2159 			goto release;
2160 
2161 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2162 					 1, &reg_addr);
2163 		if (ret_val)
2164 			goto release;
2165 
2166 		/* Save off the PHY page for future writes. */
2167 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2168 			phy_page = reg_data;
2169 			continue;
2170 		}
2171 
2172 		reg_addr &= PHY_REG_MASK;
2173 		reg_addr |= phy_page;
2174 
2175 		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2176 		if (ret_val)
2177 			goto release;
2178 	}
2179 
2180 release:
2181 	hw->phy.ops.release(hw);
2182 	return ret_val;
2183 }
2184 
2185 /**
2186  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2187  *  @hw:   pointer to the HW structure
2188  *  @link: link up bool flag
2189  *
2190  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2191  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2192  *  If link is down, the function will restore the default K1 setting located
2193  *  in the NVM.
2194  **/
2195 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2196 {
2197 	s32 ret_val = 0;
2198 	u16 status_reg = 0;
2199 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2200 
2201 	if (hw->mac.type != e1000_pchlan)
2202 		return 0;
2203 
2204 	/* Wrap the whole flow with the sw flag */
2205 	ret_val = hw->phy.ops.acquire(hw);
2206 	if (ret_val)
2207 		return ret_val;
2208 
2209 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2210 	if (link) {
2211 		if (hw->phy.type == e1000_phy_82578) {
2212 			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2213 						  &status_reg);
2214 			if (ret_val)
2215 				goto release;
2216 
2217 			status_reg &= (BM_CS_STATUS_LINK_UP |
2218 				       BM_CS_STATUS_RESOLVED |
2219 				       BM_CS_STATUS_SPEED_MASK);
2220 
2221 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2222 					   BM_CS_STATUS_RESOLVED |
2223 					   BM_CS_STATUS_SPEED_1000))
2224 				k1_enable = false;
2225 		}
2226 
2227 		if (hw->phy.type == e1000_phy_82577) {
2228 			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2229 			if (ret_val)
2230 				goto release;
2231 
2232 			status_reg &= (HV_M_STATUS_LINK_UP |
2233 				       HV_M_STATUS_AUTONEG_COMPLETE |
2234 				       HV_M_STATUS_SPEED_MASK);
2235 
2236 			if (status_reg == (HV_M_STATUS_LINK_UP |
2237 					   HV_M_STATUS_AUTONEG_COMPLETE |
2238 					   HV_M_STATUS_SPEED_1000))
2239 				k1_enable = false;
2240 		}
2241 
2242 		/* Link stall fix for link up */
2243 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2244 		if (ret_val)
2245 			goto release;
2246 
2247 	} else {
2248 		/* Link stall fix for link down */
2249 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2250 		if (ret_val)
2251 			goto release;
2252 	}
2253 
2254 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2255 
2256 release:
2257 	hw->phy.ops.release(hw);
2258 
2259 	return ret_val;
2260 }
2261 
2262 /**
2263  *  e1000_configure_k1_ich8lan - Configure K1 power state
2264  *  @hw: pointer to the HW structure
2265  *  @enable: K1 state to configure
2266  *
2267  *  Configure the K1 power state based on the provided parameter.
2268  *  Assumes semaphore already acquired.
2269  *
2270  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2271  **/
2272 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2273 {
2274 	s32 ret_val;
2275 	u32 ctrl_reg = 0;
2276 	u32 ctrl_ext = 0;
2277 	u32 reg = 0;
2278 	u16 kmrn_reg = 0;
2279 
2280 	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2281 					      &kmrn_reg);
2282 	if (ret_val)
2283 		return ret_val;
2284 
2285 	if (k1_enable)
2286 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2287 	else
2288 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2289 
2290 	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2291 					       kmrn_reg);
2292 	if (ret_val)
2293 		return ret_val;
2294 
2295 	usleep_range(20, 40);
2296 	ctrl_ext = er32(CTRL_EXT);
2297 	ctrl_reg = er32(CTRL);
2298 
2299 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2300 	reg |= E1000_CTRL_FRCSPD;
2301 	ew32(CTRL, reg);
2302 
2303 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2304 	e1e_flush();
2305 	usleep_range(20, 40);
2306 	ew32(CTRL, ctrl_reg);
2307 	ew32(CTRL_EXT, ctrl_ext);
2308 	e1e_flush();
2309 	usleep_range(20, 40);
2310 
2311 	return 0;
2312 }
2313 
2314 /**
2315  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2316  *  @hw:       pointer to the HW structure
2317  *  @d0_state: boolean if entering d0 or d3 device state
2318  *
2319  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2320  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2321  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2322  **/
2323 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2324 {
2325 	s32 ret_val = 0;
2326 	u32 mac_reg;
2327 	u16 oem_reg;
2328 
2329 	if (hw->mac.type < e1000_pchlan)
2330 		return ret_val;
2331 
2332 	ret_val = hw->phy.ops.acquire(hw);
2333 	if (ret_val)
2334 		return ret_val;
2335 
2336 	if (hw->mac.type == e1000_pchlan) {
2337 		mac_reg = er32(EXTCNF_CTRL);
2338 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2339 			goto release;
2340 	}
2341 
2342 	mac_reg = er32(FEXTNVM);
2343 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2344 		goto release;
2345 
2346 	mac_reg = er32(PHY_CTRL);
2347 
2348 	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2349 	if (ret_val)
2350 		goto release;
2351 
2352 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2353 
2354 	if (d0_state) {
2355 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2356 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2357 
2358 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2359 			oem_reg |= HV_OEM_BITS_LPLU;
2360 	} else {
2361 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2362 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2363 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2364 
2365 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2366 			       E1000_PHY_CTRL_NOND0A_LPLU))
2367 			oem_reg |= HV_OEM_BITS_LPLU;
2368 	}
2369 
2370 	/* Set Restart auto-neg to activate the bits */
2371 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2372 	    !hw->phy.ops.check_reset_block(hw))
2373 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2374 
2375 	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2376 
2377 release:
2378 	hw->phy.ops.release(hw);
2379 
2380 	return ret_val;
2381 }
2382 
2383 /**
2384  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2385  *  @hw:   pointer to the HW structure
2386  **/
2387 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2388 {
2389 	s32 ret_val;
2390 	u16 data;
2391 
2392 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2393 	if (ret_val)
2394 		return ret_val;
2395 
2396 	data |= HV_KMRN_MDIO_SLOW;
2397 
2398 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2399 
2400 	return ret_val;
2401 }
2402 
2403 /**
2404  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2405  *  done after every PHY reset.
2406  **/
2407 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2408 {
2409 	s32 ret_val = 0;
2410 	u16 phy_data;
2411 
2412 	if (hw->mac.type != e1000_pchlan)
2413 		return 0;
2414 
2415 	/* Set MDIO slow mode before any other MDIO access */
2416 	if (hw->phy.type == e1000_phy_82577) {
2417 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2418 		if (ret_val)
2419 			return ret_val;
2420 	}
2421 
2422 	if (((hw->phy.type == e1000_phy_82577) &&
2423 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2424 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2425 		/* Disable generation of early preamble */
2426 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2427 		if (ret_val)
2428 			return ret_val;
2429 
2430 		/* Preamble tuning for SSC */
2431 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2432 		if (ret_val)
2433 			return ret_val;
2434 	}
2435 
2436 	if (hw->phy.type == e1000_phy_82578) {
2437 		/* Return registers to default by doing a soft reset then
2438 		 * writing 0x3140 to the control register.
2439 		 */
2440 		if (hw->phy.revision < 2) {
2441 			e1000e_phy_sw_reset(hw);
2442 			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2443 			if (ret_val)
2444 				return ret_val;
2445 		}
2446 	}
2447 
2448 	/* Select page 0 */
2449 	ret_val = hw->phy.ops.acquire(hw);
2450 	if (ret_val)
2451 		return ret_val;
2452 
2453 	hw->phy.addr = 1;
2454 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2455 	hw->phy.ops.release(hw);
2456 	if (ret_val)
2457 		return ret_val;
2458 
2459 	/* Configure the K1 Si workaround during phy reset assuming there is
2460 	 * link so that it disables K1 if link is in 1Gbps.
2461 	 */
2462 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2463 	if (ret_val)
2464 		return ret_val;
2465 
2466 	/* Workaround for link disconnects on a busy hub in half duplex */
2467 	ret_val = hw->phy.ops.acquire(hw);
2468 	if (ret_val)
2469 		return ret_val;
2470 	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2471 	if (ret_val)
2472 		goto release;
2473 	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2474 	if (ret_val)
2475 		goto release;
2476 
2477 	/* set MSE higher to enable link to stay up when noise is high */
2478 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2479 release:
2480 	hw->phy.ops.release(hw);
2481 
2482 	return ret_val;
2483 }
2484 
2485 /**
2486  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2487  *  @hw:   pointer to the HW structure
2488  **/
2489 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2490 {
2491 	u32 mac_reg;
2492 	u16 i, phy_reg = 0;
2493 	s32 ret_val;
2494 
2495 	ret_val = hw->phy.ops.acquire(hw);
2496 	if (ret_val)
2497 		return;
2498 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2499 	if (ret_val)
2500 		goto release;
2501 
2502 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2503 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2504 		mac_reg = er32(RAL(i));
2505 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2506 					   (u16)(mac_reg & 0xFFFF));
2507 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2508 					   (u16)((mac_reg >> 16) & 0xFFFF));
2509 
2510 		mac_reg = er32(RAH(i));
2511 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2512 					   (u16)(mac_reg & 0xFFFF));
2513 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2514 					   (u16)((mac_reg & E1000_RAH_AV)
2515 						 >> 16));
2516 	}
2517 
2518 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2519 
2520 release:
2521 	hw->phy.ops.release(hw);
2522 }
2523 
2524 /**
2525  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2526  *  with 82579 PHY
2527  *  @hw: pointer to the HW structure
2528  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2529  **/
2530 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2531 {
2532 	s32 ret_val = 0;
2533 	u16 phy_reg, data;
2534 	u32 mac_reg;
2535 	u16 i;
2536 
2537 	if (hw->mac.type < e1000_pch2lan)
2538 		return 0;
2539 
2540 	/* disable Rx path while enabling/disabling workaround */
2541 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2542 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2543 	if (ret_val)
2544 		return ret_val;
2545 
2546 	if (enable) {
2547 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2548 		 * SHRAL/H) and initial CRC values to the MAC
2549 		 */
2550 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2551 			u8 mac_addr[ETH_ALEN] = { 0 };
2552 			u32 addr_high, addr_low;
2553 
2554 			addr_high = er32(RAH(i));
2555 			if (!(addr_high & E1000_RAH_AV))
2556 				continue;
2557 			addr_low = er32(RAL(i));
2558 			mac_addr[0] = (addr_low & 0xFF);
2559 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2560 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2561 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2562 			mac_addr[4] = (addr_high & 0xFF);
2563 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2564 
2565 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2566 		}
2567 
2568 		/* Write Rx addresses to the PHY */
2569 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2570 
2571 		/* Enable jumbo frame workaround in the MAC */
2572 		mac_reg = er32(FFLT_DBG);
2573 		mac_reg &= ~BIT(14);
2574 		mac_reg |= (7 << 15);
2575 		ew32(FFLT_DBG, mac_reg);
2576 
2577 		mac_reg = er32(RCTL);
2578 		mac_reg |= E1000_RCTL_SECRC;
2579 		ew32(RCTL, mac_reg);
2580 
2581 		ret_val = e1000e_read_kmrn_reg(hw,
2582 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2583 					       &data);
2584 		if (ret_val)
2585 			return ret_val;
2586 		ret_val = e1000e_write_kmrn_reg(hw,
2587 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2588 						data | BIT(0));
2589 		if (ret_val)
2590 			return ret_val;
2591 		ret_val = e1000e_read_kmrn_reg(hw,
2592 					       E1000_KMRNCTRLSTA_HD_CTRL,
2593 					       &data);
2594 		if (ret_val)
2595 			return ret_val;
2596 		data &= ~(0xF << 8);
2597 		data |= (0xB << 8);
2598 		ret_val = e1000e_write_kmrn_reg(hw,
2599 						E1000_KMRNCTRLSTA_HD_CTRL,
2600 						data);
2601 		if (ret_val)
2602 			return ret_val;
2603 
2604 		/* Enable jumbo frame workaround in the PHY */
2605 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2606 		data &= ~(0x7F << 5);
2607 		data |= (0x37 << 5);
2608 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2609 		if (ret_val)
2610 			return ret_val;
2611 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2612 		data &= ~BIT(13);
2613 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2614 		if (ret_val)
2615 			return ret_val;
2616 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2617 		data &= ~(0x3FF << 2);
2618 		data |= (E1000_TX_PTR_GAP << 2);
2619 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2620 		if (ret_val)
2621 			return ret_val;
2622 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2623 		if (ret_val)
2624 			return ret_val;
2625 		e1e_rphy(hw, HV_PM_CTRL, &data);
2626 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2627 		if (ret_val)
2628 			return ret_val;
2629 	} else {
2630 		/* Write MAC register values back to h/w defaults */
2631 		mac_reg = er32(FFLT_DBG);
2632 		mac_reg &= ~(0xF << 14);
2633 		ew32(FFLT_DBG, mac_reg);
2634 
2635 		mac_reg = er32(RCTL);
2636 		mac_reg &= ~E1000_RCTL_SECRC;
2637 		ew32(RCTL, mac_reg);
2638 
2639 		ret_val = e1000e_read_kmrn_reg(hw,
2640 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2641 					       &data);
2642 		if (ret_val)
2643 			return ret_val;
2644 		ret_val = e1000e_write_kmrn_reg(hw,
2645 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2646 						data & ~BIT(0));
2647 		if (ret_val)
2648 			return ret_val;
2649 		ret_val = e1000e_read_kmrn_reg(hw,
2650 					       E1000_KMRNCTRLSTA_HD_CTRL,
2651 					       &data);
2652 		if (ret_val)
2653 			return ret_val;
2654 		data &= ~(0xF << 8);
2655 		data |= (0xB << 8);
2656 		ret_val = e1000e_write_kmrn_reg(hw,
2657 						E1000_KMRNCTRLSTA_HD_CTRL,
2658 						data);
2659 		if (ret_val)
2660 			return ret_val;
2661 
2662 		/* Write PHY register values back to h/w defaults */
2663 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2664 		data &= ~(0x7F << 5);
2665 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2666 		if (ret_val)
2667 			return ret_val;
2668 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2669 		data |= BIT(13);
2670 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2671 		if (ret_val)
2672 			return ret_val;
2673 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2674 		data &= ~(0x3FF << 2);
2675 		data |= (0x8 << 2);
2676 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2677 		if (ret_val)
2678 			return ret_val;
2679 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2680 		if (ret_val)
2681 			return ret_val;
2682 		e1e_rphy(hw, HV_PM_CTRL, &data);
2683 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2684 		if (ret_val)
2685 			return ret_val;
2686 	}
2687 
2688 	/* re-enable Rx path after enabling/disabling workaround */
2689 	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2690 }
2691 
2692 /**
2693  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2694  *  done after every PHY reset.
2695  **/
2696 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2697 {
2698 	s32 ret_val = 0;
2699 
2700 	if (hw->mac.type != e1000_pch2lan)
2701 		return 0;
2702 
2703 	/* Set MDIO slow mode before any other MDIO access */
2704 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2705 	if (ret_val)
2706 		return ret_val;
2707 
2708 	ret_val = hw->phy.ops.acquire(hw);
2709 	if (ret_val)
2710 		return ret_val;
2711 	/* set MSE higher to enable link to stay up when noise is high */
2712 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2713 	if (ret_val)
2714 		goto release;
2715 	/* drop link after 5 times MSE threshold was reached */
2716 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2717 release:
2718 	hw->phy.ops.release(hw);
2719 
2720 	return ret_val;
2721 }
2722 
2723 /**
2724  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2725  *  @hw:   pointer to the HW structure
2726  *
2727  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2728  *  Disable K1 in 1000Mbps and 100Mbps
2729  **/
2730 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2731 {
2732 	s32 ret_val = 0;
2733 	u16 status_reg = 0;
2734 
2735 	if (hw->mac.type != e1000_pch2lan)
2736 		return 0;
2737 
2738 	/* Set K1 beacon duration based on 10Mbs speed */
2739 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2740 	if (ret_val)
2741 		return ret_val;
2742 
2743 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2744 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2745 		if (status_reg &
2746 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2747 			u16 pm_phy_reg;
2748 
2749 			/* LV 1G/100 Packet drop issue wa  */
2750 			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2751 			if (ret_val)
2752 				return ret_val;
2753 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2754 			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2755 			if (ret_val)
2756 				return ret_val;
2757 		} else {
2758 			u32 mac_reg;
2759 
2760 			mac_reg = er32(FEXTNVM4);
2761 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2762 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2763 			ew32(FEXTNVM4, mac_reg);
2764 		}
2765 	}
2766 
2767 	return ret_val;
2768 }
2769 
2770 /**
2771  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2772  *  @hw:   pointer to the HW structure
2773  *  @gate: boolean set to true to gate, false to ungate
2774  *
2775  *  Gate/ungate the automatic PHY configuration via hardware; perform
2776  *  the configuration via software instead.
2777  **/
2778 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2779 {
2780 	u32 extcnf_ctrl;
2781 
2782 	if (hw->mac.type < e1000_pch2lan)
2783 		return;
2784 
2785 	extcnf_ctrl = er32(EXTCNF_CTRL);
2786 
2787 	if (gate)
2788 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2789 	else
2790 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2791 
2792 	ew32(EXTCNF_CTRL, extcnf_ctrl);
2793 }
2794 
2795 /**
2796  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2797  *  @hw: pointer to the HW structure
2798  *
2799  *  Check the appropriate indication the MAC has finished configuring the
2800  *  PHY after a software reset.
2801  **/
2802 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2803 {
2804 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2805 
2806 	/* Wait for basic configuration completes before proceeding */
2807 	do {
2808 		data = er32(STATUS);
2809 		data &= E1000_STATUS_LAN_INIT_DONE;
2810 		usleep_range(100, 200);
2811 	} while ((!data) && --loop);
2812 
2813 	/* If basic configuration is incomplete before the above loop
2814 	 * count reaches 0, loading the configuration from NVM will
2815 	 * leave the PHY in a bad state possibly resulting in no link.
2816 	 */
2817 	if (loop == 0)
2818 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2819 
2820 	/* Clear the Init Done bit for the next init event */
2821 	data = er32(STATUS);
2822 	data &= ~E1000_STATUS_LAN_INIT_DONE;
2823 	ew32(STATUS, data);
2824 }
2825 
2826 /**
2827  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2828  *  @hw: pointer to the HW structure
2829  **/
2830 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2831 {
2832 	s32 ret_val = 0;
2833 	u16 reg;
2834 
2835 	if (hw->phy.ops.check_reset_block(hw))
2836 		return 0;
2837 
2838 	/* Allow time for h/w to get to quiescent state after reset */
2839 	usleep_range(10000, 20000);
2840 
2841 	/* Perform any necessary post-reset workarounds */
2842 	switch (hw->mac.type) {
2843 	case e1000_pchlan:
2844 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2845 		if (ret_val)
2846 			return ret_val;
2847 		break;
2848 	case e1000_pch2lan:
2849 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2850 		if (ret_val)
2851 			return ret_val;
2852 		break;
2853 	default:
2854 		break;
2855 	}
2856 
2857 	/* Clear the host wakeup bit after lcd reset */
2858 	if (hw->mac.type >= e1000_pchlan) {
2859 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2860 		reg &= ~BM_WUC_HOST_WU_BIT;
2861 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2862 	}
2863 
2864 	/* Configure the LCD with the extended configuration region in NVM */
2865 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2866 	if (ret_val)
2867 		return ret_val;
2868 
2869 	/* Configure the LCD with the OEM bits in NVM */
2870 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2871 
2872 	if (hw->mac.type == e1000_pch2lan) {
2873 		/* Ungate automatic PHY configuration on non-managed 82579 */
2874 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2875 			usleep_range(10000, 20000);
2876 			e1000_gate_hw_phy_config_ich8lan(hw, false);
2877 		}
2878 
2879 		/* Set EEE LPI Update Timer to 200usec */
2880 		ret_val = hw->phy.ops.acquire(hw);
2881 		if (ret_val)
2882 			return ret_val;
2883 		ret_val = e1000_write_emi_reg_locked(hw,
2884 						     I82579_LPI_UPDATE_TIMER,
2885 						     0x1387);
2886 		hw->phy.ops.release(hw);
2887 	}
2888 
2889 	return ret_val;
2890 }
2891 
2892 /**
2893  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2894  *  @hw: pointer to the HW structure
2895  *
2896  *  Resets the PHY
2897  *  This is a function pointer entry point called by drivers
2898  *  or other shared routines.
2899  **/
2900 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2901 {
2902 	s32 ret_val = 0;
2903 
2904 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2905 	if ((hw->mac.type == e1000_pch2lan) &&
2906 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2907 		e1000_gate_hw_phy_config_ich8lan(hw, true);
2908 
2909 	ret_val = e1000e_phy_hw_reset_generic(hw);
2910 	if (ret_val)
2911 		return ret_val;
2912 
2913 	return e1000_post_phy_reset_ich8lan(hw);
2914 }
2915 
2916 /**
2917  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2918  *  @hw: pointer to the HW structure
2919  *  @active: true to enable LPLU, false to disable
2920  *
2921  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2922  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2923  *  the phy speed. This function will manually set the LPLU bit and restart
2924  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2925  *  since it configures the same bit.
2926  **/
2927 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2928 {
2929 	s32 ret_val;
2930 	u16 oem_reg;
2931 
2932 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2933 	if (ret_val)
2934 		return ret_val;
2935 
2936 	if (active)
2937 		oem_reg |= HV_OEM_BITS_LPLU;
2938 	else
2939 		oem_reg &= ~HV_OEM_BITS_LPLU;
2940 
2941 	if (!hw->phy.ops.check_reset_block(hw))
2942 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2943 
2944 	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2945 }
2946 
2947 /**
2948  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2949  *  @hw: pointer to the HW structure
2950  *  @active: true to enable LPLU, false to disable
2951  *
2952  *  Sets the LPLU D0 state according to the active flag.  When
2953  *  activating LPLU this function also disables smart speed
2954  *  and vice versa.  LPLU will not be activated unless the
2955  *  device autonegotiation advertisement meets standards of
2956  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2957  *  This is a function pointer entry point only called by
2958  *  PHY setup routines.
2959  **/
2960 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2961 {
2962 	struct e1000_phy_info *phy = &hw->phy;
2963 	u32 phy_ctrl;
2964 	s32 ret_val = 0;
2965 	u16 data;
2966 
2967 	if (phy->type == e1000_phy_ife)
2968 		return 0;
2969 
2970 	phy_ctrl = er32(PHY_CTRL);
2971 
2972 	if (active) {
2973 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2974 		ew32(PHY_CTRL, phy_ctrl);
2975 
2976 		if (phy->type != e1000_phy_igp_3)
2977 			return 0;
2978 
2979 		/* Call gig speed drop workaround on LPLU before accessing
2980 		 * any PHY registers
2981 		 */
2982 		if (hw->mac.type == e1000_ich8lan)
2983 			e1000e_gig_downshift_workaround_ich8lan(hw);
2984 
2985 		/* When LPLU is enabled, we should disable SmartSpeed */
2986 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2987 		if (ret_val)
2988 			return ret_val;
2989 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2990 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2991 		if (ret_val)
2992 			return ret_val;
2993 	} else {
2994 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2995 		ew32(PHY_CTRL, phy_ctrl);
2996 
2997 		if (phy->type != e1000_phy_igp_3)
2998 			return 0;
2999 
3000 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3001 		 * during Dx states where the power conservation is most
3002 		 * important.  During driver activity we should enable
3003 		 * SmartSpeed, so performance is maintained.
3004 		 */
3005 		if (phy->smart_speed == e1000_smart_speed_on) {
3006 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3007 					   &data);
3008 			if (ret_val)
3009 				return ret_val;
3010 
3011 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3012 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3013 					   data);
3014 			if (ret_val)
3015 				return ret_val;
3016 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3017 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3018 					   &data);
3019 			if (ret_val)
3020 				return ret_val;
3021 
3022 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3023 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3024 					   data);
3025 			if (ret_val)
3026 				return ret_val;
3027 		}
3028 	}
3029 
3030 	return 0;
3031 }
3032 
3033 /**
3034  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3035  *  @hw: pointer to the HW structure
3036  *  @active: true to enable LPLU, false to disable
3037  *
3038  *  Sets the LPLU D3 state according to the active flag.  When
3039  *  activating LPLU this function also disables smart speed
3040  *  and vice versa.  LPLU will not be activated unless the
3041  *  device autonegotiation advertisement meets standards of
3042  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3043  *  This is a function pointer entry point only called by
3044  *  PHY setup routines.
3045  **/
3046 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3047 {
3048 	struct e1000_phy_info *phy = &hw->phy;
3049 	u32 phy_ctrl;
3050 	s32 ret_val = 0;
3051 	u16 data;
3052 
3053 	phy_ctrl = er32(PHY_CTRL);
3054 
3055 	if (!active) {
3056 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3057 		ew32(PHY_CTRL, phy_ctrl);
3058 
3059 		if (phy->type != e1000_phy_igp_3)
3060 			return 0;
3061 
3062 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3063 		 * during Dx states where the power conservation is most
3064 		 * important.  During driver activity we should enable
3065 		 * SmartSpeed, so performance is maintained.
3066 		 */
3067 		if (phy->smart_speed == e1000_smart_speed_on) {
3068 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3069 					   &data);
3070 			if (ret_val)
3071 				return ret_val;
3072 
3073 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3074 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3075 					   data);
3076 			if (ret_val)
3077 				return ret_val;
3078 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3079 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3080 					   &data);
3081 			if (ret_val)
3082 				return ret_val;
3083 
3084 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3085 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3086 					   data);
3087 			if (ret_val)
3088 				return ret_val;
3089 		}
3090 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3091 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3092 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3093 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3094 		ew32(PHY_CTRL, phy_ctrl);
3095 
3096 		if (phy->type != e1000_phy_igp_3)
3097 			return 0;
3098 
3099 		/* Call gig speed drop workaround on LPLU before accessing
3100 		 * any PHY registers
3101 		 */
3102 		if (hw->mac.type == e1000_ich8lan)
3103 			e1000e_gig_downshift_workaround_ich8lan(hw);
3104 
3105 		/* When LPLU is enabled, we should disable SmartSpeed */
3106 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3107 		if (ret_val)
3108 			return ret_val;
3109 
3110 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3111 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3112 	}
3113 
3114 	return ret_val;
3115 }
3116 
3117 /**
3118  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3119  *  @hw: pointer to the HW structure
3120  *  @bank:  pointer to the variable that returns the active bank
3121  *
3122  *  Reads signature byte from the NVM using the flash access registers.
3123  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3124  **/
3125 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3126 {
3127 	u32 eecd;
3128 	struct e1000_nvm_info *nvm = &hw->nvm;
3129 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3130 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3131 	u32 nvm_dword = 0;
3132 	u8 sig_byte = 0;
3133 	s32 ret_val;
3134 
3135 	switch (hw->mac.type) {
3136 	case e1000_pch_spt:
3137 	case e1000_pch_cnp:
3138 		bank1_offset = nvm->flash_bank_size;
3139 		act_offset = E1000_ICH_NVM_SIG_WORD;
3140 
3141 		/* set bank to 0 in case flash read fails */
3142 		*bank = 0;
3143 
3144 		/* Check bank 0 */
3145 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3146 							 &nvm_dword);
3147 		if (ret_val)
3148 			return ret_val;
3149 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3150 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3151 		    E1000_ICH_NVM_SIG_VALUE) {
3152 			*bank = 0;
3153 			return 0;
3154 		}
3155 
3156 		/* Check bank 1 */
3157 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3158 							 bank1_offset,
3159 							 &nvm_dword);
3160 		if (ret_val)
3161 			return ret_val;
3162 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3163 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3164 		    E1000_ICH_NVM_SIG_VALUE) {
3165 			*bank = 1;
3166 			return 0;
3167 		}
3168 
3169 		e_dbg("ERROR: No valid NVM bank present\n");
3170 		return -E1000_ERR_NVM;
3171 	case e1000_ich8lan:
3172 	case e1000_ich9lan:
3173 		eecd = er32(EECD);
3174 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3175 		    E1000_EECD_SEC1VAL_VALID_MASK) {
3176 			if (eecd & E1000_EECD_SEC1VAL)
3177 				*bank = 1;
3178 			else
3179 				*bank = 0;
3180 
3181 			return 0;
3182 		}
3183 		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3184 		/* fall-thru */
3185 	default:
3186 		/* set bank to 0 in case flash read fails */
3187 		*bank = 0;
3188 
3189 		/* Check bank 0 */
3190 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3191 							&sig_byte);
3192 		if (ret_val)
3193 			return ret_val;
3194 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3195 		    E1000_ICH_NVM_SIG_VALUE) {
3196 			*bank = 0;
3197 			return 0;
3198 		}
3199 
3200 		/* Check bank 1 */
3201 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3202 							bank1_offset,
3203 							&sig_byte);
3204 		if (ret_val)
3205 			return ret_val;
3206 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3207 		    E1000_ICH_NVM_SIG_VALUE) {
3208 			*bank = 1;
3209 			return 0;
3210 		}
3211 
3212 		e_dbg("ERROR: No valid NVM bank present\n");
3213 		return -E1000_ERR_NVM;
3214 	}
3215 }
3216 
3217 /**
3218  *  e1000_read_nvm_spt - NVM access for SPT
3219  *  @hw: pointer to the HW structure
3220  *  @offset: The offset (in bytes) of the word(s) to read.
3221  *  @words: Size of data to read in words.
3222  *  @data: pointer to the word(s) to read at offset.
3223  *
3224  *  Reads a word(s) from the NVM
3225  **/
3226 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3227 			      u16 *data)
3228 {
3229 	struct e1000_nvm_info *nvm = &hw->nvm;
3230 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3231 	u32 act_offset;
3232 	s32 ret_val = 0;
3233 	u32 bank = 0;
3234 	u32 dword = 0;
3235 	u16 offset_to_read;
3236 	u16 i;
3237 
3238 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3239 	    (words == 0)) {
3240 		e_dbg("nvm parameter(s) out of bounds\n");
3241 		ret_val = -E1000_ERR_NVM;
3242 		goto out;
3243 	}
3244 
3245 	nvm->ops.acquire(hw);
3246 
3247 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3248 	if (ret_val) {
3249 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3250 		bank = 0;
3251 	}
3252 
3253 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3254 	act_offset += offset;
3255 
3256 	ret_val = 0;
3257 
3258 	for (i = 0; i < words; i += 2) {
3259 		if (words - i == 1) {
3260 			if (dev_spec->shadow_ram[offset + i].modified) {
3261 				data[i] =
3262 				    dev_spec->shadow_ram[offset + i].value;
3263 			} else {
3264 				offset_to_read = act_offset + i -
3265 				    ((act_offset + i) % 2);
3266 				ret_val =
3267 				  e1000_read_flash_dword_ich8lan(hw,
3268 								 offset_to_read,
3269 								 &dword);
3270 				if (ret_val)
3271 					break;
3272 				if ((act_offset + i) % 2 == 0)
3273 					data[i] = (u16)(dword & 0xFFFF);
3274 				else
3275 					data[i] = (u16)((dword >> 16) & 0xFFFF);
3276 			}
3277 		} else {
3278 			offset_to_read = act_offset + i;
3279 			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3280 			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3281 				ret_val =
3282 				  e1000_read_flash_dword_ich8lan(hw,
3283 								 offset_to_read,
3284 								 &dword);
3285 				if (ret_val)
3286 					break;
3287 			}
3288 			if (dev_spec->shadow_ram[offset + i].modified)
3289 				data[i] =
3290 				    dev_spec->shadow_ram[offset + i].value;
3291 			else
3292 				data[i] = (u16)(dword & 0xFFFF);
3293 			if (dev_spec->shadow_ram[offset + i].modified)
3294 				data[i + 1] =
3295 				    dev_spec->shadow_ram[offset + i + 1].value;
3296 			else
3297 				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3298 		}
3299 	}
3300 
3301 	nvm->ops.release(hw);
3302 
3303 out:
3304 	if (ret_val)
3305 		e_dbg("NVM read error: %d\n", ret_val);
3306 
3307 	return ret_val;
3308 }
3309 
3310 /**
3311  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3312  *  @hw: pointer to the HW structure
3313  *  @offset: The offset (in bytes) of the word(s) to read.
3314  *  @words: Size of data to read in words
3315  *  @data: Pointer to the word(s) to read at offset.
3316  *
3317  *  Reads a word(s) from the NVM using the flash access registers.
3318  **/
3319 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3320 				  u16 *data)
3321 {
3322 	struct e1000_nvm_info *nvm = &hw->nvm;
3323 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3324 	u32 act_offset;
3325 	s32 ret_val = 0;
3326 	u32 bank = 0;
3327 	u16 i, word;
3328 
3329 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3330 	    (words == 0)) {
3331 		e_dbg("nvm parameter(s) out of bounds\n");
3332 		ret_val = -E1000_ERR_NVM;
3333 		goto out;
3334 	}
3335 
3336 	nvm->ops.acquire(hw);
3337 
3338 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3339 	if (ret_val) {
3340 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3341 		bank = 0;
3342 	}
3343 
3344 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3345 	act_offset += offset;
3346 
3347 	ret_val = 0;
3348 	for (i = 0; i < words; i++) {
3349 		if (dev_spec->shadow_ram[offset + i].modified) {
3350 			data[i] = dev_spec->shadow_ram[offset + i].value;
3351 		} else {
3352 			ret_val = e1000_read_flash_word_ich8lan(hw,
3353 								act_offset + i,
3354 								&word);
3355 			if (ret_val)
3356 				break;
3357 			data[i] = word;
3358 		}
3359 	}
3360 
3361 	nvm->ops.release(hw);
3362 
3363 out:
3364 	if (ret_val)
3365 		e_dbg("NVM read error: %d\n", ret_val);
3366 
3367 	return ret_val;
3368 }
3369 
3370 /**
3371  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3372  *  @hw: pointer to the HW structure
3373  *
3374  *  This function does initial flash setup so that a new read/write/erase cycle
3375  *  can be started.
3376  **/
3377 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3378 {
3379 	union ich8_hws_flash_status hsfsts;
3380 	s32 ret_val = -E1000_ERR_NVM;
3381 
3382 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3383 
3384 	/* Check if the flash descriptor is valid */
3385 	if (!hsfsts.hsf_status.fldesvalid) {
3386 		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3387 		return -E1000_ERR_NVM;
3388 	}
3389 
3390 	/* Clear FCERR and DAEL in hw status by writing 1 */
3391 	hsfsts.hsf_status.flcerr = 1;
3392 	hsfsts.hsf_status.dael = 1;
3393 	if (hw->mac.type >= e1000_pch_spt)
3394 		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3395 	else
3396 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3397 
3398 	/* Either we should have a hardware SPI cycle in progress
3399 	 * bit to check against, in order to start a new cycle or
3400 	 * FDONE bit should be changed in the hardware so that it
3401 	 * is 1 after hardware reset, which can then be used as an
3402 	 * indication whether a cycle is in progress or has been
3403 	 * completed.
3404 	 */
3405 
3406 	if (!hsfsts.hsf_status.flcinprog) {
3407 		/* There is no cycle running at present,
3408 		 * so we can start a cycle.
3409 		 * Begin by setting Flash Cycle Done.
3410 		 */
3411 		hsfsts.hsf_status.flcdone = 1;
3412 		if (hw->mac.type >= e1000_pch_spt)
3413 			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3414 		else
3415 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3416 		ret_val = 0;
3417 	} else {
3418 		s32 i;
3419 
3420 		/* Otherwise poll for sometime so the current
3421 		 * cycle has a chance to end before giving up.
3422 		 */
3423 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3424 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3425 			if (!hsfsts.hsf_status.flcinprog) {
3426 				ret_val = 0;
3427 				break;
3428 			}
3429 			udelay(1);
3430 		}
3431 		if (!ret_val) {
3432 			/* Successful in waiting for previous cycle to timeout,
3433 			 * now set the Flash Cycle Done.
3434 			 */
3435 			hsfsts.hsf_status.flcdone = 1;
3436 			if (hw->mac.type >= e1000_pch_spt)
3437 				ew32flash(ICH_FLASH_HSFSTS,
3438 					  hsfsts.regval & 0xFFFF);
3439 			else
3440 				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3441 		} else {
3442 			e_dbg("Flash controller busy, cannot get access\n");
3443 		}
3444 	}
3445 
3446 	return ret_val;
3447 }
3448 
3449 /**
3450  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3451  *  @hw: pointer to the HW structure
3452  *  @timeout: maximum time to wait for completion
3453  *
3454  *  This function starts a flash cycle and waits for its completion.
3455  **/
3456 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3457 {
3458 	union ich8_hws_flash_ctrl hsflctl;
3459 	union ich8_hws_flash_status hsfsts;
3460 	u32 i = 0;
3461 
3462 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3463 	if (hw->mac.type >= e1000_pch_spt)
3464 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3465 	else
3466 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3467 	hsflctl.hsf_ctrl.flcgo = 1;
3468 
3469 	if (hw->mac.type >= e1000_pch_spt)
3470 		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3471 	else
3472 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3473 
3474 	/* wait till FDONE bit is set to 1 */
3475 	do {
3476 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3477 		if (hsfsts.hsf_status.flcdone)
3478 			break;
3479 		udelay(1);
3480 	} while (i++ < timeout);
3481 
3482 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3483 		return 0;
3484 
3485 	return -E1000_ERR_NVM;
3486 }
3487 
3488 /**
3489  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3490  *  @hw: pointer to the HW structure
3491  *  @offset: offset to data location
3492  *  @data: pointer to the location for storing the data
3493  *
3494  *  Reads the flash dword at offset into data.  Offset is converted
3495  *  to bytes before read.
3496  **/
3497 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3498 					  u32 *data)
3499 {
3500 	/* Must convert word offset into bytes. */
3501 	offset <<= 1;
3502 	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3503 }
3504 
3505 /**
3506  *  e1000_read_flash_word_ich8lan - Read word from flash
3507  *  @hw: pointer to the HW structure
3508  *  @offset: offset to data location
3509  *  @data: pointer to the location for storing the data
3510  *
3511  *  Reads the flash word at offset into data.  Offset is converted
3512  *  to bytes before read.
3513  **/
3514 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3515 					 u16 *data)
3516 {
3517 	/* Must convert offset into bytes. */
3518 	offset <<= 1;
3519 
3520 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3521 }
3522 
3523 /**
3524  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3525  *  @hw: pointer to the HW structure
3526  *  @offset: The offset of the byte to read.
3527  *  @data: Pointer to a byte to store the value read.
3528  *
3529  *  Reads a single byte from the NVM using the flash access registers.
3530  **/
3531 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3532 					 u8 *data)
3533 {
3534 	s32 ret_val;
3535 	u16 word = 0;
3536 
3537 	/* In SPT, only 32 bits access is supported,
3538 	 * so this function should not be called.
3539 	 */
3540 	if (hw->mac.type >= e1000_pch_spt)
3541 		return -E1000_ERR_NVM;
3542 	else
3543 		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3544 
3545 	if (ret_val)
3546 		return ret_val;
3547 
3548 	*data = (u8)word;
3549 
3550 	return 0;
3551 }
3552 
3553 /**
3554  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3555  *  @hw: pointer to the HW structure
3556  *  @offset: The offset (in bytes) of the byte or word to read.
3557  *  @size: Size of data to read, 1=byte 2=word
3558  *  @data: Pointer to the word to store the value read.
3559  *
3560  *  Reads a byte or word from the NVM using the flash access registers.
3561  **/
3562 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3563 					 u8 size, u16 *data)
3564 {
3565 	union ich8_hws_flash_status hsfsts;
3566 	union ich8_hws_flash_ctrl hsflctl;
3567 	u32 flash_linear_addr;
3568 	u32 flash_data = 0;
3569 	s32 ret_val = -E1000_ERR_NVM;
3570 	u8 count = 0;
3571 
3572 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3573 		return -E1000_ERR_NVM;
3574 
3575 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3576 			     hw->nvm.flash_base_addr);
3577 
3578 	do {
3579 		udelay(1);
3580 		/* Steps */
3581 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3582 		if (ret_val)
3583 			break;
3584 
3585 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3586 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3587 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3588 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3589 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3590 
3591 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3592 
3593 		ret_val =
3594 		    e1000_flash_cycle_ich8lan(hw,
3595 					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3596 
3597 		/* Check if FCERR is set to 1, if set to 1, clear it
3598 		 * and try the whole sequence a few more times, else
3599 		 * read in (shift in) the Flash Data0, the order is
3600 		 * least significant byte first msb to lsb
3601 		 */
3602 		if (!ret_val) {
3603 			flash_data = er32flash(ICH_FLASH_FDATA0);
3604 			if (size == 1)
3605 				*data = (u8)(flash_data & 0x000000FF);
3606 			else if (size == 2)
3607 				*data = (u16)(flash_data & 0x0000FFFF);
3608 			break;
3609 		} else {
3610 			/* If we've gotten here, then things are probably
3611 			 * completely hosed, but if the error condition is
3612 			 * detected, it won't hurt to give it another try...
3613 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3614 			 */
3615 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3616 			if (hsfsts.hsf_status.flcerr) {
3617 				/* Repeat for some time before giving up. */
3618 				continue;
3619 			} else if (!hsfsts.hsf_status.flcdone) {
3620 				e_dbg("Timeout error - flash cycle did not complete.\n");
3621 				break;
3622 			}
3623 		}
3624 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3625 
3626 	return ret_val;
3627 }
3628 
3629 /**
3630  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3631  *  @hw: pointer to the HW structure
3632  *  @offset: The offset (in bytes) of the dword to read.
3633  *  @data: Pointer to the dword to store the value read.
3634  *
3635  *  Reads a byte or word from the NVM using the flash access registers.
3636  **/
3637 
3638 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3639 					   u32 *data)
3640 {
3641 	union ich8_hws_flash_status hsfsts;
3642 	union ich8_hws_flash_ctrl hsflctl;
3643 	u32 flash_linear_addr;
3644 	s32 ret_val = -E1000_ERR_NVM;
3645 	u8 count = 0;
3646 
3647 	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3648 		return -E1000_ERR_NVM;
3649 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3650 			     hw->nvm.flash_base_addr);
3651 
3652 	do {
3653 		udelay(1);
3654 		/* Steps */
3655 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3656 		if (ret_val)
3657 			break;
3658 		/* In SPT, This register is in Lan memory space, not flash.
3659 		 * Therefore, only 32 bit access is supported
3660 		 */
3661 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3662 
3663 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3664 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3665 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3666 		/* In SPT, This register is in Lan memory space, not flash.
3667 		 * Therefore, only 32 bit access is supported
3668 		 */
3669 		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3670 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3671 
3672 		ret_val =
3673 		   e1000_flash_cycle_ich8lan(hw,
3674 					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3675 
3676 		/* Check if FCERR is set to 1, if set to 1, clear it
3677 		 * and try the whole sequence a few more times, else
3678 		 * read in (shift in) the Flash Data0, the order is
3679 		 * least significant byte first msb to lsb
3680 		 */
3681 		if (!ret_val) {
3682 			*data = er32flash(ICH_FLASH_FDATA0);
3683 			break;
3684 		} else {
3685 			/* If we've gotten here, then things are probably
3686 			 * completely hosed, but if the error condition is
3687 			 * detected, it won't hurt to give it another try...
3688 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3689 			 */
3690 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3691 			if (hsfsts.hsf_status.flcerr) {
3692 				/* Repeat for some time before giving up. */
3693 				continue;
3694 			} else if (!hsfsts.hsf_status.flcdone) {
3695 				e_dbg("Timeout error - flash cycle did not complete.\n");
3696 				break;
3697 			}
3698 		}
3699 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3700 
3701 	return ret_val;
3702 }
3703 
3704 /**
3705  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3706  *  @hw: pointer to the HW structure
3707  *  @offset: The offset (in bytes) of the word(s) to write.
3708  *  @words: Size of data to write in words
3709  *  @data: Pointer to the word(s) to write at offset.
3710  *
3711  *  Writes a byte or word to the NVM using the flash access registers.
3712  **/
3713 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3714 				   u16 *data)
3715 {
3716 	struct e1000_nvm_info *nvm = &hw->nvm;
3717 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3718 	u16 i;
3719 
3720 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3721 	    (words == 0)) {
3722 		e_dbg("nvm parameter(s) out of bounds\n");
3723 		return -E1000_ERR_NVM;
3724 	}
3725 
3726 	nvm->ops.acquire(hw);
3727 
3728 	for (i = 0; i < words; i++) {
3729 		dev_spec->shadow_ram[offset + i].modified = true;
3730 		dev_spec->shadow_ram[offset + i].value = data[i];
3731 	}
3732 
3733 	nvm->ops.release(hw);
3734 
3735 	return 0;
3736 }
3737 
3738 /**
3739  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3740  *  @hw: pointer to the HW structure
3741  *
3742  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3743  *  which writes the checksum to the shadow ram.  The changes in the shadow
3744  *  ram are then committed to the EEPROM by processing each bank at a time
3745  *  checking for the modified bit and writing only the pending changes.
3746  *  After a successful commit, the shadow ram is cleared and is ready for
3747  *  future writes.
3748  **/
3749 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3750 {
3751 	struct e1000_nvm_info *nvm = &hw->nvm;
3752 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3753 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3754 	s32 ret_val;
3755 	u32 dword = 0;
3756 
3757 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3758 	if (ret_val)
3759 		goto out;
3760 
3761 	if (nvm->type != e1000_nvm_flash_sw)
3762 		goto out;
3763 
3764 	nvm->ops.acquire(hw);
3765 
3766 	/* We're writing to the opposite bank so if we're on bank 1,
3767 	 * write to bank 0 etc.  We also need to erase the segment that
3768 	 * is going to be written
3769 	 */
3770 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3771 	if (ret_val) {
3772 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3773 		bank = 0;
3774 	}
3775 
3776 	if (bank == 0) {
3777 		new_bank_offset = nvm->flash_bank_size;
3778 		old_bank_offset = 0;
3779 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3780 		if (ret_val)
3781 			goto release;
3782 	} else {
3783 		old_bank_offset = nvm->flash_bank_size;
3784 		new_bank_offset = 0;
3785 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3786 		if (ret_val)
3787 			goto release;
3788 	}
3789 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3790 		/* Determine whether to write the value stored
3791 		 * in the other NVM bank or a modified value stored
3792 		 * in the shadow RAM
3793 		 */
3794 		ret_val = e1000_read_flash_dword_ich8lan(hw,
3795 							 i + old_bank_offset,
3796 							 &dword);
3797 
3798 		if (dev_spec->shadow_ram[i].modified) {
3799 			dword &= 0xffff0000;
3800 			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3801 		}
3802 		if (dev_spec->shadow_ram[i + 1].modified) {
3803 			dword &= 0x0000ffff;
3804 			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3805 				  << 16);
3806 		}
3807 		if (ret_val)
3808 			break;
3809 
3810 		/* If the word is 0x13, then make sure the signature bits
3811 		 * (15:14) are 11b until the commit has completed.
3812 		 * This will allow us to write 10b which indicates the
3813 		 * signature is valid.  We want to do this after the write
3814 		 * has completed so that we don't mark the segment valid
3815 		 * while the write is still in progress
3816 		 */
3817 		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3818 			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3819 
3820 		/* Convert offset to bytes. */
3821 		act_offset = (i + new_bank_offset) << 1;
3822 
3823 		usleep_range(100, 200);
3824 
3825 		/* Write the data to the new bank. Offset in words */
3826 		act_offset = i + new_bank_offset;
3827 		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3828 								dword);
3829 		if (ret_val)
3830 			break;
3831 	}
3832 
3833 	/* Don't bother writing the segment valid bits if sector
3834 	 * programming failed.
3835 	 */
3836 	if (ret_val) {
3837 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3838 		e_dbg("Flash commit failed.\n");
3839 		goto release;
3840 	}
3841 
3842 	/* Finally validate the new segment by setting bit 15:14
3843 	 * to 10b in word 0x13 , this can be done without an
3844 	 * erase as well since these bits are 11 to start with
3845 	 * and we need to change bit 14 to 0b
3846 	 */
3847 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3848 
3849 	/*offset in words but we read dword */
3850 	--act_offset;
3851 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3852 
3853 	if (ret_val)
3854 		goto release;
3855 
3856 	dword &= 0xBFFFFFFF;
3857 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3858 
3859 	if (ret_val)
3860 		goto release;
3861 
3862 	/* And invalidate the previously valid segment by setting
3863 	 * its signature word (0x13) high_byte to 0b. This can be
3864 	 * done without an erase because flash erase sets all bits
3865 	 * to 1's. We can write 1's to 0's without an erase
3866 	 */
3867 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3868 
3869 	/* offset in words but we read dword */
3870 	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3871 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3872 
3873 	if (ret_val)
3874 		goto release;
3875 
3876 	dword &= 0x00FFFFFF;
3877 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3878 
3879 	if (ret_val)
3880 		goto release;
3881 
3882 	/* Great!  Everything worked, we can now clear the cached entries. */
3883 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3884 		dev_spec->shadow_ram[i].modified = false;
3885 		dev_spec->shadow_ram[i].value = 0xFFFF;
3886 	}
3887 
3888 release:
3889 	nvm->ops.release(hw);
3890 
3891 	/* Reload the EEPROM, or else modifications will not appear
3892 	 * until after the next adapter reset.
3893 	 */
3894 	if (!ret_val) {
3895 		nvm->ops.reload(hw);
3896 		usleep_range(10000, 20000);
3897 	}
3898 
3899 out:
3900 	if (ret_val)
3901 		e_dbg("NVM update error: %d\n", ret_val);
3902 
3903 	return ret_val;
3904 }
3905 
3906 /**
3907  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3908  *  @hw: pointer to the HW structure
3909  *
3910  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3911  *  which writes the checksum to the shadow ram.  The changes in the shadow
3912  *  ram are then committed to the EEPROM by processing each bank at a time
3913  *  checking for the modified bit and writing only the pending changes.
3914  *  After a successful commit, the shadow ram is cleared and is ready for
3915  *  future writes.
3916  **/
3917 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3918 {
3919 	struct e1000_nvm_info *nvm = &hw->nvm;
3920 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3921 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3922 	s32 ret_val;
3923 	u16 data = 0;
3924 
3925 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3926 	if (ret_val)
3927 		goto out;
3928 
3929 	if (nvm->type != e1000_nvm_flash_sw)
3930 		goto out;
3931 
3932 	nvm->ops.acquire(hw);
3933 
3934 	/* We're writing to the opposite bank so if we're on bank 1,
3935 	 * write to bank 0 etc.  We also need to erase the segment that
3936 	 * is going to be written
3937 	 */
3938 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3939 	if (ret_val) {
3940 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3941 		bank = 0;
3942 	}
3943 
3944 	if (bank == 0) {
3945 		new_bank_offset = nvm->flash_bank_size;
3946 		old_bank_offset = 0;
3947 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3948 		if (ret_val)
3949 			goto release;
3950 	} else {
3951 		old_bank_offset = nvm->flash_bank_size;
3952 		new_bank_offset = 0;
3953 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3954 		if (ret_val)
3955 			goto release;
3956 	}
3957 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3958 		if (dev_spec->shadow_ram[i].modified) {
3959 			data = dev_spec->shadow_ram[i].value;
3960 		} else {
3961 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
3962 								old_bank_offset,
3963 								&data);
3964 			if (ret_val)
3965 				break;
3966 		}
3967 
3968 		/* If the word is 0x13, then make sure the signature bits
3969 		 * (15:14) are 11b until the commit has completed.
3970 		 * This will allow us to write 10b which indicates the
3971 		 * signature is valid.  We want to do this after the write
3972 		 * has completed so that we don't mark the segment valid
3973 		 * while the write is still in progress
3974 		 */
3975 		if (i == E1000_ICH_NVM_SIG_WORD)
3976 			data |= E1000_ICH_NVM_SIG_MASK;
3977 
3978 		/* Convert offset to bytes. */
3979 		act_offset = (i + new_bank_offset) << 1;
3980 
3981 		usleep_range(100, 200);
3982 		/* Write the bytes to the new bank. */
3983 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3984 							       act_offset,
3985 							       (u8)data);
3986 		if (ret_val)
3987 			break;
3988 
3989 		usleep_range(100, 200);
3990 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3991 							       act_offset + 1,
3992 							       (u8)(data >> 8));
3993 		if (ret_val)
3994 			break;
3995 	}
3996 
3997 	/* Don't bother writing the segment valid bits if sector
3998 	 * programming failed.
3999 	 */
4000 	if (ret_val) {
4001 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4002 		e_dbg("Flash commit failed.\n");
4003 		goto release;
4004 	}
4005 
4006 	/* Finally validate the new segment by setting bit 15:14
4007 	 * to 10b in word 0x13 , this can be done without an
4008 	 * erase as well since these bits are 11 to start with
4009 	 * and we need to change bit 14 to 0b
4010 	 */
4011 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4012 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4013 	if (ret_val)
4014 		goto release;
4015 
4016 	data &= 0xBFFF;
4017 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4018 						       act_offset * 2 + 1,
4019 						       (u8)(data >> 8));
4020 	if (ret_val)
4021 		goto release;
4022 
4023 	/* And invalidate the previously valid segment by setting
4024 	 * its signature word (0x13) high_byte to 0b. This can be
4025 	 * done without an erase because flash erase sets all bits
4026 	 * to 1's. We can write 1's to 0's without an erase
4027 	 */
4028 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4029 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4030 	if (ret_val)
4031 		goto release;
4032 
4033 	/* Great!  Everything worked, we can now clear the cached entries. */
4034 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4035 		dev_spec->shadow_ram[i].modified = false;
4036 		dev_spec->shadow_ram[i].value = 0xFFFF;
4037 	}
4038 
4039 release:
4040 	nvm->ops.release(hw);
4041 
4042 	/* Reload the EEPROM, or else modifications will not appear
4043 	 * until after the next adapter reset.
4044 	 */
4045 	if (!ret_val) {
4046 		nvm->ops.reload(hw);
4047 		usleep_range(10000, 20000);
4048 	}
4049 
4050 out:
4051 	if (ret_val)
4052 		e_dbg("NVM update error: %d\n", ret_val);
4053 
4054 	return ret_val;
4055 }
4056 
4057 /**
4058  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4059  *  @hw: pointer to the HW structure
4060  *
4061  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4062  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4063  *  calculated, in which case we need to calculate the checksum and set bit 6.
4064  **/
4065 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4066 {
4067 	s32 ret_val;
4068 	u16 data;
4069 	u16 word;
4070 	u16 valid_csum_mask;
4071 
4072 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4073 	 * the checksum needs to be fixed.  This bit is an indication that
4074 	 * the NVM was prepared by OEM software and did not calculate
4075 	 * the checksum...a likely scenario.
4076 	 */
4077 	switch (hw->mac.type) {
4078 	case e1000_pch_lpt:
4079 	case e1000_pch_spt:
4080 	case e1000_pch_cnp:
4081 		word = NVM_COMPAT;
4082 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4083 		break;
4084 	default:
4085 		word = NVM_FUTURE_INIT_WORD1;
4086 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4087 		break;
4088 	}
4089 
4090 	ret_val = e1000_read_nvm(hw, word, 1, &data);
4091 	if (ret_val)
4092 		return ret_val;
4093 
4094 	if (!(data & valid_csum_mask)) {
4095 		data |= valid_csum_mask;
4096 		ret_val = e1000_write_nvm(hw, word, 1, &data);
4097 		if (ret_val)
4098 			return ret_val;
4099 		ret_val = e1000e_update_nvm_checksum(hw);
4100 		if (ret_val)
4101 			return ret_val;
4102 	}
4103 
4104 	return e1000e_validate_nvm_checksum_generic(hw);
4105 }
4106 
4107 /**
4108  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4109  *  @hw: pointer to the HW structure
4110  *
4111  *  To prevent malicious write/erase of the NVM, set it to be read-only
4112  *  so that the hardware ignores all write/erase cycles of the NVM via
4113  *  the flash control registers.  The shadow-ram copy of the NVM will
4114  *  still be updated, however any updates to this copy will not stick
4115  *  across driver reloads.
4116  **/
4117 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4118 {
4119 	struct e1000_nvm_info *nvm = &hw->nvm;
4120 	union ich8_flash_protected_range pr0;
4121 	union ich8_hws_flash_status hsfsts;
4122 	u32 gfpreg;
4123 
4124 	nvm->ops.acquire(hw);
4125 
4126 	gfpreg = er32flash(ICH_FLASH_GFPREG);
4127 
4128 	/* Write-protect GbE Sector of NVM */
4129 	pr0.regval = er32flash(ICH_FLASH_PR0);
4130 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4131 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4132 	pr0.range.wpe = true;
4133 	ew32flash(ICH_FLASH_PR0, pr0.regval);
4134 
4135 	/* Lock down a subset of GbE Flash Control Registers, e.g.
4136 	 * PR0 to prevent the write-protection from being lifted.
4137 	 * Once FLOCKDN is set, the registers protected by it cannot
4138 	 * be written until FLOCKDN is cleared by a hardware reset.
4139 	 */
4140 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4141 	hsfsts.hsf_status.flockdn = true;
4142 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4143 
4144 	nvm->ops.release(hw);
4145 }
4146 
4147 /**
4148  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4149  *  @hw: pointer to the HW structure
4150  *  @offset: The offset (in bytes) of the byte/word to read.
4151  *  @size: Size of data to read, 1=byte 2=word
4152  *  @data: The byte(s) to write to the NVM.
4153  *
4154  *  Writes one/two bytes to the NVM using the flash access registers.
4155  **/
4156 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4157 					  u8 size, u16 data)
4158 {
4159 	union ich8_hws_flash_status hsfsts;
4160 	union ich8_hws_flash_ctrl hsflctl;
4161 	u32 flash_linear_addr;
4162 	u32 flash_data = 0;
4163 	s32 ret_val;
4164 	u8 count = 0;
4165 
4166 	if (hw->mac.type >= e1000_pch_spt) {
4167 		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4168 			return -E1000_ERR_NVM;
4169 	} else {
4170 		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4171 			return -E1000_ERR_NVM;
4172 	}
4173 
4174 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4175 			     hw->nvm.flash_base_addr);
4176 
4177 	do {
4178 		udelay(1);
4179 		/* Steps */
4180 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4181 		if (ret_val)
4182 			break;
4183 		/* In SPT, This register is in Lan memory space, not
4184 		 * flash.  Therefore, only 32 bit access is supported
4185 		 */
4186 		if (hw->mac.type >= e1000_pch_spt)
4187 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4188 		else
4189 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4190 
4191 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4192 		hsflctl.hsf_ctrl.fldbcount = size - 1;
4193 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4194 		/* In SPT, This register is in Lan memory space,
4195 		 * not flash.  Therefore, only 32 bit access is
4196 		 * supported
4197 		 */
4198 		if (hw->mac.type >= e1000_pch_spt)
4199 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4200 		else
4201 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4202 
4203 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4204 
4205 		if (size == 1)
4206 			flash_data = (u32)data & 0x00FF;
4207 		else
4208 			flash_data = (u32)data;
4209 
4210 		ew32flash(ICH_FLASH_FDATA0, flash_data);
4211 
4212 		/* check if FCERR is set to 1 , if set to 1, clear it
4213 		 * and try the whole sequence a few more times else done
4214 		 */
4215 		ret_val =
4216 		    e1000_flash_cycle_ich8lan(hw,
4217 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4218 		if (!ret_val)
4219 			break;
4220 
4221 		/* If we're here, then things are most likely
4222 		 * completely hosed, but if the error condition
4223 		 * is detected, it won't hurt to give it another
4224 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4225 		 */
4226 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4227 		if (hsfsts.hsf_status.flcerr)
4228 			/* Repeat for some time before giving up. */
4229 			continue;
4230 		if (!hsfsts.hsf_status.flcdone) {
4231 			e_dbg("Timeout error - flash cycle did not complete.\n");
4232 			break;
4233 		}
4234 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4235 
4236 	return ret_val;
4237 }
4238 
4239 /**
4240 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4241 *  @hw: pointer to the HW structure
4242 *  @offset: The offset (in bytes) of the dwords to read.
4243 *  @data: The 4 bytes to write to the NVM.
4244 *
4245 *  Writes one/two/four bytes to the NVM using the flash access registers.
4246 **/
4247 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4248 					    u32 data)
4249 {
4250 	union ich8_hws_flash_status hsfsts;
4251 	union ich8_hws_flash_ctrl hsflctl;
4252 	u32 flash_linear_addr;
4253 	s32 ret_val;
4254 	u8 count = 0;
4255 
4256 	if (hw->mac.type >= e1000_pch_spt) {
4257 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4258 			return -E1000_ERR_NVM;
4259 	}
4260 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4261 			     hw->nvm.flash_base_addr);
4262 	do {
4263 		udelay(1);
4264 		/* Steps */
4265 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4266 		if (ret_val)
4267 			break;
4268 
4269 		/* In SPT, This register is in Lan memory space, not
4270 		 * flash.  Therefore, only 32 bit access is supported
4271 		 */
4272 		if (hw->mac.type >= e1000_pch_spt)
4273 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4274 			    >> 16;
4275 		else
4276 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4277 
4278 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4279 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4280 
4281 		/* In SPT, This register is in Lan memory space,
4282 		 * not flash.  Therefore, only 32 bit access is
4283 		 * supported
4284 		 */
4285 		if (hw->mac.type >= e1000_pch_spt)
4286 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4287 		else
4288 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4289 
4290 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4291 
4292 		ew32flash(ICH_FLASH_FDATA0, data);
4293 
4294 		/* check if FCERR is set to 1 , if set to 1, clear it
4295 		 * and try the whole sequence a few more times else done
4296 		 */
4297 		ret_val =
4298 		   e1000_flash_cycle_ich8lan(hw,
4299 					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4300 
4301 		if (!ret_val)
4302 			break;
4303 
4304 		/* If we're here, then things are most likely
4305 		 * completely hosed, but if the error condition
4306 		 * is detected, it won't hurt to give it another
4307 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4308 		 */
4309 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4310 
4311 		if (hsfsts.hsf_status.flcerr)
4312 			/* Repeat for some time before giving up. */
4313 			continue;
4314 		if (!hsfsts.hsf_status.flcdone) {
4315 			e_dbg("Timeout error - flash cycle did not complete.\n");
4316 			break;
4317 		}
4318 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4319 
4320 	return ret_val;
4321 }
4322 
4323 /**
4324  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4325  *  @hw: pointer to the HW structure
4326  *  @offset: The index of the byte to read.
4327  *  @data: The byte to write to the NVM.
4328  *
4329  *  Writes a single byte to the NVM using the flash access registers.
4330  **/
4331 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4332 					  u8 data)
4333 {
4334 	u16 word = (u16)data;
4335 
4336 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4337 }
4338 
4339 /**
4340 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4341 *  @hw: pointer to the HW structure
4342 *  @offset: The offset of the word to write.
4343 *  @dword: The dword to write to the NVM.
4344 *
4345 *  Writes a single dword to the NVM using the flash access registers.
4346 *  Goes through a retry algorithm before giving up.
4347 **/
4348 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4349 						 u32 offset, u32 dword)
4350 {
4351 	s32 ret_val;
4352 	u16 program_retries;
4353 
4354 	/* Must convert word offset into bytes. */
4355 	offset <<= 1;
4356 	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4357 
4358 	if (!ret_val)
4359 		return ret_val;
4360 	for (program_retries = 0; program_retries < 100; program_retries++) {
4361 		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4362 		usleep_range(100, 200);
4363 		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4364 		if (!ret_val)
4365 			break;
4366 	}
4367 	if (program_retries == 100)
4368 		return -E1000_ERR_NVM;
4369 
4370 	return 0;
4371 }
4372 
4373 /**
4374  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4375  *  @hw: pointer to the HW structure
4376  *  @offset: The offset of the byte to write.
4377  *  @byte: The byte to write to the NVM.
4378  *
4379  *  Writes a single byte to the NVM using the flash access registers.
4380  *  Goes through a retry algorithm before giving up.
4381  **/
4382 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4383 						u32 offset, u8 byte)
4384 {
4385 	s32 ret_val;
4386 	u16 program_retries;
4387 
4388 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4389 	if (!ret_val)
4390 		return ret_val;
4391 
4392 	for (program_retries = 0; program_retries < 100; program_retries++) {
4393 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4394 		usleep_range(100, 200);
4395 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4396 		if (!ret_val)
4397 			break;
4398 	}
4399 	if (program_retries == 100)
4400 		return -E1000_ERR_NVM;
4401 
4402 	return 0;
4403 }
4404 
4405 /**
4406  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4407  *  @hw: pointer to the HW structure
4408  *  @bank: 0 for first bank, 1 for second bank, etc.
4409  *
4410  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4411  *  bank N is 4096 * N + flash_reg_addr.
4412  **/
4413 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4414 {
4415 	struct e1000_nvm_info *nvm = &hw->nvm;
4416 	union ich8_hws_flash_status hsfsts;
4417 	union ich8_hws_flash_ctrl hsflctl;
4418 	u32 flash_linear_addr;
4419 	/* bank size is in 16bit words - adjust to bytes */
4420 	u32 flash_bank_size = nvm->flash_bank_size * 2;
4421 	s32 ret_val;
4422 	s32 count = 0;
4423 	s32 j, iteration, sector_size;
4424 
4425 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4426 
4427 	/* Determine HW Sector size: Read BERASE bits of hw flash status
4428 	 * register
4429 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4430 	 *     consecutive sectors.  The start index for the nth Hw sector
4431 	 *     can be calculated as = bank * 4096 + n * 256
4432 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4433 	 *     The start index for the nth Hw sector can be calculated
4434 	 *     as = bank * 4096
4435 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4436 	 *     (ich9 only, otherwise error condition)
4437 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4438 	 */
4439 	switch (hsfsts.hsf_status.berasesz) {
4440 	case 0:
4441 		/* Hw sector size 256 */
4442 		sector_size = ICH_FLASH_SEG_SIZE_256;
4443 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4444 		break;
4445 	case 1:
4446 		sector_size = ICH_FLASH_SEG_SIZE_4K;
4447 		iteration = 1;
4448 		break;
4449 	case 2:
4450 		sector_size = ICH_FLASH_SEG_SIZE_8K;
4451 		iteration = 1;
4452 		break;
4453 	case 3:
4454 		sector_size = ICH_FLASH_SEG_SIZE_64K;
4455 		iteration = 1;
4456 		break;
4457 	default:
4458 		return -E1000_ERR_NVM;
4459 	}
4460 
4461 	/* Start with the base address, then add the sector offset. */
4462 	flash_linear_addr = hw->nvm.flash_base_addr;
4463 	flash_linear_addr += (bank) ? flash_bank_size : 0;
4464 
4465 	for (j = 0; j < iteration; j++) {
4466 		do {
4467 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4468 
4469 			/* Steps */
4470 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4471 			if (ret_val)
4472 				return ret_val;
4473 
4474 			/* Write a value 11 (block Erase) in Flash
4475 			 * Cycle field in hw flash control
4476 			 */
4477 			if (hw->mac.type >= e1000_pch_spt)
4478 				hsflctl.regval =
4479 				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4480 			else
4481 				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4482 
4483 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4484 			if (hw->mac.type >= e1000_pch_spt)
4485 				ew32flash(ICH_FLASH_HSFSTS,
4486 					  hsflctl.regval << 16);
4487 			else
4488 				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4489 
4490 			/* Write the last 24 bits of an index within the
4491 			 * block into Flash Linear address field in Flash
4492 			 * Address.
4493 			 */
4494 			flash_linear_addr += (j * sector_size);
4495 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4496 
4497 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4498 			if (!ret_val)
4499 				break;
4500 
4501 			/* Check if FCERR is set to 1.  If 1,
4502 			 * clear it and try the whole sequence
4503 			 * a few more times else Done
4504 			 */
4505 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4506 			if (hsfsts.hsf_status.flcerr)
4507 				/* repeat for some time before giving up */
4508 				continue;
4509 			else if (!hsfsts.hsf_status.flcdone)
4510 				return ret_val;
4511 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4512 	}
4513 
4514 	return 0;
4515 }
4516 
4517 /**
4518  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4519  *  @hw: pointer to the HW structure
4520  *  @data: Pointer to the LED settings
4521  *
4522  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4523  *  settings is all 0's or F's, set the LED default to a valid LED default
4524  *  setting.
4525  **/
4526 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4527 {
4528 	s32 ret_val;
4529 
4530 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4531 	if (ret_val) {
4532 		e_dbg("NVM Read Error\n");
4533 		return ret_val;
4534 	}
4535 
4536 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4537 		*data = ID_LED_DEFAULT_ICH8LAN;
4538 
4539 	return 0;
4540 }
4541 
4542 /**
4543  *  e1000_id_led_init_pchlan - store LED configurations
4544  *  @hw: pointer to the HW structure
4545  *
4546  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4547  *  the PHY LED configuration register.
4548  *
4549  *  PCH also does not have an "always on" or "always off" mode which
4550  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4551  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4552  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4553  *  link based on logic in e1000_led_[on|off]_pchlan().
4554  **/
4555 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4556 {
4557 	struct e1000_mac_info *mac = &hw->mac;
4558 	s32 ret_val;
4559 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4560 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4561 	u16 data, i, temp, shift;
4562 
4563 	/* Get default ID LED modes */
4564 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4565 	if (ret_val)
4566 		return ret_val;
4567 
4568 	mac->ledctl_default = er32(LEDCTL);
4569 	mac->ledctl_mode1 = mac->ledctl_default;
4570 	mac->ledctl_mode2 = mac->ledctl_default;
4571 
4572 	for (i = 0; i < 4; i++) {
4573 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4574 		shift = (i * 5);
4575 		switch (temp) {
4576 		case ID_LED_ON1_DEF2:
4577 		case ID_LED_ON1_ON2:
4578 		case ID_LED_ON1_OFF2:
4579 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4580 			mac->ledctl_mode1 |= (ledctl_on << shift);
4581 			break;
4582 		case ID_LED_OFF1_DEF2:
4583 		case ID_LED_OFF1_ON2:
4584 		case ID_LED_OFF1_OFF2:
4585 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4586 			mac->ledctl_mode1 |= (ledctl_off << shift);
4587 			break;
4588 		default:
4589 			/* Do nothing */
4590 			break;
4591 		}
4592 		switch (temp) {
4593 		case ID_LED_DEF1_ON2:
4594 		case ID_LED_ON1_ON2:
4595 		case ID_LED_OFF1_ON2:
4596 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4597 			mac->ledctl_mode2 |= (ledctl_on << shift);
4598 			break;
4599 		case ID_LED_DEF1_OFF2:
4600 		case ID_LED_ON1_OFF2:
4601 		case ID_LED_OFF1_OFF2:
4602 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4603 			mac->ledctl_mode2 |= (ledctl_off << shift);
4604 			break;
4605 		default:
4606 			/* Do nothing */
4607 			break;
4608 		}
4609 	}
4610 
4611 	return 0;
4612 }
4613 
4614 /**
4615  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4616  *  @hw: pointer to the HW structure
4617  *
4618  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4619  *  register, so the the bus width is hard coded.
4620  **/
4621 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4622 {
4623 	struct e1000_bus_info *bus = &hw->bus;
4624 	s32 ret_val;
4625 
4626 	ret_val = e1000e_get_bus_info_pcie(hw);
4627 
4628 	/* ICH devices are "PCI Express"-ish.  They have
4629 	 * a configuration space, but do not contain
4630 	 * PCI Express Capability registers, so bus width
4631 	 * must be hardcoded.
4632 	 */
4633 	if (bus->width == e1000_bus_width_unknown)
4634 		bus->width = e1000_bus_width_pcie_x1;
4635 
4636 	return ret_val;
4637 }
4638 
4639 /**
4640  *  e1000_reset_hw_ich8lan - Reset the hardware
4641  *  @hw: pointer to the HW structure
4642  *
4643  *  Does a full reset of the hardware which includes a reset of the PHY and
4644  *  MAC.
4645  **/
4646 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4647 {
4648 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4649 	u16 kum_cfg;
4650 	u32 ctrl, reg;
4651 	s32 ret_val;
4652 
4653 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4654 	 * on the last TLP read/write transaction when MAC is reset.
4655 	 */
4656 	ret_val = e1000e_disable_pcie_master(hw);
4657 	if (ret_val)
4658 		e_dbg("PCI-E Master disable polling has failed.\n");
4659 
4660 	e_dbg("Masking off all interrupts\n");
4661 	ew32(IMC, 0xffffffff);
4662 
4663 	/* Disable the Transmit and Receive units.  Then delay to allow
4664 	 * any pending transactions to complete before we hit the MAC
4665 	 * with the global reset.
4666 	 */
4667 	ew32(RCTL, 0);
4668 	ew32(TCTL, E1000_TCTL_PSP);
4669 	e1e_flush();
4670 
4671 	usleep_range(10000, 20000);
4672 
4673 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4674 	if (hw->mac.type == e1000_ich8lan) {
4675 		/* Set Tx and Rx buffer allocation to 8k apiece. */
4676 		ew32(PBA, E1000_PBA_8K);
4677 		/* Set Packet Buffer Size to 16k. */
4678 		ew32(PBS, E1000_PBS_16K);
4679 	}
4680 
4681 	if (hw->mac.type == e1000_pchlan) {
4682 		/* Save the NVM K1 bit setting */
4683 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4684 		if (ret_val)
4685 			return ret_val;
4686 
4687 		if (kum_cfg & E1000_NVM_K1_ENABLE)
4688 			dev_spec->nvm_k1_enabled = true;
4689 		else
4690 			dev_spec->nvm_k1_enabled = false;
4691 	}
4692 
4693 	ctrl = er32(CTRL);
4694 
4695 	if (!hw->phy.ops.check_reset_block(hw)) {
4696 		/* Full-chip reset requires MAC and PHY reset at the same
4697 		 * time to make sure the interface between MAC and the
4698 		 * external PHY is reset.
4699 		 */
4700 		ctrl |= E1000_CTRL_PHY_RST;
4701 
4702 		/* Gate automatic PHY configuration by hardware on
4703 		 * non-managed 82579
4704 		 */
4705 		if ((hw->mac.type == e1000_pch2lan) &&
4706 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4707 			e1000_gate_hw_phy_config_ich8lan(hw, true);
4708 	}
4709 	ret_val = e1000_acquire_swflag_ich8lan(hw);
4710 	e_dbg("Issuing a global reset to ich8lan\n");
4711 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4712 	/* cannot issue a flush here because it hangs the hardware */
4713 	msleep(20);
4714 
4715 	/* Set Phy Config Counter to 50msec */
4716 	if (hw->mac.type == e1000_pch2lan) {
4717 		reg = er32(FEXTNVM3);
4718 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4719 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4720 		ew32(FEXTNVM3, reg);
4721 	}
4722 
4723 	if (!ret_val)
4724 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4725 
4726 	if (ctrl & E1000_CTRL_PHY_RST) {
4727 		ret_val = hw->phy.ops.get_cfg_done(hw);
4728 		if (ret_val)
4729 			return ret_val;
4730 
4731 		ret_val = e1000_post_phy_reset_ich8lan(hw);
4732 		if (ret_val)
4733 			return ret_val;
4734 	}
4735 
4736 	/* For PCH, this write will make sure that any noise
4737 	 * will be detected as a CRC error and be dropped rather than show up
4738 	 * as a bad packet to the DMA engine.
4739 	 */
4740 	if (hw->mac.type == e1000_pchlan)
4741 		ew32(CRC_OFFSET, 0x65656565);
4742 
4743 	ew32(IMC, 0xffffffff);
4744 	er32(ICR);
4745 
4746 	reg = er32(KABGTXD);
4747 	reg |= E1000_KABGTXD_BGSQLBIAS;
4748 	ew32(KABGTXD, reg);
4749 
4750 	return 0;
4751 }
4752 
4753 /**
4754  *  e1000_init_hw_ich8lan - Initialize the hardware
4755  *  @hw: pointer to the HW structure
4756  *
4757  *  Prepares the hardware for transmit and receive by doing the following:
4758  *   - initialize hardware bits
4759  *   - initialize LED identification
4760  *   - setup receive address registers
4761  *   - setup flow control
4762  *   - setup transmit descriptors
4763  *   - clear statistics
4764  **/
4765 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4766 {
4767 	struct e1000_mac_info *mac = &hw->mac;
4768 	u32 ctrl_ext, txdctl, snoop;
4769 	s32 ret_val;
4770 	u16 i;
4771 
4772 	e1000_initialize_hw_bits_ich8lan(hw);
4773 
4774 	/* Initialize identification LED */
4775 	ret_val = mac->ops.id_led_init(hw);
4776 	/* An error is not fatal and we should not stop init due to this */
4777 	if (ret_val)
4778 		e_dbg("Error initializing identification LED\n");
4779 
4780 	/* Setup the receive address. */
4781 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4782 
4783 	/* Zero out the Multicast HASH table */
4784 	e_dbg("Zeroing the MTA\n");
4785 	for (i = 0; i < mac->mta_reg_count; i++)
4786 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4787 
4788 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4789 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4790 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4791 	 */
4792 	if (hw->phy.type == e1000_phy_82578) {
4793 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4794 		i &= ~BM_WUC_HOST_WU_BIT;
4795 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4796 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4797 		if (ret_val)
4798 			return ret_val;
4799 	}
4800 
4801 	/* Setup link and flow control */
4802 	ret_val = mac->ops.setup_link(hw);
4803 
4804 	/* Set the transmit descriptor write-back policy for both queues */
4805 	txdctl = er32(TXDCTL(0));
4806 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4807 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4808 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4809 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4810 	ew32(TXDCTL(0), txdctl);
4811 	txdctl = er32(TXDCTL(1));
4812 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4813 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4814 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4815 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4816 	ew32(TXDCTL(1), txdctl);
4817 
4818 	/* ICH8 has opposite polarity of no_snoop bits.
4819 	 * By default, we should use snoop behavior.
4820 	 */
4821 	if (mac->type == e1000_ich8lan)
4822 		snoop = PCIE_ICH8_SNOOP_ALL;
4823 	else
4824 		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4825 	e1000e_set_pcie_no_snoop(hw, snoop);
4826 
4827 	ctrl_ext = er32(CTRL_EXT);
4828 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4829 	ew32(CTRL_EXT, ctrl_ext);
4830 
4831 	/* Clear all of the statistics registers (clear on read).  It is
4832 	 * important that we do this after we have tried to establish link
4833 	 * because the symbol error count will increment wildly if there
4834 	 * is no link.
4835 	 */
4836 	e1000_clear_hw_cntrs_ich8lan(hw);
4837 
4838 	return ret_val;
4839 }
4840 
4841 /**
4842  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4843  *  @hw: pointer to the HW structure
4844  *
4845  *  Sets/Clears required hardware bits necessary for correctly setting up the
4846  *  hardware for transmit and receive.
4847  **/
4848 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4849 {
4850 	u32 reg;
4851 
4852 	/* Extended Device Control */
4853 	reg = er32(CTRL_EXT);
4854 	reg |= BIT(22);
4855 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4856 	if (hw->mac.type >= e1000_pchlan)
4857 		reg |= E1000_CTRL_EXT_PHYPDEN;
4858 	ew32(CTRL_EXT, reg);
4859 
4860 	/* Transmit Descriptor Control 0 */
4861 	reg = er32(TXDCTL(0));
4862 	reg |= BIT(22);
4863 	ew32(TXDCTL(0), reg);
4864 
4865 	/* Transmit Descriptor Control 1 */
4866 	reg = er32(TXDCTL(1));
4867 	reg |= BIT(22);
4868 	ew32(TXDCTL(1), reg);
4869 
4870 	/* Transmit Arbitration Control 0 */
4871 	reg = er32(TARC(0));
4872 	if (hw->mac.type == e1000_ich8lan)
4873 		reg |= BIT(28) | BIT(29);
4874 	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4875 	ew32(TARC(0), reg);
4876 
4877 	/* Transmit Arbitration Control 1 */
4878 	reg = er32(TARC(1));
4879 	if (er32(TCTL) & E1000_TCTL_MULR)
4880 		reg &= ~BIT(28);
4881 	else
4882 		reg |= BIT(28);
4883 	reg |= BIT(24) | BIT(26) | BIT(30);
4884 	ew32(TARC(1), reg);
4885 
4886 	/* Device Status */
4887 	if (hw->mac.type == e1000_ich8lan) {
4888 		reg = er32(STATUS);
4889 		reg &= ~BIT(31);
4890 		ew32(STATUS, reg);
4891 	}
4892 
4893 	/* work-around descriptor data corruption issue during nfs v2 udp
4894 	 * traffic, just disable the nfs filtering capability
4895 	 */
4896 	reg = er32(RFCTL);
4897 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4898 
4899 	/* Disable IPv6 extension header parsing because some malformed
4900 	 * IPv6 headers can hang the Rx.
4901 	 */
4902 	if (hw->mac.type == e1000_ich8lan)
4903 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4904 	ew32(RFCTL, reg);
4905 
4906 	/* Enable ECC on Lynxpoint */
4907 	if (hw->mac.type >= e1000_pch_lpt) {
4908 		reg = er32(PBECCSTS);
4909 		reg |= E1000_PBECCSTS_ECC_ENABLE;
4910 		ew32(PBECCSTS, reg);
4911 
4912 		reg = er32(CTRL);
4913 		reg |= E1000_CTRL_MEHE;
4914 		ew32(CTRL, reg);
4915 	}
4916 }
4917 
4918 /**
4919  *  e1000_setup_link_ich8lan - Setup flow control and link settings
4920  *  @hw: pointer to the HW structure
4921  *
4922  *  Determines which flow control settings to use, then configures flow
4923  *  control.  Calls the appropriate media-specific link configuration
4924  *  function.  Assuming the adapter has a valid link partner, a valid link
4925  *  should be established.  Assumes the hardware has previously been reset
4926  *  and the transmitter and receiver are not enabled.
4927  **/
4928 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4929 {
4930 	s32 ret_val;
4931 
4932 	if (hw->phy.ops.check_reset_block(hw))
4933 		return 0;
4934 
4935 	/* ICH parts do not have a word in the NVM to determine
4936 	 * the default flow control setting, so we explicitly
4937 	 * set it to full.
4938 	 */
4939 	if (hw->fc.requested_mode == e1000_fc_default) {
4940 		/* Workaround h/w hang when Tx flow control enabled */
4941 		if (hw->mac.type == e1000_pchlan)
4942 			hw->fc.requested_mode = e1000_fc_rx_pause;
4943 		else
4944 			hw->fc.requested_mode = e1000_fc_full;
4945 	}
4946 
4947 	/* Save off the requested flow control mode for use later.  Depending
4948 	 * on the link partner's capabilities, we may or may not use this mode.
4949 	 */
4950 	hw->fc.current_mode = hw->fc.requested_mode;
4951 
4952 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4953 
4954 	/* Continue to configure the copper link. */
4955 	ret_val = hw->mac.ops.setup_physical_interface(hw);
4956 	if (ret_val)
4957 		return ret_val;
4958 
4959 	ew32(FCTTV, hw->fc.pause_time);
4960 	if ((hw->phy.type == e1000_phy_82578) ||
4961 	    (hw->phy.type == e1000_phy_82579) ||
4962 	    (hw->phy.type == e1000_phy_i217) ||
4963 	    (hw->phy.type == e1000_phy_82577)) {
4964 		ew32(FCRTV_PCH, hw->fc.refresh_time);
4965 
4966 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4967 				   hw->fc.pause_time);
4968 		if (ret_val)
4969 			return ret_val;
4970 	}
4971 
4972 	return e1000e_set_fc_watermarks(hw);
4973 }
4974 
4975 /**
4976  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4977  *  @hw: pointer to the HW structure
4978  *
4979  *  Configures the kumeran interface to the PHY to wait the appropriate time
4980  *  when polling the PHY, then call the generic setup_copper_link to finish
4981  *  configuring the copper link.
4982  **/
4983 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4984 {
4985 	u32 ctrl;
4986 	s32 ret_val;
4987 	u16 reg_data;
4988 
4989 	ctrl = er32(CTRL);
4990 	ctrl |= E1000_CTRL_SLU;
4991 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4992 	ew32(CTRL, ctrl);
4993 
4994 	/* Set the mac to wait the maximum time between each iteration
4995 	 * and increase the max iterations when polling the phy;
4996 	 * this fixes erroneous timeouts at 10Mbps.
4997 	 */
4998 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
4999 	if (ret_val)
5000 		return ret_val;
5001 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5002 				       &reg_data);
5003 	if (ret_val)
5004 		return ret_val;
5005 	reg_data |= 0x3F;
5006 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5007 					reg_data);
5008 	if (ret_val)
5009 		return ret_val;
5010 
5011 	switch (hw->phy.type) {
5012 	case e1000_phy_igp_3:
5013 		ret_val = e1000e_copper_link_setup_igp(hw);
5014 		if (ret_val)
5015 			return ret_val;
5016 		break;
5017 	case e1000_phy_bm:
5018 	case e1000_phy_82578:
5019 		ret_val = e1000e_copper_link_setup_m88(hw);
5020 		if (ret_val)
5021 			return ret_val;
5022 		break;
5023 	case e1000_phy_82577:
5024 	case e1000_phy_82579:
5025 		ret_val = e1000_copper_link_setup_82577(hw);
5026 		if (ret_val)
5027 			return ret_val;
5028 		break;
5029 	case e1000_phy_ife:
5030 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5031 		if (ret_val)
5032 			return ret_val;
5033 
5034 		reg_data &= ~IFE_PMC_AUTO_MDIX;
5035 
5036 		switch (hw->phy.mdix) {
5037 		case 1:
5038 			reg_data &= ~IFE_PMC_FORCE_MDIX;
5039 			break;
5040 		case 2:
5041 			reg_data |= IFE_PMC_FORCE_MDIX;
5042 			break;
5043 		case 0:
5044 		default:
5045 			reg_data |= IFE_PMC_AUTO_MDIX;
5046 			break;
5047 		}
5048 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5049 		if (ret_val)
5050 			return ret_val;
5051 		break;
5052 	default:
5053 		break;
5054 	}
5055 
5056 	return e1000e_setup_copper_link(hw);
5057 }
5058 
5059 /**
5060  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5061  *  @hw: pointer to the HW structure
5062  *
5063  *  Calls the PHY specific link setup function and then calls the
5064  *  generic setup_copper_link to finish configuring the link for
5065  *  Lynxpoint PCH devices
5066  **/
5067 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5068 {
5069 	u32 ctrl;
5070 	s32 ret_val;
5071 
5072 	ctrl = er32(CTRL);
5073 	ctrl |= E1000_CTRL_SLU;
5074 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5075 	ew32(CTRL, ctrl);
5076 
5077 	ret_val = e1000_copper_link_setup_82577(hw);
5078 	if (ret_val)
5079 		return ret_val;
5080 
5081 	return e1000e_setup_copper_link(hw);
5082 }
5083 
5084 /**
5085  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5086  *  @hw: pointer to the HW structure
5087  *  @speed: pointer to store current link speed
5088  *  @duplex: pointer to store the current link duplex
5089  *
5090  *  Calls the generic get_speed_and_duplex to retrieve the current link
5091  *  information and then calls the Kumeran lock loss workaround for links at
5092  *  gigabit speeds.
5093  **/
5094 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5095 					  u16 *duplex)
5096 {
5097 	s32 ret_val;
5098 
5099 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5100 	if (ret_val)
5101 		return ret_val;
5102 
5103 	if ((hw->mac.type == e1000_ich8lan) &&
5104 	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5105 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5106 	}
5107 
5108 	return ret_val;
5109 }
5110 
5111 /**
5112  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5113  *  @hw: pointer to the HW structure
5114  *
5115  *  Work-around for 82566 Kumeran PCS lock loss:
5116  *  On link status change (i.e. PCI reset, speed change) and link is up and
5117  *  speed is gigabit-
5118  *    0) if workaround is optionally disabled do nothing
5119  *    1) wait 1ms for Kumeran link to come up
5120  *    2) check Kumeran Diagnostic register PCS lock loss bit
5121  *    3) if not set the link is locked (all is good), otherwise...
5122  *    4) reset the PHY
5123  *    5) repeat up to 10 times
5124  *  Note: this is only called for IGP3 copper when speed is 1gb.
5125  **/
5126 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5127 {
5128 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5129 	u32 phy_ctrl;
5130 	s32 ret_val;
5131 	u16 i, data;
5132 	bool link;
5133 
5134 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5135 		return 0;
5136 
5137 	/* Make sure link is up before proceeding.  If not just return.
5138 	 * Attempting this while link is negotiating fouled up link
5139 	 * stability
5140 	 */
5141 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5142 	if (!link)
5143 		return 0;
5144 
5145 	for (i = 0; i < 10; i++) {
5146 		/* read once to clear */
5147 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5148 		if (ret_val)
5149 			return ret_val;
5150 		/* and again to get new status */
5151 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5152 		if (ret_val)
5153 			return ret_val;
5154 
5155 		/* check for PCS lock */
5156 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5157 			return 0;
5158 
5159 		/* Issue PHY reset */
5160 		e1000_phy_hw_reset(hw);
5161 		mdelay(5);
5162 	}
5163 	/* Disable GigE link negotiation */
5164 	phy_ctrl = er32(PHY_CTRL);
5165 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5166 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5167 	ew32(PHY_CTRL, phy_ctrl);
5168 
5169 	/* Call gig speed drop workaround on Gig disable before accessing
5170 	 * any PHY registers
5171 	 */
5172 	e1000e_gig_downshift_workaround_ich8lan(hw);
5173 
5174 	/* unable to acquire PCS lock */
5175 	return -E1000_ERR_PHY;
5176 }
5177 
5178 /**
5179  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5180  *  @hw: pointer to the HW structure
5181  *  @state: boolean value used to set the current Kumeran workaround state
5182  *
5183  *  If ICH8, set the current Kumeran workaround state (enabled - true
5184  *  /disabled - false).
5185  **/
5186 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5187 						  bool state)
5188 {
5189 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5190 
5191 	if (hw->mac.type != e1000_ich8lan) {
5192 		e_dbg("Workaround applies to ICH8 only.\n");
5193 		return;
5194 	}
5195 
5196 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5197 }
5198 
5199 /**
5200  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5201  *  @hw: pointer to the HW structure
5202  *
5203  *  Workaround for 82566 power-down on D3 entry:
5204  *    1) disable gigabit link
5205  *    2) write VR power-down enable
5206  *    3) read it back
5207  *  Continue if successful, else issue LCD reset and repeat
5208  **/
5209 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5210 {
5211 	u32 reg;
5212 	u16 data;
5213 	u8 retry = 0;
5214 
5215 	if (hw->phy.type != e1000_phy_igp_3)
5216 		return;
5217 
5218 	/* Try the workaround twice (if needed) */
5219 	do {
5220 		/* Disable link */
5221 		reg = er32(PHY_CTRL);
5222 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5223 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5224 		ew32(PHY_CTRL, reg);
5225 
5226 		/* Call gig speed drop workaround on Gig disable before
5227 		 * accessing any PHY registers
5228 		 */
5229 		if (hw->mac.type == e1000_ich8lan)
5230 			e1000e_gig_downshift_workaround_ich8lan(hw);
5231 
5232 		/* Write VR power-down enable */
5233 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5234 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5235 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5236 
5237 		/* Read it back and test */
5238 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5239 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5240 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5241 			break;
5242 
5243 		/* Issue PHY reset and repeat at most one more time */
5244 		reg = er32(CTRL);
5245 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5246 		retry++;
5247 	} while (retry);
5248 }
5249 
5250 /**
5251  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5252  *  @hw: pointer to the HW structure
5253  *
5254  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5255  *  LPLU, Gig disable, MDIC PHY reset):
5256  *    1) Set Kumeran Near-end loopback
5257  *    2) Clear Kumeran Near-end loopback
5258  *  Should only be called for ICH8[m] devices with any 1G Phy.
5259  **/
5260 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5261 {
5262 	s32 ret_val;
5263 	u16 reg_data;
5264 
5265 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5266 		return;
5267 
5268 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5269 				       &reg_data);
5270 	if (ret_val)
5271 		return;
5272 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5273 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5274 					reg_data);
5275 	if (ret_val)
5276 		return;
5277 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5278 	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5279 }
5280 
5281 /**
5282  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5283  *  @hw: pointer to the HW structure
5284  *
5285  *  During S0 to Sx transition, it is possible the link remains at gig
5286  *  instead of negotiating to a lower speed.  Before going to Sx, set
5287  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5288  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5289  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5290  *  needs to be written.
5291  *  Parts that support (and are linked to a partner which support) EEE in
5292  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5293  *  than 10Mbps w/o EEE.
5294  **/
5295 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5296 {
5297 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5298 	u32 phy_ctrl;
5299 	s32 ret_val;
5300 
5301 	phy_ctrl = er32(PHY_CTRL);
5302 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5303 
5304 	if (hw->phy.type == e1000_phy_i217) {
5305 		u16 phy_reg, device_id = hw->adapter->pdev->device;
5306 
5307 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5308 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5309 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5310 		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5311 		    (hw->mac.type >= e1000_pch_spt)) {
5312 			u32 fextnvm6 = er32(FEXTNVM6);
5313 
5314 			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5315 		}
5316 
5317 		ret_val = hw->phy.ops.acquire(hw);
5318 		if (ret_val)
5319 			goto out;
5320 
5321 		if (!dev_spec->eee_disable) {
5322 			u16 eee_advert;
5323 
5324 			ret_val =
5325 			    e1000_read_emi_reg_locked(hw,
5326 						      I217_EEE_ADVERTISEMENT,
5327 						      &eee_advert);
5328 			if (ret_val)
5329 				goto release;
5330 
5331 			/* Disable LPLU if both link partners support 100BaseT
5332 			 * EEE and 100Full is advertised on both ends of the
5333 			 * link, and enable Auto Enable LPI since there will
5334 			 * be no driver to enable LPI while in Sx.
5335 			 */
5336 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5337 			    (dev_spec->eee_lp_ability &
5338 			     I82579_EEE_100_SUPPORTED) &&
5339 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5340 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5341 					      E1000_PHY_CTRL_NOND0A_LPLU);
5342 
5343 				/* Set Auto Enable LPI after link up */
5344 				e1e_rphy_locked(hw,
5345 						I217_LPI_GPIO_CTRL, &phy_reg);
5346 				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5347 				e1e_wphy_locked(hw,
5348 						I217_LPI_GPIO_CTRL, phy_reg);
5349 			}
5350 		}
5351 
5352 		/* For i217 Intel Rapid Start Technology support,
5353 		 * when the system is going into Sx and no manageability engine
5354 		 * is present, the driver must configure proxy to reset only on
5355 		 * power good.  LPI (Low Power Idle) state must also reset only
5356 		 * on power good, as well as the MTA (Multicast table array).
5357 		 * The SMBus release must also be disabled on LCD reset.
5358 		 */
5359 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5360 			/* Enable proxy to reset only on power good. */
5361 			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5362 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5363 			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5364 
5365 			/* Set bit enable LPI (EEE) to reset only on
5366 			 * power good.
5367 			 */
5368 			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5369 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5370 			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5371 
5372 			/* Disable the SMB release on LCD reset. */
5373 			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5374 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5375 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5376 		}
5377 
5378 		/* Enable MTA to reset for Intel Rapid Start Technology
5379 		 * Support
5380 		 */
5381 		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5382 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5383 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5384 
5385 release:
5386 		hw->phy.ops.release(hw);
5387 	}
5388 out:
5389 	ew32(PHY_CTRL, phy_ctrl);
5390 
5391 	if (hw->mac.type == e1000_ich8lan)
5392 		e1000e_gig_downshift_workaround_ich8lan(hw);
5393 
5394 	if (hw->mac.type >= e1000_pchlan) {
5395 		e1000_oem_bits_config_ich8lan(hw, false);
5396 
5397 		/* Reset PHY to activate OEM bits on 82577/8 */
5398 		if (hw->mac.type == e1000_pchlan)
5399 			e1000e_phy_hw_reset_generic(hw);
5400 
5401 		ret_val = hw->phy.ops.acquire(hw);
5402 		if (ret_val)
5403 			return;
5404 		e1000_write_smbus_addr(hw);
5405 		hw->phy.ops.release(hw);
5406 	}
5407 }
5408 
5409 /**
5410  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5411  *  @hw: pointer to the HW structure
5412  *
5413  *  During Sx to S0 transitions on non-managed devices or managed devices
5414  *  on which PHY resets are not blocked, if the PHY registers cannot be
5415  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5416  *  the PHY.
5417  *  On i217, setup Intel Rapid Start Technology.
5418  **/
5419 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5420 {
5421 	s32 ret_val;
5422 
5423 	if (hw->mac.type < e1000_pch2lan)
5424 		return;
5425 
5426 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5427 	if (ret_val) {
5428 		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5429 		return;
5430 	}
5431 
5432 	/* For i217 Intel Rapid Start Technology support when the system
5433 	 * is transitioning from Sx and no manageability engine is present
5434 	 * configure SMBus to restore on reset, disable proxy, and enable
5435 	 * the reset on MTA (Multicast table array).
5436 	 */
5437 	if (hw->phy.type == e1000_phy_i217) {
5438 		u16 phy_reg;
5439 
5440 		ret_val = hw->phy.ops.acquire(hw);
5441 		if (ret_val) {
5442 			e_dbg("Failed to setup iRST\n");
5443 			return;
5444 		}
5445 
5446 		/* Clear Auto Enable LPI after link up */
5447 		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5448 		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5449 		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5450 
5451 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5452 			/* Restore clear on SMB if no manageability engine
5453 			 * is present
5454 			 */
5455 			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5456 			if (ret_val)
5457 				goto release;
5458 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5459 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5460 
5461 			/* Disable Proxy */
5462 			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5463 		}
5464 		/* Enable reset on MTA */
5465 		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5466 		if (ret_val)
5467 			goto release;
5468 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5469 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5470 release:
5471 		if (ret_val)
5472 			e_dbg("Error %d in resume workarounds\n", ret_val);
5473 		hw->phy.ops.release(hw);
5474 	}
5475 }
5476 
5477 /**
5478  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5479  *  @hw: pointer to the HW structure
5480  *
5481  *  Return the LED back to the default configuration.
5482  **/
5483 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5484 {
5485 	if (hw->phy.type == e1000_phy_ife)
5486 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5487 
5488 	ew32(LEDCTL, hw->mac.ledctl_default);
5489 	return 0;
5490 }
5491 
5492 /**
5493  *  e1000_led_on_ich8lan - Turn LEDs on
5494  *  @hw: pointer to the HW structure
5495  *
5496  *  Turn on the LEDs.
5497  **/
5498 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5499 {
5500 	if (hw->phy.type == e1000_phy_ife)
5501 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5502 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5503 
5504 	ew32(LEDCTL, hw->mac.ledctl_mode2);
5505 	return 0;
5506 }
5507 
5508 /**
5509  *  e1000_led_off_ich8lan - Turn LEDs off
5510  *  @hw: pointer to the HW structure
5511  *
5512  *  Turn off the LEDs.
5513  **/
5514 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5515 {
5516 	if (hw->phy.type == e1000_phy_ife)
5517 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5518 				(IFE_PSCL_PROBE_MODE |
5519 				 IFE_PSCL_PROBE_LEDS_OFF));
5520 
5521 	ew32(LEDCTL, hw->mac.ledctl_mode1);
5522 	return 0;
5523 }
5524 
5525 /**
5526  *  e1000_setup_led_pchlan - Configures SW controllable LED
5527  *  @hw: pointer to the HW structure
5528  *
5529  *  This prepares the SW controllable LED for use.
5530  **/
5531 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5532 {
5533 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5534 }
5535 
5536 /**
5537  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5538  *  @hw: pointer to the HW structure
5539  *
5540  *  Return the LED back to the default configuration.
5541  **/
5542 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5543 {
5544 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5545 }
5546 
5547 /**
5548  *  e1000_led_on_pchlan - Turn LEDs on
5549  *  @hw: pointer to the HW structure
5550  *
5551  *  Turn on the LEDs.
5552  **/
5553 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5554 {
5555 	u16 data = (u16)hw->mac.ledctl_mode2;
5556 	u32 i, led;
5557 
5558 	/* If no link, then turn LED on by setting the invert bit
5559 	 * for each LED that's mode is "link_up" in ledctl_mode2.
5560 	 */
5561 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5562 		for (i = 0; i < 3; i++) {
5563 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5564 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5565 			    E1000_LEDCTL_MODE_LINK_UP)
5566 				continue;
5567 			if (led & E1000_PHY_LED0_IVRT)
5568 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5569 			else
5570 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5571 		}
5572 	}
5573 
5574 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5575 }
5576 
5577 /**
5578  *  e1000_led_off_pchlan - Turn LEDs off
5579  *  @hw: pointer to the HW structure
5580  *
5581  *  Turn off the LEDs.
5582  **/
5583 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5584 {
5585 	u16 data = (u16)hw->mac.ledctl_mode1;
5586 	u32 i, led;
5587 
5588 	/* If no link, then turn LED off by clearing the invert bit
5589 	 * for each LED that's mode is "link_up" in ledctl_mode1.
5590 	 */
5591 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5592 		for (i = 0; i < 3; i++) {
5593 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5594 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5595 			    E1000_LEDCTL_MODE_LINK_UP)
5596 				continue;
5597 			if (led & E1000_PHY_LED0_IVRT)
5598 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5599 			else
5600 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5601 		}
5602 	}
5603 
5604 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5605 }
5606 
5607 /**
5608  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5609  *  @hw: pointer to the HW structure
5610  *
5611  *  Read appropriate register for the config done bit for completion status
5612  *  and configure the PHY through s/w for EEPROM-less parts.
5613  *
5614  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5615  *  config done bit, so only an error is logged and continues.  If we were
5616  *  to return with error, EEPROM-less silicon would not be able to be reset
5617  *  or change link.
5618  **/
5619 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5620 {
5621 	s32 ret_val = 0;
5622 	u32 bank = 0;
5623 	u32 status;
5624 
5625 	e1000e_get_cfg_done_generic(hw);
5626 
5627 	/* Wait for indication from h/w that it has completed basic config */
5628 	if (hw->mac.type >= e1000_ich10lan) {
5629 		e1000_lan_init_done_ich8lan(hw);
5630 	} else {
5631 		ret_val = e1000e_get_auto_rd_done(hw);
5632 		if (ret_val) {
5633 			/* When auto config read does not complete, do not
5634 			 * return with an error. This can happen in situations
5635 			 * where there is no eeprom and prevents getting link.
5636 			 */
5637 			e_dbg("Auto Read Done did not complete\n");
5638 			ret_val = 0;
5639 		}
5640 	}
5641 
5642 	/* Clear PHY Reset Asserted bit */
5643 	status = er32(STATUS);
5644 	if (status & E1000_STATUS_PHYRA)
5645 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5646 	else
5647 		e_dbg("PHY Reset Asserted not set - needs delay\n");
5648 
5649 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5650 	if (hw->mac.type <= e1000_ich9lan) {
5651 		if (!(er32(EECD) & E1000_EECD_PRES) &&
5652 		    (hw->phy.type == e1000_phy_igp_3)) {
5653 			e1000e_phy_init_script_igp3(hw);
5654 		}
5655 	} else {
5656 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5657 			/* Maybe we should do a basic PHY config */
5658 			e_dbg("EEPROM not present\n");
5659 			ret_val = -E1000_ERR_CONFIG;
5660 		}
5661 	}
5662 
5663 	return ret_val;
5664 }
5665 
5666 /**
5667  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5668  * @hw: pointer to the HW structure
5669  *
5670  * In the case of a PHY power down to save power, or to turn off link during a
5671  * driver unload, or wake on lan is not enabled, remove the link.
5672  **/
5673 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5674 {
5675 	/* If the management interface is not enabled, then power down */
5676 	if (!(hw->mac.ops.check_mng_mode(hw) ||
5677 	      hw->phy.ops.check_reset_block(hw)))
5678 		e1000_power_down_phy_copper(hw);
5679 }
5680 
5681 /**
5682  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5683  *  @hw: pointer to the HW structure
5684  *
5685  *  Clears hardware counters specific to the silicon family and calls
5686  *  clear_hw_cntrs_generic to clear all general purpose counters.
5687  **/
5688 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5689 {
5690 	u16 phy_data;
5691 	s32 ret_val;
5692 
5693 	e1000e_clear_hw_cntrs_base(hw);
5694 
5695 	er32(ALGNERRC);
5696 	er32(RXERRC);
5697 	er32(TNCRS);
5698 	er32(CEXTERR);
5699 	er32(TSCTC);
5700 	er32(TSCTFC);
5701 
5702 	er32(MGTPRC);
5703 	er32(MGTPDC);
5704 	er32(MGTPTC);
5705 
5706 	er32(IAC);
5707 	er32(ICRXOC);
5708 
5709 	/* Clear PHY statistics registers */
5710 	if ((hw->phy.type == e1000_phy_82578) ||
5711 	    (hw->phy.type == e1000_phy_82579) ||
5712 	    (hw->phy.type == e1000_phy_i217) ||
5713 	    (hw->phy.type == e1000_phy_82577)) {
5714 		ret_val = hw->phy.ops.acquire(hw);
5715 		if (ret_val)
5716 			return;
5717 		ret_val = hw->phy.ops.set_page(hw,
5718 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5719 		if (ret_val)
5720 			goto release;
5721 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5722 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5723 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5724 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5725 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5726 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5727 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5728 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5729 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5730 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5731 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5732 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5733 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5734 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5735 release:
5736 		hw->phy.ops.release(hw);
5737 	}
5738 }
5739 
5740 static const struct e1000_mac_operations ich8_mac_ops = {
5741 	/* check_mng_mode dependent on mac type */
5742 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5743 	/* cleanup_led dependent on mac type */
5744 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5745 	.get_bus_info		= e1000_get_bus_info_ich8lan,
5746 	.set_lan_id		= e1000_set_lan_id_single_port,
5747 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5748 	/* led_on dependent on mac type */
5749 	/* led_off dependent on mac type */
5750 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5751 	.reset_hw		= e1000_reset_hw_ich8lan,
5752 	.init_hw		= e1000_init_hw_ich8lan,
5753 	.setup_link		= e1000_setup_link_ich8lan,
5754 	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5755 	/* id_led_init dependent on mac type */
5756 	.config_collision_dist	= e1000e_config_collision_dist_generic,
5757 	.rar_set		= e1000e_rar_set_generic,
5758 	.rar_get_count		= e1000e_rar_get_count_generic,
5759 };
5760 
5761 static const struct e1000_phy_operations ich8_phy_ops = {
5762 	.acquire		= e1000_acquire_swflag_ich8lan,
5763 	.check_reset_block	= e1000_check_reset_block_ich8lan,
5764 	.commit			= NULL,
5765 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5766 	.get_cable_length	= e1000e_get_cable_length_igp_2,
5767 	.read_reg		= e1000e_read_phy_reg_igp,
5768 	.release		= e1000_release_swflag_ich8lan,
5769 	.reset			= e1000_phy_hw_reset_ich8lan,
5770 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5771 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5772 	.write_reg		= e1000e_write_phy_reg_igp,
5773 };
5774 
5775 static const struct e1000_nvm_operations ich8_nvm_ops = {
5776 	.acquire		= e1000_acquire_nvm_ich8lan,
5777 	.read			= e1000_read_nvm_ich8lan,
5778 	.release		= e1000_release_nvm_ich8lan,
5779 	.reload			= e1000e_reload_nvm_generic,
5780 	.update			= e1000_update_nvm_checksum_ich8lan,
5781 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5782 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5783 	.write			= e1000_write_nvm_ich8lan,
5784 };
5785 
5786 static const struct e1000_nvm_operations spt_nvm_ops = {
5787 	.acquire		= e1000_acquire_nvm_ich8lan,
5788 	.release		= e1000_release_nvm_ich8lan,
5789 	.read			= e1000_read_nvm_spt,
5790 	.update			= e1000_update_nvm_checksum_spt,
5791 	.reload			= e1000e_reload_nvm_generic,
5792 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5793 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5794 	.write			= e1000_write_nvm_ich8lan,
5795 };
5796 
5797 const struct e1000_info e1000_ich8_info = {
5798 	.mac			= e1000_ich8lan,
5799 	.flags			= FLAG_HAS_WOL
5800 				  | FLAG_IS_ICH
5801 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5802 				  | FLAG_HAS_AMT
5803 				  | FLAG_HAS_FLASH
5804 				  | FLAG_APME_IN_WUC,
5805 	.pba			= 8,
5806 	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5807 	.get_variants		= e1000_get_variants_ich8lan,
5808 	.mac_ops		= &ich8_mac_ops,
5809 	.phy_ops		= &ich8_phy_ops,
5810 	.nvm_ops		= &ich8_nvm_ops,
5811 };
5812 
5813 const struct e1000_info e1000_ich9_info = {
5814 	.mac			= e1000_ich9lan,
5815 	.flags			= FLAG_HAS_JUMBO_FRAMES
5816 				  | FLAG_IS_ICH
5817 				  | FLAG_HAS_WOL
5818 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5819 				  | FLAG_HAS_AMT
5820 				  | FLAG_HAS_FLASH
5821 				  | FLAG_APME_IN_WUC,
5822 	.pba			= 18,
5823 	.max_hw_frame_size	= DEFAULT_JUMBO,
5824 	.get_variants		= e1000_get_variants_ich8lan,
5825 	.mac_ops		= &ich8_mac_ops,
5826 	.phy_ops		= &ich8_phy_ops,
5827 	.nvm_ops		= &ich8_nvm_ops,
5828 };
5829 
5830 const struct e1000_info e1000_ich10_info = {
5831 	.mac			= e1000_ich10lan,
5832 	.flags			= FLAG_HAS_JUMBO_FRAMES
5833 				  | FLAG_IS_ICH
5834 				  | FLAG_HAS_WOL
5835 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5836 				  | FLAG_HAS_AMT
5837 				  | FLAG_HAS_FLASH
5838 				  | FLAG_APME_IN_WUC,
5839 	.pba			= 18,
5840 	.max_hw_frame_size	= DEFAULT_JUMBO,
5841 	.get_variants		= e1000_get_variants_ich8lan,
5842 	.mac_ops		= &ich8_mac_ops,
5843 	.phy_ops		= &ich8_phy_ops,
5844 	.nvm_ops		= &ich8_nvm_ops,
5845 };
5846 
5847 const struct e1000_info e1000_pch_info = {
5848 	.mac			= e1000_pchlan,
5849 	.flags			= FLAG_IS_ICH
5850 				  | FLAG_HAS_WOL
5851 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5852 				  | FLAG_HAS_AMT
5853 				  | FLAG_HAS_FLASH
5854 				  | FLAG_HAS_JUMBO_FRAMES
5855 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5856 				  | FLAG_APME_IN_WUC,
5857 	.flags2			= FLAG2_HAS_PHY_STATS,
5858 	.pba			= 26,
5859 	.max_hw_frame_size	= 4096,
5860 	.get_variants		= e1000_get_variants_ich8lan,
5861 	.mac_ops		= &ich8_mac_ops,
5862 	.phy_ops		= &ich8_phy_ops,
5863 	.nvm_ops		= &ich8_nvm_ops,
5864 };
5865 
5866 const struct e1000_info e1000_pch2_info = {
5867 	.mac			= e1000_pch2lan,
5868 	.flags			= FLAG_IS_ICH
5869 				  | FLAG_HAS_WOL
5870 				  | FLAG_HAS_HW_TIMESTAMP
5871 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5872 				  | FLAG_HAS_AMT
5873 				  | FLAG_HAS_FLASH
5874 				  | FLAG_HAS_JUMBO_FRAMES
5875 				  | FLAG_APME_IN_WUC,
5876 	.flags2			= FLAG2_HAS_PHY_STATS
5877 				  | FLAG2_HAS_EEE
5878 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5879 	.pba			= 26,
5880 	.max_hw_frame_size	= 9022,
5881 	.get_variants		= e1000_get_variants_ich8lan,
5882 	.mac_ops		= &ich8_mac_ops,
5883 	.phy_ops		= &ich8_phy_ops,
5884 	.nvm_ops		= &ich8_nvm_ops,
5885 };
5886 
5887 const struct e1000_info e1000_pch_lpt_info = {
5888 	.mac			= e1000_pch_lpt,
5889 	.flags			= FLAG_IS_ICH
5890 				  | FLAG_HAS_WOL
5891 				  | FLAG_HAS_HW_TIMESTAMP
5892 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5893 				  | FLAG_HAS_AMT
5894 				  | FLAG_HAS_FLASH
5895 				  | FLAG_HAS_JUMBO_FRAMES
5896 				  | FLAG_APME_IN_WUC,
5897 	.flags2			= FLAG2_HAS_PHY_STATS
5898 				  | FLAG2_HAS_EEE
5899 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5900 	.pba			= 26,
5901 	.max_hw_frame_size	= 9022,
5902 	.get_variants		= e1000_get_variants_ich8lan,
5903 	.mac_ops		= &ich8_mac_ops,
5904 	.phy_ops		= &ich8_phy_ops,
5905 	.nvm_ops		= &ich8_nvm_ops,
5906 };
5907 
5908 const struct e1000_info e1000_pch_spt_info = {
5909 	.mac			= e1000_pch_spt,
5910 	.flags			= FLAG_IS_ICH
5911 				  | FLAG_HAS_WOL
5912 				  | FLAG_HAS_HW_TIMESTAMP
5913 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5914 				  | FLAG_HAS_AMT
5915 				  | FLAG_HAS_FLASH
5916 				  | FLAG_HAS_JUMBO_FRAMES
5917 				  | FLAG_APME_IN_WUC,
5918 	.flags2			= FLAG2_HAS_PHY_STATS
5919 				  | FLAG2_HAS_EEE,
5920 	.pba			= 26,
5921 	.max_hw_frame_size	= 9022,
5922 	.get_variants		= e1000_get_variants_ich8lan,
5923 	.mac_ops		= &ich8_mac_ops,
5924 	.phy_ops		= &ich8_phy_ops,
5925 	.nvm_ops		= &spt_nvm_ops,
5926 };
5927 
5928 const struct e1000_info e1000_pch_cnp_info = {
5929 	.mac			= e1000_pch_cnp,
5930 	.flags			= FLAG_IS_ICH
5931 				  | FLAG_HAS_WOL
5932 				  | FLAG_HAS_HW_TIMESTAMP
5933 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5934 				  | FLAG_HAS_AMT
5935 				  | FLAG_HAS_FLASH
5936 				  | FLAG_HAS_JUMBO_FRAMES
5937 				  | FLAG_APME_IN_WUC,
5938 	.flags2			= FLAG2_HAS_PHY_STATS
5939 				  | FLAG2_HAS_EEE,
5940 	.pba			= 26,
5941 	.max_hw_frame_size	= 9022,
5942 	.get_variants		= e1000_get_variants_ich8lan,
5943 	.mac_ops		= &ich8_mac_ops,
5944 	.phy_ops		= &ich8_phy_ops,
5945 	.nvm_ops		= &spt_nvm_ops,
5946 };
5947