xref: /linux/drivers/net/ethernet/intel/e1000e/ich8lan.c (revision aa66c93d5f69d48809468c4e2124e408e31fa931)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 /* 82562G 10/100 Network Connection
5  * 82562G-2 10/100 Network Connection
6  * 82562GT 10/100 Network Connection
7  * 82562GT-2 10/100 Network Connection
8  * 82562V 10/100 Network Connection
9  * 82562V-2 10/100 Network Connection
10  * 82566DC-2 Gigabit Network Connection
11  * 82566DC Gigabit Network Connection
12  * 82566DM-2 Gigabit Network Connection
13  * 82566DM Gigabit Network Connection
14  * 82566MC Gigabit Network Connection
15  * 82566MM Gigabit Network Connection
16  * 82567LM Gigabit Network Connection
17  * 82567LF Gigabit Network Connection
18  * 82567V Gigabit Network Connection
19  * 82567LM-2 Gigabit Network Connection
20  * 82567LF-2 Gigabit Network Connection
21  * 82567V-2 Gigabit Network Connection
22  * 82567LF-3 Gigabit Network Connection
23  * 82567LM-3 Gigabit Network Connection
24  * 82567LM-4 Gigabit Network Connection
25  * 82577LM Gigabit Network Connection
26  * 82577LC Gigabit Network Connection
27  * 82578DM Gigabit Network Connection
28  * 82578DC Gigabit Network Connection
29  * 82579LM Gigabit Network Connection
30  * 82579V Gigabit Network Connection
31  * Ethernet Connection I217-LM
32  * Ethernet Connection I217-V
33  * Ethernet Connection I218-V
34  * Ethernet Connection I218-LM
35  * Ethernet Connection (2) I218-LM
36  * Ethernet Connection (2) I218-V
37  * Ethernet Connection (3) I218-LM
38  * Ethernet Connection (3) I218-V
39  */
40 
41 #include "e1000.h"
42 
43 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
44 /* Offset 04h HSFSTS */
45 union ich8_hws_flash_status {
46 	struct ich8_hsfsts {
47 		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
48 		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
49 		u16 dael:1;	/* bit 2 Direct Access error Log */
50 		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
51 		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
52 		u16 reserved1:2;	/* bit 13:6 Reserved */
53 		u16 reserved2:6;	/* bit 13:6 Reserved */
54 		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
55 		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
56 	} hsf_status;
57 	u16 regval;
58 };
59 
60 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
61 /* Offset 06h FLCTL */
62 union ich8_hws_flash_ctrl {
63 	struct ich8_hsflctl {
64 		u16 flcgo:1;	/* 0 Flash Cycle Go */
65 		u16 flcycle:2;	/* 2:1 Flash Cycle */
66 		u16 reserved:5;	/* 7:3 Reserved  */
67 		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
68 		u16 flockdn:6;	/* 15:10 Reserved */
69 	} hsf_ctrl;
70 	u16 regval;
71 };
72 
73 /* ICH Flash Region Access Permissions */
74 union ich8_hws_flash_regacc {
75 	struct ich8_flracc {
76 		u32 grra:8;	/* 0:7 GbE region Read Access */
77 		u32 grwa:8;	/* 8:15 GbE region Write Access */
78 		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
79 		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
80 	} hsf_flregacc;
81 	u16 regval;
82 };
83 
84 /* ICH Flash Protected Region */
85 union ich8_flash_protected_range {
86 	struct ich8_pr {
87 		u32 base:13;	/* 0:12 Protected Range Base */
88 		u32 reserved1:2;	/* 13:14 Reserved */
89 		u32 rpe:1;	/* 15 Read Protection Enable */
90 		u32 limit:13;	/* 16:28 Protected Range Limit */
91 		u32 reserved2:2;	/* 29:30 Reserved */
92 		u32 wpe:1;	/* 31 Write Protection Enable */
93 	} range;
94 	u32 regval;
95 };
96 
97 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
98 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
99 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
100 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
101 						u32 offset, u8 byte);
102 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
103 					 u8 *data);
104 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
105 					 u16 *data);
106 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
107 					 u8 size, u16 *data);
108 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
109 					   u32 *data);
110 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
111 					  u32 offset, u32 *data);
112 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
113 					    u32 offset, u32 data);
114 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
115 						 u32 offset, u32 dword);
116 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
118 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
119 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
120 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
121 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
122 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
123 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
124 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
125 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
126 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
127 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
128 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
129 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
130 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
131 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
132 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
133 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
134 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
135 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
136 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
137 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
138 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
139 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
140 
141 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
142 {
143 	return readw(hw->flash_address + reg);
144 }
145 
146 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
147 {
148 	return readl(hw->flash_address + reg);
149 }
150 
151 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
152 {
153 	writew(val, hw->flash_address + reg);
154 }
155 
156 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
157 {
158 	writel(val, hw->flash_address + reg);
159 }
160 
161 #define er16flash(reg)		__er16flash(hw, (reg))
162 #define er32flash(reg)		__er32flash(hw, (reg))
163 #define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
164 #define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
165 
166 /**
167  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
168  *  @hw: pointer to the HW structure
169  *
170  *  Test access to the PHY registers by reading the PHY ID registers.  If
171  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
172  *  otherwise assume the read PHY ID is correct if it is valid.
173  *
174  *  Assumes the sw/fw/hw semaphore is already acquired.
175  **/
176 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
177 {
178 	u16 phy_reg = 0;
179 	u32 phy_id = 0;
180 	s32 ret_val = 0;
181 	u16 retry_count;
182 	u32 mac_reg = 0;
183 
184 	for (retry_count = 0; retry_count < 2; retry_count++) {
185 		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
186 		if (ret_val || (phy_reg == 0xFFFF))
187 			continue;
188 		phy_id = (u32)(phy_reg << 16);
189 
190 		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
191 		if (ret_val || (phy_reg == 0xFFFF)) {
192 			phy_id = 0;
193 			continue;
194 		}
195 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
196 		break;
197 	}
198 
199 	if (hw->phy.id) {
200 		if (hw->phy.id == phy_id)
201 			goto out;
202 	} else if (phy_id) {
203 		hw->phy.id = phy_id;
204 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
205 		goto out;
206 	}
207 
208 	/* In case the PHY needs to be in mdio slow mode,
209 	 * set slow mode and try to get the PHY id again.
210 	 */
211 	if (hw->mac.type < e1000_pch_lpt) {
212 		hw->phy.ops.release(hw);
213 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
214 		if (!ret_val)
215 			ret_val = e1000e_get_phy_id(hw);
216 		hw->phy.ops.acquire(hw);
217 	}
218 
219 	if (ret_val)
220 		return false;
221 out:
222 	if (hw->mac.type >= e1000_pch_lpt) {
223 		/* Only unforce SMBus if ME is not active */
224 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
225 			/* Switching PHY interface always returns MDI error
226 			 * so disable retry mechanism to avoid wasting time
227 			 */
228 			e1000e_disable_phy_retry(hw);
229 
230 			/* Unforce SMBus mode in PHY */
231 			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
232 			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
233 			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
234 
235 			e1000e_enable_phy_retry(hw);
236 
237 			/* Unforce SMBus mode in MAC */
238 			mac_reg = er32(CTRL_EXT);
239 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
240 			ew32(CTRL_EXT, mac_reg);
241 		}
242 	}
243 
244 	return true;
245 }
246 
247 /**
248  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
249  *  @hw: pointer to the HW structure
250  *
251  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
252  *  used to reset the PHY to a quiescent state when necessary.
253  **/
254 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
255 {
256 	u32 mac_reg;
257 
258 	/* Set Phy Config Counter to 50msec */
259 	mac_reg = er32(FEXTNVM3);
260 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
261 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
262 	ew32(FEXTNVM3, mac_reg);
263 
264 	/* Toggle LANPHYPC Value bit */
265 	mac_reg = er32(CTRL);
266 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
267 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
268 	ew32(CTRL, mac_reg);
269 	e1e_flush();
270 	usleep_range(10, 20);
271 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
272 	ew32(CTRL, mac_reg);
273 	e1e_flush();
274 
275 	if (hw->mac.type < e1000_pch_lpt) {
276 		msleep(50);
277 	} else {
278 		u16 count = 20;
279 
280 		do {
281 			usleep_range(5000, 6000);
282 		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
283 
284 		msleep(30);
285 	}
286 }
287 
288 /**
289  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
290  *  @hw: pointer to the HW structure
291  *
292  *  Workarounds/flow necessary for PHY initialization during driver load
293  *  and resume paths.
294  **/
295 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
296 {
297 	struct e1000_adapter *adapter = hw->adapter;
298 	u32 mac_reg, fwsm = er32(FWSM);
299 	s32 ret_val;
300 
301 	/* Gate automatic PHY configuration by hardware on managed and
302 	 * non-managed 82579 and newer adapters.
303 	 */
304 	e1000_gate_hw_phy_config_ich8lan(hw, true);
305 
306 	/* It is not possible to be certain of the current state of ULP
307 	 * so forcibly disable it.
308 	 */
309 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
310 	ret_val = e1000_disable_ulp_lpt_lp(hw, true);
311 	if (ret_val)
312 		e_warn("Failed to disable ULP\n");
313 
314 	ret_val = hw->phy.ops.acquire(hw);
315 	if (ret_val) {
316 		e_dbg("Failed to initialize PHY flow\n");
317 		goto out;
318 	}
319 
320 	/* There is no guarantee that the PHY is accessible at this time
321 	 * so disable retry mechanism to avoid wasting time
322 	 */
323 	e1000e_disable_phy_retry(hw);
324 
325 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
326 	 * inaccessible and resetting the PHY is not blocked, toggle the
327 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
328 	 */
329 	switch (hw->mac.type) {
330 	case e1000_pch_lpt:
331 	case e1000_pch_spt:
332 	case e1000_pch_cnp:
333 	case e1000_pch_tgp:
334 	case e1000_pch_adp:
335 	case e1000_pch_mtp:
336 	case e1000_pch_lnp:
337 	case e1000_pch_ptp:
338 	case e1000_pch_nvp:
339 		if (e1000_phy_is_accessible_pchlan(hw))
340 			break;
341 
342 		/* Before toggling LANPHYPC, see if PHY is accessible by
343 		 * forcing MAC to SMBus mode first.
344 		 */
345 		mac_reg = er32(CTRL_EXT);
346 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
347 		ew32(CTRL_EXT, mac_reg);
348 
349 		/* Wait 50 milliseconds for MAC to finish any retries
350 		 * that it might be trying to perform from previous
351 		 * attempts to acknowledge any phy read requests.
352 		 */
353 		msleep(50);
354 
355 		fallthrough;
356 	case e1000_pch2lan:
357 		if (e1000_phy_is_accessible_pchlan(hw))
358 			break;
359 
360 		fallthrough;
361 	case e1000_pchlan:
362 		if ((hw->mac.type == e1000_pchlan) &&
363 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
364 			break;
365 
366 		if (hw->phy.ops.check_reset_block(hw)) {
367 			e_dbg("Required LANPHYPC toggle blocked by ME\n");
368 			ret_val = -E1000_ERR_PHY;
369 			break;
370 		}
371 
372 		/* Toggle LANPHYPC Value bit */
373 		e1000_toggle_lanphypc_pch_lpt(hw);
374 		if (hw->mac.type >= e1000_pch_lpt) {
375 			if (e1000_phy_is_accessible_pchlan(hw))
376 				break;
377 
378 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
379 			 * so ensure that the MAC is also out of SMBus mode
380 			 */
381 			mac_reg = er32(CTRL_EXT);
382 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
383 			ew32(CTRL_EXT, mac_reg);
384 
385 			if (e1000_phy_is_accessible_pchlan(hw))
386 				break;
387 
388 			ret_val = -E1000_ERR_PHY;
389 		}
390 		break;
391 	default:
392 		break;
393 	}
394 
395 	e1000e_enable_phy_retry(hw);
396 
397 	hw->phy.ops.release(hw);
398 	if (!ret_val) {
399 
400 		/* Check to see if able to reset PHY.  Print error if not */
401 		if (hw->phy.ops.check_reset_block(hw)) {
402 			e_err("Reset blocked by ME\n");
403 			goto out;
404 		}
405 
406 		/* Reset the PHY before any access to it.  Doing so, ensures
407 		 * that the PHY is in a known good state before we read/write
408 		 * PHY registers.  The generic reset is sufficient here,
409 		 * because we haven't determined the PHY type yet.
410 		 */
411 		ret_val = e1000e_phy_hw_reset_generic(hw);
412 		if (ret_val)
413 			goto out;
414 
415 		/* On a successful reset, possibly need to wait for the PHY
416 		 * to quiesce to an accessible state before returning control
417 		 * to the calling function.  If the PHY does not quiesce, then
418 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
419 		 *  the PHY is in.
420 		 */
421 		ret_val = hw->phy.ops.check_reset_block(hw);
422 		if (ret_val)
423 			e_err("ME blocked access to PHY after reset\n");
424 	}
425 
426 out:
427 	/* Ungate automatic PHY configuration on non-managed 82579 */
428 	if ((hw->mac.type == e1000_pch2lan) &&
429 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
430 		usleep_range(10000, 11000);
431 		e1000_gate_hw_phy_config_ich8lan(hw, false);
432 	}
433 
434 	return ret_val;
435 }
436 
437 /**
438  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
439  *  @hw: pointer to the HW structure
440  *
441  *  Initialize family-specific PHY parameters and function pointers.
442  **/
443 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
444 {
445 	struct e1000_phy_info *phy = &hw->phy;
446 	s32 ret_val;
447 
448 	phy->addr = 1;
449 	phy->reset_delay_us = 100;
450 
451 	phy->ops.set_page = e1000_set_page_igp;
452 	phy->ops.read_reg = e1000_read_phy_reg_hv;
453 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
454 	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
455 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
456 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
457 	phy->ops.write_reg = e1000_write_phy_reg_hv;
458 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
459 	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
460 	phy->ops.power_up = e1000_power_up_phy_copper;
461 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
462 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
463 
464 	phy->id = e1000_phy_unknown;
465 
466 	if (hw->mac.type == e1000_pch_mtp) {
467 		phy->retry_count = 2;
468 		e1000e_enable_phy_retry(hw);
469 	}
470 
471 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
472 	if (ret_val)
473 		return ret_val;
474 
475 	if (phy->id == e1000_phy_unknown)
476 		switch (hw->mac.type) {
477 		default:
478 			ret_val = e1000e_get_phy_id(hw);
479 			if (ret_val)
480 				return ret_val;
481 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
482 				break;
483 			fallthrough;
484 		case e1000_pch2lan:
485 		case e1000_pch_lpt:
486 		case e1000_pch_spt:
487 		case e1000_pch_cnp:
488 		case e1000_pch_tgp:
489 		case e1000_pch_adp:
490 		case e1000_pch_mtp:
491 		case e1000_pch_lnp:
492 		case e1000_pch_ptp:
493 		case e1000_pch_nvp:
494 			/* In case the PHY needs to be in mdio slow mode,
495 			 * set slow mode and try to get the PHY id again.
496 			 */
497 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
498 			if (ret_val)
499 				return ret_val;
500 			ret_val = e1000e_get_phy_id(hw);
501 			if (ret_val)
502 				return ret_val;
503 			break;
504 		}
505 	phy->type = e1000e_get_phy_type_from_id(phy->id);
506 
507 	switch (phy->type) {
508 	case e1000_phy_82577:
509 	case e1000_phy_82579:
510 	case e1000_phy_i217:
511 		phy->ops.check_polarity = e1000_check_polarity_82577;
512 		phy->ops.force_speed_duplex =
513 		    e1000_phy_force_speed_duplex_82577;
514 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
515 		phy->ops.get_info = e1000_get_phy_info_82577;
516 		phy->ops.commit = e1000e_phy_sw_reset;
517 		break;
518 	case e1000_phy_82578:
519 		phy->ops.check_polarity = e1000_check_polarity_m88;
520 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
521 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
522 		phy->ops.get_info = e1000e_get_phy_info_m88;
523 		break;
524 	default:
525 		ret_val = -E1000_ERR_PHY;
526 		break;
527 	}
528 
529 	return ret_val;
530 }
531 
532 /**
533  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
534  *  @hw: pointer to the HW structure
535  *
536  *  Initialize family-specific PHY parameters and function pointers.
537  **/
538 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
539 {
540 	struct e1000_phy_info *phy = &hw->phy;
541 	s32 ret_val;
542 	u16 i = 0;
543 
544 	phy->addr = 1;
545 	phy->reset_delay_us = 100;
546 
547 	phy->ops.power_up = e1000_power_up_phy_copper;
548 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
549 
550 	/* We may need to do this twice - once for IGP and if that fails,
551 	 * we'll set BM func pointers and try again
552 	 */
553 	ret_val = e1000e_determine_phy_address(hw);
554 	if (ret_val) {
555 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
556 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
557 		ret_val = e1000e_determine_phy_address(hw);
558 		if (ret_val) {
559 			e_dbg("Cannot determine PHY addr. Erroring out\n");
560 			return ret_val;
561 		}
562 	}
563 
564 	phy->id = 0;
565 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
566 	       (i++ < 100)) {
567 		usleep_range(1000, 1100);
568 		ret_val = e1000e_get_phy_id(hw);
569 		if (ret_val)
570 			return ret_val;
571 	}
572 
573 	/* Verify phy id */
574 	switch (phy->id) {
575 	case IGP03E1000_E_PHY_ID:
576 		phy->type = e1000_phy_igp_3;
577 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
578 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
579 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
580 		phy->ops.get_info = e1000e_get_phy_info_igp;
581 		phy->ops.check_polarity = e1000_check_polarity_igp;
582 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
583 		break;
584 	case IFE_E_PHY_ID:
585 	case IFE_PLUS_E_PHY_ID:
586 	case IFE_C_E_PHY_ID:
587 		phy->type = e1000_phy_ife;
588 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
589 		phy->ops.get_info = e1000_get_phy_info_ife;
590 		phy->ops.check_polarity = e1000_check_polarity_ife;
591 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
592 		break;
593 	case BME1000_E_PHY_ID:
594 		phy->type = e1000_phy_bm;
595 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
596 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
597 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
598 		phy->ops.commit = e1000e_phy_sw_reset;
599 		phy->ops.get_info = e1000e_get_phy_info_m88;
600 		phy->ops.check_polarity = e1000_check_polarity_m88;
601 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
602 		break;
603 	default:
604 		return -E1000_ERR_PHY;
605 	}
606 
607 	return 0;
608 }
609 
610 /**
611  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
612  *  @hw: pointer to the HW structure
613  *
614  *  Initialize family-specific NVM parameters and function
615  *  pointers.
616  **/
617 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
618 {
619 	struct e1000_nvm_info *nvm = &hw->nvm;
620 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
621 	u32 gfpreg, sector_base_addr, sector_end_addr;
622 	u16 i;
623 	u32 nvm_size;
624 
625 	nvm->type = e1000_nvm_flash_sw;
626 
627 	if (hw->mac.type >= e1000_pch_spt) {
628 		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
629 		 * STRAP register. This is because in SPT the GbE Flash region
630 		 * is no longer accessed through the flash registers. Instead,
631 		 * the mechanism has changed, and the Flash region access
632 		 * registers are now implemented in GbE memory space.
633 		 */
634 		nvm->flash_base_addr = 0;
635 		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
636 		    * NVM_SIZE_MULTIPLIER;
637 		nvm->flash_bank_size = nvm_size / 2;
638 		/* Adjust to word count */
639 		nvm->flash_bank_size /= sizeof(u16);
640 		/* Set the base address for flash register access */
641 		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
642 	} else {
643 		/* Can't read flash registers if register set isn't mapped. */
644 		if (!hw->flash_address) {
645 			e_dbg("ERROR: Flash registers not mapped\n");
646 			return -E1000_ERR_CONFIG;
647 		}
648 
649 		gfpreg = er32flash(ICH_FLASH_GFPREG);
650 
651 		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
652 		 * Add 1 to sector_end_addr since this sector is included in
653 		 * the overall size.
654 		 */
655 		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
656 		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
657 
658 		/* flash_base_addr is byte-aligned */
659 		nvm->flash_base_addr = sector_base_addr
660 		    << FLASH_SECTOR_ADDR_SHIFT;
661 
662 		/* find total size of the NVM, then cut in half since the total
663 		 * size represents two separate NVM banks.
664 		 */
665 		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
666 					<< FLASH_SECTOR_ADDR_SHIFT);
667 		nvm->flash_bank_size /= 2;
668 		/* Adjust to word count */
669 		nvm->flash_bank_size /= sizeof(u16);
670 	}
671 
672 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
673 
674 	/* Clear shadow ram */
675 	for (i = 0; i < nvm->word_size; i++) {
676 		dev_spec->shadow_ram[i].modified = false;
677 		dev_spec->shadow_ram[i].value = 0xFFFF;
678 	}
679 
680 	return 0;
681 }
682 
683 /**
684  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
685  *  @hw: pointer to the HW structure
686  *
687  *  Initialize family-specific MAC parameters and function
688  *  pointers.
689  **/
690 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
691 {
692 	struct e1000_mac_info *mac = &hw->mac;
693 
694 	/* Set media type function pointer */
695 	hw->phy.media_type = e1000_media_type_copper;
696 
697 	/* Set mta register count */
698 	mac->mta_reg_count = 32;
699 	/* Set rar entry count */
700 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
701 	if (mac->type == e1000_ich8lan)
702 		mac->rar_entry_count--;
703 	/* FWSM register */
704 	mac->has_fwsm = true;
705 	/* ARC subsystem not supported */
706 	mac->arc_subsystem_valid = false;
707 	/* Adaptive IFS supported */
708 	mac->adaptive_ifs = true;
709 
710 	/* LED and other operations */
711 	switch (mac->type) {
712 	case e1000_ich8lan:
713 	case e1000_ich9lan:
714 	case e1000_ich10lan:
715 		/* check management mode */
716 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
717 		/* ID LED init */
718 		mac->ops.id_led_init = e1000e_id_led_init_generic;
719 		/* blink LED */
720 		mac->ops.blink_led = e1000e_blink_led_generic;
721 		/* setup LED */
722 		mac->ops.setup_led = e1000e_setup_led_generic;
723 		/* cleanup LED */
724 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
725 		/* turn on/off LED */
726 		mac->ops.led_on = e1000_led_on_ich8lan;
727 		mac->ops.led_off = e1000_led_off_ich8lan;
728 		break;
729 	case e1000_pch2lan:
730 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
731 		mac->ops.rar_set = e1000_rar_set_pch2lan;
732 		fallthrough;
733 	case e1000_pch_lpt:
734 	case e1000_pch_spt:
735 	case e1000_pch_cnp:
736 	case e1000_pch_tgp:
737 	case e1000_pch_adp:
738 	case e1000_pch_mtp:
739 	case e1000_pch_lnp:
740 	case e1000_pch_ptp:
741 	case e1000_pch_nvp:
742 	case e1000_pchlan:
743 		/* check management mode */
744 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
745 		/* ID LED init */
746 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
747 		/* setup LED */
748 		mac->ops.setup_led = e1000_setup_led_pchlan;
749 		/* cleanup LED */
750 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
751 		/* turn on/off LED */
752 		mac->ops.led_on = e1000_led_on_pchlan;
753 		mac->ops.led_off = e1000_led_off_pchlan;
754 		break;
755 	default:
756 		break;
757 	}
758 
759 	if (mac->type >= e1000_pch_lpt) {
760 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
761 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
762 		mac->ops.setup_physical_interface =
763 		    e1000_setup_copper_link_pch_lpt;
764 		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
765 	}
766 
767 	/* Enable PCS Lock-loss workaround for ICH8 */
768 	if (mac->type == e1000_ich8lan)
769 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
770 
771 	return 0;
772 }
773 
774 /**
775  *  __e1000_access_emi_reg_locked - Read/write EMI register
776  *  @hw: pointer to the HW structure
777  *  @address: EMI address to program
778  *  @data: pointer to value to read/write from/to the EMI address
779  *  @read: boolean flag to indicate read or write
780  *
781  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
782  **/
783 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
784 					 u16 *data, bool read)
785 {
786 	s32 ret_val;
787 
788 	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
789 	if (ret_val)
790 		return ret_val;
791 
792 	if (read)
793 		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
794 	else
795 		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
796 
797 	return ret_val;
798 }
799 
800 /**
801  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
802  *  @hw: pointer to the HW structure
803  *  @addr: EMI address to program
804  *  @data: value to be read from the EMI address
805  *
806  *  Assumes the SW/FW/HW Semaphore is already acquired.
807  **/
808 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
809 {
810 	return __e1000_access_emi_reg_locked(hw, addr, data, true);
811 }
812 
813 /**
814  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
815  *  @hw: pointer to the HW structure
816  *  @addr: EMI address to program
817  *  @data: value to be written to the EMI address
818  *
819  *  Assumes the SW/FW/HW Semaphore is already acquired.
820  **/
821 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
822 {
823 	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
824 }
825 
826 /**
827  *  e1000_set_eee_pchlan - Enable/disable EEE support
828  *  @hw: pointer to the HW structure
829  *
830  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
831  *  the link and the EEE capabilities of the link partner.  The LPI Control
832  *  register bits will remain set only if/when link is up.
833  *
834  *  EEE LPI must not be asserted earlier than one second after link is up.
835  *  On 82579, EEE LPI should not be enabled until such time otherwise there
836  *  can be link issues with some switches.  Other devices can have EEE LPI
837  *  enabled immediately upon link up since they have a timer in hardware which
838  *  prevents LPI from being asserted too early.
839  **/
840 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
841 {
842 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
843 	s32 ret_val;
844 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
845 
846 	switch (hw->phy.type) {
847 	case e1000_phy_82579:
848 		lpa = I82579_EEE_LP_ABILITY;
849 		pcs_status = I82579_EEE_PCS_STATUS;
850 		adv_addr = I82579_EEE_ADVERTISEMENT;
851 		break;
852 	case e1000_phy_i217:
853 		lpa = I217_EEE_LP_ABILITY;
854 		pcs_status = I217_EEE_PCS_STATUS;
855 		adv_addr = I217_EEE_ADVERTISEMENT;
856 		break;
857 	default:
858 		return 0;
859 	}
860 
861 	ret_val = hw->phy.ops.acquire(hw);
862 	if (ret_val)
863 		return ret_val;
864 
865 	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
866 	if (ret_val)
867 		goto release;
868 
869 	/* Clear bits that enable EEE in various speeds */
870 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
871 
872 	/* Enable EEE if not disabled by user */
873 	if (!dev_spec->eee_disable) {
874 		/* Save off link partner's EEE ability */
875 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
876 						    &dev_spec->eee_lp_ability);
877 		if (ret_val)
878 			goto release;
879 
880 		/* Read EEE advertisement */
881 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
882 		if (ret_val)
883 			goto release;
884 
885 		/* Enable EEE only for speeds in which the link partner is
886 		 * EEE capable and for which we advertise EEE.
887 		 */
888 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
889 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
890 
891 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
892 			e1e_rphy_locked(hw, MII_LPA, &data);
893 			if (data & LPA_100FULL)
894 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
895 			else
896 				/* EEE is not supported in 100Half, so ignore
897 				 * partner's EEE in 100 ability if full-duplex
898 				 * is not advertised.
899 				 */
900 				dev_spec->eee_lp_ability &=
901 				    ~I82579_EEE_100_SUPPORTED;
902 		}
903 	}
904 
905 	if (hw->phy.type == e1000_phy_82579) {
906 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
907 						    &data);
908 		if (ret_val)
909 			goto release;
910 
911 		data &= ~I82579_LPI_100_PLL_SHUT;
912 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
913 						     data);
914 	}
915 
916 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
917 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
918 	if (ret_val)
919 		goto release;
920 
921 	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
922 release:
923 	hw->phy.ops.release(hw);
924 
925 	return ret_val;
926 }
927 
928 /**
929  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
930  *  @hw:   pointer to the HW structure
931  *  @link: link up bool flag
932  *
933  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
934  *  preventing further DMA write requests.  Workaround the issue by disabling
935  *  the de-assertion of the clock request when in 1Gpbs mode.
936  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
937  *  speeds in order to avoid Tx hangs.
938  **/
939 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
940 {
941 	u32 fextnvm6 = er32(FEXTNVM6);
942 	u32 status = er32(STATUS);
943 	s32 ret_val = 0;
944 	u16 reg;
945 
946 	if (link && (status & E1000_STATUS_SPEED_1000)) {
947 		ret_val = hw->phy.ops.acquire(hw);
948 		if (ret_val)
949 			return ret_val;
950 
951 		ret_val =
952 		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
953 						&reg);
954 		if (ret_val)
955 			goto release;
956 
957 		ret_val =
958 		    e1000e_write_kmrn_reg_locked(hw,
959 						 E1000_KMRNCTRLSTA_K1_CONFIG,
960 						 reg &
961 						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
962 		if (ret_val)
963 			goto release;
964 
965 		usleep_range(10, 20);
966 
967 		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
968 
969 		ret_val =
970 		    e1000e_write_kmrn_reg_locked(hw,
971 						 E1000_KMRNCTRLSTA_K1_CONFIG,
972 						 reg);
973 release:
974 		hw->phy.ops.release(hw);
975 	} else {
976 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
977 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
978 
979 		if ((hw->phy.revision > 5) || !link ||
980 		    ((status & E1000_STATUS_SPEED_100) &&
981 		     (status & E1000_STATUS_FD)))
982 			goto update_fextnvm6;
983 
984 		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
985 		if (ret_val)
986 			return ret_val;
987 
988 		/* Clear link status transmit timeout */
989 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
990 
991 		if (status & E1000_STATUS_SPEED_100) {
992 			/* Set inband Tx timeout to 5x10us for 100Half */
993 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
994 
995 			/* Do not extend the K1 entry latency for 100Half */
996 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
997 		} else {
998 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
999 			reg |= 50 <<
1000 			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1001 
1002 			/* Extend the K1 entry latency for 10 Mbps */
1003 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1004 		}
1005 
1006 		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
1007 		if (ret_val)
1008 			return ret_val;
1009 
1010 update_fextnvm6:
1011 		ew32(FEXTNVM6, fextnvm6);
1012 	}
1013 
1014 	return ret_val;
1015 }
1016 
1017 /**
1018  *  e1000_platform_pm_pch_lpt - Set platform power management values
1019  *  @hw: pointer to the HW structure
1020  *  @link: bool indicating link status
1021  *
1022  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1023  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1024  *  when link is up (which must not exceed the maximum latency supported
1025  *  by the platform), otherwise specify there is no LTR requirement.
1026  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1027  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1028  *  Capability register set, on this device LTR is set by writing the
1029  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1030  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1031  *  message to the PMC.
1032  **/
1033 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1034 {
1035 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1036 	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1037 	u32 max_ltr_enc_d = 0;	/* maximum LTR decoded by platform */
1038 	u32 lat_enc_d = 0;	/* latency decoded */
1039 	u16 lat_enc = 0;	/* latency encoded */
1040 
1041 	if (link) {
1042 		u16 speed, duplex, scale = 0;
1043 		u16 max_snoop, max_nosnoop;
1044 		u16 max_ltr_enc;	/* max LTR latency encoded */
1045 		u64 value;
1046 		u32 rxa;
1047 
1048 		if (!hw->adapter->max_frame_size) {
1049 			e_dbg("max_frame_size not set.\n");
1050 			return -E1000_ERR_CONFIG;
1051 		}
1052 
1053 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1054 		if (!speed) {
1055 			e_dbg("Speed not set.\n");
1056 			return -E1000_ERR_CONFIG;
1057 		}
1058 
1059 		/* Rx Packet Buffer Allocation size (KB) */
1060 		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1061 
1062 		/* Determine the maximum latency tolerated by the device.
1063 		 *
1064 		 * Per the PCIe spec, the tolerated latencies are encoded as
1065 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1066 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1067 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1068 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1069 		 */
1070 		rxa *= 512;
1071 		value = (rxa > hw->adapter->max_frame_size) ?
1072 			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1073 			0;
1074 
1075 		while (value > PCI_LTR_VALUE_MASK) {
1076 			scale++;
1077 			value = DIV_ROUND_UP(value, BIT(5));
1078 		}
1079 		if (scale > E1000_LTRV_SCALE_MAX) {
1080 			e_dbg("Invalid LTR latency scale %d\n", scale);
1081 			return -E1000_ERR_CONFIG;
1082 		}
1083 		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1084 
1085 		/* Determine the maximum latency tolerated by the platform */
1086 		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1087 				     &max_snoop);
1088 		pci_read_config_word(hw->adapter->pdev,
1089 				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1090 		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1091 
1092 		lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) *
1093 			     (1U << (E1000_LTRV_SCALE_FACTOR *
1094 			     FIELD_GET(E1000_LTRV_SCALE_MASK, lat_enc)));
1095 
1096 		max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) *
1097 			(1U << (E1000_LTRV_SCALE_FACTOR *
1098 				FIELD_GET(E1000_LTRV_SCALE_MASK, max_ltr_enc)));
1099 
1100 		if (lat_enc_d > max_ltr_enc_d)
1101 			lat_enc = max_ltr_enc;
1102 	}
1103 
1104 	/* Set Snoop and No-Snoop latencies the same */
1105 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1106 	ew32(LTRV, reg);
1107 
1108 	return 0;
1109 }
1110 
1111 /**
1112  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1113  *  @hw: pointer to the HW structure
1114  *  @to_sx: boolean indicating a system power state transition to Sx
1115  *
1116  *  When link is down, configure ULP mode to significantly reduce the power
1117  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1118  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1119  *  system, configure the ULP mode by software.
1120  */
1121 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1122 {
1123 	u32 mac_reg;
1124 	s32 ret_val = 0;
1125 	u16 phy_reg;
1126 	u16 oem_reg = 0;
1127 
1128 	if ((hw->mac.type < e1000_pch_lpt) ||
1129 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1130 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1131 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1132 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1133 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1134 		return 0;
1135 
1136 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1137 		/* Request ME configure ULP mode in the PHY */
1138 		mac_reg = er32(H2ME);
1139 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1140 		ew32(H2ME, mac_reg);
1141 
1142 		goto out;
1143 	}
1144 
1145 	if (!to_sx) {
1146 		int i = 0;
1147 
1148 		/* Poll up to 5 seconds for Cable Disconnected indication */
1149 		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1150 			/* Bail if link is re-acquired */
1151 			if (er32(STATUS) & E1000_STATUS_LU)
1152 				return -E1000_ERR_PHY;
1153 
1154 			if (i++ == 100)
1155 				break;
1156 
1157 			msleep(50);
1158 		}
1159 		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1160 		      (er32(FEXT) &
1161 		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1162 	}
1163 
1164 	ret_val = hw->phy.ops.acquire(hw);
1165 	if (ret_val)
1166 		goto out;
1167 
1168 	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1169 	 * LPLU and disable Gig speed when entering ULP
1170 	 */
1171 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1172 		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1173 						       &oem_reg);
1174 		if (ret_val)
1175 			goto release;
1176 
1177 		phy_reg = oem_reg;
1178 		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1179 
1180 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1181 							phy_reg);
1182 
1183 		if (ret_val)
1184 			goto release;
1185 	}
1186 
1187 	/* Set Inband ULP Exit, Reset to SMBus mode and
1188 	 * Disable SMBus Release on PERST# in PHY
1189 	 */
1190 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1191 	if (ret_val)
1192 		goto release;
1193 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1194 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1195 	if (to_sx) {
1196 		if (er32(WUFC) & E1000_WUFC_LNKC)
1197 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1198 		else
1199 			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1200 
1201 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1202 		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1203 	} else {
1204 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1205 		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1206 		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1207 	}
1208 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1209 
1210 	/* Set Disable SMBus Release on PERST# in MAC */
1211 	mac_reg = er32(FEXTNVM7);
1212 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1213 	ew32(FEXTNVM7, mac_reg);
1214 
1215 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1216 	phy_reg |= I218_ULP_CONFIG1_START;
1217 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1218 
1219 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1220 	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1221 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1222 							oem_reg);
1223 		if (ret_val)
1224 			goto release;
1225 	}
1226 
1227 release:
1228 	hw->phy.ops.release(hw);
1229 out:
1230 	if (ret_val)
1231 		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1232 	else
1233 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1234 
1235 	return ret_val;
1236 }
1237 
1238 /**
1239  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1240  *  @hw: pointer to the HW structure
1241  *  @force: boolean indicating whether or not to force disabling ULP
1242  *
1243  *  Un-configure ULP mode when link is up, the system is transitioned from
1244  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1245  *  system, poll for an indication from ME that ULP has been un-configured.
1246  *  If not on an ME enabled system, un-configure the ULP mode by software.
1247  *
1248  *  During nominal operation, this function is called when link is acquired
1249  *  to disable ULP mode (force=false); otherwise, for example when unloading
1250  *  the driver or during Sx->S0 transitions, this is called with force=true
1251  *  to forcibly disable ULP.
1252  */
1253 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1254 {
1255 	s32 ret_val = 0;
1256 	u32 mac_reg;
1257 	u16 phy_reg;
1258 	int i = 0;
1259 
1260 	if ((hw->mac.type < e1000_pch_lpt) ||
1261 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1262 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1263 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1264 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1265 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1266 		return 0;
1267 
1268 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1269 		struct e1000_adapter *adapter = hw->adapter;
1270 		bool firmware_bug = false;
1271 
1272 		if (force) {
1273 			/* Request ME un-configure ULP mode in the PHY */
1274 			mac_reg = er32(H2ME);
1275 			mac_reg &= ~E1000_H2ME_ULP;
1276 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1277 			ew32(H2ME, mac_reg);
1278 		}
1279 
1280 		/* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE.
1281 		 * If this takes more than 1 second, show a warning indicating a
1282 		 * firmware bug
1283 		 */
1284 		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1285 			if (i++ == 250) {
1286 				ret_val = -E1000_ERR_PHY;
1287 				goto out;
1288 			}
1289 			if (i > 100 && !firmware_bug)
1290 				firmware_bug = true;
1291 
1292 			usleep_range(10000, 11000);
1293 		}
1294 		if (firmware_bug)
1295 			e_warn("ULP_CONFIG_DONE took %d msec. This is a firmware bug\n",
1296 			       i * 10);
1297 		else
1298 			e_dbg("ULP_CONFIG_DONE cleared after %d msec\n",
1299 			      i * 10);
1300 
1301 		if (force) {
1302 			mac_reg = er32(H2ME);
1303 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1304 			ew32(H2ME, mac_reg);
1305 		} else {
1306 			/* Clear H2ME.ULP after ME ULP configuration */
1307 			mac_reg = er32(H2ME);
1308 			mac_reg &= ~E1000_H2ME_ULP;
1309 			ew32(H2ME, mac_reg);
1310 		}
1311 
1312 		goto out;
1313 	}
1314 
1315 	ret_val = hw->phy.ops.acquire(hw);
1316 	if (ret_val)
1317 		goto out;
1318 
1319 	if (force)
1320 		/* Toggle LANPHYPC Value bit */
1321 		e1000_toggle_lanphypc_pch_lpt(hw);
1322 
1323 	/* Switching PHY interface always returns MDI error
1324 	 * so disable retry mechanism to avoid wasting time
1325 	 */
1326 	e1000e_disable_phy_retry(hw);
1327 
1328 	/* Unforce SMBus mode in PHY */
1329 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1330 	if (ret_val) {
1331 		/* The MAC might be in PCIe mode, so temporarily force to
1332 		 * SMBus mode in order to access the PHY.
1333 		 */
1334 		mac_reg = er32(CTRL_EXT);
1335 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1336 		ew32(CTRL_EXT, mac_reg);
1337 
1338 		msleep(50);
1339 
1340 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1341 						       &phy_reg);
1342 		if (ret_val)
1343 			goto release;
1344 	}
1345 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1346 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1347 
1348 	e1000e_enable_phy_retry(hw);
1349 
1350 	/* Unforce SMBus mode in MAC */
1351 	mac_reg = er32(CTRL_EXT);
1352 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1353 	ew32(CTRL_EXT, mac_reg);
1354 
1355 	/* When ULP mode was previously entered, K1 was disabled by the
1356 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1357 	 */
1358 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1359 	if (ret_val)
1360 		goto release;
1361 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1362 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1363 
1364 	/* Clear ULP enabled configuration */
1365 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1366 	if (ret_val)
1367 		goto release;
1368 	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1369 		     I218_ULP_CONFIG1_STICKY_ULP |
1370 		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1371 		     I218_ULP_CONFIG1_WOL_HOST |
1372 		     I218_ULP_CONFIG1_INBAND_EXIT |
1373 		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1374 		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1375 		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1376 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1377 
1378 	/* Commit ULP changes by starting auto ULP configuration */
1379 	phy_reg |= I218_ULP_CONFIG1_START;
1380 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1381 
1382 	/* Clear Disable SMBus Release on PERST# in MAC */
1383 	mac_reg = er32(FEXTNVM7);
1384 	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1385 	ew32(FEXTNVM7, mac_reg);
1386 
1387 release:
1388 	hw->phy.ops.release(hw);
1389 	if (force) {
1390 		e1000_phy_hw_reset(hw);
1391 		msleep(50);
1392 	}
1393 out:
1394 	if (ret_val)
1395 		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1396 	else
1397 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1398 
1399 	return ret_val;
1400 }
1401 
1402 /**
1403  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1404  *  @hw: pointer to the HW structure
1405  *
1406  *  Checks to see of the link status of the hardware has changed.  If a
1407  *  change in link status has been detected, then we read the PHY registers
1408  *  to get the current speed/duplex if link exists.
1409  **/
1410 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1411 {
1412 	struct e1000_mac_info *mac = &hw->mac;
1413 	s32 ret_val, tipg_reg = 0;
1414 	u16 emi_addr, emi_val = 0;
1415 	bool link;
1416 	u16 phy_reg;
1417 
1418 	/* We only want to go out to the PHY registers to see if Auto-Neg
1419 	 * has completed and/or if our link status has changed.  The
1420 	 * get_link_status flag is set upon receiving a Link Status
1421 	 * Change or Rx Sequence Error interrupt.
1422 	 */
1423 	if (!mac->get_link_status)
1424 		return 0;
1425 	mac->get_link_status = false;
1426 
1427 	/* First we want to see if the MII Status Register reports
1428 	 * link.  If so, then we want to get the current speed/duplex
1429 	 * of the PHY.
1430 	 */
1431 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1432 	if (ret_val)
1433 		goto out;
1434 
1435 	if (hw->mac.type == e1000_pchlan) {
1436 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1437 		if (ret_val)
1438 			goto out;
1439 	}
1440 
1441 	/* When connected at 10Mbps half-duplex, some parts are excessively
1442 	 * aggressive resulting in many collisions. To avoid this, increase
1443 	 * the IPG and reduce Rx latency in the PHY.
1444 	 */
1445 	if ((hw->mac.type >= e1000_pch2lan) && link) {
1446 		u16 speed, duplex;
1447 
1448 		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1449 		tipg_reg = er32(TIPG);
1450 		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1451 
1452 		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1453 			tipg_reg |= 0xFF;
1454 			/* Reduce Rx latency in analog PHY */
1455 			emi_val = 0;
1456 		} else if (hw->mac.type >= e1000_pch_spt &&
1457 			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1458 			tipg_reg |= 0xC;
1459 			emi_val = 1;
1460 		} else {
1461 
1462 			/* Roll back the default values */
1463 			tipg_reg |= 0x08;
1464 			emi_val = 1;
1465 		}
1466 
1467 		ew32(TIPG, tipg_reg);
1468 
1469 		ret_val = hw->phy.ops.acquire(hw);
1470 		if (ret_val)
1471 			goto out;
1472 
1473 		if (hw->mac.type == e1000_pch2lan)
1474 			emi_addr = I82579_RX_CONFIG;
1475 		else
1476 			emi_addr = I217_RX_CONFIG;
1477 		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1478 
1479 		if (hw->mac.type >= e1000_pch_lpt) {
1480 			u16 phy_reg;
1481 
1482 			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1483 			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1484 			if (speed == SPEED_100 || speed == SPEED_10)
1485 				phy_reg |= 0x3E8;
1486 			else
1487 				phy_reg |= 0xFA;
1488 			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1489 
1490 			if (speed == SPEED_1000) {
1491 				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1492 							    &phy_reg);
1493 
1494 				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1495 
1496 				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1497 							     phy_reg);
1498 			}
1499 		}
1500 		hw->phy.ops.release(hw);
1501 
1502 		if (ret_val)
1503 			goto out;
1504 
1505 		if (hw->mac.type >= e1000_pch_spt) {
1506 			u16 data;
1507 			u16 ptr_gap;
1508 
1509 			if (speed == SPEED_1000) {
1510 				ret_val = hw->phy.ops.acquire(hw);
1511 				if (ret_val)
1512 					goto out;
1513 
1514 				ret_val = e1e_rphy_locked(hw,
1515 							  PHY_REG(776, 20),
1516 							  &data);
1517 				if (ret_val) {
1518 					hw->phy.ops.release(hw);
1519 					goto out;
1520 				}
1521 
1522 				ptr_gap = (data & (0x3FF << 2)) >> 2;
1523 				if (ptr_gap < 0x18) {
1524 					data &= ~(0x3FF << 2);
1525 					data |= (0x18 << 2);
1526 					ret_val =
1527 					    e1e_wphy_locked(hw,
1528 							    PHY_REG(776, 20),
1529 							    data);
1530 				}
1531 				hw->phy.ops.release(hw);
1532 				if (ret_val)
1533 					goto out;
1534 			} else {
1535 				ret_val = hw->phy.ops.acquire(hw);
1536 				if (ret_val)
1537 					goto out;
1538 
1539 				ret_val = e1e_wphy_locked(hw,
1540 							  PHY_REG(776, 20),
1541 							  0xC023);
1542 				hw->phy.ops.release(hw);
1543 				if (ret_val)
1544 					goto out;
1545 
1546 			}
1547 		}
1548 	}
1549 
1550 	/* I217 Packet Loss issue:
1551 	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1552 	 * on power up.
1553 	 * Set the Beacon Duration for I217 to 8 usec
1554 	 */
1555 	if (hw->mac.type >= e1000_pch_lpt) {
1556 		u32 mac_reg;
1557 
1558 		mac_reg = er32(FEXTNVM4);
1559 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1560 		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1561 		ew32(FEXTNVM4, mac_reg);
1562 	}
1563 
1564 	/* Work-around I218 hang issue */
1565 	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1566 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1567 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1568 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1569 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1570 		if (ret_val)
1571 			goto out;
1572 	}
1573 	if (hw->mac.type >= e1000_pch_lpt) {
1574 		/* Set platform power management values for
1575 		 * Latency Tolerance Reporting (LTR)
1576 		 */
1577 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1578 		if (ret_val)
1579 			goto out;
1580 	}
1581 
1582 	/* Clear link partner's EEE ability */
1583 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1584 
1585 	if (hw->mac.type >= e1000_pch_lpt) {
1586 		u32 fextnvm6 = er32(FEXTNVM6);
1587 
1588 		if (hw->mac.type == e1000_pch_spt) {
1589 			/* FEXTNVM6 K1-off workaround - for SPT only */
1590 			u32 pcieanacfg = er32(PCIEANACFG);
1591 
1592 			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1593 				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1594 			else
1595 				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1596 		}
1597 
1598 		ew32(FEXTNVM6, fextnvm6);
1599 	}
1600 
1601 	if (!link)
1602 		goto out;
1603 
1604 	switch (hw->mac.type) {
1605 	case e1000_pch2lan:
1606 		ret_val = e1000_k1_workaround_lv(hw);
1607 		if (ret_val)
1608 			return ret_val;
1609 		fallthrough;
1610 	case e1000_pchlan:
1611 		if (hw->phy.type == e1000_phy_82578) {
1612 			ret_val = e1000_link_stall_workaround_hv(hw);
1613 			if (ret_val)
1614 				return ret_val;
1615 		}
1616 
1617 		/* Workaround for PCHx parts in half-duplex:
1618 		 * Set the number of preambles removed from the packet
1619 		 * when it is passed from the PHY to the MAC to prevent
1620 		 * the MAC from misinterpreting the packet type.
1621 		 */
1622 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1623 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1624 
1625 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1626 			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1627 
1628 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1629 		break;
1630 	default:
1631 		break;
1632 	}
1633 
1634 	/* Check if there was DownShift, must be checked
1635 	 * immediately after link-up
1636 	 */
1637 	e1000e_check_downshift(hw);
1638 
1639 	/* Enable/Disable EEE after link up */
1640 	if (hw->phy.type > e1000_phy_82579) {
1641 		ret_val = e1000_set_eee_pchlan(hw);
1642 		if (ret_val)
1643 			return ret_val;
1644 	}
1645 
1646 	/* If we are forcing speed/duplex, then we simply return since
1647 	 * we have already determined whether we have link or not.
1648 	 */
1649 	if (!mac->autoneg)
1650 		return -E1000_ERR_CONFIG;
1651 
1652 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1653 	 * of MAC speed/duplex configuration.  So we only need to
1654 	 * configure Collision Distance in the MAC.
1655 	 */
1656 	mac->ops.config_collision_dist(hw);
1657 
1658 	/* Configure Flow Control now that Auto-Neg has completed.
1659 	 * First, we need to restore the desired flow control
1660 	 * settings because we may have had to re-autoneg with a
1661 	 * different link partner.
1662 	 */
1663 	ret_val = e1000e_config_fc_after_link_up(hw);
1664 	if (ret_val)
1665 		e_dbg("Error configuring flow control\n");
1666 
1667 	return ret_val;
1668 
1669 out:
1670 	mac->get_link_status = true;
1671 	return ret_val;
1672 }
1673 
1674 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1675 {
1676 	struct e1000_hw *hw = &adapter->hw;
1677 	s32 rc;
1678 
1679 	rc = e1000_init_mac_params_ich8lan(hw);
1680 	if (rc)
1681 		return rc;
1682 
1683 	rc = e1000_init_nvm_params_ich8lan(hw);
1684 	if (rc)
1685 		return rc;
1686 
1687 	switch (hw->mac.type) {
1688 	case e1000_ich8lan:
1689 	case e1000_ich9lan:
1690 	case e1000_ich10lan:
1691 		rc = e1000_init_phy_params_ich8lan(hw);
1692 		break;
1693 	case e1000_pchlan:
1694 	case e1000_pch2lan:
1695 	case e1000_pch_lpt:
1696 	case e1000_pch_spt:
1697 	case e1000_pch_cnp:
1698 	case e1000_pch_tgp:
1699 	case e1000_pch_adp:
1700 	case e1000_pch_mtp:
1701 	case e1000_pch_lnp:
1702 	case e1000_pch_ptp:
1703 	case e1000_pch_nvp:
1704 		rc = e1000_init_phy_params_pchlan(hw);
1705 		break;
1706 	default:
1707 		break;
1708 	}
1709 	if (rc)
1710 		return rc;
1711 
1712 	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1713 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1714 	 */
1715 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1716 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1717 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1718 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1719 		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1720 
1721 		hw->mac.ops.blink_led = NULL;
1722 	}
1723 
1724 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1725 	    (adapter->hw.phy.type != e1000_phy_ife))
1726 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1727 
1728 	/* Enable workaround for 82579 w/ ME enabled */
1729 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1730 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1731 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1732 
1733 	return 0;
1734 }
1735 
1736 static DEFINE_MUTEX(nvm_mutex);
1737 
1738 /**
1739  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1740  *  @hw: pointer to the HW structure
1741  *
1742  *  Acquires the mutex for performing NVM operations.
1743  **/
1744 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1745 {
1746 	mutex_lock(&nvm_mutex);
1747 
1748 	return 0;
1749 }
1750 
1751 /**
1752  *  e1000_release_nvm_ich8lan - Release NVM mutex
1753  *  @hw: pointer to the HW structure
1754  *
1755  *  Releases the mutex used while performing NVM operations.
1756  **/
1757 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1758 {
1759 	mutex_unlock(&nvm_mutex);
1760 }
1761 
1762 /**
1763  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1764  *  @hw: pointer to the HW structure
1765  *
1766  *  Acquires the software control flag for performing PHY and select
1767  *  MAC CSR accesses.
1768  **/
1769 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1770 {
1771 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1772 	s32 ret_val = 0;
1773 
1774 	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1775 			     &hw->adapter->state)) {
1776 		e_dbg("contention for Phy access\n");
1777 		return -E1000_ERR_PHY;
1778 	}
1779 
1780 	while (timeout) {
1781 		extcnf_ctrl = er32(EXTCNF_CTRL);
1782 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1783 			break;
1784 
1785 		mdelay(1);
1786 		timeout--;
1787 	}
1788 
1789 	if (!timeout) {
1790 		e_dbg("SW has already locked the resource.\n");
1791 		ret_val = -E1000_ERR_CONFIG;
1792 		goto out;
1793 	}
1794 
1795 	timeout = SW_FLAG_TIMEOUT;
1796 
1797 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1798 	ew32(EXTCNF_CTRL, extcnf_ctrl);
1799 
1800 	while (timeout) {
1801 		extcnf_ctrl = er32(EXTCNF_CTRL);
1802 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1803 			break;
1804 
1805 		mdelay(1);
1806 		timeout--;
1807 	}
1808 
1809 	if (!timeout) {
1810 		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1811 		      er32(FWSM), extcnf_ctrl);
1812 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1813 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1814 		ret_val = -E1000_ERR_CONFIG;
1815 		goto out;
1816 	}
1817 
1818 out:
1819 	if (ret_val)
1820 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1821 
1822 	return ret_val;
1823 }
1824 
1825 /**
1826  *  e1000_release_swflag_ich8lan - Release software control flag
1827  *  @hw: pointer to the HW structure
1828  *
1829  *  Releases the software control flag for performing PHY and select
1830  *  MAC CSR accesses.
1831  **/
1832 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1833 {
1834 	u32 extcnf_ctrl;
1835 
1836 	extcnf_ctrl = er32(EXTCNF_CTRL);
1837 
1838 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1839 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1840 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1841 	} else {
1842 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1843 	}
1844 
1845 	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1846 }
1847 
1848 /**
1849  *  e1000_check_mng_mode_ich8lan - Checks management mode
1850  *  @hw: pointer to the HW structure
1851  *
1852  *  This checks if the adapter has any manageability enabled.
1853  *  This is a function pointer entry point only called by read/write
1854  *  routines for the PHY and NVM parts.
1855  **/
1856 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1857 {
1858 	u32 fwsm;
1859 
1860 	fwsm = er32(FWSM);
1861 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1862 		((fwsm & E1000_FWSM_MODE_MASK) ==
1863 		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1864 }
1865 
1866 /**
1867  *  e1000_check_mng_mode_pchlan - Checks management mode
1868  *  @hw: pointer to the HW structure
1869  *
1870  *  This checks if the adapter has iAMT enabled.
1871  *  This is a function pointer entry point only called by read/write
1872  *  routines for the PHY and NVM parts.
1873  **/
1874 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1875 {
1876 	u32 fwsm;
1877 
1878 	fwsm = er32(FWSM);
1879 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1880 	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1881 }
1882 
1883 /**
1884  *  e1000_rar_set_pch2lan - Set receive address register
1885  *  @hw: pointer to the HW structure
1886  *  @addr: pointer to the receive address
1887  *  @index: receive address array register
1888  *
1889  *  Sets the receive address array register at index to the address passed
1890  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1891  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1892  *  Use SHRA[0-3] in place of those reserved for ME.
1893  **/
1894 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1895 {
1896 	u32 rar_low, rar_high;
1897 
1898 	/* HW expects these in little endian so we reverse the byte order
1899 	 * from network order (big endian) to little endian
1900 	 */
1901 	rar_low = ((u32)addr[0] |
1902 		   ((u32)addr[1] << 8) |
1903 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1904 
1905 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1906 
1907 	/* If MAC address zero, no need to set the AV bit */
1908 	if (rar_low || rar_high)
1909 		rar_high |= E1000_RAH_AV;
1910 
1911 	if (index == 0) {
1912 		ew32(RAL(index), rar_low);
1913 		e1e_flush();
1914 		ew32(RAH(index), rar_high);
1915 		e1e_flush();
1916 		return 0;
1917 	}
1918 
1919 	/* RAR[1-6] are owned by manageability.  Skip those and program the
1920 	 * next address into the SHRA register array.
1921 	 */
1922 	if (index < (u32)(hw->mac.rar_entry_count)) {
1923 		s32 ret_val;
1924 
1925 		ret_val = e1000_acquire_swflag_ich8lan(hw);
1926 		if (ret_val)
1927 			goto out;
1928 
1929 		ew32(SHRAL(index - 1), rar_low);
1930 		e1e_flush();
1931 		ew32(SHRAH(index - 1), rar_high);
1932 		e1e_flush();
1933 
1934 		e1000_release_swflag_ich8lan(hw);
1935 
1936 		/* verify the register updates */
1937 		if ((er32(SHRAL(index - 1)) == rar_low) &&
1938 		    (er32(SHRAH(index - 1)) == rar_high))
1939 			return 0;
1940 
1941 		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1942 		      (index - 1), er32(FWSM));
1943 	}
1944 
1945 out:
1946 	e_dbg("Failed to write receive address at index %d\n", index);
1947 	return -E1000_ERR_CONFIG;
1948 }
1949 
1950 /**
1951  *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1952  *  @hw: pointer to the HW structure
1953  *
1954  *  Get the number of available receive registers that the Host can
1955  *  program. SHRA[0-10] are the shared receive address registers
1956  *  that are shared between the Host and manageability engine (ME).
1957  *  ME can reserve any number of addresses and the host needs to be
1958  *  able to tell how many available registers it has access to.
1959  **/
1960 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1961 {
1962 	u32 wlock_mac;
1963 	u32 num_entries;
1964 
1965 	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1966 	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1967 
1968 	switch (wlock_mac) {
1969 	case 0:
1970 		/* All SHRA[0..10] and RAR[0] available */
1971 		num_entries = hw->mac.rar_entry_count;
1972 		break;
1973 	case 1:
1974 		/* Only RAR[0] available */
1975 		num_entries = 1;
1976 		break;
1977 	default:
1978 		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1979 		num_entries = wlock_mac + 1;
1980 		break;
1981 	}
1982 
1983 	return num_entries;
1984 }
1985 
1986 /**
1987  *  e1000_rar_set_pch_lpt - Set receive address registers
1988  *  @hw: pointer to the HW structure
1989  *  @addr: pointer to the receive address
1990  *  @index: receive address array register
1991  *
1992  *  Sets the receive address register array at index to the address passed
1993  *  in by addr. For LPT, RAR[0] is the base address register that is to
1994  *  contain the MAC address. SHRA[0-10] are the shared receive address
1995  *  registers that are shared between the Host and manageability engine (ME).
1996  **/
1997 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1998 {
1999 	u32 rar_low, rar_high;
2000 	u32 wlock_mac;
2001 
2002 	/* HW expects these in little endian so we reverse the byte order
2003 	 * from network order (big endian) to little endian
2004 	 */
2005 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
2006 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
2007 
2008 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
2009 
2010 	/* If MAC address zero, no need to set the AV bit */
2011 	if (rar_low || rar_high)
2012 		rar_high |= E1000_RAH_AV;
2013 
2014 	if (index == 0) {
2015 		ew32(RAL(index), rar_low);
2016 		e1e_flush();
2017 		ew32(RAH(index), rar_high);
2018 		e1e_flush();
2019 		return 0;
2020 	}
2021 
2022 	/* The manageability engine (ME) can lock certain SHRAR registers that
2023 	 * it is using - those registers are unavailable for use.
2024 	 */
2025 	if (index < hw->mac.rar_entry_count) {
2026 		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2027 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2028 
2029 		/* Check if all SHRAR registers are locked */
2030 		if (wlock_mac == 1)
2031 			goto out;
2032 
2033 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
2034 			s32 ret_val;
2035 
2036 			ret_val = e1000_acquire_swflag_ich8lan(hw);
2037 
2038 			if (ret_val)
2039 				goto out;
2040 
2041 			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
2042 			e1e_flush();
2043 			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
2044 			e1e_flush();
2045 
2046 			e1000_release_swflag_ich8lan(hw);
2047 
2048 			/* verify the register updates */
2049 			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2050 			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2051 				return 0;
2052 		}
2053 	}
2054 
2055 out:
2056 	e_dbg("Failed to write receive address at index %d\n", index);
2057 	return -E1000_ERR_CONFIG;
2058 }
2059 
2060 /**
2061  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2062  *  @hw: pointer to the HW structure
2063  *
2064  *  Checks if firmware is blocking the reset of the PHY.
2065  *  This is a function pointer entry point only called by
2066  *  reset routines.
2067  **/
2068 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2069 {
2070 	bool blocked = false;
2071 	int i = 0;
2072 
2073 	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2074 	       (i++ < 30))
2075 		usleep_range(10000, 11000);
2076 	return blocked ? E1000_BLK_PHY_RESET : 0;
2077 }
2078 
2079 /**
2080  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2081  *  @hw: pointer to the HW structure
2082  *
2083  *  Assumes semaphore already acquired.
2084  *
2085  **/
2086 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2087 {
2088 	u16 phy_data;
2089 	u32 strap = er32(STRAP);
2090 	u32 freq = FIELD_GET(E1000_STRAP_SMT_FREQ_MASK, strap);
2091 	s32 ret_val;
2092 
2093 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2094 
2095 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2096 	if (ret_val)
2097 		return ret_val;
2098 
2099 	phy_data &= ~HV_SMB_ADDR_MASK;
2100 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2101 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2102 
2103 	if (hw->phy.type == e1000_phy_i217) {
2104 		/* Restore SMBus frequency */
2105 		if (freq--) {
2106 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2107 			phy_data |= (freq & BIT(0)) <<
2108 			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2109 			phy_data |= (freq & BIT(1)) <<
2110 			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2111 		} else {
2112 			e_dbg("Unsupported SMB frequency in PHY\n");
2113 		}
2114 	}
2115 
2116 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2117 }
2118 
2119 /**
2120  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2121  *  @hw:   pointer to the HW structure
2122  *
2123  *  SW should configure the LCD from the NVM extended configuration region
2124  *  as a workaround for certain parts.
2125  **/
2126 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2127 {
2128 	struct e1000_phy_info *phy = &hw->phy;
2129 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2130 	s32 ret_val = 0;
2131 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2132 
2133 	/* Initialize the PHY from the NVM on ICH platforms.  This
2134 	 * is needed due to an issue where the NVM configuration is
2135 	 * not properly autoloaded after power transitions.
2136 	 * Therefore, after each PHY reset, we will load the
2137 	 * configuration data out of the NVM manually.
2138 	 */
2139 	switch (hw->mac.type) {
2140 	case e1000_ich8lan:
2141 		if (phy->type != e1000_phy_igp_3)
2142 			return ret_val;
2143 
2144 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2145 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2146 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2147 			break;
2148 		}
2149 		fallthrough;
2150 	case e1000_pchlan:
2151 	case e1000_pch2lan:
2152 	case e1000_pch_lpt:
2153 	case e1000_pch_spt:
2154 	case e1000_pch_cnp:
2155 	case e1000_pch_tgp:
2156 	case e1000_pch_adp:
2157 	case e1000_pch_mtp:
2158 	case e1000_pch_lnp:
2159 	case e1000_pch_ptp:
2160 	case e1000_pch_nvp:
2161 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2162 		break;
2163 	default:
2164 		return ret_val;
2165 	}
2166 
2167 	ret_val = hw->phy.ops.acquire(hw);
2168 	if (ret_val)
2169 		return ret_val;
2170 
2171 	data = er32(FEXTNVM);
2172 	if (!(data & sw_cfg_mask))
2173 		goto release;
2174 
2175 	/* Make sure HW does not configure LCD from PHY
2176 	 * extended configuration before SW configuration
2177 	 */
2178 	data = er32(EXTCNF_CTRL);
2179 	if ((hw->mac.type < e1000_pch2lan) &&
2180 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2181 		goto release;
2182 
2183 	cnf_size = er32(EXTCNF_SIZE);
2184 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2185 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2186 	if (!cnf_size)
2187 		goto release;
2188 
2189 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2190 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2191 
2192 	if (((hw->mac.type == e1000_pchlan) &&
2193 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2194 	    (hw->mac.type > e1000_pchlan)) {
2195 		/* HW configures the SMBus address and LEDs when the
2196 		 * OEM and LCD Write Enable bits are set in the NVM.
2197 		 * When both NVM bits are cleared, SW will configure
2198 		 * them instead.
2199 		 */
2200 		ret_val = e1000_write_smbus_addr(hw);
2201 		if (ret_val)
2202 			goto release;
2203 
2204 		data = er32(LEDCTL);
2205 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2206 							(u16)data);
2207 		if (ret_val)
2208 			goto release;
2209 	}
2210 
2211 	/* Configure LCD from extended configuration region. */
2212 
2213 	/* cnf_base_addr is in DWORD */
2214 	word_addr = (u16)(cnf_base_addr << 1);
2215 
2216 	for (i = 0; i < cnf_size; i++) {
2217 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2218 		if (ret_val)
2219 			goto release;
2220 
2221 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2222 					 1, &reg_addr);
2223 		if (ret_val)
2224 			goto release;
2225 
2226 		/* Save off the PHY page for future writes. */
2227 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2228 			phy_page = reg_data;
2229 			continue;
2230 		}
2231 
2232 		reg_addr &= PHY_REG_MASK;
2233 		reg_addr |= phy_page;
2234 
2235 		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2236 		if (ret_val)
2237 			goto release;
2238 	}
2239 
2240 release:
2241 	hw->phy.ops.release(hw);
2242 	return ret_val;
2243 }
2244 
2245 /**
2246  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2247  *  @hw:   pointer to the HW structure
2248  *  @link: link up bool flag
2249  *
2250  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2251  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2252  *  If link is down, the function will restore the default K1 setting located
2253  *  in the NVM.
2254  **/
2255 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2256 {
2257 	s32 ret_val = 0;
2258 	u16 status_reg = 0;
2259 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2260 
2261 	if (hw->mac.type != e1000_pchlan)
2262 		return 0;
2263 
2264 	/* Wrap the whole flow with the sw flag */
2265 	ret_val = hw->phy.ops.acquire(hw);
2266 	if (ret_val)
2267 		return ret_val;
2268 
2269 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2270 	if (link) {
2271 		if (hw->phy.type == e1000_phy_82578) {
2272 			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2273 						  &status_reg);
2274 			if (ret_val)
2275 				goto release;
2276 
2277 			status_reg &= (BM_CS_STATUS_LINK_UP |
2278 				       BM_CS_STATUS_RESOLVED |
2279 				       BM_CS_STATUS_SPEED_MASK);
2280 
2281 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2282 					   BM_CS_STATUS_RESOLVED |
2283 					   BM_CS_STATUS_SPEED_1000))
2284 				k1_enable = false;
2285 		}
2286 
2287 		if (hw->phy.type == e1000_phy_82577) {
2288 			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2289 			if (ret_val)
2290 				goto release;
2291 
2292 			status_reg &= (HV_M_STATUS_LINK_UP |
2293 				       HV_M_STATUS_AUTONEG_COMPLETE |
2294 				       HV_M_STATUS_SPEED_MASK);
2295 
2296 			if (status_reg == (HV_M_STATUS_LINK_UP |
2297 					   HV_M_STATUS_AUTONEG_COMPLETE |
2298 					   HV_M_STATUS_SPEED_1000))
2299 				k1_enable = false;
2300 		}
2301 
2302 		/* Link stall fix for link up */
2303 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2304 		if (ret_val)
2305 			goto release;
2306 
2307 	} else {
2308 		/* Link stall fix for link down */
2309 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2310 		if (ret_val)
2311 			goto release;
2312 	}
2313 
2314 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2315 
2316 release:
2317 	hw->phy.ops.release(hw);
2318 
2319 	return ret_val;
2320 }
2321 
2322 /**
2323  *  e1000_configure_k1_ich8lan - Configure K1 power state
2324  *  @hw: pointer to the HW structure
2325  *  @k1_enable: K1 state to configure
2326  *
2327  *  Configure the K1 power state based on the provided parameter.
2328  *  Assumes semaphore already acquired.
2329  *
2330  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2331  **/
2332 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2333 {
2334 	s32 ret_val;
2335 	u32 ctrl_reg = 0;
2336 	u32 ctrl_ext = 0;
2337 	u32 reg = 0;
2338 	u16 kmrn_reg = 0;
2339 
2340 	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2341 					      &kmrn_reg);
2342 	if (ret_val)
2343 		return ret_val;
2344 
2345 	if (k1_enable)
2346 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2347 	else
2348 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2349 
2350 	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2351 					       kmrn_reg);
2352 	if (ret_val)
2353 		return ret_val;
2354 
2355 	usleep_range(20, 40);
2356 	ctrl_ext = er32(CTRL_EXT);
2357 	ctrl_reg = er32(CTRL);
2358 
2359 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2360 	reg |= E1000_CTRL_FRCSPD;
2361 	ew32(CTRL, reg);
2362 
2363 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2364 	e1e_flush();
2365 	usleep_range(20, 40);
2366 	ew32(CTRL, ctrl_reg);
2367 	ew32(CTRL_EXT, ctrl_ext);
2368 	e1e_flush();
2369 	usleep_range(20, 40);
2370 
2371 	return 0;
2372 }
2373 
2374 /**
2375  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2376  *  @hw:       pointer to the HW structure
2377  *  @d0_state: boolean if entering d0 or d3 device state
2378  *
2379  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2380  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2381  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2382  **/
2383 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2384 {
2385 	s32 ret_val = 0;
2386 	u32 mac_reg;
2387 	u16 oem_reg;
2388 
2389 	if (hw->mac.type < e1000_pchlan)
2390 		return ret_val;
2391 
2392 	ret_val = hw->phy.ops.acquire(hw);
2393 	if (ret_val)
2394 		return ret_val;
2395 
2396 	if (hw->mac.type == e1000_pchlan) {
2397 		mac_reg = er32(EXTCNF_CTRL);
2398 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2399 			goto release;
2400 	}
2401 
2402 	mac_reg = er32(FEXTNVM);
2403 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2404 		goto release;
2405 
2406 	mac_reg = er32(PHY_CTRL);
2407 
2408 	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2409 	if (ret_val)
2410 		goto release;
2411 
2412 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2413 
2414 	if (d0_state) {
2415 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2416 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2417 
2418 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2419 			oem_reg |= HV_OEM_BITS_LPLU;
2420 	} else {
2421 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2422 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2423 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2424 
2425 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2426 			       E1000_PHY_CTRL_NOND0A_LPLU))
2427 			oem_reg |= HV_OEM_BITS_LPLU;
2428 	}
2429 
2430 	/* Set Restart auto-neg to activate the bits */
2431 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2432 	    !hw->phy.ops.check_reset_block(hw))
2433 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2434 
2435 	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2436 
2437 release:
2438 	hw->phy.ops.release(hw);
2439 
2440 	return ret_val;
2441 }
2442 
2443 /**
2444  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2445  *  @hw:   pointer to the HW structure
2446  **/
2447 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2448 {
2449 	s32 ret_val;
2450 	u16 data;
2451 
2452 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2453 	if (ret_val)
2454 		return ret_val;
2455 
2456 	data |= HV_KMRN_MDIO_SLOW;
2457 
2458 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2459 
2460 	return ret_val;
2461 }
2462 
2463 /**
2464  *  e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
2465  *  @hw: pointer to the HW structure
2466  *
2467  *  A series of PHY workarounds to be done after every PHY reset.
2468  **/
2469 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2470 {
2471 	s32 ret_val = 0;
2472 	u16 phy_data;
2473 
2474 	if (hw->mac.type != e1000_pchlan)
2475 		return 0;
2476 
2477 	/* Set MDIO slow mode before any other MDIO access */
2478 	if (hw->phy.type == e1000_phy_82577) {
2479 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2480 		if (ret_val)
2481 			return ret_val;
2482 	}
2483 
2484 	if (((hw->phy.type == e1000_phy_82577) &&
2485 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2486 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2487 		/* Disable generation of early preamble */
2488 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2489 		if (ret_val)
2490 			return ret_val;
2491 
2492 		/* Preamble tuning for SSC */
2493 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2494 		if (ret_val)
2495 			return ret_val;
2496 	}
2497 
2498 	if (hw->phy.type == e1000_phy_82578) {
2499 		/* Return registers to default by doing a soft reset then
2500 		 * writing 0x3140 to the control register.
2501 		 */
2502 		if (hw->phy.revision < 2) {
2503 			e1000e_phy_sw_reset(hw);
2504 			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2505 			if (ret_val)
2506 				return ret_val;
2507 		}
2508 	}
2509 
2510 	/* Select page 0 */
2511 	ret_val = hw->phy.ops.acquire(hw);
2512 	if (ret_val)
2513 		return ret_val;
2514 
2515 	hw->phy.addr = 1;
2516 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2517 	hw->phy.ops.release(hw);
2518 	if (ret_val)
2519 		return ret_val;
2520 
2521 	/* Configure the K1 Si workaround during phy reset assuming there is
2522 	 * link so that it disables K1 if link is in 1Gbps.
2523 	 */
2524 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2525 	if (ret_val)
2526 		return ret_val;
2527 
2528 	/* Workaround for link disconnects on a busy hub in half duplex */
2529 	ret_val = hw->phy.ops.acquire(hw);
2530 	if (ret_val)
2531 		return ret_val;
2532 	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2533 	if (ret_val)
2534 		goto release;
2535 	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2536 	if (ret_val)
2537 		goto release;
2538 
2539 	/* set MSE higher to enable link to stay up when noise is high */
2540 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2541 release:
2542 	hw->phy.ops.release(hw);
2543 
2544 	return ret_val;
2545 }
2546 
2547 /**
2548  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2549  *  @hw:   pointer to the HW structure
2550  **/
2551 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2552 {
2553 	u32 mac_reg;
2554 	u16 i, phy_reg = 0;
2555 	s32 ret_val;
2556 
2557 	ret_val = hw->phy.ops.acquire(hw);
2558 	if (ret_val)
2559 		return;
2560 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2561 	if (ret_val)
2562 		goto release;
2563 
2564 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2565 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2566 		mac_reg = er32(RAL(i));
2567 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2568 					   (u16)(mac_reg & 0xFFFF));
2569 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2570 					   (u16)((mac_reg >> 16) & 0xFFFF));
2571 
2572 		mac_reg = er32(RAH(i));
2573 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2574 					   (u16)(mac_reg & 0xFFFF));
2575 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2576 					   (u16)((mac_reg & E1000_RAH_AV) >> 16));
2577 	}
2578 
2579 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2580 
2581 release:
2582 	hw->phy.ops.release(hw);
2583 }
2584 
2585 /**
2586  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2587  *  with 82579 PHY
2588  *  @hw: pointer to the HW structure
2589  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2590  **/
2591 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2592 {
2593 	s32 ret_val = 0;
2594 	u16 phy_reg, data;
2595 	u32 mac_reg;
2596 	u16 i;
2597 
2598 	if (hw->mac.type < e1000_pch2lan)
2599 		return 0;
2600 
2601 	/* disable Rx path while enabling/disabling workaround */
2602 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2603 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2604 	if (ret_val)
2605 		return ret_val;
2606 
2607 	if (enable) {
2608 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2609 		 * SHRAL/H) and initial CRC values to the MAC
2610 		 */
2611 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2612 			u8 mac_addr[ETH_ALEN] = { 0 };
2613 			u32 addr_high, addr_low;
2614 
2615 			addr_high = er32(RAH(i));
2616 			if (!(addr_high & E1000_RAH_AV))
2617 				continue;
2618 			addr_low = er32(RAL(i));
2619 			mac_addr[0] = (addr_low & 0xFF);
2620 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2621 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2622 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2623 			mac_addr[4] = (addr_high & 0xFF);
2624 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2625 
2626 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2627 		}
2628 
2629 		/* Write Rx addresses to the PHY */
2630 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2631 
2632 		/* Enable jumbo frame workaround in the MAC */
2633 		mac_reg = er32(FFLT_DBG);
2634 		mac_reg &= ~BIT(14);
2635 		mac_reg |= (7 << 15);
2636 		ew32(FFLT_DBG, mac_reg);
2637 
2638 		mac_reg = er32(RCTL);
2639 		mac_reg |= E1000_RCTL_SECRC;
2640 		ew32(RCTL, mac_reg);
2641 
2642 		ret_val = e1000e_read_kmrn_reg(hw,
2643 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2644 					       &data);
2645 		if (ret_val)
2646 			return ret_val;
2647 		ret_val = e1000e_write_kmrn_reg(hw,
2648 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2649 						data | BIT(0));
2650 		if (ret_val)
2651 			return ret_val;
2652 		ret_val = e1000e_read_kmrn_reg(hw,
2653 					       E1000_KMRNCTRLSTA_HD_CTRL,
2654 					       &data);
2655 		if (ret_val)
2656 			return ret_val;
2657 		data &= ~(0xF << 8);
2658 		data |= (0xB << 8);
2659 		ret_val = e1000e_write_kmrn_reg(hw,
2660 						E1000_KMRNCTRLSTA_HD_CTRL,
2661 						data);
2662 		if (ret_val)
2663 			return ret_val;
2664 
2665 		/* Enable jumbo frame workaround in the PHY */
2666 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2667 		data &= ~(0x7F << 5);
2668 		data |= (0x37 << 5);
2669 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2670 		if (ret_val)
2671 			return ret_val;
2672 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2673 		data &= ~BIT(13);
2674 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2675 		if (ret_val)
2676 			return ret_val;
2677 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2678 		data &= ~(0x3FF << 2);
2679 		data |= (E1000_TX_PTR_GAP << 2);
2680 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2681 		if (ret_val)
2682 			return ret_val;
2683 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2684 		if (ret_val)
2685 			return ret_val;
2686 		e1e_rphy(hw, HV_PM_CTRL, &data);
2687 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2688 		if (ret_val)
2689 			return ret_val;
2690 	} else {
2691 		/* Write MAC register values back to h/w defaults */
2692 		mac_reg = er32(FFLT_DBG);
2693 		mac_reg &= ~(0xF << 14);
2694 		ew32(FFLT_DBG, mac_reg);
2695 
2696 		mac_reg = er32(RCTL);
2697 		mac_reg &= ~E1000_RCTL_SECRC;
2698 		ew32(RCTL, mac_reg);
2699 
2700 		ret_val = e1000e_read_kmrn_reg(hw,
2701 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2702 					       &data);
2703 		if (ret_val)
2704 			return ret_val;
2705 		ret_val = e1000e_write_kmrn_reg(hw,
2706 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2707 						data & ~BIT(0));
2708 		if (ret_val)
2709 			return ret_val;
2710 		ret_val = e1000e_read_kmrn_reg(hw,
2711 					       E1000_KMRNCTRLSTA_HD_CTRL,
2712 					       &data);
2713 		if (ret_val)
2714 			return ret_val;
2715 		data &= ~(0xF << 8);
2716 		data |= (0xB << 8);
2717 		ret_val = e1000e_write_kmrn_reg(hw,
2718 						E1000_KMRNCTRLSTA_HD_CTRL,
2719 						data);
2720 		if (ret_val)
2721 			return ret_val;
2722 
2723 		/* Write PHY register values back to h/w defaults */
2724 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2725 		data &= ~(0x7F << 5);
2726 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2727 		if (ret_val)
2728 			return ret_val;
2729 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2730 		data |= BIT(13);
2731 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2732 		if (ret_val)
2733 			return ret_val;
2734 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2735 		data &= ~(0x3FF << 2);
2736 		data |= (0x8 << 2);
2737 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2738 		if (ret_val)
2739 			return ret_val;
2740 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2741 		if (ret_val)
2742 			return ret_val;
2743 		e1e_rphy(hw, HV_PM_CTRL, &data);
2744 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2745 		if (ret_val)
2746 			return ret_val;
2747 	}
2748 
2749 	/* re-enable Rx path after enabling/disabling workaround */
2750 	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2751 }
2752 
2753 /**
2754  *  e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
2755  *  @hw: pointer to the HW structure
2756  *
2757  *  A series of PHY workarounds to be done after every PHY reset.
2758  **/
2759 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2760 {
2761 	s32 ret_val = 0;
2762 
2763 	if (hw->mac.type != e1000_pch2lan)
2764 		return 0;
2765 
2766 	/* Set MDIO slow mode before any other MDIO access */
2767 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2768 	if (ret_val)
2769 		return ret_val;
2770 
2771 	ret_val = hw->phy.ops.acquire(hw);
2772 	if (ret_val)
2773 		return ret_val;
2774 	/* set MSE higher to enable link to stay up when noise is high */
2775 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2776 	if (ret_val)
2777 		goto release;
2778 	/* drop link after 5 times MSE threshold was reached */
2779 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2780 release:
2781 	hw->phy.ops.release(hw);
2782 
2783 	return ret_val;
2784 }
2785 
2786 /**
2787  *  e1000_k1_workaround_lv - K1 Si workaround
2788  *  @hw:   pointer to the HW structure
2789  *
2790  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2791  *  Disable K1 in 1000Mbps and 100Mbps
2792  **/
2793 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2794 {
2795 	s32 ret_val = 0;
2796 	u16 status_reg = 0;
2797 
2798 	if (hw->mac.type != e1000_pch2lan)
2799 		return 0;
2800 
2801 	/* Set K1 beacon duration based on 10Mbs speed */
2802 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2803 	if (ret_val)
2804 		return ret_val;
2805 
2806 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2807 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2808 		if (status_reg &
2809 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2810 			u16 pm_phy_reg;
2811 
2812 			/* LV 1G/100 Packet drop issue wa  */
2813 			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2814 			if (ret_val)
2815 				return ret_val;
2816 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2817 			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2818 			if (ret_val)
2819 				return ret_val;
2820 		} else {
2821 			u32 mac_reg;
2822 
2823 			mac_reg = er32(FEXTNVM4);
2824 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2825 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2826 			ew32(FEXTNVM4, mac_reg);
2827 		}
2828 	}
2829 
2830 	return ret_val;
2831 }
2832 
2833 /**
2834  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2835  *  @hw:   pointer to the HW structure
2836  *  @gate: boolean set to true to gate, false to ungate
2837  *
2838  *  Gate/ungate the automatic PHY configuration via hardware; perform
2839  *  the configuration via software instead.
2840  **/
2841 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2842 {
2843 	u32 extcnf_ctrl;
2844 
2845 	if (hw->mac.type < e1000_pch2lan)
2846 		return;
2847 
2848 	extcnf_ctrl = er32(EXTCNF_CTRL);
2849 
2850 	if (gate)
2851 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2852 	else
2853 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2854 
2855 	ew32(EXTCNF_CTRL, extcnf_ctrl);
2856 }
2857 
2858 /**
2859  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2860  *  @hw: pointer to the HW structure
2861  *
2862  *  Check the appropriate indication the MAC has finished configuring the
2863  *  PHY after a software reset.
2864  **/
2865 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2866 {
2867 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2868 
2869 	/* Wait for basic configuration completes before proceeding */
2870 	do {
2871 		data = er32(STATUS);
2872 		data &= E1000_STATUS_LAN_INIT_DONE;
2873 		usleep_range(100, 200);
2874 	} while ((!data) && --loop);
2875 
2876 	/* If basic configuration is incomplete before the above loop
2877 	 * count reaches 0, loading the configuration from NVM will
2878 	 * leave the PHY in a bad state possibly resulting in no link.
2879 	 */
2880 	if (loop == 0)
2881 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2882 
2883 	/* Clear the Init Done bit for the next init event */
2884 	data = er32(STATUS);
2885 	data &= ~E1000_STATUS_LAN_INIT_DONE;
2886 	ew32(STATUS, data);
2887 }
2888 
2889 /**
2890  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2891  *  @hw: pointer to the HW structure
2892  **/
2893 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2894 {
2895 	s32 ret_val = 0;
2896 	u16 reg;
2897 
2898 	if (hw->phy.ops.check_reset_block(hw))
2899 		return 0;
2900 
2901 	/* Allow time for h/w to get to quiescent state after reset */
2902 	usleep_range(10000, 11000);
2903 
2904 	/* Perform any necessary post-reset workarounds */
2905 	switch (hw->mac.type) {
2906 	case e1000_pchlan:
2907 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2908 		if (ret_val)
2909 			return ret_val;
2910 		break;
2911 	case e1000_pch2lan:
2912 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2913 		if (ret_val)
2914 			return ret_val;
2915 		break;
2916 	default:
2917 		break;
2918 	}
2919 
2920 	/* Clear the host wakeup bit after lcd reset */
2921 	if (hw->mac.type >= e1000_pchlan) {
2922 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2923 		reg &= ~BM_WUC_HOST_WU_BIT;
2924 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2925 	}
2926 
2927 	/* Configure the LCD with the extended configuration region in NVM */
2928 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2929 	if (ret_val)
2930 		return ret_val;
2931 
2932 	/* Configure the LCD with the OEM bits in NVM */
2933 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2934 
2935 	if (hw->mac.type == e1000_pch2lan) {
2936 		/* Ungate automatic PHY configuration on non-managed 82579 */
2937 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2938 			usleep_range(10000, 11000);
2939 			e1000_gate_hw_phy_config_ich8lan(hw, false);
2940 		}
2941 
2942 		/* Set EEE LPI Update Timer to 200usec */
2943 		ret_val = hw->phy.ops.acquire(hw);
2944 		if (ret_val)
2945 			return ret_val;
2946 		ret_val = e1000_write_emi_reg_locked(hw,
2947 						     I82579_LPI_UPDATE_TIMER,
2948 						     0x1387);
2949 		hw->phy.ops.release(hw);
2950 	}
2951 
2952 	return ret_val;
2953 }
2954 
2955 /**
2956  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2957  *  @hw: pointer to the HW structure
2958  *
2959  *  Resets the PHY
2960  *  This is a function pointer entry point called by drivers
2961  *  or other shared routines.
2962  **/
2963 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2964 {
2965 	s32 ret_val = 0;
2966 
2967 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2968 	if ((hw->mac.type == e1000_pch2lan) &&
2969 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2970 		e1000_gate_hw_phy_config_ich8lan(hw, true);
2971 
2972 	ret_val = e1000e_phy_hw_reset_generic(hw);
2973 	if (ret_val)
2974 		return ret_val;
2975 
2976 	return e1000_post_phy_reset_ich8lan(hw);
2977 }
2978 
2979 /**
2980  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2981  *  @hw: pointer to the HW structure
2982  *  @active: true to enable LPLU, false to disable
2983  *
2984  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2985  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2986  *  the phy speed. This function will manually set the LPLU bit and restart
2987  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2988  *  since it configures the same bit.
2989  **/
2990 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2991 {
2992 	s32 ret_val;
2993 	u16 oem_reg;
2994 
2995 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2996 	if (ret_val)
2997 		return ret_val;
2998 
2999 	if (active)
3000 		oem_reg |= HV_OEM_BITS_LPLU;
3001 	else
3002 		oem_reg &= ~HV_OEM_BITS_LPLU;
3003 
3004 	if (!hw->phy.ops.check_reset_block(hw))
3005 		oem_reg |= HV_OEM_BITS_RESTART_AN;
3006 
3007 	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
3008 }
3009 
3010 /**
3011  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
3012  *  @hw: pointer to the HW structure
3013  *  @active: true to enable LPLU, false to disable
3014  *
3015  *  Sets the LPLU D0 state according to the active flag.  When
3016  *  activating LPLU this function also disables smart speed
3017  *  and vice versa.  LPLU will not be activated unless the
3018  *  device autonegotiation advertisement meets standards of
3019  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3020  *  This is a function pointer entry point only called by
3021  *  PHY setup routines.
3022  **/
3023 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3024 {
3025 	struct e1000_phy_info *phy = &hw->phy;
3026 	u32 phy_ctrl;
3027 	s32 ret_val = 0;
3028 	u16 data;
3029 
3030 	if (phy->type == e1000_phy_ife)
3031 		return 0;
3032 
3033 	phy_ctrl = er32(PHY_CTRL);
3034 
3035 	if (active) {
3036 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3037 		ew32(PHY_CTRL, phy_ctrl);
3038 
3039 		if (phy->type != e1000_phy_igp_3)
3040 			return 0;
3041 
3042 		/* Call gig speed drop workaround on LPLU before accessing
3043 		 * any PHY registers
3044 		 */
3045 		if (hw->mac.type == e1000_ich8lan)
3046 			e1000e_gig_downshift_workaround_ich8lan(hw);
3047 
3048 		/* When LPLU is enabled, we should disable SmartSpeed */
3049 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3050 		if (ret_val)
3051 			return ret_val;
3052 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3053 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3054 		if (ret_val)
3055 			return ret_val;
3056 	} else {
3057 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3058 		ew32(PHY_CTRL, phy_ctrl);
3059 
3060 		if (phy->type != e1000_phy_igp_3)
3061 			return 0;
3062 
3063 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3064 		 * during Dx states where the power conservation is most
3065 		 * important.  During driver activity we should enable
3066 		 * SmartSpeed, so performance is maintained.
3067 		 */
3068 		if (phy->smart_speed == e1000_smart_speed_on) {
3069 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3070 					   &data);
3071 			if (ret_val)
3072 				return ret_val;
3073 
3074 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3075 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3076 					   data);
3077 			if (ret_val)
3078 				return ret_val;
3079 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3080 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3081 					   &data);
3082 			if (ret_val)
3083 				return ret_val;
3084 
3085 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3086 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3087 					   data);
3088 			if (ret_val)
3089 				return ret_val;
3090 		}
3091 	}
3092 
3093 	return 0;
3094 }
3095 
3096 /**
3097  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3098  *  @hw: pointer to the HW structure
3099  *  @active: true to enable LPLU, false to disable
3100  *
3101  *  Sets the LPLU D3 state according to the active flag.  When
3102  *  activating LPLU this function also disables smart speed
3103  *  and vice versa.  LPLU will not be activated unless the
3104  *  device autonegotiation advertisement meets standards of
3105  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3106  *  This is a function pointer entry point only called by
3107  *  PHY setup routines.
3108  **/
3109 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3110 {
3111 	struct e1000_phy_info *phy = &hw->phy;
3112 	u32 phy_ctrl;
3113 	s32 ret_val = 0;
3114 	u16 data;
3115 
3116 	phy_ctrl = er32(PHY_CTRL);
3117 
3118 	if (!active) {
3119 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3120 		ew32(PHY_CTRL, phy_ctrl);
3121 
3122 		if (phy->type != e1000_phy_igp_3)
3123 			return 0;
3124 
3125 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3126 		 * during Dx states where the power conservation is most
3127 		 * important.  During driver activity we should enable
3128 		 * SmartSpeed, so performance is maintained.
3129 		 */
3130 		if (phy->smart_speed == e1000_smart_speed_on) {
3131 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3132 					   &data);
3133 			if (ret_val)
3134 				return ret_val;
3135 
3136 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3137 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3138 					   data);
3139 			if (ret_val)
3140 				return ret_val;
3141 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3142 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3143 					   &data);
3144 			if (ret_val)
3145 				return ret_val;
3146 
3147 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3148 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3149 					   data);
3150 			if (ret_val)
3151 				return ret_val;
3152 		}
3153 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3154 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3155 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3156 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3157 		ew32(PHY_CTRL, phy_ctrl);
3158 
3159 		if (phy->type != e1000_phy_igp_3)
3160 			return 0;
3161 
3162 		/* Call gig speed drop workaround on LPLU before accessing
3163 		 * any PHY registers
3164 		 */
3165 		if (hw->mac.type == e1000_ich8lan)
3166 			e1000e_gig_downshift_workaround_ich8lan(hw);
3167 
3168 		/* When LPLU is enabled, we should disable SmartSpeed */
3169 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3170 		if (ret_val)
3171 			return ret_val;
3172 
3173 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3174 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3175 	}
3176 
3177 	return ret_val;
3178 }
3179 
3180 /**
3181  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3182  *  @hw: pointer to the HW structure
3183  *  @bank:  pointer to the variable that returns the active bank
3184  *
3185  *  Reads signature byte from the NVM using the flash access registers.
3186  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3187  **/
3188 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3189 {
3190 	u32 eecd;
3191 	struct e1000_nvm_info *nvm = &hw->nvm;
3192 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3193 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3194 	u32 nvm_dword = 0;
3195 	u8 sig_byte = 0;
3196 	s32 ret_val;
3197 
3198 	switch (hw->mac.type) {
3199 	case e1000_pch_spt:
3200 	case e1000_pch_cnp:
3201 	case e1000_pch_tgp:
3202 	case e1000_pch_adp:
3203 	case e1000_pch_mtp:
3204 	case e1000_pch_lnp:
3205 	case e1000_pch_ptp:
3206 	case e1000_pch_nvp:
3207 		bank1_offset = nvm->flash_bank_size;
3208 		act_offset = E1000_ICH_NVM_SIG_WORD;
3209 
3210 		/* set bank to 0 in case flash read fails */
3211 		*bank = 0;
3212 
3213 		/* Check bank 0 */
3214 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3215 							 &nvm_dword);
3216 		if (ret_val)
3217 			return ret_val;
3218 		sig_byte = FIELD_GET(0xFF00, nvm_dword);
3219 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3220 		    E1000_ICH_NVM_SIG_VALUE) {
3221 			*bank = 0;
3222 			return 0;
3223 		}
3224 
3225 		/* Check bank 1 */
3226 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3227 							 bank1_offset,
3228 							 &nvm_dword);
3229 		if (ret_val)
3230 			return ret_val;
3231 		sig_byte = FIELD_GET(0xFF00, nvm_dword);
3232 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3233 		    E1000_ICH_NVM_SIG_VALUE) {
3234 			*bank = 1;
3235 			return 0;
3236 		}
3237 
3238 		e_dbg("ERROR: No valid NVM bank present\n");
3239 		return -E1000_ERR_NVM;
3240 	case e1000_ich8lan:
3241 	case e1000_ich9lan:
3242 		eecd = er32(EECD);
3243 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3244 		    E1000_EECD_SEC1VAL_VALID_MASK) {
3245 			if (eecd & E1000_EECD_SEC1VAL)
3246 				*bank = 1;
3247 			else
3248 				*bank = 0;
3249 
3250 			return 0;
3251 		}
3252 		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3253 		fallthrough;
3254 	default:
3255 		/* set bank to 0 in case flash read fails */
3256 		*bank = 0;
3257 
3258 		/* Check bank 0 */
3259 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3260 							&sig_byte);
3261 		if (ret_val)
3262 			return ret_val;
3263 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3264 		    E1000_ICH_NVM_SIG_VALUE) {
3265 			*bank = 0;
3266 			return 0;
3267 		}
3268 
3269 		/* Check bank 1 */
3270 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3271 							bank1_offset,
3272 							&sig_byte);
3273 		if (ret_val)
3274 			return ret_val;
3275 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3276 		    E1000_ICH_NVM_SIG_VALUE) {
3277 			*bank = 1;
3278 			return 0;
3279 		}
3280 
3281 		e_dbg("ERROR: No valid NVM bank present\n");
3282 		return -E1000_ERR_NVM;
3283 	}
3284 }
3285 
3286 /**
3287  *  e1000_read_nvm_spt - NVM access for SPT
3288  *  @hw: pointer to the HW structure
3289  *  @offset: The offset (in bytes) of the word(s) to read.
3290  *  @words: Size of data to read in words.
3291  *  @data: pointer to the word(s) to read at offset.
3292  *
3293  *  Reads a word(s) from the NVM
3294  **/
3295 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3296 			      u16 *data)
3297 {
3298 	struct e1000_nvm_info *nvm = &hw->nvm;
3299 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3300 	u32 act_offset;
3301 	s32 ret_val = 0;
3302 	u32 bank = 0;
3303 	u32 dword = 0;
3304 	u16 offset_to_read;
3305 	u16 i;
3306 
3307 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3308 	    (words == 0)) {
3309 		e_dbg("nvm parameter(s) out of bounds\n");
3310 		ret_val = -E1000_ERR_NVM;
3311 		goto out;
3312 	}
3313 
3314 	nvm->ops.acquire(hw);
3315 
3316 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3317 	if (ret_val) {
3318 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3319 		bank = 0;
3320 	}
3321 
3322 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3323 	act_offset += offset;
3324 
3325 	ret_val = 0;
3326 
3327 	for (i = 0; i < words; i += 2) {
3328 		if (words - i == 1) {
3329 			if (dev_spec->shadow_ram[offset + i].modified) {
3330 				data[i] =
3331 				    dev_spec->shadow_ram[offset + i].value;
3332 			} else {
3333 				offset_to_read = act_offset + i -
3334 				    ((act_offset + i) % 2);
3335 				ret_val =
3336 				  e1000_read_flash_dword_ich8lan(hw,
3337 								 offset_to_read,
3338 								 &dword);
3339 				if (ret_val)
3340 					break;
3341 				if ((act_offset + i) % 2 == 0)
3342 					data[i] = (u16)(dword & 0xFFFF);
3343 				else
3344 					data[i] = (u16)((dword >> 16) & 0xFFFF);
3345 			}
3346 		} else {
3347 			offset_to_read = act_offset + i;
3348 			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3349 			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3350 				ret_val =
3351 				  e1000_read_flash_dword_ich8lan(hw,
3352 								 offset_to_read,
3353 								 &dword);
3354 				if (ret_val)
3355 					break;
3356 			}
3357 			if (dev_spec->shadow_ram[offset + i].modified)
3358 				data[i] =
3359 				    dev_spec->shadow_ram[offset + i].value;
3360 			else
3361 				data[i] = (u16)(dword & 0xFFFF);
3362 			if (dev_spec->shadow_ram[offset + i].modified)
3363 				data[i + 1] =
3364 				    dev_spec->shadow_ram[offset + i + 1].value;
3365 			else
3366 				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3367 		}
3368 	}
3369 
3370 	nvm->ops.release(hw);
3371 
3372 out:
3373 	if (ret_val)
3374 		e_dbg("NVM read error: %d\n", ret_val);
3375 
3376 	return ret_val;
3377 }
3378 
3379 /**
3380  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3381  *  @hw: pointer to the HW structure
3382  *  @offset: The offset (in bytes) of the word(s) to read.
3383  *  @words: Size of data to read in words
3384  *  @data: Pointer to the word(s) to read at offset.
3385  *
3386  *  Reads a word(s) from the NVM using the flash access registers.
3387  **/
3388 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3389 				  u16 *data)
3390 {
3391 	struct e1000_nvm_info *nvm = &hw->nvm;
3392 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3393 	u32 act_offset;
3394 	s32 ret_val = 0;
3395 	u32 bank = 0;
3396 	u16 i, word;
3397 
3398 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3399 	    (words == 0)) {
3400 		e_dbg("nvm parameter(s) out of bounds\n");
3401 		ret_val = -E1000_ERR_NVM;
3402 		goto out;
3403 	}
3404 
3405 	nvm->ops.acquire(hw);
3406 
3407 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3408 	if (ret_val) {
3409 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3410 		bank = 0;
3411 	}
3412 
3413 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3414 	act_offset += offset;
3415 
3416 	ret_val = 0;
3417 	for (i = 0; i < words; i++) {
3418 		if (dev_spec->shadow_ram[offset + i].modified) {
3419 			data[i] = dev_spec->shadow_ram[offset + i].value;
3420 		} else {
3421 			ret_val = e1000_read_flash_word_ich8lan(hw,
3422 								act_offset + i,
3423 								&word);
3424 			if (ret_val)
3425 				break;
3426 			data[i] = word;
3427 		}
3428 	}
3429 
3430 	nvm->ops.release(hw);
3431 
3432 out:
3433 	if (ret_val)
3434 		e_dbg("NVM read error: %d\n", ret_val);
3435 
3436 	return ret_val;
3437 }
3438 
3439 /**
3440  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3441  *  @hw: pointer to the HW structure
3442  *
3443  *  This function does initial flash setup so that a new read/write/erase cycle
3444  *  can be started.
3445  **/
3446 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3447 {
3448 	union ich8_hws_flash_status hsfsts;
3449 	s32 ret_val = -E1000_ERR_NVM;
3450 
3451 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3452 
3453 	/* Check if the flash descriptor is valid */
3454 	if (!hsfsts.hsf_status.fldesvalid) {
3455 		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3456 		return -E1000_ERR_NVM;
3457 	}
3458 
3459 	/* Clear FCERR and DAEL in hw status by writing 1 */
3460 	hsfsts.hsf_status.flcerr = 1;
3461 	hsfsts.hsf_status.dael = 1;
3462 	if (hw->mac.type >= e1000_pch_spt)
3463 		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3464 	else
3465 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3466 
3467 	/* Either we should have a hardware SPI cycle in progress
3468 	 * bit to check against, in order to start a new cycle or
3469 	 * FDONE bit should be changed in the hardware so that it
3470 	 * is 1 after hardware reset, which can then be used as an
3471 	 * indication whether a cycle is in progress or has been
3472 	 * completed.
3473 	 */
3474 
3475 	if (!hsfsts.hsf_status.flcinprog) {
3476 		/* There is no cycle running at present,
3477 		 * so we can start a cycle.
3478 		 * Begin by setting Flash Cycle Done.
3479 		 */
3480 		hsfsts.hsf_status.flcdone = 1;
3481 		if (hw->mac.type >= e1000_pch_spt)
3482 			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3483 		else
3484 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3485 		ret_val = 0;
3486 	} else {
3487 		s32 i;
3488 
3489 		/* Otherwise poll for sometime so the current
3490 		 * cycle has a chance to end before giving up.
3491 		 */
3492 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3493 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3494 			if (!hsfsts.hsf_status.flcinprog) {
3495 				ret_val = 0;
3496 				break;
3497 			}
3498 			udelay(1);
3499 		}
3500 		if (!ret_val) {
3501 			/* Successful in waiting for previous cycle to timeout,
3502 			 * now set the Flash Cycle Done.
3503 			 */
3504 			hsfsts.hsf_status.flcdone = 1;
3505 			if (hw->mac.type >= e1000_pch_spt)
3506 				ew32flash(ICH_FLASH_HSFSTS,
3507 					  hsfsts.regval & 0xFFFF);
3508 			else
3509 				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3510 		} else {
3511 			e_dbg("Flash controller busy, cannot get access\n");
3512 		}
3513 	}
3514 
3515 	return ret_val;
3516 }
3517 
3518 /**
3519  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3520  *  @hw: pointer to the HW structure
3521  *  @timeout: maximum time to wait for completion
3522  *
3523  *  This function starts a flash cycle and waits for its completion.
3524  **/
3525 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3526 {
3527 	union ich8_hws_flash_ctrl hsflctl;
3528 	union ich8_hws_flash_status hsfsts;
3529 	u32 i = 0;
3530 
3531 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3532 	if (hw->mac.type >= e1000_pch_spt)
3533 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3534 	else
3535 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3536 	hsflctl.hsf_ctrl.flcgo = 1;
3537 
3538 	if (hw->mac.type >= e1000_pch_spt)
3539 		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3540 	else
3541 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3542 
3543 	/* wait till FDONE bit is set to 1 */
3544 	do {
3545 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3546 		if (hsfsts.hsf_status.flcdone)
3547 			break;
3548 		udelay(1);
3549 	} while (i++ < timeout);
3550 
3551 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3552 		return 0;
3553 
3554 	return -E1000_ERR_NVM;
3555 }
3556 
3557 /**
3558  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3559  *  @hw: pointer to the HW structure
3560  *  @offset: offset to data location
3561  *  @data: pointer to the location for storing the data
3562  *
3563  *  Reads the flash dword at offset into data.  Offset is converted
3564  *  to bytes before read.
3565  **/
3566 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3567 					  u32 *data)
3568 {
3569 	/* Must convert word offset into bytes. */
3570 	offset <<= 1;
3571 	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3572 }
3573 
3574 /**
3575  *  e1000_read_flash_word_ich8lan - Read word from flash
3576  *  @hw: pointer to the HW structure
3577  *  @offset: offset to data location
3578  *  @data: pointer to the location for storing the data
3579  *
3580  *  Reads the flash word at offset into data.  Offset is converted
3581  *  to bytes before read.
3582  **/
3583 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3584 					 u16 *data)
3585 {
3586 	/* Must convert offset into bytes. */
3587 	offset <<= 1;
3588 
3589 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3590 }
3591 
3592 /**
3593  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3594  *  @hw: pointer to the HW structure
3595  *  @offset: The offset of the byte to read.
3596  *  @data: Pointer to a byte to store the value read.
3597  *
3598  *  Reads a single byte from the NVM using the flash access registers.
3599  **/
3600 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3601 					 u8 *data)
3602 {
3603 	s32 ret_val;
3604 	u16 word = 0;
3605 
3606 	/* In SPT, only 32 bits access is supported,
3607 	 * so this function should not be called.
3608 	 */
3609 	if (hw->mac.type >= e1000_pch_spt)
3610 		return -E1000_ERR_NVM;
3611 	else
3612 		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3613 
3614 	if (ret_val)
3615 		return ret_val;
3616 
3617 	*data = (u8)word;
3618 
3619 	return 0;
3620 }
3621 
3622 /**
3623  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3624  *  @hw: pointer to the HW structure
3625  *  @offset: The offset (in bytes) of the byte or word to read.
3626  *  @size: Size of data to read, 1=byte 2=word
3627  *  @data: Pointer to the word to store the value read.
3628  *
3629  *  Reads a byte or word from the NVM using the flash access registers.
3630  **/
3631 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3632 					 u8 size, u16 *data)
3633 {
3634 	union ich8_hws_flash_status hsfsts;
3635 	union ich8_hws_flash_ctrl hsflctl;
3636 	u32 flash_linear_addr;
3637 	u32 flash_data = 0;
3638 	s32 ret_val = -E1000_ERR_NVM;
3639 	u8 count = 0;
3640 
3641 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3642 		return -E1000_ERR_NVM;
3643 
3644 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3645 			     hw->nvm.flash_base_addr);
3646 
3647 	do {
3648 		udelay(1);
3649 		/* Steps */
3650 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3651 		if (ret_val)
3652 			break;
3653 
3654 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3655 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3656 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3657 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3658 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3659 
3660 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3661 
3662 		ret_val =
3663 		    e1000_flash_cycle_ich8lan(hw,
3664 					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3665 
3666 		/* Check if FCERR is set to 1, if set to 1, clear it
3667 		 * and try the whole sequence a few more times, else
3668 		 * read in (shift in) the Flash Data0, the order is
3669 		 * least significant byte first msb to lsb
3670 		 */
3671 		if (!ret_val) {
3672 			flash_data = er32flash(ICH_FLASH_FDATA0);
3673 			if (size == 1)
3674 				*data = (u8)(flash_data & 0x000000FF);
3675 			else if (size == 2)
3676 				*data = (u16)(flash_data & 0x0000FFFF);
3677 			break;
3678 		} else {
3679 			/* If we've gotten here, then things are probably
3680 			 * completely hosed, but if the error condition is
3681 			 * detected, it won't hurt to give it another try...
3682 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3683 			 */
3684 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3685 			if (hsfsts.hsf_status.flcerr) {
3686 				/* Repeat for some time before giving up. */
3687 				continue;
3688 			} else if (!hsfsts.hsf_status.flcdone) {
3689 				e_dbg("Timeout error - flash cycle did not complete.\n");
3690 				break;
3691 			}
3692 		}
3693 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3694 
3695 	return ret_val;
3696 }
3697 
3698 /**
3699  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3700  *  @hw: pointer to the HW structure
3701  *  @offset: The offset (in bytes) of the dword to read.
3702  *  @data: Pointer to the dword to store the value read.
3703  *
3704  *  Reads a byte or word from the NVM using the flash access registers.
3705  **/
3706 
3707 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3708 					   u32 *data)
3709 {
3710 	union ich8_hws_flash_status hsfsts;
3711 	union ich8_hws_flash_ctrl hsflctl;
3712 	u32 flash_linear_addr;
3713 	s32 ret_val = -E1000_ERR_NVM;
3714 	u8 count = 0;
3715 
3716 	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3717 		return -E1000_ERR_NVM;
3718 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3719 			     hw->nvm.flash_base_addr);
3720 
3721 	do {
3722 		udelay(1);
3723 		/* Steps */
3724 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3725 		if (ret_val)
3726 			break;
3727 		/* In SPT, This register is in Lan memory space, not flash.
3728 		 * Therefore, only 32 bit access is supported
3729 		 */
3730 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3731 
3732 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3733 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3734 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3735 		/* In SPT, This register is in Lan memory space, not flash.
3736 		 * Therefore, only 32 bit access is supported
3737 		 */
3738 		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3739 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3740 
3741 		ret_val =
3742 		   e1000_flash_cycle_ich8lan(hw,
3743 					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3744 
3745 		/* Check if FCERR is set to 1, if set to 1, clear it
3746 		 * and try the whole sequence a few more times, else
3747 		 * read in (shift in) the Flash Data0, the order is
3748 		 * least significant byte first msb to lsb
3749 		 */
3750 		if (!ret_val) {
3751 			*data = er32flash(ICH_FLASH_FDATA0);
3752 			break;
3753 		} else {
3754 			/* If we've gotten here, then things are probably
3755 			 * completely hosed, but if the error condition is
3756 			 * detected, it won't hurt to give it another try...
3757 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3758 			 */
3759 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3760 			if (hsfsts.hsf_status.flcerr) {
3761 				/* Repeat for some time before giving up. */
3762 				continue;
3763 			} else if (!hsfsts.hsf_status.flcdone) {
3764 				e_dbg("Timeout error - flash cycle did not complete.\n");
3765 				break;
3766 			}
3767 		}
3768 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3769 
3770 	return ret_val;
3771 }
3772 
3773 /**
3774  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3775  *  @hw: pointer to the HW structure
3776  *  @offset: The offset (in bytes) of the word(s) to write.
3777  *  @words: Size of data to write in words
3778  *  @data: Pointer to the word(s) to write at offset.
3779  *
3780  *  Writes a byte or word to the NVM using the flash access registers.
3781  **/
3782 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3783 				   u16 *data)
3784 {
3785 	struct e1000_nvm_info *nvm = &hw->nvm;
3786 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3787 	u16 i;
3788 
3789 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3790 	    (words == 0)) {
3791 		e_dbg("nvm parameter(s) out of bounds\n");
3792 		return -E1000_ERR_NVM;
3793 	}
3794 
3795 	nvm->ops.acquire(hw);
3796 
3797 	for (i = 0; i < words; i++) {
3798 		dev_spec->shadow_ram[offset + i].modified = true;
3799 		dev_spec->shadow_ram[offset + i].value = data[i];
3800 	}
3801 
3802 	nvm->ops.release(hw);
3803 
3804 	return 0;
3805 }
3806 
3807 /**
3808  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3809  *  @hw: pointer to the HW structure
3810  *
3811  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3812  *  which writes the checksum to the shadow ram.  The changes in the shadow
3813  *  ram are then committed to the EEPROM by processing each bank at a time
3814  *  checking for the modified bit and writing only the pending changes.
3815  *  After a successful commit, the shadow ram is cleared and is ready for
3816  *  future writes.
3817  **/
3818 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3819 {
3820 	struct e1000_nvm_info *nvm = &hw->nvm;
3821 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3822 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3823 	s32 ret_val;
3824 	u32 dword = 0;
3825 
3826 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3827 	if (ret_val)
3828 		goto out;
3829 
3830 	if (nvm->type != e1000_nvm_flash_sw)
3831 		goto out;
3832 
3833 	nvm->ops.acquire(hw);
3834 
3835 	/* We're writing to the opposite bank so if we're on bank 1,
3836 	 * write to bank 0 etc.  We also need to erase the segment that
3837 	 * is going to be written
3838 	 */
3839 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3840 	if (ret_val) {
3841 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3842 		bank = 0;
3843 	}
3844 
3845 	if (bank == 0) {
3846 		new_bank_offset = nvm->flash_bank_size;
3847 		old_bank_offset = 0;
3848 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3849 		if (ret_val)
3850 			goto release;
3851 	} else {
3852 		old_bank_offset = nvm->flash_bank_size;
3853 		new_bank_offset = 0;
3854 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3855 		if (ret_val)
3856 			goto release;
3857 	}
3858 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3859 		/* Determine whether to write the value stored
3860 		 * in the other NVM bank or a modified value stored
3861 		 * in the shadow RAM
3862 		 */
3863 		ret_val = e1000_read_flash_dword_ich8lan(hw,
3864 							 i + old_bank_offset,
3865 							 &dword);
3866 
3867 		if (dev_spec->shadow_ram[i].modified) {
3868 			dword &= 0xffff0000;
3869 			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3870 		}
3871 		if (dev_spec->shadow_ram[i + 1].modified) {
3872 			dword &= 0x0000ffff;
3873 			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3874 				  << 16);
3875 		}
3876 		if (ret_val)
3877 			break;
3878 
3879 		/* If the word is 0x13, then make sure the signature bits
3880 		 * (15:14) are 11b until the commit has completed.
3881 		 * This will allow us to write 10b which indicates the
3882 		 * signature is valid.  We want to do this after the write
3883 		 * has completed so that we don't mark the segment valid
3884 		 * while the write is still in progress
3885 		 */
3886 		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3887 			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3888 
3889 		/* Convert offset to bytes. */
3890 		act_offset = (i + new_bank_offset) << 1;
3891 
3892 		usleep_range(100, 200);
3893 
3894 		/* Write the data to the new bank. Offset in words */
3895 		act_offset = i + new_bank_offset;
3896 		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3897 								dword);
3898 		if (ret_val)
3899 			break;
3900 	}
3901 
3902 	/* Don't bother writing the segment valid bits if sector
3903 	 * programming failed.
3904 	 */
3905 	if (ret_val) {
3906 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3907 		e_dbg("Flash commit failed.\n");
3908 		goto release;
3909 	}
3910 
3911 	/* Finally validate the new segment by setting bit 15:14
3912 	 * to 10b in word 0x13 , this can be done without an
3913 	 * erase as well since these bits are 11 to start with
3914 	 * and we need to change bit 14 to 0b
3915 	 */
3916 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3917 
3918 	/*offset in words but we read dword */
3919 	--act_offset;
3920 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3921 
3922 	if (ret_val)
3923 		goto release;
3924 
3925 	dword &= 0xBFFFFFFF;
3926 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3927 
3928 	if (ret_val)
3929 		goto release;
3930 
3931 	/* offset in words but we read dword */
3932 	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3933 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3934 
3935 	if (ret_val)
3936 		goto release;
3937 
3938 	dword &= 0x00FFFFFF;
3939 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3940 
3941 	if (ret_val)
3942 		goto release;
3943 
3944 	/* Great!  Everything worked, we can now clear the cached entries. */
3945 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3946 		dev_spec->shadow_ram[i].modified = false;
3947 		dev_spec->shadow_ram[i].value = 0xFFFF;
3948 	}
3949 
3950 release:
3951 	nvm->ops.release(hw);
3952 
3953 	/* Reload the EEPROM, or else modifications will not appear
3954 	 * until after the next adapter reset.
3955 	 */
3956 	if (!ret_val) {
3957 		nvm->ops.reload(hw);
3958 		usleep_range(10000, 11000);
3959 	}
3960 
3961 out:
3962 	if (ret_val)
3963 		e_dbg("NVM update error: %d\n", ret_val);
3964 
3965 	return ret_val;
3966 }
3967 
3968 /**
3969  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3970  *  @hw: pointer to the HW structure
3971  *
3972  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3973  *  which writes the checksum to the shadow ram.  The changes in the shadow
3974  *  ram are then committed to the EEPROM by processing each bank at a time
3975  *  checking for the modified bit and writing only the pending changes.
3976  *  After a successful commit, the shadow ram is cleared and is ready for
3977  *  future writes.
3978  **/
3979 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3980 {
3981 	struct e1000_nvm_info *nvm = &hw->nvm;
3982 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3983 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3984 	s32 ret_val;
3985 	u16 data = 0;
3986 
3987 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3988 	if (ret_val)
3989 		goto out;
3990 
3991 	if (nvm->type != e1000_nvm_flash_sw)
3992 		goto out;
3993 
3994 	nvm->ops.acquire(hw);
3995 
3996 	/* We're writing to the opposite bank so if we're on bank 1,
3997 	 * write to bank 0 etc.  We also need to erase the segment that
3998 	 * is going to be written
3999 	 */
4000 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4001 	if (ret_val) {
4002 		e_dbg("Could not detect valid bank, assuming bank 0\n");
4003 		bank = 0;
4004 	}
4005 
4006 	if (bank == 0) {
4007 		new_bank_offset = nvm->flash_bank_size;
4008 		old_bank_offset = 0;
4009 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4010 		if (ret_val)
4011 			goto release;
4012 	} else {
4013 		old_bank_offset = nvm->flash_bank_size;
4014 		new_bank_offset = 0;
4015 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4016 		if (ret_val)
4017 			goto release;
4018 	}
4019 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4020 		if (dev_spec->shadow_ram[i].modified) {
4021 			data = dev_spec->shadow_ram[i].value;
4022 		} else {
4023 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
4024 								old_bank_offset,
4025 								&data);
4026 			if (ret_val)
4027 				break;
4028 		}
4029 
4030 		/* If the word is 0x13, then make sure the signature bits
4031 		 * (15:14) are 11b until the commit has completed.
4032 		 * This will allow us to write 10b which indicates the
4033 		 * signature is valid.  We want to do this after the write
4034 		 * has completed so that we don't mark the segment valid
4035 		 * while the write is still in progress
4036 		 */
4037 		if (i == E1000_ICH_NVM_SIG_WORD)
4038 			data |= E1000_ICH_NVM_SIG_MASK;
4039 
4040 		/* Convert offset to bytes. */
4041 		act_offset = (i + new_bank_offset) << 1;
4042 
4043 		usleep_range(100, 200);
4044 		/* Write the bytes to the new bank. */
4045 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4046 							       act_offset,
4047 							       (u8)data);
4048 		if (ret_val)
4049 			break;
4050 
4051 		usleep_range(100, 200);
4052 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4053 							       act_offset + 1,
4054 							       (u8)(data >> 8));
4055 		if (ret_val)
4056 			break;
4057 	}
4058 
4059 	/* Don't bother writing the segment valid bits if sector
4060 	 * programming failed.
4061 	 */
4062 	if (ret_val) {
4063 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4064 		e_dbg("Flash commit failed.\n");
4065 		goto release;
4066 	}
4067 
4068 	/* Finally validate the new segment by setting bit 15:14
4069 	 * to 10b in word 0x13 , this can be done without an
4070 	 * erase as well since these bits are 11 to start with
4071 	 * and we need to change bit 14 to 0b
4072 	 */
4073 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4074 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4075 	if (ret_val)
4076 		goto release;
4077 
4078 	data &= 0xBFFF;
4079 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4080 						       act_offset * 2 + 1,
4081 						       (u8)(data >> 8));
4082 	if (ret_val)
4083 		goto release;
4084 
4085 	/* And invalidate the previously valid segment by setting
4086 	 * its signature word (0x13) high_byte to 0b. This can be
4087 	 * done without an erase because flash erase sets all bits
4088 	 * to 1's. We can write 1's to 0's without an erase
4089 	 */
4090 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4091 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4092 	if (ret_val)
4093 		goto release;
4094 
4095 	/* Great!  Everything worked, we can now clear the cached entries. */
4096 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4097 		dev_spec->shadow_ram[i].modified = false;
4098 		dev_spec->shadow_ram[i].value = 0xFFFF;
4099 	}
4100 
4101 release:
4102 	nvm->ops.release(hw);
4103 
4104 	/* Reload the EEPROM, or else modifications will not appear
4105 	 * until after the next adapter reset.
4106 	 */
4107 	if (!ret_val) {
4108 		nvm->ops.reload(hw);
4109 		usleep_range(10000, 11000);
4110 	}
4111 
4112 out:
4113 	if (ret_val)
4114 		e_dbg("NVM update error: %d\n", ret_val);
4115 
4116 	return ret_val;
4117 }
4118 
4119 /**
4120  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4121  *  @hw: pointer to the HW structure
4122  *
4123  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4124  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4125  *  calculated, in which case we need to calculate the checksum and set bit 6.
4126  **/
4127 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4128 {
4129 	s32 ret_val;
4130 	u16 data;
4131 	u16 word;
4132 	u16 valid_csum_mask;
4133 
4134 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4135 	 * the checksum needs to be fixed.  This bit is an indication that
4136 	 * the NVM was prepared by OEM software and did not calculate
4137 	 * the checksum...a likely scenario.
4138 	 */
4139 	switch (hw->mac.type) {
4140 	case e1000_pch_lpt:
4141 	case e1000_pch_spt:
4142 	case e1000_pch_cnp:
4143 	case e1000_pch_tgp:
4144 	case e1000_pch_adp:
4145 	case e1000_pch_mtp:
4146 	case e1000_pch_lnp:
4147 	case e1000_pch_ptp:
4148 	case e1000_pch_nvp:
4149 		word = NVM_COMPAT;
4150 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4151 		break;
4152 	default:
4153 		word = NVM_FUTURE_INIT_WORD1;
4154 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4155 		break;
4156 	}
4157 
4158 	ret_val = e1000_read_nvm(hw, word, 1, &data);
4159 	if (ret_val)
4160 		return ret_val;
4161 
4162 	if (!(data & valid_csum_mask)) {
4163 		e_dbg("NVM Checksum valid bit not set\n");
4164 
4165 		if (hw->mac.type < e1000_pch_tgp) {
4166 			data |= valid_csum_mask;
4167 			ret_val = e1000_write_nvm(hw, word, 1, &data);
4168 			if (ret_val)
4169 				return ret_val;
4170 			ret_val = e1000e_update_nvm_checksum(hw);
4171 			if (ret_val)
4172 				return ret_val;
4173 		}
4174 	}
4175 
4176 	return e1000e_validate_nvm_checksum_generic(hw);
4177 }
4178 
4179 /**
4180  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4181  *  @hw: pointer to the HW structure
4182  *
4183  *  To prevent malicious write/erase of the NVM, set it to be read-only
4184  *  so that the hardware ignores all write/erase cycles of the NVM via
4185  *  the flash control registers.  The shadow-ram copy of the NVM will
4186  *  still be updated, however any updates to this copy will not stick
4187  *  across driver reloads.
4188  **/
4189 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4190 {
4191 	struct e1000_nvm_info *nvm = &hw->nvm;
4192 	union ich8_flash_protected_range pr0;
4193 	union ich8_hws_flash_status hsfsts;
4194 	u32 gfpreg;
4195 
4196 	nvm->ops.acquire(hw);
4197 
4198 	gfpreg = er32flash(ICH_FLASH_GFPREG);
4199 
4200 	/* Write-protect GbE Sector of NVM */
4201 	pr0.regval = er32flash(ICH_FLASH_PR0);
4202 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4203 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4204 	pr0.range.wpe = true;
4205 	ew32flash(ICH_FLASH_PR0, pr0.regval);
4206 
4207 	/* Lock down a subset of GbE Flash Control Registers, e.g.
4208 	 * PR0 to prevent the write-protection from being lifted.
4209 	 * Once FLOCKDN is set, the registers protected by it cannot
4210 	 * be written until FLOCKDN is cleared by a hardware reset.
4211 	 */
4212 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4213 	hsfsts.hsf_status.flockdn = true;
4214 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4215 
4216 	nvm->ops.release(hw);
4217 }
4218 
4219 /**
4220  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4221  *  @hw: pointer to the HW structure
4222  *  @offset: The offset (in bytes) of the byte/word to read.
4223  *  @size: Size of data to read, 1=byte 2=word
4224  *  @data: The byte(s) to write to the NVM.
4225  *
4226  *  Writes one/two bytes to the NVM using the flash access registers.
4227  **/
4228 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4229 					  u8 size, u16 data)
4230 {
4231 	union ich8_hws_flash_status hsfsts;
4232 	union ich8_hws_flash_ctrl hsflctl;
4233 	u32 flash_linear_addr;
4234 	u32 flash_data = 0;
4235 	s32 ret_val;
4236 	u8 count = 0;
4237 
4238 	if (hw->mac.type >= e1000_pch_spt) {
4239 		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4240 			return -E1000_ERR_NVM;
4241 	} else {
4242 		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4243 			return -E1000_ERR_NVM;
4244 	}
4245 
4246 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4247 			     hw->nvm.flash_base_addr);
4248 
4249 	do {
4250 		udelay(1);
4251 		/* Steps */
4252 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4253 		if (ret_val)
4254 			break;
4255 		/* In SPT, This register is in Lan memory space, not
4256 		 * flash.  Therefore, only 32 bit access is supported
4257 		 */
4258 		if (hw->mac.type >= e1000_pch_spt)
4259 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4260 		else
4261 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4262 
4263 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4264 		hsflctl.hsf_ctrl.fldbcount = size - 1;
4265 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4266 		/* In SPT, This register is in Lan memory space,
4267 		 * not flash.  Therefore, only 32 bit access is
4268 		 * supported
4269 		 */
4270 		if (hw->mac.type >= e1000_pch_spt)
4271 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4272 		else
4273 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4274 
4275 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4276 
4277 		if (size == 1)
4278 			flash_data = (u32)data & 0x00FF;
4279 		else
4280 			flash_data = (u32)data;
4281 
4282 		ew32flash(ICH_FLASH_FDATA0, flash_data);
4283 
4284 		/* check if FCERR is set to 1 , if set to 1, clear it
4285 		 * and try the whole sequence a few more times else done
4286 		 */
4287 		ret_val =
4288 		    e1000_flash_cycle_ich8lan(hw,
4289 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4290 		if (!ret_val)
4291 			break;
4292 
4293 		/* If we're here, then things are most likely
4294 		 * completely hosed, but if the error condition
4295 		 * is detected, it won't hurt to give it another
4296 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4297 		 */
4298 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4299 		if (hsfsts.hsf_status.flcerr)
4300 			/* Repeat for some time before giving up. */
4301 			continue;
4302 		if (!hsfsts.hsf_status.flcdone) {
4303 			e_dbg("Timeout error - flash cycle did not complete.\n");
4304 			break;
4305 		}
4306 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4307 
4308 	return ret_val;
4309 }
4310 
4311 /**
4312 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4313 *  @hw: pointer to the HW structure
4314 *  @offset: The offset (in bytes) of the dwords to read.
4315 *  @data: The 4 bytes to write to the NVM.
4316 *
4317 *  Writes one/two/four bytes to the NVM using the flash access registers.
4318 **/
4319 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4320 					    u32 data)
4321 {
4322 	union ich8_hws_flash_status hsfsts;
4323 	union ich8_hws_flash_ctrl hsflctl;
4324 	u32 flash_linear_addr;
4325 	s32 ret_val;
4326 	u8 count = 0;
4327 
4328 	if (hw->mac.type >= e1000_pch_spt) {
4329 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4330 			return -E1000_ERR_NVM;
4331 	}
4332 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4333 			     hw->nvm.flash_base_addr);
4334 	do {
4335 		udelay(1);
4336 		/* Steps */
4337 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4338 		if (ret_val)
4339 			break;
4340 
4341 		/* In SPT, This register is in Lan memory space, not
4342 		 * flash.  Therefore, only 32 bit access is supported
4343 		 */
4344 		if (hw->mac.type >= e1000_pch_spt)
4345 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4346 			    >> 16;
4347 		else
4348 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4349 
4350 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4351 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4352 
4353 		/* In SPT, This register is in Lan memory space,
4354 		 * not flash.  Therefore, only 32 bit access is
4355 		 * supported
4356 		 */
4357 		if (hw->mac.type >= e1000_pch_spt)
4358 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4359 		else
4360 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4361 
4362 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4363 
4364 		ew32flash(ICH_FLASH_FDATA0, data);
4365 
4366 		/* check if FCERR is set to 1 , if set to 1, clear it
4367 		 * and try the whole sequence a few more times else done
4368 		 */
4369 		ret_val =
4370 		   e1000_flash_cycle_ich8lan(hw,
4371 					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4372 
4373 		if (!ret_val)
4374 			break;
4375 
4376 		/* If we're here, then things are most likely
4377 		 * completely hosed, but if the error condition
4378 		 * is detected, it won't hurt to give it another
4379 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4380 		 */
4381 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4382 
4383 		if (hsfsts.hsf_status.flcerr)
4384 			/* Repeat for some time before giving up. */
4385 			continue;
4386 		if (!hsfsts.hsf_status.flcdone) {
4387 			e_dbg("Timeout error - flash cycle did not complete.\n");
4388 			break;
4389 		}
4390 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4391 
4392 	return ret_val;
4393 }
4394 
4395 /**
4396  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4397  *  @hw: pointer to the HW structure
4398  *  @offset: The index of the byte to read.
4399  *  @data: The byte to write to the NVM.
4400  *
4401  *  Writes a single byte to the NVM using the flash access registers.
4402  **/
4403 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4404 					  u8 data)
4405 {
4406 	u16 word = (u16)data;
4407 
4408 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4409 }
4410 
4411 /**
4412 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4413 *  @hw: pointer to the HW structure
4414 *  @offset: The offset of the word to write.
4415 *  @dword: The dword to write to the NVM.
4416 *
4417 *  Writes a single dword to the NVM using the flash access registers.
4418 *  Goes through a retry algorithm before giving up.
4419 **/
4420 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4421 						 u32 offset, u32 dword)
4422 {
4423 	s32 ret_val;
4424 	u16 program_retries;
4425 
4426 	/* Must convert word offset into bytes. */
4427 	offset <<= 1;
4428 	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4429 
4430 	if (!ret_val)
4431 		return ret_val;
4432 	for (program_retries = 0; program_retries < 100; program_retries++) {
4433 		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4434 		usleep_range(100, 200);
4435 		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4436 		if (!ret_val)
4437 			break;
4438 	}
4439 	if (program_retries == 100)
4440 		return -E1000_ERR_NVM;
4441 
4442 	return 0;
4443 }
4444 
4445 /**
4446  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4447  *  @hw: pointer to the HW structure
4448  *  @offset: The offset of the byte to write.
4449  *  @byte: The byte to write to the NVM.
4450  *
4451  *  Writes a single byte to the NVM using the flash access registers.
4452  *  Goes through a retry algorithm before giving up.
4453  **/
4454 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4455 						u32 offset, u8 byte)
4456 {
4457 	s32 ret_val;
4458 	u16 program_retries;
4459 
4460 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4461 	if (!ret_val)
4462 		return ret_val;
4463 
4464 	for (program_retries = 0; program_retries < 100; program_retries++) {
4465 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4466 		usleep_range(100, 200);
4467 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4468 		if (!ret_val)
4469 			break;
4470 	}
4471 	if (program_retries == 100)
4472 		return -E1000_ERR_NVM;
4473 
4474 	return 0;
4475 }
4476 
4477 /**
4478  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4479  *  @hw: pointer to the HW structure
4480  *  @bank: 0 for first bank, 1 for second bank, etc.
4481  *
4482  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4483  *  bank N is 4096 * N + flash_reg_addr.
4484  **/
4485 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4486 {
4487 	struct e1000_nvm_info *nvm = &hw->nvm;
4488 	union ich8_hws_flash_status hsfsts;
4489 	union ich8_hws_flash_ctrl hsflctl;
4490 	u32 flash_linear_addr;
4491 	/* bank size is in 16bit words - adjust to bytes */
4492 	u32 flash_bank_size = nvm->flash_bank_size * 2;
4493 	s32 ret_val;
4494 	s32 count = 0;
4495 	s32 j, iteration, sector_size;
4496 
4497 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4498 
4499 	/* Determine HW Sector size: Read BERASE bits of hw flash status
4500 	 * register
4501 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4502 	 *     consecutive sectors.  The start index for the nth Hw sector
4503 	 *     can be calculated as = bank * 4096 + n * 256
4504 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4505 	 *     The start index for the nth Hw sector can be calculated
4506 	 *     as = bank * 4096
4507 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4508 	 *     (ich9 only, otherwise error condition)
4509 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4510 	 */
4511 	switch (hsfsts.hsf_status.berasesz) {
4512 	case 0:
4513 		/* Hw sector size 256 */
4514 		sector_size = ICH_FLASH_SEG_SIZE_256;
4515 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4516 		break;
4517 	case 1:
4518 		sector_size = ICH_FLASH_SEG_SIZE_4K;
4519 		iteration = 1;
4520 		break;
4521 	case 2:
4522 		sector_size = ICH_FLASH_SEG_SIZE_8K;
4523 		iteration = 1;
4524 		break;
4525 	case 3:
4526 		sector_size = ICH_FLASH_SEG_SIZE_64K;
4527 		iteration = 1;
4528 		break;
4529 	default:
4530 		return -E1000_ERR_NVM;
4531 	}
4532 
4533 	/* Start with the base address, then add the sector offset. */
4534 	flash_linear_addr = hw->nvm.flash_base_addr;
4535 	flash_linear_addr += (bank) ? flash_bank_size : 0;
4536 
4537 	for (j = 0; j < iteration; j++) {
4538 		do {
4539 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4540 
4541 			/* Steps */
4542 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4543 			if (ret_val)
4544 				return ret_val;
4545 
4546 			/* Write a value 11 (block Erase) in Flash
4547 			 * Cycle field in hw flash control
4548 			 */
4549 			if (hw->mac.type >= e1000_pch_spt)
4550 				hsflctl.regval =
4551 				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4552 			else
4553 				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4554 
4555 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4556 			if (hw->mac.type >= e1000_pch_spt)
4557 				ew32flash(ICH_FLASH_HSFSTS,
4558 					  hsflctl.regval << 16);
4559 			else
4560 				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4561 
4562 			/* Write the last 24 bits of an index within the
4563 			 * block into Flash Linear address field in Flash
4564 			 * Address.
4565 			 */
4566 			flash_linear_addr += (j * sector_size);
4567 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4568 
4569 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4570 			if (!ret_val)
4571 				break;
4572 
4573 			/* Check if FCERR is set to 1.  If 1,
4574 			 * clear it and try the whole sequence
4575 			 * a few more times else Done
4576 			 */
4577 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4578 			if (hsfsts.hsf_status.flcerr)
4579 				/* repeat for some time before giving up */
4580 				continue;
4581 			else if (!hsfsts.hsf_status.flcdone)
4582 				return ret_val;
4583 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4584 	}
4585 
4586 	return 0;
4587 }
4588 
4589 /**
4590  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4591  *  @hw: pointer to the HW structure
4592  *  @data: Pointer to the LED settings
4593  *
4594  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4595  *  settings is all 0's or F's, set the LED default to a valid LED default
4596  *  setting.
4597  **/
4598 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4599 {
4600 	s32 ret_val;
4601 
4602 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4603 	if (ret_val) {
4604 		e_dbg("NVM Read Error\n");
4605 		return ret_val;
4606 	}
4607 
4608 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4609 		*data = ID_LED_DEFAULT_ICH8LAN;
4610 
4611 	return 0;
4612 }
4613 
4614 /**
4615  *  e1000_id_led_init_pchlan - store LED configurations
4616  *  @hw: pointer to the HW structure
4617  *
4618  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4619  *  the PHY LED configuration register.
4620  *
4621  *  PCH also does not have an "always on" or "always off" mode which
4622  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4623  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4624  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4625  *  link based on logic in e1000_led_[on|off]_pchlan().
4626  **/
4627 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4628 {
4629 	struct e1000_mac_info *mac = &hw->mac;
4630 	s32 ret_val;
4631 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4632 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4633 	u16 data, i, temp, shift;
4634 
4635 	/* Get default ID LED modes */
4636 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4637 	if (ret_val)
4638 		return ret_val;
4639 
4640 	mac->ledctl_default = er32(LEDCTL);
4641 	mac->ledctl_mode1 = mac->ledctl_default;
4642 	mac->ledctl_mode2 = mac->ledctl_default;
4643 
4644 	for (i = 0; i < 4; i++) {
4645 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4646 		shift = (i * 5);
4647 		switch (temp) {
4648 		case ID_LED_ON1_DEF2:
4649 		case ID_LED_ON1_ON2:
4650 		case ID_LED_ON1_OFF2:
4651 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4652 			mac->ledctl_mode1 |= (ledctl_on << shift);
4653 			break;
4654 		case ID_LED_OFF1_DEF2:
4655 		case ID_LED_OFF1_ON2:
4656 		case ID_LED_OFF1_OFF2:
4657 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4658 			mac->ledctl_mode1 |= (ledctl_off << shift);
4659 			break;
4660 		default:
4661 			/* Do nothing */
4662 			break;
4663 		}
4664 		switch (temp) {
4665 		case ID_LED_DEF1_ON2:
4666 		case ID_LED_ON1_ON2:
4667 		case ID_LED_OFF1_ON2:
4668 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4669 			mac->ledctl_mode2 |= (ledctl_on << shift);
4670 			break;
4671 		case ID_LED_DEF1_OFF2:
4672 		case ID_LED_ON1_OFF2:
4673 		case ID_LED_OFF1_OFF2:
4674 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4675 			mac->ledctl_mode2 |= (ledctl_off << shift);
4676 			break;
4677 		default:
4678 			/* Do nothing */
4679 			break;
4680 		}
4681 	}
4682 
4683 	return 0;
4684 }
4685 
4686 /**
4687  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4688  *  @hw: pointer to the HW structure
4689  *
4690  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4691  *  register, so the bus width is hard coded.
4692  **/
4693 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4694 {
4695 	struct e1000_bus_info *bus = &hw->bus;
4696 	s32 ret_val;
4697 
4698 	ret_val = e1000e_get_bus_info_pcie(hw);
4699 
4700 	/* ICH devices are "PCI Express"-ish.  They have
4701 	 * a configuration space, but do not contain
4702 	 * PCI Express Capability registers, so bus width
4703 	 * must be hardcoded.
4704 	 */
4705 	if (bus->width == e1000_bus_width_unknown)
4706 		bus->width = e1000_bus_width_pcie_x1;
4707 
4708 	return ret_val;
4709 }
4710 
4711 /**
4712  *  e1000_reset_hw_ich8lan - Reset the hardware
4713  *  @hw: pointer to the HW structure
4714  *
4715  *  Does a full reset of the hardware which includes a reset of the PHY and
4716  *  MAC.
4717  **/
4718 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4719 {
4720 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4721 	u16 kum_cfg;
4722 	u32 ctrl, reg;
4723 	s32 ret_val;
4724 
4725 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4726 	 * on the last TLP read/write transaction when MAC is reset.
4727 	 */
4728 	ret_val = e1000e_disable_pcie_master(hw);
4729 	if (ret_val)
4730 		e_dbg("PCI-E Master disable polling has failed.\n");
4731 
4732 	e_dbg("Masking off all interrupts\n");
4733 	ew32(IMC, 0xffffffff);
4734 
4735 	/* Disable the Transmit and Receive units.  Then delay to allow
4736 	 * any pending transactions to complete before we hit the MAC
4737 	 * with the global reset.
4738 	 */
4739 	ew32(RCTL, 0);
4740 	ew32(TCTL, E1000_TCTL_PSP);
4741 	e1e_flush();
4742 
4743 	usleep_range(10000, 11000);
4744 
4745 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4746 	if (hw->mac.type == e1000_ich8lan) {
4747 		/* Set Tx and Rx buffer allocation to 8k apiece. */
4748 		ew32(PBA, E1000_PBA_8K);
4749 		/* Set Packet Buffer Size to 16k. */
4750 		ew32(PBS, E1000_PBS_16K);
4751 	}
4752 
4753 	if (hw->mac.type == e1000_pchlan) {
4754 		/* Save the NVM K1 bit setting */
4755 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4756 		if (ret_val)
4757 			return ret_val;
4758 
4759 		if (kum_cfg & E1000_NVM_K1_ENABLE)
4760 			dev_spec->nvm_k1_enabled = true;
4761 		else
4762 			dev_spec->nvm_k1_enabled = false;
4763 	}
4764 
4765 	ctrl = er32(CTRL);
4766 
4767 	if (!hw->phy.ops.check_reset_block(hw)) {
4768 		/* Full-chip reset requires MAC and PHY reset at the same
4769 		 * time to make sure the interface between MAC and the
4770 		 * external PHY is reset.
4771 		 */
4772 		ctrl |= E1000_CTRL_PHY_RST;
4773 
4774 		/* Gate automatic PHY configuration by hardware on
4775 		 * non-managed 82579
4776 		 */
4777 		if ((hw->mac.type == e1000_pch2lan) &&
4778 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4779 			e1000_gate_hw_phy_config_ich8lan(hw, true);
4780 	}
4781 	ret_val = e1000_acquire_swflag_ich8lan(hw);
4782 	e_dbg("Issuing a global reset to ich8lan\n");
4783 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4784 	/* cannot issue a flush here because it hangs the hardware */
4785 	msleep(20);
4786 
4787 	/* Set Phy Config Counter to 50msec */
4788 	if (hw->mac.type == e1000_pch2lan) {
4789 		reg = er32(FEXTNVM3);
4790 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4791 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4792 		ew32(FEXTNVM3, reg);
4793 	}
4794 
4795 	if (!ret_val)
4796 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4797 
4798 	if (ctrl & E1000_CTRL_PHY_RST) {
4799 		ret_val = hw->phy.ops.get_cfg_done(hw);
4800 		if (ret_val)
4801 			return ret_val;
4802 
4803 		ret_val = e1000_post_phy_reset_ich8lan(hw);
4804 		if (ret_val)
4805 			return ret_val;
4806 	}
4807 
4808 	/* For PCH, this write will make sure that any noise
4809 	 * will be detected as a CRC error and be dropped rather than show up
4810 	 * as a bad packet to the DMA engine.
4811 	 */
4812 	if (hw->mac.type == e1000_pchlan)
4813 		ew32(CRC_OFFSET, 0x65656565);
4814 
4815 	ew32(IMC, 0xffffffff);
4816 	er32(ICR);
4817 
4818 	reg = er32(KABGTXD);
4819 	reg |= E1000_KABGTXD_BGSQLBIAS;
4820 	ew32(KABGTXD, reg);
4821 
4822 	return 0;
4823 }
4824 
4825 /**
4826  *  e1000_init_hw_ich8lan - Initialize the hardware
4827  *  @hw: pointer to the HW structure
4828  *
4829  *  Prepares the hardware for transmit and receive by doing the following:
4830  *   - initialize hardware bits
4831  *   - initialize LED identification
4832  *   - setup receive address registers
4833  *   - setup flow control
4834  *   - setup transmit descriptors
4835  *   - clear statistics
4836  **/
4837 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4838 {
4839 	struct e1000_mac_info *mac = &hw->mac;
4840 	u32 ctrl_ext, txdctl, snoop, fflt_dbg;
4841 	s32 ret_val;
4842 	u16 i;
4843 
4844 	e1000_initialize_hw_bits_ich8lan(hw);
4845 
4846 	/* Initialize identification LED */
4847 	ret_val = mac->ops.id_led_init(hw);
4848 	/* An error is not fatal and we should not stop init due to this */
4849 	if (ret_val)
4850 		e_dbg("Error initializing identification LED\n");
4851 
4852 	/* Setup the receive address. */
4853 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4854 
4855 	/* Zero out the Multicast HASH table */
4856 	e_dbg("Zeroing the MTA\n");
4857 	for (i = 0; i < mac->mta_reg_count; i++)
4858 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4859 
4860 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4861 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4862 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4863 	 */
4864 	if (hw->phy.type == e1000_phy_82578) {
4865 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4866 		i &= ~BM_WUC_HOST_WU_BIT;
4867 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4868 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4869 		if (ret_val)
4870 			return ret_val;
4871 	}
4872 
4873 	/* Setup link and flow control */
4874 	ret_val = mac->ops.setup_link(hw);
4875 
4876 	/* Set the transmit descriptor write-back policy for both queues */
4877 	txdctl = er32(TXDCTL(0));
4878 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4879 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4880 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4881 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4882 	ew32(TXDCTL(0), txdctl);
4883 	txdctl = er32(TXDCTL(1));
4884 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4885 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4886 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4887 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4888 	ew32(TXDCTL(1), txdctl);
4889 
4890 	/* ICH8 has opposite polarity of no_snoop bits.
4891 	 * By default, we should use snoop behavior.
4892 	 */
4893 	if (mac->type == e1000_ich8lan)
4894 		snoop = PCIE_ICH8_SNOOP_ALL;
4895 	else
4896 		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4897 	e1000e_set_pcie_no_snoop(hw, snoop);
4898 
4899 	/* Enable workaround for packet loss issue on TGP PCH
4900 	 * Do not gate DMA clock from the modPHY block
4901 	 */
4902 	if (mac->type >= e1000_pch_tgp) {
4903 		fflt_dbg = er32(FFLT_DBG);
4904 		fflt_dbg |= E1000_FFLT_DBG_DONT_GATE_WAKE_DMA_CLK;
4905 		ew32(FFLT_DBG, fflt_dbg);
4906 	}
4907 
4908 	ctrl_ext = er32(CTRL_EXT);
4909 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4910 	ew32(CTRL_EXT, ctrl_ext);
4911 
4912 	/* Clear all of the statistics registers (clear on read).  It is
4913 	 * important that we do this after we have tried to establish link
4914 	 * because the symbol error count will increment wildly if there
4915 	 * is no link.
4916 	 */
4917 	e1000_clear_hw_cntrs_ich8lan(hw);
4918 
4919 	return ret_val;
4920 }
4921 
4922 /**
4923  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4924  *  @hw: pointer to the HW structure
4925  *
4926  *  Sets/Clears required hardware bits necessary for correctly setting up the
4927  *  hardware for transmit and receive.
4928  **/
4929 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4930 {
4931 	u32 reg;
4932 
4933 	/* Extended Device Control */
4934 	reg = er32(CTRL_EXT);
4935 	reg |= BIT(22);
4936 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4937 	if (hw->mac.type >= e1000_pchlan)
4938 		reg |= E1000_CTRL_EXT_PHYPDEN;
4939 	ew32(CTRL_EXT, reg);
4940 
4941 	/* Transmit Descriptor Control 0 */
4942 	reg = er32(TXDCTL(0));
4943 	reg |= BIT(22);
4944 	ew32(TXDCTL(0), reg);
4945 
4946 	/* Transmit Descriptor Control 1 */
4947 	reg = er32(TXDCTL(1));
4948 	reg |= BIT(22);
4949 	ew32(TXDCTL(1), reg);
4950 
4951 	/* Transmit Arbitration Control 0 */
4952 	reg = er32(TARC(0));
4953 	if (hw->mac.type == e1000_ich8lan)
4954 		reg |= BIT(28) | BIT(29);
4955 	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4956 	ew32(TARC(0), reg);
4957 
4958 	/* Transmit Arbitration Control 1 */
4959 	reg = er32(TARC(1));
4960 	if (er32(TCTL) & E1000_TCTL_MULR)
4961 		reg &= ~BIT(28);
4962 	else
4963 		reg |= BIT(28);
4964 	reg |= BIT(24) | BIT(26) | BIT(30);
4965 	ew32(TARC(1), reg);
4966 
4967 	/* Device Status */
4968 	if (hw->mac.type == e1000_ich8lan) {
4969 		reg = er32(STATUS);
4970 		reg &= ~BIT(31);
4971 		ew32(STATUS, reg);
4972 	}
4973 
4974 	/* work-around descriptor data corruption issue during nfs v2 udp
4975 	 * traffic, just disable the nfs filtering capability
4976 	 */
4977 	reg = er32(RFCTL);
4978 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4979 
4980 	/* Disable IPv6 extension header parsing because some malformed
4981 	 * IPv6 headers can hang the Rx.
4982 	 */
4983 	if (hw->mac.type == e1000_ich8lan)
4984 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4985 	ew32(RFCTL, reg);
4986 
4987 	/* Enable ECC on Lynxpoint */
4988 	if (hw->mac.type >= e1000_pch_lpt) {
4989 		reg = er32(PBECCSTS);
4990 		reg |= E1000_PBECCSTS_ECC_ENABLE;
4991 		ew32(PBECCSTS, reg);
4992 
4993 		reg = er32(CTRL);
4994 		reg |= E1000_CTRL_MEHE;
4995 		ew32(CTRL, reg);
4996 	}
4997 }
4998 
4999 /**
5000  *  e1000_setup_link_ich8lan - Setup flow control and link settings
5001  *  @hw: pointer to the HW structure
5002  *
5003  *  Determines which flow control settings to use, then configures flow
5004  *  control.  Calls the appropriate media-specific link configuration
5005  *  function.  Assuming the adapter has a valid link partner, a valid link
5006  *  should be established.  Assumes the hardware has previously been reset
5007  *  and the transmitter and receiver are not enabled.
5008  **/
5009 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
5010 {
5011 	s32 ret_val;
5012 
5013 	if (hw->phy.ops.check_reset_block(hw))
5014 		return 0;
5015 
5016 	/* ICH parts do not have a word in the NVM to determine
5017 	 * the default flow control setting, so we explicitly
5018 	 * set it to full.
5019 	 */
5020 	if (hw->fc.requested_mode == e1000_fc_default) {
5021 		/* Workaround h/w hang when Tx flow control enabled */
5022 		if (hw->mac.type == e1000_pchlan)
5023 			hw->fc.requested_mode = e1000_fc_rx_pause;
5024 		else
5025 			hw->fc.requested_mode = e1000_fc_full;
5026 	}
5027 
5028 	/* Save off the requested flow control mode for use later.  Depending
5029 	 * on the link partner's capabilities, we may or may not use this mode.
5030 	 */
5031 	hw->fc.current_mode = hw->fc.requested_mode;
5032 
5033 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
5034 
5035 	/* Continue to configure the copper link. */
5036 	ret_val = hw->mac.ops.setup_physical_interface(hw);
5037 	if (ret_val)
5038 		return ret_val;
5039 
5040 	ew32(FCTTV, hw->fc.pause_time);
5041 	if ((hw->phy.type == e1000_phy_82578) ||
5042 	    (hw->phy.type == e1000_phy_82579) ||
5043 	    (hw->phy.type == e1000_phy_i217) ||
5044 	    (hw->phy.type == e1000_phy_82577)) {
5045 		ew32(FCRTV_PCH, hw->fc.refresh_time);
5046 
5047 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
5048 				   hw->fc.pause_time);
5049 		if (ret_val)
5050 			return ret_val;
5051 	}
5052 
5053 	return e1000e_set_fc_watermarks(hw);
5054 }
5055 
5056 /**
5057  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5058  *  @hw: pointer to the HW structure
5059  *
5060  *  Configures the kumeran interface to the PHY to wait the appropriate time
5061  *  when polling the PHY, then call the generic setup_copper_link to finish
5062  *  configuring the copper link.
5063  **/
5064 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5065 {
5066 	u32 ctrl;
5067 	s32 ret_val;
5068 	u16 reg_data;
5069 
5070 	ctrl = er32(CTRL);
5071 	ctrl |= E1000_CTRL_SLU;
5072 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5073 	ew32(CTRL, ctrl);
5074 
5075 	/* Set the mac to wait the maximum time between each iteration
5076 	 * and increase the max iterations when polling the phy;
5077 	 * this fixes erroneous timeouts at 10Mbps.
5078 	 */
5079 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5080 	if (ret_val)
5081 		return ret_val;
5082 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5083 				       &reg_data);
5084 	if (ret_val)
5085 		return ret_val;
5086 	reg_data |= 0x3F;
5087 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5088 					reg_data);
5089 	if (ret_val)
5090 		return ret_val;
5091 
5092 	switch (hw->phy.type) {
5093 	case e1000_phy_igp_3:
5094 		ret_val = e1000e_copper_link_setup_igp(hw);
5095 		if (ret_val)
5096 			return ret_val;
5097 		break;
5098 	case e1000_phy_bm:
5099 	case e1000_phy_82578:
5100 		ret_val = e1000e_copper_link_setup_m88(hw);
5101 		if (ret_val)
5102 			return ret_val;
5103 		break;
5104 	case e1000_phy_82577:
5105 	case e1000_phy_82579:
5106 		ret_val = e1000_copper_link_setup_82577(hw);
5107 		if (ret_val)
5108 			return ret_val;
5109 		break;
5110 	case e1000_phy_ife:
5111 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5112 		if (ret_val)
5113 			return ret_val;
5114 
5115 		reg_data &= ~IFE_PMC_AUTO_MDIX;
5116 
5117 		switch (hw->phy.mdix) {
5118 		case 1:
5119 			reg_data &= ~IFE_PMC_FORCE_MDIX;
5120 			break;
5121 		case 2:
5122 			reg_data |= IFE_PMC_FORCE_MDIX;
5123 			break;
5124 		case 0:
5125 		default:
5126 			reg_data |= IFE_PMC_AUTO_MDIX;
5127 			break;
5128 		}
5129 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5130 		if (ret_val)
5131 			return ret_val;
5132 		break;
5133 	default:
5134 		break;
5135 	}
5136 
5137 	return e1000e_setup_copper_link(hw);
5138 }
5139 
5140 /**
5141  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5142  *  @hw: pointer to the HW structure
5143  *
5144  *  Calls the PHY specific link setup function and then calls the
5145  *  generic setup_copper_link to finish configuring the link for
5146  *  Lynxpoint PCH devices
5147  **/
5148 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5149 {
5150 	u32 ctrl;
5151 	s32 ret_val;
5152 
5153 	ctrl = er32(CTRL);
5154 	ctrl |= E1000_CTRL_SLU;
5155 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5156 	ew32(CTRL, ctrl);
5157 
5158 	ret_val = e1000_copper_link_setup_82577(hw);
5159 	if (ret_val)
5160 		return ret_val;
5161 
5162 	return e1000e_setup_copper_link(hw);
5163 }
5164 
5165 /**
5166  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5167  *  @hw: pointer to the HW structure
5168  *  @speed: pointer to store current link speed
5169  *  @duplex: pointer to store the current link duplex
5170  *
5171  *  Calls the generic get_speed_and_duplex to retrieve the current link
5172  *  information and then calls the Kumeran lock loss workaround for links at
5173  *  gigabit speeds.
5174  **/
5175 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5176 					  u16 *duplex)
5177 {
5178 	s32 ret_val;
5179 
5180 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5181 	if (ret_val)
5182 		return ret_val;
5183 
5184 	if ((hw->mac.type == e1000_ich8lan) &&
5185 	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5186 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5187 	}
5188 
5189 	return ret_val;
5190 }
5191 
5192 /**
5193  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5194  *  @hw: pointer to the HW structure
5195  *
5196  *  Work-around for 82566 Kumeran PCS lock loss:
5197  *  On link status change (i.e. PCI reset, speed change) and link is up and
5198  *  speed is gigabit-
5199  *    0) if workaround is optionally disabled do nothing
5200  *    1) wait 1ms for Kumeran link to come up
5201  *    2) check Kumeran Diagnostic register PCS lock loss bit
5202  *    3) if not set the link is locked (all is good), otherwise...
5203  *    4) reset the PHY
5204  *    5) repeat up to 10 times
5205  *  Note: this is only called for IGP3 copper when speed is 1gb.
5206  **/
5207 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5208 {
5209 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5210 	u32 phy_ctrl;
5211 	s32 ret_val;
5212 	u16 i, data;
5213 	bool link;
5214 
5215 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5216 		return 0;
5217 
5218 	/* Make sure link is up before proceeding.  If not just return.
5219 	 * Attempting this while link is negotiating fouled up link
5220 	 * stability
5221 	 */
5222 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5223 	if (!link)
5224 		return 0;
5225 
5226 	for (i = 0; i < 10; i++) {
5227 		/* read once to clear */
5228 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5229 		if (ret_val)
5230 			return ret_val;
5231 		/* and again to get new status */
5232 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5233 		if (ret_val)
5234 			return ret_val;
5235 
5236 		/* check for PCS lock */
5237 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5238 			return 0;
5239 
5240 		/* Issue PHY reset */
5241 		e1000_phy_hw_reset(hw);
5242 		mdelay(5);
5243 	}
5244 	/* Disable GigE link negotiation */
5245 	phy_ctrl = er32(PHY_CTRL);
5246 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5247 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5248 	ew32(PHY_CTRL, phy_ctrl);
5249 
5250 	/* Call gig speed drop workaround on Gig disable before accessing
5251 	 * any PHY registers
5252 	 */
5253 	e1000e_gig_downshift_workaround_ich8lan(hw);
5254 
5255 	/* unable to acquire PCS lock */
5256 	return -E1000_ERR_PHY;
5257 }
5258 
5259 /**
5260  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5261  *  @hw: pointer to the HW structure
5262  *  @state: boolean value used to set the current Kumeran workaround state
5263  *
5264  *  If ICH8, set the current Kumeran workaround state (enabled - true
5265  *  /disabled - false).
5266  **/
5267 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5268 						  bool state)
5269 {
5270 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5271 
5272 	if (hw->mac.type != e1000_ich8lan) {
5273 		e_dbg("Workaround applies to ICH8 only.\n");
5274 		return;
5275 	}
5276 
5277 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5278 }
5279 
5280 /**
5281  *  e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5282  *  @hw: pointer to the HW structure
5283  *
5284  *  Workaround for 82566 power-down on D3 entry:
5285  *    1) disable gigabit link
5286  *    2) write VR power-down enable
5287  *    3) read it back
5288  *  Continue if successful, else issue LCD reset and repeat
5289  **/
5290 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5291 {
5292 	u32 reg;
5293 	u16 data;
5294 	u8 retry = 0;
5295 
5296 	if (hw->phy.type != e1000_phy_igp_3)
5297 		return;
5298 
5299 	/* Try the workaround twice (if needed) */
5300 	do {
5301 		/* Disable link */
5302 		reg = er32(PHY_CTRL);
5303 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5304 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5305 		ew32(PHY_CTRL, reg);
5306 
5307 		/* Call gig speed drop workaround on Gig disable before
5308 		 * accessing any PHY registers
5309 		 */
5310 		if (hw->mac.type == e1000_ich8lan)
5311 			e1000e_gig_downshift_workaround_ich8lan(hw);
5312 
5313 		/* Write VR power-down enable */
5314 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5315 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5316 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5317 
5318 		/* Read it back and test */
5319 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5320 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5321 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5322 			break;
5323 
5324 		/* Issue PHY reset and repeat at most one more time */
5325 		reg = er32(CTRL);
5326 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5327 		retry++;
5328 	} while (retry);
5329 }
5330 
5331 /**
5332  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5333  *  @hw: pointer to the HW structure
5334  *
5335  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5336  *  LPLU, Gig disable, MDIC PHY reset):
5337  *    1) Set Kumeran Near-end loopback
5338  *    2) Clear Kumeran Near-end loopback
5339  *  Should only be called for ICH8[m] devices with any 1G Phy.
5340  **/
5341 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5342 {
5343 	s32 ret_val;
5344 	u16 reg_data;
5345 
5346 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5347 		return;
5348 
5349 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5350 				       &reg_data);
5351 	if (ret_val)
5352 		return;
5353 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5354 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5355 					reg_data);
5356 	if (ret_val)
5357 		return;
5358 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5359 	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5360 }
5361 
5362 /**
5363  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5364  *  @hw: pointer to the HW structure
5365  *
5366  *  During S0 to Sx transition, it is possible the link remains at gig
5367  *  instead of negotiating to a lower speed.  Before going to Sx, set
5368  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5369  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5370  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5371  *  needs to be written.
5372  *  Parts that support (and are linked to a partner which support) EEE in
5373  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5374  *  than 10Mbps w/o EEE.
5375  **/
5376 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5377 {
5378 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5379 	u32 phy_ctrl;
5380 	s32 ret_val;
5381 
5382 	phy_ctrl = er32(PHY_CTRL);
5383 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5384 
5385 	if (hw->phy.type == e1000_phy_i217) {
5386 		u16 phy_reg, device_id = hw->adapter->pdev->device;
5387 
5388 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5389 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5390 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5391 		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5392 		    (hw->mac.type >= e1000_pch_spt)) {
5393 			u32 fextnvm6 = er32(FEXTNVM6);
5394 
5395 			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5396 		}
5397 
5398 		ret_val = hw->phy.ops.acquire(hw);
5399 		if (ret_val)
5400 			goto out;
5401 
5402 		if (!dev_spec->eee_disable) {
5403 			u16 eee_advert;
5404 
5405 			ret_val =
5406 			    e1000_read_emi_reg_locked(hw,
5407 						      I217_EEE_ADVERTISEMENT,
5408 						      &eee_advert);
5409 			if (ret_val)
5410 				goto release;
5411 
5412 			/* Disable LPLU if both link partners support 100BaseT
5413 			 * EEE and 100Full is advertised on both ends of the
5414 			 * link, and enable Auto Enable LPI since there will
5415 			 * be no driver to enable LPI while in Sx.
5416 			 */
5417 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5418 			    (dev_spec->eee_lp_ability &
5419 			     I82579_EEE_100_SUPPORTED) &&
5420 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5421 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5422 					      E1000_PHY_CTRL_NOND0A_LPLU);
5423 
5424 				/* Set Auto Enable LPI after link up */
5425 				e1e_rphy_locked(hw,
5426 						I217_LPI_GPIO_CTRL, &phy_reg);
5427 				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5428 				e1e_wphy_locked(hw,
5429 						I217_LPI_GPIO_CTRL, phy_reg);
5430 			}
5431 		}
5432 
5433 		/* For i217 Intel Rapid Start Technology support,
5434 		 * when the system is going into Sx and no manageability engine
5435 		 * is present, the driver must configure proxy to reset only on
5436 		 * power good.  LPI (Low Power Idle) state must also reset only
5437 		 * on power good, as well as the MTA (Multicast table array).
5438 		 * The SMBus release must also be disabled on LCD reset.
5439 		 */
5440 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5441 			/* Enable proxy to reset only on power good. */
5442 			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5443 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5444 			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5445 
5446 			/* Set bit enable LPI (EEE) to reset only on
5447 			 * power good.
5448 			 */
5449 			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5450 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5451 			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5452 
5453 			/* Disable the SMB release on LCD reset. */
5454 			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5455 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5456 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5457 		}
5458 
5459 		/* Enable MTA to reset for Intel Rapid Start Technology
5460 		 * Support
5461 		 */
5462 		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5463 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5464 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5465 
5466 release:
5467 		hw->phy.ops.release(hw);
5468 	}
5469 out:
5470 	ew32(PHY_CTRL, phy_ctrl);
5471 
5472 	if (hw->mac.type == e1000_ich8lan)
5473 		e1000e_gig_downshift_workaround_ich8lan(hw);
5474 
5475 	if (hw->mac.type >= e1000_pchlan) {
5476 		e1000_oem_bits_config_ich8lan(hw, false);
5477 
5478 		/* Reset PHY to activate OEM bits on 82577/8 */
5479 		if (hw->mac.type == e1000_pchlan)
5480 			e1000e_phy_hw_reset_generic(hw);
5481 
5482 		ret_val = hw->phy.ops.acquire(hw);
5483 		if (ret_val)
5484 			return;
5485 		e1000_write_smbus_addr(hw);
5486 		hw->phy.ops.release(hw);
5487 	}
5488 }
5489 
5490 /**
5491  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5492  *  @hw: pointer to the HW structure
5493  *
5494  *  During Sx to S0 transitions on non-managed devices or managed devices
5495  *  on which PHY resets are not blocked, if the PHY registers cannot be
5496  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5497  *  the PHY.
5498  *  On i217, setup Intel Rapid Start Technology.
5499  **/
5500 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5501 {
5502 	s32 ret_val;
5503 
5504 	if (hw->mac.type < e1000_pch2lan)
5505 		return;
5506 
5507 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5508 	if (ret_val) {
5509 		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5510 		return;
5511 	}
5512 
5513 	/* For i217 Intel Rapid Start Technology support when the system
5514 	 * is transitioning from Sx and no manageability engine is present
5515 	 * configure SMBus to restore on reset, disable proxy, and enable
5516 	 * the reset on MTA (Multicast table array).
5517 	 */
5518 	if (hw->phy.type == e1000_phy_i217) {
5519 		u16 phy_reg;
5520 
5521 		ret_val = hw->phy.ops.acquire(hw);
5522 		if (ret_val) {
5523 			e_dbg("Failed to setup iRST\n");
5524 			return;
5525 		}
5526 
5527 		/* Clear Auto Enable LPI after link up */
5528 		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5529 		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5530 		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5531 
5532 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5533 			/* Restore clear on SMB if no manageability engine
5534 			 * is present
5535 			 */
5536 			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5537 			if (ret_val)
5538 				goto release;
5539 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5540 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5541 
5542 			/* Disable Proxy */
5543 			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5544 		}
5545 		/* Enable reset on MTA */
5546 		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5547 		if (ret_val)
5548 			goto release;
5549 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5550 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5551 release:
5552 		if (ret_val)
5553 			e_dbg("Error %d in resume workarounds\n", ret_val);
5554 		hw->phy.ops.release(hw);
5555 	}
5556 }
5557 
5558 /**
5559  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5560  *  @hw: pointer to the HW structure
5561  *
5562  *  Return the LED back to the default configuration.
5563  **/
5564 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5565 {
5566 	if (hw->phy.type == e1000_phy_ife)
5567 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5568 
5569 	ew32(LEDCTL, hw->mac.ledctl_default);
5570 	return 0;
5571 }
5572 
5573 /**
5574  *  e1000_led_on_ich8lan - Turn LEDs on
5575  *  @hw: pointer to the HW structure
5576  *
5577  *  Turn on the LEDs.
5578  **/
5579 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5580 {
5581 	if (hw->phy.type == e1000_phy_ife)
5582 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5583 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5584 
5585 	ew32(LEDCTL, hw->mac.ledctl_mode2);
5586 	return 0;
5587 }
5588 
5589 /**
5590  *  e1000_led_off_ich8lan - Turn LEDs off
5591  *  @hw: pointer to the HW structure
5592  *
5593  *  Turn off the LEDs.
5594  **/
5595 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5596 {
5597 	if (hw->phy.type == e1000_phy_ife)
5598 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5599 				(IFE_PSCL_PROBE_MODE |
5600 				 IFE_PSCL_PROBE_LEDS_OFF));
5601 
5602 	ew32(LEDCTL, hw->mac.ledctl_mode1);
5603 	return 0;
5604 }
5605 
5606 /**
5607  *  e1000_setup_led_pchlan - Configures SW controllable LED
5608  *  @hw: pointer to the HW structure
5609  *
5610  *  This prepares the SW controllable LED for use.
5611  **/
5612 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5613 {
5614 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5615 }
5616 
5617 /**
5618  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5619  *  @hw: pointer to the HW structure
5620  *
5621  *  Return the LED back to the default configuration.
5622  **/
5623 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5624 {
5625 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5626 }
5627 
5628 /**
5629  *  e1000_led_on_pchlan - Turn LEDs on
5630  *  @hw: pointer to the HW structure
5631  *
5632  *  Turn on the LEDs.
5633  **/
5634 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5635 {
5636 	u16 data = (u16)hw->mac.ledctl_mode2;
5637 	u32 i, led;
5638 
5639 	/* If no link, then turn LED on by setting the invert bit
5640 	 * for each LED that's mode is "link_up" in ledctl_mode2.
5641 	 */
5642 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5643 		for (i = 0; i < 3; i++) {
5644 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5645 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5646 			    E1000_LEDCTL_MODE_LINK_UP)
5647 				continue;
5648 			if (led & E1000_PHY_LED0_IVRT)
5649 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5650 			else
5651 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5652 		}
5653 	}
5654 
5655 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5656 }
5657 
5658 /**
5659  *  e1000_led_off_pchlan - Turn LEDs off
5660  *  @hw: pointer to the HW structure
5661  *
5662  *  Turn off the LEDs.
5663  **/
5664 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5665 {
5666 	u16 data = (u16)hw->mac.ledctl_mode1;
5667 	u32 i, led;
5668 
5669 	/* If no link, then turn LED off by clearing the invert bit
5670 	 * for each LED that's mode is "link_up" in ledctl_mode1.
5671 	 */
5672 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5673 		for (i = 0; i < 3; i++) {
5674 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5675 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5676 			    E1000_LEDCTL_MODE_LINK_UP)
5677 				continue;
5678 			if (led & E1000_PHY_LED0_IVRT)
5679 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5680 			else
5681 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5682 		}
5683 	}
5684 
5685 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5686 }
5687 
5688 /**
5689  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5690  *  @hw: pointer to the HW structure
5691  *
5692  *  Read appropriate register for the config done bit for completion status
5693  *  and configure the PHY through s/w for EEPROM-less parts.
5694  *
5695  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5696  *  config done bit, so only an error is logged and continues.  If we were
5697  *  to return with error, EEPROM-less silicon would not be able to be reset
5698  *  or change link.
5699  **/
5700 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5701 {
5702 	s32 ret_val = 0;
5703 	u32 bank = 0;
5704 	u32 status;
5705 
5706 	e1000e_get_cfg_done_generic(hw);
5707 
5708 	/* Wait for indication from h/w that it has completed basic config */
5709 	if (hw->mac.type >= e1000_ich10lan) {
5710 		e1000_lan_init_done_ich8lan(hw);
5711 	} else {
5712 		ret_val = e1000e_get_auto_rd_done(hw);
5713 		if (ret_val) {
5714 			/* When auto config read does not complete, do not
5715 			 * return with an error. This can happen in situations
5716 			 * where there is no eeprom and prevents getting link.
5717 			 */
5718 			e_dbg("Auto Read Done did not complete\n");
5719 			ret_val = 0;
5720 		}
5721 	}
5722 
5723 	/* Clear PHY Reset Asserted bit */
5724 	status = er32(STATUS);
5725 	if (status & E1000_STATUS_PHYRA)
5726 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5727 	else
5728 		e_dbg("PHY Reset Asserted not set - needs delay\n");
5729 
5730 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5731 	if (hw->mac.type <= e1000_ich9lan) {
5732 		if (!(er32(EECD) & E1000_EECD_PRES) &&
5733 		    (hw->phy.type == e1000_phy_igp_3)) {
5734 			e1000e_phy_init_script_igp3(hw);
5735 		}
5736 	} else {
5737 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5738 			/* Maybe we should do a basic PHY config */
5739 			e_dbg("EEPROM not present\n");
5740 			ret_val = -E1000_ERR_CONFIG;
5741 		}
5742 	}
5743 
5744 	return ret_val;
5745 }
5746 
5747 /**
5748  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5749  * @hw: pointer to the HW structure
5750  *
5751  * In the case of a PHY power down to save power, or to turn off link during a
5752  * driver unload, or wake on lan is not enabled, remove the link.
5753  **/
5754 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5755 {
5756 	/* If the management interface is not enabled, then power down */
5757 	if (!(hw->mac.ops.check_mng_mode(hw) ||
5758 	      hw->phy.ops.check_reset_block(hw)))
5759 		e1000_power_down_phy_copper(hw);
5760 }
5761 
5762 /**
5763  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5764  *  @hw: pointer to the HW structure
5765  *
5766  *  Clears hardware counters specific to the silicon family and calls
5767  *  clear_hw_cntrs_generic to clear all general purpose counters.
5768  **/
5769 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5770 {
5771 	u16 phy_data;
5772 	s32 ret_val;
5773 
5774 	e1000e_clear_hw_cntrs_base(hw);
5775 
5776 	er32(ALGNERRC);
5777 	er32(RXERRC);
5778 	er32(TNCRS);
5779 	er32(CEXTERR);
5780 	er32(TSCTC);
5781 	er32(TSCTFC);
5782 
5783 	er32(MGTPRC);
5784 	er32(MGTPDC);
5785 	er32(MGTPTC);
5786 
5787 	er32(IAC);
5788 	er32(ICRXOC);
5789 
5790 	/* Clear PHY statistics registers */
5791 	if ((hw->phy.type == e1000_phy_82578) ||
5792 	    (hw->phy.type == e1000_phy_82579) ||
5793 	    (hw->phy.type == e1000_phy_i217) ||
5794 	    (hw->phy.type == e1000_phy_82577)) {
5795 		ret_val = hw->phy.ops.acquire(hw);
5796 		if (ret_val)
5797 			return;
5798 		ret_val = hw->phy.ops.set_page(hw,
5799 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5800 		if (ret_val)
5801 			goto release;
5802 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5803 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5804 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5805 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5806 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5807 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5808 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5809 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5810 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5811 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5812 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5813 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5814 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5815 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5816 release:
5817 		hw->phy.ops.release(hw);
5818 	}
5819 }
5820 
5821 static const struct e1000_mac_operations ich8_mac_ops = {
5822 	/* check_mng_mode dependent on mac type */
5823 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5824 	/* cleanup_led dependent on mac type */
5825 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5826 	.get_bus_info		= e1000_get_bus_info_ich8lan,
5827 	.set_lan_id		= e1000_set_lan_id_single_port,
5828 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5829 	/* led_on dependent on mac type */
5830 	/* led_off dependent on mac type */
5831 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5832 	.reset_hw		= e1000_reset_hw_ich8lan,
5833 	.init_hw		= e1000_init_hw_ich8lan,
5834 	.setup_link		= e1000_setup_link_ich8lan,
5835 	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5836 	/* id_led_init dependent on mac type */
5837 	.config_collision_dist	= e1000e_config_collision_dist_generic,
5838 	.rar_set		= e1000e_rar_set_generic,
5839 	.rar_get_count		= e1000e_rar_get_count_generic,
5840 };
5841 
5842 static const struct e1000_phy_operations ich8_phy_ops = {
5843 	.acquire		= e1000_acquire_swflag_ich8lan,
5844 	.check_reset_block	= e1000_check_reset_block_ich8lan,
5845 	.commit			= NULL,
5846 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5847 	.get_cable_length	= e1000e_get_cable_length_igp_2,
5848 	.read_reg		= e1000e_read_phy_reg_igp,
5849 	.release		= e1000_release_swflag_ich8lan,
5850 	.reset			= e1000_phy_hw_reset_ich8lan,
5851 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5852 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5853 	.write_reg		= e1000e_write_phy_reg_igp,
5854 };
5855 
5856 static const struct e1000_nvm_operations ich8_nvm_ops = {
5857 	.acquire		= e1000_acquire_nvm_ich8lan,
5858 	.read			= e1000_read_nvm_ich8lan,
5859 	.release		= e1000_release_nvm_ich8lan,
5860 	.reload			= e1000e_reload_nvm_generic,
5861 	.update			= e1000_update_nvm_checksum_ich8lan,
5862 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5863 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5864 	.write			= e1000_write_nvm_ich8lan,
5865 };
5866 
5867 static const struct e1000_nvm_operations spt_nvm_ops = {
5868 	.acquire		= e1000_acquire_nvm_ich8lan,
5869 	.release		= e1000_release_nvm_ich8lan,
5870 	.read			= e1000_read_nvm_spt,
5871 	.update			= e1000_update_nvm_checksum_spt,
5872 	.reload			= e1000e_reload_nvm_generic,
5873 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5874 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5875 	.write			= e1000_write_nvm_ich8lan,
5876 };
5877 
5878 const struct e1000_info e1000_ich8_info = {
5879 	.mac			= e1000_ich8lan,
5880 	.flags			= FLAG_HAS_WOL
5881 				  | FLAG_IS_ICH
5882 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5883 				  | FLAG_HAS_AMT
5884 				  | FLAG_HAS_FLASH
5885 				  | FLAG_APME_IN_WUC,
5886 	.pba			= 8,
5887 	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5888 	.get_variants		= e1000_get_variants_ich8lan,
5889 	.mac_ops		= &ich8_mac_ops,
5890 	.phy_ops		= &ich8_phy_ops,
5891 	.nvm_ops		= &ich8_nvm_ops,
5892 };
5893 
5894 const struct e1000_info e1000_ich9_info = {
5895 	.mac			= e1000_ich9lan,
5896 	.flags			= FLAG_HAS_JUMBO_FRAMES
5897 				  | FLAG_IS_ICH
5898 				  | FLAG_HAS_WOL
5899 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5900 				  | FLAG_HAS_AMT
5901 				  | FLAG_HAS_FLASH
5902 				  | FLAG_APME_IN_WUC,
5903 	.pba			= 18,
5904 	.max_hw_frame_size	= DEFAULT_JUMBO,
5905 	.get_variants		= e1000_get_variants_ich8lan,
5906 	.mac_ops		= &ich8_mac_ops,
5907 	.phy_ops		= &ich8_phy_ops,
5908 	.nvm_ops		= &ich8_nvm_ops,
5909 };
5910 
5911 const struct e1000_info e1000_ich10_info = {
5912 	.mac			= e1000_ich10lan,
5913 	.flags			= FLAG_HAS_JUMBO_FRAMES
5914 				  | FLAG_IS_ICH
5915 				  | FLAG_HAS_WOL
5916 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5917 				  | FLAG_HAS_AMT
5918 				  | FLAG_HAS_FLASH
5919 				  | FLAG_APME_IN_WUC,
5920 	.pba			= 18,
5921 	.max_hw_frame_size	= DEFAULT_JUMBO,
5922 	.get_variants		= e1000_get_variants_ich8lan,
5923 	.mac_ops		= &ich8_mac_ops,
5924 	.phy_ops		= &ich8_phy_ops,
5925 	.nvm_ops		= &ich8_nvm_ops,
5926 };
5927 
5928 const struct e1000_info e1000_pch_info = {
5929 	.mac			= e1000_pchlan,
5930 	.flags			= FLAG_IS_ICH
5931 				  | FLAG_HAS_WOL
5932 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5933 				  | FLAG_HAS_AMT
5934 				  | FLAG_HAS_FLASH
5935 				  | FLAG_HAS_JUMBO_FRAMES
5936 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5937 				  | FLAG_APME_IN_WUC,
5938 	.flags2			= FLAG2_HAS_PHY_STATS,
5939 	.pba			= 26,
5940 	.max_hw_frame_size	= 4096,
5941 	.get_variants		= e1000_get_variants_ich8lan,
5942 	.mac_ops		= &ich8_mac_ops,
5943 	.phy_ops		= &ich8_phy_ops,
5944 	.nvm_ops		= &ich8_nvm_ops,
5945 };
5946 
5947 const struct e1000_info e1000_pch2_info = {
5948 	.mac			= e1000_pch2lan,
5949 	.flags			= FLAG_IS_ICH
5950 				  | FLAG_HAS_WOL
5951 				  | FLAG_HAS_HW_TIMESTAMP
5952 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5953 				  | FLAG_HAS_AMT
5954 				  | FLAG_HAS_FLASH
5955 				  | FLAG_HAS_JUMBO_FRAMES
5956 				  | FLAG_APME_IN_WUC,
5957 	.flags2			= FLAG2_HAS_PHY_STATS
5958 				  | FLAG2_HAS_EEE
5959 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5960 	.pba			= 26,
5961 	.max_hw_frame_size	= 9022,
5962 	.get_variants		= e1000_get_variants_ich8lan,
5963 	.mac_ops		= &ich8_mac_ops,
5964 	.phy_ops		= &ich8_phy_ops,
5965 	.nvm_ops		= &ich8_nvm_ops,
5966 };
5967 
5968 const struct e1000_info e1000_pch_lpt_info = {
5969 	.mac			= e1000_pch_lpt,
5970 	.flags			= FLAG_IS_ICH
5971 				  | FLAG_HAS_WOL
5972 				  | FLAG_HAS_HW_TIMESTAMP
5973 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5974 				  | FLAG_HAS_AMT
5975 				  | FLAG_HAS_FLASH
5976 				  | FLAG_HAS_JUMBO_FRAMES
5977 				  | FLAG_APME_IN_WUC,
5978 	.flags2			= FLAG2_HAS_PHY_STATS
5979 				  | FLAG2_HAS_EEE
5980 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5981 	.pba			= 26,
5982 	.max_hw_frame_size	= 9022,
5983 	.get_variants		= e1000_get_variants_ich8lan,
5984 	.mac_ops		= &ich8_mac_ops,
5985 	.phy_ops		= &ich8_phy_ops,
5986 	.nvm_ops		= &ich8_nvm_ops,
5987 };
5988 
5989 const struct e1000_info e1000_pch_spt_info = {
5990 	.mac			= e1000_pch_spt,
5991 	.flags			= FLAG_IS_ICH
5992 				  | FLAG_HAS_WOL
5993 				  | FLAG_HAS_HW_TIMESTAMP
5994 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5995 				  | FLAG_HAS_AMT
5996 				  | FLAG_HAS_FLASH
5997 				  | FLAG_HAS_JUMBO_FRAMES
5998 				  | FLAG_APME_IN_WUC,
5999 	.flags2			= FLAG2_HAS_PHY_STATS
6000 				  | FLAG2_HAS_EEE,
6001 	.pba			= 26,
6002 	.max_hw_frame_size	= 9022,
6003 	.get_variants		= e1000_get_variants_ich8lan,
6004 	.mac_ops		= &ich8_mac_ops,
6005 	.phy_ops		= &ich8_phy_ops,
6006 	.nvm_ops		= &spt_nvm_ops,
6007 };
6008 
6009 const struct e1000_info e1000_pch_cnp_info = {
6010 	.mac			= e1000_pch_cnp,
6011 	.flags			= FLAG_IS_ICH
6012 				  | FLAG_HAS_WOL
6013 				  | FLAG_HAS_HW_TIMESTAMP
6014 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6015 				  | FLAG_HAS_AMT
6016 				  | FLAG_HAS_FLASH
6017 				  | FLAG_HAS_JUMBO_FRAMES
6018 				  | FLAG_APME_IN_WUC,
6019 	.flags2			= FLAG2_HAS_PHY_STATS
6020 				  | FLAG2_HAS_EEE,
6021 	.pba			= 26,
6022 	.max_hw_frame_size	= 9022,
6023 	.get_variants		= e1000_get_variants_ich8lan,
6024 	.mac_ops		= &ich8_mac_ops,
6025 	.phy_ops		= &ich8_phy_ops,
6026 	.nvm_ops		= &spt_nvm_ops,
6027 };
6028 
6029 const struct e1000_info e1000_pch_tgp_info = {
6030 	.mac			= e1000_pch_tgp,
6031 	.flags			= FLAG_IS_ICH
6032 				  | FLAG_HAS_WOL
6033 				  | FLAG_HAS_HW_TIMESTAMP
6034 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6035 				  | FLAG_HAS_AMT
6036 				  | FLAG_HAS_FLASH
6037 				  | FLAG_HAS_JUMBO_FRAMES
6038 				  | FLAG_APME_IN_WUC,
6039 	.flags2			= FLAG2_HAS_PHY_STATS
6040 				  | FLAG2_HAS_EEE,
6041 	.pba			= 26,
6042 	.max_hw_frame_size	= 9022,
6043 	.get_variants		= e1000_get_variants_ich8lan,
6044 	.mac_ops		= &ich8_mac_ops,
6045 	.phy_ops		= &ich8_phy_ops,
6046 	.nvm_ops		= &spt_nvm_ops,
6047 };
6048 
6049 const struct e1000_info e1000_pch_adp_info = {
6050 	.mac			= e1000_pch_adp,
6051 	.flags			= FLAG_IS_ICH
6052 				  | FLAG_HAS_WOL
6053 				  | FLAG_HAS_HW_TIMESTAMP
6054 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6055 				  | FLAG_HAS_AMT
6056 				  | FLAG_HAS_FLASH
6057 				  | FLAG_HAS_JUMBO_FRAMES
6058 				  | FLAG_APME_IN_WUC,
6059 	.flags2			= FLAG2_HAS_PHY_STATS
6060 				  | FLAG2_HAS_EEE,
6061 	.pba			= 26,
6062 	.max_hw_frame_size	= 9022,
6063 	.get_variants		= e1000_get_variants_ich8lan,
6064 	.mac_ops		= &ich8_mac_ops,
6065 	.phy_ops		= &ich8_phy_ops,
6066 	.nvm_ops		= &spt_nvm_ops,
6067 };
6068 
6069 const struct e1000_info e1000_pch_mtp_info = {
6070 	.mac			= e1000_pch_mtp,
6071 	.flags			= FLAG_IS_ICH
6072 				  | FLAG_HAS_WOL
6073 				  | FLAG_HAS_HW_TIMESTAMP
6074 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6075 				  | FLAG_HAS_AMT
6076 				  | FLAG_HAS_FLASH
6077 				  | FLAG_HAS_JUMBO_FRAMES
6078 				  | FLAG_APME_IN_WUC,
6079 	.flags2			= FLAG2_HAS_PHY_STATS
6080 				  | FLAG2_HAS_EEE,
6081 	.pba			= 26,
6082 	.max_hw_frame_size	= 9022,
6083 	.get_variants		= e1000_get_variants_ich8lan,
6084 	.mac_ops		= &ich8_mac_ops,
6085 	.phy_ops		= &ich8_phy_ops,
6086 	.nvm_ops		= &spt_nvm_ops,
6087 };
6088