1 /******************************************************************************* 2 3 Intel PRO/1000 Linux driver 4 Copyright(c) 1999 - 2011 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27 *******************************************************************************/ 28 29 /* 30 * 82562G 10/100 Network Connection 31 * 82562G-2 10/100 Network Connection 32 * 82562GT 10/100 Network Connection 33 * 82562GT-2 10/100 Network Connection 34 * 82562V 10/100 Network Connection 35 * 82562V-2 10/100 Network Connection 36 * 82566DC-2 Gigabit Network Connection 37 * 82566DC Gigabit Network Connection 38 * 82566DM-2 Gigabit Network Connection 39 * 82566DM Gigabit Network Connection 40 * 82566MC Gigabit Network Connection 41 * 82566MM Gigabit Network Connection 42 * 82567LM Gigabit Network Connection 43 * 82567LF Gigabit Network Connection 44 * 82567V Gigabit Network Connection 45 * 82567LM-2 Gigabit Network Connection 46 * 82567LF-2 Gigabit Network Connection 47 * 82567V-2 Gigabit Network Connection 48 * 82567LF-3 Gigabit Network Connection 49 * 82567LM-3 Gigabit Network Connection 50 * 82567LM-4 Gigabit Network Connection 51 * 82577LM Gigabit Network Connection 52 * 82577LC Gigabit Network Connection 53 * 82578DM Gigabit Network Connection 54 * 82578DC Gigabit Network Connection 55 * 82579LM Gigabit Network Connection 56 * 82579V Gigabit Network Connection 57 */ 58 59 #include "e1000.h" 60 61 #define ICH_FLASH_GFPREG 0x0000 62 #define ICH_FLASH_HSFSTS 0x0004 63 #define ICH_FLASH_HSFCTL 0x0006 64 #define ICH_FLASH_FADDR 0x0008 65 #define ICH_FLASH_FDATA0 0x0010 66 #define ICH_FLASH_PR0 0x0074 67 68 #define ICH_FLASH_READ_COMMAND_TIMEOUT 500 69 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500 70 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000 71 #define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF 72 #define ICH_FLASH_CYCLE_REPEAT_COUNT 10 73 74 #define ICH_CYCLE_READ 0 75 #define ICH_CYCLE_WRITE 2 76 #define ICH_CYCLE_ERASE 3 77 78 #define FLASH_GFPREG_BASE_MASK 0x1FFF 79 #define FLASH_SECTOR_ADDR_SHIFT 12 80 81 #define ICH_FLASH_SEG_SIZE_256 256 82 #define ICH_FLASH_SEG_SIZE_4K 4096 83 #define ICH_FLASH_SEG_SIZE_8K 8192 84 #define ICH_FLASH_SEG_SIZE_64K 65536 85 86 87 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */ 88 /* FW established a valid mode */ 89 #define E1000_ICH_FWSM_FW_VALID 0x00008000 90 91 #define E1000_ICH_MNG_IAMT_MODE 0x2 92 93 #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \ 94 (ID_LED_DEF1_OFF2 << 8) | \ 95 (ID_LED_DEF1_ON2 << 4) | \ 96 (ID_LED_DEF1_DEF2)) 97 98 #define E1000_ICH_NVM_SIG_WORD 0x13 99 #define E1000_ICH_NVM_SIG_MASK 0xC000 100 #define E1000_ICH_NVM_VALID_SIG_MASK 0xC0 101 #define E1000_ICH_NVM_SIG_VALUE 0x80 102 103 #define E1000_ICH8_LAN_INIT_TIMEOUT 1500 104 105 #define E1000_FEXTNVM_SW_CONFIG 1 106 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */ 107 108 #define E1000_FEXTNVM4_BEACON_DURATION_MASK 0x7 109 #define E1000_FEXTNVM4_BEACON_DURATION_8USEC 0x7 110 #define E1000_FEXTNVM4_BEACON_DURATION_16USEC 0x3 111 112 #define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL 113 114 #define E1000_ICH_RAR_ENTRIES 7 115 116 #define PHY_PAGE_SHIFT 5 117 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \ 118 ((reg) & MAX_PHY_REG_ADDRESS)) 119 #define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */ 120 #define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */ 121 122 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002 123 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300 124 #define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200 125 126 #define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */ 127 128 #define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */ 129 130 /* SMBus Address Phy Register */ 131 #define HV_SMB_ADDR PHY_REG(768, 26) 132 #define HV_SMB_ADDR_MASK 0x007F 133 #define HV_SMB_ADDR_PEC_EN 0x0200 134 #define HV_SMB_ADDR_VALID 0x0080 135 136 /* PHY Power Management Control */ 137 #define HV_PM_CTRL PHY_REG(770, 17) 138 139 /* PHY Low Power Idle Control */ 140 #define I82579_LPI_CTRL PHY_REG(772, 20) 141 #define I82579_LPI_CTRL_ENABLE_MASK 0x6000 142 #define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT 0x80 143 144 /* EMI Registers */ 145 #define I82579_EMI_ADDR 0x10 146 #define I82579_EMI_DATA 0x11 147 #define I82579_LPI_UPDATE_TIMER 0x4805 /* in 40ns units + 40 ns base value */ 148 149 /* Strapping Option Register - RO */ 150 #define E1000_STRAP 0x0000C 151 #define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000 152 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17 153 154 /* OEM Bits Phy Register */ 155 #define HV_OEM_BITS PHY_REG(768, 25) 156 #define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */ 157 #define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */ 158 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */ 159 160 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */ 161 #define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */ 162 163 /* KMRN Mode Control */ 164 #define HV_KMRN_MODE_CTRL PHY_REG(769, 16) 165 #define HV_KMRN_MDIO_SLOW 0x0400 166 167 /* KMRN FIFO Control and Status */ 168 #define HV_KMRN_FIFO_CTRLSTA PHY_REG(770, 16) 169 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK 0x7000 170 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT 12 171 172 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */ 173 /* Offset 04h HSFSTS */ 174 union ich8_hws_flash_status { 175 struct ich8_hsfsts { 176 u16 flcdone :1; /* bit 0 Flash Cycle Done */ 177 u16 flcerr :1; /* bit 1 Flash Cycle Error */ 178 u16 dael :1; /* bit 2 Direct Access error Log */ 179 u16 berasesz :2; /* bit 4:3 Sector Erase Size */ 180 u16 flcinprog :1; /* bit 5 flash cycle in Progress */ 181 u16 reserved1 :2; /* bit 13:6 Reserved */ 182 u16 reserved2 :6; /* bit 13:6 Reserved */ 183 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */ 184 u16 flockdn :1; /* bit 15 Flash Config Lock-Down */ 185 } hsf_status; 186 u16 regval; 187 }; 188 189 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */ 190 /* Offset 06h FLCTL */ 191 union ich8_hws_flash_ctrl { 192 struct ich8_hsflctl { 193 u16 flcgo :1; /* 0 Flash Cycle Go */ 194 u16 flcycle :2; /* 2:1 Flash Cycle */ 195 u16 reserved :5; /* 7:3 Reserved */ 196 u16 fldbcount :2; /* 9:8 Flash Data Byte Count */ 197 u16 flockdn :6; /* 15:10 Reserved */ 198 } hsf_ctrl; 199 u16 regval; 200 }; 201 202 /* ICH Flash Region Access Permissions */ 203 union ich8_hws_flash_regacc { 204 struct ich8_flracc { 205 u32 grra :8; /* 0:7 GbE region Read Access */ 206 u32 grwa :8; /* 8:15 GbE region Write Access */ 207 u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */ 208 u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */ 209 } hsf_flregacc; 210 u16 regval; 211 }; 212 213 /* ICH Flash Protected Region */ 214 union ich8_flash_protected_range { 215 struct ich8_pr { 216 u32 base:13; /* 0:12 Protected Range Base */ 217 u32 reserved1:2; /* 13:14 Reserved */ 218 u32 rpe:1; /* 15 Read Protection Enable */ 219 u32 limit:13; /* 16:28 Protected Range Limit */ 220 u32 reserved2:2; /* 29:30 Reserved */ 221 u32 wpe:1; /* 31 Write Protection Enable */ 222 } range; 223 u32 regval; 224 }; 225 226 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw); 227 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw); 228 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw); 229 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank); 230 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, 231 u32 offset, u8 byte); 232 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, 233 u8 *data); 234 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, 235 u16 *data); 236 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 237 u8 size, u16 *data); 238 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw); 239 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw); 240 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw); 241 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw); 242 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw); 243 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw); 244 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw); 245 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw); 246 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw); 247 static s32 e1000_led_on_pchlan(struct e1000_hw *hw); 248 static s32 e1000_led_off_pchlan(struct e1000_hw *hw); 249 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active); 250 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw); 251 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw); 252 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link); 253 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw); 254 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw); 255 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw); 256 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw); 257 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate); 258 259 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg) 260 { 261 return readw(hw->flash_address + reg); 262 } 263 264 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg) 265 { 266 return readl(hw->flash_address + reg); 267 } 268 269 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val) 270 { 271 writew(val, hw->flash_address + reg); 272 } 273 274 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val) 275 { 276 writel(val, hw->flash_address + reg); 277 } 278 279 #define er16flash(reg) __er16flash(hw, (reg)) 280 #define er32flash(reg) __er32flash(hw, (reg)) 281 #define ew16flash(reg,val) __ew16flash(hw, (reg), (val)) 282 #define ew32flash(reg,val) __ew32flash(hw, (reg), (val)) 283 284 static void e1000_toggle_lanphypc_value_ich8lan(struct e1000_hw *hw) 285 { 286 u32 ctrl; 287 288 ctrl = er32(CTRL); 289 ctrl |= E1000_CTRL_LANPHYPC_OVERRIDE; 290 ctrl &= ~E1000_CTRL_LANPHYPC_VALUE; 291 ew32(CTRL, ctrl); 292 e1e_flush(); 293 udelay(10); 294 ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE; 295 ew32(CTRL, ctrl); 296 } 297 298 /** 299 * e1000_init_phy_params_pchlan - Initialize PHY function pointers 300 * @hw: pointer to the HW structure 301 * 302 * Initialize family-specific PHY parameters and function pointers. 303 **/ 304 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw) 305 { 306 struct e1000_phy_info *phy = &hw->phy; 307 u32 fwsm; 308 s32 ret_val = 0; 309 310 phy->addr = 1; 311 phy->reset_delay_us = 100; 312 313 phy->ops.set_page = e1000_set_page_igp; 314 phy->ops.read_reg = e1000_read_phy_reg_hv; 315 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked; 316 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv; 317 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan; 318 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan; 319 phy->ops.write_reg = e1000_write_phy_reg_hv; 320 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked; 321 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv; 322 phy->ops.power_up = e1000_power_up_phy_copper; 323 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; 324 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 325 326 /* 327 * The MAC-PHY interconnect may still be in SMBus mode 328 * after Sx->S0. If the manageability engine (ME) is 329 * disabled, then toggle the LANPHYPC Value bit to force 330 * the interconnect to PCIe mode. 331 */ 332 fwsm = er32(FWSM); 333 if (!(fwsm & E1000_ICH_FWSM_FW_VALID) && !e1000_check_reset_block(hw)) { 334 e1000_toggle_lanphypc_value_ich8lan(hw); 335 msleep(50); 336 337 /* 338 * Gate automatic PHY configuration by hardware on 339 * non-managed 82579 340 */ 341 if (hw->mac.type == e1000_pch2lan) 342 e1000_gate_hw_phy_config_ich8lan(hw, true); 343 } 344 345 /* 346 * Reset the PHY before any access to it. Doing so, ensures that 347 * the PHY is in a known good state before we read/write PHY registers. 348 * The generic reset is sufficient here, because we haven't determined 349 * the PHY type yet. 350 */ 351 ret_val = e1000e_phy_hw_reset_generic(hw); 352 if (ret_val) 353 goto out; 354 355 /* Ungate automatic PHY configuration on non-managed 82579 */ 356 if ((hw->mac.type == e1000_pch2lan) && 357 !(fwsm & E1000_ICH_FWSM_FW_VALID)) { 358 usleep_range(10000, 20000); 359 e1000_gate_hw_phy_config_ich8lan(hw, false); 360 } 361 362 phy->id = e1000_phy_unknown; 363 switch (hw->mac.type) { 364 default: 365 ret_val = e1000e_get_phy_id(hw); 366 if (ret_val) 367 goto out; 368 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK)) 369 break; 370 /* fall-through */ 371 case e1000_pch2lan: 372 /* 373 * In case the PHY needs to be in mdio slow mode, 374 * set slow mode and try to get the PHY id again. 375 */ 376 ret_val = e1000_set_mdio_slow_mode_hv(hw); 377 if (ret_val) 378 goto out; 379 ret_val = e1000e_get_phy_id(hw); 380 if (ret_val) 381 goto out; 382 break; 383 } 384 phy->type = e1000e_get_phy_type_from_id(phy->id); 385 386 switch (phy->type) { 387 case e1000_phy_82577: 388 case e1000_phy_82579: 389 phy->ops.check_polarity = e1000_check_polarity_82577; 390 phy->ops.force_speed_duplex = 391 e1000_phy_force_speed_duplex_82577; 392 phy->ops.get_cable_length = e1000_get_cable_length_82577; 393 phy->ops.get_info = e1000_get_phy_info_82577; 394 phy->ops.commit = e1000e_phy_sw_reset; 395 break; 396 case e1000_phy_82578: 397 phy->ops.check_polarity = e1000_check_polarity_m88; 398 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; 399 phy->ops.get_cable_length = e1000e_get_cable_length_m88; 400 phy->ops.get_info = e1000e_get_phy_info_m88; 401 break; 402 default: 403 ret_val = -E1000_ERR_PHY; 404 break; 405 } 406 407 out: 408 return ret_val; 409 } 410 411 /** 412 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers 413 * @hw: pointer to the HW structure 414 * 415 * Initialize family-specific PHY parameters and function pointers. 416 **/ 417 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw) 418 { 419 struct e1000_phy_info *phy = &hw->phy; 420 s32 ret_val; 421 u16 i = 0; 422 423 phy->addr = 1; 424 phy->reset_delay_us = 100; 425 426 phy->ops.power_up = e1000_power_up_phy_copper; 427 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; 428 429 /* 430 * We may need to do this twice - once for IGP and if that fails, 431 * we'll set BM func pointers and try again 432 */ 433 ret_val = e1000e_determine_phy_address(hw); 434 if (ret_val) { 435 phy->ops.write_reg = e1000e_write_phy_reg_bm; 436 phy->ops.read_reg = e1000e_read_phy_reg_bm; 437 ret_val = e1000e_determine_phy_address(hw); 438 if (ret_val) { 439 e_dbg("Cannot determine PHY addr. Erroring out\n"); 440 return ret_val; 441 } 442 } 443 444 phy->id = 0; 445 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) && 446 (i++ < 100)) { 447 usleep_range(1000, 2000); 448 ret_val = e1000e_get_phy_id(hw); 449 if (ret_val) 450 return ret_val; 451 } 452 453 /* Verify phy id */ 454 switch (phy->id) { 455 case IGP03E1000_E_PHY_ID: 456 phy->type = e1000_phy_igp_3; 457 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 458 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked; 459 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked; 460 phy->ops.get_info = e1000e_get_phy_info_igp; 461 phy->ops.check_polarity = e1000_check_polarity_igp; 462 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp; 463 break; 464 case IFE_E_PHY_ID: 465 case IFE_PLUS_E_PHY_ID: 466 case IFE_C_E_PHY_ID: 467 phy->type = e1000_phy_ife; 468 phy->autoneg_mask = E1000_ALL_NOT_GIG; 469 phy->ops.get_info = e1000_get_phy_info_ife; 470 phy->ops.check_polarity = e1000_check_polarity_ife; 471 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife; 472 break; 473 case BME1000_E_PHY_ID: 474 phy->type = e1000_phy_bm; 475 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 476 phy->ops.read_reg = e1000e_read_phy_reg_bm; 477 phy->ops.write_reg = e1000e_write_phy_reg_bm; 478 phy->ops.commit = e1000e_phy_sw_reset; 479 phy->ops.get_info = e1000e_get_phy_info_m88; 480 phy->ops.check_polarity = e1000_check_polarity_m88; 481 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; 482 break; 483 default: 484 return -E1000_ERR_PHY; 485 break; 486 } 487 488 return 0; 489 } 490 491 /** 492 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers 493 * @hw: pointer to the HW structure 494 * 495 * Initialize family-specific NVM parameters and function 496 * pointers. 497 **/ 498 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw) 499 { 500 struct e1000_nvm_info *nvm = &hw->nvm; 501 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 502 u32 gfpreg, sector_base_addr, sector_end_addr; 503 u16 i; 504 505 /* Can't read flash registers if the register set isn't mapped. */ 506 if (!hw->flash_address) { 507 e_dbg("ERROR: Flash registers not mapped\n"); 508 return -E1000_ERR_CONFIG; 509 } 510 511 nvm->type = e1000_nvm_flash_sw; 512 513 gfpreg = er32flash(ICH_FLASH_GFPREG); 514 515 /* 516 * sector_X_addr is a "sector"-aligned address (4096 bytes) 517 * Add 1 to sector_end_addr since this sector is included in 518 * the overall size. 519 */ 520 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK; 521 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1; 522 523 /* flash_base_addr is byte-aligned */ 524 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT; 525 526 /* 527 * find total size of the NVM, then cut in half since the total 528 * size represents two separate NVM banks. 529 */ 530 nvm->flash_bank_size = (sector_end_addr - sector_base_addr) 531 << FLASH_SECTOR_ADDR_SHIFT; 532 nvm->flash_bank_size /= 2; 533 /* Adjust to word count */ 534 nvm->flash_bank_size /= sizeof(u16); 535 536 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS; 537 538 /* Clear shadow ram */ 539 for (i = 0; i < nvm->word_size; i++) { 540 dev_spec->shadow_ram[i].modified = false; 541 dev_spec->shadow_ram[i].value = 0xFFFF; 542 } 543 544 return 0; 545 } 546 547 /** 548 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers 549 * @hw: pointer to the HW structure 550 * 551 * Initialize family-specific MAC parameters and function 552 * pointers. 553 **/ 554 static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter) 555 { 556 struct e1000_hw *hw = &adapter->hw; 557 struct e1000_mac_info *mac = &hw->mac; 558 559 /* Set media type function pointer */ 560 hw->phy.media_type = e1000_media_type_copper; 561 562 /* Set mta register count */ 563 mac->mta_reg_count = 32; 564 /* Set rar entry count */ 565 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES; 566 if (mac->type == e1000_ich8lan) 567 mac->rar_entry_count--; 568 /* FWSM register */ 569 mac->has_fwsm = true; 570 /* ARC subsystem not supported */ 571 mac->arc_subsystem_valid = false; 572 /* Adaptive IFS supported */ 573 mac->adaptive_ifs = true; 574 575 /* LED operations */ 576 switch (mac->type) { 577 case e1000_ich8lan: 578 case e1000_ich9lan: 579 case e1000_ich10lan: 580 /* check management mode */ 581 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan; 582 /* ID LED init */ 583 mac->ops.id_led_init = e1000e_id_led_init; 584 /* blink LED */ 585 mac->ops.blink_led = e1000e_blink_led_generic; 586 /* setup LED */ 587 mac->ops.setup_led = e1000e_setup_led_generic; 588 /* cleanup LED */ 589 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan; 590 /* turn on/off LED */ 591 mac->ops.led_on = e1000_led_on_ich8lan; 592 mac->ops.led_off = e1000_led_off_ich8lan; 593 break; 594 case e1000_pchlan: 595 case e1000_pch2lan: 596 /* check management mode */ 597 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan; 598 /* ID LED init */ 599 mac->ops.id_led_init = e1000_id_led_init_pchlan; 600 /* setup LED */ 601 mac->ops.setup_led = e1000_setup_led_pchlan; 602 /* cleanup LED */ 603 mac->ops.cleanup_led = e1000_cleanup_led_pchlan; 604 /* turn on/off LED */ 605 mac->ops.led_on = e1000_led_on_pchlan; 606 mac->ops.led_off = e1000_led_off_pchlan; 607 break; 608 default: 609 break; 610 } 611 612 /* Enable PCS Lock-loss workaround for ICH8 */ 613 if (mac->type == e1000_ich8lan) 614 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true); 615 616 /* Gate automatic PHY configuration by hardware on managed 82579 */ 617 if ((mac->type == e1000_pch2lan) && 618 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) 619 e1000_gate_hw_phy_config_ich8lan(hw, true); 620 621 return 0; 622 } 623 624 /** 625 * e1000_set_eee_pchlan - Enable/disable EEE support 626 * @hw: pointer to the HW structure 627 * 628 * Enable/disable EEE based on setting in dev_spec structure. The bits in 629 * the LPI Control register will remain set only if/when link is up. 630 **/ 631 static s32 e1000_set_eee_pchlan(struct e1000_hw *hw) 632 { 633 s32 ret_val = 0; 634 u16 phy_reg; 635 636 if (hw->phy.type != e1000_phy_82579) 637 goto out; 638 639 ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg); 640 if (ret_val) 641 goto out; 642 643 if (hw->dev_spec.ich8lan.eee_disable) 644 phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK; 645 else 646 phy_reg |= I82579_LPI_CTRL_ENABLE_MASK; 647 648 ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg); 649 out: 650 return ret_val; 651 } 652 653 /** 654 * e1000_check_for_copper_link_ich8lan - Check for link (Copper) 655 * @hw: pointer to the HW structure 656 * 657 * Checks to see of the link status of the hardware has changed. If a 658 * change in link status has been detected, then we read the PHY registers 659 * to get the current speed/duplex if link exists. 660 **/ 661 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw) 662 { 663 struct e1000_mac_info *mac = &hw->mac; 664 s32 ret_val; 665 bool link; 666 u16 phy_reg; 667 668 /* 669 * We only want to go out to the PHY registers to see if Auto-Neg 670 * has completed and/or if our link status has changed. The 671 * get_link_status flag is set upon receiving a Link Status 672 * Change or Rx Sequence Error interrupt. 673 */ 674 if (!mac->get_link_status) { 675 ret_val = 0; 676 goto out; 677 } 678 679 /* 680 * First we want to see if the MII Status Register reports 681 * link. If so, then we want to get the current speed/duplex 682 * of the PHY. 683 */ 684 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 685 if (ret_val) 686 goto out; 687 688 if (hw->mac.type == e1000_pchlan) { 689 ret_val = e1000_k1_gig_workaround_hv(hw, link); 690 if (ret_val) 691 goto out; 692 } 693 694 if (!link) 695 goto out; /* No link detected */ 696 697 mac->get_link_status = false; 698 699 switch (hw->mac.type) { 700 case e1000_pch2lan: 701 ret_val = e1000_k1_workaround_lv(hw); 702 if (ret_val) 703 goto out; 704 /* fall-thru */ 705 case e1000_pchlan: 706 if (hw->phy.type == e1000_phy_82578) { 707 ret_val = e1000_link_stall_workaround_hv(hw); 708 if (ret_val) 709 goto out; 710 } 711 712 /* 713 * Workaround for PCHx parts in half-duplex: 714 * Set the number of preambles removed from the packet 715 * when it is passed from the PHY to the MAC to prevent 716 * the MAC from misinterpreting the packet type. 717 */ 718 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg); 719 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK; 720 721 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD) 722 phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT); 723 724 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg); 725 break; 726 default: 727 break; 728 } 729 730 /* 731 * Check if there was DownShift, must be checked 732 * immediately after link-up 733 */ 734 e1000e_check_downshift(hw); 735 736 /* Enable/Disable EEE after link up */ 737 ret_val = e1000_set_eee_pchlan(hw); 738 if (ret_val) 739 goto out; 740 741 /* 742 * If we are forcing speed/duplex, then we simply return since 743 * we have already determined whether we have link or not. 744 */ 745 if (!mac->autoneg) { 746 ret_val = -E1000_ERR_CONFIG; 747 goto out; 748 } 749 750 /* 751 * Auto-Neg is enabled. Auto Speed Detection takes care 752 * of MAC speed/duplex configuration. So we only need to 753 * configure Collision Distance in the MAC. 754 */ 755 e1000e_config_collision_dist(hw); 756 757 /* 758 * Configure Flow Control now that Auto-Neg has completed. 759 * First, we need to restore the desired flow control 760 * settings because we may have had to re-autoneg with a 761 * different link partner. 762 */ 763 ret_val = e1000e_config_fc_after_link_up(hw); 764 if (ret_val) 765 e_dbg("Error configuring flow control\n"); 766 767 out: 768 return ret_val; 769 } 770 771 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter) 772 { 773 struct e1000_hw *hw = &adapter->hw; 774 s32 rc; 775 776 rc = e1000_init_mac_params_ich8lan(adapter); 777 if (rc) 778 return rc; 779 780 rc = e1000_init_nvm_params_ich8lan(hw); 781 if (rc) 782 return rc; 783 784 switch (hw->mac.type) { 785 case e1000_ich8lan: 786 case e1000_ich9lan: 787 case e1000_ich10lan: 788 rc = e1000_init_phy_params_ich8lan(hw); 789 break; 790 case e1000_pchlan: 791 case e1000_pch2lan: 792 rc = e1000_init_phy_params_pchlan(hw); 793 break; 794 default: 795 break; 796 } 797 if (rc) 798 return rc; 799 800 /* 801 * Disable Jumbo Frame support on parts with Intel 10/100 PHY or 802 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT). 803 */ 804 if ((adapter->hw.phy.type == e1000_phy_ife) || 805 ((adapter->hw.mac.type >= e1000_pch2lan) && 806 (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) { 807 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES; 808 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN; 809 810 hw->mac.ops.blink_led = NULL; 811 } 812 813 if ((adapter->hw.mac.type == e1000_ich8lan) && 814 (adapter->hw.phy.type == e1000_phy_igp_3)) 815 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP; 816 817 /* Enable workaround for 82579 w/ ME enabled */ 818 if ((adapter->hw.mac.type == e1000_pch2lan) && 819 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) 820 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA; 821 822 /* Disable EEE by default until IEEE802.3az spec is finalized */ 823 if (adapter->flags2 & FLAG2_HAS_EEE) 824 adapter->hw.dev_spec.ich8lan.eee_disable = true; 825 826 return 0; 827 } 828 829 static DEFINE_MUTEX(nvm_mutex); 830 831 /** 832 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex 833 * @hw: pointer to the HW structure 834 * 835 * Acquires the mutex for performing NVM operations. 836 **/ 837 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw) 838 { 839 mutex_lock(&nvm_mutex); 840 841 return 0; 842 } 843 844 /** 845 * e1000_release_nvm_ich8lan - Release NVM mutex 846 * @hw: pointer to the HW structure 847 * 848 * Releases the mutex used while performing NVM operations. 849 **/ 850 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw) 851 { 852 mutex_unlock(&nvm_mutex); 853 } 854 855 static DEFINE_MUTEX(swflag_mutex); 856 857 /** 858 * e1000_acquire_swflag_ich8lan - Acquire software control flag 859 * @hw: pointer to the HW structure 860 * 861 * Acquires the software control flag for performing PHY and select 862 * MAC CSR accesses. 863 **/ 864 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw) 865 { 866 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT; 867 s32 ret_val = 0; 868 869 mutex_lock(&swflag_mutex); 870 871 while (timeout) { 872 extcnf_ctrl = er32(EXTCNF_CTRL); 873 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)) 874 break; 875 876 mdelay(1); 877 timeout--; 878 } 879 880 if (!timeout) { 881 e_dbg("SW/FW/HW has locked the resource for too long.\n"); 882 ret_val = -E1000_ERR_CONFIG; 883 goto out; 884 } 885 886 timeout = SW_FLAG_TIMEOUT; 887 888 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; 889 ew32(EXTCNF_CTRL, extcnf_ctrl); 890 891 while (timeout) { 892 extcnf_ctrl = er32(EXTCNF_CTRL); 893 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) 894 break; 895 896 mdelay(1); 897 timeout--; 898 } 899 900 if (!timeout) { 901 e_dbg("Failed to acquire the semaphore.\n"); 902 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; 903 ew32(EXTCNF_CTRL, extcnf_ctrl); 904 ret_val = -E1000_ERR_CONFIG; 905 goto out; 906 } 907 908 out: 909 if (ret_val) 910 mutex_unlock(&swflag_mutex); 911 912 return ret_val; 913 } 914 915 /** 916 * e1000_release_swflag_ich8lan - Release software control flag 917 * @hw: pointer to the HW structure 918 * 919 * Releases the software control flag for performing PHY and select 920 * MAC CSR accesses. 921 **/ 922 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw) 923 { 924 u32 extcnf_ctrl; 925 926 extcnf_ctrl = er32(EXTCNF_CTRL); 927 928 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) { 929 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; 930 ew32(EXTCNF_CTRL, extcnf_ctrl); 931 } else { 932 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n"); 933 } 934 935 mutex_unlock(&swflag_mutex); 936 } 937 938 /** 939 * e1000_check_mng_mode_ich8lan - Checks management mode 940 * @hw: pointer to the HW structure 941 * 942 * This checks if the adapter has any manageability enabled. 943 * This is a function pointer entry point only called by read/write 944 * routines for the PHY and NVM parts. 945 **/ 946 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw) 947 { 948 u32 fwsm; 949 950 fwsm = er32(FWSM); 951 return (fwsm & E1000_ICH_FWSM_FW_VALID) && 952 ((fwsm & E1000_FWSM_MODE_MASK) == 953 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); 954 } 955 956 /** 957 * e1000_check_mng_mode_pchlan - Checks management mode 958 * @hw: pointer to the HW structure 959 * 960 * This checks if the adapter has iAMT enabled. 961 * This is a function pointer entry point only called by read/write 962 * routines for the PHY and NVM parts. 963 **/ 964 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw) 965 { 966 u32 fwsm; 967 968 fwsm = er32(FWSM); 969 return (fwsm & E1000_ICH_FWSM_FW_VALID) && 970 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); 971 } 972 973 /** 974 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked 975 * @hw: pointer to the HW structure 976 * 977 * Checks if firmware is blocking the reset of the PHY. 978 * This is a function pointer entry point only called by 979 * reset routines. 980 **/ 981 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw) 982 { 983 u32 fwsm; 984 985 fwsm = er32(FWSM); 986 987 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET; 988 } 989 990 /** 991 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states 992 * @hw: pointer to the HW structure 993 * 994 * Assumes semaphore already acquired. 995 * 996 **/ 997 static s32 e1000_write_smbus_addr(struct e1000_hw *hw) 998 { 999 u16 phy_data; 1000 u32 strap = er32(STRAP); 1001 s32 ret_val = 0; 1002 1003 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK; 1004 1005 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data); 1006 if (ret_val) 1007 goto out; 1008 1009 phy_data &= ~HV_SMB_ADDR_MASK; 1010 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT); 1011 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID; 1012 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data); 1013 1014 out: 1015 return ret_val; 1016 } 1017 1018 /** 1019 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration 1020 * @hw: pointer to the HW structure 1021 * 1022 * SW should configure the LCD from the NVM extended configuration region 1023 * as a workaround for certain parts. 1024 **/ 1025 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw) 1026 { 1027 struct e1000_phy_info *phy = &hw->phy; 1028 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask; 1029 s32 ret_val = 0; 1030 u16 word_addr, reg_data, reg_addr, phy_page = 0; 1031 1032 /* 1033 * Initialize the PHY from the NVM on ICH platforms. This 1034 * is needed due to an issue where the NVM configuration is 1035 * not properly autoloaded after power transitions. 1036 * Therefore, after each PHY reset, we will load the 1037 * configuration data out of the NVM manually. 1038 */ 1039 switch (hw->mac.type) { 1040 case e1000_ich8lan: 1041 if (phy->type != e1000_phy_igp_3) 1042 return ret_val; 1043 1044 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) || 1045 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) { 1046 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG; 1047 break; 1048 } 1049 /* Fall-thru */ 1050 case e1000_pchlan: 1051 case e1000_pch2lan: 1052 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M; 1053 break; 1054 default: 1055 return ret_val; 1056 } 1057 1058 ret_val = hw->phy.ops.acquire(hw); 1059 if (ret_val) 1060 return ret_val; 1061 1062 data = er32(FEXTNVM); 1063 if (!(data & sw_cfg_mask)) 1064 goto out; 1065 1066 /* 1067 * Make sure HW does not configure LCD from PHY 1068 * extended configuration before SW configuration 1069 */ 1070 data = er32(EXTCNF_CTRL); 1071 if (!(hw->mac.type == e1000_pch2lan)) { 1072 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) 1073 goto out; 1074 } 1075 1076 cnf_size = er32(EXTCNF_SIZE); 1077 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK; 1078 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT; 1079 if (!cnf_size) 1080 goto out; 1081 1082 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK; 1083 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT; 1084 1085 if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) && 1086 (hw->mac.type == e1000_pchlan)) || 1087 (hw->mac.type == e1000_pch2lan)) { 1088 /* 1089 * HW configures the SMBus address and LEDs when the 1090 * OEM and LCD Write Enable bits are set in the NVM. 1091 * When both NVM bits are cleared, SW will configure 1092 * them instead. 1093 */ 1094 ret_val = e1000_write_smbus_addr(hw); 1095 if (ret_val) 1096 goto out; 1097 1098 data = er32(LEDCTL); 1099 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG, 1100 (u16)data); 1101 if (ret_val) 1102 goto out; 1103 } 1104 1105 /* Configure LCD from extended configuration region. */ 1106 1107 /* cnf_base_addr is in DWORD */ 1108 word_addr = (u16)(cnf_base_addr << 1); 1109 1110 for (i = 0; i < cnf_size; i++) { 1111 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, 1112 ®_data); 1113 if (ret_val) 1114 goto out; 1115 1116 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1), 1117 1, ®_addr); 1118 if (ret_val) 1119 goto out; 1120 1121 /* Save off the PHY page for future writes. */ 1122 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) { 1123 phy_page = reg_data; 1124 continue; 1125 } 1126 1127 reg_addr &= PHY_REG_MASK; 1128 reg_addr |= phy_page; 1129 1130 ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr, 1131 reg_data); 1132 if (ret_val) 1133 goto out; 1134 } 1135 1136 out: 1137 hw->phy.ops.release(hw); 1138 return ret_val; 1139 } 1140 1141 /** 1142 * e1000_k1_gig_workaround_hv - K1 Si workaround 1143 * @hw: pointer to the HW structure 1144 * @link: link up bool flag 1145 * 1146 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning 1147 * from a lower speed. This workaround disables K1 whenever link is at 1Gig 1148 * If link is down, the function will restore the default K1 setting located 1149 * in the NVM. 1150 **/ 1151 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link) 1152 { 1153 s32 ret_val = 0; 1154 u16 status_reg = 0; 1155 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled; 1156 1157 if (hw->mac.type != e1000_pchlan) 1158 goto out; 1159 1160 /* Wrap the whole flow with the sw flag */ 1161 ret_val = hw->phy.ops.acquire(hw); 1162 if (ret_val) 1163 goto out; 1164 1165 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */ 1166 if (link) { 1167 if (hw->phy.type == e1000_phy_82578) { 1168 ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS, 1169 &status_reg); 1170 if (ret_val) 1171 goto release; 1172 1173 status_reg &= BM_CS_STATUS_LINK_UP | 1174 BM_CS_STATUS_RESOLVED | 1175 BM_CS_STATUS_SPEED_MASK; 1176 1177 if (status_reg == (BM_CS_STATUS_LINK_UP | 1178 BM_CS_STATUS_RESOLVED | 1179 BM_CS_STATUS_SPEED_1000)) 1180 k1_enable = false; 1181 } 1182 1183 if (hw->phy.type == e1000_phy_82577) { 1184 ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS, 1185 &status_reg); 1186 if (ret_val) 1187 goto release; 1188 1189 status_reg &= HV_M_STATUS_LINK_UP | 1190 HV_M_STATUS_AUTONEG_COMPLETE | 1191 HV_M_STATUS_SPEED_MASK; 1192 1193 if (status_reg == (HV_M_STATUS_LINK_UP | 1194 HV_M_STATUS_AUTONEG_COMPLETE | 1195 HV_M_STATUS_SPEED_1000)) 1196 k1_enable = false; 1197 } 1198 1199 /* Link stall fix for link up */ 1200 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19), 1201 0x0100); 1202 if (ret_val) 1203 goto release; 1204 1205 } else { 1206 /* Link stall fix for link down */ 1207 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19), 1208 0x4100); 1209 if (ret_val) 1210 goto release; 1211 } 1212 1213 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable); 1214 1215 release: 1216 hw->phy.ops.release(hw); 1217 out: 1218 return ret_val; 1219 } 1220 1221 /** 1222 * e1000_configure_k1_ich8lan - Configure K1 power state 1223 * @hw: pointer to the HW structure 1224 * @enable: K1 state to configure 1225 * 1226 * Configure the K1 power state based on the provided parameter. 1227 * Assumes semaphore already acquired. 1228 * 1229 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 1230 **/ 1231 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable) 1232 { 1233 s32 ret_val = 0; 1234 u32 ctrl_reg = 0; 1235 u32 ctrl_ext = 0; 1236 u32 reg = 0; 1237 u16 kmrn_reg = 0; 1238 1239 ret_val = e1000e_read_kmrn_reg_locked(hw, 1240 E1000_KMRNCTRLSTA_K1_CONFIG, 1241 &kmrn_reg); 1242 if (ret_val) 1243 goto out; 1244 1245 if (k1_enable) 1246 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE; 1247 else 1248 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE; 1249 1250 ret_val = e1000e_write_kmrn_reg_locked(hw, 1251 E1000_KMRNCTRLSTA_K1_CONFIG, 1252 kmrn_reg); 1253 if (ret_val) 1254 goto out; 1255 1256 udelay(20); 1257 ctrl_ext = er32(CTRL_EXT); 1258 ctrl_reg = er32(CTRL); 1259 1260 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 1261 reg |= E1000_CTRL_FRCSPD; 1262 ew32(CTRL, reg); 1263 1264 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS); 1265 e1e_flush(); 1266 udelay(20); 1267 ew32(CTRL, ctrl_reg); 1268 ew32(CTRL_EXT, ctrl_ext); 1269 e1e_flush(); 1270 udelay(20); 1271 1272 out: 1273 return ret_val; 1274 } 1275 1276 /** 1277 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration 1278 * @hw: pointer to the HW structure 1279 * @d0_state: boolean if entering d0 or d3 device state 1280 * 1281 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are 1282 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit 1283 * in NVM determines whether HW should configure LPLU and Gbe Disable. 1284 **/ 1285 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state) 1286 { 1287 s32 ret_val = 0; 1288 u32 mac_reg; 1289 u16 oem_reg; 1290 1291 if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan)) 1292 return ret_val; 1293 1294 ret_val = hw->phy.ops.acquire(hw); 1295 if (ret_val) 1296 return ret_val; 1297 1298 if (!(hw->mac.type == e1000_pch2lan)) { 1299 mac_reg = er32(EXTCNF_CTRL); 1300 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) 1301 goto out; 1302 } 1303 1304 mac_reg = er32(FEXTNVM); 1305 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M)) 1306 goto out; 1307 1308 mac_reg = er32(PHY_CTRL); 1309 1310 ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg); 1311 if (ret_val) 1312 goto out; 1313 1314 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU); 1315 1316 if (d0_state) { 1317 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE) 1318 oem_reg |= HV_OEM_BITS_GBE_DIS; 1319 1320 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU) 1321 oem_reg |= HV_OEM_BITS_LPLU; 1322 } else { 1323 if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE) 1324 oem_reg |= HV_OEM_BITS_GBE_DIS; 1325 1326 if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU) 1327 oem_reg |= HV_OEM_BITS_LPLU; 1328 } 1329 /* Restart auto-neg to activate the bits */ 1330 if (!e1000_check_reset_block(hw)) 1331 oem_reg |= HV_OEM_BITS_RESTART_AN; 1332 ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg); 1333 1334 out: 1335 hw->phy.ops.release(hw); 1336 1337 return ret_val; 1338 } 1339 1340 1341 /** 1342 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode 1343 * @hw: pointer to the HW structure 1344 **/ 1345 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw) 1346 { 1347 s32 ret_val; 1348 u16 data; 1349 1350 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data); 1351 if (ret_val) 1352 return ret_val; 1353 1354 data |= HV_KMRN_MDIO_SLOW; 1355 1356 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data); 1357 1358 return ret_val; 1359 } 1360 1361 /** 1362 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be 1363 * done after every PHY reset. 1364 **/ 1365 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw) 1366 { 1367 s32 ret_val = 0; 1368 u16 phy_data; 1369 1370 if (hw->mac.type != e1000_pchlan) 1371 return ret_val; 1372 1373 /* Set MDIO slow mode before any other MDIO access */ 1374 if (hw->phy.type == e1000_phy_82577) { 1375 ret_val = e1000_set_mdio_slow_mode_hv(hw); 1376 if (ret_val) 1377 goto out; 1378 } 1379 1380 if (((hw->phy.type == e1000_phy_82577) && 1381 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) || 1382 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) { 1383 /* Disable generation of early preamble */ 1384 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431); 1385 if (ret_val) 1386 return ret_val; 1387 1388 /* Preamble tuning for SSC */ 1389 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204); 1390 if (ret_val) 1391 return ret_val; 1392 } 1393 1394 if (hw->phy.type == e1000_phy_82578) { 1395 /* 1396 * Return registers to default by doing a soft reset then 1397 * writing 0x3140 to the control register. 1398 */ 1399 if (hw->phy.revision < 2) { 1400 e1000e_phy_sw_reset(hw); 1401 ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140); 1402 } 1403 } 1404 1405 /* Select page 0 */ 1406 ret_val = hw->phy.ops.acquire(hw); 1407 if (ret_val) 1408 return ret_val; 1409 1410 hw->phy.addr = 1; 1411 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0); 1412 hw->phy.ops.release(hw); 1413 if (ret_val) 1414 goto out; 1415 1416 /* 1417 * Configure the K1 Si workaround during phy reset assuming there is 1418 * link so that it disables K1 if link is in 1Gbps. 1419 */ 1420 ret_val = e1000_k1_gig_workaround_hv(hw, true); 1421 if (ret_val) 1422 goto out; 1423 1424 /* Workaround for link disconnects on a busy hub in half duplex */ 1425 ret_val = hw->phy.ops.acquire(hw); 1426 if (ret_val) 1427 goto out; 1428 ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data); 1429 if (ret_val) 1430 goto release; 1431 ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG, 1432 phy_data & 0x00FF); 1433 release: 1434 hw->phy.ops.release(hw); 1435 out: 1436 return ret_val; 1437 } 1438 1439 /** 1440 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY 1441 * @hw: pointer to the HW structure 1442 **/ 1443 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw) 1444 { 1445 u32 mac_reg; 1446 u16 i, phy_reg = 0; 1447 s32 ret_val; 1448 1449 ret_val = hw->phy.ops.acquire(hw); 1450 if (ret_val) 1451 return; 1452 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); 1453 if (ret_val) 1454 goto release; 1455 1456 /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */ 1457 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) { 1458 mac_reg = er32(RAL(i)); 1459 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i), 1460 (u16)(mac_reg & 0xFFFF)); 1461 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i), 1462 (u16)((mac_reg >> 16) & 0xFFFF)); 1463 1464 mac_reg = er32(RAH(i)); 1465 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i), 1466 (u16)(mac_reg & 0xFFFF)); 1467 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i), 1468 (u16)((mac_reg & E1000_RAH_AV) 1469 >> 16)); 1470 } 1471 1472 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); 1473 1474 release: 1475 hw->phy.ops.release(hw); 1476 } 1477 1478 /** 1479 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation 1480 * with 82579 PHY 1481 * @hw: pointer to the HW structure 1482 * @enable: flag to enable/disable workaround when enabling/disabling jumbos 1483 **/ 1484 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable) 1485 { 1486 s32 ret_val = 0; 1487 u16 phy_reg, data; 1488 u32 mac_reg; 1489 u16 i; 1490 1491 if (hw->mac.type != e1000_pch2lan) 1492 goto out; 1493 1494 /* disable Rx path while enabling/disabling workaround */ 1495 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); 1496 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14)); 1497 if (ret_val) 1498 goto out; 1499 1500 if (enable) { 1501 /* 1502 * Write Rx addresses (rar_entry_count for RAL/H, +4 for 1503 * SHRAL/H) and initial CRC values to the MAC 1504 */ 1505 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) { 1506 u8 mac_addr[ETH_ALEN] = {0}; 1507 u32 addr_high, addr_low; 1508 1509 addr_high = er32(RAH(i)); 1510 if (!(addr_high & E1000_RAH_AV)) 1511 continue; 1512 addr_low = er32(RAL(i)); 1513 mac_addr[0] = (addr_low & 0xFF); 1514 mac_addr[1] = ((addr_low >> 8) & 0xFF); 1515 mac_addr[2] = ((addr_low >> 16) & 0xFF); 1516 mac_addr[3] = ((addr_low >> 24) & 0xFF); 1517 mac_addr[4] = (addr_high & 0xFF); 1518 mac_addr[5] = ((addr_high >> 8) & 0xFF); 1519 1520 ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr)); 1521 } 1522 1523 /* Write Rx addresses to the PHY */ 1524 e1000_copy_rx_addrs_to_phy_ich8lan(hw); 1525 1526 /* Enable jumbo frame workaround in the MAC */ 1527 mac_reg = er32(FFLT_DBG); 1528 mac_reg &= ~(1 << 14); 1529 mac_reg |= (7 << 15); 1530 ew32(FFLT_DBG, mac_reg); 1531 1532 mac_reg = er32(RCTL); 1533 mac_reg |= E1000_RCTL_SECRC; 1534 ew32(RCTL, mac_reg); 1535 1536 ret_val = e1000e_read_kmrn_reg(hw, 1537 E1000_KMRNCTRLSTA_CTRL_OFFSET, 1538 &data); 1539 if (ret_val) 1540 goto out; 1541 ret_val = e1000e_write_kmrn_reg(hw, 1542 E1000_KMRNCTRLSTA_CTRL_OFFSET, 1543 data | (1 << 0)); 1544 if (ret_val) 1545 goto out; 1546 ret_val = e1000e_read_kmrn_reg(hw, 1547 E1000_KMRNCTRLSTA_HD_CTRL, 1548 &data); 1549 if (ret_val) 1550 goto out; 1551 data &= ~(0xF << 8); 1552 data |= (0xB << 8); 1553 ret_val = e1000e_write_kmrn_reg(hw, 1554 E1000_KMRNCTRLSTA_HD_CTRL, 1555 data); 1556 if (ret_val) 1557 goto out; 1558 1559 /* Enable jumbo frame workaround in the PHY */ 1560 e1e_rphy(hw, PHY_REG(769, 23), &data); 1561 data &= ~(0x7F << 5); 1562 data |= (0x37 << 5); 1563 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); 1564 if (ret_val) 1565 goto out; 1566 e1e_rphy(hw, PHY_REG(769, 16), &data); 1567 data &= ~(1 << 13); 1568 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); 1569 if (ret_val) 1570 goto out; 1571 e1e_rphy(hw, PHY_REG(776, 20), &data); 1572 data &= ~(0x3FF << 2); 1573 data |= (0x1A << 2); 1574 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); 1575 if (ret_val) 1576 goto out; 1577 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xFE00); 1578 if (ret_val) 1579 goto out; 1580 e1e_rphy(hw, HV_PM_CTRL, &data); 1581 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10)); 1582 if (ret_val) 1583 goto out; 1584 } else { 1585 /* Write MAC register values back to h/w defaults */ 1586 mac_reg = er32(FFLT_DBG); 1587 mac_reg &= ~(0xF << 14); 1588 ew32(FFLT_DBG, mac_reg); 1589 1590 mac_reg = er32(RCTL); 1591 mac_reg &= ~E1000_RCTL_SECRC; 1592 ew32(RCTL, mac_reg); 1593 1594 ret_val = e1000e_read_kmrn_reg(hw, 1595 E1000_KMRNCTRLSTA_CTRL_OFFSET, 1596 &data); 1597 if (ret_val) 1598 goto out; 1599 ret_val = e1000e_write_kmrn_reg(hw, 1600 E1000_KMRNCTRLSTA_CTRL_OFFSET, 1601 data & ~(1 << 0)); 1602 if (ret_val) 1603 goto out; 1604 ret_val = e1000e_read_kmrn_reg(hw, 1605 E1000_KMRNCTRLSTA_HD_CTRL, 1606 &data); 1607 if (ret_val) 1608 goto out; 1609 data &= ~(0xF << 8); 1610 data |= (0xB << 8); 1611 ret_val = e1000e_write_kmrn_reg(hw, 1612 E1000_KMRNCTRLSTA_HD_CTRL, 1613 data); 1614 if (ret_val) 1615 goto out; 1616 1617 /* Write PHY register values back to h/w defaults */ 1618 e1e_rphy(hw, PHY_REG(769, 23), &data); 1619 data &= ~(0x7F << 5); 1620 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); 1621 if (ret_val) 1622 goto out; 1623 e1e_rphy(hw, PHY_REG(769, 16), &data); 1624 data |= (1 << 13); 1625 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); 1626 if (ret_val) 1627 goto out; 1628 e1e_rphy(hw, PHY_REG(776, 20), &data); 1629 data &= ~(0x3FF << 2); 1630 data |= (0x8 << 2); 1631 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); 1632 if (ret_val) 1633 goto out; 1634 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00); 1635 if (ret_val) 1636 goto out; 1637 e1e_rphy(hw, HV_PM_CTRL, &data); 1638 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10)); 1639 if (ret_val) 1640 goto out; 1641 } 1642 1643 /* re-enable Rx path after enabling/disabling workaround */ 1644 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14)); 1645 1646 out: 1647 return ret_val; 1648 } 1649 1650 /** 1651 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be 1652 * done after every PHY reset. 1653 **/ 1654 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw) 1655 { 1656 s32 ret_val = 0; 1657 1658 if (hw->mac.type != e1000_pch2lan) 1659 goto out; 1660 1661 /* Set MDIO slow mode before any other MDIO access */ 1662 ret_val = e1000_set_mdio_slow_mode_hv(hw); 1663 1664 out: 1665 return ret_val; 1666 } 1667 1668 /** 1669 * e1000_k1_gig_workaround_lv - K1 Si workaround 1670 * @hw: pointer to the HW structure 1671 * 1672 * Workaround to set the K1 beacon duration for 82579 parts 1673 **/ 1674 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw) 1675 { 1676 s32 ret_val = 0; 1677 u16 status_reg = 0; 1678 u32 mac_reg; 1679 u16 phy_reg; 1680 1681 if (hw->mac.type != e1000_pch2lan) 1682 goto out; 1683 1684 /* Set K1 beacon duration based on 1Gbps speed or otherwise */ 1685 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg); 1686 if (ret_val) 1687 goto out; 1688 1689 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) 1690 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) { 1691 mac_reg = er32(FEXTNVM4); 1692 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; 1693 1694 ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg); 1695 if (ret_val) 1696 goto out; 1697 1698 if (status_reg & HV_M_STATUS_SPEED_1000) { 1699 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC; 1700 phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT; 1701 } else { 1702 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC; 1703 phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT; 1704 } 1705 ew32(FEXTNVM4, mac_reg); 1706 ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg); 1707 } 1708 1709 out: 1710 return ret_val; 1711 } 1712 1713 /** 1714 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware 1715 * @hw: pointer to the HW structure 1716 * @gate: boolean set to true to gate, false to ungate 1717 * 1718 * Gate/ungate the automatic PHY configuration via hardware; perform 1719 * the configuration via software instead. 1720 **/ 1721 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate) 1722 { 1723 u32 extcnf_ctrl; 1724 1725 if (hw->mac.type != e1000_pch2lan) 1726 return; 1727 1728 extcnf_ctrl = er32(EXTCNF_CTRL); 1729 1730 if (gate) 1731 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG; 1732 else 1733 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG; 1734 1735 ew32(EXTCNF_CTRL, extcnf_ctrl); 1736 return; 1737 } 1738 1739 /** 1740 * e1000_lan_init_done_ich8lan - Check for PHY config completion 1741 * @hw: pointer to the HW structure 1742 * 1743 * Check the appropriate indication the MAC has finished configuring the 1744 * PHY after a software reset. 1745 **/ 1746 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw) 1747 { 1748 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT; 1749 1750 /* Wait for basic configuration completes before proceeding */ 1751 do { 1752 data = er32(STATUS); 1753 data &= E1000_STATUS_LAN_INIT_DONE; 1754 udelay(100); 1755 } while ((!data) && --loop); 1756 1757 /* 1758 * If basic configuration is incomplete before the above loop 1759 * count reaches 0, loading the configuration from NVM will 1760 * leave the PHY in a bad state possibly resulting in no link. 1761 */ 1762 if (loop == 0) 1763 e_dbg("LAN_INIT_DONE not set, increase timeout\n"); 1764 1765 /* Clear the Init Done bit for the next init event */ 1766 data = er32(STATUS); 1767 data &= ~E1000_STATUS_LAN_INIT_DONE; 1768 ew32(STATUS, data); 1769 } 1770 1771 /** 1772 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset 1773 * @hw: pointer to the HW structure 1774 **/ 1775 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw) 1776 { 1777 s32 ret_val = 0; 1778 u16 reg; 1779 1780 if (e1000_check_reset_block(hw)) 1781 goto out; 1782 1783 /* Allow time for h/w to get to quiescent state after reset */ 1784 usleep_range(10000, 20000); 1785 1786 /* Perform any necessary post-reset workarounds */ 1787 switch (hw->mac.type) { 1788 case e1000_pchlan: 1789 ret_val = e1000_hv_phy_workarounds_ich8lan(hw); 1790 if (ret_val) 1791 goto out; 1792 break; 1793 case e1000_pch2lan: 1794 ret_val = e1000_lv_phy_workarounds_ich8lan(hw); 1795 if (ret_val) 1796 goto out; 1797 break; 1798 default: 1799 break; 1800 } 1801 1802 /* Clear the host wakeup bit after lcd reset */ 1803 if (hw->mac.type >= e1000_pchlan) { 1804 e1e_rphy(hw, BM_PORT_GEN_CFG, ®); 1805 reg &= ~BM_WUC_HOST_WU_BIT; 1806 e1e_wphy(hw, BM_PORT_GEN_CFG, reg); 1807 } 1808 1809 /* Configure the LCD with the extended configuration region in NVM */ 1810 ret_val = e1000_sw_lcd_config_ich8lan(hw); 1811 if (ret_val) 1812 goto out; 1813 1814 /* Configure the LCD with the OEM bits in NVM */ 1815 ret_val = e1000_oem_bits_config_ich8lan(hw, true); 1816 1817 if (hw->mac.type == e1000_pch2lan) { 1818 /* Ungate automatic PHY configuration on non-managed 82579 */ 1819 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 1820 usleep_range(10000, 20000); 1821 e1000_gate_hw_phy_config_ich8lan(hw, false); 1822 } 1823 1824 /* Set EEE LPI Update Timer to 200usec */ 1825 ret_val = hw->phy.ops.acquire(hw); 1826 if (ret_val) 1827 goto out; 1828 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, 1829 I82579_LPI_UPDATE_TIMER); 1830 if (ret_val) 1831 goto release; 1832 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA, 1833 0x1387); 1834 release: 1835 hw->phy.ops.release(hw); 1836 } 1837 1838 out: 1839 return ret_val; 1840 } 1841 1842 /** 1843 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset 1844 * @hw: pointer to the HW structure 1845 * 1846 * Resets the PHY 1847 * This is a function pointer entry point called by drivers 1848 * or other shared routines. 1849 **/ 1850 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw) 1851 { 1852 s32 ret_val = 0; 1853 1854 /* Gate automatic PHY configuration by hardware on non-managed 82579 */ 1855 if ((hw->mac.type == e1000_pch2lan) && 1856 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) 1857 e1000_gate_hw_phy_config_ich8lan(hw, true); 1858 1859 ret_val = e1000e_phy_hw_reset_generic(hw); 1860 if (ret_val) 1861 goto out; 1862 1863 ret_val = e1000_post_phy_reset_ich8lan(hw); 1864 1865 out: 1866 return ret_val; 1867 } 1868 1869 /** 1870 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state 1871 * @hw: pointer to the HW structure 1872 * @active: true to enable LPLU, false to disable 1873 * 1874 * Sets the LPLU state according to the active flag. For PCH, if OEM write 1875 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set 1876 * the phy speed. This function will manually set the LPLU bit and restart 1877 * auto-neg as hw would do. D3 and D0 LPLU will call the same function 1878 * since it configures the same bit. 1879 **/ 1880 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active) 1881 { 1882 s32 ret_val = 0; 1883 u16 oem_reg; 1884 1885 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg); 1886 if (ret_val) 1887 goto out; 1888 1889 if (active) 1890 oem_reg |= HV_OEM_BITS_LPLU; 1891 else 1892 oem_reg &= ~HV_OEM_BITS_LPLU; 1893 1894 oem_reg |= HV_OEM_BITS_RESTART_AN; 1895 ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg); 1896 1897 out: 1898 return ret_val; 1899 } 1900 1901 /** 1902 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state 1903 * @hw: pointer to the HW structure 1904 * @active: true to enable LPLU, false to disable 1905 * 1906 * Sets the LPLU D0 state according to the active flag. When 1907 * activating LPLU this function also disables smart speed 1908 * and vice versa. LPLU will not be activated unless the 1909 * device autonegotiation advertisement meets standards of 1910 * either 10 or 10/100 or 10/100/1000 at all duplexes. 1911 * This is a function pointer entry point only called by 1912 * PHY setup routines. 1913 **/ 1914 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active) 1915 { 1916 struct e1000_phy_info *phy = &hw->phy; 1917 u32 phy_ctrl; 1918 s32 ret_val = 0; 1919 u16 data; 1920 1921 if (phy->type == e1000_phy_ife) 1922 return ret_val; 1923 1924 phy_ctrl = er32(PHY_CTRL); 1925 1926 if (active) { 1927 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; 1928 ew32(PHY_CTRL, phy_ctrl); 1929 1930 if (phy->type != e1000_phy_igp_3) 1931 return 0; 1932 1933 /* 1934 * Call gig speed drop workaround on LPLU before accessing 1935 * any PHY registers 1936 */ 1937 if (hw->mac.type == e1000_ich8lan) 1938 e1000e_gig_downshift_workaround_ich8lan(hw); 1939 1940 /* When LPLU is enabled, we should disable SmartSpeed */ 1941 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); 1942 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 1943 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); 1944 if (ret_val) 1945 return ret_val; 1946 } else { 1947 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; 1948 ew32(PHY_CTRL, phy_ctrl); 1949 1950 if (phy->type != e1000_phy_igp_3) 1951 return 0; 1952 1953 /* 1954 * LPLU and SmartSpeed are mutually exclusive. LPLU is used 1955 * during Dx states where the power conservation is most 1956 * important. During driver activity we should enable 1957 * SmartSpeed, so performance is maintained. 1958 */ 1959 if (phy->smart_speed == e1000_smart_speed_on) { 1960 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 1961 &data); 1962 if (ret_val) 1963 return ret_val; 1964 1965 data |= IGP01E1000_PSCFR_SMART_SPEED; 1966 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 1967 data); 1968 if (ret_val) 1969 return ret_val; 1970 } else if (phy->smart_speed == e1000_smart_speed_off) { 1971 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 1972 &data); 1973 if (ret_val) 1974 return ret_val; 1975 1976 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 1977 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 1978 data); 1979 if (ret_val) 1980 return ret_val; 1981 } 1982 } 1983 1984 return 0; 1985 } 1986 1987 /** 1988 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state 1989 * @hw: pointer to the HW structure 1990 * @active: true to enable LPLU, false to disable 1991 * 1992 * Sets the LPLU D3 state according to the active flag. When 1993 * activating LPLU this function also disables smart speed 1994 * and vice versa. LPLU will not be activated unless the 1995 * device autonegotiation advertisement meets standards of 1996 * either 10 or 10/100 or 10/100/1000 at all duplexes. 1997 * This is a function pointer entry point only called by 1998 * PHY setup routines. 1999 **/ 2000 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active) 2001 { 2002 struct e1000_phy_info *phy = &hw->phy; 2003 u32 phy_ctrl; 2004 s32 ret_val; 2005 u16 data; 2006 2007 phy_ctrl = er32(PHY_CTRL); 2008 2009 if (!active) { 2010 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; 2011 ew32(PHY_CTRL, phy_ctrl); 2012 2013 if (phy->type != e1000_phy_igp_3) 2014 return 0; 2015 2016 /* 2017 * LPLU and SmartSpeed are mutually exclusive. LPLU is used 2018 * during Dx states where the power conservation is most 2019 * important. During driver activity we should enable 2020 * SmartSpeed, so performance is maintained. 2021 */ 2022 if (phy->smart_speed == e1000_smart_speed_on) { 2023 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 2024 &data); 2025 if (ret_val) 2026 return ret_val; 2027 2028 data |= IGP01E1000_PSCFR_SMART_SPEED; 2029 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 2030 data); 2031 if (ret_val) 2032 return ret_val; 2033 } else if (phy->smart_speed == e1000_smart_speed_off) { 2034 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 2035 &data); 2036 if (ret_val) 2037 return ret_val; 2038 2039 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 2040 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 2041 data); 2042 if (ret_val) 2043 return ret_val; 2044 } 2045 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || 2046 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || 2047 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { 2048 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; 2049 ew32(PHY_CTRL, phy_ctrl); 2050 2051 if (phy->type != e1000_phy_igp_3) 2052 return 0; 2053 2054 /* 2055 * Call gig speed drop workaround on LPLU before accessing 2056 * any PHY registers 2057 */ 2058 if (hw->mac.type == e1000_ich8lan) 2059 e1000e_gig_downshift_workaround_ich8lan(hw); 2060 2061 /* When LPLU is enabled, we should disable SmartSpeed */ 2062 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); 2063 if (ret_val) 2064 return ret_val; 2065 2066 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 2067 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); 2068 } 2069 2070 return 0; 2071 } 2072 2073 /** 2074 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1 2075 * @hw: pointer to the HW structure 2076 * @bank: pointer to the variable that returns the active bank 2077 * 2078 * Reads signature byte from the NVM using the flash access registers. 2079 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank. 2080 **/ 2081 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank) 2082 { 2083 u32 eecd; 2084 struct e1000_nvm_info *nvm = &hw->nvm; 2085 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16); 2086 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1; 2087 u8 sig_byte = 0; 2088 s32 ret_val = 0; 2089 2090 switch (hw->mac.type) { 2091 case e1000_ich8lan: 2092 case e1000_ich9lan: 2093 eecd = er32(EECD); 2094 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) == 2095 E1000_EECD_SEC1VAL_VALID_MASK) { 2096 if (eecd & E1000_EECD_SEC1VAL) 2097 *bank = 1; 2098 else 2099 *bank = 0; 2100 2101 return 0; 2102 } 2103 e_dbg("Unable to determine valid NVM bank via EEC - " 2104 "reading flash signature\n"); 2105 /* fall-thru */ 2106 default: 2107 /* set bank to 0 in case flash read fails */ 2108 *bank = 0; 2109 2110 /* Check bank 0 */ 2111 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset, 2112 &sig_byte); 2113 if (ret_val) 2114 return ret_val; 2115 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 2116 E1000_ICH_NVM_SIG_VALUE) { 2117 *bank = 0; 2118 return 0; 2119 } 2120 2121 /* Check bank 1 */ 2122 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset + 2123 bank1_offset, 2124 &sig_byte); 2125 if (ret_val) 2126 return ret_val; 2127 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 2128 E1000_ICH_NVM_SIG_VALUE) { 2129 *bank = 1; 2130 return 0; 2131 } 2132 2133 e_dbg("ERROR: No valid NVM bank present\n"); 2134 return -E1000_ERR_NVM; 2135 } 2136 2137 return 0; 2138 } 2139 2140 /** 2141 * e1000_read_nvm_ich8lan - Read word(s) from the NVM 2142 * @hw: pointer to the HW structure 2143 * @offset: The offset (in bytes) of the word(s) to read. 2144 * @words: Size of data to read in words 2145 * @data: Pointer to the word(s) to read at offset. 2146 * 2147 * Reads a word(s) from the NVM using the flash access registers. 2148 **/ 2149 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, 2150 u16 *data) 2151 { 2152 struct e1000_nvm_info *nvm = &hw->nvm; 2153 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 2154 u32 act_offset; 2155 s32 ret_val = 0; 2156 u32 bank = 0; 2157 u16 i, word; 2158 2159 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || 2160 (words == 0)) { 2161 e_dbg("nvm parameter(s) out of bounds\n"); 2162 ret_val = -E1000_ERR_NVM; 2163 goto out; 2164 } 2165 2166 nvm->ops.acquire(hw); 2167 2168 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 2169 if (ret_val) { 2170 e_dbg("Could not detect valid bank, assuming bank 0\n"); 2171 bank = 0; 2172 } 2173 2174 act_offset = (bank) ? nvm->flash_bank_size : 0; 2175 act_offset += offset; 2176 2177 ret_val = 0; 2178 for (i = 0; i < words; i++) { 2179 if (dev_spec->shadow_ram[offset+i].modified) { 2180 data[i] = dev_spec->shadow_ram[offset+i].value; 2181 } else { 2182 ret_val = e1000_read_flash_word_ich8lan(hw, 2183 act_offset + i, 2184 &word); 2185 if (ret_val) 2186 break; 2187 data[i] = word; 2188 } 2189 } 2190 2191 nvm->ops.release(hw); 2192 2193 out: 2194 if (ret_val) 2195 e_dbg("NVM read error: %d\n", ret_val); 2196 2197 return ret_val; 2198 } 2199 2200 /** 2201 * e1000_flash_cycle_init_ich8lan - Initialize flash 2202 * @hw: pointer to the HW structure 2203 * 2204 * This function does initial flash setup so that a new read/write/erase cycle 2205 * can be started. 2206 **/ 2207 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw) 2208 { 2209 union ich8_hws_flash_status hsfsts; 2210 s32 ret_val = -E1000_ERR_NVM; 2211 2212 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 2213 2214 /* Check if the flash descriptor is valid */ 2215 if (hsfsts.hsf_status.fldesvalid == 0) { 2216 e_dbg("Flash descriptor invalid. " 2217 "SW Sequencing must be used.\n"); 2218 return -E1000_ERR_NVM; 2219 } 2220 2221 /* Clear FCERR and DAEL in hw status by writing 1 */ 2222 hsfsts.hsf_status.flcerr = 1; 2223 hsfsts.hsf_status.dael = 1; 2224 2225 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); 2226 2227 /* 2228 * Either we should have a hardware SPI cycle in progress 2229 * bit to check against, in order to start a new cycle or 2230 * FDONE bit should be changed in the hardware so that it 2231 * is 1 after hardware reset, which can then be used as an 2232 * indication whether a cycle is in progress or has been 2233 * completed. 2234 */ 2235 2236 if (hsfsts.hsf_status.flcinprog == 0) { 2237 /* 2238 * There is no cycle running at present, 2239 * so we can start a cycle. 2240 * Begin by setting Flash Cycle Done. 2241 */ 2242 hsfsts.hsf_status.flcdone = 1; 2243 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); 2244 ret_val = 0; 2245 } else { 2246 s32 i = 0; 2247 2248 /* 2249 * Otherwise poll for sometime so the current 2250 * cycle has a chance to end before giving up. 2251 */ 2252 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) { 2253 hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS); 2254 if (hsfsts.hsf_status.flcinprog == 0) { 2255 ret_val = 0; 2256 break; 2257 } 2258 udelay(1); 2259 } 2260 if (ret_val == 0) { 2261 /* 2262 * Successful in waiting for previous cycle to timeout, 2263 * now set the Flash Cycle Done. 2264 */ 2265 hsfsts.hsf_status.flcdone = 1; 2266 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); 2267 } else { 2268 e_dbg("Flash controller busy, cannot get access\n"); 2269 } 2270 } 2271 2272 return ret_val; 2273 } 2274 2275 /** 2276 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase) 2277 * @hw: pointer to the HW structure 2278 * @timeout: maximum time to wait for completion 2279 * 2280 * This function starts a flash cycle and waits for its completion. 2281 **/ 2282 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout) 2283 { 2284 union ich8_hws_flash_ctrl hsflctl; 2285 union ich8_hws_flash_status hsfsts; 2286 s32 ret_val = -E1000_ERR_NVM; 2287 u32 i = 0; 2288 2289 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ 2290 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 2291 hsflctl.hsf_ctrl.flcgo = 1; 2292 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 2293 2294 /* wait till FDONE bit is set to 1 */ 2295 do { 2296 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 2297 if (hsfsts.hsf_status.flcdone == 1) 2298 break; 2299 udelay(1); 2300 } while (i++ < timeout); 2301 2302 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) 2303 return 0; 2304 2305 return ret_val; 2306 } 2307 2308 /** 2309 * e1000_read_flash_word_ich8lan - Read word from flash 2310 * @hw: pointer to the HW structure 2311 * @offset: offset to data location 2312 * @data: pointer to the location for storing the data 2313 * 2314 * Reads the flash word at offset into data. Offset is converted 2315 * to bytes before read. 2316 **/ 2317 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, 2318 u16 *data) 2319 { 2320 /* Must convert offset into bytes. */ 2321 offset <<= 1; 2322 2323 return e1000_read_flash_data_ich8lan(hw, offset, 2, data); 2324 } 2325 2326 /** 2327 * e1000_read_flash_byte_ich8lan - Read byte from flash 2328 * @hw: pointer to the HW structure 2329 * @offset: The offset of the byte to read. 2330 * @data: Pointer to a byte to store the value read. 2331 * 2332 * Reads a single byte from the NVM using the flash access registers. 2333 **/ 2334 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, 2335 u8 *data) 2336 { 2337 s32 ret_val; 2338 u16 word = 0; 2339 2340 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word); 2341 if (ret_val) 2342 return ret_val; 2343 2344 *data = (u8)word; 2345 2346 return 0; 2347 } 2348 2349 /** 2350 * e1000_read_flash_data_ich8lan - Read byte or word from NVM 2351 * @hw: pointer to the HW structure 2352 * @offset: The offset (in bytes) of the byte or word to read. 2353 * @size: Size of data to read, 1=byte 2=word 2354 * @data: Pointer to the word to store the value read. 2355 * 2356 * Reads a byte or word from the NVM using the flash access registers. 2357 **/ 2358 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 2359 u8 size, u16 *data) 2360 { 2361 union ich8_hws_flash_status hsfsts; 2362 union ich8_hws_flash_ctrl hsflctl; 2363 u32 flash_linear_addr; 2364 u32 flash_data = 0; 2365 s32 ret_val = -E1000_ERR_NVM; 2366 u8 count = 0; 2367 2368 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) 2369 return -E1000_ERR_NVM; 2370 2371 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) + 2372 hw->nvm.flash_base_addr; 2373 2374 do { 2375 udelay(1); 2376 /* Steps */ 2377 ret_val = e1000_flash_cycle_init_ich8lan(hw); 2378 if (ret_val != 0) 2379 break; 2380 2381 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 2382 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ 2383 hsflctl.hsf_ctrl.fldbcount = size - 1; 2384 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; 2385 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 2386 2387 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 2388 2389 ret_val = e1000_flash_cycle_ich8lan(hw, 2390 ICH_FLASH_READ_COMMAND_TIMEOUT); 2391 2392 /* 2393 * Check if FCERR is set to 1, if set to 1, clear it 2394 * and try the whole sequence a few more times, else 2395 * read in (shift in) the Flash Data0, the order is 2396 * least significant byte first msb to lsb 2397 */ 2398 if (ret_val == 0) { 2399 flash_data = er32flash(ICH_FLASH_FDATA0); 2400 if (size == 1) 2401 *data = (u8)(flash_data & 0x000000FF); 2402 else if (size == 2) 2403 *data = (u16)(flash_data & 0x0000FFFF); 2404 break; 2405 } else { 2406 /* 2407 * If we've gotten here, then things are probably 2408 * completely hosed, but if the error condition is 2409 * detected, it won't hurt to give it another try... 2410 * ICH_FLASH_CYCLE_REPEAT_COUNT times. 2411 */ 2412 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 2413 if (hsfsts.hsf_status.flcerr == 1) { 2414 /* Repeat for some time before giving up. */ 2415 continue; 2416 } else if (hsfsts.hsf_status.flcdone == 0) { 2417 e_dbg("Timeout error - flash cycle " 2418 "did not complete.\n"); 2419 break; 2420 } 2421 } 2422 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 2423 2424 return ret_val; 2425 } 2426 2427 /** 2428 * e1000_write_nvm_ich8lan - Write word(s) to the NVM 2429 * @hw: pointer to the HW structure 2430 * @offset: The offset (in bytes) of the word(s) to write. 2431 * @words: Size of data to write in words 2432 * @data: Pointer to the word(s) to write at offset. 2433 * 2434 * Writes a byte or word to the NVM using the flash access registers. 2435 **/ 2436 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, 2437 u16 *data) 2438 { 2439 struct e1000_nvm_info *nvm = &hw->nvm; 2440 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 2441 u16 i; 2442 2443 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || 2444 (words == 0)) { 2445 e_dbg("nvm parameter(s) out of bounds\n"); 2446 return -E1000_ERR_NVM; 2447 } 2448 2449 nvm->ops.acquire(hw); 2450 2451 for (i = 0; i < words; i++) { 2452 dev_spec->shadow_ram[offset+i].modified = true; 2453 dev_spec->shadow_ram[offset+i].value = data[i]; 2454 } 2455 2456 nvm->ops.release(hw); 2457 2458 return 0; 2459 } 2460 2461 /** 2462 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM 2463 * @hw: pointer to the HW structure 2464 * 2465 * The NVM checksum is updated by calling the generic update_nvm_checksum, 2466 * which writes the checksum to the shadow ram. The changes in the shadow 2467 * ram are then committed to the EEPROM by processing each bank at a time 2468 * checking for the modified bit and writing only the pending changes. 2469 * After a successful commit, the shadow ram is cleared and is ready for 2470 * future writes. 2471 **/ 2472 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw) 2473 { 2474 struct e1000_nvm_info *nvm = &hw->nvm; 2475 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 2476 u32 i, act_offset, new_bank_offset, old_bank_offset, bank; 2477 s32 ret_val; 2478 u16 data; 2479 2480 ret_val = e1000e_update_nvm_checksum_generic(hw); 2481 if (ret_val) 2482 goto out; 2483 2484 if (nvm->type != e1000_nvm_flash_sw) 2485 goto out; 2486 2487 nvm->ops.acquire(hw); 2488 2489 /* 2490 * We're writing to the opposite bank so if we're on bank 1, 2491 * write to bank 0 etc. We also need to erase the segment that 2492 * is going to be written 2493 */ 2494 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 2495 if (ret_val) { 2496 e_dbg("Could not detect valid bank, assuming bank 0\n"); 2497 bank = 0; 2498 } 2499 2500 if (bank == 0) { 2501 new_bank_offset = nvm->flash_bank_size; 2502 old_bank_offset = 0; 2503 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); 2504 if (ret_val) 2505 goto release; 2506 } else { 2507 old_bank_offset = nvm->flash_bank_size; 2508 new_bank_offset = 0; 2509 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); 2510 if (ret_val) 2511 goto release; 2512 } 2513 2514 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { 2515 /* 2516 * Determine whether to write the value stored 2517 * in the other NVM bank or a modified value stored 2518 * in the shadow RAM 2519 */ 2520 if (dev_spec->shadow_ram[i].modified) { 2521 data = dev_spec->shadow_ram[i].value; 2522 } else { 2523 ret_val = e1000_read_flash_word_ich8lan(hw, i + 2524 old_bank_offset, 2525 &data); 2526 if (ret_val) 2527 break; 2528 } 2529 2530 /* 2531 * If the word is 0x13, then make sure the signature bits 2532 * (15:14) are 11b until the commit has completed. 2533 * This will allow us to write 10b which indicates the 2534 * signature is valid. We want to do this after the write 2535 * has completed so that we don't mark the segment valid 2536 * while the write is still in progress 2537 */ 2538 if (i == E1000_ICH_NVM_SIG_WORD) 2539 data |= E1000_ICH_NVM_SIG_MASK; 2540 2541 /* Convert offset to bytes. */ 2542 act_offset = (i + new_bank_offset) << 1; 2543 2544 udelay(100); 2545 /* Write the bytes to the new bank. */ 2546 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, 2547 act_offset, 2548 (u8)data); 2549 if (ret_val) 2550 break; 2551 2552 udelay(100); 2553 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, 2554 act_offset + 1, 2555 (u8)(data >> 8)); 2556 if (ret_val) 2557 break; 2558 } 2559 2560 /* 2561 * Don't bother writing the segment valid bits if sector 2562 * programming failed. 2563 */ 2564 if (ret_val) { 2565 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */ 2566 e_dbg("Flash commit failed.\n"); 2567 goto release; 2568 } 2569 2570 /* 2571 * Finally validate the new segment by setting bit 15:14 2572 * to 10b in word 0x13 , this can be done without an 2573 * erase as well since these bits are 11 to start with 2574 * and we need to change bit 14 to 0b 2575 */ 2576 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; 2577 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data); 2578 if (ret_val) 2579 goto release; 2580 2581 data &= 0xBFFF; 2582 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, 2583 act_offset * 2 + 1, 2584 (u8)(data >> 8)); 2585 if (ret_val) 2586 goto release; 2587 2588 /* 2589 * And invalidate the previously valid segment by setting 2590 * its signature word (0x13) high_byte to 0b. This can be 2591 * done without an erase because flash erase sets all bits 2592 * to 1's. We can write 1's to 0's without an erase 2593 */ 2594 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; 2595 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0); 2596 if (ret_val) 2597 goto release; 2598 2599 /* Great! Everything worked, we can now clear the cached entries. */ 2600 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { 2601 dev_spec->shadow_ram[i].modified = false; 2602 dev_spec->shadow_ram[i].value = 0xFFFF; 2603 } 2604 2605 release: 2606 nvm->ops.release(hw); 2607 2608 /* 2609 * Reload the EEPROM, or else modifications will not appear 2610 * until after the next adapter reset. 2611 */ 2612 if (!ret_val) { 2613 e1000e_reload_nvm(hw); 2614 usleep_range(10000, 20000); 2615 } 2616 2617 out: 2618 if (ret_val) 2619 e_dbg("NVM update error: %d\n", ret_val); 2620 2621 return ret_val; 2622 } 2623 2624 /** 2625 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum 2626 * @hw: pointer to the HW structure 2627 * 2628 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19. 2629 * If the bit is 0, that the EEPROM had been modified, but the checksum was not 2630 * calculated, in which case we need to calculate the checksum and set bit 6. 2631 **/ 2632 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw) 2633 { 2634 s32 ret_val; 2635 u16 data; 2636 2637 /* 2638 * Read 0x19 and check bit 6. If this bit is 0, the checksum 2639 * needs to be fixed. This bit is an indication that the NVM 2640 * was prepared by OEM software and did not calculate the 2641 * checksum...a likely scenario. 2642 */ 2643 ret_val = e1000_read_nvm(hw, 0x19, 1, &data); 2644 if (ret_val) 2645 return ret_val; 2646 2647 if ((data & 0x40) == 0) { 2648 data |= 0x40; 2649 ret_val = e1000_write_nvm(hw, 0x19, 1, &data); 2650 if (ret_val) 2651 return ret_val; 2652 ret_val = e1000e_update_nvm_checksum(hw); 2653 if (ret_val) 2654 return ret_val; 2655 } 2656 2657 return e1000e_validate_nvm_checksum_generic(hw); 2658 } 2659 2660 /** 2661 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only 2662 * @hw: pointer to the HW structure 2663 * 2664 * To prevent malicious write/erase of the NVM, set it to be read-only 2665 * so that the hardware ignores all write/erase cycles of the NVM via 2666 * the flash control registers. The shadow-ram copy of the NVM will 2667 * still be updated, however any updates to this copy will not stick 2668 * across driver reloads. 2669 **/ 2670 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw) 2671 { 2672 struct e1000_nvm_info *nvm = &hw->nvm; 2673 union ich8_flash_protected_range pr0; 2674 union ich8_hws_flash_status hsfsts; 2675 u32 gfpreg; 2676 2677 nvm->ops.acquire(hw); 2678 2679 gfpreg = er32flash(ICH_FLASH_GFPREG); 2680 2681 /* Write-protect GbE Sector of NVM */ 2682 pr0.regval = er32flash(ICH_FLASH_PR0); 2683 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK; 2684 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK); 2685 pr0.range.wpe = true; 2686 ew32flash(ICH_FLASH_PR0, pr0.regval); 2687 2688 /* 2689 * Lock down a subset of GbE Flash Control Registers, e.g. 2690 * PR0 to prevent the write-protection from being lifted. 2691 * Once FLOCKDN is set, the registers protected by it cannot 2692 * be written until FLOCKDN is cleared by a hardware reset. 2693 */ 2694 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 2695 hsfsts.hsf_status.flockdn = true; 2696 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval); 2697 2698 nvm->ops.release(hw); 2699 } 2700 2701 /** 2702 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM 2703 * @hw: pointer to the HW structure 2704 * @offset: The offset (in bytes) of the byte/word to read. 2705 * @size: Size of data to read, 1=byte 2=word 2706 * @data: The byte(s) to write to the NVM. 2707 * 2708 * Writes one/two bytes to the NVM using the flash access registers. 2709 **/ 2710 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 2711 u8 size, u16 data) 2712 { 2713 union ich8_hws_flash_status hsfsts; 2714 union ich8_hws_flash_ctrl hsflctl; 2715 u32 flash_linear_addr; 2716 u32 flash_data = 0; 2717 s32 ret_val; 2718 u8 count = 0; 2719 2720 if (size < 1 || size > 2 || data > size * 0xff || 2721 offset > ICH_FLASH_LINEAR_ADDR_MASK) 2722 return -E1000_ERR_NVM; 2723 2724 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) + 2725 hw->nvm.flash_base_addr; 2726 2727 do { 2728 udelay(1); 2729 /* Steps */ 2730 ret_val = e1000_flash_cycle_init_ich8lan(hw); 2731 if (ret_val) 2732 break; 2733 2734 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 2735 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ 2736 hsflctl.hsf_ctrl.fldbcount = size -1; 2737 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; 2738 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 2739 2740 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 2741 2742 if (size == 1) 2743 flash_data = (u32)data & 0x00FF; 2744 else 2745 flash_data = (u32)data; 2746 2747 ew32flash(ICH_FLASH_FDATA0, flash_data); 2748 2749 /* 2750 * check if FCERR is set to 1 , if set to 1, clear it 2751 * and try the whole sequence a few more times else done 2752 */ 2753 ret_val = e1000_flash_cycle_ich8lan(hw, 2754 ICH_FLASH_WRITE_COMMAND_TIMEOUT); 2755 if (!ret_val) 2756 break; 2757 2758 /* 2759 * If we're here, then things are most likely 2760 * completely hosed, but if the error condition 2761 * is detected, it won't hurt to give it another 2762 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. 2763 */ 2764 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 2765 if (hsfsts.hsf_status.flcerr == 1) 2766 /* Repeat for some time before giving up. */ 2767 continue; 2768 if (hsfsts.hsf_status.flcdone == 0) { 2769 e_dbg("Timeout error - flash cycle " 2770 "did not complete."); 2771 break; 2772 } 2773 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 2774 2775 return ret_val; 2776 } 2777 2778 /** 2779 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM 2780 * @hw: pointer to the HW structure 2781 * @offset: The index of the byte to read. 2782 * @data: The byte to write to the NVM. 2783 * 2784 * Writes a single byte to the NVM using the flash access registers. 2785 **/ 2786 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, 2787 u8 data) 2788 { 2789 u16 word = (u16)data; 2790 2791 return e1000_write_flash_data_ich8lan(hw, offset, 1, word); 2792 } 2793 2794 /** 2795 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM 2796 * @hw: pointer to the HW structure 2797 * @offset: The offset of the byte to write. 2798 * @byte: The byte to write to the NVM. 2799 * 2800 * Writes a single byte to the NVM using the flash access registers. 2801 * Goes through a retry algorithm before giving up. 2802 **/ 2803 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, 2804 u32 offset, u8 byte) 2805 { 2806 s32 ret_val; 2807 u16 program_retries; 2808 2809 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); 2810 if (!ret_val) 2811 return ret_val; 2812 2813 for (program_retries = 0; program_retries < 100; program_retries++) { 2814 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset); 2815 udelay(100); 2816 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); 2817 if (!ret_val) 2818 break; 2819 } 2820 if (program_retries == 100) 2821 return -E1000_ERR_NVM; 2822 2823 return 0; 2824 } 2825 2826 /** 2827 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM 2828 * @hw: pointer to the HW structure 2829 * @bank: 0 for first bank, 1 for second bank, etc. 2830 * 2831 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based. 2832 * bank N is 4096 * N + flash_reg_addr. 2833 **/ 2834 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank) 2835 { 2836 struct e1000_nvm_info *nvm = &hw->nvm; 2837 union ich8_hws_flash_status hsfsts; 2838 union ich8_hws_flash_ctrl hsflctl; 2839 u32 flash_linear_addr; 2840 /* bank size is in 16bit words - adjust to bytes */ 2841 u32 flash_bank_size = nvm->flash_bank_size * 2; 2842 s32 ret_val; 2843 s32 count = 0; 2844 s32 j, iteration, sector_size; 2845 2846 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 2847 2848 /* 2849 * Determine HW Sector size: Read BERASE bits of hw flash status 2850 * register 2851 * 00: The Hw sector is 256 bytes, hence we need to erase 16 2852 * consecutive sectors. The start index for the nth Hw sector 2853 * can be calculated as = bank * 4096 + n * 256 2854 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. 2855 * The start index for the nth Hw sector can be calculated 2856 * as = bank * 4096 2857 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192 2858 * (ich9 only, otherwise error condition) 2859 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536 2860 */ 2861 switch (hsfsts.hsf_status.berasesz) { 2862 case 0: 2863 /* Hw sector size 256 */ 2864 sector_size = ICH_FLASH_SEG_SIZE_256; 2865 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256; 2866 break; 2867 case 1: 2868 sector_size = ICH_FLASH_SEG_SIZE_4K; 2869 iteration = 1; 2870 break; 2871 case 2: 2872 sector_size = ICH_FLASH_SEG_SIZE_8K; 2873 iteration = 1; 2874 break; 2875 case 3: 2876 sector_size = ICH_FLASH_SEG_SIZE_64K; 2877 iteration = 1; 2878 break; 2879 default: 2880 return -E1000_ERR_NVM; 2881 } 2882 2883 /* Start with the base address, then add the sector offset. */ 2884 flash_linear_addr = hw->nvm.flash_base_addr; 2885 flash_linear_addr += (bank) ? flash_bank_size : 0; 2886 2887 for (j = 0; j < iteration ; j++) { 2888 do { 2889 /* Steps */ 2890 ret_val = e1000_flash_cycle_init_ich8lan(hw); 2891 if (ret_val) 2892 return ret_val; 2893 2894 /* 2895 * Write a value 11 (block Erase) in Flash 2896 * Cycle field in hw flash control 2897 */ 2898 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 2899 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; 2900 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 2901 2902 /* 2903 * Write the last 24 bits of an index within the 2904 * block into Flash Linear address field in Flash 2905 * Address. 2906 */ 2907 flash_linear_addr += (j * sector_size); 2908 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 2909 2910 ret_val = e1000_flash_cycle_ich8lan(hw, 2911 ICH_FLASH_ERASE_COMMAND_TIMEOUT); 2912 if (ret_val == 0) 2913 break; 2914 2915 /* 2916 * Check if FCERR is set to 1. If 1, 2917 * clear it and try the whole sequence 2918 * a few more times else Done 2919 */ 2920 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 2921 if (hsfsts.hsf_status.flcerr == 1) 2922 /* repeat for some time before giving up */ 2923 continue; 2924 else if (hsfsts.hsf_status.flcdone == 0) 2925 return ret_val; 2926 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT); 2927 } 2928 2929 return 0; 2930 } 2931 2932 /** 2933 * e1000_valid_led_default_ich8lan - Set the default LED settings 2934 * @hw: pointer to the HW structure 2935 * @data: Pointer to the LED settings 2936 * 2937 * Reads the LED default settings from the NVM to data. If the NVM LED 2938 * settings is all 0's or F's, set the LED default to a valid LED default 2939 * setting. 2940 **/ 2941 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data) 2942 { 2943 s32 ret_val; 2944 2945 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); 2946 if (ret_val) { 2947 e_dbg("NVM Read Error\n"); 2948 return ret_val; 2949 } 2950 2951 if (*data == ID_LED_RESERVED_0000 || 2952 *data == ID_LED_RESERVED_FFFF) 2953 *data = ID_LED_DEFAULT_ICH8LAN; 2954 2955 return 0; 2956 } 2957 2958 /** 2959 * e1000_id_led_init_pchlan - store LED configurations 2960 * @hw: pointer to the HW structure 2961 * 2962 * PCH does not control LEDs via the LEDCTL register, rather it uses 2963 * the PHY LED configuration register. 2964 * 2965 * PCH also does not have an "always on" or "always off" mode which 2966 * complicates the ID feature. Instead of using the "on" mode to indicate 2967 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()), 2968 * use "link_up" mode. The LEDs will still ID on request if there is no 2969 * link based on logic in e1000_led_[on|off]_pchlan(). 2970 **/ 2971 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw) 2972 { 2973 struct e1000_mac_info *mac = &hw->mac; 2974 s32 ret_val; 2975 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP; 2976 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT; 2977 u16 data, i, temp, shift; 2978 2979 /* Get default ID LED modes */ 2980 ret_val = hw->nvm.ops.valid_led_default(hw, &data); 2981 if (ret_val) 2982 goto out; 2983 2984 mac->ledctl_default = er32(LEDCTL); 2985 mac->ledctl_mode1 = mac->ledctl_default; 2986 mac->ledctl_mode2 = mac->ledctl_default; 2987 2988 for (i = 0; i < 4; i++) { 2989 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK; 2990 shift = (i * 5); 2991 switch (temp) { 2992 case ID_LED_ON1_DEF2: 2993 case ID_LED_ON1_ON2: 2994 case ID_LED_ON1_OFF2: 2995 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); 2996 mac->ledctl_mode1 |= (ledctl_on << shift); 2997 break; 2998 case ID_LED_OFF1_DEF2: 2999 case ID_LED_OFF1_ON2: 3000 case ID_LED_OFF1_OFF2: 3001 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); 3002 mac->ledctl_mode1 |= (ledctl_off << shift); 3003 break; 3004 default: 3005 /* Do nothing */ 3006 break; 3007 } 3008 switch (temp) { 3009 case ID_LED_DEF1_ON2: 3010 case ID_LED_ON1_ON2: 3011 case ID_LED_OFF1_ON2: 3012 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); 3013 mac->ledctl_mode2 |= (ledctl_on << shift); 3014 break; 3015 case ID_LED_DEF1_OFF2: 3016 case ID_LED_ON1_OFF2: 3017 case ID_LED_OFF1_OFF2: 3018 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); 3019 mac->ledctl_mode2 |= (ledctl_off << shift); 3020 break; 3021 default: 3022 /* Do nothing */ 3023 break; 3024 } 3025 } 3026 3027 out: 3028 return ret_val; 3029 } 3030 3031 /** 3032 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width 3033 * @hw: pointer to the HW structure 3034 * 3035 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability 3036 * register, so the the bus width is hard coded. 3037 **/ 3038 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw) 3039 { 3040 struct e1000_bus_info *bus = &hw->bus; 3041 s32 ret_val; 3042 3043 ret_val = e1000e_get_bus_info_pcie(hw); 3044 3045 /* 3046 * ICH devices are "PCI Express"-ish. They have 3047 * a configuration space, but do not contain 3048 * PCI Express Capability registers, so bus width 3049 * must be hardcoded. 3050 */ 3051 if (bus->width == e1000_bus_width_unknown) 3052 bus->width = e1000_bus_width_pcie_x1; 3053 3054 return ret_val; 3055 } 3056 3057 /** 3058 * e1000_reset_hw_ich8lan - Reset the hardware 3059 * @hw: pointer to the HW structure 3060 * 3061 * Does a full reset of the hardware which includes a reset of the PHY and 3062 * MAC. 3063 **/ 3064 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw) 3065 { 3066 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3067 u16 reg; 3068 u32 ctrl, kab; 3069 s32 ret_val; 3070 3071 /* 3072 * Prevent the PCI-E bus from sticking if there is no TLP connection 3073 * on the last TLP read/write transaction when MAC is reset. 3074 */ 3075 ret_val = e1000e_disable_pcie_master(hw); 3076 if (ret_val) 3077 e_dbg("PCI-E Master disable polling has failed.\n"); 3078 3079 e_dbg("Masking off all interrupts\n"); 3080 ew32(IMC, 0xffffffff); 3081 3082 /* 3083 * Disable the Transmit and Receive units. Then delay to allow 3084 * any pending transactions to complete before we hit the MAC 3085 * with the global reset. 3086 */ 3087 ew32(RCTL, 0); 3088 ew32(TCTL, E1000_TCTL_PSP); 3089 e1e_flush(); 3090 3091 usleep_range(10000, 20000); 3092 3093 /* Workaround for ICH8 bit corruption issue in FIFO memory */ 3094 if (hw->mac.type == e1000_ich8lan) { 3095 /* Set Tx and Rx buffer allocation to 8k apiece. */ 3096 ew32(PBA, E1000_PBA_8K); 3097 /* Set Packet Buffer Size to 16k. */ 3098 ew32(PBS, E1000_PBS_16K); 3099 } 3100 3101 if (hw->mac.type == e1000_pchlan) { 3102 /* Save the NVM K1 bit setting*/ 3103 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, ®); 3104 if (ret_val) 3105 return ret_val; 3106 3107 if (reg & E1000_NVM_K1_ENABLE) 3108 dev_spec->nvm_k1_enabled = true; 3109 else 3110 dev_spec->nvm_k1_enabled = false; 3111 } 3112 3113 ctrl = er32(CTRL); 3114 3115 if (!e1000_check_reset_block(hw)) { 3116 /* 3117 * Full-chip reset requires MAC and PHY reset at the same 3118 * time to make sure the interface between MAC and the 3119 * external PHY is reset. 3120 */ 3121 ctrl |= E1000_CTRL_PHY_RST; 3122 3123 /* 3124 * Gate automatic PHY configuration by hardware on 3125 * non-managed 82579 3126 */ 3127 if ((hw->mac.type == e1000_pch2lan) && 3128 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) 3129 e1000_gate_hw_phy_config_ich8lan(hw, true); 3130 } 3131 ret_val = e1000_acquire_swflag_ich8lan(hw); 3132 e_dbg("Issuing a global reset to ich8lan\n"); 3133 ew32(CTRL, (ctrl | E1000_CTRL_RST)); 3134 /* cannot issue a flush here because it hangs the hardware */ 3135 msleep(20); 3136 3137 if (!ret_val) 3138 mutex_unlock(&swflag_mutex); 3139 3140 if (ctrl & E1000_CTRL_PHY_RST) { 3141 ret_val = hw->phy.ops.get_cfg_done(hw); 3142 if (ret_val) 3143 goto out; 3144 3145 ret_val = e1000_post_phy_reset_ich8lan(hw); 3146 if (ret_val) 3147 goto out; 3148 } 3149 3150 /* 3151 * For PCH, this write will make sure that any noise 3152 * will be detected as a CRC error and be dropped rather than show up 3153 * as a bad packet to the DMA engine. 3154 */ 3155 if (hw->mac.type == e1000_pchlan) 3156 ew32(CRC_OFFSET, 0x65656565); 3157 3158 ew32(IMC, 0xffffffff); 3159 er32(ICR); 3160 3161 kab = er32(KABGTXD); 3162 kab |= E1000_KABGTXD_BGSQLBIAS; 3163 ew32(KABGTXD, kab); 3164 3165 out: 3166 return ret_val; 3167 } 3168 3169 /** 3170 * e1000_init_hw_ich8lan - Initialize the hardware 3171 * @hw: pointer to the HW structure 3172 * 3173 * Prepares the hardware for transmit and receive by doing the following: 3174 * - initialize hardware bits 3175 * - initialize LED identification 3176 * - setup receive address registers 3177 * - setup flow control 3178 * - setup transmit descriptors 3179 * - clear statistics 3180 **/ 3181 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw) 3182 { 3183 struct e1000_mac_info *mac = &hw->mac; 3184 u32 ctrl_ext, txdctl, snoop; 3185 s32 ret_val; 3186 u16 i; 3187 3188 e1000_initialize_hw_bits_ich8lan(hw); 3189 3190 /* Initialize identification LED */ 3191 ret_val = mac->ops.id_led_init(hw); 3192 if (ret_val) 3193 e_dbg("Error initializing identification LED\n"); 3194 /* This is not fatal and we should not stop init due to this */ 3195 3196 /* Setup the receive address. */ 3197 e1000e_init_rx_addrs(hw, mac->rar_entry_count); 3198 3199 /* Zero out the Multicast HASH table */ 3200 e_dbg("Zeroing the MTA\n"); 3201 for (i = 0; i < mac->mta_reg_count; i++) 3202 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); 3203 3204 /* 3205 * The 82578 Rx buffer will stall if wakeup is enabled in host and 3206 * the ME. Disable wakeup by clearing the host wakeup bit. 3207 * Reset the phy after disabling host wakeup to reset the Rx buffer. 3208 */ 3209 if (hw->phy.type == e1000_phy_82578) { 3210 e1e_rphy(hw, BM_PORT_GEN_CFG, &i); 3211 i &= ~BM_WUC_HOST_WU_BIT; 3212 e1e_wphy(hw, BM_PORT_GEN_CFG, i); 3213 ret_val = e1000_phy_hw_reset_ich8lan(hw); 3214 if (ret_val) 3215 return ret_val; 3216 } 3217 3218 /* Setup link and flow control */ 3219 ret_val = e1000_setup_link_ich8lan(hw); 3220 3221 /* Set the transmit descriptor write-back policy for both queues */ 3222 txdctl = er32(TXDCTL(0)); 3223 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) | 3224 E1000_TXDCTL_FULL_TX_DESC_WB; 3225 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) | 3226 E1000_TXDCTL_MAX_TX_DESC_PREFETCH; 3227 ew32(TXDCTL(0), txdctl); 3228 txdctl = er32(TXDCTL(1)); 3229 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) | 3230 E1000_TXDCTL_FULL_TX_DESC_WB; 3231 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) | 3232 E1000_TXDCTL_MAX_TX_DESC_PREFETCH; 3233 ew32(TXDCTL(1), txdctl); 3234 3235 /* 3236 * ICH8 has opposite polarity of no_snoop bits. 3237 * By default, we should use snoop behavior. 3238 */ 3239 if (mac->type == e1000_ich8lan) 3240 snoop = PCIE_ICH8_SNOOP_ALL; 3241 else 3242 snoop = (u32) ~(PCIE_NO_SNOOP_ALL); 3243 e1000e_set_pcie_no_snoop(hw, snoop); 3244 3245 ctrl_ext = er32(CTRL_EXT); 3246 ctrl_ext |= E1000_CTRL_EXT_RO_DIS; 3247 ew32(CTRL_EXT, ctrl_ext); 3248 3249 /* 3250 * Clear all of the statistics registers (clear on read). It is 3251 * important that we do this after we have tried to establish link 3252 * because the symbol error count will increment wildly if there 3253 * is no link. 3254 */ 3255 e1000_clear_hw_cntrs_ich8lan(hw); 3256 3257 return 0; 3258 } 3259 /** 3260 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits 3261 * @hw: pointer to the HW structure 3262 * 3263 * Sets/Clears required hardware bits necessary for correctly setting up the 3264 * hardware for transmit and receive. 3265 **/ 3266 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw) 3267 { 3268 u32 reg; 3269 3270 /* Extended Device Control */ 3271 reg = er32(CTRL_EXT); 3272 reg |= (1 << 22); 3273 /* Enable PHY low-power state when MAC is at D3 w/o WoL */ 3274 if (hw->mac.type >= e1000_pchlan) 3275 reg |= E1000_CTRL_EXT_PHYPDEN; 3276 ew32(CTRL_EXT, reg); 3277 3278 /* Transmit Descriptor Control 0 */ 3279 reg = er32(TXDCTL(0)); 3280 reg |= (1 << 22); 3281 ew32(TXDCTL(0), reg); 3282 3283 /* Transmit Descriptor Control 1 */ 3284 reg = er32(TXDCTL(1)); 3285 reg |= (1 << 22); 3286 ew32(TXDCTL(1), reg); 3287 3288 /* Transmit Arbitration Control 0 */ 3289 reg = er32(TARC(0)); 3290 if (hw->mac.type == e1000_ich8lan) 3291 reg |= (1 << 28) | (1 << 29); 3292 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27); 3293 ew32(TARC(0), reg); 3294 3295 /* Transmit Arbitration Control 1 */ 3296 reg = er32(TARC(1)); 3297 if (er32(TCTL) & E1000_TCTL_MULR) 3298 reg &= ~(1 << 28); 3299 else 3300 reg |= (1 << 28); 3301 reg |= (1 << 24) | (1 << 26) | (1 << 30); 3302 ew32(TARC(1), reg); 3303 3304 /* Device Status */ 3305 if (hw->mac.type == e1000_ich8lan) { 3306 reg = er32(STATUS); 3307 reg &= ~(1 << 31); 3308 ew32(STATUS, reg); 3309 } 3310 3311 /* 3312 * work-around descriptor data corruption issue during nfs v2 udp 3313 * traffic, just disable the nfs filtering capability 3314 */ 3315 reg = er32(RFCTL); 3316 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS); 3317 ew32(RFCTL, reg); 3318 } 3319 3320 /** 3321 * e1000_setup_link_ich8lan - Setup flow control and link settings 3322 * @hw: pointer to the HW structure 3323 * 3324 * Determines which flow control settings to use, then configures flow 3325 * control. Calls the appropriate media-specific link configuration 3326 * function. Assuming the adapter has a valid link partner, a valid link 3327 * should be established. Assumes the hardware has previously been reset 3328 * and the transmitter and receiver are not enabled. 3329 **/ 3330 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw) 3331 { 3332 s32 ret_val; 3333 3334 if (e1000_check_reset_block(hw)) 3335 return 0; 3336 3337 /* 3338 * ICH parts do not have a word in the NVM to determine 3339 * the default flow control setting, so we explicitly 3340 * set it to full. 3341 */ 3342 if (hw->fc.requested_mode == e1000_fc_default) { 3343 /* Workaround h/w hang when Tx flow control enabled */ 3344 if (hw->mac.type == e1000_pchlan) 3345 hw->fc.requested_mode = e1000_fc_rx_pause; 3346 else 3347 hw->fc.requested_mode = e1000_fc_full; 3348 } 3349 3350 /* 3351 * Save off the requested flow control mode for use later. Depending 3352 * on the link partner's capabilities, we may or may not use this mode. 3353 */ 3354 hw->fc.current_mode = hw->fc.requested_mode; 3355 3356 e_dbg("After fix-ups FlowControl is now = %x\n", 3357 hw->fc.current_mode); 3358 3359 /* Continue to configure the copper link. */ 3360 ret_val = e1000_setup_copper_link_ich8lan(hw); 3361 if (ret_val) 3362 return ret_val; 3363 3364 ew32(FCTTV, hw->fc.pause_time); 3365 if ((hw->phy.type == e1000_phy_82578) || 3366 (hw->phy.type == e1000_phy_82579) || 3367 (hw->phy.type == e1000_phy_82577)) { 3368 ew32(FCRTV_PCH, hw->fc.refresh_time); 3369 3370 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27), 3371 hw->fc.pause_time); 3372 if (ret_val) 3373 return ret_val; 3374 } 3375 3376 return e1000e_set_fc_watermarks(hw); 3377 } 3378 3379 /** 3380 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface 3381 * @hw: pointer to the HW structure 3382 * 3383 * Configures the kumeran interface to the PHY to wait the appropriate time 3384 * when polling the PHY, then call the generic setup_copper_link to finish 3385 * configuring the copper link. 3386 **/ 3387 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw) 3388 { 3389 u32 ctrl; 3390 s32 ret_val; 3391 u16 reg_data; 3392 3393 ctrl = er32(CTRL); 3394 ctrl |= E1000_CTRL_SLU; 3395 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 3396 ew32(CTRL, ctrl); 3397 3398 /* 3399 * Set the mac to wait the maximum time between each iteration 3400 * and increase the max iterations when polling the phy; 3401 * this fixes erroneous timeouts at 10Mbps. 3402 */ 3403 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF); 3404 if (ret_val) 3405 return ret_val; 3406 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, 3407 ®_data); 3408 if (ret_val) 3409 return ret_val; 3410 reg_data |= 0x3F; 3411 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, 3412 reg_data); 3413 if (ret_val) 3414 return ret_val; 3415 3416 switch (hw->phy.type) { 3417 case e1000_phy_igp_3: 3418 ret_val = e1000e_copper_link_setup_igp(hw); 3419 if (ret_val) 3420 return ret_val; 3421 break; 3422 case e1000_phy_bm: 3423 case e1000_phy_82578: 3424 ret_val = e1000e_copper_link_setup_m88(hw); 3425 if (ret_val) 3426 return ret_val; 3427 break; 3428 case e1000_phy_82577: 3429 case e1000_phy_82579: 3430 ret_val = e1000_copper_link_setup_82577(hw); 3431 if (ret_val) 3432 return ret_val; 3433 break; 3434 case e1000_phy_ife: 3435 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, ®_data); 3436 if (ret_val) 3437 return ret_val; 3438 3439 reg_data &= ~IFE_PMC_AUTO_MDIX; 3440 3441 switch (hw->phy.mdix) { 3442 case 1: 3443 reg_data &= ~IFE_PMC_FORCE_MDIX; 3444 break; 3445 case 2: 3446 reg_data |= IFE_PMC_FORCE_MDIX; 3447 break; 3448 case 0: 3449 default: 3450 reg_data |= IFE_PMC_AUTO_MDIX; 3451 break; 3452 } 3453 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data); 3454 if (ret_val) 3455 return ret_val; 3456 break; 3457 default: 3458 break; 3459 } 3460 return e1000e_setup_copper_link(hw); 3461 } 3462 3463 /** 3464 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex 3465 * @hw: pointer to the HW structure 3466 * @speed: pointer to store current link speed 3467 * @duplex: pointer to store the current link duplex 3468 * 3469 * Calls the generic get_speed_and_duplex to retrieve the current link 3470 * information and then calls the Kumeran lock loss workaround for links at 3471 * gigabit speeds. 3472 **/ 3473 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed, 3474 u16 *duplex) 3475 { 3476 s32 ret_val; 3477 3478 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex); 3479 if (ret_val) 3480 return ret_val; 3481 3482 if ((hw->mac.type == e1000_ich8lan) && 3483 (hw->phy.type == e1000_phy_igp_3) && 3484 (*speed == SPEED_1000)) { 3485 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw); 3486 } 3487 3488 return ret_val; 3489 } 3490 3491 /** 3492 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround 3493 * @hw: pointer to the HW structure 3494 * 3495 * Work-around for 82566 Kumeran PCS lock loss: 3496 * On link status change (i.e. PCI reset, speed change) and link is up and 3497 * speed is gigabit- 3498 * 0) if workaround is optionally disabled do nothing 3499 * 1) wait 1ms for Kumeran link to come up 3500 * 2) check Kumeran Diagnostic register PCS lock loss bit 3501 * 3) if not set the link is locked (all is good), otherwise... 3502 * 4) reset the PHY 3503 * 5) repeat up to 10 times 3504 * Note: this is only called for IGP3 copper when speed is 1gb. 3505 **/ 3506 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw) 3507 { 3508 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3509 u32 phy_ctrl; 3510 s32 ret_val; 3511 u16 i, data; 3512 bool link; 3513 3514 if (!dev_spec->kmrn_lock_loss_workaround_enabled) 3515 return 0; 3516 3517 /* 3518 * Make sure link is up before proceeding. If not just return. 3519 * Attempting this while link is negotiating fouled up link 3520 * stability 3521 */ 3522 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 3523 if (!link) 3524 return 0; 3525 3526 for (i = 0; i < 10; i++) { 3527 /* read once to clear */ 3528 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); 3529 if (ret_val) 3530 return ret_val; 3531 /* and again to get new status */ 3532 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); 3533 if (ret_val) 3534 return ret_val; 3535 3536 /* check for PCS lock */ 3537 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) 3538 return 0; 3539 3540 /* Issue PHY reset */ 3541 e1000_phy_hw_reset(hw); 3542 mdelay(5); 3543 } 3544 /* Disable GigE link negotiation */ 3545 phy_ctrl = er32(PHY_CTRL); 3546 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE | 3547 E1000_PHY_CTRL_NOND0A_GBE_DISABLE); 3548 ew32(PHY_CTRL, phy_ctrl); 3549 3550 /* 3551 * Call gig speed drop workaround on Gig disable before accessing 3552 * any PHY registers 3553 */ 3554 e1000e_gig_downshift_workaround_ich8lan(hw); 3555 3556 /* unable to acquire PCS lock */ 3557 return -E1000_ERR_PHY; 3558 } 3559 3560 /** 3561 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state 3562 * @hw: pointer to the HW structure 3563 * @state: boolean value used to set the current Kumeran workaround state 3564 * 3565 * If ICH8, set the current Kumeran workaround state (enabled - true 3566 * /disabled - false). 3567 **/ 3568 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw, 3569 bool state) 3570 { 3571 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3572 3573 if (hw->mac.type != e1000_ich8lan) { 3574 e_dbg("Workaround applies to ICH8 only.\n"); 3575 return; 3576 } 3577 3578 dev_spec->kmrn_lock_loss_workaround_enabled = state; 3579 } 3580 3581 /** 3582 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3 3583 * @hw: pointer to the HW structure 3584 * 3585 * Workaround for 82566 power-down on D3 entry: 3586 * 1) disable gigabit link 3587 * 2) write VR power-down enable 3588 * 3) read it back 3589 * Continue if successful, else issue LCD reset and repeat 3590 **/ 3591 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw) 3592 { 3593 u32 reg; 3594 u16 data; 3595 u8 retry = 0; 3596 3597 if (hw->phy.type != e1000_phy_igp_3) 3598 return; 3599 3600 /* Try the workaround twice (if needed) */ 3601 do { 3602 /* Disable link */ 3603 reg = er32(PHY_CTRL); 3604 reg |= (E1000_PHY_CTRL_GBE_DISABLE | 3605 E1000_PHY_CTRL_NOND0A_GBE_DISABLE); 3606 ew32(PHY_CTRL, reg); 3607 3608 /* 3609 * Call gig speed drop workaround on Gig disable before 3610 * accessing any PHY registers 3611 */ 3612 if (hw->mac.type == e1000_ich8lan) 3613 e1000e_gig_downshift_workaround_ich8lan(hw); 3614 3615 /* Write VR power-down enable */ 3616 e1e_rphy(hw, IGP3_VR_CTRL, &data); 3617 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; 3618 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN); 3619 3620 /* Read it back and test */ 3621 e1e_rphy(hw, IGP3_VR_CTRL, &data); 3622 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; 3623 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry) 3624 break; 3625 3626 /* Issue PHY reset and repeat at most one more time */ 3627 reg = er32(CTRL); 3628 ew32(CTRL, reg | E1000_CTRL_PHY_RST); 3629 retry++; 3630 } while (retry); 3631 } 3632 3633 /** 3634 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working 3635 * @hw: pointer to the HW structure 3636 * 3637 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC), 3638 * LPLU, Gig disable, MDIC PHY reset): 3639 * 1) Set Kumeran Near-end loopback 3640 * 2) Clear Kumeran Near-end loopback 3641 * Should only be called for ICH8[m] devices with IGP_3 Phy. 3642 **/ 3643 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw) 3644 { 3645 s32 ret_val; 3646 u16 reg_data; 3647 3648 if ((hw->mac.type != e1000_ich8lan) || 3649 (hw->phy.type != e1000_phy_igp_3)) 3650 return; 3651 3652 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, 3653 ®_data); 3654 if (ret_val) 3655 return; 3656 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK; 3657 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, 3658 reg_data); 3659 if (ret_val) 3660 return; 3661 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK; 3662 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, 3663 reg_data); 3664 } 3665 3666 /** 3667 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx 3668 * @hw: pointer to the HW structure 3669 * 3670 * During S0 to Sx transition, it is possible the link remains at gig 3671 * instead of negotiating to a lower speed. Before going to Sx, set 3672 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation 3673 * to a lower speed. For PCH and newer parts, the OEM bits PHY register 3674 * (LED, GbE disable and LPLU configurations) also needs to be written. 3675 **/ 3676 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw) 3677 { 3678 u32 phy_ctrl; 3679 s32 ret_val; 3680 3681 phy_ctrl = er32(PHY_CTRL); 3682 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU | E1000_PHY_CTRL_GBE_DISABLE; 3683 ew32(PHY_CTRL, phy_ctrl); 3684 3685 if (hw->mac.type >= e1000_pchlan) { 3686 e1000_oem_bits_config_ich8lan(hw, false); 3687 ret_val = hw->phy.ops.acquire(hw); 3688 if (ret_val) 3689 return; 3690 e1000_write_smbus_addr(hw); 3691 hw->phy.ops.release(hw); 3692 } 3693 } 3694 3695 /** 3696 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0 3697 * @hw: pointer to the HW structure 3698 * 3699 * During Sx to S0 transitions on non-managed devices or managed devices 3700 * on which PHY resets are not blocked, if the PHY registers cannot be 3701 * accessed properly by the s/w toggle the LANPHYPC value to power cycle 3702 * the PHY. 3703 **/ 3704 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw) 3705 { 3706 u32 fwsm; 3707 3708 if (hw->mac.type != e1000_pch2lan) 3709 return; 3710 3711 fwsm = er32(FWSM); 3712 if (!(fwsm & E1000_ICH_FWSM_FW_VALID) || !e1000_check_reset_block(hw)) { 3713 u16 phy_id1, phy_id2; 3714 s32 ret_val; 3715 3716 ret_val = hw->phy.ops.acquire(hw); 3717 if (ret_val) { 3718 e_dbg("Failed to acquire PHY semaphore in resume\n"); 3719 return; 3720 } 3721 3722 /* Test access to the PHY registers by reading the ID regs */ 3723 ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_id1); 3724 if (ret_val) 3725 goto release; 3726 ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_id2); 3727 if (ret_val) 3728 goto release; 3729 3730 if (hw->phy.id == ((u32)(phy_id1 << 16) | 3731 (u32)(phy_id2 & PHY_REVISION_MASK))) 3732 goto release; 3733 3734 e1000_toggle_lanphypc_value_ich8lan(hw); 3735 3736 hw->phy.ops.release(hw); 3737 msleep(50); 3738 e1000_phy_hw_reset(hw); 3739 msleep(50); 3740 return; 3741 } 3742 3743 release: 3744 hw->phy.ops.release(hw); 3745 3746 return; 3747 } 3748 3749 /** 3750 * e1000_cleanup_led_ich8lan - Restore the default LED operation 3751 * @hw: pointer to the HW structure 3752 * 3753 * Return the LED back to the default configuration. 3754 **/ 3755 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw) 3756 { 3757 if (hw->phy.type == e1000_phy_ife) 3758 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); 3759 3760 ew32(LEDCTL, hw->mac.ledctl_default); 3761 return 0; 3762 } 3763 3764 /** 3765 * e1000_led_on_ich8lan - Turn LEDs on 3766 * @hw: pointer to the HW structure 3767 * 3768 * Turn on the LEDs. 3769 **/ 3770 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw) 3771 { 3772 if (hw->phy.type == e1000_phy_ife) 3773 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 3774 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); 3775 3776 ew32(LEDCTL, hw->mac.ledctl_mode2); 3777 return 0; 3778 } 3779 3780 /** 3781 * e1000_led_off_ich8lan - Turn LEDs off 3782 * @hw: pointer to the HW structure 3783 * 3784 * Turn off the LEDs. 3785 **/ 3786 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw) 3787 { 3788 if (hw->phy.type == e1000_phy_ife) 3789 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 3790 (IFE_PSCL_PROBE_MODE | 3791 IFE_PSCL_PROBE_LEDS_OFF)); 3792 3793 ew32(LEDCTL, hw->mac.ledctl_mode1); 3794 return 0; 3795 } 3796 3797 /** 3798 * e1000_setup_led_pchlan - Configures SW controllable LED 3799 * @hw: pointer to the HW structure 3800 * 3801 * This prepares the SW controllable LED for use. 3802 **/ 3803 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw) 3804 { 3805 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1); 3806 } 3807 3808 /** 3809 * e1000_cleanup_led_pchlan - Restore the default LED operation 3810 * @hw: pointer to the HW structure 3811 * 3812 * Return the LED back to the default configuration. 3813 **/ 3814 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw) 3815 { 3816 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default); 3817 } 3818 3819 /** 3820 * e1000_led_on_pchlan - Turn LEDs on 3821 * @hw: pointer to the HW structure 3822 * 3823 * Turn on the LEDs. 3824 **/ 3825 static s32 e1000_led_on_pchlan(struct e1000_hw *hw) 3826 { 3827 u16 data = (u16)hw->mac.ledctl_mode2; 3828 u32 i, led; 3829 3830 /* 3831 * If no link, then turn LED on by setting the invert bit 3832 * for each LED that's mode is "link_up" in ledctl_mode2. 3833 */ 3834 if (!(er32(STATUS) & E1000_STATUS_LU)) { 3835 for (i = 0; i < 3; i++) { 3836 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; 3837 if ((led & E1000_PHY_LED0_MODE_MASK) != 3838 E1000_LEDCTL_MODE_LINK_UP) 3839 continue; 3840 if (led & E1000_PHY_LED0_IVRT) 3841 data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); 3842 else 3843 data |= (E1000_PHY_LED0_IVRT << (i * 5)); 3844 } 3845 } 3846 3847 return e1e_wphy(hw, HV_LED_CONFIG, data); 3848 } 3849 3850 /** 3851 * e1000_led_off_pchlan - Turn LEDs off 3852 * @hw: pointer to the HW structure 3853 * 3854 * Turn off the LEDs. 3855 **/ 3856 static s32 e1000_led_off_pchlan(struct e1000_hw *hw) 3857 { 3858 u16 data = (u16)hw->mac.ledctl_mode1; 3859 u32 i, led; 3860 3861 /* 3862 * If no link, then turn LED off by clearing the invert bit 3863 * for each LED that's mode is "link_up" in ledctl_mode1. 3864 */ 3865 if (!(er32(STATUS) & E1000_STATUS_LU)) { 3866 for (i = 0; i < 3; i++) { 3867 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; 3868 if ((led & E1000_PHY_LED0_MODE_MASK) != 3869 E1000_LEDCTL_MODE_LINK_UP) 3870 continue; 3871 if (led & E1000_PHY_LED0_IVRT) 3872 data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); 3873 else 3874 data |= (E1000_PHY_LED0_IVRT << (i * 5)); 3875 } 3876 } 3877 3878 return e1e_wphy(hw, HV_LED_CONFIG, data); 3879 } 3880 3881 /** 3882 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset 3883 * @hw: pointer to the HW structure 3884 * 3885 * Read appropriate register for the config done bit for completion status 3886 * and configure the PHY through s/w for EEPROM-less parts. 3887 * 3888 * NOTE: some silicon which is EEPROM-less will fail trying to read the 3889 * config done bit, so only an error is logged and continues. If we were 3890 * to return with error, EEPROM-less silicon would not be able to be reset 3891 * or change link. 3892 **/ 3893 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw) 3894 { 3895 s32 ret_val = 0; 3896 u32 bank = 0; 3897 u32 status; 3898 3899 e1000e_get_cfg_done(hw); 3900 3901 /* Wait for indication from h/w that it has completed basic config */ 3902 if (hw->mac.type >= e1000_ich10lan) { 3903 e1000_lan_init_done_ich8lan(hw); 3904 } else { 3905 ret_val = e1000e_get_auto_rd_done(hw); 3906 if (ret_val) { 3907 /* 3908 * When auto config read does not complete, do not 3909 * return with an error. This can happen in situations 3910 * where there is no eeprom and prevents getting link. 3911 */ 3912 e_dbg("Auto Read Done did not complete\n"); 3913 ret_val = 0; 3914 } 3915 } 3916 3917 /* Clear PHY Reset Asserted bit */ 3918 status = er32(STATUS); 3919 if (status & E1000_STATUS_PHYRA) 3920 ew32(STATUS, status & ~E1000_STATUS_PHYRA); 3921 else 3922 e_dbg("PHY Reset Asserted not set - needs delay\n"); 3923 3924 /* If EEPROM is not marked present, init the IGP 3 PHY manually */ 3925 if (hw->mac.type <= e1000_ich9lan) { 3926 if (((er32(EECD) & E1000_EECD_PRES) == 0) && 3927 (hw->phy.type == e1000_phy_igp_3)) { 3928 e1000e_phy_init_script_igp3(hw); 3929 } 3930 } else { 3931 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) { 3932 /* Maybe we should do a basic PHY config */ 3933 e_dbg("EEPROM not present\n"); 3934 ret_val = -E1000_ERR_CONFIG; 3935 } 3936 } 3937 3938 return ret_val; 3939 } 3940 3941 /** 3942 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down 3943 * @hw: pointer to the HW structure 3944 * 3945 * In the case of a PHY power down to save power, or to turn off link during a 3946 * driver unload, or wake on lan is not enabled, remove the link. 3947 **/ 3948 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw) 3949 { 3950 /* If the management interface is not enabled, then power down */ 3951 if (!(hw->mac.ops.check_mng_mode(hw) || 3952 hw->phy.ops.check_reset_block(hw))) 3953 e1000_power_down_phy_copper(hw); 3954 } 3955 3956 /** 3957 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters 3958 * @hw: pointer to the HW structure 3959 * 3960 * Clears hardware counters specific to the silicon family and calls 3961 * clear_hw_cntrs_generic to clear all general purpose counters. 3962 **/ 3963 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw) 3964 { 3965 u16 phy_data; 3966 s32 ret_val; 3967 3968 e1000e_clear_hw_cntrs_base(hw); 3969 3970 er32(ALGNERRC); 3971 er32(RXERRC); 3972 er32(TNCRS); 3973 er32(CEXTERR); 3974 er32(TSCTC); 3975 er32(TSCTFC); 3976 3977 er32(MGTPRC); 3978 er32(MGTPDC); 3979 er32(MGTPTC); 3980 3981 er32(IAC); 3982 er32(ICRXOC); 3983 3984 /* Clear PHY statistics registers */ 3985 if ((hw->phy.type == e1000_phy_82578) || 3986 (hw->phy.type == e1000_phy_82579) || 3987 (hw->phy.type == e1000_phy_82577)) { 3988 ret_val = hw->phy.ops.acquire(hw); 3989 if (ret_val) 3990 return; 3991 ret_val = hw->phy.ops.set_page(hw, 3992 HV_STATS_PAGE << IGP_PAGE_SHIFT); 3993 if (ret_val) 3994 goto release; 3995 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data); 3996 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data); 3997 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data); 3998 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data); 3999 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data); 4000 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data); 4001 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data); 4002 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data); 4003 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data); 4004 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data); 4005 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data); 4006 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data); 4007 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data); 4008 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data); 4009 release: 4010 hw->phy.ops.release(hw); 4011 } 4012 } 4013 4014 static struct e1000_mac_operations ich8_mac_ops = { 4015 .id_led_init = e1000e_id_led_init, 4016 /* check_mng_mode dependent on mac type */ 4017 .check_for_link = e1000_check_for_copper_link_ich8lan, 4018 /* cleanup_led dependent on mac type */ 4019 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan, 4020 .get_bus_info = e1000_get_bus_info_ich8lan, 4021 .set_lan_id = e1000_set_lan_id_single_port, 4022 .get_link_up_info = e1000_get_link_up_info_ich8lan, 4023 /* led_on dependent on mac type */ 4024 /* led_off dependent on mac type */ 4025 .update_mc_addr_list = e1000e_update_mc_addr_list_generic, 4026 .reset_hw = e1000_reset_hw_ich8lan, 4027 .init_hw = e1000_init_hw_ich8lan, 4028 .setup_link = e1000_setup_link_ich8lan, 4029 .setup_physical_interface= e1000_setup_copper_link_ich8lan, 4030 /* id_led_init dependent on mac type */ 4031 }; 4032 4033 static struct e1000_phy_operations ich8_phy_ops = { 4034 .acquire = e1000_acquire_swflag_ich8lan, 4035 .check_reset_block = e1000_check_reset_block_ich8lan, 4036 .commit = NULL, 4037 .get_cfg_done = e1000_get_cfg_done_ich8lan, 4038 .get_cable_length = e1000e_get_cable_length_igp_2, 4039 .read_reg = e1000e_read_phy_reg_igp, 4040 .release = e1000_release_swflag_ich8lan, 4041 .reset = e1000_phy_hw_reset_ich8lan, 4042 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan, 4043 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan, 4044 .write_reg = e1000e_write_phy_reg_igp, 4045 }; 4046 4047 static struct e1000_nvm_operations ich8_nvm_ops = { 4048 .acquire = e1000_acquire_nvm_ich8lan, 4049 .read = e1000_read_nvm_ich8lan, 4050 .release = e1000_release_nvm_ich8lan, 4051 .update = e1000_update_nvm_checksum_ich8lan, 4052 .valid_led_default = e1000_valid_led_default_ich8lan, 4053 .validate = e1000_validate_nvm_checksum_ich8lan, 4054 .write = e1000_write_nvm_ich8lan, 4055 }; 4056 4057 struct e1000_info e1000_ich8_info = { 4058 .mac = e1000_ich8lan, 4059 .flags = FLAG_HAS_WOL 4060 | FLAG_IS_ICH 4061 | FLAG_RX_CSUM_ENABLED 4062 | FLAG_HAS_CTRLEXT_ON_LOAD 4063 | FLAG_HAS_AMT 4064 | FLAG_HAS_FLASH 4065 | FLAG_APME_IN_WUC, 4066 .pba = 8, 4067 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN, 4068 .get_variants = e1000_get_variants_ich8lan, 4069 .mac_ops = &ich8_mac_ops, 4070 .phy_ops = &ich8_phy_ops, 4071 .nvm_ops = &ich8_nvm_ops, 4072 }; 4073 4074 struct e1000_info e1000_ich9_info = { 4075 .mac = e1000_ich9lan, 4076 .flags = FLAG_HAS_JUMBO_FRAMES 4077 | FLAG_IS_ICH 4078 | FLAG_HAS_WOL 4079 | FLAG_RX_CSUM_ENABLED 4080 | FLAG_HAS_CTRLEXT_ON_LOAD 4081 | FLAG_HAS_AMT 4082 | FLAG_HAS_ERT 4083 | FLAG_HAS_FLASH 4084 | FLAG_APME_IN_WUC, 4085 .pba = 10, 4086 .max_hw_frame_size = DEFAULT_JUMBO, 4087 .get_variants = e1000_get_variants_ich8lan, 4088 .mac_ops = &ich8_mac_ops, 4089 .phy_ops = &ich8_phy_ops, 4090 .nvm_ops = &ich8_nvm_ops, 4091 }; 4092 4093 struct e1000_info e1000_ich10_info = { 4094 .mac = e1000_ich10lan, 4095 .flags = FLAG_HAS_JUMBO_FRAMES 4096 | FLAG_IS_ICH 4097 | FLAG_HAS_WOL 4098 | FLAG_RX_CSUM_ENABLED 4099 | FLAG_HAS_CTRLEXT_ON_LOAD 4100 | FLAG_HAS_AMT 4101 | FLAG_HAS_ERT 4102 | FLAG_HAS_FLASH 4103 | FLAG_APME_IN_WUC, 4104 .pba = 10, 4105 .max_hw_frame_size = DEFAULT_JUMBO, 4106 .get_variants = e1000_get_variants_ich8lan, 4107 .mac_ops = &ich8_mac_ops, 4108 .phy_ops = &ich8_phy_ops, 4109 .nvm_ops = &ich8_nvm_ops, 4110 }; 4111 4112 struct e1000_info e1000_pch_info = { 4113 .mac = e1000_pchlan, 4114 .flags = FLAG_IS_ICH 4115 | FLAG_HAS_WOL 4116 | FLAG_RX_CSUM_ENABLED 4117 | FLAG_HAS_CTRLEXT_ON_LOAD 4118 | FLAG_HAS_AMT 4119 | FLAG_HAS_FLASH 4120 | FLAG_HAS_JUMBO_FRAMES 4121 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */ 4122 | FLAG_APME_IN_WUC, 4123 .flags2 = FLAG2_HAS_PHY_STATS, 4124 .pba = 26, 4125 .max_hw_frame_size = 4096, 4126 .get_variants = e1000_get_variants_ich8lan, 4127 .mac_ops = &ich8_mac_ops, 4128 .phy_ops = &ich8_phy_ops, 4129 .nvm_ops = &ich8_nvm_ops, 4130 }; 4131 4132 struct e1000_info e1000_pch2_info = { 4133 .mac = e1000_pch2lan, 4134 .flags = FLAG_IS_ICH 4135 | FLAG_HAS_WOL 4136 | FLAG_RX_CSUM_ENABLED 4137 | FLAG_HAS_CTRLEXT_ON_LOAD 4138 | FLAG_HAS_AMT 4139 | FLAG_HAS_FLASH 4140 | FLAG_HAS_JUMBO_FRAMES 4141 | FLAG_APME_IN_WUC, 4142 .flags2 = FLAG2_HAS_PHY_STATS 4143 | FLAG2_HAS_EEE, 4144 .pba = 26, 4145 .max_hw_frame_size = DEFAULT_JUMBO, 4146 .get_variants = e1000_get_variants_ich8lan, 4147 .mac_ops = &ich8_mac_ops, 4148 .phy_ops = &ich8_phy_ops, 4149 .nvm_ops = &ich8_nvm_ops, 4150 }; 4151