1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 /* 82562G 10/100 Network Connection 5 * 82562G-2 10/100 Network Connection 6 * 82562GT 10/100 Network Connection 7 * 82562GT-2 10/100 Network Connection 8 * 82562V 10/100 Network Connection 9 * 82562V-2 10/100 Network Connection 10 * 82566DC-2 Gigabit Network Connection 11 * 82566DC Gigabit Network Connection 12 * 82566DM-2 Gigabit Network Connection 13 * 82566DM Gigabit Network Connection 14 * 82566MC Gigabit Network Connection 15 * 82566MM Gigabit Network Connection 16 * 82567LM Gigabit Network Connection 17 * 82567LF Gigabit Network Connection 18 * 82567V Gigabit Network Connection 19 * 82567LM-2 Gigabit Network Connection 20 * 82567LF-2 Gigabit Network Connection 21 * 82567V-2 Gigabit Network Connection 22 * 82567LF-3 Gigabit Network Connection 23 * 82567LM-3 Gigabit Network Connection 24 * 82567LM-4 Gigabit Network Connection 25 * 82577LM Gigabit Network Connection 26 * 82577LC Gigabit Network Connection 27 * 82578DM Gigabit Network Connection 28 * 82578DC Gigabit Network Connection 29 * 82579LM Gigabit Network Connection 30 * 82579V Gigabit Network Connection 31 * Ethernet Connection I217-LM 32 * Ethernet Connection I217-V 33 * Ethernet Connection I218-V 34 * Ethernet Connection I218-LM 35 * Ethernet Connection (2) I218-LM 36 * Ethernet Connection (2) I218-V 37 * Ethernet Connection (3) I218-LM 38 * Ethernet Connection (3) I218-V 39 */ 40 41 #include "e1000.h" 42 43 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */ 44 /* Offset 04h HSFSTS */ 45 union ich8_hws_flash_status { 46 struct ich8_hsfsts { 47 u16 flcdone:1; /* bit 0 Flash Cycle Done */ 48 u16 flcerr:1; /* bit 1 Flash Cycle Error */ 49 u16 dael:1; /* bit 2 Direct Access error Log */ 50 u16 berasesz:2; /* bit 4:3 Sector Erase Size */ 51 u16 flcinprog:1; /* bit 5 flash cycle in Progress */ 52 u16 reserved1:2; /* bit 13:6 Reserved */ 53 u16 reserved2:6; /* bit 13:6 Reserved */ 54 u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */ 55 u16 flockdn:1; /* bit 15 Flash Config Lock-Down */ 56 } hsf_status; 57 u16 regval; 58 }; 59 60 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */ 61 /* Offset 06h FLCTL */ 62 union ich8_hws_flash_ctrl { 63 struct ich8_hsflctl { 64 u16 flcgo:1; /* 0 Flash Cycle Go */ 65 u16 flcycle:2; /* 2:1 Flash Cycle */ 66 u16 reserved:5; /* 7:3 Reserved */ 67 u16 fldbcount:2; /* 9:8 Flash Data Byte Count */ 68 u16 flockdn:6; /* 15:10 Reserved */ 69 } hsf_ctrl; 70 u16 regval; 71 }; 72 73 /* ICH Flash Region Access Permissions */ 74 union ich8_hws_flash_regacc { 75 struct ich8_flracc { 76 u32 grra:8; /* 0:7 GbE region Read Access */ 77 u32 grwa:8; /* 8:15 GbE region Write Access */ 78 u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */ 79 u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */ 80 } hsf_flregacc; 81 u16 regval; 82 }; 83 84 /* ICH Flash Protected Region */ 85 union ich8_flash_protected_range { 86 struct ich8_pr { 87 u32 base:13; /* 0:12 Protected Range Base */ 88 u32 reserved1:2; /* 13:14 Reserved */ 89 u32 rpe:1; /* 15 Read Protection Enable */ 90 u32 limit:13; /* 16:28 Protected Range Limit */ 91 u32 reserved2:2; /* 29:30 Reserved */ 92 u32 wpe:1; /* 31 Write Protection Enable */ 93 } range; 94 u32 regval; 95 }; 96 97 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw); 98 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw); 99 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank); 100 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, 101 u32 offset, u8 byte); 102 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, 103 u8 *data); 104 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, 105 u16 *data); 106 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 107 u8 size, u16 *data); 108 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, 109 u32 *data); 110 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, 111 u32 offset, u32 *data); 112 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, 113 u32 offset, u32 data); 114 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw, 115 u32 offset, u32 dword); 116 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw); 117 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw); 118 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw); 119 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw); 120 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw); 121 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw); 122 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw); 123 static s32 e1000_led_on_pchlan(struct e1000_hw *hw); 124 static s32 e1000_led_off_pchlan(struct e1000_hw *hw); 125 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active); 126 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw); 127 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw); 128 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link); 129 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw); 130 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw); 131 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw); 132 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index); 133 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index); 134 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw); 135 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw); 136 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate); 137 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force); 138 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw); 139 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state); 140 141 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg) 142 { 143 return readw(hw->flash_address + reg); 144 } 145 146 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg) 147 { 148 return readl(hw->flash_address + reg); 149 } 150 151 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val) 152 { 153 writew(val, hw->flash_address + reg); 154 } 155 156 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val) 157 { 158 writel(val, hw->flash_address + reg); 159 } 160 161 #define er16flash(reg) __er16flash(hw, (reg)) 162 #define er32flash(reg) __er32flash(hw, (reg)) 163 #define ew16flash(reg, val) __ew16flash(hw, (reg), (val)) 164 #define ew32flash(reg, val) __ew32flash(hw, (reg), (val)) 165 166 /** 167 * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers 168 * @hw: pointer to the HW structure 169 * 170 * Test access to the PHY registers by reading the PHY ID registers. If 171 * the PHY ID is already known (e.g. resume path) compare it with known ID, 172 * otherwise assume the read PHY ID is correct if it is valid. 173 * 174 * Assumes the sw/fw/hw semaphore is already acquired. 175 **/ 176 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw) 177 { 178 u16 phy_reg = 0; 179 u32 phy_id = 0; 180 s32 ret_val = 0; 181 u16 retry_count; 182 u32 mac_reg = 0; 183 184 for (retry_count = 0; retry_count < 2; retry_count++) { 185 ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg); 186 if (ret_val || (phy_reg == 0xFFFF)) 187 continue; 188 phy_id = (u32)(phy_reg << 16); 189 190 ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg); 191 if (ret_val || (phy_reg == 0xFFFF)) { 192 phy_id = 0; 193 continue; 194 } 195 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK); 196 break; 197 } 198 199 if (hw->phy.id) { 200 if (hw->phy.id == phy_id) 201 goto out; 202 } else if (phy_id) { 203 hw->phy.id = phy_id; 204 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK); 205 goto out; 206 } 207 208 /* In case the PHY needs to be in mdio slow mode, 209 * set slow mode and try to get the PHY id again. 210 */ 211 if (hw->mac.type < e1000_pch_lpt) { 212 hw->phy.ops.release(hw); 213 ret_val = e1000_set_mdio_slow_mode_hv(hw); 214 if (!ret_val) 215 ret_val = e1000e_get_phy_id(hw); 216 hw->phy.ops.acquire(hw); 217 } 218 219 if (ret_val) 220 return false; 221 out: 222 if (hw->mac.type >= e1000_pch_lpt) { 223 /* Only unforce SMBus if ME is not active */ 224 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 225 /* Unforce SMBus mode in PHY */ 226 e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg); 227 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS; 228 e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg); 229 230 /* Unforce SMBus mode in MAC */ 231 mac_reg = er32(CTRL_EXT); 232 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; 233 ew32(CTRL_EXT, mac_reg); 234 } 235 } 236 237 return true; 238 } 239 240 /** 241 * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value 242 * @hw: pointer to the HW structure 243 * 244 * Toggling the LANPHYPC pin value fully power-cycles the PHY and is 245 * used to reset the PHY to a quiescent state when necessary. 246 **/ 247 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw) 248 { 249 u32 mac_reg; 250 251 /* Set Phy Config Counter to 50msec */ 252 mac_reg = er32(FEXTNVM3); 253 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; 254 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; 255 ew32(FEXTNVM3, mac_reg); 256 257 /* Toggle LANPHYPC Value bit */ 258 mac_reg = er32(CTRL); 259 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE; 260 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE; 261 ew32(CTRL, mac_reg); 262 e1e_flush(); 263 usleep_range(10, 20); 264 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE; 265 ew32(CTRL, mac_reg); 266 e1e_flush(); 267 268 if (hw->mac.type < e1000_pch_lpt) { 269 msleep(50); 270 } else { 271 u16 count = 20; 272 273 do { 274 usleep_range(5000, 6000); 275 } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--); 276 277 msleep(30); 278 } 279 } 280 281 /** 282 * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds 283 * @hw: pointer to the HW structure 284 * 285 * Workarounds/flow necessary for PHY initialization during driver load 286 * and resume paths. 287 **/ 288 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw) 289 { 290 struct e1000_adapter *adapter = hw->adapter; 291 u32 mac_reg, fwsm = er32(FWSM); 292 s32 ret_val; 293 294 /* Gate automatic PHY configuration by hardware on managed and 295 * non-managed 82579 and newer adapters. 296 */ 297 e1000_gate_hw_phy_config_ich8lan(hw, true); 298 299 /* It is not possible to be certain of the current state of ULP 300 * so forcibly disable it. 301 */ 302 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown; 303 ret_val = e1000_disable_ulp_lpt_lp(hw, true); 304 if (ret_val) 305 e_warn("Failed to disable ULP\n"); 306 307 ret_val = hw->phy.ops.acquire(hw); 308 if (ret_val) { 309 e_dbg("Failed to initialize PHY flow\n"); 310 goto out; 311 } 312 313 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is 314 * inaccessible and resetting the PHY is not blocked, toggle the 315 * LANPHYPC Value bit to force the interconnect to PCIe mode. 316 */ 317 switch (hw->mac.type) { 318 case e1000_pch_lpt: 319 case e1000_pch_spt: 320 case e1000_pch_cnp: 321 case e1000_pch_tgp: 322 case e1000_pch_adp: 323 case e1000_pch_mtp: 324 case e1000_pch_lnp: 325 case e1000_pch_ptp: 326 case e1000_pch_nvp: 327 if (e1000_phy_is_accessible_pchlan(hw)) 328 break; 329 330 /* Before toggling LANPHYPC, see if PHY is accessible by 331 * forcing MAC to SMBus mode first. 332 */ 333 mac_reg = er32(CTRL_EXT); 334 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; 335 ew32(CTRL_EXT, mac_reg); 336 337 /* Wait 50 milliseconds for MAC to finish any retries 338 * that it might be trying to perform from previous 339 * attempts to acknowledge any phy read requests. 340 */ 341 msleep(50); 342 343 fallthrough; 344 case e1000_pch2lan: 345 if (e1000_phy_is_accessible_pchlan(hw)) 346 break; 347 348 fallthrough; 349 case e1000_pchlan: 350 if ((hw->mac.type == e1000_pchlan) && 351 (fwsm & E1000_ICH_FWSM_FW_VALID)) 352 break; 353 354 if (hw->phy.ops.check_reset_block(hw)) { 355 e_dbg("Required LANPHYPC toggle blocked by ME\n"); 356 ret_val = -E1000_ERR_PHY; 357 break; 358 } 359 360 /* Toggle LANPHYPC Value bit */ 361 e1000_toggle_lanphypc_pch_lpt(hw); 362 if (hw->mac.type >= e1000_pch_lpt) { 363 if (e1000_phy_is_accessible_pchlan(hw)) 364 break; 365 366 /* Toggling LANPHYPC brings the PHY out of SMBus mode 367 * so ensure that the MAC is also out of SMBus mode 368 */ 369 mac_reg = er32(CTRL_EXT); 370 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; 371 ew32(CTRL_EXT, mac_reg); 372 373 if (e1000_phy_is_accessible_pchlan(hw)) 374 break; 375 376 ret_val = -E1000_ERR_PHY; 377 } 378 break; 379 default: 380 break; 381 } 382 383 hw->phy.ops.release(hw); 384 if (!ret_val) { 385 386 /* Check to see if able to reset PHY. Print error if not */ 387 if (hw->phy.ops.check_reset_block(hw)) { 388 e_err("Reset blocked by ME\n"); 389 goto out; 390 } 391 392 /* Reset the PHY before any access to it. Doing so, ensures 393 * that the PHY is in a known good state before we read/write 394 * PHY registers. The generic reset is sufficient here, 395 * because we haven't determined the PHY type yet. 396 */ 397 ret_val = e1000e_phy_hw_reset_generic(hw); 398 if (ret_val) 399 goto out; 400 401 /* On a successful reset, possibly need to wait for the PHY 402 * to quiesce to an accessible state before returning control 403 * to the calling function. If the PHY does not quiesce, then 404 * return E1000E_BLK_PHY_RESET, as this is the condition that 405 * the PHY is in. 406 */ 407 ret_val = hw->phy.ops.check_reset_block(hw); 408 if (ret_val) 409 e_err("ME blocked access to PHY after reset\n"); 410 } 411 412 out: 413 /* Ungate automatic PHY configuration on non-managed 82579 */ 414 if ((hw->mac.type == e1000_pch2lan) && 415 !(fwsm & E1000_ICH_FWSM_FW_VALID)) { 416 usleep_range(10000, 11000); 417 e1000_gate_hw_phy_config_ich8lan(hw, false); 418 } 419 420 return ret_val; 421 } 422 423 /** 424 * e1000_init_phy_params_pchlan - Initialize PHY function pointers 425 * @hw: pointer to the HW structure 426 * 427 * Initialize family-specific PHY parameters and function pointers. 428 **/ 429 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw) 430 { 431 struct e1000_phy_info *phy = &hw->phy; 432 s32 ret_val; 433 434 phy->addr = 1; 435 phy->reset_delay_us = 100; 436 437 phy->ops.set_page = e1000_set_page_igp; 438 phy->ops.read_reg = e1000_read_phy_reg_hv; 439 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked; 440 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv; 441 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan; 442 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan; 443 phy->ops.write_reg = e1000_write_phy_reg_hv; 444 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked; 445 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv; 446 phy->ops.power_up = e1000_power_up_phy_copper; 447 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; 448 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 449 450 phy->id = e1000_phy_unknown; 451 452 ret_val = e1000_init_phy_workarounds_pchlan(hw); 453 if (ret_val) 454 return ret_val; 455 456 if (phy->id == e1000_phy_unknown) 457 switch (hw->mac.type) { 458 default: 459 ret_val = e1000e_get_phy_id(hw); 460 if (ret_val) 461 return ret_val; 462 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK)) 463 break; 464 fallthrough; 465 case e1000_pch2lan: 466 case e1000_pch_lpt: 467 case e1000_pch_spt: 468 case e1000_pch_cnp: 469 case e1000_pch_tgp: 470 case e1000_pch_adp: 471 case e1000_pch_mtp: 472 case e1000_pch_lnp: 473 case e1000_pch_ptp: 474 case e1000_pch_nvp: 475 /* In case the PHY needs to be in mdio slow mode, 476 * set slow mode and try to get the PHY id again. 477 */ 478 ret_val = e1000_set_mdio_slow_mode_hv(hw); 479 if (ret_val) 480 return ret_val; 481 ret_val = e1000e_get_phy_id(hw); 482 if (ret_val) 483 return ret_val; 484 break; 485 } 486 phy->type = e1000e_get_phy_type_from_id(phy->id); 487 488 switch (phy->type) { 489 case e1000_phy_82577: 490 case e1000_phy_82579: 491 case e1000_phy_i217: 492 phy->ops.check_polarity = e1000_check_polarity_82577; 493 phy->ops.force_speed_duplex = 494 e1000_phy_force_speed_duplex_82577; 495 phy->ops.get_cable_length = e1000_get_cable_length_82577; 496 phy->ops.get_info = e1000_get_phy_info_82577; 497 phy->ops.commit = e1000e_phy_sw_reset; 498 break; 499 case e1000_phy_82578: 500 phy->ops.check_polarity = e1000_check_polarity_m88; 501 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; 502 phy->ops.get_cable_length = e1000e_get_cable_length_m88; 503 phy->ops.get_info = e1000e_get_phy_info_m88; 504 break; 505 default: 506 ret_val = -E1000_ERR_PHY; 507 break; 508 } 509 510 return ret_val; 511 } 512 513 /** 514 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers 515 * @hw: pointer to the HW structure 516 * 517 * Initialize family-specific PHY parameters and function pointers. 518 **/ 519 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw) 520 { 521 struct e1000_phy_info *phy = &hw->phy; 522 s32 ret_val; 523 u16 i = 0; 524 525 phy->addr = 1; 526 phy->reset_delay_us = 100; 527 528 phy->ops.power_up = e1000_power_up_phy_copper; 529 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; 530 531 /* We may need to do this twice - once for IGP and if that fails, 532 * we'll set BM func pointers and try again 533 */ 534 ret_val = e1000e_determine_phy_address(hw); 535 if (ret_val) { 536 phy->ops.write_reg = e1000e_write_phy_reg_bm; 537 phy->ops.read_reg = e1000e_read_phy_reg_bm; 538 ret_val = e1000e_determine_phy_address(hw); 539 if (ret_val) { 540 e_dbg("Cannot determine PHY addr. Erroring out\n"); 541 return ret_val; 542 } 543 } 544 545 phy->id = 0; 546 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) && 547 (i++ < 100)) { 548 usleep_range(1000, 1100); 549 ret_val = e1000e_get_phy_id(hw); 550 if (ret_val) 551 return ret_val; 552 } 553 554 /* Verify phy id */ 555 switch (phy->id) { 556 case IGP03E1000_E_PHY_ID: 557 phy->type = e1000_phy_igp_3; 558 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 559 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked; 560 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked; 561 phy->ops.get_info = e1000e_get_phy_info_igp; 562 phy->ops.check_polarity = e1000_check_polarity_igp; 563 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp; 564 break; 565 case IFE_E_PHY_ID: 566 case IFE_PLUS_E_PHY_ID: 567 case IFE_C_E_PHY_ID: 568 phy->type = e1000_phy_ife; 569 phy->autoneg_mask = E1000_ALL_NOT_GIG; 570 phy->ops.get_info = e1000_get_phy_info_ife; 571 phy->ops.check_polarity = e1000_check_polarity_ife; 572 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife; 573 break; 574 case BME1000_E_PHY_ID: 575 phy->type = e1000_phy_bm; 576 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 577 phy->ops.read_reg = e1000e_read_phy_reg_bm; 578 phy->ops.write_reg = e1000e_write_phy_reg_bm; 579 phy->ops.commit = e1000e_phy_sw_reset; 580 phy->ops.get_info = e1000e_get_phy_info_m88; 581 phy->ops.check_polarity = e1000_check_polarity_m88; 582 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; 583 break; 584 default: 585 return -E1000_ERR_PHY; 586 } 587 588 return 0; 589 } 590 591 /** 592 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers 593 * @hw: pointer to the HW structure 594 * 595 * Initialize family-specific NVM parameters and function 596 * pointers. 597 **/ 598 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw) 599 { 600 struct e1000_nvm_info *nvm = &hw->nvm; 601 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 602 u32 gfpreg, sector_base_addr, sector_end_addr; 603 u16 i; 604 u32 nvm_size; 605 606 nvm->type = e1000_nvm_flash_sw; 607 608 if (hw->mac.type >= e1000_pch_spt) { 609 /* in SPT, gfpreg doesn't exist. NVM size is taken from the 610 * STRAP register. This is because in SPT the GbE Flash region 611 * is no longer accessed through the flash registers. Instead, 612 * the mechanism has changed, and the Flash region access 613 * registers are now implemented in GbE memory space. 614 */ 615 nvm->flash_base_addr = 0; 616 nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1) 617 * NVM_SIZE_MULTIPLIER; 618 nvm->flash_bank_size = nvm_size / 2; 619 /* Adjust to word count */ 620 nvm->flash_bank_size /= sizeof(u16); 621 /* Set the base address for flash register access */ 622 hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR; 623 } else { 624 /* Can't read flash registers if register set isn't mapped. */ 625 if (!hw->flash_address) { 626 e_dbg("ERROR: Flash registers not mapped\n"); 627 return -E1000_ERR_CONFIG; 628 } 629 630 gfpreg = er32flash(ICH_FLASH_GFPREG); 631 632 /* sector_X_addr is a "sector"-aligned address (4096 bytes) 633 * Add 1 to sector_end_addr since this sector is included in 634 * the overall size. 635 */ 636 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK; 637 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1; 638 639 /* flash_base_addr is byte-aligned */ 640 nvm->flash_base_addr = sector_base_addr 641 << FLASH_SECTOR_ADDR_SHIFT; 642 643 /* find total size of the NVM, then cut in half since the total 644 * size represents two separate NVM banks. 645 */ 646 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr) 647 << FLASH_SECTOR_ADDR_SHIFT); 648 nvm->flash_bank_size /= 2; 649 /* Adjust to word count */ 650 nvm->flash_bank_size /= sizeof(u16); 651 } 652 653 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS; 654 655 /* Clear shadow ram */ 656 for (i = 0; i < nvm->word_size; i++) { 657 dev_spec->shadow_ram[i].modified = false; 658 dev_spec->shadow_ram[i].value = 0xFFFF; 659 } 660 661 return 0; 662 } 663 664 /** 665 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers 666 * @hw: pointer to the HW structure 667 * 668 * Initialize family-specific MAC parameters and function 669 * pointers. 670 **/ 671 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw) 672 { 673 struct e1000_mac_info *mac = &hw->mac; 674 675 /* Set media type function pointer */ 676 hw->phy.media_type = e1000_media_type_copper; 677 678 /* Set mta register count */ 679 mac->mta_reg_count = 32; 680 /* Set rar entry count */ 681 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES; 682 if (mac->type == e1000_ich8lan) 683 mac->rar_entry_count--; 684 /* FWSM register */ 685 mac->has_fwsm = true; 686 /* ARC subsystem not supported */ 687 mac->arc_subsystem_valid = false; 688 /* Adaptive IFS supported */ 689 mac->adaptive_ifs = true; 690 691 /* LED and other operations */ 692 switch (mac->type) { 693 case e1000_ich8lan: 694 case e1000_ich9lan: 695 case e1000_ich10lan: 696 /* check management mode */ 697 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan; 698 /* ID LED init */ 699 mac->ops.id_led_init = e1000e_id_led_init_generic; 700 /* blink LED */ 701 mac->ops.blink_led = e1000e_blink_led_generic; 702 /* setup LED */ 703 mac->ops.setup_led = e1000e_setup_led_generic; 704 /* cleanup LED */ 705 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan; 706 /* turn on/off LED */ 707 mac->ops.led_on = e1000_led_on_ich8lan; 708 mac->ops.led_off = e1000_led_off_ich8lan; 709 break; 710 case e1000_pch2lan: 711 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES; 712 mac->ops.rar_set = e1000_rar_set_pch2lan; 713 fallthrough; 714 case e1000_pch_lpt: 715 case e1000_pch_spt: 716 case e1000_pch_cnp: 717 case e1000_pch_tgp: 718 case e1000_pch_adp: 719 case e1000_pch_mtp: 720 case e1000_pch_lnp: 721 case e1000_pch_ptp: 722 case e1000_pch_nvp: 723 case e1000_pchlan: 724 /* check management mode */ 725 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan; 726 /* ID LED init */ 727 mac->ops.id_led_init = e1000_id_led_init_pchlan; 728 /* setup LED */ 729 mac->ops.setup_led = e1000_setup_led_pchlan; 730 /* cleanup LED */ 731 mac->ops.cleanup_led = e1000_cleanup_led_pchlan; 732 /* turn on/off LED */ 733 mac->ops.led_on = e1000_led_on_pchlan; 734 mac->ops.led_off = e1000_led_off_pchlan; 735 break; 736 default: 737 break; 738 } 739 740 if (mac->type >= e1000_pch_lpt) { 741 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES; 742 mac->ops.rar_set = e1000_rar_set_pch_lpt; 743 mac->ops.setup_physical_interface = 744 e1000_setup_copper_link_pch_lpt; 745 mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt; 746 } 747 748 /* Enable PCS Lock-loss workaround for ICH8 */ 749 if (mac->type == e1000_ich8lan) 750 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true); 751 752 return 0; 753 } 754 755 /** 756 * __e1000_access_emi_reg_locked - Read/write EMI register 757 * @hw: pointer to the HW structure 758 * @address: EMI address to program 759 * @data: pointer to value to read/write from/to the EMI address 760 * @read: boolean flag to indicate read or write 761 * 762 * This helper function assumes the SW/FW/HW Semaphore is already acquired. 763 **/ 764 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address, 765 u16 *data, bool read) 766 { 767 s32 ret_val; 768 769 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address); 770 if (ret_val) 771 return ret_val; 772 773 if (read) 774 ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data); 775 else 776 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data); 777 778 return ret_val; 779 } 780 781 /** 782 * e1000_read_emi_reg_locked - Read Extended Management Interface register 783 * @hw: pointer to the HW structure 784 * @addr: EMI address to program 785 * @data: value to be read from the EMI address 786 * 787 * Assumes the SW/FW/HW Semaphore is already acquired. 788 **/ 789 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data) 790 { 791 return __e1000_access_emi_reg_locked(hw, addr, data, true); 792 } 793 794 /** 795 * e1000_write_emi_reg_locked - Write Extended Management Interface register 796 * @hw: pointer to the HW structure 797 * @addr: EMI address to program 798 * @data: value to be written to the EMI address 799 * 800 * Assumes the SW/FW/HW Semaphore is already acquired. 801 **/ 802 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data) 803 { 804 return __e1000_access_emi_reg_locked(hw, addr, &data, false); 805 } 806 807 /** 808 * e1000_set_eee_pchlan - Enable/disable EEE support 809 * @hw: pointer to the HW structure 810 * 811 * Enable/disable EEE based on setting in dev_spec structure, the duplex of 812 * the link and the EEE capabilities of the link partner. The LPI Control 813 * register bits will remain set only if/when link is up. 814 * 815 * EEE LPI must not be asserted earlier than one second after link is up. 816 * On 82579, EEE LPI should not be enabled until such time otherwise there 817 * can be link issues with some switches. Other devices can have EEE LPI 818 * enabled immediately upon link up since they have a timer in hardware which 819 * prevents LPI from being asserted too early. 820 **/ 821 s32 e1000_set_eee_pchlan(struct e1000_hw *hw) 822 { 823 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 824 s32 ret_val; 825 u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data; 826 827 switch (hw->phy.type) { 828 case e1000_phy_82579: 829 lpa = I82579_EEE_LP_ABILITY; 830 pcs_status = I82579_EEE_PCS_STATUS; 831 adv_addr = I82579_EEE_ADVERTISEMENT; 832 break; 833 case e1000_phy_i217: 834 lpa = I217_EEE_LP_ABILITY; 835 pcs_status = I217_EEE_PCS_STATUS; 836 adv_addr = I217_EEE_ADVERTISEMENT; 837 break; 838 default: 839 return 0; 840 } 841 842 ret_val = hw->phy.ops.acquire(hw); 843 if (ret_val) 844 return ret_val; 845 846 ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl); 847 if (ret_val) 848 goto release; 849 850 /* Clear bits that enable EEE in various speeds */ 851 lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK; 852 853 /* Enable EEE if not disabled by user */ 854 if (!dev_spec->eee_disable) { 855 /* Save off link partner's EEE ability */ 856 ret_val = e1000_read_emi_reg_locked(hw, lpa, 857 &dev_spec->eee_lp_ability); 858 if (ret_val) 859 goto release; 860 861 /* Read EEE advertisement */ 862 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv); 863 if (ret_val) 864 goto release; 865 866 /* Enable EEE only for speeds in which the link partner is 867 * EEE capable and for which we advertise EEE. 868 */ 869 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED) 870 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE; 871 872 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) { 873 e1e_rphy_locked(hw, MII_LPA, &data); 874 if (data & LPA_100FULL) 875 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE; 876 else 877 /* EEE is not supported in 100Half, so ignore 878 * partner's EEE in 100 ability if full-duplex 879 * is not advertised. 880 */ 881 dev_spec->eee_lp_ability &= 882 ~I82579_EEE_100_SUPPORTED; 883 } 884 } 885 886 if (hw->phy.type == e1000_phy_82579) { 887 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT, 888 &data); 889 if (ret_val) 890 goto release; 891 892 data &= ~I82579_LPI_100_PLL_SHUT; 893 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT, 894 data); 895 } 896 897 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */ 898 ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data); 899 if (ret_val) 900 goto release; 901 902 ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl); 903 release: 904 hw->phy.ops.release(hw); 905 906 return ret_val; 907 } 908 909 /** 910 * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP 911 * @hw: pointer to the HW structure 912 * @link: link up bool flag 913 * 914 * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications 915 * preventing further DMA write requests. Workaround the issue by disabling 916 * the de-assertion of the clock request when in 1Gpbs mode. 917 * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link 918 * speeds in order to avoid Tx hangs. 919 **/ 920 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link) 921 { 922 u32 fextnvm6 = er32(FEXTNVM6); 923 u32 status = er32(STATUS); 924 s32 ret_val = 0; 925 u16 reg; 926 927 if (link && (status & E1000_STATUS_SPEED_1000)) { 928 ret_val = hw->phy.ops.acquire(hw); 929 if (ret_val) 930 return ret_val; 931 932 ret_val = 933 e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, 934 ®); 935 if (ret_val) 936 goto release; 937 938 ret_val = 939 e1000e_write_kmrn_reg_locked(hw, 940 E1000_KMRNCTRLSTA_K1_CONFIG, 941 reg & 942 ~E1000_KMRNCTRLSTA_K1_ENABLE); 943 if (ret_val) 944 goto release; 945 946 usleep_range(10, 20); 947 948 ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK); 949 950 ret_val = 951 e1000e_write_kmrn_reg_locked(hw, 952 E1000_KMRNCTRLSTA_K1_CONFIG, 953 reg); 954 release: 955 hw->phy.ops.release(hw); 956 } else { 957 /* clear FEXTNVM6 bit 8 on link down or 10/100 */ 958 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK; 959 960 if ((hw->phy.revision > 5) || !link || 961 ((status & E1000_STATUS_SPEED_100) && 962 (status & E1000_STATUS_FD))) 963 goto update_fextnvm6; 964 965 ret_val = e1e_rphy(hw, I217_INBAND_CTRL, ®); 966 if (ret_val) 967 return ret_val; 968 969 /* Clear link status transmit timeout */ 970 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK; 971 972 if (status & E1000_STATUS_SPEED_100) { 973 /* Set inband Tx timeout to 5x10us for 100Half */ 974 reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT; 975 976 /* Do not extend the K1 entry latency for 100Half */ 977 fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION; 978 } else { 979 /* Set inband Tx timeout to 50x10us for 10Full/Half */ 980 reg |= 50 << 981 I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT; 982 983 /* Extend the K1 entry latency for 10 Mbps */ 984 fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION; 985 } 986 987 ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg); 988 if (ret_val) 989 return ret_val; 990 991 update_fextnvm6: 992 ew32(FEXTNVM6, fextnvm6); 993 } 994 995 return ret_val; 996 } 997 998 /** 999 * e1000_platform_pm_pch_lpt - Set platform power management values 1000 * @hw: pointer to the HW structure 1001 * @link: bool indicating link status 1002 * 1003 * Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like" 1004 * GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed 1005 * when link is up (which must not exceed the maximum latency supported 1006 * by the platform), otherwise specify there is no LTR requirement. 1007 * Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop 1008 * latencies in the LTR Extended Capability Structure in the PCIe Extended 1009 * Capability register set, on this device LTR is set by writing the 1010 * equivalent snoop/no-snoop latencies in the LTRV register in the MAC and 1011 * set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB) 1012 * message to the PMC. 1013 **/ 1014 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link) 1015 { 1016 u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) | 1017 link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND; 1018 u32 max_ltr_enc_d = 0; /* maximum LTR decoded by platform */ 1019 u32 lat_enc_d = 0; /* latency decoded */ 1020 u16 lat_enc = 0; /* latency encoded */ 1021 1022 if (link) { 1023 u16 speed, duplex, scale = 0; 1024 u16 max_snoop, max_nosnoop; 1025 u16 max_ltr_enc; /* max LTR latency encoded */ 1026 u64 value; 1027 u32 rxa; 1028 1029 if (!hw->adapter->max_frame_size) { 1030 e_dbg("max_frame_size not set.\n"); 1031 return -E1000_ERR_CONFIG; 1032 } 1033 1034 hw->mac.ops.get_link_up_info(hw, &speed, &duplex); 1035 if (!speed) { 1036 e_dbg("Speed not set.\n"); 1037 return -E1000_ERR_CONFIG; 1038 } 1039 1040 /* Rx Packet Buffer Allocation size (KB) */ 1041 rxa = er32(PBA) & E1000_PBA_RXA_MASK; 1042 1043 /* Determine the maximum latency tolerated by the device. 1044 * 1045 * Per the PCIe spec, the tolerated latencies are encoded as 1046 * a 3-bit encoded scale (only 0-5 are valid) multiplied by 1047 * a 10-bit value (0-1023) to provide a range from 1 ns to 1048 * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns, 1049 * 1=2^5ns, 2=2^10ns,...5=2^25ns. 1050 */ 1051 rxa *= 512; 1052 value = (rxa > hw->adapter->max_frame_size) ? 1053 (rxa - hw->adapter->max_frame_size) * (16000 / speed) : 1054 0; 1055 1056 while (value > PCI_LTR_VALUE_MASK) { 1057 scale++; 1058 value = DIV_ROUND_UP(value, BIT(5)); 1059 } 1060 if (scale > E1000_LTRV_SCALE_MAX) { 1061 e_dbg("Invalid LTR latency scale %d\n", scale); 1062 return -E1000_ERR_CONFIG; 1063 } 1064 lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value); 1065 1066 /* Determine the maximum latency tolerated by the platform */ 1067 pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT, 1068 &max_snoop); 1069 pci_read_config_word(hw->adapter->pdev, 1070 E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop); 1071 max_ltr_enc = max_t(u16, max_snoop, max_nosnoop); 1072 1073 lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) * 1074 (1U << (E1000_LTRV_SCALE_FACTOR * 1075 FIELD_GET(E1000_LTRV_SCALE_MASK, lat_enc))); 1076 1077 max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) * 1078 (1U << (E1000_LTRV_SCALE_FACTOR * 1079 FIELD_GET(E1000_LTRV_SCALE_MASK, max_ltr_enc))); 1080 1081 if (lat_enc_d > max_ltr_enc_d) 1082 lat_enc = max_ltr_enc; 1083 } 1084 1085 /* Set Snoop and No-Snoop latencies the same */ 1086 reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT); 1087 ew32(LTRV, reg); 1088 1089 return 0; 1090 } 1091 1092 /** 1093 * e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP 1094 * @hw: pointer to the HW structure 1095 * @to_sx: boolean indicating a system power state transition to Sx 1096 * 1097 * When link is down, configure ULP mode to significantly reduce the power 1098 * to the PHY. If on a Manageability Engine (ME) enabled system, tell the 1099 * ME firmware to start the ULP configuration. If not on an ME enabled 1100 * system, configure the ULP mode by software. 1101 */ 1102 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx) 1103 { 1104 u32 mac_reg; 1105 s32 ret_val = 0; 1106 u16 phy_reg; 1107 u16 oem_reg = 0; 1108 1109 if ((hw->mac.type < e1000_pch_lpt) || 1110 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) || 1111 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) || 1112 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) || 1113 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) || 1114 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on)) 1115 return 0; 1116 1117 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) { 1118 /* Request ME configure ULP mode in the PHY */ 1119 mac_reg = er32(H2ME); 1120 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS; 1121 ew32(H2ME, mac_reg); 1122 1123 goto out; 1124 } 1125 1126 if (!to_sx) { 1127 int i = 0; 1128 1129 /* Poll up to 5 seconds for Cable Disconnected indication */ 1130 while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) { 1131 /* Bail if link is re-acquired */ 1132 if (er32(STATUS) & E1000_STATUS_LU) 1133 return -E1000_ERR_PHY; 1134 1135 if (i++ == 100) 1136 break; 1137 1138 msleep(50); 1139 } 1140 e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n", 1141 (er32(FEXT) & 1142 E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50); 1143 } 1144 1145 ret_val = hw->phy.ops.acquire(hw); 1146 if (ret_val) 1147 goto out; 1148 1149 /* Force SMBus mode in PHY */ 1150 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg); 1151 if (ret_val) 1152 goto release; 1153 phy_reg |= CV_SMB_CTRL_FORCE_SMBUS; 1154 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg); 1155 1156 /* Force SMBus mode in MAC */ 1157 mac_reg = er32(CTRL_EXT); 1158 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; 1159 ew32(CTRL_EXT, mac_reg); 1160 1161 /* Si workaround for ULP entry flow on i127/rev6 h/w. Enable 1162 * LPLU and disable Gig speed when entering ULP 1163 */ 1164 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) { 1165 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS, 1166 &oem_reg); 1167 if (ret_val) 1168 goto release; 1169 1170 phy_reg = oem_reg; 1171 phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS; 1172 1173 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS, 1174 phy_reg); 1175 1176 if (ret_val) 1177 goto release; 1178 } 1179 1180 /* Set Inband ULP Exit, Reset to SMBus mode and 1181 * Disable SMBus Release on PERST# in PHY 1182 */ 1183 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg); 1184 if (ret_val) 1185 goto release; 1186 phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS | 1187 I218_ULP_CONFIG1_DISABLE_SMB_PERST); 1188 if (to_sx) { 1189 if (er32(WUFC) & E1000_WUFC_LNKC) 1190 phy_reg |= I218_ULP_CONFIG1_WOL_HOST; 1191 else 1192 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST; 1193 1194 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP; 1195 phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT; 1196 } else { 1197 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT; 1198 phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP; 1199 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST; 1200 } 1201 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1202 1203 /* Set Disable SMBus Release on PERST# in MAC */ 1204 mac_reg = er32(FEXTNVM7); 1205 mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST; 1206 ew32(FEXTNVM7, mac_reg); 1207 1208 /* Commit ULP changes in PHY by starting auto ULP configuration */ 1209 phy_reg |= I218_ULP_CONFIG1_START; 1210 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1211 1212 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) && 1213 to_sx && (er32(STATUS) & E1000_STATUS_LU)) { 1214 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS, 1215 oem_reg); 1216 if (ret_val) 1217 goto release; 1218 } 1219 1220 release: 1221 hw->phy.ops.release(hw); 1222 out: 1223 if (ret_val) 1224 e_dbg("Error in ULP enable flow: %d\n", ret_val); 1225 else 1226 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on; 1227 1228 return ret_val; 1229 } 1230 1231 /** 1232 * e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP 1233 * @hw: pointer to the HW structure 1234 * @force: boolean indicating whether or not to force disabling ULP 1235 * 1236 * Un-configure ULP mode when link is up, the system is transitioned from 1237 * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled 1238 * system, poll for an indication from ME that ULP has been un-configured. 1239 * If not on an ME enabled system, un-configure the ULP mode by software. 1240 * 1241 * During nominal operation, this function is called when link is acquired 1242 * to disable ULP mode (force=false); otherwise, for example when unloading 1243 * the driver or during Sx->S0 transitions, this is called with force=true 1244 * to forcibly disable ULP. 1245 */ 1246 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force) 1247 { 1248 s32 ret_val = 0; 1249 u32 mac_reg; 1250 u16 phy_reg; 1251 int i = 0; 1252 1253 if ((hw->mac.type < e1000_pch_lpt) || 1254 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) || 1255 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) || 1256 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) || 1257 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) || 1258 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off)) 1259 return 0; 1260 1261 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) { 1262 struct e1000_adapter *adapter = hw->adapter; 1263 bool firmware_bug = false; 1264 1265 if (force) { 1266 /* Request ME un-configure ULP mode in the PHY */ 1267 mac_reg = er32(H2ME); 1268 mac_reg &= ~E1000_H2ME_ULP; 1269 mac_reg |= E1000_H2ME_ENFORCE_SETTINGS; 1270 ew32(H2ME, mac_reg); 1271 } 1272 1273 /* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE. 1274 * If this takes more than 1 second, show a warning indicating a 1275 * firmware bug 1276 */ 1277 while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) { 1278 if (i++ == 250) { 1279 ret_val = -E1000_ERR_PHY; 1280 goto out; 1281 } 1282 if (i > 100 && !firmware_bug) 1283 firmware_bug = true; 1284 1285 usleep_range(10000, 11000); 1286 } 1287 if (firmware_bug) 1288 e_warn("ULP_CONFIG_DONE took %d msec. This is a firmware bug\n", 1289 i * 10); 1290 else 1291 e_dbg("ULP_CONFIG_DONE cleared after %d msec\n", 1292 i * 10); 1293 1294 if (force) { 1295 mac_reg = er32(H2ME); 1296 mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS; 1297 ew32(H2ME, mac_reg); 1298 } else { 1299 /* Clear H2ME.ULP after ME ULP configuration */ 1300 mac_reg = er32(H2ME); 1301 mac_reg &= ~E1000_H2ME_ULP; 1302 ew32(H2ME, mac_reg); 1303 } 1304 1305 goto out; 1306 } 1307 1308 ret_val = hw->phy.ops.acquire(hw); 1309 if (ret_val) 1310 goto out; 1311 1312 if (force) 1313 /* Toggle LANPHYPC Value bit */ 1314 e1000_toggle_lanphypc_pch_lpt(hw); 1315 1316 /* Unforce SMBus mode in PHY */ 1317 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg); 1318 if (ret_val) { 1319 /* The MAC might be in PCIe mode, so temporarily force to 1320 * SMBus mode in order to access the PHY. 1321 */ 1322 mac_reg = er32(CTRL_EXT); 1323 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; 1324 ew32(CTRL_EXT, mac_reg); 1325 1326 msleep(50); 1327 1328 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, 1329 &phy_reg); 1330 if (ret_val) 1331 goto release; 1332 } 1333 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS; 1334 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg); 1335 1336 /* Unforce SMBus mode in MAC */ 1337 mac_reg = er32(CTRL_EXT); 1338 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; 1339 ew32(CTRL_EXT, mac_reg); 1340 1341 /* When ULP mode was previously entered, K1 was disabled by the 1342 * hardware. Re-Enable K1 in the PHY when exiting ULP. 1343 */ 1344 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg); 1345 if (ret_val) 1346 goto release; 1347 phy_reg |= HV_PM_CTRL_K1_ENABLE; 1348 e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg); 1349 1350 /* Clear ULP enabled configuration */ 1351 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg); 1352 if (ret_val) 1353 goto release; 1354 phy_reg &= ~(I218_ULP_CONFIG1_IND | 1355 I218_ULP_CONFIG1_STICKY_ULP | 1356 I218_ULP_CONFIG1_RESET_TO_SMBUS | 1357 I218_ULP_CONFIG1_WOL_HOST | 1358 I218_ULP_CONFIG1_INBAND_EXIT | 1359 I218_ULP_CONFIG1_EN_ULP_LANPHYPC | 1360 I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST | 1361 I218_ULP_CONFIG1_DISABLE_SMB_PERST); 1362 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1363 1364 /* Commit ULP changes by starting auto ULP configuration */ 1365 phy_reg |= I218_ULP_CONFIG1_START; 1366 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1367 1368 /* Clear Disable SMBus Release on PERST# in MAC */ 1369 mac_reg = er32(FEXTNVM7); 1370 mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST; 1371 ew32(FEXTNVM7, mac_reg); 1372 1373 release: 1374 hw->phy.ops.release(hw); 1375 if (force) { 1376 e1000_phy_hw_reset(hw); 1377 msleep(50); 1378 } 1379 out: 1380 if (ret_val) 1381 e_dbg("Error in ULP disable flow: %d\n", ret_val); 1382 else 1383 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off; 1384 1385 return ret_val; 1386 } 1387 1388 /** 1389 * e1000_check_for_copper_link_ich8lan - Check for link (Copper) 1390 * @hw: pointer to the HW structure 1391 * 1392 * Checks to see of the link status of the hardware has changed. If a 1393 * change in link status has been detected, then we read the PHY registers 1394 * to get the current speed/duplex if link exists. 1395 **/ 1396 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw) 1397 { 1398 struct e1000_mac_info *mac = &hw->mac; 1399 s32 ret_val, tipg_reg = 0; 1400 u16 emi_addr, emi_val = 0; 1401 bool link; 1402 u16 phy_reg; 1403 1404 /* We only want to go out to the PHY registers to see if Auto-Neg 1405 * has completed and/or if our link status has changed. The 1406 * get_link_status flag is set upon receiving a Link Status 1407 * Change or Rx Sequence Error interrupt. 1408 */ 1409 if (!mac->get_link_status) 1410 return 0; 1411 mac->get_link_status = false; 1412 1413 /* First we want to see if the MII Status Register reports 1414 * link. If so, then we want to get the current speed/duplex 1415 * of the PHY. 1416 */ 1417 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 1418 if (ret_val) 1419 goto out; 1420 1421 if (hw->mac.type == e1000_pchlan) { 1422 ret_val = e1000_k1_gig_workaround_hv(hw, link); 1423 if (ret_val) 1424 goto out; 1425 } 1426 1427 /* When connected at 10Mbps half-duplex, some parts are excessively 1428 * aggressive resulting in many collisions. To avoid this, increase 1429 * the IPG and reduce Rx latency in the PHY. 1430 */ 1431 if ((hw->mac.type >= e1000_pch2lan) && link) { 1432 u16 speed, duplex; 1433 1434 e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex); 1435 tipg_reg = er32(TIPG); 1436 tipg_reg &= ~E1000_TIPG_IPGT_MASK; 1437 1438 if (duplex == HALF_DUPLEX && speed == SPEED_10) { 1439 tipg_reg |= 0xFF; 1440 /* Reduce Rx latency in analog PHY */ 1441 emi_val = 0; 1442 } else if (hw->mac.type >= e1000_pch_spt && 1443 duplex == FULL_DUPLEX && speed != SPEED_1000) { 1444 tipg_reg |= 0xC; 1445 emi_val = 1; 1446 } else { 1447 1448 /* Roll back the default values */ 1449 tipg_reg |= 0x08; 1450 emi_val = 1; 1451 } 1452 1453 ew32(TIPG, tipg_reg); 1454 1455 ret_val = hw->phy.ops.acquire(hw); 1456 if (ret_val) 1457 goto out; 1458 1459 if (hw->mac.type == e1000_pch2lan) 1460 emi_addr = I82579_RX_CONFIG; 1461 else 1462 emi_addr = I217_RX_CONFIG; 1463 ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val); 1464 1465 if (hw->mac.type >= e1000_pch_lpt) { 1466 u16 phy_reg; 1467 1468 e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg); 1469 phy_reg &= ~I217_PLL_CLOCK_GATE_MASK; 1470 if (speed == SPEED_100 || speed == SPEED_10) 1471 phy_reg |= 0x3E8; 1472 else 1473 phy_reg |= 0xFA; 1474 e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg); 1475 1476 if (speed == SPEED_1000) { 1477 hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL, 1478 &phy_reg); 1479 1480 phy_reg |= HV_PM_CTRL_K1_CLK_REQ; 1481 1482 hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL, 1483 phy_reg); 1484 } 1485 } 1486 hw->phy.ops.release(hw); 1487 1488 if (ret_val) 1489 goto out; 1490 1491 if (hw->mac.type >= e1000_pch_spt) { 1492 u16 data; 1493 u16 ptr_gap; 1494 1495 if (speed == SPEED_1000) { 1496 ret_val = hw->phy.ops.acquire(hw); 1497 if (ret_val) 1498 goto out; 1499 1500 ret_val = e1e_rphy_locked(hw, 1501 PHY_REG(776, 20), 1502 &data); 1503 if (ret_val) { 1504 hw->phy.ops.release(hw); 1505 goto out; 1506 } 1507 1508 ptr_gap = (data & (0x3FF << 2)) >> 2; 1509 if (ptr_gap < 0x18) { 1510 data &= ~(0x3FF << 2); 1511 data |= (0x18 << 2); 1512 ret_val = 1513 e1e_wphy_locked(hw, 1514 PHY_REG(776, 20), 1515 data); 1516 } 1517 hw->phy.ops.release(hw); 1518 if (ret_val) 1519 goto out; 1520 } else { 1521 ret_val = hw->phy.ops.acquire(hw); 1522 if (ret_val) 1523 goto out; 1524 1525 ret_val = e1e_wphy_locked(hw, 1526 PHY_REG(776, 20), 1527 0xC023); 1528 hw->phy.ops.release(hw); 1529 if (ret_val) 1530 goto out; 1531 1532 } 1533 } 1534 } 1535 1536 /* I217 Packet Loss issue: 1537 * ensure that FEXTNVM4 Beacon Duration is set correctly 1538 * on power up. 1539 * Set the Beacon Duration for I217 to 8 usec 1540 */ 1541 if (hw->mac.type >= e1000_pch_lpt) { 1542 u32 mac_reg; 1543 1544 mac_reg = er32(FEXTNVM4); 1545 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; 1546 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC; 1547 ew32(FEXTNVM4, mac_reg); 1548 } 1549 1550 /* Work-around I218 hang issue */ 1551 if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) || 1552 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) || 1553 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) || 1554 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) { 1555 ret_val = e1000_k1_workaround_lpt_lp(hw, link); 1556 if (ret_val) 1557 goto out; 1558 } 1559 if (hw->mac.type >= e1000_pch_lpt) { 1560 /* Set platform power management values for 1561 * Latency Tolerance Reporting (LTR) 1562 */ 1563 ret_val = e1000_platform_pm_pch_lpt(hw, link); 1564 if (ret_val) 1565 goto out; 1566 } 1567 1568 /* Clear link partner's EEE ability */ 1569 hw->dev_spec.ich8lan.eee_lp_ability = 0; 1570 1571 if (hw->mac.type >= e1000_pch_lpt) { 1572 u32 fextnvm6 = er32(FEXTNVM6); 1573 1574 if (hw->mac.type == e1000_pch_spt) { 1575 /* FEXTNVM6 K1-off workaround - for SPT only */ 1576 u32 pcieanacfg = er32(PCIEANACFG); 1577 1578 if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE) 1579 fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE; 1580 else 1581 fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE; 1582 } 1583 1584 ew32(FEXTNVM6, fextnvm6); 1585 } 1586 1587 if (!link) 1588 goto out; 1589 1590 switch (hw->mac.type) { 1591 case e1000_pch2lan: 1592 ret_val = e1000_k1_workaround_lv(hw); 1593 if (ret_val) 1594 return ret_val; 1595 fallthrough; 1596 case e1000_pchlan: 1597 if (hw->phy.type == e1000_phy_82578) { 1598 ret_val = e1000_link_stall_workaround_hv(hw); 1599 if (ret_val) 1600 return ret_val; 1601 } 1602 1603 /* Workaround for PCHx parts in half-duplex: 1604 * Set the number of preambles removed from the packet 1605 * when it is passed from the PHY to the MAC to prevent 1606 * the MAC from misinterpreting the packet type. 1607 */ 1608 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg); 1609 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK; 1610 1611 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD) 1612 phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT); 1613 1614 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg); 1615 break; 1616 default: 1617 break; 1618 } 1619 1620 /* Check if there was DownShift, must be checked 1621 * immediately after link-up 1622 */ 1623 e1000e_check_downshift(hw); 1624 1625 /* Enable/Disable EEE after link up */ 1626 if (hw->phy.type > e1000_phy_82579) { 1627 ret_val = e1000_set_eee_pchlan(hw); 1628 if (ret_val) 1629 return ret_val; 1630 } 1631 1632 /* If we are forcing speed/duplex, then we simply return since 1633 * we have already determined whether we have link or not. 1634 */ 1635 if (!mac->autoneg) 1636 return -E1000_ERR_CONFIG; 1637 1638 /* Auto-Neg is enabled. Auto Speed Detection takes care 1639 * of MAC speed/duplex configuration. So we only need to 1640 * configure Collision Distance in the MAC. 1641 */ 1642 mac->ops.config_collision_dist(hw); 1643 1644 /* Configure Flow Control now that Auto-Neg has completed. 1645 * First, we need to restore the desired flow control 1646 * settings because we may have had to re-autoneg with a 1647 * different link partner. 1648 */ 1649 ret_val = e1000e_config_fc_after_link_up(hw); 1650 if (ret_val) 1651 e_dbg("Error configuring flow control\n"); 1652 1653 return ret_val; 1654 1655 out: 1656 mac->get_link_status = true; 1657 return ret_val; 1658 } 1659 1660 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter) 1661 { 1662 struct e1000_hw *hw = &adapter->hw; 1663 s32 rc; 1664 1665 rc = e1000_init_mac_params_ich8lan(hw); 1666 if (rc) 1667 return rc; 1668 1669 rc = e1000_init_nvm_params_ich8lan(hw); 1670 if (rc) 1671 return rc; 1672 1673 switch (hw->mac.type) { 1674 case e1000_ich8lan: 1675 case e1000_ich9lan: 1676 case e1000_ich10lan: 1677 rc = e1000_init_phy_params_ich8lan(hw); 1678 break; 1679 case e1000_pchlan: 1680 case e1000_pch2lan: 1681 case e1000_pch_lpt: 1682 case e1000_pch_spt: 1683 case e1000_pch_cnp: 1684 case e1000_pch_tgp: 1685 case e1000_pch_adp: 1686 case e1000_pch_mtp: 1687 case e1000_pch_lnp: 1688 case e1000_pch_ptp: 1689 case e1000_pch_nvp: 1690 rc = e1000_init_phy_params_pchlan(hw); 1691 break; 1692 default: 1693 break; 1694 } 1695 if (rc) 1696 return rc; 1697 1698 /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or 1699 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT). 1700 */ 1701 if ((adapter->hw.phy.type == e1000_phy_ife) || 1702 ((adapter->hw.mac.type >= e1000_pch2lan) && 1703 (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) { 1704 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES; 1705 adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN; 1706 1707 hw->mac.ops.blink_led = NULL; 1708 } 1709 1710 if ((adapter->hw.mac.type == e1000_ich8lan) && 1711 (adapter->hw.phy.type != e1000_phy_ife)) 1712 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP; 1713 1714 /* Enable workaround for 82579 w/ ME enabled */ 1715 if ((adapter->hw.mac.type == e1000_pch2lan) && 1716 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) 1717 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA; 1718 1719 return 0; 1720 } 1721 1722 static DEFINE_MUTEX(nvm_mutex); 1723 1724 /** 1725 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex 1726 * @hw: pointer to the HW structure 1727 * 1728 * Acquires the mutex for performing NVM operations. 1729 **/ 1730 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw) 1731 { 1732 mutex_lock(&nvm_mutex); 1733 1734 return 0; 1735 } 1736 1737 /** 1738 * e1000_release_nvm_ich8lan - Release NVM mutex 1739 * @hw: pointer to the HW structure 1740 * 1741 * Releases the mutex used while performing NVM operations. 1742 **/ 1743 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw) 1744 { 1745 mutex_unlock(&nvm_mutex); 1746 } 1747 1748 /** 1749 * e1000_acquire_swflag_ich8lan - Acquire software control flag 1750 * @hw: pointer to the HW structure 1751 * 1752 * Acquires the software control flag for performing PHY and select 1753 * MAC CSR accesses. 1754 **/ 1755 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw) 1756 { 1757 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT; 1758 s32 ret_val = 0; 1759 1760 if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE, 1761 &hw->adapter->state)) { 1762 e_dbg("contention for Phy access\n"); 1763 return -E1000_ERR_PHY; 1764 } 1765 1766 while (timeout) { 1767 extcnf_ctrl = er32(EXTCNF_CTRL); 1768 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)) 1769 break; 1770 1771 mdelay(1); 1772 timeout--; 1773 } 1774 1775 if (!timeout) { 1776 e_dbg("SW has already locked the resource.\n"); 1777 ret_val = -E1000_ERR_CONFIG; 1778 goto out; 1779 } 1780 1781 timeout = SW_FLAG_TIMEOUT; 1782 1783 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; 1784 ew32(EXTCNF_CTRL, extcnf_ctrl); 1785 1786 while (timeout) { 1787 extcnf_ctrl = er32(EXTCNF_CTRL); 1788 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) 1789 break; 1790 1791 mdelay(1); 1792 timeout--; 1793 } 1794 1795 if (!timeout) { 1796 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n", 1797 er32(FWSM), extcnf_ctrl); 1798 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; 1799 ew32(EXTCNF_CTRL, extcnf_ctrl); 1800 ret_val = -E1000_ERR_CONFIG; 1801 goto out; 1802 } 1803 1804 out: 1805 if (ret_val) 1806 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); 1807 1808 return ret_val; 1809 } 1810 1811 /** 1812 * e1000_release_swflag_ich8lan - Release software control flag 1813 * @hw: pointer to the HW structure 1814 * 1815 * Releases the software control flag for performing PHY and select 1816 * MAC CSR accesses. 1817 **/ 1818 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw) 1819 { 1820 u32 extcnf_ctrl; 1821 1822 extcnf_ctrl = er32(EXTCNF_CTRL); 1823 1824 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) { 1825 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; 1826 ew32(EXTCNF_CTRL, extcnf_ctrl); 1827 } else { 1828 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n"); 1829 } 1830 1831 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); 1832 } 1833 1834 /** 1835 * e1000_check_mng_mode_ich8lan - Checks management mode 1836 * @hw: pointer to the HW structure 1837 * 1838 * This checks if the adapter has any manageability enabled. 1839 * This is a function pointer entry point only called by read/write 1840 * routines for the PHY and NVM parts. 1841 **/ 1842 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw) 1843 { 1844 u32 fwsm; 1845 1846 fwsm = er32(FWSM); 1847 return (fwsm & E1000_ICH_FWSM_FW_VALID) && 1848 ((fwsm & E1000_FWSM_MODE_MASK) == 1849 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); 1850 } 1851 1852 /** 1853 * e1000_check_mng_mode_pchlan - Checks management mode 1854 * @hw: pointer to the HW structure 1855 * 1856 * This checks if the adapter has iAMT enabled. 1857 * This is a function pointer entry point only called by read/write 1858 * routines for the PHY and NVM parts. 1859 **/ 1860 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw) 1861 { 1862 u32 fwsm; 1863 1864 fwsm = er32(FWSM); 1865 return (fwsm & E1000_ICH_FWSM_FW_VALID) && 1866 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); 1867 } 1868 1869 /** 1870 * e1000_rar_set_pch2lan - Set receive address register 1871 * @hw: pointer to the HW structure 1872 * @addr: pointer to the receive address 1873 * @index: receive address array register 1874 * 1875 * Sets the receive address array register at index to the address passed 1876 * in by addr. For 82579, RAR[0] is the base address register that is to 1877 * contain the MAC address but RAR[1-6] are reserved for manageability (ME). 1878 * Use SHRA[0-3] in place of those reserved for ME. 1879 **/ 1880 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index) 1881 { 1882 u32 rar_low, rar_high; 1883 1884 /* HW expects these in little endian so we reverse the byte order 1885 * from network order (big endian) to little endian 1886 */ 1887 rar_low = ((u32)addr[0] | 1888 ((u32)addr[1] << 8) | 1889 ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); 1890 1891 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); 1892 1893 /* If MAC address zero, no need to set the AV bit */ 1894 if (rar_low || rar_high) 1895 rar_high |= E1000_RAH_AV; 1896 1897 if (index == 0) { 1898 ew32(RAL(index), rar_low); 1899 e1e_flush(); 1900 ew32(RAH(index), rar_high); 1901 e1e_flush(); 1902 return 0; 1903 } 1904 1905 /* RAR[1-6] are owned by manageability. Skip those and program the 1906 * next address into the SHRA register array. 1907 */ 1908 if (index < (u32)(hw->mac.rar_entry_count)) { 1909 s32 ret_val; 1910 1911 ret_val = e1000_acquire_swflag_ich8lan(hw); 1912 if (ret_val) 1913 goto out; 1914 1915 ew32(SHRAL(index - 1), rar_low); 1916 e1e_flush(); 1917 ew32(SHRAH(index - 1), rar_high); 1918 e1e_flush(); 1919 1920 e1000_release_swflag_ich8lan(hw); 1921 1922 /* verify the register updates */ 1923 if ((er32(SHRAL(index - 1)) == rar_low) && 1924 (er32(SHRAH(index - 1)) == rar_high)) 1925 return 0; 1926 1927 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n", 1928 (index - 1), er32(FWSM)); 1929 } 1930 1931 out: 1932 e_dbg("Failed to write receive address at index %d\n", index); 1933 return -E1000_ERR_CONFIG; 1934 } 1935 1936 /** 1937 * e1000_rar_get_count_pch_lpt - Get the number of available SHRA 1938 * @hw: pointer to the HW structure 1939 * 1940 * Get the number of available receive registers that the Host can 1941 * program. SHRA[0-10] are the shared receive address registers 1942 * that are shared between the Host and manageability engine (ME). 1943 * ME can reserve any number of addresses and the host needs to be 1944 * able to tell how many available registers it has access to. 1945 **/ 1946 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw) 1947 { 1948 u32 wlock_mac; 1949 u32 num_entries; 1950 1951 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK; 1952 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT; 1953 1954 switch (wlock_mac) { 1955 case 0: 1956 /* All SHRA[0..10] and RAR[0] available */ 1957 num_entries = hw->mac.rar_entry_count; 1958 break; 1959 case 1: 1960 /* Only RAR[0] available */ 1961 num_entries = 1; 1962 break; 1963 default: 1964 /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */ 1965 num_entries = wlock_mac + 1; 1966 break; 1967 } 1968 1969 return num_entries; 1970 } 1971 1972 /** 1973 * e1000_rar_set_pch_lpt - Set receive address registers 1974 * @hw: pointer to the HW structure 1975 * @addr: pointer to the receive address 1976 * @index: receive address array register 1977 * 1978 * Sets the receive address register array at index to the address passed 1979 * in by addr. For LPT, RAR[0] is the base address register that is to 1980 * contain the MAC address. SHRA[0-10] are the shared receive address 1981 * registers that are shared between the Host and manageability engine (ME). 1982 **/ 1983 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index) 1984 { 1985 u32 rar_low, rar_high; 1986 u32 wlock_mac; 1987 1988 /* HW expects these in little endian so we reverse the byte order 1989 * from network order (big endian) to little endian 1990 */ 1991 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) | 1992 ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); 1993 1994 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); 1995 1996 /* If MAC address zero, no need to set the AV bit */ 1997 if (rar_low || rar_high) 1998 rar_high |= E1000_RAH_AV; 1999 2000 if (index == 0) { 2001 ew32(RAL(index), rar_low); 2002 e1e_flush(); 2003 ew32(RAH(index), rar_high); 2004 e1e_flush(); 2005 return 0; 2006 } 2007 2008 /* The manageability engine (ME) can lock certain SHRAR registers that 2009 * it is using - those registers are unavailable for use. 2010 */ 2011 if (index < hw->mac.rar_entry_count) { 2012 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK; 2013 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT; 2014 2015 /* Check if all SHRAR registers are locked */ 2016 if (wlock_mac == 1) 2017 goto out; 2018 2019 if ((wlock_mac == 0) || (index <= wlock_mac)) { 2020 s32 ret_val; 2021 2022 ret_val = e1000_acquire_swflag_ich8lan(hw); 2023 2024 if (ret_val) 2025 goto out; 2026 2027 ew32(SHRAL_PCH_LPT(index - 1), rar_low); 2028 e1e_flush(); 2029 ew32(SHRAH_PCH_LPT(index - 1), rar_high); 2030 e1e_flush(); 2031 2032 e1000_release_swflag_ich8lan(hw); 2033 2034 /* verify the register updates */ 2035 if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) && 2036 (er32(SHRAH_PCH_LPT(index - 1)) == rar_high)) 2037 return 0; 2038 } 2039 } 2040 2041 out: 2042 e_dbg("Failed to write receive address at index %d\n", index); 2043 return -E1000_ERR_CONFIG; 2044 } 2045 2046 /** 2047 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked 2048 * @hw: pointer to the HW structure 2049 * 2050 * Checks if firmware is blocking the reset of the PHY. 2051 * This is a function pointer entry point only called by 2052 * reset routines. 2053 **/ 2054 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw) 2055 { 2056 bool blocked = false; 2057 int i = 0; 2058 2059 while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) && 2060 (i++ < 30)) 2061 usleep_range(10000, 11000); 2062 return blocked ? E1000_BLK_PHY_RESET : 0; 2063 } 2064 2065 /** 2066 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states 2067 * @hw: pointer to the HW structure 2068 * 2069 * Assumes semaphore already acquired. 2070 * 2071 **/ 2072 static s32 e1000_write_smbus_addr(struct e1000_hw *hw) 2073 { 2074 u16 phy_data; 2075 u32 strap = er32(STRAP); 2076 u32 freq = FIELD_GET(E1000_STRAP_SMT_FREQ_MASK, strap); 2077 s32 ret_val; 2078 2079 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK; 2080 2081 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data); 2082 if (ret_val) 2083 return ret_val; 2084 2085 phy_data &= ~HV_SMB_ADDR_MASK; 2086 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT); 2087 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID; 2088 2089 if (hw->phy.type == e1000_phy_i217) { 2090 /* Restore SMBus frequency */ 2091 if (freq--) { 2092 phy_data &= ~HV_SMB_ADDR_FREQ_MASK; 2093 phy_data |= (freq & BIT(0)) << 2094 HV_SMB_ADDR_FREQ_LOW_SHIFT; 2095 phy_data |= (freq & BIT(1)) << 2096 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1); 2097 } else { 2098 e_dbg("Unsupported SMB frequency in PHY\n"); 2099 } 2100 } 2101 2102 return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data); 2103 } 2104 2105 /** 2106 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration 2107 * @hw: pointer to the HW structure 2108 * 2109 * SW should configure the LCD from the NVM extended configuration region 2110 * as a workaround for certain parts. 2111 **/ 2112 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw) 2113 { 2114 struct e1000_phy_info *phy = &hw->phy; 2115 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask; 2116 s32 ret_val = 0; 2117 u16 word_addr, reg_data, reg_addr, phy_page = 0; 2118 2119 /* Initialize the PHY from the NVM on ICH platforms. This 2120 * is needed due to an issue where the NVM configuration is 2121 * not properly autoloaded after power transitions. 2122 * Therefore, after each PHY reset, we will load the 2123 * configuration data out of the NVM manually. 2124 */ 2125 switch (hw->mac.type) { 2126 case e1000_ich8lan: 2127 if (phy->type != e1000_phy_igp_3) 2128 return ret_val; 2129 2130 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) || 2131 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) { 2132 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG; 2133 break; 2134 } 2135 fallthrough; 2136 case e1000_pchlan: 2137 case e1000_pch2lan: 2138 case e1000_pch_lpt: 2139 case e1000_pch_spt: 2140 case e1000_pch_cnp: 2141 case e1000_pch_tgp: 2142 case e1000_pch_adp: 2143 case e1000_pch_mtp: 2144 case e1000_pch_lnp: 2145 case e1000_pch_ptp: 2146 case e1000_pch_nvp: 2147 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M; 2148 break; 2149 default: 2150 return ret_val; 2151 } 2152 2153 ret_val = hw->phy.ops.acquire(hw); 2154 if (ret_val) 2155 return ret_val; 2156 2157 data = er32(FEXTNVM); 2158 if (!(data & sw_cfg_mask)) 2159 goto release; 2160 2161 /* Make sure HW does not configure LCD from PHY 2162 * extended configuration before SW configuration 2163 */ 2164 data = er32(EXTCNF_CTRL); 2165 if ((hw->mac.type < e1000_pch2lan) && 2166 (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)) 2167 goto release; 2168 2169 cnf_size = er32(EXTCNF_SIZE); 2170 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK; 2171 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT; 2172 if (!cnf_size) 2173 goto release; 2174 2175 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK; 2176 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT; 2177 2178 if (((hw->mac.type == e1000_pchlan) && 2179 !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) || 2180 (hw->mac.type > e1000_pchlan)) { 2181 /* HW configures the SMBus address and LEDs when the 2182 * OEM and LCD Write Enable bits are set in the NVM. 2183 * When both NVM bits are cleared, SW will configure 2184 * them instead. 2185 */ 2186 ret_val = e1000_write_smbus_addr(hw); 2187 if (ret_val) 2188 goto release; 2189 2190 data = er32(LEDCTL); 2191 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG, 2192 (u16)data); 2193 if (ret_val) 2194 goto release; 2195 } 2196 2197 /* Configure LCD from extended configuration region. */ 2198 2199 /* cnf_base_addr is in DWORD */ 2200 word_addr = (u16)(cnf_base_addr << 1); 2201 2202 for (i = 0; i < cnf_size; i++) { 2203 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, ®_data); 2204 if (ret_val) 2205 goto release; 2206 2207 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1), 2208 1, ®_addr); 2209 if (ret_val) 2210 goto release; 2211 2212 /* Save off the PHY page for future writes. */ 2213 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) { 2214 phy_page = reg_data; 2215 continue; 2216 } 2217 2218 reg_addr &= PHY_REG_MASK; 2219 reg_addr |= phy_page; 2220 2221 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data); 2222 if (ret_val) 2223 goto release; 2224 } 2225 2226 release: 2227 hw->phy.ops.release(hw); 2228 return ret_val; 2229 } 2230 2231 /** 2232 * e1000_k1_gig_workaround_hv - K1 Si workaround 2233 * @hw: pointer to the HW structure 2234 * @link: link up bool flag 2235 * 2236 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning 2237 * from a lower speed. This workaround disables K1 whenever link is at 1Gig 2238 * If link is down, the function will restore the default K1 setting located 2239 * in the NVM. 2240 **/ 2241 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link) 2242 { 2243 s32 ret_val = 0; 2244 u16 status_reg = 0; 2245 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled; 2246 2247 if (hw->mac.type != e1000_pchlan) 2248 return 0; 2249 2250 /* Wrap the whole flow with the sw flag */ 2251 ret_val = hw->phy.ops.acquire(hw); 2252 if (ret_val) 2253 return ret_val; 2254 2255 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */ 2256 if (link) { 2257 if (hw->phy.type == e1000_phy_82578) { 2258 ret_val = e1e_rphy_locked(hw, BM_CS_STATUS, 2259 &status_reg); 2260 if (ret_val) 2261 goto release; 2262 2263 status_reg &= (BM_CS_STATUS_LINK_UP | 2264 BM_CS_STATUS_RESOLVED | 2265 BM_CS_STATUS_SPEED_MASK); 2266 2267 if (status_reg == (BM_CS_STATUS_LINK_UP | 2268 BM_CS_STATUS_RESOLVED | 2269 BM_CS_STATUS_SPEED_1000)) 2270 k1_enable = false; 2271 } 2272 2273 if (hw->phy.type == e1000_phy_82577) { 2274 ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg); 2275 if (ret_val) 2276 goto release; 2277 2278 status_reg &= (HV_M_STATUS_LINK_UP | 2279 HV_M_STATUS_AUTONEG_COMPLETE | 2280 HV_M_STATUS_SPEED_MASK); 2281 2282 if (status_reg == (HV_M_STATUS_LINK_UP | 2283 HV_M_STATUS_AUTONEG_COMPLETE | 2284 HV_M_STATUS_SPEED_1000)) 2285 k1_enable = false; 2286 } 2287 2288 /* Link stall fix for link up */ 2289 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100); 2290 if (ret_val) 2291 goto release; 2292 2293 } else { 2294 /* Link stall fix for link down */ 2295 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100); 2296 if (ret_val) 2297 goto release; 2298 } 2299 2300 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable); 2301 2302 release: 2303 hw->phy.ops.release(hw); 2304 2305 return ret_val; 2306 } 2307 2308 /** 2309 * e1000_configure_k1_ich8lan - Configure K1 power state 2310 * @hw: pointer to the HW structure 2311 * @k1_enable: K1 state to configure 2312 * 2313 * Configure the K1 power state based on the provided parameter. 2314 * Assumes semaphore already acquired. 2315 * 2316 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 2317 **/ 2318 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable) 2319 { 2320 s32 ret_val; 2321 u32 ctrl_reg = 0; 2322 u32 ctrl_ext = 0; 2323 u32 reg = 0; 2324 u16 kmrn_reg = 0; 2325 2326 ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, 2327 &kmrn_reg); 2328 if (ret_val) 2329 return ret_val; 2330 2331 if (k1_enable) 2332 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE; 2333 else 2334 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE; 2335 2336 ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, 2337 kmrn_reg); 2338 if (ret_val) 2339 return ret_val; 2340 2341 usleep_range(20, 40); 2342 ctrl_ext = er32(CTRL_EXT); 2343 ctrl_reg = er32(CTRL); 2344 2345 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 2346 reg |= E1000_CTRL_FRCSPD; 2347 ew32(CTRL, reg); 2348 2349 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS); 2350 e1e_flush(); 2351 usleep_range(20, 40); 2352 ew32(CTRL, ctrl_reg); 2353 ew32(CTRL_EXT, ctrl_ext); 2354 e1e_flush(); 2355 usleep_range(20, 40); 2356 2357 return 0; 2358 } 2359 2360 /** 2361 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration 2362 * @hw: pointer to the HW structure 2363 * @d0_state: boolean if entering d0 or d3 device state 2364 * 2365 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are 2366 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit 2367 * in NVM determines whether HW should configure LPLU and Gbe Disable. 2368 **/ 2369 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state) 2370 { 2371 s32 ret_val = 0; 2372 u32 mac_reg; 2373 u16 oem_reg; 2374 2375 if (hw->mac.type < e1000_pchlan) 2376 return ret_val; 2377 2378 ret_val = hw->phy.ops.acquire(hw); 2379 if (ret_val) 2380 return ret_val; 2381 2382 if (hw->mac.type == e1000_pchlan) { 2383 mac_reg = er32(EXTCNF_CTRL); 2384 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) 2385 goto release; 2386 } 2387 2388 mac_reg = er32(FEXTNVM); 2389 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M)) 2390 goto release; 2391 2392 mac_reg = er32(PHY_CTRL); 2393 2394 ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg); 2395 if (ret_val) 2396 goto release; 2397 2398 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU); 2399 2400 if (d0_state) { 2401 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE) 2402 oem_reg |= HV_OEM_BITS_GBE_DIS; 2403 2404 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU) 2405 oem_reg |= HV_OEM_BITS_LPLU; 2406 } else { 2407 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE | 2408 E1000_PHY_CTRL_NOND0A_GBE_DISABLE)) 2409 oem_reg |= HV_OEM_BITS_GBE_DIS; 2410 2411 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU | 2412 E1000_PHY_CTRL_NOND0A_LPLU)) 2413 oem_reg |= HV_OEM_BITS_LPLU; 2414 } 2415 2416 /* Set Restart auto-neg to activate the bits */ 2417 if ((d0_state || (hw->mac.type != e1000_pchlan)) && 2418 !hw->phy.ops.check_reset_block(hw)) 2419 oem_reg |= HV_OEM_BITS_RESTART_AN; 2420 2421 ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg); 2422 2423 release: 2424 hw->phy.ops.release(hw); 2425 2426 return ret_val; 2427 } 2428 2429 /** 2430 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode 2431 * @hw: pointer to the HW structure 2432 **/ 2433 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw) 2434 { 2435 s32 ret_val; 2436 u16 data; 2437 2438 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data); 2439 if (ret_val) 2440 return ret_val; 2441 2442 data |= HV_KMRN_MDIO_SLOW; 2443 2444 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data); 2445 2446 return ret_val; 2447 } 2448 2449 /** 2450 * e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds 2451 * @hw: pointer to the HW structure 2452 * 2453 * A series of PHY workarounds to be done after every PHY reset. 2454 **/ 2455 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw) 2456 { 2457 s32 ret_val = 0; 2458 u16 phy_data; 2459 2460 if (hw->mac.type != e1000_pchlan) 2461 return 0; 2462 2463 /* Set MDIO slow mode before any other MDIO access */ 2464 if (hw->phy.type == e1000_phy_82577) { 2465 ret_val = e1000_set_mdio_slow_mode_hv(hw); 2466 if (ret_val) 2467 return ret_val; 2468 } 2469 2470 if (((hw->phy.type == e1000_phy_82577) && 2471 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) || 2472 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) { 2473 /* Disable generation of early preamble */ 2474 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431); 2475 if (ret_val) 2476 return ret_val; 2477 2478 /* Preamble tuning for SSC */ 2479 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204); 2480 if (ret_val) 2481 return ret_val; 2482 } 2483 2484 if (hw->phy.type == e1000_phy_82578) { 2485 /* Return registers to default by doing a soft reset then 2486 * writing 0x3140 to the control register. 2487 */ 2488 if (hw->phy.revision < 2) { 2489 e1000e_phy_sw_reset(hw); 2490 ret_val = e1e_wphy(hw, MII_BMCR, 0x3140); 2491 if (ret_val) 2492 return ret_val; 2493 } 2494 } 2495 2496 /* Select page 0 */ 2497 ret_val = hw->phy.ops.acquire(hw); 2498 if (ret_val) 2499 return ret_val; 2500 2501 hw->phy.addr = 1; 2502 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0); 2503 hw->phy.ops.release(hw); 2504 if (ret_val) 2505 return ret_val; 2506 2507 /* Configure the K1 Si workaround during phy reset assuming there is 2508 * link so that it disables K1 if link is in 1Gbps. 2509 */ 2510 ret_val = e1000_k1_gig_workaround_hv(hw, true); 2511 if (ret_val) 2512 return ret_val; 2513 2514 /* Workaround for link disconnects on a busy hub in half duplex */ 2515 ret_val = hw->phy.ops.acquire(hw); 2516 if (ret_val) 2517 return ret_val; 2518 ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data); 2519 if (ret_val) 2520 goto release; 2521 ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF); 2522 if (ret_val) 2523 goto release; 2524 2525 /* set MSE higher to enable link to stay up when noise is high */ 2526 ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034); 2527 release: 2528 hw->phy.ops.release(hw); 2529 2530 return ret_val; 2531 } 2532 2533 /** 2534 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY 2535 * @hw: pointer to the HW structure 2536 **/ 2537 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw) 2538 { 2539 u32 mac_reg; 2540 u16 i, phy_reg = 0; 2541 s32 ret_val; 2542 2543 ret_val = hw->phy.ops.acquire(hw); 2544 if (ret_val) 2545 return; 2546 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); 2547 if (ret_val) 2548 goto release; 2549 2550 /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */ 2551 for (i = 0; i < (hw->mac.rar_entry_count); i++) { 2552 mac_reg = er32(RAL(i)); 2553 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i), 2554 (u16)(mac_reg & 0xFFFF)); 2555 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i), 2556 (u16)((mac_reg >> 16) & 0xFFFF)); 2557 2558 mac_reg = er32(RAH(i)); 2559 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i), 2560 (u16)(mac_reg & 0xFFFF)); 2561 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i), 2562 (u16)((mac_reg & E1000_RAH_AV) >> 16)); 2563 } 2564 2565 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); 2566 2567 release: 2568 hw->phy.ops.release(hw); 2569 } 2570 2571 /** 2572 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation 2573 * with 82579 PHY 2574 * @hw: pointer to the HW structure 2575 * @enable: flag to enable/disable workaround when enabling/disabling jumbos 2576 **/ 2577 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable) 2578 { 2579 s32 ret_val = 0; 2580 u16 phy_reg, data; 2581 u32 mac_reg; 2582 u16 i; 2583 2584 if (hw->mac.type < e1000_pch2lan) 2585 return 0; 2586 2587 /* disable Rx path while enabling/disabling workaround */ 2588 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); 2589 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14)); 2590 if (ret_val) 2591 return ret_val; 2592 2593 if (enable) { 2594 /* Write Rx addresses (rar_entry_count for RAL/H, and 2595 * SHRAL/H) and initial CRC values to the MAC 2596 */ 2597 for (i = 0; i < hw->mac.rar_entry_count; i++) { 2598 u8 mac_addr[ETH_ALEN] = { 0 }; 2599 u32 addr_high, addr_low; 2600 2601 addr_high = er32(RAH(i)); 2602 if (!(addr_high & E1000_RAH_AV)) 2603 continue; 2604 addr_low = er32(RAL(i)); 2605 mac_addr[0] = (addr_low & 0xFF); 2606 mac_addr[1] = ((addr_low >> 8) & 0xFF); 2607 mac_addr[2] = ((addr_low >> 16) & 0xFF); 2608 mac_addr[3] = ((addr_low >> 24) & 0xFF); 2609 mac_addr[4] = (addr_high & 0xFF); 2610 mac_addr[5] = ((addr_high >> 8) & 0xFF); 2611 2612 ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr)); 2613 } 2614 2615 /* Write Rx addresses to the PHY */ 2616 e1000_copy_rx_addrs_to_phy_ich8lan(hw); 2617 2618 /* Enable jumbo frame workaround in the MAC */ 2619 mac_reg = er32(FFLT_DBG); 2620 mac_reg &= ~BIT(14); 2621 mac_reg |= (7 << 15); 2622 ew32(FFLT_DBG, mac_reg); 2623 2624 mac_reg = er32(RCTL); 2625 mac_reg |= E1000_RCTL_SECRC; 2626 ew32(RCTL, mac_reg); 2627 2628 ret_val = e1000e_read_kmrn_reg(hw, 2629 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2630 &data); 2631 if (ret_val) 2632 return ret_val; 2633 ret_val = e1000e_write_kmrn_reg(hw, 2634 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2635 data | BIT(0)); 2636 if (ret_val) 2637 return ret_val; 2638 ret_val = e1000e_read_kmrn_reg(hw, 2639 E1000_KMRNCTRLSTA_HD_CTRL, 2640 &data); 2641 if (ret_val) 2642 return ret_val; 2643 data &= ~(0xF << 8); 2644 data |= (0xB << 8); 2645 ret_val = e1000e_write_kmrn_reg(hw, 2646 E1000_KMRNCTRLSTA_HD_CTRL, 2647 data); 2648 if (ret_val) 2649 return ret_val; 2650 2651 /* Enable jumbo frame workaround in the PHY */ 2652 e1e_rphy(hw, PHY_REG(769, 23), &data); 2653 data &= ~(0x7F << 5); 2654 data |= (0x37 << 5); 2655 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); 2656 if (ret_val) 2657 return ret_val; 2658 e1e_rphy(hw, PHY_REG(769, 16), &data); 2659 data &= ~BIT(13); 2660 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); 2661 if (ret_val) 2662 return ret_val; 2663 e1e_rphy(hw, PHY_REG(776, 20), &data); 2664 data &= ~(0x3FF << 2); 2665 data |= (E1000_TX_PTR_GAP << 2); 2666 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); 2667 if (ret_val) 2668 return ret_val; 2669 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100); 2670 if (ret_val) 2671 return ret_val; 2672 e1e_rphy(hw, HV_PM_CTRL, &data); 2673 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10)); 2674 if (ret_val) 2675 return ret_val; 2676 } else { 2677 /* Write MAC register values back to h/w defaults */ 2678 mac_reg = er32(FFLT_DBG); 2679 mac_reg &= ~(0xF << 14); 2680 ew32(FFLT_DBG, mac_reg); 2681 2682 mac_reg = er32(RCTL); 2683 mac_reg &= ~E1000_RCTL_SECRC; 2684 ew32(RCTL, mac_reg); 2685 2686 ret_val = e1000e_read_kmrn_reg(hw, 2687 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2688 &data); 2689 if (ret_val) 2690 return ret_val; 2691 ret_val = e1000e_write_kmrn_reg(hw, 2692 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2693 data & ~BIT(0)); 2694 if (ret_val) 2695 return ret_val; 2696 ret_val = e1000e_read_kmrn_reg(hw, 2697 E1000_KMRNCTRLSTA_HD_CTRL, 2698 &data); 2699 if (ret_val) 2700 return ret_val; 2701 data &= ~(0xF << 8); 2702 data |= (0xB << 8); 2703 ret_val = e1000e_write_kmrn_reg(hw, 2704 E1000_KMRNCTRLSTA_HD_CTRL, 2705 data); 2706 if (ret_val) 2707 return ret_val; 2708 2709 /* Write PHY register values back to h/w defaults */ 2710 e1e_rphy(hw, PHY_REG(769, 23), &data); 2711 data &= ~(0x7F << 5); 2712 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); 2713 if (ret_val) 2714 return ret_val; 2715 e1e_rphy(hw, PHY_REG(769, 16), &data); 2716 data |= BIT(13); 2717 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); 2718 if (ret_val) 2719 return ret_val; 2720 e1e_rphy(hw, PHY_REG(776, 20), &data); 2721 data &= ~(0x3FF << 2); 2722 data |= (0x8 << 2); 2723 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); 2724 if (ret_val) 2725 return ret_val; 2726 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00); 2727 if (ret_val) 2728 return ret_val; 2729 e1e_rphy(hw, HV_PM_CTRL, &data); 2730 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10)); 2731 if (ret_val) 2732 return ret_val; 2733 } 2734 2735 /* re-enable Rx path after enabling/disabling workaround */ 2736 return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14)); 2737 } 2738 2739 /** 2740 * e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds 2741 * @hw: pointer to the HW structure 2742 * 2743 * A series of PHY workarounds to be done after every PHY reset. 2744 **/ 2745 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw) 2746 { 2747 s32 ret_val = 0; 2748 2749 if (hw->mac.type != e1000_pch2lan) 2750 return 0; 2751 2752 /* Set MDIO slow mode before any other MDIO access */ 2753 ret_val = e1000_set_mdio_slow_mode_hv(hw); 2754 if (ret_val) 2755 return ret_val; 2756 2757 ret_val = hw->phy.ops.acquire(hw); 2758 if (ret_val) 2759 return ret_val; 2760 /* set MSE higher to enable link to stay up when noise is high */ 2761 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034); 2762 if (ret_val) 2763 goto release; 2764 /* drop link after 5 times MSE threshold was reached */ 2765 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005); 2766 release: 2767 hw->phy.ops.release(hw); 2768 2769 return ret_val; 2770 } 2771 2772 /** 2773 * e1000_k1_workaround_lv - K1 Si workaround 2774 * @hw: pointer to the HW structure 2775 * 2776 * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps 2777 * Disable K1 in 1000Mbps and 100Mbps 2778 **/ 2779 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw) 2780 { 2781 s32 ret_val = 0; 2782 u16 status_reg = 0; 2783 2784 if (hw->mac.type != e1000_pch2lan) 2785 return 0; 2786 2787 /* Set K1 beacon duration based on 10Mbs speed */ 2788 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg); 2789 if (ret_val) 2790 return ret_val; 2791 2792 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) 2793 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) { 2794 if (status_reg & 2795 (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) { 2796 u16 pm_phy_reg; 2797 2798 /* LV 1G/100 Packet drop issue wa */ 2799 ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg); 2800 if (ret_val) 2801 return ret_val; 2802 pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE; 2803 ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg); 2804 if (ret_val) 2805 return ret_val; 2806 } else { 2807 u32 mac_reg; 2808 2809 mac_reg = er32(FEXTNVM4); 2810 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; 2811 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC; 2812 ew32(FEXTNVM4, mac_reg); 2813 } 2814 } 2815 2816 return ret_val; 2817 } 2818 2819 /** 2820 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware 2821 * @hw: pointer to the HW structure 2822 * @gate: boolean set to true to gate, false to ungate 2823 * 2824 * Gate/ungate the automatic PHY configuration via hardware; perform 2825 * the configuration via software instead. 2826 **/ 2827 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate) 2828 { 2829 u32 extcnf_ctrl; 2830 2831 if (hw->mac.type < e1000_pch2lan) 2832 return; 2833 2834 extcnf_ctrl = er32(EXTCNF_CTRL); 2835 2836 if (gate) 2837 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG; 2838 else 2839 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG; 2840 2841 ew32(EXTCNF_CTRL, extcnf_ctrl); 2842 } 2843 2844 /** 2845 * e1000_lan_init_done_ich8lan - Check for PHY config completion 2846 * @hw: pointer to the HW structure 2847 * 2848 * Check the appropriate indication the MAC has finished configuring the 2849 * PHY after a software reset. 2850 **/ 2851 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw) 2852 { 2853 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT; 2854 2855 /* Wait for basic configuration completes before proceeding */ 2856 do { 2857 data = er32(STATUS); 2858 data &= E1000_STATUS_LAN_INIT_DONE; 2859 usleep_range(100, 200); 2860 } while ((!data) && --loop); 2861 2862 /* If basic configuration is incomplete before the above loop 2863 * count reaches 0, loading the configuration from NVM will 2864 * leave the PHY in a bad state possibly resulting in no link. 2865 */ 2866 if (loop == 0) 2867 e_dbg("LAN_INIT_DONE not set, increase timeout\n"); 2868 2869 /* Clear the Init Done bit for the next init event */ 2870 data = er32(STATUS); 2871 data &= ~E1000_STATUS_LAN_INIT_DONE; 2872 ew32(STATUS, data); 2873 } 2874 2875 /** 2876 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset 2877 * @hw: pointer to the HW structure 2878 **/ 2879 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw) 2880 { 2881 s32 ret_val = 0; 2882 u16 reg; 2883 2884 if (hw->phy.ops.check_reset_block(hw)) 2885 return 0; 2886 2887 /* Allow time for h/w to get to quiescent state after reset */ 2888 usleep_range(10000, 11000); 2889 2890 /* Perform any necessary post-reset workarounds */ 2891 switch (hw->mac.type) { 2892 case e1000_pchlan: 2893 ret_val = e1000_hv_phy_workarounds_ich8lan(hw); 2894 if (ret_val) 2895 return ret_val; 2896 break; 2897 case e1000_pch2lan: 2898 ret_val = e1000_lv_phy_workarounds_ich8lan(hw); 2899 if (ret_val) 2900 return ret_val; 2901 break; 2902 default: 2903 break; 2904 } 2905 2906 /* Clear the host wakeup bit after lcd reset */ 2907 if (hw->mac.type >= e1000_pchlan) { 2908 e1e_rphy(hw, BM_PORT_GEN_CFG, ®); 2909 reg &= ~BM_WUC_HOST_WU_BIT; 2910 e1e_wphy(hw, BM_PORT_GEN_CFG, reg); 2911 } 2912 2913 /* Configure the LCD with the extended configuration region in NVM */ 2914 ret_val = e1000_sw_lcd_config_ich8lan(hw); 2915 if (ret_val) 2916 return ret_val; 2917 2918 /* Configure the LCD with the OEM bits in NVM */ 2919 ret_val = e1000_oem_bits_config_ich8lan(hw, true); 2920 2921 if (hw->mac.type == e1000_pch2lan) { 2922 /* Ungate automatic PHY configuration on non-managed 82579 */ 2923 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 2924 usleep_range(10000, 11000); 2925 e1000_gate_hw_phy_config_ich8lan(hw, false); 2926 } 2927 2928 /* Set EEE LPI Update Timer to 200usec */ 2929 ret_val = hw->phy.ops.acquire(hw); 2930 if (ret_val) 2931 return ret_val; 2932 ret_val = e1000_write_emi_reg_locked(hw, 2933 I82579_LPI_UPDATE_TIMER, 2934 0x1387); 2935 hw->phy.ops.release(hw); 2936 } 2937 2938 return ret_val; 2939 } 2940 2941 /** 2942 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset 2943 * @hw: pointer to the HW structure 2944 * 2945 * Resets the PHY 2946 * This is a function pointer entry point called by drivers 2947 * or other shared routines. 2948 **/ 2949 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw) 2950 { 2951 s32 ret_val = 0; 2952 2953 /* Gate automatic PHY configuration by hardware on non-managed 82579 */ 2954 if ((hw->mac.type == e1000_pch2lan) && 2955 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) 2956 e1000_gate_hw_phy_config_ich8lan(hw, true); 2957 2958 ret_val = e1000e_phy_hw_reset_generic(hw); 2959 if (ret_val) 2960 return ret_val; 2961 2962 return e1000_post_phy_reset_ich8lan(hw); 2963 } 2964 2965 /** 2966 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state 2967 * @hw: pointer to the HW structure 2968 * @active: true to enable LPLU, false to disable 2969 * 2970 * Sets the LPLU state according to the active flag. For PCH, if OEM write 2971 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set 2972 * the phy speed. This function will manually set the LPLU bit and restart 2973 * auto-neg as hw would do. D3 and D0 LPLU will call the same function 2974 * since it configures the same bit. 2975 **/ 2976 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active) 2977 { 2978 s32 ret_val; 2979 u16 oem_reg; 2980 2981 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg); 2982 if (ret_val) 2983 return ret_val; 2984 2985 if (active) 2986 oem_reg |= HV_OEM_BITS_LPLU; 2987 else 2988 oem_reg &= ~HV_OEM_BITS_LPLU; 2989 2990 if (!hw->phy.ops.check_reset_block(hw)) 2991 oem_reg |= HV_OEM_BITS_RESTART_AN; 2992 2993 return e1e_wphy(hw, HV_OEM_BITS, oem_reg); 2994 } 2995 2996 /** 2997 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state 2998 * @hw: pointer to the HW structure 2999 * @active: true to enable LPLU, false to disable 3000 * 3001 * Sets the LPLU D0 state according to the active flag. When 3002 * activating LPLU this function also disables smart speed 3003 * and vice versa. LPLU will not be activated unless the 3004 * device autonegotiation advertisement meets standards of 3005 * either 10 or 10/100 or 10/100/1000 at all duplexes. 3006 * This is a function pointer entry point only called by 3007 * PHY setup routines. 3008 **/ 3009 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active) 3010 { 3011 struct e1000_phy_info *phy = &hw->phy; 3012 u32 phy_ctrl; 3013 s32 ret_val = 0; 3014 u16 data; 3015 3016 if (phy->type == e1000_phy_ife) 3017 return 0; 3018 3019 phy_ctrl = er32(PHY_CTRL); 3020 3021 if (active) { 3022 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; 3023 ew32(PHY_CTRL, phy_ctrl); 3024 3025 if (phy->type != e1000_phy_igp_3) 3026 return 0; 3027 3028 /* Call gig speed drop workaround on LPLU before accessing 3029 * any PHY registers 3030 */ 3031 if (hw->mac.type == e1000_ich8lan) 3032 e1000e_gig_downshift_workaround_ich8lan(hw); 3033 3034 /* When LPLU is enabled, we should disable SmartSpeed */ 3035 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); 3036 if (ret_val) 3037 return ret_val; 3038 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 3039 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); 3040 if (ret_val) 3041 return ret_val; 3042 } else { 3043 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; 3044 ew32(PHY_CTRL, phy_ctrl); 3045 3046 if (phy->type != e1000_phy_igp_3) 3047 return 0; 3048 3049 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 3050 * during Dx states where the power conservation is most 3051 * important. During driver activity we should enable 3052 * SmartSpeed, so performance is maintained. 3053 */ 3054 if (phy->smart_speed == e1000_smart_speed_on) { 3055 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3056 &data); 3057 if (ret_val) 3058 return ret_val; 3059 3060 data |= IGP01E1000_PSCFR_SMART_SPEED; 3061 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3062 data); 3063 if (ret_val) 3064 return ret_val; 3065 } else if (phy->smart_speed == e1000_smart_speed_off) { 3066 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3067 &data); 3068 if (ret_val) 3069 return ret_val; 3070 3071 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 3072 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3073 data); 3074 if (ret_val) 3075 return ret_val; 3076 } 3077 } 3078 3079 return 0; 3080 } 3081 3082 /** 3083 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state 3084 * @hw: pointer to the HW structure 3085 * @active: true to enable LPLU, false to disable 3086 * 3087 * Sets the LPLU D3 state according to the active flag. When 3088 * activating LPLU this function also disables smart speed 3089 * and vice versa. LPLU will not be activated unless the 3090 * device autonegotiation advertisement meets standards of 3091 * either 10 or 10/100 or 10/100/1000 at all duplexes. 3092 * This is a function pointer entry point only called by 3093 * PHY setup routines. 3094 **/ 3095 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active) 3096 { 3097 struct e1000_phy_info *phy = &hw->phy; 3098 u32 phy_ctrl; 3099 s32 ret_val = 0; 3100 u16 data; 3101 3102 phy_ctrl = er32(PHY_CTRL); 3103 3104 if (!active) { 3105 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; 3106 ew32(PHY_CTRL, phy_ctrl); 3107 3108 if (phy->type != e1000_phy_igp_3) 3109 return 0; 3110 3111 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 3112 * during Dx states where the power conservation is most 3113 * important. During driver activity we should enable 3114 * SmartSpeed, so performance is maintained. 3115 */ 3116 if (phy->smart_speed == e1000_smart_speed_on) { 3117 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3118 &data); 3119 if (ret_val) 3120 return ret_val; 3121 3122 data |= IGP01E1000_PSCFR_SMART_SPEED; 3123 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3124 data); 3125 if (ret_val) 3126 return ret_val; 3127 } else if (phy->smart_speed == e1000_smart_speed_off) { 3128 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3129 &data); 3130 if (ret_val) 3131 return ret_val; 3132 3133 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 3134 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3135 data); 3136 if (ret_val) 3137 return ret_val; 3138 } 3139 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || 3140 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || 3141 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { 3142 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; 3143 ew32(PHY_CTRL, phy_ctrl); 3144 3145 if (phy->type != e1000_phy_igp_3) 3146 return 0; 3147 3148 /* Call gig speed drop workaround on LPLU before accessing 3149 * any PHY registers 3150 */ 3151 if (hw->mac.type == e1000_ich8lan) 3152 e1000e_gig_downshift_workaround_ich8lan(hw); 3153 3154 /* When LPLU is enabled, we should disable SmartSpeed */ 3155 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); 3156 if (ret_val) 3157 return ret_val; 3158 3159 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 3160 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); 3161 } 3162 3163 return ret_val; 3164 } 3165 3166 /** 3167 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1 3168 * @hw: pointer to the HW structure 3169 * @bank: pointer to the variable that returns the active bank 3170 * 3171 * Reads signature byte from the NVM using the flash access registers. 3172 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank. 3173 **/ 3174 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank) 3175 { 3176 u32 eecd; 3177 struct e1000_nvm_info *nvm = &hw->nvm; 3178 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16); 3179 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1; 3180 u32 nvm_dword = 0; 3181 u8 sig_byte = 0; 3182 s32 ret_val; 3183 3184 switch (hw->mac.type) { 3185 case e1000_pch_spt: 3186 case e1000_pch_cnp: 3187 case e1000_pch_tgp: 3188 case e1000_pch_adp: 3189 case e1000_pch_mtp: 3190 case e1000_pch_lnp: 3191 case e1000_pch_ptp: 3192 case e1000_pch_nvp: 3193 bank1_offset = nvm->flash_bank_size; 3194 act_offset = E1000_ICH_NVM_SIG_WORD; 3195 3196 /* set bank to 0 in case flash read fails */ 3197 *bank = 0; 3198 3199 /* Check bank 0 */ 3200 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, 3201 &nvm_dword); 3202 if (ret_val) 3203 return ret_val; 3204 sig_byte = FIELD_GET(0xFF00, nvm_dword); 3205 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 3206 E1000_ICH_NVM_SIG_VALUE) { 3207 *bank = 0; 3208 return 0; 3209 } 3210 3211 /* Check bank 1 */ 3212 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset + 3213 bank1_offset, 3214 &nvm_dword); 3215 if (ret_val) 3216 return ret_val; 3217 sig_byte = FIELD_GET(0xFF00, nvm_dword); 3218 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 3219 E1000_ICH_NVM_SIG_VALUE) { 3220 *bank = 1; 3221 return 0; 3222 } 3223 3224 e_dbg("ERROR: No valid NVM bank present\n"); 3225 return -E1000_ERR_NVM; 3226 case e1000_ich8lan: 3227 case e1000_ich9lan: 3228 eecd = er32(EECD); 3229 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) == 3230 E1000_EECD_SEC1VAL_VALID_MASK) { 3231 if (eecd & E1000_EECD_SEC1VAL) 3232 *bank = 1; 3233 else 3234 *bank = 0; 3235 3236 return 0; 3237 } 3238 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n"); 3239 fallthrough; 3240 default: 3241 /* set bank to 0 in case flash read fails */ 3242 *bank = 0; 3243 3244 /* Check bank 0 */ 3245 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset, 3246 &sig_byte); 3247 if (ret_val) 3248 return ret_val; 3249 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 3250 E1000_ICH_NVM_SIG_VALUE) { 3251 *bank = 0; 3252 return 0; 3253 } 3254 3255 /* Check bank 1 */ 3256 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset + 3257 bank1_offset, 3258 &sig_byte); 3259 if (ret_val) 3260 return ret_val; 3261 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 3262 E1000_ICH_NVM_SIG_VALUE) { 3263 *bank = 1; 3264 return 0; 3265 } 3266 3267 e_dbg("ERROR: No valid NVM bank present\n"); 3268 return -E1000_ERR_NVM; 3269 } 3270 } 3271 3272 /** 3273 * e1000_read_nvm_spt - NVM access for SPT 3274 * @hw: pointer to the HW structure 3275 * @offset: The offset (in bytes) of the word(s) to read. 3276 * @words: Size of data to read in words. 3277 * @data: pointer to the word(s) to read at offset. 3278 * 3279 * Reads a word(s) from the NVM 3280 **/ 3281 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words, 3282 u16 *data) 3283 { 3284 struct e1000_nvm_info *nvm = &hw->nvm; 3285 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3286 u32 act_offset; 3287 s32 ret_val = 0; 3288 u32 bank = 0; 3289 u32 dword = 0; 3290 u16 offset_to_read; 3291 u16 i; 3292 3293 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || 3294 (words == 0)) { 3295 e_dbg("nvm parameter(s) out of bounds\n"); 3296 ret_val = -E1000_ERR_NVM; 3297 goto out; 3298 } 3299 3300 nvm->ops.acquire(hw); 3301 3302 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 3303 if (ret_val) { 3304 e_dbg("Could not detect valid bank, assuming bank 0\n"); 3305 bank = 0; 3306 } 3307 3308 act_offset = (bank) ? nvm->flash_bank_size : 0; 3309 act_offset += offset; 3310 3311 ret_val = 0; 3312 3313 for (i = 0; i < words; i += 2) { 3314 if (words - i == 1) { 3315 if (dev_spec->shadow_ram[offset + i].modified) { 3316 data[i] = 3317 dev_spec->shadow_ram[offset + i].value; 3318 } else { 3319 offset_to_read = act_offset + i - 3320 ((act_offset + i) % 2); 3321 ret_val = 3322 e1000_read_flash_dword_ich8lan(hw, 3323 offset_to_read, 3324 &dword); 3325 if (ret_val) 3326 break; 3327 if ((act_offset + i) % 2 == 0) 3328 data[i] = (u16)(dword & 0xFFFF); 3329 else 3330 data[i] = (u16)((dword >> 16) & 0xFFFF); 3331 } 3332 } else { 3333 offset_to_read = act_offset + i; 3334 if (!(dev_spec->shadow_ram[offset + i].modified) || 3335 !(dev_spec->shadow_ram[offset + i + 1].modified)) { 3336 ret_val = 3337 e1000_read_flash_dword_ich8lan(hw, 3338 offset_to_read, 3339 &dword); 3340 if (ret_val) 3341 break; 3342 } 3343 if (dev_spec->shadow_ram[offset + i].modified) 3344 data[i] = 3345 dev_spec->shadow_ram[offset + i].value; 3346 else 3347 data[i] = (u16)(dword & 0xFFFF); 3348 if (dev_spec->shadow_ram[offset + i].modified) 3349 data[i + 1] = 3350 dev_spec->shadow_ram[offset + i + 1].value; 3351 else 3352 data[i + 1] = (u16)(dword >> 16 & 0xFFFF); 3353 } 3354 } 3355 3356 nvm->ops.release(hw); 3357 3358 out: 3359 if (ret_val) 3360 e_dbg("NVM read error: %d\n", ret_val); 3361 3362 return ret_val; 3363 } 3364 3365 /** 3366 * e1000_read_nvm_ich8lan - Read word(s) from the NVM 3367 * @hw: pointer to the HW structure 3368 * @offset: The offset (in bytes) of the word(s) to read. 3369 * @words: Size of data to read in words 3370 * @data: Pointer to the word(s) to read at offset. 3371 * 3372 * Reads a word(s) from the NVM using the flash access registers. 3373 **/ 3374 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, 3375 u16 *data) 3376 { 3377 struct e1000_nvm_info *nvm = &hw->nvm; 3378 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3379 u32 act_offset; 3380 s32 ret_val = 0; 3381 u32 bank = 0; 3382 u16 i, word; 3383 3384 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || 3385 (words == 0)) { 3386 e_dbg("nvm parameter(s) out of bounds\n"); 3387 ret_val = -E1000_ERR_NVM; 3388 goto out; 3389 } 3390 3391 nvm->ops.acquire(hw); 3392 3393 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 3394 if (ret_val) { 3395 e_dbg("Could not detect valid bank, assuming bank 0\n"); 3396 bank = 0; 3397 } 3398 3399 act_offset = (bank) ? nvm->flash_bank_size : 0; 3400 act_offset += offset; 3401 3402 ret_val = 0; 3403 for (i = 0; i < words; i++) { 3404 if (dev_spec->shadow_ram[offset + i].modified) { 3405 data[i] = dev_spec->shadow_ram[offset + i].value; 3406 } else { 3407 ret_val = e1000_read_flash_word_ich8lan(hw, 3408 act_offset + i, 3409 &word); 3410 if (ret_val) 3411 break; 3412 data[i] = word; 3413 } 3414 } 3415 3416 nvm->ops.release(hw); 3417 3418 out: 3419 if (ret_val) 3420 e_dbg("NVM read error: %d\n", ret_val); 3421 3422 return ret_val; 3423 } 3424 3425 /** 3426 * e1000_flash_cycle_init_ich8lan - Initialize flash 3427 * @hw: pointer to the HW structure 3428 * 3429 * This function does initial flash setup so that a new read/write/erase cycle 3430 * can be started. 3431 **/ 3432 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw) 3433 { 3434 union ich8_hws_flash_status hsfsts; 3435 s32 ret_val = -E1000_ERR_NVM; 3436 3437 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3438 3439 /* Check if the flash descriptor is valid */ 3440 if (!hsfsts.hsf_status.fldesvalid) { 3441 e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n"); 3442 return -E1000_ERR_NVM; 3443 } 3444 3445 /* Clear FCERR and DAEL in hw status by writing 1 */ 3446 hsfsts.hsf_status.flcerr = 1; 3447 hsfsts.hsf_status.dael = 1; 3448 if (hw->mac.type >= e1000_pch_spt) 3449 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF); 3450 else 3451 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); 3452 3453 /* Either we should have a hardware SPI cycle in progress 3454 * bit to check against, in order to start a new cycle or 3455 * FDONE bit should be changed in the hardware so that it 3456 * is 1 after hardware reset, which can then be used as an 3457 * indication whether a cycle is in progress or has been 3458 * completed. 3459 */ 3460 3461 if (!hsfsts.hsf_status.flcinprog) { 3462 /* There is no cycle running at present, 3463 * so we can start a cycle. 3464 * Begin by setting Flash Cycle Done. 3465 */ 3466 hsfsts.hsf_status.flcdone = 1; 3467 if (hw->mac.type >= e1000_pch_spt) 3468 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF); 3469 else 3470 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); 3471 ret_val = 0; 3472 } else { 3473 s32 i; 3474 3475 /* Otherwise poll for sometime so the current 3476 * cycle has a chance to end before giving up. 3477 */ 3478 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) { 3479 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3480 if (!hsfsts.hsf_status.flcinprog) { 3481 ret_val = 0; 3482 break; 3483 } 3484 udelay(1); 3485 } 3486 if (!ret_val) { 3487 /* Successful in waiting for previous cycle to timeout, 3488 * now set the Flash Cycle Done. 3489 */ 3490 hsfsts.hsf_status.flcdone = 1; 3491 if (hw->mac.type >= e1000_pch_spt) 3492 ew32flash(ICH_FLASH_HSFSTS, 3493 hsfsts.regval & 0xFFFF); 3494 else 3495 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); 3496 } else { 3497 e_dbg("Flash controller busy, cannot get access\n"); 3498 } 3499 } 3500 3501 return ret_val; 3502 } 3503 3504 /** 3505 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase) 3506 * @hw: pointer to the HW structure 3507 * @timeout: maximum time to wait for completion 3508 * 3509 * This function starts a flash cycle and waits for its completion. 3510 **/ 3511 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout) 3512 { 3513 union ich8_hws_flash_ctrl hsflctl; 3514 union ich8_hws_flash_status hsfsts; 3515 u32 i = 0; 3516 3517 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ 3518 if (hw->mac.type >= e1000_pch_spt) 3519 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16; 3520 else 3521 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 3522 hsflctl.hsf_ctrl.flcgo = 1; 3523 3524 if (hw->mac.type >= e1000_pch_spt) 3525 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16); 3526 else 3527 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 3528 3529 /* wait till FDONE bit is set to 1 */ 3530 do { 3531 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3532 if (hsfsts.hsf_status.flcdone) 3533 break; 3534 udelay(1); 3535 } while (i++ < timeout); 3536 3537 if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr) 3538 return 0; 3539 3540 return -E1000_ERR_NVM; 3541 } 3542 3543 /** 3544 * e1000_read_flash_dword_ich8lan - Read dword from flash 3545 * @hw: pointer to the HW structure 3546 * @offset: offset to data location 3547 * @data: pointer to the location for storing the data 3548 * 3549 * Reads the flash dword at offset into data. Offset is converted 3550 * to bytes before read. 3551 **/ 3552 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset, 3553 u32 *data) 3554 { 3555 /* Must convert word offset into bytes. */ 3556 offset <<= 1; 3557 return e1000_read_flash_data32_ich8lan(hw, offset, data); 3558 } 3559 3560 /** 3561 * e1000_read_flash_word_ich8lan - Read word from flash 3562 * @hw: pointer to the HW structure 3563 * @offset: offset to data location 3564 * @data: pointer to the location for storing the data 3565 * 3566 * Reads the flash word at offset into data. Offset is converted 3567 * to bytes before read. 3568 **/ 3569 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, 3570 u16 *data) 3571 { 3572 /* Must convert offset into bytes. */ 3573 offset <<= 1; 3574 3575 return e1000_read_flash_data_ich8lan(hw, offset, 2, data); 3576 } 3577 3578 /** 3579 * e1000_read_flash_byte_ich8lan - Read byte from flash 3580 * @hw: pointer to the HW structure 3581 * @offset: The offset of the byte to read. 3582 * @data: Pointer to a byte to store the value read. 3583 * 3584 * Reads a single byte from the NVM using the flash access registers. 3585 **/ 3586 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, 3587 u8 *data) 3588 { 3589 s32 ret_val; 3590 u16 word = 0; 3591 3592 /* In SPT, only 32 bits access is supported, 3593 * so this function should not be called. 3594 */ 3595 if (hw->mac.type >= e1000_pch_spt) 3596 return -E1000_ERR_NVM; 3597 else 3598 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word); 3599 3600 if (ret_val) 3601 return ret_val; 3602 3603 *data = (u8)word; 3604 3605 return 0; 3606 } 3607 3608 /** 3609 * e1000_read_flash_data_ich8lan - Read byte or word from NVM 3610 * @hw: pointer to the HW structure 3611 * @offset: The offset (in bytes) of the byte or word to read. 3612 * @size: Size of data to read, 1=byte 2=word 3613 * @data: Pointer to the word to store the value read. 3614 * 3615 * Reads a byte or word from the NVM using the flash access registers. 3616 **/ 3617 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 3618 u8 size, u16 *data) 3619 { 3620 union ich8_hws_flash_status hsfsts; 3621 union ich8_hws_flash_ctrl hsflctl; 3622 u32 flash_linear_addr; 3623 u32 flash_data = 0; 3624 s32 ret_val = -E1000_ERR_NVM; 3625 u8 count = 0; 3626 3627 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) 3628 return -E1000_ERR_NVM; 3629 3630 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 3631 hw->nvm.flash_base_addr); 3632 3633 do { 3634 udelay(1); 3635 /* Steps */ 3636 ret_val = e1000_flash_cycle_init_ich8lan(hw); 3637 if (ret_val) 3638 break; 3639 3640 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 3641 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ 3642 hsflctl.hsf_ctrl.fldbcount = size - 1; 3643 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; 3644 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 3645 3646 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 3647 3648 ret_val = 3649 e1000_flash_cycle_ich8lan(hw, 3650 ICH_FLASH_READ_COMMAND_TIMEOUT); 3651 3652 /* Check if FCERR is set to 1, if set to 1, clear it 3653 * and try the whole sequence a few more times, else 3654 * read in (shift in) the Flash Data0, the order is 3655 * least significant byte first msb to lsb 3656 */ 3657 if (!ret_val) { 3658 flash_data = er32flash(ICH_FLASH_FDATA0); 3659 if (size == 1) 3660 *data = (u8)(flash_data & 0x000000FF); 3661 else if (size == 2) 3662 *data = (u16)(flash_data & 0x0000FFFF); 3663 break; 3664 } else { 3665 /* If we've gotten here, then things are probably 3666 * completely hosed, but if the error condition is 3667 * detected, it won't hurt to give it another try... 3668 * ICH_FLASH_CYCLE_REPEAT_COUNT times. 3669 */ 3670 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3671 if (hsfsts.hsf_status.flcerr) { 3672 /* Repeat for some time before giving up. */ 3673 continue; 3674 } else if (!hsfsts.hsf_status.flcdone) { 3675 e_dbg("Timeout error - flash cycle did not complete.\n"); 3676 break; 3677 } 3678 } 3679 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 3680 3681 return ret_val; 3682 } 3683 3684 /** 3685 * e1000_read_flash_data32_ich8lan - Read dword from NVM 3686 * @hw: pointer to the HW structure 3687 * @offset: The offset (in bytes) of the dword to read. 3688 * @data: Pointer to the dword to store the value read. 3689 * 3690 * Reads a byte or word from the NVM using the flash access registers. 3691 **/ 3692 3693 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, 3694 u32 *data) 3695 { 3696 union ich8_hws_flash_status hsfsts; 3697 union ich8_hws_flash_ctrl hsflctl; 3698 u32 flash_linear_addr; 3699 s32 ret_val = -E1000_ERR_NVM; 3700 u8 count = 0; 3701 3702 if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt) 3703 return -E1000_ERR_NVM; 3704 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 3705 hw->nvm.flash_base_addr); 3706 3707 do { 3708 udelay(1); 3709 /* Steps */ 3710 ret_val = e1000_flash_cycle_init_ich8lan(hw); 3711 if (ret_val) 3712 break; 3713 /* In SPT, This register is in Lan memory space, not flash. 3714 * Therefore, only 32 bit access is supported 3715 */ 3716 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16; 3717 3718 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ 3719 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1; 3720 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; 3721 /* In SPT, This register is in Lan memory space, not flash. 3722 * Therefore, only 32 bit access is supported 3723 */ 3724 ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16); 3725 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 3726 3727 ret_val = 3728 e1000_flash_cycle_ich8lan(hw, 3729 ICH_FLASH_READ_COMMAND_TIMEOUT); 3730 3731 /* Check if FCERR is set to 1, if set to 1, clear it 3732 * and try the whole sequence a few more times, else 3733 * read in (shift in) the Flash Data0, the order is 3734 * least significant byte first msb to lsb 3735 */ 3736 if (!ret_val) { 3737 *data = er32flash(ICH_FLASH_FDATA0); 3738 break; 3739 } else { 3740 /* If we've gotten here, then things are probably 3741 * completely hosed, but if the error condition is 3742 * detected, it won't hurt to give it another try... 3743 * ICH_FLASH_CYCLE_REPEAT_COUNT times. 3744 */ 3745 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3746 if (hsfsts.hsf_status.flcerr) { 3747 /* Repeat for some time before giving up. */ 3748 continue; 3749 } else if (!hsfsts.hsf_status.flcdone) { 3750 e_dbg("Timeout error - flash cycle did not complete.\n"); 3751 break; 3752 } 3753 } 3754 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 3755 3756 return ret_val; 3757 } 3758 3759 /** 3760 * e1000_write_nvm_ich8lan - Write word(s) to the NVM 3761 * @hw: pointer to the HW structure 3762 * @offset: The offset (in bytes) of the word(s) to write. 3763 * @words: Size of data to write in words 3764 * @data: Pointer to the word(s) to write at offset. 3765 * 3766 * Writes a byte or word to the NVM using the flash access registers. 3767 **/ 3768 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, 3769 u16 *data) 3770 { 3771 struct e1000_nvm_info *nvm = &hw->nvm; 3772 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3773 u16 i; 3774 3775 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || 3776 (words == 0)) { 3777 e_dbg("nvm parameter(s) out of bounds\n"); 3778 return -E1000_ERR_NVM; 3779 } 3780 3781 nvm->ops.acquire(hw); 3782 3783 for (i = 0; i < words; i++) { 3784 dev_spec->shadow_ram[offset + i].modified = true; 3785 dev_spec->shadow_ram[offset + i].value = data[i]; 3786 } 3787 3788 nvm->ops.release(hw); 3789 3790 return 0; 3791 } 3792 3793 /** 3794 * e1000_update_nvm_checksum_spt - Update the checksum for NVM 3795 * @hw: pointer to the HW structure 3796 * 3797 * The NVM checksum is updated by calling the generic update_nvm_checksum, 3798 * which writes the checksum to the shadow ram. The changes in the shadow 3799 * ram are then committed to the EEPROM by processing each bank at a time 3800 * checking for the modified bit and writing only the pending changes. 3801 * After a successful commit, the shadow ram is cleared and is ready for 3802 * future writes. 3803 **/ 3804 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw) 3805 { 3806 struct e1000_nvm_info *nvm = &hw->nvm; 3807 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3808 u32 i, act_offset, new_bank_offset, old_bank_offset, bank; 3809 s32 ret_val; 3810 u32 dword = 0; 3811 3812 ret_val = e1000e_update_nvm_checksum_generic(hw); 3813 if (ret_val) 3814 goto out; 3815 3816 if (nvm->type != e1000_nvm_flash_sw) 3817 goto out; 3818 3819 nvm->ops.acquire(hw); 3820 3821 /* We're writing to the opposite bank so if we're on bank 1, 3822 * write to bank 0 etc. We also need to erase the segment that 3823 * is going to be written 3824 */ 3825 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 3826 if (ret_val) { 3827 e_dbg("Could not detect valid bank, assuming bank 0\n"); 3828 bank = 0; 3829 } 3830 3831 if (bank == 0) { 3832 new_bank_offset = nvm->flash_bank_size; 3833 old_bank_offset = 0; 3834 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); 3835 if (ret_val) 3836 goto release; 3837 } else { 3838 old_bank_offset = nvm->flash_bank_size; 3839 new_bank_offset = 0; 3840 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); 3841 if (ret_val) 3842 goto release; 3843 } 3844 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) { 3845 /* Determine whether to write the value stored 3846 * in the other NVM bank or a modified value stored 3847 * in the shadow RAM 3848 */ 3849 ret_val = e1000_read_flash_dword_ich8lan(hw, 3850 i + old_bank_offset, 3851 &dword); 3852 3853 if (dev_spec->shadow_ram[i].modified) { 3854 dword &= 0xffff0000; 3855 dword |= (dev_spec->shadow_ram[i].value & 0xffff); 3856 } 3857 if (dev_spec->shadow_ram[i + 1].modified) { 3858 dword &= 0x0000ffff; 3859 dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff) 3860 << 16); 3861 } 3862 if (ret_val) 3863 break; 3864 3865 /* If the word is 0x13, then make sure the signature bits 3866 * (15:14) are 11b until the commit has completed. 3867 * This will allow us to write 10b which indicates the 3868 * signature is valid. We want to do this after the write 3869 * has completed so that we don't mark the segment valid 3870 * while the write is still in progress 3871 */ 3872 if (i == E1000_ICH_NVM_SIG_WORD - 1) 3873 dword |= E1000_ICH_NVM_SIG_MASK << 16; 3874 3875 /* Convert offset to bytes. */ 3876 act_offset = (i + new_bank_offset) << 1; 3877 3878 usleep_range(100, 200); 3879 3880 /* Write the data to the new bank. Offset in words */ 3881 act_offset = i + new_bank_offset; 3882 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, 3883 dword); 3884 if (ret_val) 3885 break; 3886 } 3887 3888 /* Don't bother writing the segment valid bits if sector 3889 * programming failed. 3890 */ 3891 if (ret_val) { 3892 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */ 3893 e_dbg("Flash commit failed.\n"); 3894 goto release; 3895 } 3896 3897 /* Finally validate the new segment by setting bit 15:14 3898 * to 10b in word 0x13 , this can be done without an 3899 * erase as well since these bits are 11 to start with 3900 * and we need to change bit 14 to 0b 3901 */ 3902 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; 3903 3904 /*offset in words but we read dword */ 3905 --act_offset; 3906 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword); 3907 3908 if (ret_val) 3909 goto release; 3910 3911 dword &= 0xBFFFFFFF; 3912 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword); 3913 3914 if (ret_val) 3915 goto release; 3916 3917 /* offset in words but we read dword */ 3918 act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1; 3919 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword); 3920 3921 if (ret_val) 3922 goto release; 3923 3924 dword &= 0x00FFFFFF; 3925 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword); 3926 3927 if (ret_val) 3928 goto release; 3929 3930 /* Great! Everything worked, we can now clear the cached entries. */ 3931 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { 3932 dev_spec->shadow_ram[i].modified = false; 3933 dev_spec->shadow_ram[i].value = 0xFFFF; 3934 } 3935 3936 release: 3937 nvm->ops.release(hw); 3938 3939 /* Reload the EEPROM, or else modifications will not appear 3940 * until after the next adapter reset. 3941 */ 3942 if (!ret_val) { 3943 nvm->ops.reload(hw); 3944 usleep_range(10000, 11000); 3945 } 3946 3947 out: 3948 if (ret_val) 3949 e_dbg("NVM update error: %d\n", ret_val); 3950 3951 return ret_val; 3952 } 3953 3954 /** 3955 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM 3956 * @hw: pointer to the HW structure 3957 * 3958 * The NVM checksum is updated by calling the generic update_nvm_checksum, 3959 * which writes the checksum to the shadow ram. The changes in the shadow 3960 * ram are then committed to the EEPROM by processing each bank at a time 3961 * checking for the modified bit and writing only the pending changes. 3962 * After a successful commit, the shadow ram is cleared and is ready for 3963 * future writes. 3964 **/ 3965 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw) 3966 { 3967 struct e1000_nvm_info *nvm = &hw->nvm; 3968 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3969 u32 i, act_offset, new_bank_offset, old_bank_offset, bank; 3970 s32 ret_val; 3971 u16 data = 0; 3972 3973 ret_val = e1000e_update_nvm_checksum_generic(hw); 3974 if (ret_val) 3975 goto out; 3976 3977 if (nvm->type != e1000_nvm_flash_sw) 3978 goto out; 3979 3980 nvm->ops.acquire(hw); 3981 3982 /* We're writing to the opposite bank so if we're on bank 1, 3983 * write to bank 0 etc. We also need to erase the segment that 3984 * is going to be written 3985 */ 3986 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 3987 if (ret_val) { 3988 e_dbg("Could not detect valid bank, assuming bank 0\n"); 3989 bank = 0; 3990 } 3991 3992 if (bank == 0) { 3993 new_bank_offset = nvm->flash_bank_size; 3994 old_bank_offset = 0; 3995 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); 3996 if (ret_val) 3997 goto release; 3998 } else { 3999 old_bank_offset = nvm->flash_bank_size; 4000 new_bank_offset = 0; 4001 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); 4002 if (ret_val) 4003 goto release; 4004 } 4005 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { 4006 if (dev_spec->shadow_ram[i].modified) { 4007 data = dev_spec->shadow_ram[i].value; 4008 } else { 4009 ret_val = e1000_read_flash_word_ich8lan(hw, i + 4010 old_bank_offset, 4011 &data); 4012 if (ret_val) 4013 break; 4014 } 4015 4016 /* If the word is 0x13, then make sure the signature bits 4017 * (15:14) are 11b until the commit has completed. 4018 * This will allow us to write 10b which indicates the 4019 * signature is valid. We want to do this after the write 4020 * has completed so that we don't mark the segment valid 4021 * while the write is still in progress 4022 */ 4023 if (i == E1000_ICH_NVM_SIG_WORD) 4024 data |= E1000_ICH_NVM_SIG_MASK; 4025 4026 /* Convert offset to bytes. */ 4027 act_offset = (i + new_bank_offset) << 1; 4028 4029 usleep_range(100, 200); 4030 /* Write the bytes to the new bank. */ 4031 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, 4032 act_offset, 4033 (u8)data); 4034 if (ret_val) 4035 break; 4036 4037 usleep_range(100, 200); 4038 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, 4039 act_offset + 1, 4040 (u8)(data >> 8)); 4041 if (ret_val) 4042 break; 4043 } 4044 4045 /* Don't bother writing the segment valid bits if sector 4046 * programming failed. 4047 */ 4048 if (ret_val) { 4049 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */ 4050 e_dbg("Flash commit failed.\n"); 4051 goto release; 4052 } 4053 4054 /* Finally validate the new segment by setting bit 15:14 4055 * to 10b in word 0x13 , this can be done without an 4056 * erase as well since these bits are 11 to start with 4057 * and we need to change bit 14 to 0b 4058 */ 4059 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; 4060 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data); 4061 if (ret_val) 4062 goto release; 4063 4064 data &= 0xBFFF; 4065 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, 4066 act_offset * 2 + 1, 4067 (u8)(data >> 8)); 4068 if (ret_val) 4069 goto release; 4070 4071 /* And invalidate the previously valid segment by setting 4072 * its signature word (0x13) high_byte to 0b. This can be 4073 * done without an erase because flash erase sets all bits 4074 * to 1's. We can write 1's to 0's without an erase 4075 */ 4076 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; 4077 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0); 4078 if (ret_val) 4079 goto release; 4080 4081 /* Great! Everything worked, we can now clear the cached entries. */ 4082 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { 4083 dev_spec->shadow_ram[i].modified = false; 4084 dev_spec->shadow_ram[i].value = 0xFFFF; 4085 } 4086 4087 release: 4088 nvm->ops.release(hw); 4089 4090 /* Reload the EEPROM, or else modifications will not appear 4091 * until after the next adapter reset. 4092 */ 4093 if (!ret_val) { 4094 nvm->ops.reload(hw); 4095 usleep_range(10000, 11000); 4096 } 4097 4098 out: 4099 if (ret_val) 4100 e_dbg("NVM update error: %d\n", ret_val); 4101 4102 return ret_val; 4103 } 4104 4105 /** 4106 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum 4107 * @hw: pointer to the HW structure 4108 * 4109 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19. 4110 * If the bit is 0, that the EEPROM had been modified, but the checksum was not 4111 * calculated, in which case we need to calculate the checksum and set bit 6. 4112 **/ 4113 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw) 4114 { 4115 s32 ret_val; 4116 u16 data; 4117 u16 word; 4118 u16 valid_csum_mask; 4119 4120 /* Read NVM and check Invalid Image CSUM bit. If this bit is 0, 4121 * the checksum needs to be fixed. This bit is an indication that 4122 * the NVM was prepared by OEM software and did not calculate 4123 * the checksum...a likely scenario. 4124 */ 4125 switch (hw->mac.type) { 4126 case e1000_pch_lpt: 4127 case e1000_pch_spt: 4128 case e1000_pch_cnp: 4129 case e1000_pch_tgp: 4130 case e1000_pch_adp: 4131 case e1000_pch_mtp: 4132 case e1000_pch_lnp: 4133 case e1000_pch_ptp: 4134 case e1000_pch_nvp: 4135 word = NVM_COMPAT; 4136 valid_csum_mask = NVM_COMPAT_VALID_CSUM; 4137 break; 4138 default: 4139 word = NVM_FUTURE_INIT_WORD1; 4140 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM; 4141 break; 4142 } 4143 4144 ret_val = e1000_read_nvm(hw, word, 1, &data); 4145 if (ret_val) 4146 return ret_val; 4147 4148 if (!(data & valid_csum_mask)) { 4149 e_dbg("NVM Checksum valid bit not set\n"); 4150 4151 if (hw->mac.type < e1000_pch_tgp) { 4152 data |= valid_csum_mask; 4153 ret_val = e1000_write_nvm(hw, word, 1, &data); 4154 if (ret_val) 4155 return ret_val; 4156 ret_val = e1000e_update_nvm_checksum(hw); 4157 if (ret_val) 4158 return ret_val; 4159 } 4160 } 4161 4162 return e1000e_validate_nvm_checksum_generic(hw); 4163 } 4164 4165 /** 4166 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only 4167 * @hw: pointer to the HW structure 4168 * 4169 * To prevent malicious write/erase of the NVM, set it to be read-only 4170 * so that the hardware ignores all write/erase cycles of the NVM via 4171 * the flash control registers. The shadow-ram copy of the NVM will 4172 * still be updated, however any updates to this copy will not stick 4173 * across driver reloads. 4174 **/ 4175 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw) 4176 { 4177 struct e1000_nvm_info *nvm = &hw->nvm; 4178 union ich8_flash_protected_range pr0; 4179 union ich8_hws_flash_status hsfsts; 4180 u32 gfpreg; 4181 4182 nvm->ops.acquire(hw); 4183 4184 gfpreg = er32flash(ICH_FLASH_GFPREG); 4185 4186 /* Write-protect GbE Sector of NVM */ 4187 pr0.regval = er32flash(ICH_FLASH_PR0); 4188 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK; 4189 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK); 4190 pr0.range.wpe = true; 4191 ew32flash(ICH_FLASH_PR0, pr0.regval); 4192 4193 /* Lock down a subset of GbE Flash Control Registers, e.g. 4194 * PR0 to prevent the write-protection from being lifted. 4195 * Once FLOCKDN is set, the registers protected by it cannot 4196 * be written until FLOCKDN is cleared by a hardware reset. 4197 */ 4198 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4199 hsfsts.hsf_status.flockdn = true; 4200 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval); 4201 4202 nvm->ops.release(hw); 4203 } 4204 4205 /** 4206 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM 4207 * @hw: pointer to the HW structure 4208 * @offset: The offset (in bytes) of the byte/word to read. 4209 * @size: Size of data to read, 1=byte 2=word 4210 * @data: The byte(s) to write to the NVM. 4211 * 4212 * Writes one/two bytes to the NVM using the flash access registers. 4213 **/ 4214 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 4215 u8 size, u16 data) 4216 { 4217 union ich8_hws_flash_status hsfsts; 4218 union ich8_hws_flash_ctrl hsflctl; 4219 u32 flash_linear_addr; 4220 u32 flash_data = 0; 4221 s32 ret_val; 4222 u8 count = 0; 4223 4224 if (hw->mac.type >= e1000_pch_spt) { 4225 if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK) 4226 return -E1000_ERR_NVM; 4227 } else { 4228 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) 4229 return -E1000_ERR_NVM; 4230 } 4231 4232 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 4233 hw->nvm.flash_base_addr); 4234 4235 do { 4236 udelay(1); 4237 /* Steps */ 4238 ret_val = e1000_flash_cycle_init_ich8lan(hw); 4239 if (ret_val) 4240 break; 4241 /* In SPT, This register is in Lan memory space, not 4242 * flash. Therefore, only 32 bit access is supported 4243 */ 4244 if (hw->mac.type >= e1000_pch_spt) 4245 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16; 4246 else 4247 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 4248 4249 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ 4250 hsflctl.hsf_ctrl.fldbcount = size - 1; 4251 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; 4252 /* In SPT, This register is in Lan memory space, 4253 * not flash. Therefore, only 32 bit access is 4254 * supported 4255 */ 4256 if (hw->mac.type >= e1000_pch_spt) 4257 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16); 4258 else 4259 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 4260 4261 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 4262 4263 if (size == 1) 4264 flash_data = (u32)data & 0x00FF; 4265 else 4266 flash_data = (u32)data; 4267 4268 ew32flash(ICH_FLASH_FDATA0, flash_data); 4269 4270 /* check if FCERR is set to 1 , if set to 1, clear it 4271 * and try the whole sequence a few more times else done 4272 */ 4273 ret_val = 4274 e1000_flash_cycle_ich8lan(hw, 4275 ICH_FLASH_WRITE_COMMAND_TIMEOUT); 4276 if (!ret_val) 4277 break; 4278 4279 /* If we're here, then things are most likely 4280 * completely hosed, but if the error condition 4281 * is detected, it won't hurt to give it another 4282 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. 4283 */ 4284 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4285 if (hsfsts.hsf_status.flcerr) 4286 /* Repeat for some time before giving up. */ 4287 continue; 4288 if (!hsfsts.hsf_status.flcdone) { 4289 e_dbg("Timeout error - flash cycle did not complete.\n"); 4290 break; 4291 } 4292 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 4293 4294 return ret_val; 4295 } 4296 4297 /** 4298 * e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM 4299 * @hw: pointer to the HW structure 4300 * @offset: The offset (in bytes) of the dwords to read. 4301 * @data: The 4 bytes to write to the NVM. 4302 * 4303 * Writes one/two/four bytes to the NVM using the flash access registers. 4304 **/ 4305 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, 4306 u32 data) 4307 { 4308 union ich8_hws_flash_status hsfsts; 4309 union ich8_hws_flash_ctrl hsflctl; 4310 u32 flash_linear_addr; 4311 s32 ret_val; 4312 u8 count = 0; 4313 4314 if (hw->mac.type >= e1000_pch_spt) { 4315 if (offset > ICH_FLASH_LINEAR_ADDR_MASK) 4316 return -E1000_ERR_NVM; 4317 } 4318 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 4319 hw->nvm.flash_base_addr); 4320 do { 4321 udelay(1); 4322 /* Steps */ 4323 ret_val = e1000_flash_cycle_init_ich8lan(hw); 4324 if (ret_val) 4325 break; 4326 4327 /* In SPT, This register is in Lan memory space, not 4328 * flash. Therefore, only 32 bit access is supported 4329 */ 4330 if (hw->mac.type >= e1000_pch_spt) 4331 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) 4332 >> 16; 4333 else 4334 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 4335 4336 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1; 4337 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; 4338 4339 /* In SPT, This register is in Lan memory space, 4340 * not flash. Therefore, only 32 bit access is 4341 * supported 4342 */ 4343 if (hw->mac.type >= e1000_pch_spt) 4344 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16); 4345 else 4346 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 4347 4348 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 4349 4350 ew32flash(ICH_FLASH_FDATA0, data); 4351 4352 /* check if FCERR is set to 1 , if set to 1, clear it 4353 * and try the whole sequence a few more times else done 4354 */ 4355 ret_val = 4356 e1000_flash_cycle_ich8lan(hw, 4357 ICH_FLASH_WRITE_COMMAND_TIMEOUT); 4358 4359 if (!ret_val) 4360 break; 4361 4362 /* If we're here, then things are most likely 4363 * completely hosed, but if the error condition 4364 * is detected, it won't hurt to give it another 4365 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. 4366 */ 4367 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4368 4369 if (hsfsts.hsf_status.flcerr) 4370 /* Repeat for some time before giving up. */ 4371 continue; 4372 if (!hsfsts.hsf_status.flcdone) { 4373 e_dbg("Timeout error - flash cycle did not complete.\n"); 4374 break; 4375 } 4376 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 4377 4378 return ret_val; 4379 } 4380 4381 /** 4382 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM 4383 * @hw: pointer to the HW structure 4384 * @offset: The index of the byte to read. 4385 * @data: The byte to write to the NVM. 4386 * 4387 * Writes a single byte to the NVM using the flash access registers. 4388 **/ 4389 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, 4390 u8 data) 4391 { 4392 u16 word = (u16)data; 4393 4394 return e1000_write_flash_data_ich8lan(hw, offset, 1, word); 4395 } 4396 4397 /** 4398 * e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM 4399 * @hw: pointer to the HW structure 4400 * @offset: The offset of the word to write. 4401 * @dword: The dword to write to the NVM. 4402 * 4403 * Writes a single dword to the NVM using the flash access registers. 4404 * Goes through a retry algorithm before giving up. 4405 **/ 4406 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw, 4407 u32 offset, u32 dword) 4408 { 4409 s32 ret_val; 4410 u16 program_retries; 4411 4412 /* Must convert word offset into bytes. */ 4413 offset <<= 1; 4414 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword); 4415 4416 if (!ret_val) 4417 return ret_val; 4418 for (program_retries = 0; program_retries < 100; program_retries++) { 4419 e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset); 4420 usleep_range(100, 200); 4421 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword); 4422 if (!ret_val) 4423 break; 4424 } 4425 if (program_retries == 100) 4426 return -E1000_ERR_NVM; 4427 4428 return 0; 4429 } 4430 4431 /** 4432 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM 4433 * @hw: pointer to the HW structure 4434 * @offset: The offset of the byte to write. 4435 * @byte: The byte to write to the NVM. 4436 * 4437 * Writes a single byte to the NVM using the flash access registers. 4438 * Goes through a retry algorithm before giving up. 4439 **/ 4440 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, 4441 u32 offset, u8 byte) 4442 { 4443 s32 ret_val; 4444 u16 program_retries; 4445 4446 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); 4447 if (!ret_val) 4448 return ret_val; 4449 4450 for (program_retries = 0; program_retries < 100; program_retries++) { 4451 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset); 4452 usleep_range(100, 200); 4453 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); 4454 if (!ret_val) 4455 break; 4456 } 4457 if (program_retries == 100) 4458 return -E1000_ERR_NVM; 4459 4460 return 0; 4461 } 4462 4463 /** 4464 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM 4465 * @hw: pointer to the HW structure 4466 * @bank: 0 for first bank, 1 for second bank, etc. 4467 * 4468 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based. 4469 * bank N is 4096 * N + flash_reg_addr. 4470 **/ 4471 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank) 4472 { 4473 struct e1000_nvm_info *nvm = &hw->nvm; 4474 union ich8_hws_flash_status hsfsts; 4475 union ich8_hws_flash_ctrl hsflctl; 4476 u32 flash_linear_addr; 4477 /* bank size is in 16bit words - adjust to bytes */ 4478 u32 flash_bank_size = nvm->flash_bank_size * 2; 4479 s32 ret_val; 4480 s32 count = 0; 4481 s32 j, iteration, sector_size; 4482 4483 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4484 4485 /* Determine HW Sector size: Read BERASE bits of hw flash status 4486 * register 4487 * 00: The Hw sector is 256 bytes, hence we need to erase 16 4488 * consecutive sectors. The start index for the nth Hw sector 4489 * can be calculated as = bank * 4096 + n * 256 4490 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. 4491 * The start index for the nth Hw sector can be calculated 4492 * as = bank * 4096 4493 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192 4494 * (ich9 only, otherwise error condition) 4495 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536 4496 */ 4497 switch (hsfsts.hsf_status.berasesz) { 4498 case 0: 4499 /* Hw sector size 256 */ 4500 sector_size = ICH_FLASH_SEG_SIZE_256; 4501 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256; 4502 break; 4503 case 1: 4504 sector_size = ICH_FLASH_SEG_SIZE_4K; 4505 iteration = 1; 4506 break; 4507 case 2: 4508 sector_size = ICH_FLASH_SEG_SIZE_8K; 4509 iteration = 1; 4510 break; 4511 case 3: 4512 sector_size = ICH_FLASH_SEG_SIZE_64K; 4513 iteration = 1; 4514 break; 4515 default: 4516 return -E1000_ERR_NVM; 4517 } 4518 4519 /* Start with the base address, then add the sector offset. */ 4520 flash_linear_addr = hw->nvm.flash_base_addr; 4521 flash_linear_addr += (bank) ? flash_bank_size : 0; 4522 4523 for (j = 0; j < iteration; j++) { 4524 do { 4525 u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT; 4526 4527 /* Steps */ 4528 ret_val = e1000_flash_cycle_init_ich8lan(hw); 4529 if (ret_val) 4530 return ret_val; 4531 4532 /* Write a value 11 (block Erase) in Flash 4533 * Cycle field in hw flash control 4534 */ 4535 if (hw->mac.type >= e1000_pch_spt) 4536 hsflctl.regval = 4537 er32flash(ICH_FLASH_HSFSTS) >> 16; 4538 else 4539 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 4540 4541 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; 4542 if (hw->mac.type >= e1000_pch_spt) 4543 ew32flash(ICH_FLASH_HSFSTS, 4544 hsflctl.regval << 16); 4545 else 4546 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 4547 4548 /* Write the last 24 bits of an index within the 4549 * block into Flash Linear address field in Flash 4550 * Address. 4551 */ 4552 flash_linear_addr += (j * sector_size); 4553 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 4554 4555 ret_val = e1000_flash_cycle_ich8lan(hw, timeout); 4556 if (!ret_val) 4557 break; 4558 4559 /* Check if FCERR is set to 1. If 1, 4560 * clear it and try the whole sequence 4561 * a few more times else Done 4562 */ 4563 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4564 if (hsfsts.hsf_status.flcerr) 4565 /* repeat for some time before giving up */ 4566 continue; 4567 else if (!hsfsts.hsf_status.flcdone) 4568 return ret_val; 4569 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT); 4570 } 4571 4572 return 0; 4573 } 4574 4575 /** 4576 * e1000_valid_led_default_ich8lan - Set the default LED settings 4577 * @hw: pointer to the HW structure 4578 * @data: Pointer to the LED settings 4579 * 4580 * Reads the LED default settings from the NVM to data. If the NVM LED 4581 * settings is all 0's or F's, set the LED default to a valid LED default 4582 * setting. 4583 **/ 4584 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data) 4585 { 4586 s32 ret_val; 4587 4588 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); 4589 if (ret_val) { 4590 e_dbg("NVM Read Error\n"); 4591 return ret_val; 4592 } 4593 4594 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) 4595 *data = ID_LED_DEFAULT_ICH8LAN; 4596 4597 return 0; 4598 } 4599 4600 /** 4601 * e1000_id_led_init_pchlan - store LED configurations 4602 * @hw: pointer to the HW structure 4603 * 4604 * PCH does not control LEDs via the LEDCTL register, rather it uses 4605 * the PHY LED configuration register. 4606 * 4607 * PCH also does not have an "always on" or "always off" mode which 4608 * complicates the ID feature. Instead of using the "on" mode to indicate 4609 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()), 4610 * use "link_up" mode. The LEDs will still ID on request if there is no 4611 * link based on logic in e1000_led_[on|off]_pchlan(). 4612 **/ 4613 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw) 4614 { 4615 struct e1000_mac_info *mac = &hw->mac; 4616 s32 ret_val; 4617 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP; 4618 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT; 4619 u16 data, i, temp, shift; 4620 4621 /* Get default ID LED modes */ 4622 ret_val = hw->nvm.ops.valid_led_default(hw, &data); 4623 if (ret_val) 4624 return ret_val; 4625 4626 mac->ledctl_default = er32(LEDCTL); 4627 mac->ledctl_mode1 = mac->ledctl_default; 4628 mac->ledctl_mode2 = mac->ledctl_default; 4629 4630 for (i = 0; i < 4; i++) { 4631 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK; 4632 shift = (i * 5); 4633 switch (temp) { 4634 case ID_LED_ON1_DEF2: 4635 case ID_LED_ON1_ON2: 4636 case ID_LED_ON1_OFF2: 4637 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); 4638 mac->ledctl_mode1 |= (ledctl_on << shift); 4639 break; 4640 case ID_LED_OFF1_DEF2: 4641 case ID_LED_OFF1_ON2: 4642 case ID_LED_OFF1_OFF2: 4643 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); 4644 mac->ledctl_mode1 |= (ledctl_off << shift); 4645 break; 4646 default: 4647 /* Do nothing */ 4648 break; 4649 } 4650 switch (temp) { 4651 case ID_LED_DEF1_ON2: 4652 case ID_LED_ON1_ON2: 4653 case ID_LED_OFF1_ON2: 4654 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); 4655 mac->ledctl_mode2 |= (ledctl_on << shift); 4656 break; 4657 case ID_LED_DEF1_OFF2: 4658 case ID_LED_ON1_OFF2: 4659 case ID_LED_OFF1_OFF2: 4660 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); 4661 mac->ledctl_mode2 |= (ledctl_off << shift); 4662 break; 4663 default: 4664 /* Do nothing */ 4665 break; 4666 } 4667 } 4668 4669 return 0; 4670 } 4671 4672 /** 4673 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width 4674 * @hw: pointer to the HW structure 4675 * 4676 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability 4677 * register, so the bus width is hard coded. 4678 **/ 4679 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw) 4680 { 4681 struct e1000_bus_info *bus = &hw->bus; 4682 s32 ret_val; 4683 4684 ret_val = e1000e_get_bus_info_pcie(hw); 4685 4686 /* ICH devices are "PCI Express"-ish. They have 4687 * a configuration space, but do not contain 4688 * PCI Express Capability registers, so bus width 4689 * must be hardcoded. 4690 */ 4691 if (bus->width == e1000_bus_width_unknown) 4692 bus->width = e1000_bus_width_pcie_x1; 4693 4694 return ret_val; 4695 } 4696 4697 /** 4698 * e1000_reset_hw_ich8lan - Reset the hardware 4699 * @hw: pointer to the HW structure 4700 * 4701 * Does a full reset of the hardware which includes a reset of the PHY and 4702 * MAC. 4703 **/ 4704 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw) 4705 { 4706 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 4707 u16 kum_cfg; 4708 u32 ctrl, reg; 4709 s32 ret_val; 4710 4711 /* Prevent the PCI-E bus from sticking if there is no TLP connection 4712 * on the last TLP read/write transaction when MAC is reset. 4713 */ 4714 ret_val = e1000e_disable_pcie_master(hw); 4715 if (ret_val) 4716 e_dbg("PCI-E Master disable polling has failed.\n"); 4717 4718 e_dbg("Masking off all interrupts\n"); 4719 ew32(IMC, 0xffffffff); 4720 4721 /* Disable the Transmit and Receive units. Then delay to allow 4722 * any pending transactions to complete before we hit the MAC 4723 * with the global reset. 4724 */ 4725 ew32(RCTL, 0); 4726 ew32(TCTL, E1000_TCTL_PSP); 4727 e1e_flush(); 4728 4729 usleep_range(10000, 11000); 4730 4731 /* Workaround for ICH8 bit corruption issue in FIFO memory */ 4732 if (hw->mac.type == e1000_ich8lan) { 4733 /* Set Tx and Rx buffer allocation to 8k apiece. */ 4734 ew32(PBA, E1000_PBA_8K); 4735 /* Set Packet Buffer Size to 16k. */ 4736 ew32(PBS, E1000_PBS_16K); 4737 } 4738 4739 if (hw->mac.type == e1000_pchlan) { 4740 /* Save the NVM K1 bit setting */ 4741 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg); 4742 if (ret_val) 4743 return ret_val; 4744 4745 if (kum_cfg & E1000_NVM_K1_ENABLE) 4746 dev_spec->nvm_k1_enabled = true; 4747 else 4748 dev_spec->nvm_k1_enabled = false; 4749 } 4750 4751 ctrl = er32(CTRL); 4752 4753 if (!hw->phy.ops.check_reset_block(hw)) { 4754 /* Full-chip reset requires MAC and PHY reset at the same 4755 * time to make sure the interface between MAC and the 4756 * external PHY is reset. 4757 */ 4758 ctrl |= E1000_CTRL_PHY_RST; 4759 4760 /* Gate automatic PHY configuration by hardware on 4761 * non-managed 82579 4762 */ 4763 if ((hw->mac.type == e1000_pch2lan) && 4764 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) 4765 e1000_gate_hw_phy_config_ich8lan(hw, true); 4766 } 4767 ret_val = e1000_acquire_swflag_ich8lan(hw); 4768 e_dbg("Issuing a global reset to ich8lan\n"); 4769 ew32(CTRL, (ctrl | E1000_CTRL_RST)); 4770 /* cannot issue a flush here because it hangs the hardware */ 4771 msleep(20); 4772 4773 /* Set Phy Config Counter to 50msec */ 4774 if (hw->mac.type == e1000_pch2lan) { 4775 reg = er32(FEXTNVM3); 4776 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; 4777 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; 4778 ew32(FEXTNVM3, reg); 4779 } 4780 4781 if (!ret_val) 4782 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); 4783 4784 if (ctrl & E1000_CTRL_PHY_RST) { 4785 ret_val = hw->phy.ops.get_cfg_done(hw); 4786 if (ret_val) 4787 return ret_val; 4788 4789 ret_val = e1000_post_phy_reset_ich8lan(hw); 4790 if (ret_val) 4791 return ret_val; 4792 } 4793 4794 /* For PCH, this write will make sure that any noise 4795 * will be detected as a CRC error and be dropped rather than show up 4796 * as a bad packet to the DMA engine. 4797 */ 4798 if (hw->mac.type == e1000_pchlan) 4799 ew32(CRC_OFFSET, 0x65656565); 4800 4801 ew32(IMC, 0xffffffff); 4802 er32(ICR); 4803 4804 reg = er32(KABGTXD); 4805 reg |= E1000_KABGTXD_BGSQLBIAS; 4806 ew32(KABGTXD, reg); 4807 4808 return 0; 4809 } 4810 4811 /** 4812 * e1000_init_hw_ich8lan - Initialize the hardware 4813 * @hw: pointer to the HW structure 4814 * 4815 * Prepares the hardware for transmit and receive by doing the following: 4816 * - initialize hardware bits 4817 * - initialize LED identification 4818 * - setup receive address registers 4819 * - setup flow control 4820 * - setup transmit descriptors 4821 * - clear statistics 4822 **/ 4823 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw) 4824 { 4825 struct e1000_mac_info *mac = &hw->mac; 4826 u32 ctrl_ext, txdctl, snoop, fflt_dbg; 4827 s32 ret_val; 4828 u16 i; 4829 4830 e1000_initialize_hw_bits_ich8lan(hw); 4831 4832 /* Initialize identification LED */ 4833 ret_val = mac->ops.id_led_init(hw); 4834 /* An error is not fatal and we should not stop init due to this */ 4835 if (ret_val) 4836 e_dbg("Error initializing identification LED\n"); 4837 4838 /* Setup the receive address. */ 4839 e1000e_init_rx_addrs(hw, mac->rar_entry_count); 4840 4841 /* Zero out the Multicast HASH table */ 4842 e_dbg("Zeroing the MTA\n"); 4843 for (i = 0; i < mac->mta_reg_count; i++) 4844 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); 4845 4846 /* The 82578 Rx buffer will stall if wakeup is enabled in host and 4847 * the ME. Disable wakeup by clearing the host wakeup bit. 4848 * Reset the phy after disabling host wakeup to reset the Rx buffer. 4849 */ 4850 if (hw->phy.type == e1000_phy_82578) { 4851 e1e_rphy(hw, BM_PORT_GEN_CFG, &i); 4852 i &= ~BM_WUC_HOST_WU_BIT; 4853 e1e_wphy(hw, BM_PORT_GEN_CFG, i); 4854 ret_val = e1000_phy_hw_reset_ich8lan(hw); 4855 if (ret_val) 4856 return ret_val; 4857 } 4858 4859 /* Setup link and flow control */ 4860 ret_val = mac->ops.setup_link(hw); 4861 4862 /* Set the transmit descriptor write-back policy for both queues */ 4863 txdctl = er32(TXDCTL(0)); 4864 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) | 4865 E1000_TXDCTL_FULL_TX_DESC_WB); 4866 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) | 4867 E1000_TXDCTL_MAX_TX_DESC_PREFETCH); 4868 ew32(TXDCTL(0), txdctl); 4869 txdctl = er32(TXDCTL(1)); 4870 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) | 4871 E1000_TXDCTL_FULL_TX_DESC_WB); 4872 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) | 4873 E1000_TXDCTL_MAX_TX_DESC_PREFETCH); 4874 ew32(TXDCTL(1), txdctl); 4875 4876 /* ICH8 has opposite polarity of no_snoop bits. 4877 * By default, we should use snoop behavior. 4878 */ 4879 if (mac->type == e1000_ich8lan) 4880 snoop = PCIE_ICH8_SNOOP_ALL; 4881 else 4882 snoop = (u32)~(PCIE_NO_SNOOP_ALL); 4883 e1000e_set_pcie_no_snoop(hw, snoop); 4884 4885 /* Enable workaround for packet loss issue on TGP PCH 4886 * Do not gate DMA clock from the modPHY block 4887 */ 4888 if (mac->type >= e1000_pch_tgp) { 4889 fflt_dbg = er32(FFLT_DBG); 4890 fflt_dbg |= E1000_FFLT_DBG_DONT_GATE_WAKE_DMA_CLK; 4891 ew32(FFLT_DBG, fflt_dbg); 4892 } 4893 4894 ctrl_ext = er32(CTRL_EXT); 4895 ctrl_ext |= E1000_CTRL_EXT_RO_DIS; 4896 ew32(CTRL_EXT, ctrl_ext); 4897 4898 /* Clear all of the statistics registers (clear on read). It is 4899 * important that we do this after we have tried to establish link 4900 * because the symbol error count will increment wildly if there 4901 * is no link. 4902 */ 4903 e1000_clear_hw_cntrs_ich8lan(hw); 4904 4905 return ret_val; 4906 } 4907 4908 /** 4909 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits 4910 * @hw: pointer to the HW structure 4911 * 4912 * Sets/Clears required hardware bits necessary for correctly setting up the 4913 * hardware for transmit and receive. 4914 **/ 4915 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw) 4916 { 4917 u32 reg; 4918 4919 /* Extended Device Control */ 4920 reg = er32(CTRL_EXT); 4921 reg |= BIT(22); 4922 /* Enable PHY low-power state when MAC is at D3 w/o WoL */ 4923 if (hw->mac.type >= e1000_pchlan) 4924 reg |= E1000_CTRL_EXT_PHYPDEN; 4925 ew32(CTRL_EXT, reg); 4926 4927 /* Transmit Descriptor Control 0 */ 4928 reg = er32(TXDCTL(0)); 4929 reg |= BIT(22); 4930 ew32(TXDCTL(0), reg); 4931 4932 /* Transmit Descriptor Control 1 */ 4933 reg = er32(TXDCTL(1)); 4934 reg |= BIT(22); 4935 ew32(TXDCTL(1), reg); 4936 4937 /* Transmit Arbitration Control 0 */ 4938 reg = er32(TARC(0)); 4939 if (hw->mac.type == e1000_ich8lan) 4940 reg |= BIT(28) | BIT(29); 4941 reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27); 4942 ew32(TARC(0), reg); 4943 4944 /* Transmit Arbitration Control 1 */ 4945 reg = er32(TARC(1)); 4946 if (er32(TCTL) & E1000_TCTL_MULR) 4947 reg &= ~BIT(28); 4948 else 4949 reg |= BIT(28); 4950 reg |= BIT(24) | BIT(26) | BIT(30); 4951 ew32(TARC(1), reg); 4952 4953 /* Device Status */ 4954 if (hw->mac.type == e1000_ich8lan) { 4955 reg = er32(STATUS); 4956 reg &= ~BIT(31); 4957 ew32(STATUS, reg); 4958 } 4959 4960 /* work-around descriptor data corruption issue during nfs v2 udp 4961 * traffic, just disable the nfs filtering capability 4962 */ 4963 reg = er32(RFCTL); 4964 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS); 4965 4966 /* Disable IPv6 extension header parsing because some malformed 4967 * IPv6 headers can hang the Rx. 4968 */ 4969 if (hw->mac.type == e1000_ich8lan) 4970 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS); 4971 ew32(RFCTL, reg); 4972 4973 /* Enable ECC on Lynxpoint */ 4974 if (hw->mac.type >= e1000_pch_lpt) { 4975 reg = er32(PBECCSTS); 4976 reg |= E1000_PBECCSTS_ECC_ENABLE; 4977 ew32(PBECCSTS, reg); 4978 4979 reg = er32(CTRL); 4980 reg |= E1000_CTRL_MEHE; 4981 ew32(CTRL, reg); 4982 } 4983 } 4984 4985 /** 4986 * e1000_setup_link_ich8lan - Setup flow control and link settings 4987 * @hw: pointer to the HW structure 4988 * 4989 * Determines which flow control settings to use, then configures flow 4990 * control. Calls the appropriate media-specific link configuration 4991 * function. Assuming the adapter has a valid link partner, a valid link 4992 * should be established. Assumes the hardware has previously been reset 4993 * and the transmitter and receiver are not enabled. 4994 **/ 4995 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw) 4996 { 4997 s32 ret_val; 4998 4999 if (hw->phy.ops.check_reset_block(hw)) 5000 return 0; 5001 5002 /* ICH parts do not have a word in the NVM to determine 5003 * the default flow control setting, so we explicitly 5004 * set it to full. 5005 */ 5006 if (hw->fc.requested_mode == e1000_fc_default) { 5007 /* Workaround h/w hang when Tx flow control enabled */ 5008 if (hw->mac.type == e1000_pchlan) 5009 hw->fc.requested_mode = e1000_fc_rx_pause; 5010 else 5011 hw->fc.requested_mode = e1000_fc_full; 5012 } 5013 5014 /* Save off the requested flow control mode for use later. Depending 5015 * on the link partner's capabilities, we may or may not use this mode. 5016 */ 5017 hw->fc.current_mode = hw->fc.requested_mode; 5018 5019 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode); 5020 5021 /* Continue to configure the copper link. */ 5022 ret_val = hw->mac.ops.setup_physical_interface(hw); 5023 if (ret_val) 5024 return ret_val; 5025 5026 ew32(FCTTV, hw->fc.pause_time); 5027 if ((hw->phy.type == e1000_phy_82578) || 5028 (hw->phy.type == e1000_phy_82579) || 5029 (hw->phy.type == e1000_phy_i217) || 5030 (hw->phy.type == e1000_phy_82577)) { 5031 ew32(FCRTV_PCH, hw->fc.refresh_time); 5032 5033 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27), 5034 hw->fc.pause_time); 5035 if (ret_val) 5036 return ret_val; 5037 } 5038 5039 return e1000e_set_fc_watermarks(hw); 5040 } 5041 5042 /** 5043 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface 5044 * @hw: pointer to the HW structure 5045 * 5046 * Configures the kumeran interface to the PHY to wait the appropriate time 5047 * when polling the PHY, then call the generic setup_copper_link to finish 5048 * configuring the copper link. 5049 **/ 5050 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw) 5051 { 5052 u32 ctrl; 5053 s32 ret_val; 5054 u16 reg_data; 5055 5056 ctrl = er32(CTRL); 5057 ctrl |= E1000_CTRL_SLU; 5058 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 5059 ew32(CTRL, ctrl); 5060 5061 /* Set the mac to wait the maximum time between each iteration 5062 * and increase the max iterations when polling the phy; 5063 * this fixes erroneous timeouts at 10Mbps. 5064 */ 5065 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF); 5066 if (ret_val) 5067 return ret_val; 5068 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, 5069 ®_data); 5070 if (ret_val) 5071 return ret_val; 5072 reg_data |= 0x3F; 5073 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, 5074 reg_data); 5075 if (ret_val) 5076 return ret_val; 5077 5078 switch (hw->phy.type) { 5079 case e1000_phy_igp_3: 5080 ret_val = e1000e_copper_link_setup_igp(hw); 5081 if (ret_val) 5082 return ret_val; 5083 break; 5084 case e1000_phy_bm: 5085 case e1000_phy_82578: 5086 ret_val = e1000e_copper_link_setup_m88(hw); 5087 if (ret_val) 5088 return ret_val; 5089 break; 5090 case e1000_phy_82577: 5091 case e1000_phy_82579: 5092 ret_val = e1000_copper_link_setup_82577(hw); 5093 if (ret_val) 5094 return ret_val; 5095 break; 5096 case e1000_phy_ife: 5097 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, ®_data); 5098 if (ret_val) 5099 return ret_val; 5100 5101 reg_data &= ~IFE_PMC_AUTO_MDIX; 5102 5103 switch (hw->phy.mdix) { 5104 case 1: 5105 reg_data &= ~IFE_PMC_FORCE_MDIX; 5106 break; 5107 case 2: 5108 reg_data |= IFE_PMC_FORCE_MDIX; 5109 break; 5110 case 0: 5111 default: 5112 reg_data |= IFE_PMC_AUTO_MDIX; 5113 break; 5114 } 5115 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data); 5116 if (ret_val) 5117 return ret_val; 5118 break; 5119 default: 5120 break; 5121 } 5122 5123 return e1000e_setup_copper_link(hw); 5124 } 5125 5126 /** 5127 * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface 5128 * @hw: pointer to the HW structure 5129 * 5130 * Calls the PHY specific link setup function and then calls the 5131 * generic setup_copper_link to finish configuring the link for 5132 * Lynxpoint PCH devices 5133 **/ 5134 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw) 5135 { 5136 u32 ctrl; 5137 s32 ret_val; 5138 5139 ctrl = er32(CTRL); 5140 ctrl |= E1000_CTRL_SLU; 5141 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 5142 ew32(CTRL, ctrl); 5143 5144 ret_val = e1000_copper_link_setup_82577(hw); 5145 if (ret_val) 5146 return ret_val; 5147 5148 return e1000e_setup_copper_link(hw); 5149 } 5150 5151 /** 5152 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex 5153 * @hw: pointer to the HW structure 5154 * @speed: pointer to store current link speed 5155 * @duplex: pointer to store the current link duplex 5156 * 5157 * Calls the generic get_speed_and_duplex to retrieve the current link 5158 * information and then calls the Kumeran lock loss workaround for links at 5159 * gigabit speeds. 5160 **/ 5161 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed, 5162 u16 *duplex) 5163 { 5164 s32 ret_val; 5165 5166 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex); 5167 if (ret_val) 5168 return ret_val; 5169 5170 if ((hw->mac.type == e1000_ich8lan) && 5171 (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) { 5172 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw); 5173 } 5174 5175 return ret_val; 5176 } 5177 5178 /** 5179 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround 5180 * @hw: pointer to the HW structure 5181 * 5182 * Work-around for 82566 Kumeran PCS lock loss: 5183 * On link status change (i.e. PCI reset, speed change) and link is up and 5184 * speed is gigabit- 5185 * 0) if workaround is optionally disabled do nothing 5186 * 1) wait 1ms for Kumeran link to come up 5187 * 2) check Kumeran Diagnostic register PCS lock loss bit 5188 * 3) if not set the link is locked (all is good), otherwise... 5189 * 4) reset the PHY 5190 * 5) repeat up to 10 times 5191 * Note: this is only called for IGP3 copper when speed is 1gb. 5192 **/ 5193 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw) 5194 { 5195 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 5196 u32 phy_ctrl; 5197 s32 ret_val; 5198 u16 i, data; 5199 bool link; 5200 5201 if (!dev_spec->kmrn_lock_loss_workaround_enabled) 5202 return 0; 5203 5204 /* Make sure link is up before proceeding. If not just return. 5205 * Attempting this while link is negotiating fouled up link 5206 * stability 5207 */ 5208 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 5209 if (!link) 5210 return 0; 5211 5212 for (i = 0; i < 10; i++) { 5213 /* read once to clear */ 5214 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); 5215 if (ret_val) 5216 return ret_val; 5217 /* and again to get new status */ 5218 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); 5219 if (ret_val) 5220 return ret_val; 5221 5222 /* check for PCS lock */ 5223 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) 5224 return 0; 5225 5226 /* Issue PHY reset */ 5227 e1000_phy_hw_reset(hw); 5228 mdelay(5); 5229 } 5230 /* Disable GigE link negotiation */ 5231 phy_ctrl = er32(PHY_CTRL); 5232 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE | 5233 E1000_PHY_CTRL_NOND0A_GBE_DISABLE); 5234 ew32(PHY_CTRL, phy_ctrl); 5235 5236 /* Call gig speed drop workaround on Gig disable before accessing 5237 * any PHY registers 5238 */ 5239 e1000e_gig_downshift_workaround_ich8lan(hw); 5240 5241 /* unable to acquire PCS lock */ 5242 return -E1000_ERR_PHY; 5243 } 5244 5245 /** 5246 * e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state 5247 * @hw: pointer to the HW structure 5248 * @state: boolean value used to set the current Kumeran workaround state 5249 * 5250 * If ICH8, set the current Kumeran workaround state (enabled - true 5251 * /disabled - false). 5252 **/ 5253 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw, 5254 bool state) 5255 { 5256 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 5257 5258 if (hw->mac.type != e1000_ich8lan) { 5259 e_dbg("Workaround applies to ICH8 only.\n"); 5260 return; 5261 } 5262 5263 dev_spec->kmrn_lock_loss_workaround_enabled = state; 5264 } 5265 5266 /** 5267 * e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3 5268 * @hw: pointer to the HW structure 5269 * 5270 * Workaround for 82566 power-down on D3 entry: 5271 * 1) disable gigabit link 5272 * 2) write VR power-down enable 5273 * 3) read it back 5274 * Continue if successful, else issue LCD reset and repeat 5275 **/ 5276 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw) 5277 { 5278 u32 reg; 5279 u16 data; 5280 u8 retry = 0; 5281 5282 if (hw->phy.type != e1000_phy_igp_3) 5283 return; 5284 5285 /* Try the workaround twice (if needed) */ 5286 do { 5287 /* Disable link */ 5288 reg = er32(PHY_CTRL); 5289 reg |= (E1000_PHY_CTRL_GBE_DISABLE | 5290 E1000_PHY_CTRL_NOND0A_GBE_DISABLE); 5291 ew32(PHY_CTRL, reg); 5292 5293 /* Call gig speed drop workaround on Gig disable before 5294 * accessing any PHY registers 5295 */ 5296 if (hw->mac.type == e1000_ich8lan) 5297 e1000e_gig_downshift_workaround_ich8lan(hw); 5298 5299 /* Write VR power-down enable */ 5300 e1e_rphy(hw, IGP3_VR_CTRL, &data); 5301 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; 5302 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN); 5303 5304 /* Read it back and test */ 5305 e1e_rphy(hw, IGP3_VR_CTRL, &data); 5306 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; 5307 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry) 5308 break; 5309 5310 /* Issue PHY reset and repeat at most one more time */ 5311 reg = er32(CTRL); 5312 ew32(CTRL, reg | E1000_CTRL_PHY_RST); 5313 retry++; 5314 } while (retry); 5315 } 5316 5317 /** 5318 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working 5319 * @hw: pointer to the HW structure 5320 * 5321 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC), 5322 * LPLU, Gig disable, MDIC PHY reset): 5323 * 1) Set Kumeran Near-end loopback 5324 * 2) Clear Kumeran Near-end loopback 5325 * Should only be called for ICH8[m] devices with any 1G Phy. 5326 **/ 5327 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw) 5328 { 5329 s32 ret_val; 5330 u16 reg_data; 5331 5332 if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife)) 5333 return; 5334 5335 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, 5336 ®_data); 5337 if (ret_val) 5338 return; 5339 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK; 5340 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, 5341 reg_data); 5342 if (ret_val) 5343 return; 5344 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK; 5345 e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data); 5346 } 5347 5348 /** 5349 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx 5350 * @hw: pointer to the HW structure 5351 * 5352 * During S0 to Sx transition, it is possible the link remains at gig 5353 * instead of negotiating to a lower speed. Before going to Sx, set 5354 * 'Gig Disable' to force link speed negotiation to a lower speed based on 5355 * the LPLU setting in the NVM or custom setting. For PCH and newer parts, 5356 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also 5357 * needs to be written. 5358 * Parts that support (and are linked to a partner which support) EEE in 5359 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power 5360 * than 10Mbps w/o EEE. 5361 **/ 5362 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw) 5363 { 5364 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 5365 u32 phy_ctrl; 5366 s32 ret_val; 5367 5368 phy_ctrl = er32(PHY_CTRL); 5369 phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE; 5370 5371 if (hw->phy.type == e1000_phy_i217) { 5372 u16 phy_reg, device_id = hw->adapter->pdev->device; 5373 5374 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) || 5375 (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) || 5376 (device_id == E1000_DEV_ID_PCH_I218_LM3) || 5377 (device_id == E1000_DEV_ID_PCH_I218_V3) || 5378 (hw->mac.type >= e1000_pch_spt)) { 5379 u32 fextnvm6 = er32(FEXTNVM6); 5380 5381 ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK); 5382 } 5383 5384 ret_val = hw->phy.ops.acquire(hw); 5385 if (ret_val) 5386 goto out; 5387 5388 if (!dev_spec->eee_disable) { 5389 u16 eee_advert; 5390 5391 ret_val = 5392 e1000_read_emi_reg_locked(hw, 5393 I217_EEE_ADVERTISEMENT, 5394 &eee_advert); 5395 if (ret_val) 5396 goto release; 5397 5398 /* Disable LPLU if both link partners support 100BaseT 5399 * EEE and 100Full is advertised on both ends of the 5400 * link, and enable Auto Enable LPI since there will 5401 * be no driver to enable LPI while in Sx. 5402 */ 5403 if ((eee_advert & I82579_EEE_100_SUPPORTED) && 5404 (dev_spec->eee_lp_ability & 5405 I82579_EEE_100_SUPPORTED) && 5406 (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) { 5407 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU | 5408 E1000_PHY_CTRL_NOND0A_LPLU); 5409 5410 /* Set Auto Enable LPI after link up */ 5411 e1e_rphy_locked(hw, 5412 I217_LPI_GPIO_CTRL, &phy_reg); 5413 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI; 5414 e1e_wphy_locked(hw, 5415 I217_LPI_GPIO_CTRL, phy_reg); 5416 } 5417 } 5418 5419 /* For i217 Intel Rapid Start Technology support, 5420 * when the system is going into Sx and no manageability engine 5421 * is present, the driver must configure proxy to reset only on 5422 * power good. LPI (Low Power Idle) state must also reset only 5423 * on power good, as well as the MTA (Multicast table array). 5424 * The SMBus release must also be disabled on LCD reset. 5425 */ 5426 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 5427 /* Enable proxy to reset only on power good. */ 5428 e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg); 5429 phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE; 5430 e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg); 5431 5432 /* Set bit enable LPI (EEE) to reset only on 5433 * power good. 5434 */ 5435 e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg); 5436 phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET; 5437 e1e_wphy_locked(hw, I217_SxCTRL, phy_reg); 5438 5439 /* Disable the SMB release on LCD reset. */ 5440 e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg); 5441 phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE; 5442 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg); 5443 } 5444 5445 /* Enable MTA to reset for Intel Rapid Start Technology 5446 * Support 5447 */ 5448 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg); 5449 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET; 5450 e1e_wphy_locked(hw, I217_CGFREG, phy_reg); 5451 5452 release: 5453 hw->phy.ops.release(hw); 5454 } 5455 out: 5456 ew32(PHY_CTRL, phy_ctrl); 5457 5458 if (hw->mac.type == e1000_ich8lan) 5459 e1000e_gig_downshift_workaround_ich8lan(hw); 5460 5461 if (hw->mac.type >= e1000_pchlan) { 5462 e1000_oem_bits_config_ich8lan(hw, false); 5463 5464 /* Reset PHY to activate OEM bits on 82577/8 */ 5465 if (hw->mac.type == e1000_pchlan) 5466 e1000e_phy_hw_reset_generic(hw); 5467 5468 ret_val = hw->phy.ops.acquire(hw); 5469 if (ret_val) 5470 return; 5471 e1000_write_smbus_addr(hw); 5472 hw->phy.ops.release(hw); 5473 } 5474 } 5475 5476 /** 5477 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0 5478 * @hw: pointer to the HW structure 5479 * 5480 * During Sx to S0 transitions on non-managed devices or managed devices 5481 * on which PHY resets are not blocked, if the PHY registers cannot be 5482 * accessed properly by the s/w toggle the LANPHYPC value to power cycle 5483 * the PHY. 5484 * On i217, setup Intel Rapid Start Technology. 5485 **/ 5486 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw) 5487 { 5488 s32 ret_val; 5489 5490 if (hw->mac.type < e1000_pch2lan) 5491 return; 5492 5493 ret_val = e1000_init_phy_workarounds_pchlan(hw); 5494 if (ret_val) { 5495 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val); 5496 return; 5497 } 5498 5499 /* For i217 Intel Rapid Start Technology support when the system 5500 * is transitioning from Sx and no manageability engine is present 5501 * configure SMBus to restore on reset, disable proxy, and enable 5502 * the reset on MTA (Multicast table array). 5503 */ 5504 if (hw->phy.type == e1000_phy_i217) { 5505 u16 phy_reg; 5506 5507 ret_val = hw->phy.ops.acquire(hw); 5508 if (ret_val) { 5509 e_dbg("Failed to setup iRST\n"); 5510 return; 5511 } 5512 5513 /* Clear Auto Enable LPI after link up */ 5514 e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg); 5515 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI; 5516 e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg); 5517 5518 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 5519 /* Restore clear on SMB if no manageability engine 5520 * is present 5521 */ 5522 ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg); 5523 if (ret_val) 5524 goto release; 5525 phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE; 5526 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg); 5527 5528 /* Disable Proxy */ 5529 e1e_wphy_locked(hw, I217_PROXY_CTRL, 0); 5530 } 5531 /* Enable reset on MTA */ 5532 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg); 5533 if (ret_val) 5534 goto release; 5535 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET; 5536 e1e_wphy_locked(hw, I217_CGFREG, phy_reg); 5537 release: 5538 if (ret_val) 5539 e_dbg("Error %d in resume workarounds\n", ret_val); 5540 hw->phy.ops.release(hw); 5541 } 5542 } 5543 5544 /** 5545 * e1000_cleanup_led_ich8lan - Restore the default LED operation 5546 * @hw: pointer to the HW structure 5547 * 5548 * Return the LED back to the default configuration. 5549 **/ 5550 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw) 5551 { 5552 if (hw->phy.type == e1000_phy_ife) 5553 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); 5554 5555 ew32(LEDCTL, hw->mac.ledctl_default); 5556 return 0; 5557 } 5558 5559 /** 5560 * e1000_led_on_ich8lan - Turn LEDs on 5561 * @hw: pointer to the HW structure 5562 * 5563 * Turn on the LEDs. 5564 **/ 5565 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw) 5566 { 5567 if (hw->phy.type == e1000_phy_ife) 5568 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 5569 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); 5570 5571 ew32(LEDCTL, hw->mac.ledctl_mode2); 5572 return 0; 5573 } 5574 5575 /** 5576 * e1000_led_off_ich8lan - Turn LEDs off 5577 * @hw: pointer to the HW structure 5578 * 5579 * Turn off the LEDs. 5580 **/ 5581 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw) 5582 { 5583 if (hw->phy.type == e1000_phy_ife) 5584 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 5585 (IFE_PSCL_PROBE_MODE | 5586 IFE_PSCL_PROBE_LEDS_OFF)); 5587 5588 ew32(LEDCTL, hw->mac.ledctl_mode1); 5589 return 0; 5590 } 5591 5592 /** 5593 * e1000_setup_led_pchlan - Configures SW controllable LED 5594 * @hw: pointer to the HW structure 5595 * 5596 * This prepares the SW controllable LED for use. 5597 **/ 5598 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw) 5599 { 5600 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1); 5601 } 5602 5603 /** 5604 * e1000_cleanup_led_pchlan - Restore the default LED operation 5605 * @hw: pointer to the HW structure 5606 * 5607 * Return the LED back to the default configuration. 5608 **/ 5609 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw) 5610 { 5611 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default); 5612 } 5613 5614 /** 5615 * e1000_led_on_pchlan - Turn LEDs on 5616 * @hw: pointer to the HW structure 5617 * 5618 * Turn on the LEDs. 5619 **/ 5620 static s32 e1000_led_on_pchlan(struct e1000_hw *hw) 5621 { 5622 u16 data = (u16)hw->mac.ledctl_mode2; 5623 u32 i, led; 5624 5625 /* If no link, then turn LED on by setting the invert bit 5626 * for each LED that's mode is "link_up" in ledctl_mode2. 5627 */ 5628 if (!(er32(STATUS) & E1000_STATUS_LU)) { 5629 for (i = 0; i < 3; i++) { 5630 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; 5631 if ((led & E1000_PHY_LED0_MODE_MASK) != 5632 E1000_LEDCTL_MODE_LINK_UP) 5633 continue; 5634 if (led & E1000_PHY_LED0_IVRT) 5635 data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); 5636 else 5637 data |= (E1000_PHY_LED0_IVRT << (i * 5)); 5638 } 5639 } 5640 5641 return e1e_wphy(hw, HV_LED_CONFIG, data); 5642 } 5643 5644 /** 5645 * e1000_led_off_pchlan - Turn LEDs off 5646 * @hw: pointer to the HW structure 5647 * 5648 * Turn off the LEDs. 5649 **/ 5650 static s32 e1000_led_off_pchlan(struct e1000_hw *hw) 5651 { 5652 u16 data = (u16)hw->mac.ledctl_mode1; 5653 u32 i, led; 5654 5655 /* If no link, then turn LED off by clearing the invert bit 5656 * for each LED that's mode is "link_up" in ledctl_mode1. 5657 */ 5658 if (!(er32(STATUS) & E1000_STATUS_LU)) { 5659 for (i = 0; i < 3; i++) { 5660 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; 5661 if ((led & E1000_PHY_LED0_MODE_MASK) != 5662 E1000_LEDCTL_MODE_LINK_UP) 5663 continue; 5664 if (led & E1000_PHY_LED0_IVRT) 5665 data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); 5666 else 5667 data |= (E1000_PHY_LED0_IVRT << (i * 5)); 5668 } 5669 } 5670 5671 return e1e_wphy(hw, HV_LED_CONFIG, data); 5672 } 5673 5674 /** 5675 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset 5676 * @hw: pointer to the HW structure 5677 * 5678 * Read appropriate register for the config done bit for completion status 5679 * and configure the PHY through s/w for EEPROM-less parts. 5680 * 5681 * NOTE: some silicon which is EEPROM-less will fail trying to read the 5682 * config done bit, so only an error is logged and continues. If we were 5683 * to return with error, EEPROM-less silicon would not be able to be reset 5684 * or change link. 5685 **/ 5686 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw) 5687 { 5688 s32 ret_val = 0; 5689 u32 bank = 0; 5690 u32 status; 5691 5692 e1000e_get_cfg_done_generic(hw); 5693 5694 /* Wait for indication from h/w that it has completed basic config */ 5695 if (hw->mac.type >= e1000_ich10lan) { 5696 e1000_lan_init_done_ich8lan(hw); 5697 } else { 5698 ret_val = e1000e_get_auto_rd_done(hw); 5699 if (ret_val) { 5700 /* When auto config read does not complete, do not 5701 * return with an error. This can happen in situations 5702 * where there is no eeprom and prevents getting link. 5703 */ 5704 e_dbg("Auto Read Done did not complete\n"); 5705 ret_val = 0; 5706 } 5707 } 5708 5709 /* Clear PHY Reset Asserted bit */ 5710 status = er32(STATUS); 5711 if (status & E1000_STATUS_PHYRA) 5712 ew32(STATUS, status & ~E1000_STATUS_PHYRA); 5713 else 5714 e_dbg("PHY Reset Asserted not set - needs delay\n"); 5715 5716 /* If EEPROM is not marked present, init the IGP 3 PHY manually */ 5717 if (hw->mac.type <= e1000_ich9lan) { 5718 if (!(er32(EECD) & E1000_EECD_PRES) && 5719 (hw->phy.type == e1000_phy_igp_3)) { 5720 e1000e_phy_init_script_igp3(hw); 5721 } 5722 } else { 5723 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) { 5724 /* Maybe we should do a basic PHY config */ 5725 e_dbg("EEPROM not present\n"); 5726 ret_val = -E1000_ERR_CONFIG; 5727 } 5728 } 5729 5730 return ret_val; 5731 } 5732 5733 /** 5734 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down 5735 * @hw: pointer to the HW structure 5736 * 5737 * In the case of a PHY power down to save power, or to turn off link during a 5738 * driver unload, or wake on lan is not enabled, remove the link. 5739 **/ 5740 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw) 5741 { 5742 /* If the management interface is not enabled, then power down */ 5743 if (!(hw->mac.ops.check_mng_mode(hw) || 5744 hw->phy.ops.check_reset_block(hw))) 5745 e1000_power_down_phy_copper(hw); 5746 } 5747 5748 /** 5749 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters 5750 * @hw: pointer to the HW structure 5751 * 5752 * Clears hardware counters specific to the silicon family and calls 5753 * clear_hw_cntrs_generic to clear all general purpose counters. 5754 **/ 5755 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw) 5756 { 5757 u16 phy_data; 5758 s32 ret_val; 5759 5760 e1000e_clear_hw_cntrs_base(hw); 5761 5762 er32(ALGNERRC); 5763 er32(RXERRC); 5764 er32(TNCRS); 5765 er32(CEXTERR); 5766 er32(TSCTC); 5767 er32(TSCTFC); 5768 5769 er32(MGTPRC); 5770 er32(MGTPDC); 5771 er32(MGTPTC); 5772 5773 er32(IAC); 5774 er32(ICRXOC); 5775 5776 /* Clear PHY statistics registers */ 5777 if ((hw->phy.type == e1000_phy_82578) || 5778 (hw->phy.type == e1000_phy_82579) || 5779 (hw->phy.type == e1000_phy_i217) || 5780 (hw->phy.type == e1000_phy_82577)) { 5781 ret_val = hw->phy.ops.acquire(hw); 5782 if (ret_val) 5783 return; 5784 ret_val = hw->phy.ops.set_page(hw, 5785 HV_STATS_PAGE << IGP_PAGE_SHIFT); 5786 if (ret_val) 5787 goto release; 5788 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data); 5789 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data); 5790 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data); 5791 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data); 5792 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data); 5793 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data); 5794 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data); 5795 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data); 5796 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data); 5797 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data); 5798 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data); 5799 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data); 5800 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data); 5801 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data); 5802 release: 5803 hw->phy.ops.release(hw); 5804 } 5805 } 5806 5807 static const struct e1000_mac_operations ich8_mac_ops = { 5808 /* check_mng_mode dependent on mac type */ 5809 .check_for_link = e1000_check_for_copper_link_ich8lan, 5810 /* cleanup_led dependent on mac type */ 5811 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan, 5812 .get_bus_info = e1000_get_bus_info_ich8lan, 5813 .set_lan_id = e1000_set_lan_id_single_port, 5814 .get_link_up_info = e1000_get_link_up_info_ich8lan, 5815 /* led_on dependent on mac type */ 5816 /* led_off dependent on mac type */ 5817 .update_mc_addr_list = e1000e_update_mc_addr_list_generic, 5818 .reset_hw = e1000_reset_hw_ich8lan, 5819 .init_hw = e1000_init_hw_ich8lan, 5820 .setup_link = e1000_setup_link_ich8lan, 5821 .setup_physical_interface = e1000_setup_copper_link_ich8lan, 5822 /* id_led_init dependent on mac type */ 5823 .config_collision_dist = e1000e_config_collision_dist_generic, 5824 .rar_set = e1000e_rar_set_generic, 5825 .rar_get_count = e1000e_rar_get_count_generic, 5826 }; 5827 5828 static const struct e1000_phy_operations ich8_phy_ops = { 5829 .acquire = e1000_acquire_swflag_ich8lan, 5830 .check_reset_block = e1000_check_reset_block_ich8lan, 5831 .commit = NULL, 5832 .get_cfg_done = e1000_get_cfg_done_ich8lan, 5833 .get_cable_length = e1000e_get_cable_length_igp_2, 5834 .read_reg = e1000e_read_phy_reg_igp, 5835 .release = e1000_release_swflag_ich8lan, 5836 .reset = e1000_phy_hw_reset_ich8lan, 5837 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan, 5838 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan, 5839 .write_reg = e1000e_write_phy_reg_igp, 5840 }; 5841 5842 static const struct e1000_nvm_operations ich8_nvm_ops = { 5843 .acquire = e1000_acquire_nvm_ich8lan, 5844 .read = e1000_read_nvm_ich8lan, 5845 .release = e1000_release_nvm_ich8lan, 5846 .reload = e1000e_reload_nvm_generic, 5847 .update = e1000_update_nvm_checksum_ich8lan, 5848 .valid_led_default = e1000_valid_led_default_ich8lan, 5849 .validate = e1000_validate_nvm_checksum_ich8lan, 5850 .write = e1000_write_nvm_ich8lan, 5851 }; 5852 5853 static const struct e1000_nvm_operations spt_nvm_ops = { 5854 .acquire = e1000_acquire_nvm_ich8lan, 5855 .release = e1000_release_nvm_ich8lan, 5856 .read = e1000_read_nvm_spt, 5857 .update = e1000_update_nvm_checksum_spt, 5858 .reload = e1000e_reload_nvm_generic, 5859 .valid_led_default = e1000_valid_led_default_ich8lan, 5860 .validate = e1000_validate_nvm_checksum_ich8lan, 5861 .write = e1000_write_nvm_ich8lan, 5862 }; 5863 5864 const struct e1000_info e1000_ich8_info = { 5865 .mac = e1000_ich8lan, 5866 .flags = FLAG_HAS_WOL 5867 | FLAG_IS_ICH 5868 | FLAG_HAS_CTRLEXT_ON_LOAD 5869 | FLAG_HAS_AMT 5870 | FLAG_HAS_FLASH 5871 | FLAG_APME_IN_WUC, 5872 .pba = 8, 5873 .max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN, 5874 .get_variants = e1000_get_variants_ich8lan, 5875 .mac_ops = &ich8_mac_ops, 5876 .phy_ops = &ich8_phy_ops, 5877 .nvm_ops = &ich8_nvm_ops, 5878 }; 5879 5880 const struct e1000_info e1000_ich9_info = { 5881 .mac = e1000_ich9lan, 5882 .flags = FLAG_HAS_JUMBO_FRAMES 5883 | FLAG_IS_ICH 5884 | FLAG_HAS_WOL 5885 | FLAG_HAS_CTRLEXT_ON_LOAD 5886 | FLAG_HAS_AMT 5887 | FLAG_HAS_FLASH 5888 | FLAG_APME_IN_WUC, 5889 .pba = 18, 5890 .max_hw_frame_size = DEFAULT_JUMBO, 5891 .get_variants = e1000_get_variants_ich8lan, 5892 .mac_ops = &ich8_mac_ops, 5893 .phy_ops = &ich8_phy_ops, 5894 .nvm_ops = &ich8_nvm_ops, 5895 }; 5896 5897 const struct e1000_info e1000_ich10_info = { 5898 .mac = e1000_ich10lan, 5899 .flags = FLAG_HAS_JUMBO_FRAMES 5900 | FLAG_IS_ICH 5901 | FLAG_HAS_WOL 5902 | FLAG_HAS_CTRLEXT_ON_LOAD 5903 | FLAG_HAS_AMT 5904 | FLAG_HAS_FLASH 5905 | FLAG_APME_IN_WUC, 5906 .pba = 18, 5907 .max_hw_frame_size = DEFAULT_JUMBO, 5908 .get_variants = e1000_get_variants_ich8lan, 5909 .mac_ops = &ich8_mac_ops, 5910 .phy_ops = &ich8_phy_ops, 5911 .nvm_ops = &ich8_nvm_ops, 5912 }; 5913 5914 const struct e1000_info e1000_pch_info = { 5915 .mac = e1000_pchlan, 5916 .flags = FLAG_IS_ICH 5917 | FLAG_HAS_WOL 5918 | FLAG_HAS_CTRLEXT_ON_LOAD 5919 | FLAG_HAS_AMT 5920 | FLAG_HAS_FLASH 5921 | FLAG_HAS_JUMBO_FRAMES 5922 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */ 5923 | FLAG_APME_IN_WUC, 5924 .flags2 = FLAG2_HAS_PHY_STATS, 5925 .pba = 26, 5926 .max_hw_frame_size = 4096, 5927 .get_variants = e1000_get_variants_ich8lan, 5928 .mac_ops = &ich8_mac_ops, 5929 .phy_ops = &ich8_phy_ops, 5930 .nvm_ops = &ich8_nvm_ops, 5931 }; 5932 5933 const struct e1000_info e1000_pch2_info = { 5934 .mac = e1000_pch2lan, 5935 .flags = FLAG_IS_ICH 5936 | FLAG_HAS_WOL 5937 | FLAG_HAS_HW_TIMESTAMP 5938 | FLAG_HAS_CTRLEXT_ON_LOAD 5939 | FLAG_HAS_AMT 5940 | FLAG_HAS_FLASH 5941 | FLAG_HAS_JUMBO_FRAMES 5942 | FLAG_APME_IN_WUC, 5943 .flags2 = FLAG2_HAS_PHY_STATS 5944 | FLAG2_HAS_EEE 5945 | FLAG2_CHECK_SYSTIM_OVERFLOW, 5946 .pba = 26, 5947 .max_hw_frame_size = 9022, 5948 .get_variants = e1000_get_variants_ich8lan, 5949 .mac_ops = &ich8_mac_ops, 5950 .phy_ops = &ich8_phy_ops, 5951 .nvm_ops = &ich8_nvm_ops, 5952 }; 5953 5954 const struct e1000_info e1000_pch_lpt_info = { 5955 .mac = e1000_pch_lpt, 5956 .flags = FLAG_IS_ICH 5957 | FLAG_HAS_WOL 5958 | FLAG_HAS_HW_TIMESTAMP 5959 | FLAG_HAS_CTRLEXT_ON_LOAD 5960 | FLAG_HAS_AMT 5961 | FLAG_HAS_FLASH 5962 | FLAG_HAS_JUMBO_FRAMES 5963 | FLAG_APME_IN_WUC, 5964 .flags2 = FLAG2_HAS_PHY_STATS 5965 | FLAG2_HAS_EEE 5966 | FLAG2_CHECK_SYSTIM_OVERFLOW, 5967 .pba = 26, 5968 .max_hw_frame_size = 9022, 5969 .get_variants = e1000_get_variants_ich8lan, 5970 .mac_ops = &ich8_mac_ops, 5971 .phy_ops = &ich8_phy_ops, 5972 .nvm_ops = &ich8_nvm_ops, 5973 }; 5974 5975 const struct e1000_info e1000_pch_spt_info = { 5976 .mac = e1000_pch_spt, 5977 .flags = FLAG_IS_ICH 5978 | FLAG_HAS_WOL 5979 | FLAG_HAS_HW_TIMESTAMP 5980 | FLAG_HAS_CTRLEXT_ON_LOAD 5981 | FLAG_HAS_AMT 5982 | FLAG_HAS_FLASH 5983 | FLAG_HAS_JUMBO_FRAMES 5984 | FLAG_APME_IN_WUC, 5985 .flags2 = FLAG2_HAS_PHY_STATS 5986 | FLAG2_HAS_EEE, 5987 .pba = 26, 5988 .max_hw_frame_size = 9022, 5989 .get_variants = e1000_get_variants_ich8lan, 5990 .mac_ops = &ich8_mac_ops, 5991 .phy_ops = &ich8_phy_ops, 5992 .nvm_ops = &spt_nvm_ops, 5993 }; 5994 5995 const struct e1000_info e1000_pch_cnp_info = { 5996 .mac = e1000_pch_cnp, 5997 .flags = FLAG_IS_ICH 5998 | FLAG_HAS_WOL 5999 | FLAG_HAS_HW_TIMESTAMP 6000 | FLAG_HAS_CTRLEXT_ON_LOAD 6001 | FLAG_HAS_AMT 6002 | FLAG_HAS_FLASH 6003 | FLAG_HAS_JUMBO_FRAMES 6004 | FLAG_APME_IN_WUC, 6005 .flags2 = FLAG2_HAS_PHY_STATS 6006 | FLAG2_HAS_EEE, 6007 .pba = 26, 6008 .max_hw_frame_size = 9022, 6009 .get_variants = e1000_get_variants_ich8lan, 6010 .mac_ops = &ich8_mac_ops, 6011 .phy_ops = &ich8_phy_ops, 6012 .nvm_ops = &spt_nvm_ops, 6013 }; 6014 6015 const struct e1000_info e1000_pch_tgp_info = { 6016 .mac = e1000_pch_tgp, 6017 .flags = FLAG_IS_ICH 6018 | FLAG_HAS_WOL 6019 | FLAG_HAS_HW_TIMESTAMP 6020 | FLAG_HAS_CTRLEXT_ON_LOAD 6021 | FLAG_HAS_AMT 6022 | FLAG_HAS_FLASH 6023 | FLAG_HAS_JUMBO_FRAMES 6024 | FLAG_APME_IN_WUC, 6025 .flags2 = FLAG2_HAS_PHY_STATS 6026 | FLAG2_HAS_EEE, 6027 .pba = 26, 6028 .max_hw_frame_size = 9022, 6029 .get_variants = e1000_get_variants_ich8lan, 6030 .mac_ops = &ich8_mac_ops, 6031 .phy_ops = &ich8_phy_ops, 6032 .nvm_ops = &spt_nvm_ops, 6033 }; 6034 6035 const struct e1000_info e1000_pch_adp_info = { 6036 .mac = e1000_pch_adp, 6037 .flags = FLAG_IS_ICH 6038 | FLAG_HAS_WOL 6039 | FLAG_HAS_HW_TIMESTAMP 6040 | FLAG_HAS_CTRLEXT_ON_LOAD 6041 | FLAG_HAS_AMT 6042 | FLAG_HAS_FLASH 6043 | FLAG_HAS_JUMBO_FRAMES 6044 | FLAG_APME_IN_WUC, 6045 .flags2 = FLAG2_HAS_PHY_STATS 6046 | FLAG2_HAS_EEE, 6047 .pba = 26, 6048 .max_hw_frame_size = 9022, 6049 .get_variants = e1000_get_variants_ich8lan, 6050 .mac_ops = &ich8_mac_ops, 6051 .phy_ops = &ich8_phy_ops, 6052 .nvm_ops = &spt_nvm_ops, 6053 }; 6054 6055 const struct e1000_info e1000_pch_mtp_info = { 6056 .mac = e1000_pch_mtp, 6057 .flags = FLAG_IS_ICH 6058 | FLAG_HAS_WOL 6059 | FLAG_HAS_HW_TIMESTAMP 6060 | FLAG_HAS_CTRLEXT_ON_LOAD 6061 | FLAG_HAS_AMT 6062 | FLAG_HAS_FLASH 6063 | FLAG_HAS_JUMBO_FRAMES 6064 | FLAG_APME_IN_WUC, 6065 .flags2 = FLAG2_HAS_PHY_STATS 6066 | FLAG2_HAS_EEE, 6067 .pba = 26, 6068 .max_hw_frame_size = 9022, 6069 .get_variants = e1000_get_variants_ich8lan, 6070 .mac_ops = &ich8_mac_ops, 6071 .phy_ops = &ich8_phy_ops, 6072 .nvm_ops = &spt_nvm_ops, 6073 }; 6074