1 /******************************************************************************* 2 3 Intel PRO/1000 Linux driver 4 Copyright(c) 1999 - 2012 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27 *******************************************************************************/ 28 29 /* 82562G 10/100 Network Connection 30 * 82562G-2 10/100 Network Connection 31 * 82562GT 10/100 Network Connection 32 * 82562GT-2 10/100 Network Connection 33 * 82562V 10/100 Network Connection 34 * 82562V-2 10/100 Network Connection 35 * 82566DC-2 Gigabit Network Connection 36 * 82566DC Gigabit Network Connection 37 * 82566DM-2 Gigabit Network Connection 38 * 82566DM Gigabit Network Connection 39 * 82566MC Gigabit Network Connection 40 * 82566MM Gigabit Network Connection 41 * 82567LM Gigabit Network Connection 42 * 82567LF Gigabit Network Connection 43 * 82567V Gigabit Network Connection 44 * 82567LM-2 Gigabit Network Connection 45 * 82567LF-2 Gigabit Network Connection 46 * 82567V-2 Gigabit Network Connection 47 * 82567LF-3 Gigabit Network Connection 48 * 82567LM-3 Gigabit Network Connection 49 * 82567LM-4 Gigabit Network Connection 50 * 82577LM Gigabit Network Connection 51 * 82577LC Gigabit Network Connection 52 * 82578DM Gigabit Network Connection 53 * 82578DC Gigabit Network Connection 54 * 82579LM Gigabit Network Connection 55 * 82579V Gigabit Network Connection 56 */ 57 58 #include "e1000.h" 59 60 #define ICH_FLASH_GFPREG 0x0000 61 #define ICH_FLASH_HSFSTS 0x0004 62 #define ICH_FLASH_HSFCTL 0x0006 63 #define ICH_FLASH_FADDR 0x0008 64 #define ICH_FLASH_FDATA0 0x0010 65 #define ICH_FLASH_PR0 0x0074 66 67 #define ICH_FLASH_READ_COMMAND_TIMEOUT 500 68 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500 69 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000 70 #define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF 71 #define ICH_FLASH_CYCLE_REPEAT_COUNT 10 72 73 #define ICH_CYCLE_READ 0 74 #define ICH_CYCLE_WRITE 2 75 #define ICH_CYCLE_ERASE 3 76 77 #define FLASH_GFPREG_BASE_MASK 0x1FFF 78 #define FLASH_SECTOR_ADDR_SHIFT 12 79 80 #define ICH_FLASH_SEG_SIZE_256 256 81 #define ICH_FLASH_SEG_SIZE_4K 4096 82 #define ICH_FLASH_SEG_SIZE_8K 8192 83 #define ICH_FLASH_SEG_SIZE_64K 65536 84 85 86 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */ 87 /* FW established a valid mode */ 88 #define E1000_ICH_FWSM_FW_VALID 0x00008000 89 90 #define E1000_ICH_MNG_IAMT_MODE 0x2 91 92 #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \ 93 (ID_LED_DEF1_OFF2 << 8) | \ 94 (ID_LED_DEF1_ON2 << 4) | \ 95 (ID_LED_DEF1_DEF2)) 96 97 #define E1000_ICH_NVM_SIG_WORD 0x13 98 #define E1000_ICH_NVM_SIG_MASK 0xC000 99 #define E1000_ICH_NVM_VALID_SIG_MASK 0xC0 100 #define E1000_ICH_NVM_SIG_VALUE 0x80 101 102 #define E1000_ICH8_LAN_INIT_TIMEOUT 1500 103 104 #define E1000_FEXTNVM_SW_CONFIG 1 105 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */ 106 107 #define E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK 0x0C000000 108 #define E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC 0x08000000 109 110 #define E1000_FEXTNVM4_BEACON_DURATION_MASK 0x7 111 #define E1000_FEXTNVM4_BEACON_DURATION_8USEC 0x7 112 #define E1000_FEXTNVM4_BEACON_DURATION_16USEC 0x3 113 114 #define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL 115 116 #define E1000_ICH_RAR_ENTRIES 7 117 #define E1000_PCH2_RAR_ENTRIES 5 /* RAR[0], SHRA[0-3] */ 118 #define E1000_PCH_LPT_RAR_ENTRIES 12 /* RAR[0], SHRA[0-10] */ 119 120 #define PHY_PAGE_SHIFT 5 121 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \ 122 ((reg) & MAX_PHY_REG_ADDRESS)) 123 #define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */ 124 #define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */ 125 126 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002 127 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300 128 #define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200 129 130 #define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */ 131 132 #define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */ 133 134 /* SMBus Control Phy Register */ 135 #define CV_SMB_CTRL PHY_REG(769, 23) 136 #define CV_SMB_CTRL_FORCE_SMBUS 0x0001 137 138 /* SMBus Address Phy Register */ 139 #define HV_SMB_ADDR PHY_REG(768, 26) 140 #define HV_SMB_ADDR_MASK 0x007F 141 #define HV_SMB_ADDR_PEC_EN 0x0200 142 #define HV_SMB_ADDR_VALID 0x0080 143 #define HV_SMB_ADDR_FREQ_MASK 0x1100 144 #define HV_SMB_ADDR_FREQ_LOW_SHIFT 8 145 #define HV_SMB_ADDR_FREQ_HIGH_SHIFT 12 146 147 /* PHY Power Management Control */ 148 #define HV_PM_CTRL PHY_REG(770, 17) 149 #define HV_PM_CTRL_PLL_STOP_IN_K1_GIGA 0x100 150 151 /* PHY Low Power Idle Control */ 152 #define I82579_LPI_CTRL PHY_REG(772, 20) 153 #define I82579_LPI_CTRL_ENABLE_MASK 0x6000 154 #define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT 0x80 155 156 /* EMI Registers */ 157 #define I82579_EMI_ADDR 0x10 158 #define I82579_EMI_DATA 0x11 159 #define I82579_LPI_UPDATE_TIMER 0x4805 /* in 40ns units + 40 ns base value */ 160 #define I82579_MSE_THRESHOLD 0x084F /* Mean Square Error Threshold */ 161 #define I82579_MSE_LINK_DOWN 0x2411 /* MSE count before dropping link */ 162 #define I217_EEE_ADVERTISEMENT 0x8001 /* IEEE MMD Register 7.60 */ 163 #define I217_EEE_LP_ABILITY 0x8002 /* IEEE MMD Register 7.61 */ 164 #define I217_EEE_100_SUPPORTED (1 << 1) /* 100BaseTx EEE supported */ 165 166 /* Intel Rapid Start Technology Support */ 167 #define I217_PROXY_CTRL BM_PHY_REG(BM_WUC_PAGE, 70) 168 #define I217_PROXY_CTRL_AUTO_DISABLE 0x0080 169 #define I217_SxCTRL PHY_REG(BM_PORT_CTRL_PAGE, 28) 170 #define I217_SxCTRL_ENABLE_LPI_RESET 0x1000 171 #define I217_CGFREG PHY_REG(772, 29) 172 #define I217_CGFREG_ENABLE_MTA_RESET 0x0002 173 #define I217_MEMPWR PHY_REG(772, 26) 174 #define I217_MEMPWR_DISABLE_SMB_RELEASE 0x0010 175 176 /* Strapping Option Register - RO */ 177 #define E1000_STRAP 0x0000C 178 #define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000 179 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17 180 #define E1000_STRAP_SMT_FREQ_MASK 0x00003000 181 #define E1000_STRAP_SMT_FREQ_SHIFT 12 182 183 /* OEM Bits Phy Register */ 184 #define HV_OEM_BITS PHY_REG(768, 25) 185 #define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */ 186 #define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */ 187 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */ 188 189 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */ 190 #define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */ 191 192 /* KMRN Mode Control */ 193 #define HV_KMRN_MODE_CTRL PHY_REG(769, 16) 194 #define HV_KMRN_MDIO_SLOW 0x0400 195 196 /* KMRN FIFO Control and Status */ 197 #define HV_KMRN_FIFO_CTRLSTA PHY_REG(770, 16) 198 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK 0x7000 199 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT 12 200 201 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */ 202 /* Offset 04h HSFSTS */ 203 union ich8_hws_flash_status { 204 struct ich8_hsfsts { 205 u16 flcdone :1; /* bit 0 Flash Cycle Done */ 206 u16 flcerr :1; /* bit 1 Flash Cycle Error */ 207 u16 dael :1; /* bit 2 Direct Access error Log */ 208 u16 berasesz :2; /* bit 4:3 Sector Erase Size */ 209 u16 flcinprog :1; /* bit 5 flash cycle in Progress */ 210 u16 reserved1 :2; /* bit 13:6 Reserved */ 211 u16 reserved2 :6; /* bit 13:6 Reserved */ 212 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */ 213 u16 flockdn :1; /* bit 15 Flash Config Lock-Down */ 214 } hsf_status; 215 u16 regval; 216 }; 217 218 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */ 219 /* Offset 06h FLCTL */ 220 union ich8_hws_flash_ctrl { 221 struct ich8_hsflctl { 222 u16 flcgo :1; /* 0 Flash Cycle Go */ 223 u16 flcycle :2; /* 2:1 Flash Cycle */ 224 u16 reserved :5; /* 7:3 Reserved */ 225 u16 fldbcount :2; /* 9:8 Flash Data Byte Count */ 226 u16 flockdn :6; /* 15:10 Reserved */ 227 } hsf_ctrl; 228 u16 regval; 229 }; 230 231 /* ICH Flash Region Access Permissions */ 232 union ich8_hws_flash_regacc { 233 struct ich8_flracc { 234 u32 grra :8; /* 0:7 GbE region Read Access */ 235 u32 grwa :8; /* 8:15 GbE region Write Access */ 236 u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */ 237 u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */ 238 } hsf_flregacc; 239 u16 regval; 240 }; 241 242 /* ICH Flash Protected Region */ 243 union ich8_flash_protected_range { 244 struct ich8_pr { 245 u32 base:13; /* 0:12 Protected Range Base */ 246 u32 reserved1:2; /* 13:14 Reserved */ 247 u32 rpe:1; /* 15 Read Protection Enable */ 248 u32 limit:13; /* 16:28 Protected Range Limit */ 249 u32 reserved2:2; /* 29:30 Reserved */ 250 u32 wpe:1; /* 31 Write Protection Enable */ 251 } range; 252 u32 regval; 253 }; 254 255 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw); 256 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw); 257 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw); 258 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank); 259 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, 260 u32 offset, u8 byte); 261 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, 262 u8 *data); 263 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, 264 u16 *data); 265 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 266 u8 size, u16 *data); 267 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw); 268 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw); 269 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw); 270 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw); 271 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw); 272 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw); 273 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw); 274 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw); 275 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw); 276 static s32 e1000_led_on_pchlan(struct e1000_hw *hw); 277 static s32 e1000_led_off_pchlan(struct e1000_hw *hw); 278 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active); 279 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw); 280 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw); 281 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link); 282 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw); 283 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw); 284 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw); 285 static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index); 286 static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index); 287 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw); 288 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate); 289 290 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg) 291 { 292 return readw(hw->flash_address + reg); 293 } 294 295 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg) 296 { 297 return readl(hw->flash_address + reg); 298 } 299 300 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val) 301 { 302 writew(val, hw->flash_address + reg); 303 } 304 305 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val) 306 { 307 writel(val, hw->flash_address + reg); 308 } 309 310 #define er16flash(reg) __er16flash(hw, (reg)) 311 #define er32flash(reg) __er32flash(hw, (reg)) 312 #define ew16flash(reg, val) __ew16flash(hw, (reg), (val)) 313 #define ew32flash(reg, val) __ew32flash(hw, (reg), (val)) 314 315 /** 316 * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers 317 * @hw: pointer to the HW structure 318 * 319 * Test access to the PHY registers by reading the PHY ID registers. If 320 * the PHY ID is already known (e.g. resume path) compare it with known ID, 321 * otherwise assume the read PHY ID is correct if it is valid. 322 * 323 * Assumes the sw/fw/hw semaphore is already acquired. 324 **/ 325 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw) 326 { 327 u16 phy_reg = 0; 328 u32 phy_id = 0; 329 s32 ret_val; 330 u16 retry_count; 331 332 for (retry_count = 0; retry_count < 2; retry_count++) { 333 ret_val = e1e_rphy_locked(hw, PHY_ID1, &phy_reg); 334 if (ret_val || (phy_reg == 0xFFFF)) 335 continue; 336 phy_id = (u32)(phy_reg << 16); 337 338 ret_val = e1e_rphy_locked(hw, PHY_ID2, &phy_reg); 339 if (ret_val || (phy_reg == 0xFFFF)) { 340 phy_id = 0; 341 continue; 342 } 343 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK); 344 break; 345 } 346 347 if (hw->phy.id) { 348 if (hw->phy.id == phy_id) 349 return true; 350 } else if (phy_id) { 351 hw->phy.id = phy_id; 352 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK); 353 return true; 354 } 355 356 /* In case the PHY needs to be in mdio slow mode, 357 * set slow mode and try to get the PHY id again. 358 */ 359 hw->phy.ops.release(hw); 360 ret_val = e1000_set_mdio_slow_mode_hv(hw); 361 if (!ret_val) 362 ret_val = e1000e_get_phy_id(hw); 363 hw->phy.ops.acquire(hw); 364 365 return !ret_val; 366 } 367 368 /** 369 * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds 370 * @hw: pointer to the HW structure 371 * 372 * Workarounds/flow necessary for PHY initialization during driver load 373 * and resume paths. 374 **/ 375 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw) 376 { 377 u32 mac_reg, fwsm = er32(FWSM); 378 s32 ret_val; 379 u16 phy_reg; 380 381 ret_val = hw->phy.ops.acquire(hw); 382 if (ret_val) { 383 e_dbg("Failed to initialize PHY flow\n"); 384 return ret_val; 385 } 386 387 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is 388 * inaccessible and resetting the PHY is not blocked, toggle the 389 * LANPHYPC Value bit to force the interconnect to PCIe mode. 390 */ 391 switch (hw->mac.type) { 392 case e1000_pch_lpt: 393 if (e1000_phy_is_accessible_pchlan(hw)) 394 break; 395 396 /* Before toggling LANPHYPC, see if PHY is accessible by 397 * forcing MAC to SMBus mode first. 398 */ 399 mac_reg = er32(CTRL_EXT); 400 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; 401 ew32(CTRL_EXT, mac_reg); 402 403 /* fall-through */ 404 case e1000_pch2lan: 405 /* Gate automatic PHY configuration by hardware on 406 * non-managed 82579 407 */ 408 if ((hw->mac.type == e1000_pch2lan) && 409 !(fwsm & E1000_ICH_FWSM_FW_VALID)) 410 e1000_gate_hw_phy_config_ich8lan(hw, true); 411 412 if (e1000_phy_is_accessible_pchlan(hw)) { 413 if (hw->mac.type == e1000_pch_lpt) { 414 /* Unforce SMBus mode in PHY */ 415 e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg); 416 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS; 417 e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg); 418 419 /* Unforce SMBus mode in MAC */ 420 mac_reg = er32(CTRL_EXT); 421 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; 422 ew32(CTRL_EXT, mac_reg); 423 } 424 break; 425 } 426 427 /* fall-through */ 428 case e1000_pchlan: 429 if ((hw->mac.type == e1000_pchlan) && 430 (fwsm & E1000_ICH_FWSM_FW_VALID)) 431 break; 432 433 if (hw->phy.ops.check_reset_block(hw)) { 434 e_dbg("Required LANPHYPC toggle blocked by ME\n"); 435 break; 436 } 437 438 e_dbg("Toggling LANPHYPC\n"); 439 440 /* Set Phy Config Counter to 50msec */ 441 mac_reg = er32(FEXTNVM3); 442 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; 443 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; 444 ew32(FEXTNVM3, mac_reg); 445 446 /* Toggle LANPHYPC Value bit */ 447 mac_reg = er32(CTRL); 448 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE; 449 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE; 450 ew32(CTRL, mac_reg); 451 e1e_flush(); 452 udelay(10); 453 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE; 454 ew32(CTRL, mac_reg); 455 e1e_flush(); 456 if (hw->mac.type < e1000_pch_lpt) { 457 msleep(50); 458 } else { 459 u16 count = 20; 460 do { 461 usleep_range(5000, 10000); 462 } while (!(er32(CTRL_EXT) & 463 E1000_CTRL_EXT_LPCD) && count--); 464 } 465 break; 466 default: 467 break; 468 } 469 470 hw->phy.ops.release(hw); 471 472 /* Reset the PHY before any access to it. Doing so, ensures 473 * that the PHY is in a known good state before we read/write 474 * PHY registers. The generic reset is sufficient here, 475 * because we haven't determined the PHY type yet. 476 */ 477 ret_val = e1000e_phy_hw_reset_generic(hw); 478 479 /* Ungate automatic PHY configuration on non-managed 82579 */ 480 if ((hw->mac.type == e1000_pch2lan) && 481 !(fwsm & E1000_ICH_FWSM_FW_VALID)) { 482 usleep_range(10000, 20000); 483 e1000_gate_hw_phy_config_ich8lan(hw, false); 484 } 485 486 return ret_val; 487 } 488 489 /** 490 * e1000_init_phy_params_pchlan - Initialize PHY function pointers 491 * @hw: pointer to the HW structure 492 * 493 * Initialize family-specific PHY parameters and function pointers. 494 **/ 495 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw) 496 { 497 struct e1000_phy_info *phy = &hw->phy; 498 s32 ret_val = 0; 499 500 phy->addr = 1; 501 phy->reset_delay_us = 100; 502 503 phy->ops.set_page = e1000_set_page_igp; 504 phy->ops.read_reg = e1000_read_phy_reg_hv; 505 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked; 506 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv; 507 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan; 508 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan; 509 phy->ops.write_reg = e1000_write_phy_reg_hv; 510 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked; 511 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv; 512 phy->ops.power_up = e1000_power_up_phy_copper; 513 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; 514 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 515 516 phy->id = e1000_phy_unknown; 517 518 ret_val = e1000_init_phy_workarounds_pchlan(hw); 519 if (ret_val) 520 return ret_val; 521 522 if (phy->id == e1000_phy_unknown) 523 switch (hw->mac.type) { 524 default: 525 ret_val = e1000e_get_phy_id(hw); 526 if (ret_val) 527 return ret_val; 528 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK)) 529 break; 530 /* fall-through */ 531 case e1000_pch2lan: 532 case e1000_pch_lpt: 533 /* In case the PHY needs to be in mdio slow mode, 534 * set slow mode and try to get the PHY id again. 535 */ 536 ret_val = e1000_set_mdio_slow_mode_hv(hw); 537 if (ret_val) 538 return ret_val; 539 ret_val = e1000e_get_phy_id(hw); 540 if (ret_val) 541 return ret_val; 542 break; 543 } 544 phy->type = e1000e_get_phy_type_from_id(phy->id); 545 546 switch (phy->type) { 547 case e1000_phy_82577: 548 case e1000_phy_82579: 549 case e1000_phy_i217: 550 phy->ops.check_polarity = e1000_check_polarity_82577; 551 phy->ops.force_speed_duplex = 552 e1000_phy_force_speed_duplex_82577; 553 phy->ops.get_cable_length = e1000_get_cable_length_82577; 554 phy->ops.get_info = e1000_get_phy_info_82577; 555 phy->ops.commit = e1000e_phy_sw_reset; 556 break; 557 case e1000_phy_82578: 558 phy->ops.check_polarity = e1000_check_polarity_m88; 559 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; 560 phy->ops.get_cable_length = e1000e_get_cable_length_m88; 561 phy->ops.get_info = e1000e_get_phy_info_m88; 562 break; 563 default: 564 ret_val = -E1000_ERR_PHY; 565 break; 566 } 567 568 return ret_val; 569 } 570 571 /** 572 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers 573 * @hw: pointer to the HW structure 574 * 575 * Initialize family-specific PHY parameters and function pointers. 576 **/ 577 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw) 578 { 579 struct e1000_phy_info *phy = &hw->phy; 580 s32 ret_val; 581 u16 i = 0; 582 583 phy->addr = 1; 584 phy->reset_delay_us = 100; 585 586 phy->ops.power_up = e1000_power_up_phy_copper; 587 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; 588 589 /* We may need to do this twice - once for IGP and if that fails, 590 * we'll set BM func pointers and try again 591 */ 592 ret_val = e1000e_determine_phy_address(hw); 593 if (ret_val) { 594 phy->ops.write_reg = e1000e_write_phy_reg_bm; 595 phy->ops.read_reg = e1000e_read_phy_reg_bm; 596 ret_val = e1000e_determine_phy_address(hw); 597 if (ret_val) { 598 e_dbg("Cannot determine PHY addr. Erroring out\n"); 599 return ret_val; 600 } 601 } 602 603 phy->id = 0; 604 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) && 605 (i++ < 100)) { 606 usleep_range(1000, 2000); 607 ret_val = e1000e_get_phy_id(hw); 608 if (ret_val) 609 return ret_val; 610 } 611 612 /* Verify phy id */ 613 switch (phy->id) { 614 case IGP03E1000_E_PHY_ID: 615 phy->type = e1000_phy_igp_3; 616 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 617 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked; 618 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked; 619 phy->ops.get_info = e1000e_get_phy_info_igp; 620 phy->ops.check_polarity = e1000_check_polarity_igp; 621 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp; 622 break; 623 case IFE_E_PHY_ID: 624 case IFE_PLUS_E_PHY_ID: 625 case IFE_C_E_PHY_ID: 626 phy->type = e1000_phy_ife; 627 phy->autoneg_mask = E1000_ALL_NOT_GIG; 628 phy->ops.get_info = e1000_get_phy_info_ife; 629 phy->ops.check_polarity = e1000_check_polarity_ife; 630 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife; 631 break; 632 case BME1000_E_PHY_ID: 633 phy->type = e1000_phy_bm; 634 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 635 phy->ops.read_reg = e1000e_read_phy_reg_bm; 636 phy->ops.write_reg = e1000e_write_phy_reg_bm; 637 phy->ops.commit = e1000e_phy_sw_reset; 638 phy->ops.get_info = e1000e_get_phy_info_m88; 639 phy->ops.check_polarity = e1000_check_polarity_m88; 640 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; 641 break; 642 default: 643 return -E1000_ERR_PHY; 644 break; 645 } 646 647 return 0; 648 } 649 650 /** 651 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers 652 * @hw: pointer to the HW structure 653 * 654 * Initialize family-specific NVM parameters and function 655 * pointers. 656 **/ 657 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw) 658 { 659 struct e1000_nvm_info *nvm = &hw->nvm; 660 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 661 u32 gfpreg, sector_base_addr, sector_end_addr; 662 u16 i; 663 664 /* Can't read flash registers if the register set isn't mapped. */ 665 if (!hw->flash_address) { 666 e_dbg("ERROR: Flash registers not mapped\n"); 667 return -E1000_ERR_CONFIG; 668 } 669 670 nvm->type = e1000_nvm_flash_sw; 671 672 gfpreg = er32flash(ICH_FLASH_GFPREG); 673 674 /* sector_X_addr is a "sector"-aligned address (4096 bytes) 675 * Add 1 to sector_end_addr since this sector is included in 676 * the overall size. 677 */ 678 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK; 679 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1; 680 681 /* flash_base_addr is byte-aligned */ 682 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT; 683 684 /* find total size of the NVM, then cut in half since the total 685 * size represents two separate NVM banks. 686 */ 687 nvm->flash_bank_size = (sector_end_addr - sector_base_addr) 688 << FLASH_SECTOR_ADDR_SHIFT; 689 nvm->flash_bank_size /= 2; 690 /* Adjust to word count */ 691 nvm->flash_bank_size /= sizeof(u16); 692 693 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS; 694 695 /* Clear shadow ram */ 696 for (i = 0; i < nvm->word_size; i++) { 697 dev_spec->shadow_ram[i].modified = false; 698 dev_spec->shadow_ram[i].value = 0xFFFF; 699 } 700 701 return 0; 702 } 703 704 /** 705 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers 706 * @hw: pointer to the HW structure 707 * 708 * Initialize family-specific MAC parameters and function 709 * pointers. 710 **/ 711 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw) 712 { 713 struct e1000_mac_info *mac = &hw->mac; 714 715 /* Set media type function pointer */ 716 hw->phy.media_type = e1000_media_type_copper; 717 718 /* Set mta register count */ 719 mac->mta_reg_count = 32; 720 /* Set rar entry count */ 721 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES; 722 if (mac->type == e1000_ich8lan) 723 mac->rar_entry_count--; 724 /* FWSM register */ 725 mac->has_fwsm = true; 726 /* ARC subsystem not supported */ 727 mac->arc_subsystem_valid = false; 728 /* Adaptive IFS supported */ 729 mac->adaptive_ifs = true; 730 731 /* LED and other operations */ 732 switch (mac->type) { 733 case e1000_ich8lan: 734 case e1000_ich9lan: 735 case e1000_ich10lan: 736 /* check management mode */ 737 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan; 738 /* ID LED init */ 739 mac->ops.id_led_init = e1000e_id_led_init_generic; 740 /* blink LED */ 741 mac->ops.blink_led = e1000e_blink_led_generic; 742 /* setup LED */ 743 mac->ops.setup_led = e1000e_setup_led_generic; 744 /* cleanup LED */ 745 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan; 746 /* turn on/off LED */ 747 mac->ops.led_on = e1000_led_on_ich8lan; 748 mac->ops.led_off = e1000_led_off_ich8lan; 749 break; 750 case e1000_pch2lan: 751 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES; 752 mac->ops.rar_set = e1000_rar_set_pch2lan; 753 /* fall-through */ 754 case e1000_pch_lpt: 755 case e1000_pchlan: 756 /* check management mode */ 757 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan; 758 /* ID LED init */ 759 mac->ops.id_led_init = e1000_id_led_init_pchlan; 760 /* setup LED */ 761 mac->ops.setup_led = e1000_setup_led_pchlan; 762 /* cleanup LED */ 763 mac->ops.cleanup_led = e1000_cleanup_led_pchlan; 764 /* turn on/off LED */ 765 mac->ops.led_on = e1000_led_on_pchlan; 766 mac->ops.led_off = e1000_led_off_pchlan; 767 break; 768 default: 769 break; 770 } 771 772 if (mac->type == e1000_pch_lpt) { 773 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES; 774 mac->ops.rar_set = e1000_rar_set_pch_lpt; 775 } 776 777 /* Enable PCS Lock-loss workaround for ICH8 */ 778 if (mac->type == e1000_ich8lan) 779 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true); 780 781 /* Gate automatic PHY configuration by hardware on managed 782 * 82579 and i217 783 */ 784 if ((mac->type == e1000_pch2lan || mac->type == e1000_pch_lpt) && 785 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) 786 e1000_gate_hw_phy_config_ich8lan(hw, true); 787 788 return 0; 789 } 790 791 /** 792 * e1000_set_eee_pchlan - Enable/disable EEE support 793 * @hw: pointer to the HW structure 794 * 795 * Enable/disable EEE based on setting in dev_spec structure. The bits in 796 * the LPI Control register will remain set only if/when link is up. 797 **/ 798 static s32 e1000_set_eee_pchlan(struct e1000_hw *hw) 799 { 800 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 801 s32 ret_val = 0; 802 u16 phy_reg; 803 804 if ((hw->phy.type != e1000_phy_82579) && 805 (hw->phy.type != e1000_phy_i217)) 806 return 0; 807 808 ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg); 809 if (ret_val) 810 return ret_val; 811 812 if (dev_spec->eee_disable) 813 phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK; 814 else 815 phy_reg |= I82579_LPI_CTRL_ENABLE_MASK; 816 817 ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg); 818 if (ret_val) 819 return ret_val; 820 821 if ((hw->phy.type == e1000_phy_i217) && !dev_spec->eee_disable) { 822 /* Save off link partner's EEE ability */ 823 ret_val = hw->phy.ops.acquire(hw); 824 if (ret_val) 825 return ret_val; 826 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, 827 I217_EEE_LP_ABILITY); 828 if (ret_val) 829 goto release; 830 e1e_rphy_locked(hw, I82579_EMI_DATA, &dev_spec->eee_lp_ability); 831 832 /* EEE is not supported in 100Half, so ignore partner's EEE 833 * in 100 ability if full-duplex is not advertised. 834 */ 835 e1e_rphy_locked(hw, PHY_LP_ABILITY, &phy_reg); 836 if (!(phy_reg & NWAY_LPAR_100TX_FD_CAPS)) 837 dev_spec->eee_lp_ability &= ~I217_EEE_100_SUPPORTED; 838 release: 839 hw->phy.ops.release(hw); 840 } 841 842 return 0; 843 } 844 845 /** 846 * e1000_check_for_copper_link_ich8lan - Check for link (Copper) 847 * @hw: pointer to the HW structure 848 * 849 * Checks to see of the link status of the hardware has changed. If a 850 * change in link status has been detected, then we read the PHY registers 851 * to get the current speed/duplex if link exists. 852 **/ 853 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw) 854 { 855 struct e1000_mac_info *mac = &hw->mac; 856 s32 ret_val; 857 bool link; 858 u16 phy_reg; 859 860 /* We only want to go out to the PHY registers to see if Auto-Neg 861 * has completed and/or if our link status has changed. The 862 * get_link_status flag is set upon receiving a Link Status 863 * Change or Rx Sequence Error interrupt. 864 */ 865 if (!mac->get_link_status) 866 return 0; 867 868 /* First we want to see if the MII Status Register reports 869 * link. If so, then we want to get the current speed/duplex 870 * of the PHY. 871 */ 872 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 873 if (ret_val) 874 return ret_val; 875 876 if (hw->mac.type == e1000_pchlan) { 877 ret_val = e1000_k1_gig_workaround_hv(hw, link); 878 if (ret_val) 879 return ret_val; 880 } 881 882 /* Clear link partner's EEE ability */ 883 hw->dev_spec.ich8lan.eee_lp_ability = 0; 884 885 if (!link) 886 return 0; /* No link detected */ 887 888 mac->get_link_status = false; 889 890 switch (hw->mac.type) { 891 case e1000_pch2lan: 892 ret_val = e1000_k1_workaround_lv(hw); 893 if (ret_val) 894 return ret_val; 895 /* fall-thru */ 896 case e1000_pchlan: 897 if (hw->phy.type == e1000_phy_82578) { 898 ret_val = e1000_link_stall_workaround_hv(hw); 899 if (ret_val) 900 return ret_val; 901 } 902 903 /* Workaround for PCHx parts in half-duplex: 904 * Set the number of preambles removed from the packet 905 * when it is passed from the PHY to the MAC to prevent 906 * the MAC from misinterpreting the packet type. 907 */ 908 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg); 909 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK; 910 911 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD) 912 phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT); 913 914 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg); 915 break; 916 default: 917 break; 918 } 919 920 /* Check if there was DownShift, must be checked 921 * immediately after link-up 922 */ 923 e1000e_check_downshift(hw); 924 925 /* Enable/Disable EEE after link up */ 926 ret_val = e1000_set_eee_pchlan(hw); 927 if (ret_val) 928 return ret_val; 929 930 /* If we are forcing speed/duplex, then we simply return since 931 * we have already determined whether we have link or not. 932 */ 933 if (!mac->autoneg) 934 return -E1000_ERR_CONFIG; 935 936 /* Auto-Neg is enabled. Auto Speed Detection takes care 937 * of MAC speed/duplex configuration. So we only need to 938 * configure Collision Distance in the MAC. 939 */ 940 mac->ops.config_collision_dist(hw); 941 942 /* Configure Flow Control now that Auto-Neg has completed. 943 * First, we need to restore the desired flow control 944 * settings because we may have had to re-autoneg with a 945 * different link partner. 946 */ 947 ret_val = e1000e_config_fc_after_link_up(hw); 948 if (ret_val) 949 e_dbg("Error configuring flow control\n"); 950 951 return ret_val; 952 } 953 954 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter) 955 { 956 struct e1000_hw *hw = &adapter->hw; 957 s32 rc; 958 959 rc = e1000_init_mac_params_ich8lan(hw); 960 if (rc) 961 return rc; 962 963 rc = e1000_init_nvm_params_ich8lan(hw); 964 if (rc) 965 return rc; 966 967 switch (hw->mac.type) { 968 case e1000_ich8lan: 969 case e1000_ich9lan: 970 case e1000_ich10lan: 971 rc = e1000_init_phy_params_ich8lan(hw); 972 break; 973 case e1000_pchlan: 974 case e1000_pch2lan: 975 case e1000_pch_lpt: 976 rc = e1000_init_phy_params_pchlan(hw); 977 break; 978 default: 979 break; 980 } 981 if (rc) 982 return rc; 983 984 /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or 985 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT). 986 */ 987 if ((adapter->hw.phy.type == e1000_phy_ife) || 988 ((adapter->hw.mac.type >= e1000_pch2lan) && 989 (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) { 990 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES; 991 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN; 992 993 hw->mac.ops.blink_led = NULL; 994 } 995 996 if ((adapter->hw.mac.type == e1000_ich8lan) && 997 (adapter->hw.phy.type != e1000_phy_ife)) 998 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP; 999 1000 /* Enable workaround for 82579 w/ ME enabled */ 1001 if ((adapter->hw.mac.type == e1000_pch2lan) && 1002 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) 1003 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA; 1004 1005 /* Disable EEE by default until IEEE802.3az spec is finalized */ 1006 if (adapter->flags2 & FLAG2_HAS_EEE) 1007 adapter->hw.dev_spec.ich8lan.eee_disable = true; 1008 1009 return 0; 1010 } 1011 1012 static DEFINE_MUTEX(nvm_mutex); 1013 1014 /** 1015 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex 1016 * @hw: pointer to the HW structure 1017 * 1018 * Acquires the mutex for performing NVM operations. 1019 **/ 1020 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw) 1021 { 1022 mutex_lock(&nvm_mutex); 1023 1024 return 0; 1025 } 1026 1027 /** 1028 * e1000_release_nvm_ich8lan - Release NVM mutex 1029 * @hw: pointer to the HW structure 1030 * 1031 * Releases the mutex used while performing NVM operations. 1032 **/ 1033 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw) 1034 { 1035 mutex_unlock(&nvm_mutex); 1036 } 1037 1038 /** 1039 * e1000_acquire_swflag_ich8lan - Acquire software control flag 1040 * @hw: pointer to the HW structure 1041 * 1042 * Acquires the software control flag for performing PHY and select 1043 * MAC CSR accesses. 1044 **/ 1045 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw) 1046 { 1047 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT; 1048 s32 ret_val = 0; 1049 1050 if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE, 1051 &hw->adapter->state)) { 1052 e_dbg("contention for Phy access\n"); 1053 return -E1000_ERR_PHY; 1054 } 1055 1056 while (timeout) { 1057 extcnf_ctrl = er32(EXTCNF_CTRL); 1058 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)) 1059 break; 1060 1061 mdelay(1); 1062 timeout--; 1063 } 1064 1065 if (!timeout) { 1066 e_dbg("SW has already locked the resource.\n"); 1067 ret_val = -E1000_ERR_CONFIG; 1068 goto out; 1069 } 1070 1071 timeout = SW_FLAG_TIMEOUT; 1072 1073 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; 1074 ew32(EXTCNF_CTRL, extcnf_ctrl); 1075 1076 while (timeout) { 1077 extcnf_ctrl = er32(EXTCNF_CTRL); 1078 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) 1079 break; 1080 1081 mdelay(1); 1082 timeout--; 1083 } 1084 1085 if (!timeout) { 1086 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n", 1087 er32(FWSM), extcnf_ctrl); 1088 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; 1089 ew32(EXTCNF_CTRL, extcnf_ctrl); 1090 ret_val = -E1000_ERR_CONFIG; 1091 goto out; 1092 } 1093 1094 out: 1095 if (ret_val) 1096 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); 1097 1098 return ret_val; 1099 } 1100 1101 /** 1102 * e1000_release_swflag_ich8lan - Release software control flag 1103 * @hw: pointer to the HW structure 1104 * 1105 * Releases the software control flag for performing PHY and select 1106 * MAC CSR accesses. 1107 **/ 1108 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw) 1109 { 1110 u32 extcnf_ctrl; 1111 1112 extcnf_ctrl = er32(EXTCNF_CTRL); 1113 1114 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) { 1115 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; 1116 ew32(EXTCNF_CTRL, extcnf_ctrl); 1117 } else { 1118 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n"); 1119 } 1120 1121 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); 1122 } 1123 1124 /** 1125 * e1000_check_mng_mode_ich8lan - Checks management mode 1126 * @hw: pointer to the HW structure 1127 * 1128 * This checks if the adapter has any manageability enabled. 1129 * This is a function pointer entry point only called by read/write 1130 * routines for the PHY and NVM parts. 1131 **/ 1132 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw) 1133 { 1134 u32 fwsm; 1135 1136 fwsm = er32(FWSM); 1137 return (fwsm & E1000_ICH_FWSM_FW_VALID) && 1138 ((fwsm & E1000_FWSM_MODE_MASK) == 1139 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); 1140 } 1141 1142 /** 1143 * e1000_check_mng_mode_pchlan - Checks management mode 1144 * @hw: pointer to the HW structure 1145 * 1146 * This checks if the adapter has iAMT enabled. 1147 * This is a function pointer entry point only called by read/write 1148 * routines for the PHY and NVM parts. 1149 **/ 1150 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw) 1151 { 1152 u32 fwsm; 1153 1154 fwsm = er32(FWSM); 1155 return (fwsm & E1000_ICH_FWSM_FW_VALID) && 1156 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); 1157 } 1158 1159 /** 1160 * e1000_rar_set_pch2lan - Set receive address register 1161 * @hw: pointer to the HW structure 1162 * @addr: pointer to the receive address 1163 * @index: receive address array register 1164 * 1165 * Sets the receive address array register at index to the address passed 1166 * in by addr. For 82579, RAR[0] is the base address register that is to 1167 * contain the MAC address but RAR[1-6] are reserved for manageability (ME). 1168 * Use SHRA[0-3] in place of those reserved for ME. 1169 **/ 1170 static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index) 1171 { 1172 u32 rar_low, rar_high; 1173 1174 /* HW expects these in little endian so we reverse the byte order 1175 * from network order (big endian) to little endian 1176 */ 1177 rar_low = ((u32)addr[0] | 1178 ((u32)addr[1] << 8) | 1179 ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); 1180 1181 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); 1182 1183 /* If MAC address zero, no need to set the AV bit */ 1184 if (rar_low || rar_high) 1185 rar_high |= E1000_RAH_AV; 1186 1187 if (index == 0) { 1188 ew32(RAL(index), rar_low); 1189 e1e_flush(); 1190 ew32(RAH(index), rar_high); 1191 e1e_flush(); 1192 return; 1193 } 1194 1195 if (index < hw->mac.rar_entry_count) { 1196 s32 ret_val; 1197 1198 ret_val = e1000_acquire_swflag_ich8lan(hw); 1199 if (ret_val) 1200 goto out; 1201 1202 ew32(SHRAL(index - 1), rar_low); 1203 e1e_flush(); 1204 ew32(SHRAH(index - 1), rar_high); 1205 e1e_flush(); 1206 1207 e1000_release_swflag_ich8lan(hw); 1208 1209 /* verify the register updates */ 1210 if ((er32(SHRAL(index - 1)) == rar_low) && 1211 (er32(SHRAH(index - 1)) == rar_high)) 1212 return; 1213 1214 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n", 1215 (index - 1), er32(FWSM)); 1216 } 1217 1218 out: 1219 e_dbg("Failed to write receive address at index %d\n", index); 1220 } 1221 1222 /** 1223 * e1000_rar_set_pch_lpt - Set receive address registers 1224 * @hw: pointer to the HW structure 1225 * @addr: pointer to the receive address 1226 * @index: receive address array register 1227 * 1228 * Sets the receive address register array at index to the address passed 1229 * in by addr. For LPT, RAR[0] is the base address register that is to 1230 * contain the MAC address. SHRA[0-10] are the shared receive address 1231 * registers that are shared between the Host and manageability engine (ME). 1232 **/ 1233 static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index) 1234 { 1235 u32 rar_low, rar_high; 1236 u32 wlock_mac; 1237 1238 /* HW expects these in little endian so we reverse the byte order 1239 * from network order (big endian) to little endian 1240 */ 1241 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) | 1242 ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); 1243 1244 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); 1245 1246 /* If MAC address zero, no need to set the AV bit */ 1247 if (rar_low || rar_high) 1248 rar_high |= E1000_RAH_AV; 1249 1250 if (index == 0) { 1251 ew32(RAL(index), rar_low); 1252 e1e_flush(); 1253 ew32(RAH(index), rar_high); 1254 e1e_flush(); 1255 return; 1256 } 1257 1258 /* The manageability engine (ME) can lock certain SHRAR registers that 1259 * it is using - those registers are unavailable for use. 1260 */ 1261 if (index < hw->mac.rar_entry_count) { 1262 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK; 1263 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT; 1264 1265 /* Check if all SHRAR registers are locked */ 1266 if (wlock_mac == 1) 1267 goto out; 1268 1269 if ((wlock_mac == 0) || (index <= wlock_mac)) { 1270 s32 ret_val; 1271 1272 ret_val = e1000_acquire_swflag_ich8lan(hw); 1273 1274 if (ret_val) 1275 goto out; 1276 1277 ew32(SHRAL_PCH_LPT(index - 1), rar_low); 1278 e1e_flush(); 1279 ew32(SHRAH_PCH_LPT(index - 1), rar_high); 1280 e1e_flush(); 1281 1282 e1000_release_swflag_ich8lan(hw); 1283 1284 /* verify the register updates */ 1285 if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) && 1286 (er32(SHRAH_PCH_LPT(index - 1)) == rar_high)) 1287 return; 1288 } 1289 } 1290 1291 out: 1292 e_dbg("Failed to write receive address at index %d\n", index); 1293 } 1294 1295 /** 1296 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked 1297 * @hw: pointer to the HW structure 1298 * 1299 * Checks if firmware is blocking the reset of the PHY. 1300 * This is a function pointer entry point only called by 1301 * reset routines. 1302 **/ 1303 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw) 1304 { 1305 u32 fwsm; 1306 1307 fwsm = er32(FWSM); 1308 1309 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET; 1310 } 1311 1312 /** 1313 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states 1314 * @hw: pointer to the HW structure 1315 * 1316 * Assumes semaphore already acquired. 1317 * 1318 **/ 1319 static s32 e1000_write_smbus_addr(struct e1000_hw *hw) 1320 { 1321 u16 phy_data; 1322 u32 strap = er32(STRAP); 1323 u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >> 1324 E1000_STRAP_SMT_FREQ_SHIFT; 1325 s32 ret_val = 0; 1326 1327 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK; 1328 1329 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data); 1330 if (ret_val) 1331 return ret_val; 1332 1333 phy_data &= ~HV_SMB_ADDR_MASK; 1334 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT); 1335 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID; 1336 1337 if (hw->phy.type == e1000_phy_i217) { 1338 /* Restore SMBus frequency */ 1339 if (freq--) { 1340 phy_data &= ~HV_SMB_ADDR_FREQ_MASK; 1341 phy_data |= (freq & (1 << 0)) << 1342 HV_SMB_ADDR_FREQ_LOW_SHIFT; 1343 phy_data |= (freq & (1 << 1)) << 1344 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1); 1345 } else { 1346 e_dbg("Unsupported SMB frequency in PHY\n"); 1347 } 1348 } 1349 1350 return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data); 1351 } 1352 1353 /** 1354 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration 1355 * @hw: pointer to the HW structure 1356 * 1357 * SW should configure the LCD from the NVM extended configuration region 1358 * as a workaround for certain parts. 1359 **/ 1360 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw) 1361 { 1362 struct e1000_phy_info *phy = &hw->phy; 1363 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask; 1364 s32 ret_val = 0; 1365 u16 word_addr, reg_data, reg_addr, phy_page = 0; 1366 1367 /* Initialize the PHY from the NVM on ICH platforms. This 1368 * is needed due to an issue where the NVM configuration is 1369 * not properly autoloaded after power transitions. 1370 * Therefore, after each PHY reset, we will load the 1371 * configuration data out of the NVM manually. 1372 */ 1373 switch (hw->mac.type) { 1374 case e1000_ich8lan: 1375 if (phy->type != e1000_phy_igp_3) 1376 return ret_val; 1377 1378 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) || 1379 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) { 1380 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG; 1381 break; 1382 } 1383 /* Fall-thru */ 1384 case e1000_pchlan: 1385 case e1000_pch2lan: 1386 case e1000_pch_lpt: 1387 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M; 1388 break; 1389 default: 1390 return ret_val; 1391 } 1392 1393 ret_val = hw->phy.ops.acquire(hw); 1394 if (ret_val) 1395 return ret_val; 1396 1397 data = er32(FEXTNVM); 1398 if (!(data & sw_cfg_mask)) 1399 goto release; 1400 1401 /* Make sure HW does not configure LCD from PHY 1402 * extended configuration before SW configuration 1403 */ 1404 data = er32(EXTCNF_CTRL); 1405 if ((hw->mac.type < e1000_pch2lan) && 1406 (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)) 1407 goto release; 1408 1409 cnf_size = er32(EXTCNF_SIZE); 1410 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK; 1411 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT; 1412 if (!cnf_size) 1413 goto release; 1414 1415 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK; 1416 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT; 1417 1418 if (((hw->mac.type == e1000_pchlan) && 1419 !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) || 1420 (hw->mac.type > e1000_pchlan)) { 1421 /* HW configures the SMBus address and LEDs when the 1422 * OEM and LCD Write Enable bits are set in the NVM. 1423 * When both NVM bits are cleared, SW will configure 1424 * them instead. 1425 */ 1426 ret_val = e1000_write_smbus_addr(hw); 1427 if (ret_val) 1428 goto release; 1429 1430 data = er32(LEDCTL); 1431 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG, 1432 (u16)data); 1433 if (ret_val) 1434 goto release; 1435 } 1436 1437 /* Configure LCD from extended configuration region. */ 1438 1439 /* cnf_base_addr is in DWORD */ 1440 word_addr = (u16)(cnf_base_addr << 1); 1441 1442 for (i = 0; i < cnf_size; i++) { 1443 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, 1444 ®_data); 1445 if (ret_val) 1446 goto release; 1447 1448 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1), 1449 1, ®_addr); 1450 if (ret_val) 1451 goto release; 1452 1453 /* Save off the PHY page for future writes. */ 1454 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) { 1455 phy_page = reg_data; 1456 continue; 1457 } 1458 1459 reg_addr &= PHY_REG_MASK; 1460 reg_addr |= phy_page; 1461 1462 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data); 1463 if (ret_val) 1464 goto release; 1465 } 1466 1467 release: 1468 hw->phy.ops.release(hw); 1469 return ret_val; 1470 } 1471 1472 /** 1473 * e1000_k1_gig_workaround_hv - K1 Si workaround 1474 * @hw: pointer to the HW structure 1475 * @link: link up bool flag 1476 * 1477 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning 1478 * from a lower speed. This workaround disables K1 whenever link is at 1Gig 1479 * If link is down, the function will restore the default K1 setting located 1480 * in the NVM. 1481 **/ 1482 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link) 1483 { 1484 s32 ret_val = 0; 1485 u16 status_reg = 0; 1486 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled; 1487 1488 if (hw->mac.type != e1000_pchlan) 1489 return 0; 1490 1491 /* Wrap the whole flow with the sw flag */ 1492 ret_val = hw->phy.ops.acquire(hw); 1493 if (ret_val) 1494 return ret_val; 1495 1496 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */ 1497 if (link) { 1498 if (hw->phy.type == e1000_phy_82578) { 1499 ret_val = e1e_rphy_locked(hw, BM_CS_STATUS, 1500 &status_reg); 1501 if (ret_val) 1502 goto release; 1503 1504 status_reg &= BM_CS_STATUS_LINK_UP | 1505 BM_CS_STATUS_RESOLVED | 1506 BM_CS_STATUS_SPEED_MASK; 1507 1508 if (status_reg == (BM_CS_STATUS_LINK_UP | 1509 BM_CS_STATUS_RESOLVED | 1510 BM_CS_STATUS_SPEED_1000)) 1511 k1_enable = false; 1512 } 1513 1514 if (hw->phy.type == e1000_phy_82577) { 1515 ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg); 1516 if (ret_val) 1517 goto release; 1518 1519 status_reg &= HV_M_STATUS_LINK_UP | 1520 HV_M_STATUS_AUTONEG_COMPLETE | 1521 HV_M_STATUS_SPEED_MASK; 1522 1523 if (status_reg == (HV_M_STATUS_LINK_UP | 1524 HV_M_STATUS_AUTONEG_COMPLETE | 1525 HV_M_STATUS_SPEED_1000)) 1526 k1_enable = false; 1527 } 1528 1529 /* Link stall fix for link up */ 1530 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100); 1531 if (ret_val) 1532 goto release; 1533 1534 } else { 1535 /* Link stall fix for link down */ 1536 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100); 1537 if (ret_val) 1538 goto release; 1539 } 1540 1541 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable); 1542 1543 release: 1544 hw->phy.ops.release(hw); 1545 1546 return ret_val; 1547 } 1548 1549 /** 1550 * e1000_configure_k1_ich8lan - Configure K1 power state 1551 * @hw: pointer to the HW structure 1552 * @enable: K1 state to configure 1553 * 1554 * Configure the K1 power state based on the provided parameter. 1555 * Assumes semaphore already acquired. 1556 * 1557 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 1558 **/ 1559 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable) 1560 { 1561 s32 ret_val = 0; 1562 u32 ctrl_reg = 0; 1563 u32 ctrl_ext = 0; 1564 u32 reg = 0; 1565 u16 kmrn_reg = 0; 1566 1567 ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, 1568 &kmrn_reg); 1569 if (ret_val) 1570 return ret_val; 1571 1572 if (k1_enable) 1573 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE; 1574 else 1575 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE; 1576 1577 ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, 1578 kmrn_reg); 1579 if (ret_val) 1580 return ret_val; 1581 1582 udelay(20); 1583 ctrl_ext = er32(CTRL_EXT); 1584 ctrl_reg = er32(CTRL); 1585 1586 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 1587 reg |= E1000_CTRL_FRCSPD; 1588 ew32(CTRL, reg); 1589 1590 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS); 1591 e1e_flush(); 1592 udelay(20); 1593 ew32(CTRL, ctrl_reg); 1594 ew32(CTRL_EXT, ctrl_ext); 1595 e1e_flush(); 1596 udelay(20); 1597 1598 return 0; 1599 } 1600 1601 /** 1602 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration 1603 * @hw: pointer to the HW structure 1604 * @d0_state: boolean if entering d0 or d3 device state 1605 * 1606 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are 1607 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit 1608 * in NVM determines whether HW should configure LPLU and Gbe Disable. 1609 **/ 1610 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state) 1611 { 1612 s32 ret_val = 0; 1613 u32 mac_reg; 1614 u16 oem_reg; 1615 1616 if (hw->mac.type < e1000_pchlan) 1617 return ret_val; 1618 1619 ret_val = hw->phy.ops.acquire(hw); 1620 if (ret_val) 1621 return ret_val; 1622 1623 if (hw->mac.type == e1000_pchlan) { 1624 mac_reg = er32(EXTCNF_CTRL); 1625 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) 1626 goto release; 1627 } 1628 1629 mac_reg = er32(FEXTNVM); 1630 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M)) 1631 goto release; 1632 1633 mac_reg = er32(PHY_CTRL); 1634 1635 ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg); 1636 if (ret_val) 1637 goto release; 1638 1639 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU); 1640 1641 if (d0_state) { 1642 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE) 1643 oem_reg |= HV_OEM_BITS_GBE_DIS; 1644 1645 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU) 1646 oem_reg |= HV_OEM_BITS_LPLU; 1647 } else { 1648 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE | 1649 E1000_PHY_CTRL_NOND0A_GBE_DISABLE)) 1650 oem_reg |= HV_OEM_BITS_GBE_DIS; 1651 1652 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU | 1653 E1000_PHY_CTRL_NOND0A_LPLU)) 1654 oem_reg |= HV_OEM_BITS_LPLU; 1655 } 1656 1657 /* Set Restart auto-neg to activate the bits */ 1658 if ((d0_state || (hw->mac.type != e1000_pchlan)) && 1659 !hw->phy.ops.check_reset_block(hw)) 1660 oem_reg |= HV_OEM_BITS_RESTART_AN; 1661 1662 ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg); 1663 1664 release: 1665 hw->phy.ops.release(hw); 1666 1667 return ret_val; 1668 } 1669 1670 1671 /** 1672 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode 1673 * @hw: pointer to the HW structure 1674 **/ 1675 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw) 1676 { 1677 s32 ret_val; 1678 u16 data; 1679 1680 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data); 1681 if (ret_val) 1682 return ret_val; 1683 1684 data |= HV_KMRN_MDIO_SLOW; 1685 1686 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data); 1687 1688 return ret_val; 1689 } 1690 1691 /** 1692 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be 1693 * done after every PHY reset. 1694 **/ 1695 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw) 1696 { 1697 s32 ret_val = 0; 1698 u16 phy_data; 1699 1700 if (hw->mac.type != e1000_pchlan) 1701 return 0; 1702 1703 /* Set MDIO slow mode before any other MDIO access */ 1704 if (hw->phy.type == e1000_phy_82577) { 1705 ret_val = e1000_set_mdio_slow_mode_hv(hw); 1706 if (ret_val) 1707 return ret_val; 1708 } 1709 1710 if (((hw->phy.type == e1000_phy_82577) && 1711 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) || 1712 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) { 1713 /* Disable generation of early preamble */ 1714 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431); 1715 if (ret_val) 1716 return ret_val; 1717 1718 /* Preamble tuning for SSC */ 1719 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204); 1720 if (ret_val) 1721 return ret_val; 1722 } 1723 1724 if (hw->phy.type == e1000_phy_82578) { 1725 /* Return registers to default by doing a soft reset then 1726 * writing 0x3140 to the control register. 1727 */ 1728 if (hw->phy.revision < 2) { 1729 e1000e_phy_sw_reset(hw); 1730 ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140); 1731 } 1732 } 1733 1734 /* Select page 0 */ 1735 ret_val = hw->phy.ops.acquire(hw); 1736 if (ret_val) 1737 return ret_val; 1738 1739 hw->phy.addr = 1; 1740 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0); 1741 hw->phy.ops.release(hw); 1742 if (ret_val) 1743 return ret_val; 1744 1745 /* Configure the K1 Si workaround during phy reset assuming there is 1746 * link so that it disables K1 if link is in 1Gbps. 1747 */ 1748 ret_val = e1000_k1_gig_workaround_hv(hw, true); 1749 if (ret_val) 1750 return ret_val; 1751 1752 /* Workaround for link disconnects on a busy hub in half duplex */ 1753 ret_val = hw->phy.ops.acquire(hw); 1754 if (ret_val) 1755 return ret_val; 1756 ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data); 1757 if (ret_val) 1758 goto release; 1759 ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF); 1760 release: 1761 hw->phy.ops.release(hw); 1762 1763 return ret_val; 1764 } 1765 1766 /** 1767 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY 1768 * @hw: pointer to the HW structure 1769 **/ 1770 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw) 1771 { 1772 u32 mac_reg; 1773 u16 i, phy_reg = 0; 1774 s32 ret_val; 1775 1776 ret_val = hw->phy.ops.acquire(hw); 1777 if (ret_val) 1778 return; 1779 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); 1780 if (ret_val) 1781 goto release; 1782 1783 /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */ 1784 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) { 1785 mac_reg = er32(RAL(i)); 1786 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i), 1787 (u16)(mac_reg & 0xFFFF)); 1788 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i), 1789 (u16)((mac_reg >> 16) & 0xFFFF)); 1790 1791 mac_reg = er32(RAH(i)); 1792 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i), 1793 (u16)(mac_reg & 0xFFFF)); 1794 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i), 1795 (u16)((mac_reg & E1000_RAH_AV) 1796 >> 16)); 1797 } 1798 1799 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); 1800 1801 release: 1802 hw->phy.ops.release(hw); 1803 } 1804 1805 /** 1806 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation 1807 * with 82579 PHY 1808 * @hw: pointer to the HW structure 1809 * @enable: flag to enable/disable workaround when enabling/disabling jumbos 1810 **/ 1811 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable) 1812 { 1813 s32 ret_val = 0; 1814 u16 phy_reg, data; 1815 u32 mac_reg; 1816 u16 i; 1817 1818 if (hw->mac.type < e1000_pch2lan) 1819 return 0; 1820 1821 /* disable Rx path while enabling/disabling workaround */ 1822 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); 1823 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14)); 1824 if (ret_val) 1825 return ret_val; 1826 1827 if (enable) { 1828 /* Write Rx addresses (rar_entry_count for RAL/H, +4 for 1829 * SHRAL/H) and initial CRC values to the MAC 1830 */ 1831 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) { 1832 u8 mac_addr[ETH_ALEN] = {0}; 1833 u32 addr_high, addr_low; 1834 1835 addr_high = er32(RAH(i)); 1836 if (!(addr_high & E1000_RAH_AV)) 1837 continue; 1838 addr_low = er32(RAL(i)); 1839 mac_addr[0] = (addr_low & 0xFF); 1840 mac_addr[1] = ((addr_low >> 8) & 0xFF); 1841 mac_addr[2] = ((addr_low >> 16) & 0xFF); 1842 mac_addr[3] = ((addr_low >> 24) & 0xFF); 1843 mac_addr[4] = (addr_high & 0xFF); 1844 mac_addr[5] = ((addr_high >> 8) & 0xFF); 1845 1846 ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr)); 1847 } 1848 1849 /* Write Rx addresses to the PHY */ 1850 e1000_copy_rx_addrs_to_phy_ich8lan(hw); 1851 1852 /* Enable jumbo frame workaround in the MAC */ 1853 mac_reg = er32(FFLT_DBG); 1854 mac_reg &= ~(1 << 14); 1855 mac_reg |= (7 << 15); 1856 ew32(FFLT_DBG, mac_reg); 1857 1858 mac_reg = er32(RCTL); 1859 mac_reg |= E1000_RCTL_SECRC; 1860 ew32(RCTL, mac_reg); 1861 1862 ret_val = e1000e_read_kmrn_reg(hw, 1863 E1000_KMRNCTRLSTA_CTRL_OFFSET, 1864 &data); 1865 if (ret_val) 1866 return ret_val; 1867 ret_val = e1000e_write_kmrn_reg(hw, 1868 E1000_KMRNCTRLSTA_CTRL_OFFSET, 1869 data | (1 << 0)); 1870 if (ret_val) 1871 return ret_val; 1872 ret_val = e1000e_read_kmrn_reg(hw, 1873 E1000_KMRNCTRLSTA_HD_CTRL, 1874 &data); 1875 if (ret_val) 1876 return ret_val; 1877 data &= ~(0xF << 8); 1878 data |= (0xB << 8); 1879 ret_val = e1000e_write_kmrn_reg(hw, 1880 E1000_KMRNCTRLSTA_HD_CTRL, 1881 data); 1882 if (ret_val) 1883 return ret_val; 1884 1885 /* Enable jumbo frame workaround in the PHY */ 1886 e1e_rphy(hw, PHY_REG(769, 23), &data); 1887 data &= ~(0x7F << 5); 1888 data |= (0x37 << 5); 1889 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); 1890 if (ret_val) 1891 return ret_val; 1892 e1e_rphy(hw, PHY_REG(769, 16), &data); 1893 data &= ~(1 << 13); 1894 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); 1895 if (ret_val) 1896 return ret_val; 1897 e1e_rphy(hw, PHY_REG(776, 20), &data); 1898 data &= ~(0x3FF << 2); 1899 data |= (0x1A << 2); 1900 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); 1901 if (ret_val) 1902 return ret_val; 1903 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100); 1904 if (ret_val) 1905 return ret_val; 1906 e1e_rphy(hw, HV_PM_CTRL, &data); 1907 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10)); 1908 if (ret_val) 1909 return ret_val; 1910 } else { 1911 /* Write MAC register values back to h/w defaults */ 1912 mac_reg = er32(FFLT_DBG); 1913 mac_reg &= ~(0xF << 14); 1914 ew32(FFLT_DBG, mac_reg); 1915 1916 mac_reg = er32(RCTL); 1917 mac_reg &= ~E1000_RCTL_SECRC; 1918 ew32(RCTL, mac_reg); 1919 1920 ret_val = e1000e_read_kmrn_reg(hw, 1921 E1000_KMRNCTRLSTA_CTRL_OFFSET, 1922 &data); 1923 if (ret_val) 1924 return ret_val; 1925 ret_val = e1000e_write_kmrn_reg(hw, 1926 E1000_KMRNCTRLSTA_CTRL_OFFSET, 1927 data & ~(1 << 0)); 1928 if (ret_val) 1929 return ret_val; 1930 ret_val = e1000e_read_kmrn_reg(hw, 1931 E1000_KMRNCTRLSTA_HD_CTRL, 1932 &data); 1933 if (ret_val) 1934 return ret_val; 1935 data &= ~(0xF << 8); 1936 data |= (0xB << 8); 1937 ret_val = e1000e_write_kmrn_reg(hw, 1938 E1000_KMRNCTRLSTA_HD_CTRL, 1939 data); 1940 if (ret_val) 1941 return ret_val; 1942 1943 /* Write PHY register values back to h/w defaults */ 1944 e1e_rphy(hw, PHY_REG(769, 23), &data); 1945 data &= ~(0x7F << 5); 1946 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); 1947 if (ret_val) 1948 return ret_val; 1949 e1e_rphy(hw, PHY_REG(769, 16), &data); 1950 data |= (1 << 13); 1951 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); 1952 if (ret_val) 1953 return ret_val; 1954 e1e_rphy(hw, PHY_REG(776, 20), &data); 1955 data &= ~(0x3FF << 2); 1956 data |= (0x8 << 2); 1957 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); 1958 if (ret_val) 1959 return ret_val; 1960 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00); 1961 if (ret_val) 1962 return ret_val; 1963 e1e_rphy(hw, HV_PM_CTRL, &data); 1964 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10)); 1965 if (ret_val) 1966 return ret_val; 1967 } 1968 1969 /* re-enable Rx path after enabling/disabling workaround */ 1970 return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14)); 1971 } 1972 1973 /** 1974 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be 1975 * done after every PHY reset. 1976 **/ 1977 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw) 1978 { 1979 s32 ret_val = 0; 1980 1981 if (hw->mac.type != e1000_pch2lan) 1982 return 0; 1983 1984 /* Set MDIO slow mode before any other MDIO access */ 1985 ret_val = e1000_set_mdio_slow_mode_hv(hw); 1986 1987 ret_val = hw->phy.ops.acquire(hw); 1988 if (ret_val) 1989 return ret_val; 1990 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, I82579_MSE_THRESHOLD); 1991 if (ret_val) 1992 goto release; 1993 /* set MSE higher to enable link to stay up when noise is high */ 1994 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x0034); 1995 if (ret_val) 1996 goto release; 1997 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, I82579_MSE_LINK_DOWN); 1998 if (ret_val) 1999 goto release; 2000 /* drop link after 5 times MSE threshold was reached */ 2001 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x0005); 2002 release: 2003 hw->phy.ops.release(hw); 2004 2005 return ret_val; 2006 } 2007 2008 /** 2009 * e1000_k1_gig_workaround_lv - K1 Si workaround 2010 * @hw: pointer to the HW structure 2011 * 2012 * Workaround to set the K1 beacon duration for 82579 parts 2013 **/ 2014 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw) 2015 { 2016 s32 ret_val = 0; 2017 u16 status_reg = 0; 2018 u32 mac_reg; 2019 u16 phy_reg; 2020 2021 if (hw->mac.type != e1000_pch2lan) 2022 return 0; 2023 2024 /* Set K1 beacon duration based on 1Gbps speed or otherwise */ 2025 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg); 2026 if (ret_val) 2027 return ret_val; 2028 2029 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) 2030 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) { 2031 mac_reg = er32(FEXTNVM4); 2032 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; 2033 2034 ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg); 2035 if (ret_val) 2036 return ret_val; 2037 2038 if (status_reg & HV_M_STATUS_SPEED_1000) { 2039 u16 pm_phy_reg; 2040 2041 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC; 2042 phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT; 2043 /* LV 1G Packet drop issue wa */ 2044 ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg); 2045 if (ret_val) 2046 return ret_val; 2047 pm_phy_reg &= ~HV_PM_CTRL_PLL_STOP_IN_K1_GIGA; 2048 ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg); 2049 if (ret_val) 2050 return ret_val; 2051 } else { 2052 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC; 2053 phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT; 2054 } 2055 ew32(FEXTNVM4, mac_reg); 2056 ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg); 2057 } 2058 2059 return ret_val; 2060 } 2061 2062 /** 2063 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware 2064 * @hw: pointer to the HW structure 2065 * @gate: boolean set to true to gate, false to ungate 2066 * 2067 * Gate/ungate the automatic PHY configuration via hardware; perform 2068 * the configuration via software instead. 2069 **/ 2070 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate) 2071 { 2072 u32 extcnf_ctrl; 2073 2074 if (hw->mac.type < e1000_pch2lan) 2075 return; 2076 2077 extcnf_ctrl = er32(EXTCNF_CTRL); 2078 2079 if (gate) 2080 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG; 2081 else 2082 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG; 2083 2084 ew32(EXTCNF_CTRL, extcnf_ctrl); 2085 } 2086 2087 /** 2088 * e1000_lan_init_done_ich8lan - Check for PHY config completion 2089 * @hw: pointer to the HW structure 2090 * 2091 * Check the appropriate indication the MAC has finished configuring the 2092 * PHY after a software reset. 2093 **/ 2094 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw) 2095 { 2096 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT; 2097 2098 /* Wait for basic configuration completes before proceeding */ 2099 do { 2100 data = er32(STATUS); 2101 data &= E1000_STATUS_LAN_INIT_DONE; 2102 udelay(100); 2103 } while ((!data) && --loop); 2104 2105 /* If basic configuration is incomplete before the above loop 2106 * count reaches 0, loading the configuration from NVM will 2107 * leave the PHY in a bad state possibly resulting in no link. 2108 */ 2109 if (loop == 0) 2110 e_dbg("LAN_INIT_DONE not set, increase timeout\n"); 2111 2112 /* Clear the Init Done bit for the next init event */ 2113 data = er32(STATUS); 2114 data &= ~E1000_STATUS_LAN_INIT_DONE; 2115 ew32(STATUS, data); 2116 } 2117 2118 /** 2119 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset 2120 * @hw: pointer to the HW structure 2121 **/ 2122 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw) 2123 { 2124 s32 ret_val = 0; 2125 u16 reg; 2126 2127 if (hw->phy.ops.check_reset_block(hw)) 2128 return 0; 2129 2130 /* Allow time for h/w to get to quiescent state after reset */ 2131 usleep_range(10000, 20000); 2132 2133 /* Perform any necessary post-reset workarounds */ 2134 switch (hw->mac.type) { 2135 case e1000_pchlan: 2136 ret_val = e1000_hv_phy_workarounds_ich8lan(hw); 2137 if (ret_val) 2138 return ret_val; 2139 break; 2140 case e1000_pch2lan: 2141 ret_val = e1000_lv_phy_workarounds_ich8lan(hw); 2142 if (ret_val) 2143 return ret_val; 2144 break; 2145 default: 2146 break; 2147 } 2148 2149 /* Clear the host wakeup bit after lcd reset */ 2150 if (hw->mac.type >= e1000_pchlan) { 2151 e1e_rphy(hw, BM_PORT_GEN_CFG, ®); 2152 reg &= ~BM_WUC_HOST_WU_BIT; 2153 e1e_wphy(hw, BM_PORT_GEN_CFG, reg); 2154 } 2155 2156 /* Configure the LCD with the extended configuration region in NVM */ 2157 ret_val = e1000_sw_lcd_config_ich8lan(hw); 2158 if (ret_val) 2159 return ret_val; 2160 2161 /* Configure the LCD with the OEM bits in NVM */ 2162 ret_val = e1000_oem_bits_config_ich8lan(hw, true); 2163 2164 if (hw->mac.type == e1000_pch2lan) { 2165 /* Ungate automatic PHY configuration on non-managed 82579 */ 2166 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 2167 usleep_range(10000, 20000); 2168 e1000_gate_hw_phy_config_ich8lan(hw, false); 2169 } 2170 2171 /* Set EEE LPI Update Timer to 200usec */ 2172 ret_val = hw->phy.ops.acquire(hw); 2173 if (ret_val) 2174 return ret_val; 2175 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, 2176 I82579_LPI_UPDATE_TIMER); 2177 if (!ret_val) 2178 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x1387); 2179 hw->phy.ops.release(hw); 2180 } 2181 2182 return ret_val; 2183 } 2184 2185 /** 2186 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset 2187 * @hw: pointer to the HW structure 2188 * 2189 * Resets the PHY 2190 * This is a function pointer entry point called by drivers 2191 * or other shared routines. 2192 **/ 2193 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw) 2194 { 2195 s32 ret_val = 0; 2196 2197 /* Gate automatic PHY configuration by hardware on non-managed 82579 */ 2198 if ((hw->mac.type == e1000_pch2lan) && 2199 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) 2200 e1000_gate_hw_phy_config_ich8lan(hw, true); 2201 2202 ret_val = e1000e_phy_hw_reset_generic(hw); 2203 if (ret_val) 2204 return ret_val; 2205 2206 return e1000_post_phy_reset_ich8lan(hw); 2207 } 2208 2209 /** 2210 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state 2211 * @hw: pointer to the HW structure 2212 * @active: true to enable LPLU, false to disable 2213 * 2214 * Sets the LPLU state according to the active flag. For PCH, if OEM write 2215 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set 2216 * the phy speed. This function will manually set the LPLU bit and restart 2217 * auto-neg as hw would do. D3 and D0 LPLU will call the same function 2218 * since it configures the same bit. 2219 **/ 2220 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active) 2221 { 2222 s32 ret_val = 0; 2223 u16 oem_reg; 2224 2225 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg); 2226 if (ret_val) 2227 return ret_val; 2228 2229 if (active) 2230 oem_reg |= HV_OEM_BITS_LPLU; 2231 else 2232 oem_reg &= ~HV_OEM_BITS_LPLU; 2233 2234 if (!hw->phy.ops.check_reset_block(hw)) 2235 oem_reg |= HV_OEM_BITS_RESTART_AN; 2236 2237 return e1e_wphy(hw, HV_OEM_BITS, oem_reg); 2238 } 2239 2240 /** 2241 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state 2242 * @hw: pointer to the HW structure 2243 * @active: true to enable LPLU, false to disable 2244 * 2245 * Sets the LPLU D0 state according to the active flag. When 2246 * activating LPLU this function also disables smart speed 2247 * and vice versa. LPLU will not be activated unless the 2248 * device autonegotiation advertisement meets standards of 2249 * either 10 or 10/100 or 10/100/1000 at all duplexes. 2250 * This is a function pointer entry point only called by 2251 * PHY setup routines. 2252 **/ 2253 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active) 2254 { 2255 struct e1000_phy_info *phy = &hw->phy; 2256 u32 phy_ctrl; 2257 s32 ret_val = 0; 2258 u16 data; 2259 2260 if (phy->type == e1000_phy_ife) 2261 return 0; 2262 2263 phy_ctrl = er32(PHY_CTRL); 2264 2265 if (active) { 2266 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; 2267 ew32(PHY_CTRL, phy_ctrl); 2268 2269 if (phy->type != e1000_phy_igp_3) 2270 return 0; 2271 2272 /* Call gig speed drop workaround on LPLU before accessing 2273 * any PHY registers 2274 */ 2275 if (hw->mac.type == e1000_ich8lan) 2276 e1000e_gig_downshift_workaround_ich8lan(hw); 2277 2278 /* When LPLU is enabled, we should disable SmartSpeed */ 2279 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); 2280 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 2281 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); 2282 if (ret_val) 2283 return ret_val; 2284 } else { 2285 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; 2286 ew32(PHY_CTRL, phy_ctrl); 2287 2288 if (phy->type != e1000_phy_igp_3) 2289 return 0; 2290 2291 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 2292 * during Dx states where the power conservation is most 2293 * important. During driver activity we should enable 2294 * SmartSpeed, so performance is maintained. 2295 */ 2296 if (phy->smart_speed == e1000_smart_speed_on) { 2297 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 2298 &data); 2299 if (ret_val) 2300 return ret_val; 2301 2302 data |= IGP01E1000_PSCFR_SMART_SPEED; 2303 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 2304 data); 2305 if (ret_val) 2306 return ret_val; 2307 } else if (phy->smart_speed == e1000_smart_speed_off) { 2308 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 2309 &data); 2310 if (ret_val) 2311 return ret_val; 2312 2313 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 2314 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 2315 data); 2316 if (ret_val) 2317 return ret_val; 2318 } 2319 } 2320 2321 return 0; 2322 } 2323 2324 /** 2325 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state 2326 * @hw: pointer to the HW structure 2327 * @active: true to enable LPLU, false to disable 2328 * 2329 * Sets the LPLU D3 state according to the active flag. When 2330 * activating LPLU this function also disables smart speed 2331 * and vice versa. LPLU will not be activated unless the 2332 * device autonegotiation advertisement meets standards of 2333 * either 10 or 10/100 or 10/100/1000 at all duplexes. 2334 * This is a function pointer entry point only called by 2335 * PHY setup routines. 2336 **/ 2337 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active) 2338 { 2339 struct e1000_phy_info *phy = &hw->phy; 2340 u32 phy_ctrl; 2341 s32 ret_val = 0; 2342 u16 data; 2343 2344 phy_ctrl = er32(PHY_CTRL); 2345 2346 if (!active) { 2347 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; 2348 ew32(PHY_CTRL, phy_ctrl); 2349 2350 if (phy->type != e1000_phy_igp_3) 2351 return 0; 2352 2353 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 2354 * during Dx states where the power conservation is most 2355 * important. During driver activity we should enable 2356 * SmartSpeed, so performance is maintained. 2357 */ 2358 if (phy->smart_speed == e1000_smart_speed_on) { 2359 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 2360 &data); 2361 if (ret_val) 2362 return ret_val; 2363 2364 data |= IGP01E1000_PSCFR_SMART_SPEED; 2365 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 2366 data); 2367 if (ret_val) 2368 return ret_val; 2369 } else if (phy->smart_speed == e1000_smart_speed_off) { 2370 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 2371 &data); 2372 if (ret_val) 2373 return ret_val; 2374 2375 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 2376 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 2377 data); 2378 if (ret_val) 2379 return ret_val; 2380 } 2381 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || 2382 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || 2383 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { 2384 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; 2385 ew32(PHY_CTRL, phy_ctrl); 2386 2387 if (phy->type != e1000_phy_igp_3) 2388 return 0; 2389 2390 /* Call gig speed drop workaround on LPLU before accessing 2391 * any PHY registers 2392 */ 2393 if (hw->mac.type == e1000_ich8lan) 2394 e1000e_gig_downshift_workaround_ich8lan(hw); 2395 2396 /* When LPLU is enabled, we should disable SmartSpeed */ 2397 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); 2398 if (ret_val) 2399 return ret_val; 2400 2401 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 2402 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); 2403 } 2404 2405 return ret_val; 2406 } 2407 2408 /** 2409 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1 2410 * @hw: pointer to the HW structure 2411 * @bank: pointer to the variable that returns the active bank 2412 * 2413 * Reads signature byte from the NVM using the flash access registers. 2414 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank. 2415 **/ 2416 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank) 2417 { 2418 u32 eecd; 2419 struct e1000_nvm_info *nvm = &hw->nvm; 2420 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16); 2421 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1; 2422 u8 sig_byte = 0; 2423 s32 ret_val; 2424 2425 switch (hw->mac.type) { 2426 case e1000_ich8lan: 2427 case e1000_ich9lan: 2428 eecd = er32(EECD); 2429 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) == 2430 E1000_EECD_SEC1VAL_VALID_MASK) { 2431 if (eecd & E1000_EECD_SEC1VAL) 2432 *bank = 1; 2433 else 2434 *bank = 0; 2435 2436 return 0; 2437 } 2438 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n"); 2439 /* fall-thru */ 2440 default: 2441 /* set bank to 0 in case flash read fails */ 2442 *bank = 0; 2443 2444 /* Check bank 0 */ 2445 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset, 2446 &sig_byte); 2447 if (ret_val) 2448 return ret_val; 2449 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 2450 E1000_ICH_NVM_SIG_VALUE) { 2451 *bank = 0; 2452 return 0; 2453 } 2454 2455 /* Check bank 1 */ 2456 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset + 2457 bank1_offset, 2458 &sig_byte); 2459 if (ret_val) 2460 return ret_val; 2461 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 2462 E1000_ICH_NVM_SIG_VALUE) { 2463 *bank = 1; 2464 return 0; 2465 } 2466 2467 e_dbg("ERROR: No valid NVM bank present\n"); 2468 return -E1000_ERR_NVM; 2469 } 2470 } 2471 2472 /** 2473 * e1000_read_nvm_ich8lan - Read word(s) from the NVM 2474 * @hw: pointer to the HW structure 2475 * @offset: The offset (in bytes) of the word(s) to read. 2476 * @words: Size of data to read in words 2477 * @data: Pointer to the word(s) to read at offset. 2478 * 2479 * Reads a word(s) from the NVM using the flash access registers. 2480 **/ 2481 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, 2482 u16 *data) 2483 { 2484 struct e1000_nvm_info *nvm = &hw->nvm; 2485 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 2486 u32 act_offset; 2487 s32 ret_val = 0; 2488 u32 bank = 0; 2489 u16 i, word; 2490 2491 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || 2492 (words == 0)) { 2493 e_dbg("nvm parameter(s) out of bounds\n"); 2494 ret_val = -E1000_ERR_NVM; 2495 goto out; 2496 } 2497 2498 nvm->ops.acquire(hw); 2499 2500 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 2501 if (ret_val) { 2502 e_dbg("Could not detect valid bank, assuming bank 0\n"); 2503 bank = 0; 2504 } 2505 2506 act_offset = (bank) ? nvm->flash_bank_size : 0; 2507 act_offset += offset; 2508 2509 ret_val = 0; 2510 for (i = 0; i < words; i++) { 2511 if (dev_spec->shadow_ram[offset+i].modified) { 2512 data[i] = dev_spec->shadow_ram[offset+i].value; 2513 } else { 2514 ret_val = e1000_read_flash_word_ich8lan(hw, 2515 act_offset + i, 2516 &word); 2517 if (ret_val) 2518 break; 2519 data[i] = word; 2520 } 2521 } 2522 2523 nvm->ops.release(hw); 2524 2525 out: 2526 if (ret_val) 2527 e_dbg("NVM read error: %d\n", ret_val); 2528 2529 return ret_val; 2530 } 2531 2532 /** 2533 * e1000_flash_cycle_init_ich8lan - Initialize flash 2534 * @hw: pointer to the HW structure 2535 * 2536 * This function does initial flash setup so that a new read/write/erase cycle 2537 * can be started. 2538 **/ 2539 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw) 2540 { 2541 union ich8_hws_flash_status hsfsts; 2542 s32 ret_val = -E1000_ERR_NVM; 2543 2544 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 2545 2546 /* Check if the flash descriptor is valid */ 2547 if (!hsfsts.hsf_status.fldesvalid) { 2548 e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n"); 2549 return -E1000_ERR_NVM; 2550 } 2551 2552 /* Clear FCERR and DAEL in hw status by writing 1 */ 2553 hsfsts.hsf_status.flcerr = 1; 2554 hsfsts.hsf_status.dael = 1; 2555 2556 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); 2557 2558 /* Either we should have a hardware SPI cycle in progress 2559 * bit to check against, in order to start a new cycle or 2560 * FDONE bit should be changed in the hardware so that it 2561 * is 1 after hardware reset, which can then be used as an 2562 * indication whether a cycle is in progress or has been 2563 * completed. 2564 */ 2565 2566 if (!hsfsts.hsf_status.flcinprog) { 2567 /* There is no cycle running at present, 2568 * so we can start a cycle. 2569 * Begin by setting Flash Cycle Done. 2570 */ 2571 hsfsts.hsf_status.flcdone = 1; 2572 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); 2573 ret_val = 0; 2574 } else { 2575 s32 i; 2576 2577 /* Otherwise poll for sometime so the current 2578 * cycle has a chance to end before giving up. 2579 */ 2580 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) { 2581 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 2582 if (!hsfsts.hsf_status.flcinprog) { 2583 ret_val = 0; 2584 break; 2585 } 2586 udelay(1); 2587 } 2588 if (!ret_val) { 2589 /* Successful in waiting for previous cycle to timeout, 2590 * now set the Flash Cycle Done. 2591 */ 2592 hsfsts.hsf_status.flcdone = 1; 2593 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); 2594 } else { 2595 e_dbg("Flash controller busy, cannot get access\n"); 2596 } 2597 } 2598 2599 return ret_val; 2600 } 2601 2602 /** 2603 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase) 2604 * @hw: pointer to the HW structure 2605 * @timeout: maximum time to wait for completion 2606 * 2607 * This function starts a flash cycle and waits for its completion. 2608 **/ 2609 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout) 2610 { 2611 union ich8_hws_flash_ctrl hsflctl; 2612 union ich8_hws_flash_status hsfsts; 2613 u32 i = 0; 2614 2615 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ 2616 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 2617 hsflctl.hsf_ctrl.flcgo = 1; 2618 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 2619 2620 /* wait till FDONE bit is set to 1 */ 2621 do { 2622 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 2623 if (hsfsts.hsf_status.flcdone) 2624 break; 2625 udelay(1); 2626 } while (i++ < timeout); 2627 2628 if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr) 2629 return 0; 2630 2631 return -E1000_ERR_NVM; 2632 } 2633 2634 /** 2635 * e1000_read_flash_word_ich8lan - Read word from flash 2636 * @hw: pointer to the HW structure 2637 * @offset: offset to data location 2638 * @data: pointer to the location for storing the data 2639 * 2640 * Reads the flash word at offset into data. Offset is converted 2641 * to bytes before read. 2642 **/ 2643 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, 2644 u16 *data) 2645 { 2646 /* Must convert offset into bytes. */ 2647 offset <<= 1; 2648 2649 return e1000_read_flash_data_ich8lan(hw, offset, 2, data); 2650 } 2651 2652 /** 2653 * e1000_read_flash_byte_ich8lan - Read byte from flash 2654 * @hw: pointer to the HW structure 2655 * @offset: The offset of the byte to read. 2656 * @data: Pointer to a byte to store the value read. 2657 * 2658 * Reads a single byte from the NVM using the flash access registers. 2659 **/ 2660 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, 2661 u8 *data) 2662 { 2663 s32 ret_val; 2664 u16 word = 0; 2665 2666 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word); 2667 if (ret_val) 2668 return ret_val; 2669 2670 *data = (u8)word; 2671 2672 return 0; 2673 } 2674 2675 /** 2676 * e1000_read_flash_data_ich8lan - Read byte or word from NVM 2677 * @hw: pointer to the HW structure 2678 * @offset: The offset (in bytes) of the byte or word to read. 2679 * @size: Size of data to read, 1=byte 2=word 2680 * @data: Pointer to the word to store the value read. 2681 * 2682 * Reads a byte or word from the NVM using the flash access registers. 2683 **/ 2684 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 2685 u8 size, u16 *data) 2686 { 2687 union ich8_hws_flash_status hsfsts; 2688 union ich8_hws_flash_ctrl hsflctl; 2689 u32 flash_linear_addr; 2690 u32 flash_data = 0; 2691 s32 ret_val = -E1000_ERR_NVM; 2692 u8 count = 0; 2693 2694 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) 2695 return -E1000_ERR_NVM; 2696 2697 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) + 2698 hw->nvm.flash_base_addr; 2699 2700 do { 2701 udelay(1); 2702 /* Steps */ 2703 ret_val = e1000_flash_cycle_init_ich8lan(hw); 2704 if (ret_val) 2705 break; 2706 2707 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 2708 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ 2709 hsflctl.hsf_ctrl.fldbcount = size - 1; 2710 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; 2711 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 2712 2713 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 2714 2715 ret_val = e1000_flash_cycle_ich8lan(hw, 2716 ICH_FLASH_READ_COMMAND_TIMEOUT); 2717 2718 /* Check if FCERR is set to 1, if set to 1, clear it 2719 * and try the whole sequence a few more times, else 2720 * read in (shift in) the Flash Data0, the order is 2721 * least significant byte first msb to lsb 2722 */ 2723 if (!ret_val) { 2724 flash_data = er32flash(ICH_FLASH_FDATA0); 2725 if (size == 1) 2726 *data = (u8)(flash_data & 0x000000FF); 2727 else if (size == 2) 2728 *data = (u16)(flash_data & 0x0000FFFF); 2729 break; 2730 } else { 2731 /* If we've gotten here, then things are probably 2732 * completely hosed, but if the error condition is 2733 * detected, it won't hurt to give it another try... 2734 * ICH_FLASH_CYCLE_REPEAT_COUNT times. 2735 */ 2736 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 2737 if (hsfsts.hsf_status.flcerr) { 2738 /* Repeat for some time before giving up. */ 2739 continue; 2740 } else if (!hsfsts.hsf_status.flcdone) { 2741 e_dbg("Timeout error - flash cycle did not complete.\n"); 2742 break; 2743 } 2744 } 2745 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 2746 2747 return ret_val; 2748 } 2749 2750 /** 2751 * e1000_write_nvm_ich8lan - Write word(s) to the NVM 2752 * @hw: pointer to the HW structure 2753 * @offset: The offset (in bytes) of the word(s) to write. 2754 * @words: Size of data to write in words 2755 * @data: Pointer to the word(s) to write at offset. 2756 * 2757 * Writes a byte or word to the NVM using the flash access registers. 2758 **/ 2759 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, 2760 u16 *data) 2761 { 2762 struct e1000_nvm_info *nvm = &hw->nvm; 2763 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 2764 u16 i; 2765 2766 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || 2767 (words == 0)) { 2768 e_dbg("nvm parameter(s) out of bounds\n"); 2769 return -E1000_ERR_NVM; 2770 } 2771 2772 nvm->ops.acquire(hw); 2773 2774 for (i = 0; i < words; i++) { 2775 dev_spec->shadow_ram[offset+i].modified = true; 2776 dev_spec->shadow_ram[offset+i].value = data[i]; 2777 } 2778 2779 nvm->ops.release(hw); 2780 2781 return 0; 2782 } 2783 2784 /** 2785 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM 2786 * @hw: pointer to the HW structure 2787 * 2788 * The NVM checksum is updated by calling the generic update_nvm_checksum, 2789 * which writes the checksum to the shadow ram. The changes in the shadow 2790 * ram are then committed to the EEPROM by processing each bank at a time 2791 * checking for the modified bit and writing only the pending changes. 2792 * After a successful commit, the shadow ram is cleared and is ready for 2793 * future writes. 2794 **/ 2795 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw) 2796 { 2797 struct e1000_nvm_info *nvm = &hw->nvm; 2798 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 2799 u32 i, act_offset, new_bank_offset, old_bank_offset, bank; 2800 s32 ret_val; 2801 u16 data; 2802 2803 ret_val = e1000e_update_nvm_checksum_generic(hw); 2804 if (ret_val) 2805 goto out; 2806 2807 if (nvm->type != e1000_nvm_flash_sw) 2808 goto out; 2809 2810 nvm->ops.acquire(hw); 2811 2812 /* We're writing to the opposite bank so if we're on bank 1, 2813 * write to bank 0 etc. We also need to erase the segment that 2814 * is going to be written 2815 */ 2816 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 2817 if (ret_val) { 2818 e_dbg("Could not detect valid bank, assuming bank 0\n"); 2819 bank = 0; 2820 } 2821 2822 if (bank == 0) { 2823 new_bank_offset = nvm->flash_bank_size; 2824 old_bank_offset = 0; 2825 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); 2826 if (ret_val) 2827 goto release; 2828 } else { 2829 old_bank_offset = nvm->flash_bank_size; 2830 new_bank_offset = 0; 2831 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); 2832 if (ret_val) 2833 goto release; 2834 } 2835 2836 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { 2837 /* Determine whether to write the value stored 2838 * in the other NVM bank or a modified value stored 2839 * in the shadow RAM 2840 */ 2841 if (dev_spec->shadow_ram[i].modified) { 2842 data = dev_spec->shadow_ram[i].value; 2843 } else { 2844 ret_val = e1000_read_flash_word_ich8lan(hw, i + 2845 old_bank_offset, 2846 &data); 2847 if (ret_val) 2848 break; 2849 } 2850 2851 /* If the word is 0x13, then make sure the signature bits 2852 * (15:14) are 11b until the commit has completed. 2853 * This will allow us to write 10b which indicates the 2854 * signature is valid. We want to do this after the write 2855 * has completed so that we don't mark the segment valid 2856 * while the write is still in progress 2857 */ 2858 if (i == E1000_ICH_NVM_SIG_WORD) 2859 data |= E1000_ICH_NVM_SIG_MASK; 2860 2861 /* Convert offset to bytes. */ 2862 act_offset = (i + new_bank_offset) << 1; 2863 2864 udelay(100); 2865 /* Write the bytes to the new bank. */ 2866 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, 2867 act_offset, 2868 (u8)data); 2869 if (ret_val) 2870 break; 2871 2872 udelay(100); 2873 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, 2874 act_offset + 1, 2875 (u8)(data >> 8)); 2876 if (ret_val) 2877 break; 2878 } 2879 2880 /* Don't bother writing the segment valid bits if sector 2881 * programming failed. 2882 */ 2883 if (ret_val) { 2884 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */ 2885 e_dbg("Flash commit failed.\n"); 2886 goto release; 2887 } 2888 2889 /* Finally validate the new segment by setting bit 15:14 2890 * to 10b in word 0x13 , this can be done without an 2891 * erase as well since these bits are 11 to start with 2892 * and we need to change bit 14 to 0b 2893 */ 2894 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; 2895 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data); 2896 if (ret_val) 2897 goto release; 2898 2899 data &= 0xBFFF; 2900 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, 2901 act_offset * 2 + 1, 2902 (u8)(data >> 8)); 2903 if (ret_val) 2904 goto release; 2905 2906 /* And invalidate the previously valid segment by setting 2907 * its signature word (0x13) high_byte to 0b. This can be 2908 * done without an erase because flash erase sets all bits 2909 * to 1's. We can write 1's to 0's without an erase 2910 */ 2911 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; 2912 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0); 2913 if (ret_val) 2914 goto release; 2915 2916 /* Great! Everything worked, we can now clear the cached entries. */ 2917 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { 2918 dev_spec->shadow_ram[i].modified = false; 2919 dev_spec->shadow_ram[i].value = 0xFFFF; 2920 } 2921 2922 release: 2923 nvm->ops.release(hw); 2924 2925 /* Reload the EEPROM, or else modifications will not appear 2926 * until after the next adapter reset. 2927 */ 2928 if (!ret_val) { 2929 nvm->ops.reload(hw); 2930 usleep_range(10000, 20000); 2931 } 2932 2933 out: 2934 if (ret_val) 2935 e_dbg("NVM update error: %d\n", ret_val); 2936 2937 return ret_val; 2938 } 2939 2940 /** 2941 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum 2942 * @hw: pointer to the HW structure 2943 * 2944 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19. 2945 * If the bit is 0, that the EEPROM had been modified, but the checksum was not 2946 * calculated, in which case we need to calculate the checksum and set bit 6. 2947 **/ 2948 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw) 2949 { 2950 s32 ret_val; 2951 u16 data; 2952 2953 /* Read 0x19 and check bit 6. If this bit is 0, the checksum 2954 * needs to be fixed. This bit is an indication that the NVM 2955 * was prepared by OEM software and did not calculate the 2956 * checksum...a likely scenario. 2957 */ 2958 ret_val = e1000_read_nvm(hw, 0x19, 1, &data); 2959 if (ret_val) 2960 return ret_val; 2961 2962 if (!(data & 0x40)) { 2963 data |= 0x40; 2964 ret_val = e1000_write_nvm(hw, 0x19, 1, &data); 2965 if (ret_val) 2966 return ret_val; 2967 ret_val = e1000e_update_nvm_checksum(hw); 2968 if (ret_val) 2969 return ret_val; 2970 } 2971 2972 return e1000e_validate_nvm_checksum_generic(hw); 2973 } 2974 2975 /** 2976 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only 2977 * @hw: pointer to the HW structure 2978 * 2979 * To prevent malicious write/erase of the NVM, set it to be read-only 2980 * so that the hardware ignores all write/erase cycles of the NVM via 2981 * the flash control registers. The shadow-ram copy of the NVM will 2982 * still be updated, however any updates to this copy will not stick 2983 * across driver reloads. 2984 **/ 2985 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw) 2986 { 2987 struct e1000_nvm_info *nvm = &hw->nvm; 2988 union ich8_flash_protected_range pr0; 2989 union ich8_hws_flash_status hsfsts; 2990 u32 gfpreg; 2991 2992 nvm->ops.acquire(hw); 2993 2994 gfpreg = er32flash(ICH_FLASH_GFPREG); 2995 2996 /* Write-protect GbE Sector of NVM */ 2997 pr0.regval = er32flash(ICH_FLASH_PR0); 2998 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK; 2999 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK); 3000 pr0.range.wpe = true; 3001 ew32flash(ICH_FLASH_PR0, pr0.regval); 3002 3003 /* Lock down a subset of GbE Flash Control Registers, e.g. 3004 * PR0 to prevent the write-protection from being lifted. 3005 * Once FLOCKDN is set, the registers protected by it cannot 3006 * be written until FLOCKDN is cleared by a hardware reset. 3007 */ 3008 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3009 hsfsts.hsf_status.flockdn = true; 3010 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval); 3011 3012 nvm->ops.release(hw); 3013 } 3014 3015 /** 3016 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM 3017 * @hw: pointer to the HW structure 3018 * @offset: The offset (in bytes) of the byte/word to read. 3019 * @size: Size of data to read, 1=byte 2=word 3020 * @data: The byte(s) to write to the NVM. 3021 * 3022 * Writes one/two bytes to the NVM using the flash access registers. 3023 **/ 3024 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 3025 u8 size, u16 data) 3026 { 3027 union ich8_hws_flash_status hsfsts; 3028 union ich8_hws_flash_ctrl hsflctl; 3029 u32 flash_linear_addr; 3030 u32 flash_data = 0; 3031 s32 ret_val; 3032 u8 count = 0; 3033 3034 if (size < 1 || size > 2 || data > size * 0xff || 3035 offset > ICH_FLASH_LINEAR_ADDR_MASK) 3036 return -E1000_ERR_NVM; 3037 3038 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) + 3039 hw->nvm.flash_base_addr; 3040 3041 do { 3042 udelay(1); 3043 /* Steps */ 3044 ret_val = e1000_flash_cycle_init_ich8lan(hw); 3045 if (ret_val) 3046 break; 3047 3048 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 3049 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ 3050 hsflctl.hsf_ctrl.fldbcount = size -1; 3051 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; 3052 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 3053 3054 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 3055 3056 if (size == 1) 3057 flash_data = (u32)data & 0x00FF; 3058 else 3059 flash_data = (u32)data; 3060 3061 ew32flash(ICH_FLASH_FDATA0, flash_data); 3062 3063 /* check if FCERR is set to 1 , if set to 1, clear it 3064 * and try the whole sequence a few more times else done 3065 */ 3066 ret_val = e1000_flash_cycle_ich8lan(hw, 3067 ICH_FLASH_WRITE_COMMAND_TIMEOUT); 3068 if (!ret_val) 3069 break; 3070 3071 /* If we're here, then things are most likely 3072 * completely hosed, but if the error condition 3073 * is detected, it won't hurt to give it another 3074 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. 3075 */ 3076 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3077 if (hsfsts.hsf_status.flcerr) 3078 /* Repeat for some time before giving up. */ 3079 continue; 3080 if (!hsfsts.hsf_status.flcdone) { 3081 e_dbg("Timeout error - flash cycle did not complete.\n"); 3082 break; 3083 } 3084 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 3085 3086 return ret_val; 3087 } 3088 3089 /** 3090 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM 3091 * @hw: pointer to the HW structure 3092 * @offset: The index of the byte to read. 3093 * @data: The byte to write to the NVM. 3094 * 3095 * Writes a single byte to the NVM using the flash access registers. 3096 **/ 3097 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, 3098 u8 data) 3099 { 3100 u16 word = (u16)data; 3101 3102 return e1000_write_flash_data_ich8lan(hw, offset, 1, word); 3103 } 3104 3105 /** 3106 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM 3107 * @hw: pointer to the HW structure 3108 * @offset: The offset of the byte to write. 3109 * @byte: The byte to write to the NVM. 3110 * 3111 * Writes a single byte to the NVM using the flash access registers. 3112 * Goes through a retry algorithm before giving up. 3113 **/ 3114 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, 3115 u32 offset, u8 byte) 3116 { 3117 s32 ret_val; 3118 u16 program_retries; 3119 3120 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); 3121 if (!ret_val) 3122 return ret_val; 3123 3124 for (program_retries = 0; program_retries < 100; program_retries++) { 3125 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset); 3126 udelay(100); 3127 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); 3128 if (!ret_val) 3129 break; 3130 } 3131 if (program_retries == 100) 3132 return -E1000_ERR_NVM; 3133 3134 return 0; 3135 } 3136 3137 /** 3138 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM 3139 * @hw: pointer to the HW structure 3140 * @bank: 0 for first bank, 1 for second bank, etc. 3141 * 3142 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based. 3143 * bank N is 4096 * N + flash_reg_addr. 3144 **/ 3145 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank) 3146 { 3147 struct e1000_nvm_info *nvm = &hw->nvm; 3148 union ich8_hws_flash_status hsfsts; 3149 union ich8_hws_flash_ctrl hsflctl; 3150 u32 flash_linear_addr; 3151 /* bank size is in 16bit words - adjust to bytes */ 3152 u32 flash_bank_size = nvm->flash_bank_size * 2; 3153 s32 ret_val; 3154 s32 count = 0; 3155 s32 j, iteration, sector_size; 3156 3157 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3158 3159 /* Determine HW Sector size: Read BERASE bits of hw flash status 3160 * register 3161 * 00: The Hw sector is 256 bytes, hence we need to erase 16 3162 * consecutive sectors. The start index for the nth Hw sector 3163 * can be calculated as = bank * 4096 + n * 256 3164 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. 3165 * The start index for the nth Hw sector can be calculated 3166 * as = bank * 4096 3167 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192 3168 * (ich9 only, otherwise error condition) 3169 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536 3170 */ 3171 switch (hsfsts.hsf_status.berasesz) { 3172 case 0: 3173 /* Hw sector size 256 */ 3174 sector_size = ICH_FLASH_SEG_SIZE_256; 3175 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256; 3176 break; 3177 case 1: 3178 sector_size = ICH_FLASH_SEG_SIZE_4K; 3179 iteration = 1; 3180 break; 3181 case 2: 3182 sector_size = ICH_FLASH_SEG_SIZE_8K; 3183 iteration = 1; 3184 break; 3185 case 3: 3186 sector_size = ICH_FLASH_SEG_SIZE_64K; 3187 iteration = 1; 3188 break; 3189 default: 3190 return -E1000_ERR_NVM; 3191 } 3192 3193 /* Start with the base address, then add the sector offset. */ 3194 flash_linear_addr = hw->nvm.flash_base_addr; 3195 flash_linear_addr += (bank) ? flash_bank_size : 0; 3196 3197 for (j = 0; j < iteration ; j++) { 3198 do { 3199 /* Steps */ 3200 ret_val = e1000_flash_cycle_init_ich8lan(hw); 3201 if (ret_val) 3202 return ret_val; 3203 3204 /* Write a value 11 (block Erase) in Flash 3205 * Cycle field in hw flash control 3206 */ 3207 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 3208 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; 3209 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 3210 3211 /* Write the last 24 bits of an index within the 3212 * block into Flash Linear address field in Flash 3213 * Address. 3214 */ 3215 flash_linear_addr += (j * sector_size); 3216 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 3217 3218 ret_val = e1000_flash_cycle_ich8lan(hw, 3219 ICH_FLASH_ERASE_COMMAND_TIMEOUT); 3220 if (!ret_val) 3221 break; 3222 3223 /* Check if FCERR is set to 1. If 1, 3224 * clear it and try the whole sequence 3225 * a few more times else Done 3226 */ 3227 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3228 if (hsfsts.hsf_status.flcerr) 3229 /* repeat for some time before giving up */ 3230 continue; 3231 else if (!hsfsts.hsf_status.flcdone) 3232 return ret_val; 3233 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT); 3234 } 3235 3236 return 0; 3237 } 3238 3239 /** 3240 * e1000_valid_led_default_ich8lan - Set the default LED settings 3241 * @hw: pointer to the HW structure 3242 * @data: Pointer to the LED settings 3243 * 3244 * Reads the LED default settings from the NVM to data. If the NVM LED 3245 * settings is all 0's or F's, set the LED default to a valid LED default 3246 * setting. 3247 **/ 3248 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data) 3249 { 3250 s32 ret_val; 3251 3252 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); 3253 if (ret_val) { 3254 e_dbg("NVM Read Error\n"); 3255 return ret_val; 3256 } 3257 3258 if (*data == ID_LED_RESERVED_0000 || 3259 *data == ID_LED_RESERVED_FFFF) 3260 *data = ID_LED_DEFAULT_ICH8LAN; 3261 3262 return 0; 3263 } 3264 3265 /** 3266 * e1000_id_led_init_pchlan - store LED configurations 3267 * @hw: pointer to the HW structure 3268 * 3269 * PCH does not control LEDs via the LEDCTL register, rather it uses 3270 * the PHY LED configuration register. 3271 * 3272 * PCH also does not have an "always on" or "always off" mode which 3273 * complicates the ID feature. Instead of using the "on" mode to indicate 3274 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()), 3275 * use "link_up" mode. The LEDs will still ID on request if there is no 3276 * link based on logic in e1000_led_[on|off]_pchlan(). 3277 **/ 3278 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw) 3279 { 3280 struct e1000_mac_info *mac = &hw->mac; 3281 s32 ret_val; 3282 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP; 3283 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT; 3284 u16 data, i, temp, shift; 3285 3286 /* Get default ID LED modes */ 3287 ret_val = hw->nvm.ops.valid_led_default(hw, &data); 3288 if (ret_val) 3289 return ret_val; 3290 3291 mac->ledctl_default = er32(LEDCTL); 3292 mac->ledctl_mode1 = mac->ledctl_default; 3293 mac->ledctl_mode2 = mac->ledctl_default; 3294 3295 for (i = 0; i < 4; i++) { 3296 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK; 3297 shift = (i * 5); 3298 switch (temp) { 3299 case ID_LED_ON1_DEF2: 3300 case ID_LED_ON1_ON2: 3301 case ID_LED_ON1_OFF2: 3302 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); 3303 mac->ledctl_mode1 |= (ledctl_on << shift); 3304 break; 3305 case ID_LED_OFF1_DEF2: 3306 case ID_LED_OFF1_ON2: 3307 case ID_LED_OFF1_OFF2: 3308 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); 3309 mac->ledctl_mode1 |= (ledctl_off << shift); 3310 break; 3311 default: 3312 /* Do nothing */ 3313 break; 3314 } 3315 switch (temp) { 3316 case ID_LED_DEF1_ON2: 3317 case ID_LED_ON1_ON2: 3318 case ID_LED_OFF1_ON2: 3319 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); 3320 mac->ledctl_mode2 |= (ledctl_on << shift); 3321 break; 3322 case ID_LED_DEF1_OFF2: 3323 case ID_LED_ON1_OFF2: 3324 case ID_LED_OFF1_OFF2: 3325 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); 3326 mac->ledctl_mode2 |= (ledctl_off << shift); 3327 break; 3328 default: 3329 /* Do nothing */ 3330 break; 3331 } 3332 } 3333 3334 return 0; 3335 } 3336 3337 /** 3338 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width 3339 * @hw: pointer to the HW structure 3340 * 3341 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability 3342 * register, so the the bus width is hard coded. 3343 **/ 3344 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw) 3345 { 3346 struct e1000_bus_info *bus = &hw->bus; 3347 s32 ret_val; 3348 3349 ret_val = e1000e_get_bus_info_pcie(hw); 3350 3351 /* ICH devices are "PCI Express"-ish. They have 3352 * a configuration space, but do not contain 3353 * PCI Express Capability registers, so bus width 3354 * must be hardcoded. 3355 */ 3356 if (bus->width == e1000_bus_width_unknown) 3357 bus->width = e1000_bus_width_pcie_x1; 3358 3359 return ret_val; 3360 } 3361 3362 /** 3363 * e1000_reset_hw_ich8lan - Reset the hardware 3364 * @hw: pointer to the HW structure 3365 * 3366 * Does a full reset of the hardware which includes a reset of the PHY and 3367 * MAC. 3368 **/ 3369 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw) 3370 { 3371 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3372 u16 kum_cfg; 3373 u32 ctrl, reg; 3374 s32 ret_val; 3375 3376 /* Prevent the PCI-E bus from sticking if there is no TLP connection 3377 * on the last TLP read/write transaction when MAC is reset. 3378 */ 3379 ret_val = e1000e_disable_pcie_master(hw); 3380 if (ret_val) 3381 e_dbg("PCI-E Master disable polling has failed.\n"); 3382 3383 e_dbg("Masking off all interrupts\n"); 3384 ew32(IMC, 0xffffffff); 3385 3386 /* Disable the Transmit and Receive units. Then delay to allow 3387 * any pending transactions to complete before we hit the MAC 3388 * with the global reset. 3389 */ 3390 ew32(RCTL, 0); 3391 ew32(TCTL, E1000_TCTL_PSP); 3392 e1e_flush(); 3393 3394 usleep_range(10000, 20000); 3395 3396 /* Workaround for ICH8 bit corruption issue in FIFO memory */ 3397 if (hw->mac.type == e1000_ich8lan) { 3398 /* Set Tx and Rx buffer allocation to 8k apiece. */ 3399 ew32(PBA, E1000_PBA_8K); 3400 /* Set Packet Buffer Size to 16k. */ 3401 ew32(PBS, E1000_PBS_16K); 3402 } 3403 3404 if (hw->mac.type == e1000_pchlan) { 3405 /* Save the NVM K1 bit setting */ 3406 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg); 3407 if (ret_val) 3408 return ret_val; 3409 3410 if (kum_cfg & E1000_NVM_K1_ENABLE) 3411 dev_spec->nvm_k1_enabled = true; 3412 else 3413 dev_spec->nvm_k1_enabled = false; 3414 } 3415 3416 ctrl = er32(CTRL); 3417 3418 if (!hw->phy.ops.check_reset_block(hw)) { 3419 /* Full-chip reset requires MAC and PHY reset at the same 3420 * time to make sure the interface between MAC and the 3421 * external PHY is reset. 3422 */ 3423 ctrl |= E1000_CTRL_PHY_RST; 3424 3425 /* Gate automatic PHY configuration by hardware on 3426 * non-managed 82579 3427 */ 3428 if ((hw->mac.type == e1000_pch2lan) && 3429 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) 3430 e1000_gate_hw_phy_config_ich8lan(hw, true); 3431 } 3432 ret_val = e1000_acquire_swflag_ich8lan(hw); 3433 e_dbg("Issuing a global reset to ich8lan\n"); 3434 ew32(CTRL, (ctrl | E1000_CTRL_RST)); 3435 /* cannot issue a flush here because it hangs the hardware */ 3436 msleep(20); 3437 3438 /* Set Phy Config Counter to 50msec */ 3439 if (hw->mac.type == e1000_pch2lan) { 3440 reg = er32(FEXTNVM3); 3441 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; 3442 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; 3443 ew32(FEXTNVM3, reg); 3444 } 3445 3446 if (!ret_val) 3447 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); 3448 3449 if (ctrl & E1000_CTRL_PHY_RST) { 3450 ret_val = hw->phy.ops.get_cfg_done(hw); 3451 if (ret_val) 3452 return ret_val; 3453 3454 ret_val = e1000_post_phy_reset_ich8lan(hw); 3455 if (ret_val) 3456 return ret_val; 3457 } 3458 3459 /* For PCH, this write will make sure that any noise 3460 * will be detected as a CRC error and be dropped rather than show up 3461 * as a bad packet to the DMA engine. 3462 */ 3463 if (hw->mac.type == e1000_pchlan) 3464 ew32(CRC_OFFSET, 0x65656565); 3465 3466 ew32(IMC, 0xffffffff); 3467 er32(ICR); 3468 3469 reg = er32(KABGTXD); 3470 reg |= E1000_KABGTXD_BGSQLBIAS; 3471 ew32(KABGTXD, reg); 3472 3473 return 0; 3474 } 3475 3476 /** 3477 * e1000_init_hw_ich8lan - Initialize the hardware 3478 * @hw: pointer to the HW structure 3479 * 3480 * Prepares the hardware for transmit and receive by doing the following: 3481 * - initialize hardware bits 3482 * - initialize LED identification 3483 * - setup receive address registers 3484 * - setup flow control 3485 * - setup transmit descriptors 3486 * - clear statistics 3487 **/ 3488 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw) 3489 { 3490 struct e1000_mac_info *mac = &hw->mac; 3491 u32 ctrl_ext, txdctl, snoop; 3492 s32 ret_val; 3493 u16 i; 3494 3495 e1000_initialize_hw_bits_ich8lan(hw); 3496 3497 /* Initialize identification LED */ 3498 ret_val = mac->ops.id_led_init(hw); 3499 if (ret_val) 3500 e_dbg("Error initializing identification LED\n"); 3501 /* This is not fatal and we should not stop init due to this */ 3502 3503 /* Setup the receive address. */ 3504 e1000e_init_rx_addrs(hw, mac->rar_entry_count); 3505 3506 /* Zero out the Multicast HASH table */ 3507 e_dbg("Zeroing the MTA\n"); 3508 for (i = 0; i < mac->mta_reg_count; i++) 3509 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); 3510 3511 /* The 82578 Rx buffer will stall if wakeup is enabled in host and 3512 * the ME. Disable wakeup by clearing the host wakeup bit. 3513 * Reset the phy after disabling host wakeup to reset the Rx buffer. 3514 */ 3515 if (hw->phy.type == e1000_phy_82578) { 3516 e1e_rphy(hw, BM_PORT_GEN_CFG, &i); 3517 i &= ~BM_WUC_HOST_WU_BIT; 3518 e1e_wphy(hw, BM_PORT_GEN_CFG, i); 3519 ret_val = e1000_phy_hw_reset_ich8lan(hw); 3520 if (ret_val) 3521 return ret_val; 3522 } 3523 3524 /* Setup link and flow control */ 3525 ret_val = mac->ops.setup_link(hw); 3526 3527 /* Set the transmit descriptor write-back policy for both queues */ 3528 txdctl = er32(TXDCTL(0)); 3529 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) | 3530 E1000_TXDCTL_FULL_TX_DESC_WB; 3531 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) | 3532 E1000_TXDCTL_MAX_TX_DESC_PREFETCH; 3533 ew32(TXDCTL(0), txdctl); 3534 txdctl = er32(TXDCTL(1)); 3535 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) | 3536 E1000_TXDCTL_FULL_TX_DESC_WB; 3537 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) | 3538 E1000_TXDCTL_MAX_TX_DESC_PREFETCH; 3539 ew32(TXDCTL(1), txdctl); 3540 3541 /* ICH8 has opposite polarity of no_snoop bits. 3542 * By default, we should use snoop behavior. 3543 */ 3544 if (mac->type == e1000_ich8lan) 3545 snoop = PCIE_ICH8_SNOOP_ALL; 3546 else 3547 snoop = (u32) ~(PCIE_NO_SNOOP_ALL); 3548 e1000e_set_pcie_no_snoop(hw, snoop); 3549 3550 ctrl_ext = er32(CTRL_EXT); 3551 ctrl_ext |= E1000_CTRL_EXT_RO_DIS; 3552 ew32(CTRL_EXT, ctrl_ext); 3553 3554 /* Clear all of the statistics registers (clear on read). It is 3555 * important that we do this after we have tried to establish link 3556 * because the symbol error count will increment wildly if there 3557 * is no link. 3558 */ 3559 e1000_clear_hw_cntrs_ich8lan(hw); 3560 3561 return ret_val; 3562 } 3563 /** 3564 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits 3565 * @hw: pointer to the HW structure 3566 * 3567 * Sets/Clears required hardware bits necessary for correctly setting up the 3568 * hardware for transmit and receive. 3569 **/ 3570 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw) 3571 { 3572 u32 reg; 3573 3574 /* Extended Device Control */ 3575 reg = er32(CTRL_EXT); 3576 reg |= (1 << 22); 3577 /* Enable PHY low-power state when MAC is at D3 w/o WoL */ 3578 if (hw->mac.type >= e1000_pchlan) 3579 reg |= E1000_CTRL_EXT_PHYPDEN; 3580 ew32(CTRL_EXT, reg); 3581 3582 /* Transmit Descriptor Control 0 */ 3583 reg = er32(TXDCTL(0)); 3584 reg |= (1 << 22); 3585 ew32(TXDCTL(0), reg); 3586 3587 /* Transmit Descriptor Control 1 */ 3588 reg = er32(TXDCTL(1)); 3589 reg |= (1 << 22); 3590 ew32(TXDCTL(1), reg); 3591 3592 /* Transmit Arbitration Control 0 */ 3593 reg = er32(TARC(0)); 3594 if (hw->mac.type == e1000_ich8lan) 3595 reg |= (1 << 28) | (1 << 29); 3596 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27); 3597 ew32(TARC(0), reg); 3598 3599 /* Transmit Arbitration Control 1 */ 3600 reg = er32(TARC(1)); 3601 if (er32(TCTL) & E1000_TCTL_MULR) 3602 reg &= ~(1 << 28); 3603 else 3604 reg |= (1 << 28); 3605 reg |= (1 << 24) | (1 << 26) | (1 << 30); 3606 ew32(TARC(1), reg); 3607 3608 /* Device Status */ 3609 if (hw->mac.type == e1000_ich8lan) { 3610 reg = er32(STATUS); 3611 reg &= ~(1 << 31); 3612 ew32(STATUS, reg); 3613 } 3614 3615 /* work-around descriptor data corruption issue during nfs v2 udp 3616 * traffic, just disable the nfs filtering capability 3617 */ 3618 reg = er32(RFCTL); 3619 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS); 3620 3621 /* Disable IPv6 extension header parsing because some malformed 3622 * IPv6 headers can hang the Rx. 3623 */ 3624 if (hw->mac.type == e1000_ich8lan) 3625 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS); 3626 ew32(RFCTL, reg); 3627 } 3628 3629 /** 3630 * e1000_setup_link_ich8lan - Setup flow control and link settings 3631 * @hw: pointer to the HW structure 3632 * 3633 * Determines which flow control settings to use, then configures flow 3634 * control. Calls the appropriate media-specific link configuration 3635 * function. Assuming the adapter has a valid link partner, a valid link 3636 * should be established. Assumes the hardware has previously been reset 3637 * and the transmitter and receiver are not enabled. 3638 **/ 3639 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw) 3640 { 3641 s32 ret_val; 3642 3643 if (hw->phy.ops.check_reset_block(hw)) 3644 return 0; 3645 3646 /* ICH parts do not have a word in the NVM to determine 3647 * the default flow control setting, so we explicitly 3648 * set it to full. 3649 */ 3650 if (hw->fc.requested_mode == e1000_fc_default) { 3651 /* Workaround h/w hang when Tx flow control enabled */ 3652 if (hw->mac.type == e1000_pchlan) 3653 hw->fc.requested_mode = e1000_fc_rx_pause; 3654 else 3655 hw->fc.requested_mode = e1000_fc_full; 3656 } 3657 3658 /* Save off the requested flow control mode for use later. Depending 3659 * on the link partner's capabilities, we may or may not use this mode. 3660 */ 3661 hw->fc.current_mode = hw->fc.requested_mode; 3662 3663 e_dbg("After fix-ups FlowControl is now = %x\n", 3664 hw->fc.current_mode); 3665 3666 /* Continue to configure the copper link. */ 3667 ret_val = hw->mac.ops.setup_physical_interface(hw); 3668 if (ret_val) 3669 return ret_val; 3670 3671 ew32(FCTTV, hw->fc.pause_time); 3672 if ((hw->phy.type == e1000_phy_82578) || 3673 (hw->phy.type == e1000_phy_82579) || 3674 (hw->phy.type == e1000_phy_i217) || 3675 (hw->phy.type == e1000_phy_82577)) { 3676 ew32(FCRTV_PCH, hw->fc.refresh_time); 3677 3678 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27), 3679 hw->fc.pause_time); 3680 if (ret_val) 3681 return ret_val; 3682 } 3683 3684 return e1000e_set_fc_watermarks(hw); 3685 } 3686 3687 /** 3688 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface 3689 * @hw: pointer to the HW structure 3690 * 3691 * Configures the kumeran interface to the PHY to wait the appropriate time 3692 * when polling the PHY, then call the generic setup_copper_link to finish 3693 * configuring the copper link. 3694 **/ 3695 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw) 3696 { 3697 u32 ctrl; 3698 s32 ret_val; 3699 u16 reg_data; 3700 3701 ctrl = er32(CTRL); 3702 ctrl |= E1000_CTRL_SLU; 3703 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 3704 ew32(CTRL, ctrl); 3705 3706 /* Set the mac to wait the maximum time between each iteration 3707 * and increase the max iterations when polling the phy; 3708 * this fixes erroneous timeouts at 10Mbps. 3709 */ 3710 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF); 3711 if (ret_val) 3712 return ret_val; 3713 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, 3714 ®_data); 3715 if (ret_val) 3716 return ret_val; 3717 reg_data |= 0x3F; 3718 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, 3719 reg_data); 3720 if (ret_val) 3721 return ret_val; 3722 3723 switch (hw->phy.type) { 3724 case e1000_phy_igp_3: 3725 ret_val = e1000e_copper_link_setup_igp(hw); 3726 if (ret_val) 3727 return ret_val; 3728 break; 3729 case e1000_phy_bm: 3730 case e1000_phy_82578: 3731 ret_val = e1000e_copper_link_setup_m88(hw); 3732 if (ret_val) 3733 return ret_val; 3734 break; 3735 case e1000_phy_82577: 3736 case e1000_phy_82579: 3737 case e1000_phy_i217: 3738 ret_val = e1000_copper_link_setup_82577(hw); 3739 if (ret_val) 3740 return ret_val; 3741 break; 3742 case e1000_phy_ife: 3743 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, ®_data); 3744 if (ret_val) 3745 return ret_val; 3746 3747 reg_data &= ~IFE_PMC_AUTO_MDIX; 3748 3749 switch (hw->phy.mdix) { 3750 case 1: 3751 reg_data &= ~IFE_PMC_FORCE_MDIX; 3752 break; 3753 case 2: 3754 reg_data |= IFE_PMC_FORCE_MDIX; 3755 break; 3756 case 0: 3757 default: 3758 reg_data |= IFE_PMC_AUTO_MDIX; 3759 break; 3760 } 3761 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data); 3762 if (ret_val) 3763 return ret_val; 3764 break; 3765 default: 3766 break; 3767 } 3768 3769 return e1000e_setup_copper_link(hw); 3770 } 3771 3772 /** 3773 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex 3774 * @hw: pointer to the HW structure 3775 * @speed: pointer to store current link speed 3776 * @duplex: pointer to store the current link duplex 3777 * 3778 * Calls the generic get_speed_and_duplex to retrieve the current link 3779 * information and then calls the Kumeran lock loss workaround for links at 3780 * gigabit speeds. 3781 **/ 3782 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed, 3783 u16 *duplex) 3784 { 3785 s32 ret_val; 3786 3787 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex); 3788 if (ret_val) 3789 return ret_val; 3790 3791 if ((hw->mac.type == e1000_ich8lan) && 3792 (hw->phy.type == e1000_phy_igp_3) && 3793 (*speed == SPEED_1000)) { 3794 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw); 3795 } 3796 3797 return ret_val; 3798 } 3799 3800 /** 3801 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround 3802 * @hw: pointer to the HW structure 3803 * 3804 * Work-around for 82566 Kumeran PCS lock loss: 3805 * On link status change (i.e. PCI reset, speed change) and link is up and 3806 * speed is gigabit- 3807 * 0) if workaround is optionally disabled do nothing 3808 * 1) wait 1ms for Kumeran link to come up 3809 * 2) check Kumeran Diagnostic register PCS lock loss bit 3810 * 3) if not set the link is locked (all is good), otherwise... 3811 * 4) reset the PHY 3812 * 5) repeat up to 10 times 3813 * Note: this is only called for IGP3 copper when speed is 1gb. 3814 **/ 3815 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw) 3816 { 3817 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3818 u32 phy_ctrl; 3819 s32 ret_val; 3820 u16 i, data; 3821 bool link; 3822 3823 if (!dev_spec->kmrn_lock_loss_workaround_enabled) 3824 return 0; 3825 3826 /* Make sure link is up before proceeding. If not just return. 3827 * Attempting this while link is negotiating fouled up link 3828 * stability 3829 */ 3830 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 3831 if (!link) 3832 return 0; 3833 3834 for (i = 0; i < 10; i++) { 3835 /* read once to clear */ 3836 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); 3837 if (ret_val) 3838 return ret_val; 3839 /* and again to get new status */ 3840 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); 3841 if (ret_val) 3842 return ret_val; 3843 3844 /* check for PCS lock */ 3845 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) 3846 return 0; 3847 3848 /* Issue PHY reset */ 3849 e1000_phy_hw_reset(hw); 3850 mdelay(5); 3851 } 3852 /* Disable GigE link negotiation */ 3853 phy_ctrl = er32(PHY_CTRL); 3854 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE | 3855 E1000_PHY_CTRL_NOND0A_GBE_DISABLE); 3856 ew32(PHY_CTRL, phy_ctrl); 3857 3858 /* Call gig speed drop workaround on Gig disable before accessing 3859 * any PHY registers 3860 */ 3861 e1000e_gig_downshift_workaround_ich8lan(hw); 3862 3863 /* unable to acquire PCS lock */ 3864 return -E1000_ERR_PHY; 3865 } 3866 3867 /** 3868 * e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state 3869 * @hw: pointer to the HW structure 3870 * @state: boolean value used to set the current Kumeran workaround state 3871 * 3872 * If ICH8, set the current Kumeran workaround state (enabled - true 3873 * /disabled - false). 3874 **/ 3875 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw, 3876 bool state) 3877 { 3878 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3879 3880 if (hw->mac.type != e1000_ich8lan) { 3881 e_dbg("Workaround applies to ICH8 only.\n"); 3882 return; 3883 } 3884 3885 dev_spec->kmrn_lock_loss_workaround_enabled = state; 3886 } 3887 3888 /** 3889 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3 3890 * @hw: pointer to the HW structure 3891 * 3892 * Workaround for 82566 power-down on D3 entry: 3893 * 1) disable gigabit link 3894 * 2) write VR power-down enable 3895 * 3) read it back 3896 * Continue if successful, else issue LCD reset and repeat 3897 **/ 3898 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw) 3899 { 3900 u32 reg; 3901 u16 data; 3902 u8 retry = 0; 3903 3904 if (hw->phy.type != e1000_phy_igp_3) 3905 return; 3906 3907 /* Try the workaround twice (if needed) */ 3908 do { 3909 /* Disable link */ 3910 reg = er32(PHY_CTRL); 3911 reg |= (E1000_PHY_CTRL_GBE_DISABLE | 3912 E1000_PHY_CTRL_NOND0A_GBE_DISABLE); 3913 ew32(PHY_CTRL, reg); 3914 3915 /* Call gig speed drop workaround on Gig disable before 3916 * accessing any PHY registers 3917 */ 3918 if (hw->mac.type == e1000_ich8lan) 3919 e1000e_gig_downshift_workaround_ich8lan(hw); 3920 3921 /* Write VR power-down enable */ 3922 e1e_rphy(hw, IGP3_VR_CTRL, &data); 3923 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; 3924 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN); 3925 3926 /* Read it back and test */ 3927 e1e_rphy(hw, IGP3_VR_CTRL, &data); 3928 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; 3929 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry) 3930 break; 3931 3932 /* Issue PHY reset and repeat at most one more time */ 3933 reg = er32(CTRL); 3934 ew32(CTRL, reg | E1000_CTRL_PHY_RST); 3935 retry++; 3936 } while (retry); 3937 } 3938 3939 /** 3940 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working 3941 * @hw: pointer to the HW structure 3942 * 3943 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC), 3944 * LPLU, Gig disable, MDIC PHY reset): 3945 * 1) Set Kumeran Near-end loopback 3946 * 2) Clear Kumeran Near-end loopback 3947 * Should only be called for ICH8[m] devices with any 1G Phy. 3948 **/ 3949 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw) 3950 { 3951 s32 ret_val; 3952 u16 reg_data; 3953 3954 if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife)) 3955 return; 3956 3957 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, 3958 ®_data); 3959 if (ret_val) 3960 return; 3961 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK; 3962 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, 3963 reg_data); 3964 if (ret_val) 3965 return; 3966 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK; 3967 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, 3968 reg_data); 3969 } 3970 3971 /** 3972 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx 3973 * @hw: pointer to the HW structure 3974 * 3975 * During S0 to Sx transition, it is possible the link remains at gig 3976 * instead of negotiating to a lower speed. Before going to Sx, set 3977 * 'Gig Disable' to force link speed negotiation to a lower speed based on 3978 * the LPLU setting in the NVM or custom setting. For PCH and newer parts, 3979 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also 3980 * needs to be written. 3981 * Parts that support (and are linked to a partner which support) EEE in 3982 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power 3983 * than 10Mbps w/o EEE. 3984 **/ 3985 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw) 3986 { 3987 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3988 u32 phy_ctrl; 3989 s32 ret_val; 3990 3991 phy_ctrl = er32(PHY_CTRL); 3992 phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE; 3993 if (hw->phy.type == e1000_phy_i217) { 3994 u16 phy_reg; 3995 3996 ret_val = hw->phy.ops.acquire(hw); 3997 if (ret_val) 3998 goto out; 3999 4000 if (!dev_spec->eee_disable) { 4001 u16 eee_advert; 4002 4003 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, 4004 I217_EEE_ADVERTISEMENT); 4005 if (ret_val) 4006 goto release; 4007 e1e_rphy_locked(hw, I82579_EMI_DATA, &eee_advert); 4008 4009 /* Disable LPLU if both link partners support 100BaseT 4010 * EEE and 100Full is advertised on both ends of the 4011 * link. 4012 */ 4013 if ((eee_advert & I217_EEE_100_SUPPORTED) && 4014 (dev_spec->eee_lp_ability & 4015 I217_EEE_100_SUPPORTED) && 4016 (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) 4017 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU | 4018 E1000_PHY_CTRL_NOND0A_LPLU); 4019 } 4020 4021 /* For i217 Intel Rapid Start Technology support, 4022 * when the system is going into Sx and no manageability engine 4023 * is present, the driver must configure proxy to reset only on 4024 * power good. LPI (Low Power Idle) state must also reset only 4025 * on power good, as well as the MTA (Multicast table array). 4026 * The SMBus release must also be disabled on LCD reset. 4027 */ 4028 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 4029 4030 /* Enable proxy to reset only on power good. */ 4031 e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg); 4032 phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE; 4033 e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg); 4034 4035 /* Set bit enable LPI (EEE) to reset only on 4036 * power good. 4037 */ 4038 e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg); 4039 phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET; 4040 e1e_wphy_locked(hw, I217_SxCTRL, phy_reg); 4041 4042 /* Disable the SMB release on LCD reset. */ 4043 e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg); 4044 phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE; 4045 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg); 4046 } 4047 4048 /* Enable MTA to reset for Intel Rapid Start Technology 4049 * Support 4050 */ 4051 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg); 4052 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET; 4053 e1e_wphy_locked(hw, I217_CGFREG, phy_reg); 4054 4055 release: 4056 hw->phy.ops.release(hw); 4057 } 4058 out: 4059 ew32(PHY_CTRL, phy_ctrl); 4060 4061 if (hw->mac.type == e1000_ich8lan) 4062 e1000e_gig_downshift_workaround_ich8lan(hw); 4063 4064 if (hw->mac.type >= e1000_pchlan) { 4065 e1000_oem_bits_config_ich8lan(hw, false); 4066 4067 /* Reset PHY to activate OEM bits on 82577/8 */ 4068 if (hw->mac.type == e1000_pchlan) 4069 e1000e_phy_hw_reset_generic(hw); 4070 4071 ret_val = hw->phy.ops.acquire(hw); 4072 if (ret_val) 4073 return; 4074 e1000_write_smbus_addr(hw); 4075 hw->phy.ops.release(hw); 4076 } 4077 } 4078 4079 /** 4080 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0 4081 * @hw: pointer to the HW structure 4082 * 4083 * During Sx to S0 transitions on non-managed devices or managed devices 4084 * on which PHY resets are not blocked, if the PHY registers cannot be 4085 * accessed properly by the s/w toggle the LANPHYPC value to power cycle 4086 * the PHY. 4087 * On i217, setup Intel Rapid Start Technology. 4088 **/ 4089 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw) 4090 { 4091 s32 ret_val; 4092 4093 if (hw->mac.type < e1000_pch2lan) 4094 return; 4095 4096 ret_val = e1000_init_phy_workarounds_pchlan(hw); 4097 if (ret_val) { 4098 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val); 4099 return; 4100 } 4101 4102 /* For i217 Intel Rapid Start Technology support when the system 4103 * is transitioning from Sx and no manageability engine is present 4104 * configure SMBus to restore on reset, disable proxy, and enable 4105 * the reset on MTA (Multicast table array). 4106 */ 4107 if (hw->phy.type == e1000_phy_i217) { 4108 u16 phy_reg; 4109 4110 ret_val = hw->phy.ops.acquire(hw); 4111 if (ret_val) { 4112 e_dbg("Failed to setup iRST\n"); 4113 return; 4114 } 4115 4116 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 4117 /* Restore clear on SMB if no manageability engine 4118 * is present 4119 */ 4120 ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg); 4121 if (ret_val) 4122 goto release; 4123 phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE; 4124 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg); 4125 4126 /* Disable Proxy */ 4127 e1e_wphy_locked(hw, I217_PROXY_CTRL, 0); 4128 } 4129 /* Enable reset on MTA */ 4130 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg); 4131 if (ret_val) 4132 goto release; 4133 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET; 4134 e1e_wphy_locked(hw, I217_CGFREG, phy_reg); 4135 release: 4136 if (ret_val) 4137 e_dbg("Error %d in resume workarounds\n", ret_val); 4138 hw->phy.ops.release(hw); 4139 } 4140 } 4141 4142 /** 4143 * e1000_cleanup_led_ich8lan - Restore the default LED operation 4144 * @hw: pointer to the HW structure 4145 * 4146 * Return the LED back to the default configuration. 4147 **/ 4148 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw) 4149 { 4150 if (hw->phy.type == e1000_phy_ife) 4151 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); 4152 4153 ew32(LEDCTL, hw->mac.ledctl_default); 4154 return 0; 4155 } 4156 4157 /** 4158 * e1000_led_on_ich8lan - Turn LEDs on 4159 * @hw: pointer to the HW structure 4160 * 4161 * Turn on the LEDs. 4162 **/ 4163 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw) 4164 { 4165 if (hw->phy.type == e1000_phy_ife) 4166 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 4167 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); 4168 4169 ew32(LEDCTL, hw->mac.ledctl_mode2); 4170 return 0; 4171 } 4172 4173 /** 4174 * e1000_led_off_ich8lan - Turn LEDs off 4175 * @hw: pointer to the HW structure 4176 * 4177 * Turn off the LEDs. 4178 **/ 4179 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw) 4180 { 4181 if (hw->phy.type == e1000_phy_ife) 4182 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 4183 (IFE_PSCL_PROBE_MODE | 4184 IFE_PSCL_PROBE_LEDS_OFF)); 4185 4186 ew32(LEDCTL, hw->mac.ledctl_mode1); 4187 return 0; 4188 } 4189 4190 /** 4191 * e1000_setup_led_pchlan - Configures SW controllable LED 4192 * @hw: pointer to the HW structure 4193 * 4194 * This prepares the SW controllable LED for use. 4195 **/ 4196 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw) 4197 { 4198 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1); 4199 } 4200 4201 /** 4202 * e1000_cleanup_led_pchlan - Restore the default LED operation 4203 * @hw: pointer to the HW structure 4204 * 4205 * Return the LED back to the default configuration. 4206 **/ 4207 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw) 4208 { 4209 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default); 4210 } 4211 4212 /** 4213 * e1000_led_on_pchlan - Turn LEDs on 4214 * @hw: pointer to the HW structure 4215 * 4216 * Turn on the LEDs. 4217 **/ 4218 static s32 e1000_led_on_pchlan(struct e1000_hw *hw) 4219 { 4220 u16 data = (u16)hw->mac.ledctl_mode2; 4221 u32 i, led; 4222 4223 /* If no link, then turn LED on by setting the invert bit 4224 * for each LED that's mode is "link_up" in ledctl_mode2. 4225 */ 4226 if (!(er32(STATUS) & E1000_STATUS_LU)) { 4227 for (i = 0; i < 3; i++) { 4228 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; 4229 if ((led & E1000_PHY_LED0_MODE_MASK) != 4230 E1000_LEDCTL_MODE_LINK_UP) 4231 continue; 4232 if (led & E1000_PHY_LED0_IVRT) 4233 data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); 4234 else 4235 data |= (E1000_PHY_LED0_IVRT << (i * 5)); 4236 } 4237 } 4238 4239 return e1e_wphy(hw, HV_LED_CONFIG, data); 4240 } 4241 4242 /** 4243 * e1000_led_off_pchlan - Turn LEDs off 4244 * @hw: pointer to the HW structure 4245 * 4246 * Turn off the LEDs. 4247 **/ 4248 static s32 e1000_led_off_pchlan(struct e1000_hw *hw) 4249 { 4250 u16 data = (u16)hw->mac.ledctl_mode1; 4251 u32 i, led; 4252 4253 /* If no link, then turn LED off by clearing the invert bit 4254 * for each LED that's mode is "link_up" in ledctl_mode1. 4255 */ 4256 if (!(er32(STATUS) & E1000_STATUS_LU)) { 4257 for (i = 0; i < 3; i++) { 4258 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; 4259 if ((led & E1000_PHY_LED0_MODE_MASK) != 4260 E1000_LEDCTL_MODE_LINK_UP) 4261 continue; 4262 if (led & E1000_PHY_LED0_IVRT) 4263 data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); 4264 else 4265 data |= (E1000_PHY_LED0_IVRT << (i * 5)); 4266 } 4267 } 4268 4269 return e1e_wphy(hw, HV_LED_CONFIG, data); 4270 } 4271 4272 /** 4273 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset 4274 * @hw: pointer to the HW structure 4275 * 4276 * Read appropriate register for the config done bit for completion status 4277 * and configure the PHY through s/w for EEPROM-less parts. 4278 * 4279 * NOTE: some silicon which is EEPROM-less will fail trying to read the 4280 * config done bit, so only an error is logged and continues. If we were 4281 * to return with error, EEPROM-less silicon would not be able to be reset 4282 * or change link. 4283 **/ 4284 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw) 4285 { 4286 s32 ret_val = 0; 4287 u32 bank = 0; 4288 u32 status; 4289 4290 e1000e_get_cfg_done(hw); 4291 4292 /* Wait for indication from h/w that it has completed basic config */ 4293 if (hw->mac.type >= e1000_ich10lan) { 4294 e1000_lan_init_done_ich8lan(hw); 4295 } else { 4296 ret_val = e1000e_get_auto_rd_done(hw); 4297 if (ret_val) { 4298 /* When auto config read does not complete, do not 4299 * return with an error. This can happen in situations 4300 * where there is no eeprom and prevents getting link. 4301 */ 4302 e_dbg("Auto Read Done did not complete\n"); 4303 ret_val = 0; 4304 } 4305 } 4306 4307 /* Clear PHY Reset Asserted bit */ 4308 status = er32(STATUS); 4309 if (status & E1000_STATUS_PHYRA) 4310 ew32(STATUS, status & ~E1000_STATUS_PHYRA); 4311 else 4312 e_dbg("PHY Reset Asserted not set - needs delay\n"); 4313 4314 /* If EEPROM is not marked present, init the IGP 3 PHY manually */ 4315 if (hw->mac.type <= e1000_ich9lan) { 4316 if (!(er32(EECD) & E1000_EECD_PRES) && 4317 (hw->phy.type == e1000_phy_igp_3)) { 4318 e1000e_phy_init_script_igp3(hw); 4319 } 4320 } else { 4321 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) { 4322 /* Maybe we should do a basic PHY config */ 4323 e_dbg("EEPROM not present\n"); 4324 ret_val = -E1000_ERR_CONFIG; 4325 } 4326 } 4327 4328 return ret_val; 4329 } 4330 4331 /** 4332 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down 4333 * @hw: pointer to the HW structure 4334 * 4335 * In the case of a PHY power down to save power, or to turn off link during a 4336 * driver unload, or wake on lan is not enabled, remove the link. 4337 **/ 4338 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw) 4339 { 4340 /* If the management interface is not enabled, then power down */ 4341 if (!(hw->mac.ops.check_mng_mode(hw) || 4342 hw->phy.ops.check_reset_block(hw))) 4343 e1000_power_down_phy_copper(hw); 4344 } 4345 4346 /** 4347 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters 4348 * @hw: pointer to the HW structure 4349 * 4350 * Clears hardware counters specific to the silicon family and calls 4351 * clear_hw_cntrs_generic to clear all general purpose counters. 4352 **/ 4353 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw) 4354 { 4355 u16 phy_data; 4356 s32 ret_val; 4357 4358 e1000e_clear_hw_cntrs_base(hw); 4359 4360 er32(ALGNERRC); 4361 er32(RXERRC); 4362 er32(TNCRS); 4363 er32(CEXTERR); 4364 er32(TSCTC); 4365 er32(TSCTFC); 4366 4367 er32(MGTPRC); 4368 er32(MGTPDC); 4369 er32(MGTPTC); 4370 4371 er32(IAC); 4372 er32(ICRXOC); 4373 4374 /* Clear PHY statistics registers */ 4375 if ((hw->phy.type == e1000_phy_82578) || 4376 (hw->phy.type == e1000_phy_82579) || 4377 (hw->phy.type == e1000_phy_i217) || 4378 (hw->phy.type == e1000_phy_82577)) { 4379 ret_val = hw->phy.ops.acquire(hw); 4380 if (ret_val) 4381 return; 4382 ret_val = hw->phy.ops.set_page(hw, 4383 HV_STATS_PAGE << IGP_PAGE_SHIFT); 4384 if (ret_val) 4385 goto release; 4386 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data); 4387 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data); 4388 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data); 4389 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data); 4390 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data); 4391 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data); 4392 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data); 4393 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data); 4394 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data); 4395 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data); 4396 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data); 4397 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data); 4398 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data); 4399 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data); 4400 release: 4401 hw->phy.ops.release(hw); 4402 } 4403 } 4404 4405 static const struct e1000_mac_operations ich8_mac_ops = { 4406 /* check_mng_mode dependent on mac type */ 4407 .check_for_link = e1000_check_for_copper_link_ich8lan, 4408 /* cleanup_led dependent on mac type */ 4409 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan, 4410 .get_bus_info = e1000_get_bus_info_ich8lan, 4411 .set_lan_id = e1000_set_lan_id_single_port, 4412 .get_link_up_info = e1000_get_link_up_info_ich8lan, 4413 /* led_on dependent on mac type */ 4414 /* led_off dependent on mac type */ 4415 .update_mc_addr_list = e1000e_update_mc_addr_list_generic, 4416 .reset_hw = e1000_reset_hw_ich8lan, 4417 .init_hw = e1000_init_hw_ich8lan, 4418 .setup_link = e1000_setup_link_ich8lan, 4419 .setup_physical_interface= e1000_setup_copper_link_ich8lan, 4420 /* id_led_init dependent on mac type */ 4421 .config_collision_dist = e1000e_config_collision_dist_generic, 4422 .rar_set = e1000e_rar_set_generic, 4423 }; 4424 4425 static const struct e1000_phy_operations ich8_phy_ops = { 4426 .acquire = e1000_acquire_swflag_ich8lan, 4427 .check_reset_block = e1000_check_reset_block_ich8lan, 4428 .commit = NULL, 4429 .get_cfg_done = e1000_get_cfg_done_ich8lan, 4430 .get_cable_length = e1000e_get_cable_length_igp_2, 4431 .read_reg = e1000e_read_phy_reg_igp, 4432 .release = e1000_release_swflag_ich8lan, 4433 .reset = e1000_phy_hw_reset_ich8lan, 4434 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan, 4435 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan, 4436 .write_reg = e1000e_write_phy_reg_igp, 4437 }; 4438 4439 static const struct e1000_nvm_operations ich8_nvm_ops = { 4440 .acquire = e1000_acquire_nvm_ich8lan, 4441 .read = e1000_read_nvm_ich8lan, 4442 .release = e1000_release_nvm_ich8lan, 4443 .reload = e1000e_reload_nvm_generic, 4444 .update = e1000_update_nvm_checksum_ich8lan, 4445 .valid_led_default = e1000_valid_led_default_ich8lan, 4446 .validate = e1000_validate_nvm_checksum_ich8lan, 4447 .write = e1000_write_nvm_ich8lan, 4448 }; 4449 4450 const struct e1000_info e1000_ich8_info = { 4451 .mac = e1000_ich8lan, 4452 .flags = FLAG_HAS_WOL 4453 | FLAG_IS_ICH 4454 | FLAG_HAS_CTRLEXT_ON_LOAD 4455 | FLAG_HAS_AMT 4456 | FLAG_HAS_FLASH 4457 | FLAG_APME_IN_WUC, 4458 .pba = 8, 4459 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN, 4460 .get_variants = e1000_get_variants_ich8lan, 4461 .mac_ops = &ich8_mac_ops, 4462 .phy_ops = &ich8_phy_ops, 4463 .nvm_ops = &ich8_nvm_ops, 4464 }; 4465 4466 const struct e1000_info e1000_ich9_info = { 4467 .mac = e1000_ich9lan, 4468 .flags = FLAG_HAS_JUMBO_FRAMES 4469 | FLAG_IS_ICH 4470 | FLAG_HAS_WOL 4471 | FLAG_HAS_CTRLEXT_ON_LOAD 4472 | FLAG_HAS_AMT 4473 | FLAG_HAS_FLASH 4474 | FLAG_APME_IN_WUC, 4475 .pba = 18, 4476 .max_hw_frame_size = DEFAULT_JUMBO, 4477 .get_variants = e1000_get_variants_ich8lan, 4478 .mac_ops = &ich8_mac_ops, 4479 .phy_ops = &ich8_phy_ops, 4480 .nvm_ops = &ich8_nvm_ops, 4481 }; 4482 4483 const struct e1000_info e1000_ich10_info = { 4484 .mac = e1000_ich10lan, 4485 .flags = FLAG_HAS_JUMBO_FRAMES 4486 | FLAG_IS_ICH 4487 | FLAG_HAS_WOL 4488 | FLAG_HAS_CTRLEXT_ON_LOAD 4489 | FLAG_HAS_AMT 4490 | FLAG_HAS_FLASH 4491 | FLAG_APME_IN_WUC, 4492 .pba = 18, 4493 .max_hw_frame_size = DEFAULT_JUMBO, 4494 .get_variants = e1000_get_variants_ich8lan, 4495 .mac_ops = &ich8_mac_ops, 4496 .phy_ops = &ich8_phy_ops, 4497 .nvm_ops = &ich8_nvm_ops, 4498 }; 4499 4500 const struct e1000_info e1000_pch_info = { 4501 .mac = e1000_pchlan, 4502 .flags = FLAG_IS_ICH 4503 | FLAG_HAS_WOL 4504 | FLAG_HAS_CTRLEXT_ON_LOAD 4505 | FLAG_HAS_AMT 4506 | FLAG_HAS_FLASH 4507 | FLAG_HAS_JUMBO_FRAMES 4508 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */ 4509 | FLAG_APME_IN_WUC, 4510 .flags2 = FLAG2_HAS_PHY_STATS, 4511 .pba = 26, 4512 .max_hw_frame_size = 4096, 4513 .get_variants = e1000_get_variants_ich8lan, 4514 .mac_ops = &ich8_mac_ops, 4515 .phy_ops = &ich8_phy_ops, 4516 .nvm_ops = &ich8_nvm_ops, 4517 }; 4518 4519 const struct e1000_info e1000_pch2_info = { 4520 .mac = e1000_pch2lan, 4521 .flags = FLAG_IS_ICH 4522 | FLAG_HAS_WOL 4523 | FLAG_HAS_CTRLEXT_ON_LOAD 4524 | FLAG_HAS_AMT 4525 | FLAG_HAS_FLASH 4526 | FLAG_HAS_JUMBO_FRAMES 4527 | FLAG_APME_IN_WUC, 4528 .flags2 = FLAG2_HAS_PHY_STATS 4529 | FLAG2_HAS_EEE, 4530 .pba = 26, 4531 .max_hw_frame_size = DEFAULT_JUMBO, 4532 .get_variants = e1000_get_variants_ich8lan, 4533 .mac_ops = &ich8_mac_ops, 4534 .phy_ops = &ich8_phy_ops, 4535 .nvm_ops = &ich8_nvm_ops, 4536 }; 4537 4538 const struct e1000_info e1000_pch_lpt_info = { 4539 .mac = e1000_pch_lpt, 4540 .flags = FLAG_IS_ICH 4541 | FLAG_HAS_WOL 4542 | FLAG_HAS_CTRLEXT_ON_LOAD 4543 | FLAG_HAS_AMT 4544 | FLAG_HAS_FLASH 4545 | FLAG_HAS_JUMBO_FRAMES 4546 | FLAG_APME_IN_WUC, 4547 .flags2 = FLAG2_HAS_PHY_STATS 4548 | FLAG2_HAS_EEE, 4549 .pba = 26, 4550 .max_hw_frame_size = DEFAULT_JUMBO, 4551 .get_variants = e1000_get_variants_ich8lan, 4552 .mac_ops = &ich8_mac_ops, 4553 .phy_ops = &ich8_phy_ops, 4554 .nvm_ops = &ich8_nvm_ops, 4555 }; 4556