xref: /linux/drivers/net/ethernet/intel/e1000e/ich8lan.c (revision 4d5e3b06e1fc1428be14cd4ebe3b37c1bb34f95d)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 /* 82562G 10/100 Network Connection
5  * 82562G-2 10/100 Network Connection
6  * 82562GT 10/100 Network Connection
7  * 82562GT-2 10/100 Network Connection
8  * 82562V 10/100 Network Connection
9  * 82562V-2 10/100 Network Connection
10  * 82566DC-2 Gigabit Network Connection
11  * 82566DC Gigabit Network Connection
12  * 82566DM-2 Gigabit Network Connection
13  * 82566DM Gigabit Network Connection
14  * 82566MC Gigabit Network Connection
15  * 82566MM Gigabit Network Connection
16  * 82567LM Gigabit Network Connection
17  * 82567LF Gigabit Network Connection
18  * 82567V Gigabit Network Connection
19  * 82567LM-2 Gigabit Network Connection
20  * 82567LF-2 Gigabit Network Connection
21  * 82567V-2 Gigabit Network Connection
22  * 82567LF-3 Gigabit Network Connection
23  * 82567LM-3 Gigabit Network Connection
24  * 82567LM-4 Gigabit Network Connection
25  * 82577LM Gigabit Network Connection
26  * 82577LC Gigabit Network Connection
27  * 82578DM Gigabit Network Connection
28  * 82578DC Gigabit Network Connection
29  * 82579LM Gigabit Network Connection
30  * 82579V Gigabit Network Connection
31  * Ethernet Connection I217-LM
32  * Ethernet Connection I217-V
33  * Ethernet Connection I218-V
34  * Ethernet Connection I218-LM
35  * Ethernet Connection (2) I218-LM
36  * Ethernet Connection (2) I218-V
37  * Ethernet Connection (3) I218-LM
38  * Ethernet Connection (3) I218-V
39  */
40 
41 #include "e1000.h"
42 
43 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
44 /* Offset 04h HSFSTS */
45 union ich8_hws_flash_status {
46 	struct ich8_hsfsts {
47 		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
48 		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
49 		u16 dael:1;	/* bit 2 Direct Access error Log */
50 		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
51 		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
52 		u16 reserved1:2;	/* bit 13:6 Reserved */
53 		u16 reserved2:6;	/* bit 13:6 Reserved */
54 		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
55 		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
56 	} hsf_status;
57 	u16 regval;
58 };
59 
60 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
61 /* Offset 06h FLCTL */
62 union ich8_hws_flash_ctrl {
63 	struct ich8_hsflctl {
64 		u16 flcgo:1;	/* 0 Flash Cycle Go */
65 		u16 flcycle:2;	/* 2:1 Flash Cycle */
66 		u16 reserved:5;	/* 7:3 Reserved  */
67 		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
68 		u16 flockdn:6;	/* 15:10 Reserved */
69 	} hsf_ctrl;
70 	u16 regval;
71 };
72 
73 /* ICH Flash Region Access Permissions */
74 union ich8_hws_flash_regacc {
75 	struct ich8_flracc {
76 		u32 grra:8;	/* 0:7 GbE region Read Access */
77 		u32 grwa:8;	/* 8:15 GbE region Write Access */
78 		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
79 		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
80 	} hsf_flregacc;
81 	u16 regval;
82 };
83 
84 /* ICH Flash Protected Region */
85 union ich8_flash_protected_range {
86 	struct ich8_pr {
87 		u32 base:13;	/* 0:12 Protected Range Base */
88 		u32 reserved1:2;	/* 13:14 Reserved */
89 		u32 rpe:1;	/* 15 Read Protection Enable */
90 		u32 limit:13;	/* 16:28 Protected Range Limit */
91 		u32 reserved2:2;	/* 29:30 Reserved */
92 		u32 wpe:1;	/* 31 Write Protection Enable */
93 	} range;
94 	u32 regval;
95 };
96 
97 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
98 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
99 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
100 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
101 						u32 offset, u8 byte);
102 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
103 					 u8 *data);
104 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
105 					 u16 *data);
106 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
107 					 u8 size, u16 *data);
108 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
109 					   u32 *data);
110 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
111 					  u32 offset, u32 *data);
112 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
113 					    u32 offset, u32 data);
114 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
115 						 u32 offset, u32 dword);
116 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
118 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
119 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
120 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
121 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
122 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
123 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
124 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
125 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
126 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
127 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
128 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
129 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
130 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
131 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
132 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
133 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
134 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
135 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
136 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
137 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
138 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
139 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
140 
141 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
142 {
143 	return readw(hw->flash_address + reg);
144 }
145 
146 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
147 {
148 	return readl(hw->flash_address + reg);
149 }
150 
151 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
152 {
153 	writew(val, hw->flash_address + reg);
154 }
155 
156 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
157 {
158 	writel(val, hw->flash_address + reg);
159 }
160 
161 #define er16flash(reg)		__er16flash(hw, (reg))
162 #define er32flash(reg)		__er32flash(hw, (reg))
163 #define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
164 #define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
165 
166 /**
167  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
168  *  @hw: pointer to the HW structure
169  *
170  *  Test access to the PHY registers by reading the PHY ID registers.  If
171  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
172  *  otherwise assume the read PHY ID is correct if it is valid.
173  *
174  *  Assumes the sw/fw/hw semaphore is already acquired.
175  **/
176 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
177 {
178 	u16 phy_reg = 0;
179 	u32 phy_id = 0;
180 	s32 ret_val = 0;
181 	u16 retry_count;
182 	u32 mac_reg = 0;
183 
184 	for (retry_count = 0; retry_count < 2; retry_count++) {
185 		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
186 		if (ret_val || (phy_reg == 0xFFFF))
187 			continue;
188 		phy_id = (u32)(phy_reg << 16);
189 
190 		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
191 		if (ret_val || (phy_reg == 0xFFFF)) {
192 			phy_id = 0;
193 			continue;
194 		}
195 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
196 		break;
197 	}
198 
199 	if (hw->phy.id) {
200 		if (hw->phy.id == phy_id)
201 			goto out;
202 	} else if (phy_id) {
203 		hw->phy.id = phy_id;
204 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
205 		goto out;
206 	}
207 
208 	/* In case the PHY needs to be in mdio slow mode,
209 	 * set slow mode and try to get the PHY id again.
210 	 */
211 	if (hw->mac.type < e1000_pch_lpt) {
212 		hw->phy.ops.release(hw);
213 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
214 		if (!ret_val)
215 			ret_val = e1000e_get_phy_id(hw);
216 		hw->phy.ops.acquire(hw);
217 	}
218 
219 	if (ret_val)
220 		return false;
221 out:
222 	if (hw->mac.type >= e1000_pch_lpt) {
223 		/* Only unforce SMBus if ME is not active */
224 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
225 			/* Unforce SMBus mode in PHY */
226 			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
227 			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
228 			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
229 
230 			/* Unforce SMBus mode in MAC */
231 			mac_reg = er32(CTRL_EXT);
232 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
233 			ew32(CTRL_EXT, mac_reg);
234 		}
235 	}
236 
237 	return true;
238 }
239 
240 /**
241  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
242  *  @hw: pointer to the HW structure
243  *
244  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
245  *  used to reset the PHY to a quiescent state when necessary.
246  **/
247 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
248 {
249 	u32 mac_reg;
250 
251 	/* Set Phy Config Counter to 50msec */
252 	mac_reg = er32(FEXTNVM3);
253 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
254 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
255 	ew32(FEXTNVM3, mac_reg);
256 
257 	/* Toggle LANPHYPC Value bit */
258 	mac_reg = er32(CTRL);
259 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
260 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
261 	ew32(CTRL, mac_reg);
262 	e1e_flush();
263 	usleep_range(10, 20);
264 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
265 	ew32(CTRL, mac_reg);
266 	e1e_flush();
267 
268 	if (hw->mac.type < e1000_pch_lpt) {
269 		msleep(50);
270 	} else {
271 		u16 count = 20;
272 
273 		do {
274 			usleep_range(5000, 6000);
275 		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
276 
277 		msleep(30);
278 	}
279 }
280 
281 /**
282  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
283  *  @hw: pointer to the HW structure
284  *
285  *  Workarounds/flow necessary for PHY initialization during driver load
286  *  and resume paths.
287  **/
288 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
289 {
290 	struct e1000_adapter *adapter = hw->adapter;
291 	u32 mac_reg, fwsm = er32(FWSM);
292 	s32 ret_val;
293 
294 	/* Gate automatic PHY configuration by hardware on managed and
295 	 * non-managed 82579 and newer adapters.
296 	 */
297 	e1000_gate_hw_phy_config_ich8lan(hw, true);
298 
299 	/* It is not possible to be certain of the current state of ULP
300 	 * so forcibly disable it.
301 	 */
302 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
303 	ret_val = e1000_disable_ulp_lpt_lp(hw, true);
304 	if (ret_val)
305 		e_warn("Failed to disable ULP\n");
306 
307 	ret_val = hw->phy.ops.acquire(hw);
308 	if (ret_val) {
309 		e_dbg("Failed to initialize PHY flow\n");
310 		goto out;
311 	}
312 
313 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
314 	 * inaccessible and resetting the PHY is not blocked, toggle the
315 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
316 	 */
317 	switch (hw->mac.type) {
318 	case e1000_pch_lpt:
319 	case e1000_pch_spt:
320 	case e1000_pch_cnp:
321 	case e1000_pch_tgp:
322 	case e1000_pch_adp:
323 	case e1000_pch_mtp:
324 	case e1000_pch_lnp:
325 		if (e1000_phy_is_accessible_pchlan(hw))
326 			break;
327 
328 		/* Before toggling LANPHYPC, see if PHY is accessible by
329 		 * forcing MAC to SMBus mode first.
330 		 */
331 		mac_reg = er32(CTRL_EXT);
332 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
333 		ew32(CTRL_EXT, mac_reg);
334 
335 		/* Wait 50 milliseconds for MAC to finish any retries
336 		 * that it might be trying to perform from previous
337 		 * attempts to acknowledge any phy read requests.
338 		 */
339 		msleep(50);
340 
341 		fallthrough;
342 	case e1000_pch2lan:
343 		if (e1000_phy_is_accessible_pchlan(hw))
344 			break;
345 
346 		fallthrough;
347 	case e1000_pchlan:
348 		if ((hw->mac.type == e1000_pchlan) &&
349 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
350 			break;
351 
352 		if (hw->phy.ops.check_reset_block(hw)) {
353 			e_dbg("Required LANPHYPC toggle blocked by ME\n");
354 			ret_val = -E1000_ERR_PHY;
355 			break;
356 		}
357 
358 		/* Toggle LANPHYPC Value bit */
359 		e1000_toggle_lanphypc_pch_lpt(hw);
360 		if (hw->mac.type >= e1000_pch_lpt) {
361 			if (e1000_phy_is_accessible_pchlan(hw))
362 				break;
363 
364 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
365 			 * so ensure that the MAC is also out of SMBus mode
366 			 */
367 			mac_reg = er32(CTRL_EXT);
368 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
369 			ew32(CTRL_EXT, mac_reg);
370 
371 			if (e1000_phy_is_accessible_pchlan(hw))
372 				break;
373 
374 			ret_val = -E1000_ERR_PHY;
375 		}
376 		break;
377 	default:
378 		break;
379 	}
380 
381 	hw->phy.ops.release(hw);
382 	if (!ret_val) {
383 
384 		/* Check to see if able to reset PHY.  Print error if not */
385 		if (hw->phy.ops.check_reset_block(hw)) {
386 			e_err("Reset blocked by ME\n");
387 			goto out;
388 		}
389 
390 		/* Reset the PHY before any access to it.  Doing so, ensures
391 		 * that the PHY is in a known good state before we read/write
392 		 * PHY registers.  The generic reset is sufficient here,
393 		 * because we haven't determined the PHY type yet.
394 		 */
395 		ret_val = e1000e_phy_hw_reset_generic(hw);
396 		if (ret_val)
397 			goto out;
398 
399 		/* On a successful reset, possibly need to wait for the PHY
400 		 * to quiesce to an accessible state before returning control
401 		 * to the calling function.  If the PHY does not quiesce, then
402 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
403 		 *  the PHY is in.
404 		 */
405 		ret_val = hw->phy.ops.check_reset_block(hw);
406 		if (ret_val)
407 			e_err("ME blocked access to PHY after reset\n");
408 	}
409 
410 out:
411 	/* Ungate automatic PHY configuration on non-managed 82579 */
412 	if ((hw->mac.type == e1000_pch2lan) &&
413 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
414 		usleep_range(10000, 11000);
415 		e1000_gate_hw_phy_config_ich8lan(hw, false);
416 	}
417 
418 	return ret_val;
419 }
420 
421 /**
422  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
423  *  @hw: pointer to the HW structure
424  *
425  *  Initialize family-specific PHY parameters and function pointers.
426  **/
427 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
428 {
429 	struct e1000_phy_info *phy = &hw->phy;
430 	s32 ret_val;
431 
432 	phy->addr = 1;
433 	phy->reset_delay_us = 100;
434 
435 	phy->ops.set_page = e1000_set_page_igp;
436 	phy->ops.read_reg = e1000_read_phy_reg_hv;
437 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
438 	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
439 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
440 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
441 	phy->ops.write_reg = e1000_write_phy_reg_hv;
442 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
443 	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
444 	phy->ops.power_up = e1000_power_up_phy_copper;
445 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
446 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
447 
448 	phy->id = e1000_phy_unknown;
449 
450 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
451 	if (ret_val)
452 		return ret_val;
453 
454 	if (phy->id == e1000_phy_unknown)
455 		switch (hw->mac.type) {
456 		default:
457 			ret_val = e1000e_get_phy_id(hw);
458 			if (ret_val)
459 				return ret_val;
460 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
461 				break;
462 			fallthrough;
463 		case e1000_pch2lan:
464 		case e1000_pch_lpt:
465 		case e1000_pch_spt:
466 		case e1000_pch_cnp:
467 		case e1000_pch_tgp:
468 		case e1000_pch_adp:
469 		case e1000_pch_mtp:
470 		case e1000_pch_lnp:
471 			/* In case the PHY needs to be in mdio slow mode,
472 			 * set slow mode and try to get the PHY id again.
473 			 */
474 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
475 			if (ret_val)
476 				return ret_val;
477 			ret_val = e1000e_get_phy_id(hw);
478 			if (ret_val)
479 				return ret_val;
480 			break;
481 		}
482 	phy->type = e1000e_get_phy_type_from_id(phy->id);
483 
484 	switch (phy->type) {
485 	case e1000_phy_82577:
486 	case e1000_phy_82579:
487 	case e1000_phy_i217:
488 		phy->ops.check_polarity = e1000_check_polarity_82577;
489 		phy->ops.force_speed_duplex =
490 		    e1000_phy_force_speed_duplex_82577;
491 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
492 		phy->ops.get_info = e1000_get_phy_info_82577;
493 		phy->ops.commit = e1000e_phy_sw_reset;
494 		break;
495 	case e1000_phy_82578:
496 		phy->ops.check_polarity = e1000_check_polarity_m88;
497 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
498 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
499 		phy->ops.get_info = e1000e_get_phy_info_m88;
500 		break;
501 	default:
502 		ret_val = -E1000_ERR_PHY;
503 		break;
504 	}
505 
506 	return ret_val;
507 }
508 
509 /**
510  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
511  *  @hw: pointer to the HW structure
512  *
513  *  Initialize family-specific PHY parameters and function pointers.
514  **/
515 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
516 {
517 	struct e1000_phy_info *phy = &hw->phy;
518 	s32 ret_val;
519 	u16 i = 0;
520 
521 	phy->addr = 1;
522 	phy->reset_delay_us = 100;
523 
524 	phy->ops.power_up = e1000_power_up_phy_copper;
525 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
526 
527 	/* We may need to do this twice - once for IGP and if that fails,
528 	 * we'll set BM func pointers and try again
529 	 */
530 	ret_val = e1000e_determine_phy_address(hw);
531 	if (ret_val) {
532 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
533 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
534 		ret_val = e1000e_determine_phy_address(hw);
535 		if (ret_val) {
536 			e_dbg("Cannot determine PHY addr. Erroring out\n");
537 			return ret_val;
538 		}
539 	}
540 
541 	phy->id = 0;
542 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
543 	       (i++ < 100)) {
544 		usleep_range(1000, 1100);
545 		ret_val = e1000e_get_phy_id(hw);
546 		if (ret_val)
547 			return ret_val;
548 	}
549 
550 	/* Verify phy id */
551 	switch (phy->id) {
552 	case IGP03E1000_E_PHY_ID:
553 		phy->type = e1000_phy_igp_3;
554 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
555 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
556 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
557 		phy->ops.get_info = e1000e_get_phy_info_igp;
558 		phy->ops.check_polarity = e1000_check_polarity_igp;
559 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
560 		break;
561 	case IFE_E_PHY_ID:
562 	case IFE_PLUS_E_PHY_ID:
563 	case IFE_C_E_PHY_ID:
564 		phy->type = e1000_phy_ife;
565 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
566 		phy->ops.get_info = e1000_get_phy_info_ife;
567 		phy->ops.check_polarity = e1000_check_polarity_ife;
568 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
569 		break;
570 	case BME1000_E_PHY_ID:
571 		phy->type = e1000_phy_bm;
572 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
573 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
574 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
575 		phy->ops.commit = e1000e_phy_sw_reset;
576 		phy->ops.get_info = e1000e_get_phy_info_m88;
577 		phy->ops.check_polarity = e1000_check_polarity_m88;
578 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
579 		break;
580 	default:
581 		return -E1000_ERR_PHY;
582 	}
583 
584 	return 0;
585 }
586 
587 /**
588  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
589  *  @hw: pointer to the HW structure
590  *
591  *  Initialize family-specific NVM parameters and function
592  *  pointers.
593  **/
594 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
595 {
596 	struct e1000_nvm_info *nvm = &hw->nvm;
597 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
598 	u32 gfpreg, sector_base_addr, sector_end_addr;
599 	u16 i;
600 	u32 nvm_size;
601 
602 	nvm->type = e1000_nvm_flash_sw;
603 
604 	if (hw->mac.type >= e1000_pch_spt) {
605 		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
606 		 * STRAP register. This is because in SPT the GbE Flash region
607 		 * is no longer accessed through the flash registers. Instead,
608 		 * the mechanism has changed, and the Flash region access
609 		 * registers are now implemented in GbE memory space.
610 		 */
611 		nvm->flash_base_addr = 0;
612 		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
613 		    * NVM_SIZE_MULTIPLIER;
614 		nvm->flash_bank_size = nvm_size / 2;
615 		/* Adjust to word count */
616 		nvm->flash_bank_size /= sizeof(u16);
617 		/* Set the base address for flash register access */
618 		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
619 	} else {
620 		/* Can't read flash registers if register set isn't mapped. */
621 		if (!hw->flash_address) {
622 			e_dbg("ERROR: Flash registers not mapped\n");
623 			return -E1000_ERR_CONFIG;
624 		}
625 
626 		gfpreg = er32flash(ICH_FLASH_GFPREG);
627 
628 		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
629 		 * Add 1 to sector_end_addr since this sector is included in
630 		 * the overall size.
631 		 */
632 		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
633 		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
634 
635 		/* flash_base_addr is byte-aligned */
636 		nvm->flash_base_addr = sector_base_addr
637 		    << FLASH_SECTOR_ADDR_SHIFT;
638 
639 		/* find total size of the NVM, then cut in half since the total
640 		 * size represents two separate NVM banks.
641 		 */
642 		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
643 					<< FLASH_SECTOR_ADDR_SHIFT);
644 		nvm->flash_bank_size /= 2;
645 		/* Adjust to word count */
646 		nvm->flash_bank_size /= sizeof(u16);
647 	}
648 
649 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
650 
651 	/* Clear shadow ram */
652 	for (i = 0; i < nvm->word_size; i++) {
653 		dev_spec->shadow_ram[i].modified = false;
654 		dev_spec->shadow_ram[i].value = 0xFFFF;
655 	}
656 
657 	return 0;
658 }
659 
660 /**
661  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
662  *  @hw: pointer to the HW structure
663  *
664  *  Initialize family-specific MAC parameters and function
665  *  pointers.
666  **/
667 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
668 {
669 	struct e1000_mac_info *mac = &hw->mac;
670 
671 	/* Set media type function pointer */
672 	hw->phy.media_type = e1000_media_type_copper;
673 
674 	/* Set mta register count */
675 	mac->mta_reg_count = 32;
676 	/* Set rar entry count */
677 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
678 	if (mac->type == e1000_ich8lan)
679 		mac->rar_entry_count--;
680 	/* FWSM register */
681 	mac->has_fwsm = true;
682 	/* ARC subsystem not supported */
683 	mac->arc_subsystem_valid = false;
684 	/* Adaptive IFS supported */
685 	mac->adaptive_ifs = true;
686 
687 	/* LED and other operations */
688 	switch (mac->type) {
689 	case e1000_ich8lan:
690 	case e1000_ich9lan:
691 	case e1000_ich10lan:
692 		/* check management mode */
693 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
694 		/* ID LED init */
695 		mac->ops.id_led_init = e1000e_id_led_init_generic;
696 		/* blink LED */
697 		mac->ops.blink_led = e1000e_blink_led_generic;
698 		/* setup LED */
699 		mac->ops.setup_led = e1000e_setup_led_generic;
700 		/* cleanup LED */
701 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
702 		/* turn on/off LED */
703 		mac->ops.led_on = e1000_led_on_ich8lan;
704 		mac->ops.led_off = e1000_led_off_ich8lan;
705 		break;
706 	case e1000_pch2lan:
707 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
708 		mac->ops.rar_set = e1000_rar_set_pch2lan;
709 		fallthrough;
710 	case e1000_pch_lpt:
711 	case e1000_pch_spt:
712 	case e1000_pch_cnp:
713 	case e1000_pch_tgp:
714 	case e1000_pch_adp:
715 	case e1000_pch_mtp:
716 	case e1000_pch_lnp:
717 	case e1000_pchlan:
718 		/* check management mode */
719 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
720 		/* ID LED init */
721 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
722 		/* setup LED */
723 		mac->ops.setup_led = e1000_setup_led_pchlan;
724 		/* cleanup LED */
725 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
726 		/* turn on/off LED */
727 		mac->ops.led_on = e1000_led_on_pchlan;
728 		mac->ops.led_off = e1000_led_off_pchlan;
729 		break;
730 	default:
731 		break;
732 	}
733 
734 	if (mac->type >= e1000_pch_lpt) {
735 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
736 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
737 		mac->ops.setup_physical_interface =
738 		    e1000_setup_copper_link_pch_lpt;
739 		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
740 	}
741 
742 	/* Enable PCS Lock-loss workaround for ICH8 */
743 	if (mac->type == e1000_ich8lan)
744 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
745 
746 	return 0;
747 }
748 
749 /**
750  *  __e1000_access_emi_reg_locked - Read/write EMI register
751  *  @hw: pointer to the HW structure
752  *  @address: EMI address to program
753  *  @data: pointer to value to read/write from/to the EMI address
754  *  @read: boolean flag to indicate read or write
755  *
756  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
757  **/
758 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
759 					 u16 *data, bool read)
760 {
761 	s32 ret_val;
762 
763 	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
764 	if (ret_val)
765 		return ret_val;
766 
767 	if (read)
768 		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
769 	else
770 		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
771 
772 	return ret_val;
773 }
774 
775 /**
776  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
777  *  @hw: pointer to the HW structure
778  *  @addr: EMI address to program
779  *  @data: value to be read from the EMI address
780  *
781  *  Assumes the SW/FW/HW Semaphore is already acquired.
782  **/
783 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
784 {
785 	return __e1000_access_emi_reg_locked(hw, addr, data, true);
786 }
787 
788 /**
789  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
790  *  @hw: pointer to the HW structure
791  *  @addr: EMI address to program
792  *  @data: value to be written to the EMI address
793  *
794  *  Assumes the SW/FW/HW Semaphore is already acquired.
795  **/
796 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
797 {
798 	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
799 }
800 
801 /**
802  *  e1000_set_eee_pchlan - Enable/disable EEE support
803  *  @hw: pointer to the HW structure
804  *
805  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
806  *  the link and the EEE capabilities of the link partner.  The LPI Control
807  *  register bits will remain set only if/when link is up.
808  *
809  *  EEE LPI must not be asserted earlier than one second after link is up.
810  *  On 82579, EEE LPI should not be enabled until such time otherwise there
811  *  can be link issues with some switches.  Other devices can have EEE LPI
812  *  enabled immediately upon link up since they have a timer in hardware which
813  *  prevents LPI from being asserted too early.
814  **/
815 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
816 {
817 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
818 	s32 ret_val;
819 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
820 
821 	switch (hw->phy.type) {
822 	case e1000_phy_82579:
823 		lpa = I82579_EEE_LP_ABILITY;
824 		pcs_status = I82579_EEE_PCS_STATUS;
825 		adv_addr = I82579_EEE_ADVERTISEMENT;
826 		break;
827 	case e1000_phy_i217:
828 		lpa = I217_EEE_LP_ABILITY;
829 		pcs_status = I217_EEE_PCS_STATUS;
830 		adv_addr = I217_EEE_ADVERTISEMENT;
831 		break;
832 	default:
833 		return 0;
834 	}
835 
836 	ret_val = hw->phy.ops.acquire(hw);
837 	if (ret_val)
838 		return ret_val;
839 
840 	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
841 	if (ret_val)
842 		goto release;
843 
844 	/* Clear bits that enable EEE in various speeds */
845 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
846 
847 	/* Enable EEE if not disabled by user */
848 	if (!dev_spec->eee_disable) {
849 		/* Save off link partner's EEE ability */
850 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
851 						    &dev_spec->eee_lp_ability);
852 		if (ret_val)
853 			goto release;
854 
855 		/* Read EEE advertisement */
856 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
857 		if (ret_val)
858 			goto release;
859 
860 		/* Enable EEE only for speeds in which the link partner is
861 		 * EEE capable and for which we advertise EEE.
862 		 */
863 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
864 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
865 
866 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
867 			e1e_rphy_locked(hw, MII_LPA, &data);
868 			if (data & LPA_100FULL)
869 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
870 			else
871 				/* EEE is not supported in 100Half, so ignore
872 				 * partner's EEE in 100 ability if full-duplex
873 				 * is not advertised.
874 				 */
875 				dev_spec->eee_lp_ability &=
876 				    ~I82579_EEE_100_SUPPORTED;
877 		}
878 	}
879 
880 	if (hw->phy.type == e1000_phy_82579) {
881 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
882 						    &data);
883 		if (ret_val)
884 			goto release;
885 
886 		data &= ~I82579_LPI_100_PLL_SHUT;
887 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
888 						     data);
889 	}
890 
891 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
892 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
893 	if (ret_val)
894 		goto release;
895 
896 	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
897 release:
898 	hw->phy.ops.release(hw);
899 
900 	return ret_val;
901 }
902 
903 /**
904  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
905  *  @hw:   pointer to the HW structure
906  *  @link: link up bool flag
907  *
908  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
909  *  preventing further DMA write requests.  Workaround the issue by disabling
910  *  the de-assertion of the clock request when in 1Gpbs mode.
911  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
912  *  speeds in order to avoid Tx hangs.
913  **/
914 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
915 {
916 	u32 fextnvm6 = er32(FEXTNVM6);
917 	u32 status = er32(STATUS);
918 	s32 ret_val = 0;
919 	u16 reg;
920 
921 	if (link && (status & E1000_STATUS_SPEED_1000)) {
922 		ret_val = hw->phy.ops.acquire(hw);
923 		if (ret_val)
924 			return ret_val;
925 
926 		ret_val =
927 		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
928 						&reg);
929 		if (ret_val)
930 			goto release;
931 
932 		ret_val =
933 		    e1000e_write_kmrn_reg_locked(hw,
934 						 E1000_KMRNCTRLSTA_K1_CONFIG,
935 						 reg &
936 						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
937 		if (ret_val)
938 			goto release;
939 
940 		usleep_range(10, 20);
941 
942 		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
943 
944 		ret_val =
945 		    e1000e_write_kmrn_reg_locked(hw,
946 						 E1000_KMRNCTRLSTA_K1_CONFIG,
947 						 reg);
948 release:
949 		hw->phy.ops.release(hw);
950 	} else {
951 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
952 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
953 
954 		if ((hw->phy.revision > 5) || !link ||
955 		    ((status & E1000_STATUS_SPEED_100) &&
956 		     (status & E1000_STATUS_FD)))
957 			goto update_fextnvm6;
958 
959 		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
960 		if (ret_val)
961 			return ret_val;
962 
963 		/* Clear link status transmit timeout */
964 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
965 
966 		if (status & E1000_STATUS_SPEED_100) {
967 			/* Set inband Tx timeout to 5x10us for 100Half */
968 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
969 
970 			/* Do not extend the K1 entry latency for 100Half */
971 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
972 		} else {
973 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
974 			reg |= 50 <<
975 			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
976 
977 			/* Extend the K1 entry latency for 10 Mbps */
978 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
979 		}
980 
981 		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
982 		if (ret_val)
983 			return ret_val;
984 
985 update_fextnvm6:
986 		ew32(FEXTNVM6, fextnvm6);
987 	}
988 
989 	return ret_val;
990 }
991 
992 /**
993  *  e1000_platform_pm_pch_lpt - Set platform power management values
994  *  @hw: pointer to the HW structure
995  *  @link: bool indicating link status
996  *
997  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
998  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
999  *  when link is up (which must not exceed the maximum latency supported
1000  *  by the platform), otherwise specify there is no LTR requirement.
1001  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1002  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1003  *  Capability register set, on this device LTR is set by writing the
1004  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1005  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1006  *  message to the PMC.
1007  **/
1008 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1009 {
1010 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1011 	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1012 	u32 max_ltr_enc_d = 0;	/* maximum LTR decoded by platform */
1013 	u32 lat_enc_d = 0;	/* latency decoded */
1014 	u16 lat_enc = 0;	/* latency encoded */
1015 
1016 	if (link) {
1017 		u16 speed, duplex, scale = 0;
1018 		u16 max_snoop, max_nosnoop;
1019 		u16 max_ltr_enc;	/* max LTR latency encoded */
1020 		u64 value;
1021 		u32 rxa;
1022 
1023 		if (!hw->adapter->max_frame_size) {
1024 			e_dbg("max_frame_size not set.\n");
1025 			return -E1000_ERR_CONFIG;
1026 		}
1027 
1028 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1029 		if (!speed) {
1030 			e_dbg("Speed not set.\n");
1031 			return -E1000_ERR_CONFIG;
1032 		}
1033 
1034 		/* Rx Packet Buffer Allocation size (KB) */
1035 		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1036 
1037 		/* Determine the maximum latency tolerated by the device.
1038 		 *
1039 		 * Per the PCIe spec, the tolerated latencies are encoded as
1040 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1041 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1042 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1043 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1044 		 */
1045 		rxa *= 512;
1046 		value = (rxa > hw->adapter->max_frame_size) ?
1047 			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1048 			0;
1049 
1050 		while (value > PCI_LTR_VALUE_MASK) {
1051 			scale++;
1052 			value = DIV_ROUND_UP(value, BIT(5));
1053 		}
1054 		if (scale > E1000_LTRV_SCALE_MAX) {
1055 			e_dbg("Invalid LTR latency scale %d\n", scale);
1056 			return -E1000_ERR_CONFIG;
1057 		}
1058 		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1059 
1060 		/* Determine the maximum latency tolerated by the platform */
1061 		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1062 				     &max_snoop);
1063 		pci_read_config_word(hw->adapter->pdev,
1064 				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1065 		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1066 
1067 		lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) *
1068 			     (1U << (E1000_LTRV_SCALE_FACTOR *
1069 			     ((lat_enc & E1000_LTRV_SCALE_MASK)
1070 			     >> E1000_LTRV_SCALE_SHIFT)));
1071 
1072 		max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) *
1073 				 (1U << (E1000_LTRV_SCALE_FACTOR *
1074 				 ((max_ltr_enc & E1000_LTRV_SCALE_MASK)
1075 				 >> E1000_LTRV_SCALE_SHIFT)));
1076 
1077 		if (lat_enc_d > max_ltr_enc_d)
1078 			lat_enc = max_ltr_enc;
1079 	}
1080 
1081 	/* Set Snoop and No-Snoop latencies the same */
1082 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1083 	ew32(LTRV, reg);
1084 
1085 	return 0;
1086 }
1087 
1088 /**
1089  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1090  *  @hw: pointer to the HW structure
1091  *  @to_sx: boolean indicating a system power state transition to Sx
1092  *
1093  *  When link is down, configure ULP mode to significantly reduce the power
1094  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1095  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1096  *  system, configure the ULP mode by software.
1097  */
1098 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1099 {
1100 	u32 mac_reg;
1101 	s32 ret_val = 0;
1102 	u16 phy_reg;
1103 	u16 oem_reg = 0;
1104 
1105 	if ((hw->mac.type < e1000_pch_lpt) ||
1106 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1107 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1108 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1109 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1110 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1111 		return 0;
1112 
1113 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1114 		/* Request ME configure ULP mode in the PHY */
1115 		mac_reg = er32(H2ME);
1116 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1117 		ew32(H2ME, mac_reg);
1118 
1119 		goto out;
1120 	}
1121 
1122 	if (!to_sx) {
1123 		int i = 0;
1124 
1125 		/* Poll up to 5 seconds for Cable Disconnected indication */
1126 		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1127 			/* Bail if link is re-acquired */
1128 			if (er32(STATUS) & E1000_STATUS_LU)
1129 				return -E1000_ERR_PHY;
1130 
1131 			if (i++ == 100)
1132 				break;
1133 
1134 			msleep(50);
1135 		}
1136 		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1137 		      (er32(FEXT) &
1138 		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1139 	}
1140 
1141 	ret_val = hw->phy.ops.acquire(hw);
1142 	if (ret_val)
1143 		goto out;
1144 
1145 	/* Force SMBus mode in PHY */
1146 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1147 	if (ret_val)
1148 		goto release;
1149 	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1150 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1151 
1152 	/* Force SMBus mode in MAC */
1153 	mac_reg = er32(CTRL_EXT);
1154 	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1155 	ew32(CTRL_EXT, mac_reg);
1156 
1157 	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1158 	 * LPLU and disable Gig speed when entering ULP
1159 	 */
1160 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1161 		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1162 						       &oem_reg);
1163 		if (ret_val)
1164 			goto release;
1165 
1166 		phy_reg = oem_reg;
1167 		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1168 
1169 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1170 							phy_reg);
1171 
1172 		if (ret_val)
1173 			goto release;
1174 	}
1175 
1176 	/* Set Inband ULP Exit, Reset to SMBus mode and
1177 	 * Disable SMBus Release on PERST# in PHY
1178 	 */
1179 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1180 	if (ret_val)
1181 		goto release;
1182 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1183 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1184 	if (to_sx) {
1185 		if (er32(WUFC) & E1000_WUFC_LNKC)
1186 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1187 		else
1188 			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1189 
1190 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1191 		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1192 	} else {
1193 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1194 		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1195 		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1196 	}
1197 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1198 
1199 	/* Set Disable SMBus Release on PERST# in MAC */
1200 	mac_reg = er32(FEXTNVM7);
1201 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1202 	ew32(FEXTNVM7, mac_reg);
1203 
1204 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1205 	phy_reg |= I218_ULP_CONFIG1_START;
1206 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1207 
1208 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1209 	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1210 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1211 							oem_reg);
1212 		if (ret_val)
1213 			goto release;
1214 	}
1215 
1216 release:
1217 	hw->phy.ops.release(hw);
1218 out:
1219 	if (ret_val)
1220 		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1221 	else
1222 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1223 
1224 	return ret_val;
1225 }
1226 
1227 /**
1228  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1229  *  @hw: pointer to the HW structure
1230  *  @force: boolean indicating whether or not to force disabling ULP
1231  *
1232  *  Un-configure ULP mode when link is up, the system is transitioned from
1233  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1234  *  system, poll for an indication from ME that ULP has been un-configured.
1235  *  If not on an ME enabled system, un-configure the ULP mode by software.
1236  *
1237  *  During nominal operation, this function is called when link is acquired
1238  *  to disable ULP mode (force=false); otherwise, for example when unloading
1239  *  the driver or during Sx->S0 transitions, this is called with force=true
1240  *  to forcibly disable ULP.
1241  */
1242 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1243 {
1244 	s32 ret_val = 0;
1245 	u32 mac_reg;
1246 	u16 phy_reg;
1247 	int i = 0;
1248 
1249 	if ((hw->mac.type < e1000_pch_lpt) ||
1250 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1251 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1252 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1253 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1254 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1255 		return 0;
1256 
1257 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1258 		struct e1000_adapter *adapter = hw->adapter;
1259 		bool firmware_bug = false;
1260 
1261 		if (force) {
1262 			/* Request ME un-configure ULP mode in the PHY */
1263 			mac_reg = er32(H2ME);
1264 			mac_reg &= ~E1000_H2ME_ULP;
1265 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1266 			ew32(H2ME, mac_reg);
1267 		}
1268 
1269 		/* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE.
1270 		 * If this takes more than 1 second, show a warning indicating a
1271 		 * firmware bug
1272 		 */
1273 		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1274 			if (i++ == 250) {
1275 				ret_val = -E1000_ERR_PHY;
1276 				goto out;
1277 			}
1278 			if (i > 100 && !firmware_bug)
1279 				firmware_bug = true;
1280 
1281 			usleep_range(10000, 11000);
1282 		}
1283 		if (firmware_bug)
1284 			e_warn("ULP_CONFIG_DONE took %d msec. This is a firmware bug\n",
1285 			       i * 10);
1286 		else
1287 			e_dbg("ULP_CONFIG_DONE cleared after %d msec\n",
1288 			      i * 10);
1289 
1290 		if (force) {
1291 			mac_reg = er32(H2ME);
1292 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1293 			ew32(H2ME, mac_reg);
1294 		} else {
1295 			/* Clear H2ME.ULP after ME ULP configuration */
1296 			mac_reg = er32(H2ME);
1297 			mac_reg &= ~E1000_H2ME_ULP;
1298 			ew32(H2ME, mac_reg);
1299 		}
1300 
1301 		goto out;
1302 	}
1303 
1304 	ret_val = hw->phy.ops.acquire(hw);
1305 	if (ret_val)
1306 		goto out;
1307 
1308 	if (force)
1309 		/* Toggle LANPHYPC Value bit */
1310 		e1000_toggle_lanphypc_pch_lpt(hw);
1311 
1312 	/* Unforce SMBus mode in PHY */
1313 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1314 	if (ret_val) {
1315 		/* The MAC might be in PCIe mode, so temporarily force to
1316 		 * SMBus mode in order to access the PHY.
1317 		 */
1318 		mac_reg = er32(CTRL_EXT);
1319 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1320 		ew32(CTRL_EXT, mac_reg);
1321 
1322 		msleep(50);
1323 
1324 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1325 						       &phy_reg);
1326 		if (ret_val)
1327 			goto release;
1328 	}
1329 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1330 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1331 
1332 	/* Unforce SMBus mode in MAC */
1333 	mac_reg = er32(CTRL_EXT);
1334 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1335 	ew32(CTRL_EXT, mac_reg);
1336 
1337 	/* When ULP mode was previously entered, K1 was disabled by the
1338 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1339 	 */
1340 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1341 	if (ret_val)
1342 		goto release;
1343 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1344 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1345 
1346 	/* Clear ULP enabled configuration */
1347 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1348 	if (ret_val)
1349 		goto release;
1350 	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1351 		     I218_ULP_CONFIG1_STICKY_ULP |
1352 		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1353 		     I218_ULP_CONFIG1_WOL_HOST |
1354 		     I218_ULP_CONFIG1_INBAND_EXIT |
1355 		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1356 		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1357 		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1358 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1359 
1360 	/* Commit ULP changes by starting auto ULP configuration */
1361 	phy_reg |= I218_ULP_CONFIG1_START;
1362 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1363 
1364 	/* Clear Disable SMBus Release on PERST# in MAC */
1365 	mac_reg = er32(FEXTNVM7);
1366 	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1367 	ew32(FEXTNVM7, mac_reg);
1368 
1369 release:
1370 	hw->phy.ops.release(hw);
1371 	if (force) {
1372 		e1000_phy_hw_reset(hw);
1373 		msleep(50);
1374 	}
1375 out:
1376 	if (ret_val)
1377 		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1378 	else
1379 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1380 
1381 	return ret_val;
1382 }
1383 
1384 /**
1385  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1386  *  @hw: pointer to the HW structure
1387  *
1388  *  Checks to see of the link status of the hardware has changed.  If a
1389  *  change in link status has been detected, then we read the PHY registers
1390  *  to get the current speed/duplex if link exists.
1391  **/
1392 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1393 {
1394 	struct e1000_mac_info *mac = &hw->mac;
1395 	s32 ret_val, tipg_reg = 0;
1396 	u16 emi_addr, emi_val = 0;
1397 	bool link;
1398 	u16 phy_reg;
1399 
1400 	/* We only want to go out to the PHY registers to see if Auto-Neg
1401 	 * has completed and/or if our link status has changed.  The
1402 	 * get_link_status flag is set upon receiving a Link Status
1403 	 * Change or Rx Sequence Error interrupt.
1404 	 */
1405 	if (!mac->get_link_status)
1406 		return 0;
1407 	mac->get_link_status = false;
1408 
1409 	/* First we want to see if the MII Status Register reports
1410 	 * link.  If so, then we want to get the current speed/duplex
1411 	 * of the PHY.
1412 	 */
1413 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1414 	if (ret_val)
1415 		goto out;
1416 
1417 	if (hw->mac.type == e1000_pchlan) {
1418 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1419 		if (ret_val)
1420 			goto out;
1421 	}
1422 
1423 	/* When connected at 10Mbps half-duplex, some parts are excessively
1424 	 * aggressive resulting in many collisions. To avoid this, increase
1425 	 * the IPG and reduce Rx latency in the PHY.
1426 	 */
1427 	if ((hw->mac.type >= e1000_pch2lan) && link) {
1428 		u16 speed, duplex;
1429 
1430 		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1431 		tipg_reg = er32(TIPG);
1432 		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1433 
1434 		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1435 			tipg_reg |= 0xFF;
1436 			/* Reduce Rx latency in analog PHY */
1437 			emi_val = 0;
1438 		} else if (hw->mac.type >= e1000_pch_spt &&
1439 			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1440 			tipg_reg |= 0xC;
1441 			emi_val = 1;
1442 		} else {
1443 
1444 			/* Roll back the default values */
1445 			tipg_reg |= 0x08;
1446 			emi_val = 1;
1447 		}
1448 
1449 		ew32(TIPG, tipg_reg);
1450 
1451 		ret_val = hw->phy.ops.acquire(hw);
1452 		if (ret_val)
1453 			goto out;
1454 
1455 		if (hw->mac.type == e1000_pch2lan)
1456 			emi_addr = I82579_RX_CONFIG;
1457 		else
1458 			emi_addr = I217_RX_CONFIG;
1459 		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1460 
1461 		if (hw->mac.type >= e1000_pch_lpt) {
1462 			u16 phy_reg;
1463 
1464 			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1465 			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1466 			if (speed == SPEED_100 || speed == SPEED_10)
1467 				phy_reg |= 0x3E8;
1468 			else
1469 				phy_reg |= 0xFA;
1470 			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1471 
1472 			if (speed == SPEED_1000) {
1473 				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1474 							    &phy_reg);
1475 
1476 				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1477 
1478 				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1479 							     phy_reg);
1480 			}
1481 		}
1482 		hw->phy.ops.release(hw);
1483 
1484 		if (ret_val)
1485 			goto out;
1486 
1487 		if (hw->mac.type >= e1000_pch_spt) {
1488 			u16 data;
1489 			u16 ptr_gap;
1490 
1491 			if (speed == SPEED_1000) {
1492 				ret_val = hw->phy.ops.acquire(hw);
1493 				if (ret_val)
1494 					goto out;
1495 
1496 				ret_val = e1e_rphy_locked(hw,
1497 							  PHY_REG(776, 20),
1498 							  &data);
1499 				if (ret_val) {
1500 					hw->phy.ops.release(hw);
1501 					goto out;
1502 				}
1503 
1504 				ptr_gap = (data & (0x3FF << 2)) >> 2;
1505 				if (ptr_gap < 0x18) {
1506 					data &= ~(0x3FF << 2);
1507 					data |= (0x18 << 2);
1508 					ret_val =
1509 					    e1e_wphy_locked(hw,
1510 							    PHY_REG(776, 20),
1511 							    data);
1512 				}
1513 				hw->phy.ops.release(hw);
1514 				if (ret_val)
1515 					goto out;
1516 			} else {
1517 				ret_val = hw->phy.ops.acquire(hw);
1518 				if (ret_val)
1519 					goto out;
1520 
1521 				ret_val = e1e_wphy_locked(hw,
1522 							  PHY_REG(776, 20),
1523 							  0xC023);
1524 				hw->phy.ops.release(hw);
1525 				if (ret_val)
1526 					goto out;
1527 
1528 			}
1529 		}
1530 	}
1531 
1532 	/* I217 Packet Loss issue:
1533 	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1534 	 * on power up.
1535 	 * Set the Beacon Duration for I217 to 8 usec
1536 	 */
1537 	if (hw->mac.type >= e1000_pch_lpt) {
1538 		u32 mac_reg;
1539 
1540 		mac_reg = er32(FEXTNVM4);
1541 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1542 		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1543 		ew32(FEXTNVM4, mac_reg);
1544 	}
1545 
1546 	/* Work-around I218 hang issue */
1547 	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1548 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1549 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1550 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1551 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1552 		if (ret_val)
1553 			goto out;
1554 	}
1555 	if (hw->mac.type >= e1000_pch_lpt) {
1556 		/* Set platform power management values for
1557 		 * Latency Tolerance Reporting (LTR)
1558 		 */
1559 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1560 		if (ret_val)
1561 			goto out;
1562 	}
1563 
1564 	/* Clear link partner's EEE ability */
1565 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1566 
1567 	if (hw->mac.type >= e1000_pch_lpt) {
1568 		u32 fextnvm6 = er32(FEXTNVM6);
1569 
1570 		if (hw->mac.type == e1000_pch_spt) {
1571 			/* FEXTNVM6 K1-off workaround - for SPT only */
1572 			u32 pcieanacfg = er32(PCIEANACFG);
1573 
1574 			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1575 				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1576 			else
1577 				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1578 		}
1579 
1580 		ew32(FEXTNVM6, fextnvm6);
1581 	}
1582 
1583 	if (!link)
1584 		goto out;
1585 
1586 	switch (hw->mac.type) {
1587 	case e1000_pch2lan:
1588 		ret_val = e1000_k1_workaround_lv(hw);
1589 		if (ret_val)
1590 			return ret_val;
1591 		fallthrough;
1592 	case e1000_pchlan:
1593 		if (hw->phy.type == e1000_phy_82578) {
1594 			ret_val = e1000_link_stall_workaround_hv(hw);
1595 			if (ret_val)
1596 				return ret_val;
1597 		}
1598 
1599 		/* Workaround for PCHx parts in half-duplex:
1600 		 * Set the number of preambles removed from the packet
1601 		 * when it is passed from the PHY to the MAC to prevent
1602 		 * the MAC from misinterpreting the packet type.
1603 		 */
1604 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1605 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1606 
1607 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1608 			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1609 
1610 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1611 		break;
1612 	default:
1613 		break;
1614 	}
1615 
1616 	/* Check if there was DownShift, must be checked
1617 	 * immediately after link-up
1618 	 */
1619 	e1000e_check_downshift(hw);
1620 
1621 	/* Enable/Disable EEE after link up */
1622 	if (hw->phy.type > e1000_phy_82579) {
1623 		ret_val = e1000_set_eee_pchlan(hw);
1624 		if (ret_val)
1625 			return ret_val;
1626 	}
1627 
1628 	/* If we are forcing speed/duplex, then we simply return since
1629 	 * we have already determined whether we have link or not.
1630 	 */
1631 	if (!mac->autoneg)
1632 		return -E1000_ERR_CONFIG;
1633 
1634 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1635 	 * of MAC speed/duplex configuration.  So we only need to
1636 	 * configure Collision Distance in the MAC.
1637 	 */
1638 	mac->ops.config_collision_dist(hw);
1639 
1640 	/* Configure Flow Control now that Auto-Neg has completed.
1641 	 * First, we need to restore the desired flow control
1642 	 * settings because we may have had to re-autoneg with a
1643 	 * different link partner.
1644 	 */
1645 	ret_val = e1000e_config_fc_after_link_up(hw);
1646 	if (ret_val)
1647 		e_dbg("Error configuring flow control\n");
1648 
1649 	return ret_val;
1650 
1651 out:
1652 	mac->get_link_status = true;
1653 	return ret_val;
1654 }
1655 
1656 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1657 {
1658 	struct e1000_hw *hw = &adapter->hw;
1659 	s32 rc;
1660 
1661 	rc = e1000_init_mac_params_ich8lan(hw);
1662 	if (rc)
1663 		return rc;
1664 
1665 	rc = e1000_init_nvm_params_ich8lan(hw);
1666 	if (rc)
1667 		return rc;
1668 
1669 	switch (hw->mac.type) {
1670 	case e1000_ich8lan:
1671 	case e1000_ich9lan:
1672 	case e1000_ich10lan:
1673 		rc = e1000_init_phy_params_ich8lan(hw);
1674 		break;
1675 	case e1000_pchlan:
1676 	case e1000_pch2lan:
1677 	case e1000_pch_lpt:
1678 	case e1000_pch_spt:
1679 	case e1000_pch_cnp:
1680 	case e1000_pch_tgp:
1681 	case e1000_pch_adp:
1682 	case e1000_pch_mtp:
1683 	case e1000_pch_lnp:
1684 		rc = e1000_init_phy_params_pchlan(hw);
1685 		break;
1686 	default:
1687 		break;
1688 	}
1689 	if (rc)
1690 		return rc;
1691 
1692 	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1693 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1694 	 */
1695 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1696 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1697 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1698 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1699 		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1700 
1701 		hw->mac.ops.blink_led = NULL;
1702 	}
1703 
1704 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1705 	    (adapter->hw.phy.type != e1000_phy_ife))
1706 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1707 
1708 	/* Enable workaround for 82579 w/ ME enabled */
1709 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1710 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1711 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1712 
1713 	return 0;
1714 }
1715 
1716 static DEFINE_MUTEX(nvm_mutex);
1717 
1718 /**
1719  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1720  *  @hw: pointer to the HW structure
1721  *
1722  *  Acquires the mutex for performing NVM operations.
1723  **/
1724 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1725 {
1726 	mutex_lock(&nvm_mutex);
1727 
1728 	return 0;
1729 }
1730 
1731 /**
1732  *  e1000_release_nvm_ich8lan - Release NVM mutex
1733  *  @hw: pointer to the HW structure
1734  *
1735  *  Releases the mutex used while performing NVM operations.
1736  **/
1737 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1738 {
1739 	mutex_unlock(&nvm_mutex);
1740 }
1741 
1742 /**
1743  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1744  *  @hw: pointer to the HW structure
1745  *
1746  *  Acquires the software control flag for performing PHY and select
1747  *  MAC CSR accesses.
1748  **/
1749 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1750 {
1751 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1752 	s32 ret_val = 0;
1753 
1754 	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1755 			     &hw->adapter->state)) {
1756 		e_dbg("contention for Phy access\n");
1757 		return -E1000_ERR_PHY;
1758 	}
1759 
1760 	while (timeout) {
1761 		extcnf_ctrl = er32(EXTCNF_CTRL);
1762 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1763 			break;
1764 
1765 		mdelay(1);
1766 		timeout--;
1767 	}
1768 
1769 	if (!timeout) {
1770 		e_dbg("SW has already locked the resource.\n");
1771 		ret_val = -E1000_ERR_CONFIG;
1772 		goto out;
1773 	}
1774 
1775 	timeout = SW_FLAG_TIMEOUT;
1776 
1777 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1778 	ew32(EXTCNF_CTRL, extcnf_ctrl);
1779 
1780 	while (timeout) {
1781 		extcnf_ctrl = er32(EXTCNF_CTRL);
1782 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1783 			break;
1784 
1785 		mdelay(1);
1786 		timeout--;
1787 	}
1788 
1789 	if (!timeout) {
1790 		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1791 		      er32(FWSM), extcnf_ctrl);
1792 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1793 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1794 		ret_val = -E1000_ERR_CONFIG;
1795 		goto out;
1796 	}
1797 
1798 out:
1799 	if (ret_val)
1800 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1801 
1802 	return ret_val;
1803 }
1804 
1805 /**
1806  *  e1000_release_swflag_ich8lan - Release software control flag
1807  *  @hw: pointer to the HW structure
1808  *
1809  *  Releases the software control flag for performing PHY and select
1810  *  MAC CSR accesses.
1811  **/
1812 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1813 {
1814 	u32 extcnf_ctrl;
1815 
1816 	extcnf_ctrl = er32(EXTCNF_CTRL);
1817 
1818 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1819 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1820 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1821 	} else {
1822 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1823 	}
1824 
1825 	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1826 }
1827 
1828 /**
1829  *  e1000_check_mng_mode_ich8lan - Checks management mode
1830  *  @hw: pointer to the HW structure
1831  *
1832  *  This checks if the adapter has any manageability enabled.
1833  *  This is a function pointer entry point only called by read/write
1834  *  routines for the PHY and NVM parts.
1835  **/
1836 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1837 {
1838 	u32 fwsm;
1839 
1840 	fwsm = er32(FWSM);
1841 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1842 		((fwsm & E1000_FWSM_MODE_MASK) ==
1843 		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1844 }
1845 
1846 /**
1847  *  e1000_check_mng_mode_pchlan - Checks management mode
1848  *  @hw: pointer to the HW structure
1849  *
1850  *  This checks if the adapter has iAMT enabled.
1851  *  This is a function pointer entry point only called by read/write
1852  *  routines for the PHY and NVM parts.
1853  **/
1854 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1855 {
1856 	u32 fwsm;
1857 
1858 	fwsm = er32(FWSM);
1859 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1860 	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1861 }
1862 
1863 /**
1864  *  e1000_rar_set_pch2lan - Set receive address register
1865  *  @hw: pointer to the HW structure
1866  *  @addr: pointer to the receive address
1867  *  @index: receive address array register
1868  *
1869  *  Sets the receive address array register at index to the address passed
1870  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1871  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1872  *  Use SHRA[0-3] in place of those reserved for ME.
1873  **/
1874 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1875 {
1876 	u32 rar_low, rar_high;
1877 
1878 	/* HW expects these in little endian so we reverse the byte order
1879 	 * from network order (big endian) to little endian
1880 	 */
1881 	rar_low = ((u32)addr[0] |
1882 		   ((u32)addr[1] << 8) |
1883 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1884 
1885 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1886 
1887 	/* If MAC address zero, no need to set the AV bit */
1888 	if (rar_low || rar_high)
1889 		rar_high |= E1000_RAH_AV;
1890 
1891 	if (index == 0) {
1892 		ew32(RAL(index), rar_low);
1893 		e1e_flush();
1894 		ew32(RAH(index), rar_high);
1895 		e1e_flush();
1896 		return 0;
1897 	}
1898 
1899 	/* RAR[1-6] are owned by manageability.  Skip those and program the
1900 	 * next address into the SHRA register array.
1901 	 */
1902 	if (index < (u32)(hw->mac.rar_entry_count)) {
1903 		s32 ret_val;
1904 
1905 		ret_val = e1000_acquire_swflag_ich8lan(hw);
1906 		if (ret_val)
1907 			goto out;
1908 
1909 		ew32(SHRAL(index - 1), rar_low);
1910 		e1e_flush();
1911 		ew32(SHRAH(index - 1), rar_high);
1912 		e1e_flush();
1913 
1914 		e1000_release_swflag_ich8lan(hw);
1915 
1916 		/* verify the register updates */
1917 		if ((er32(SHRAL(index - 1)) == rar_low) &&
1918 		    (er32(SHRAH(index - 1)) == rar_high))
1919 			return 0;
1920 
1921 		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1922 		      (index - 1), er32(FWSM));
1923 	}
1924 
1925 out:
1926 	e_dbg("Failed to write receive address at index %d\n", index);
1927 	return -E1000_ERR_CONFIG;
1928 }
1929 
1930 /**
1931  *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1932  *  @hw: pointer to the HW structure
1933  *
1934  *  Get the number of available receive registers that the Host can
1935  *  program. SHRA[0-10] are the shared receive address registers
1936  *  that are shared between the Host and manageability engine (ME).
1937  *  ME can reserve any number of addresses and the host needs to be
1938  *  able to tell how many available registers it has access to.
1939  **/
1940 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1941 {
1942 	u32 wlock_mac;
1943 	u32 num_entries;
1944 
1945 	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1946 	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1947 
1948 	switch (wlock_mac) {
1949 	case 0:
1950 		/* All SHRA[0..10] and RAR[0] available */
1951 		num_entries = hw->mac.rar_entry_count;
1952 		break;
1953 	case 1:
1954 		/* Only RAR[0] available */
1955 		num_entries = 1;
1956 		break;
1957 	default:
1958 		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1959 		num_entries = wlock_mac + 1;
1960 		break;
1961 	}
1962 
1963 	return num_entries;
1964 }
1965 
1966 /**
1967  *  e1000_rar_set_pch_lpt - Set receive address registers
1968  *  @hw: pointer to the HW structure
1969  *  @addr: pointer to the receive address
1970  *  @index: receive address array register
1971  *
1972  *  Sets the receive address register array at index to the address passed
1973  *  in by addr. For LPT, RAR[0] is the base address register that is to
1974  *  contain the MAC address. SHRA[0-10] are the shared receive address
1975  *  registers that are shared between the Host and manageability engine (ME).
1976  **/
1977 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1978 {
1979 	u32 rar_low, rar_high;
1980 	u32 wlock_mac;
1981 
1982 	/* HW expects these in little endian so we reverse the byte order
1983 	 * from network order (big endian) to little endian
1984 	 */
1985 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1986 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1987 
1988 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1989 
1990 	/* If MAC address zero, no need to set the AV bit */
1991 	if (rar_low || rar_high)
1992 		rar_high |= E1000_RAH_AV;
1993 
1994 	if (index == 0) {
1995 		ew32(RAL(index), rar_low);
1996 		e1e_flush();
1997 		ew32(RAH(index), rar_high);
1998 		e1e_flush();
1999 		return 0;
2000 	}
2001 
2002 	/* The manageability engine (ME) can lock certain SHRAR registers that
2003 	 * it is using - those registers are unavailable for use.
2004 	 */
2005 	if (index < hw->mac.rar_entry_count) {
2006 		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2007 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2008 
2009 		/* Check if all SHRAR registers are locked */
2010 		if (wlock_mac == 1)
2011 			goto out;
2012 
2013 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
2014 			s32 ret_val;
2015 
2016 			ret_val = e1000_acquire_swflag_ich8lan(hw);
2017 
2018 			if (ret_val)
2019 				goto out;
2020 
2021 			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
2022 			e1e_flush();
2023 			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
2024 			e1e_flush();
2025 
2026 			e1000_release_swflag_ich8lan(hw);
2027 
2028 			/* verify the register updates */
2029 			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2030 			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2031 				return 0;
2032 		}
2033 	}
2034 
2035 out:
2036 	e_dbg("Failed to write receive address at index %d\n", index);
2037 	return -E1000_ERR_CONFIG;
2038 }
2039 
2040 /**
2041  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2042  *  @hw: pointer to the HW structure
2043  *
2044  *  Checks if firmware is blocking the reset of the PHY.
2045  *  This is a function pointer entry point only called by
2046  *  reset routines.
2047  **/
2048 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2049 {
2050 	bool blocked = false;
2051 	int i = 0;
2052 
2053 	/* Check the PHY (LCD) reset flag */
2054 	if (hw->phy.reset_disable)
2055 		return true;
2056 
2057 	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2058 	       (i++ < 30))
2059 		usleep_range(10000, 11000);
2060 	return blocked ? E1000_BLK_PHY_RESET : 0;
2061 }
2062 
2063 /**
2064  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2065  *  @hw: pointer to the HW structure
2066  *
2067  *  Assumes semaphore already acquired.
2068  *
2069  **/
2070 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2071 {
2072 	u16 phy_data;
2073 	u32 strap = er32(STRAP);
2074 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2075 	    E1000_STRAP_SMT_FREQ_SHIFT;
2076 	s32 ret_val;
2077 
2078 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2079 
2080 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2081 	if (ret_val)
2082 		return ret_val;
2083 
2084 	phy_data &= ~HV_SMB_ADDR_MASK;
2085 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2086 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2087 
2088 	if (hw->phy.type == e1000_phy_i217) {
2089 		/* Restore SMBus frequency */
2090 		if (freq--) {
2091 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2092 			phy_data |= (freq & BIT(0)) <<
2093 			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2094 			phy_data |= (freq & BIT(1)) <<
2095 			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2096 		} else {
2097 			e_dbg("Unsupported SMB frequency in PHY\n");
2098 		}
2099 	}
2100 
2101 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2102 }
2103 
2104 /**
2105  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2106  *  @hw:   pointer to the HW structure
2107  *
2108  *  SW should configure the LCD from the NVM extended configuration region
2109  *  as a workaround for certain parts.
2110  **/
2111 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2112 {
2113 	struct e1000_phy_info *phy = &hw->phy;
2114 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2115 	s32 ret_val = 0;
2116 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2117 
2118 	/* Initialize the PHY from the NVM on ICH platforms.  This
2119 	 * is needed due to an issue where the NVM configuration is
2120 	 * not properly autoloaded after power transitions.
2121 	 * Therefore, after each PHY reset, we will load the
2122 	 * configuration data out of the NVM manually.
2123 	 */
2124 	switch (hw->mac.type) {
2125 	case e1000_ich8lan:
2126 		if (phy->type != e1000_phy_igp_3)
2127 			return ret_val;
2128 
2129 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2130 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2131 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2132 			break;
2133 		}
2134 		fallthrough;
2135 	case e1000_pchlan:
2136 	case e1000_pch2lan:
2137 	case e1000_pch_lpt:
2138 	case e1000_pch_spt:
2139 	case e1000_pch_cnp:
2140 	case e1000_pch_tgp:
2141 	case e1000_pch_adp:
2142 	case e1000_pch_mtp:
2143 	case e1000_pch_lnp:
2144 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2145 		break;
2146 	default:
2147 		return ret_val;
2148 	}
2149 
2150 	ret_val = hw->phy.ops.acquire(hw);
2151 	if (ret_val)
2152 		return ret_val;
2153 
2154 	data = er32(FEXTNVM);
2155 	if (!(data & sw_cfg_mask))
2156 		goto release;
2157 
2158 	/* Make sure HW does not configure LCD from PHY
2159 	 * extended configuration before SW configuration
2160 	 */
2161 	data = er32(EXTCNF_CTRL);
2162 	if ((hw->mac.type < e1000_pch2lan) &&
2163 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2164 		goto release;
2165 
2166 	cnf_size = er32(EXTCNF_SIZE);
2167 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2168 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2169 	if (!cnf_size)
2170 		goto release;
2171 
2172 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2173 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2174 
2175 	if (((hw->mac.type == e1000_pchlan) &&
2176 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2177 	    (hw->mac.type > e1000_pchlan)) {
2178 		/* HW configures the SMBus address and LEDs when the
2179 		 * OEM and LCD Write Enable bits are set in the NVM.
2180 		 * When both NVM bits are cleared, SW will configure
2181 		 * them instead.
2182 		 */
2183 		ret_val = e1000_write_smbus_addr(hw);
2184 		if (ret_val)
2185 			goto release;
2186 
2187 		data = er32(LEDCTL);
2188 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2189 							(u16)data);
2190 		if (ret_val)
2191 			goto release;
2192 	}
2193 
2194 	/* Configure LCD from extended configuration region. */
2195 
2196 	/* cnf_base_addr is in DWORD */
2197 	word_addr = (u16)(cnf_base_addr << 1);
2198 
2199 	for (i = 0; i < cnf_size; i++) {
2200 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2201 		if (ret_val)
2202 			goto release;
2203 
2204 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2205 					 1, &reg_addr);
2206 		if (ret_val)
2207 			goto release;
2208 
2209 		/* Save off the PHY page for future writes. */
2210 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2211 			phy_page = reg_data;
2212 			continue;
2213 		}
2214 
2215 		reg_addr &= PHY_REG_MASK;
2216 		reg_addr |= phy_page;
2217 
2218 		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2219 		if (ret_val)
2220 			goto release;
2221 	}
2222 
2223 release:
2224 	hw->phy.ops.release(hw);
2225 	return ret_val;
2226 }
2227 
2228 /**
2229  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2230  *  @hw:   pointer to the HW structure
2231  *  @link: link up bool flag
2232  *
2233  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2234  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2235  *  If link is down, the function will restore the default K1 setting located
2236  *  in the NVM.
2237  **/
2238 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2239 {
2240 	s32 ret_val = 0;
2241 	u16 status_reg = 0;
2242 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2243 
2244 	if (hw->mac.type != e1000_pchlan)
2245 		return 0;
2246 
2247 	/* Wrap the whole flow with the sw flag */
2248 	ret_val = hw->phy.ops.acquire(hw);
2249 	if (ret_val)
2250 		return ret_val;
2251 
2252 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2253 	if (link) {
2254 		if (hw->phy.type == e1000_phy_82578) {
2255 			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2256 						  &status_reg);
2257 			if (ret_val)
2258 				goto release;
2259 
2260 			status_reg &= (BM_CS_STATUS_LINK_UP |
2261 				       BM_CS_STATUS_RESOLVED |
2262 				       BM_CS_STATUS_SPEED_MASK);
2263 
2264 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2265 					   BM_CS_STATUS_RESOLVED |
2266 					   BM_CS_STATUS_SPEED_1000))
2267 				k1_enable = false;
2268 		}
2269 
2270 		if (hw->phy.type == e1000_phy_82577) {
2271 			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2272 			if (ret_val)
2273 				goto release;
2274 
2275 			status_reg &= (HV_M_STATUS_LINK_UP |
2276 				       HV_M_STATUS_AUTONEG_COMPLETE |
2277 				       HV_M_STATUS_SPEED_MASK);
2278 
2279 			if (status_reg == (HV_M_STATUS_LINK_UP |
2280 					   HV_M_STATUS_AUTONEG_COMPLETE |
2281 					   HV_M_STATUS_SPEED_1000))
2282 				k1_enable = false;
2283 		}
2284 
2285 		/* Link stall fix for link up */
2286 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2287 		if (ret_val)
2288 			goto release;
2289 
2290 	} else {
2291 		/* Link stall fix for link down */
2292 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2293 		if (ret_val)
2294 			goto release;
2295 	}
2296 
2297 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2298 
2299 release:
2300 	hw->phy.ops.release(hw);
2301 
2302 	return ret_val;
2303 }
2304 
2305 /**
2306  *  e1000_configure_k1_ich8lan - Configure K1 power state
2307  *  @hw: pointer to the HW structure
2308  *  @k1_enable: K1 state to configure
2309  *
2310  *  Configure the K1 power state based on the provided parameter.
2311  *  Assumes semaphore already acquired.
2312  *
2313  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2314  **/
2315 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2316 {
2317 	s32 ret_val;
2318 	u32 ctrl_reg = 0;
2319 	u32 ctrl_ext = 0;
2320 	u32 reg = 0;
2321 	u16 kmrn_reg = 0;
2322 
2323 	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2324 					      &kmrn_reg);
2325 	if (ret_val)
2326 		return ret_val;
2327 
2328 	if (k1_enable)
2329 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2330 	else
2331 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2332 
2333 	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2334 					       kmrn_reg);
2335 	if (ret_val)
2336 		return ret_val;
2337 
2338 	usleep_range(20, 40);
2339 	ctrl_ext = er32(CTRL_EXT);
2340 	ctrl_reg = er32(CTRL);
2341 
2342 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2343 	reg |= E1000_CTRL_FRCSPD;
2344 	ew32(CTRL, reg);
2345 
2346 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2347 	e1e_flush();
2348 	usleep_range(20, 40);
2349 	ew32(CTRL, ctrl_reg);
2350 	ew32(CTRL_EXT, ctrl_ext);
2351 	e1e_flush();
2352 	usleep_range(20, 40);
2353 
2354 	return 0;
2355 }
2356 
2357 /**
2358  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2359  *  @hw:       pointer to the HW structure
2360  *  @d0_state: boolean if entering d0 or d3 device state
2361  *
2362  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2363  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2364  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2365  **/
2366 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2367 {
2368 	s32 ret_val = 0;
2369 	u32 mac_reg;
2370 	u16 oem_reg;
2371 
2372 	if (hw->mac.type < e1000_pchlan)
2373 		return ret_val;
2374 
2375 	ret_val = hw->phy.ops.acquire(hw);
2376 	if (ret_val)
2377 		return ret_val;
2378 
2379 	if (hw->mac.type == e1000_pchlan) {
2380 		mac_reg = er32(EXTCNF_CTRL);
2381 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2382 			goto release;
2383 	}
2384 
2385 	mac_reg = er32(FEXTNVM);
2386 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2387 		goto release;
2388 
2389 	mac_reg = er32(PHY_CTRL);
2390 
2391 	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2392 	if (ret_val)
2393 		goto release;
2394 
2395 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2396 
2397 	if (d0_state) {
2398 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2399 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2400 
2401 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2402 			oem_reg |= HV_OEM_BITS_LPLU;
2403 	} else {
2404 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2405 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2406 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2407 
2408 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2409 			       E1000_PHY_CTRL_NOND0A_LPLU))
2410 			oem_reg |= HV_OEM_BITS_LPLU;
2411 	}
2412 
2413 	/* Set Restart auto-neg to activate the bits */
2414 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2415 	    !hw->phy.ops.check_reset_block(hw))
2416 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2417 
2418 	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2419 
2420 release:
2421 	hw->phy.ops.release(hw);
2422 
2423 	return ret_val;
2424 }
2425 
2426 /**
2427  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2428  *  @hw:   pointer to the HW structure
2429  **/
2430 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2431 {
2432 	s32 ret_val;
2433 	u16 data;
2434 
2435 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2436 	if (ret_val)
2437 		return ret_val;
2438 
2439 	data |= HV_KMRN_MDIO_SLOW;
2440 
2441 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2442 
2443 	return ret_val;
2444 }
2445 
2446 /**
2447  *  e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
2448  *  @hw: pointer to the HW structure
2449  *
2450  *  A series of PHY workarounds to be done after every PHY reset.
2451  **/
2452 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2453 {
2454 	s32 ret_val = 0;
2455 	u16 phy_data;
2456 
2457 	if (hw->mac.type != e1000_pchlan)
2458 		return 0;
2459 
2460 	/* Set MDIO slow mode before any other MDIO access */
2461 	if (hw->phy.type == e1000_phy_82577) {
2462 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2463 		if (ret_val)
2464 			return ret_val;
2465 	}
2466 
2467 	if (((hw->phy.type == e1000_phy_82577) &&
2468 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2469 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2470 		/* Disable generation of early preamble */
2471 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2472 		if (ret_val)
2473 			return ret_val;
2474 
2475 		/* Preamble tuning for SSC */
2476 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2477 		if (ret_val)
2478 			return ret_val;
2479 	}
2480 
2481 	if (hw->phy.type == e1000_phy_82578) {
2482 		/* Return registers to default by doing a soft reset then
2483 		 * writing 0x3140 to the control register.
2484 		 */
2485 		if (hw->phy.revision < 2) {
2486 			e1000e_phy_sw_reset(hw);
2487 			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2488 			if (ret_val)
2489 				return ret_val;
2490 		}
2491 	}
2492 
2493 	/* Select page 0 */
2494 	ret_val = hw->phy.ops.acquire(hw);
2495 	if (ret_val)
2496 		return ret_val;
2497 
2498 	hw->phy.addr = 1;
2499 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2500 	hw->phy.ops.release(hw);
2501 	if (ret_val)
2502 		return ret_val;
2503 
2504 	/* Configure the K1 Si workaround during phy reset assuming there is
2505 	 * link so that it disables K1 if link is in 1Gbps.
2506 	 */
2507 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2508 	if (ret_val)
2509 		return ret_val;
2510 
2511 	/* Workaround for link disconnects on a busy hub in half duplex */
2512 	ret_val = hw->phy.ops.acquire(hw);
2513 	if (ret_val)
2514 		return ret_val;
2515 	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2516 	if (ret_val)
2517 		goto release;
2518 	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2519 	if (ret_val)
2520 		goto release;
2521 
2522 	/* set MSE higher to enable link to stay up when noise is high */
2523 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2524 release:
2525 	hw->phy.ops.release(hw);
2526 
2527 	return ret_val;
2528 }
2529 
2530 /**
2531  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2532  *  @hw:   pointer to the HW structure
2533  **/
2534 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2535 {
2536 	u32 mac_reg;
2537 	u16 i, phy_reg = 0;
2538 	s32 ret_val;
2539 
2540 	ret_val = hw->phy.ops.acquire(hw);
2541 	if (ret_val)
2542 		return;
2543 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2544 	if (ret_val)
2545 		goto release;
2546 
2547 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2548 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2549 		mac_reg = er32(RAL(i));
2550 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2551 					   (u16)(mac_reg & 0xFFFF));
2552 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2553 					   (u16)((mac_reg >> 16) & 0xFFFF));
2554 
2555 		mac_reg = er32(RAH(i));
2556 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2557 					   (u16)(mac_reg & 0xFFFF));
2558 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2559 					   (u16)((mac_reg & E1000_RAH_AV)
2560 						 >> 16));
2561 	}
2562 
2563 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2564 
2565 release:
2566 	hw->phy.ops.release(hw);
2567 }
2568 
2569 /**
2570  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2571  *  with 82579 PHY
2572  *  @hw: pointer to the HW structure
2573  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2574  **/
2575 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2576 {
2577 	s32 ret_val = 0;
2578 	u16 phy_reg, data;
2579 	u32 mac_reg;
2580 	u16 i;
2581 
2582 	if (hw->mac.type < e1000_pch2lan)
2583 		return 0;
2584 
2585 	/* disable Rx path while enabling/disabling workaround */
2586 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2587 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2588 	if (ret_val)
2589 		return ret_val;
2590 
2591 	if (enable) {
2592 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2593 		 * SHRAL/H) and initial CRC values to the MAC
2594 		 */
2595 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2596 			u8 mac_addr[ETH_ALEN] = { 0 };
2597 			u32 addr_high, addr_low;
2598 
2599 			addr_high = er32(RAH(i));
2600 			if (!(addr_high & E1000_RAH_AV))
2601 				continue;
2602 			addr_low = er32(RAL(i));
2603 			mac_addr[0] = (addr_low & 0xFF);
2604 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2605 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2606 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2607 			mac_addr[4] = (addr_high & 0xFF);
2608 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2609 
2610 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2611 		}
2612 
2613 		/* Write Rx addresses to the PHY */
2614 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2615 
2616 		/* Enable jumbo frame workaround in the MAC */
2617 		mac_reg = er32(FFLT_DBG);
2618 		mac_reg &= ~BIT(14);
2619 		mac_reg |= (7 << 15);
2620 		ew32(FFLT_DBG, mac_reg);
2621 
2622 		mac_reg = er32(RCTL);
2623 		mac_reg |= E1000_RCTL_SECRC;
2624 		ew32(RCTL, mac_reg);
2625 
2626 		ret_val = e1000e_read_kmrn_reg(hw,
2627 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2628 					       &data);
2629 		if (ret_val)
2630 			return ret_val;
2631 		ret_val = e1000e_write_kmrn_reg(hw,
2632 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2633 						data | BIT(0));
2634 		if (ret_val)
2635 			return ret_val;
2636 		ret_val = e1000e_read_kmrn_reg(hw,
2637 					       E1000_KMRNCTRLSTA_HD_CTRL,
2638 					       &data);
2639 		if (ret_val)
2640 			return ret_val;
2641 		data &= ~(0xF << 8);
2642 		data |= (0xB << 8);
2643 		ret_val = e1000e_write_kmrn_reg(hw,
2644 						E1000_KMRNCTRLSTA_HD_CTRL,
2645 						data);
2646 		if (ret_val)
2647 			return ret_val;
2648 
2649 		/* Enable jumbo frame workaround in the PHY */
2650 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2651 		data &= ~(0x7F << 5);
2652 		data |= (0x37 << 5);
2653 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2654 		if (ret_val)
2655 			return ret_val;
2656 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2657 		data &= ~BIT(13);
2658 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2659 		if (ret_val)
2660 			return ret_val;
2661 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2662 		data &= ~(0x3FF << 2);
2663 		data |= (E1000_TX_PTR_GAP << 2);
2664 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2665 		if (ret_val)
2666 			return ret_val;
2667 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2668 		if (ret_val)
2669 			return ret_val;
2670 		e1e_rphy(hw, HV_PM_CTRL, &data);
2671 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2672 		if (ret_val)
2673 			return ret_val;
2674 	} else {
2675 		/* Write MAC register values back to h/w defaults */
2676 		mac_reg = er32(FFLT_DBG);
2677 		mac_reg &= ~(0xF << 14);
2678 		ew32(FFLT_DBG, mac_reg);
2679 
2680 		mac_reg = er32(RCTL);
2681 		mac_reg &= ~E1000_RCTL_SECRC;
2682 		ew32(RCTL, mac_reg);
2683 
2684 		ret_val = e1000e_read_kmrn_reg(hw,
2685 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2686 					       &data);
2687 		if (ret_val)
2688 			return ret_val;
2689 		ret_val = e1000e_write_kmrn_reg(hw,
2690 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2691 						data & ~BIT(0));
2692 		if (ret_val)
2693 			return ret_val;
2694 		ret_val = e1000e_read_kmrn_reg(hw,
2695 					       E1000_KMRNCTRLSTA_HD_CTRL,
2696 					       &data);
2697 		if (ret_val)
2698 			return ret_val;
2699 		data &= ~(0xF << 8);
2700 		data |= (0xB << 8);
2701 		ret_val = e1000e_write_kmrn_reg(hw,
2702 						E1000_KMRNCTRLSTA_HD_CTRL,
2703 						data);
2704 		if (ret_val)
2705 			return ret_val;
2706 
2707 		/* Write PHY register values back to h/w defaults */
2708 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2709 		data &= ~(0x7F << 5);
2710 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2711 		if (ret_val)
2712 			return ret_val;
2713 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2714 		data |= BIT(13);
2715 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2716 		if (ret_val)
2717 			return ret_val;
2718 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2719 		data &= ~(0x3FF << 2);
2720 		data |= (0x8 << 2);
2721 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2722 		if (ret_val)
2723 			return ret_val;
2724 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2725 		if (ret_val)
2726 			return ret_val;
2727 		e1e_rphy(hw, HV_PM_CTRL, &data);
2728 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2729 		if (ret_val)
2730 			return ret_val;
2731 	}
2732 
2733 	/* re-enable Rx path after enabling/disabling workaround */
2734 	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2735 }
2736 
2737 /**
2738  *  e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
2739  *  @hw: pointer to the HW structure
2740  *
2741  *  A series of PHY workarounds to be done after every PHY reset.
2742  **/
2743 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2744 {
2745 	s32 ret_val = 0;
2746 
2747 	if (hw->mac.type != e1000_pch2lan)
2748 		return 0;
2749 
2750 	/* Set MDIO slow mode before any other MDIO access */
2751 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2752 	if (ret_val)
2753 		return ret_val;
2754 
2755 	ret_val = hw->phy.ops.acquire(hw);
2756 	if (ret_val)
2757 		return ret_val;
2758 	/* set MSE higher to enable link to stay up when noise is high */
2759 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2760 	if (ret_val)
2761 		goto release;
2762 	/* drop link after 5 times MSE threshold was reached */
2763 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2764 release:
2765 	hw->phy.ops.release(hw);
2766 
2767 	return ret_val;
2768 }
2769 
2770 /**
2771  *  e1000_k1_workaround_lv - K1 Si workaround
2772  *  @hw:   pointer to the HW structure
2773  *
2774  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2775  *  Disable K1 in 1000Mbps and 100Mbps
2776  **/
2777 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2778 {
2779 	s32 ret_val = 0;
2780 	u16 status_reg = 0;
2781 
2782 	if (hw->mac.type != e1000_pch2lan)
2783 		return 0;
2784 
2785 	/* Set K1 beacon duration based on 10Mbs speed */
2786 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2787 	if (ret_val)
2788 		return ret_val;
2789 
2790 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2791 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2792 		if (status_reg &
2793 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2794 			u16 pm_phy_reg;
2795 
2796 			/* LV 1G/100 Packet drop issue wa  */
2797 			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2798 			if (ret_val)
2799 				return ret_val;
2800 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2801 			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2802 			if (ret_val)
2803 				return ret_val;
2804 		} else {
2805 			u32 mac_reg;
2806 
2807 			mac_reg = er32(FEXTNVM4);
2808 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2809 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2810 			ew32(FEXTNVM4, mac_reg);
2811 		}
2812 	}
2813 
2814 	return ret_val;
2815 }
2816 
2817 /**
2818  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2819  *  @hw:   pointer to the HW structure
2820  *  @gate: boolean set to true to gate, false to ungate
2821  *
2822  *  Gate/ungate the automatic PHY configuration via hardware; perform
2823  *  the configuration via software instead.
2824  **/
2825 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2826 {
2827 	u32 extcnf_ctrl;
2828 
2829 	if (hw->mac.type < e1000_pch2lan)
2830 		return;
2831 
2832 	extcnf_ctrl = er32(EXTCNF_CTRL);
2833 
2834 	if (gate)
2835 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2836 	else
2837 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2838 
2839 	ew32(EXTCNF_CTRL, extcnf_ctrl);
2840 }
2841 
2842 /**
2843  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2844  *  @hw: pointer to the HW structure
2845  *
2846  *  Check the appropriate indication the MAC has finished configuring the
2847  *  PHY after a software reset.
2848  **/
2849 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2850 {
2851 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2852 
2853 	/* Wait for basic configuration completes before proceeding */
2854 	do {
2855 		data = er32(STATUS);
2856 		data &= E1000_STATUS_LAN_INIT_DONE;
2857 		usleep_range(100, 200);
2858 	} while ((!data) && --loop);
2859 
2860 	/* If basic configuration is incomplete before the above loop
2861 	 * count reaches 0, loading the configuration from NVM will
2862 	 * leave the PHY in a bad state possibly resulting in no link.
2863 	 */
2864 	if (loop == 0)
2865 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2866 
2867 	/* Clear the Init Done bit for the next init event */
2868 	data = er32(STATUS);
2869 	data &= ~E1000_STATUS_LAN_INIT_DONE;
2870 	ew32(STATUS, data);
2871 }
2872 
2873 /**
2874  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2875  *  @hw: pointer to the HW structure
2876  **/
2877 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2878 {
2879 	s32 ret_val = 0;
2880 	u16 reg;
2881 
2882 	if (hw->phy.ops.check_reset_block(hw))
2883 		return 0;
2884 
2885 	/* Allow time for h/w to get to quiescent state after reset */
2886 	usleep_range(10000, 11000);
2887 
2888 	/* Perform any necessary post-reset workarounds */
2889 	switch (hw->mac.type) {
2890 	case e1000_pchlan:
2891 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2892 		if (ret_val)
2893 			return ret_val;
2894 		break;
2895 	case e1000_pch2lan:
2896 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2897 		if (ret_val)
2898 			return ret_val;
2899 		break;
2900 	default:
2901 		break;
2902 	}
2903 
2904 	/* Clear the host wakeup bit after lcd reset */
2905 	if (hw->mac.type >= e1000_pchlan) {
2906 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2907 		reg &= ~BM_WUC_HOST_WU_BIT;
2908 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2909 	}
2910 
2911 	/* Configure the LCD with the extended configuration region in NVM */
2912 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2913 	if (ret_val)
2914 		return ret_val;
2915 
2916 	/* Configure the LCD with the OEM bits in NVM */
2917 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2918 
2919 	if (hw->mac.type == e1000_pch2lan) {
2920 		/* Ungate automatic PHY configuration on non-managed 82579 */
2921 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2922 			usleep_range(10000, 11000);
2923 			e1000_gate_hw_phy_config_ich8lan(hw, false);
2924 		}
2925 
2926 		/* Set EEE LPI Update Timer to 200usec */
2927 		ret_val = hw->phy.ops.acquire(hw);
2928 		if (ret_val)
2929 			return ret_val;
2930 		ret_val = e1000_write_emi_reg_locked(hw,
2931 						     I82579_LPI_UPDATE_TIMER,
2932 						     0x1387);
2933 		hw->phy.ops.release(hw);
2934 	}
2935 
2936 	return ret_val;
2937 }
2938 
2939 /**
2940  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2941  *  @hw: pointer to the HW structure
2942  *
2943  *  Resets the PHY
2944  *  This is a function pointer entry point called by drivers
2945  *  or other shared routines.
2946  **/
2947 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2948 {
2949 	s32 ret_val = 0;
2950 
2951 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2952 	if ((hw->mac.type == e1000_pch2lan) &&
2953 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2954 		e1000_gate_hw_phy_config_ich8lan(hw, true);
2955 
2956 	ret_val = e1000e_phy_hw_reset_generic(hw);
2957 	if (ret_val)
2958 		return ret_val;
2959 
2960 	return e1000_post_phy_reset_ich8lan(hw);
2961 }
2962 
2963 /**
2964  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2965  *  @hw: pointer to the HW structure
2966  *  @active: true to enable LPLU, false to disable
2967  *
2968  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2969  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2970  *  the phy speed. This function will manually set the LPLU bit and restart
2971  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2972  *  since it configures the same bit.
2973  **/
2974 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2975 {
2976 	s32 ret_val;
2977 	u16 oem_reg;
2978 
2979 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2980 	if (ret_val)
2981 		return ret_val;
2982 
2983 	if (active)
2984 		oem_reg |= HV_OEM_BITS_LPLU;
2985 	else
2986 		oem_reg &= ~HV_OEM_BITS_LPLU;
2987 
2988 	if (!hw->phy.ops.check_reset_block(hw))
2989 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2990 
2991 	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2992 }
2993 
2994 /**
2995  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2996  *  @hw: pointer to the HW structure
2997  *  @active: true to enable LPLU, false to disable
2998  *
2999  *  Sets the LPLU D0 state according to the active flag.  When
3000  *  activating LPLU this function also disables smart speed
3001  *  and vice versa.  LPLU will not be activated unless the
3002  *  device autonegotiation advertisement meets standards of
3003  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3004  *  This is a function pointer entry point only called by
3005  *  PHY setup routines.
3006  **/
3007 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3008 {
3009 	struct e1000_phy_info *phy = &hw->phy;
3010 	u32 phy_ctrl;
3011 	s32 ret_val = 0;
3012 	u16 data;
3013 
3014 	if (phy->type == e1000_phy_ife)
3015 		return 0;
3016 
3017 	phy_ctrl = er32(PHY_CTRL);
3018 
3019 	if (active) {
3020 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3021 		ew32(PHY_CTRL, phy_ctrl);
3022 
3023 		if (phy->type != e1000_phy_igp_3)
3024 			return 0;
3025 
3026 		/* Call gig speed drop workaround on LPLU before accessing
3027 		 * any PHY registers
3028 		 */
3029 		if (hw->mac.type == e1000_ich8lan)
3030 			e1000e_gig_downshift_workaround_ich8lan(hw);
3031 
3032 		/* When LPLU is enabled, we should disable SmartSpeed */
3033 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3034 		if (ret_val)
3035 			return ret_val;
3036 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3037 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3038 		if (ret_val)
3039 			return ret_val;
3040 	} else {
3041 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3042 		ew32(PHY_CTRL, phy_ctrl);
3043 
3044 		if (phy->type != e1000_phy_igp_3)
3045 			return 0;
3046 
3047 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3048 		 * during Dx states where the power conservation is most
3049 		 * important.  During driver activity we should enable
3050 		 * SmartSpeed, so performance is maintained.
3051 		 */
3052 		if (phy->smart_speed == e1000_smart_speed_on) {
3053 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3054 					   &data);
3055 			if (ret_val)
3056 				return ret_val;
3057 
3058 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3059 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3060 					   data);
3061 			if (ret_val)
3062 				return ret_val;
3063 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3064 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3065 					   &data);
3066 			if (ret_val)
3067 				return ret_val;
3068 
3069 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3070 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3071 					   data);
3072 			if (ret_val)
3073 				return ret_val;
3074 		}
3075 	}
3076 
3077 	return 0;
3078 }
3079 
3080 /**
3081  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3082  *  @hw: pointer to the HW structure
3083  *  @active: true to enable LPLU, false to disable
3084  *
3085  *  Sets the LPLU D3 state according to the active flag.  When
3086  *  activating LPLU this function also disables smart speed
3087  *  and vice versa.  LPLU will not be activated unless the
3088  *  device autonegotiation advertisement meets standards of
3089  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3090  *  This is a function pointer entry point only called by
3091  *  PHY setup routines.
3092  **/
3093 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3094 {
3095 	struct e1000_phy_info *phy = &hw->phy;
3096 	u32 phy_ctrl;
3097 	s32 ret_val = 0;
3098 	u16 data;
3099 
3100 	phy_ctrl = er32(PHY_CTRL);
3101 
3102 	if (!active) {
3103 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3104 		ew32(PHY_CTRL, phy_ctrl);
3105 
3106 		if (phy->type != e1000_phy_igp_3)
3107 			return 0;
3108 
3109 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3110 		 * during Dx states where the power conservation is most
3111 		 * important.  During driver activity we should enable
3112 		 * SmartSpeed, so performance is maintained.
3113 		 */
3114 		if (phy->smart_speed == e1000_smart_speed_on) {
3115 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3116 					   &data);
3117 			if (ret_val)
3118 				return ret_val;
3119 
3120 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3121 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3122 					   data);
3123 			if (ret_val)
3124 				return ret_val;
3125 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3126 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3127 					   &data);
3128 			if (ret_val)
3129 				return ret_val;
3130 
3131 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3132 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3133 					   data);
3134 			if (ret_val)
3135 				return ret_val;
3136 		}
3137 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3138 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3139 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3140 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3141 		ew32(PHY_CTRL, phy_ctrl);
3142 
3143 		if (phy->type != e1000_phy_igp_3)
3144 			return 0;
3145 
3146 		/* Call gig speed drop workaround on LPLU before accessing
3147 		 * any PHY registers
3148 		 */
3149 		if (hw->mac.type == e1000_ich8lan)
3150 			e1000e_gig_downshift_workaround_ich8lan(hw);
3151 
3152 		/* When LPLU is enabled, we should disable SmartSpeed */
3153 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3154 		if (ret_val)
3155 			return ret_val;
3156 
3157 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3158 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3159 	}
3160 
3161 	return ret_val;
3162 }
3163 
3164 /**
3165  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3166  *  @hw: pointer to the HW structure
3167  *  @bank:  pointer to the variable that returns the active bank
3168  *
3169  *  Reads signature byte from the NVM using the flash access registers.
3170  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3171  **/
3172 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3173 {
3174 	u32 eecd;
3175 	struct e1000_nvm_info *nvm = &hw->nvm;
3176 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3177 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3178 	u32 nvm_dword = 0;
3179 	u8 sig_byte = 0;
3180 	s32 ret_val;
3181 
3182 	switch (hw->mac.type) {
3183 	case e1000_pch_spt:
3184 	case e1000_pch_cnp:
3185 	case e1000_pch_tgp:
3186 	case e1000_pch_adp:
3187 	case e1000_pch_mtp:
3188 	case e1000_pch_lnp:
3189 		bank1_offset = nvm->flash_bank_size;
3190 		act_offset = E1000_ICH_NVM_SIG_WORD;
3191 
3192 		/* set bank to 0 in case flash read fails */
3193 		*bank = 0;
3194 
3195 		/* Check bank 0 */
3196 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3197 							 &nvm_dword);
3198 		if (ret_val)
3199 			return ret_val;
3200 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3201 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3202 		    E1000_ICH_NVM_SIG_VALUE) {
3203 			*bank = 0;
3204 			return 0;
3205 		}
3206 
3207 		/* Check bank 1 */
3208 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3209 							 bank1_offset,
3210 							 &nvm_dword);
3211 		if (ret_val)
3212 			return ret_val;
3213 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3214 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3215 		    E1000_ICH_NVM_SIG_VALUE) {
3216 			*bank = 1;
3217 			return 0;
3218 		}
3219 
3220 		e_dbg("ERROR: No valid NVM bank present\n");
3221 		return -E1000_ERR_NVM;
3222 	case e1000_ich8lan:
3223 	case e1000_ich9lan:
3224 		eecd = er32(EECD);
3225 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3226 		    E1000_EECD_SEC1VAL_VALID_MASK) {
3227 			if (eecd & E1000_EECD_SEC1VAL)
3228 				*bank = 1;
3229 			else
3230 				*bank = 0;
3231 
3232 			return 0;
3233 		}
3234 		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3235 		fallthrough;
3236 	default:
3237 		/* set bank to 0 in case flash read fails */
3238 		*bank = 0;
3239 
3240 		/* Check bank 0 */
3241 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3242 							&sig_byte);
3243 		if (ret_val)
3244 			return ret_val;
3245 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3246 		    E1000_ICH_NVM_SIG_VALUE) {
3247 			*bank = 0;
3248 			return 0;
3249 		}
3250 
3251 		/* Check bank 1 */
3252 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3253 							bank1_offset,
3254 							&sig_byte);
3255 		if (ret_val)
3256 			return ret_val;
3257 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3258 		    E1000_ICH_NVM_SIG_VALUE) {
3259 			*bank = 1;
3260 			return 0;
3261 		}
3262 
3263 		e_dbg("ERROR: No valid NVM bank present\n");
3264 		return -E1000_ERR_NVM;
3265 	}
3266 }
3267 
3268 /**
3269  *  e1000_read_nvm_spt - NVM access for SPT
3270  *  @hw: pointer to the HW structure
3271  *  @offset: The offset (in bytes) of the word(s) to read.
3272  *  @words: Size of data to read in words.
3273  *  @data: pointer to the word(s) to read at offset.
3274  *
3275  *  Reads a word(s) from the NVM
3276  **/
3277 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3278 			      u16 *data)
3279 {
3280 	struct e1000_nvm_info *nvm = &hw->nvm;
3281 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3282 	u32 act_offset;
3283 	s32 ret_val = 0;
3284 	u32 bank = 0;
3285 	u32 dword = 0;
3286 	u16 offset_to_read;
3287 	u16 i;
3288 
3289 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3290 	    (words == 0)) {
3291 		e_dbg("nvm parameter(s) out of bounds\n");
3292 		ret_val = -E1000_ERR_NVM;
3293 		goto out;
3294 	}
3295 
3296 	nvm->ops.acquire(hw);
3297 
3298 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3299 	if (ret_val) {
3300 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3301 		bank = 0;
3302 	}
3303 
3304 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3305 	act_offset += offset;
3306 
3307 	ret_val = 0;
3308 
3309 	for (i = 0; i < words; i += 2) {
3310 		if (words - i == 1) {
3311 			if (dev_spec->shadow_ram[offset + i].modified) {
3312 				data[i] =
3313 				    dev_spec->shadow_ram[offset + i].value;
3314 			} else {
3315 				offset_to_read = act_offset + i -
3316 				    ((act_offset + i) % 2);
3317 				ret_val =
3318 				  e1000_read_flash_dword_ich8lan(hw,
3319 								 offset_to_read,
3320 								 &dword);
3321 				if (ret_val)
3322 					break;
3323 				if ((act_offset + i) % 2 == 0)
3324 					data[i] = (u16)(dword & 0xFFFF);
3325 				else
3326 					data[i] = (u16)((dword >> 16) & 0xFFFF);
3327 			}
3328 		} else {
3329 			offset_to_read = act_offset + i;
3330 			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3331 			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3332 				ret_val =
3333 				  e1000_read_flash_dword_ich8lan(hw,
3334 								 offset_to_read,
3335 								 &dword);
3336 				if (ret_val)
3337 					break;
3338 			}
3339 			if (dev_spec->shadow_ram[offset + i].modified)
3340 				data[i] =
3341 				    dev_spec->shadow_ram[offset + i].value;
3342 			else
3343 				data[i] = (u16)(dword & 0xFFFF);
3344 			if (dev_spec->shadow_ram[offset + i].modified)
3345 				data[i + 1] =
3346 				    dev_spec->shadow_ram[offset + i + 1].value;
3347 			else
3348 				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3349 		}
3350 	}
3351 
3352 	nvm->ops.release(hw);
3353 
3354 out:
3355 	if (ret_val)
3356 		e_dbg("NVM read error: %d\n", ret_val);
3357 
3358 	return ret_val;
3359 }
3360 
3361 /**
3362  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3363  *  @hw: pointer to the HW structure
3364  *  @offset: The offset (in bytes) of the word(s) to read.
3365  *  @words: Size of data to read in words
3366  *  @data: Pointer to the word(s) to read at offset.
3367  *
3368  *  Reads a word(s) from the NVM using the flash access registers.
3369  **/
3370 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3371 				  u16 *data)
3372 {
3373 	struct e1000_nvm_info *nvm = &hw->nvm;
3374 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3375 	u32 act_offset;
3376 	s32 ret_val = 0;
3377 	u32 bank = 0;
3378 	u16 i, word;
3379 
3380 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3381 	    (words == 0)) {
3382 		e_dbg("nvm parameter(s) out of bounds\n");
3383 		ret_val = -E1000_ERR_NVM;
3384 		goto out;
3385 	}
3386 
3387 	nvm->ops.acquire(hw);
3388 
3389 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3390 	if (ret_val) {
3391 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3392 		bank = 0;
3393 	}
3394 
3395 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3396 	act_offset += offset;
3397 
3398 	ret_val = 0;
3399 	for (i = 0; i < words; i++) {
3400 		if (dev_spec->shadow_ram[offset + i].modified) {
3401 			data[i] = dev_spec->shadow_ram[offset + i].value;
3402 		} else {
3403 			ret_val = e1000_read_flash_word_ich8lan(hw,
3404 								act_offset + i,
3405 								&word);
3406 			if (ret_val)
3407 				break;
3408 			data[i] = word;
3409 		}
3410 	}
3411 
3412 	nvm->ops.release(hw);
3413 
3414 out:
3415 	if (ret_val)
3416 		e_dbg("NVM read error: %d\n", ret_val);
3417 
3418 	return ret_val;
3419 }
3420 
3421 /**
3422  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3423  *  @hw: pointer to the HW structure
3424  *
3425  *  This function does initial flash setup so that a new read/write/erase cycle
3426  *  can be started.
3427  **/
3428 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3429 {
3430 	union ich8_hws_flash_status hsfsts;
3431 	s32 ret_val = -E1000_ERR_NVM;
3432 
3433 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3434 
3435 	/* Check if the flash descriptor is valid */
3436 	if (!hsfsts.hsf_status.fldesvalid) {
3437 		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3438 		return -E1000_ERR_NVM;
3439 	}
3440 
3441 	/* Clear FCERR and DAEL in hw status by writing 1 */
3442 	hsfsts.hsf_status.flcerr = 1;
3443 	hsfsts.hsf_status.dael = 1;
3444 	if (hw->mac.type >= e1000_pch_spt)
3445 		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3446 	else
3447 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3448 
3449 	/* Either we should have a hardware SPI cycle in progress
3450 	 * bit to check against, in order to start a new cycle or
3451 	 * FDONE bit should be changed in the hardware so that it
3452 	 * is 1 after hardware reset, which can then be used as an
3453 	 * indication whether a cycle is in progress or has been
3454 	 * completed.
3455 	 */
3456 
3457 	if (!hsfsts.hsf_status.flcinprog) {
3458 		/* There is no cycle running at present,
3459 		 * so we can start a cycle.
3460 		 * Begin by setting Flash Cycle Done.
3461 		 */
3462 		hsfsts.hsf_status.flcdone = 1;
3463 		if (hw->mac.type >= e1000_pch_spt)
3464 			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3465 		else
3466 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3467 		ret_val = 0;
3468 	} else {
3469 		s32 i;
3470 
3471 		/* Otherwise poll for sometime so the current
3472 		 * cycle has a chance to end before giving up.
3473 		 */
3474 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3475 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3476 			if (!hsfsts.hsf_status.flcinprog) {
3477 				ret_val = 0;
3478 				break;
3479 			}
3480 			udelay(1);
3481 		}
3482 		if (!ret_val) {
3483 			/* Successful in waiting for previous cycle to timeout,
3484 			 * now set the Flash Cycle Done.
3485 			 */
3486 			hsfsts.hsf_status.flcdone = 1;
3487 			if (hw->mac.type >= e1000_pch_spt)
3488 				ew32flash(ICH_FLASH_HSFSTS,
3489 					  hsfsts.regval & 0xFFFF);
3490 			else
3491 				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3492 		} else {
3493 			e_dbg("Flash controller busy, cannot get access\n");
3494 		}
3495 	}
3496 
3497 	return ret_val;
3498 }
3499 
3500 /**
3501  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3502  *  @hw: pointer to the HW structure
3503  *  @timeout: maximum time to wait for completion
3504  *
3505  *  This function starts a flash cycle and waits for its completion.
3506  **/
3507 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3508 {
3509 	union ich8_hws_flash_ctrl hsflctl;
3510 	union ich8_hws_flash_status hsfsts;
3511 	u32 i = 0;
3512 
3513 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3514 	if (hw->mac.type >= e1000_pch_spt)
3515 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3516 	else
3517 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3518 	hsflctl.hsf_ctrl.flcgo = 1;
3519 
3520 	if (hw->mac.type >= e1000_pch_spt)
3521 		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3522 	else
3523 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3524 
3525 	/* wait till FDONE bit is set to 1 */
3526 	do {
3527 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3528 		if (hsfsts.hsf_status.flcdone)
3529 			break;
3530 		udelay(1);
3531 	} while (i++ < timeout);
3532 
3533 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3534 		return 0;
3535 
3536 	return -E1000_ERR_NVM;
3537 }
3538 
3539 /**
3540  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3541  *  @hw: pointer to the HW structure
3542  *  @offset: offset to data location
3543  *  @data: pointer to the location for storing the data
3544  *
3545  *  Reads the flash dword at offset into data.  Offset is converted
3546  *  to bytes before read.
3547  **/
3548 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3549 					  u32 *data)
3550 {
3551 	/* Must convert word offset into bytes. */
3552 	offset <<= 1;
3553 	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3554 }
3555 
3556 /**
3557  *  e1000_read_flash_word_ich8lan - Read word from flash
3558  *  @hw: pointer to the HW structure
3559  *  @offset: offset to data location
3560  *  @data: pointer to the location for storing the data
3561  *
3562  *  Reads the flash word at offset into data.  Offset is converted
3563  *  to bytes before read.
3564  **/
3565 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3566 					 u16 *data)
3567 {
3568 	/* Must convert offset into bytes. */
3569 	offset <<= 1;
3570 
3571 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3572 }
3573 
3574 /**
3575  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3576  *  @hw: pointer to the HW structure
3577  *  @offset: The offset of the byte to read.
3578  *  @data: Pointer to a byte to store the value read.
3579  *
3580  *  Reads a single byte from the NVM using the flash access registers.
3581  **/
3582 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3583 					 u8 *data)
3584 {
3585 	s32 ret_val;
3586 	u16 word = 0;
3587 
3588 	/* In SPT, only 32 bits access is supported,
3589 	 * so this function should not be called.
3590 	 */
3591 	if (hw->mac.type >= e1000_pch_spt)
3592 		return -E1000_ERR_NVM;
3593 	else
3594 		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3595 
3596 	if (ret_val)
3597 		return ret_val;
3598 
3599 	*data = (u8)word;
3600 
3601 	return 0;
3602 }
3603 
3604 /**
3605  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3606  *  @hw: pointer to the HW structure
3607  *  @offset: The offset (in bytes) of the byte or word to read.
3608  *  @size: Size of data to read, 1=byte 2=word
3609  *  @data: Pointer to the word to store the value read.
3610  *
3611  *  Reads a byte or word from the NVM using the flash access registers.
3612  **/
3613 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3614 					 u8 size, u16 *data)
3615 {
3616 	union ich8_hws_flash_status hsfsts;
3617 	union ich8_hws_flash_ctrl hsflctl;
3618 	u32 flash_linear_addr;
3619 	u32 flash_data = 0;
3620 	s32 ret_val = -E1000_ERR_NVM;
3621 	u8 count = 0;
3622 
3623 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3624 		return -E1000_ERR_NVM;
3625 
3626 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3627 			     hw->nvm.flash_base_addr);
3628 
3629 	do {
3630 		udelay(1);
3631 		/* Steps */
3632 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3633 		if (ret_val)
3634 			break;
3635 
3636 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3637 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3638 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3639 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3640 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3641 
3642 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3643 
3644 		ret_val =
3645 		    e1000_flash_cycle_ich8lan(hw,
3646 					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3647 
3648 		/* Check if FCERR is set to 1, if set to 1, clear it
3649 		 * and try the whole sequence a few more times, else
3650 		 * read in (shift in) the Flash Data0, the order is
3651 		 * least significant byte first msb to lsb
3652 		 */
3653 		if (!ret_val) {
3654 			flash_data = er32flash(ICH_FLASH_FDATA0);
3655 			if (size == 1)
3656 				*data = (u8)(flash_data & 0x000000FF);
3657 			else if (size == 2)
3658 				*data = (u16)(flash_data & 0x0000FFFF);
3659 			break;
3660 		} else {
3661 			/* If we've gotten here, then things are probably
3662 			 * completely hosed, but if the error condition is
3663 			 * detected, it won't hurt to give it another try...
3664 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3665 			 */
3666 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3667 			if (hsfsts.hsf_status.flcerr) {
3668 				/* Repeat for some time before giving up. */
3669 				continue;
3670 			} else if (!hsfsts.hsf_status.flcdone) {
3671 				e_dbg("Timeout error - flash cycle did not complete.\n");
3672 				break;
3673 			}
3674 		}
3675 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3676 
3677 	return ret_val;
3678 }
3679 
3680 /**
3681  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3682  *  @hw: pointer to the HW structure
3683  *  @offset: The offset (in bytes) of the dword to read.
3684  *  @data: Pointer to the dword to store the value read.
3685  *
3686  *  Reads a byte or word from the NVM using the flash access registers.
3687  **/
3688 
3689 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3690 					   u32 *data)
3691 {
3692 	union ich8_hws_flash_status hsfsts;
3693 	union ich8_hws_flash_ctrl hsflctl;
3694 	u32 flash_linear_addr;
3695 	s32 ret_val = -E1000_ERR_NVM;
3696 	u8 count = 0;
3697 
3698 	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3699 		return -E1000_ERR_NVM;
3700 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3701 			     hw->nvm.flash_base_addr);
3702 
3703 	do {
3704 		udelay(1);
3705 		/* Steps */
3706 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3707 		if (ret_val)
3708 			break;
3709 		/* In SPT, This register is in Lan memory space, not flash.
3710 		 * Therefore, only 32 bit access is supported
3711 		 */
3712 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3713 
3714 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3715 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3716 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3717 		/* In SPT, This register is in Lan memory space, not flash.
3718 		 * Therefore, only 32 bit access is supported
3719 		 */
3720 		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3721 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3722 
3723 		ret_val =
3724 		   e1000_flash_cycle_ich8lan(hw,
3725 					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3726 
3727 		/* Check if FCERR is set to 1, if set to 1, clear it
3728 		 * and try the whole sequence a few more times, else
3729 		 * read in (shift in) the Flash Data0, the order is
3730 		 * least significant byte first msb to lsb
3731 		 */
3732 		if (!ret_val) {
3733 			*data = er32flash(ICH_FLASH_FDATA0);
3734 			break;
3735 		} else {
3736 			/* If we've gotten here, then things are probably
3737 			 * completely hosed, but if the error condition is
3738 			 * detected, it won't hurt to give it another try...
3739 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3740 			 */
3741 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3742 			if (hsfsts.hsf_status.flcerr) {
3743 				/* Repeat for some time before giving up. */
3744 				continue;
3745 			} else if (!hsfsts.hsf_status.flcdone) {
3746 				e_dbg("Timeout error - flash cycle did not complete.\n");
3747 				break;
3748 			}
3749 		}
3750 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3751 
3752 	return ret_val;
3753 }
3754 
3755 /**
3756  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3757  *  @hw: pointer to the HW structure
3758  *  @offset: The offset (in bytes) of the word(s) to write.
3759  *  @words: Size of data to write in words
3760  *  @data: Pointer to the word(s) to write at offset.
3761  *
3762  *  Writes a byte or word to the NVM using the flash access registers.
3763  **/
3764 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3765 				   u16 *data)
3766 {
3767 	struct e1000_nvm_info *nvm = &hw->nvm;
3768 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3769 	u16 i;
3770 
3771 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3772 	    (words == 0)) {
3773 		e_dbg("nvm parameter(s) out of bounds\n");
3774 		return -E1000_ERR_NVM;
3775 	}
3776 
3777 	nvm->ops.acquire(hw);
3778 
3779 	for (i = 0; i < words; i++) {
3780 		dev_spec->shadow_ram[offset + i].modified = true;
3781 		dev_spec->shadow_ram[offset + i].value = data[i];
3782 	}
3783 
3784 	nvm->ops.release(hw);
3785 
3786 	return 0;
3787 }
3788 
3789 /**
3790  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3791  *  @hw: pointer to the HW structure
3792  *
3793  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3794  *  which writes the checksum to the shadow ram.  The changes in the shadow
3795  *  ram are then committed to the EEPROM by processing each bank at a time
3796  *  checking for the modified bit and writing only the pending changes.
3797  *  After a successful commit, the shadow ram is cleared and is ready for
3798  *  future writes.
3799  **/
3800 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3801 {
3802 	struct e1000_nvm_info *nvm = &hw->nvm;
3803 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3804 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3805 	s32 ret_val;
3806 	u32 dword = 0;
3807 
3808 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3809 	if (ret_val)
3810 		goto out;
3811 
3812 	if (nvm->type != e1000_nvm_flash_sw)
3813 		goto out;
3814 
3815 	nvm->ops.acquire(hw);
3816 
3817 	/* We're writing to the opposite bank so if we're on bank 1,
3818 	 * write to bank 0 etc.  We also need to erase the segment that
3819 	 * is going to be written
3820 	 */
3821 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3822 	if (ret_val) {
3823 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3824 		bank = 0;
3825 	}
3826 
3827 	if (bank == 0) {
3828 		new_bank_offset = nvm->flash_bank_size;
3829 		old_bank_offset = 0;
3830 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3831 		if (ret_val)
3832 			goto release;
3833 	} else {
3834 		old_bank_offset = nvm->flash_bank_size;
3835 		new_bank_offset = 0;
3836 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3837 		if (ret_val)
3838 			goto release;
3839 	}
3840 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3841 		/* Determine whether to write the value stored
3842 		 * in the other NVM bank or a modified value stored
3843 		 * in the shadow RAM
3844 		 */
3845 		ret_val = e1000_read_flash_dword_ich8lan(hw,
3846 							 i + old_bank_offset,
3847 							 &dword);
3848 
3849 		if (dev_spec->shadow_ram[i].modified) {
3850 			dword &= 0xffff0000;
3851 			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3852 		}
3853 		if (dev_spec->shadow_ram[i + 1].modified) {
3854 			dword &= 0x0000ffff;
3855 			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3856 				  << 16);
3857 		}
3858 		if (ret_val)
3859 			break;
3860 
3861 		/* If the word is 0x13, then make sure the signature bits
3862 		 * (15:14) are 11b until the commit has completed.
3863 		 * This will allow us to write 10b which indicates the
3864 		 * signature is valid.  We want to do this after the write
3865 		 * has completed so that we don't mark the segment valid
3866 		 * while the write is still in progress
3867 		 */
3868 		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3869 			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3870 
3871 		/* Convert offset to bytes. */
3872 		act_offset = (i + new_bank_offset) << 1;
3873 
3874 		usleep_range(100, 200);
3875 
3876 		/* Write the data to the new bank. Offset in words */
3877 		act_offset = i + new_bank_offset;
3878 		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3879 								dword);
3880 		if (ret_val)
3881 			break;
3882 	}
3883 
3884 	/* Don't bother writing the segment valid bits if sector
3885 	 * programming failed.
3886 	 */
3887 	if (ret_val) {
3888 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3889 		e_dbg("Flash commit failed.\n");
3890 		goto release;
3891 	}
3892 
3893 	/* Finally validate the new segment by setting bit 15:14
3894 	 * to 10b in word 0x13 , this can be done without an
3895 	 * erase as well since these bits are 11 to start with
3896 	 * and we need to change bit 14 to 0b
3897 	 */
3898 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3899 
3900 	/*offset in words but we read dword */
3901 	--act_offset;
3902 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3903 
3904 	if (ret_val)
3905 		goto release;
3906 
3907 	dword &= 0xBFFFFFFF;
3908 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3909 
3910 	if (ret_val)
3911 		goto release;
3912 
3913 	/* offset in words but we read dword */
3914 	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3915 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3916 
3917 	if (ret_val)
3918 		goto release;
3919 
3920 	dword &= 0x00FFFFFF;
3921 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3922 
3923 	if (ret_val)
3924 		goto release;
3925 
3926 	/* Great!  Everything worked, we can now clear the cached entries. */
3927 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3928 		dev_spec->shadow_ram[i].modified = false;
3929 		dev_spec->shadow_ram[i].value = 0xFFFF;
3930 	}
3931 
3932 release:
3933 	nvm->ops.release(hw);
3934 
3935 	/* Reload the EEPROM, or else modifications will not appear
3936 	 * until after the next adapter reset.
3937 	 */
3938 	if (!ret_val) {
3939 		nvm->ops.reload(hw);
3940 		usleep_range(10000, 11000);
3941 	}
3942 
3943 out:
3944 	if (ret_val)
3945 		e_dbg("NVM update error: %d\n", ret_val);
3946 
3947 	return ret_val;
3948 }
3949 
3950 /**
3951  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3952  *  @hw: pointer to the HW structure
3953  *
3954  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3955  *  which writes the checksum to the shadow ram.  The changes in the shadow
3956  *  ram are then committed to the EEPROM by processing each bank at a time
3957  *  checking for the modified bit and writing only the pending changes.
3958  *  After a successful commit, the shadow ram is cleared and is ready for
3959  *  future writes.
3960  **/
3961 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3962 {
3963 	struct e1000_nvm_info *nvm = &hw->nvm;
3964 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3965 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3966 	s32 ret_val;
3967 	u16 data = 0;
3968 
3969 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3970 	if (ret_val)
3971 		goto out;
3972 
3973 	if (nvm->type != e1000_nvm_flash_sw)
3974 		goto out;
3975 
3976 	nvm->ops.acquire(hw);
3977 
3978 	/* We're writing to the opposite bank so if we're on bank 1,
3979 	 * write to bank 0 etc.  We also need to erase the segment that
3980 	 * is going to be written
3981 	 */
3982 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3983 	if (ret_val) {
3984 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3985 		bank = 0;
3986 	}
3987 
3988 	if (bank == 0) {
3989 		new_bank_offset = nvm->flash_bank_size;
3990 		old_bank_offset = 0;
3991 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3992 		if (ret_val)
3993 			goto release;
3994 	} else {
3995 		old_bank_offset = nvm->flash_bank_size;
3996 		new_bank_offset = 0;
3997 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3998 		if (ret_val)
3999 			goto release;
4000 	}
4001 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4002 		if (dev_spec->shadow_ram[i].modified) {
4003 			data = dev_spec->shadow_ram[i].value;
4004 		} else {
4005 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
4006 								old_bank_offset,
4007 								&data);
4008 			if (ret_val)
4009 				break;
4010 		}
4011 
4012 		/* If the word is 0x13, then make sure the signature bits
4013 		 * (15:14) are 11b until the commit has completed.
4014 		 * This will allow us to write 10b which indicates the
4015 		 * signature is valid.  We want to do this after the write
4016 		 * has completed so that we don't mark the segment valid
4017 		 * while the write is still in progress
4018 		 */
4019 		if (i == E1000_ICH_NVM_SIG_WORD)
4020 			data |= E1000_ICH_NVM_SIG_MASK;
4021 
4022 		/* Convert offset to bytes. */
4023 		act_offset = (i + new_bank_offset) << 1;
4024 
4025 		usleep_range(100, 200);
4026 		/* Write the bytes to the new bank. */
4027 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4028 							       act_offset,
4029 							       (u8)data);
4030 		if (ret_val)
4031 			break;
4032 
4033 		usleep_range(100, 200);
4034 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4035 							       act_offset + 1,
4036 							       (u8)(data >> 8));
4037 		if (ret_val)
4038 			break;
4039 	}
4040 
4041 	/* Don't bother writing the segment valid bits if sector
4042 	 * programming failed.
4043 	 */
4044 	if (ret_val) {
4045 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4046 		e_dbg("Flash commit failed.\n");
4047 		goto release;
4048 	}
4049 
4050 	/* Finally validate the new segment by setting bit 15:14
4051 	 * to 10b in word 0x13 , this can be done without an
4052 	 * erase as well since these bits are 11 to start with
4053 	 * and we need to change bit 14 to 0b
4054 	 */
4055 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4056 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4057 	if (ret_val)
4058 		goto release;
4059 
4060 	data &= 0xBFFF;
4061 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4062 						       act_offset * 2 + 1,
4063 						       (u8)(data >> 8));
4064 	if (ret_val)
4065 		goto release;
4066 
4067 	/* And invalidate the previously valid segment by setting
4068 	 * its signature word (0x13) high_byte to 0b. This can be
4069 	 * done without an erase because flash erase sets all bits
4070 	 * to 1's. We can write 1's to 0's without an erase
4071 	 */
4072 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4073 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4074 	if (ret_val)
4075 		goto release;
4076 
4077 	/* Great!  Everything worked, we can now clear the cached entries. */
4078 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4079 		dev_spec->shadow_ram[i].modified = false;
4080 		dev_spec->shadow_ram[i].value = 0xFFFF;
4081 	}
4082 
4083 release:
4084 	nvm->ops.release(hw);
4085 
4086 	/* Reload the EEPROM, or else modifications will not appear
4087 	 * until after the next adapter reset.
4088 	 */
4089 	if (!ret_val) {
4090 		nvm->ops.reload(hw);
4091 		usleep_range(10000, 11000);
4092 	}
4093 
4094 out:
4095 	if (ret_val)
4096 		e_dbg("NVM update error: %d\n", ret_val);
4097 
4098 	return ret_val;
4099 }
4100 
4101 /**
4102  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4103  *  @hw: pointer to the HW structure
4104  *
4105  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4106  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4107  *  calculated, in which case we need to calculate the checksum and set bit 6.
4108  **/
4109 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4110 {
4111 	s32 ret_val;
4112 	u16 data;
4113 	u16 word;
4114 	u16 valid_csum_mask;
4115 
4116 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4117 	 * the checksum needs to be fixed.  This bit is an indication that
4118 	 * the NVM was prepared by OEM software and did not calculate
4119 	 * the checksum...a likely scenario.
4120 	 */
4121 	switch (hw->mac.type) {
4122 	case e1000_pch_lpt:
4123 	case e1000_pch_spt:
4124 	case e1000_pch_cnp:
4125 	case e1000_pch_tgp:
4126 	case e1000_pch_adp:
4127 	case e1000_pch_mtp:
4128 	case e1000_pch_lnp:
4129 		word = NVM_COMPAT;
4130 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4131 		break;
4132 	default:
4133 		word = NVM_FUTURE_INIT_WORD1;
4134 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4135 		break;
4136 	}
4137 
4138 	ret_val = e1000_read_nvm(hw, word, 1, &data);
4139 	if (ret_val)
4140 		return ret_val;
4141 
4142 	if (!(data & valid_csum_mask)) {
4143 		e_dbg("NVM Checksum valid bit not set\n");
4144 
4145 		if (hw->mac.type < e1000_pch_tgp) {
4146 			data |= valid_csum_mask;
4147 			ret_val = e1000_write_nvm(hw, word, 1, &data);
4148 			if (ret_val)
4149 				return ret_val;
4150 			ret_val = e1000e_update_nvm_checksum(hw);
4151 			if (ret_val)
4152 				return ret_val;
4153 		}
4154 	}
4155 
4156 	return e1000e_validate_nvm_checksum_generic(hw);
4157 }
4158 
4159 /**
4160  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4161  *  @hw: pointer to the HW structure
4162  *
4163  *  To prevent malicious write/erase of the NVM, set it to be read-only
4164  *  so that the hardware ignores all write/erase cycles of the NVM via
4165  *  the flash control registers.  The shadow-ram copy of the NVM will
4166  *  still be updated, however any updates to this copy will not stick
4167  *  across driver reloads.
4168  **/
4169 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4170 {
4171 	struct e1000_nvm_info *nvm = &hw->nvm;
4172 	union ich8_flash_protected_range pr0;
4173 	union ich8_hws_flash_status hsfsts;
4174 	u32 gfpreg;
4175 
4176 	nvm->ops.acquire(hw);
4177 
4178 	gfpreg = er32flash(ICH_FLASH_GFPREG);
4179 
4180 	/* Write-protect GbE Sector of NVM */
4181 	pr0.regval = er32flash(ICH_FLASH_PR0);
4182 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4183 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4184 	pr0.range.wpe = true;
4185 	ew32flash(ICH_FLASH_PR0, pr0.regval);
4186 
4187 	/* Lock down a subset of GbE Flash Control Registers, e.g.
4188 	 * PR0 to prevent the write-protection from being lifted.
4189 	 * Once FLOCKDN is set, the registers protected by it cannot
4190 	 * be written until FLOCKDN is cleared by a hardware reset.
4191 	 */
4192 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4193 	hsfsts.hsf_status.flockdn = true;
4194 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4195 
4196 	nvm->ops.release(hw);
4197 }
4198 
4199 /**
4200  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4201  *  @hw: pointer to the HW structure
4202  *  @offset: The offset (in bytes) of the byte/word to read.
4203  *  @size: Size of data to read, 1=byte 2=word
4204  *  @data: The byte(s) to write to the NVM.
4205  *
4206  *  Writes one/two bytes to the NVM using the flash access registers.
4207  **/
4208 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4209 					  u8 size, u16 data)
4210 {
4211 	union ich8_hws_flash_status hsfsts;
4212 	union ich8_hws_flash_ctrl hsflctl;
4213 	u32 flash_linear_addr;
4214 	u32 flash_data = 0;
4215 	s32 ret_val;
4216 	u8 count = 0;
4217 
4218 	if (hw->mac.type >= e1000_pch_spt) {
4219 		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4220 			return -E1000_ERR_NVM;
4221 	} else {
4222 		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4223 			return -E1000_ERR_NVM;
4224 	}
4225 
4226 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4227 			     hw->nvm.flash_base_addr);
4228 
4229 	do {
4230 		udelay(1);
4231 		/* Steps */
4232 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4233 		if (ret_val)
4234 			break;
4235 		/* In SPT, This register is in Lan memory space, not
4236 		 * flash.  Therefore, only 32 bit access is supported
4237 		 */
4238 		if (hw->mac.type >= e1000_pch_spt)
4239 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4240 		else
4241 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4242 
4243 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4244 		hsflctl.hsf_ctrl.fldbcount = size - 1;
4245 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4246 		/* In SPT, This register is in Lan memory space,
4247 		 * not flash.  Therefore, only 32 bit access is
4248 		 * supported
4249 		 */
4250 		if (hw->mac.type >= e1000_pch_spt)
4251 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4252 		else
4253 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4254 
4255 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4256 
4257 		if (size == 1)
4258 			flash_data = (u32)data & 0x00FF;
4259 		else
4260 			flash_data = (u32)data;
4261 
4262 		ew32flash(ICH_FLASH_FDATA0, flash_data);
4263 
4264 		/* check if FCERR is set to 1 , if set to 1, clear it
4265 		 * and try the whole sequence a few more times else done
4266 		 */
4267 		ret_val =
4268 		    e1000_flash_cycle_ich8lan(hw,
4269 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4270 		if (!ret_val)
4271 			break;
4272 
4273 		/* If we're here, then things are most likely
4274 		 * completely hosed, but if the error condition
4275 		 * is detected, it won't hurt to give it another
4276 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4277 		 */
4278 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4279 		if (hsfsts.hsf_status.flcerr)
4280 			/* Repeat for some time before giving up. */
4281 			continue;
4282 		if (!hsfsts.hsf_status.flcdone) {
4283 			e_dbg("Timeout error - flash cycle did not complete.\n");
4284 			break;
4285 		}
4286 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4287 
4288 	return ret_val;
4289 }
4290 
4291 /**
4292 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4293 *  @hw: pointer to the HW structure
4294 *  @offset: The offset (in bytes) of the dwords to read.
4295 *  @data: The 4 bytes to write to the NVM.
4296 *
4297 *  Writes one/two/four bytes to the NVM using the flash access registers.
4298 **/
4299 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4300 					    u32 data)
4301 {
4302 	union ich8_hws_flash_status hsfsts;
4303 	union ich8_hws_flash_ctrl hsflctl;
4304 	u32 flash_linear_addr;
4305 	s32 ret_val;
4306 	u8 count = 0;
4307 
4308 	if (hw->mac.type >= e1000_pch_spt) {
4309 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4310 			return -E1000_ERR_NVM;
4311 	}
4312 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4313 			     hw->nvm.flash_base_addr);
4314 	do {
4315 		udelay(1);
4316 		/* Steps */
4317 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4318 		if (ret_val)
4319 			break;
4320 
4321 		/* In SPT, This register is in Lan memory space, not
4322 		 * flash.  Therefore, only 32 bit access is supported
4323 		 */
4324 		if (hw->mac.type >= e1000_pch_spt)
4325 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4326 			    >> 16;
4327 		else
4328 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4329 
4330 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4331 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4332 
4333 		/* In SPT, This register is in Lan memory space,
4334 		 * not flash.  Therefore, only 32 bit access is
4335 		 * supported
4336 		 */
4337 		if (hw->mac.type >= e1000_pch_spt)
4338 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4339 		else
4340 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4341 
4342 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4343 
4344 		ew32flash(ICH_FLASH_FDATA0, data);
4345 
4346 		/* check if FCERR is set to 1 , if set to 1, clear it
4347 		 * and try the whole sequence a few more times else done
4348 		 */
4349 		ret_val =
4350 		   e1000_flash_cycle_ich8lan(hw,
4351 					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4352 
4353 		if (!ret_val)
4354 			break;
4355 
4356 		/* If we're here, then things are most likely
4357 		 * completely hosed, but if the error condition
4358 		 * is detected, it won't hurt to give it another
4359 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4360 		 */
4361 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4362 
4363 		if (hsfsts.hsf_status.flcerr)
4364 			/* Repeat for some time before giving up. */
4365 			continue;
4366 		if (!hsfsts.hsf_status.flcdone) {
4367 			e_dbg("Timeout error - flash cycle did not complete.\n");
4368 			break;
4369 		}
4370 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4371 
4372 	return ret_val;
4373 }
4374 
4375 /**
4376  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4377  *  @hw: pointer to the HW structure
4378  *  @offset: The index of the byte to read.
4379  *  @data: The byte to write to the NVM.
4380  *
4381  *  Writes a single byte to the NVM using the flash access registers.
4382  **/
4383 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4384 					  u8 data)
4385 {
4386 	u16 word = (u16)data;
4387 
4388 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4389 }
4390 
4391 /**
4392 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4393 *  @hw: pointer to the HW structure
4394 *  @offset: The offset of the word to write.
4395 *  @dword: The dword to write to the NVM.
4396 *
4397 *  Writes a single dword to the NVM using the flash access registers.
4398 *  Goes through a retry algorithm before giving up.
4399 **/
4400 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4401 						 u32 offset, u32 dword)
4402 {
4403 	s32 ret_val;
4404 	u16 program_retries;
4405 
4406 	/* Must convert word offset into bytes. */
4407 	offset <<= 1;
4408 	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4409 
4410 	if (!ret_val)
4411 		return ret_val;
4412 	for (program_retries = 0; program_retries < 100; program_retries++) {
4413 		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4414 		usleep_range(100, 200);
4415 		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4416 		if (!ret_val)
4417 			break;
4418 	}
4419 	if (program_retries == 100)
4420 		return -E1000_ERR_NVM;
4421 
4422 	return 0;
4423 }
4424 
4425 /**
4426  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4427  *  @hw: pointer to the HW structure
4428  *  @offset: The offset of the byte to write.
4429  *  @byte: The byte to write to the NVM.
4430  *
4431  *  Writes a single byte to the NVM using the flash access registers.
4432  *  Goes through a retry algorithm before giving up.
4433  **/
4434 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4435 						u32 offset, u8 byte)
4436 {
4437 	s32 ret_val;
4438 	u16 program_retries;
4439 
4440 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4441 	if (!ret_val)
4442 		return ret_val;
4443 
4444 	for (program_retries = 0; program_retries < 100; program_retries++) {
4445 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4446 		usleep_range(100, 200);
4447 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4448 		if (!ret_val)
4449 			break;
4450 	}
4451 	if (program_retries == 100)
4452 		return -E1000_ERR_NVM;
4453 
4454 	return 0;
4455 }
4456 
4457 /**
4458  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4459  *  @hw: pointer to the HW structure
4460  *  @bank: 0 for first bank, 1 for second bank, etc.
4461  *
4462  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4463  *  bank N is 4096 * N + flash_reg_addr.
4464  **/
4465 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4466 {
4467 	struct e1000_nvm_info *nvm = &hw->nvm;
4468 	union ich8_hws_flash_status hsfsts;
4469 	union ich8_hws_flash_ctrl hsflctl;
4470 	u32 flash_linear_addr;
4471 	/* bank size is in 16bit words - adjust to bytes */
4472 	u32 flash_bank_size = nvm->flash_bank_size * 2;
4473 	s32 ret_val;
4474 	s32 count = 0;
4475 	s32 j, iteration, sector_size;
4476 
4477 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4478 
4479 	/* Determine HW Sector size: Read BERASE bits of hw flash status
4480 	 * register
4481 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4482 	 *     consecutive sectors.  The start index for the nth Hw sector
4483 	 *     can be calculated as = bank * 4096 + n * 256
4484 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4485 	 *     The start index for the nth Hw sector can be calculated
4486 	 *     as = bank * 4096
4487 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4488 	 *     (ich9 only, otherwise error condition)
4489 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4490 	 */
4491 	switch (hsfsts.hsf_status.berasesz) {
4492 	case 0:
4493 		/* Hw sector size 256 */
4494 		sector_size = ICH_FLASH_SEG_SIZE_256;
4495 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4496 		break;
4497 	case 1:
4498 		sector_size = ICH_FLASH_SEG_SIZE_4K;
4499 		iteration = 1;
4500 		break;
4501 	case 2:
4502 		sector_size = ICH_FLASH_SEG_SIZE_8K;
4503 		iteration = 1;
4504 		break;
4505 	case 3:
4506 		sector_size = ICH_FLASH_SEG_SIZE_64K;
4507 		iteration = 1;
4508 		break;
4509 	default:
4510 		return -E1000_ERR_NVM;
4511 	}
4512 
4513 	/* Start with the base address, then add the sector offset. */
4514 	flash_linear_addr = hw->nvm.flash_base_addr;
4515 	flash_linear_addr += (bank) ? flash_bank_size : 0;
4516 
4517 	for (j = 0; j < iteration; j++) {
4518 		do {
4519 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4520 
4521 			/* Steps */
4522 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4523 			if (ret_val)
4524 				return ret_val;
4525 
4526 			/* Write a value 11 (block Erase) in Flash
4527 			 * Cycle field in hw flash control
4528 			 */
4529 			if (hw->mac.type >= e1000_pch_spt)
4530 				hsflctl.regval =
4531 				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4532 			else
4533 				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4534 
4535 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4536 			if (hw->mac.type >= e1000_pch_spt)
4537 				ew32flash(ICH_FLASH_HSFSTS,
4538 					  hsflctl.regval << 16);
4539 			else
4540 				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4541 
4542 			/* Write the last 24 bits of an index within the
4543 			 * block into Flash Linear address field in Flash
4544 			 * Address.
4545 			 */
4546 			flash_linear_addr += (j * sector_size);
4547 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4548 
4549 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4550 			if (!ret_val)
4551 				break;
4552 
4553 			/* Check if FCERR is set to 1.  If 1,
4554 			 * clear it and try the whole sequence
4555 			 * a few more times else Done
4556 			 */
4557 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4558 			if (hsfsts.hsf_status.flcerr)
4559 				/* repeat for some time before giving up */
4560 				continue;
4561 			else if (!hsfsts.hsf_status.flcdone)
4562 				return ret_val;
4563 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4564 	}
4565 
4566 	return 0;
4567 }
4568 
4569 /**
4570  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4571  *  @hw: pointer to the HW structure
4572  *  @data: Pointer to the LED settings
4573  *
4574  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4575  *  settings is all 0's or F's, set the LED default to a valid LED default
4576  *  setting.
4577  **/
4578 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4579 {
4580 	s32 ret_val;
4581 
4582 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4583 	if (ret_val) {
4584 		e_dbg("NVM Read Error\n");
4585 		return ret_val;
4586 	}
4587 
4588 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4589 		*data = ID_LED_DEFAULT_ICH8LAN;
4590 
4591 	return 0;
4592 }
4593 
4594 /**
4595  *  e1000_id_led_init_pchlan - store LED configurations
4596  *  @hw: pointer to the HW structure
4597  *
4598  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4599  *  the PHY LED configuration register.
4600  *
4601  *  PCH also does not have an "always on" or "always off" mode which
4602  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4603  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4604  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4605  *  link based on logic in e1000_led_[on|off]_pchlan().
4606  **/
4607 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4608 {
4609 	struct e1000_mac_info *mac = &hw->mac;
4610 	s32 ret_val;
4611 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4612 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4613 	u16 data, i, temp, shift;
4614 
4615 	/* Get default ID LED modes */
4616 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4617 	if (ret_val)
4618 		return ret_val;
4619 
4620 	mac->ledctl_default = er32(LEDCTL);
4621 	mac->ledctl_mode1 = mac->ledctl_default;
4622 	mac->ledctl_mode2 = mac->ledctl_default;
4623 
4624 	for (i = 0; i < 4; i++) {
4625 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4626 		shift = (i * 5);
4627 		switch (temp) {
4628 		case ID_LED_ON1_DEF2:
4629 		case ID_LED_ON1_ON2:
4630 		case ID_LED_ON1_OFF2:
4631 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4632 			mac->ledctl_mode1 |= (ledctl_on << shift);
4633 			break;
4634 		case ID_LED_OFF1_DEF2:
4635 		case ID_LED_OFF1_ON2:
4636 		case ID_LED_OFF1_OFF2:
4637 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4638 			mac->ledctl_mode1 |= (ledctl_off << shift);
4639 			break;
4640 		default:
4641 			/* Do nothing */
4642 			break;
4643 		}
4644 		switch (temp) {
4645 		case ID_LED_DEF1_ON2:
4646 		case ID_LED_ON1_ON2:
4647 		case ID_LED_OFF1_ON2:
4648 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4649 			mac->ledctl_mode2 |= (ledctl_on << shift);
4650 			break;
4651 		case ID_LED_DEF1_OFF2:
4652 		case ID_LED_ON1_OFF2:
4653 		case ID_LED_OFF1_OFF2:
4654 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4655 			mac->ledctl_mode2 |= (ledctl_off << shift);
4656 			break;
4657 		default:
4658 			/* Do nothing */
4659 			break;
4660 		}
4661 	}
4662 
4663 	return 0;
4664 }
4665 
4666 /**
4667  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4668  *  @hw: pointer to the HW structure
4669  *
4670  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4671  *  register, so the bus width is hard coded.
4672  **/
4673 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4674 {
4675 	struct e1000_bus_info *bus = &hw->bus;
4676 	s32 ret_val;
4677 
4678 	ret_val = e1000e_get_bus_info_pcie(hw);
4679 
4680 	/* ICH devices are "PCI Express"-ish.  They have
4681 	 * a configuration space, but do not contain
4682 	 * PCI Express Capability registers, so bus width
4683 	 * must be hardcoded.
4684 	 */
4685 	if (bus->width == e1000_bus_width_unknown)
4686 		bus->width = e1000_bus_width_pcie_x1;
4687 
4688 	return ret_val;
4689 }
4690 
4691 /**
4692  *  e1000_reset_hw_ich8lan - Reset the hardware
4693  *  @hw: pointer to the HW structure
4694  *
4695  *  Does a full reset of the hardware which includes a reset of the PHY and
4696  *  MAC.
4697  **/
4698 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4699 {
4700 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4701 	u16 kum_cfg;
4702 	u32 ctrl, reg;
4703 	s32 ret_val;
4704 
4705 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4706 	 * on the last TLP read/write transaction when MAC is reset.
4707 	 */
4708 	ret_val = e1000e_disable_pcie_master(hw);
4709 	if (ret_val)
4710 		e_dbg("PCI-E Master disable polling has failed.\n");
4711 
4712 	e_dbg("Masking off all interrupts\n");
4713 	ew32(IMC, 0xffffffff);
4714 
4715 	/* Disable the Transmit and Receive units.  Then delay to allow
4716 	 * any pending transactions to complete before we hit the MAC
4717 	 * with the global reset.
4718 	 */
4719 	ew32(RCTL, 0);
4720 	ew32(TCTL, E1000_TCTL_PSP);
4721 	e1e_flush();
4722 
4723 	usleep_range(10000, 11000);
4724 
4725 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4726 	if (hw->mac.type == e1000_ich8lan) {
4727 		/* Set Tx and Rx buffer allocation to 8k apiece. */
4728 		ew32(PBA, E1000_PBA_8K);
4729 		/* Set Packet Buffer Size to 16k. */
4730 		ew32(PBS, E1000_PBS_16K);
4731 	}
4732 
4733 	if (hw->mac.type == e1000_pchlan) {
4734 		/* Save the NVM K1 bit setting */
4735 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4736 		if (ret_val)
4737 			return ret_val;
4738 
4739 		if (kum_cfg & E1000_NVM_K1_ENABLE)
4740 			dev_spec->nvm_k1_enabled = true;
4741 		else
4742 			dev_spec->nvm_k1_enabled = false;
4743 	}
4744 
4745 	ctrl = er32(CTRL);
4746 
4747 	if (!hw->phy.ops.check_reset_block(hw)) {
4748 		/* Full-chip reset requires MAC and PHY reset at the same
4749 		 * time to make sure the interface between MAC and the
4750 		 * external PHY is reset.
4751 		 */
4752 		ctrl |= E1000_CTRL_PHY_RST;
4753 
4754 		/* Gate automatic PHY configuration by hardware on
4755 		 * non-managed 82579
4756 		 */
4757 		if ((hw->mac.type == e1000_pch2lan) &&
4758 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4759 			e1000_gate_hw_phy_config_ich8lan(hw, true);
4760 	}
4761 	ret_val = e1000_acquire_swflag_ich8lan(hw);
4762 	e_dbg("Issuing a global reset to ich8lan\n");
4763 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4764 	/* cannot issue a flush here because it hangs the hardware */
4765 	msleep(20);
4766 
4767 	/* Set Phy Config Counter to 50msec */
4768 	if (hw->mac.type == e1000_pch2lan) {
4769 		reg = er32(FEXTNVM3);
4770 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4771 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4772 		ew32(FEXTNVM3, reg);
4773 	}
4774 
4775 	if (!ret_val)
4776 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4777 
4778 	if (ctrl & E1000_CTRL_PHY_RST) {
4779 		ret_val = hw->phy.ops.get_cfg_done(hw);
4780 		if (ret_val)
4781 			return ret_val;
4782 
4783 		ret_val = e1000_post_phy_reset_ich8lan(hw);
4784 		if (ret_val)
4785 			return ret_val;
4786 	}
4787 
4788 	/* For PCH, this write will make sure that any noise
4789 	 * will be detected as a CRC error and be dropped rather than show up
4790 	 * as a bad packet to the DMA engine.
4791 	 */
4792 	if (hw->mac.type == e1000_pchlan)
4793 		ew32(CRC_OFFSET, 0x65656565);
4794 
4795 	ew32(IMC, 0xffffffff);
4796 	er32(ICR);
4797 
4798 	reg = er32(KABGTXD);
4799 	reg |= E1000_KABGTXD_BGSQLBIAS;
4800 	ew32(KABGTXD, reg);
4801 
4802 	return 0;
4803 }
4804 
4805 /**
4806  *  e1000_init_hw_ich8lan - Initialize the hardware
4807  *  @hw: pointer to the HW structure
4808  *
4809  *  Prepares the hardware for transmit and receive by doing the following:
4810  *   - initialize hardware bits
4811  *   - initialize LED identification
4812  *   - setup receive address registers
4813  *   - setup flow control
4814  *   - setup transmit descriptors
4815  *   - clear statistics
4816  **/
4817 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4818 {
4819 	struct e1000_mac_info *mac = &hw->mac;
4820 	u32 ctrl_ext, txdctl, snoop, fflt_dbg;
4821 	s32 ret_val;
4822 	u16 i;
4823 
4824 	e1000_initialize_hw_bits_ich8lan(hw);
4825 
4826 	/* Initialize identification LED */
4827 	ret_val = mac->ops.id_led_init(hw);
4828 	/* An error is not fatal and we should not stop init due to this */
4829 	if (ret_val)
4830 		e_dbg("Error initializing identification LED\n");
4831 
4832 	/* Setup the receive address. */
4833 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4834 
4835 	/* Zero out the Multicast HASH table */
4836 	e_dbg("Zeroing the MTA\n");
4837 	for (i = 0; i < mac->mta_reg_count; i++)
4838 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4839 
4840 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4841 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4842 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4843 	 */
4844 	if (hw->phy.type == e1000_phy_82578) {
4845 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4846 		i &= ~BM_WUC_HOST_WU_BIT;
4847 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4848 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4849 		if (ret_val)
4850 			return ret_val;
4851 	}
4852 
4853 	/* Setup link and flow control */
4854 	ret_val = mac->ops.setup_link(hw);
4855 
4856 	/* Set the transmit descriptor write-back policy for both queues */
4857 	txdctl = er32(TXDCTL(0));
4858 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4859 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4860 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4861 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4862 	ew32(TXDCTL(0), txdctl);
4863 	txdctl = er32(TXDCTL(1));
4864 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4865 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4866 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4867 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4868 	ew32(TXDCTL(1), txdctl);
4869 
4870 	/* ICH8 has opposite polarity of no_snoop bits.
4871 	 * By default, we should use snoop behavior.
4872 	 */
4873 	if (mac->type == e1000_ich8lan)
4874 		snoop = PCIE_ICH8_SNOOP_ALL;
4875 	else
4876 		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4877 	e1000e_set_pcie_no_snoop(hw, snoop);
4878 
4879 	/* Enable workaround for packet loss issue on TGP PCH
4880 	 * Do not gate DMA clock from the modPHY block
4881 	 */
4882 	if (mac->type >= e1000_pch_tgp) {
4883 		fflt_dbg = er32(FFLT_DBG);
4884 		fflt_dbg |= E1000_FFLT_DBG_DONT_GATE_WAKE_DMA_CLK;
4885 		ew32(FFLT_DBG, fflt_dbg);
4886 	}
4887 
4888 	ctrl_ext = er32(CTRL_EXT);
4889 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4890 	ew32(CTRL_EXT, ctrl_ext);
4891 
4892 	/* Clear all of the statistics registers (clear on read).  It is
4893 	 * important that we do this after we have tried to establish link
4894 	 * because the symbol error count will increment wildly if there
4895 	 * is no link.
4896 	 */
4897 	e1000_clear_hw_cntrs_ich8lan(hw);
4898 
4899 	return ret_val;
4900 }
4901 
4902 /**
4903  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4904  *  @hw: pointer to the HW structure
4905  *
4906  *  Sets/Clears required hardware bits necessary for correctly setting up the
4907  *  hardware for transmit and receive.
4908  **/
4909 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4910 {
4911 	u32 reg;
4912 
4913 	/* Extended Device Control */
4914 	reg = er32(CTRL_EXT);
4915 	reg |= BIT(22);
4916 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4917 	if (hw->mac.type >= e1000_pchlan)
4918 		reg |= E1000_CTRL_EXT_PHYPDEN;
4919 	ew32(CTRL_EXT, reg);
4920 
4921 	/* Transmit Descriptor Control 0 */
4922 	reg = er32(TXDCTL(0));
4923 	reg |= BIT(22);
4924 	ew32(TXDCTL(0), reg);
4925 
4926 	/* Transmit Descriptor Control 1 */
4927 	reg = er32(TXDCTL(1));
4928 	reg |= BIT(22);
4929 	ew32(TXDCTL(1), reg);
4930 
4931 	/* Transmit Arbitration Control 0 */
4932 	reg = er32(TARC(0));
4933 	if (hw->mac.type == e1000_ich8lan)
4934 		reg |= BIT(28) | BIT(29);
4935 	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4936 	ew32(TARC(0), reg);
4937 
4938 	/* Transmit Arbitration Control 1 */
4939 	reg = er32(TARC(1));
4940 	if (er32(TCTL) & E1000_TCTL_MULR)
4941 		reg &= ~BIT(28);
4942 	else
4943 		reg |= BIT(28);
4944 	reg |= BIT(24) | BIT(26) | BIT(30);
4945 	ew32(TARC(1), reg);
4946 
4947 	/* Device Status */
4948 	if (hw->mac.type == e1000_ich8lan) {
4949 		reg = er32(STATUS);
4950 		reg &= ~BIT(31);
4951 		ew32(STATUS, reg);
4952 	}
4953 
4954 	/* work-around descriptor data corruption issue during nfs v2 udp
4955 	 * traffic, just disable the nfs filtering capability
4956 	 */
4957 	reg = er32(RFCTL);
4958 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4959 
4960 	/* Disable IPv6 extension header parsing because some malformed
4961 	 * IPv6 headers can hang the Rx.
4962 	 */
4963 	if (hw->mac.type == e1000_ich8lan)
4964 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4965 	ew32(RFCTL, reg);
4966 
4967 	/* Enable ECC on Lynxpoint */
4968 	if (hw->mac.type >= e1000_pch_lpt) {
4969 		reg = er32(PBECCSTS);
4970 		reg |= E1000_PBECCSTS_ECC_ENABLE;
4971 		ew32(PBECCSTS, reg);
4972 
4973 		reg = er32(CTRL);
4974 		reg |= E1000_CTRL_MEHE;
4975 		ew32(CTRL, reg);
4976 	}
4977 }
4978 
4979 /**
4980  *  e1000_setup_link_ich8lan - Setup flow control and link settings
4981  *  @hw: pointer to the HW structure
4982  *
4983  *  Determines which flow control settings to use, then configures flow
4984  *  control.  Calls the appropriate media-specific link configuration
4985  *  function.  Assuming the adapter has a valid link partner, a valid link
4986  *  should be established.  Assumes the hardware has previously been reset
4987  *  and the transmitter and receiver are not enabled.
4988  **/
4989 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4990 {
4991 	s32 ret_val;
4992 
4993 	if (hw->phy.ops.check_reset_block(hw))
4994 		return 0;
4995 
4996 	/* ICH parts do not have a word in the NVM to determine
4997 	 * the default flow control setting, so we explicitly
4998 	 * set it to full.
4999 	 */
5000 	if (hw->fc.requested_mode == e1000_fc_default) {
5001 		/* Workaround h/w hang when Tx flow control enabled */
5002 		if (hw->mac.type == e1000_pchlan)
5003 			hw->fc.requested_mode = e1000_fc_rx_pause;
5004 		else
5005 			hw->fc.requested_mode = e1000_fc_full;
5006 	}
5007 
5008 	/* Save off the requested flow control mode for use later.  Depending
5009 	 * on the link partner's capabilities, we may or may not use this mode.
5010 	 */
5011 	hw->fc.current_mode = hw->fc.requested_mode;
5012 
5013 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
5014 
5015 	/* Continue to configure the copper link. */
5016 	ret_val = hw->mac.ops.setup_physical_interface(hw);
5017 	if (ret_val)
5018 		return ret_val;
5019 
5020 	ew32(FCTTV, hw->fc.pause_time);
5021 	if ((hw->phy.type == e1000_phy_82578) ||
5022 	    (hw->phy.type == e1000_phy_82579) ||
5023 	    (hw->phy.type == e1000_phy_i217) ||
5024 	    (hw->phy.type == e1000_phy_82577)) {
5025 		ew32(FCRTV_PCH, hw->fc.refresh_time);
5026 
5027 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
5028 				   hw->fc.pause_time);
5029 		if (ret_val)
5030 			return ret_val;
5031 	}
5032 
5033 	return e1000e_set_fc_watermarks(hw);
5034 }
5035 
5036 /**
5037  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5038  *  @hw: pointer to the HW structure
5039  *
5040  *  Configures the kumeran interface to the PHY to wait the appropriate time
5041  *  when polling the PHY, then call the generic setup_copper_link to finish
5042  *  configuring the copper link.
5043  **/
5044 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5045 {
5046 	u32 ctrl;
5047 	s32 ret_val;
5048 	u16 reg_data;
5049 
5050 	ctrl = er32(CTRL);
5051 	ctrl |= E1000_CTRL_SLU;
5052 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5053 	ew32(CTRL, ctrl);
5054 
5055 	/* Set the mac to wait the maximum time between each iteration
5056 	 * and increase the max iterations when polling the phy;
5057 	 * this fixes erroneous timeouts at 10Mbps.
5058 	 */
5059 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5060 	if (ret_val)
5061 		return ret_val;
5062 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5063 				       &reg_data);
5064 	if (ret_val)
5065 		return ret_val;
5066 	reg_data |= 0x3F;
5067 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5068 					reg_data);
5069 	if (ret_val)
5070 		return ret_val;
5071 
5072 	switch (hw->phy.type) {
5073 	case e1000_phy_igp_3:
5074 		ret_val = e1000e_copper_link_setup_igp(hw);
5075 		if (ret_val)
5076 			return ret_val;
5077 		break;
5078 	case e1000_phy_bm:
5079 	case e1000_phy_82578:
5080 		ret_val = e1000e_copper_link_setup_m88(hw);
5081 		if (ret_val)
5082 			return ret_val;
5083 		break;
5084 	case e1000_phy_82577:
5085 	case e1000_phy_82579:
5086 		ret_val = e1000_copper_link_setup_82577(hw);
5087 		if (ret_val)
5088 			return ret_val;
5089 		break;
5090 	case e1000_phy_ife:
5091 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5092 		if (ret_val)
5093 			return ret_val;
5094 
5095 		reg_data &= ~IFE_PMC_AUTO_MDIX;
5096 
5097 		switch (hw->phy.mdix) {
5098 		case 1:
5099 			reg_data &= ~IFE_PMC_FORCE_MDIX;
5100 			break;
5101 		case 2:
5102 			reg_data |= IFE_PMC_FORCE_MDIX;
5103 			break;
5104 		case 0:
5105 		default:
5106 			reg_data |= IFE_PMC_AUTO_MDIX;
5107 			break;
5108 		}
5109 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5110 		if (ret_val)
5111 			return ret_val;
5112 		break;
5113 	default:
5114 		break;
5115 	}
5116 
5117 	return e1000e_setup_copper_link(hw);
5118 }
5119 
5120 /**
5121  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5122  *  @hw: pointer to the HW structure
5123  *
5124  *  Calls the PHY specific link setup function and then calls the
5125  *  generic setup_copper_link to finish configuring the link for
5126  *  Lynxpoint PCH devices
5127  **/
5128 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5129 {
5130 	u32 ctrl;
5131 	s32 ret_val;
5132 
5133 	ctrl = er32(CTRL);
5134 	ctrl |= E1000_CTRL_SLU;
5135 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5136 	ew32(CTRL, ctrl);
5137 
5138 	ret_val = e1000_copper_link_setup_82577(hw);
5139 	if (ret_val)
5140 		return ret_val;
5141 
5142 	return e1000e_setup_copper_link(hw);
5143 }
5144 
5145 /**
5146  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5147  *  @hw: pointer to the HW structure
5148  *  @speed: pointer to store current link speed
5149  *  @duplex: pointer to store the current link duplex
5150  *
5151  *  Calls the generic get_speed_and_duplex to retrieve the current link
5152  *  information and then calls the Kumeran lock loss workaround for links at
5153  *  gigabit speeds.
5154  **/
5155 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5156 					  u16 *duplex)
5157 {
5158 	s32 ret_val;
5159 
5160 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5161 	if (ret_val)
5162 		return ret_val;
5163 
5164 	if ((hw->mac.type == e1000_ich8lan) &&
5165 	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5166 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5167 	}
5168 
5169 	return ret_val;
5170 }
5171 
5172 /**
5173  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5174  *  @hw: pointer to the HW structure
5175  *
5176  *  Work-around for 82566 Kumeran PCS lock loss:
5177  *  On link status change (i.e. PCI reset, speed change) and link is up and
5178  *  speed is gigabit-
5179  *    0) if workaround is optionally disabled do nothing
5180  *    1) wait 1ms for Kumeran link to come up
5181  *    2) check Kumeran Diagnostic register PCS lock loss bit
5182  *    3) if not set the link is locked (all is good), otherwise...
5183  *    4) reset the PHY
5184  *    5) repeat up to 10 times
5185  *  Note: this is only called for IGP3 copper when speed is 1gb.
5186  **/
5187 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5188 {
5189 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5190 	u32 phy_ctrl;
5191 	s32 ret_val;
5192 	u16 i, data;
5193 	bool link;
5194 
5195 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5196 		return 0;
5197 
5198 	/* Make sure link is up before proceeding.  If not just return.
5199 	 * Attempting this while link is negotiating fouled up link
5200 	 * stability
5201 	 */
5202 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5203 	if (!link)
5204 		return 0;
5205 
5206 	for (i = 0; i < 10; i++) {
5207 		/* read once to clear */
5208 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5209 		if (ret_val)
5210 			return ret_val;
5211 		/* and again to get new status */
5212 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5213 		if (ret_val)
5214 			return ret_val;
5215 
5216 		/* check for PCS lock */
5217 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5218 			return 0;
5219 
5220 		/* Issue PHY reset */
5221 		e1000_phy_hw_reset(hw);
5222 		mdelay(5);
5223 	}
5224 	/* Disable GigE link negotiation */
5225 	phy_ctrl = er32(PHY_CTRL);
5226 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5227 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5228 	ew32(PHY_CTRL, phy_ctrl);
5229 
5230 	/* Call gig speed drop workaround on Gig disable before accessing
5231 	 * any PHY registers
5232 	 */
5233 	e1000e_gig_downshift_workaround_ich8lan(hw);
5234 
5235 	/* unable to acquire PCS lock */
5236 	return -E1000_ERR_PHY;
5237 }
5238 
5239 /**
5240  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5241  *  @hw: pointer to the HW structure
5242  *  @state: boolean value used to set the current Kumeran workaround state
5243  *
5244  *  If ICH8, set the current Kumeran workaround state (enabled - true
5245  *  /disabled - false).
5246  **/
5247 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5248 						  bool state)
5249 {
5250 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5251 
5252 	if (hw->mac.type != e1000_ich8lan) {
5253 		e_dbg("Workaround applies to ICH8 only.\n");
5254 		return;
5255 	}
5256 
5257 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5258 }
5259 
5260 /**
5261  *  e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5262  *  @hw: pointer to the HW structure
5263  *
5264  *  Workaround for 82566 power-down on D3 entry:
5265  *    1) disable gigabit link
5266  *    2) write VR power-down enable
5267  *    3) read it back
5268  *  Continue if successful, else issue LCD reset and repeat
5269  **/
5270 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5271 {
5272 	u32 reg;
5273 	u16 data;
5274 	u8 retry = 0;
5275 
5276 	if (hw->phy.type != e1000_phy_igp_3)
5277 		return;
5278 
5279 	/* Try the workaround twice (if needed) */
5280 	do {
5281 		/* Disable link */
5282 		reg = er32(PHY_CTRL);
5283 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5284 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5285 		ew32(PHY_CTRL, reg);
5286 
5287 		/* Call gig speed drop workaround on Gig disable before
5288 		 * accessing any PHY registers
5289 		 */
5290 		if (hw->mac.type == e1000_ich8lan)
5291 			e1000e_gig_downshift_workaround_ich8lan(hw);
5292 
5293 		/* Write VR power-down enable */
5294 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5295 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5296 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5297 
5298 		/* Read it back and test */
5299 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5300 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5301 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5302 			break;
5303 
5304 		/* Issue PHY reset and repeat at most one more time */
5305 		reg = er32(CTRL);
5306 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5307 		retry++;
5308 	} while (retry);
5309 }
5310 
5311 /**
5312  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5313  *  @hw: pointer to the HW structure
5314  *
5315  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5316  *  LPLU, Gig disable, MDIC PHY reset):
5317  *    1) Set Kumeran Near-end loopback
5318  *    2) Clear Kumeran Near-end loopback
5319  *  Should only be called for ICH8[m] devices with any 1G Phy.
5320  **/
5321 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5322 {
5323 	s32 ret_val;
5324 	u16 reg_data;
5325 
5326 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5327 		return;
5328 
5329 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5330 				       &reg_data);
5331 	if (ret_val)
5332 		return;
5333 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5334 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5335 					reg_data);
5336 	if (ret_val)
5337 		return;
5338 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5339 	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5340 }
5341 
5342 /**
5343  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5344  *  @hw: pointer to the HW structure
5345  *
5346  *  During S0 to Sx transition, it is possible the link remains at gig
5347  *  instead of negotiating to a lower speed.  Before going to Sx, set
5348  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5349  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5350  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5351  *  needs to be written.
5352  *  Parts that support (and are linked to a partner which support) EEE in
5353  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5354  *  than 10Mbps w/o EEE.
5355  **/
5356 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5357 {
5358 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5359 	u32 phy_ctrl;
5360 	s32 ret_val;
5361 
5362 	phy_ctrl = er32(PHY_CTRL);
5363 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5364 
5365 	if (hw->phy.type == e1000_phy_i217) {
5366 		u16 phy_reg, device_id = hw->adapter->pdev->device;
5367 
5368 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5369 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5370 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5371 		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5372 		    (hw->mac.type >= e1000_pch_spt)) {
5373 			u32 fextnvm6 = er32(FEXTNVM6);
5374 
5375 			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5376 		}
5377 
5378 		ret_val = hw->phy.ops.acquire(hw);
5379 		if (ret_val)
5380 			goto out;
5381 
5382 		if (!dev_spec->eee_disable) {
5383 			u16 eee_advert;
5384 
5385 			ret_val =
5386 			    e1000_read_emi_reg_locked(hw,
5387 						      I217_EEE_ADVERTISEMENT,
5388 						      &eee_advert);
5389 			if (ret_val)
5390 				goto release;
5391 
5392 			/* Disable LPLU if both link partners support 100BaseT
5393 			 * EEE and 100Full is advertised on both ends of the
5394 			 * link, and enable Auto Enable LPI since there will
5395 			 * be no driver to enable LPI while in Sx.
5396 			 */
5397 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5398 			    (dev_spec->eee_lp_ability &
5399 			     I82579_EEE_100_SUPPORTED) &&
5400 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5401 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5402 					      E1000_PHY_CTRL_NOND0A_LPLU);
5403 
5404 				/* Set Auto Enable LPI after link up */
5405 				e1e_rphy_locked(hw,
5406 						I217_LPI_GPIO_CTRL, &phy_reg);
5407 				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5408 				e1e_wphy_locked(hw,
5409 						I217_LPI_GPIO_CTRL, phy_reg);
5410 			}
5411 		}
5412 
5413 		/* For i217 Intel Rapid Start Technology support,
5414 		 * when the system is going into Sx and no manageability engine
5415 		 * is present, the driver must configure proxy to reset only on
5416 		 * power good.  LPI (Low Power Idle) state must also reset only
5417 		 * on power good, as well as the MTA (Multicast table array).
5418 		 * The SMBus release must also be disabled on LCD reset.
5419 		 */
5420 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5421 			/* Enable proxy to reset only on power good. */
5422 			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5423 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5424 			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5425 
5426 			/* Set bit enable LPI (EEE) to reset only on
5427 			 * power good.
5428 			 */
5429 			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5430 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5431 			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5432 
5433 			/* Disable the SMB release on LCD reset. */
5434 			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5435 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5436 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5437 		}
5438 
5439 		/* Enable MTA to reset for Intel Rapid Start Technology
5440 		 * Support
5441 		 */
5442 		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5443 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5444 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5445 
5446 release:
5447 		hw->phy.ops.release(hw);
5448 	}
5449 out:
5450 	ew32(PHY_CTRL, phy_ctrl);
5451 
5452 	if (hw->mac.type == e1000_ich8lan)
5453 		e1000e_gig_downshift_workaround_ich8lan(hw);
5454 
5455 	if (hw->mac.type >= e1000_pchlan) {
5456 		e1000_oem_bits_config_ich8lan(hw, false);
5457 
5458 		/* Reset PHY to activate OEM bits on 82577/8 */
5459 		if (hw->mac.type == e1000_pchlan)
5460 			e1000e_phy_hw_reset_generic(hw);
5461 
5462 		ret_val = hw->phy.ops.acquire(hw);
5463 		if (ret_val)
5464 			return;
5465 		e1000_write_smbus_addr(hw);
5466 		hw->phy.ops.release(hw);
5467 	}
5468 }
5469 
5470 /**
5471  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5472  *  @hw: pointer to the HW structure
5473  *
5474  *  During Sx to S0 transitions on non-managed devices or managed devices
5475  *  on which PHY resets are not blocked, if the PHY registers cannot be
5476  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5477  *  the PHY.
5478  *  On i217, setup Intel Rapid Start Technology.
5479  **/
5480 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5481 {
5482 	s32 ret_val;
5483 
5484 	if (hw->mac.type < e1000_pch2lan)
5485 		return;
5486 
5487 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5488 	if (ret_val) {
5489 		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5490 		return;
5491 	}
5492 
5493 	/* For i217 Intel Rapid Start Technology support when the system
5494 	 * is transitioning from Sx and no manageability engine is present
5495 	 * configure SMBus to restore on reset, disable proxy, and enable
5496 	 * the reset on MTA (Multicast table array).
5497 	 */
5498 	if (hw->phy.type == e1000_phy_i217) {
5499 		u16 phy_reg;
5500 
5501 		ret_val = hw->phy.ops.acquire(hw);
5502 		if (ret_val) {
5503 			e_dbg("Failed to setup iRST\n");
5504 			return;
5505 		}
5506 
5507 		/* Clear Auto Enable LPI after link up */
5508 		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5509 		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5510 		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5511 
5512 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5513 			/* Restore clear on SMB if no manageability engine
5514 			 * is present
5515 			 */
5516 			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5517 			if (ret_val)
5518 				goto release;
5519 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5520 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5521 
5522 			/* Disable Proxy */
5523 			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5524 		}
5525 		/* Enable reset on MTA */
5526 		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5527 		if (ret_val)
5528 			goto release;
5529 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5530 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5531 release:
5532 		if (ret_val)
5533 			e_dbg("Error %d in resume workarounds\n", ret_val);
5534 		hw->phy.ops.release(hw);
5535 	}
5536 }
5537 
5538 /**
5539  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5540  *  @hw: pointer to the HW structure
5541  *
5542  *  Return the LED back to the default configuration.
5543  **/
5544 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5545 {
5546 	if (hw->phy.type == e1000_phy_ife)
5547 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5548 
5549 	ew32(LEDCTL, hw->mac.ledctl_default);
5550 	return 0;
5551 }
5552 
5553 /**
5554  *  e1000_led_on_ich8lan - Turn LEDs on
5555  *  @hw: pointer to the HW structure
5556  *
5557  *  Turn on the LEDs.
5558  **/
5559 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5560 {
5561 	if (hw->phy.type == e1000_phy_ife)
5562 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5563 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5564 
5565 	ew32(LEDCTL, hw->mac.ledctl_mode2);
5566 	return 0;
5567 }
5568 
5569 /**
5570  *  e1000_led_off_ich8lan - Turn LEDs off
5571  *  @hw: pointer to the HW structure
5572  *
5573  *  Turn off the LEDs.
5574  **/
5575 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5576 {
5577 	if (hw->phy.type == e1000_phy_ife)
5578 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5579 				(IFE_PSCL_PROBE_MODE |
5580 				 IFE_PSCL_PROBE_LEDS_OFF));
5581 
5582 	ew32(LEDCTL, hw->mac.ledctl_mode1);
5583 	return 0;
5584 }
5585 
5586 /**
5587  *  e1000_setup_led_pchlan - Configures SW controllable LED
5588  *  @hw: pointer to the HW structure
5589  *
5590  *  This prepares the SW controllable LED for use.
5591  **/
5592 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5593 {
5594 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5595 }
5596 
5597 /**
5598  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5599  *  @hw: pointer to the HW structure
5600  *
5601  *  Return the LED back to the default configuration.
5602  **/
5603 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5604 {
5605 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5606 }
5607 
5608 /**
5609  *  e1000_led_on_pchlan - Turn LEDs on
5610  *  @hw: pointer to the HW structure
5611  *
5612  *  Turn on the LEDs.
5613  **/
5614 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5615 {
5616 	u16 data = (u16)hw->mac.ledctl_mode2;
5617 	u32 i, led;
5618 
5619 	/* If no link, then turn LED on by setting the invert bit
5620 	 * for each LED that's mode is "link_up" in ledctl_mode2.
5621 	 */
5622 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5623 		for (i = 0; i < 3; i++) {
5624 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5625 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5626 			    E1000_LEDCTL_MODE_LINK_UP)
5627 				continue;
5628 			if (led & E1000_PHY_LED0_IVRT)
5629 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5630 			else
5631 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5632 		}
5633 	}
5634 
5635 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5636 }
5637 
5638 /**
5639  *  e1000_led_off_pchlan - Turn LEDs off
5640  *  @hw: pointer to the HW structure
5641  *
5642  *  Turn off the LEDs.
5643  **/
5644 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5645 {
5646 	u16 data = (u16)hw->mac.ledctl_mode1;
5647 	u32 i, led;
5648 
5649 	/* If no link, then turn LED off by clearing the invert bit
5650 	 * for each LED that's mode is "link_up" in ledctl_mode1.
5651 	 */
5652 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5653 		for (i = 0; i < 3; i++) {
5654 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5655 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5656 			    E1000_LEDCTL_MODE_LINK_UP)
5657 				continue;
5658 			if (led & E1000_PHY_LED0_IVRT)
5659 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5660 			else
5661 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5662 		}
5663 	}
5664 
5665 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5666 }
5667 
5668 /**
5669  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5670  *  @hw: pointer to the HW structure
5671  *
5672  *  Read appropriate register for the config done bit for completion status
5673  *  and configure the PHY through s/w for EEPROM-less parts.
5674  *
5675  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5676  *  config done bit, so only an error is logged and continues.  If we were
5677  *  to return with error, EEPROM-less silicon would not be able to be reset
5678  *  or change link.
5679  **/
5680 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5681 {
5682 	s32 ret_val = 0;
5683 	u32 bank = 0;
5684 	u32 status;
5685 
5686 	e1000e_get_cfg_done_generic(hw);
5687 
5688 	/* Wait for indication from h/w that it has completed basic config */
5689 	if (hw->mac.type >= e1000_ich10lan) {
5690 		e1000_lan_init_done_ich8lan(hw);
5691 	} else {
5692 		ret_val = e1000e_get_auto_rd_done(hw);
5693 		if (ret_val) {
5694 			/* When auto config read does not complete, do not
5695 			 * return with an error. This can happen in situations
5696 			 * where there is no eeprom and prevents getting link.
5697 			 */
5698 			e_dbg("Auto Read Done did not complete\n");
5699 			ret_val = 0;
5700 		}
5701 	}
5702 
5703 	/* Clear PHY Reset Asserted bit */
5704 	status = er32(STATUS);
5705 	if (status & E1000_STATUS_PHYRA)
5706 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5707 	else
5708 		e_dbg("PHY Reset Asserted not set - needs delay\n");
5709 
5710 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5711 	if (hw->mac.type <= e1000_ich9lan) {
5712 		if (!(er32(EECD) & E1000_EECD_PRES) &&
5713 		    (hw->phy.type == e1000_phy_igp_3)) {
5714 			e1000e_phy_init_script_igp3(hw);
5715 		}
5716 	} else {
5717 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5718 			/* Maybe we should do a basic PHY config */
5719 			e_dbg("EEPROM not present\n");
5720 			ret_val = -E1000_ERR_CONFIG;
5721 		}
5722 	}
5723 
5724 	return ret_val;
5725 }
5726 
5727 /**
5728  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5729  * @hw: pointer to the HW structure
5730  *
5731  * In the case of a PHY power down to save power, or to turn off link during a
5732  * driver unload, or wake on lan is not enabled, remove the link.
5733  **/
5734 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5735 {
5736 	/* If the management interface is not enabled, then power down */
5737 	if (!(hw->mac.ops.check_mng_mode(hw) ||
5738 	      hw->phy.ops.check_reset_block(hw)))
5739 		e1000_power_down_phy_copper(hw);
5740 }
5741 
5742 /**
5743  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5744  *  @hw: pointer to the HW structure
5745  *
5746  *  Clears hardware counters specific to the silicon family and calls
5747  *  clear_hw_cntrs_generic to clear all general purpose counters.
5748  **/
5749 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5750 {
5751 	u16 phy_data;
5752 	s32 ret_val;
5753 
5754 	e1000e_clear_hw_cntrs_base(hw);
5755 
5756 	er32(ALGNERRC);
5757 	er32(RXERRC);
5758 	er32(TNCRS);
5759 	er32(CEXTERR);
5760 	er32(TSCTC);
5761 	er32(TSCTFC);
5762 
5763 	er32(MGTPRC);
5764 	er32(MGTPDC);
5765 	er32(MGTPTC);
5766 
5767 	er32(IAC);
5768 	er32(ICRXOC);
5769 
5770 	/* Clear PHY statistics registers */
5771 	if ((hw->phy.type == e1000_phy_82578) ||
5772 	    (hw->phy.type == e1000_phy_82579) ||
5773 	    (hw->phy.type == e1000_phy_i217) ||
5774 	    (hw->phy.type == e1000_phy_82577)) {
5775 		ret_val = hw->phy.ops.acquire(hw);
5776 		if (ret_val)
5777 			return;
5778 		ret_val = hw->phy.ops.set_page(hw,
5779 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5780 		if (ret_val)
5781 			goto release;
5782 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5783 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5784 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5785 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5786 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5787 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5788 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5789 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5790 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5791 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5792 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5793 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5794 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5795 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5796 release:
5797 		hw->phy.ops.release(hw);
5798 	}
5799 }
5800 
5801 static const struct e1000_mac_operations ich8_mac_ops = {
5802 	/* check_mng_mode dependent on mac type */
5803 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5804 	/* cleanup_led dependent on mac type */
5805 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5806 	.get_bus_info		= e1000_get_bus_info_ich8lan,
5807 	.set_lan_id		= e1000_set_lan_id_single_port,
5808 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5809 	/* led_on dependent on mac type */
5810 	/* led_off dependent on mac type */
5811 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5812 	.reset_hw		= e1000_reset_hw_ich8lan,
5813 	.init_hw		= e1000_init_hw_ich8lan,
5814 	.setup_link		= e1000_setup_link_ich8lan,
5815 	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5816 	/* id_led_init dependent on mac type */
5817 	.config_collision_dist	= e1000e_config_collision_dist_generic,
5818 	.rar_set		= e1000e_rar_set_generic,
5819 	.rar_get_count		= e1000e_rar_get_count_generic,
5820 };
5821 
5822 static const struct e1000_phy_operations ich8_phy_ops = {
5823 	.acquire		= e1000_acquire_swflag_ich8lan,
5824 	.check_reset_block	= e1000_check_reset_block_ich8lan,
5825 	.commit			= NULL,
5826 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5827 	.get_cable_length	= e1000e_get_cable_length_igp_2,
5828 	.read_reg		= e1000e_read_phy_reg_igp,
5829 	.release		= e1000_release_swflag_ich8lan,
5830 	.reset			= e1000_phy_hw_reset_ich8lan,
5831 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5832 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5833 	.write_reg		= e1000e_write_phy_reg_igp,
5834 };
5835 
5836 static const struct e1000_nvm_operations ich8_nvm_ops = {
5837 	.acquire		= e1000_acquire_nvm_ich8lan,
5838 	.read			= e1000_read_nvm_ich8lan,
5839 	.release		= e1000_release_nvm_ich8lan,
5840 	.reload			= e1000e_reload_nvm_generic,
5841 	.update			= e1000_update_nvm_checksum_ich8lan,
5842 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5843 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5844 	.write			= e1000_write_nvm_ich8lan,
5845 };
5846 
5847 static const struct e1000_nvm_operations spt_nvm_ops = {
5848 	.acquire		= e1000_acquire_nvm_ich8lan,
5849 	.release		= e1000_release_nvm_ich8lan,
5850 	.read			= e1000_read_nvm_spt,
5851 	.update			= e1000_update_nvm_checksum_spt,
5852 	.reload			= e1000e_reload_nvm_generic,
5853 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5854 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5855 	.write			= e1000_write_nvm_ich8lan,
5856 };
5857 
5858 const struct e1000_info e1000_ich8_info = {
5859 	.mac			= e1000_ich8lan,
5860 	.flags			= FLAG_HAS_WOL
5861 				  | FLAG_IS_ICH
5862 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5863 				  | FLAG_HAS_AMT
5864 				  | FLAG_HAS_FLASH
5865 				  | FLAG_APME_IN_WUC,
5866 	.pba			= 8,
5867 	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5868 	.get_variants		= e1000_get_variants_ich8lan,
5869 	.mac_ops		= &ich8_mac_ops,
5870 	.phy_ops		= &ich8_phy_ops,
5871 	.nvm_ops		= &ich8_nvm_ops,
5872 };
5873 
5874 const struct e1000_info e1000_ich9_info = {
5875 	.mac			= e1000_ich9lan,
5876 	.flags			= FLAG_HAS_JUMBO_FRAMES
5877 				  | FLAG_IS_ICH
5878 				  | FLAG_HAS_WOL
5879 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5880 				  | FLAG_HAS_AMT
5881 				  | FLAG_HAS_FLASH
5882 				  | FLAG_APME_IN_WUC,
5883 	.pba			= 18,
5884 	.max_hw_frame_size	= DEFAULT_JUMBO,
5885 	.get_variants		= e1000_get_variants_ich8lan,
5886 	.mac_ops		= &ich8_mac_ops,
5887 	.phy_ops		= &ich8_phy_ops,
5888 	.nvm_ops		= &ich8_nvm_ops,
5889 };
5890 
5891 const struct e1000_info e1000_ich10_info = {
5892 	.mac			= e1000_ich10lan,
5893 	.flags			= FLAG_HAS_JUMBO_FRAMES
5894 				  | FLAG_IS_ICH
5895 				  | FLAG_HAS_WOL
5896 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5897 				  | FLAG_HAS_AMT
5898 				  | FLAG_HAS_FLASH
5899 				  | FLAG_APME_IN_WUC,
5900 	.pba			= 18,
5901 	.max_hw_frame_size	= DEFAULT_JUMBO,
5902 	.get_variants		= e1000_get_variants_ich8lan,
5903 	.mac_ops		= &ich8_mac_ops,
5904 	.phy_ops		= &ich8_phy_ops,
5905 	.nvm_ops		= &ich8_nvm_ops,
5906 };
5907 
5908 const struct e1000_info e1000_pch_info = {
5909 	.mac			= e1000_pchlan,
5910 	.flags			= FLAG_IS_ICH
5911 				  | FLAG_HAS_WOL
5912 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5913 				  | FLAG_HAS_AMT
5914 				  | FLAG_HAS_FLASH
5915 				  | FLAG_HAS_JUMBO_FRAMES
5916 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5917 				  | FLAG_APME_IN_WUC,
5918 	.flags2			= FLAG2_HAS_PHY_STATS,
5919 	.pba			= 26,
5920 	.max_hw_frame_size	= 4096,
5921 	.get_variants		= e1000_get_variants_ich8lan,
5922 	.mac_ops		= &ich8_mac_ops,
5923 	.phy_ops		= &ich8_phy_ops,
5924 	.nvm_ops		= &ich8_nvm_ops,
5925 };
5926 
5927 const struct e1000_info e1000_pch2_info = {
5928 	.mac			= e1000_pch2lan,
5929 	.flags			= FLAG_IS_ICH
5930 				  | FLAG_HAS_WOL
5931 				  | FLAG_HAS_HW_TIMESTAMP
5932 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5933 				  | FLAG_HAS_AMT
5934 				  | FLAG_HAS_FLASH
5935 				  | FLAG_HAS_JUMBO_FRAMES
5936 				  | FLAG_APME_IN_WUC,
5937 	.flags2			= FLAG2_HAS_PHY_STATS
5938 				  | FLAG2_HAS_EEE
5939 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5940 	.pba			= 26,
5941 	.max_hw_frame_size	= 9022,
5942 	.get_variants		= e1000_get_variants_ich8lan,
5943 	.mac_ops		= &ich8_mac_ops,
5944 	.phy_ops		= &ich8_phy_ops,
5945 	.nvm_ops		= &ich8_nvm_ops,
5946 };
5947 
5948 const struct e1000_info e1000_pch_lpt_info = {
5949 	.mac			= e1000_pch_lpt,
5950 	.flags			= FLAG_IS_ICH
5951 				  | FLAG_HAS_WOL
5952 				  | FLAG_HAS_HW_TIMESTAMP
5953 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5954 				  | FLAG_HAS_AMT
5955 				  | FLAG_HAS_FLASH
5956 				  | FLAG_HAS_JUMBO_FRAMES
5957 				  | FLAG_APME_IN_WUC,
5958 	.flags2			= FLAG2_HAS_PHY_STATS
5959 				  | FLAG2_HAS_EEE
5960 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5961 	.pba			= 26,
5962 	.max_hw_frame_size	= 9022,
5963 	.get_variants		= e1000_get_variants_ich8lan,
5964 	.mac_ops		= &ich8_mac_ops,
5965 	.phy_ops		= &ich8_phy_ops,
5966 	.nvm_ops		= &ich8_nvm_ops,
5967 };
5968 
5969 const struct e1000_info e1000_pch_spt_info = {
5970 	.mac			= e1000_pch_spt,
5971 	.flags			= FLAG_IS_ICH
5972 				  | FLAG_HAS_WOL
5973 				  | FLAG_HAS_HW_TIMESTAMP
5974 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5975 				  | FLAG_HAS_AMT
5976 				  | FLAG_HAS_FLASH
5977 				  | FLAG_HAS_JUMBO_FRAMES
5978 				  | FLAG_APME_IN_WUC,
5979 	.flags2			= FLAG2_HAS_PHY_STATS
5980 				  | FLAG2_HAS_EEE,
5981 	.pba			= 26,
5982 	.max_hw_frame_size	= 9022,
5983 	.get_variants		= e1000_get_variants_ich8lan,
5984 	.mac_ops		= &ich8_mac_ops,
5985 	.phy_ops		= &ich8_phy_ops,
5986 	.nvm_ops		= &spt_nvm_ops,
5987 };
5988 
5989 const struct e1000_info e1000_pch_cnp_info = {
5990 	.mac			= e1000_pch_cnp,
5991 	.flags			= FLAG_IS_ICH
5992 				  | FLAG_HAS_WOL
5993 				  | FLAG_HAS_HW_TIMESTAMP
5994 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5995 				  | FLAG_HAS_AMT
5996 				  | FLAG_HAS_FLASH
5997 				  | FLAG_HAS_JUMBO_FRAMES
5998 				  | FLAG_APME_IN_WUC,
5999 	.flags2			= FLAG2_HAS_PHY_STATS
6000 				  | FLAG2_HAS_EEE,
6001 	.pba			= 26,
6002 	.max_hw_frame_size	= 9022,
6003 	.get_variants		= e1000_get_variants_ich8lan,
6004 	.mac_ops		= &ich8_mac_ops,
6005 	.phy_ops		= &ich8_phy_ops,
6006 	.nvm_ops		= &spt_nvm_ops,
6007 };
6008 
6009 const struct e1000_info e1000_pch_tgp_info = {
6010 	.mac			= e1000_pch_tgp,
6011 	.flags			= FLAG_IS_ICH
6012 				  | FLAG_HAS_WOL
6013 				  | FLAG_HAS_HW_TIMESTAMP
6014 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6015 				  | FLAG_HAS_AMT
6016 				  | FLAG_HAS_FLASH
6017 				  | FLAG_HAS_JUMBO_FRAMES
6018 				  | FLAG_APME_IN_WUC,
6019 	.flags2			= FLAG2_HAS_PHY_STATS
6020 				  | FLAG2_HAS_EEE,
6021 	.pba			= 26,
6022 	.max_hw_frame_size	= 9022,
6023 	.get_variants		= e1000_get_variants_ich8lan,
6024 	.mac_ops		= &ich8_mac_ops,
6025 	.phy_ops		= &ich8_phy_ops,
6026 	.nvm_ops		= &spt_nvm_ops,
6027 };
6028 
6029 const struct e1000_info e1000_pch_adp_info = {
6030 	.mac			= e1000_pch_adp,
6031 	.flags			= FLAG_IS_ICH
6032 				  | FLAG_HAS_WOL
6033 				  | FLAG_HAS_HW_TIMESTAMP
6034 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6035 				  | FLAG_HAS_AMT
6036 				  | FLAG_HAS_FLASH
6037 				  | FLAG_HAS_JUMBO_FRAMES
6038 				  | FLAG_APME_IN_WUC,
6039 	.flags2			= FLAG2_HAS_PHY_STATS
6040 				  | FLAG2_HAS_EEE,
6041 	.pba			= 26,
6042 	.max_hw_frame_size	= 9022,
6043 	.get_variants		= e1000_get_variants_ich8lan,
6044 	.mac_ops		= &ich8_mac_ops,
6045 	.phy_ops		= &ich8_phy_ops,
6046 	.nvm_ops		= &spt_nvm_ops,
6047 };
6048