xref: /linux/drivers/net/ethernet/intel/e1000e/ich8lan.c (revision 462d599449c1047259ec56bfdcca4f55f7a93038)
1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2011 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 /*
30  * 82562G 10/100 Network Connection
31  * 82562G-2 10/100 Network Connection
32  * 82562GT 10/100 Network Connection
33  * 82562GT-2 10/100 Network Connection
34  * 82562V 10/100 Network Connection
35  * 82562V-2 10/100 Network Connection
36  * 82566DC-2 Gigabit Network Connection
37  * 82566DC Gigabit Network Connection
38  * 82566DM-2 Gigabit Network Connection
39  * 82566DM Gigabit Network Connection
40  * 82566MC Gigabit Network Connection
41  * 82566MM Gigabit Network Connection
42  * 82567LM Gigabit Network Connection
43  * 82567LF Gigabit Network Connection
44  * 82567V Gigabit Network Connection
45  * 82567LM-2 Gigabit Network Connection
46  * 82567LF-2 Gigabit Network Connection
47  * 82567V-2 Gigabit Network Connection
48  * 82567LF-3 Gigabit Network Connection
49  * 82567LM-3 Gigabit Network Connection
50  * 82567LM-4 Gigabit Network Connection
51  * 82577LM Gigabit Network Connection
52  * 82577LC Gigabit Network Connection
53  * 82578DM Gigabit Network Connection
54  * 82578DC Gigabit Network Connection
55  * 82579LM Gigabit Network Connection
56  * 82579V Gigabit Network Connection
57  */
58 
59 #include "e1000.h"
60 
61 #define ICH_FLASH_GFPREG		0x0000
62 #define ICH_FLASH_HSFSTS		0x0004
63 #define ICH_FLASH_HSFCTL		0x0006
64 #define ICH_FLASH_FADDR			0x0008
65 #define ICH_FLASH_FDATA0		0x0010
66 #define ICH_FLASH_PR0			0x0074
67 
68 #define ICH_FLASH_READ_COMMAND_TIMEOUT	500
69 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT	500
70 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT	3000000
71 #define ICH_FLASH_LINEAR_ADDR_MASK	0x00FFFFFF
72 #define ICH_FLASH_CYCLE_REPEAT_COUNT	10
73 
74 #define ICH_CYCLE_READ			0
75 #define ICH_CYCLE_WRITE			2
76 #define ICH_CYCLE_ERASE			3
77 
78 #define FLASH_GFPREG_BASE_MASK		0x1FFF
79 #define FLASH_SECTOR_ADDR_SHIFT		12
80 
81 #define ICH_FLASH_SEG_SIZE_256		256
82 #define ICH_FLASH_SEG_SIZE_4K		4096
83 #define ICH_FLASH_SEG_SIZE_8K		8192
84 #define ICH_FLASH_SEG_SIZE_64K		65536
85 
86 
87 #define E1000_ICH_FWSM_RSPCIPHY	0x00000040 /* Reset PHY on PCI Reset */
88 /* FW established a valid mode */
89 #define E1000_ICH_FWSM_FW_VALID		0x00008000
90 
91 #define E1000_ICH_MNG_IAMT_MODE		0x2
92 
93 #define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
94 				 (ID_LED_DEF1_OFF2 <<  8) | \
95 				 (ID_LED_DEF1_ON2  <<  4) | \
96 				 (ID_LED_DEF1_DEF2))
97 
98 #define E1000_ICH_NVM_SIG_WORD		0x13
99 #define E1000_ICH_NVM_SIG_MASK		0xC000
100 #define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
101 #define E1000_ICH_NVM_SIG_VALUE         0x80
102 
103 #define E1000_ICH8_LAN_INIT_TIMEOUT	1500
104 
105 #define E1000_FEXTNVM_SW_CONFIG		1
106 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
107 
108 #define E1000_FEXTNVM4_BEACON_DURATION_MASK    0x7
109 #define E1000_FEXTNVM4_BEACON_DURATION_8USEC   0x7
110 #define E1000_FEXTNVM4_BEACON_DURATION_16USEC  0x3
111 
112 #define PCIE_ICH8_SNOOP_ALL		PCIE_NO_SNOOP_ALL
113 
114 #define E1000_ICH_RAR_ENTRIES		7
115 
116 #define PHY_PAGE_SHIFT 5
117 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
118 			   ((reg) & MAX_PHY_REG_ADDRESS))
119 #define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
120 #define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
121 
122 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS	0x0002
123 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
124 #define IGP3_VR_CTRL_MODE_SHUTDOWN	0x0200
125 
126 #define HV_LED_CONFIG		PHY_REG(768, 30) /* LED Configuration */
127 
128 #define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */
129 
130 /* SMBus Address Phy Register */
131 #define HV_SMB_ADDR            PHY_REG(768, 26)
132 #define HV_SMB_ADDR_MASK       0x007F
133 #define HV_SMB_ADDR_PEC_EN     0x0200
134 #define HV_SMB_ADDR_VALID      0x0080
135 
136 /* PHY Power Management Control */
137 #define HV_PM_CTRL		PHY_REG(770, 17)
138 
139 /* PHY Low Power Idle Control */
140 #define I82579_LPI_CTRL				PHY_REG(772, 20)
141 #define I82579_LPI_CTRL_ENABLE_MASK		0x6000
142 #define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT	0x80
143 
144 /* EMI Registers */
145 #define I82579_EMI_ADDR         0x10
146 #define I82579_EMI_DATA         0x11
147 #define I82579_LPI_UPDATE_TIMER 0x4805	/* in 40ns units + 40 ns base value */
148 
149 /* Strapping Option Register - RO */
150 #define E1000_STRAP                     0x0000C
151 #define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
152 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
153 
154 /* OEM Bits Phy Register */
155 #define HV_OEM_BITS            PHY_REG(768, 25)
156 #define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
157 #define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
158 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
159 
160 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
161 #define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */
162 
163 /* KMRN Mode Control */
164 #define HV_KMRN_MODE_CTRL      PHY_REG(769, 16)
165 #define HV_KMRN_MDIO_SLOW      0x0400
166 
167 /* KMRN FIFO Control and Status */
168 #define HV_KMRN_FIFO_CTRLSTA                  PHY_REG(770, 16)
169 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK    0x7000
170 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT   12
171 
172 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
173 /* Offset 04h HSFSTS */
174 union ich8_hws_flash_status {
175 	struct ich8_hsfsts {
176 		u16 flcdone    :1; /* bit 0 Flash Cycle Done */
177 		u16 flcerr     :1; /* bit 1 Flash Cycle Error */
178 		u16 dael       :1; /* bit 2 Direct Access error Log */
179 		u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
180 		u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
181 		u16 reserved1  :2; /* bit 13:6 Reserved */
182 		u16 reserved2  :6; /* bit 13:6 Reserved */
183 		u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
184 		u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
185 	} hsf_status;
186 	u16 regval;
187 };
188 
189 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
190 /* Offset 06h FLCTL */
191 union ich8_hws_flash_ctrl {
192 	struct ich8_hsflctl {
193 		u16 flcgo      :1;   /* 0 Flash Cycle Go */
194 		u16 flcycle    :2;   /* 2:1 Flash Cycle */
195 		u16 reserved   :5;   /* 7:3 Reserved  */
196 		u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
197 		u16 flockdn    :6;   /* 15:10 Reserved */
198 	} hsf_ctrl;
199 	u16 regval;
200 };
201 
202 /* ICH Flash Region Access Permissions */
203 union ich8_hws_flash_regacc {
204 	struct ich8_flracc {
205 		u32 grra      :8; /* 0:7 GbE region Read Access */
206 		u32 grwa      :8; /* 8:15 GbE region Write Access */
207 		u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
208 		u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
209 	} hsf_flregacc;
210 	u16 regval;
211 };
212 
213 /* ICH Flash Protected Region */
214 union ich8_flash_protected_range {
215 	struct ich8_pr {
216 		u32 base:13;     /* 0:12 Protected Range Base */
217 		u32 reserved1:2; /* 13:14 Reserved */
218 		u32 rpe:1;       /* 15 Read Protection Enable */
219 		u32 limit:13;    /* 16:28 Protected Range Limit */
220 		u32 reserved2:2; /* 29:30 Reserved */
221 		u32 wpe:1;       /* 31 Write Protection Enable */
222 	} range;
223 	u32 regval;
224 };
225 
226 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
227 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
228 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
229 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
230 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
231 						u32 offset, u8 byte);
232 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
233 					 u8 *data);
234 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
235 					 u16 *data);
236 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
237 					 u8 size, u16 *data);
238 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
239 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
240 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
241 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
242 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
243 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
244 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
245 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
246 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
247 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
248 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
249 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
250 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
251 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
252 static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
253 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
254 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
255 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
256 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
257 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
258 
259 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
260 {
261 	return readw(hw->flash_address + reg);
262 }
263 
264 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
265 {
266 	return readl(hw->flash_address + reg);
267 }
268 
269 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
270 {
271 	writew(val, hw->flash_address + reg);
272 }
273 
274 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
275 {
276 	writel(val, hw->flash_address + reg);
277 }
278 
279 #define er16flash(reg)		__er16flash(hw, (reg))
280 #define er32flash(reg)		__er32flash(hw, (reg))
281 #define ew16flash(reg,val)	__ew16flash(hw, (reg), (val))
282 #define ew32flash(reg,val)	__ew32flash(hw, (reg), (val))
283 
284 static void e1000_toggle_lanphypc_value_ich8lan(struct e1000_hw *hw)
285 {
286 	u32 ctrl;
287 
288 	ctrl = er32(CTRL);
289 	ctrl |= E1000_CTRL_LANPHYPC_OVERRIDE;
290 	ctrl &= ~E1000_CTRL_LANPHYPC_VALUE;
291 	ew32(CTRL, ctrl);
292 	e1e_flush();
293 	udelay(10);
294 	ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
295 	ew32(CTRL, ctrl);
296 }
297 
298 /**
299  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
300  *  @hw: pointer to the HW structure
301  *
302  *  Initialize family-specific PHY parameters and function pointers.
303  **/
304 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
305 {
306 	struct e1000_phy_info *phy = &hw->phy;
307 	u32 fwsm;
308 	s32 ret_val = 0;
309 
310 	phy->addr                     = 1;
311 	phy->reset_delay_us           = 100;
312 
313 	phy->ops.set_page             = e1000_set_page_igp;
314 	phy->ops.read_reg             = e1000_read_phy_reg_hv;
315 	phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
316 	phy->ops.read_reg_page        = e1000_read_phy_reg_page_hv;
317 	phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
318 	phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
319 	phy->ops.write_reg            = e1000_write_phy_reg_hv;
320 	phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
321 	phy->ops.write_reg_page       = e1000_write_phy_reg_page_hv;
322 	phy->ops.power_up             = e1000_power_up_phy_copper;
323 	phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
324 	phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
325 
326 	/*
327 	 * The MAC-PHY interconnect may still be in SMBus mode
328 	 * after Sx->S0.  If the manageability engine (ME) is
329 	 * disabled, then toggle the LANPHYPC Value bit to force
330 	 * the interconnect to PCIe mode.
331 	 */
332 	fwsm = er32(FWSM);
333 	if (!(fwsm & E1000_ICH_FWSM_FW_VALID) && !e1000_check_reset_block(hw)) {
334 		e1000_toggle_lanphypc_value_ich8lan(hw);
335 		msleep(50);
336 
337 		/*
338 		 * Gate automatic PHY configuration by hardware on
339 		 * non-managed 82579
340 		 */
341 		if (hw->mac.type == e1000_pch2lan)
342 			e1000_gate_hw_phy_config_ich8lan(hw, true);
343 	}
344 
345 	/*
346 	 * Reset the PHY before any access to it.  Doing so, ensures that
347 	 * the PHY is in a known good state before we read/write PHY registers.
348 	 * The generic reset is sufficient here, because we haven't determined
349 	 * the PHY type yet.
350 	 */
351 	ret_val = e1000e_phy_hw_reset_generic(hw);
352 	if (ret_val)
353 		goto out;
354 
355 	/* Ungate automatic PHY configuration on non-managed 82579 */
356 	if ((hw->mac.type == e1000_pch2lan) &&
357 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
358 		usleep_range(10000, 20000);
359 		e1000_gate_hw_phy_config_ich8lan(hw, false);
360 	}
361 
362 	phy->id = e1000_phy_unknown;
363 	switch (hw->mac.type) {
364 	default:
365 		ret_val = e1000e_get_phy_id(hw);
366 		if (ret_val)
367 			goto out;
368 		if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
369 			break;
370 		/* fall-through */
371 	case e1000_pch2lan:
372 		/*
373 		 * In case the PHY needs to be in mdio slow mode,
374 		 * set slow mode and try to get the PHY id again.
375 		 */
376 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
377 		if (ret_val)
378 			goto out;
379 		ret_val = e1000e_get_phy_id(hw);
380 		if (ret_val)
381 			goto out;
382 		break;
383 	}
384 	phy->type = e1000e_get_phy_type_from_id(phy->id);
385 
386 	switch (phy->type) {
387 	case e1000_phy_82577:
388 	case e1000_phy_82579:
389 		phy->ops.check_polarity = e1000_check_polarity_82577;
390 		phy->ops.force_speed_duplex =
391 		    e1000_phy_force_speed_duplex_82577;
392 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
393 		phy->ops.get_info = e1000_get_phy_info_82577;
394 		phy->ops.commit = e1000e_phy_sw_reset;
395 		break;
396 	case e1000_phy_82578:
397 		phy->ops.check_polarity = e1000_check_polarity_m88;
398 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
399 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
400 		phy->ops.get_info = e1000e_get_phy_info_m88;
401 		break;
402 	default:
403 		ret_val = -E1000_ERR_PHY;
404 		break;
405 	}
406 
407 out:
408 	return ret_val;
409 }
410 
411 /**
412  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
413  *  @hw: pointer to the HW structure
414  *
415  *  Initialize family-specific PHY parameters and function pointers.
416  **/
417 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
418 {
419 	struct e1000_phy_info *phy = &hw->phy;
420 	s32 ret_val;
421 	u16 i = 0;
422 
423 	phy->addr			= 1;
424 	phy->reset_delay_us		= 100;
425 
426 	phy->ops.power_up               = e1000_power_up_phy_copper;
427 	phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;
428 
429 	/*
430 	 * We may need to do this twice - once for IGP and if that fails,
431 	 * we'll set BM func pointers and try again
432 	 */
433 	ret_val = e1000e_determine_phy_address(hw);
434 	if (ret_val) {
435 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
436 		phy->ops.read_reg  = e1000e_read_phy_reg_bm;
437 		ret_val = e1000e_determine_phy_address(hw);
438 		if (ret_val) {
439 			e_dbg("Cannot determine PHY addr. Erroring out\n");
440 			return ret_val;
441 		}
442 	}
443 
444 	phy->id = 0;
445 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
446 	       (i++ < 100)) {
447 		usleep_range(1000, 2000);
448 		ret_val = e1000e_get_phy_id(hw);
449 		if (ret_val)
450 			return ret_val;
451 	}
452 
453 	/* Verify phy id */
454 	switch (phy->id) {
455 	case IGP03E1000_E_PHY_ID:
456 		phy->type = e1000_phy_igp_3;
457 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
458 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
459 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
460 		phy->ops.get_info = e1000e_get_phy_info_igp;
461 		phy->ops.check_polarity = e1000_check_polarity_igp;
462 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
463 		break;
464 	case IFE_E_PHY_ID:
465 	case IFE_PLUS_E_PHY_ID:
466 	case IFE_C_E_PHY_ID:
467 		phy->type = e1000_phy_ife;
468 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
469 		phy->ops.get_info = e1000_get_phy_info_ife;
470 		phy->ops.check_polarity = e1000_check_polarity_ife;
471 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
472 		break;
473 	case BME1000_E_PHY_ID:
474 		phy->type = e1000_phy_bm;
475 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
476 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
477 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
478 		phy->ops.commit = e1000e_phy_sw_reset;
479 		phy->ops.get_info = e1000e_get_phy_info_m88;
480 		phy->ops.check_polarity = e1000_check_polarity_m88;
481 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
482 		break;
483 	default:
484 		return -E1000_ERR_PHY;
485 		break;
486 	}
487 
488 	return 0;
489 }
490 
491 /**
492  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
493  *  @hw: pointer to the HW structure
494  *
495  *  Initialize family-specific NVM parameters and function
496  *  pointers.
497  **/
498 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
499 {
500 	struct e1000_nvm_info *nvm = &hw->nvm;
501 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
502 	u32 gfpreg, sector_base_addr, sector_end_addr;
503 	u16 i;
504 
505 	/* Can't read flash registers if the register set isn't mapped. */
506 	if (!hw->flash_address) {
507 		e_dbg("ERROR: Flash registers not mapped\n");
508 		return -E1000_ERR_CONFIG;
509 	}
510 
511 	nvm->type = e1000_nvm_flash_sw;
512 
513 	gfpreg = er32flash(ICH_FLASH_GFPREG);
514 
515 	/*
516 	 * sector_X_addr is a "sector"-aligned address (4096 bytes)
517 	 * Add 1 to sector_end_addr since this sector is included in
518 	 * the overall size.
519 	 */
520 	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
521 	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
522 
523 	/* flash_base_addr is byte-aligned */
524 	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
525 
526 	/*
527 	 * find total size of the NVM, then cut in half since the total
528 	 * size represents two separate NVM banks.
529 	 */
530 	nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
531 				<< FLASH_SECTOR_ADDR_SHIFT;
532 	nvm->flash_bank_size /= 2;
533 	/* Adjust to word count */
534 	nvm->flash_bank_size /= sizeof(u16);
535 
536 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
537 
538 	/* Clear shadow ram */
539 	for (i = 0; i < nvm->word_size; i++) {
540 		dev_spec->shadow_ram[i].modified = false;
541 		dev_spec->shadow_ram[i].value    = 0xFFFF;
542 	}
543 
544 	return 0;
545 }
546 
547 /**
548  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
549  *  @hw: pointer to the HW structure
550  *
551  *  Initialize family-specific MAC parameters and function
552  *  pointers.
553  **/
554 static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
555 {
556 	struct e1000_hw *hw = &adapter->hw;
557 	struct e1000_mac_info *mac = &hw->mac;
558 
559 	/* Set media type function pointer */
560 	hw->phy.media_type = e1000_media_type_copper;
561 
562 	/* Set mta register count */
563 	mac->mta_reg_count = 32;
564 	/* Set rar entry count */
565 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
566 	if (mac->type == e1000_ich8lan)
567 		mac->rar_entry_count--;
568 	/* FWSM register */
569 	mac->has_fwsm = true;
570 	/* ARC subsystem not supported */
571 	mac->arc_subsystem_valid = false;
572 	/* Adaptive IFS supported */
573 	mac->adaptive_ifs = true;
574 
575 	/* LED operations */
576 	switch (mac->type) {
577 	case e1000_ich8lan:
578 	case e1000_ich9lan:
579 	case e1000_ich10lan:
580 		/* check management mode */
581 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
582 		/* ID LED init */
583 		mac->ops.id_led_init = e1000e_id_led_init;
584 		/* blink LED */
585 		mac->ops.blink_led = e1000e_blink_led_generic;
586 		/* setup LED */
587 		mac->ops.setup_led = e1000e_setup_led_generic;
588 		/* cleanup LED */
589 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
590 		/* turn on/off LED */
591 		mac->ops.led_on = e1000_led_on_ich8lan;
592 		mac->ops.led_off = e1000_led_off_ich8lan;
593 		break;
594 	case e1000_pchlan:
595 	case e1000_pch2lan:
596 		/* check management mode */
597 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
598 		/* ID LED init */
599 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
600 		/* setup LED */
601 		mac->ops.setup_led = e1000_setup_led_pchlan;
602 		/* cleanup LED */
603 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
604 		/* turn on/off LED */
605 		mac->ops.led_on = e1000_led_on_pchlan;
606 		mac->ops.led_off = e1000_led_off_pchlan;
607 		break;
608 	default:
609 		break;
610 	}
611 
612 	/* Enable PCS Lock-loss workaround for ICH8 */
613 	if (mac->type == e1000_ich8lan)
614 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
615 
616 	/* Gate automatic PHY configuration by hardware on managed 82579 */
617 	if ((mac->type == e1000_pch2lan) &&
618 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
619 		e1000_gate_hw_phy_config_ich8lan(hw, true);
620 
621 	return 0;
622 }
623 
624 /**
625  *  e1000_set_eee_pchlan - Enable/disable EEE support
626  *  @hw: pointer to the HW structure
627  *
628  *  Enable/disable EEE based on setting in dev_spec structure.  The bits in
629  *  the LPI Control register will remain set only if/when link is up.
630  **/
631 static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
632 {
633 	s32 ret_val = 0;
634 	u16 phy_reg;
635 
636 	if (hw->phy.type != e1000_phy_82579)
637 		goto out;
638 
639 	ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
640 	if (ret_val)
641 		goto out;
642 
643 	if (hw->dev_spec.ich8lan.eee_disable)
644 		phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
645 	else
646 		phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
647 
648 	ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
649 out:
650 	return ret_val;
651 }
652 
653 /**
654  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
655  *  @hw: pointer to the HW structure
656  *
657  *  Checks to see of the link status of the hardware has changed.  If a
658  *  change in link status has been detected, then we read the PHY registers
659  *  to get the current speed/duplex if link exists.
660  **/
661 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
662 {
663 	struct e1000_mac_info *mac = &hw->mac;
664 	s32 ret_val;
665 	bool link;
666 	u16 phy_reg;
667 
668 	/*
669 	 * We only want to go out to the PHY registers to see if Auto-Neg
670 	 * has completed and/or if our link status has changed.  The
671 	 * get_link_status flag is set upon receiving a Link Status
672 	 * Change or Rx Sequence Error interrupt.
673 	 */
674 	if (!mac->get_link_status) {
675 		ret_val = 0;
676 		goto out;
677 	}
678 
679 	/*
680 	 * First we want to see if the MII Status Register reports
681 	 * link.  If so, then we want to get the current speed/duplex
682 	 * of the PHY.
683 	 */
684 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
685 	if (ret_val)
686 		goto out;
687 
688 	if (hw->mac.type == e1000_pchlan) {
689 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
690 		if (ret_val)
691 			goto out;
692 	}
693 
694 	if (!link)
695 		goto out; /* No link detected */
696 
697 	mac->get_link_status = false;
698 
699 	switch (hw->mac.type) {
700 	case e1000_pch2lan:
701 		ret_val = e1000_k1_workaround_lv(hw);
702 		if (ret_val)
703 			goto out;
704 		/* fall-thru */
705 	case e1000_pchlan:
706 		if (hw->phy.type == e1000_phy_82578) {
707 			ret_val = e1000_link_stall_workaround_hv(hw);
708 			if (ret_val)
709 				goto out;
710 		}
711 
712 		/*
713 		 * Workaround for PCHx parts in half-duplex:
714 		 * Set the number of preambles removed from the packet
715 		 * when it is passed from the PHY to the MAC to prevent
716 		 * the MAC from misinterpreting the packet type.
717 		 */
718 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
719 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
720 
721 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
722 			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
723 
724 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
725 		break;
726 	default:
727 		break;
728 	}
729 
730 	/*
731 	 * Check if there was DownShift, must be checked
732 	 * immediately after link-up
733 	 */
734 	e1000e_check_downshift(hw);
735 
736 	/* Enable/Disable EEE after link up */
737 	ret_val = e1000_set_eee_pchlan(hw);
738 	if (ret_val)
739 		goto out;
740 
741 	/*
742 	 * If we are forcing speed/duplex, then we simply return since
743 	 * we have already determined whether we have link or not.
744 	 */
745 	if (!mac->autoneg) {
746 		ret_val = -E1000_ERR_CONFIG;
747 		goto out;
748 	}
749 
750 	/*
751 	 * Auto-Neg is enabled.  Auto Speed Detection takes care
752 	 * of MAC speed/duplex configuration.  So we only need to
753 	 * configure Collision Distance in the MAC.
754 	 */
755 	e1000e_config_collision_dist(hw);
756 
757 	/*
758 	 * Configure Flow Control now that Auto-Neg has completed.
759 	 * First, we need to restore the desired flow control
760 	 * settings because we may have had to re-autoneg with a
761 	 * different link partner.
762 	 */
763 	ret_val = e1000e_config_fc_after_link_up(hw);
764 	if (ret_val)
765 		e_dbg("Error configuring flow control\n");
766 
767 out:
768 	return ret_val;
769 }
770 
771 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
772 {
773 	struct e1000_hw *hw = &adapter->hw;
774 	s32 rc;
775 
776 	rc = e1000_init_mac_params_ich8lan(adapter);
777 	if (rc)
778 		return rc;
779 
780 	rc = e1000_init_nvm_params_ich8lan(hw);
781 	if (rc)
782 		return rc;
783 
784 	switch (hw->mac.type) {
785 	case e1000_ich8lan:
786 	case e1000_ich9lan:
787 	case e1000_ich10lan:
788 		rc = e1000_init_phy_params_ich8lan(hw);
789 		break;
790 	case e1000_pchlan:
791 	case e1000_pch2lan:
792 		rc = e1000_init_phy_params_pchlan(hw);
793 		break;
794 	default:
795 		break;
796 	}
797 	if (rc)
798 		return rc;
799 
800 	/*
801 	 * Disable Jumbo Frame support on parts with Intel 10/100 PHY or
802 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
803 	 */
804 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
805 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
806 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
807 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
808 		adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
809 
810 		hw->mac.ops.blink_led = NULL;
811 	}
812 
813 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
814 	    (adapter->hw.phy.type != e1000_phy_ife))
815 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
816 
817 	/* Enable workaround for 82579 w/ ME enabled */
818 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
819 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
820 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
821 
822 	/* Disable EEE by default until IEEE802.3az spec is finalized */
823 	if (adapter->flags2 & FLAG2_HAS_EEE)
824 		adapter->hw.dev_spec.ich8lan.eee_disable = true;
825 
826 	return 0;
827 }
828 
829 static DEFINE_MUTEX(nvm_mutex);
830 
831 /**
832  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
833  *  @hw: pointer to the HW structure
834  *
835  *  Acquires the mutex for performing NVM operations.
836  **/
837 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
838 {
839 	mutex_lock(&nvm_mutex);
840 
841 	return 0;
842 }
843 
844 /**
845  *  e1000_release_nvm_ich8lan - Release NVM mutex
846  *  @hw: pointer to the HW structure
847  *
848  *  Releases the mutex used while performing NVM operations.
849  **/
850 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
851 {
852 	mutex_unlock(&nvm_mutex);
853 }
854 
855 static DEFINE_MUTEX(swflag_mutex);
856 
857 /**
858  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
859  *  @hw: pointer to the HW structure
860  *
861  *  Acquires the software control flag for performing PHY and select
862  *  MAC CSR accesses.
863  **/
864 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
865 {
866 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
867 	s32 ret_val = 0;
868 
869 	mutex_lock(&swflag_mutex);
870 
871 	while (timeout) {
872 		extcnf_ctrl = er32(EXTCNF_CTRL);
873 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
874 			break;
875 
876 		mdelay(1);
877 		timeout--;
878 	}
879 
880 	if (!timeout) {
881 		e_dbg("SW/FW/HW has locked the resource for too long.\n");
882 		ret_val = -E1000_ERR_CONFIG;
883 		goto out;
884 	}
885 
886 	timeout = SW_FLAG_TIMEOUT;
887 
888 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
889 	ew32(EXTCNF_CTRL, extcnf_ctrl);
890 
891 	while (timeout) {
892 		extcnf_ctrl = er32(EXTCNF_CTRL);
893 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
894 			break;
895 
896 		mdelay(1);
897 		timeout--;
898 	}
899 
900 	if (!timeout) {
901 		e_dbg("Failed to acquire the semaphore.\n");
902 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
903 		ew32(EXTCNF_CTRL, extcnf_ctrl);
904 		ret_val = -E1000_ERR_CONFIG;
905 		goto out;
906 	}
907 
908 out:
909 	if (ret_val)
910 		mutex_unlock(&swflag_mutex);
911 
912 	return ret_val;
913 }
914 
915 /**
916  *  e1000_release_swflag_ich8lan - Release software control flag
917  *  @hw: pointer to the HW structure
918  *
919  *  Releases the software control flag for performing PHY and select
920  *  MAC CSR accesses.
921  **/
922 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
923 {
924 	u32 extcnf_ctrl;
925 
926 	extcnf_ctrl = er32(EXTCNF_CTRL);
927 
928 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
929 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
930 		ew32(EXTCNF_CTRL, extcnf_ctrl);
931 	} else {
932 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
933 	}
934 
935 	mutex_unlock(&swflag_mutex);
936 }
937 
938 /**
939  *  e1000_check_mng_mode_ich8lan - Checks management mode
940  *  @hw: pointer to the HW structure
941  *
942  *  This checks if the adapter has any manageability enabled.
943  *  This is a function pointer entry point only called by read/write
944  *  routines for the PHY and NVM parts.
945  **/
946 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
947 {
948 	u32 fwsm;
949 
950 	fwsm = er32(FWSM);
951 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
952 	       ((fwsm & E1000_FWSM_MODE_MASK) ==
953 		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
954 }
955 
956 /**
957  *  e1000_check_mng_mode_pchlan - Checks management mode
958  *  @hw: pointer to the HW structure
959  *
960  *  This checks if the adapter has iAMT enabled.
961  *  This is a function pointer entry point only called by read/write
962  *  routines for the PHY and NVM parts.
963  **/
964 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
965 {
966 	u32 fwsm;
967 
968 	fwsm = er32(FWSM);
969 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
970 	       (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
971 }
972 
973 /**
974  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
975  *  @hw: pointer to the HW structure
976  *
977  *  Checks if firmware is blocking the reset of the PHY.
978  *  This is a function pointer entry point only called by
979  *  reset routines.
980  **/
981 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
982 {
983 	u32 fwsm;
984 
985 	fwsm = er32(FWSM);
986 
987 	return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
988 }
989 
990 /**
991  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
992  *  @hw: pointer to the HW structure
993  *
994  *  Assumes semaphore already acquired.
995  *
996  **/
997 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
998 {
999 	u16 phy_data;
1000 	u32 strap = er32(STRAP);
1001 	s32 ret_val = 0;
1002 
1003 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1004 
1005 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1006 	if (ret_val)
1007 		goto out;
1008 
1009 	phy_data &= ~HV_SMB_ADDR_MASK;
1010 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1011 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1012 	ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1013 
1014 out:
1015 	return ret_val;
1016 }
1017 
1018 /**
1019  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1020  *  @hw:   pointer to the HW structure
1021  *
1022  *  SW should configure the LCD from the NVM extended configuration region
1023  *  as a workaround for certain parts.
1024  **/
1025 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1026 {
1027 	struct e1000_phy_info *phy = &hw->phy;
1028 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1029 	s32 ret_val = 0;
1030 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
1031 
1032 	/*
1033 	 * Initialize the PHY from the NVM on ICH platforms.  This
1034 	 * is needed due to an issue where the NVM configuration is
1035 	 * not properly autoloaded after power transitions.
1036 	 * Therefore, after each PHY reset, we will load the
1037 	 * configuration data out of the NVM manually.
1038 	 */
1039 	switch (hw->mac.type) {
1040 	case e1000_ich8lan:
1041 		if (phy->type != e1000_phy_igp_3)
1042 			return ret_val;
1043 
1044 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1045 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1046 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1047 			break;
1048 		}
1049 		/* Fall-thru */
1050 	case e1000_pchlan:
1051 	case e1000_pch2lan:
1052 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1053 		break;
1054 	default:
1055 		return ret_val;
1056 	}
1057 
1058 	ret_val = hw->phy.ops.acquire(hw);
1059 	if (ret_val)
1060 		return ret_val;
1061 
1062 	data = er32(FEXTNVM);
1063 	if (!(data & sw_cfg_mask))
1064 		goto out;
1065 
1066 	/*
1067 	 * Make sure HW does not configure LCD from PHY
1068 	 * extended configuration before SW configuration
1069 	 */
1070 	data = er32(EXTCNF_CTRL);
1071 	if (!(hw->mac.type == e1000_pch2lan)) {
1072 		if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
1073 			goto out;
1074 	}
1075 
1076 	cnf_size = er32(EXTCNF_SIZE);
1077 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1078 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1079 	if (!cnf_size)
1080 		goto out;
1081 
1082 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1083 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1084 
1085 	if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
1086 	    (hw->mac.type == e1000_pchlan)) ||
1087 	     (hw->mac.type == e1000_pch2lan)) {
1088 		/*
1089 		 * HW configures the SMBus address and LEDs when the
1090 		 * OEM and LCD Write Enable bits are set in the NVM.
1091 		 * When both NVM bits are cleared, SW will configure
1092 		 * them instead.
1093 		 */
1094 		ret_val = e1000_write_smbus_addr(hw);
1095 		if (ret_val)
1096 			goto out;
1097 
1098 		data = er32(LEDCTL);
1099 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1100 							(u16)data);
1101 		if (ret_val)
1102 			goto out;
1103 	}
1104 
1105 	/* Configure LCD from extended configuration region. */
1106 
1107 	/* cnf_base_addr is in DWORD */
1108 	word_addr = (u16)(cnf_base_addr << 1);
1109 
1110 	for (i = 0; i < cnf_size; i++) {
1111 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
1112 					 &reg_data);
1113 		if (ret_val)
1114 			goto out;
1115 
1116 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1117 					 1, &reg_addr);
1118 		if (ret_val)
1119 			goto out;
1120 
1121 		/* Save off the PHY page for future writes. */
1122 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1123 			phy_page = reg_data;
1124 			continue;
1125 		}
1126 
1127 		reg_addr &= PHY_REG_MASK;
1128 		reg_addr |= phy_page;
1129 
1130 		ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
1131 						    reg_data);
1132 		if (ret_val)
1133 			goto out;
1134 	}
1135 
1136 out:
1137 	hw->phy.ops.release(hw);
1138 	return ret_val;
1139 }
1140 
1141 /**
1142  *  e1000_k1_gig_workaround_hv - K1 Si workaround
1143  *  @hw:   pointer to the HW structure
1144  *  @link: link up bool flag
1145  *
1146  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1147  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
1148  *  If link is down, the function will restore the default K1 setting located
1149  *  in the NVM.
1150  **/
1151 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1152 {
1153 	s32 ret_val = 0;
1154 	u16 status_reg = 0;
1155 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1156 
1157 	if (hw->mac.type != e1000_pchlan)
1158 		goto out;
1159 
1160 	/* Wrap the whole flow with the sw flag */
1161 	ret_val = hw->phy.ops.acquire(hw);
1162 	if (ret_val)
1163 		goto out;
1164 
1165 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1166 	if (link) {
1167 		if (hw->phy.type == e1000_phy_82578) {
1168 			ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
1169 			                                          &status_reg);
1170 			if (ret_val)
1171 				goto release;
1172 
1173 			status_reg &= BM_CS_STATUS_LINK_UP |
1174 			              BM_CS_STATUS_RESOLVED |
1175 			              BM_CS_STATUS_SPEED_MASK;
1176 
1177 			if (status_reg == (BM_CS_STATUS_LINK_UP |
1178 			                   BM_CS_STATUS_RESOLVED |
1179 			                   BM_CS_STATUS_SPEED_1000))
1180 				k1_enable = false;
1181 		}
1182 
1183 		if (hw->phy.type == e1000_phy_82577) {
1184 			ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
1185 			                                          &status_reg);
1186 			if (ret_val)
1187 				goto release;
1188 
1189 			status_reg &= HV_M_STATUS_LINK_UP |
1190 			              HV_M_STATUS_AUTONEG_COMPLETE |
1191 			              HV_M_STATUS_SPEED_MASK;
1192 
1193 			if (status_reg == (HV_M_STATUS_LINK_UP |
1194 			                   HV_M_STATUS_AUTONEG_COMPLETE |
1195 			                   HV_M_STATUS_SPEED_1000))
1196 				k1_enable = false;
1197 		}
1198 
1199 		/* Link stall fix for link up */
1200 		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1201 		                                           0x0100);
1202 		if (ret_val)
1203 			goto release;
1204 
1205 	} else {
1206 		/* Link stall fix for link down */
1207 		ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1208 		                                           0x4100);
1209 		if (ret_val)
1210 			goto release;
1211 	}
1212 
1213 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1214 
1215 release:
1216 	hw->phy.ops.release(hw);
1217 out:
1218 	return ret_val;
1219 }
1220 
1221 /**
1222  *  e1000_configure_k1_ich8lan - Configure K1 power state
1223  *  @hw: pointer to the HW structure
1224  *  @enable: K1 state to configure
1225  *
1226  *  Configure the K1 power state based on the provided parameter.
1227  *  Assumes semaphore already acquired.
1228  *
1229  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1230  **/
1231 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1232 {
1233 	s32 ret_val = 0;
1234 	u32 ctrl_reg = 0;
1235 	u32 ctrl_ext = 0;
1236 	u32 reg = 0;
1237 	u16 kmrn_reg = 0;
1238 
1239 	ret_val = e1000e_read_kmrn_reg_locked(hw,
1240 	                                     E1000_KMRNCTRLSTA_K1_CONFIG,
1241 	                                     &kmrn_reg);
1242 	if (ret_val)
1243 		goto out;
1244 
1245 	if (k1_enable)
1246 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1247 	else
1248 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1249 
1250 	ret_val = e1000e_write_kmrn_reg_locked(hw,
1251 	                                      E1000_KMRNCTRLSTA_K1_CONFIG,
1252 	                                      kmrn_reg);
1253 	if (ret_val)
1254 		goto out;
1255 
1256 	udelay(20);
1257 	ctrl_ext = er32(CTRL_EXT);
1258 	ctrl_reg = er32(CTRL);
1259 
1260 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1261 	reg |= E1000_CTRL_FRCSPD;
1262 	ew32(CTRL, reg);
1263 
1264 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1265 	e1e_flush();
1266 	udelay(20);
1267 	ew32(CTRL, ctrl_reg);
1268 	ew32(CTRL_EXT, ctrl_ext);
1269 	e1e_flush();
1270 	udelay(20);
1271 
1272 out:
1273 	return ret_val;
1274 }
1275 
1276 /**
1277  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1278  *  @hw:       pointer to the HW structure
1279  *  @d0_state: boolean if entering d0 or d3 device state
1280  *
1281  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1282  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
1283  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
1284  **/
1285 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1286 {
1287 	s32 ret_val = 0;
1288 	u32 mac_reg;
1289 	u16 oem_reg;
1290 
1291 	if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan))
1292 		return ret_val;
1293 
1294 	ret_val = hw->phy.ops.acquire(hw);
1295 	if (ret_val)
1296 		return ret_val;
1297 
1298 	if (!(hw->mac.type == e1000_pch2lan)) {
1299 		mac_reg = er32(EXTCNF_CTRL);
1300 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1301 			goto out;
1302 	}
1303 
1304 	mac_reg = er32(FEXTNVM);
1305 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1306 		goto out;
1307 
1308 	mac_reg = er32(PHY_CTRL);
1309 
1310 	ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
1311 	if (ret_val)
1312 		goto out;
1313 
1314 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1315 
1316 	if (d0_state) {
1317 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1318 			oem_reg |= HV_OEM_BITS_GBE_DIS;
1319 
1320 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1321 			oem_reg |= HV_OEM_BITS_LPLU;
1322 
1323 		/* Set Restart auto-neg to activate the bits */
1324 		if (!e1000_check_reset_block(hw))
1325 			oem_reg |= HV_OEM_BITS_RESTART_AN;
1326 	} else {
1327 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
1328 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
1329 			oem_reg |= HV_OEM_BITS_GBE_DIS;
1330 
1331 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
1332 			       E1000_PHY_CTRL_NOND0A_LPLU))
1333 			oem_reg |= HV_OEM_BITS_LPLU;
1334 	}
1335 
1336 	ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
1337 
1338 out:
1339 	hw->phy.ops.release(hw);
1340 
1341 	return ret_val;
1342 }
1343 
1344 
1345 /**
1346  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1347  *  @hw:   pointer to the HW structure
1348  **/
1349 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1350 {
1351 	s32 ret_val;
1352 	u16 data;
1353 
1354 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1355 	if (ret_val)
1356 		return ret_val;
1357 
1358 	data |= HV_KMRN_MDIO_SLOW;
1359 
1360 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1361 
1362 	return ret_val;
1363 }
1364 
1365 /**
1366  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1367  *  done after every PHY reset.
1368  **/
1369 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1370 {
1371 	s32 ret_val = 0;
1372 	u16 phy_data;
1373 
1374 	if (hw->mac.type != e1000_pchlan)
1375 		return ret_val;
1376 
1377 	/* Set MDIO slow mode before any other MDIO access */
1378 	if (hw->phy.type == e1000_phy_82577) {
1379 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
1380 		if (ret_val)
1381 			goto out;
1382 	}
1383 
1384 	if (((hw->phy.type == e1000_phy_82577) &&
1385 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1386 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1387 		/* Disable generation of early preamble */
1388 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1389 		if (ret_val)
1390 			return ret_val;
1391 
1392 		/* Preamble tuning for SSC */
1393 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
1394 		if (ret_val)
1395 			return ret_val;
1396 	}
1397 
1398 	if (hw->phy.type == e1000_phy_82578) {
1399 		/*
1400 		 * Return registers to default by doing a soft reset then
1401 		 * writing 0x3140 to the control register.
1402 		 */
1403 		if (hw->phy.revision < 2) {
1404 			e1000e_phy_sw_reset(hw);
1405 			ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1406 		}
1407 	}
1408 
1409 	/* Select page 0 */
1410 	ret_val = hw->phy.ops.acquire(hw);
1411 	if (ret_val)
1412 		return ret_val;
1413 
1414 	hw->phy.addr = 1;
1415 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1416 	hw->phy.ops.release(hw);
1417 	if (ret_val)
1418 		goto out;
1419 
1420 	/*
1421 	 * Configure the K1 Si workaround during phy reset assuming there is
1422 	 * link so that it disables K1 if link is in 1Gbps.
1423 	 */
1424 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
1425 	if (ret_val)
1426 		goto out;
1427 
1428 	/* Workaround for link disconnects on a busy hub in half duplex */
1429 	ret_val = hw->phy.ops.acquire(hw);
1430 	if (ret_val)
1431 		goto out;
1432 	ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
1433 	if (ret_val)
1434 		goto release;
1435 	ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
1436 					       phy_data & 0x00FF);
1437 release:
1438 	hw->phy.ops.release(hw);
1439 out:
1440 	return ret_val;
1441 }
1442 
1443 /**
1444  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1445  *  @hw:   pointer to the HW structure
1446  **/
1447 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1448 {
1449 	u32 mac_reg;
1450 	u16 i, phy_reg = 0;
1451 	s32 ret_val;
1452 
1453 	ret_val = hw->phy.ops.acquire(hw);
1454 	if (ret_val)
1455 		return;
1456 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1457 	if (ret_val)
1458 		goto release;
1459 
1460 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1461 	for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1462 		mac_reg = er32(RAL(i));
1463 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
1464 					   (u16)(mac_reg & 0xFFFF));
1465 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
1466 					   (u16)((mac_reg >> 16) & 0xFFFF));
1467 
1468 		mac_reg = er32(RAH(i));
1469 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
1470 					   (u16)(mac_reg & 0xFFFF));
1471 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
1472 					   (u16)((mac_reg & E1000_RAH_AV)
1473 						 >> 16));
1474 	}
1475 
1476 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1477 
1478 release:
1479 	hw->phy.ops.release(hw);
1480 }
1481 
1482 /**
1483  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1484  *  with 82579 PHY
1485  *  @hw: pointer to the HW structure
1486  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
1487  **/
1488 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1489 {
1490 	s32 ret_val = 0;
1491 	u16 phy_reg, data;
1492 	u32 mac_reg;
1493 	u16 i;
1494 
1495 	if (hw->mac.type != e1000_pch2lan)
1496 		goto out;
1497 
1498 	/* disable Rx path while enabling/disabling workaround */
1499 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1500 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1501 	if (ret_val)
1502 		goto out;
1503 
1504 	if (enable) {
1505 		/*
1506 		 * Write Rx addresses (rar_entry_count for RAL/H, +4 for
1507 		 * SHRAL/H) and initial CRC values to the MAC
1508 		 */
1509 		for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1510 			u8 mac_addr[ETH_ALEN] = {0};
1511 			u32 addr_high, addr_low;
1512 
1513 			addr_high = er32(RAH(i));
1514 			if (!(addr_high & E1000_RAH_AV))
1515 				continue;
1516 			addr_low = er32(RAL(i));
1517 			mac_addr[0] = (addr_low & 0xFF);
1518 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
1519 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
1520 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
1521 			mac_addr[4] = (addr_high & 0xFF);
1522 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
1523 
1524 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
1525 		}
1526 
1527 		/* Write Rx addresses to the PHY */
1528 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
1529 
1530 		/* Enable jumbo frame workaround in the MAC */
1531 		mac_reg = er32(FFLT_DBG);
1532 		mac_reg &= ~(1 << 14);
1533 		mac_reg |= (7 << 15);
1534 		ew32(FFLT_DBG, mac_reg);
1535 
1536 		mac_reg = er32(RCTL);
1537 		mac_reg |= E1000_RCTL_SECRC;
1538 		ew32(RCTL, mac_reg);
1539 
1540 		ret_val = e1000e_read_kmrn_reg(hw,
1541 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1542 						&data);
1543 		if (ret_val)
1544 			goto out;
1545 		ret_val = e1000e_write_kmrn_reg(hw,
1546 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1547 						data | (1 << 0));
1548 		if (ret_val)
1549 			goto out;
1550 		ret_val = e1000e_read_kmrn_reg(hw,
1551 						E1000_KMRNCTRLSTA_HD_CTRL,
1552 						&data);
1553 		if (ret_val)
1554 			goto out;
1555 		data &= ~(0xF << 8);
1556 		data |= (0xB << 8);
1557 		ret_val = e1000e_write_kmrn_reg(hw,
1558 						E1000_KMRNCTRLSTA_HD_CTRL,
1559 						data);
1560 		if (ret_val)
1561 			goto out;
1562 
1563 		/* Enable jumbo frame workaround in the PHY */
1564 		e1e_rphy(hw, PHY_REG(769, 23), &data);
1565 		data &= ~(0x7F << 5);
1566 		data |= (0x37 << 5);
1567 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1568 		if (ret_val)
1569 			goto out;
1570 		e1e_rphy(hw, PHY_REG(769, 16), &data);
1571 		data &= ~(1 << 13);
1572 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1573 		if (ret_val)
1574 			goto out;
1575 		e1e_rphy(hw, PHY_REG(776, 20), &data);
1576 		data &= ~(0x3FF << 2);
1577 		data |= (0x1A << 2);
1578 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1579 		if (ret_val)
1580 			goto out;
1581 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xFE00);
1582 		if (ret_val)
1583 			goto out;
1584 		e1e_rphy(hw, HV_PM_CTRL, &data);
1585 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
1586 		if (ret_val)
1587 			goto out;
1588 	} else {
1589 		/* Write MAC register values back to h/w defaults */
1590 		mac_reg = er32(FFLT_DBG);
1591 		mac_reg &= ~(0xF << 14);
1592 		ew32(FFLT_DBG, mac_reg);
1593 
1594 		mac_reg = er32(RCTL);
1595 		mac_reg &= ~E1000_RCTL_SECRC;
1596 		ew32(RCTL, mac_reg);
1597 
1598 		ret_val = e1000e_read_kmrn_reg(hw,
1599 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1600 						&data);
1601 		if (ret_val)
1602 			goto out;
1603 		ret_val = e1000e_write_kmrn_reg(hw,
1604 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1605 						data & ~(1 << 0));
1606 		if (ret_val)
1607 			goto out;
1608 		ret_val = e1000e_read_kmrn_reg(hw,
1609 						E1000_KMRNCTRLSTA_HD_CTRL,
1610 						&data);
1611 		if (ret_val)
1612 			goto out;
1613 		data &= ~(0xF << 8);
1614 		data |= (0xB << 8);
1615 		ret_val = e1000e_write_kmrn_reg(hw,
1616 						E1000_KMRNCTRLSTA_HD_CTRL,
1617 						data);
1618 		if (ret_val)
1619 			goto out;
1620 
1621 		/* Write PHY register values back to h/w defaults */
1622 		e1e_rphy(hw, PHY_REG(769, 23), &data);
1623 		data &= ~(0x7F << 5);
1624 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1625 		if (ret_val)
1626 			goto out;
1627 		e1e_rphy(hw, PHY_REG(769, 16), &data);
1628 		data |= (1 << 13);
1629 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1630 		if (ret_val)
1631 			goto out;
1632 		e1e_rphy(hw, PHY_REG(776, 20), &data);
1633 		data &= ~(0x3FF << 2);
1634 		data |= (0x8 << 2);
1635 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1636 		if (ret_val)
1637 			goto out;
1638 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
1639 		if (ret_val)
1640 			goto out;
1641 		e1e_rphy(hw, HV_PM_CTRL, &data);
1642 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
1643 		if (ret_val)
1644 			goto out;
1645 	}
1646 
1647 	/* re-enable Rx path after enabling/disabling workaround */
1648 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
1649 
1650 out:
1651 	return ret_val;
1652 }
1653 
1654 /**
1655  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1656  *  done after every PHY reset.
1657  **/
1658 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1659 {
1660 	s32 ret_val = 0;
1661 
1662 	if (hw->mac.type != e1000_pch2lan)
1663 		goto out;
1664 
1665 	/* Set MDIO slow mode before any other MDIO access */
1666 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
1667 
1668 out:
1669 	return ret_val;
1670 }
1671 
1672 /**
1673  *  e1000_k1_gig_workaround_lv - K1 Si workaround
1674  *  @hw:   pointer to the HW structure
1675  *
1676  *  Workaround to set the K1 beacon duration for 82579 parts
1677  **/
1678 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
1679 {
1680 	s32 ret_val = 0;
1681 	u16 status_reg = 0;
1682 	u32 mac_reg;
1683 	u16 phy_reg;
1684 
1685 	if (hw->mac.type != e1000_pch2lan)
1686 		goto out;
1687 
1688 	/* Set K1 beacon duration based on 1Gbps speed or otherwise */
1689 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
1690 	if (ret_val)
1691 		goto out;
1692 
1693 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
1694 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
1695 		mac_reg = er32(FEXTNVM4);
1696 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1697 
1698 		ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
1699 		if (ret_val)
1700 			goto out;
1701 
1702 		if (status_reg & HV_M_STATUS_SPEED_1000) {
1703 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1704 			phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
1705 		} else {
1706 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
1707 			phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
1708 		}
1709 		ew32(FEXTNVM4, mac_reg);
1710 		ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
1711 	}
1712 
1713 out:
1714 	return ret_val;
1715 }
1716 
1717 /**
1718  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
1719  *  @hw:   pointer to the HW structure
1720  *  @gate: boolean set to true to gate, false to ungate
1721  *
1722  *  Gate/ungate the automatic PHY configuration via hardware; perform
1723  *  the configuration via software instead.
1724  **/
1725 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
1726 {
1727 	u32 extcnf_ctrl;
1728 
1729 	if (hw->mac.type != e1000_pch2lan)
1730 		return;
1731 
1732 	extcnf_ctrl = er32(EXTCNF_CTRL);
1733 
1734 	if (gate)
1735 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1736 	else
1737 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1738 
1739 	ew32(EXTCNF_CTRL, extcnf_ctrl);
1740 	return;
1741 }
1742 
1743 /**
1744  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
1745  *  @hw: pointer to the HW structure
1746  *
1747  *  Check the appropriate indication the MAC has finished configuring the
1748  *  PHY after a software reset.
1749  **/
1750 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
1751 {
1752 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
1753 
1754 	/* Wait for basic configuration completes before proceeding */
1755 	do {
1756 		data = er32(STATUS);
1757 		data &= E1000_STATUS_LAN_INIT_DONE;
1758 		udelay(100);
1759 	} while ((!data) && --loop);
1760 
1761 	/*
1762 	 * If basic configuration is incomplete before the above loop
1763 	 * count reaches 0, loading the configuration from NVM will
1764 	 * leave the PHY in a bad state possibly resulting in no link.
1765 	 */
1766 	if (loop == 0)
1767 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
1768 
1769 	/* Clear the Init Done bit for the next init event */
1770 	data = er32(STATUS);
1771 	data &= ~E1000_STATUS_LAN_INIT_DONE;
1772 	ew32(STATUS, data);
1773 }
1774 
1775 /**
1776  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
1777  *  @hw: pointer to the HW structure
1778  **/
1779 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
1780 {
1781 	s32 ret_val = 0;
1782 	u16 reg;
1783 
1784 	if (e1000_check_reset_block(hw))
1785 		goto out;
1786 
1787 	/* Allow time for h/w to get to quiescent state after reset */
1788 	usleep_range(10000, 20000);
1789 
1790 	/* Perform any necessary post-reset workarounds */
1791 	switch (hw->mac.type) {
1792 	case e1000_pchlan:
1793 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
1794 		if (ret_val)
1795 			goto out;
1796 		break;
1797 	case e1000_pch2lan:
1798 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
1799 		if (ret_val)
1800 			goto out;
1801 		break;
1802 	default:
1803 		break;
1804 	}
1805 
1806 	/* Clear the host wakeup bit after lcd reset */
1807 	if (hw->mac.type >= e1000_pchlan) {
1808 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
1809 		reg &= ~BM_WUC_HOST_WU_BIT;
1810 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
1811 	}
1812 
1813 	/* Configure the LCD with the extended configuration region in NVM */
1814 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
1815 	if (ret_val)
1816 		goto out;
1817 
1818 	/* Configure the LCD with the OEM bits in NVM */
1819 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
1820 
1821 	if (hw->mac.type == e1000_pch2lan) {
1822 		/* Ungate automatic PHY configuration on non-managed 82579 */
1823 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
1824 			usleep_range(10000, 20000);
1825 			e1000_gate_hw_phy_config_ich8lan(hw, false);
1826 		}
1827 
1828 		/* Set EEE LPI Update Timer to 200usec */
1829 		ret_val = hw->phy.ops.acquire(hw);
1830 		if (ret_val)
1831 			goto out;
1832 		ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
1833 						       I82579_LPI_UPDATE_TIMER);
1834 		if (ret_val)
1835 			goto release;
1836 		ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
1837 						       0x1387);
1838 release:
1839 		hw->phy.ops.release(hw);
1840 	}
1841 
1842 out:
1843 	return ret_val;
1844 }
1845 
1846 /**
1847  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1848  *  @hw: pointer to the HW structure
1849  *
1850  *  Resets the PHY
1851  *  This is a function pointer entry point called by drivers
1852  *  or other shared routines.
1853  **/
1854 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
1855 {
1856 	s32 ret_val = 0;
1857 
1858 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
1859 	if ((hw->mac.type == e1000_pch2lan) &&
1860 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1861 		e1000_gate_hw_phy_config_ich8lan(hw, true);
1862 
1863 	ret_val = e1000e_phy_hw_reset_generic(hw);
1864 	if (ret_val)
1865 		goto out;
1866 
1867 	ret_val = e1000_post_phy_reset_ich8lan(hw);
1868 
1869 out:
1870 	return ret_val;
1871 }
1872 
1873 /**
1874  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1875  *  @hw: pointer to the HW structure
1876  *  @active: true to enable LPLU, false to disable
1877  *
1878  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
1879  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1880  *  the phy speed. This function will manually set the LPLU bit and restart
1881  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
1882  *  since it configures the same bit.
1883  **/
1884 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
1885 {
1886 	s32 ret_val = 0;
1887 	u16 oem_reg;
1888 
1889 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
1890 	if (ret_val)
1891 		goto out;
1892 
1893 	if (active)
1894 		oem_reg |= HV_OEM_BITS_LPLU;
1895 	else
1896 		oem_reg &= ~HV_OEM_BITS_LPLU;
1897 
1898 	oem_reg |= HV_OEM_BITS_RESTART_AN;
1899 	ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
1900 
1901 out:
1902 	return ret_val;
1903 }
1904 
1905 /**
1906  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1907  *  @hw: pointer to the HW structure
1908  *  @active: true to enable LPLU, false to disable
1909  *
1910  *  Sets the LPLU D0 state according to the active flag.  When
1911  *  activating LPLU this function also disables smart speed
1912  *  and vice versa.  LPLU will not be activated unless the
1913  *  device autonegotiation advertisement meets standards of
1914  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1915  *  This is a function pointer entry point only called by
1916  *  PHY setup routines.
1917  **/
1918 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1919 {
1920 	struct e1000_phy_info *phy = &hw->phy;
1921 	u32 phy_ctrl;
1922 	s32 ret_val = 0;
1923 	u16 data;
1924 
1925 	if (phy->type == e1000_phy_ife)
1926 		return ret_val;
1927 
1928 	phy_ctrl = er32(PHY_CTRL);
1929 
1930 	if (active) {
1931 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1932 		ew32(PHY_CTRL, phy_ctrl);
1933 
1934 		if (phy->type != e1000_phy_igp_3)
1935 			return 0;
1936 
1937 		/*
1938 		 * Call gig speed drop workaround on LPLU before accessing
1939 		 * any PHY registers
1940 		 */
1941 		if (hw->mac.type == e1000_ich8lan)
1942 			e1000e_gig_downshift_workaround_ich8lan(hw);
1943 
1944 		/* When LPLU is enabled, we should disable SmartSpeed */
1945 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1946 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1947 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1948 		if (ret_val)
1949 			return ret_val;
1950 	} else {
1951 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1952 		ew32(PHY_CTRL, phy_ctrl);
1953 
1954 		if (phy->type != e1000_phy_igp_3)
1955 			return 0;
1956 
1957 		/*
1958 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1959 		 * during Dx states where the power conservation is most
1960 		 * important.  During driver activity we should enable
1961 		 * SmartSpeed, so performance is maintained.
1962 		 */
1963 		if (phy->smart_speed == e1000_smart_speed_on) {
1964 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1965 					   &data);
1966 			if (ret_val)
1967 				return ret_val;
1968 
1969 			data |= IGP01E1000_PSCFR_SMART_SPEED;
1970 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1971 					   data);
1972 			if (ret_val)
1973 				return ret_val;
1974 		} else if (phy->smart_speed == e1000_smart_speed_off) {
1975 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1976 					   &data);
1977 			if (ret_val)
1978 				return ret_val;
1979 
1980 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1981 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1982 					   data);
1983 			if (ret_val)
1984 				return ret_val;
1985 		}
1986 	}
1987 
1988 	return 0;
1989 }
1990 
1991 /**
1992  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1993  *  @hw: pointer to the HW structure
1994  *  @active: true to enable LPLU, false to disable
1995  *
1996  *  Sets the LPLU D3 state according to the active flag.  When
1997  *  activating LPLU this function also disables smart speed
1998  *  and vice versa.  LPLU will not be activated unless the
1999  *  device autonegotiation advertisement meets standards of
2000  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2001  *  This is a function pointer entry point only called by
2002  *  PHY setup routines.
2003  **/
2004 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2005 {
2006 	struct e1000_phy_info *phy = &hw->phy;
2007 	u32 phy_ctrl;
2008 	s32 ret_val;
2009 	u16 data;
2010 
2011 	phy_ctrl = er32(PHY_CTRL);
2012 
2013 	if (!active) {
2014 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2015 		ew32(PHY_CTRL, phy_ctrl);
2016 
2017 		if (phy->type != e1000_phy_igp_3)
2018 			return 0;
2019 
2020 		/*
2021 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2022 		 * during Dx states where the power conservation is most
2023 		 * important.  During driver activity we should enable
2024 		 * SmartSpeed, so performance is maintained.
2025 		 */
2026 		if (phy->smart_speed == e1000_smart_speed_on) {
2027 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2028 					   &data);
2029 			if (ret_val)
2030 				return ret_val;
2031 
2032 			data |= IGP01E1000_PSCFR_SMART_SPEED;
2033 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2034 					   data);
2035 			if (ret_val)
2036 				return ret_val;
2037 		} else if (phy->smart_speed == e1000_smart_speed_off) {
2038 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2039 					   &data);
2040 			if (ret_val)
2041 				return ret_val;
2042 
2043 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2044 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2045 					   data);
2046 			if (ret_val)
2047 				return ret_val;
2048 		}
2049 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2050 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2051 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2052 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2053 		ew32(PHY_CTRL, phy_ctrl);
2054 
2055 		if (phy->type != e1000_phy_igp_3)
2056 			return 0;
2057 
2058 		/*
2059 		 * Call gig speed drop workaround on LPLU before accessing
2060 		 * any PHY registers
2061 		 */
2062 		if (hw->mac.type == e1000_ich8lan)
2063 			e1000e_gig_downshift_workaround_ich8lan(hw);
2064 
2065 		/* When LPLU is enabled, we should disable SmartSpeed */
2066 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2067 		if (ret_val)
2068 			return ret_val;
2069 
2070 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2071 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2072 	}
2073 
2074 	return 0;
2075 }
2076 
2077 /**
2078  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2079  *  @hw: pointer to the HW structure
2080  *  @bank:  pointer to the variable that returns the active bank
2081  *
2082  *  Reads signature byte from the NVM using the flash access registers.
2083  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2084  **/
2085 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2086 {
2087 	u32 eecd;
2088 	struct e1000_nvm_info *nvm = &hw->nvm;
2089 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2090 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2091 	u8 sig_byte = 0;
2092 	s32 ret_val = 0;
2093 
2094 	switch (hw->mac.type) {
2095 	case e1000_ich8lan:
2096 	case e1000_ich9lan:
2097 		eecd = er32(EECD);
2098 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2099 		    E1000_EECD_SEC1VAL_VALID_MASK) {
2100 			if (eecd & E1000_EECD_SEC1VAL)
2101 				*bank = 1;
2102 			else
2103 				*bank = 0;
2104 
2105 			return 0;
2106 		}
2107 		e_dbg("Unable to determine valid NVM bank via EEC - "
2108 		       "reading flash signature\n");
2109 		/* fall-thru */
2110 	default:
2111 		/* set bank to 0 in case flash read fails */
2112 		*bank = 0;
2113 
2114 		/* Check bank 0 */
2115 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2116 		                                        &sig_byte);
2117 		if (ret_val)
2118 			return ret_val;
2119 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2120 		    E1000_ICH_NVM_SIG_VALUE) {
2121 			*bank = 0;
2122 			return 0;
2123 		}
2124 
2125 		/* Check bank 1 */
2126 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2127 		                                        bank1_offset,
2128 		                                        &sig_byte);
2129 		if (ret_val)
2130 			return ret_val;
2131 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2132 		    E1000_ICH_NVM_SIG_VALUE) {
2133 			*bank = 1;
2134 			return 0;
2135 		}
2136 
2137 		e_dbg("ERROR: No valid NVM bank present\n");
2138 		return -E1000_ERR_NVM;
2139 	}
2140 
2141 	return 0;
2142 }
2143 
2144 /**
2145  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
2146  *  @hw: pointer to the HW structure
2147  *  @offset: The offset (in bytes) of the word(s) to read.
2148  *  @words: Size of data to read in words
2149  *  @data: Pointer to the word(s) to read at offset.
2150  *
2151  *  Reads a word(s) from the NVM using the flash access registers.
2152  **/
2153 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2154 				  u16 *data)
2155 {
2156 	struct e1000_nvm_info *nvm = &hw->nvm;
2157 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2158 	u32 act_offset;
2159 	s32 ret_val = 0;
2160 	u32 bank = 0;
2161 	u16 i, word;
2162 
2163 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2164 	    (words == 0)) {
2165 		e_dbg("nvm parameter(s) out of bounds\n");
2166 		ret_val = -E1000_ERR_NVM;
2167 		goto out;
2168 	}
2169 
2170 	nvm->ops.acquire(hw);
2171 
2172 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2173 	if (ret_val) {
2174 		e_dbg("Could not detect valid bank, assuming bank 0\n");
2175 		bank = 0;
2176 	}
2177 
2178 	act_offset = (bank) ? nvm->flash_bank_size : 0;
2179 	act_offset += offset;
2180 
2181 	ret_val = 0;
2182 	for (i = 0; i < words; i++) {
2183 		if (dev_spec->shadow_ram[offset+i].modified) {
2184 			data[i] = dev_spec->shadow_ram[offset+i].value;
2185 		} else {
2186 			ret_val = e1000_read_flash_word_ich8lan(hw,
2187 								act_offset + i,
2188 								&word);
2189 			if (ret_val)
2190 				break;
2191 			data[i] = word;
2192 		}
2193 	}
2194 
2195 	nvm->ops.release(hw);
2196 
2197 out:
2198 	if (ret_val)
2199 		e_dbg("NVM read error: %d\n", ret_val);
2200 
2201 	return ret_val;
2202 }
2203 
2204 /**
2205  *  e1000_flash_cycle_init_ich8lan - Initialize flash
2206  *  @hw: pointer to the HW structure
2207  *
2208  *  This function does initial flash setup so that a new read/write/erase cycle
2209  *  can be started.
2210  **/
2211 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2212 {
2213 	union ich8_hws_flash_status hsfsts;
2214 	s32 ret_val = -E1000_ERR_NVM;
2215 
2216 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2217 
2218 	/* Check if the flash descriptor is valid */
2219 	if (hsfsts.hsf_status.fldesvalid == 0) {
2220 		e_dbg("Flash descriptor invalid.  "
2221 			 "SW Sequencing must be used.\n");
2222 		return -E1000_ERR_NVM;
2223 	}
2224 
2225 	/* Clear FCERR and DAEL in hw status by writing 1 */
2226 	hsfsts.hsf_status.flcerr = 1;
2227 	hsfsts.hsf_status.dael = 1;
2228 
2229 	ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2230 
2231 	/*
2232 	 * Either we should have a hardware SPI cycle in progress
2233 	 * bit to check against, in order to start a new cycle or
2234 	 * FDONE bit should be changed in the hardware so that it
2235 	 * is 1 after hardware reset, which can then be used as an
2236 	 * indication whether a cycle is in progress or has been
2237 	 * completed.
2238 	 */
2239 
2240 	if (hsfsts.hsf_status.flcinprog == 0) {
2241 		/*
2242 		 * There is no cycle running at present,
2243 		 * so we can start a cycle.
2244 		 * Begin by setting Flash Cycle Done.
2245 		 */
2246 		hsfsts.hsf_status.flcdone = 1;
2247 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2248 		ret_val = 0;
2249 	} else {
2250 		s32 i = 0;
2251 
2252 		/*
2253 		 * Otherwise poll for sometime so the current
2254 		 * cycle has a chance to end before giving up.
2255 		 */
2256 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2257 			hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
2258 			if (hsfsts.hsf_status.flcinprog == 0) {
2259 				ret_val = 0;
2260 				break;
2261 			}
2262 			udelay(1);
2263 		}
2264 		if (ret_val == 0) {
2265 			/*
2266 			 * Successful in waiting for previous cycle to timeout,
2267 			 * now set the Flash Cycle Done.
2268 			 */
2269 			hsfsts.hsf_status.flcdone = 1;
2270 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2271 		} else {
2272 			e_dbg("Flash controller busy, cannot get access\n");
2273 		}
2274 	}
2275 
2276 	return ret_val;
2277 }
2278 
2279 /**
2280  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2281  *  @hw: pointer to the HW structure
2282  *  @timeout: maximum time to wait for completion
2283  *
2284  *  This function starts a flash cycle and waits for its completion.
2285  **/
2286 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2287 {
2288 	union ich8_hws_flash_ctrl hsflctl;
2289 	union ich8_hws_flash_status hsfsts;
2290 	s32 ret_val = -E1000_ERR_NVM;
2291 	u32 i = 0;
2292 
2293 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2294 	hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2295 	hsflctl.hsf_ctrl.flcgo = 1;
2296 	ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2297 
2298 	/* wait till FDONE bit is set to 1 */
2299 	do {
2300 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2301 		if (hsfsts.hsf_status.flcdone == 1)
2302 			break;
2303 		udelay(1);
2304 	} while (i++ < timeout);
2305 
2306 	if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
2307 		return 0;
2308 
2309 	return ret_val;
2310 }
2311 
2312 /**
2313  *  e1000_read_flash_word_ich8lan - Read word from flash
2314  *  @hw: pointer to the HW structure
2315  *  @offset: offset to data location
2316  *  @data: pointer to the location for storing the data
2317  *
2318  *  Reads the flash word at offset into data.  Offset is converted
2319  *  to bytes before read.
2320  **/
2321 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2322 					 u16 *data)
2323 {
2324 	/* Must convert offset into bytes. */
2325 	offset <<= 1;
2326 
2327 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2328 }
2329 
2330 /**
2331  *  e1000_read_flash_byte_ich8lan - Read byte from flash
2332  *  @hw: pointer to the HW structure
2333  *  @offset: The offset of the byte to read.
2334  *  @data: Pointer to a byte to store the value read.
2335  *
2336  *  Reads a single byte from the NVM using the flash access registers.
2337  **/
2338 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2339 					 u8 *data)
2340 {
2341 	s32 ret_val;
2342 	u16 word = 0;
2343 
2344 	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
2345 	if (ret_val)
2346 		return ret_val;
2347 
2348 	*data = (u8)word;
2349 
2350 	return 0;
2351 }
2352 
2353 /**
2354  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
2355  *  @hw: pointer to the HW structure
2356  *  @offset: The offset (in bytes) of the byte or word to read.
2357  *  @size: Size of data to read, 1=byte 2=word
2358  *  @data: Pointer to the word to store the value read.
2359  *
2360  *  Reads a byte or word from the NVM using the flash access registers.
2361  **/
2362 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2363 					 u8 size, u16 *data)
2364 {
2365 	union ich8_hws_flash_status hsfsts;
2366 	union ich8_hws_flash_ctrl hsflctl;
2367 	u32 flash_linear_addr;
2368 	u32 flash_data = 0;
2369 	s32 ret_val = -E1000_ERR_NVM;
2370 	u8 count = 0;
2371 
2372 	if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2373 		return -E1000_ERR_NVM;
2374 
2375 	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2376 			    hw->nvm.flash_base_addr;
2377 
2378 	do {
2379 		udelay(1);
2380 		/* Steps */
2381 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
2382 		if (ret_val != 0)
2383 			break;
2384 
2385 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2386 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2387 		hsflctl.hsf_ctrl.fldbcount = size - 1;
2388 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2389 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2390 
2391 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2392 
2393 		ret_val = e1000_flash_cycle_ich8lan(hw,
2394 						ICH_FLASH_READ_COMMAND_TIMEOUT);
2395 
2396 		/*
2397 		 * Check if FCERR is set to 1, if set to 1, clear it
2398 		 * and try the whole sequence a few more times, else
2399 		 * read in (shift in) the Flash Data0, the order is
2400 		 * least significant byte first msb to lsb
2401 		 */
2402 		if (ret_val == 0) {
2403 			flash_data = er32flash(ICH_FLASH_FDATA0);
2404 			if (size == 1)
2405 				*data = (u8)(flash_data & 0x000000FF);
2406 			else if (size == 2)
2407 				*data = (u16)(flash_data & 0x0000FFFF);
2408 			break;
2409 		} else {
2410 			/*
2411 			 * If we've gotten here, then things are probably
2412 			 * completely hosed, but if the error condition is
2413 			 * detected, it won't hurt to give it another try...
2414 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2415 			 */
2416 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2417 			if (hsfsts.hsf_status.flcerr == 1) {
2418 				/* Repeat for some time before giving up. */
2419 				continue;
2420 			} else if (hsfsts.hsf_status.flcdone == 0) {
2421 				e_dbg("Timeout error - flash cycle "
2422 					 "did not complete.\n");
2423 				break;
2424 			}
2425 		}
2426 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2427 
2428 	return ret_val;
2429 }
2430 
2431 /**
2432  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
2433  *  @hw: pointer to the HW structure
2434  *  @offset: The offset (in bytes) of the word(s) to write.
2435  *  @words: Size of data to write in words
2436  *  @data: Pointer to the word(s) to write at offset.
2437  *
2438  *  Writes a byte or word to the NVM using the flash access registers.
2439  **/
2440 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2441 				   u16 *data)
2442 {
2443 	struct e1000_nvm_info *nvm = &hw->nvm;
2444 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2445 	u16 i;
2446 
2447 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2448 	    (words == 0)) {
2449 		e_dbg("nvm parameter(s) out of bounds\n");
2450 		return -E1000_ERR_NVM;
2451 	}
2452 
2453 	nvm->ops.acquire(hw);
2454 
2455 	for (i = 0; i < words; i++) {
2456 		dev_spec->shadow_ram[offset+i].modified = true;
2457 		dev_spec->shadow_ram[offset+i].value = data[i];
2458 	}
2459 
2460 	nvm->ops.release(hw);
2461 
2462 	return 0;
2463 }
2464 
2465 /**
2466  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2467  *  @hw: pointer to the HW structure
2468  *
2469  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
2470  *  which writes the checksum to the shadow ram.  The changes in the shadow
2471  *  ram are then committed to the EEPROM by processing each bank at a time
2472  *  checking for the modified bit and writing only the pending changes.
2473  *  After a successful commit, the shadow ram is cleared and is ready for
2474  *  future writes.
2475  **/
2476 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2477 {
2478 	struct e1000_nvm_info *nvm = &hw->nvm;
2479 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2480 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2481 	s32 ret_val;
2482 	u16 data;
2483 
2484 	ret_val = e1000e_update_nvm_checksum_generic(hw);
2485 	if (ret_val)
2486 		goto out;
2487 
2488 	if (nvm->type != e1000_nvm_flash_sw)
2489 		goto out;
2490 
2491 	nvm->ops.acquire(hw);
2492 
2493 	/*
2494 	 * We're writing to the opposite bank so if we're on bank 1,
2495 	 * write to bank 0 etc.  We also need to erase the segment that
2496 	 * is going to be written
2497 	 */
2498 	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2499 	if (ret_val) {
2500 		e_dbg("Could not detect valid bank, assuming bank 0\n");
2501 		bank = 0;
2502 	}
2503 
2504 	if (bank == 0) {
2505 		new_bank_offset = nvm->flash_bank_size;
2506 		old_bank_offset = 0;
2507 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2508 		if (ret_val)
2509 			goto release;
2510 	} else {
2511 		old_bank_offset = nvm->flash_bank_size;
2512 		new_bank_offset = 0;
2513 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2514 		if (ret_val)
2515 			goto release;
2516 	}
2517 
2518 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2519 		/*
2520 		 * Determine whether to write the value stored
2521 		 * in the other NVM bank or a modified value stored
2522 		 * in the shadow RAM
2523 		 */
2524 		if (dev_spec->shadow_ram[i].modified) {
2525 			data = dev_spec->shadow_ram[i].value;
2526 		} else {
2527 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
2528 			                                        old_bank_offset,
2529 			                                        &data);
2530 			if (ret_val)
2531 				break;
2532 		}
2533 
2534 		/*
2535 		 * If the word is 0x13, then make sure the signature bits
2536 		 * (15:14) are 11b until the commit has completed.
2537 		 * This will allow us to write 10b which indicates the
2538 		 * signature is valid.  We want to do this after the write
2539 		 * has completed so that we don't mark the segment valid
2540 		 * while the write is still in progress
2541 		 */
2542 		if (i == E1000_ICH_NVM_SIG_WORD)
2543 			data |= E1000_ICH_NVM_SIG_MASK;
2544 
2545 		/* Convert offset to bytes. */
2546 		act_offset = (i + new_bank_offset) << 1;
2547 
2548 		udelay(100);
2549 		/* Write the bytes to the new bank. */
2550 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2551 							       act_offset,
2552 							       (u8)data);
2553 		if (ret_val)
2554 			break;
2555 
2556 		udelay(100);
2557 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2558 							  act_offset + 1,
2559 							  (u8)(data >> 8));
2560 		if (ret_val)
2561 			break;
2562 	}
2563 
2564 	/*
2565 	 * Don't bother writing the segment valid bits if sector
2566 	 * programming failed.
2567 	 */
2568 	if (ret_val) {
2569 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2570 		e_dbg("Flash commit failed.\n");
2571 		goto release;
2572 	}
2573 
2574 	/*
2575 	 * Finally validate the new segment by setting bit 15:14
2576 	 * to 10b in word 0x13 , this can be done without an
2577 	 * erase as well since these bits are 11 to start with
2578 	 * and we need to change bit 14 to 0b
2579 	 */
2580 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2581 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2582 	if (ret_val)
2583 		goto release;
2584 
2585 	data &= 0xBFFF;
2586 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2587 						       act_offset * 2 + 1,
2588 						       (u8)(data >> 8));
2589 	if (ret_val)
2590 		goto release;
2591 
2592 	/*
2593 	 * And invalidate the previously valid segment by setting
2594 	 * its signature word (0x13) high_byte to 0b. This can be
2595 	 * done without an erase because flash erase sets all bits
2596 	 * to 1's. We can write 1's to 0's without an erase
2597 	 */
2598 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2599 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2600 	if (ret_val)
2601 		goto release;
2602 
2603 	/* Great!  Everything worked, we can now clear the cached entries. */
2604 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2605 		dev_spec->shadow_ram[i].modified = false;
2606 		dev_spec->shadow_ram[i].value = 0xFFFF;
2607 	}
2608 
2609 release:
2610 	nvm->ops.release(hw);
2611 
2612 	/*
2613 	 * Reload the EEPROM, or else modifications will not appear
2614 	 * until after the next adapter reset.
2615 	 */
2616 	if (!ret_val) {
2617 		e1000e_reload_nvm(hw);
2618 		usleep_range(10000, 20000);
2619 	}
2620 
2621 out:
2622 	if (ret_val)
2623 		e_dbg("NVM update error: %d\n", ret_val);
2624 
2625 	return ret_val;
2626 }
2627 
2628 /**
2629  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2630  *  @hw: pointer to the HW structure
2631  *
2632  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2633  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
2634  *  calculated, in which case we need to calculate the checksum and set bit 6.
2635  **/
2636 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2637 {
2638 	s32 ret_val;
2639 	u16 data;
2640 
2641 	/*
2642 	 * Read 0x19 and check bit 6.  If this bit is 0, the checksum
2643 	 * needs to be fixed.  This bit is an indication that the NVM
2644 	 * was prepared by OEM software and did not calculate the
2645 	 * checksum...a likely scenario.
2646 	 */
2647 	ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
2648 	if (ret_val)
2649 		return ret_val;
2650 
2651 	if ((data & 0x40) == 0) {
2652 		data |= 0x40;
2653 		ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
2654 		if (ret_val)
2655 			return ret_val;
2656 		ret_val = e1000e_update_nvm_checksum(hw);
2657 		if (ret_val)
2658 			return ret_val;
2659 	}
2660 
2661 	return e1000e_validate_nvm_checksum_generic(hw);
2662 }
2663 
2664 /**
2665  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2666  *  @hw: pointer to the HW structure
2667  *
2668  *  To prevent malicious write/erase of the NVM, set it to be read-only
2669  *  so that the hardware ignores all write/erase cycles of the NVM via
2670  *  the flash control registers.  The shadow-ram copy of the NVM will
2671  *  still be updated, however any updates to this copy will not stick
2672  *  across driver reloads.
2673  **/
2674 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2675 {
2676 	struct e1000_nvm_info *nvm = &hw->nvm;
2677 	union ich8_flash_protected_range pr0;
2678 	union ich8_hws_flash_status hsfsts;
2679 	u32 gfpreg;
2680 
2681 	nvm->ops.acquire(hw);
2682 
2683 	gfpreg = er32flash(ICH_FLASH_GFPREG);
2684 
2685 	/* Write-protect GbE Sector of NVM */
2686 	pr0.regval = er32flash(ICH_FLASH_PR0);
2687 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2688 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
2689 	pr0.range.wpe = true;
2690 	ew32flash(ICH_FLASH_PR0, pr0.regval);
2691 
2692 	/*
2693 	 * Lock down a subset of GbE Flash Control Registers, e.g.
2694 	 * PR0 to prevent the write-protection from being lifted.
2695 	 * Once FLOCKDN is set, the registers protected by it cannot
2696 	 * be written until FLOCKDN is cleared by a hardware reset.
2697 	 */
2698 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2699 	hsfsts.hsf_status.flockdn = true;
2700 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2701 
2702 	nvm->ops.release(hw);
2703 }
2704 
2705 /**
2706  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2707  *  @hw: pointer to the HW structure
2708  *  @offset: The offset (in bytes) of the byte/word to read.
2709  *  @size: Size of data to read, 1=byte 2=word
2710  *  @data: The byte(s) to write to the NVM.
2711  *
2712  *  Writes one/two bytes to the NVM using the flash access registers.
2713  **/
2714 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2715 					  u8 size, u16 data)
2716 {
2717 	union ich8_hws_flash_status hsfsts;
2718 	union ich8_hws_flash_ctrl hsflctl;
2719 	u32 flash_linear_addr;
2720 	u32 flash_data = 0;
2721 	s32 ret_val;
2722 	u8 count = 0;
2723 
2724 	if (size < 1 || size > 2 || data > size * 0xff ||
2725 	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
2726 		return -E1000_ERR_NVM;
2727 
2728 	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2729 			    hw->nvm.flash_base_addr;
2730 
2731 	do {
2732 		udelay(1);
2733 		/* Steps */
2734 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
2735 		if (ret_val)
2736 			break;
2737 
2738 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2739 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2740 		hsflctl.hsf_ctrl.fldbcount = size -1;
2741 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
2742 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2743 
2744 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2745 
2746 		if (size == 1)
2747 			flash_data = (u32)data & 0x00FF;
2748 		else
2749 			flash_data = (u32)data;
2750 
2751 		ew32flash(ICH_FLASH_FDATA0, flash_data);
2752 
2753 		/*
2754 		 * check if FCERR is set to 1 , if set to 1, clear it
2755 		 * and try the whole sequence a few more times else done
2756 		 */
2757 		ret_val = e1000_flash_cycle_ich8lan(hw,
2758 					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
2759 		if (!ret_val)
2760 			break;
2761 
2762 		/*
2763 		 * If we're here, then things are most likely
2764 		 * completely hosed, but if the error condition
2765 		 * is detected, it won't hurt to give it another
2766 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2767 		 */
2768 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2769 		if (hsfsts.hsf_status.flcerr == 1)
2770 			/* Repeat for some time before giving up. */
2771 			continue;
2772 		if (hsfsts.hsf_status.flcdone == 0) {
2773 			e_dbg("Timeout error - flash cycle "
2774 				 "did not complete.");
2775 			break;
2776 		}
2777 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2778 
2779 	return ret_val;
2780 }
2781 
2782 /**
2783  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2784  *  @hw: pointer to the HW structure
2785  *  @offset: The index of the byte to read.
2786  *  @data: The byte to write to the NVM.
2787  *
2788  *  Writes a single byte to the NVM using the flash access registers.
2789  **/
2790 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2791 					  u8 data)
2792 {
2793 	u16 word = (u16)data;
2794 
2795 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
2796 }
2797 
2798 /**
2799  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2800  *  @hw: pointer to the HW structure
2801  *  @offset: The offset of the byte to write.
2802  *  @byte: The byte to write to the NVM.
2803  *
2804  *  Writes a single byte to the NVM using the flash access registers.
2805  *  Goes through a retry algorithm before giving up.
2806  **/
2807 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
2808 						u32 offset, u8 byte)
2809 {
2810 	s32 ret_val;
2811 	u16 program_retries;
2812 
2813 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2814 	if (!ret_val)
2815 		return ret_val;
2816 
2817 	for (program_retries = 0; program_retries < 100; program_retries++) {
2818 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
2819 		udelay(100);
2820 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2821 		if (!ret_val)
2822 			break;
2823 	}
2824 	if (program_retries == 100)
2825 		return -E1000_ERR_NVM;
2826 
2827 	return 0;
2828 }
2829 
2830 /**
2831  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2832  *  @hw: pointer to the HW structure
2833  *  @bank: 0 for first bank, 1 for second bank, etc.
2834  *
2835  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2836  *  bank N is 4096 * N + flash_reg_addr.
2837  **/
2838 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2839 {
2840 	struct e1000_nvm_info *nvm = &hw->nvm;
2841 	union ich8_hws_flash_status hsfsts;
2842 	union ich8_hws_flash_ctrl hsflctl;
2843 	u32 flash_linear_addr;
2844 	/* bank size is in 16bit words - adjust to bytes */
2845 	u32 flash_bank_size = nvm->flash_bank_size * 2;
2846 	s32 ret_val;
2847 	s32 count = 0;
2848 	s32 j, iteration, sector_size;
2849 
2850 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2851 
2852 	/*
2853 	 * Determine HW Sector size: Read BERASE bits of hw flash status
2854 	 * register
2855 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
2856 	 *     consecutive sectors.  The start index for the nth Hw sector
2857 	 *     can be calculated as = bank * 4096 + n * 256
2858 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2859 	 *     The start index for the nth Hw sector can be calculated
2860 	 *     as = bank * 4096
2861 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2862 	 *     (ich9 only, otherwise error condition)
2863 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2864 	 */
2865 	switch (hsfsts.hsf_status.berasesz) {
2866 	case 0:
2867 		/* Hw sector size 256 */
2868 		sector_size = ICH_FLASH_SEG_SIZE_256;
2869 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
2870 		break;
2871 	case 1:
2872 		sector_size = ICH_FLASH_SEG_SIZE_4K;
2873 		iteration = 1;
2874 		break;
2875 	case 2:
2876 		sector_size = ICH_FLASH_SEG_SIZE_8K;
2877 		iteration = 1;
2878 		break;
2879 	case 3:
2880 		sector_size = ICH_FLASH_SEG_SIZE_64K;
2881 		iteration = 1;
2882 		break;
2883 	default:
2884 		return -E1000_ERR_NVM;
2885 	}
2886 
2887 	/* Start with the base address, then add the sector offset. */
2888 	flash_linear_addr = hw->nvm.flash_base_addr;
2889 	flash_linear_addr += (bank) ? flash_bank_size : 0;
2890 
2891 	for (j = 0; j < iteration ; j++) {
2892 		do {
2893 			/* Steps */
2894 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
2895 			if (ret_val)
2896 				return ret_val;
2897 
2898 			/*
2899 			 * Write a value 11 (block Erase) in Flash
2900 			 * Cycle field in hw flash control
2901 			 */
2902 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2903 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
2904 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2905 
2906 			/*
2907 			 * Write the last 24 bits of an index within the
2908 			 * block into Flash Linear address field in Flash
2909 			 * Address.
2910 			 */
2911 			flash_linear_addr += (j * sector_size);
2912 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2913 
2914 			ret_val = e1000_flash_cycle_ich8lan(hw,
2915 					       ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2916 			if (ret_val == 0)
2917 				break;
2918 
2919 			/*
2920 			 * Check if FCERR is set to 1.  If 1,
2921 			 * clear it and try the whole sequence
2922 			 * a few more times else Done
2923 			 */
2924 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2925 			if (hsfsts.hsf_status.flcerr == 1)
2926 				/* repeat for some time before giving up */
2927 				continue;
2928 			else if (hsfsts.hsf_status.flcdone == 0)
2929 				return ret_val;
2930 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2931 	}
2932 
2933 	return 0;
2934 }
2935 
2936 /**
2937  *  e1000_valid_led_default_ich8lan - Set the default LED settings
2938  *  @hw: pointer to the HW structure
2939  *  @data: Pointer to the LED settings
2940  *
2941  *  Reads the LED default settings from the NVM to data.  If the NVM LED
2942  *  settings is all 0's or F's, set the LED default to a valid LED default
2943  *  setting.
2944  **/
2945 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2946 {
2947 	s32 ret_val;
2948 
2949 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2950 	if (ret_val) {
2951 		e_dbg("NVM Read Error\n");
2952 		return ret_val;
2953 	}
2954 
2955 	if (*data == ID_LED_RESERVED_0000 ||
2956 	    *data == ID_LED_RESERVED_FFFF)
2957 		*data = ID_LED_DEFAULT_ICH8LAN;
2958 
2959 	return 0;
2960 }
2961 
2962 /**
2963  *  e1000_id_led_init_pchlan - store LED configurations
2964  *  @hw: pointer to the HW structure
2965  *
2966  *  PCH does not control LEDs via the LEDCTL register, rather it uses
2967  *  the PHY LED configuration register.
2968  *
2969  *  PCH also does not have an "always on" or "always off" mode which
2970  *  complicates the ID feature.  Instead of using the "on" mode to indicate
2971  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2972  *  use "link_up" mode.  The LEDs will still ID on request if there is no
2973  *  link based on logic in e1000_led_[on|off]_pchlan().
2974  **/
2975 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2976 {
2977 	struct e1000_mac_info *mac = &hw->mac;
2978 	s32 ret_val;
2979 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2980 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2981 	u16 data, i, temp, shift;
2982 
2983 	/* Get default ID LED modes */
2984 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2985 	if (ret_val)
2986 		goto out;
2987 
2988 	mac->ledctl_default = er32(LEDCTL);
2989 	mac->ledctl_mode1 = mac->ledctl_default;
2990 	mac->ledctl_mode2 = mac->ledctl_default;
2991 
2992 	for (i = 0; i < 4; i++) {
2993 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2994 		shift = (i * 5);
2995 		switch (temp) {
2996 		case ID_LED_ON1_DEF2:
2997 		case ID_LED_ON1_ON2:
2998 		case ID_LED_ON1_OFF2:
2999 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3000 			mac->ledctl_mode1 |= (ledctl_on << shift);
3001 			break;
3002 		case ID_LED_OFF1_DEF2:
3003 		case ID_LED_OFF1_ON2:
3004 		case ID_LED_OFF1_OFF2:
3005 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3006 			mac->ledctl_mode1 |= (ledctl_off << shift);
3007 			break;
3008 		default:
3009 			/* Do nothing */
3010 			break;
3011 		}
3012 		switch (temp) {
3013 		case ID_LED_DEF1_ON2:
3014 		case ID_LED_ON1_ON2:
3015 		case ID_LED_OFF1_ON2:
3016 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3017 			mac->ledctl_mode2 |= (ledctl_on << shift);
3018 			break;
3019 		case ID_LED_DEF1_OFF2:
3020 		case ID_LED_ON1_OFF2:
3021 		case ID_LED_OFF1_OFF2:
3022 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3023 			mac->ledctl_mode2 |= (ledctl_off << shift);
3024 			break;
3025 		default:
3026 			/* Do nothing */
3027 			break;
3028 		}
3029 	}
3030 
3031 out:
3032 	return ret_val;
3033 }
3034 
3035 /**
3036  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3037  *  @hw: pointer to the HW structure
3038  *
3039  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3040  *  register, so the the bus width is hard coded.
3041  **/
3042 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3043 {
3044 	struct e1000_bus_info *bus = &hw->bus;
3045 	s32 ret_val;
3046 
3047 	ret_val = e1000e_get_bus_info_pcie(hw);
3048 
3049 	/*
3050 	 * ICH devices are "PCI Express"-ish.  They have
3051 	 * a configuration space, but do not contain
3052 	 * PCI Express Capability registers, so bus width
3053 	 * must be hardcoded.
3054 	 */
3055 	if (bus->width == e1000_bus_width_unknown)
3056 		bus->width = e1000_bus_width_pcie_x1;
3057 
3058 	return ret_val;
3059 }
3060 
3061 /**
3062  *  e1000_reset_hw_ich8lan - Reset the hardware
3063  *  @hw: pointer to the HW structure
3064  *
3065  *  Does a full reset of the hardware which includes a reset of the PHY and
3066  *  MAC.
3067  **/
3068 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3069 {
3070 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3071 	u16 reg;
3072 	u32 ctrl, kab;
3073 	s32 ret_val;
3074 
3075 	/*
3076 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
3077 	 * on the last TLP read/write transaction when MAC is reset.
3078 	 */
3079 	ret_val = e1000e_disable_pcie_master(hw);
3080 	if (ret_val)
3081 		e_dbg("PCI-E Master disable polling has failed.\n");
3082 
3083 	e_dbg("Masking off all interrupts\n");
3084 	ew32(IMC, 0xffffffff);
3085 
3086 	/*
3087 	 * Disable the Transmit and Receive units.  Then delay to allow
3088 	 * any pending transactions to complete before we hit the MAC
3089 	 * with the global reset.
3090 	 */
3091 	ew32(RCTL, 0);
3092 	ew32(TCTL, E1000_TCTL_PSP);
3093 	e1e_flush();
3094 
3095 	usleep_range(10000, 20000);
3096 
3097 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
3098 	if (hw->mac.type == e1000_ich8lan) {
3099 		/* Set Tx and Rx buffer allocation to 8k apiece. */
3100 		ew32(PBA, E1000_PBA_8K);
3101 		/* Set Packet Buffer Size to 16k. */
3102 		ew32(PBS, E1000_PBS_16K);
3103 	}
3104 
3105 	if (hw->mac.type == e1000_pchlan) {
3106 		/* Save the NVM K1 bit setting*/
3107 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
3108 		if (ret_val)
3109 			return ret_val;
3110 
3111 		if (reg & E1000_NVM_K1_ENABLE)
3112 			dev_spec->nvm_k1_enabled = true;
3113 		else
3114 			dev_spec->nvm_k1_enabled = false;
3115 	}
3116 
3117 	ctrl = er32(CTRL);
3118 
3119 	if (!e1000_check_reset_block(hw)) {
3120 		/*
3121 		 * Full-chip reset requires MAC and PHY reset at the same
3122 		 * time to make sure the interface between MAC and the
3123 		 * external PHY is reset.
3124 		 */
3125 		ctrl |= E1000_CTRL_PHY_RST;
3126 
3127 		/*
3128 		 * Gate automatic PHY configuration by hardware on
3129 		 * non-managed 82579
3130 		 */
3131 		if ((hw->mac.type == e1000_pch2lan) &&
3132 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3133 			e1000_gate_hw_phy_config_ich8lan(hw, true);
3134 	}
3135 	ret_val = e1000_acquire_swflag_ich8lan(hw);
3136 	e_dbg("Issuing a global reset to ich8lan\n");
3137 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
3138 	/* cannot issue a flush here because it hangs the hardware */
3139 	msleep(20);
3140 
3141 	if (!ret_val)
3142 		mutex_unlock(&swflag_mutex);
3143 
3144 	if (ctrl & E1000_CTRL_PHY_RST) {
3145 		ret_val = hw->phy.ops.get_cfg_done(hw);
3146 		if (ret_val)
3147 			goto out;
3148 
3149 		ret_val = e1000_post_phy_reset_ich8lan(hw);
3150 		if (ret_val)
3151 			goto out;
3152 	}
3153 
3154 	/*
3155 	 * For PCH, this write will make sure that any noise
3156 	 * will be detected as a CRC error and be dropped rather than show up
3157 	 * as a bad packet to the DMA engine.
3158 	 */
3159 	if (hw->mac.type == e1000_pchlan)
3160 		ew32(CRC_OFFSET, 0x65656565);
3161 
3162 	ew32(IMC, 0xffffffff);
3163 	er32(ICR);
3164 
3165 	kab = er32(KABGTXD);
3166 	kab |= E1000_KABGTXD_BGSQLBIAS;
3167 	ew32(KABGTXD, kab);
3168 
3169 out:
3170 	return ret_val;
3171 }
3172 
3173 /**
3174  *  e1000_init_hw_ich8lan - Initialize the hardware
3175  *  @hw: pointer to the HW structure
3176  *
3177  *  Prepares the hardware for transmit and receive by doing the following:
3178  *   - initialize hardware bits
3179  *   - initialize LED identification
3180  *   - setup receive address registers
3181  *   - setup flow control
3182  *   - setup transmit descriptors
3183  *   - clear statistics
3184  **/
3185 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3186 {
3187 	struct e1000_mac_info *mac = &hw->mac;
3188 	u32 ctrl_ext, txdctl, snoop;
3189 	s32 ret_val;
3190 	u16 i;
3191 
3192 	e1000_initialize_hw_bits_ich8lan(hw);
3193 
3194 	/* Initialize identification LED */
3195 	ret_val = mac->ops.id_led_init(hw);
3196 	if (ret_val)
3197 		e_dbg("Error initializing identification LED\n");
3198 		/* This is not fatal and we should not stop init due to this */
3199 
3200 	/* Setup the receive address. */
3201 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3202 
3203 	/* Zero out the Multicast HASH table */
3204 	e_dbg("Zeroing the MTA\n");
3205 	for (i = 0; i < mac->mta_reg_count; i++)
3206 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3207 
3208 	/*
3209 	 * The 82578 Rx buffer will stall if wakeup is enabled in host and
3210 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
3211 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
3212 	 */
3213 	if (hw->phy.type == e1000_phy_82578) {
3214 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
3215 		i &= ~BM_WUC_HOST_WU_BIT;
3216 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
3217 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
3218 		if (ret_val)
3219 			return ret_val;
3220 	}
3221 
3222 	/* Setup link and flow control */
3223 	ret_val = e1000_setup_link_ich8lan(hw);
3224 
3225 	/* Set the transmit descriptor write-back policy for both queues */
3226 	txdctl = er32(TXDCTL(0));
3227 	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3228 		 E1000_TXDCTL_FULL_TX_DESC_WB;
3229 	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3230 		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3231 	ew32(TXDCTL(0), txdctl);
3232 	txdctl = er32(TXDCTL(1));
3233 	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3234 		 E1000_TXDCTL_FULL_TX_DESC_WB;
3235 	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3236 		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3237 	ew32(TXDCTL(1), txdctl);
3238 
3239 	/*
3240 	 * ICH8 has opposite polarity of no_snoop bits.
3241 	 * By default, we should use snoop behavior.
3242 	 */
3243 	if (mac->type == e1000_ich8lan)
3244 		snoop = PCIE_ICH8_SNOOP_ALL;
3245 	else
3246 		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
3247 	e1000e_set_pcie_no_snoop(hw, snoop);
3248 
3249 	ctrl_ext = er32(CTRL_EXT);
3250 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3251 	ew32(CTRL_EXT, ctrl_ext);
3252 
3253 	/*
3254 	 * Clear all of the statistics registers (clear on read).  It is
3255 	 * important that we do this after we have tried to establish link
3256 	 * because the symbol error count will increment wildly if there
3257 	 * is no link.
3258 	 */
3259 	e1000_clear_hw_cntrs_ich8lan(hw);
3260 
3261 	return 0;
3262 }
3263 /**
3264  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3265  *  @hw: pointer to the HW structure
3266  *
3267  *  Sets/Clears required hardware bits necessary for correctly setting up the
3268  *  hardware for transmit and receive.
3269  **/
3270 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3271 {
3272 	u32 reg;
3273 
3274 	/* Extended Device Control */
3275 	reg = er32(CTRL_EXT);
3276 	reg |= (1 << 22);
3277 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
3278 	if (hw->mac.type >= e1000_pchlan)
3279 		reg |= E1000_CTRL_EXT_PHYPDEN;
3280 	ew32(CTRL_EXT, reg);
3281 
3282 	/* Transmit Descriptor Control 0 */
3283 	reg = er32(TXDCTL(0));
3284 	reg |= (1 << 22);
3285 	ew32(TXDCTL(0), reg);
3286 
3287 	/* Transmit Descriptor Control 1 */
3288 	reg = er32(TXDCTL(1));
3289 	reg |= (1 << 22);
3290 	ew32(TXDCTL(1), reg);
3291 
3292 	/* Transmit Arbitration Control 0 */
3293 	reg = er32(TARC(0));
3294 	if (hw->mac.type == e1000_ich8lan)
3295 		reg |= (1 << 28) | (1 << 29);
3296 	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3297 	ew32(TARC(0), reg);
3298 
3299 	/* Transmit Arbitration Control 1 */
3300 	reg = er32(TARC(1));
3301 	if (er32(TCTL) & E1000_TCTL_MULR)
3302 		reg &= ~(1 << 28);
3303 	else
3304 		reg |= (1 << 28);
3305 	reg |= (1 << 24) | (1 << 26) | (1 << 30);
3306 	ew32(TARC(1), reg);
3307 
3308 	/* Device Status */
3309 	if (hw->mac.type == e1000_ich8lan) {
3310 		reg = er32(STATUS);
3311 		reg &= ~(1 << 31);
3312 		ew32(STATUS, reg);
3313 	}
3314 
3315 	/*
3316 	 * work-around descriptor data corruption issue during nfs v2 udp
3317 	 * traffic, just disable the nfs filtering capability
3318 	 */
3319 	reg = er32(RFCTL);
3320 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
3321 	ew32(RFCTL, reg);
3322 }
3323 
3324 /**
3325  *  e1000_setup_link_ich8lan - Setup flow control and link settings
3326  *  @hw: pointer to the HW structure
3327  *
3328  *  Determines which flow control settings to use, then configures flow
3329  *  control.  Calls the appropriate media-specific link configuration
3330  *  function.  Assuming the adapter has a valid link partner, a valid link
3331  *  should be established.  Assumes the hardware has previously been reset
3332  *  and the transmitter and receiver are not enabled.
3333  **/
3334 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3335 {
3336 	s32 ret_val;
3337 
3338 	if (e1000_check_reset_block(hw))
3339 		return 0;
3340 
3341 	/*
3342 	 * ICH parts do not have a word in the NVM to determine
3343 	 * the default flow control setting, so we explicitly
3344 	 * set it to full.
3345 	 */
3346 	if (hw->fc.requested_mode == e1000_fc_default) {
3347 		/* Workaround h/w hang when Tx flow control enabled */
3348 		if (hw->mac.type == e1000_pchlan)
3349 			hw->fc.requested_mode = e1000_fc_rx_pause;
3350 		else
3351 			hw->fc.requested_mode = e1000_fc_full;
3352 	}
3353 
3354 	/*
3355 	 * Save off the requested flow control mode for use later.  Depending
3356 	 * on the link partner's capabilities, we may or may not use this mode.
3357 	 */
3358 	hw->fc.current_mode = hw->fc.requested_mode;
3359 
3360 	e_dbg("After fix-ups FlowControl is now = %x\n",
3361 		hw->fc.current_mode);
3362 
3363 	/* Continue to configure the copper link. */
3364 	ret_val = e1000_setup_copper_link_ich8lan(hw);
3365 	if (ret_val)
3366 		return ret_val;
3367 
3368 	ew32(FCTTV, hw->fc.pause_time);
3369 	if ((hw->phy.type == e1000_phy_82578) ||
3370 	    (hw->phy.type == e1000_phy_82579) ||
3371 	    (hw->phy.type == e1000_phy_82577)) {
3372 		ew32(FCRTV_PCH, hw->fc.refresh_time);
3373 
3374 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
3375 				   hw->fc.pause_time);
3376 		if (ret_val)
3377 			return ret_val;
3378 	}
3379 
3380 	return e1000e_set_fc_watermarks(hw);
3381 }
3382 
3383 /**
3384  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3385  *  @hw: pointer to the HW structure
3386  *
3387  *  Configures the kumeran interface to the PHY to wait the appropriate time
3388  *  when polling the PHY, then call the generic setup_copper_link to finish
3389  *  configuring the copper link.
3390  **/
3391 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3392 {
3393 	u32 ctrl;
3394 	s32 ret_val;
3395 	u16 reg_data;
3396 
3397 	ctrl = er32(CTRL);
3398 	ctrl |= E1000_CTRL_SLU;
3399 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3400 	ew32(CTRL, ctrl);
3401 
3402 	/*
3403 	 * Set the mac to wait the maximum time between each iteration
3404 	 * and increase the max iterations when polling the phy;
3405 	 * this fixes erroneous timeouts at 10Mbps.
3406 	 */
3407 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3408 	if (ret_val)
3409 		return ret_val;
3410 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3411 	                               &reg_data);
3412 	if (ret_val)
3413 		return ret_val;
3414 	reg_data |= 0x3F;
3415 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3416 	                                reg_data);
3417 	if (ret_val)
3418 		return ret_val;
3419 
3420 	switch (hw->phy.type) {
3421 	case e1000_phy_igp_3:
3422 		ret_val = e1000e_copper_link_setup_igp(hw);
3423 		if (ret_val)
3424 			return ret_val;
3425 		break;
3426 	case e1000_phy_bm:
3427 	case e1000_phy_82578:
3428 		ret_val = e1000e_copper_link_setup_m88(hw);
3429 		if (ret_val)
3430 			return ret_val;
3431 		break;
3432 	case e1000_phy_82577:
3433 	case e1000_phy_82579:
3434 		ret_val = e1000_copper_link_setup_82577(hw);
3435 		if (ret_val)
3436 			return ret_val;
3437 		break;
3438 	case e1000_phy_ife:
3439 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
3440 		if (ret_val)
3441 			return ret_val;
3442 
3443 		reg_data &= ~IFE_PMC_AUTO_MDIX;
3444 
3445 		switch (hw->phy.mdix) {
3446 		case 1:
3447 			reg_data &= ~IFE_PMC_FORCE_MDIX;
3448 			break;
3449 		case 2:
3450 			reg_data |= IFE_PMC_FORCE_MDIX;
3451 			break;
3452 		case 0:
3453 		default:
3454 			reg_data |= IFE_PMC_AUTO_MDIX;
3455 			break;
3456 		}
3457 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
3458 		if (ret_val)
3459 			return ret_val;
3460 		break;
3461 	default:
3462 		break;
3463 	}
3464 	return e1000e_setup_copper_link(hw);
3465 }
3466 
3467 /**
3468  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3469  *  @hw: pointer to the HW structure
3470  *  @speed: pointer to store current link speed
3471  *  @duplex: pointer to store the current link duplex
3472  *
3473  *  Calls the generic get_speed_and_duplex to retrieve the current link
3474  *  information and then calls the Kumeran lock loss workaround for links at
3475  *  gigabit speeds.
3476  **/
3477 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3478 					  u16 *duplex)
3479 {
3480 	s32 ret_val;
3481 
3482 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3483 	if (ret_val)
3484 		return ret_val;
3485 
3486 	if ((hw->mac.type == e1000_ich8lan) &&
3487 	    (hw->phy.type == e1000_phy_igp_3) &&
3488 	    (*speed == SPEED_1000)) {
3489 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3490 	}
3491 
3492 	return ret_val;
3493 }
3494 
3495 /**
3496  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3497  *  @hw: pointer to the HW structure
3498  *
3499  *  Work-around for 82566 Kumeran PCS lock loss:
3500  *  On link status change (i.e. PCI reset, speed change) and link is up and
3501  *  speed is gigabit-
3502  *    0) if workaround is optionally disabled do nothing
3503  *    1) wait 1ms for Kumeran link to come up
3504  *    2) check Kumeran Diagnostic register PCS lock loss bit
3505  *    3) if not set the link is locked (all is good), otherwise...
3506  *    4) reset the PHY
3507  *    5) repeat up to 10 times
3508  *  Note: this is only called for IGP3 copper when speed is 1gb.
3509  **/
3510 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3511 {
3512 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3513 	u32 phy_ctrl;
3514 	s32 ret_val;
3515 	u16 i, data;
3516 	bool link;
3517 
3518 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3519 		return 0;
3520 
3521 	/*
3522 	 * Make sure link is up before proceeding.  If not just return.
3523 	 * Attempting this while link is negotiating fouled up link
3524 	 * stability
3525 	 */
3526 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3527 	if (!link)
3528 		return 0;
3529 
3530 	for (i = 0; i < 10; i++) {
3531 		/* read once to clear */
3532 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3533 		if (ret_val)
3534 			return ret_val;
3535 		/* and again to get new status */
3536 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3537 		if (ret_val)
3538 			return ret_val;
3539 
3540 		/* check for PCS lock */
3541 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3542 			return 0;
3543 
3544 		/* Issue PHY reset */
3545 		e1000_phy_hw_reset(hw);
3546 		mdelay(5);
3547 	}
3548 	/* Disable GigE link negotiation */
3549 	phy_ctrl = er32(PHY_CTRL);
3550 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3551 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3552 	ew32(PHY_CTRL, phy_ctrl);
3553 
3554 	/*
3555 	 * Call gig speed drop workaround on Gig disable before accessing
3556 	 * any PHY registers
3557 	 */
3558 	e1000e_gig_downshift_workaround_ich8lan(hw);
3559 
3560 	/* unable to acquire PCS lock */
3561 	return -E1000_ERR_PHY;
3562 }
3563 
3564 /**
3565  *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3566  *  @hw: pointer to the HW structure
3567  *  @state: boolean value used to set the current Kumeran workaround state
3568  *
3569  *  If ICH8, set the current Kumeran workaround state (enabled - true
3570  *  /disabled - false).
3571  **/
3572 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3573 						 bool state)
3574 {
3575 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3576 
3577 	if (hw->mac.type != e1000_ich8lan) {
3578 		e_dbg("Workaround applies to ICH8 only.\n");
3579 		return;
3580 	}
3581 
3582 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
3583 }
3584 
3585 /**
3586  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3587  *  @hw: pointer to the HW structure
3588  *
3589  *  Workaround for 82566 power-down on D3 entry:
3590  *    1) disable gigabit link
3591  *    2) write VR power-down enable
3592  *    3) read it back
3593  *  Continue if successful, else issue LCD reset and repeat
3594  **/
3595 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3596 {
3597 	u32 reg;
3598 	u16 data;
3599 	u8  retry = 0;
3600 
3601 	if (hw->phy.type != e1000_phy_igp_3)
3602 		return;
3603 
3604 	/* Try the workaround twice (if needed) */
3605 	do {
3606 		/* Disable link */
3607 		reg = er32(PHY_CTRL);
3608 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3609 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3610 		ew32(PHY_CTRL, reg);
3611 
3612 		/*
3613 		 * Call gig speed drop workaround on Gig disable before
3614 		 * accessing any PHY registers
3615 		 */
3616 		if (hw->mac.type == e1000_ich8lan)
3617 			e1000e_gig_downshift_workaround_ich8lan(hw);
3618 
3619 		/* Write VR power-down enable */
3620 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
3621 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3622 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3623 
3624 		/* Read it back and test */
3625 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
3626 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3627 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3628 			break;
3629 
3630 		/* Issue PHY reset and repeat at most one more time */
3631 		reg = er32(CTRL);
3632 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3633 		retry++;
3634 	} while (retry);
3635 }
3636 
3637 /**
3638  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3639  *  @hw: pointer to the HW structure
3640  *
3641  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3642  *  LPLU, Gig disable, MDIC PHY reset):
3643  *    1) Set Kumeran Near-end loopback
3644  *    2) Clear Kumeran Near-end loopback
3645  *  Should only be called for ICH8[m] devices with any 1G Phy.
3646  **/
3647 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3648 {
3649 	s32 ret_val;
3650 	u16 reg_data;
3651 
3652 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
3653 		return;
3654 
3655 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3656 				      &reg_data);
3657 	if (ret_val)
3658 		return;
3659 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3660 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3661 				       reg_data);
3662 	if (ret_val)
3663 		return;
3664 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3665 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3666 				       reg_data);
3667 }
3668 
3669 /**
3670  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
3671  *  @hw: pointer to the HW structure
3672  *
3673  *  During S0 to Sx transition, it is possible the link remains at gig
3674  *  instead of negotiating to a lower speed.  Before going to Sx, set
3675  *  'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
3676  *  to a lower speed.  For PCH and newer parts, the OEM bits PHY register
3677  *  (LED, GbE disable and LPLU configurations) also needs to be written.
3678  **/
3679 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
3680 {
3681 	u32 phy_ctrl;
3682 	s32 ret_val;
3683 
3684 	phy_ctrl = er32(PHY_CTRL);
3685 	phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU | E1000_PHY_CTRL_GBE_DISABLE;
3686 	ew32(PHY_CTRL, phy_ctrl);
3687 
3688 	if (hw->mac.type == e1000_ich8lan)
3689 		e1000e_gig_downshift_workaround_ich8lan(hw);
3690 
3691 	if (hw->mac.type >= e1000_pchlan) {
3692 		e1000_oem_bits_config_ich8lan(hw, false);
3693 		e1000_phy_hw_reset_ich8lan(hw);
3694 		ret_val = hw->phy.ops.acquire(hw);
3695 		if (ret_val)
3696 			return;
3697 		e1000_write_smbus_addr(hw);
3698 		hw->phy.ops.release(hw);
3699 	}
3700 }
3701 
3702 /**
3703  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
3704  *  @hw: pointer to the HW structure
3705  *
3706  *  During Sx to S0 transitions on non-managed devices or managed devices
3707  *  on which PHY resets are not blocked, if the PHY registers cannot be
3708  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
3709  *  the PHY.
3710  **/
3711 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
3712 {
3713 	u32 fwsm;
3714 
3715 	if (hw->mac.type != e1000_pch2lan)
3716 		return;
3717 
3718 	fwsm = er32(FWSM);
3719 	if (!(fwsm & E1000_ICH_FWSM_FW_VALID) || !e1000_check_reset_block(hw)) {
3720 		u16 phy_id1, phy_id2;
3721 		s32 ret_val;
3722 
3723 		ret_val = hw->phy.ops.acquire(hw);
3724 		if (ret_val) {
3725 			e_dbg("Failed to acquire PHY semaphore in resume\n");
3726 			return;
3727 		}
3728 
3729 		/* Test access to the PHY registers by reading the ID regs */
3730 		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_id1);
3731 		if (ret_val)
3732 			goto release;
3733 		ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_id2);
3734 		if (ret_val)
3735 			goto release;
3736 
3737 		if (hw->phy.id == ((u32)(phy_id1 << 16) |
3738 				   (u32)(phy_id2 & PHY_REVISION_MASK)))
3739 			goto release;
3740 
3741 		e1000_toggle_lanphypc_value_ich8lan(hw);
3742 
3743 		hw->phy.ops.release(hw);
3744 		msleep(50);
3745 		e1000_phy_hw_reset(hw);
3746 		msleep(50);
3747 		return;
3748 	}
3749 
3750 release:
3751 	hw->phy.ops.release(hw);
3752 
3753 	return;
3754 }
3755 
3756 /**
3757  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
3758  *  @hw: pointer to the HW structure
3759  *
3760  *  Return the LED back to the default configuration.
3761  **/
3762 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
3763 {
3764 	if (hw->phy.type == e1000_phy_ife)
3765 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
3766 
3767 	ew32(LEDCTL, hw->mac.ledctl_default);
3768 	return 0;
3769 }
3770 
3771 /**
3772  *  e1000_led_on_ich8lan - Turn LEDs on
3773  *  @hw: pointer to the HW structure
3774  *
3775  *  Turn on the LEDs.
3776  **/
3777 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
3778 {
3779 	if (hw->phy.type == e1000_phy_ife)
3780 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3781 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
3782 
3783 	ew32(LEDCTL, hw->mac.ledctl_mode2);
3784 	return 0;
3785 }
3786 
3787 /**
3788  *  e1000_led_off_ich8lan - Turn LEDs off
3789  *  @hw: pointer to the HW structure
3790  *
3791  *  Turn off the LEDs.
3792  **/
3793 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
3794 {
3795 	if (hw->phy.type == e1000_phy_ife)
3796 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3797 				(IFE_PSCL_PROBE_MODE |
3798 				 IFE_PSCL_PROBE_LEDS_OFF));
3799 
3800 	ew32(LEDCTL, hw->mac.ledctl_mode1);
3801 	return 0;
3802 }
3803 
3804 /**
3805  *  e1000_setup_led_pchlan - Configures SW controllable LED
3806  *  @hw: pointer to the HW structure
3807  *
3808  *  This prepares the SW controllable LED for use.
3809  **/
3810 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
3811 {
3812 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
3813 }
3814 
3815 /**
3816  *  e1000_cleanup_led_pchlan - Restore the default LED operation
3817  *  @hw: pointer to the HW structure
3818  *
3819  *  Return the LED back to the default configuration.
3820  **/
3821 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
3822 {
3823 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
3824 }
3825 
3826 /**
3827  *  e1000_led_on_pchlan - Turn LEDs on
3828  *  @hw: pointer to the HW structure
3829  *
3830  *  Turn on the LEDs.
3831  **/
3832 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
3833 {
3834 	u16 data = (u16)hw->mac.ledctl_mode2;
3835 	u32 i, led;
3836 
3837 	/*
3838 	 * If no link, then turn LED on by setting the invert bit
3839 	 * for each LED that's mode is "link_up" in ledctl_mode2.
3840 	 */
3841 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
3842 		for (i = 0; i < 3; i++) {
3843 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3844 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
3845 			    E1000_LEDCTL_MODE_LINK_UP)
3846 				continue;
3847 			if (led & E1000_PHY_LED0_IVRT)
3848 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3849 			else
3850 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
3851 		}
3852 	}
3853 
3854 	return e1e_wphy(hw, HV_LED_CONFIG, data);
3855 }
3856 
3857 /**
3858  *  e1000_led_off_pchlan - Turn LEDs off
3859  *  @hw: pointer to the HW structure
3860  *
3861  *  Turn off the LEDs.
3862  **/
3863 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
3864 {
3865 	u16 data = (u16)hw->mac.ledctl_mode1;
3866 	u32 i, led;
3867 
3868 	/*
3869 	 * If no link, then turn LED off by clearing the invert bit
3870 	 * for each LED that's mode is "link_up" in ledctl_mode1.
3871 	 */
3872 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
3873 		for (i = 0; i < 3; i++) {
3874 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3875 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
3876 			    E1000_LEDCTL_MODE_LINK_UP)
3877 				continue;
3878 			if (led & E1000_PHY_LED0_IVRT)
3879 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3880 			else
3881 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
3882 		}
3883 	}
3884 
3885 	return e1e_wphy(hw, HV_LED_CONFIG, data);
3886 }
3887 
3888 /**
3889  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
3890  *  @hw: pointer to the HW structure
3891  *
3892  *  Read appropriate register for the config done bit for completion status
3893  *  and configure the PHY through s/w for EEPROM-less parts.
3894  *
3895  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
3896  *  config done bit, so only an error is logged and continues.  If we were
3897  *  to return with error, EEPROM-less silicon would not be able to be reset
3898  *  or change link.
3899  **/
3900 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
3901 {
3902 	s32 ret_val = 0;
3903 	u32 bank = 0;
3904 	u32 status;
3905 
3906 	e1000e_get_cfg_done(hw);
3907 
3908 	/* Wait for indication from h/w that it has completed basic config */
3909 	if (hw->mac.type >= e1000_ich10lan) {
3910 		e1000_lan_init_done_ich8lan(hw);
3911 	} else {
3912 		ret_val = e1000e_get_auto_rd_done(hw);
3913 		if (ret_val) {
3914 			/*
3915 			 * When auto config read does not complete, do not
3916 			 * return with an error. This can happen in situations
3917 			 * where there is no eeprom and prevents getting link.
3918 			 */
3919 			e_dbg("Auto Read Done did not complete\n");
3920 			ret_val = 0;
3921 		}
3922 	}
3923 
3924 	/* Clear PHY Reset Asserted bit */
3925 	status = er32(STATUS);
3926 	if (status & E1000_STATUS_PHYRA)
3927 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
3928 	else
3929 		e_dbg("PHY Reset Asserted not set - needs delay\n");
3930 
3931 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
3932 	if (hw->mac.type <= e1000_ich9lan) {
3933 		if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
3934 		    (hw->phy.type == e1000_phy_igp_3)) {
3935 			e1000e_phy_init_script_igp3(hw);
3936 		}
3937 	} else {
3938 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
3939 			/* Maybe we should do a basic PHY config */
3940 			e_dbg("EEPROM not present\n");
3941 			ret_val = -E1000_ERR_CONFIG;
3942 		}
3943 	}
3944 
3945 	return ret_val;
3946 }
3947 
3948 /**
3949  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
3950  * @hw: pointer to the HW structure
3951  *
3952  * In the case of a PHY power down to save power, or to turn off link during a
3953  * driver unload, or wake on lan is not enabled, remove the link.
3954  **/
3955 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
3956 {
3957 	/* If the management interface is not enabled, then power down */
3958 	if (!(hw->mac.ops.check_mng_mode(hw) ||
3959 	      hw->phy.ops.check_reset_block(hw)))
3960 		e1000_power_down_phy_copper(hw);
3961 }
3962 
3963 /**
3964  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3965  *  @hw: pointer to the HW structure
3966  *
3967  *  Clears hardware counters specific to the silicon family and calls
3968  *  clear_hw_cntrs_generic to clear all general purpose counters.
3969  **/
3970 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
3971 {
3972 	u16 phy_data;
3973 	s32 ret_val;
3974 
3975 	e1000e_clear_hw_cntrs_base(hw);
3976 
3977 	er32(ALGNERRC);
3978 	er32(RXERRC);
3979 	er32(TNCRS);
3980 	er32(CEXTERR);
3981 	er32(TSCTC);
3982 	er32(TSCTFC);
3983 
3984 	er32(MGTPRC);
3985 	er32(MGTPDC);
3986 	er32(MGTPTC);
3987 
3988 	er32(IAC);
3989 	er32(ICRXOC);
3990 
3991 	/* Clear PHY statistics registers */
3992 	if ((hw->phy.type == e1000_phy_82578) ||
3993 	    (hw->phy.type == e1000_phy_82579) ||
3994 	    (hw->phy.type == e1000_phy_82577)) {
3995 		ret_val = hw->phy.ops.acquire(hw);
3996 		if (ret_val)
3997 			return;
3998 		ret_val = hw->phy.ops.set_page(hw,
3999 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4000 		if (ret_val)
4001 			goto release;
4002 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4003 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4004 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4005 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4006 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4007 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4008 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4009 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4010 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4011 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4012 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4013 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4014 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4015 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4016 release:
4017 		hw->phy.ops.release(hw);
4018 	}
4019 }
4020 
4021 static const struct e1000_mac_operations ich8_mac_ops = {
4022 	.id_led_init		= e1000e_id_led_init,
4023 	/* check_mng_mode dependent on mac type */
4024 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
4025 	/* cleanup_led dependent on mac type */
4026 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
4027 	.get_bus_info		= e1000_get_bus_info_ich8lan,
4028 	.set_lan_id		= e1000_set_lan_id_single_port,
4029 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
4030 	/* led_on dependent on mac type */
4031 	/* led_off dependent on mac type */
4032 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
4033 	.reset_hw		= e1000_reset_hw_ich8lan,
4034 	.init_hw		= e1000_init_hw_ich8lan,
4035 	.setup_link		= e1000_setup_link_ich8lan,
4036 	.setup_physical_interface= e1000_setup_copper_link_ich8lan,
4037 	/* id_led_init dependent on mac type */
4038 };
4039 
4040 static const struct e1000_phy_operations ich8_phy_ops = {
4041 	.acquire		= e1000_acquire_swflag_ich8lan,
4042 	.check_reset_block	= e1000_check_reset_block_ich8lan,
4043 	.commit			= NULL,
4044 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
4045 	.get_cable_length	= e1000e_get_cable_length_igp_2,
4046 	.read_reg		= e1000e_read_phy_reg_igp,
4047 	.release		= e1000_release_swflag_ich8lan,
4048 	.reset			= e1000_phy_hw_reset_ich8lan,
4049 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
4050 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
4051 	.write_reg		= e1000e_write_phy_reg_igp,
4052 };
4053 
4054 static const struct e1000_nvm_operations ich8_nvm_ops = {
4055 	.acquire		= e1000_acquire_nvm_ich8lan,
4056 	.read		 	= e1000_read_nvm_ich8lan,
4057 	.release		= e1000_release_nvm_ich8lan,
4058 	.update			= e1000_update_nvm_checksum_ich8lan,
4059 	.valid_led_default	= e1000_valid_led_default_ich8lan,
4060 	.validate		= e1000_validate_nvm_checksum_ich8lan,
4061 	.write			= e1000_write_nvm_ich8lan,
4062 };
4063 
4064 const struct e1000_info e1000_ich8_info = {
4065 	.mac			= e1000_ich8lan,
4066 	.flags			= FLAG_HAS_WOL
4067 				  | FLAG_IS_ICH
4068 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4069 				  | FLAG_HAS_AMT
4070 				  | FLAG_HAS_FLASH
4071 				  | FLAG_APME_IN_WUC,
4072 	.pba			= 8,
4073 	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
4074 	.get_variants		= e1000_get_variants_ich8lan,
4075 	.mac_ops		= &ich8_mac_ops,
4076 	.phy_ops		= &ich8_phy_ops,
4077 	.nvm_ops		= &ich8_nvm_ops,
4078 };
4079 
4080 const struct e1000_info e1000_ich9_info = {
4081 	.mac			= e1000_ich9lan,
4082 	.flags			= FLAG_HAS_JUMBO_FRAMES
4083 				  | FLAG_IS_ICH
4084 				  | FLAG_HAS_WOL
4085 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4086 				  | FLAG_HAS_AMT
4087 				  | FLAG_HAS_ERT
4088 				  | FLAG_HAS_FLASH
4089 				  | FLAG_APME_IN_WUC,
4090 	.pba			= 10,
4091 	.max_hw_frame_size	= DEFAULT_JUMBO,
4092 	.get_variants		= e1000_get_variants_ich8lan,
4093 	.mac_ops		= &ich8_mac_ops,
4094 	.phy_ops		= &ich8_phy_ops,
4095 	.nvm_ops		= &ich8_nvm_ops,
4096 };
4097 
4098 const struct e1000_info e1000_ich10_info = {
4099 	.mac			= e1000_ich10lan,
4100 	.flags			= FLAG_HAS_JUMBO_FRAMES
4101 				  | FLAG_IS_ICH
4102 				  | FLAG_HAS_WOL
4103 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4104 				  | FLAG_HAS_AMT
4105 				  | FLAG_HAS_ERT
4106 				  | FLAG_HAS_FLASH
4107 				  | FLAG_APME_IN_WUC,
4108 	.pba			= 10,
4109 	.max_hw_frame_size	= DEFAULT_JUMBO,
4110 	.get_variants		= e1000_get_variants_ich8lan,
4111 	.mac_ops		= &ich8_mac_ops,
4112 	.phy_ops		= &ich8_phy_ops,
4113 	.nvm_ops		= &ich8_nvm_ops,
4114 };
4115 
4116 const struct e1000_info e1000_pch_info = {
4117 	.mac			= e1000_pchlan,
4118 	.flags			= FLAG_IS_ICH
4119 				  | FLAG_HAS_WOL
4120 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4121 				  | FLAG_HAS_AMT
4122 				  | FLAG_HAS_FLASH
4123 				  | FLAG_HAS_JUMBO_FRAMES
4124 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
4125 				  | FLAG_APME_IN_WUC,
4126 	.flags2			= FLAG2_HAS_PHY_STATS,
4127 	.pba			= 26,
4128 	.max_hw_frame_size	= 4096,
4129 	.get_variants		= e1000_get_variants_ich8lan,
4130 	.mac_ops		= &ich8_mac_ops,
4131 	.phy_ops		= &ich8_phy_ops,
4132 	.nvm_ops		= &ich8_nvm_ops,
4133 };
4134 
4135 const struct e1000_info e1000_pch2_info = {
4136 	.mac			= e1000_pch2lan,
4137 	.flags			= FLAG_IS_ICH
4138 				  | FLAG_HAS_WOL
4139 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4140 				  | FLAG_HAS_AMT
4141 				  | FLAG_HAS_FLASH
4142 				  | FLAG_HAS_JUMBO_FRAMES
4143 				  | FLAG_APME_IN_WUC,
4144 	.flags2			= FLAG2_HAS_PHY_STATS
4145 				  | FLAG2_HAS_EEE,
4146 	.pba			= 26,
4147 	.max_hw_frame_size	= DEFAULT_JUMBO,
4148 	.get_variants		= e1000_get_variants_ich8lan,
4149 	.mac_ops		= &ich8_mac_ops,
4150 	.phy_ops		= &ich8_phy_ops,
4151 	.nvm_ops		= &ich8_nvm_ops,
4152 };
4153