1 /* Intel PRO/1000 Linux driver 2 * Copyright(c) 1999 - 2014 Intel Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * The full GNU General Public License is included in this distribution in 14 * the file called "COPYING". 15 * 16 * Contact Information: 17 * Linux NICS <linux.nics@intel.com> 18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 20 */ 21 22 /* 82562G 10/100 Network Connection 23 * 82562G-2 10/100 Network Connection 24 * 82562GT 10/100 Network Connection 25 * 82562GT-2 10/100 Network Connection 26 * 82562V 10/100 Network Connection 27 * 82562V-2 10/100 Network Connection 28 * 82566DC-2 Gigabit Network Connection 29 * 82566DC Gigabit Network Connection 30 * 82566DM-2 Gigabit Network Connection 31 * 82566DM Gigabit Network Connection 32 * 82566MC Gigabit Network Connection 33 * 82566MM Gigabit Network Connection 34 * 82567LM Gigabit Network Connection 35 * 82567LF Gigabit Network Connection 36 * 82567V Gigabit Network Connection 37 * 82567LM-2 Gigabit Network Connection 38 * 82567LF-2 Gigabit Network Connection 39 * 82567V-2 Gigabit Network Connection 40 * 82567LF-3 Gigabit Network Connection 41 * 82567LM-3 Gigabit Network Connection 42 * 82567LM-4 Gigabit Network Connection 43 * 82577LM Gigabit Network Connection 44 * 82577LC Gigabit Network Connection 45 * 82578DM Gigabit Network Connection 46 * 82578DC Gigabit Network Connection 47 * 82579LM Gigabit Network Connection 48 * 82579V Gigabit Network Connection 49 * Ethernet Connection I217-LM 50 * Ethernet Connection I217-V 51 * Ethernet Connection I218-V 52 * Ethernet Connection I218-LM 53 * Ethernet Connection (2) I218-LM 54 * Ethernet Connection (2) I218-V 55 * Ethernet Connection (3) I218-LM 56 * Ethernet Connection (3) I218-V 57 */ 58 59 #include "e1000.h" 60 61 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */ 62 /* Offset 04h HSFSTS */ 63 union ich8_hws_flash_status { 64 struct ich8_hsfsts { 65 u16 flcdone:1; /* bit 0 Flash Cycle Done */ 66 u16 flcerr:1; /* bit 1 Flash Cycle Error */ 67 u16 dael:1; /* bit 2 Direct Access error Log */ 68 u16 berasesz:2; /* bit 4:3 Sector Erase Size */ 69 u16 flcinprog:1; /* bit 5 flash cycle in Progress */ 70 u16 reserved1:2; /* bit 13:6 Reserved */ 71 u16 reserved2:6; /* bit 13:6 Reserved */ 72 u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */ 73 u16 flockdn:1; /* bit 15 Flash Config Lock-Down */ 74 } hsf_status; 75 u16 regval; 76 }; 77 78 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */ 79 /* Offset 06h FLCTL */ 80 union ich8_hws_flash_ctrl { 81 struct ich8_hsflctl { 82 u16 flcgo:1; /* 0 Flash Cycle Go */ 83 u16 flcycle:2; /* 2:1 Flash Cycle */ 84 u16 reserved:5; /* 7:3 Reserved */ 85 u16 fldbcount:2; /* 9:8 Flash Data Byte Count */ 86 u16 flockdn:6; /* 15:10 Reserved */ 87 } hsf_ctrl; 88 u16 regval; 89 }; 90 91 /* ICH Flash Region Access Permissions */ 92 union ich8_hws_flash_regacc { 93 struct ich8_flracc { 94 u32 grra:8; /* 0:7 GbE region Read Access */ 95 u32 grwa:8; /* 8:15 GbE region Write Access */ 96 u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */ 97 u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */ 98 } hsf_flregacc; 99 u16 regval; 100 }; 101 102 /* ICH Flash Protected Region */ 103 union ich8_flash_protected_range { 104 struct ich8_pr { 105 u32 base:13; /* 0:12 Protected Range Base */ 106 u32 reserved1:2; /* 13:14 Reserved */ 107 u32 rpe:1; /* 15 Read Protection Enable */ 108 u32 limit:13; /* 16:28 Protected Range Limit */ 109 u32 reserved2:2; /* 29:30 Reserved */ 110 u32 wpe:1; /* 31 Write Protection Enable */ 111 } range; 112 u32 regval; 113 }; 114 115 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw); 116 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw); 117 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank); 118 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, 119 u32 offset, u8 byte); 120 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, 121 u8 *data); 122 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, 123 u16 *data); 124 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 125 u8 size, u16 *data); 126 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw); 127 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw); 128 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw); 129 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw); 130 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw); 131 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw); 132 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw); 133 static s32 e1000_led_on_pchlan(struct e1000_hw *hw); 134 static s32 e1000_led_off_pchlan(struct e1000_hw *hw); 135 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active); 136 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw); 137 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw); 138 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link); 139 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw); 140 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw); 141 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw); 142 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index); 143 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index); 144 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw); 145 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw); 146 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate); 147 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force); 148 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw); 149 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state); 150 151 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg) 152 { 153 return readw(hw->flash_address + reg); 154 } 155 156 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg) 157 { 158 return readl(hw->flash_address + reg); 159 } 160 161 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val) 162 { 163 writew(val, hw->flash_address + reg); 164 } 165 166 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val) 167 { 168 writel(val, hw->flash_address + reg); 169 } 170 171 #define er16flash(reg) __er16flash(hw, (reg)) 172 #define er32flash(reg) __er32flash(hw, (reg)) 173 #define ew16flash(reg, val) __ew16flash(hw, (reg), (val)) 174 #define ew32flash(reg, val) __ew32flash(hw, (reg), (val)) 175 176 /** 177 * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers 178 * @hw: pointer to the HW structure 179 * 180 * Test access to the PHY registers by reading the PHY ID registers. If 181 * the PHY ID is already known (e.g. resume path) compare it with known ID, 182 * otherwise assume the read PHY ID is correct if it is valid. 183 * 184 * Assumes the sw/fw/hw semaphore is already acquired. 185 **/ 186 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw) 187 { 188 u16 phy_reg = 0; 189 u32 phy_id = 0; 190 s32 ret_val = 0; 191 u16 retry_count; 192 u32 mac_reg = 0; 193 194 for (retry_count = 0; retry_count < 2; retry_count++) { 195 ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg); 196 if (ret_val || (phy_reg == 0xFFFF)) 197 continue; 198 phy_id = (u32)(phy_reg << 16); 199 200 ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg); 201 if (ret_val || (phy_reg == 0xFFFF)) { 202 phy_id = 0; 203 continue; 204 } 205 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK); 206 break; 207 } 208 209 if (hw->phy.id) { 210 if (hw->phy.id == phy_id) 211 goto out; 212 } else if (phy_id) { 213 hw->phy.id = phy_id; 214 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK); 215 goto out; 216 } 217 218 /* In case the PHY needs to be in mdio slow mode, 219 * set slow mode and try to get the PHY id again. 220 */ 221 if (hw->mac.type < e1000_pch_lpt) { 222 hw->phy.ops.release(hw); 223 ret_val = e1000_set_mdio_slow_mode_hv(hw); 224 if (!ret_val) 225 ret_val = e1000e_get_phy_id(hw); 226 hw->phy.ops.acquire(hw); 227 } 228 229 if (ret_val) 230 return false; 231 out: 232 if (hw->mac.type == e1000_pch_lpt) { 233 /* Unforce SMBus mode in PHY */ 234 e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg); 235 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS; 236 e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg); 237 238 /* Unforce SMBus mode in MAC */ 239 mac_reg = er32(CTRL_EXT); 240 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; 241 ew32(CTRL_EXT, mac_reg); 242 } 243 244 return true; 245 } 246 247 /** 248 * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value 249 * @hw: pointer to the HW structure 250 * 251 * Toggling the LANPHYPC pin value fully power-cycles the PHY and is 252 * used to reset the PHY to a quiescent state when necessary. 253 **/ 254 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw) 255 { 256 u32 mac_reg; 257 258 /* Set Phy Config Counter to 50msec */ 259 mac_reg = er32(FEXTNVM3); 260 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; 261 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; 262 ew32(FEXTNVM3, mac_reg); 263 264 /* Toggle LANPHYPC Value bit */ 265 mac_reg = er32(CTRL); 266 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE; 267 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE; 268 ew32(CTRL, mac_reg); 269 e1e_flush(); 270 usleep_range(10, 20); 271 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE; 272 ew32(CTRL, mac_reg); 273 e1e_flush(); 274 275 if (hw->mac.type < e1000_pch_lpt) { 276 msleep(50); 277 } else { 278 u16 count = 20; 279 280 do { 281 usleep_range(5000, 10000); 282 } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--); 283 284 msleep(30); 285 } 286 } 287 288 /** 289 * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds 290 * @hw: pointer to the HW structure 291 * 292 * Workarounds/flow necessary for PHY initialization during driver load 293 * and resume paths. 294 **/ 295 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw) 296 { 297 struct e1000_adapter *adapter = hw->adapter; 298 u32 mac_reg, fwsm = er32(FWSM); 299 s32 ret_val; 300 301 /* Gate automatic PHY configuration by hardware on managed and 302 * non-managed 82579 and newer adapters. 303 */ 304 e1000_gate_hw_phy_config_ich8lan(hw, true); 305 306 /* It is not possible to be certain of the current state of ULP 307 * so forcibly disable it. 308 */ 309 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown; 310 e1000_disable_ulp_lpt_lp(hw, true); 311 312 ret_val = hw->phy.ops.acquire(hw); 313 if (ret_val) { 314 e_dbg("Failed to initialize PHY flow\n"); 315 goto out; 316 } 317 318 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is 319 * inaccessible and resetting the PHY is not blocked, toggle the 320 * LANPHYPC Value bit to force the interconnect to PCIe mode. 321 */ 322 switch (hw->mac.type) { 323 case e1000_pch_lpt: 324 if (e1000_phy_is_accessible_pchlan(hw)) 325 break; 326 327 /* Before toggling LANPHYPC, see if PHY is accessible by 328 * forcing MAC to SMBus mode first. 329 */ 330 mac_reg = er32(CTRL_EXT); 331 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; 332 ew32(CTRL_EXT, mac_reg); 333 334 /* Wait 50 milliseconds for MAC to finish any retries 335 * that it might be trying to perform from previous 336 * attempts to acknowledge any phy read requests. 337 */ 338 msleep(50); 339 340 /* fall-through */ 341 case e1000_pch2lan: 342 if (e1000_phy_is_accessible_pchlan(hw)) 343 break; 344 345 /* fall-through */ 346 case e1000_pchlan: 347 if ((hw->mac.type == e1000_pchlan) && 348 (fwsm & E1000_ICH_FWSM_FW_VALID)) 349 break; 350 351 if (hw->phy.ops.check_reset_block(hw)) { 352 e_dbg("Required LANPHYPC toggle blocked by ME\n"); 353 ret_val = -E1000_ERR_PHY; 354 break; 355 } 356 357 /* Toggle LANPHYPC Value bit */ 358 e1000_toggle_lanphypc_pch_lpt(hw); 359 if (hw->mac.type >= e1000_pch_lpt) { 360 if (e1000_phy_is_accessible_pchlan(hw)) 361 break; 362 363 /* Toggling LANPHYPC brings the PHY out of SMBus mode 364 * so ensure that the MAC is also out of SMBus mode 365 */ 366 mac_reg = er32(CTRL_EXT); 367 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; 368 ew32(CTRL_EXT, mac_reg); 369 370 if (e1000_phy_is_accessible_pchlan(hw)) 371 break; 372 373 ret_val = -E1000_ERR_PHY; 374 } 375 break; 376 default: 377 break; 378 } 379 380 hw->phy.ops.release(hw); 381 if (!ret_val) { 382 383 /* Check to see if able to reset PHY. Print error if not */ 384 if (hw->phy.ops.check_reset_block(hw)) { 385 e_err("Reset blocked by ME\n"); 386 goto out; 387 } 388 389 /* Reset the PHY before any access to it. Doing so, ensures 390 * that the PHY is in a known good state before we read/write 391 * PHY registers. The generic reset is sufficient here, 392 * because we haven't determined the PHY type yet. 393 */ 394 ret_val = e1000e_phy_hw_reset_generic(hw); 395 if (ret_val) 396 goto out; 397 398 /* On a successful reset, possibly need to wait for the PHY 399 * to quiesce to an accessible state before returning control 400 * to the calling function. If the PHY does not quiesce, then 401 * return E1000E_BLK_PHY_RESET, as this is the condition that 402 * the PHY is in. 403 */ 404 ret_val = hw->phy.ops.check_reset_block(hw); 405 if (ret_val) 406 e_err("ME blocked access to PHY after reset\n"); 407 } 408 409 out: 410 /* Ungate automatic PHY configuration on non-managed 82579 */ 411 if ((hw->mac.type == e1000_pch2lan) && 412 !(fwsm & E1000_ICH_FWSM_FW_VALID)) { 413 usleep_range(10000, 20000); 414 e1000_gate_hw_phy_config_ich8lan(hw, false); 415 } 416 417 return ret_val; 418 } 419 420 /** 421 * e1000_init_phy_params_pchlan - Initialize PHY function pointers 422 * @hw: pointer to the HW structure 423 * 424 * Initialize family-specific PHY parameters and function pointers. 425 **/ 426 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw) 427 { 428 struct e1000_phy_info *phy = &hw->phy; 429 s32 ret_val; 430 431 phy->addr = 1; 432 phy->reset_delay_us = 100; 433 434 phy->ops.set_page = e1000_set_page_igp; 435 phy->ops.read_reg = e1000_read_phy_reg_hv; 436 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked; 437 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv; 438 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan; 439 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan; 440 phy->ops.write_reg = e1000_write_phy_reg_hv; 441 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked; 442 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv; 443 phy->ops.power_up = e1000_power_up_phy_copper; 444 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; 445 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 446 447 phy->id = e1000_phy_unknown; 448 449 ret_val = e1000_init_phy_workarounds_pchlan(hw); 450 if (ret_val) 451 return ret_val; 452 453 if (phy->id == e1000_phy_unknown) 454 switch (hw->mac.type) { 455 default: 456 ret_val = e1000e_get_phy_id(hw); 457 if (ret_val) 458 return ret_val; 459 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK)) 460 break; 461 /* fall-through */ 462 case e1000_pch2lan: 463 case e1000_pch_lpt: 464 /* In case the PHY needs to be in mdio slow mode, 465 * set slow mode and try to get the PHY id again. 466 */ 467 ret_val = e1000_set_mdio_slow_mode_hv(hw); 468 if (ret_val) 469 return ret_val; 470 ret_val = e1000e_get_phy_id(hw); 471 if (ret_val) 472 return ret_val; 473 break; 474 } 475 phy->type = e1000e_get_phy_type_from_id(phy->id); 476 477 switch (phy->type) { 478 case e1000_phy_82577: 479 case e1000_phy_82579: 480 case e1000_phy_i217: 481 phy->ops.check_polarity = e1000_check_polarity_82577; 482 phy->ops.force_speed_duplex = 483 e1000_phy_force_speed_duplex_82577; 484 phy->ops.get_cable_length = e1000_get_cable_length_82577; 485 phy->ops.get_info = e1000_get_phy_info_82577; 486 phy->ops.commit = e1000e_phy_sw_reset; 487 break; 488 case e1000_phy_82578: 489 phy->ops.check_polarity = e1000_check_polarity_m88; 490 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; 491 phy->ops.get_cable_length = e1000e_get_cable_length_m88; 492 phy->ops.get_info = e1000e_get_phy_info_m88; 493 break; 494 default: 495 ret_val = -E1000_ERR_PHY; 496 break; 497 } 498 499 return ret_val; 500 } 501 502 /** 503 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers 504 * @hw: pointer to the HW structure 505 * 506 * Initialize family-specific PHY parameters and function pointers. 507 **/ 508 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw) 509 { 510 struct e1000_phy_info *phy = &hw->phy; 511 s32 ret_val; 512 u16 i = 0; 513 514 phy->addr = 1; 515 phy->reset_delay_us = 100; 516 517 phy->ops.power_up = e1000_power_up_phy_copper; 518 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; 519 520 /* We may need to do this twice - once for IGP and if that fails, 521 * we'll set BM func pointers and try again 522 */ 523 ret_val = e1000e_determine_phy_address(hw); 524 if (ret_val) { 525 phy->ops.write_reg = e1000e_write_phy_reg_bm; 526 phy->ops.read_reg = e1000e_read_phy_reg_bm; 527 ret_val = e1000e_determine_phy_address(hw); 528 if (ret_val) { 529 e_dbg("Cannot determine PHY addr. Erroring out\n"); 530 return ret_val; 531 } 532 } 533 534 phy->id = 0; 535 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) && 536 (i++ < 100)) { 537 usleep_range(1000, 2000); 538 ret_val = e1000e_get_phy_id(hw); 539 if (ret_val) 540 return ret_val; 541 } 542 543 /* Verify phy id */ 544 switch (phy->id) { 545 case IGP03E1000_E_PHY_ID: 546 phy->type = e1000_phy_igp_3; 547 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 548 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked; 549 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked; 550 phy->ops.get_info = e1000e_get_phy_info_igp; 551 phy->ops.check_polarity = e1000_check_polarity_igp; 552 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp; 553 break; 554 case IFE_E_PHY_ID: 555 case IFE_PLUS_E_PHY_ID: 556 case IFE_C_E_PHY_ID: 557 phy->type = e1000_phy_ife; 558 phy->autoneg_mask = E1000_ALL_NOT_GIG; 559 phy->ops.get_info = e1000_get_phy_info_ife; 560 phy->ops.check_polarity = e1000_check_polarity_ife; 561 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife; 562 break; 563 case BME1000_E_PHY_ID: 564 phy->type = e1000_phy_bm; 565 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 566 phy->ops.read_reg = e1000e_read_phy_reg_bm; 567 phy->ops.write_reg = e1000e_write_phy_reg_bm; 568 phy->ops.commit = e1000e_phy_sw_reset; 569 phy->ops.get_info = e1000e_get_phy_info_m88; 570 phy->ops.check_polarity = e1000_check_polarity_m88; 571 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; 572 break; 573 default: 574 return -E1000_ERR_PHY; 575 } 576 577 return 0; 578 } 579 580 /** 581 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers 582 * @hw: pointer to the HW structure 583 * 584 * Initialize family-specific NVM parameters and function 585 * pointers. 586 **/ 587 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw) 588 { 589 struct e1000_nvm_info *nvm = &hw->nvm; 590 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 591 u32 gfpreg, sector_base_addr, sector_end_addr; 592 u16 i; 593 594 /* Can't read flash registers if the register set isn't mapped. */ 595 if (!hw->flash_address) { 596 e_dbg("ERROR: Flash registers not mapped\n"); 597 return -E1000_ERR_CONFIG; 598 } 599 600 nvm->type = e1000_nvm_flash_sw; 601 602 gfpreg = er32flash(ICH_FLASH_GFPREG); 603 604 /* sector_X_addr is a "sector"-aligned address (4096 bytes) 605 * Add 1 to sector_end_addr since this sector is included in 606 * the overall size. 607 */ 608 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK; 609 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1; 610 611 /* flash_base_addr is byte-aligned */ 612 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT; 613 614 /* find total size of the NVM, then cut in half since the total 615 * size represents two separate NVM banks. 616 */ 617 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr) 618 << FLASH_SECTOR_ADDR_SHIFT); 619 nvm->flash_bank_size /= 2; 620 /* Adjust to word count */ 621 nvm->flash_bank_size /= sizeof(u16); 622 623 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS; 624 625 /* Clear shadow ram */ 626 for (i = 0; i < nvm->word_size; i++) { 627 dev_spec->shadow_ram[i].modified = false; 628 dev_spec->shadow_ram[i].value = 0xFFFF; 629 } 630 631 return 0; 632 } 633 634 /** 635 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers 636 * @hw: pointer to the HW structure 637 * 638 * Initialize family-specific MAC parameters and function 639 * pointers. 640 **/ 641 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw) 642 { 643 struct e1000_mac_info *mac = &hw->mac; 644 645 /* Set media type function pointer */ 646 hw->phy.media_type = e1000_media_type_copper; 647 648 /* Set mta register count */ 649 mac->mta_reg_count = 32; 650 /* Set rar entry count */ 651 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES; 652 if (mac->type == e1000_ich8lan) 653 mac->rar_entry_count--; 654 /* FWSM register */ 655 mac->has_fwsm = true; 656 /* ARC subsystem not supported */ 657 mac->arc_subsystem_valid = false; 658 /* Adaptive IFS supported */ 659 mac->adaptive_ifs = true; 660 661 /* LED and other operations */ 662 switch (mac->type) { 663 case e1000_ich8lan: 664 case e1000_ich9lan: 665 case e1000_ich10lan: 666 /* check management mode */ 667 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan; 668 /* ID LED init */ 669 mac->ops.id_led_init = e1000e_id_led_init_generic; 670 /* blink LED */ 671 mac->ops.blink_led = e1000e_blink_led_generic; 672 /* setup LED */ 673 mac->ops.setup_led = e1000e_setup_led_generic; 674 /* cleanup LED */ 675 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan; 676 /* turn on/off LED */ 677 mac->ops.led_on = e1000_led_on_ich8lan; 678 mac->ops.led_off = e1000_led_off_ich8lan; 679 break; 680 case e1000_pch2lan: 681 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES; 682 mac->ops.rar_set = e1000_rar_set_pch2lan; 683 /* fall-through */ 684 case e1000_pch_lpt: 685 case e1000_pchlan: 686 /* check management mode */ 687 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan; 688 /* ID LED init */ 689 mac->ops.id_led_init = e1000_id_led_init_pchlan; 690 /* setup LED */ 691 mac->ops.setup_led = e1000_setup_led_pchlan; 692 /* cleanup LED */ 693 mac->ops.cleanup_led = e1000_cleanup_led_pchlan; 694 /* turn on/off LED */ 695 mac->ops.led_on = e1000_led_on_pchlan; 696 mac->ops.led_off = e1000_led_off_pchlan; 697 break; 698 default: 699 break; 700 } 701 702 if (mac->type == e1000_pch_lpt) { 703 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES; 704 mac->ops.rar_set = e1000_rar_set_pch_lpt; 705 mac->ops.setup_physical_interface = 706 e1000_setup_copper_link_pch_lpt; 707 mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt; 708 } 709 710 /* Enable PCS Lock-loss workaround for ICH8 */ 711 if (mac->type == e1000_ich8lan) 712 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true); 713 714 return 0; 715 } 716 717 /** 718 * __e1000_access_emi_reg_locked - Read/write EMI register 719 * @hw: pointer to the HW structure 720 * @addr: EMI address to program 721 * @data: pointer to value to read/write from/to the EMI address 722 * @read: boolean flag to indicate read or write 723 * 724 * This helper function assumes the SW/FW/HW Semaphore is already acquired. 725 **/ 726 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address, 727 u16 *data, bool read) 728 { 729 s32 ret_val; 730 731 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address); 732 if (ret_val) 733 return ret_val; 734 735 if (read) 736 ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data); 737 else 738 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data); 739 740 return ret_val; 741 } 742 743 /** 744 * e1000_read_emi_reg_locked - Read Extended Management Interface register 745 * @hw: pointer to the HW structure 746 * @addr: EMI address to program 747 * @data: value to be read from the EMI address 748 * 749 * Assumes the SW/FW/HW Semaphore is already acquired. 750 **/ 751 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data) 752 { 753 return __e1000_access_emi_reg_locked(hw, addr, data, true); 754 } 755 756 /** 757 * e1000_write_emi_reg_locked - Write Extended Management Interface register 758 * @hw: pointer to the HW structure 759 * @addr: EMI address to program 760 * @data: value to be written to the EMI address 761 * 762 * Assumes the SW/FW/HW Semaphore is already acquired. 763 **/ 764 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data) 765 { 766 return __e1000_access_emi_reg_locked(hw, addr, &data, false); 767 } 768 769 /** 770 * e1000_set_eee_pchlan - Enable/disable EEE support 771 * @hw: pointer to the HW structure 772 * 773 * Enable/disable EEE based on setting in dev_spec structure, the duplex of 774 * the link and the EEE capabilities of the link partner. The LPI Control 775 * register bits will remain set only if/when link is up. 776 * 777 * EEE LPI must not be asserted earlier than one second after link is up. 778 * On 82579, EEE LPI should not be enabled until such time otherwise there 779 * can be link issues with some switches. Other devices can have EEE LPI 780 * enabled immediately upon link up since they have a timer in hardware which 781 * prevents LPI from being asserted too early. 782 **/ 783 s32 e1000_set_eee_pchlan(struct e1000_hw *hw) 784 { 785 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 786 s32 ret_val; 787 u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data; 788 789 switch (hw->phy.type) { 790 case e1000_phy_82579: 791 lpa = I82579_EEE_LP_ABILITY; 792 pcs_status = I82579_EEE_PCS_STATUS; 793 adv_addr = I82579_EEE_ADVERTISEMENT; 794 break; 795 case e1000_phy_i217: 796 lpa = I217_EEE_LP_ABILITY; 797 pcs_status = I217_EEE_PCS_STATUS; 798 adv_addr = I217_EEE_ADVERTISEMENT; 799 break; 800 default: 801 return 0; 802 } 803 804 ret_val = hw->phy.ops.acquire(hw); 805 if (ret_val) 806 return ret_val; 807 808 ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl); 809 if (ret_val) 810 goto release; 811 812 /* Clear bits that enable EEE in various speeds */ 813 lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK; 814 815 /* Enable EEE if not disabled by user */ 816 if (!dev_spec->eee_disable) { 817 /* Save off link partner's EEE ability */ 818 ret_val = e1000_read_emi_reg_locked(hw, lpa, 819 &dev_spec->eee_lp_ability); 820 if (ret_val) 821 goto release; 822 823 /* Read EEE advertisement */ 824 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv); 825 if (ret_val) 826 goto release; 827 828 /* Enable EEE only for speeds in which the link partner is 829 * EEE capable and for which we advertise EEE. 830 */ 831 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED) 832 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE; 833 834 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) { 835 e1e_rphy_locked(hw, MII_LPA, &data); 836 if (data & LPA_100FULL) 837 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE; 838 else 839 /* EEE is not supported in 100Half, so ignore 840 * partner's EEE in 100 ability if full-duplex 841 * is not advertised. 842 */ 843 dev_spec->eee_lp_ability &= 844 ~I82579_EEE_100_SUPPORTED; 845 } 846 } 847 848 if (hw->phy.type == e1000_phy_82579) { 849 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT, 850 &data); 851 if (ret_val) 852 goto release; 853 854 data &= ~I82579_LPI_100_PLL_SHUT; 855 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT, 856 data); 857 } 858 859 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */ 860 ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data); 861 if (ret_val) 862 goto release; 863 864 ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl); 865 release: 866 hw->phy.ops.release(hw); 867 868 return ret_val; 869 } 870 871 /** 872 * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP 873 * @hw: pointer to the HW structure 874 * @link: link up bool flag 875 * 876 * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications 877 * preventing further DMA write requests. Workaround the issue by disabling 878 * the de-assertion of the clock request when in 1Gpbs mode. 879 * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link 880 * speeds in order to avoid Tx hangs. 881 **/ 882 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link) 883 { 884 u32 fextnvm6 = er32(FEXTNVM6); 885 u32 status = er32(STATUS); 886 s32 ret_val = 0; 887 u16 reg; 888 889 if (link && (status & E1000_STATUS_SPEED_1000)) { 890 ret_val = hw->phy.ops.acquire(hw); 891 if (ret_val) 892 return ret_val; 893 894 ret_val = 895 e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, 896 ®); 897 if (ret_val) 898 goto release; 899 900 ret_val = 901 e1000e_write_kmrn_reg_locked(hw, 902 E1000_KMRNCTRLSTA_K1_CONFIG, 903 reg & 904 ~E1000_KMRNCTRLSTA_K1_ENABLE); 905 if (ret_val) 906 goto release; 907 908 usleep_range(10, 20); 909 910 ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK); 911 912 ret_val = 913 e1000e_write_kmrn_reg_locked(hw, 914 E1000_KMRNCTRLSTA_K1_CONFIG, 915 reg); 916 release: 917 hw->phy.ops.release(hw); 918 } else { 919 /* clear FEXTNVM6 bit 8 on link down or 10/100 */ 920 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK; 921 922 if (!link || ((status & E1000_STATUS_SPEED_100) && 923 (status & E1000_STATUS_FD))) 924 goto update_fextnvm6; 925 926 ret_val = e1e_rphy(hw, I217_INBAND_CTRL, ®); 927 if (ret_val) 928 return ret_val; 929 930 /* Clear link status transmit timeout */ 931 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK; 932 933 if (status & E1000_STATUS_SPEED_100) { 934 /* Set inband Tx timeout to 5x10us for 100Half */ 935 reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT; 936 937 /* Do not extend the K1 entry latency for 100Half */ 938 fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION; 939 } else { 940 /* Set inband Tx timeout to 50x10us for 10Full/Half */ 941 reg |= 50 << 942 I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT; 943 944 /* Extend the K1 entry latency for 10 Mbps */ 945 fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION; 946 } 947 948 ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg); 949 if (ret_val) 950 return ret_val; 951 952 update_fextnvm6: 953 ew32(FEXTNVM6, fextnvm6); 954 } 955 956 return ret_val; 957 } 958 959 /** 960 * e1000_platform_pm_pch_lpt - Set platform power management values 961 * @hw: pointer to the HW structure 962 * @link: bool indicating link status 963 * 964 * Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like" 965 * GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed 966 * when link is up (which must not exceed the maximum latency supported 967 * by the platform), otherwise specify there is no LTR requirement. 968 * Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop 969 * latencies in the LTR Extended Capability Structure in the PCIe Extended 970 * Capability register set, on this device LTR is set by writing the 971 * equivalent snoop/no-snoop latencies in the LTRV register in the MAC and 972 * set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB) 973 * message to the PMC. 974 **/ 975 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link) 976 { 977 u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) | 978 link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND; 979 u16 lat_enc = 0; /* latency encoded */ 980 981 if (link) { 982 u16 speed, duplex, scale = 0; 983 u16 max_snoop, max_nosnoop; 984 u16 max_ltr_enc; /* max LTR latency encoded */ 985 s64 lat_ns; /* latency (ns) */ 986 s64 value; 987 u32 rxa; 988 989 if (!hw->adapter->max_frame_size) { 990 e_dbg("max_frame_size not set.\n"); 991 return -E1000_ERR_CONFIG; 992 } 993 994 hw->mac.ops.get_link_up_info(hw, &speed, &duplex); 995 if (!speed) { 996 e_dbg("Speed not set.\n"); 997 return -E1000_ERR_CONFIG; 998 } 999 1000 /* Rx Packet Buffer Allocation size (KB) */ 1001 rxa = er32(PBA) & E1000_PBA_RXA_MASK; 1002 1003 /* Determine the maximum latency tolerated by the device. 1004 * 1005 * Per the PCIe spec, the tolerated latencies are encoded as 1006 * a 3-bit encoded scale (only 0-5 are valid) multiplied by 1007 * a 10-bit value (0-1023) to provide a range from 1 ns to 1008 * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns, 1009 * 1=2^5ns, 2=2^10ns,...5=2^25ns. 1010 */ 1011 lat_ns = ((s64)rxa * 1024 - 1012 (2 * (s64)hw->adapter->max_frame_size)) * 8 * 1000; 1013 if (lat_ns < 0) 1014 lat_ns = 0; 1015 else 1016 do_div(lat_ns, speed); 1017 1018 value = lat_ns; 1019 while (value > PCI_LTR_VALUE_MASK) { 1020 scale++; 1021 value = DIV_ROUND_UP(value, (1 << 5)); 1022 } 1023 if (scale > E1000_LTRV_SCALE_MAX) { 1024 e_dbg("Invalid LTR latency scale %d\n", scale); 1025 return -E1000_ERR_CONFIG; 1026 } 1027 lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value); 1028 1029 /* Determine the maximum latency tolerated by the platform */ 1030 pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT, 1031 &max_snoop); 1032 pci_read_config_word(hw->adapter->pdev, 1033 E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop); 1034 max_ltr_enc = max_t(u16, max_snoop, max_nosnoop); 1035 1036 if (lat_enc > max_ltr_enc) 1037 lat_enc = max_ltr_enc; 1038 } 1039 1040 /* Set Snoop and No-Snoop latencies the same */ 1041 reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT); 1042 ew32(LTRV, reg); 1043 1044 return 0; 1045 } 1046 1047 /** 1048 * e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP 1049 * @hw: pointer to the HW structure 1050 * @to_sx: boolean indicating a system power state transition to Sx 1051 * 1052 * When link is down, configure ULP mode to significantly reduce the power 1053 * to the PHY. If on a Manageability Engine (ME) enabled system, tell the 1054 * ME firmware to start the ULP configuration. If not on an ME enabled 1055 * system, configure the ULP mode by software. 1056 */ 1057 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx) 1058 { 1059 u32 mac_reg; 1060 s32 ret_val = 0; 1061 u16 phy_reg; 1062 1063 if ((hw->mac.type < e1000_pch_lpt) || 1064 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) || 1065 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) || 1066 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) || 1067 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) || 1068 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on)) 1069 return 0; 1070 1071 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) { 1072 /* Request ME configure ULP mode in the PHY */ 1073 mac_reg = er32(H2ME); 1074 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS; 1075 ew32(H2ME, mac_reg); 1076 1077 goto out; 1078 } 1079 1080 if (!to_sx) { 1081 int i = 0; 1082 1083 /* Poll up to 5 seconds for Cable Disconnected indication */ 1084 while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) { 1085 /* Bail if link is re-acquired */ 1086 if (er32(STATUS) & E1000_STATUS_LU) 1087 return -E1000_ERR_PHY; 1088 1089 if (i++ == 100) 1090 break; 1091 1092 msleep(50); 1093 } 1094 e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n", 1095 (er32(FEXT) & 1096 E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50); 1097 } 1098 1099 ret_val = hw->phy.ops.acquire(hw); 1100 if (ret_val) 1101 goto out; 1102 1103 /* Force SMBus mode in PHY */ 1104 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg); 1105 if (ret_val) 1106 goto release; 1107 phy_reg |= CV_SMB_CTRL_FORCE_SMBUS; 1108 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg); 1109 1110 /* Force SMBus mode in MAC */ 1111 mac_reg = er32(CTRL_EXT); 1112 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; 1113 ew32(CTRL_EXT, mac_reg); 1114 1115 /* Set Inband ULP Exit, Reset to SMBus mode and 1116 * Disable SMBus Release on PERST# in PHY 1117 */ 1118 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg); 1119 if (ret_val) 1120 goto release; 1121 phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS | 1122 I218_ULP_CONFIG1_DISABLE_SMB_PERST); 1123 if (to_sx) { 1124 if (er32(WUFC) & E1000_WUFC_LNKC) 1125 phy_reg |= I218_ULP_CONFIG1_WOL_HOST; 1126 1127 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP; 1128 } else { 1129 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT; 1130 } 1131 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1132 1133 /* Set Disable SMBus Release on PERST# in MAC */ 1134 mac_reg = er32(FEXTNVM7); 1135 mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST; 1136 ew32(FEXTNVM7, mac_reg); 1137 1138 /* Commit ULP changes in PHY by starting auto ULP configuration */ 1139 phy_reg |= I218_ULP_CONFIG1_START; 1140 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1141 release: 1142 hw->phy.ops.release(hw); 1143 out: 1144 if (ret_val) 1145 e_dbg("Error in ULP enable flow: %d\n", ret_val); 1146 else 1147 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on; 1148 1149 return ret_val; 1150 } 1151 1152 /** 1153 * e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP 1154 * @hw: pointer to the HW structure 1155 * @force: boolean indicating whether or not to force disabling ULP 1156 * 1157 * Un-configure ULP mode when link is up, the system is transitioned from 1158 * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled 1159 * system, poll for an indication from ME that ULP has been un-configured. 1160 * If not on an ME enabled system, un-configure the ULP mode by software. 1161 * 1162 * During nominal operation, this function is called when link is acquired 1163 * to disable ULP mode (force=false); otherwise, for example when unloading 1164 * the driver or during Sx->S0 transitions, this is called with force=true 1165 * to forcibly disable ULP. 1166 */ 1167 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force) 1168 { 1169 s32 ret_val = 0; 1170 u32 mac_reg; 1171 u16 phy_reg; 1172 int i = 0; 1173 1174 if ((hw->mac.type < e1000_pch_lpt) || 1175 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) || 1176 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) || 1177 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) || 1178 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) || 1179 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off)) 1180 return 0; 1181 1182 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) { 1183 if (force) { 1184 /* Request ME un-configure ULP mode in the PHY */ 1185 mac_reg = er32(H2ME); 1186 mac_reg &= ~E1000_H2ME_ULP; 1187 mac_reg |= E1000_H2ME_ENFORCE_SETTINGS; 1188 ew32(H2ME, mac_reg); 1189 } 1190 1191 /* Poll up to 100msec for ME to clear ULP_CFG_DONE */ 1192 while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) { 1193 if (i++ == 10) { 1194 ret_val = -E1000_ERR_PHY; 1195 goto out; 1196 } 1197 1198 usleep_range(10000, 20000); 1199 } 1200 e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10); 1201 1202 if (force) { 1203 mac_reg = er32(H2ME); 1204 mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS; 1205 ew32(H2ME, mac_reg); 1206 } else { 1207 /* Clear H2ME.ULP after ME ULP configuration */ 1208 mac_reg = er32(H2ME); 1209 mac_reg &= ~E1000_H2ME_ULP; 1210 ew32(H2ME, mac_reg); 1211 } 1212 1213 goto out; 1214 } 1215 1216 ret_val = hw->phy.ops.acquire(hw); 1217 if (ret_val) 1218 goto out; 1219 1220 if (force) 1221 /* Toggle LANPHYPC Value bit */ 1222 e1000_toggle_lanphypc_pch_lpt(hw); 1223 1224 /* Unforce SMBus mode in PHY */ 1225 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg); 1226 if (ret_val) { 1227 /* The MAC might be in PCIe mode, so temporarily force to 1228 * SMBus mode in order to access the PHY. 1229 */ 1230 mac_reg = er32(CTRL_EXT); 1231 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; 1232 ew32(CTRL_EXT, mac_reg); 1233 1234 msleep(50); 1235 1236 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, 1237 &phy_reg); 1238 if (ret_val) 1239 goto release; 1240 } 1241 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS; 1242 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg); 1243 1244 /* Unforce SMBus mode in MAC */ 1245 mac_reg = er32(CTRL_EXT); 1246 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; 1247 ew32(CTRL_EXT, mac_reg); 1248 1249 /* When ULP mode was previously entered, K1 was disabled by the 1250 * hardware. Re-Enable K1 in the PHY when exiting ULP. 1251 */ 1252 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg); 1253 if (ret_val) 1254 goto release; 1255 phy_reg |= HV_PM_CTRL_K1_ENABLE; 1256 e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg); 1257 1258 /* Clear ULP enabled configuration */ 1259 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg); 1260 if (ret_val) 1261 goto release; 1262 phy_reg &= ~(I218_ULP_CONFIG1_IND | 1263 I218_ULP_CONFIG1_STICKY_ULP | 1264 I218_ULP_CONFIG1_RESET_TO_SMBUS | 1265 I218_ULP_CONFIG1_WOL_HOST | 1266 I218_ULP_CONFIG1_INBAND_EXIT | 1267 I218_ULP_CONFIG1_DISABLE_SMB_PERST); 1268 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1269 1270 /* Commit ULP changes by starting auto ULP configuration */ 1271 phy_reg |= I218_ULP_CONFIG1_START; 1272 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1273 1274 /* Clear Disable SMBus Release on PERST# in MAC */ 1275 mac_reg = er32(FEXTNVM7); 1276 mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST; 1277 ew32(FEXTNVM7, mac_reg); 1278 1279 release: 1280 hw->phy.ops.release(hw); 1281 if (force) { 1282 e1000_phy_hw_reset(hw); 1283 msleep(50); 1284 } 1285 out: 1286 if (ret_val) 1287 e_dbg("Error in ULP disable flow: %d\n", ret_val); 1288 else 1289 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off; 1290 1291 return ret_val; 1292 } 1293 1294 /** 1295 * e1000_check_for_copper_link_ich8lan - Check for link (Copper) 1296 * @hw: pointer to the HW structure 1297 * 1298 * Checks to see of the link status of the hardware has changed. If a 1299 * change in link status has been detected, then we read the PHY registers 1300 * to get the current speed/duplex if link exists. 1301 **/ 1302 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw) 1303 { 1304 struct e1000_mac_info *mac = &hw->mac; 1305 s32 ret_val; 1306 bool link; 1307 u16 phy_reg; 1308 1309 /* We only want to go out to the PHY registers to see if Auto-Neg 1310 * has completed and/or if our link status has changed. The 1311 * get_link_status flag is set upon receiving a Link Status 1312 * Change or Rx Sequence Error interrupt. 1313 */ 1314 if (!mac->get_link_status) 1315 return 0; 1316 1317 /* First we want to see if the MII Status Register reports 1318 * link. If so, then we want to get the current speed/duplex 1319 * of the PHY. 1320 */ 1321 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 1322 if (ret_val) 1323 return ret_val; 1324 1325 if (hw->mac.type == e1000_pchlan) { 1326 ret_val = e1000_k1_gig_workaround_hv(hw, link); 1327 if (ret_val) 1328 return ret_val; 1329 } 1330 1331 /* When connected at 10Mbps half-duplex, some parts are excessively 1332 * aggressive resulting in many collisions. To avoid this, increase 1333 * the IPG and reduce Rx latency in the PHY. 1334 */ 1335 if (((hw->mac.type == e1000_pch2lan) || 1336 (hw->mac.type == e1000_pch_lpt)) && link) { 1337 u32 reg; 1338 1339 reg = er32(STATUS); 1340 if (!(reg & (E1000_STATUS_FD | E1000_STATUS_SPEED_MASK))) { 1341 u16 emi_addr; 1342 1343 reg = er32(TIPG); 1344 reg &= ~E1000_TIPG_IPGT_MASK; 1345 reg |= 0xFF; 1346 ew32(TIPG, reg); 1347 1348 /* Reduce Rx latency in analog PHY */ 1349 ret_val = hw->phy.ops.acquire(hw); 1350 if (ret_val) 1351 return ret_val; 1352 1353 if (hw->mac.type == e1000_pch2lan) 1354 emi_addr = I82579_RX_CONFIG; 1355 else 1356 emi_addr = I217_RX_CONFIG; 1357 1358 ret_val = e1000_write_emi_reg_locked(hw, emi_addr, 0); 1359 1360 hw->phy.ops.release(hw); 1361 1362 if (ret_val) 1363 return ret_val; 1364 } 1365 } 1366 1367 /* Work-around I218 hang issue */ 1368 if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) || 1369 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) || 1370 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) || 1371 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) { 1372 ret_val = e1000_k1_workaround_lpt_lp(hw, link); 1373 if (ret_val) 1374 return ret_val; 1375 } 1376 1377 if (hw->mac.type == e1000_pch_lpt) { 1378 /* Set platform power management values for 1379 * Latency Tolerance Reporting (LTR) 1380 */ 1381 ret_val = e1000_platform_pm_pch_lpt(hw, link); 1382 if (ret_val) 1383 return ret_val; 1384 } 1385 1386 /* Clear link partner's EEE ability */ 1387 hw->dev_spec.ich8lan.eee_lp_ability = 0; 1388 1389 if (!link) 1390 return 0; /* No link detected */ 1391 1392 mac->get_link_status = false; 1393 1394 switch (hw->mac.type) { 1395 case e1000_pch2lan: 1396 ret_val = e1000_k1_workaround_lv(hw); 1397 if (ret_val) 1398 return ret_val; 1399 /* fall-thru */ 1400 case e1000_pchlan: 1401 if (hw->phy.type == e1000_phy_82578) { 1402 ret_val = e1000_link_stall_workaround_hv(hw); 1403 if (ret_val) 1404 return ret_val; 1405 } 1406 1407 /* Workaround for PCHx parts in half-duplex: 1408 * Set the number of preambles removed from the packet 1409 * when it is passed from the PHY to the MAC to prevent 1410 * the MAC from misinterpreting the packet type. 1411 */ 1412 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg); 1413 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK; 1414 1415 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD) 1416 phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT); 1417 1418 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg); 1419 break; 1420 default: 1421 break; 1422 } 1423 1424 /* Check if there was DownShift, must be checked 1425 * immediately after link-up 1426 */ 1427 e1000e_check_downshift(hw); 1428 1429 /* Enable/Disable EEE after link up */ 1430 if (hw->phy.type > e1000_phy_82579) { 1431 ret_val = e1000_set_eee_pchlan(hw); 1432 if (ret_val) 1433 return ret_val; 1434 } 1435 1436 /* If we are forcing speed/duplex, then we simply return since 1437 * we have already determined whether we have link or not. 1438 */ 1439 if (!mac->autoneg) 1440 return -E1000_ERR_CONFIG; 1441 1442 /* Auto-Neg is enabled. Auto Speed Detection takes care 1443 * of MAC speed/duplex configuration. So we only need to 1444 * configure Collision Distance in the MAC. 1445 */ 1446 mac->ops.config_collision_dist(hw); 1447 1448 /* Configure Flow Control now that Auto-Neg has completed. 1449 * First, we need to restore the desired flow control 1450 * settings because we may have had to re-autoneg with a 1451 * different link partner. 1452 */ 1453 ret_val = e1000e_config_fc_after_link_up(hw); 1454 if (ret_val) 1455 e_dbg("Error configuring flow control\n"); 1456 1457 return ret_val; 1458 } 1459 1460 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter) 1461 { 1462 struct e1000_hw *hw = &adapter->hw; 1463 s32 rc; 1464 1465 rc = e1000_init_mac_params_ich8lan(hw); 1466 if (rc) 1467 return rc; 1468 1469 rc = e1000_init_nvm_params_ich8lan(hw); 1470 if (rc) 1471 return rc; 1472 1473 switch (hw->mac.type) { 1474 case e1000_ich8lan: 1475 case e1000_ich9lan: 1476 case e1000_ich10lan: 1477 rc = e1000_init_phy_params_ich8lan(hw); 1478 break; 1479 case e1000_pchlan: 1480 case e1000_pch2lan: 1481 case e1000_pch_lpt: 1482 rc = e1000_init_phy_params_pchlan(hw); 1483 break; 1484 default: 1485 break; 1486 } 1487 if (rc) 1488 return rc; 1489 1490 /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or 1491 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT). 1492 */ 1493 if ((adapter->hw.phy.type == e1000_phy_ife) || 1494 ((adapter->hw.mac.type >= e1000_pch2lan) && 1495 (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) { 1496 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES; 1497 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN; 1498 1499 hw->mac.ops.blink_led = NULL; 1500 } 1501 1502 if ((adapter->hw.mac.type == e1000_ich8lan) && 1503 (adapter->hw.phy.type != e1000_phy_ife)) 1504 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP; 1505 1506 /* Enable workaround for 82579 w/ ME enabled */ 1507 if ((adapter->hw.mac.type == e1000_pch2lan) && 1508 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) 1509 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA; 1510 1511 return 0; 1512 } 1513 1514 static DEFINE_MUTEX(nvm_mutex); 1515 1516 /** 1517 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex 1518 * @hw: pointer to the HW structure 1519 * 1520 * Acquires the mutex for performing NVM operations. 1521 **/ 1522 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw) 1523 { 1524 mutex_lock(&nvm_mutex); 1525 1526 return 0; 1527 } 1528 1529 /** 1530 * e1000_release_nvm_ich8lan - Release NVM mutex 1531 * @hw: pointer to the HW structure 1532 * 1533 * Releases the mutex used while performing NVM operations. 1534 **/ 1535 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw) 1536 { 1537 mutex_unlock(&nvm_mutex); 1538 } 1539 1540 /** 1541 * e1000_acquire_swflag_ich8lan - Acquire software control flag 1542 * @hw: pointer to the HW structure 1543 * 1544 * Acquires the software control flag for performing PHY and select 1545 * MAC CSR accesses. 1546 **/ 1547 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw) 1548 { 1549 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT; 1550 s32 ret_val = 0; 1551 1552 if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE, 1553 &hw->adapter->state)) { 1554 e_dbg("contention for Phy access\n"); 1555 return -E1000_ERR_PHY; 1556 } 1557 1558 while (timeout) { 1559 extcnf_ctrl = er32(EXTCNF_CTRL); 1560 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)) 1561 break; 1562 1563 mdelay(1); 1564 timeout--; 1565 } 1566 1567 if (!timeout) { 1568 e_dbg("SW has already locked the resource.\n"); 1569 ret_val = -E1000_ERR_CONFIG; 1570 goto out; 1571 } 1572 1573 timeout = SW_FLAG_TIMEOUT; 1574 1575 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; 1576 ew32(EXTCNF_CTRL, extcnf_ctrl); 1577 1578 while (timeout) { 1579 extcnf_ctrl = er32(EXTCNF_CTRL); 1580 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) 1581 break; 1582 1583 mdelay(1); 1584 timeout--; 1585 } 1586 1587 if (!timeout) { 1588 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n", 1589 er32(FWSM), extcnf_ctrl); 1590 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; 1591 ew32(EXTCNF_CTRL, extcnf_ctrl); 1592 ret_val = -E1000_ERR_CONFIG; 1593 goto out; 1594 } 1595 1596 out: 1597 if (ret_val) 1598 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); 1599 1600 return ret_val; 1601 } 1602 1603 /** 1604 * e1000_release_swflag_ich8lan - Release software control flag 1605 * @hw: pointer to the HW structure 1606 * 1607 * Releases the software control flag for performing PHY and select 1608 * MAC CSR accesses. 1609 **/ 1610 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw) 1611 { 1612 u32 extcnf_ctrl; 1613 1614 extcnf_ctrl = er32(EXTCNF_CTRL); 1615 1616 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) { 1617 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; 1618 ew32(EXTCNF_CTRL, extcnf_ctrl); 1619 } else { 1620 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n"); 1621 } 1622 1623 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); 1624 } 1625 1626 /** 1627 * e1000_check_mng_mode_ich8lan - Checks management mode 1628 * @hw: pointer to the HW structure 1629 * 1630 * This checks if the adapter has any manageability enabled. 1631 * This is a function pointer entry point only called by read/write 1632 * routines for the PHY and NVM parts. 1633 **/ 1634 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw) 1635 { 1636 u32 fwsm; 1637 1638 fwsm = er32(FWSM); 1639 return (fwsm & E1000_ICH_FWSM_FW_VALID) && 1640 ((fwsm & E1000_FWSM_MODE_MASK) == 1641 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); 1642 } 1643 1644 /** 1645 * e1000_check_mng_mode_pchlan - Checks management mode 1646 * @hw: pointer to the HW structure 1647 * 1648 * This checks if the adapter has iAMT enabled. 1649 * This is a function pointer entry point only called by read/write 1650 * routines for the PHY and NVM parts. 1651 **/ 1652 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw) 1653 { 1654 u32 fwsm; 1655 1656 fwsm = er32(FWSM); 1657 return (fwsm & E1000_ICH_FWSM_FW_VALID) && 1658 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); 1659 } 1660 1661 /** 1662 * e1000_rar_set_pch2lan - Set receive address register 1663 * @hw: pointer to the HW structure 1664 * @addr: pointer to the receive address 1665 * @index: receive address array register 1666 * 1667 * Sets the receive address array register at index to the address passed 1668 * in by addr. For 82579, RAR[0] is the base address register that is to 1669 * contain the MAC address but RAR[1-6] are reserved for manageability (ME). 1670 * Use SHRA[0-3] in place of those reserved for ME. 1671 **/ 1672 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index) 1673 { 1674 u32 rar_low, rar_high; 1675 1676 /* HW expects these in little endian so we reverse the byte order 1677 * from network order (big endian) to little endian 1678 */ 1679 rar_low = ((u32)addr[0] | 1680 ((u32)addr[1] << 8) | 1681 ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); 1682 1683 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); 1684 1685 /* If MAC address zero, no need to set the AV bit */ 1686 if (rar_low || rar_high) 1687 rar_high |= E1000_RAH_AV; 1688 1689 if (index == 0) { 1690 ew32(RAL(index), rar_low); 1691 e1e_flush(); 1692 ew32(RAH(index), rar_high); 1693 e1e_flush(); 1694 return 0; 1695 } 1696 1697 /* RAR[1-6] are owned by manageability. Skip those and program the 1698 * next address into the SHRA register array. 1699 */ 1700 if (index < (u32)(hw->mac.rar_entry_count)) { 1701 s32 ret_val; 1702 1703 ret_val = e1000_acquire_swflag_ich8lan(hw); 1704 if (ret_val) 1705 goto out; 1706 1707 ew32(SHRAL(index - 1), rar_low); 1708 e1e_flush(); 1709 ew32(SHRAH(index - 1), rar_high); 1710 e1e_flush(); 1711 1712 e1000_release_swflag_ich8lan(hw); 1713 1714 /* verify the register updates */ 1715 if ((er32(SHRAL(index - 1)) == rar_low) && 1716 (er32(SHRAH(index - 1)) == rar_high)) 1717 return 0; 1718 1719 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n", 1720 (index - 1), er32(FWSM)); 1721 } 1722 1723 out: 1724 e_dbg("Failed to write receive address at index %d\n", index); 1725 return -E1000_ERR_CONFIG; 1726 } 1727 1728 /** 1729 * e1000_rar_get_count_pch_lpt - Get the number of available SHRA 1730 * @hw: pointer to the HW structure 1731 * 1732 * Get the number of available receive registers that the Host can 1733 * program. SHRA[0-10] are the shared receive address registers 1734 * that are shared between the Host and manageability engine (ME). 1735 * ME can reserve any number of addresses and the host needs to be 1736 * able to tell how many available registers it has access to. 1737 **/ 1738 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw) 1739 { 1740 u32 wlock_mac; 1741 u32 num_entries; 1742 1743 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK; 1744 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT; 1745 1746 switch (wlock_mac) { 1747 case 0: 1748 /* All SHRA[0..10] and RAR[0] available */ 1749 num_entries = hw->mac.rar_entry_count; 1750 break; 1751 case 1: 1752 /* Only RAR[0] available */ 1753 num_entries = 1; 1754 break; 1755 default: 1756 /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */ 1757 num_entries = wlock_mac + 1; 1758 break; 1759 } 1760 1761 return num_entries; 1762 } 1763 1764 /** 1765 * e1000_rar_set_pch_lpt - Set receive address registers 1766 * @hw: pointer to the HW structure 1767 * @addr: pointer to the receive address 1768 * @index: receive address array register 1769 * 1770 * Sets the receive address register array at index to the address passed 1771 * in by addr. For LPT, RAR[0] is the base address register that is to 1772 * contain the MAC address. SHRA[0-10] are the shared receive address 1773 * registers that are shared between the Host and manageability engine (ME). 1774 **/ 1775 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index) 1776 { 1777 u32 rar_low, rar_high; 1778 u32 wlock_mac; 1779 1780 /* HW expects these in little endian so we reverse the byte order 1781 * from network order (big endian) to little endian 1782 */ 1783 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) | 1784 ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); 1785 1786 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); 1787 1788 /* If MAC address zero, no need to set the AV bit */ 1789 if (rar_low || rar_high) 1790 rar_high |= E1000_RAH_AV; 1791 1792 if (index == 0) { 1793 ew32(RAL(index), rar_low); 1794 e1e_flush(); 1795 ew32(RAH(index), rar_high); 1796 e1e_flush(); 1797 return 0; 1798 } 1799 1800 /* The manageability engine (ME) can lock certain SHRAR registers that 1801 * it is using - those registers are unavailable for use. 1802 */ 1803 if (index < hw->mac.rar_entry_count) { 1804 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK; 1805 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT; 1806 1807 /* Check if all SHRAR registers are locked */ 1808 if (wlock_mac == 1) 1809 goto out; 1810 1811 if ((wlock_mac == 0) || (index <= wlock_mac)) { 1812 s32 ret_val; 1813 1814 ret_val = e1000_acquire_swflag_ich8lan(hw); 1815 1816 if (ret_val) 1817 goto out; 1818 1819 ew32(SHRAL_PCH_LPT(index - 1), rar_low); 1820 e1e_flush(); 1821 ew32(SHRAH_PCH_LPT(index - 1), rar_high); 1822 e1e_flush(); 1823 1824 e1000_release_swflag_ich8lan(hw); 1825 1826 /* verify the register updates */ 1827 if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) && 1828 (er32(SHRAH_PCH_LPT(index - 1)) == rar_high)) 1829 return 0; 1830 } 1831 } 1832 1833 out: 1834 e_dbg("Failed to write receive address at index %d\n", index); 1835 return -E1000_ERR_CONFIG; 1836 } 1837 1838 /** 1839 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked 1840 * @hw: pointer to the HW structure 1841 * 1842 * Checks if firmware is blocking the reset of the PHY. 1843 * This is a function pointer entry point only called by 1844 * reset routines. 1845 **/ 1846 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw) 1847 { 1848 bool blocked = false; 1849 int i = 0; 1850 1851 while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) && 1852 (i++ < 10)) 1853 usleep_range(10000, 20000); 1854 return blocked ? E1000_BLK_PHY_RESET : 0; 1855 } 1856 1857 /** 1858 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states 1859 * @hw: pointer to the HW structure 1860 * 1861 * Assumes semaphore already acquired. 1862 * 1863 **/ 1864 static s32 e1000_write_smbus_addr(struct e1000_hw *hw) 1865 { 1866 u16 phy_data; 1867 u32 strap = er32(STRAP); 1868 u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >> 1869 E1000_STRAP_SMT_FREQ_SHIFT; 1870 s32 ret_val; 1871 1872 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK; 1873 1874 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data); 1875 if (ret_val) 1876 return ret_val; 1877 1878 phy_data &= ~HV_SMB_ADDR_MASK; 1879 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT); 1880 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID; 1881 1882 if (hw->phy.type == e1000_phy_i217) { 1883 /* Restore SMBus frequency */ 1884 if (freq--) { 1885 phy_data &= ~HV_SMB_ADDR_FREQ_MASK; 1886 phy_data |= (freq & (1 << 0)) << 1887 HV_SMB_ADDR_FREQ_LOW_SHIFT; 1888 phy_data |= (freq & (1 << 1)) << 1889 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1); 1890 } else { 1891 e_dbg("Unsupported SMB frequency in PHY\n"); 1892 } 1893 } 1894 1895 return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data); 1896 } 1897 1898 /** 1899 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration 1900 * @hw: pointer to the HW structure 1901 * 1902 * SW should configure the LCD from the NVM extended configuration region 1903 * as a workaround for certain parts. 1904 **/ 1905 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw) 1906 { 1907 struct e1000_phy_info *phy = &hw->phy; 1908 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask; 1909 s32 ret_val = 0; 1910 u16 word_addr, reg_data, reg_addr, phy_page = 0; 1911 1912 /* Initialize the PHY from the NVM on ICH platforms. This 1913 * is needed due to an issue where the NVM configuration is 1914 * not properly autoloaded after power transitions. 1915 * Therefore, after each PHY reset, we will load the 1916 * configuration data out of the NVM manually. 1917 */ 1918 switch (hw->mac.type) { 1919 case e1000_ich8lan: 1920 if (phy->type != e1000_phy_igp_3) 1921 return ret_val; 1922 1923 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) || 1924 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) { 1925 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG; 1926 break; 1927 } 1928 /* Fall-thru */ 1929 case e1000_pchlan: 1930 case e1000_pch2lan: 1931 case e1000_pch_lpt: 1932 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M; 1933 break; 1934 default: 1935 return ret_val; 1936 } 1937 1938 ret_val = hw->phy.ops.acquire(hw); 1939 if (ret_val) 1940 return ret_val; 1941 1942 data = er32(FEXTNVM); 1943 if (!(data & sw_cfg_mask)) 1944 goto release; 1945 1946 /* Make sure HW does not configure LCD from PHY 1947 * extended configuration before SW configuration 1948 */ 1949 data = er32(EXTCNF_CTRL); 1950 if ((hw->mac.type < e1000_pch2lan) && 1951 (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)) 1952 goto release; 1953 1954 cnf_size = er32(EXTCNF_SIZE); 1955 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK; 1956 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT; 1957 if (!cnf_size) 1958 goto release; 1959 1960 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK; 1961 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT; 1962 1963 if (((hw->mac.type == e1000_pchlan) && 1964 !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) || 1965 (hw->mac.type > e1000_pchlan)) { 1966 /* HW configures the SMBus address and LEDs when the 1967 * OEM and LCD Write Enable bits are set in the NVM. 1968 * When both NVM bits are cleared, SW will configure 1969 * them instead. 1970 */ 1971 ret_val = e1000_write_smbus_addr(hw); 1972 if (ret_val) 1973 goto release; 1974 1975 data = er32(LEDCTL); 1976 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG, 1977 (u16)data); 1978 if (ret_val) 1979 goto release; 1980 } 1981 1982 /* Configure LCD from extended configuration region. */ 1983 1984 /* cnf_base_addr is in DWORD */ 1985 word_addr = (u16)(cnf_base_addr << 1); 1986 1987 for (i = 0; i < cnf_size; i++) { 1988 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, ®_data); 1989 if (ret_val) 1990 goto release; 1991 1992 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1), 1993 1, ®_addr); 1994 if (ret_val) 1995 goto release; 1996 1997 /* Save off the PHY page for future writes. */ 1998 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) { 1999 phy_page = reg_data; 2000 continue; 2001 } 2002 2003 reg_addr &= PHY_REG_MASK; 2004 reg_addr |= phy_page; 2005 2006 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data); 2007 if (ret_val) 2008 goto release; 2009 } 2010 2011 release: 2012 hw->phy.ops.release(hw); 2013 return ret_val; 2014 } 2015 2016 /** 2017 * e1000_k1_gig_workaround_hv - K1 Si workaround 2018 * @hw: pointer to the HW structure 2019 * @link: link up bool flag 2020 * 2021 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning 2022 * from a lower speed. This workaround disables K1 whenever link is at 1Gig 2023 * If link is down, the function will restore the default K1 setting located 2024 * in the NVM. 2025 **/ 2026 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link) 2027 { 2028 s32 ret_val = 0; 2029 u16 status_reg = 0; 2030 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled; 2031 2032 if (hw->mac.type != e1000_pchlan) 2033 return 0; 2034 2035 /* Wrap the whole flow with the sw flag */ 2036 ret_val = hw->phy.ops.acquire(hw); 2037 if (ret_val) 2038 return ret_val; 2039 2040 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */ 2041 if (link) { 2042 if (hw->phy.type == e1000_phy_82578) { 2043 ret_val = e1e_rphy_locked(hw, BM_CS_STATUS, 2044 &status_reg); 2045 if (ret_val) 2046 goto release; 2047 2048 status_reg &= (BM_CS_STATUS_LINK_UP | 2049 BM_CS_STATUS_RESOLVED | 2050 BM_CS_STATUS_SPEED_MASK); 2051 2052 if (status_reg == (BM_CS_STATUS_LINK_UP | 2053 BM_CS_STATUS_RESOLVED | 2054 BM_CS_STATUS_SPEED_1000)) 2055 k1_enable = false; 2056 } 2057 2058 if (hw->phy.type == e1000_phy_82577) { 2059 ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg); 2060 if (ret_val) 2061 goto release; 2062 2063 status_reg &= (HV_M_STATUS_LINK_UP | 2064 HV_M_STATUS_AUTONEG_COMPLETE | 2065 HV_M_STATUS_SPEED_MASK); 2066 2067 if (status_reg == (HV_M_STATUS_LINK_UP | 2068 HV_M_STATUS_AUTONEG_COMPLETE | 2069 HV_M_STATUS_SPEED_1000)) 2070 k1_enable = false; 2071 } 2072 2073 /* Link stall fix for link up */ 2074 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100); 2075 if (ret_val) 2076 goto release; 2077 2078 } else { 2079 /* Link stall fix for link down */ 2080 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100); 2081 if (ret_val) 2082 goto release; 2083 } 2084 2085 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable); 2086 2087 release: 2088 hw->phy.ops.release(hw); 2089 2090 return ret_val; 2091 } 2092 2093 /** 2094 * e1000_configure_k1_ich8lan - Configure K1 power state 2095 * @hw: pointer to the HW structure 2096 * @enable: K1 state to configure 2097 * 2098 * Configure the K1 power state based on the provided parameter. 2099 * Assumes semaphore already acquired. 2100 * 2101 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 2102 **/ 2103 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable) 2104 { 2105 s32 ret_val; 2106 u32 ctrl_reg = 0; 2107 u32 ctrl_ext = 0; 2108 u32 reg = 0; 2109 u16 kmrn_reg = 0; 2110 2111 ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, 2112 &kmrn_reg); 2113 if (ret_val) 2114 return ret_val; 2115 2116 if (k1_enable) 2117 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE; 2118 else 2119 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE; 2120 2121 ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, 2122 kmrn_reg); 2123 if (ret_val) 2124 return ret_val; 2125 2126 usleep_range(20, 40); 2127 ctrl_ext = er32(CTRL_EXT); 2128 ctrl_reg = er32(CTRL); 2129 2130 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 2131 reg |= E1000_CTRL_FRCSPD; 2132 ew32(CTRL, reg); 2133 2134 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS); 2135 e1e_flush(); 2136 usleep_range(20, 40); 2137 ew32(CTRL, ctrl_reg); 2138 ew32(CTRL_EXT, ctrl_ext); 2139 e1e_flush(); 2140 usleep_range(20, 40); 2141 2142 return 0; 2143 } 2144 2145 /** 2146 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration 2147 * @hw: pointer to the HW structure 2148 * @d0_state: boolean if entering d0 or d3 device state 2149 * 2150 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are 2151 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit 2152 * in NVM determines whether HW should configure LPLU and Gbe Disable. 2153 **/ 2154 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state) 2155 { 2156 s32 ret_val = 0; 2157 u32 mac_reg; 2158 u16 oem_reg; 2159 2160 if (hw->mac.type < e1000_pchlan) 2161 return ret_val; 2162 2163 ret_val = hw->phy.ops.acquire(hw); 2164 if (ret_val) 2165 return ret_val; 2166 2167 if (hw->mac.type == e1000_pchlan) { 2168 mac_reg = er32(EXTCNF_CTRL); 2169 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) 2170 goto release; 2171 } 2172 2173 mac_reg = er32(FEXTNVM); 2174 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M)) 2175 goto release; 2176 2177 mac_reg = er32(PHY_CTRL); 2178 2179 ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg); 2180 if (ret_val) 2181 goto release; 2182 2183 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU); 2184 2185 if (d0_state) { 2186 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE) 2187 oem_reg |= HV_OEM_BITS_GBE_DIS; 2188 2189 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU) 2190 oem_reg |= HV_OEM_BITS_LPLU; 2191 } else { 2192 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE | 2193 E1000_PHY_CTRL_NOND0A_GBE_DISABLE)) 2194 oem_reg |= HV_OEM_BITS_GBE_DIS; 2195 2196 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU | 2197 E1000_PHY_CTRL_NOND0A_LPLU)) 2198 oem_reg |= HV_OEM_BITS_LPLU; 2199 } 2200 2201 /* Set Restart auto-neg to activate the bits */ 2202 if ((d0_state || (hw->mac.type != e1000_pchlan)) && 2203 !hw->phy.ops.check_reset_block(hw)) 2204 oem_reg |= HV_OEM_BITS_RESTART_AN; 2205 2206 ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg); 2207 2208 release: 2209 hw->phy.ops.release(hw); 2210 2211 return ret_val; 2212 } 2213 2214 /** 2215 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode 2216 * @hw: pointer to the HW structure 2217 **/ 2218 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw) 2219 { 2220 s32 ret_val; 2221 u16 data; 2222 2223 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data); 2224 if (ret_val) 2225 return ret_val; 2226 2227 data |= HV_KMRN_MDIO_SLOW; 2228 2229 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data); 2230 2231 return ret_val; 2232 } 2233 2234 /** 2235 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be 2236 * done after every PHY reset. 2237 **/ 2238 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw) 2239 { 2240 s32 ret_val = 0; 2241 u16 phy_data; 2242 2243 if (hw->mac.type != e1000_pchlan) 2244 return 0; 2245 2246 /* Set MDIO slow mode before any other MDIO access */ 2247 if (hw->phy.type == e1000_phy_82577) { 2248 ret_val = e1000_set_mdio_slow_mode_hv(hw); 2249 if (ret_val) 2250 return ret_val; 2251 } 2252 2253 if (((hw->phy.type == e1000_phy_82577) && 2254 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) || 2255 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) { 2256 /* Disable generation of early preamble */ 2257 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431); 2258 if (ret_val) 2259 return ret_val; 2260 2261 /* Preamble tuning for SSC */ 2262 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204); 2263 if (ret_val) 2264 return ret_val; 2265 } 2266 2267 if (hw->phy.type == e1000_phy_82578) { 2268 /* Return registers to default by doing a soft reset then 2269 * writing 0x3140 to the control register. 2270 */ 2271 if (hw->phy.revision < 2) { 2272 e1000e_phy_sw_reset(hw); 2273 ret_val = e1e_wphy(hw, MII_BMCR, 0x3140); 2274 } 2275 } 2276 2277 /* Select page 0 */ 2278 ret_val = hw->phy.ops.acquire(hw); 2279 if (ret_val) 2280 return ret_val; 2281 2282 hw->phy.addr = 1; 2283 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0); 2284 hw->phy.ops.release(hw); 2285 if (ret_val) 2286 return ret_val; 2287 2288 /* Configure the K1 Si workaround during phy reset assuming there is 2289 * link so that it disables K1 if link is in 1Gbps. 2290 */ 2291 ret_val = e1000_k1_gig_workaround_hv(hw, true); 2292 if (ret_val) 2293 return ret_val; 2294 2295 /* Workaround for link disconnects on a busy hub in half duplex */ 2296 ret_val = hw->phy.ops.acquire(hw); 2297 if (ret_val) 2298 return ret_val; 2299 ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data); 2300 if (ret_val) 2301 goto release; 2302 ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF); 2303 if (ret_val) 2304 goto release; 2305 2306 /* set MSE higher to enable link to stay up when noise is high */ 2307 ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034); 2308 release: 2309 hw->phy.ops.release(hw); 2310 2311 return ret_val; 2312 } 2313 2314 /** 2315 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY 2316 * @hw: pointer to the HW structure 2317 **/ 2318 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw) 2319 { 2320 u32 mac_reg; 2321 u16 i, phy_reg = 0; 2322 s32 ret_val; 2323 2324 ret_val = hw->phy.ops.acquire(hw); 2325 if (ret_val) 2326 return; 2327 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); 2328 if (ret_val) 2329 goto release; 2330 2331 /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */ 2332 for (i = 0; i < (hw->mac.rar_entry_count); i++) { 2333 mac_reg = er32(RAL(i)); 2334 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i), 2335 (u16)(mac_reg & 0xFFFF)); 2336 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i), 2337 (u16)((mac_reg >> 16) & 0xFFFF)); 2338 2339 mac_reg = er32(RAH(i)); 2340 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i), 2341 (u16)(mac_reg & 0xFFFF)); 2342 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i), 2343 (u16)((mac_reg & E1000_RAH_AV) 2344 >> 16)); 2345 } 2346 2347 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); 2348 2349 release: 2350 hw->phy.ops.release(hw); 2351 } 2352 2353 /** 2354 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation 2355 * with 82579 PHY 2356 * @hw: pointer to the HW structure 2357 * @enable: flag to enable/disable workaround when enabling/disabling jumbos 2358 **/ 2359 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable) 2360 { 2361 s32 ret_val = 0; 2362 u16 phy_reg, data; 2363 u32 mac_reg; 2364 u16 i; 2365 2366 if (hw->mac.type < e1000_pch2lan) 2367 return 0; 2368 2369 /* disable Rx path while enabling/disabling workaround */ 2370 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); 2371 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14)); 2372 if (ret_val) 2373 return ret_val; 2374 2375 if (enable) { 2376 /* Write Rx addresses (rar_entry_count for RAL/H, and 2377 * SHRAL/H) and initial CRC values to the MAC 2378 */ 2379 for (i = 0; i < hw->mac.rar_entry_count; i++) { 2380 u8 mac_addr[ETH_ALEN] = { 0 }; 2381 u32 addr_high, addr_low; 2382 2383 addr_high = er32(RAH(i)); 2384 if (!(addr_high & E1000_RAH_AV)) 2385 continue; 2386 addr_low = er32(RAL(i)); 2387 mac_addr[0] = (addr_low & 0xFF); 2388 mac_addr[1] = ((addr_low >> 8) & 0xFF); 2389 mac_addr[2] = ((addr_low >> 16) & 0xFF); 2390 mac_addr[3] = ((addr_low >> 24) & 0xFF); 2391 mac_addr[4] = (addr_high & 0xFF); 2392 mac_addr[5] = ((addr_high >> 8) & 0xFF); 2393 2394 ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr)); 2395 } 2396 2397 /* Write Rx addresses to the PHY */ 2398 e1000_copy_rx_addrs_to_phy_ich8lan(hw); 2399 2400 /* Enable jumbo frame workaround in the MAC */ 2401 mac_reg = er32(FFLT_DBG); 2402 mac_reg &= ~(1 << 14); 2403 mac_reg |= (7 << 15); 2404 ew32(FFLT_DBG, mac_reg); 2405 2406 mac_reg = er32(RCTL); 2407 mac_reg |= E1000_RCTL_SECRC; 2408 ew32(RCTL, mac_reg); 2409 2410 ret_val = e1000e_read_kmrn_reg(hw, 2411 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2412 &data); 2413 if (ret_val) 2414 return ret_val; 2415 ret_val = e1000e_write_kmrn_reg(hw, 2416 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2417 data | (1 << 0)); 2418 if (ret_val) 2419 return ret_val; 2420 ret_val = e1000e_read_kmrn_reg(hw, 2421 E1000_KMRNCTRLSTA_HD_CTRL, 2422 &data); 2423 if (ret_val) 2424 return ret_val; 2425 data &= ~(0xF << 8); 2426 data |= (0xB << 8); 2427 ret_val = e1000e_write_kmrn_reg(hw, 2428 E1000_KMRNCTRLSTA_HD_CTRL, 2429 data); 2430 if (ret_val) 2431 return ret_val; 2432 2433 /* Enable jumbo frame workaround in the PHY */ 2434 e1e_rphy(hw, PHY_REG(769, 23), &data); 2435 data &= ~(0x7F << 5); 2436 data |= (0x37 << 5); 2437 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); 2438 if (ret_val) 2439 return ret_val; 2440 e1e_rphy(hw, PHY_REG(769, 16), &data); 2441 data &= ~(1 << 13); 2442 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); 2443 if (ret_val) 2444 return ret_val; 2445 e1e_rphy(hw, PHY_REG(776, 20), &data); 2446 data &= ~(0x3FF << 2); 2447 data |= (E1000_TX_PTR_GAP << 2); 2448 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); 2449 if (ret_val) 2450 return ret_val; 2451 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100); 2452 if (ret_val) 2453 return ret_val; 2454 e1e_rphy(hw, HV_PM_CTRL, &data); 2455 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10)); 2456 if (ret_val) 2457 return ret_val; 2458 } else { 2459 /* Write MAC register values back to h/w defaults */ 2460 mac_reg = er32(FFLT_DBG); 2461 mac_reg &= ~(0xF << 14); 2462 ew32(FFLT_DBG, mac_reg); 2463 2464 mac_reg = er32(RCTL); 2465 mac_reg &= ~E1000_RCTL_SECRC; 2466 ew32(RCTL, mac_reg); 2467 2468 ret_val = e1000e_read_kmrn_reg(hw, 2469 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2470 &data); 2471 if (ret_val) 2472 return ret_val; 2473 ret_val = e1000e_write_kmrn_reg(hw, 2474 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2475 data & ~(1 << 0)); 2476 if (ret_val) 2477 return ret_val; 2478 ret_val = e1000e_read_kmrn_reg(hw, 2479 E1000_KMRNCTRLSTA_HD_CTRL, 2480 &data); 2481 if (ret_val) 2482 return ret_val; 2483 data &= ~(0xF << 8); 2484 data |= (0xB << 8); 2485 ret_val = e1000e_write_kmrn_reg(hw, 2486 E1000_KMRNCTRLSTA_HD_CTRL, 2487 data); 2488 if (ret_val) 2489 return ret_val; 2490 2491 /* Write PHY register values back to h/w defaults */ 2492 e1e_rphy(hw, PHY_REG(769, 23), &data); 2493 data &= ~(0x7F << 5); 2494 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); 2495 if (ret_val) 2496 return ret_val; 2497 e1e_rphy(hw, PHY_REG(769, 16), &data); 2498 data |= (1 << 13); 2499 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); 2500 if (ret_val) 2501 return ret_val; 2502 e1e_rphy(hw, PHY_REG(776, 20), &data); 2503 data &= ~(0x3FF << 2); 2504 data |= (0x8 << 2); 2505 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); 2506 if (ret_val) 2507 return ret_val; 2508 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00); 2509 if (ret_val) 2510 return ret_val; 2511 e1e_rphy(hw, HV_PM_CTRL, &data); 2512 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10)); 2513 if (ret_val) 2514 return ret_val; 2515 } 2516 2517 /* re-enable Rx path after enabling/disabling workaround */ 2518 return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14)); 2519 } 2520 2521 /** 2522 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be 2523 * done after every PHY reset. 2524 **/ 2525 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw) 2526 { 2527 s32 ret_val = 0; 2528 2529 if (hw->mac.type != e1000_pch2lan) 2530 return 0; 2531 2532 /* Set MDIO slow mode before any other MDIO access */ 2533 ret_val = e1000_set_mdio_slow_mode_hv(hw); 2534 if (ret_val) 2535 return ret_val; 2536 2537 ret_val = hw->phy.ops.acquire(hw); 2538 if (ret_val) 2539 return ret_val; 2540 /* set MSE higher to enable link to stay up when noise is high */ 2541 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034); 2542 if (ret_val) 2543 goto release; 2544 /* drop link after 5 times MSE threshold was reached */ 2545 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005); 2546 release: 2547 hw->phy.ops.release(hw); 2548 2549 return ret_val; 2550 } 2551 2552 /** 2553 * e1000_k1_gig_workaround_lv - K1 Si workaround 2554 * @hw: pointer to the HW structure 2555 * 2556 * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps 2557 * Disable K1 in 1000Mbps and 100Mbps 2558 **/ 2559 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw) 2560 { 2561 s32 ret_val = 0; 2562 u16 status_reg = 0; 2563 2564 if (hw->mac.type != e1000_pch2lan) 2565 return 0; 2566 2567 /* Set K1 beacon duration based on 10Mbs speed */ 2568 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg); 2569 if (ret_val) 2570 return ret_val; 2571 2572 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) 2573 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) { 2574 if (status_reg & 2575 (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) { 2576 u16 pm_phy_reg; 2577 2578 /* LV 1G/100 Packet drop issue wa */ 2579 ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg); 2580 if (ret_val) 2581 return ret_val; 2582 pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE; 2583 ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg); 2584 if (ret_val) 2585 return ret_val; 2586 } else { 2587 u32 mac_reg; 2588 2589 mac_reg = er32(FEXTNVM4); 2590 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; 2591 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC; 2592 ew32(FEXTNVM4, mac_reg); 2593 } 2594 } 2595 2596 return ret_val; 2597 } 2598 2599 /** 2600 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware 2601 * @hw: pointer to the HW structure 2602 * @gate: boolean set to true to gate, false to ungate 2603 * 2604 * Gate/ungate the automatic PHY configuration via hardware; perform 2605 * the configuration via software instead. 2606 **/ 2607 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate) 2608 { 2609 u32 extcnf_ctrl; 2610 2611 if (hw->mac.type < e1000_pch2lan) 2612 return; 2613 2614 extcnf_ctrl = er32(EXTCNF_CTRL); 2615 2616 if (gate) 2617 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG; 2618 else 2619 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG; 2620 2621 ew32(EXTCNF_CTRL, extcnf_ctrl); 2622 } 2623 2624 /** 2625 * e1000_lan_init_done_ich8lan - Check for PHY config completion 2626 * @hw: pointer to the HW structure 2627 * 2628 * Check the appropriate indication the MAC has finished configuring the 2629 * PHY after a software reset. 2630 **/ 2631 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw) 2632 { 2633 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT; 2634 2635 /* Wait for basic configuration completes before proceeding */ 2636 do { 2637 data = er32(STATUS); 2638 data &= E1000_STATUS_LAN_INIT_DONE; 2639 usleep_range(100, 200); 2640 } while ((!data) && --loop); 2641 2642 /* If basic configuration is incomplete before the above loop 2643 * count reaches 0, loading the configuration from NVM will 2644 * leave the PHY in a bad state possibly resulting in no link. 2645 */ 2646 if (loop == 0) 2647 e_dbg("LAN_INIT_DONE not set, increase timeout\n"); 2648 2649 /* Clear the Init Done bit for the next init event */ 2650 data = er32(STATUS); 2651 data &= ~E1000_STATUS_LAN_INIT_DONE; 2652 ew32(STATUS, data); 2653 } 2654 2655 /** 2656 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset 2657 * @hw: pointer to the HW structure 2658 **/ 2659 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw) 2660 { 2661 s32 ret_val = 0; 2662 u16 reg; 2663 2664 if (hw->phy.ops.check_reset_block(hw)) 2665 return 0; 2666 2667 /* Allow time for h/w to get to quiescent state after reset */ 2668 usleep_range(10000, 20000); 2669 2670 /* Perform any necessary post-reset workarounds */ 2671 switch (hw->mac.type) { 2672 case e1000_pchlan: 2673 ret_val = e1000_hv_phy_workarounds_ich8lan(hw); 2674 if (ret_val) 2675 return ret_val; 2676 break; 2677 case e1000_pch2lan: 2678 ret_val = e1000_lv_phy_workarounds_ich8lan(hw); 2679 if (ret_val) 2680 return ret_val; 2681 break; 2682 default: 2683 break; 2684 } 2685 2686 /* Clear the host wakeup bit after lcd reset */ 2687 if (hw->mac.type >= e1000_pchlan) { 2688 e1e_rphy(hw, BM_PORT_GEN_CFG, ®); 2689 reg &= ~BM_WUC_HOST_WU_BIT; 2690 e1e_wphy(hw, BM_PORT_GEN_CFG, reg); 2691 } 2692 2693 /* Configure the LCD with the extended configuration region in NVM */ 2694 ret_val = e1000_sw_lcd_config_ich8lan(hw); 2695 if (ret_val) 2696 return ret_val; 2697 2698 /* Configure the LCD with the OEM bits in NVM */ 2699 ret_val = e1000_oem_bits_config_ich8lan(hw, true); 2700 2701 if (hw->mac.type == e1000_pch2lan) { 2702 /* Ungate automatic PHY configuration on non-managed 82579 */ 2703 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 2704 usleep_range(10000, 20000); 2705 e1000_gate_hw_phy_config_ich8lan(hw, false); 2706 } 2707 2708 /* Set EEE LPI Update Timer to 200usec */ 2709 ret_val = hw->phy.ops.acquire(hw); 2710 if (ret_val) 2711 return ret_val; 2712 ret_val = e1000_write_emi_reg_locked(hw, 2713 I82579_LPI_UPDATE_TIMER, 2714 0x1387); 2715 hw->phy.ops.release(hw); 2716 } 2717 2718 return ret_val; 2719 } 2720 2721 /** 2722 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset 2723 * @hw: pointer to the HW structure 2724 * 2725 * Resets the PHY 2726 * This is a function pointer entry point called by drivers 2727 * or other shared routines. 2728 **/ 2729 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw) 2730 { 2731 s32 ret_val = 0; 2732 2733 /* Gate automatic PHY configuration by hardware on non-managed 82579 */ 2734 if ((hw->mac.type == e1000_pch2lan) && 2735 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) 2736 e1000_gate_hw_phy_config_ich8lan(hw, true); 2737 2738 ret_val = e1000e_phy_hw_reset_generic(hw); 2739 if (ret_val) 2740 return ret_val; 2741 2742 return e1000_post_phy_reset_ich8lan(hw); 2743 } 2744 2745 /** 2746 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state 2747 * @hw: pointer to the HW structure 2748 * @active: true to enable LPLU, false to disable 2749 * 2750 * Sets the LPLU state according to the active flag. For PCH, if OEM write 2751 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set 2752 * the phy speed. This function will manually set the LPLU bit and restart 2753 * auto-neg as hw would do. D3 and D0 LPLU will call the same function 2754 * since it configures the same bit. 2755 **/ 2756 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active) 2757 { 2758 s32 ret_val; 2759 u16 oem_reg; 2760 2761 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg); 2762 if (ret_val) 2763 return ret_val; 2764 2765 if (active) 2766 oem_reg |= HV_OEM_BITS_LPLU; 2767 else 2768 oem_reg &= ~HV_OEM_BITS_LPLU; 2769 2770 if (!hw->phy.ops.check_reset_block(hw)) 2771 oem_reg |= HV_OEM_BITS_RESTART_AN; 2772 2773 return e1e_wphy(hw, HV_OEM_BITS, oem_reg); 2774 } 2775 2776 /** 2777 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state 2778 * @hw: pointer to the HW structure 2779 * @active: true to enable LPLU, false to disable 2780 * 2781 * Sets the LPLU D0 state according to the active flag. When 2782 * activating LPLU this function also disables smart speed 2783 * and vice versa. LPLU will not be activated unless the 2784 * device autonegotiation advertisement meets standards of 2785 * either 10 or 10/100 or 10/100/1000 at all duplexes. 2786 * This is a function pointer entry point only called by 2787 * PHY setup routines. 2788 **/ 2789 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active) 2790 { 2791 struct e1000_phy_info *phy = &hw->phy; 2792 u32 phy_ctrl; 2793 s32 ret_val = 0; 2794 u16 data; 2795 2796 if (phy->type == e1000_phy_ife) 2797 return 0; 2798 2799 phy_ctrl = er32(PHY_CTRL); 2800 2801 if (active) { 2802 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; 2803 ew32(PHY_CTRL, phy_ctrl); 2804 2805 if (phy->type != e1000_phy_igp_3) 2806 return 0; 2807 2808 /* Call gig speed drop workaround on LPLU before accessing 2809 * any PHY registers 2810 */ 2811 if (hw->mac.type == e1000_ich8lan) 2812 e1000e_gig_downshift_workaround_ich8lan(hw); 2813 2814 /* When LPLU is enabled, we should disable SmartSpeed */ 2815 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); 2816 if (ret_val) 2817 return ret_val; 2818 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 2819 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); 2820 if (ret_val) 2821 return ret_val; 2822 } else { 2823 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; 2824 ew32(PHY_CTRL, phy_ctrl); 2825 2826 if (phy->type != e1000_phy_igp_3) 2827 return 0; 2828 2829 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 2830 * during Dx states where the power conservation is most 2831 * important. During driver activity we should enable 2832 * SmartSpeed, so performance is maintained. 2833 */ 2834 if (phy->smart_speed == e1000_smart_speed_on) { 2835 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 2836 &data); 2837 if (ret_val) 2838 return ret_val; 2839 2840 data |= IGP01E1000_PSCFR_SMART_SPEED; 2841 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 2842 data); 2843 if (ret_val) 2844 return ret_val; 2845 } else if (phy->smart_speed == e1000_smart_speed_off) { 2846 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 2847 &data); 2848 if (ret_val) 2849 return ret_val; 2850 2851 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 2852 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 2853 data); 2854 if (ret_val) 2855 return ret_val; 2856 } 2857 } 2858 2859 return 0; 2860 } 2861 2862 /** 2863 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state 2864 * @hw: pointer to the HW structure 2865 * @active: true to enable LPLU, false to disable 2866 * 2867 * Sets the LPLU D3 state according to the active flag. When 2868 * activating LPLU this function also disables smart speed 2869 * and vice versa. LPLU will not be activated unless the 2870 * device autonegotiation advertisement meets standards of 2871 * either 10 or 10/100 or 10/100/1000 at all duplexes. 2872 * This is a function pointer entry point only called by 2873 * PHY setup routines. 2874 **/ 2875 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active) 2876 { 2877 struct e1000_phy_info *phy = &hw->phy; 2878 u32 phy_ctrl; 2879 s32 ret_val = 0; 2880 u16 data; 2881 2882 phy_ctrl = er32(PHY_CTRL); 2883 2884 if (!active) { 2885 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; 2886 ew32(PHY_CTRL, phy_ctrl); 2887 2888 if (phy->type != e1000_phy_igp_3) 2889 return 0; 2890 2891 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 2892 * during Dx states where the power conservation is most 2893 * important. During driver activity we should enable 2894 * SmartSpeed, so performance is maintained. 2895 */ 2896 if (phy->smart_speed == e1000_smart_speed_on) { 2897 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 2898 &data); 2899 if (ret_val) 2900 return ret_val; 2901 2902 data |= IGP01E1000_PSCFR_SMART_SPEED; 2903 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 2904 data); 2905 if (ret_val) 2906 return ret_val; 2907 } else if (phy->smart_speed == e1000_smart_speed_off) { 2908 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 2909 &data); 2910 if (ret_val) 2911 return ret_val; 2912 2913 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 2914 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 2915 data); 2916 if (ret_val) 2917 return ret_val; 2918 } 2919 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || 2920 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || 2921 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { 2922 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; 2923 ew32(PHY_CTRL, phy_ctrl); 2924 2925 if (phy->type != e1000_phy_igp_3) 2926 return 0; 2927 2928 /* Call gig speed drop workaround on LPLU before accessing 2929 * any PHY registers 2930 */ 2931 if (hw->mac.type == e1000_ich8lan) 2932 e1000e_gig_downshift_workaround_ich8lan(hw); 2933 2934 /* When LPLU is enabled, we should disable SmartSpeed */ 2935 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); 2936 if (ret_val) 2937 return ret_val; 2938 2939 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 2940 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); 2941 } 2942 2943 return ret_val; 2944 } 2945 2946 /** 2947 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1 2948 * @hw: pointer to the HW structure 2949 * @bank: pointer to the variable that returns the active bank 2950 * 2951 * Reads signature byte from the NVM using the flash access registers. 2952 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank. 2953 **/ 2954 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank) 2955 { 2956 u32 eecd; 2957 struct e1000_nvm_info *nvm = &hw->nvm; 2958 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16); 2959 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1; 2960 u8 sig_byte = 0; 2961 s32 ret_val; 2962 2963 switch (hw->mac.type) { 2964 case e1000_ich8lan: 2965 case e1000_ich9lan: 2966 eecd = er32(EECD); 2967 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) == 2968 E1000_EECD_SEC1VAL_VALID_MASK) { 2969 if (eecd & E1000_EECD_SEC1VAL) 2970 *bank = 1; 2971 else 2972 *bank = 0; 2973 2974 return 0; 2975 } 2976 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n"); 2977 /* fall-thru */ 2978 default: 2979 /* set bank to 0 in case flash read fails */ 2980 *bank = 0; 2981 2982 /* Check bank 0 */ 2983 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset, 2984 &sig_byte); 2985 if (ret_val) 2986 return ret_val; 2987 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 2988 E1000_ICH_NVM_SIG_VALUE) { 2989 *bank = 0; 2990 return 0; 2991 } 2992 2993 /* Check bank 1 */ 2994 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset + 2995 bank1_offset, 2996 &sig_byte); 2997 if (ret_val) 2998 return ret_val; 2999 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 3000 E1000_ICH_NVM_SIG_VALUE) { 3001 *bank = 1; 3002 return 0; 3003 } 3004 3005 e_dbg("ERROR: No valid NVM bank present\n"); 3006 return -E1000_ERR_NVM; 3007 } 3008 } 3009 3010 /** 3011 * e1000_read_nvm_ich8lan - Read word(s) from the NVM 3012 * @hw: pointer to the HW structure 3013 * @offset: The offset (in bytes) of the word(s) to read. 3014 * @words: Size of data to read in words 3015 * @data: Pointer to the word(s) to read at offset. 3016 * 3017 * Reads a word(s) from the NVM using the flash access registers. 3018 **/ 3019 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, 3020 u16 *data) 3021 { 3022 struct e1000_nvm_info *nvm = &hw->nvm; 3023 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3024 u32 act_offset; 3025 s32 ret_val = 0; 3026 u32 bank = 0; 3027 u16 i, word; 3028 3029 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || 3030 (words == 0)) { 3031 e_dbg("nvm parameter(s) out of bounds\n"); 3032 ret_val = -E1000_ERR_NVM; 3033 goto out; 3034 } 3035 3036 nvm->ops.acquire(hw); 3037 3038 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 3039 if (ret_val) { 3040 e_dbg("Could not detect valid bank, assuming bank 0\n"); 3041 bank = 0; 3042 } 3043 3044 act_offset = (bank) ? nvm->flash_bank_size : 0; 3045 act_offset += offset; 3046 3047 ret_val = 0; 3048 for (i = 0; i < words; i++) { 3049 if (dev_spec->shadow_ram[offset + i].modified) { 3050 data[i] = dev_spec->shadow_ram[offset + i].value; 3051 } else { 3052 ret_val = e1000_read_flash_word_ich8lan(hw, 3053 act_offset + i, 3054 &word); 3055 if (ret_val) 3056 break; 3057 data[i] = word; 3058 } 3059 } 3060 3061 nvm->ops.release(hw); 3062 3063 out: 3064 if (ret_val) 3065 e_dbg("NVM read error: %d\n", ret_val); 3066 3067 return ret_val; 3068 } 3069 3070 /** 3071 * e1000_flash_cycle_init_ich8lan - Initialize flash 3072 * @hw: pointer to the HW structure 3073 * 3074 * This function does initial flash setup so that a new read/write/erase cycle 3075 * can be started. 3076 **/ 3077 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw) 3078 { 3079 union ich8_hws_flash_status hsfsts; 3080 s32 ret_val = -E1000_ERR_NVM; 3081 3082 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3083 3084 /* Check if the flash descriptor is valid */ 3085 if (!hsfsts.hsf_status.fldesvalid) { 3086 e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n"); 3087 return -E1000_ERR_NVM; 3088 } 3089 3090 /* Clear FCERR and DAEL in hw status by writing 1 */ 3091 hsfsts.hsf_status.flcerr = 1; 3092 hsfsts.hsf_status.dael = 1; 3093 3094 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); 3095 3096 /* Either we should have a hardware SPI cycle in progress 3097 * bit to check against, in order to start a new cycle or 3098 * FDONE bit should be changed in the hardware so that it 3099 * is 1 after hardware reset, which can then be used as an 3100 * indication whether a cycle is in progress or has been 3101 * completed. 3102 */ 3103 3104 if (!hsfsts.hsf_status.flcinprog) { 3105 /* There is no cycle running at present, 3106 * so we can start a cycle. 3107 * Begin by setting Flash Cycle Done. 3108 */ 3109 hsfsts.hsf_status.flcdone = 1; 3110 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); 3111 ret_val = 0; 3112 } else { 3113 s32 i; 3114 3115 /* Otherwise poll for sometime so the current 3116 * cycle has a chance to end before giving up. 3117 */ 3118 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) { 3119 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3120 if (!hsfsts.hsf_status.flcinprog) { 3121 ret_val = 0; 3122 break; 3123 } 3124 udelay(1); 3125 } 3126 if (!ret_val) { 3127 /* Successful in waiting for previous cycle to timeout, 3128 * now set the Flash Cycle Done. 3129 */ 3130 hsfsts.hsf_status.flcdone = 1; 3131 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); 3132 } else { 3133 e_dbg("Flash controller busy, cannot get access\n"); 3134 } 3135 } 3136 3137 return ret_val; 3138 } 3139 3140 /** 3141 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase) 3142 * @hw: pointer to the HW structure 3143 * @timeout: maximum time to wait for completion 3144 * 3145 * This function starts a flash cycle and waits for its completion. 3146 **/ 3147 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout) 3148 { 3149 union ich8_hws_flash_ctrl hsflctl; 3150 union ich8_hws_flash_status hsfsts; 3151 u32 i = 0; 3152 3153 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ 3154 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 3155 hsflctl.hsf_ctrl.flcgo = 1; 3156 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 3157 3158 /* wait till FDONE bit is set to 1 */ 3159 do { 3160 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3161 if (hsfsts.hsf_status.flcdone) 3162 break; 3163 udelay(1); 3164 } while (i++ < timeout); 3165 3166 if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr) 3167 return 0; 3168 3169 return -E1000_ERR_NVM; 3170 } 3171 3172 /** 3173 * e1000_read_flash_word_ich8lan - Read word from flash 3174 * @hw: pointer to the HW structure 3175 * @offset: offset to data location 3176 * @data: pointer to the location for storing the data 3177 * 3178 * Reads the flash word at offset into data. Offset is converted 3179 * to bytes before read. 3180 **/ 3181 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, 3182 u16 *data) 3183 { 3184 /* Must convert offset into bytes. */ 3185 offset <<= 1; 3186 3187 return e1000_read_flash_data_ich8lan(hw, offset, 2, data); 3188 } 3189 3190 /** 3191 * e1000_read_flash_byte_ich8lan - Read byte from flash 3192 * @hw: pointer to the HW structure 3193 * @offset: The offset of the byte to read. 3194 * @data: Pointer to a byte to store the value read. 3195 * 3196 * Reads a single byte from the NVM using the flash access registers. 3197 **/ 3198 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, 3199 u8 *data) 3200 { 3201 s32 ret_val; 3202 u16 word = 0; 3203 3204 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word); 3205 if (ret_val) 3206 return ret_val; 3207 3208 *data = (u8)word; 3209 3210 return 0; 3211 } 3212 3213 /** 3214 * e1000_read_flash_data_ich8lan - Read byte or word from NVM 3215 * @hw: pointer to the HW structure 3216 * @offset: The offset (in bytes) of the byte or word to read. 3217 * @size: Size of data to read, 1=byte 2=word 3218 * @data: Pointer to the word to store the value read. 3219 * 3220 * Reads a byte or word from the NVM using the flash access registers. 3221 **/ 3222 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 3223 u8 size, u16 *data) 3224 { 3225 union ich8_hws_flash_status hsfsts; 3226 union ich8_hws_flash_ctrl hsflctl; 3227 u32 flash_linear_addr; 3228 u32 flash_data = 0; 3229 s32 ret_val = -E1000_ERR_NVM; 3230 u8 count = 0; 3231 3232 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) 3233 return -E1000_ERR_NVM; 3234 3235 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 3236 hw->nvm.flash_base_addr); 3237 3238 do { 3239 udelay(1); 3240 /* Steps */ 3241 ret_val = e1000_flash_cycle_init_ich8lan(hw); 3242 if (ret_val) 3243 break; 3244 3245 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 3246 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ 3247 hsflctl.hsf_ctrl.fldbcount = size - 1; 3248 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; 3249 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 3250 3251 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 3252 3253 ret_val = 3254 e1000_flash_cycle_ich8lan(hw, 3255 ICH_FLASH_READ_COMMAND_TIMEOUT); 3256 3257 /* Check if FCERR is set to 1, if set to 1, clear it 3258 * and try the whole sequence a few more times, else 3259 * read in (shift in) the Flash Data0, the order is 3260 * least significant byte first msb to lsb 3261 */ 3262 if (!ret_val) { 3263 flash_data = er32flash(ICH_FLASH_FDATA0); 3264 if (size == 1) 3265 *data = (u8)(flash_data & 0x000000FF); 3266 else if (size == 2) 3267 *data = (u16)(flash_data & 0x0000FFFF); 3268 break; 3269 } else { 3270 /* If we've gotten here, then things are probably 3271 * completely hosed, but if the error condition is 3272 * detected, it won't hurt to give it another try... 3273 * ICH_FLASH_CYCLE_REPEAT_COUNT times. 3274 */ 3275 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3276 if (hsfsts.hsf_status.flcerr) { 3277 /* Repeat for some time before giving up. */ 3278 continue; 3279 } else if (!hsfsts.hsf_status.flcdone) { 3280 e_dbg("Timeout error - flash cycle did not complete.\n"); 3281 break; 3282 } 3283 } 3284 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 3285 3286 return ret_val; 3287 } 3288 3289 /** 3290 * e1000_write_nvm_ich8lan - Write word(s) to the NVM 3291 * @hw: pointer to the HW structure 3292 * @offset: The offset (in bytes) of the word(s) to write. 3293 * @words: Size of data to write in words 3294 * @data: Pointer to the word(s) to write at offset. 3295 * 3296 * Writes a byte or word to the NVM using the flash access registers. 3297 **/ 3298 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, 3299 u16 *data) 3300 { 3301 struct e1000_nvm_info *nvm = &hw->nvm; 3302 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3303 u16 i; 3304 3305 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || 3306 (words == 0)) { 3307 e_dbg("nvm parameter(s) out of bounds\n"); 3308 return -E1000_ERR_NVM; 3309 } 3310 3311 nvm->ops.acquire(hw); 3312 3313 for (i = 0; i < words; i++) { 3314 dev_spec->shadow_ram[offset + i].modified = true; 3315 dev_spec->shadow_ram[offset + i].value = data[i]; 3316 } 3317 3318 nvm->ops.release(hw); 3319 3320 return 0; 3321 } 3322 3323 /** 3324 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM 3325 * @hw: pointer to the HW structure 3326 * 3327 * The NVM checksum is updated by calling the generic update_nvm_checksum, 3328 * which writes the checksum to the shadow ram. The changes in the shadow 3329 * ram are then committed to the EEPROM by processing each bank at a time 3330 * checking for the modified bit and writing only the pending changes. 3331 * After a successful commit, the shadow ram is cleared and is ready for 3332 * future writes. 3333 **/ 3334 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw) 3335 { 3336 struct e1000_nvm_info *nvm = &hw->nvm; 3337 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3338 u32 i, act_offset, new_bank_offset, old_bank_offset, bank; 3339 s32 ret_val; 3340 u16 data; 3341 3342 ret_val = e1000e_update_nvm_checksum_generic(hw); 3343 if (ret_val) 3344 goto out; 3345 3346 if (nvm->type != e1000_nvm_flash_sw) 3347 goto out; 3348 3349 nvm->ops.acquire(hw); 3350 3351 /* We're writing to the opposite bank so if we're on bank 1, 3352 * write to bank 0 etc. We also need to erase the segment that 3353 * is going to be written 3354 */ 3355 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 3356 if (ret_val) { 3357 e_dbg("Could not detect valid bank, assuming bank 0\n"); 3358 bank = 0; 3359 } 3360 3361 if (bank == 0) { 3362 new_bank_offset = nvm->flash_bank_size; 3363 old_bank_offset = 0; 3364 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); 3365 if (ret_val) 3366 goto release; 3367 } else { 3368 old_bank_offset = nvm->flash_bank_size; 3369 new_bank_offset = 0; 3370 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); 3371 if (ret_val) 3372 goto release; 3373 } 3374 3375 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { 3376 /* Determine whether to write the value stored 3377 * in the other NVM bank or a modified value stored 3378 * in the shadow RAM 3379 */ 3380 if (dev_spec->shadow_ram[i].modified) { 3381 data = dev_spec->shadow_ram[i].value; 3382 } else { 3383 ret_val = e1000_read_flash_word_ich8lan(hw, i + 3384 old_bank_offset, 3385 &data); 3386 if (ret_val) 3387 break; 3388 } 3389 3390 /* If the word is 0x13, then make sure the signature bits 3391 * (15:14) are 11b until the commit has completed. 3392 * This will allow us to write 10b which indicates the 3393 * signature is valid. We want to do this after the write 3394 * has completed so that we don't mark the segment valid 3395 * while the write is still in progress 3396 */ 3397 if (i == E1000_ICH_NVM_SIG_WORD) 3398 data |= E1000_ICH_NVM_SIG_MASK; 3399 3400 /* Convert offset to bytes. */ 3401 act_offset = (i + new_bank_offset) << 1; 3402 3403 usleep_range(100, 200); 3404 /* Write the bytes to the new bank. */ 3405 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, 3406 act_offset, 3407 (u8)data); 3408 if (ret_val) 3409 break; 3410 3411 usleep_range(100, 200); 3412 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, 3413 act_offset + 1, 3414 (u8)(data >> 8)); 3415 if (ret_val) 3416 break; 3417 } 3418 3419 /* Don't bother writing the segment valid bits if sector 3420 * programming failed. 3421 */ 3422 if (ret_val) { 3423 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */ 3424 e_dbg("Flash commit failed.\n"); 3425 goto release; 3426 } 3427 3428 /* Finally validate the new segment by setting bit 15:14 3429 * to 10b in word 0x13 , this can be done without an 3430 * erase as well since these bits are 11 to start with 3431 * and we need to change bit 14 to 0b 3432 */ 3433 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; 3434 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data); 3435 if (ret_val) 3436 goto release; 3437 3438 data &= 0xBFFF; 3439 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, 3440 act_offset * 2 + 1, 3441 (u8)(data >> 8)); 3442 if (ret_val) 3443 goto release; 3444 3445 /* And invalidate the previously valid segment by setting 3446 * its signature word (0x13) high_byte to 0b. This can be 3447 * done without an erase because flash erase sets all bits 3448 * to 1's. We can write 1's to 0's without an erase 3449 */ 3450 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; 3451 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0); 3452 if (ret_val) 3453 goto release; 3454 3455 /* Great! Everything worked, we can now clear the cached entries. */ 3456 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { 3457 dev_spec->shadow_ram[i].modified = false; 3458 dev_spec->shadow_ram[i].value = 0xFFFF; 3459 } 3460 3461 release: 3462 nvm->ops.release(hw); 3463 3464 /* Reload the EEPROM, or else modifications will not appear 3465 * until after the next adapter reset. 3466 */ 3467 if (!ret_val) { 3468 nvm->ops.reload(hw); 3469 usleep_range(10000, 20000); 3470 } 3471 3472 out: 3473 if (ret_val) 3474 e_dbg("NVM update error: %d\n", ret_val); 3475 3476 return ret_val; 3477 } 3478 3479 /** 3480 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum 3481 * @hw: pointer to the HW structure 3482 * 3483 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19. 3484 * If the bit is 0, that the EEPROM had been modified, but the checksum was not 3485 * calculated, in which case we need to calculate the checksum and set bit 6. 3486 **/ 3487 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw) 3488 { 3489 s32 ret_val; 3490 u16 data; 3491 u16 word; 3492 u16 valid_csum_mask; 3493 3494 /* Read NVM and check Invalid Image CSUM bit. If this bit is 0, 3495 * the checksum needs to be fixed. This bit is an indication that 3496 * the NVM was prepared by OEM software and did not calculate 3497 * the checksum...a likely scenario. 3498 */ 3499 switch (hw->mac.type) { 3500 case e1000_pch_lpt: 3501 word = NVM_COMPAT; 3502 valid_csum_mask = NVM_COMPAT_VALID_CSUM; 3503 break; 3504 default: 3505 word = NVM_FUTURE_INIT_WORD1; 3506 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM; 3507 break; 3508 } 3509 3510 ret_val = e1000_read_nvm(hw, word, 1, &data); 3511 if (ret_val) 3512 return ret_val; 3513 3514 if (!(data & valid_csum_mask)) { 3515 data |= valid_csum_mask; 3516 ret_val = e1000_write_nvm(hw, word, 1, &data); 3517 if (ret_val) 3518 return ret_val; 3519 ret_val = e1000e_update_nvm_checksum(hw); 3520 if (ret_val) 3521 return ret_val; 3522 } 3523 3524 return e1000e_validate_nvm_checksum_generic(hw); 3525 } 3526 3527 /** 3528 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only 3529 * @hw: pointer to the HW structure 3530 * 3531 * To prevent malicious write/erase of the NVM, set it to be read-only 3532 * so that the hardware ignores all write/erase cycles of the NVM via 3533 * the flash control registers. The shadow-ram copy of the NVM will 3534 * still be updated, however any updates to this copy will not stick 3535 * across driver reloads. 3536 **/ 3537 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw) 3538 { 3539 struct e1000_nvm_info *nvm = &hw->nvm; 3540 union ich8_flash_protected_range pr0; 3541 union ich8_hws_flash_status hsfsts; 3542 u32 gfpreg; 3543 3544 nvm->ops.acquire(hw); 3545 3546 gfpreg = er32flash(ICH_FLASH_GFPREG); 3547 3548 /* Write-protect GbE Sector of NVM */ 3549 pr0.regval = er32flash(ICH_FLASH_PR0); 3550 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK; 3551 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK); 3552 pr0.range.wpe = true; 3553 ew32flash(ICH_FLASH_PR0, pr0.regval); 3554 3555 /* Lock down a subset of GbE Flash Control Registers, e.g. 3556 * PR0 to prevent the write-protection from being lifted. 3557 * Once FLOCKDN is set, the registers protected by it cannot 3558 * be written until FLOCKDN is cleared by a hardware reset. 3559 */ 3560 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3561 hsfsts.hsf_status.flockdn = true; 3562 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval); 3563 3564 nvm->ops.release(hw); 3565 } 3566 3567 /** 3568 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM 3569 * @hw: pointer to the HW structure 3570 * @offset: The offset (in bytes) of the byte/word to read. 3571 * @size: Size of data to read, 1=byte 2=word 3572 * @data: The byte(s) to write to the NVM. 3573 * 3574 * Writes one/two bytes to the NVM using the flash access registers. 3575 **/ 3576 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 3577 u8 size, u16 data) 3578 { 3579 union ich8_hws_flash_status hsfsts; 3580 union ich8_hws_flash_ctrl hsflctl; 3581 u32 flash_linear_addr; 3582 u32 flash_data = 0; 3583 s32 ret_val; 3584 u8 count = 0; 3585 3586 if (size < 1 || size > 2 || data > size * 0xff || 3587 offset > ICH_FLASH_LINEAR_ADDR_MASK) 3588 return -E1000_ERR_NVM; 3589 3590 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 3591 hw->nvm.flash_base_addr); 3592 3593 do { 3594 udelay(1); 3595 /* Steps */ 3596 ret_val = e1000_flash_cycle_init_ich8lan(hw); 3597 if (ret_val) 3598 break; 3599 3600 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 3601 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ 3602 hsflctl.hsf_ctrl.fldbcount = size - 1; 3603 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; 3604 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 3605 3606 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 3607 3608 if (size == 1) 3609 flash_data = (u32)data & 0x00FF; 3610 else 3611 flash_data = (u32)data; 3612 3613 ew32flash(ICH_FLASH_FDATA0, flash_data); 3614 3615 /* check if FCERR is set to 1 , if set to 1, clear it 3616 * and try the whole sequence a few more times else done 3617 */ 3618 ret_val = 3619 e1000_flash_cycle_ich8lan(hw, 3620 ICH_FLASH_WRITE_COMMAND_TIMEOUT); 3621 if (!ret_val) 3622 break; 3623 3624 /* If we're here, then things are most likely 3625 * completely hosed, but if the error condition 3626 * is detected, it won't hurt to give it another 3627 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. 3628 */ 3629 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3630 if (hsfsts.hsf_status.flcerr) 3631 /* Repeat for some time before giving up. */ 3632 continue; 3633 if (!hsfsts.hsf_status.flcdone) { 3634 e_dbg("Timeout error - flash cycle did not complete.\n"); 3635 break; 3636 } 3637 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 3638 3639 return ret_val; 3640 } 3641 3642 /** 3643 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM 3644 * @hw: pointer to the HW structure 3645 * @offset: The index of the byte to read. 3646 * @data: The byte to write to the NVM. 3647 * 3648 * Writes a single byte to the NVM using the flash access registers. 3649 **/ 3650 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, 3651 u8 data) 3652 { 3653 u16 word = (u16)data; 3654 3655 return e1000_write_flash_data_ich8lan(hw, offset, 1, word); 3656 } 3657 3658 /** 3659 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM 3660 * @hw: pointer to the HW structure 3661 * @offset: The offset of the byte to write. 3662 * @byte: The byte to write to the NVM. 3663 * 3664 * Writes a single byte to the NVM using the flash access registers. 3665 * Goes through a retry algorithm before giving up. 3666 **/ 3667 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, 3668 u32 offset, u8 byte) 3669 { 3670 s32 ret_val; 3671 u16 program_retries; 3672 3673 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); 3674 if (!ret_val) 3675 return ret_val; 3676 3677 for (program_retries = 0; program_retries < 100; program_retries++) { 3678 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset); 3679 usleep_range(100, 200); 3680 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); 3681 if (!ret_val) 3682 break; 3683 } 3684 if (program_retries == 100) 3685 return -E1000_ERR_NVM; 3686 3687 return 0; 3688 } 3689 3690 /** 3691 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM 3692 * @hw: pointer to the HW structure 3693 * @bank: 0 for first bank, 1 for second bank, etc. 3694 * 3695 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based. 3696 * bank N is 4096 * N + flash_reg_addr. 3697 **/ 3698 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank) 3699 { 3700 struct e1000_nvm_info *nvm = &hw->nvm; 3701 union ich8_hws_flash_status hsfsts; 3702 union ich8_hws_flash_ctrl hsflctl; 3703 u32 flash_linear_addr; 3704 /* bank size is in 16bit words - adjust to bytes */ 3705 u32 flash_bank_size = nvm->flash_bank_size * 2; 3706 s32 ret_val; 3707 s32 count = 0; 3708 s32 j, iteration, sector_size; 3709 3710 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3711 3712 /* Determine HW Sector size: Read BERASE bits of hw flash status 3713 * register 3714 * 00: The Hw sector is 256 bytes, hence we need to erase 16 3715 * consecutive sectors. The start index for the nth Hw sector 3716 * can be calculated as = bank * 4096 + n * 256 3717 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. 3718 * The start index for the nth Hw sector can be calculated 3719 * as = bank * 4096 3720 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192 3721 * (ich9 only, otherwise error condition) 3722 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536 3723 */ 3724 switch (hsfsts.hsf_status.berasesz) { 3725 case 0: 3726 /* Hw sector size 256 */ 3727 sector_size = ICH_FLASH_SEG_SIZE_256; 3728 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256; 3729 break; 3730 case 1: 3731 sector_size = ICH_FLASH_SEG_SIZE_4K; 3732 iteration = 1; 3733 break; 3734 case 2: 3735 sector_size = ICH_FLASH_SEG_SIZE_8K; 3736 iteration = 1; 3737 break; 3738 case 3: 3739 sector_size = ICH_FLASH_SEG_SIZE_64K; 3740 iteration = 1; 3741 break; 3742 default: 3743 return -E1000_ERR_NVM; 3744 } 3745 3746 /* Start with the base address, then add the sector offset. */ 3747 flash_linear_addr = hw->nvm.flash_base_addr; 3748 flash_linear_addr += (bank) ? flash_bank_size : 0; 3749 3750 for (j = 0; j < iteration; j++) { 3751 do { 3752 u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT; 3753 3754 /* Steps */ 3755 ret_val = e1000_flash_cycle_init_ich8lan(hw); 3756 if (ret_val) 3757 return ret_val; 3758 3759 /* Write a value 11 (block Erase) in Flash 3760 * Cycle field in hw flash control 3761 */ 3762 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 3763 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; 3764 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 3765 3766 /* Write the last 24 bits of an index within the 3767 * block into Flash Linear address field in Flash 3768 * Address. 3769 */ 3770 flash_linear_addr += (j * sector_size); 3771 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 3772 3773 ret_val = e1000_flash_cycle_ich8lan(hw, timeout); 3774 if (!ret_val) 3775 break; 3776 3777 /* Check if FCERR is set to 1. If 1, 3778 * clear it and try the whole sequence 3779 * a few more times else Done 3780 */ 3781 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3782 if (hsfsts.hsf_status.flcerr) 3783 /* repeat for some time before giving up */ 3784 continue; 3785 else if (!hsfsts.hsf_status.flcdone) 3786 return ret_val; 3787 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT); 3788 } 3789 3790 return 0; 3791 } 3792 3793 /** 3794 * e1000_valid_led_default_ich8lan - Set the default LED settings 3795 * @hw: pointer to the HW structure 3796 * @data: Pointer to the LED settings 3797 * 3798 * Reads the LED default settings from the NVM to data. If the NVM LED 3799 * settings is all 0's or F's, set the LED default to a valid LED default 3800 * setting. 3801 **/ 3802 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data) 3803 { 3804 s32 ret_val; 3805 3806 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); 3807 if (ret_val) { 3808 e_dbg("NVM Read Error\n"); 3809 return ret_val; 3810 } 3811 3812 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) 3813 *data = ID_LED_DEFAULT_ICH8LAN; 3814 3815 return 0; 3816 } 3817 3818 /** 3819 * e1000_id_led_init_pchlan - store LED configurations 3820 * @hw: pointer to the HW structure 3821 * 3822 * PCH does not control LEDs via the LEDCTL register, rather it uses 3823 * the PHY LED configuration register. 3824 * 3825 * PCH also does not have an "always on" or "always off" mode which 3826 * complicates the ID feature. Instead of using the "on" mode to indicate 3827 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()), 3828 * use "link_up" mode. The LEDs will still ID on request if there is no 3829 * link based on logic in e1000_led_[on|off]_pchlan(). 3830 **/ 3831 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw) 3832 { 3833 struct e1000_mac_info *mac = &hw->mac; 3834 s32 ret_val; 3835 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP; 3836 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT; 3837 u16 data, i, temp, shift; 3838 3839 /* Get default ID LED modes */ 3840 ret_val = hw->nvm.ops.valid_led_default(hw, &data); 3841 if (ret_val) 3842 return ret_val; 3843 3844 mac->ledctl_default = er32(LEDCTL); 3845 mac->ledctl_mode1 = mac->ledctl_default; 3846 mac->ledctl_mode2 = mac->ledctl_default; 3847 3848 for (i = 0; i < 4; i++) { 3849 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK; 3850 shift = (i * 5); 3851 switch (temp) { 3852 case ID_LED_ON1_DEF2: 3853 case ID_LED_ON1_ON2: 3854 case ID_LED_ON1_OFF2: 3855 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); 3856 mac->ledctl_mode1 |= (ledctl_on << shift); 3857 break; 3858 case ID_LED_OFF1_DEF2: 3859 case ID_LED_OFF1_ON2: 3860 case ID_LED_OFF1_OFF2: 3861 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); 3862 mac->ledctl_mode1 |= (ledctl_off << shift); 3863 break; 3864 default: 3865 /* Do nothing */ 3866 break; 3867 } 3868 switch (temp) { 3869 case ID_LED_DEF1_ON2: 3870 case ID_LED_ON1_ON2: 3871 case ID_LED_OFF1_ON2: 3872 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); 3873 mac->ledctl_mode2 |= (ledctl_on << shift); 3874 break; 3875 case ID_LED_DEF1_OFF2: 3876 case ID_LED_ON1_OFF2: 3877 case ID_LED_OFF1_OFF2: 3878 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); 3879 mac->ledctl_mode2 |= (ledctl_off << shift); 3880 break; 3881 default: 3882 /* Do nothing */ 3883 break; 3884 } 3885 } 3886 3887 return 0; 3888 } 3889 3890 /** 3891 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width 3892 * @hw: pointer to the HW structure 3893 * 3894 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability 3895 * register, so the the bus width is hard coded. 3896 **/ 3897 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw) 3898 { 3899 struct e1000_bus_info *bus = &hw->bus; 3900 s32 ret_val; 3901 3902 ret_val = e1000e_get_bus_info_pcie(hw); 3903 3904 /* ICH devices are "PCI Express"-ish. They have 3905 * a configuration space, but do not contain 3906 * PCI Express Capability registers, so bus width 3907 * must be hardcoded. 3908 */ 3909 if (bus->width == e1000_bus_width_unknown) 3910 bus->width = e1000_bus_width_pcie_x1; 3911 3912 return ret_val; 3913 } 3914 3915 /** 3916 * e1000_reset_hw_ich8lan - Reset the hardware 3917 * @hw: pointer to the HW structure 3918 * 3919 * Does a full reset of the hardware which includes a reset of the PHY and 3920 * MAC. 3921 **/ 3922 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw) 3923 { 3924 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3925 u16 kum_cfg; 3926 u32 ctrl, reg; 3927 s32 ret_val; 3928 3929 /* Prevent the PCI-E bus from sticking if there is no TLP connection 3930 * on the last TLP read/write transaction when MAC is reset. 3931 */ 3932 ret_val = e1000e_disable_pcie_master(hw); 3933 if (ret_val) 3934 e_dbg("PCI-E Master disable polling has failed.\n"); 3935 3936 e_dbg("Masking off all interrupts\n"); 3937 ew32(IMC, 0xffffffff); 3938 3939 /* Disable the Transmit and Receive units. Then delay to allow 3940 * any pending transactions to complete before we hit the MAC 3941 * with the global reset. 3942 */ 3943 ew32(RCTL, 0); 3944 ew32(TCTL, E1000_TCTL_PSP); 3945 e1e_flush(); 3946 3947 usleep_range(10000, 20000); 3948 3949 /* Workaround for ICH8 bit corruption issue in FIFO memory */ 3950 if (hw->mac.type == e1000_ich8lan) { 3951 /* Set Tx and Rx buffer allocation to 8k apiece. */ 3952 ew32(PBA, E1000_PBA_8K); 3953 /* Set Packet Buffer Size to 16k. */ 3954 ew32(PBS, E1000_PBS_16K); 3955 } 3956 3957 if (hw->mac.type == e1000_pchlan) { 3958 /* Save the NVM K1 bit setting */ 3959 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg); 3960 if (ret_val) 3961 return ret_val; 3962 3963 if (kum_cfg & E1000_NVM_K1_ENABLE) 3964 dev_spec->nvm_k1_enabled = true; 3965 else 3966 dev_spec->nvm_k1_enabled = false; 3967 } 3968 3969 ctrl = er32(CTRL); 3970 3971 if (!hw->phy.ops.check_reset_block(hw)) { 3972 /* Full-chip reset requires MAC and PHY reset at the same 3973 * time to make sure the interface between MAC and the 3974 * external PHY is reset. 3975 */ 3976 ctrl |= E1000_CTRL_PHY_RST; 3977 3978 /* Gate automatic PHY configuration by hardware on 3979 * non-managed 82579 3980 */ 3981 if ((hw->mac.type == e1000_pch2lan) && 3982 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) 3983 e1000_gate_hw_phy_config_ich8lan(hw, true); 3984 } 3985 ret_val = e1000_acquire_swflag_ich8lan(hw); 3986 e_dbg("Issuing a global reset to ich8lan\n"); 3987 ew32(CTRL, (ctrl | E1000_CTRL_RST)); 3988 /* cannot issue a flush here because it hangs the hardware */ 3989 msleep(20); 3990 3991 /* Set Phy Config Counter to 50msec */ 3992 if (hw->mac.type == e1000_pch2lan) { 3993 reg = er32(FEXTNVM3); 3994 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; 3995 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; 3996 ew32(FEXTNVM3, reg); 3997 } 3998 3999 if (!ret_val) 4000 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); 4001 4002 if (ctrl & E1000_CTRL_PHY_RST) { 4003 ret_val = hw->phy.ops.get_cfg_done(hw); 4004 if (ret_val) 4005 return ret_val; 4006 4007 ret_val = e1000_post_phy_reset_ich8lan(hw); 4008 if (ret_val) 4009 return ret_val; 4010 } 4011 4012 /* For PCH, this write will make sure that any noise 4013 * will be detected as a CRC error and be dropped rather than show up 4014 * as a bad packet to the DMA engine. 4015 */ 4016 if (hw->mac.type == e1000_pchlan) 4017 ew32(CRC_OFFSET, 0x65656565); 4018 4019 ew32(IMC, 0xffffffff); 4020 er32(ICR); 4021 4022 reg = er32(KABGTXD); 4023 reg |= E1000_KABGTXD_BGSQLBIAS; 4024 ew32(KABGTXD, reg); 4025 4026 return 0; 4027 } 4028 4029 /** 4030 * e1000_init_hw_ich8lan - Initialize the hardware 4031 * @hw: pointer to the HW structure 4032 * 4033 * Prepares the hardware for transmit and receive by doing the following: 4034 * - initialize hardware bits 4035 * - initialize LED identification 4036 * - setup receive address registers 4037 * - setup flow control 4038 * - setup transmit descriptors 4039 * - clear statistics 4040 **/ 4041 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw) 4042 { 4043 struct e1000_mac_info *mac = &hw->mac; 4044 u32 ctrl_ext, txdctl, snoop; 4045 s32 ret_val; 4046 u16 i; 4047 4048 e1000_initialize_hw_bits_ich8lan(hw); 4049 4050 /* Initialize identification LED */ 4051 ret_val = mac->ops.id_led_init(hw); 4052 /* An error is not fatal and we should not stop init due to this */ 4053 if (ret_val) 4054 e_dbg("Error initializing identification LED\n"); 4055 4056 /* Setup the receive address. */ 4057 e1000e_init_rx_addrs(hw, mac->rar_entry_count); 4058 4059 /* Zero out the Multicast HASH table */ 4060 e_dbg("Zeroing the MTA\n"); 4061 for (i = 0; i < mac->mta_reg_count; i++) 4062 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); 4063 4064 /* The 82578 Rx buffer will stall if wakeup is enabled in host and 4065 * the ME. Disable wakeup by clearing the host wakeup bit. 4066 * Reset the phy after disabling host wakeup to reset the Rx buffer. 4067 */ 4068 if (hw->phy.type == e1000_phy_82578) { 4069 e1e_rphy(hw, BM_PORT_GEN_CFG, &i); 4070 i &= ~BM_WUC_HOST_WU_BIT; 4071 e1e_wphy(hw, BM_PORT_GEN_CFG, i); 4072 ret_val = e1000_phy_hw_reset_ich8lan(hw); 4073 if (ret_val) 4074 return ret_val; 4075 } 4076 4077 /* Setup link and flow control */ 4078 ret_val = mac->ops.setup_link(hw); 4079 4080 /* Set the transmit descriptor write-back policy for both queues */ 4081 txdctl = er32(TXDCTL(0)); 4082 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) | 4083 E1000_TXDCTL_FULL_TX_DESC_WB); 4084 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) | 4085 E1000_TXDCTL_MAX_TX_DESC_PREFETCH); 4086 ew32(TXDCTL(0), txdctl); 4087 txdctl = er32(TXDCTL(1)); 4088 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) | 4089 E1000_TXDCTL_FULL_TX_DESC_WB); 4090 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) | 4091 E1000_TXDCTL_MAX_TX_DESC_PREFETCH); 4092 ew32(TXDCTL(1), txdctl); 4093 4094 /* ICH8 has opposite polarity of no_snoop bits. 4095 * By default, we should use snoop behavior. 4096 */ 4097 if (mac->type == e1000_ich8lan) 4098 snoop = PCIE_ICH8_SNOOP_ALL; 4099 else 4100 snoop = (u32)~(PCIE_NO_SNOOP_ALL); 4101 e1000e_set_pcie_no_snoop(hw, snoop); 4102 4103 ctrl_ext = er32(CTRL_EXT); 4104 ctrl_ext |= E1000_CTRL_EXT_RO_DIS; 4105 ew32(CTRL_EXT, ctrl_ext); 4106 4107 /* Clear all of the statistics registers (clear on read). It is 4108 * important that we do this after we have tried to establish link 4109 * because the symbol error count will increment wildly if there 4110 * is no link. 4111 */ 4112 e1000_clear_hw_cntrs_ich8lan(hw); 4113 4114 return ret_val; 4115 } 4116 4117 /** 4118 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits 4119 * @hw: pointer to the HW structure 4120 * 4121 * Sets/Clears required hardware bits necessary for correctly setting up the 4122 * hardware for transmit and receive. 4123 **/ 4124 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw) 4125 { 4126 u32 reg; 4127 4128 /* Extended Device Control */ 4129 reg = er32(CTRL_EXT); 4130 reg |= (1 << 22); 4131 /* Enable PHY low-power state when MAC is at D3 w/o WoL */ 4132 if (hw->mac.type >= e1000_pchlan) 4133 reg |= E1000_CTRL_EXT_PHYPDEN; 4134 ew32(CTRL_EXT, reg); 4135 4136 /* Transmit Descriptor Control 0 */ 4137 reg = er32(TXDCTL(0)); 4138 reg |= (1 << 22); 4139 ew32(TXDCTL(0), reg); 4140 4141 /* Transmit Descriptor Control 1 */ 4142 reg = er32(TXDCTL(1)); 4143 reg |= (1 << 22); 4144 ew32(TXDCTL(1), reg); 4145 4146 /* Transmit Arbitration Control 0 */ 4147 reg = er32(TARC(0)); 4148 if (hw->mac.type == e1000_ich8lan) 4149 reg |= (1 << 28) | (1 << 29); 4150 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27); 4151 ew32(TARC(0), reg); 4152 4153 /* Transmit Arbitration Control 1 */ 4154 reg = er32(TARC(1)); 4155 if (er32(TCTL) & E1000_TCTL_MULR) 4156 reg &= ~(1 << 28); 4157 else 4158 reg |= (1 << 28); 4159 reg |= (1 << 24) | (1 << 26) | (1 << 30); 4160 ew32(TARC(1), reg); 4161 4162 /* Device Status */ 4163 if (hw->mac.type == e1000_ich8lan) { 4164 reg = er32(STATUS); 4165 reg &= ~(1 << 31); 4166 ew32(STATUS, reg); 4167 } 4168 4169 /* work-around descriptor data corruption issue during nfs v2 udp 4170 * traffic, just disable the nfs filtering capability 4171 */ 4172 reg = er32(RFCTL); 4173 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS); 4174 4175 /* Disable IPv6 extension header parsing because some malformed 4176 * IPv6 headers can hang the Rx. 4177 */ 4178 if (hw->mac.type == e1000_ich8lan) 4179 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS); 4180 ew32(RFCTL, reg); 4181 4182 /* Enable ECC on Lynxpoint */ 4183 if (hw->mac.type == e1000_pch_lpt) { 4184 reg = er32(PBECCSTS); 4185 reg |= E1000_PBECCSTS_ECC_ENABLE; 4186 ew32(PBECCSTS, reg); 4187 4188 reg = er32(CTRL); 4189 reg |= E1000_CTRL_MEHE; 4190 ew32(CTRL, reg); 4191 } 4192 } 4193 4194 /** 4195 * e1000_setup_link_ich8lan - Setup flow control and link settings 4196 * @hw: pointer to the HW structure 4197 * 4198 * Determines which flow control settings to use, then configures flow 4199 * control. Calls the appropriate media-specific link configuration 4200 * function. Assuming the adapter has a valid link partner, a valid link 4201 * should be established. Assumes the hardware has previously been reset 4202 * and the transmitter and receiver are not enabled. 4203 **/ 4204 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw) 4205 { 4206 s32 ret_val; 4207 4208 if (hw->phy.ops.check_reset_block(hw)) 4209 return 0; 4210 4211 /* ICH parts do not have a word in the NVM to determine 4212 * the default flow control setting, so we explicitly 4213 * set it to full. 4214 */ 4215 if (hw->fc.requested_mode == e1000_fc_default) { 4216 /* Workaround h/w hang when Tx flow control enabled */ 4217 if (hw->mac.type == e1000_pchlan) 4218 hw->fc.requested_mode = e1000_fc_rx_pause; 4219 else 4220 hw->fc.requested_mode = e1000_fc_full; 4221 } 4222 4223 /* Save off the requested flow control mode for use later. Depending 4224 * on the link partner's capabilities, we may or may not use this mode. 4225 */ 4226 hw->fc.current_mode = hw->fc.requested_mode; 4227 4228 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode); 4229 4230 /* Continue to configure the copper link. */ 4231 ret_val = hw->mac.ops.setup_physical_interface(hw); 4232 if (ret_val) 4233 return ret_val; 4234 4235 ew32(FCTTV, hw->fc.pause_time); 4236 if ((hw->phy.type == e1000_phy_82578) || 4237 (hw->phy.type == e1000_phy_82579) || 4238 (hw->phy.type == e1000_phy_i217) || 4239 (hw->phy.type == e1000_phy_82577)) { 4240 ew32(FCRTV_PCH, hw->fc.refresh_time); 4241 4242 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27), 4243 hw->fc.pause_time); 4244 if (ret_val) 4245 return ret_val; 4246 } 4247 4248 return e1000e_set_fc_watermarks(hw); 4249 } 4250 4251 /** 4252 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface 4253 * @hw: pointer to the HW structure 4254 * 4255 * Configures the kumeran interface to the PHY to wait the appropriate time 4256 * when polling the PHY, then call the generic setup_copper_link to finish 4257 * configuring the copper link. 4258 **/ 4259 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw) 4260 { 4261 u32 ctrl; 4262 s32 ret_val; 4263 u16 reg_data; 4264 4265 ctrl = er32(CTRL); 4266 ctrl |= E1000_CTRL_SLU; 4267 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 4268 ew32(CTRL, ctrl); 4269 4270 /* Set the mac to wait the maximum time between each iteration 4271 * and increase the max iterations when polling the phy; 4272 * this fixes erroneous timeouts at 10Mbps. 4273 */ 4274 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF); 4275 if (ret_val) 4276 return ret_val; 4277 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, 4278 ®_data); 4279 if (ret_val) 4280 return ret_val; 4281 reg_data |= 0x3F; 4282 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, 4283 reg_data); 4284 if (ret_val) 4285 return ret_val; 4286 4287 switch (hw->phy.type) { 4288 case e1000_phy_igp_3: 4289 ret_val = e1000e_copper_link_setup_igp(hw); 4290 if (ret_val) 4291 return ret_val; 4292 break; 4293 case e1000_phy_bm: 4294 case e1000_phy_82578: 4295 ret_val = e1000e_copper_link_setup_m88(hw); 4296 if (ret_val) 4297 return ret_val; 4298 break; 4299 case e1000_phy_82577: 4300 case e1000_phy_82579: 4301 ret_val = e1000_copper_link_setup_82577(hw); 4302 if (ret_val) 4303 return ret_val; 4304 break; 4305 case e1000_phy_ife: 4306 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, ®_data); 4307 if (ret_val) 4308 return ret_val; 4309 4310 reg_data &= ~IFE_PMC_AUTO_MDIX; 4311 4312 switch (hw->phy.mdix) { 4313 case 1: 4314 reg_data &= ~IFE_PMC_FORCE_MDIX; 4315 break; 4316 case 2: 4317 reg_data |= IFE_PMC_FORCE_MDIX; 4318 break; 4319 case 0: 4320 default: 4321 reg_data |= IFE_PMC_AUTO_MDIX; 4322 break; 4323 } 4324 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data); 4325 if (ret_val) 4326 return ret_val; 4327 break; 4328 default: 4329 break; 4330 } 4331 4332 return e1000e_setup_copper_link(hw); 4333 } 4334 4335 /** 4336 * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface 4337 * @hw: pointer to the HW structure 4338 * 4339 * Calls the PHY specific link setup function and then calls the 4340 * generic setup_copper_link to finish configuring the link for 4341 * Lynxpoint PCH devices 4342 **/ 4343 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw) 4344 { 4345 u32 ctrl; 4346 s32 ret_val; 4347 4348 ctrl = er32(CTRL); 4349 ctrl |= E1000_CTRL_SLU; 4350 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 4351 ew32(CTRL, ctrl); 4352 4353 ret_val = e1000_copper_link_setup_82577(hw); 4354 if (ret_val) 4355 return ret_val; 4356 4357 return e1000e_setup_copper_link(hw); 4358 } 4359 4360 /** 4361 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex 4362 * @hw: pointer to the HW structure 4363 * @speed: pointer to store current link speed 4364 * @duplex: pointer to store the current link duplex 4365 * 4366 * Calls the generic get_speed_and_duplex to retrieve the current link 4367 * information and then calls the Kumeran lock loss workaround for links at 4368 * gigabit speeds. 4369 **/ 4370 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed, 4371 u16 *duplex) 4372 { 4373 s32 ret_val; 4374 4375 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex); 4376 if (ret_val) 4377 return ret_val; 4378 4379 if ((hw->mac.type == e1000_ich8lan) && 4380 (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) { 4381 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw); 4382 } 4383 4384 return ret_val; 4385 } 4386 4387 /** 4388 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround 4389 * @hw: pointer to the HW structure 4390 * 4391 * Work-around for 82566 Kumeran PCS lock loss: 4392 * On link status change (i.e. PCI reset, speed change) and link is up and 4393 * speed is gigabit- 4394 * 0) if workaround is optionally disabled do nothing 4395 * 1) wait 1ms for Kumeran link to come up 4396 * 2) check Kumeran Diagnostic register PCS lock loss bit 4397 * 3) if not set the link is locked (all is good), otherwise... 4398 * 4) reset the PHY 4399 * 5) repeat up to 10 times 4400 * Note: this is only called for IGP3 copper when speed is 1gb. 4401 **/ 4402 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw) 4403 { 4404 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 4405 u32 phy_ctrl; 4406 s32 ret_val; 4407 u16 i, data; 4408 bool link; 4409 4410 if (!dev_spec->kmrn_lock_loss_workaround_enabled) 4411 return 0; 4412 4413 /* Make sure link is up before proceeding. If not just return. 4414 * Attempting this while link is negotiating fouled up link 4415 * stability 4416 */ 4417 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 4418 if (!link) 4419 return 0; 4420 4421 for (i = 0; i < 10; i++) { 4422 /* read once to clear */ 4423 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); 4424 if (ret_val) 4425 return ret_val; 4426 /* and again to get new status */ 4427 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); 4428 if (ret_val) 4429 return ret_val; 4430 4431 /* check for PCS lock */ 4432 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) 4433 return 0; 4434 4435 /* Issue PHY reset */ 4436 e1000_phy_hw_reset(hw); 4437 mdelay(5); 4438 } 4439 /* Disable GigE link negotiation */ 4440 phy_ctrl = er32(PHY_CTRL); 4441 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE | 4442 E1000_PHY_CTRL_NOND0A_GBE_DISABLE); 4443 ew32(PHY_CTRL, phy_ctrl); 4444 4445 /* Call gig speed drop workaround on Gig disable before accessing 4446 * any PHY registers 4447 */ 4448 e1000e_gig_downshift_workaround_ich8lan(hw); 4449 4450 /* unable to acquire PCS lock */ 4451 return -E1000_ERR_PHY; 4452 } 4453 4454 /** 4455 * e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state 4456 * @hw: pointer to the HW structure 4457 * @state: boolean value used to set the current Kumeran workaround state 4458 * 4459 * If ICH8, set the current Kumeran workaround state (enabled - true 4460 * /disabled - false). 4461 **/ 4462 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw, 4463 bool state) 4464 { 4465 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 4466 4467 if (hw->mac.type != e1000_ich8lan) { 4468 e_dbg("Workaround applies to ICH8 only.\n"); 4469 return; 4470 } 4471 4472 dev_spec->kmrn_lock_loss_workaround_enabled = state; 4473 } 4474 4475 /** 4476 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3 4477 * @hw: pointer to the HW structure 4478 * 4479 * Workaround for 82566 power-down on D3 entry: 4480 * 1) disable gigabit link 4481 * 2) write VR power-down enable 4482 * 3) read it back 4483 * Continue if successful, else issue LCD reset and repeat 4484 **/ 4485 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw) 4486 { 4487 u32 reg; 4488 u16 data; 4489 u8 retry = 0; 4490 4491 if (hw->phy.type != e1000_phy_igp_3) 4492 return; 4493 4494 /* Try the workaround twice (if needed) */ 4495 do { 4496 /* Disable link */ 4497 reg = er32(PHY_CTRL); 4498 reg |= (E1000_PHY_CTRL_GBE_DISABLE | 4499 E1000_PHY_CTRL_NOND0A_GBE_DISABLE); 4500 ew32(PHY_CTRL, reg); 4501 4502 /* Call gig speed drop workaround on Gig disable before 4503 * accessing any PHY registers 4504 */ 4505 if (hw->mac.type == e1000_ich8lan) 4506 e1000e_gig_downshift_workaround_ich8lan(hw); 4507 4508 /* Write VR power-down enable */ 4509 e1e_rphy(hw, IGP3_VR_CTRL, &data); 4510 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; 4511 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN); 4512 4513 /* Read it back and test */ 4514 e1e_rphy(hw, IGP3_VR_CTRL, &data); 4515 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; 4516 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry) 4517 break; 4518 4519 /* Issue PHY reset and repeat at most one more time */ 4520 reg = er32(CTRL); 4521 ew32(CTRL, reg | E1000_CTRL_PHY_RST); 4522 retry++; 4523 } while (retry); 4524 } 4525 4526 /** 4527 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working 4528 * @hw: pointer to the HW structure 4529 * 4530 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC), 4531 * LPLU, Gig disable, MDIC PHY reset): 4532 * 1) Set Kumeran Near-end loopback 4533 * 2) Clear Kumeran Near-end loopback 4534 * Should only be called for ICH8[m] devices with any 1G Phy. 4535 **/ 4536 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw) 4537 { 4538 s32 ret_val; 4539 u16 reg_data; 4540 4541 if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife)) 4542 return; 4543 4544 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, 4545 ®_data); 4546 if (ret_val) 4547 return; 4548 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK; 4549 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, 4550 reg_data); 4551 if (ret_val) 4552 return; 4553 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK; 4554 e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data); 4555 } 4556 4557 /** 4558 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx 4559 * @hw: pointer to the HW structure 4560 * 4561 * During S0 to Sx transition, it is possible the link remains at gig 4562 * instead of negotiating to a lower speed. Before going to Sx, set 4563 * 'Gig Disable' to force link speed negotiation to a lower speed based on 4564 * the LPLU setting in the NVM or custom setting. For PCH and newer parts, 4565 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also 4566 * needs to be written. 4567 * Parts that support (and are linked to a partner which support) EEE in 4568 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power 4569 * than 10Mbps w/o EEE. 4570 **/ 4571 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw) 4572 { 4573 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 4574 u32 phy_ctrl; 4575 s32 ret_val; 4576 4577 phy_ctrl = er32(PHY_CTRL); 4578 phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE; 4579 4580 if (hw->phy.type == e1000_phy_i217) { 4581 u16 phy_reg, device_id = hw->adapter->pdev->device; 4582 4583 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) || 4584 (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) || 4585 (device_id == E1000_DEV_ID_PCH_I218_LM3) || 4586 (device_id == E1000_DEV_ID_PCH_I218_V3)) { 4587 u32 fextnvm6 = er32(FEXTNVM6); 4588 4589 ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK); 4590 } 4591 4592 ret_val = hw->phy.ops.acquire(hw); 4593 if (ret_val) 4594 goto out; 4595 4596 if (!dev_spec->eee_disable) { 4597 u16 eee_advert; 4598 4599 ret_val = 4600 e1000_read_emi_reg_locked(hw, 4601 I217_EEE_ADVERTISEMENT, 4602 &eee_advert); 4603 if (ret_val) 4604 goto release; 4605 4606 /* Disable LPLU if both link partners support 100BaseT 4607 * EEE and 100Full is advertised on both ends of the 4608 * link, and enable Auto Enable LPI since there will 4609 * be no driver to enable LPI while in Sx. 4610 */ 4611 if ((eee_advert & I82579_EEE_100_SUPPORTED) && 4612 (dev_spec->eee_lp_ability & 4613 I82579_EEE_100_SUPPORTED) && 4614 (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) { 4615 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU | 4616 E1000_PHY_CTRL_NOND0A_LPLU); 4617 4618 /* Set Auto Enable LPI after link up */ 4619 e1e_rphy_locked(hw, 4620 I217_LPI_GPIO_CTRL, &phy_reg); 4621 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI; 4622 e1e_wphy_locked(hw, 4623 I217_LPI_GPIO_CTRL, phy_reg); 4624 } 4625 } 4626 4627 /* For i217 Intel Rapid Start Technology support, 4628 * when the system is going into Sx and no manageability engine 4629 * is present, the driver must configure proxy to reset only on 4630 * power good. LPI (Low Power Idle) state must also reset only 4631 * on power good, as well as the MTA (Multicast table array). 4632 * The SMBus release must also be disabled on LCD reset. 4633 */ 4634 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 4635 /* Enable proxy to reset only on power good. */ 4636 e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg); 4637 phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE; 4638 e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg); 4639 4640 /* Set bit enable LPI (EEE) to reset only on 4641 * power good. 4642 */ 4643 e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg); 4644 phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET; 4645 e1e_wphy_locked(hw, I217_SxCTRL, phy_reg); 4646 4647 /* Disable the SMB release on LCD reset. */ 4648 e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg); 4649 phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE; 4650 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg); 4651 } 4652 4653 /* Enable MTA to reset for Intel Rapid Start Technology 4654 * Support 4655 */ 4656 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg); 4657 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET; 4658 e1e_wphy_locked(hw, I217_CGFREG, phy_reg); 4659 4660 release: 4661 hw->phy.ops.release(hw); 4662 } 4663 out: 4664 ew32(PHY_CTRL, phy_ctrl); 4665 4666 if (hw->mac.type == e1000_ich8lan) 4667 e1000e_gig_downshift_workaround_ich8lan(hw); 4668 4669 if (hw->mac.type >= e1000_pchlan) { 4670 e1000_oem_bits_config_ich8lan(hw, false); 4671 4672 /* Reset PHY to activate OEM bits on 82577/8 */ 4673 if (hw->mac.type == e1000_pchlan) 4674 e1000e_phy_hw_reset_generic(hw); 4675 4676 ret_val = hw->phy.ops.acquire(hw); 4677 if (ret_val) 4678 return; 4679 e1000_write_smbus_addr(hw); 4680 hw->phy.ops.release(hw); 4681 } 4682 } 4683 4684 /** 4685 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0 4686 * @hw: pointer to the HW structure 4687 * 4688 * During Sx to S0 transitions on non-managed devices or managed devices 4689 * on which PHY resets are not blocked, if the PHY registers cannot be 4690 * accessed properly by the s/w toggle the LANPHYPC value to power cycle 4691 * the PHY. 4692 * On i217, setup Intel Rapid Start Technology. 4693 **/ 4694 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw) 4695 { 4696 s32 ret_val; 4697 4698 if (hw->mac.type < e1000_pch2lan) 4699 return; 4700 4701 ret_val = e1000_init_phy_workarounds_pchlan(hw); 4702 if (ret_val) { 4703 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val); 4704 return; 4705 } 4706 4707 /* For i217 Intel Rapid Start Technology support when the system 4708 * is transitioning from Sx and no manageability engine is present 4709 * configure SMBus to restore on reset, disable proxy, and enable 4710 * the reset on MTA (Multicast table array). 4711 */ 4712 if (hw->phy.type == e1000_phy_i217) { 4713 u16 phy_reg; 4714 4715 ret_val = hw->phy.ops.acquire(hw); 4716 if (ret_val) { 4717 e_dbg("Failed to setup iRST\n"); 4718 return; 4719 } 4720 4721 /* Clear Auto Enable LPI after link up */ 4722 e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg); 4723 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI; 4724 e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg); 4725 4726 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 4727 /* Restore clear on SMB if no manageability engine 4728 * is present 4729 */ 4730 ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg); 4731 if (ret_val) 4732 goto release; 4733 phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE; 4734 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg); 4735 4736 /* Disable Proxy */ 4737 e1e_wphy_locked(hw, I217_PROXY_CTRL, 0); 4738 } 4739 /* Enable reset on MTA */ 4740 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg); 4741 if (ret_val) 4742 goto release; 4743 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET; 4744 e1e_wphy_locked(hw, I217_CGFREG, phy_reg); 4745 release: 4746 if (ret_val) 4747 e_dbg("Error %d in resume workarounds\n", ret_val); 4748 hw->phy.ops.release(hw); 4749 } 4750 } 4751 4752 /** 4753 * e1000_cleanup_led_ich8lan - Restore the default LED operation 4754 * @hw: pointer to the HW structure 4755 * 4756 * Return the LED back to the default configuration. 4757 **/ 4758 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw) 4759 { 4760 if (hw->phy.type == e1000_phy_ife) 4761 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); 4762 4763 ew32(LEDCTL, hw->mac.ledctl_default); 4764 return 0; 4765 } 4766 4767 /** 4768 * e1000_led_on_ich8lan - Turn LEDs on 4769 * @hw: pointer to the HW structure 4770 * 4771 * Turn on the LEDs. 4772 **/ 4773 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw) 4774 { 4775 if (hw->phy.type == e1000_phy_ife) 4776 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 4777 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); 4778 4779 ew32(LEDCTL, hw->mac.ledctl_mode2); 4780 return 0; 4781 } 4782 4783 /** 4784 * e1000_led_off_ich8lan - Turn LEDs off 4785 * @hw: pointer to the HW structure 4786 * 4787 * Turn off the LEDs. 4788 **/ 4789 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw) 4790 { 4791 if (hw->phy.type == e1000_phy_ife) 4792 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 4793 (IFE_PSCL_PROBE_MODE | 4794 IFE_PSCL_PROBE_LEDS_OFF)); 4795 4796 ew32(LEDCTL, hw->mac.ledctl_mode1); 4797 return 0; 4798 } 4799 4800 /** 4801 * e1000_setup_led_pchlan - Configures SW controllable LED 4802 * @hw: pointer to the HW structure 4803 * 4804 * This prepares the SW controllable LED for use. 4805 **/ 4806 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw) 4807 { 4808 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1); 4809 } 4810 4811 /** 4812 * e1000_cleanup_led_pchlan - Restore the default LED operation 4813 * @hw: pointer to the HW structure 4814 * 4815 * Return the LED back to the default configuration. 4816 **/ 4817 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw) 4818 { 4819 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default); 4820 } 4821 4822 /** 4823 * e1000_led_on_pchlan - Turn LEDs on 4824 * @hw: pointer to the HW structure 4825 * 4826 * Turn on the LEDs. 4827 **/ 4828 static s32 e1000_led_on_pchlan(struct e1000_hw *hw) 4829 { 4830 u16 data = (u16)hw->mac.ledctl_mode2; 4831 u32 i, led; 4832 4833 /* If no link, then turn LED on by setting the invert bit 4834 * for each LED that's mode is "link_up" in ledctl_mode2. 4835 */ 4836 if (!(er32(STATUS) & E1000_STATUS_LU)) { 4837 for (i = 0; i < 3; i++) { 4838 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; 4839 if ((led & E1000_PHY_LED0_MODE_MASK) != 4840 E1000_LEDCTL_MODE_LINK_UP) 4841 continue; 4842 if (led & E1000_PHY_LED0_IVRT) 4843 data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); 4844 else 4845 data |= (E1000_PHY_LED0_IVRT << (i * 5)); 4846 } 4847 } 4848 4849 return e1e_wphy(hw, HV_LED_CONFIG, data); 4850 } 4851 4852 /** 4853 * e1000_led_off_pchlan - Turn LEDs off 4854 * @hw: pointer to the HW structure 4855 * 4856 * Turn off the LEDs. 4857 **/ 4858 static s32 e1000_led_off_pchlan(struct e1000_hw *hw) 4859 { 4860 u16 data = (u16)hw->mac.ledctl_mode1; 4861 u32 i, led; 4862 4863 /* If no link, then turn LED off by clearing the invert bit 4864 * for each LED that's mode is "link_up" in ledctl_mode1. 4865 */ 4866 if (!(er32(STATUS) & E1000_STATUS_LU)) { 4867 for (i = 0; i < 3; i++) { 4868 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; 4869 if ((led & E1000_PHY_LED0_MODE_MASK) != 4870 E1000_LEDCTL_MODE_LINK_UP) 4871 continue; 4872 if (led & E1000_PHY_LED0_IVRT) 4873 data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); 4874 else 4875 data |= (E1000_PHY_LED0_IVRT << (i * 5)); 4876 } 4877 } 4878 4879 return e1e_wphy(hw, HV_LED_CONFIG, data); 4880 } 4881 4882 /** 4883 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset 4884 * @hw: pointer to the HW structure 4885 * 4886 * Read appropriate register for the config done bit for completion status 4887 * and configure the PHY through s/w for EEPROM-less parts. 4888 * 4889 * NOTE: some silicon which is EEPROM-less will fail trying to read the 4890 * config done bit, so only an error is logged and continues. If we were 4891 * to return with error, EEPROM-less silicon would not be able to be reset 4892 * or change link. 4893 **/ 4894 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw) 4895 { 4896 s32 ret_val = 0; 4897 u32 bank = 0; 4898 u32 status; 4899 4900 e1000e_get_cfg_done_generic(hw); 4901 4902 /* Wait for indication from h/w that it has completed basic config */ 4903 if (hw->mac.type >= e1000_ich10lan) { 4904 e1000_lan_init_done_ich8lan(hw); 4905 } else { 4906 ret_val = e1000e_get_auto_rd_done(hw); 4907 if (ret_val) { 4908 /* When auto config read does not complete, do not 4909 * return with an error. This can happen in situations 4910 * where there is no eeprom and prevents getting link. 4911 */ 4912 e_dbg("Auto Read Done did not complete\n"); 4913 ret_val = 0; 4914 } 4915 } 4916 4917 /* Clear PHY Reset Asserted bit */ 4918 status = er32(STATUS); 4919 if (status & E1000_STATUS_PHYRA) 4920 ew32(STATUS, status & ~E1000_STATUS_PHYRA); 4921 else 4922 e_dbg("PHY Reset Asserted not set - needs delay\n"); 4923 4924 /* If EEPROM is not marked present, init the IGP 3 PHY manually */ 4925 if (hw->mac.type <= e1000_ich9lan) { 4926 if (!(er32(EECD) & E1000_EECD_PRES) && 4927 (hw->phy.type == e1000_phy_igp_3)) { 4928 e1000e_phy_init_script_igp3(hw); 4929 } 4930 } else { 4931 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) { 4932 /* Maybe we should do a basic PHY config */ 4933 e_dbg("EEPROM not present\n"); 4934 ret_val = -E1000_ERR_CONFIG; 4935 } 4936 } 4937 4938 return ret_val; 4939 } 4940 4941 /** 4942 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down 4943 * @hw: pointer to the HW structure 4944 * 4945 * In the case of a PHY power down to save power, or to turn off link during a 4946 * driver unload, or wake on lan is not enabled, remove the link. 4947 **/ 4948 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw) 4949 { 4950 /* If the management interface is not enabled, then power down */ 4951 if (!(hw->mac.ops.check_mng_mode(hw) || 4952 hw->phy.ops.check_reset_block(hw))) 4953 e1000_power_down_phy_copper(hw); 4954 } 4955 4956 /** 4957 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters 4958 * @hw: pointer to the HW structure 4959 * 4960 * Clears hardware counters specific to the silicon family and calls 4961 * clear_hw_cntrs_generic to clear all general purpose counters. 4962 **/ 4963 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw) 4964 { 4965 u16 phy_data; 4966 s32 ret_val; 4967 4968 e1000e_clear_hw_cntrs_base(hw); 4969 4970 er32(ALGNERRC); 4971 er32(RXERRC); 4972 er32(TNCRS); 4973 er32(CEXTERR); 4974 er32(TSCTC); 4975 er32(TSCTFC); 4976 4977 er32(MGTPRC); 4978 er32(MGTPDC); 4979 er32(MGTPTC); 4980 4981 er32(IAC); 4982 er32(ICRXOC); 4983 4984 /* Clear PHY statistics registers */ 4985 if ((hw->phy.type == e1000_phy_82578) || 4986 (hw->phy.type == e1000_phy_82579) || 4987 (hw->phy.type == e1000_phy_i217) || 4988 (hw->phy.type == e1000_phy_82577)) { 4989 ret_val = hw->phy.ops.acquire(hw); 4990 if (ret_val) 4991 return; 4992 ret_val = hw->phy.ops.set_page(hw, 4993 HV_STATS_PAGE << IGP_PAGE_SHIFT); 4994 if (ret_val) 4995 goto release; 4996 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data); 4997 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data); 4998 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data); 4999 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data); 5000 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data); 5001 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data); 5002 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data); 5003 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data); 5004 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data); 5005 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data); 5006 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data); 5007 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data); 5008 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data); 5009 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data); 5010 release: 5011 hw->phy.ops.release(hw); 5012 } 5013 } 5014 5015 static const struct e1000_mac_operations ich8_mac_ops = { 5016 /* check_mng_mode dependent on mac type */ 5017 .check_for_link = e1000_check_for_copper_link_ich8lan, 5018 /* cleanup_led dependent on mac type */ 5019 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan, 5020 .get_bus_info = e1000_get_bus_info_ich8lan, 5021 .set_lan_id = e1000_set_lan_id_single_port, 5022 .get_link_up_info = e1000_get_link_up_info_ich8lan, 5023 /* led_on dependent on mac type */ 5024 /* led_off dependent on mac type */ 5025 .update_mc_addr_list = e1000e_update_mc_addr_list_generic, 5026 .reset_hw = e1000_reset_hw_ich8lan, 5027 .init_hw = e1000_init_hw_ich8lan, 5028 .setup_link = e1000_setup_link_ich8lan, 5029 .setup_physical_interface = e1000_setup_copper_link_ich8lan, 5030 /* id_led_init dependent on mac type */ 5031 .config_collision_dist = e1000e_config_collision_dist_generic, 5032 .rar_set = e1000e_rar_set_generic, 5033 .rar_get_count = e1000e_rar_get_count_generic, 5034 }; 5035 5036 static const struct e1000_phy_operations ich8_phy_ops = { 5037 .acquire = e1000_acquire_swflag_ich8lan, 5038 .check_reset_block = e1000_check_reset_block_ich8lan, 5039 .commit = NULL, 5040 .get_cfg_done = e1000_get_cfg_done_ich8lan, 5041 .get_cable_length = e1000e_get_cable_length_igp_2, 5042 .read_reg = e1000e_read_phy_reg_igp, 5043 .release = e1000_release_swflag_ich8lan, 5044 .reset = e1000_phy_hw_reset_ich8lan, 5045 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan, 5046 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan, 5047 .write_reg = e1000e_write_phy_reg_igp, 5048 }; 5049 5050 static const struct e1000_nvm_operations ich8_nvm_ops = { 5051 .acquire = e1000_acquire_nvm_ich8lan, 5052 .read = e1000_read_nvm_ich8lan, 5053 .release = e1000_release_nvm_ich8lan, 5054 .reload = e1000e_reload_nvm_generic, 5055 .update = e1000_update_nvm_checksum_ich8lan, 5056 .valid_led_default = e1000_valid_led_default_ich8lan, 5057 .validate = e1000_validate_nvm_checksum_ich8lan, 5058 .write = e1000_write_nvm_ich8lan, 5059 }; 5060 5061 const struct e1000_info e1000_ich8_info = { 5062 .mac = e1000_ich8lan, 5063 .flags = FLAG_HAS_WOL 5064 | FLAG_IS_ICH 5065 | FLAG_HAS_CTRLEXT_ON_LOAD 5066 | FLAG_HAS_AMT 5067 | FLAG_HAS_FLASH 5068 | FLAG_APME_IN_WUC, 5069 .pba = 8, 5070 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN, 5071 .get_variants = e1000_get_variants_ich8lan, 5072 .mac_ops = &ich8_mac_ops, 5073 .phy_ops = &ich8_phy_ops, 5074 .nvm_ops = &ich8_nvm_ops, 5075 }; 5076 5077 const struct e1000_info e1000_ich9_info = { 5078 .mac = e1000_ich9lan, 5079 .flags = FLAG_HAS_JUMBO_FRAMES 5080 | FLAG_IS_ICH 5081 | FLAG_HAS_WOL 5082 | FLAG_HAS_CTRLEXT_ON_LOAD 5083 | FLAG_HAS_AMT 5084 | FLAG_HAS_FLASH 5085 | FLAG_APME_IN_WUC, 5086 .pba = 18, 5087 .max_hw_frame_size = DEFAULT_JUMBO, 5088 .get_variants = e1000_get_variants_ich8lan, 5089 .mac_ops = &ich8_mac_ops, 5090 .phy_ops = &ich8_phy_ops, 5091 .nvm_ops = &ich8_nvm_ops, 5092 }; 5093 5094 const struct e1000_info e1000_ich10_info = { 5095 .mac = e1000_ich10lan, 5096 .flags = FLAG_HAS_JUMBO_FRAMES 5097 | FLAG_IS_ICH 5098 | FLAG_HAS_WOL 5099 | FLAG_HAS_CTRLEXT_ON_LOAD 5100 | FLAG_HAS_AMT 5101 | FLAG_HAS_FLASH 5102 | FLAG_APME_IN_WUC, 5103 .pba = 18, 5104 .max_hw_frame_size = DEFAULT_JUMBO, 5105 .get_variants = e1000_get_variants_ich8lan, 5106 .mac_ops = &ich8_mac_ops, 5107 .phy_ops = &ich8_phy_ops, 5108 .nvm_ops = &ich8_nvm_ops, 5109 }; 5110 5111 const struct e1000_info e1000_pch_info = { 5112 .mac = e1000_pchlan, 5113 .flags = FLAG_IS_ICH 5114 | FLAG_HAS_WOL 5115 | FLAG_HAS_CTRLEXT_ON_LOAD 5116 | FLAG_HAS_AMT 5117 | FLAG_HAS_FLASH 5118 | FLAG_HAS_JUMBO_FRAMES 5119 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */ 5120 | FLAG_APME_IN_WUC, 5121 .flags2 = FLAG2_HAS_PHY_STATS, 5122 .pba = 26, 5123 .max_hw_frame_size = 4096, 5124 .get_variants = e1000_get_variants_ich8lan, 5125 .mac_ops = &ich8_mac_ops, 5126 .phy_ops = &ich8_phy_ops, 5127 .nvm_ops = &ich8_nvm_ops, 5128 }; 5129 5130 const struct e1000_info e1000_pch2_info = { 5131 .mac = e1000_pch2lan, 5132 .flags = FLAG_IS_ICH 5133 | FLAG_HAS_WOL 5134 | FLAG_HAS_HW_TIMESTAMP 5135 | FLAG_HAS_CTRLEXT_ON_LOAD 5136 | FLAG_HAS_AMT 5137 | FLAG_HAS_FLASH 5138 | FLAG_HAS_JUMBO_FRAMES 5139 | FLAG_APME_IN_WUC, 5140 .flags2 = FLAG2_HAS_PHY_STATS 5141 | FLAG2_HAS_EEE, 5142 .pba = 26, 5143 .max_hw_frame_size = 9018, 5144 .get_variants = e1000_get_variants_ich8lan, 5145 .mac_ops = &ich8_mac_ops, 5146 .phy_ops = &ich8_phy_ops, 5147 .nvm_ops = &ich8_nvm_ops, 5148 }; 5149 5150 const struct e1000_info e1000_pch_lpt_info = { 5151 .mac = e1000_pch_lpt, 5152 .flags = FLAG_IS_ICH 5153 | FLAG_HAS_WOL 5154 | FLAG_HAS_HW_TIMESTAMP 5155 | FLAG_HAS_CTRLEXT_ON_LOAD 5156 | FLAG_HAS_AMT 5157 | FLAG_HAS_FLASH 5158 | FLAG_HAS_JUMBO_FRAMES 5159 | FLAG_APME_IN_WUC, 5160 .flags2 = FLAG2_HAS_PHY_STATS 5161 | FLAG2_HAS_EEE, 5162 .pba = 26, 5163 .max_hw_frame_size = 9018, 5164 .get_variants = e1000_get_variants_ich8lan, 5165 .mac_ops = &ich8_mac_ops, 5166 .phy_ops = &ich8_phy_ops, 5167 .nvm_ops = &ich8_nvm_ops, 5168 }; 5169