xref: /linux/drivers/net/ethernet/intel/e1000e/ich8lan.c (revision 3932b9ca55b0be314a36d3e84faff3e823c081f5)
1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21 
22 /* 82562G 10/100 Network Connection
23  * 82562G-2 10/100 Network Connection
24  * 82562GT 10/100 Network Connection
25  * 82562GT-2 10/100 Network Connection
26  * 82562V 10/100 Network Connection
27  * 82562V-2 10/100 Network Connection
28  * 82566DC-2 Gigabit Network Connection
29  * 82566DC Gigabit Network Connection
30  * 82566DM-2 Gigabit Network Connection
31  * 82566DM Gigabit Network Connection
32  * 82566MC Gigabit Network Connection
33  * 82566MM Gigabit Network Connection
34  * 82567LM Gigabit Network Connection
35  * 82567LF Gigabit Network Connection
36  * 82567V Gigabit Network Connection
37  * 82567LM-2 Gigabit Network Connection
38  * 82567LF-2 Gigabit Network Connection
39  * 82567V-2 Gigabit Network Connection
40  * 82567LF-3 Gigabit Network Connection
41  * 82567LM-3 Gigabit Network Connection
42  * 82567LM-4 Gigabit Network Connection
43  * 82577LM Gigabit Network Connection
44  * 82577LC Gigabit Network Connection
45  * 82578DM Gigabit Network Connection
46  * 82578DC Gigabit Network Connection
47  * 82579LM Gigabit Network Connection
48  * 82579V Gigabit Network Connection
49  * Ethernet Connection I217-LM
50  * Ethernet Connection I217-V
51  * Ethernet Connection I218-V
52  * Ethernet Connection I218-LM
53  * Ethernet Connection (2) I218-LM
54  * Ethernet Connection (2) I218-V
55  * Ethernet Connection (3) I218-LM
56  * Ethernet Connection (3) I218-V
57  */
58 
59 #include "e1000.h"
60 
61 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
62 /* Offset 04h HSFSTS */
63 union ich8_hws_flash_status {
64 	struct ich8_hsfsts {
65 		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
66 		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
67 		u16 dael:1;	/* bit 2 Direct Access error Log */
68 		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
69 		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
70 		u16 reserved1:2;	/* bit 13:6 Reserved */
71 		u16 reserved2:6;	/* bit 13:6 Reserved */
72 		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
73 		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
74 	} hsf_status;
75 	u16 regval;
76 };
77 
78 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
79 /* Offset 06h FLCTL */
80 union ich8_hws_flash_ctrl {
81 	struct ich8_hsflctl {
82 		u16 flcgo:1;	/* 0 Flash Cycle Go */
83 		u16 flcycle:2;	/* 2:1 Flash Cycle */
84 		u16 reserved:5;	/* 7:3 Reserved  */
85 		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
86 		u16 flockdn:6;	/* 15:10 Reserved */
87 	} hsf_ctrl;
88 	u16 regval;
89 };
90 
91 /* ICH Flash Region Access Permissions */
92 union ich8_hws_flash_regacc {
93 	struct ich8_flracc {
94 		u32 grra:8;	/* 0:7 GbE region Read Access */
95 		u32 grwa:8;	/* 8:15 GbE region Write Access */
96 		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
97 		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
98 	} hsf_flregacc;
99 	u16 regval;
100 };
101 
102 /* ICH Flash Protected Region */
103 union ich8_flash_protected_range {
104 	struct ich8_pr {
105 		u32 base:13;	/* 0:12 Protected Range Base */
106 		u32 reserved1:2;	/* 13:14 Reserved */
107 		u32 rpe:1;	/* 15 Read Protection Enable */
108 		u32 limit:13;	/* 16:28 Protected Range Limit */
109 		u32 reserved2:2;	/* 29:30 Reserved */
110 		u32 wpe:1;	/* 31 Write Protection Enable */
111 	} range;
112 	u32 regval;
113 };
114 
115 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
116 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
118 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
119 						u32 offset, u8 byte);
120 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
121 					 u8 *data);
122 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
123 					 u16 *data);
124 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
125 					 u8 size, u16 *data);
126 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
127 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
128 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
129 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
130 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
131 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
132 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
133 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
134 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
135 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
136 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
137 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
138 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
139 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
140 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
141 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
142 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
143 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
144 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
145 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
146 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
147 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
148 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
149 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
150 
151 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
152 {
153 	return readw(hw->flash_address + reg);
154 }
155 
156 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
157 {
158 	return readl(hw->flash_address + reg);
159 }
160 
161 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
162 {
163 	writew(val, hw->flash_address + reg);
164 }
165 
166 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
167 {
168 	writel(val, hw->flash_address + reg);
169 }
170 
171 #define er16flash(reg)		__er16flash(hw, (reg))
172 #define er32flash(reg)		__er32flash(hw, (reg))
173 #define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
174 #define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
175 
176 /**
177  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
178  *  @hw: pointer to the HW structure
179  *
180  *  Test access to the PHY registers by reading the PHY ID registers.  If
181  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
182  *  otherwise assume the read PHY ID is correct if it is valid.
183  *
184  *  Assumes the sw/fw/hw semaphore is already acquired.
185  **/
186 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
187 {
188 	u16 phy_reg = 0;
189 	u32 phy_id = 0;
190 	s32 ret_val = 0;
191 	u16 retry_count;
192 	u32 mac_reg = 0;
193 
194 	for (retry_count = 0; retry_count < 2; retry_count++) {
195 		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
196 		if (ret_val || (phy_reg == 0xFFFF))
197 			continue;
198 		phy_id = (u32)(phy_reg << 16);
199 
200 		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
201 		if (ret_val || (phy_reg == 0xFFFF)) {
202 			phy_id = 0;
203 			continue;
204 		}
205 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
206 		break;
207 	}
208 
209 	if (hw->phy.id) {
210 		if (hw->phy.id == phy_id)
211 			goto out;
212 	} else if (phy_id) {
213 		hw->phy.id = phy_id;
214 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
215 		goto out;
216 	}
217 
218 	/* In case the PHY needs to be in mdio slow mode,
219 	 * set slow mode and try to get the PHY id again.
220 	 */
221 	if (hw->mac.type < e1000_pch_lpt) {
222 		hw->phy.ops.release(hw);
223 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
224 		if (!ret_val)
225 			ret_val = e1000e_get_phy_id(hw);
226 		hw->phy.ops.acquire(hw);
227 	}
228 
229 	if (ret_val)
230 		return false;
231 out:
232 	if (hw->mac.type == e1000_pch_lpt) {
233 		/* Unforce SMBus mode in PHY */
234 		e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
235 		phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
236 		e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
237 
238 		/* Unforce SMBus mode in MAC */
239 		mac_reg = er32(CTRL_EXT);
240 		mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
241 		ew32(CTRL_EXT, mac_reg);
242 	}
243 
244 	return true;
245 }
246 
247 /**
248  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
249  *  @hw: pointer to the HW structure
250  *
251  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
252  *  used to reset the PHY to a quiescent state when necessary.
253  **/
254 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
255 {
256 	u32 mac_reg;
257 
258 	/* Set Phy Config Counter to 50msec */
259 	mac_reg = er32(FEXTNVM3);
260 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
261 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
262 	ew32(FEXTNVM3, mac_reg);
263 
264 	/* Toggle LANPHYPC Value bit */
265 	mac_reg = er32(CTRL);
266 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
267 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
268 	ew32(CTRL, mac_reg);
269 	e1e_flush();
270 	usleep_range(10, 20);
271 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
272 	ew32(CTRL, mac_reg);
273 	e1e_flush();
274 
275 	if (hw->mac.type < e1000_pch_lpt) {
276 		msleep(50);
277 	} else {
278 		u16 count = 20;
279 
280 		do {
281 			usleep_range(5000, 10000);
282 		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
283 
284 		msleep(30);
285 	}
286 }
287 
288 /**
289  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
290  *  @hw: pointer to the HW structure
291  *
292  *  Workarounds/flow necessary for PHY initialization during driver load
293  *  and resume paths.
294  **/
295 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
296 {
297 	struct e1000_adapter *adapter = hw->adapter;
298 	u32 mac_reg, fwsm = er32(FWSM);
299 	s32 ret_val;
300 
301 	/* Gate automatic PHY configuration by hardware on managed and
302 	 * non-managed 82579 and newer adapters.
303 	 */
304 	e1000_gate_hw_phy_config_ich8lan(hw, true);
305 
306 	/* It is not possible to be certain of the current state of ULP
307 	 * so forcibly disable it.
308 	 */
309 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
310 	e1000_disable_ulp_lpt_lp(hw, true);
311 
312 	ret_val = hw->phy.ops.acquire(hw);
313 	if (ret_val) {
314 		e_dbg("Failed to initialize PHY flow\n");
315 		goto out;
316 	}
317 
318 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
319 	 * inaccessible and resetting the PHY is not blocked, toggle the
320 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
321 	 */
322 	switch (hw->mac.type) {
323 	case e1000_pch_lpt:
324 		if (e1000_phy_is_accessible_pchlan(hw))
325 			break;
326 
327 		/* Before toggling LANPHYPC, see if PHY is accessible by
328 		 * forcing MAC to SMBus mode first.
329 		 */
330 		mac_reg = er32(CTRL_EXT);
331 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
332 		ew32(CTRL_EXT, mac_reg);
333 
334 		/* Wait 50 milliseconds for MAC to finish any retries
335 		 * that it might be trying to perform from previous
336 		 * attempts to acknowledge any phy read requests.
337 		 */
338 		msleep(50);
339 
340 		/* fall-through */
341 	case e1000_pch2lan:
342 		if (e1000_phy_is_accessible_pchlan(hw))
343 			break;
344 
345 		/* fall-through */
346 	case e1000_pchlan:
347 		if ((hw->mac.type == e1000_pchlan) &&
348 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
349 			break;
350 
351 		if (hw->phy.ops.check_reset_block(hw)) {
352 			e_dbg("Required LANPHYPC toggle blocked by ME\n");
353 			ret_val = -E1000_ERR_PHY;
354 			break;
355 		}
356 
357 		/* Toggle LANPHYPC Value bit */
358 		e1000_toggle_lanphypc_pch_lpt(hw);
359 		if (hw->mac.type >= e1000_pch_lpt) {
360 			if (e1000_phy_is_accessible_pchlan(hw))
361 				break;
362 
363 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
364 			 * so ensure that the MAC is also out of SMBus mode
365 			 */
366 			mac_reg = er32(CTRL_EXT);
367 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
368 			ew32(CTRL_EXT, mac_reg);
369 
370 			if (e1000_phy_is_accessible_pchlan(hw))
371 				break;
372 
373 			ret_val = -E1000_ERR_PHY;
374 		}
375 		break;
376 	default:
377 		break;
378 	}
379 
380 	hw->phy.ops.release(hw);
381 	if (!ret_val) {
382 
383 		/* Check to see if able to reset PHY.  Print error if not */
384 		if (hw->phy.ops.check_reset_block(hw)) {
385 			e_err("Reset blocked by ME\n");
386 			goto out;
387 		}
388 
389 		/* Reset the PHY before any access to it.  Doing so, ensures
390 		 * that the PHY is in a known good state before we read/write
391 		 * PHY registers.  The generic reset is sufficient here,
392 		 * because we haven't determined the PHY type yet.
393 		 */
394 		ret_val = e1000e_phy_hw_reset_generic(hw);
395 		if (ret_val)
396 			goto out;
397 
398 		/* On a successful reset, possibly need to wait for the PHY
399 		 * to quiesce to an accessible state before returning control
400 		 * to the calling function.  If the PHY does not quiesce, then
401 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
402 		 *  the PHY is in.
403 		 */
404 		ret_val = hw->phy.ops.check_reset_block(hw);
405 		if (ret_val)
406 			e_err("ME blocked access to PHY after reset\n");
407 	}
408 
409 out:
410 	/* Ungate automatic PHY configuration on non-managed 82579 */
411 	if ((hw->mac.type == e1000_pch2lan) &&
412 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
413 		usleep_range(10000, 20000);
414 		e1000_gate_hw_phy_config_ich8lan(hw, false);
415 	}
416 
417 	return ret_val;
418 }
419 
420 /**
421  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
422  *  @hw: pointer to the HW structure
423  *
424  *  Initialize family-specific PHY parameters and function pointers.
425  **/
426 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
427 {
428 	struct e1000_phy_info *phy = &hw->phy;
429 	s32 ret_val;
430 
431 	phy->addr = 1;
432 	phy->reset_delay_us = 100;
433 
434 	phy->ops.set_page = e1000_set_page_igp;
435 	phy->ops.read_reg = e1000_read_phy_reg_hv;
436 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
437 	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
438 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
439 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
440 	phy->ops.write_reg = e1000_write_phy_reg_hv;
441 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
442 	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
443 	phy->ops.power_up = e1000_power_up_phy_copper;
444 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
445 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
446 
447 	phy->id = e1000_phy_unknown;
448 
449 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
450 	if (ret_val)
451 		return ret_val;
452 
453 	if (phy->id == e1000_phy_unknown)
454 		switch (hw->mac.type) {
455 		default:
456 			ret_val = e1000e_get_phy_id(hw);
457 			if (ret_val)
458 				return ret_val;
459 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
460 				break;
461 			/* fall-through */
462 		case e1000_pch2lan:
463 		case e1000_pch_lpt:
464 			/* In case the PHY needs to be in mdio slow mode,
465 			 * set slow mode and try to get the PHY id again.
466 			 */
467 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
468 			if (ret_val)
469 				return ret_val;
470 			ret_val = e1000e_get_phy_id(hw);
471 			if (ret_val)
472 				return ret_val;
473 			break;
474 		}
475 	phy->type = e1000e_get_phy_type_from_id(phy->id);
476 
477 	switch (phy->type) {
478 	case e1000_phy_82577:
479 	case e1000_phy_82579:
480 	case e1000_phy_i217:
481 		phy->ops.check_polarity = e1000_check_polarity_82577;
482 		phy->ops.force_speed_duplex =
483 		    e1000_phy_force_speed_duplex_82577;
484 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
485 		phy->ops.get_info = e1000_get_phy_info_82577;
486 		phy->ops.commit = e1000e_phy_sw_reset;
487 		break;
488 	case e1000_phy_82578:
489 		phy->ops.check_polarity = e1000_check_polarity_m88;
490 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
491 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
492 		phy->ops.get_info = e1000e_get_phy_info_m88;
493 		break;
494 	default:
495 		ret_val = -E1000_ERR_PHY;
496 		break;
497 	}
498 
499 	return ret_val;
500 }
501 
502 /**
503  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
504  *  @hw: pointer to the HW structure
505  *
506  *  Initialize family-specific PHY parameters and function pointers.
507  **/
508 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
509 {
510 	struct e1000_phy_info *phy = &hw->phy;
511 	s32 ret_val;
512 	u16 i = 0;
513 
514 	phy->addr = 1;
515 	phy->reset_delay_us = 100;
516 
517 	phy->ops.power_up = e1000_power_up_phy_copper;
518 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
519 
520 	/* We may need to do this twice - once for IGP and if that fails,
521 	 * we'll set BM func pointers and try again
522 	 */
523 	ret_val = e1000e_determine_phy_address(hw);
524 	if (ret_val) {
525 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
526 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
527 		ret_val = e1000e_determine_phy_address(hw);
528 		if (ret_val) {
529 			e_dbg("Cannot determine PHY addr. Erroring out\n");
530 			return ret_val;
531 		}
532 	}
533 
534 	phy->id = 0;
535 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
536 	       (i++ < 100)) {
537 		usleep_range(1000, 2000);
538 		ret_val = e1000e_get_phy_id(hw);
539 		if (ret_val)
540 			return ret_val;
541 	}
542 
543 	/* Verify phy id */
544 	switch (phy->id) {
545 	case IGP03E1000_E_PHY_ID:
546 		phy->type = e1000_phy_igp_3;
547 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
548 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
549 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
550 		phy->ops.get_info = e1000e_get_phy_info_igp;
551 		phy->ops.check_polarity = e1000_check_polarity_igp;
552 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
553 		break;
554 	case IFE_E_PHY_ID:
555 	case IFE_PLUS_E_PHY_ID:
556 	case IFE_C_E_PHY_ID:
557 		phy->type = e1000_phy_ife;
558 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
559 		phy->ops.get_info = e1000_get_phy_info_ife;
560 		phy->ops.check_polarity = e1000_check_polarity_ife;
561 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
562 		break;
563 	case BME1000_E_PHY_ID:
564 		phy->type = e1000_phy_bm;
565 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
566 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
567 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
568 		phy->ops.commit = e1000e_phy_sw_reset;
569 		phy->ops.get_info = e1000e_get_phy_info_m88;
570 		phy->ops.check_polarity = e1000_check_polarity_m88;
571 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
572 		break;
573 	default:
574 		return -E1000_ERR_PHY;
575 	}
576 
577 	return 0;
578 }
579 
580 /**
581  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
582  *  @hw: pointer to the HW structure
583  *
584  *  Initialize family-specific NVM parameters and function
585  *  pointers.
586  **/
587 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
588 {
589 	struct e1000_nvm_info *nvm = &hw->nvm;
590 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
591 	u32 gfpreg, sector_base_addr, sector_end_addr;
592 	u16 i;
593 
594 	/* Can't read flash registers if the register set isn't mapped. */
595 	if (!hw->flash_address) {
596 		e_dbg("ERROR: Flash registers not mapped\n");
597 		return -E1000_ERR_CONFIG;
598 	}
599 
600 	nvm->type = e1000_nvm_flash_sw;
601 
602 	gfpreg = er32flash(ICH_FLASH_GFPREG);
603 
604 	/* sector_X_addr is a "sector"-aligned address (4096 bytes)
605 	 * Add 1 to sector_end_addr since this sector is included in
606 	 * the overall size.
607 	 */
608 	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
609 	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
610 
611 	/* flash_base_addr is byte-aligned */
612 	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
613 
614 	/* find total size of the NVM, then cut in half since the total
615 	 * size represents two separate NVM banks.
616 	 */
617 	nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
618 				<< FLASH_SECTOR_ADDR_SHIFT);
619 	nvm->flash_bank_size /= 2;
620 	/* Adjust to word count */
621 	nvm->flash_bank_size /= sizeof(u16);
622 
623 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
624 
625 	/* Clear shadow ram */
626 	for (i = 0; i < nvm->word_size; i++) {
627 		dev_spec->shadow_ram[i].modified = false;
628 		dev_spec->shadow_ram[i].value = 0xFFFF;
629 	}
630 
631 	return 0;
632 }
633 
634 /**
635  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
636  *  @hw: pointer to the HW structure
637  *
638  *  Initialize family-specific MAC parameters and function
639  *  pointers.
640  **/
641 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
642 {
643 	struct e1000_mac_info *mac = &hw->mac;
644 
645 	/* Set media type function pointer */
646 	hw->phy.media_type = e1000_media_type_copper;
647 
648 	/* Set mta register count */
649 	mac->mta_reg_count = 32;
650 	/* Set rar entry count */
651 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
652 	if (mac->type == e1000_ich8lan)
653 		mac->rar_entry_count--;
654 	/* FWSM register */
655 	mac->has_fwsm = true;
656 	/* ARC subsystem not supported */
657 	mac->arc_subsystem_valid = false;
658 	/* Adaptive IFS supported */
659 	mac->adaptive_ifs = true;
660 
661 	/* LED and other operations */
662 	switch (mac->type) {
663 	case e1000_ich8lan:
664 	case e1000_ich9lan:
665 	case e1000_ich10lan:
666 		/* check management mode */
667 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
668 		/* ID LED init */
669 		mac->ops.id_led_init = e1000e_id_led_init_generic;
670 		/* blink LED */
671 		mac->ops.blink_led = e1000e_blink_led_generic;
672 		/* setup LED */
673 		mac->ops.setup_led = e1000e_setup_led_generic;
674 		/* cleanup LED */
675 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
676 		/* turn on/off LED */
677 		mac->ops.led_on = e1000_led_on_ich8lan;
678 		mac->ops.led_off = e1000_led_off_ich8lan;
679 		break;
680 	case e1000_pch2lan:
681 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
682 		mac->ops.rar_set = e1000_rar_set_pch2lan;
683 		/* fall-through */
684 	case e1000_pch_lpt:
685 	case e1000_pchlan:
686 		/* check management mode */
687 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
688 		/* ID LED init */
689 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
690 		/* setup LED */
691 		mac->ops.setup_led = e1000_setup_led_pchlan;
692 		/* cleanup LED */
693 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
694 		/* turn on/off LED */
695 		mac->ops.led_on = e1000_led_on_pchlan;
696 		mac->ops.led_off = e1000_led_off_pchlan;
697 		break;
698 	default:
699 		break;
700 	}
701 
702 	if (mac->type == e1000_pch_lpt) {
703 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
704 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
705 		mac->ops.setup_physical_interface =
706 		    e1000_setup_copper_link_pch_lpt;
707 		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
708 	}
709 
710 	/* Enable PCS Lock-loss workaround for ICH8 */
711 	if (mac->type == e1000_ich8lan)
712 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
713 
714 	return 0;
715 }
716 
717 /**
718  *  __e1000_access_emi_reg_locked - Read/write EMI register
719  *  @hw: pointer to the HW structure
720  *  @addr: EMI address to program
721  *  @data: pointer to value to read/write from/to the EMI address
722  *  @read: boolean flag to indicate read or write
723  *
724  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
725  **/
726 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
727 					 u16 *data, bool read)
728 {
729 	s32 ret_val;
730 
731 	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
732 	if (ret_val)
733 		return ret_val;
734 
735 	if (read)
736 		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
737 	else
738 		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
739 
740 	return ret_val;
741 }
742 
743 /**
744  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
745  *  @hw: pointer to the HW structure
746  *  @addr: EMI address to program
747  *  @data: value to be read from the EMI address
748  *
749  *  Assumes the SW/FW/HW Semaphore is already acquired.
750  **/
751 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
752 {
753 	return __e1000_access_emi_reg_locked(hw, addr, data, true);
754 }
755 
756 /**
757  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
758  *  @hw: pointer to the HW structure
759  *  @addr: EMI address to program
760  *  @data: value to be written to the EMI address
761  *
762  *  Assumes the SW/FW/HW Semaphore is already acquired.
763  **/
764 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
765 {
766 	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
767 }
768 
769 /**
770  *  e1000_set_eee_pchlan - Enable/disable EEE support
771  *  @hw: pointer to the HW structure
772  *
773  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
774  *  the link and the EEE capabilities of the link partner.  The LPI Control
775  *  register bits will remain set only if/when link is up.
776  *
777  *  EEE LPI must not be asserted earlier than one second after link is up.
778  *  On 82579, EEE LPI should not be enabled until such time otherwise there
779  *  can be link issues with some switches.  Other devices can have EEE LPI
780  *  enabled immediately upon link up since they have a timer in hardware which
781  *  prevents LPI from being asserted too early.
782  **/
783 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
784 {
785 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
786 	s32 ret_val;
787 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
788 
789 	switch (hw->phy.type) {
790 	case e1000_phy_82579:
791 		lpa = I82579_EEE_LP_ABILITY;
792 		pcs_status = I82579_EEE_PCS_STATUS;
793 		adv_addr = I82579_EEE_ADVERTISEMENT;
794 		break;
795 	case e1000_phy_i217:
796 		lpa = I217_EEE_LP_ABILITY;
797 		pcs_status = I217_EEE_PCS_STATUS;
798 		adv_addr = I217_EEE_ADVERTISEMENT;
799 		break;
800 	default:
801 		return 0;
802 	}
803 
804 	ret_val = hw->phy.ops.acquire(hw);
805 	if (ret_val)
806 		return ret_val;
807 
808 	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
809 	if (ret_val)
810 		goto release;
811 
812 	/* Clear bits that enable EEE in various speeds */
813 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
814 
815 	/* Enable EEE if not disabled by user */
816 	if (!dev_spec->eee_disable) {
817 		/* Save off link partner's EEE ability */
818 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
819 						    &dev_spec->eee_lp_ability);
820 		if (ret_val)
821 			goto release;
822 
823 		/* Read EEE advertisement */
824 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
825 		if (ret_val)
826 			goto release;
827 
828 		/* Enable EEE only for speeds in which the link partner is
829 		 * EEE capable and for which we advertise EEE.
830 		 */
831 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
832 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
833 
834 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
835 			e1e_rphy_locked(hw, MII_LPA, &data);
836 			if (data & LPA_100FULL)
837 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
838 			else
839 				/* EEE is not supported in 100Half, so ignore
840 				 * partner's EEE in 100 ability if full-duplex
841 				 * is not advertised.
842 				 */
843 				dev_spec->eee_lp_ability &=
844 				    ~I82579_EEE_100_SUPPORTED;
845 		}
846 	}
847 
848 	if (hw->phy.type == e1000_phy_82579) {
849 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
850 						    &data);
851 		if (ret_val)
852 			goto release;
853 
854 		data &= ~I82579_LPI_100_PLL_SHUT;
855 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
856 						     data);
857 	}
858 
859 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
860 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
861 	if (ret_val)
862 		goto release;
863 
864 	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
865 release:
866 	hw->phy.ops.release(hw);
867 
868 	return ret_val;
869 }
870 
871 /**
872  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
873  *  @hw:   pointer to the HW structure
874  *  @link: link up bool flag
875  *
876  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
877  *  preventing further DMA write requests.  Workaround the issue by disabling
878  *  the de-assertion of the clock request when in 1Gpbs mode.
879  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
880  *  speeds in order to avoid Tx hangs.
881  **/
882 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
883 {
884 	u32 fextnvm6 = er32(FEXTNVM6);
885 	u32 status = er32(STATUS);
886 	s32 ret_val = 0;
887 	u16 reg;
888 
889 	if (link && (status & E1000_STATUS_SPEED_1000)) {
890 		ret_val = hw->phy.ops.acquire(hw);
891 		if (ret_val)
892 			return ret_val;
893 
894 		ret_val =
895 		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
896 						&reg);
897 		if (ret_val)
898 			goto release;
899 
900 		ret_val =
901 		    e1000e_write_kmrn_reg_locked(hw,
902 						 E1000_KMRNCTRLSTA_K1_CONFIG,
903 						 reg &
904 						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
905 		if (ret_val)
906 			goto release;
907 
908 		usleep_range(10, 20);
909 
910 		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
911 
912 		ret_val =
913 		    e1000e_write_kmrn_reg_locked(hw,
914 						 E1000_KMRNCTRLSTA_K1_CONFIG,
915 						 reg);
916 release:
917 		hw->phy.ops.release(hw);
918 	} else {
919 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
920 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
921 
922 		if (!link || ((status & E1000_STATUS_SPEED_100) &&
923 			      (status & E1000_STATUS_FD)))
924 			goto update_fextnvm6;
925 
926 		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
927 		if (ret_val)
928 			return ret_val;
929 
930 		/* Clear link status transmit timeout */
931 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
932 
933 		if (status & E1000_STATUS_SPEED_100) {
934 			/* Set inband Tx timeout to 5x10us for 100Half */
935 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
936 
937 			/* Do not extend the K1 entry latency for 100Half */
938 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
939 		} else {
940 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
941 			reg |= 50 <<
942 			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
943 
944 			/* Extend the K1 entry latency for 10 Mbps */
945 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
946 		}
947 
948 		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
949 		if (ret_val)
950 			return ret_val;
951 
952 update_fextnvm6:
953 		ew32(FEXTNVM6, fextnvm6);
954 	}
955 
956 	return ret_val;
957 }
958 
959 /**
960  *  e1000_platform_pm_pch_lpt - Set platform power management values
961  *  @hw: pointer to the HW structure
962  *  @link: bool indicating link status
963  *
964  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
965  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
966  *  when link is up (which must not exceed the maximum latency supported
967  *  by the platform), otherwise specify there is no LTR requirement.
968  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
969  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
970  *  Capability register set, on this device LTR is set by writing the
971  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
972  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
973  *  message to the PMC.
974  **/
975 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
976 {
977 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
978 	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
979 	u16 lat_enc = 0;	/* latency encoded */
980 
981 	if (link) {
982 		u16 speed, duplex, scale = 0;
983 		u16 max_snoop, max_nosnoop;
984 		u16 max_ltr_enc;	/* max LTR latency encoded */
985 		s64 lat_ns;	/* latency (ns) */
986 		s64 value;
987 		u32 rxa;
988 
989 		if (!hw->adapter->max_frame_size) {
990 			e_dbg("max_frame_size not set.\n");
991 			return -E1000_ERR_CONFIG;
992 		}
993 
994 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
995 		if (!speed) {
996 			e_dbg("Speed not set.\n");
997 			return -E1000_ERR_CONFIG;
998 		}
999 
1000 		/* Rx Packet Buffer Allocation size (KB) */
1001 		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1002 
1003 		/* Determine the maximum latency tolerated by the device.
1004 		 *
1005 		 * Per the PCIe spec, the tolerated latencies are encoded as
1006 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1007 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1008 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1009 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1010 		 */
1011 		lat_ns = ((s64)rxa * 1024 -
1012 			  (2 * (s64)hw->adapter->max_frame_size)) * 8 * 1000;
1013 		if (lat_ns < 0)
1014 			lat_ns = 0;
1015 		else
1016 			do_div(lat_ns, speed);
1017 
1018 		value = lat_ns;
1019 		while (value > PCI_LTR_VALUE_MASK) {
1020 			scale++;
1021 			value = DIV_ROUND_UP(value, (1 << 5));
1022 		}
1023 		if (scale > E1000_LTRV_SCALE_MAX) {
1024 			e_dbg("Invalid LTR latency scale %d\n", scale);
1025 			return -E1000_ERR_CONFIG;
1026 		}
1027 		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1028 
1029 		/* Determine the maximum latency tolerated by the platform */
1030 		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1031 				     &max_snoop);
1032 		pci_read_config_word(hw->adapter->pdev,
1033 				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1034 		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1035 
1036 		if (lat_enc > max_ltr_enc)
1037 			lat_enc = max_ltr_enc;
1038 	}
1039 
1040 	/* Set Snoop and No-Snoop latencies the same */
1041 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1042 	ew32(LTRV, reg);
1043 
1044 	return 0;
1045 }
1046 
1047 /**
1048  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1049  *  @hw: pointer to the HW structure
1050  *  @to_sx: boolean indicating a system power state transition to Sx
1051  *
1052  *  When link is down, configure ULP mode to significantly reduce the power
1053  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1054  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1055  *  system, configure the ULP mode by software.
1056  */
1057 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1058 {
1059 	u32 mac_reg;
1060 	s32 ret_val = 0;
1061 	u16 phy_reg;
1062 
1063 	if ((hw->mac.type < e1000_pch_lpt) ||
1064 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1065 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1066 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1067 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1068 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1069 		return 0;
1070 
1071 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1072 		/* Request ME configure ULP mode in the PHY */
1073 		mac_reg = er32(H2ME);
1074 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1075 		ew32(H2ME, mac_reg);
1076 
1077 		goto out;
1078 	}
1079 
1080 	if (!to_sx) {
1081 		int i = 0;
1082 
1083 		/* Poll up to 5 seconds for Cable Disconnected indication */
1084 		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1085 			/* Bail if link is re-acquired */
1086 			if (er32(STATUS) & E1000_STATUS_LU)
1087 				return -E1000_ERR_PHY;
1088 
1089 			if (i++ == 100)
1090 				break;
1091 
1092 			msleep(50);
1093 		}
1094 		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1095 		      (er32(FEXT) &
1096 		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1097 	}
1098 
1099 	ret_val = hw->phy.ops.acquire(hw);
1100 	if (ret_val)
1101 		goto out;
1102 
1103 	/* Force SMBus mode in PHY */
1104 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1105 	if (ret_val)
1106 		goto release;
1107 	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1108 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1109 
1110 	/* Force SMBus mode in MAC */
1111 	mac_reg = er32(CTRL_EXT);
1112 	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1113 	ew32(CTRL_EXT, mac_reg);
1114 
1115 	/* Set Inband ULP Exit, Reset to SMBus mode and
1116 	 * Disable SMBus Release on PERST# in PHY
1117 	 */
1118 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1119 	if (ret_val)
1120 		goto release;
1121 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1122 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1123 	if (to_sx) {
1124 		if (er32(WUFC) & E1000_WUFC_LNKC)
1125 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1126 
1127 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1128 	} else {
1129 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1130 	}
1131 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1132 
1133 	/* Set Disable SMBus Release on PERST# in MAC */
1134 	mac_reg = er32(FEXTNVM7);
1135 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1136 	ew32(FEXTNVM7, mac_reg);
1137 
1138 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1139 	phy_reg |= I218_ULP_CONFIG1_START;
1140 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1141 release:
1142 	hw->phy.ops.release(hw);
1143 out:
1144 	if (ret_val)
1145 		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1146 	else
1147 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1148 
1149 	return ret_val;
1150 }
1151 
1152 /**
1153  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1154  *  @hw: pointer to the HW structure
1155  *  @force: boolean indicating whether or not to force disabling ULP
1156  *
1157  *  Un-configure ULP mode when link is up, the system is transitioned from
1158  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1159  *  system, poll for an indication from ME that ULP has been un-configured.
1160  *  If not on an ME enabled system, un-configure the ULP mode by software.
1161  *
1162  *  During nominal operation, this function is called when link is acquired
1163  *  to disable ULP mode (force=false); otherwise, for example when unloading
1164  *  the driver or during Sx->S0 transitions, this is called with force=true
1165  *  to forcibly disable ULP.
1166  */
1167 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1168 {
1169 	s32 ret_val = 0;
1170 	u32 mac_reg;
1171 	u16 phy_reg;
1172 	int i = 0;
1173 
1174 	if ((hw->mac.type < e1000_pch_lpt) ||
1175 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1176 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1177 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1178 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1179 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1180 		return 0;
1181 
1182 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1183 		if (force) {
1184 			/* Request ME un-configure ULP mode in the PHY */
1185 			mac_reg = er32(H2ME);
1186 			mac_reg &= ~E1000_H2ME_ULP;
1187 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1188 			ew32(H2ME, mac_reg);
1189 		}
1190 
1191 		/* Poll up to 100msec for ME to clear ULP_CFG_DONE */
1192 		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1193 			if (i++ == 10) {
1194 				ret_val = -E1000_ERR_PHY;
1195 				goto out;
1196 			}
1197 
1198 			usleep_range(10000, 20000);
1199 		}
1200 		e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1201 
1202 		if (force) {
1203 			mac_reg = er32(H2ME);
1204 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1205 			ew32(H2ME, mac_reg);
1206 		} else {
1207 			/* Clear H2ME.ULP after ME ULP configuration */
1208 			mac_reg = er32(H2ME);
1209 			mac_reg &= ~E1000_H2ME_ULP;
1210 			ew32(H2ME, mac_reg);
1211 		}
1212 
1213 		goto out;
1214 	}
1215 
1216 	ret_val = hw->phy.ops.acquire(hw);
1217 	if (ret_val)
1218 		goto out;
1219 
1220 	if (force)
1221 		/* Toggle LANPHYPC Value bit */
1222 		e1000_toggle_lanphypc_pch_lpt(hw);
1223 
1224 	/* Unforce SMBus mode in PHY */
1225 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1226 	if (ret_val) {
1227 		/* The MAC might be in PCIe mode, so temporarily force to
1228 		 * SMBus mode in order to access the PHY.
1229 		 */
1230 		mac_reg = er32(CTRL_EXT);
1231 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1232 		ew32(CTRL_EXT, mac_reg);
1233 
1234 		msleep(50);
1235 
1236 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1237 						       &phy_reg);
1238 		if (ret_val)
1239 			goto release;
1240 	}
1241 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1242 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1243 
1244 	/* Unforce SMBus mode in MAC */
1245 	mac_reg = er32(CTRL_EXT);
1246 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1247 	ew32(CTRL_EXT, mac_reg);
1248 
1249 	/* When ULP mode was previously entered, K1 was disabled by the
1250 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1251 	 */
1252 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1253 	if (ret_val)
1254 		goto release;
1255 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1256 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1257 
1258 	/* Clear ULP enabled configuration */
1259 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1260 	if (ret_val)
1261 		goto release;
1262 	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1263 		     I218_ULP_CONFIG1_STICKY_ULP |
1264 		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1265 		     I218_ULP_CONFIG1_WOL_HOST |
1266 		     I218_ULP_CONFIG1_INBAND_EXIT |
1267 		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1268 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1269 
1270 	/* Commit ULP changes by starting auto ULP configuration */
1271 	phy_reg |= I218_ULP_CONFIG1_START;
1272 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1273 
1274 	/* Clear Disable SMBus Release on PERST# in MAC */
1275 	mac_reg = er32(FEXTNVM7);
1276 	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1277 	ew32(FEXTNVM7, mac_reg);
1278 
1279 release:
1280 	hw->phy.ops.release(hw);
1281 	if (force) {
1282 		e1000_phy_hw_reset(hw);
1283 		msleep(50);
1284 	}
1285 out:
1286 	if (ret_val)
1287 		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1288 	else
1289 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1290 
1291 	return ret_val;
1292 }
1293 
1294 /**
1295  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1296  *  @hw: pointer to the HW structure
1297  *
1298  *  Checks to see of the link status of the hardware has changed.  If a
1299  *  change in link status has been detected, then we read the PHY registers
1300  *  to get the current speed/duplex if link exists.
1301  **/
1302 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1303 {
1304 	struct e1000_mac_info *mac = &hw->mac;
1305 	s32 ret_val;
1306 	bool link;
1307 	u16 phy_reg;
1308 
1309 	/* We only want to go out to the PHY registers to see if Auto-Neg
1310 	 * has completed and/or if our link status has changed.  The
1311 	 * get_link_status flag is set upon receiving a Link Status
1312 	 * Change or Rx Sequence Error interrupt.
1313 	 */
1314 	if (!mac->get_link_status)
1315 		return 0;
1316 
1317 	/* First we want to see if the MII Status Register reports
1318 	 * link.  If so, then we want to get the current speed/duplex
1319 	 * of the PHY.
1320 	 */
1321 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1322 	if (ret_val)
1323 		return ret_val;
1324 
1325 	if (hw->mac.type == e1000_pchlan) {
1326 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1327 		if (ret_val)
1328 			return ret_val;
1329 	}
1330 
1331 	/* When connected at 10Mbps half-duplex, some parts are excessively
1332 	 * aggressive resulting in many collisions. To avoid this, increase
1333 	 * the IPG and reduce Rx latency in the PHY.
1334 	 */
1335 	if (((hw->mac.type == e1000_pch2lan) ||
1336 	     (hw->mac.type == e1000_pch_lpt)) && link) {
1337 		u32 reg;
1338 
1339 		reg = er32(STATUS);
1340 		if (!(reg & (E1000_STATUS_FD | E1000_STATUS_SPEED_MASK))) {
1341 			u16 emi_addr;
1342 
1343 			reg = er32(TIPG);
1344 			reg &= ~E1000_TIPG_IPGT_MASK;
1345 			reg |= 0xFF;
1346 			ew32(TIPG, reg);
1347 
1348 			/* Reduce Rx latency in analog PHY */
1349 			ret_val = hw->phy.ops.acquire(hw);
1350 			if (ret_val)
1351 				return ret_val;
1352 
1353 			if (hw->mac.type == e1000_pch2lan)
1354 				emi_addr = I82579_RX_CONFIG;
1355 			else
1356 				emi_addr = I217_RX_CONFIG;
1357 
1358 			ret_val = e1000_write_emi_reg_locked(hw, emi_addr, 0);
1359 
1360 			hw->phy.ops.release(hw);
1361 
1362 			if (ret_val)
1363 				return ret_val;
1364 		}
1365 	}
1366 
1367 	/* Work-around I218 hang issue */
1368 	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1369 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1370 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1371 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1372 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1373 		if (ret_val)
1374 			return ret_val;
1375 	}
1376 
1377 	if (hw->mac.type == e1000_pch_lpt) {
1378 		/* Set platform power management values for
1379 		 * Latency Tolerance Reporting (LTR)
1380 		 */
1381 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1382 		if (ret_val)
1383 			return ret_val;
1384 	}
1385 
1386 	/* Clear link partner's EEE ability */
1387 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1388 
1389 	if (!link)
1390 		return 0;	/* No link detected */
1391 
1392 	mac->get_link_status = false;
1393 
1394 	switch (hw->mac.type) {
1395 	case e1000_pch2lan:
1396 		ret_val = e1000_k1_workaround_lv(hw);
1397 		if (ret_val)
1398 			return ret_val;
1399 		/* fall-thru */
1400 	case e1000_pchlan:
1401 		if (hw->phy.type == e1000_phy_82578) {
1402 			ret_val = e1000_link_stall_workaround_hv(hw);
1403 			if (ret_val)
1404 				return ret_val;
1405 		}
1406 
1407 		/* Workaround for PCHx parts in half-duplex:
1408 		 * Set the number of preambles removed from the packet
1409 		 * when it is passed from the PHY to the MAC to prevent
1410 		 * the MAC from misinterpreting the packet type.
1411 		 */
1412 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1413 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1414 
1415 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1416 			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1417 
1418 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1419 		break;
1420 	default:
1421 		break;
1422 	}
1423 
1424 	/* Check if there was DownShift, must be checked
1425 	 * immediately after link-up
1426 	 */
1427 	e1000e_check_downshift(hw);
1428 
1429 	/* Enable/Disable EEE after link up */
1430 	if (hw->phy.type > e1000_phy_82579) {
1431 		ret_val = e1000_set_eee_pchlan(hw);
1432 		if (ret_val)
1433 			return ret_val;
1434 	}
1435 
1436 	/* If we are forcing speed/duplex, then we simply return since
1437 	 * we have already determined whether we have link or not.
1438 	 */
1439 	if (!mac->autoneg)
1440 		return -E1000_ERR_CONFIG;
1441 
1442 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1443 	 * of MAC speed/duplex configuration.  So we only need to
1444 	 * configure Collision Distance in the MAC.
1445 	 */
1446 	mac->ops.config_collision_dist(hw);
1447 
1448 	/* Configure Flow Control now that Auto-Neg has completed.
1449 	 * First, we need to restore the desired flow control
1450 	 * settings because we may have had to re-autoneg with a
1451 	 * different link partner.
1452 	 */
1453 	ret_val = e1000e_config_fc_after_link_up(hw);
1454 	if (ret_val)
1455 		e_dbg("Error configuring flow control\n");
1456 
1457 	return ret_val;
1458 }
1459 
1460 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1461 {
1462 	struct e1000_hw *hw = &adapter->hw;
1463 	s32 rc;
1464 
1465 	rc = e1000_init_mac_params_ich8lan(hw);
1466 	if (rc)
1467 		return rc;
1468 
1469 	rc = e1000_init_nvm_params_ich8lan(hw);
1470 	if (rc)
1471 		return rc;
1472 
1473 	switch (hw->mac.type) {
1474 	case e1000_ich8lan:
1475 	case e1000_ich9lan:
1476 	case e1000_ich10lan:
1477 		rc = e1000_init_phy_params_ich8lan(hw);
1478 		break;
1479 	case e1000_pchlan:
1480 	case e1000_pch2lan:
1481 	case e1000_pch_lpt:
1482 		rc = e1000_init_phy_params_pchlan(hw);
1483 		break;
1484 	default:
1485 		break;
1486 	}
1487 	if (rc)
1488 		return rc;
1489 
1490 	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1491 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1492 	 */
1493 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1494 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1495 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1496 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1497 		adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
1498 
1499 		hw->mac.ops.blink_led = NULL;
1500 	}
1501 
1502 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1503 	    (adapter->hw.phy.type != e1000_phy_ife))
1504 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1505 
1506 	/* Enable workaround for 82579 w/ ME enabled */
1507 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1508 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1509 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1510 
1511 	return 0;
1512 }
1513 
1514 static DEFINE_MUTEX(nvm_mutex);
1515 
1516 /**
1517  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1518  *  @hw: pointer to the HW structure
1519  *
1520  *  Acquires the mutex for performing NVM operations.
1521  **/
1522 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1523 {
1524 	mutex_lock(&nvm_mutex);
1525 
1526 	return 0;
1527 }
1528 
1529 /**
1530  *  e1000_release_nvm_ich8lan - Release NVM mutex
1531  *  @hw: pointer to the HW structure
1532  *
1533  *  Releases the mutex used while performing NVM operations.
1534  **/
1535 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1536 {
1537 	mutex_unlock(&nvm_mutex);
1538 }
1539 
1540 /**
1541  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1542  *  @hw: pointer to the HW structure
1543  *
1544  *  Acquires the software control flag for performing PHY and select
1545  *  MAC CSR accesses.
1546  **/
1547 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1548 {
1549 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1550 	s32 ret_val = 0;
1551 
1552 	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1553 			     &hw->adapter->state)) {
1554 		e_dbg("contention for Phy access\n");
1555 		return -E1000_ERR_PHY;
1556 	}
1557 
1558 	while (timeout) {
1559 		extcnf_ctrl = er32(EXTCNF_CTRL);
1560 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1561 			break;
1562 
1563 		mdelay(1);
1564 		timeout--;
1565 	}
1566 
1567 	if (!timeout) {
1568 		e_dbg("SW has already locked the resource.\n");
1569 		ret_val = -E1000_ERR_CONFIG;
1570 		goto out;
1571 	}
1572 
1573 	timeout = SW_FLAG_TIMEOUT;
1574 
1575 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1576 	ew32(EXTCNF_CTRL, extcnf_ctrl);
1577 
1578 	while (timeout) {
1579 		extcnf_ctrl = er32(EXTCNF_CTRL);
1580 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1581 			break;
1582 
1583 		mdelay(1);
1584 		timeout--;
1585 	}
1586 
1587 	if (!timeout) {
1588 		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1589 		      er32(FWSM), extcnf_ctrl);
1590 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1591 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1592 		ret_val = -E1000_ERR_CONFIG;
1593 		goto out;
1594 	}
1595 
1596 out:
1597 	if (ret_val)
1598 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1599 
1600 	return ret_val;
1601 }
1602 
1603 /**
1604  *  e1000_release_swflag_ich8lan - Release software control flag
1605  *  @hw: pointer to the HW structure
1606  *
1607  *  Releases the software control flag for performing PHY and select
1608  *  MAC CSR accesses.
1609  **/
1610 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1611 {
1612 	u32 extcnf_ctrl;
1613 
1614 	extcnf_ctrl = er32(EXTCNF_CTRL);
1615 
1616 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1617 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1618 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1619 	} else {
1620 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1621 	}
1622 
1623 	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1624 }
1625 
1626 /**
1627  *  e1000_check_mng_mode_ich8lan - Checks management mode
1628  *  @hw: pointer to the HW structure
1629  *
1630  *  This checks if the adapter has any manageability enabled.
1631  *  This is a function pointer entry point only called by read/write
1632  *  routines for the PHY and NVM parts.
1633  **/
1634 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1635 {
1636 	u32 fwsm;
1637 
1638 	fwsm = er32(FWSM);
1639 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1640 		((fwsm & E1000_FWSM_MODE_MASK) ==
1641 		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1642 }
1643 
1644 /**
1645  *  e1000_check_mng_mode_pchlan - Checks management mode
1646  *  @hw: pointer to the HW structure
1647  *
1648  *  This checks if the adapter has iAMT enabled.
1649  *  This is a function pointer entry point only called by read/write
1650  *  routines for the PHY and NVM parts.
1651  **/
1652 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1653 {
1654 	u32 fwsm;
1655 
1656 	fwsm = er32(FWSM);
1657 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1658 	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1659 }
1660 
1661 /**
1662  *  e1000_rar_set_pch2lan - Set receive address register
1663  *  @hw: pointer to the HW structure
1664  *  @addr: pointer to the receive address
1665  *  @index: receive address array register
1666  *
1667  *  Sets the receive address array register at index to the address passed
1668  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1669  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1670  *  Use SHRA[0-3] in place of those reserved for ME.
1671  **/
1672 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1673 {
1674 	u32 rar_low, rar_high;
1675 
1676 	/* HW expects these in little endian so we reverse the byte order
1677 	 * from network order (big endian) to little endian
1678 	 */
1679 	rar_low = ((u32)addr[0] |
1680 		   ((u32)addr[1] << 8) |
1681 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1682 
1683 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1684 
1685 	/* If MAC address zero, no need to set the AV bit */
1686 	if (rar_low || rar_high)
1687 		rar_high |= E1000_RAH_AV;
1688 
1689 	if (index == 0) {
1690 		ew32(RAL(index), rar_low);
1691 		e1e_flush();
1692 		ew32(RAH(index), rar_high);
1693 		e1e_flush();
1694 		return 0;
1695 	}
1696 
1697 	/* RAR[1-6] are owned by manageability.  Skip those and program the
1698 	 * next address into the SHRA register array.
1699 	 */
1700 	if (index < (u32)(hw->mac.rar_entry_count)) {
1701 		s32 ret_val;
1702 
1703 		ret_val = e1000_acquire_swflag_ich8lan(hw);
1704 		if (ret_val)
1705 			goto out;
1706 
1707 		ew32(SHRAL(index - 1), rar_low);
1708 		e1e_flush();
1709 		ew32(SHRAH(index - 1), rar_high);
1710 		e1e_flush();
1711 
1712 		e1000_release_swflag_ich8lan(hw);
1713 
1714 		/* verify the register updates */
1715 		if ((er32(SHRAL(index - 1)) == rar_low) &&
1716 		    (er32(SHRAH(index - 1)) == rar_high))
1717 			return 0;
1718 
1719 		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1720 		      (index - 1), er32(FWSM));
1721 	}
1722 
1723 out:
1724 	e_dbg("Failed to write receive address at index %d\n", index);
1725 	return -E1000_ERR_CONFIG;
1726 }
1727 
1728 /**
1729  *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1730  *  @hw: pointer to the HW structure
1731  *
1732  *  Get the number of available receive registers that the Host can
1733  *  program. SHRA[0-10] are the shared receive address registers
1734  *  that are shared between the Host and manageability engine (ME).
1735  *  ME can reserve any number of addresses and the host needs to be
1736  *  able to tell how many available registers it has access to.
1737  **/
1738 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1739 {
1740 	u32 wlock_mac;
1741 	u32 num_entries;
1742 
1743 	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1744 	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1745 
1746 	switch (wlock_mac) {
1747 	case 0:
1748 		/* All SHRA[0..10] and RAR[0] available */
1749 		num_entries = hw->mac.rar_entry_count;
1750 		break;
1751 	case 1:
1752 		/* Only RAR[0] available */
1753 		num_entries = 1;
1754 		break;
1755 	default:
1756 		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1757 		num_entries = wlock_mac + 1;
1758 		break;
1759 	}
1760 
1761 	return num_entries;
1762 }
1763 
1764 /**
1765  *  e1000_rar_set_pch_lpt - Set receive address registers
1766  *  @hw: pointer to the HW structure
1767  *  @addr: pointer to the receive address
1768  *  @index: receive address array register
1769  *
1770  *  Sets the receive address register array at index to the address passed
1771  *  in by addr. For LPT, RAR[0] is the base address register that is to
1772  *  contain the MAC address. SHRA[0-10] are the shared receive address
1773  *  registers that are shared between the Host and manageability engine (ME).
1774  **/
1775 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1776 {
1777 	u32 rar_low, rar_high;
1778 	u32 wlock_mac;
1779 
1780 	/* HW expects these in little endian so we reverse the byte order
1781 	 * from network order (big endian) to little endian
1782 	 */
1783 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1784 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1785 
1786 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1787 
1788 	/* If MAC address zero, no need to set the AV bit */
1789 	if (rar_low || rar_high)
1790 		rar_high |= E1000_RAH_AV;
1791 
1792 	if (index == 0) {
1793 		ew32(RAL(index), rar_low);
1794 		e1e_flush();
1795 		ew32(RAH(index), rar_high);
1796 		e1e_flush();
1797 		return 0;
1798 	}
1799 
1800 	/* The manageability engine (ME) can lock certain SHRAR registers that
1801 	 * it is using - those registers are unavailable for use.
1802 	 */
1803 	if (index < hw->mac.rar_entry_count) {
1804 		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1805 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1806 
1807 		/* Check if all SHRAR registers are locked */
1808 		if (wlock_mac == 1)
1809 			goto out;
1810 
1811 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1812 			s32 ret_val;
1813 
1814 			ret_val = e1000_acquire_swflag_ich8lan(hw);
1815 
1816 			if (ret_val)
1817 				goto out;
1818 
1819 			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1820 			e1e_flush();
1821 			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1822 			e1e_flush();
1823 
1824 			e1000_release_swflag_ich8lan(hw);
1825 
1826 			/* verify the register updates */
1827 			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1828 			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1829 				return 0;
1830 		}
1831 	}
1832 
1833 out:
1834 	e_dbg("Failed to write receive address at index %d\n", index);
1835 	return -E1000_ERR_CONFIG;
1836 }
1837 
1838 /**
1839  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1840  *  @hw: pointer to the HW structure
1841  *
1842  *  Checks if firmware is blocking the reset of the PHY.
1843  *  This is a function pointer entry point only called by
1844  *  reset routines.
1845  **/
1846 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1847 {
1848 	bool blocked = false;
1849 	int i = 0;
1850 
1851 	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
1852 	       (i++ < 10))
1853 		usleep_range(10000, 20000);
1854 	return blocked ? E1000_BLK_PHY_RESET : 0;
1855 }
1856 
1857 /**
1858  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
1859  *  @hw: pointer to the HW structure
1860  *
1861  *  Assumes semaphore already acquired.
1862  *
1863  **/
1864 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
1865 {
1866 	u16 phy_data;
1867 	u32 strap = er32(STRAP);
1868 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
1869 	    E1000_STRAP_SMT_FREQ_SHIFT;
1870 	s32 ret_val;
1871 
1872 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1873 
1874 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1875 	if (ret_val)
1876 		return ret_val;
1877 
1878 	phy_data &= ~HV_SMB_ADDR_MASK;
1879 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1880 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1881 
1882 	if (hw->phy.type == e1000_phy_i217) {
1883 		/* Restore SMBus frequency */
1884 		if (freq--) {
1885 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
1886 			phy_data |= (freq & (1 << 0)) <<
1887 			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
1888 			phy_data |= (freq & (1 << 1)) <<
1889 			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
1890 		} else {
1891 			e_dbg("Unsupported SMB frequency in PHY\n");
1892 		}
1893 	}
1894 
1895 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1896 }
1897 
1898 /**
1899  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1900  *  @hw:   pointer to the HW structure
1901  *
1902  *  SW should configure the LCD from the NVM extended configuration region
1903  *  as a workaround for certain parts.
1904  **/
1905 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1906 {
1907 	struct e1000_phy_info *phy = &hw->phy;
1908 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1909 	s32 ret_val = 0;
1910 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
1911 
1912 	/* Initialize the PHY from the NVM on ICH platforms.  This
1913 	 * is needed due to an issue where the NVM configuration is
1914 	 * not properly autoloaded after power transitions.
1915 	 * Therefore, after each PHY reset, we will load the
1916 	 * configuration data out of the NVM manually.
1917 	 */
1918 	switch (hw->mac.type) {
1919 	case e1000_ich8lan:
1920 		if (phy->type != e1000_phy_igp_3)
1921 			return ret_val;
1922 
1923 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1924 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1925 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1926 			break;
1927 		}
1928 		/* Fall-thru */
1929 	case e1000_pchlan:
1930 	case e1000_pch2lan:
1931 	case e1000_pch_lpt:
1932 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1933 		break;
1934 	default:
1935 		return ret_val;
1936 	}
1937 
1938 	ret_val = hw->phy.ops.acquire(hw);
1939 	if (ret_val)
1940 		return ret_val;
1941 
1942 	data = er32(FEXTNVM);
1943 	if (!(data & sw_cfg_mask))
1944 		goto release;
1945 
1946 	/* Make sure HW does not configure LCD from PHY
1947 	 * extended configuration before SW configuration
1948 	 */
1949 	data = er32(EXTCNF_CTRL);
1950 	if ((hw->mac.type < e1000_pch2lan) &&
1951 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
1952 		goto release;
1953 
1954 	cnf_size = er32(EXTCNF_SIZE);
1955 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1956 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1957 	if (!cnf_size)
1958 		goto release;
1959 
1960 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1961 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1962 
1963 	if (((hw->mac.type == e1000_pchlan) &&
1964 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
1965 	    (hw->mac.type > e1000_pchlan)) {
1966 		/* HW configures the SMBus address and LEDs when the
1967 		 * OEM and LCD Write Enable bits are set in the NVM.
1968 		 * When both NVM bits are cleared, SW will configure
1969 		 * them instead.
1970 		 */
1971 		ret_val = e1000_write_smbus_addr(hw);
1972 		if (ret_val)
1973 			goto release;
1974 
1975 		data = er32(LEDCTL);
1976 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1977 							(u16)data);
1978 		if (ret_val)
1979 			goto release;
1980 	}
1981 
1982 	/* Configure LCD from extended configuration region. */
1983 
1984 	/* cnf_base_addr is in DWORD */
1985 	word_addr = (u16)(cnf_base_addr << 1);
1986 
1987 	for (i = 0; i < cnf_size; i++) {
1988 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
1989 		if (ret_val)
1990 			goto release;
1991 
1992 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1993 					 1, &reg_addr);
1994 		if (ret_val)
1995 			goto release;
1996 
1997 		/* Save off the PHY page for future writes. */
1998 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1999 			phy_page = reg_data;
2000 			continue;
2001 		}
2002 
2003 		reg_addr &= PHY_REG_MASK;
2004 		reg_addr |= phy_page;
2005 
2006 		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2007 		if (ret_val)
2008 			goto release;
2009 	}
2010 
2011 release:
2012 	hw->phy.ops.release(hw);
2013 	return ret_val;
2014 }
2015 
2016 /**
2017  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2018  *  @hw:   pointer to the HW structure
2019  *  @link: link up bool flag
2020  *
2021  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2022  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2023  *  If link is down, the function will restore the default K1 setting located
2024  *  in the NVM.
2025  **/
2026 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2027 {
2028 	s32 ret_val = 0;
2029 	u16 status_reg = 0;
2030 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2031 
2032 	if (hw->mac.type != e1000_pchlan)
2033 		return 0;
2034 
2035 	/* Wrap the whole flow with the sw flag */
2036 	ret_val = hw->phy.ops.acquire(hw);
2037 	if (ret_val)
2038 		return ret_val;
2039 
2040 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2041 	if (link) {
2042 		if (hw->phy.type == e1000_phy_82578) {
2043 			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2044 						  &status_reg);
2045 			if (ret_val)
2046 				goto release;
2047 
2048 			status_reg &= (BM_CS_STATUS_LINK_UP |
2049 				       BM_CS_STATUS_RESOLVED |
2050 				       BM_CS_STATUS_SPEED_MASK);
2051 
2052 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2053 					   BM_CS_STATUS_RESOLVED |
2054 					   BM_CS_STATUS_SPEED_1000))
2055 				k1_enable = false;
2056 		}
2057 
2058 		if (hw->phy.type == e1000_phy_82577) {
2059 			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2060 			if (ret_val)
2061 				goto release;
2062 
2063 			status_reg &= (HV_M_STATUS_LINK_UP |
2064 				       HV_M_STATUS_AUTONEG_COMPLETE |
2065 				       HV_M_STATUS_SPEED_MASK);
2066 
2067 			if (status_reg == (HV_M_STATUS_LINK_UP |
2068 					   HV_M_STATUS_AUTONEG_COMPLETE |
2069 					   HV_M_STATUS_SPEED_1000))
2070 				k1_enable = false;
2071 		}
2072 
2073 		/* Link stall fix for link up */
2074 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2075 		if (ret_val)
2076 			goto release;
2077 
2078 	} else {
2079 		/* Link stall fix for link down */
2080 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2081 		if (ret_val)
2082 			goto release;
2083 	}
2084 
2085 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2086 
2087 release:
2088 	hw->phy.ops.release(hw);
2089 
2090 	return ret_val;
2091 }
2092 
2093 /**
2094  *  e1000_configure_k1_ich8lan - Configure K1 power state
2095  *  @hw: pointer to the HW structure
2096  *  @enable: K1 state to configure
2097  *
2098  *  Configure the K1 power state based on the provided parameter.
2099  *  Assumes semaphore already acquired.
2100  *
2101  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2102  **/
2103 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2104 {
2105 	s32 ret_val;
2106 	u32 ctrl_reg = 0;
2107 	u32 ctrl_ext = 0;
2108 	u32 reg = 0;
2109 	u16 kmrn_reg = 0;
2110 
2111 	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2112 					      &kmrn_reg);
2113 	if (ret_val)
2114 		return ret_val;
2115 
2116 	if (k1_enable)
2117 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2118 	else
2119 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2120 
2121 	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2122 					       kmrn_reg);
2123 	if (ret_val)
2124 		return ret_val;
2125 
2126 	usleep_range(20, 40);
2127 	ctrl_ext = er32(CTRL_EXT);
2128 	ctrl_reg = er32(CTRL);
2129 
2130 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2131 	reg |= E1000_CTRL_FRCSPD;
2132 	ew32(CTRL, reg);
2133 
2134 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2135 	e1e_flush();
2136 	usleep_range(20, 40);
2137 	ew32(CTRL, ctrl_reg);
2138 	ew32(CTRL_EXT, ctrl_ext);
2139 	e1e_flush();
2140 	usleep_range(20, 40);
2141 
2142 	return 0;
2143 }
2144 
2145 /**
2146  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2147  *  @hw:       pointer to the HW structure
2148  *  @d0_state: boolean if entering d0 or d3 device state
2149  *
2150  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2151  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2152  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2153  **/
2154 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2155 {
2156 	s32 ret_val = 0;
2157 	u32 mac_reg;
2158 	u16 oem_reg;
2159 
2160 	if (hw->mac.type < e1000_pchlan)
2161 		return ret_val;
2162 
2163 	ret_val = hw->phy.ops.acquire(hw);
2164 	if (ret_val)
2165 		return ret_val;
2166 
2167 	if (hw->mac.type == e1000_pchlan) {
2168 		mac_reg = er32(EXTCNF_CTRL);
2169 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2170 			goto release;
2171 	}
2172 
2173 	mac_reg = er32(FEXTNVM);
2174 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2175 		goto release;
2176 
2177 	mac_reg = er32(PHY_CTRL);
2178 
2179 	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2180 	if (ret_val)
2181 		goto release;
2182 
2183 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2184 
2185 	if (d0_state) {
2186 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2187 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2188 
2189 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2190 			oem_reg |= HV_OEM_BITS_LPLU;
2191 	} else {
2192 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2193 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2194 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2195 
2196 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2197 			       E1000_PHY_CTRL_NOND0A_LPLU))
2198 			oem_reg |= HV_OEM_BITS_LPLU;
2199 	}
2200 
2201 	/* Set Restart auto-neg to activate the bits */
2202 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2203 	    !hw->phy.ops.check_reset_block(hw))
2204 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2205 
2206 	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2207 
2208 release:
2209 	hw->phy.ops.release(hw);
2210 
2211 	return ret_val;
2212 }
2213 
2214 /**
2215  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2216  *  @hw:   pointer to the HW structure
2217  **/
2218 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2219 {
2220 	s32 ret_val;
2221 	u16 data;
2222 
2223 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2224 	if (ret_val)
2225 		return ret_val;
2226 
2227 	data |= HV_KMRN_MDIO_SLOW;
2228 
2229 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2230 
2231 	return ret_val;
2232 }
2233 
2234 /**
2235  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2236  *  done after every PHY reset.
2237  **/
2238 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2239 {
2240 	s32 ret_val = 0;
2241 	u16 phy_data;
2242 
2243 	if (hw->mac.type != e1000_pchlan)
2244 		return 0;
2245 
2246 	/* Set MDIO slow mode before any other MDIO access */
2247 	if (hw->phy.type == e1000_phy_82577) {
2248 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2249 		if (ret_val)
2250 			return ret_val;
2251 	}
2252 
2253 	if (((hw->phy.type == e1000_phy_82577) &&
2254 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2255 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2256 		/* Disable generation of early preamble */
2257 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2258 		if (ret_val)
2259 			return ret_val;
2260 
2261 		/* Preamble tuning for SSC */
2262 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2263 		if (ret_val)
2264 			return ret_val;
2265 	}
2266 
2267 	if (hw->phy.type == e1000_phy_82578) {
2268 		/* Return registers to default by doing a soft reset then
2269 		 * writing 0x3140 to the control register.
2270 		 */
2271 		if (hw->phy.revision < 2) {
2272 			e1000e_phy_sw_reset(hw);
2273 			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2274 		}
2275 	}
2276 
2277 	/* Select page 0 */
2278 	ret_val = hw->phy.ops.acquire(hw);
2279 	if (ret_val)
2280 		return ret_val;
2281 
2282 	hw->phy.addr = 1;
2283 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2284 	hw->phy.ops.release(hw);
2285 	if (ret_val)
2286 		return ret_val;
2287 
2288 	/* Configure the K1 Si workaround during phy reset assuming there is
2289 	 * link so that it disables K1 if link is in 1Gbps.
2290 	 */
2291 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2292 	if (ret_val)
2293 		return ret_val;
2294 
2295 	/* Workaround for link disconnects on a busy hub in half duplex */
2296 	ret_val = hw->phy.ops.acquire(hw);
2297 	if (ret_val)
2298 		return ret_val;
2299 	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2300 	if (ret_val)
2301 		goto release;
2302 	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2303 	if (ret_val)
2304 		goto release;
2305 
2306 	/* set MSE higher to enable link to stay up when noise is high */
2307 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2308 release:
2309 	hw->phy.ops.release(hw);
2310 
2311 	return ret_val;
2312 }
2313 
2314 /**
2315  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2316  *  @hw:   pointer to the HW structure
2317  **/
2318 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2319 {
2320 	u32 mac_reg;
2321 	u16 i, phy_reg = 0;
2322 	s32 ret_val;
2323 
2324 	ret_val = hw->phy.ops.acquire(hw);
2325 	if (ret_val)
2326 		return;
2327 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2328 	if (ret_val)
2329 		goto release;
2330 
2331 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2332 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2333 		mac_reg = er32(RAL(i));
2334 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2335 					   (u16)(mac_reg & 0xFFFF));
2336 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2337 					   (u16)((mac_reg >> 16) & 0xFFFF));
2338 
2339 		mac_reg = er32(RAH(i));
2340 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2341 					   (u16)(mac_reg & 0xFFFF));
2342 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2343 					   (u16)((mac_reg & E1000_RAH_AV)
2344 						 >> 16));
2345 	}
2346 
2347 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2348 
2349 release:
2350 	hw->phy.ops.release(hw);
2351 }
2352 
2353 /**
2354  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2355  *  with 82579 PHY
2356  *  @hw: pointer to the HW structure
2357  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2358  **/
2359 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2360 {
2361 	s32 ret_val = 0;
2362 	u16 phy_reg, data;
2363 	u32 mac_reg;
2364 	u16 i;
2365 
2366 	if (hw->mac.type < e1000_pch2lan)
2367 		return 0;
2368 
2369 	/* disable Rx path while enabling/disabling workaround */
2370 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2371 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
2372 	if (ret_val)
2373 		return ret_val;
2374 
2375 	if (enable) {
2376 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2377 		 * SHRAL/H) and initial CRC values to the MAC
2378 		 */
2379 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2380 			u8 mac_addr[ETH_ALEN] = { 0 };
2381 			u32 addr_high, addr_low;
2382 
2383 			addr_high = er32(RAH(i));
2384 			if (!(addr_high & E1000_RAH_AV))
2385 				continue;
2386 			addr_low = er32(RAL(i));
2387 			mac_addr[0] = (addr_low & 0xFF);
2388 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2389 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2390 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2391 			mac_addr[4] = (addr_high & 0xFF);
2392 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2393 
2394 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2395 		}
2396 
2397 		/* Write Rx addresses to the PHY */
2398 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2399 
2400 		/* Enable jumbo frame workaround in the MAC */
2401 		mac_reg = er32(FFLT_DBG);
2402 		mac_reg &= ~(1 << 14);
2403 		mac_reg |= (7 << 15);
2404 		ew32(FFLT_DBG, mac_reg);
2405 
2406 		mac_reg = er32(RCTL);
2407 		mac_reg |= E1000_RCTL_SECRC;
2408 		ew32(RCTL, mac_reg);
2409 
2410 		ret_val = e1000e_read_kmrn_reg(hw,
2411 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2412 					       &data);
2413 		if (ret_val)
2414 			return ret_val;
2415 		ret_val = e1000e_write_kmrn_reg(hw,
2416 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2417 						data | (1 << 0));
2418 		if (ret_val)
2419 			return ret_val;
2420 		ret_val = e1000e_read_kmrn_reg(hw,
2421 					       E1000_KMRNCTRLSTA_HD_CTRL,
2422 					       &data);
2423 		if (ret_val)
2424 			return ret_val;
2425 		data &= ~(0xF << 8);
2426 		data |= (0xB << 8);
2427 		ret_val = e1000e_write_kmrn_reg(hw,
2428 						E1000_KMRNCTRLSTA_HD_CTRL,
2429 						data);
2430 		if (ret_val)
2431 			return ret_val;
2432 
2433 		/* Enable jumbo frame workaround in the PHY */
2434 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2435 		data &= ~(0x7F << 5);
2436 		data |= (0x37 << 5);
2437 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2438 		if (ret_val)
2439 			return ret_val;
2440 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2441 		data &= ~(1 << 13);
2442 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2443 		if (ret_val)
2444 			return ret_val;
2445 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2446 		data &= ~(0x3FF << 2);
2447 		data |= (E1000_TX_PTR_GAP << 2);
2448 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2449 		if (ret_val)
2450 			return ret_val;
2451 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2452 		if (ret_val)
2453 			return ret_val;
2454 		e1e_rphy(hw, HV_PM_CTRL, &data);
2455 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
2456 		if (ret_val)
2457 			return ret_val;
2458 	} else {
2459 		/* Write MAC register values back to h/w defaults */
2460 		mac_reg = er32(FFLT_DBG);
2461 		mac_reg &= ~(0xF << 14);
2462 		ew32(FFLT_DBG, mac_reg);
2463 
2464 		mac_reg = er32(RCTL);
2465 		mac_reg &= ~E1000_RCTL_SECRC;
2466 		ew32(RCTL, mac_reg);
2467 
2468 		ret_val = e1000e_read_kmrn_reg(hw,
2469 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2470 					       &data);
2471 		if (ret_val)
2472 			return ret_val;
2473 		ret_val = e1000e_write_kmrn_reg(hw,
2474 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2475 						data & ~(1 << 0));
2476 		if (ret_val)
2477 			return ret_val;
2478 		ret_val = e1000e_read_kmrn_reg(hw,
2479 					       E1000_KMRNCTRLSTA_HD_CTRL,
2480 					       &data);
2481 		if (ret_val)
2482 			return ret_val;
2483 		data &= ~(0xF << 8);
2484 		data |= (0xB << 8);
2485 		ret_val = e1000e_write_kmrn_reg(hw,
2486 						E1000_KMRNCTRLSTA_HD_CTRL,
2487 						data);
2488 		if (ret_val)
2489 			return ret_val;
2490 
2491 		/* Write PHY register values back to h/w defaults */
2492 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2493 		data &= ~(0x7F << 5);
2494 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2495 		if (ret_val)
2496 			return ret_val;
2497 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2498 		data |= (1 << 13);
2499 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2500 		if (ret_val)
2501 			return ret_val;
2502 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2503 		data &= ~(0x3FF << 2);
2504 		data |= (0x8 << 2);
2505 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2506 		if (ret_val)
2507 			return ret_val;
2508 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2509 		if (ret_val)
2510 			return ret_val;
2511 		e1e_rphy(hw, HV_PM_CTRL, &data);
2512 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
2513 		if (ret_val)
2514 			return ret_val;
2515 	}
2516 
2517 	/* re-enable Rx path after enabling/disabling workaround */
2518 	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
2519 }
2520 
2521 /**
2522  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2523  *  done after every PHY reset.
2524  **/
2525 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2526 {
2527 	s32 ret_val = 0;
2528 
2529 	if (hw->mac.type != e1000_pch2lan)
2530 		return 0;
2531 
2532 	/* Set MDIO slow mode before any other MDIO access */
2533 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2534 	if (ret_val)
2535 		return ret_val;
2536 
2537 	ret_val = hw->phy.ops.acquire(hw);
2538 	if (ret_val)
2539 		return ret_val;
2540 	/* set MSE higher to enable link to stay up when noise is high */
2541 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2542 	if (ret_val)
2543 		goto release;
2544 	/* drop link after 5 times MSE threshold was reached */
2545 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2546 release:
2547 	hw->phy.ops.release(hw);
2548 
2549 	return ret_val;
2550 }
2551 
2552 /**
2553  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2554  *  @hw:   pointer to the HW structure
2555  *
2556  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2557  *  Disable K1 in 1000Mbps and 100Mbps
2558  **/
2559 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2560 {
2561 	s32 ret_val = 0;
2562 	u16 status_reg = 0;
2563 
2564 	if (hw->mac.type != e1000_pch2lan)
2565 		return 0;
2566 
2567 	/* Set K1 beacon duration based on 10Mbs speed */
2568 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2569 	if (ret_val)
2570 		return ret_val;
2571 
2572 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2573 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2574 		if (status_reg &
2575 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2576 			u16 pm_phy_reg;
2577 
2578 			/* LV 1G/100 Packet drop issue wa  */
2579 			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2580 			if (ret_val)
2581 				return ret_val;
2582 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2583 			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2584 			if (ret_val)
2585 				return ret_val;
2586 		} else {
2587 			u32 mac_reg;
2588 
2589 			mac_reg = er32(FEXTNVM4);
2590 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2591 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2592 			ew32(FEXTNVM4, mac_reg);
2593 		}
2594 	}
2595 
2596 	return ret_val;
2597 }
2598 
2599 /**
2600  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2601  *  @hw:   pointer to the HW structure
2602  *  @gate: boolean set to true to gate, false to ungate
2603  *
2604  *  Gate/ungate the automatic PHY configuration via hardware; perform
2605  *  the configuration via software instead.
2606  **/
2607 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2608 {
2609 	u32 extcnf_ctrl;
2610 
2611 	if (hw->mac.type < e1000_pch2lan)
2612 		return;
2613 
2614 	extcnf_ctrl = er32(EXTCNF_CTRL);
2615 
2616 	if (gate)
2617 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2618 	else
2619 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2620 
2621 	ew32(EXTCNF_CTRL, extcnf_ctrl);
2622 }
2623 
2624 /**
2625  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2626  *  @hw: pointer to the HW structure
2627  *
2628  *  Check the appropriate indication the MAC has finished configuring the
2629  *  PHY after a software reset.
2630  **/
2631 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2632 {
2633 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2634 
2635 	/* Wait for basic configuration completes before proceeding */
2636 	do {
2637 		data = er32(STATUS);
2638 		data &= E1000_STATUS_LAN_INIT_DONE;
2639 		usleep_range(100, 200);
2640 	} while ((!data) && --loop);
2641 
2642 	/* If basic configuration is incomplete before the above loop
2643 	 * count reaches 0, loading the configuration from NVM will
2644 	 * leave the PHY in a bad state possibly resulting in no link.
2645 	 */
2646 	if (loop == 0)
2647 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2648 
2649 	/* Clear the Init Done bit for the next init event */
2650 	data = er32(STATUS);
2651 	data &= ~E1000_STATUS_LAN_INIT_DONE;
2652 	ew32(STATUS, data);
2653 }
2654 
2655 /**
2656  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2657  *  @hw: pointer to the HW structure
2658  **/
2659 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2660 {
2661 	s32 ret_val = 0;
2662 	u16 reg;
2663 
2664 	if (hw->phy.ops.check_reset_block(hw))
2665 		return 0;
2666 
2667 	/* Allow time for h/w to get to quiescent state after reset */
2668 	usleep_range(10000, 20000);
2669 
2670 	/* Perform any necessary post-reset workarounds */
2671 	switch (hw->mac.type) {
2672 	case e1000_pchlan:
2673 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2674 		if (ret_val)
2675 			return ret_val;
2676 		break;
2677 	case e1000_pch2lan:
2678 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2679 		if (ret_val)
2680 			return ret_val;
2681 		break;
2682 	default:
2683 		break;
2684 	}
2685 
2686 	/* Clear the host wakeup bit after lcd reset */
2687 	if (hw->mac.type >= e1000_pchlan) {
2688 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2689 		reg &= ~BM_WUC_HOST_WU_BIT;
2690 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2691 	}
2692 
2693 	/* Configure the LCD with the extended configuration region in NVM */
2694 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2695 	if (ret_val)
2696 		return ret_val;
2697 
2698 	/* Configure the LCD with the OEM bits in NVM */
2699 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2700 
2701 	if (hw->mac.type == e1000_pch2lan) {
2702 		/* Ungate automatic PHY configuration on non-managed 82579 */
2703 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2704 			usleep_range(10000, 20000);
2705 			e1000_gate_hw_phy_config_ich8lan(hw, false);
2706 		}
2707 
2708 		/* Set EEE LPI Update Timer to 200usec */
2709 		ret_val = hw->phy.ops.acquire(hw);
2710 		if (ret_val)
2711 			return ret_val;
2712 		ret_val = e1000_write_emi_reg_locked(hw,
2713 						     I82579_LPI_UPDATE_TIMER,
2714 						     0x1387);
2715 		hw->phy.ops.release(hw);
2716 	}
2717 
2718 	return ret_val;
2719 }
2720 
2721 /**
2722  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2723  *  @hw: pointer to the HW structure
2724  *
2725  *  Resets the PHY
2726  *  This is a function pointer entry point called by drivers
2727  *  or other shared routines.
2728  **/
2729 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2730 {
2731 	s32 ret_val = 0;
2732 
2733 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2734 	if ((hw->mac.type == e1000_pch2lan) &&
2735 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2736 		e1000_gate_hw_phy_config_ich8lan(hw, true);
2737 
2738 	ret_val = e1000e_phy_hw_reset_generic(hw);
2739 	if (ret_val)
2740 		return ret_val;
2741 
2742 	return e1000_post_phy_reset_ich8lan(hw);
2743 }
2744 
2745 /**
2746  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2747  *  @hw: pointer to the HW structure
2748  *  @active: true to enable LPLU, false to disable
2749  *
2750  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2751  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2752  *  the phy speed. This function will manually set the LPLU bit and restart
2753  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2754  *  since it configures the same bit.
2755  **/
2756 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2757 {
2758 	s32 ret_val;
2759 	u16 oem_reg;
2760 
2761 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2762 	if (ret_val)
2763 		return ret_val;
2764 
2765 	if (active)
2766 		oem_reg |= HV_OEM_BITS_LPLU;
2767 	else
2768 		oem_reg &= ~HV_OEM_BITS_LPLU;
2769 
2770 	if (!hw->phy.ops.check_reset_block(hw))
2771 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2772 
2773 	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2774 }
2775 
2776 /**
2777  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2778  *  @hw: pointer to the HW structure
2779  *  @active: true to enable LPLU, false to disable
2780  *
2781  *  Sets the LPLU D0 state according to the active flag.  When
2782  *  activating LPLU this function also disables smart speed
2783  *  and vice versa.  LPLU will not be activated unless the
2784  *  device autonegotiation advertisement meets standards of
2785  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2786  *  This is a function pointer entry point only called by
2787  *  PHY setup routines.
2788  **/
2789 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2790 {
2791 	struct e1000_phy_info *phy = &hw->phy;
2792 	u32 phy_ctrl;
2793 	s32 ret_val = 0;
2794 	u16 data;
2795 
2796 	if (phy->type == e1000_phy_ife)
2797 		return 0;
2798 
2799 	phy_ctrl = er32(PHY_CTRL);
2800 
2801 	if (active) {
2802 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2803 		ew32(PHY_CTRL, phy_ctrl);
2804 
2805 		if (phy->type != e1000_phy_igp_3)
2806 			return 0;
2807 
2808 		/* Call gig speed drop workaround on LPLU before accessing
2809 		 * any PHY registers
2810 		 */
2811 		if (hw->mac.type == e1000_ich8lan)
2812 			e1000e_gig_downshift_workaround_ich8lan(hw);
2813 
2814 		/* When LPLU is enabled, we should disable SmartSpeed */
2815 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2816 		if (ret_val)
2817 			return ret_val;
2818 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2819 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2820 		if (ret_val)
2821 			return ret_val;
2822 	} else {
2823 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2824 		ew32(PHY_CTRL, phy_ctrl);
2825 
2826 		if (phy->type != e1000_phy_igp_3)
2827 			return 0;
2828 
2829 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2830 		 * during Dx states where the power conservation is most
2831 		 * important.  During driver activity we should enable
2832 		 * SmartSpeed, so performance is maintained.
2833 		 */
2834 		if (phy->smart_speed == e1000_smart_speed_on) {
2835 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2836 					   &data);
2837 			if (ret_val)
2838 				return ret_val;
2839 
2840 			data |= IGP01E1000_PSCFR_SMART_SPEED;
2841 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2842 					   data);
2843 			if (ret_val)
2844 				return ret_val;
2845 		} else if (phy->smart_speed == e1000_smart_speed_off) {
2846 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2847 					   &data);
2848 			if (ret_val)
2849 				return ret_val;
2850 
2851 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2852 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2853 					   data);
2854 			if (ret_val)
2855 				return ret_val;
2856 		}
2857 	}
2858 
2859 	return 0;
2860 }
2861 
2862 /**
2863  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
2864  *  @hw: pointer to the HW structure
2865  *  @active: true to enable LPLU, false to disable
2866  *
2867  *  Sets the LPLU D3 state according to the active flag.  When
2868  *  activating LPLU this function also disables smart speed
2869  *  and vice versa.  LPLU will not be activated unless the
2870  *  device autonegotiation advertisement meets standards of
2871  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2872  *  This is a function pointer entry point only called by
2873  *  PHY setup routines.
2874  **/
2875 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2876 {
2877 	struct e1000_phy_info *phy = &hw->phy;
2878 	u32 phy_ctrl;
2879 	s32 ret_val = 0;
2880 	u16 data;
2881 
2882 	phy_ctrl = er32(PHY_CTRL);
2883 
2884 	if (!active) {
2885 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2886 		ew32(PHY_CTRL, phy_ctrl);
2887 
2888 		if (phy->type != e1000_phy_igp_3)
2889 			return 0;
2890 
2891 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2892 		 * during Dx states where the power conservation is most
2893 		 * important.  During driver activity we should enable
2894 		 * SmartSpeed, so performance is maintained.
2895 		 */
2896 		if (phy->smart_speed == e1000_smart_speed_on) {
2897 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2898 					   &data);
2899 			if (ret_val)
2900 				return ret_val;
2901 
2902 			data |= IGP01E1000_PSCFR_SMART_SPEED;
2903 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2904 					   data);
2905 			if (ret_val)
2906 				return ret_val;
2907 		} else if (phy->smart_speed == e1000_smart_speed_off) {
2908 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2909 					   &data);
2910 			if (ret_val)
2911 				return ret_val;
2912 
2913 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2914 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2915 					   data);
2916 			if (ret_val)
2917 				return ret_val;
2918 		}
2919 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2920 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2921 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2922 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2923 		ew32(PHY_CTRL, phy_ctrl);
2924 
2925 		if (phy->type != e1000_phy_igp_3)
2926 			return 0;
2927 
2928 		/* Call gig speed drop workaround on LPLU before accessing
2929 		 * any PHY registers
2930 		 */
2931 		if (hw->mac.type == e1000_ich8lan)
2932 			e1000e_gig_downshift_workaround_ich8lan(hw);
2933 
2934 		/* When LPLU is enabled, we should disable SmartSpeed */
2935 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2936 		if (ret_val)
2937 			return ret_val;
2938 
2939 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2940 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2941 	}
2942 
2943 	return ret_val;
2944 }
2945 
2946 /**
2947  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2948  *  @hw: pointer to the HW structure
2949  *  @bank:  pointer to the variable that returns the active bank
2950  *
2951  *  Reads signature byte from the NVM using the flash access registers.
2952  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2953  **/
2954 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2955 {
2956 	u32 eecd;
2957 	struct e1000_nvm_info *nvm = &hw->nvm;
2958 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2959 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2960 	u8 sig_byte = 0;
2961 	s32 ret_val;
2962 
2963 	switch (hw->mac.type) {
2964 	case e1000_ich8lan:
2965 	case e1000_ich9lan:
2966 		eecd = er32(EECD);
2967 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2968 		    E1000_EECD_SEC1VAL_VALID_MASK) {
2969 			if (eecd & E1000_EECD_SEC1VAL)
2970 				*bank = 1;
2971 			else
2972 				*bank = 0;
2973 
2974 			return 0;
2975 		}
2976 		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
2977 		/* fall-thru */
2978 	default:
2979 		/* set bank to 0 in case flash read fails */
2980 		*bank = 0;
2981 
2982 		/* Check bank 0 */
2983 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2984 							&sig_byte);
2985 		if (ret_val)
2986 			return ret_val;
2987 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2988 		    E1000_ICH_NVM_SIG_VALUE) {
2989 			*bank = 0;
2990 			return 0;
2991 		}
2992 
2993 		/* Check bank 1 */
2994 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2995 							bank1_offset,
2996 							&sig_byte);
2997 		if (ret_val)
2998 			return ret_val;
2999 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3000 		    E1000_ICH_NVM_SIG_VALUE) {
3001 			*bank = 1;
3002 			return 0;
3003 		}
3004 
3005 		e_dbg("ERROR: No valid NVM bank present\n");
3006 		return -E1000_ERR_NVM;
3007 	}
3008 }
3009 
3010 /**
3011  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3012  *  @hw: pointer to the HW structure
3013  *  @offset: The offset (in bytes) of the word(s) to read.
3014  *  @words: Size of data to read in words
3015  *  @data: Pointer to the word(s) to read at offset.
3016  *
3017  *  Reads a word(s) from the NVM using the flash access registers.
3018  **/
3019 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3020 				  u16 *data)
3021 {
3022 	struct e1000_nvm_info *nvm = &hw->nvm;
3023 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3024 	u32 act_offset;
3025 	s32 ret_val = 0;
3026 	u32 bank = 0;
3027 	u16 i, word;
3028 
3029 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3030 	    (words == 0)) {
3031 		e_dbg("nvm parameter(s) out of bounds\n");
3032 		ret_val = -E1000_ERR_NVM;
3033 		goto out;
3034 	}
3035 
3036 	nvm->ops.acquire(hw);
3037 
3038 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3039 	if (ret_val) {
3040 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3041 		bank = 0;
3042 	}
3043 
3044 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3045 	act_offset += offset;
3046 
3047 	ret_val = 0;
3048 	for (i = 0; i < words; i++) {
3049 		if (dev_spec->shadow_ram[offset + i].modified) {
3050 			data[i] = dev_spec->shadow_ram[offset + i].value;
3051 		} else {
3052 			ret_val = e1000_read_flash_word_ich8lan(hw,
3053 								act_offset + i,
3054 								&word);
3055 			if (ret_val)
3056 				break;
3057 			data[i] = word;
3058 		}
3059 	}
3060 
3061 	nvm->ops.release(hw);
3062 
3063 out:
3064 	if (ret_val)
3065 		e_dbg("NVM read error: %d\n", ret_val);
3066 
3067 	return ret_val;
3068 }
3069 
3070 /**
3071  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3072  *  @hw: pointer to the HW structure
3073  *
3074  *  This function does initial flash setup so that a new read/write/erase cycle
3075  *  can be started.
3076  **/
3077 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3078 {
3079 	union ich8_hws_flash_status hsfsts;
3080 	s32 ret_val = -E1000_ERR_NVM;
3081 
3082 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3083 
3084 	/* Check if the flash descriptor is valid */
3085 	if (!hsfsts.hsf_status.fldesvalid) {
3086 		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3087 		return -E1000_ERR_NVM;
3088 	}
3089 
3090 	/* Clear FCERR and DAEL in hw status by writing 1 */
3091 	hsfsts.hsf_status.flcerr = 1;
3092 	hsfsts.hsf_status.dael = 1;
3093 
3094 	ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3095 
3096 	/* Either we should have a hardware SPI cycle in progress
3097 	 * bit to check against, in order to start a new cycle or
3098 	 * FDONE bit should be changed in the hardware so that it
3099 	 * is 1 after hardware reset, which can then be used as an
3100 	 * indication whether a cycle is in progress or has been
3101 	 * completed.
3102 	 */
3103 
3104 	if (!hsfsts.hsf_status.flcinprog) {
3105 		/* There is no cycle running at present,
3106 		 * so we can start a cycle.
3107 		 * Begin by setting Flash Cycle Done.
3108 		 */
3109 		hsfsts.hsf_status.flcdone = 1;
3110 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3111 		ret_val = 0;
3112 	} else {
3113 		s32 i;
3114 
3115 		/* Otherwise poll for sometime so the current
3116 		 * cycle has a chance to end before giving up.
3117 		 */
3118 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3119 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3120 			if (!hsfsts.hsf_status.flcinprog) {
3121 				ret_val = 0;
3122 				break;
3123 			}
3124 			udelay(1);
3125 		}
3126 		if (!ret_val) {
3127 			/* Successful in waiting for previous cycle to timeout,
3128 			 * now set the Flash Cycle Done.
3129 			 */
3130 			hsfsts.hsf_status.flcdone = 1;
3131 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3132 		} else {
3133 			e_dbg("Flash controller busy, cannot get access\n");
3134 		}
3135 	}
3136 
3137 	return ret_val;
3138 }
3139 
3140 /**
3141  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3142  *  @hw: pointer to the HW structure
3143  *  @timeout: maximum time to wait for completion
3144  *
3145  *  This function starts a flash cycle and waits for its completion.
3146  **/
3147 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3148 {
3149 	union ich8_hws_flash_ctrl hsflctl;
3150 	union ich8_hws_flash_status hsfsts;
3151 	u32 i = 0;
3152 
3153 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3154 	hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3155 	hsflctl.hsf_ctrl.flcgo = 1;
3156 	ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3157 
3158 	/* wait till FDONE bit is set to 1 */
3159 	do {
3160 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3161 		if (hsfsts.hsf_status.flcdone)
3162 			break;
3163 		udelay(1);
3164 	} while (i++ < timeout);
3165 
3166 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3167 		return 0;
3168 
3169 	return -E1000_ERR_NVM;
3170 }
3171 
3172 /**
3173  *  e1000_read_flash_word_ich8lan - Read word from flash
3174  *  @hw: pointer to the HW structure
3175  *  @offset: offset to data location
3176  *  @data: pointer to the location for storing the data
3177  *
3178  *  Reads the flash word at offset into data.  Offset is converted
3179  *  to bytes before read.
3180  **/
3181 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3182 					 u16 *data)
3183 {
3184 	/* Must convert offset into bytes. */
3185 	offset <<= 1;
3186 
3187 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3188 }
3189 
3190 /**
3191  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3192  *  @hw: pointer to the HW structure
3193  *  @offset: The offset of the byte to read.
3194  *  @data: Pointer to a byte to store the value read.
3195  *
3196  *  Reads a single byte from the NVM using the flash access registers.
3197  **/
3198 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3199 					 u8 *data)
3200 {
3201 	s32 ret_val;
3202 	u16 word = 0;
3203 
3204 	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3205 	if (ret_val)
3206 		return ret_val;
3207 
3208 	*data = (u8)word;
3209 
3210 	return 0;
3211 }
3212 
3213 /**
3214  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3215  *  @hw: pointer to the HW structure
3216  *  @offset: The offset (in bytes) of the byte or word to read.
3217  *  @size: Size of data to read, 1=byte 2=word
3218  *  @data: Pointer to the word to store the value read.
3219  *
3220  *  Reads a byte or word from the NVM using the flash access registers.
3221  **/
3222 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3223 					 u8 size, u16 *data)
3224 {
3225 	union ich8_hws_flash_status hsfsts;
3226 	union ich8_hws_flash_ctrl hsflctl;
3227 	u32 flash_linear_addr;
3228 	u32 flash_data = 0;
3229 	s32 ret_val = -E1000_ERR_NVM;
3230 	u8 count = 0;
3231 
3232 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3233 		return -E1000_ERR_NVM;
3234 
3235 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3236 			     hw->nvm.flash_base_addr);
3237 
3238 	do {
3239 		udelay(1);
3240 		/* Steps */
3241 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3242 		if (ret_val)
3243 			break;
3244 
3245 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3246 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3247 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3248 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3249 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3250 
3251 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3252 
3253 		ret_val =
3254 		    e1000_flash_cycle_ich8lan(hw,
3255 					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3256 
3257 		/* Check if FCERR is set to 1, if set to 1, clear it
3258 		 * and try the whole sequence a few more times, else
3259 		 * read in (shift in) the Flash Data0, the order is
3260 		 * least significant byte first msb to lsb
3261 		 */
3262 		if (!ret_val) {
3263 			flash_data = er32flash(ICH_FLASH_FDATA0);
3264 			if (size == 1)
3265 				*data = (u8)(flash_data & 0x000000FF);
3266 			else if (size == 2)
3267 				*data = (u16)(flash_data & 0x0000FFFF);
3268 			break;
3269 		} else {
3270 			/* If we've gotten here, then things are probably
3271 			 * completely hosed, but if the error condition is
3272 			 * detected, it won't hurt to give it another try...
3273 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3274 			 */
3275 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3276 			if (hsfsts.hsf_status.flcerr) {
3277 				/* Repeat for some time before giving up. */
3278 				continue;
3279 			} else if (!hsfsts.hsf_status.flcdone) {
3280 				e_dbg("Timeout error - flash cycle did not complete.\n");
3281 				break;
3282 			}
3283 		}
3284 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3285 
3286 	return ret_val;
3287 }
3288 
3289 /**
3290  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3291  *  @hw: pointer to the HW structure
3292  *  @offset: The offset (in bytes) of the word(s) to write.
3293  *  @words: Size of data to write in words
3294  *  @data: Pointer to the word(s) to write at offset.
3295  *
3296  *  Writes a byte or word to the NVM using the flash access registers.
3297  **/
3298 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3299 				   u16 *data)
3300 {
3301 	struct e1000_nvm_info *nvm = &hw->nvm;
3302 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3303 	u16 i;
3304 
3305 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3306 	    (words == 0)) {
3307 		e_dbg("nvm parameter(s) out of bounds\n");
3308 		return -E1000_ERR_NVM;
3309 	}
3310 
3311 	nvm->ops.acquire(hw);
3312 
3313 	for (i = 0; i < words; i++) {
3314 		dev_spec->shadow_ram[offset + i].modified = true;
3315 		dev_spec->shadow_ram[offset + i].value = data[i];
3316 	}
3317 
3318 	nvm->ops.release(hw);
3319 
3320 	return 0;
3321 }
3322 
3323 /**
3324  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3325  *  @hw: pointer to the HW structure
3326  *
3327  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3328  *  which writes the checksum to the shadow ram.  The changes in the shadow
3329  *  ram are then committed to the EEPROM by processing each bank at a time
3330  *  checking for the modified bit and writing only the pending changes.
3331  *  After a successful commit, the shadow ram is cleared and is ready for
3332  *  future writes.
3333  **/
3334 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3335 {
3336 	struct e1000_nvm_info *nvm = &hw->nvm;
3337 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3338 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3339 	s32 ret_val;
3340 	u16 data;
3341 
3342 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3343 	if (ret_val)
3344 		goto out;
3345 
3346 	if (nvm->type != e1000_nvm_flash_sw)
3347 		goto out;
3348 
3349 	nvm->ops.acquire(hw);
3350 
3351 	/* We're writing to the opposite bank so if we're on bank 1,
3352 	 * write to bank 0 etc.  We also need to erase the segment that
3353 	 * is going to be written
3354 	 */
3355 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3356 	if (ret_val) {
3357 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3358 		bank = 0;
3359 	}
3360 
3361 	if (bank == 0) {
3362 		new_bank_offset = nvm->flash_bank_size;
3363 		old_bank_offset = 0;
3364 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3365 		if (ret_val)
3366 			goto release;
3367 	} else {
3368 		old_bank_offset = nvm->flash_bank_size;
3369 		new_bank_offset = 0;
3370 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3371 		if (ret_val)
3372 			goto release;
3373 	}
3374 
3375 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3376 		/* Determine whether to write the value stored
3377 		 * in the other NVM bank or a modified value stored
3378 		 * in the shadow RAM
3379 		 */
3380 		if (dev_spec->shadow_ram[i].modified) {
3381 			data = dev_spec->shadow_ram[i].value;
3382 		} else {
3383 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
3384 								old_bank_offset,
3385 								&data);
3386 			if (ret_val)
3387 				break;
3388 		}
3389 
3390 		/* If the word is 0x13, then make sure the signature bits
3391 		 * (15:14) are 11b until the commit has completed.
3392 		 * This will allow us to write 10b which indicates the
3393 		 * signature is valid.  We want to do this after the write
3394 		 * has completed so that we don't mark the segment valid
3395 		 * while the write is still in progress
3396 		 */
3397 		if (i == E1000_ICH_NVM_SIG_WORD)
3398 			data |= E1000_ICH_NVM_SIG_MASK;
3399 
3400 		/* Convert offset to bytes. */
3401 		act_offset = (i + new_bank_offset) << 1;
3402 
3403 		usleep_range(100, 200);
3404 		/* Write the bytes to the new bank. */
3405 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3406 							       act_offset,
3407 							       (u8)data);
3408 		if (ret_val)
3409 			break;
3410 
3411 		usleep_range(100, 200);
3412 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3413 							       act_offset + 1,
3414 							       (u8)(data >> 8));
3415 		if (ret_val)
3416 			break;
3417 	}
3418 
3419 	/* Don't bother writing the segment valid bits if sector
3420 	 * programming failed.
3421 	 */
3422 	if (ret_val) {
3423 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3424 		e_dbg("Flash commit failed.\n");
3425 		goto release;
3426 	}
3427 
3428 	/* Finally validate the new segment by setting bit 15:14
3429 	 * to 10b in word 0x13 , this can be done without an
3430 	 * erase as well since these bits are 11 to start with
3431 	 * and we need to change bit 14 to 0b
3432 	 */
3433 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3434 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
3435 	if (ret_val)
3436 		goto release;
3437 
3438 	data &= 0xBFFF;
3439 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3440 						       act_offset * 2 + 1,
3441 						       (u8)(data >> 8));
3442 	if (ret_val)
3443 		goto release;
3444 
3445 	/* And invalidate the previously valid segment by setting
3446 	 * its signature word (0x13) high_byte to 0b. This can be
3447 	 * done without an erase because flash erase sets all bits
3448 	 * to 1's. We can write 1's to 0's without an erase
3449 	 */
3450 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3451 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
3452 	if (ret_val)
3453 		goto release;
3454 
3455 	/* Great!  Everything worked, we can now clear the cached entries. */
3456 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3457 		dev_spec->shadow_ram[i].modified = false;
3458 		dev_spec->shadow_ram[i].value = 0xFFFF;
3459 	}
3460 
3461 release:
3462 	nvm->ops.release(hw);
3463 
3464 	/* Reload the EEPROM, or else modifications will not appear
3465 	 * until after the next adapter reset.
3466 	 */
3467 	if (!ret_val) {
3468 		nvm->ops.reload(hw);
3469 		usleep_range(10000, 20000);
3470 	}
3471 
3472 out:
3473 	if (ret_val)
3474 		e_dbg("NVM update error: %d\n", ret_val);
3475 
3476 	return ret_val;
3477 }
3478 
3479 /**
3480  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
3481  *  @hw: pointer to the HW structure
3482  *
3483  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
3484  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
3485  *  calculated, in which case we need to calculate the checksum and set bit 6.
3486  **/
3487 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
3488 {
3489 	s32 ret_val;
3490 	u16 data;
3491 	u16 word;
3492 	u16 valid_csum_mask;
3493 
3494 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
3495 	 * the checksum needs to be fixed.  This bit is an indication that
3496 	 * the NVM was prepared by OEM software and did not calculate
3497 	 * the checksum...a likely scenario.
3498 	 */
3499 	switch (hw->mac.type) {
3500 	case e1000_pch_lpt:
3501 		word = NVM_COMPAT;
3502 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
3503 		break;
3504 	default:
3505 		word = NVM_FUTURE_INIT_WORD1;
3506 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
3507 		break;
3508 	}
3509 
3510 	ret_val = e1000_read_nvm(hw, word, 1, &data);
3511 	if (ret_val)
3512 		return ret_val;
3513 
3514 	if (!(data & valid_csum_mask)) {
3515 		data |= valid_csum_mask;
3516 		ret_val = e1000_write_nvm(hw, word, 1, &data);
3517 		if (ret_val)
3518 			return ret_val;
3519 		ret_val = e1000e_update_nvm_checksum(hw);
3520 		if (ret_val)
3521 			return ret_val;
3522 	}
3523 
3524 	return e1000e_validate_nvm_checksum_generic(hw);
3525 }
3526 
3527 /**
3528  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
3529  *  @hw: pointer to the HW structure
3530  *
3531  *  To prevent malicious write/erase of the NVM, set it to be read-only
3532  *  so that the hardware ignores all write/erase cycles of the NVM via
3533  *  the flash control registers.  The shadow-ram copy of the NVM will
3534  *  still be updated, however any updates to this copy will not stick
3535  *  across driver reloads.
3536  **/
3537 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
3538 {
3539 	struct e1000_nvm_info *nvm = &hw->nvm;
3540 	union ich8_flash_protected_range pr0;
3541 	union ich8_hws_flash_status hsfsts;
3542 	u32 gfpreg;
3543 
3544 	nvm->ops.acquire(hw);
3545 
3546 	gfpreg = er32flash(ICH_FLASH_GFPREG);
3547 
3548 	/* Write-protect GbE Sector of NVM */
3549 	pr0.regval = er32flash(ICH_FLASH_PR0);
3550 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
3551 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
3552 	pr0.range.wpe = true;
3553 	ew32flash(ICH_FLASH_PR0, pr0.regval);
3554 
3555 	/* Lock down a subset of GbE Flash Control Registers, e.g.
3556 	 * PR0 to prevent the write-protection from being lifted.
3557 	 * Once FLOCKDN is set, the registers protected by it cannot
3558 	 * be written until FLOCKDN is cleared by a hardware reset.
3559 	 */
3560 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3561 	hsfsts.hsf_status.flockdn = true;
3562 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3563 
3564 	nvm->ops.release(hw);
3565 }
3566 
3567 /**
3568  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
3569  *  @hw: pointer to the HW structure
3570  *  @offset: The offset (in bytes) of the byte/word to read.
3571  *  @size: Size of data to read, 1=byte 2=word
3572  *  @data: The byte(s) to write to the NVM.
3573  *
3574  *  Writes one/two bytes to the NVM using the flash access registers.
3575  **/
3576 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3577 					  u8 size, u16 data)
3578 {
3579 	union ich8_hws_flash_status hsfsts;
3580 	union ich8_hws_flash_ctrl hsflctl;
3581 	u32 flash_linear_addr;
3582 	u32 flash_data = 0;
3583 	s32 ret_val;
3584 	u8 count = 0;
3585 
3586 	if (size < 1 || size > 2 || data > size * 0xff ||
3587 	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
3588 		return -E1000_ERR_NVM;
3589 
3590 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3591 			     hw->nvm.flash_base_addr);
3592 
3593 	do {
3594 		udelay(1);
3595 		/* Steps */
3596 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3597 		if (ret_val)
3598 			break;
3599 
3600 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3601 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3602 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3603 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
3604 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3605 
3606 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3607 
3608 		if (size == 1)
3609 			flash_data = (u32)data & 0x00FF;
3610 		else
3611 			flash_data = (u32)data;
3612 
3613 		ew32flash(ICH_FLASH_FDATA0, flash_data);
3614 
3615 		/* check if FCERR is set to 1 , if set to 1, clear it
3616 		 * and try the whole sequence a few more times else done
3617 		 */
3618 		ret_val =
3619 		    e1000_flash_cycle_ich8lan(hw,
3620 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
3621 		if (!ret_val)
3622 			break;
3623 
3624 		/* If we're here, then things are most likely
3625 		 * completely hosed, but if the error condition
3626 		 * is detected, it won't hurt to give it another
3627 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
3628 		 */
3629 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3630 		if (hsfsts.hsf_status.flcerr)
3631 			/* Repeat for some time before giving up. */
3632 			continue;
3633 		if (!hsfsts.hsf_status.flcdone) {
3634 			e_dbg("Timeout error - flash cycle did not complete.\n");
3635 			break;
3636 		}
3637 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3638 
3639 	return ret_val;
3640 }
3641 
3642 /**
3643  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
3644  *  @hw: pointer to the HW structure
3645  *  @offset: The index of the byte to read.
3646  *  @data: The byte to write to the NVM.
3647  *
3648  *  Writes a single byte to the NVM using the flash access registers.
3649  **/
3650 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3651 					  u8 data)
3652 {
3653 	u16 word = (u16)data;
3654 
3655 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
3656 }
3657 
3658 /**
3659  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
3660  *  @hw: pointer to the HW structure
3661  *  @offset: The offset of the byte to write.
3662  *  @byte: The byte to write to the NVM.
3663  *
3664  *  Writes a single byte to the NVM using the flash access registers.
3665  *  Goes through a retry algorithm before giving up.
3666  **/
3667 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
3668 						u32 offset, u8 byte)
3669 {
3670 	s32 ret_val;
3671 	u16 program_retries;
3672 
3673 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3674 	if (!ret_val)
3675 		return ret_val;
3676 
3677 	for (program_retries = 0; program_retries < 100; program_retries++) {
3678 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
3679 		usleep_range(100, 200);
3680 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3681 		if (!ret_val)
3682 			break;
3683 	}
3684 	if (program_retries == 100)
3685 		return -E1000_ERR_NVM;
3686 
3687 	return 0;
3688 }
3689 
3690 /**
3691  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
3692  *  @hw: pointer to the HW structure
3693  *  @bank: 0 for first bank, 1 for second bank, etc.
3694  *
3695  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
3696  *  bank N is 4096 * N + flash_reg_addr.
3697  **/
3698 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
3699 {
3700 	struct e1000_nvm_info *nvm = &hw->nvm;
3701 	union ich8_hws_flash_status hsfsts;
3702 	union ich8_hws_flash_ctrl hsflctl;
3703 	u32 flash_linear_addr;
3704 	/* bank size is in 16bit words - adjust to bytes */
3705 	u32 flash_bank_size = nvm->flash_bank_size * 2;
3706 	s32 ret_val;
3707 	s32 count = 0;
3708 	s32 j, iteration, sector_size;
3709 
3710 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3711 
3712 	/* Determine HW Sector size: Read BERASE bits of hw flash status
3713 	 * register
3714 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
3715 	 *     consecutive sectors.  The start index for the nth Hw sector
3716 	 *     can be calculated as = bank * 4096 + n * 256
3717 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
3718 	 *     The start index for the nth Hw sector can be calculated
3719 	 *     as = bank * 4096
3720 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
3721 	 *     (ich9 only, otherwise error condition)
3722 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
3723 	 */
3724 	switch (hsfsts.hsf_status.berasesz) {
3725 	case 0:
3726 		/* Hw sector size 256 */
3727 		sector_size = ICH_FLASH_SEG_SIZE_256;
3728 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
3729 		break;
3730 	case 1:
3731 		sector_size = ICH_FLASH_SEG_SIZE_4K;
3732 		iteration = 1;
3733 		break;
3734 	case 2:
3735 		sector_size = ICH_FLASH_SEG_SIZE_8K;
3736 		iteration = 1;
3737 		break;
3738 	case 3:
3739 		sector_size = ICH_FLASH_SEG_SIZE_64K;
3740 		iteration = 1;
3741 		break;
3742 	default:
3743 		return -E1000_ERR_NVM;
3744 	}
3745 
3746 	/* Start with the base address, then add the sector offset. */
3747 	flash_linear_addr = hw->nvm.flash_base_addr;
3748 	flash_linear_addr += (bank) ? flash_bank_size : 0;
3749 
3750 	for (j = 0; j < iteration; j++) {
3751 		do {
3752 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
3753 
3754 			/* Steps */
3755 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
3756 			if (ret_val)
3757 				return ret_val;
3758 
3759 			/* Write a value 11 (block Erase) in Flash
3760 			 * Cycle field in hw flash control
3761 			 */
3762 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3763 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
3764 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3765 
3766 			/* Write the last 24 bits of an index within the
3767 			 * block into Flash Linear address field in Flash
3768 			 * Address.
3769 			 */
3770 			flash_linear_addr += (j * sector_size);
3771 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3772 
3773 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
3774 			if (!ret_val)
3775 				break;
3776 
3777 			/* Check if FCERR is set to 1.  If 1,
3778 			 * clear it and try the whole sequence
3779 			 * a few more times else Done
3780 			 */
3781 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3782 			if (hsfsts.hsf_status.flcerr)
3783 				/* repeat for some time before giving up */
3784 				continue;
3785 			else if (!hsfsts.hsf_status.flcdone)
3786 				return ret_val;
3787 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
3788 	}
3789 
3790 	return 0;
3791 }
3792 
3793 /**
3794  *  e1000_valid_led_default_ich8lan - Set the default LED settings
3795  *  @hw: pointer to the HW structure
3796  *  @data: Pointer to the LED settings
3797  *
3798  *  Reads the LED default settings from the NVM to data.  If the NVM LED
3799  *  settings is all 0's or F's, set the LED default to a valid LED default
3800  *  setting.
3801  **/
3802 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
3803 {
3804 	s32 ret_val;
3805 
3806 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
3807 	if (ret_val) {
3808 		e_dbg("NVM Read Error\n");
3809 		return ret_val;
3810 	}
3811 
3812 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
3813 		*data = ID_LED_DEFAULT_ICH8LAN;
3814 
3815 	return 0;
3816 }
3817 
3818 /**
3819  *  e1000_id_led_init_pchlan - store LED configurations
3820  *  @hw: pointer to the HW structure
3821  *
3822  *  PCH does not control LEDs via the LEDCTL register, rather it uses
3823  *  the PHY LED configuration register.
3824  *
3825  *  PCH also does not have an "always on" or "always off" mode which
3826  *  complicates the ID feature.  Instead of using the "on" mode to indicate
3827  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
3828  *  use "link_up" mode.  The LEDs will still ID on request if there is no
3829  *  link based on logic in e1000_led_[on|off]_pchlan().
3830  **/
3831 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
3832 {
3833 	struct e1000_mac_info *mac = &hw->mac;
3834 	s32 ret_val;
3835 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
3836 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
3837 	u16 data, i, temp, shift;
3838 
3839 	/* Get default ID LED modes */
3840 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
3841 	if (ret_val)
3842 		return ret_val;
3843 
3844 	mac->ledctl_default = er32(LEDCTL);
3845 	mac->ledctl_mode1 = mac->ledctl_default;
3846 	mac->ledctl_mode2 = mac->ledctl_default;
3847 
3848 	for (i = 0; i < 4; i++) {
3849 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
3850 		shift = (i * 5);
3851 		switch (temp) {
3852 		case ID_LED_ON1_DEF2:
3853 		case ID_LED_ON1_ON2:
3854 		case ID_LED_ON1_OFF2:
3855 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3856 			mac->ledctl_mode1 |= (ledctl_on << shift);
3857 			break;
3858 		case ID_LED_OFF1_DEF2:
3859 		case ID_LED_OFF1_ON2:
3860 		case ID_LED_OFF1_OFF2:
3861 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3862 			mac->ledctl_mode1 |= (ledctl_off << shift);
3863 			break;
3864 		default:
3865 			/* Do nothing */
3866 			break;
3867 		}
3868 		switch (temp) {
3869 		case ID_LED_DEF1_ON2:
3870 		case ID_LED_ON1_ON2:
3871 		case ID_LED_OFF1_ON2:
3872 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3873 			mac->ledctl_mode2 |= (ledctl_on << shift);
3874 			break;
3875 		case ID_LED_DEF1_OFF2:
3876 		case ID_LED_ON1_OFF2:
3877 		case ID_LED_OFF1_OFF2:
3878 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3879 			mac->ledctl_mode2 |= (ledctl_off << shift);
3880 			break;
3881 		default:
3882 			/* Do nothing */
3883 			break;
3884 		}
3885 	}
3886 
3887 	return 0;
3888 }
3889 
3890 /**
3891  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3892  *  @hw: pointer to the HW structure
3893  *
3894  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3895  *  register, so the the bus width is hard coded.
3896  **/
3897 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3898 {
3899 	struct e1000_bus_info *bus = &hw->bus;
3900 	s32 ret_val;
3901 
3902 	ret_val = e1000e_get_bus_info_pcie(hw);
3903 
3904 	/* ICH devices are "PCI Express"-ish.  They have
3905 	 * a configuration space, but do not contain
3906 	 * PCI Express Capability registers, so bus width
3907 	 * must be hardcoded.
3908 	 */
3909 	if (bus->width == e1000_bus_width_unknown)
3910 		bus->width = e1000_bus_width_pcie_x1;
3911 
3912 	return ret_val;
3913 }
3914 
3915 /**
3916  *  e1000_reset_hw_ich8lan - Reset the hardware
3917  *  @hw: pointer to the HW structure
3918  *
3919  *  Does a full reset of the hardware which includes a reset of the PHY and
3920  *  MAC.
3921  **/
3922 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3923 {
3924 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3925 	u16 kum_cfg;
3926 	u32 ctrl, reg;
3927 	s32 ret_val;
3928 
3929 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
3930 	 * on the last TLP read/write transaction when MAC is reset.
3931 	 */
3932 	ret_val = e1000e_disable_pcie_master(hw);
3933 	if (ret_val)
3934 		e_dbg("PCI-E Master disable polling has failed.\n");
3935 
3936 	e_dbg("Masking off all interrupts\n");
3937 	ew32(IMC, 0xffffffff);
3938 
3939 	/* Disable the Transmit and Receive units.  Then delay to allow
3940 	 * any pending transactions to complete before we hit the MAC
3941 	 * with the global reset.
3942 	 */
3943 	ew32(RCTL, 0);
3944 	ew32(TCTL, E1000_TCTL_PSP);
3945 	e1e_flush();
3946 
3947 	usleep_range(10000, 20000);
3948 
3949 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
3950 	if (hw->mac.type == e1000_ich8lan) {
3951 		/* Set Tx and Rx buffer allocation to 8k apiece. */
3952 		ew32(PBA, E1000_PBA_8K);
3953 		/* Set Packet Buffer Size to 16k. */
3954 		ew32(PBS, E1000_PBS_16K);
3955 	}
3956 
3957 	if (hw->mac.type == e1000_pchlan) {
3958 		/* Save the NVM K1 bit setting */
3959 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
3960 		if (ret_val)
3961 			return ret_val;
3962 
3963 		if (kum_cfg & E1000_NVM_K1_ENABLE)
3964 			dev_spec->nvm_k1_enabled = true;
3965 		else
3966 			dev_spec->nvm_k1_enabled = false;
3967 	}
3968 
3969 	ctrl = er32(CTRL);
3970 
3971 	if (!hw->phy.ops.check_reset_block(hw)) {
3972 		/* Full-chip reset requires MAC and PHY reset at the same
3973 		 * time to make sure the interface between MAC and the
3974 		 * external PHY is reset.
3975 		 */
3976 		ctrl |= E1000_CTRL_PHY_RST;
3977 
3978 		/* Gate automatic PHY configuration by hardware on
3979 		 * non-managed 82579
3980 		 */
3981 		if ((hw->mac.type == e1000_pch2lan) &&
3982 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3983 			e1000_gate_hw_phy_config_ich8lan(hw, true);
3984 	}
3985 	ret_val = e1000_acquire_swflag_ich8lan(hw);
3986 	e_dbg("Issuing a global reset to ich8lan\n");
3987 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
3988 	/* cannot issue a flush here because it hangs the hardware */
3989 	msleep(20);
3990 
3991 	/* Set Phy Config Counter to 50msec */
3992 	if (hw->mac.type == e1000_pch2lan) {
3993 		reg = er32(FEXTNVM3);
3994 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
3995 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
3996 		ew32(FEXTNVM3, reg);
3997 	}
3998 
3999 	if (!ret_val)
4000 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4001 
4002 	if (ctrl & E1000_CTRL_PHY_RST) {
4003 		ret_val = hw->phy.ops.get_cfg_done(hw);
4004 		if (ret_val)
4005 			return ret_val;
4006 
4007 		ret_val = e1000_post_phy_reset_ich8lan(hw);
4008 		if (ret_val)
4009 			return ret_val;
4010 	}
4011 
4012 	/* For PCH, this write will make sure that any noise
4013 	 * will be detected as a CRC error and be dropped rather than show up
4014 	 * as a bad packet to the DMA engine.
4015 	 */
4016 	if (hw->mac.type == e1000_pchlan)
4017 		ew32(CRC_OFFSET, 0x65656565);
4018 
4019 	ew32(IMC, 0xffffffff);
4020 	er32(ICR);
4021 
4022 	reg = er32(KABGTXD);
4023 	reg |= E1000_KABGTXD_BGSQLBIAS;
4024 	ew32(KABGTXD, reg);
4025 
4026 	return 0;
4027 }
4028 
4029 /**
4030  *  e1000_init_hw_ich8lan - Initialize the hardware
4031  *  @hw: pointer to the HW structure
4032  *
4033  *  Prepares the hardware for transmit and receive by doing the following:
4034  *   - initialize hardware bits
4035  *   - initialize LED identification
4036  *   - setup receive address registers
4037  *   - setup flow control
4038  *   - setup transmit descriptors
4039  *   - clear statistics
4040  **/
4041 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4042 {
4043 	struct e1000_mac_info *mac = &hw->mac;
4044 	u32 ctrl_ext, txdctl, snoop;
4045 	s32 ret_val;
4046 	u16 i;
4047 
4048 	e1000_initialize_hw_bits_ich8lan(hw);
4049 
4050 	/* Initialize identification LED */
4051 	ret_val = mac->ops.id_led_init(hw);
4052 	/* An error is not fatal and we should not stop init due to this */
4053 	if (ret_val)
4054 		e_dbg("Error initializing identification LED\n");
4055 
4056 	/* Setup the receive address. */
4057 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4058 
4059 	/* Zero out the Multicast HASH table */
4060 	e_dbg("Zeroing the MTA\n");
4061 	for (i = 0; i < mac->mta_reg_count; i++)
4062 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4063 
4064 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4065 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4066 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4067 	 */
4068 	if (hw->phy.type == e1000_phy_82578) {
4069 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4070 		i &= ~BM_WUC_HOST_WU_BIT;
4071 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4072 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4073 		if (ret_val)
4074 			return ret_val;
4075 	}
4076 
4077 	/* Setup link and flow control */
4078 	ret_val = mac->ops.setup_link(hw);
4079 
4080 	/* Set the transmit descriptor write-back policy for both queues */
4081 	txdctl = er32(TXDCTL(0));
4082 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4083 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4084 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4085 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4086 	ew32(TXDCTL(0), txdctl);
4087 	txdctl = er32(TXDCTL(1));
4088 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4089 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4090 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4091 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4092 	ew32(TXDCTL(1), txdctl);
4093 
4094 	/* ICH8 has opposite polarity of no_snoop bits.
4095 	 * By default, we should use snoop behavior.
4096 	 */
4097 	if (mac->type == e1000_ich8lan)
4098 		snoop = PCIE_ICH8_SNOOP_ALL;
4099 	else
4100 		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4101 	e1000e_set_pcie_no_snoop(hw, snoop);
4102 
4103 	ctrl_ext = er32(CTRL_EXT);
4104 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4105 	ew32(CTRL_EXT, ctrl_ext);
4106 
4107 	/* Clear all of the statistics registers (clear on read).  It is
4108 	 * important that we do this after we have tried to establish link
4109 	 * because the symbol error count will increment wildly if there
4110 	 * is no link.
4111 	 */
4112 	e1000_clear_hw_cntrs_ich8lan(hw);
4113 
4114 	return ret_val;
4115 }
4116 
4117 /**
4118  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4119  *  @hw: pointer to the HW structure
4120  *
4121  *  Sets/Clears required hardware bits necessary for correctly setting up the
4122  *  hardware for transmit and receive.
4123  **/
4124 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4125 {
4126 	u32 reg;
4127 
4128 	/* Extended Device Control */
4129 	reg = er32(CTRL_EXT);
4130 	reg |= (1 << 22);
4131 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4132 	if (hw->mac.type >= e1000_pchlan)
4133 		reg |= E1000_CTRL_EXT_PHYPDEN;
4134 	ew32(CTRL_EXT, reg);
4135 
4136 	/* Transmit Descriptor Control 0 */
4137 	reg = er32(TXDCTL(0));
4138 	reg |= (1 << 22);
4139 	ew32(TXDCTL(0), reg);
4140 
4141 	/* Transmit Descriptor Control 1 */
4142 	reg = er32(TXDCTL(1));
4143 	reg |= (1 << 22);
4144 	ew32(TXDCTL(1), reg);
4145 
4146 	/* Transmit Arbitration Control 0 */
4147 	reg = er32(TARC(0));
4148 	if (hw->mac.type == e1000_ich8lan)
4149 		reg |= (1 << 28) | (1 << 29);
4150 	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
4151 	ew32(TARC(0), reg);
4152 
4153 	/* Transmit Arbitration Control 1 */
4154 	reg = er32(TARC(1));
4155 	if (er32(TCTL) & E1000_TCTL_MULR)
4156 		reg &= ~(1 << 28);
4157 	else
4158 		reg |= (1 << 28);
4159 	reg |= (1 << 24) | (1 << 26) | (1 << 30);
4160 	ew32(TARC(1), reg);
4161 
4162 	/* Device Status */
4163 	if (hw->mac.type == e1000_ich8lan) {
4164 		reg = er32(STATUS);
4165 		reg &= ~(1 << 31);
4166 		ew32(STATUS, reg);
4167 	}
4168 
4169 	/* work-around descriptor data corruption issue during nfs v2 udp
4170 	 * traffic, just disable the nfs filtering capability
4171 	 */
4172 	reg = er32(RFCTL);
4173 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4174 
4175 	/* Disable IPv6 extension header parsing because some malformed
4176 	 * IPv6 headers can hang the Rx.
4177 	 */
4178 	if (hw->mac.type == e1000_ich8lan)
4179 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4180 	ew32(RFCTL, reg);
4181 
4182 	/* Enable ECC on Lynxpoint */
4183 	if (hw->mac.type == e1000_pch_lpt) {
4184 		reg = er32(PBECCSTS);
4185 		reg |= E1000_PBECCSTS_ECC_ENABLE;
4186 		ew32(PBECCSTS, reg);
4187 
4188 		reg = er32(CTRL);
4189 		reg |= E1000_CTRL_MEHE;
4190 		ew32(CTRL, reg);
4191 	}
4192 }
4193 
4194 /**
4195  *  e1000_setup_link_ich8lan - Setup flow control and link settings
4196  *  @hw: pointer to the HW structure
4197  *
4198  *  Determines which flow control settings to use, then configures flow
4199  *  control.  Calls the appropriate media-specific link configuration
4200  *  function.  Assuming the adapter has a valid link partner, a valid link
4201  *  should be established.  Assumes the hardware has previously been reset
4202  *  and the transmitter and receiver are not enabled.
4203  **/
4204 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4205 {
4206 	s32 ret_val;
4207 
4208 	if (hw->phy.ops.check_reset_block(hw))
4209 		return 0;
4210 
4211 	/* ICH parts do not have a word in the NVM to determine
4212 	 * the default flow control setting, so we explicitly
4213 	 * set it to full.
4214 	 */
4215 	if (hw->fc.requested_mode == e1000_fc_default) {
4216 		/* Workaround h/w hang when Tx flow control enabled */
4217 		if (hw->mac.type == e1000_pchlan)
4218 			hw->fc.requested_mode = e1000_fc_rx_pause;
4219 		else
4220 			hw->fc.requested_mode = e1000_fc_full;
4221 	}
4222 
4223 	/* Save off the requested flow control mode for use later.  Depending
4224 	 * on the link partner's capabilities, we may or may not use this mode.
4225 	 */
4226 	hw->fc.current_mode = hw->fc.requested_mode;
4227 
4228 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4229 
4230 	/* Continue to configure the copper link. */
4231 	ret_val = hw->mac.ops.setup_physical_interface(hw);
4232 	if (ret_val)
4233 		return ret_val;
4234 
4235 	ew32(FCTTV, hw->fc.pause_time);
4236 	if ((hw->phy.type == e1000_phy_82578) ||
4237 	    (hw->phy.type == e1000_phy_82579) ||
4238 	    (hw->phy.type == e1000_phy_i217) ||
4239 	    (hw->phy.type == e1000_phy_82577)) {
4240 		ew32(FCRTV_PCH, hw->fc.refresh_time);
4241 
4242 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4243 				   hw->fc.pause_time);
4244 		if (ret_val)
4245 			return ret_val;
4246 	}
4247 
4248 	return e1000e_set_fc_watermarks(hw);
4249 }
4250 
4251 /**
4252  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4253  *  @hw: pointer to the HW structure
4254  *
4255  *  Configures the kumeran interface to the PHY to wait the appropriate time
4256  *  when polling the PHY, then call the generic setup_copper_link to finish
4257  *  configuring the copper link.
4258  **/
4259 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4260 {
4261 	u32 ctrl;
4262 	s32 ret_val;
4263 	u16 reg_data;
4264 
4265 	ctrl = er32(CTRL);
4266 	ctrl |= E1000_CTRL_SLU;
4267 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4268 	ew32(CTRL, ctrl);
4269 
4270 	/* Set the mac to wait the maximum time between each iteration
4271 	 * and increase the max iterations when polling the phy;
4272 	 * this fixes erroneous timeouts at 10Mbps.
4273 	 */
4274 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
4275 	if (ret_val)
4276 		return ret_val;
4277 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4278 				       &reg_data);
4279 	if (ret_val)
4280 		return ret_val;
4281 	reg_data |= 0x3F;
4282 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4283 					reg_data);
4284 	if (ret_val)
4285 		return ret_val;
4286 
4287 	switch (hw->phy.type) {
4288 	case e1000_phy_igp_3:
4289 		ret_val = e1000e_copper_link_setup_igp(hw);
4290 		if (ret_val)
4291 			return ret_val;
4292 		break;
4293 	case e1000_phy_bm:
4294 	case e1000_phy_82578:
4295 		ret_val = e1000e_copper_link_setup_m88(hw);
4296 		if (ret_val)
4297 			return ret_val;
4298 		break;
4299 	case e1000_phy_82577:
4300 	case e1000_phy_82579:
4301 		ret_val = e1000_copper_link_setup_82577(hw);
4302 		if (ret_val)
4303 			return ret_val;
4304 		break;
4305 	case e1000_phy_ife:
4306 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
4307 		if (ret_val)
4308 			return ret_val;
4309 
4310 		reg_data &= ~IFE_PMC_AUTO_MDIX;
4311 
4312 		switch (hw->phy.mdix) {
4313 		case 1:
4314 			reg_data &= ~IFE_PMC_FORCE_MDIX;
4315 			break;
4316 		case 2:
4317 			reg_data |= IFE_PMC_FORCE_MDIX;
4318 			break;
4319 		case 0:
4320 		default:
4321 			reg_data |= IFE_PMC_AUTO_MDIX;
4322 			break;
4323 		}
4324 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
4325 		if (ret_val)
4326 			return ret_val;
4327 		break;
4328 	default:
4329 		break;
4330 	}
4331 
4332 	return e1000e_setup_copper_link(hw);
4333 }
4334 
4335 /**
4336  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
4337  *  @hw: pointer to the HW structure
4338  *
4339  *  Calls the PHY specific link setup function and then calls the
4340  *  generic setup_copper_link to finish configuring the link for
4341  *  Lynxpoint PCH devices
4342  **/
4343 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
4344 {
4345 	u32 ctrl;
4346 	s32 ret_val;
4347 
4348 	ctrl = er32(CTRL);
4349 	ctrl |= E1000_CTRL_SLU;
4350 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4351 	ew32(CTRL, ctrl);
4352 
4353 	ret_val = e1000_copper_link_setup_82577(hw);
4354 	if (ret_val)
4355 		return ret_val;
4356 
4357 	return e1000e_setup_copper_link(hw);
4358 }
4359 
4360 /**
4361  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
4362  *  @hw: pointer to the HW structure
4363  *  @speed: pointer to store current link speed
4364  *  @duplex: pointer to store the current link duplex
4365  *
4366  *  Calls the generic get_speed_and_duplex to retrieve the current link
4367  *  information and then calls the Kumeran lock loss workaround for links at
4368  *  gigabit speeds.
4369  **/
4370 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
4371 					  u16 *duplex)
4372 {
4373 	s32 ret_val;
4374 
4375 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
4376 	if (ret_val)
4377 		return ret_val;
4378 
4379 	if ((hw->mac.type == e1000_ich8lan) &&
4380 	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
4381 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
4382 	}
4383 
4384 	return ret_val;
4385 }
4386 
4387 /**
4388  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
4389  *  @hw: pointer to the HW structure
4390  *
4391  *  Work-around for 82566 Kumeran PCS lock loss:
4392  *  On link status change (i.e. PCI reset, speed change) and link is up and
4393  *  speed is gigabit-
4394  *    0) if workaround is optionally disabled do nothing
4395  *    1) wait 1ms for Kumeran link to come up
4396  *    2) check Kumeran Diagnostic register PCS lock loss bit
4397  *    3) if not set the link is locked (all is good), otherwise...
4398  *    4) reset the PHY
4399  *    5) repeat up to 10 times
4400  *  Note: this is only called for IGP3 copper when speed is 1gb.
4401  **/
4402 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
4403 {
4404 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4405 	u32 phy_ctrl;
4406 	s32 ret_val;
4407 	u16 i, data;
4408 	bool link;
4409 
4410 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
4411 		return 0;
4412 
4413 	/* Make sure link is up before proceeding.  If not just return.
4414 	 * Attempting this while link is negotiating fouled up link
4415 	 * stability
4416 	 */
4417 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
4418 	if (!link)
4419 		return 0;
4420 
4421 	for (i = 0; i < 10; i++) {
4422 		/* read once to clear */
4423 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
4424 		if (ret_val)
4425 			return ret_val;
4426 		/* and again to get new status */
4427 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
4428 		if (ret_val)
4429 			return ret_val;
4430 
4431 		/* check for PCS lock */
4432 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
4433 			return 0;
4434 
4435 		/* Issue PHY reset */
4436 		e1000_phy_hw_reset(hw);
4437 		mdelay(5);
4438 	}
4439 	/* Disable GigE link negotiation */
4440 	phy_ctrl = er32(PHY_CTRL);
4441 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
4442 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4443 	ew32(PHY_CTRL, phy_ctrl);
4444 
4445 	/* Call gig speed drop workaround on Gig disable before accessing
4446 	 * any PHY registers
4447 	 */
4448 	e1000e_gig_downshift_workaround_ich8lan(hw);
4449 
4450 	/* unable to acquire PCS lock */
4451 	return -E1000_ERR_PHY;
4452 }
4453 
4454 /**
4455  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
4456  *  @hw: pointer to the HW structure
4457  *  @state: boolean value used to set the current Kumeran workaround state
4458  *
4459  *  If ICH8, set the current Kumeran workaround state (enabled - true
4460  *  /disabled - false).
4461  **/
4462 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
4463 						  bool state)
4464 {
4465 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4466 
4467 	if (hw->mac.type != e1000_ich8lan) {
4468 		e_dbg("Workaround applies to ICH8 only.\n");
4469 		return;
4470 	}
4471 
4472 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
4473 }
4474 
4475 /**
4476  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
4477  *  @hw: pointer to the HW structure
4478  *
4479  *  Workaround for 82566 power-down on D3 entry:
4480  *    1) disable gigabit link
4481  *    2) write VR power-down enable
4482  *    3) read it back
4483  *  Continue if successful, else issue LCD reset and repeat
4484  **/
4485 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
4486 {
4487 	u32 reg;
4488 	u16 data;
4489 	u8 retry = 0;
4490 
4491 	if (hw->phy.type != e1000_phy_igp_3)
4492 		return;
4493 
4494 	/* Try the workaround twice (if needed) */
4495 	do {
4496 		/* Disable link */
4497 		reg = er32(PHY_CTRL);
4498 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
4499 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4500 		ew32(PHY_CTRL, reg);
4501 
4502 		/* Call gig speed drop workaround on Gig disable before
4503 		 * accessing any PHY registers
4504 		 */
4505 		if (hw->mac.type == e1000_ich8lan)
4506 			e1000e_gig_downshift_workaround_ich8lan(hw);
4507 
4508 		/* Write VR power-down enable */
4509 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
4510 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4511 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
4512 
4513 		/* Read it back and test */
4514 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
4515 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4516 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
4517 			break;
4518 
4519 		/* Issue PHY reset and repeat at most one more time */
4520 		reg = er32(CTRL);
4521 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
4522 		retry++;
4523 	} while (retry);
4524 }
4525 
4526 /**
4527  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
4528  *  @hw: pointer to the HW structure
4529  *
4530  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
4531  *  LPLU, Gig disable, MDIC PHY reset):
4532  *    1) Set Kumeran Near-end loopback
4533  *    2) Clear Kumeran Near-end loopback
4534  *  Should only be called for ICH8[m] devices with any 1G Phy.
4535  **/
4536 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
4537 {
4538 	s32 ret_val;
4539 	u16 reg_data;
4540 
4541 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
4542 		return;
4543 
4544 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4545 				       &reg_data);
4546 	if (ret_val)
4547 		return;
4548 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
4549 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4550 					reg_data);
4551 	if (ret_val)
4552 		return;
4553 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
4554 	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
4555 }
4556 
4557 /**
4558  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
4559  *  @hw: pointer to the HW structure
4560  *
4561  *  During S0 to Sx transition, it is possible the link remains at gig
4562  *  instead of negotiating to a lower speed.  Before going to Sx, set
4563  *  'Gig Disable' to force link speed negotiation to a lower speed based on
4564  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
4565  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
4566  *  needs to be written.
4567  *  Parts that support (and are linked to a partner which support) EEE in
4568  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
4569  *  than 10Mbps w/o EEE.
4570  **/
4571 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
4572 {
4573 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4574 	u32 phy_ctrl;
4575 	s32 ret_val;
4576 
4577 	phy_ctrl = er32(PHY_CTRL);
4578 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
4579 
4580 	if (hw->phy.type == e1000_phy_i217) {
4581 		u16 phy_reg, device_id = hw->adapter->pdev->device;
4582 
4583 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
4584 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
4585 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
4586 		    (device_id == E1000_DEV_ID_PCH_I218_V3)) {
4587 			u32 fextnvm6 = er32(FEXTNVM6);
4588 
4589 			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
4590 		}
4591 
4592 		ret_val = hw->phy.ops.acquire(hw);
4593 		if (ret_val)
4594 			goto out;
4595 
4596 		if (!dev_spec->eee_disable) {
4597 			u16 eee_advert;
4598 
4599 			ret_val =
4600 			    e1000_read_emi_reg_locked(hw,
4601 						      I217_EEE_ADVERTISEMENT,
4602 						      &eee_advert);
4603 			if (ret_val)
4604 				goto release;
4605 
4606 			/* Disable LPLU if both link partners support 100BaseT
4607 			 * EEE and 100Full is advertised on both ends of the
4608 			 * link, and enable Auto Enable LPI since there will
4609 			 * be no driver to enable LPI while in Sx.
4610 			 */
4611 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
4612 			    (dev_spec->eee_lp_ability &
4613 			     I82579_EEE_100_SUPPORTED) &&
4614 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
4615 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
4616 					      E1000_PHY_CTRL_NOND0A_LPLU);
4617 
4618 				/* Set Auto Enable LPI after link up */
4619 				e1e_rphy_locked(hw,
4620 						I217_LPI_GPIO_CTRL, &phy_reg);
4621 				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
4622 				e1e_wphy_locked(hw,
4623 						I217_LPI_GPIO_CTRL, phy_reg);
4624 			}
4625 		}
4626 
4627 		/* For i217 Intel Rapid Start Technology support,
4628 		 * when the system is going into Sx and no manageability engine
4629 		 * is present, the driver must configure proxy to reset only on
4630 		 * power good.  LPI (Low Power Idle) state must also reset only
4631 		 * on power good, as well as the MTA (Multicast table array).
4632 		 * The SMBus release must also be disabled on LCD reset.
4633 		 */
4634 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4635 			/* Enable proxy to reset only on power good. */
4636 			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
4637 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
4638 			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
4639 
4640 			/* Set bit enable LPI (EEE) to reset only on
4641 			 * power good.
4642 			 */
4643 			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
4644 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
4645 			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
4646 
4647 			/* Disable the SMB release on LCD reset. */
4648 			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4649 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
4650 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4651 		}
4652 
4653 		/* Enable MTA to reset for Intel Rapid Start Technology
4654 		 * Support
4655 		 */
4656 		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4657 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
4658 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4659 
4660 release:
4661 		hw->phy.ops.release(hw);
4662 	}
4663 out:
4664 	ew32(PHY_CTRL, phy_ctrl);
4665 
4666 	if (hw->mac.type == e1000_ich8lan)
4667 		e1000e_gig_downshift_workaround_ich8lan(hw);
4668 
4669 	if (hw->mac.type >= e1000_pchlan) {
4670 		e1000_oem_bits_config_ich8lan(hw, false);
4671 
4672 		/* Reset PHY to activate OEM bits on 82577/8 */
4673 		if (hw->mac.type == e1000_pchlan)
4674 			e1000e_phy_hw_reset_generic(hw);
4675 
4676 		ret_val = hw->phy.ops.acquire(hw);
4677 		if (ret_val)
4678 			return;
4679 		e1000_write_smbus_addr(hw);
4680 		hw->phy.ops.release(hw);
4681 	}
4682 }
4683 
4684 /**
4685  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
4686  *  @hw: pointer to the HW structure
4687  *
4688  *  During Sx to S0 transitions on non-managed devices or managed devices
4689  *  on which PHY resets are not blocked, if the PHY registers cannot be
4690  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
4691  *  the PHY.
4692  *  On i217, setup Intel Rapid Start Technology.
4693  **/
4694 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
4695 {
4696 	s32 ret_val;
4697 
4698 	if (hw->mac.type < e1000_pch2lan)
4699 		return;
4700 
4701 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
4702 	if (ret_val) {
4703 		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
4704 		return;
4705 	}
4706 
4707 	/* For i217 Intel Rapid Start Technology support when the system
4708 	 * is transitioning from Sx and no manageability engine is present
4709 	 * configure SMBus to restore on reset, disable proxy, and enable
4710 	 * the reset on MTA (Multicast table array).
4711 	 */
4712 	if (hw->phy.type == e1000_phy_i217) {
4713 		u16 phy_reg;
4714 
4715 		ret_val = hw->phy.ops.acquire(hw);
4716 		if (ret_val) {
4717 			e_dbg("Failed to setup iRST\n");
4718 			return;
4719 		}
4720 
4721 		/* Clear Auto Enable LPI after link up */
4722 		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
4723 		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
4724 		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
4725 
4726 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4727 			/* Restore clear on SMB if no manageability engine
4728 			 * is present
4729 			 */
4730 			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4731 			if (ret_val)
4732 				goto release;
4733 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
4734 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4735 
4736 			/* Disable Proxy */
4737 			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
4738 		}
4739 		/* Enable reset on MTA */
4740 		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4741 		if (ret_val)
4742 			goto release;
4743 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
4744 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4745 release:
4746 		if (ret_val)
4747 			e_dbg("Error %d in resume workarounds\n", ret_val);
4748 		hw->phy.ops.release(hw);
4749 	}
4750 }
4751 
4752 /**
4753  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
4754  *  @hw: pointer to the HW structure
4755  *
4756  *  Return the LED back to the default configuration.
4757  **/
4758 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
4759 {
4760 	if (hw->phy.type == e1000_phy_ife)
4761 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
4762 
4763 	ew32(LEDCTL, hw->mac.ledctl_default);
4764 	return 0;
4765 }
4766 
4767 /**
4768  *  e1000_led_on_ich8lan - Turn LEDs on
4769  *  @hw: pointer to the HW structure
4770  *
4771  *  Turn on the LEDs.
4772  **/
4773 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
4774 {
4775 	if (hw->phy.type == e1000_phy_ife)
4776 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4777 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
4778 
4779 	ew32(LEDCTL, hw->mac.ledctl_mode2);
4780 	return 0;
4781 }
4782 
4783 /**
4784  *  e1000_led_off_ich8lan - Turn LEDs off
4785  *  @hw: pointer to the HW structure
4786  *
4787  *  Turn off the LEDs.
4788  **/
4789 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
4790 {
4791 	if (hw->phy.type == e1000_phy_ife)
4792 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4793 				(IFE_PSCL_PROBE_MODE |
4794 				 IFE_PSCL_PROBE_LEDS_OFF));
4795 
4796 	ew32(LEDCTL, hw->mac.ledctl_mode1);
4797 	return 0;
4798 }
4799 
4800 /**
4801  *  e1000_setup_led_pchlan - Configures SW controllable LED
4802  *  @hw: pointer to the HW structure
4803  *
4804  *  This prepares the SW controllable LED for use.
4805  **/
4806 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
4807 {
4808 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
4809 }
4810 
4811 /**
4812  *  e1000_cleanup_led_pchlan - Restore the default LED operation
4813  *  @hw: pointer to the HW structure
4814  *
4815  *  Return the LED back to the default configuration.
4816  **/
4817 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
4818 {
4819 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
4820 }
4821 
4822 /**
4823  *  e1000_led_on_pchlan - Turn LEDs on
4824  *  @hw: pointer to the HW structure
4825  *
4826  *  Turn on the LEDs.
4827  **/
4828 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
4829 {
4830 	u16 data = (u16)hw->mac.ledctl_mode2;
4831 	u32 i, led;
4832 
4833 	/* If no link, then turn LED on by setting the invert bit
4834 	 * for each LED that's mode is "link_up" in ledctl_mode2.
4835 	 */
4836 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
4837 		for (i = 0; i < 3; i++) {
4838 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4839 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
4840 			    E1000_LEDCTL_MODE_LINK_UP)
4841 				continue;
4842 			if (led & E1000_PHY_LED0_IVRT)
4843 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4844 			else
4845 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
4846 		}
4847 	}
4848 
4849 	return e1e_wphy(hw, HV_LED_CONFIG, data);
4850 }
4851 
4852 /**
4853  *  e1000_led_off_pchlan - Turn LEDs off
4854  *  @hw: pointer to the HW structure
4855  *
4856  *  Turn off the LEDs.
4857  **/
4858 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
4859 {
4860 	u16 data = (u16)hw->mac.ledctl_mode1;
4861 	u32 i, led;
4862 
4863 	/* If no link, then turn LED off by clearing the invert bit
4864 	 * for each LED that's mode is "link_up" in ledctl_mode1.
4865 	 */
4866 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
4867 		for (i = 0; i < 3; i++) {
4868 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4869 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
4870 			    E1000_LEDCTL_MODE_LINK_UP)
4871 				continue;
4872 			if (led & E1000_PHY_LED0_IVRT)
4873 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4874 			else
4875 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
4876 		}
4877 	}
4878 
4879 	return e1e_wphy(hw, HV_LED_CONFIG, data);
4880 }
4881 
4882 /**
4883  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
4884  *  @hw: pointer to the HW structure
4885  *
4886  *  Read appropriate register for the config done bit for completion status
4887  *  and configure the PHY through s/w for EEPROM-less parts.
4888  *
4889  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
4890  *  config done bit, so only an error is logged and continues.  If we were
4891  *  to return with error, EEPROM-less silicon would not be able to be reset
4892  *  or change link.
4893  **/
4894 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
4895 {
4896 	s32 ret_val = 0;
4897 	u32 bank = 0;
4898 	u32 status;
4899 
4900 	e1000e_get_cfg_done_generic(hw);
4901 
4902 	/* Wait for indication from h/w that it has completed basic config */
4903 	if (hw->mac.type >= e1000_ich10lan) {
4904 		e1000_lan_init_done_ich8lan(hw);
4905 	} else {
4906 		ret_val = e1000e_get_auto_rd_done(hw);
4907 		if (ret_val) {
4908 			/* When auto config read does not complete, do not
4909 			 * return with an error. This can happen in situations
4910 			 * where there is no eeprom and prevents getting link.
4911 			 */
4912 			e_dbg("Auto Read Done did not complete\n");
4913 			ret_val = 0;
4914 		}
4915 	}
4916 
4917 	/* Clear PHY Reset Asserted bit */
4918 	status = er32(STATUS);
4919 	if (status & E1000_STATUS_PHYRA)
4920 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
4921 	else
4922 		e_dbg("PHY Reset Asserted not set - needs delay\n");
4923 
4924 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
4925 	if (hw->mac.type <= e1000_ich9lan) {
4926 		if (!(er32(EECD) & E1000_EECD_PRES) &&
4927 		    (hw->phy.type == e1000_phy_igp_3)) {
4928 			e1000e_phy_init_script_igp3(hw);
4929 		}
4930 	} else {
4931 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
4932 			/* Maybe we should do a basic PHY config */
4933 			e_dbg("EEPROM not present\n");
4934 			ret_val = -E1000_ERR_CONFIG;
4935 		}
4936 	}
4937 
4938 	return ret_val;
4939 }
4940 
4941 /**
4942  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
4943  * @hw: pointer to the HW structure
4944  *
4945  * In the case of a PHY power down to save power, or to turn off link during a
4946  * driver unload, or wake on lan is not enabled, remove the link.
4947  **/
4948 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
4949 {
4950 	/* If the management interface is not enabled, then power down */
4951 	if (!(hw->mac.ops.check_mng_mode(hw) ||
4952 	      hw->phy.ops.check_reset_block(hw)))
4953 		e1000_power_down_phy_copper(hw);
4954 }
4955 
4956 /**
4957  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
4958  *  @hw: pointer to the HW structure
4959  *
4960  *  Clears hardware counters specific to the silicon family and calls
4961  *  clear_hw_cntrs_generic to clear all general purpose counters.
4962  **/
4963 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
4964 {
4965 	u16 phy_data;
4966 	s32 ret_val;
4967 
4968 	e1000e_clear_hw_cntrs_base(hw);
4969 
4970 	er32(ALGNERRC);
4971 	er32(RXERRC);
4972 	er32(TNCRS);
4973 	er32(CEXTERR);
4974 	er32(TSCTC);
4975 	er32(TSCTFC);
4976 
4977 	er32(MGTPRC);
4978 	er32(MGTPDC);
4979 	er32(MGTPTC);
4980 
4981 	er32(IAC);
4982 	er32(ICRXOC);
4983 
4984 	/* Clear PHY statistics registers */
4985 	if ((hw->phy.type == e1000_phy_82578) ||
4986 	    (hw->phy.type == e1000_phy_82579) ||
4987 	    (hw->phy.type == e1000_phy_i217) ||
4988 	    (hw->phy.type == e1000_phy_82577)) {
4989 		ret_val = hw->phy.ops.acquire(hw);
4990 		if (ret_val)
4991 			return;
4992 		ret_val = hw->phy.ops.set_page(hw,
4993 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4994 		if (ret_val)
4995 			goto release;
4996 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4997 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4998 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4999 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5000 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5001 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5002 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5003 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5004 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5005 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5006 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5007 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5008 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5009 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5010 release:
5011 		hw->phy.ops.release(hw);
5012 	}
5013 }
5014 
5015 static const struct e1000_mac_operations ich8_mac_ops = {
5016 	/* check_mng_mode dependent on mac type */
5017 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5018 	/* cleanup_led dependent on mac type */
5019 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5020 	.get_bus_info		= e1000_get_bus_info_ich8lan,
5021 	.set_lan_id		= e1000_set_lan_id_single_port,
5022 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5023 	/* led_on dependent on mac type */
5024 	/* led_off dependent on mac type */
5025 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5026 	.reset_hw		= e1000_reset_hw_ich8lan,
5027 	.init_hw		= e1000_init_hw_ich8lan,
5028 	.setup_link		= e1000_setup_link_ich8lan,
5029 	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5030 	/* id_led_init dependent on mac type */
5031 	.config_collision_dist	= e1000e_config_collision_dist_generic,
5032 	.rar_set		= e1000e_rar_set_generic,
5033 	.rar_get_count		= e1000e_rar_get_count_generic,
5034 };
5035 
5036 static const struct e1000_phy_operations ich8_phy_ops = {
5037 	.acquire		= e1000_acquire_swflag_ich8lan,
5038 	.check_reset_block	= e1000_check_reset_block_ich8lan,
5039 	.commit			= NULL,
5040 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5041 	.get_cable_length	= e1000e_get_cable_length_igp_2,
5042 	.read_reg		= e1000e_read_phy_reg_igp,
5043 	.release		= e1000_release_swflag_ich8lan,
5044 	.reset			= e1000_phy_hw_reset_ich8lan,
5045 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5046 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5047 	.write_reg		= e1000e_write_phy_reg_igp,
5048 };
5049 
5050 static const struct e1000_nvm_operations ich8_nvm_ops = {
5051 	.acquire		= e1000_acquire_nvm_ich8lan,
5052 	.read			= e1000_read_nvm_ich8lan,
5053 	.release		= e1000_release_nvm_ich8lan,
5054 	.reload			= e1000e_reload_nvm_generic,
5055 	.update			= e1000_update_nvm_checksum_ich8lan,
5056 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5057 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5058 	.write			= e1000_write_nvm_ich8lan,
5059 };
5060 
5061 const struct e1000_info e1000_ich8_info = {
5062 	.mac			= e1000_ich8lan,
5063 	.flags			= FLAG_HAS_WOL
5064 				  | FLAG_IS_ICH
5065 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5066 				  | FLAG_HAS_AMT
5067 				  | FLAG_HAS_FLASH
5068 				  | FLAG_APME_IN_WUC,
5069 	.pba			= 8,
5070 	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
5071 	.get_variants		= e1000_get_variants_ich8lan,
5072 	.mac_ops		= &ich8_mac_ops,
5073 	.phy_ops		= &ich8_phy_ops,
5074 	.nvm_ops		= &ich8_nvm_ops,
5075 };
5076 
5077 const struct e1000_info e1000_ich9_info = {
5078 	.mac			= e1000_ich9lan,
5079 	.flags			= FLAG_HAS_JUMBO_FRAMES
5080 				  | FLAG_IS_ICH
5081 				  | FLAG_HAS_WOL
5082 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5083 				  | FLAG_HAS_AMT
5084 				  | FLAG_HAS_FLASH
5085 				  | FLAG_APME_IN_WUC,
5086 	.pba			= 18,
5087 	.max_hw_frame_size	= DEFAULT_JUMBO,
5088 	.get_variants		= e1000_get_variants_ich8lan,
5089 	.mac_ops		= &ich8_mac_ops,
5090 	.phy_ops		= &ich8_phy_ops,
5091 	.nvm_ops		= &ich8_nvm_ops,
5092 };
5093 
5094 const struct e1000_info e1000_ich10_info = {
5095 	.mac			= e1000_ich10lan,
5096 	.flags			= FLAG_HAS_JUMBO_FRAMES
5097 				  | FLAG_IS_ICH
5098 				  | FLAG_HAS_WOL
5099 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5100 				  | FLAG_HAS_AMT
5101 				  | FLAG_HAS_FLASH
5102 				  | FLAG_APME_IN_WUC,
5103 	.pba			= 18,
5104 	.max_hw_frame_size	= DEFAULT_JUMBO,
5105 	.get_variants		= e1000_get_variants_ich8lan,
5106 	.mac_ops		= &ich8_mac_ops,
5107 	.phy_ops		= &ich8_phy_ops,
5108 	.nvm_ops		= &ich8_nvm_ops,
5109 };
5110 
5111 const struct e1000_info e1000_pch_info = {
5112 	.mac			= e1000_pchlan,
5113 	.flags			= FLAG_IS_ICH
5114 				  | FLAG_HAS_WOL
5115 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5116 				  | FLAG_HAS_AMT
5117 				  | FLAG_HAS_FLASH
5118 				  | FLAG_HAS_JUMBO_FRAMES
5119 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5120 				  | FLAG_APME_IN_WUC,
5121 	.flags2			= FLAG2_HAS_PHY_STATS,
5122 	.pba			= 26,
5123 	.max_hw_frame_size	= 4096,
5124 	.get_variants		= e1000_get_variants_ich8lan,
5125 	.mac_ops		= &ich8_mac_ops,
5126 	.phy_ops		= &ich8_phy_ops,
5127 	.nvm_ops		= &ich8_nvm_ops,
5128 };
5129 
5130 const struct e1000_info e1000_pch2_info = {
5131 	.mac			= e1000_pch2lan,
5132 	.flags			= FLAG_IS_ICH
5133 				  | FLAG_HAS_WOL
5134 				  | FLAG_HAS_HW_TIMESTAMP
5135 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5136 				  | FLAG_HAS_AMT
5137 				  | FLAG_HAS_FLASH
5138 				  | FLAG_HAS_JUMBO_FRAMES
5139 				  | FLAG_APME_IN_WUC,
5140 	.flags2			= FLAG2_HAS_PHY_STATS
5141 				  | FLAG2_HAS_EEE,
5142 	.pba			= 26,
5143 	.max_hw_frame_size	= 9018,
5144 	.get_variants		= e1000_get_variants_ich8lan,
5145 	.mac_ops		= &ich8_mac_ops,
5146 	.phy_ops		= &ich8_phy_ops,
5147 	.nvm_ops		= &ich8_nvm_ops,
5148 };
5149 
5150 const struct e1000_info e1000_pch_lpt_info = {
5151 	.mac			= e1000_pch_lpt,
5152 	.flags			= FLAG_IS_ICH
5153 				  | FLAG_HAS_WOL
5154 				  | FLAG_HAS_HW_TIMESTAMP
5155 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5156 				  | FLAG_HAS_AMT
5157 				  | FLAG_HAS_FLASH
5158 				  | FLAG_HAS_JUMBO_FRAMES
5159 				  | FLAG_APME_IN_WUC,
5160 	.flags2			= FLAG2_HAS_PHY_STATS
5161 				  | FLAG2_HAS_EEE,
5162 	.pba			= 26,
5163 	.max_hw_frame_size	= 9018,
5164 	.get_variants		= e1000_get_variants_ich8lan,
5165 	.mac_ops		= &ich8_mac_ops,
5166 	.phy_ops		= &ich8_phy_ops,
5167 	.nvm_ops		= &ich8_nvm_ops,
5168 };
5169