1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 /* 82562G 10/100 Network Connection 5 * 82562G-2 10/100 Network Connection 6 * 82562GT 10/100 Network Connection 7 * 82562GT-2 10/100 Network Connection 8 * 82562V 10/100 Network Connection 9 * 82562V-2 10/100 Network Connection 10 * 82566DC-2 Gigabit Network Connection 11 * 82566DC Gigabit Network Connection 12 * 82566DM-2 Gigabit Network Connection 13 * 82566DM Gigabit Network Connection 14 * 82566MC Gigabit Network Connection 15 * 82566MM Gigabit Network Connection 16 * 82567LM Gigabit Network Connection 17 * 82567LF Gigabit Network Connection 18 * 82567V Gigabit Network Connection 19 * 82567LM-2 Gigabit Network Connection 20 * 82567LF-2 Gigabit Network Connection 21 * 82567V-2 Gigabit Network Connection 22 * 82567LF-3 Gigabit Network Connection 23 * 82567LM-3 Gigabit Network Connection 24 * 82567LM-4 Gigabit Network Connection 25 * 82577LM Gigabit Network Connection 26 * 82577LC Gigabit Network Connection 27 * 82578DM Gigabit Network Connection 28 * 82578DC Gigabit Network Connection 29 * 82579LM Gigabit Network Connection 30 * 82579V Gigabit Network Connection 31 * Ethernet Connection I217-LM 32 * Ethernet Connection I217-V 33 * Ethernet Connection I218-V 34 * Ethernet Connection I218-LM 35 * Ethernet Connection (2) I218-LM 36 * Ethernet Connection (2) I218-V 37 * Ethernet Connection (3) I218-LM 38 * Ethernet Connection (3) I218-V 39 */ 40 41 #include "e1000.h" 42 43 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */ 44 /* Offset 04h HSFSTS */ 45 union ich8_hws_flash_status { 46 struct ich8_hsfsts { 47 u16 flcdone:1; /* bit 0 Flash Cycle Done */ 48 u16 flcerr:1; /* bit 1 Flash Cycle Error */ 49 u16 dael:1; /* bit 2 Direct Access error Log */ 50 u16 berasesz:2; /* bit 4:3 Sector Erase Size */ 51 u16 flcinprog:1; /* bit 5 flash cycle in Progress */ 52 u16 reserved1:2; /* bit 13:6 Reserved */ 53 u16 reserved2:6; /* bit 13:6 Reserved */ 54 u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */ 55 u16 flockdn:1; /* bit 15 Flash Config Lock-Down */ 56 } hsf_status; 57 u16 regval; 58 }; 59 60 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */ 61 /* Offset 06h FLCTL */ 62 union ich8_hws_flash_ctrl { 63 struct ich8_hsflctl { 64 u16 flcgo:1; /* 0 Flash Cycle Go */ 65 u16 flcycle:2; /* 2:1 Flash Cycle */ 66 u16 reserved:5; /* 7:3 Reserved */ 67 u16 fldbcount:2; /* 9:8 Flash Data Byte Count */ 68 u16 flockdn:6; /* 15:10 Reserved */ 69 } hsf_ctrl; 70 u16 regval; 71 }; 72 73 /* ICH Flash Region Access Permissions */ 74 union ich8_hws_flash_regacc { 75 struct ich8_flracc { 76 u32 grra:8; /* 0:7 GbE region Read Access */ 77 u32 grwa:8; /* 8:15 GbE region Write Access */ 78 u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */ 79 u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */ 80 } hsf_flregacc; 81 u16 regval; 82 }; 83 84 /* ICH Flash Protected Region */ 85 union ich8_flash_protected_range { 86 struct ich8_pr { 87 u32 base:13; /* 0:12 Protected Range Base */ 88 u32 reserved1:2; /* 13:14 Reserved */ 89 u32 rpe:1; /* 15 Read Protection Enable */ 90 u32 limit:13; /* 16:28 Protected Range Limit */ 91 u32 reserved2:2; /* 29:30 Reserved */ 92 u32 wpe:1; /* 31 Write Protection Enable */ 93 } range; 94 u32 regval; 95 }; 96 97 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw); 98 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw); 99 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank); 100 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, 101 u32 offset, u8 byte); 102 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, 103 u8 *data); 104 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, 105 u16 *data); 106 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 107 u8 size, u16 *data); 108 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, 109 u32 *data); 110 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, 111 u32 offset, u32 *data); 112 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, 113 u32 offset, u32 data); 114 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw, 115 u32 offset, u32 dword); 116 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw); 117 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw); 118 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw); 119 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw); 120 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw); 121 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw); 122 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw); 123 static s32 e1000_led_on_pchlan(struct e1000_hw *hw); 124 static s32 e1000_led_off_pchlan(struct e1000_hw *hw); 125 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active); 126 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw); 127 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw); 128 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link); 129 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw); 130 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw); 131 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw); 132 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index); 133 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index); 134 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw); 135 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw); 136 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate); 137 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force); 138 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw); 139 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state); 140 141 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg) 142 { 143 return readw(hw->flash_address + reg); 144 } 145 146 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg) 147 { 148 return readl(hw->flash_address + reg); 149 } 150 151 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val) 152 { 153 writew(val, hw->flash_address + reg); 154 } 155 156 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val) 157 { 158 writel(val, hw->flash_address + reg); 159 } 160 161 #define er16flash(reg) __er16flash(hw, (reg)) 162 #define er32flash(reg) __er32flash(hw, (reg)) 163 #define ew16flash(reg, val) __ew16flash(hw, (reg), (val)) 164 #define ew32flash(reg, val) __ew32flash(hw, (reg), (val)) 165 166 /** 167 * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers 168 * @hw: pointer to the HW structure 169 * 170 * Test access to the PHY registers by reading the PHY ID registers. If 171 * the PHY ID is already known (e.g. resume path) compare it with known ID, 172 * otherwise assume the read PHY ID is correct if it is valid. 173 * 174 * Assumes the sw/fw/hw semaphore is already acquired. 175 **/ 176 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw) 177 { 178 u16 phy_reg = 0; 179 u32 phy_id = 0; 180 s32 ret_val = 0; 181 u16 retry_count; 182 u32 mac_reg = 0; 183 184 for (retry_count = 0; retry_count < 2; retry_count++) { 185 ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg); 186 if (ret_val || (phy_reg == 0xFFFF)) 187 continue; 188 phy_id = (u32)(phy_reg << 16); 189 190 ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg); 191 if (ret_val || (phy_reg == 0xFFFF)) { 192 phy_id = 0; 193 continue; 194 } 195 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK); 196 break; 197 } 198 199 if (hw->phy.id) { 200 if (hw->phy.id == phy_id) 201 goto out; 202 } else if (phy_id) { 203 hw->phy.id = phy_id; 204 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK); 205 goto out; 206 } 207 208 /* In case the PHY needs to be in mdio slow mode, 209 * set slow mode and try to get the PHY id again. 210 */ 211 if (hw->mac.type < e1000_pch_lpt) { 212 hw->phy.ops.release(hw); 213 ret_val = e1000_set_mdio_slow_mode_hv(hw); 214 if (!ret_val) 215 ret_val = e1000e_get_phy_id(hw); 216 hw->phy.ops.acquire(hw); 217 } 218 219 if (ret_val) 220 return false; 221 out: 222 if (hw->mac.type >= e1000_pch_lpt) { 223 /* Only unforce SMBus if ME is not active */ 224 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 225 /* Unforce SMBus mode in PHY */ 226 e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg); 227 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS; 228 e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg); 229 230 /* Unforce SMBus mode in MAC */ 231 mac_reg = er32(CTRL_EXT); 232 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; 233 ew32(CTRL_EXT, mac_reg); 234 } 235 } 236 237 return true; 238 } 239 240 /** 241 * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value 242 * @hw: pointer to the HW structure 243 * 244 * Toggling the LANPHYPC pin value fully power-cycles the PHY and is 245 * used to reset the PHY to a quiescent state when necessary. 246 **/ 247 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw) 248 { 249 u32 mac_reg; 250 251 /* Set Phy Config Counter to 50msec */ 252 mac_reg = er32(FEXTNVM3); 253 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; 254 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; 255 ew32(FEXTNVM3, mac_reg); 256 257 /* Toggle LANPHYPC Value bit */ 258 mac_reg = er32(CTRL); 259 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE; 260 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE; 261 ew32(CTRL, mac_reg); 262 e1e_flush(); 263 usleep_range(10, 20); 264 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE; 265 ew32(CTRL, mac_reg); 266 e1e_flush(); 267 268 if (hw->mac.type < e1000_pch_lpt) { 269 msleep(50); 270 } else { 271 u16 count = 20; 272 273 do { 274 usleep_range(5000, 6000); 275 } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--); 276 277 msleep(30); 278 } 279 } 280 281 /** 282 * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds 283 * @hw: pointer to the HW structure 284 * 285 * Workarounds/flow necessary for PHY initialization during driver load 286 * and resume paths. 287 **/ 288 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw) 289 { 290 struct e1000_adapter *adapter = hw->adapter; 291 u32 mac_reg, fwsm = er32(FWSM); 292 s32 ret_val; 293 294 /* Gate automatic PHY configuration by hardware on managed and 295 * non-managed 82579 and newer adapters. 296 */ 297 e1000_gate_hw_phy_config_ich8lan(hw, true); 298 299 /* It is not possible to be certain of the current state of ULP 300 * so forcibly disable it. 301 */ 302 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown; 303 ret_val = e1000_disable_ulp_lpt_lp(hw, true); 304 if (ret_val) 305 e_warn("Failed to disable ULP\n"); 306 307 ret_val = hw->phy.ops.acquire(hw); 308 if (ret_val) { 309 e_dbg("Failed to initialize PHY flow\n"); 310 goto out; 311 } 312 313 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is 314 * inaccessible and resetting the PHY is not blocked, toggle the 315 * LANPHYPC Value bit to force the interconnect to PCIe mode. 316 */ 317 switch (hw->mac.type) { 318 case e1000_pch_lpt: 319 case e1000_pch_spt: 320 case e1000_pch_cnp: 321 case e1000_pch_tgp: 322 case e1000_pch_adp: 323 case e1000_pch_mtp: 324 if (e1000_phy_is_accessible_pchlan(hw)) 325 break; 326 327 /* Before toggling LANPHYPC, see if PHY is accessible by 328 * forcing MAC to SMBus mode first. 329 */ 330 mac_reg = er32(CTRL_EXT); 331 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; 332 ew32(CTRL_EXT, mac_reg); 333 334 /* Wait 50 milliseconds for MAC to finish any retries 335 * that it might be trying to perform from previous 336 * attempts to acknowledge any phy read requests. 337 */ 338 msleep(50); 339 340 fallthrough; 341 case e1000_pch2lan: 342 if (e1000_phy_is_accessible_pchlan(hw)) 343 break; 344 345 fallthrough; 346 case e1000_pchlan: 347 if ((hw->mac.type == e1000_pchlan) && 348 (fwsm & E1000_ICH_FWSM_FW_VALID)) 349 break; 350 351 if (hw->phy.ops.check_reset_block(hw)) { 352 e_dbg("Required LANPHYPC toggle blocked by ME\n"); 353 ret_val = -E1000_ERR_PHY; 354 break; 355 } 356 357 /* Toggle LANPHYPC Value bit */ 358 e1000_toggle_lanphypc_pch_lpt(hw); 359 if (hw->mac.type >= e1000_pch_lpt) { 360 if (e1000_phy_is_accessible_pchlan(hw)) 361 break; 362 363 /* Toggling LANPHYPC brings the PHY out of SMBus mode 364 * so ensure that the MAC is also out of SMBus mode 365 */ 366 mac_reg = er32(CTRL_EXT); 367 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; 368 ew32(CTRL_EXT, mac_reg); 369 370 if (e1000_phy_is_accessible_pchlan(hw)) 371 break; 372 373 ret_val = -E1000_ERR_PHY; 374 } 375 break; 376 default: 377 break; 378 } 379 380 hw->phy.ops.release(hw); 381 if (!ret_val) { 382 383 /* Check to see if able to reset PHY. Print error if not */ 384 if (hw->phy.ops.check_reset_block(hw)) { 385 e_err("Reset blocked by ME\n"); 386 goto out; 387 } 388 389 /* Reset the PHY before any access to it. Doing so, ensures 390 * that the PHY is in a known good state before we read/write 391 * PHY registers. The generic reset is sufficient here, 392 * because we haven't determined the PHY type yet. 393 */ 394 ret_val = e1000e_phy_hw_reset_generic(hw); 395 if (ret_val) 396 goto out; 397 398 /* On a successful reset, possibly need to wait for the PHY 399 * to quiesce to an accessible state before returning control 400 * to the calling function. If the PHY does not quiesce, then 401 * return E1000E_BLK_PHY_RESET, as this is the condition that 402 * the PHY is in. 403 */ 404 ret_val = hw->phy.ops.check_reset_block(hw); 405 if (ret_val) 406 e_err("ME blocked access to PHY after reset\n"); 407 } 408 409 out: 410 /* Ungate automatic PHY configuration on non-managed 82579 */ 411 if ((hw->mac.type == e1000_pch2lan) && 412 !(fwsm & E1000_ICH_FWSM_FW_VALID)) { 413 usleep_range(10000, 11000); 414 e1000_gate_hw_phy_config_ich8lan(hw, false); 415 } 416 417 return ret_val; 418 } 419 420 /** 421 * e1000_init_phy_params_pchlan - Initialize PHY function pointers 422 * @hw: pointer to the HW structure 423 * 424 * Initialize family-specific PHY parameters and function pointers. 425 **/ 426 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw) 427 { 428 struct e1000_phy_info *phy = &hw->phy; 429 s32 ret_val; 430 431 phy->addr = 1; 432 phy->reset_delay_us = 100; 433 434 phy->ops.set_page = e1000_set_page_igp; 435 phy->ops.read_reg = e1000_read_phy_reg_hv; 436 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked; 437 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv; 438 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan; 439 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan; 440 phy->ops.write_reg = e1000_write_phy_reg_hv; 441 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked; 442 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv; 443 phy->ops.power_up = e1000_power_up_phy_copper; 444 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; 445 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 446 447 phy->id = e1000_phy_unknown; 448 449 ret_val = e1000_init_phy_workarounds_pchlan(hw); 450 if (ret_val) 451 return ret_val; 452 453 if (phy->id == e1000_phy_unknown) 454 switch (hw->mac.type) { 455 default: 456 ret_val = e1000e_get_phy_id(hw); 457 if (ret_val) 458 return ret_val; 459 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK)) 460 break; 461 fallthrough; 462 case e1000_pch2lan: 463 case e1000_pch_lpt: 464 case e1000_pch_spt: 465 case e1000_pch_cnp: 466 case e1000_pch_tgp: 467 case e1000_pch_adp: 468 case e1000_pch_mtp: 469 /* In case the PHY needs to be in mdio slow mode, 470 * set slow mode and try to get the PHY id again. 471 */ 472 ret_val = e1000_set_mdio_slow_mode_hv(hw); 473 if (ret_val) 474 return ret_val; 475 ret_val = e1000e_get_phy_id(hw); 476 if (ret_val) 477 return ret_val; 478 break; 479 } 480 phy->type = e1000e_get_phy_type_from_id(phy->id); 481 482 switch (phy->type) { 483 case e1000_phy_82577: 484 case e1000_phy_82579: 485 case e1000_phy_i217: 486 phy->ops.check_polarity = e1000_check_polarity_82577; 487 phy->ops.force_speed_duplex = 488 e1000_phy_force_speed_duplex_82577; 489 phy->ops.get_cable_length = e1000_get_cable_length_82577; 490 phy->ops.get_info = e1000_get_phy_info_82577; 491 phy->ops.commit = e1000e_phy_sw_reset; 492 break; 493 case e1000_phy_82578: 494 phy->ops.check_polarity = e1000_check_polarity_m88; 495 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; 496 phy->ops.get_cable_length = e1000e_get_cable_length_m88; 497 phy->ops.get_info = e1000e_get_phy_info_m88; 498 break; 499 default: 500 ret_val = -E1000_ERR_PHY; 501 break; 502 } 503 504 return ret_val; 505 } 506 507 /** 508 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers 509 * @hw: pointer to the HW structure 510 * 511 * Initialize family-specific PHY parameters and function pointers. 512 **/ 513 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw) 514 { 515 struct e1000_phy_info *phy = &hw->phy; 516 s32 ret_val; 517 u16 i = 0; 518 519 phy->addr = 1; 520 phy->reset_delay_us = 100; 521 522 phy->ops.power_up = e1000_power_up_phy_copper; 523 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; 524 525 /* We may need to do this twice - once for IGP and if that fails, 526 * we'll set BM func pointers and try again 527 */ 528 ret_val = e1000e_determine_phy_address(hw); 529 if (ret_val) { 530 phy->ops.write_reg = e1000e_write_phy_reg_bm; 531 phy->ops.read_reg = e1000e_read_phy_reg_bm; 532 ret_val = e1000e_determine_phy_address(hw); 533 if (ret_val) { 534 e_dbg("Cannot determine PHY addr. Erroring out\n"); 535 return ret_val; 536 } 537 } 538 539 phy->id = 0; 540 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) && 541 (i++ < 100)) { 542 usleep_range(1000, 1100); 543 ret_val = e1000e_get_phy_id(hw); 544 if (ret_val) 545 return ret_val; 546 } 547 548 /* Verify phy id */ 549 switch (phy->id) { 550 case IGP03E1000_E_PHY_ID: 551 phy->type = e1000_phy_igp_3; 552 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 553 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked; 554 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked; 555 phy->ops.get_info = e1000e_get_phy_info_igp; 556 phy->ops.check_polarity = e1000_check_polarity_igp; 557 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp; 558 break; 559 case IFE_E_PHY_ID: 560 case IFE_PLUS_E_PHY_ID: 561 case IFE_C_E_PHY_ID: 562 phy->type = e1000_phy_ife; 563 phy->autoneg_mask = E1000_ALL_NOT_GIG; 564 phy->ops.get_info = e1000_get_phy_info_ife; 565 phy->ops.check_polarity = e1000_check_polarity_ife; 566 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife; 567 break; 568 case BME1000_E_PHY_ID: 569 phy->type = e1000_phy_bm; 570 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 571 phy->ops.read_reg = e1000e_read_phy_reg_bm; 572 phy->ops.write_reg = e1000e_write_phy_reg_bm; 573 phy->ops.commit = e1000e_phy_sw_reset; 574 phy->ops.get_info = e1000e_get_phy_info_m88; 575 phy->ops.check_polarity = e1000_check_polarity_m88; 576 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; 577 break; 578 default: 579 return -E1000_ERR_PHY; 580 } 581 582 return 0; 583 } 584 585 /** 586 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers 587 * @hw: pointer to the HW structure 588 * 589 * Initialize family-specific NVM parameters and function 590 * pointers. 591 **/ 592 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw) 593 { 594 struct e1000_nvm_info *nvm = &hw->nvm; 595 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 596 u32 gfpreg, sector_base_addr, sector_end_addr; 597 u16 i; 598 u32 nvm_size; 599 600 nvm->type = e1000_nvm_flash_sw; 601 602 if (hw->mac.type >= e1000_pch_spt) { 603 /* in SPT, gfpreg doesn't exist. NVM size is taken from the 604 * STRAP register. This is because in SPT the GbE Flash region 605 * is no longer accessed through the flash registers. Instead, 606 * the mechanism has changed, and the Flash region access 607 * registers are now implemented in GbE memory space. 608 */ 609 nvm->flash_base_addr = 0; 610 nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1) 611 * NVM_SIZE_MULTIPLIER; 612 nvm->flash_bank_size = nvm_size / 2; 613 /* Adjust to word count */ 614 nvm->flash_bank_size /= sizeof(u16); 615 /* Set the base address for flash register access */ 616 hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR; 617 } else { 618 /* Can't read flash registers if register set isn't mapped. */ 619 if (!hw->flash_address) { 620 e_dbg("ERROR: Flash registers not mapped\n"); 621 return -E1000_ERR_CONFIG; 622 } 623 624 gfpreg = er32flash(ICH_FLASH_GFPREG); 625 626 /* sector_X_addr is a "sector"-aligned address (4096 bytes) 627 * Add 1 to sector_end_addr since this sector is included in 628 * the overall size. 629 */ 630 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK; 631 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1; 632 633 /* flash_base_addr is byte-aligned */ 634 nvm->flash_base_addr = sector_base_addr 635 << FLASH_SECTOR_ADDR_SHIFT; 636 637 /* find total size of the NVM, then cut in half since the total 638 * size represents two separate NVM banks. 639 */ 640 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr) 641 << FLASH_SECTOR_ADDR_SHIFT); 642 nvm->flash_bank_size /= 2; 643 /* Adjust to word count */ 644 nvm->flash_bank_size /= sizeof(u16); 645 } 646 647 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS; 648 649 /* Clear shadow ram */ 650 for (i = 0; i < nvm->word_size; i++) { 651 dev_spec->shadow_ram[i].modified = false; 652 dev_spec->shadow_ram[i].value = 0xFFFF; 653 } 654 655 return 0; 656 } 657 658 /** 659 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers 660 * @hw: pointer to the HW structure 661 * 662 * Initialize family-specific MAC parameters and function 663 * pointers. 664 **/ 665 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw) 666 { 667 struct e1000_mac_info *mac = &hw->mac; 668 669 /* Set media type function pointer */ 670 hw->phy.media_type = e1000_media_type_copper; 671 672 /* Set mta register count */ 673 mac->mta_reg_count = 32; 674 /* Set rar entry count */ 675 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES; 676 if (mac->type == e1000_ich8lan) 677 mac->rar_entry_count--; 678 /* FWSM register */ 679 mac->has_fwsm = true; 680 /* ARC subsystem not supported */ 681 mac->arc_subsystem_valid = false; 682 /* Adaptive IFS supported */ 683 mac->adaptive_ifs = true; 684 685 /* LED and other operations */ 686 switch (mac->type) { 687 case e1000_ich8lan: 688 case e1000_ich9lan: 689 case e1000_ich10lan: 690 /* check management mode */ 691 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan; 692 /* ID LED init */ 693 mac->ops.id_led_init = e1000e_id_led_init_generic; 694 /* blink LED */ 695 mac->ops.blink_led = e1000e_blink_led_generic; 696 /* setup LED */ 697 mac->ops.setup_led = e1000e_setup_led_generic; 698 /* cleanup LED */ 699 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan; 700 /* turn on/off LED */ 701 mac->ops.led_on = e1000_led_on_ich8lan; 702 mac->ops.led_off = e1000_led_off_ich8lan; 703 break; 704 case e1000_pch2lan: 705 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES; 706 mac->ops.rar_set = e1000_rar_set_pch2lan; 707 fallthrough; 708 case e1000_pch_lpt: 709 case e1000_pch_spt: 710 case e1000_pch_cnp: 711 case e1000_pch_tgp: 712 case e1000_pch_adp: 713 case e1000_pch_mtp: 714 case e1000_pchlan: 715 /* check management mode */ 716 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan; 717 /* ID LED init */ 718 mac->ops.id_led_init = e1000_id_led_init_pchlan; 719 /* setup LED */ 720 mac->ops.setup_led = e1000_setup_led_pchlan; 721 /* cleanup LED */ 722 mac->ops.cleanup_led = e1000_cleanup_led_pchlan; 723 /* turn on/off LED */ 724 mac->ops.led_on = e1000_led_on_pchlan; 725 mac->ops.led_off = e1000_led_off_pchlan; 726 break; 727 default: 728 break; 729 } 730 731 if (mac->type >= e1000_pch_lpt) { 732 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES; 733 mac->ops.rar_set = e1000_rar_set_pch_lpt; 734 mac->ops.setup_physical_interface = 735 e1000_setup_copper_link_pch_lpt; 736 mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt; 737 } 738 739 /* Enable PCS Lock-loss workaround for ICH8 */ 740 if (mac->type == e1000_ich8lan) 741 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true); 742 743 return 0; 744 } 745 746 /** 747 * __e1000_access_emi_reg_locked - Read/write EMI register 748 * @hw: pointer to the HW structure 749 * @address: EMI address to program 750 * @data: pointer to value to read/write from/to the EMI address 751 * @read: boolean flag to indicate read or write 752 * 753 * This helper function assumes the SW/FW/HW Semaphore is already acquired. 754 **/ 755 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address, 756 u16 *data, bool read) 757 { 758 s32 ret_val; 759 760 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address); 761 if (ret_val) 762 return ret_val; 763 764 if (read) 765 ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data); 766 else 767 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data); 768 769 return ret_val; 770 } 771 772 /** 773 * e1000_read_emi_reg_locked - Read Extended Management Interface register 774 * @hw: pointer to the HW structure 775 * @addr: EMI address to program 776 * @data: value to be read from the EMI address 777 * 778 * Assumes the SW/FW/HW Semaphore is already acquired. 779 **/ 780 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data) 781 { 782 return __e1000_access_emi_reg_locked(hw, addr, data, true); 783 } 784 785 /** 786 * e1000_write_emi_reg_locked - Write Extended Management Interface register 787 * @hw: pointer to the HW structure 788 * @addr: EMI address to program 789 * @data: value to be written to the EMI address 790 * 791 * Assumes the SW/FW/HW Semaphore is already acquired. 792 **/ 793 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data) 794 { 795 return __e1000_access_emi_reg_locked(hw, addr, &data, false); 796 } 797 798 /** 799 * e1000_set_eee_pchlan - Enable/disable EEE support 800 * @hw: pointer to the HW structure 801 * 802 * Enable/disable EEE based on setting in dev_spec structure, the duplex of 803 * the link and the EEE capabilities of the link partner. The LPI Control 804 * register bits will remain set only if/when link is up. 805 * 806 * EEE LPI must not be asserted earlier than one second after link is up. 807 * On 82579, EEE LPI should not be enabled until such time otherwise there 808 * can be link issues with some switches. Other devices can have EEE LPI 809 * enabled immediately upon link up since they have a timer in hardware which 810 * prevents LPI from being asserted too early. 811 **/ 812 s32 e1000_set_eee_pchlan(struct e1000_hw *hw) 813 { 814 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 815 s32 ret_val; 816 u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data; 817 818 switch (hw->phy.type) { 819 case e1000_phy_82579: 820 lpa = I82579_EEE_LP_ABILITY; 821 pcs_status = I82579_EEE_PCS_STATUS; 822 adv_addr = I82579_EEE_ADVERTISEMENT; 823 break; 824 case e1000_phy_i217: 825 lpa = I217_EEE_LP_ABILITY; 826 pcs_status = I217_EEE_PCS_STATUS; 827 adv_addr = I217_EEE_ADVERTISEMENT; 828 break; 829 default: 830 return 0; 831 } 832 833 ret_val = hw->phy.ops.acquire(hw); 834 if (ret_val) 835 return ret_val; 836 837 ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl); 838 if (ret_val) 839 goto release; 840 841 /* Clear bits that enable EEE in various speeds */ 842 lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK; 843 844 /* Enable EEE if not disabled by user */ 845 if (!dev_spec->eee_disable) { 846 /* Save off link partner's EEE ability */ 847 ret_val = e1000_read_emi_reg_locked(hw, lpa, 848 &dev_spec->eee_lp_ability); 849 if (ret_val) 850 goto release; 851 852 /* Read EEE advertisement */ 853 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv); 854 if (ret_val) 855 goto release; 856 857 /* Enable EEE only for speeds in which the link partner is 858 * EEE capable and for which we advertise EEE. 859 */ 860 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED) 861 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE; 862 863 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) { 864 e1e_rphy_locked(hw, MII_LPA, &data); 865 if (data & LPA_100FULL) 866 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE; 867 else 868 /* EEE is not supported in 100Half, so ignore 869 * partner's EEE in 100 ability if full-duplex 870 * is not advertised. 871 */ 872 dev_spec->eee_lp_ability &= 873 ~I82579_EEE_100_SUPPORTED; 874 } 875 } 876 877 if (hw->phy.type == e1000_phy_82579) { 878 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT, 879 &data); 880 if (ret_val) 881 goto release; 882 883 data &= ~I82579_LPI_100_PLL_SHUT; 884 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT, 885 data); 886 } 887 888 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */ 889 ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data); 890 if (ret_val) 891 goto release; 892 893 ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl); 894 release: 895 hw->phy.ops.release(hw); 896 897 return ret_val; 898 } 899 900 /** 901 * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP 902 * @hw: pointer to the HW structure 903 * @link: link up bool flag 904 * 905 * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications 906 * preventing further DMA write requests. Workaround the issue by disabling 907 * the de-assertion of the clock request when in 1Gpbs mode. 908 * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link 909 * speeds in order to avoid Tx hangs. 910 **/ 911 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link) 912 { 913 u32 fextnvm6 = er32(FEXTNVM6); 914 u32 status = er32(STATUS); 915 s32 ret_val = 0; 916 u16 reg; 917 918 if (link && (status & E1000_STATUS_SPEED_1000)) { 919 ret_val = hw->phy.ops.acquire(hw); 920 if (ret_val) 921 return ret_val; 922 923 ret_val = 924 e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, 925 ®); 926 if (ret_val) 927 goto release; 928 929 ret_val = 930 e1000e_write_kmrn_reg_locked(hw, 931 E1000_KMRNCTRLSTA_K1_CONFIG, 932 reg & 933 ~E1000_KMRNCTRLSTA_K1_ENABLE); 934 if (ret_val) 935 goto release; 936 937 usleep_range(10, 20); 938 939 ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK); 940 941 ret_val = 942 e1000e_write_kmrn_reg_locked(hw, 943 E1000_KMRNCTRLSTA_K1_CONFIG, 944 reg); 945 release: 946 hw->phy.ops.release(hw); 947 } else { 948 /* clear FEXTNVM6 bit 8 on link down or 10/100 */ 949 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK; 950 951 if ((hw->phy.revision > 5) || !link || 952 ((status & E1000_STATUS_SPEED_100) && 953 (status & E1000_STATUS_FD))) 954 goto update_fextnvm6; 955 956 ret_val = e1e_rphy(hw, I217_INBAND_CTRL, ®); 957 if (ret_val) 958 return ret_val; 959 960 /* Clear link status transmit timeout */ 961 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK; 962 963 if (status & E1000_STATUS_SPEED_100) { 964 /* Set inband Tx timeout to 5x10us for 100Half */ 965 reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT; 966 967 /* Do not extend the K1 entry latency for 100Half */ 968 fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION; 969 } else { 970 /* Set inband Tx timeout to 50x10us for 10Full/Half */ 971 reg |= 50 << 972 I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT; 973 974 /* Extend the K1 entry latency for 10 Mbps */ 975 fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION; 976 } 977 978 ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg); 979 if (ret_val) 980 return ret_val; 981 982 update_fextnvm6: 983 ew32(FEXTNVM6, fextnvm6); 984 } 985 986 return ret_val; 987 } 988 989 /** 990 * e1000_platform_pm_pch_lpt - Set platform power management values 991 * @hw: pointer to the HW structure 992 * @link: bool indicating link status 993 * 994 * Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like" 995 * GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed 996 * when link is up (which must not exceed the maximum latency supported 997 * by the platform), otherwise specify there is no LTR requirement. 998 * Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop 999 * latencies in the LTR Extended Capability Structure in the PCIe Extended 1000 * Capability register set, on this device LTR is set by writing the 1001 * equivalent snoop/no-snoop latencies in the LTRV register in the MAC and 1002 * set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB) 1003 * message to the PMC. 1004 **/ 1005 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link) 1006 { 1007 u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) | 1008 link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND; 1009 u16 lat_enc = 0; /* latency encoded */ 1010 1011 if (link) { 1012 u16 speed, duplex, scale = 0; 1013 u16 max_snoop, max_nosnoop; 1014 u16 max_ltr_enc; /* max LTR latency encoded */ 1015 u64 value; 1016 u32 rxa; 1017 1018 if (!hw->adapter->max_frame_size) { 1019 e_dbg("max_frame_size not set.\n"); 1020 return -E1000_ERR_CONFIG; 1021 } 1022 1023 hw->mac.ops.get_link_up_info(hw, &speed, &duplex); 1024 if (!speed) { 1025 e_dbg("Speed not set.\n"); 1026 return -E1000_ERR_CONFIG; 1027 } 1028 1029 /* Rx Packet Buffer Allocation size (KB) */ 1030 rxa = er32(PBA) & E1000_PBA_RXA_MASK; 1031 1032 /* Determine the maximum latency tolerated by the device. 1033 * 1034 * Per the PCIe spec, the tolerated latencies are encoded as 1035 * a 3-bit encoded scale (only 0-5 are valid) multiplied by 1036 * a 10-bit value (0-1023) to provide a range from 1 ns to 1037 * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns, 1038 * 1=2^5ns, 2=2^10ns,...5=2^25ns. 1039 */ 1040 rxa *= 512; 1041 value = (rxa > hw->adapter->max_frame_size) ? 1042 (rxa - hw->adapter->max_frame_size) * (16000 / speed) : 1043 0; 1044 1045 while (value > PCI_LTR_VALUE_MASK) { 1046 scale++; 1047 value = DIV_ROUND_UP(value, BIT(5)); 1048 } 1049 if (scale > E1000_LTRV_SCALE_MAX) { 1050 e_dbg("Invalid LTR latency scale %d\n", scale); 1051 return -E1000_ERR_CONFIG; 1052 } 1053 lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value); 1054 1055 /* Determine the maximum latency tolerated by the platform */ 1056 pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT, 1057 &max_snoop); 1058 pci_read_config_word(hw->adapter->pdev, 1059 E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop); 1060 max_ltr_enc = max_t(u16, max_snoop, max_nosnoop); 1061 1062 if (lat_enc > max_ltr_enc) 1063 lat_enc = max_ltr_enc; 1064 } 1065 1066 /* Set Snoop and No-Snoop latencies the same */ 1067 reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT); 1068 ew32(LTRV, reg); 1069 1070 return 0; 1071 } 1072 1073 /** 1074 * e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP 1075 * @hw: pointer to the HW structure 1076 * @to_sx: boolean indicating a system power state transition to Sx 1077 * 1078 * When link is down, configure ULP mode to significantly reduce the power 1079 * to the PHY. If on a Manageability Engine (ME) enabled system, tell the 1080 * ME firmware to start the ULP configuration. If not on an ME enabled 1081 * system, configure the ULP mode by software. 1082 */ 1083 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx) 1084 { 1085 u32 mac_reg; 1086 s32 ret_val = 0; 1087 u16 phy_reg; 1088 u16 oem_reg = 0; 1089 1090 if ((hw->mac.type < e1000_pch_lpt) || 1091 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) || 1092 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) || 1093 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) || 1094 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) || 1095 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on)) 1096 return 0; 1097 1098 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) { 1099 /* Request ME configure ULP mode in the PHY */ 1100 mac_reg = er32(H2ME); 1101 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS; 1102 ew32(H2ME, mac_reg); 1103 1104 goto out; 1105 } 1106 1107 if (!to_sx) { 1108 int i = 0; 1109 1110 /* Poll up to 5 seconds for Cable Disconnected indication */ 1111 while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) { 1112 /* Bail if link is re-acquired */ 1113 if (er32(STATUS) & E1000_STATUS_LU) 1114 return -E1000_ERR_PHY; 1115 1116 if (i++ == 100) 1117 break; 1118 1119 msleep(50); 1120 } 1121 e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n", 1122 (er32(FEXT) & 1123 E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50); 1124 } 1125 1126 ret_val = hw->phy.ops.acquire(hw); 1127 if (ret_val) 1128 goto out; 1129 1130 /* Force SMBus mode in PHY */ 1131 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg); 1132 if (ret_val) 1133 goto release; 1134 phy_reg |= CV_SMB_CTRL_FORCE_SMBUS; 1135 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg); 1136 1137 /* Force SMBus mode in MAC */ 1138 mac_reg = er32(CTRL_EXT); 1139 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; 1140 ew32(CTRL_EXT, mac_reg); 1141 1142 /* Si workaround for ULP entry flow on i127/rev6 h/w. Enable 1143 * LPLU and disable Gig speed when entering ULP 1144 */ 1145 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) { 1146 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS, 1147 &oem_reg); 1148 if (ret_val) 1149 goto release; 1150 1151 phy_reg = oem_reg; 1152 phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS; 1153 1154 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS, 1155 phy_reg); 1156 1157 if (ret_val) 1158 goto release; 1159 } 1160 1161 /* Set Inband ULP Exit, Reset to SMBus mode and 1162 * Disable SMBus Release on PERST# in PHY 1163 */ 1164 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg); 1165 if (ret_val) 1166 goto release; 1167 phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS | 1168 I218_ULP_CONFIG1_DISABLE_SMB_PERST); 1169 if (to_sx) { 1170 if (er32(WUFC) & E1000_WUFC_LNKC) 1171 phy_reg |= I218_ULP_CONFIG1_WOL_HOST; 1172 else 1173 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST; 1174 1175 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP; 1176 phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT; 1177 } else { 1178 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT; 1179 phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP; 1180 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST; 1181 } 1182 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1183 1184 /* Set Disable SMBus Release on PERST# in MAC */ 1185 mac_reg = er32(FEXTNVM7); 1186 mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST; 1187 ew32(FEXTNVM7, mac_reg); 1188 1189 /* Commit ULP changes in PHY by starting auto ULP configuration */ 1190 phy_reg |= I218_ULP_CONFIG1_START; 1191 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1192 1193 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) && 1194 to_sx && (er32(STATUS) & E1000_STATUS_LU)) { 1195 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS, 1196 oem_reg); 1197 if (ret_val) 1198 goto release; 1199 } 1200 1201 release: 1202 hw->phy.ops.release(hw); 1203 out: 1204 if (ret_val) 1205 e_dbg("Error in ULP enable flow: %d\n", ret_val); 1206 else 1207 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on; 1208 1209 return ret_val; 1210 } 1211 1212 /** 1213 * e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP 1214 * @hw: pointer to the HW structure 1215 * @force: boolean indicating whether or not to force disabling ULP 1216 * 1217 * Un-configure ULP mode when link is up, the system is transitioned from 1218 * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled 1219 * system, poll for an indication from ME that ULP has been un-configured. 1220 * If not on an ME enabled system, un-configure the ULP mode by software. 1221 * 1222 * During nominal operation, this function is called when link is acquired 1223 * to disable ULP mode (force=false); otherwise, for example when unloading 1224 * the driver or during Sx->S0 transitions, this is called with force=true 1225 * to forcibly disable ULP. 1226 */ 1227 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force) 1228 { 1229 s32 ret_val = 0; 1230 u32 mac_reg; 1231 u16 phy_reg; 1232 int i = 0; 1233 1234 if ((hw->mac.type < e1000_pch_lpt) || 1235 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) || 1236 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) || 1237 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) || 1238 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) || 1239 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off)) 1240 return 0; 1241 1242 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) { 1243 struct e1000_adapter *adapter = hw->adapter; 1244 bool firmware_bug = false; 1245 1246 if (force) { 1247 /* Request ME un-configure ULP mode in the PHY */ 1248 mac_reg = er32(H2ME); 1249 mac_reg &= ~E1000_H2ME_ULP; 1250 mac_reg |= E1000_H2ME_ENFORCE_SETTINGS; 1251 ew32(H2ME, mac_reg); 1252 } 1253 1254 /* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE. 1255 * If this takes more than 1 second, show a warning indicating a 1256 * firmware bug 1257 */ 1258 while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) { 1259 if (i++ == 250) { 1260 ret_val = -E1000_ERR_PHY; 1261 goto out; 1262 } 1263 if (i > 100 && !firmware_bug) 1264 firmware_bug = true; 1265 1266 usleep_range(10000, 11000); 1267 } 1268 if (firmware_bug) 1269 e_warn("ULP_CONFIG_DONE took %dmsec. This is a firmware bug\n", i * 10); 1270 else 1271 e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10); 1272 1273 if (force) { 1274 mac_reg = er32(H2ME); 1275 mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS; 1276 ew32(H2ME, mac_reg); 1277 } else { 1278 /* Clear H2ME.ULP after ME ULP configuration */ 1279 mac_reg = er32(H2ME); 1280 mac_reg &= ~E1000_H2ME_ULP; 1281 ew32(H2ME, mac_reg); 1282 } 1283 1284 goto out; 1285 } 1286 1287 ret_val = hw->phy.ops.acquire(hw); 1288 if (ret_val) 1289 goto out; 1290 1291 if (force) 1292 /* Toggle LANPHYPC Value bit */ 1293 e1000_toggle_lanphypc_pch_lpt(hw); 1294 1295 /* Unforce SMBus mode in PHY */ 1296 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg); 1297 if (ret_val) { 1298 /* The MAC might be in PCIe mode, so temporarily force to 1299 * SMBus mode in order to access the PHY. 1300 */ 1301 mac_reg = er32(CTRL_EXT); 1302 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; 1303 ew32(CTRL_EXT, mac_reg); 1304 1305 msleep(50); 1306 1307 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, 1308 &phy_reg); 1309 if (ret_val) 1310 goto release; 1311 } 1312 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS; 1313 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg); 1314 1315 /* Unforce SMBus mode in MAC */ 1316 mac_reg = er32(CTRL_EXT); 1317 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; 1318 ew32(CTRL_EXT, mac_reg); 1319 1320 /* When ULP mode was previously entered, K1 was disabled by the 1321 * hardware. Re-Enable K1 in the PHY when exiting ULP. 1322 */ 1323 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg); 1324 if (ret_val) 1325 goto release; 1326 phy_reg |= HV_PM_CTRL_K1_ENABLE; 1327 e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg); 1328 1329 /* Clear ULP enabled configuration */ 1330 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg); 1331 if (ret_val) 1332 goto release; 1333 phy_reg &= ~(I218_ULP_CONFIG1_IND | 1334 I218_ULP_CONFIG1_STICKY_ULP | 1335 I218_ULP_CONFIG1_RESET_TO_SMBUS | 1336 I218_ULP_CONFIG1_WOL_HOST | 1337 I218_ULP_CONFIG1_INBAND_EXIT | 1338 I218_ULP_CONFIG1_EN_ULP_LANPHYPC | 1339 I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST | 1340 I218_ULP_CONFIG1_DISABLE_SMB_PERST); 1341 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1342 1343 /* Commit ULP changes by starting auto ULP configuration */ 1344 phy_reg |= I218_ULP_CONFIG1_START; 1345 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1346 1347 /* Clear Disable SMBus Release on PERST# in MAC */ 1348 mac_reg = er32(FEXTNVM7); 1349 mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST; 1350 ew32(FEXTNVM7, mac_reg); 1351 1352 release: 1353 hw->phy.ops.release(hw); 1354 if (force) { 1355 e1000_phy_hw_reset(hw); 1356 msleep(50); 1357 } 1358 out: 1359 if (ret_val) 1360 e_dbg("Error in ULP disable flow: %d\n", ret_val); 1361 else 1362 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off; 1363 1364 return ret_val; 1365 } 1366 1367 /** 1368 * e1000_check_for_copper_link_ich8lan - Check for link (Copper) 1369 * @hw: pointer to the HW structure 1370 * 1371 * Checks to see of the link status of the hardware has changed. If a 1372 * change in link status has been detected, then we read the PHY registers 1373 * to get the current speed/duplex if link exists. 1374 **/ 1375 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw) 1376 { 1377 struct e1000_mac_info *mac = &hw->mac; 1378 s32 ret_val, tipg_reg = 0; 1379 u16 emi_addr, emi_val = 0; 1380 bool link; 1381 u16 phy_reg; 1382 1383 /* We only want to go out to the PHY registers to see if Auto-Neg 1384 * has completed and/or if our link status has changed. The 1385 * get_link_status flag is set upon receiving a Link Status 1386 * Change or Rx Sequence Error interrupt. 1387 */ 1388 if (!mac->get_link_status) 1389 return 0; 1390 mac->get_link_status = false; 1391 1392 /* First we want to see if the MII Status Register reports 1393 * link. If so, then we want to get the current speed/duplex 1394 * of the PHY. 1395 */ 1396 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 1397 if (ret_val) 1398 goto out; 1399 1400 if (hw->mac.type == e1000_pchlan) { 1401 ret_val = e1000_k1_gig_workaround_hv(hw, link); 1402 if (ret_val) 1403 goto out; 1404 } 1405 1406 /* When connected at 10Mbps half-duplex, some parts are excessively 1407 * aggressive resulting in many collisions. To avoid this, increase 1408 * the IPG and reduce Rx latency in the PHY. 1409 */ 1410 if ((hw->mac.type >= e1000_pch2lan) && link) { 1411 u16 speed, duplex; 1412 1413 e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex); 1414 tipg_reg = er32(TIPG); 1415 tipg_reg &= ~E1000_TIPG_IPGT_MASK; 1416 1417 if (duplex == HALF_DUPLEX && speed == SPEED_10) { 1418 tipg_reg |= 0xFF; 1419 /* Reduce Rx latency in analog PHY */ 1420 emi_val = 0; 1421 } else if (hw->mac.type >= e1000_pch_spt && 1422 duplex == FULL_DUPLEX && speed != SPEED_1000) { 1423 tipg_reg |= 0xC; 1424 emi_val = 1; 1425 } else { 1426 1427 /* Roll back the default values */ 1428 tipg_reg |= 0x08; 1429 emi_val = 1; 1430 } 1431 1432 ew32(TIPG, tipg_reg); 1433 1434 ret_val = hw->phy.ops.acquire(hw); 1435 if (ret_val) 1436 goto out; 1437 1438 if (hw->mac.type == e1000_pch2lan) 1439 emi_addr = I82579_RX_CONFIG; 1440 else 1441 emi_addr = I217_RX_CONFIG; 1442 ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val); 1443 1444 if (hw->mac.type >= e1000_pch_lpt) { 1445 u16 phy_reg; 1446 1447 e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg); 1448 phy_reg &= ~I217_PLL_CLOCK_GATE_MASK; 1449 if (speed == SPEED_100 || speed == SPEED_10) 1450 phy_reg |= 0x3E8; 1451 else 1452 phy_reg |= 0xFA; 1453 e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg); 1454 1455 if (speed == SPEED_1000) { 1456 hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL, 1457 &phy_reg); 1458 1459 phy_reg |= HV_PM_CTRL_K1_CLK_REQ; 1460 1461 hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL, 1462 phy_reg); 1463 } 1464 } 1465 hw->phy.ops.release(hw); 1466 1467 if (ret_val) 1468 goto out; 1469 1470 if (hw->mac.type >= e1000_pch_spt) { 1471 u16 data; 1472 u16 ptr_gap; 1473 1474 if (speed == SPEED_1000) { 1475 ret_val = hw->phy.ops.acquire(hw); 1476 if (ret_val) 1477 goto out; 1478 1479 ret_val = e1e_rphy_locked(hw, 1480 PHY_REG(776, 20), 1481 &data); 1482 if (ret_val) { 1483 hw->phy.ops.release(hw); 1484 goto out; 1485 } 1486 1487 ptr_gap = (data & (0x3FF << 2)) >> 2; 1488 if (ptr_gap < 0x18) { 1489 data &= ~(0x3FF << 2); 1490 data |= (0x18 << 2); 1491 ret_val = 1492 e1e_wphy_locked(hw, 1493 PHY_REG(776, 20), 1494 data); 1495 } 1496 hw->phy.ops.release(hw); 1497 if (ret_val) 1498 goto out; 1499 } else { 1500 ret_val = hw->phy.ops.acquire(hw); 1501 if (ret_val) 1502 goto out; 1503 1504 ret_val = e1e_wphy_locked(hw, 1505 PHY_REG(776, 20), 1506 0xC023); 1507 hw->phy.ops.release(hw); 1508 if (ret_val) 1509 goto out; 1510 1511 } 1512 } 1513 } 1514 1515 /* I217 Packet Loss issue: 1516 * ensure that FEXTNVM4 Beacon Duration is set correctly 1517 * on power up. 1518 * Set the Beacon Duration for I217 to 8 usec 1519 */ 1520 if (hw->mac.type >= e1000_pch_lpt) { 1521 u32 mac_reg; 1522 1523 mac_reg = er32(FEXTNVM4); 1524 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; 1525 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC; 1526 ew32(FEXTNVM4, mac_reg); 1527 } 1528 1529 /* Work-around I218 hang issue */ 1530 if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) || 1531 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) || 1532 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) || 1533 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) { 1534 ret_val = e1000_k1_workaround_lpt_lp(hw, link); 1535 if (ret_val) 1536 goto out; 1537 } 1538 if (hw->mac.type >= e1000_pch_lpt) { 1539 /* Set platform power management values for 1540 * Latency Tolerance Reporting (LTR) 1541 */ 1542 ret_val = e1000_platform_pm_pch_lpt(hw, link); 1543 if (ret_val) 1544 goto out; 1545 } 1546 1547 /* Clear link partner's EEE ability */ 1548 hw->dev_spec.ich8lan.eee_lp_ability = 0; 1549 1550 if (hw->mac.type >= e1000_pch_lpt) { 1551 u32 fextnvm6 = er32(FEXTNVM6); 1552 1553 if (hw->mac.type == e1000_pch_spt) { 1554 /* FEXTNVM6 K1-off workaround - for SPT only */ 1555 u32 pcieanacfg = er32(PCIEANACFG); 1556 1557 if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE) 1558 fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE; 1559 else 1560 fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE; 1561 } 1562 1563 ew32(FEXTNVM6, fextnvm6); 1564 } 1565 1566 if (!link) 1567 goto out; 1568 1569 switch (hw->mac.type) { 1570 case e1000_pch2lan: 1571 ret_val = e1000_k1_workaround_lv(hw); 1572 if (ret_val) 1573 return ret_val; 1574 fallthrough; 1575 case e1000_pchlan: 1576 if (hw->phy.type == e1000_phy_82578) { 1577 ret_val = e1000_link_stall_workaround_hv(hw); 1578 if (ret_val) 1579 return ret_val; 1580 } 1581 1582 /* Workaround for PCHx parts in half-duplex: 1583 * Set the number of preambles removed from the packet 1584 * when it is passed from the PHY to the MAC to prevent 1585 * the MAC from misinterpreting the packet type. 1586 */ 1587 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg); 1588 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK; 1589 1590 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD) 1591 phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT); 1592 1593 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg); 1594 break; 1595 default: 1596 break; 1597 } 1598 1599 /* Check if there was DownShift, must be checked 1600 * immediately after link-up 1601 */ 1602 e1000e_check_downshift(hw); 1603 1604 /* Enable/Disable EEE after link up */ 1605 if (hw->phy.type > e1000_phy_82579) { 1606 ret_val = e1000_set_eee_pchlan(hw); 1607 if (ret_val) 1608 return ret_val; 1609 } 1610 1611 /* If we are forcing speed/duplex, then we simply return since 1612 * we have already determined whether we have link or not. 1613 */ 1614 if (!mac->autoneg) 1615 return -E1000_ERR_CONFIG; 1616 1617 /* Auto-Neg is enabled. Auto Speed Detection takes care 1618 * of MAC speed/duplex configuration. So we only need to 1619 * configure Collision Distance in the MAC. 1620 */ 1621 mac->ops.config_collision_dist(hw); 1622 1623 /* Configure Flow Control now that Auto-Neg has completed. 1624 * First, we need to restore the desired flow control 1625 * settings because we may have had to re-autoneg with a 1626 * different link partner. 1627 */ 1628 ret_val = e1000e_config_fc_after_link_up(hw); 1629 if (ret_val) 1630 e_dbg("Error configuring flow control\n"); 1631 1632 return ret_val; 1633 1634 out: 1635 mac->get_link_status = true; 1636 return ret_val; 1637 } 1638 1639 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter) 1640 { 1641 struct e1000_hw *hw = &adapter->hw; 1642 s32 rc; 1643 1644 rc = e1000_init_mac_params_ich8lan(hw); 1645 if (rc) 1646 return rc; 1647 1648 rc = e1000_init_nvm_params_ich8lan(hw); 1649 if (rc) 1650 return rc; 1651 1652 switch (hw->mac.type) { 1653 case e1000_ich8lan: 1654 case e1000_ich9lan: 1655 case e1000_ich10lan: 1656 rc = e1000_init_phy_params_ich8lan(hw); 1657 break; 1658 case e1000_pchlan: 1659 case e1000_pch2lan: 1660 case e1000_pch_lpt: 1661 case e1000_pch_spt: 1662 case e1000_pch_cnp: 1663 case e1000_pch_tgp: 1664 case e1000_pch_adp: 1665 case e1000_pch_mtp: 1666 rc = e1000_init_phy_params_pchlan(hw); 1667 break; 1668 default: 1669 break; 1670 } 1671 if (rc) 1672 return rc; 1673 1674 /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or 1675 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT). 1676 */ 1677 if ((adapter->hw.phy.type == e1000_phy_ife) || 1678 ((adapter->hw.mac.type >= e1000_pch2lan) && 1679 (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) { 1680 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES; 1681 adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN; 1682 1683 hw->mac.ops.blink_led = NULL; 1684 } 1685 1686 if ((adapter->hw.mac.type == e1000_ich8lan) && 1687 (adapter->hw.phy.type != e1000_phy_ife)) 1688 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP; 1689 1690 /* Enable workaround for 82579 w/ ME enabled */ 1691 if ((adapter->hw.mac.type == e1000_pch2lan) && 1692 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) 1693 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA; 1694 1695 return 0; 1696 } 1697 1698 static DEFINE_MUTEX(nvm_mutex); 1699 1700 /** 1701 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex 1702 * @hw: pointer to the HW structure 1703 * 1704 * Acquires the mutex for performing NVM operations. 1705 **/ 1706 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw) 1707 { 1708 mutex_lock(&nvm_mutex); 1709 1710 return 0; 1711 } 1712 1713 /** 1714 * e1000_release_nvm_ich8lan - Release NVM mutex 1715 * @hw: pointer to the HW structure 1716 * 1717 * Releases the mutex used while performing NVM operations. 1718 **/ 1719 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw) 1720 { 1721 mutex_unlock(&nvm_mutex); 1722 } 1723 1724 /** 1725 * e1000_acquire_swflag_ich8lan - Acquire software control flag 1726 * @hw: pointer to the HW structure 1727 * 1728 * Acquires the software control flag for performing PHY and select 1729 * MAC CSR accesses. 1730 **/ 1731 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw) 1732 { 1733 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT; 1734 s32 ret_val = 0; 1735 1736 if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE, 1737 &hw->adapter->state)) { 1738 e_dbg("contention for Phy access\n"); 1739 return -E1000_ERR_PHY; 1740 } 1741 1742 while (timeout) { 1743 extcnf_ctrl = er32(EXTCNF_CTRL); 1744 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)) 1745 break; 1746 1747 mdelay(1); 1748 timeout--; 1749 } 1750 1751 if (!timeout) { 1752 e_dbg("SW has already locked the resource.\n"); 1753 ret_val = -E1000_ERR_CONFIG; 1754 goto out; 1755 } 1756 1757 timeout = SW_FLAG_TIMEOUT; 1758 1759 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; 1760 ew32(EXTCNF_CTRL, extcnf_ctrl); 1761 1762 while (timeout) { 1763 extcnf_ctrl = er32(EXTCNF_CTRL); 1764 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) 1765 break; 1766 1767 mdelay(1); 1768 timeout--; 1769 } 1770 1771 if (!timeout) { 1772 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n", 1773 er32(FWSM), extcnf_ctrl); 1774 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; 1775 ew32(EXTCNF_CTRL, extcnf_ctrl); 1776 ret_val = -E1000_ERR_CONFIG; 1777 goto out; 1778 } 1779 1780 out: 1781 if (ret_val) 1782 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); 1783 1784 return ret_val; 1785 } 1786 1787 /** 1788 * e1000_release_swflag_ich8lan - Release software control flag 1789 * @hw: pointer to the HW structure 1790 * 1791 * Releases the software control flag for performing PHY and select 1792 * MAC CSR accesses. 1793 **/ 1794 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw) 1795 { 1796 u32 extcnf_ctrl; 1797 1798 extcnf_ctrl = er32(EXTCNF_CTRL); 1799 1800 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) { 1801 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; 1802 ew32(EXTCNF_CTRL, extcnf_ctrl); 1803 } else { 1804 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n"); 1805 } 1806 1807 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); 1808 } 1809 1810 /** 1811 * e1000_check_mng_mode_ich8lan - Checks management mode 1812 * @hw: pointer to the HW structure 1813 * 1814 * This checks if the adapter has any manageability enabled. 1815 * This is a function pointer entry point only called by read/write 1816 * routines for the PHY and NVM parts. 1817 **/ 1818 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw) 1819 { 1820 u32 fwsm; 1821 1822 fwsm = er32(FWSM); 1823 return (fwsm & E1000_ICH_FWSM_FW_VALID) && 1824 ((fwsm & E1000_FWSM_MODE_MASK) == 1825 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); 1826 } 1827 1828 /** 1829 * e1000_check_mng_mode_pchlan - Checks management mode 1830 * @hw: pointer to the HW structure 1831 * 1832 * This checks if the adapter has iAMT enabled. 1833 * This is a function pointer entry point only called by read/write 1834 * routines for the PHY and NVM parts. 1835 **/ 1836 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw) 1837 { 1838 u32 fwsm; 1839 1840 fwsm = er32(FWSM); 1841 return (fwsm & E1000_ICH_FWSM_FW_VALID) && 1842 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); 1843 } 1844 1845 /** 1846 * e1000_rar_set_pch2lan - Set receive address register 1847 * @hw: pointer to the HW structure 1848 * @addr: pointer to the receive address 1849 * @index: receive address array register 1850 * 1851 * Sets the receive address array register at index to the address passed 1852 * in by addr. For 82579, RAR[0] is the base address register that is to 1853 * contain the MAC address but RAR[1-6] are reserved for manageability (ME). 1854 * Use SHRA[0-3] in place of those reserved for ME. 1855 **/ 1856 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index) 1857 { 1858 u32 rar_low, rar_high; 1859 1860 /* HW expects these in little endian so we reverse the byte order 1861 * from network order (big endian) to little endian 1862 */ 1863 rar_low = ((u32)addr[0] | 1864 ((u32)addr[1] << 8) | 1865 ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); 1866 1867 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); 1868 1869 /* If MAC address zero, no need to set the AV bit */ 1870 if (rar_low || rar_high) 1871 rar_high |= E1000_RAH_AV; 1872 1873 if (index == 0) { 1874 ew32(RAL(index), rar_low); 1875 e1e_flush(); 1876 ew32(RAH(index), rar_high); 1877 e1e_flush(); 1878 return 0; 1879 } 1880 1881 /* RAR[1-6] are owned by manageability. Skip those and program the 1882 * next address into the SHRA register array. 1883 */ 1884 if (index < (u32)(hw->mac.rar_entry_count)) { 1885 s32 ret_val; 1886 1887 ret_val = e1000_acquire_swflag_ich8lan(hw); 1888 if (ret_val) 1889 goto out; 1890 1891 ew32(SHRAL(index - 1), rar_low); 1892 e1e_flush(); 1893 ew32(SHRAH(index - 1), rar_high); 1894 e1e_flush(); 1895 1896 e1000_release_swflag_ich8lan(hw); 1897 1898 /* verify the register updates */ 1899 if ((er32(SHRAL(index - 1)) == rar_low) && 1900 (er32(SHRAH(index - 1)) == rar_high)) 1901 return 0; 1902 1903 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n", 1904 (index - 1), er32(FWSM)); 1905 } 1906 1907 out: 1908 e_dbg("Failed to write receive address at index %d\n", index); 1909 return -E1000_ERR_CONFIG; 1910 } 1911 1912 /** 1913 * e1000_rar_get_count_pch_lpt - Get the number of available SHRA 1914 * @hw: pointer to the HW structure 1915 * 1916 * Get the number of available receive registers that the Host can 1917 * program. SHRA[0-10] are the shared receive address registers 1918 * that are shared between the Host and manageability engine (ME). 1919 * ME can reserve any number of addresses and the host needs to be 1920 * able to tell how many available registers it has access to. 1921 **/ 1922 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw) 1923 { 1924 u32 wlock_mac; 1925 u32 num_entries; 1926 1927 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK; 1928 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT; 1929 1930 switch (wlock_mac) { 1931 case 0: 1932 /* All SHRA[0..10] and RAR[0] available */ 1933 num_entries = hw->mac.rar_entry_count; 1934 break; 1935 case 1: 1936 /* Only RAR[0] available */ 1937 num_entries = 1; 1938 break; 1939 default: 1940 /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */ 1941 num_entries = wlock_mac + 1; 1942 break; 1943 } 1944 1945 return num_entries; 1946 } 1947 1948 /** 1949 * e1000_rar_set_pch_lpt - Set receive address registers 1950 * @hw: pointer to the HW structure 1951 * @addr: pointer to the receive address 1952 * @index: receive address array register 1953 * 1954 * Sets the receive address register array at index to the address passed 1955 * in by addr. For LPT, RAR[0] is the base address register that is to 1956 * contain the MAC address. SHRA[0-10] are the shared receive address 1957 * registers that are shared between the Host and manageability engine (ME). 1958 **/ 1959 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index) 1960 { 1961 u32 rar_low, rar_high; 1962 u32 wlock_mac; 1963 1964 /* HW expects these in little endian so we reverse the byte order 1965 * from network order (big endian) to little endian 1966 */ 1967 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) | 1968 ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); 1969 1970 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); 1971 1972 /* If MAC address zero, no need to set the AV bit */ 1973 if (rar_low || rar_high) 1974 rar_high |= E1000_RAH_AV; 1975 1976 if (index == 0) { 1977 ew32(RAL(index), rar_low); 1978 e1e_flush(); 1979 ew32(RAH(index), rar_high); 1980 e1e_flush(); 1981 return 0; 1982 } 1983 1984 /* The manageability engine (ME) can lock certain SHRAR registers that 1985 * it is using - those registers are unavailable for use. 1986 */ 1987 if (index < hw->mac.rar_entry_count) { 1988 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK; 1989 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT; 1990 1991 /* Check if all SHRAR registers are locked */ 1992 if (wlock_mac == 1) 1993 goto out; 1994 1995 if ((wlock_mac == 0) || (index <= wlock_mac)) { 1996 s32 ret_val; 1997 1998 ret_val = e1000_acquire_swflag_ich8lan(hw); 1999 2000 if (ret_val) 2001 goto out; 2002 2003 ew32(SHRAL_PCH_LPT(index - 1), rar_low); 2004 e1e_flush(); 2005 ew32(SHRAH_PCH_LPT(index - 1), rar_high); 2006 e1e_flush(); 2007 2008 e1000_release_swflag_ich8lan(hw); 2009 2010 /* verify the register updates */ 2011 if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) && 2012 (er32(SHRAH_PCH_LPT(index - 1)) == rar_high)) 2013 return 0; 2014 } 2015 } 2016 2017 out: 2018 e_dbg("Failed to write receive address at index %d\n", index); 2019 return -E1000_ERR_CONFIG; 2020 } 2021 2022 /** 2023 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked 2024 * @hw: pointer to the HW structure 2025 * 2026 * Checks if firmware is blocking the reset of the PHY. 2027 * This is a function pointer entry point only called by 2028 * reset routines. 2029 **/ 2030 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw) 2031 { 2032 bool blocked = false; 2033 int i = 0; 2034 2035 while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) && 2036 (i++ < 30)) 2037 usleep_range(10000, 11000); 2038 return blocked ? E1000_BLK_PHY_RESET : 0; 2039 } 2040 2041 /** 2042 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states 2043 * @hw: pointer to the HW structure 2044 * 2045 * Assumes semaphore already acquired. 2046 * 2047 **/ 2048 static s32 e1000_write_smbus_addr(struct e1000_hw *hw) 2049 { 2050 u16 phy_data; 2051 u32 strap = er32(STRAP); 2052 u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >> 2053 E1000_STRAP_SMT_FREQ_SHIFT; 2054 s32 ret_val; 2055 2056 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK; 2057 2058 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data); 2059 if (ret_val) 2060 return ret_val; 2061 2062 phy_data &= ~HV_SMB_ADDR_MASK; 2063 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT); 2064 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID; 2065 2066 if (hw->phy.type == e1000_phy_i217) { 2067 /* Restore SMBus frequency */ 2068 if (freq--) { 2069 phy_data &= ~HV_SMB_ADDR_FREQ_MASK; 2070 phy_data |= (freq & BIT(0)) << 2071 HV_SMB_ADDR_FREQ_LOW_SHIFT; 2072 phy_data |= (freq & BIT(1)) << 2073 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1); 2074 } else { 2075 e_dbg("Unsupported SMB frequency in PHY\n"); 2076 } 2077 } 2078 2079 return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data); 2080 } 2081 2082 /** 2083 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration 2084 * @hw: pointer to the HW structure 2085 * 2086 * SW should configure the LCD from the NVM extended configuration region 2087 * as a workaround for certain parts. 2088 **/ 2089 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw) 2090 { 2091 struct e1000_phy_info *phy = &hw->phy; 2092 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask; 2093 s32 ret_val = 0; 2094 u16 word_addr, reg_data, reg_addr, phy_page = 0; 2095 2096 /* Initialize the PHY from the NVM on ICH platforms. This 2097 * is needed due to an issue where the NVM configuration is 2098 * not properly autoloaded after power transitions. 2099 * Therefore, after each PHY reset, we will load the 2100 * configuration data out of the NVM manually. 2101 */ 2102 switch (hw->mac.type) { 2103 case e1000_ich8lan: 2104 if (phy->type != e1000_phy_igp_3) 2105 return ret_val; 2106 2107 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) || 2108 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) { 2109 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG; 2110 break; 2111 } 2112 fallthrough; 2113 case e1000_pchlan: 2114 case e1000_pch2lan: 2115 case e1000_pch_lpt: 2116 case e1000_pch_spt: 2117 case e1000_pch_cnp: 2118 case e1000_pch_tgp: 2119 case e1000_pch_adp: 2120 case e1000_pch_mtp: 2121 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M; 2122 break; 2123 default: 2124 return ret_val; 2125 } 2126 2127 ret_val = hw->phy.ops.acquire(hw); 2128 if (ret_val) 2129 return ret_val; 2130 2131 data = er32(FEXTNVM); 2132 if (!(data & sw_cfg_mask)) 2133 goto release; 2134 2135 /* Make sure HW does not configure LCD from PHY 2136 * extended configuration before SW configuration 2137 */ 2138 data = er32(EXTCNF_CTRL); 2139 if ((hw->mac.type < e1000_pch2lan) && 2140 (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)) 2141 goto release; 2142 2143 cnf_size = er32(EXTCNF_SIZE); 2144 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK; 2145 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT; 2146 if (!cnf_size) 2147 goto release; 2148 2149 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK; 2150 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT; 2151 2152 if (((hw->mac.type == e1000_pchlan) && 2153 !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) || 2154 (hw->mac.type > e1000_pchlan)) { 2155 /* HW configures the SMBus address and LEDs when the 2156 * OEM and LCD Write Enable bits are set in the NVM. 2157 * When both NVM bits are cleared, SW will configure 2158 * them instead. 2159 */ 2160 ret_val = e1000_write_smbus_addr(hw); 2161 if (ret_val) 2162 goto release; 2163 2164 data = er32(LEDCTL); 2165 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG, 2166 (u16)data); 2167 if (ret_val) 2168 goto release; 2169 } 2170 2171 /* Configure LCD from extended configuration region. */ 2172 2173 /* cnf_base_addr is in DWORD */ 2174 word_addr = (u16)(cnf_base_addr << 1); 2175 2176 for (i = 0; i < cnf_size; i++) { 2177 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, ®_data); 2178 if (ret_val) 2179 goto release; 2180 2181 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1), 2182 1, ®_addr); 2183 if (ret_val) 2184 goto release; 2185 2186 /* Save off the PHY page for future writes. */ 2187 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) { 2188 phy_page = reg_data; 2189 continue; 2190 } 2191 2192 reg_addr &= PHY_REG_MASK; 2193 reg_addr |= phy_page; 2194 2195 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data); 2196 if (ret_val) 2197 goto release; 2198 } 2199 2200 release: 2201 hw->phy.ops.release(hw); 2202 return ret_val; 2203 } 2204 2205 /** 2206 * e1000_k1_gig_workaround_hv - K1 Si workaround 2207 * @hw: pointer to the HW structure 2208 * @link: link up bool flag 2209 * 2210 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning 2211 * from a lower speed. This workaround disables K1 whenever link is at 1Gig 2212 * If link is down, the function will restore the default K1 setting located 2213 * in the NVM. 2214 **/ 2215 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link) 2216 { 2217 s32 ret_val = 0; 2218 u16 status_reg = 0; 2219 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled; 2220 2221 if (hw->mac.type != e1000_pchlan) 2222 return 0; 2223 2224 /* Wrap the whole flow with the sw flag */ 2225 ret_val = hw->phy.ops.acquire(hw); 2226 if (ret_val) 2227 return ret_val; 2228 2229 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */ 2230 if (link) { 2231 if (hw->phy.type == e1000_phy_82578) { 2232 ret_val = e1e_rphy_locked(hw, BM_CS_STATUS, 2233 &status_reg); 2234 if (ret_val) 2235 goto release; 2236 2237 status_reg &= (BM_CS_STATUS_LINK_UP | 2238 BM_CS_STATUS_RESOLVED | 2239 BM_CS_STATUS_SPEED_MASK); 2240 2241 if (status_reg == (BM_CS_STATUS_LINK_UP | 2242 BM_CS_STATUS_RESOLVED | 2243 BM_CS_STATUS_SPEED_1000)) 2244 k1_enable = false; 2245 } 2246 2247 if (hw->phy.type == e1000_phy_82577) { 2248 ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg); 2249 if (ret_val) 2250 goto release; 2251 2252 status_reg &= (HV_M_STATUS_LINK_UP | 2253 HV_M_STATUS_AUTONEG_COMPLETE | 2254 HV_M_STATUS_SPEED_MASK); 2255 2256 if (status_reg == (HV_M_STATUS_LINK_UP | 2257 HV_M_STATUS_AUTONEG_COMPLETE | 2258 HV_M_STATUS_SPEED_1000)) 2259 k1_enable = false; 2260 } 2261 2262 /* Link stall fix for link up */ 2263 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100); 2264 if (ret_val) 2265 goto release; 2266 2267 } else { 2268 /* Link stall fix for link down */ 2269 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100); 2270 if (ret_val) 2271 goto release; 2272 } 2273 2274 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable); 2275 2276 release: 2277 hw->phy.ops.release(hw); 2278 2279 return ret_val; 2280 } 2281 2282 /** 2283 * e1000_configure_k1_ich8lan - Configure K1 power state 2284 * @hw: pointer to the HW structure 2285 * @k1_enable: K1 state to configure 2286 * 2287 * Configure the K1 power state based on the provided parameter. 2288 * Assumes semaphore already acquired. 2289 * 2290 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 2291 **/ 2292 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable) 2293 { 2294 s32 ret_val; 2295 u32 ctrl_reg = 0; 2296 u32 ctrl_ext = 0; 2297 u32 reg = 0; 2298 u16 kmrn_reg = 0; 2299 2300 ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, 2301 &kmrn_reg); 2302 if (ret_val) 2303 return ret_val; 2304 2305 if (k1_enable) 2306 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE; 2307 else 2308 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE; 2309 2310 ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, 2311 kmrn_reg); 2312 if (ret_val) 2313 return ret_val; 2314 2315 usleep_range(20, 40); 2316 ctrl_ext = er32(CTRL_EXT); 2317 ctrl_reg = er32(CTRL); 2318 2319 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 2320 reg |= E1000_CTRL_FRCSPD; 2321 ew32(CTRL, reg); 2322 2323 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS); 2324 e1e_flush(); 2325 usleep_range(20, 40); 2326 ew32(CTRL, ctrl_reg); 2327 ew32(CTRL_EXT, ctrl_ext); 2328 e1e_flush(); 2329 usleep_range(20, 40); 2330 2331 return 0; 2332 } 2333 2334 /** 2335 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration 2336 * @hw: pointer to the HW structure 2337 * @d0_state: boolean if entering d0 or d3 device state 2338 * 2339 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are 2340 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit 2341 * in NVM determines whether HW should configure LPLU and Gbe Disable. 2342 **/ 2343 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state) 2344 { 2345 s32 ret_val = 0; 2346 u32 mac_reg; 2347 u16 oem_reg; 2348 2349 if (hw->mac.type < e1000_pchlan) 2350 return ret_val; 2351 2352 ret_val = hw->phy.ops.acquire(hw); 2353 if (ret_val) 2354 return ret_val; 2355 2356 if (hw->mac.type == e1000_pchlan) { 2357 mac_reg = er32(EXTCNF_CTRL); 2358 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) 2359 goto release; 2360 } 2361 2362 mac_reg = er32(FEXTNVM); 2363 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M)) 2364 goto release; 2365 2366 mac_reg = er32(PHY_CTRL); 2367 2368 ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg); 2369 if (ret_val) 2370 goto release; 2371 2372 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU); 2373 2374 if (d0_state) { 2375 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE) 2376 oem_reg |= HV_OEM_BITS_GBE_DIS; 2377 2378 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU) 2379 oem_reg |= HV_OEM_BITS_LPLU; 2380 } else { 2381 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE | 2382 E1000_PHY_CTRL_NOND0A_GBE_DISABLE)) 2383 oem_reg |= HV_OEM_BITS_GBE_DIS; 2384 2385 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU | 2386 E1000_PHY_CTRL_NOND0A_LPLU)) 2387 oem_reg |= HV_OEM_BITS_LPLU; 2388 } 2389 2390 /* Set Restart auto-neg to activate the bits */ 2391 if ((d0_state || (hw->mac.type != e1000_pchlan)) && 2392 !hw->phy.ops.check_reset_block(hw)) 2393 oem_reg |= HV_OEM_BITS_RESTART_AN; 2394 2395 ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg); 2396 2397 release: 2398 hw->phy.ops.release(hw); 2399 2400 return ret_val; 2401 } 2402 2403 /** 2404 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode 2405 * @hw: pointer to the HW structure 2406 **/ 2407 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw) 2408 { 2409 s32 ret_val; 2410 u16 data; 2411 2412 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data); 2413 if (ret_val) 2414 return ret_val; 2415 2416 data |= HV_KMRN_MDIO_SLOW; 2417 2418 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data); 2419 2420 return ret_val; 2421 } 2422 2423 /** 2424 * e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds 2425 * @hw: pointer to the HW structure 2426 * 2427 * A series of PHY workarounds to be done after every PHY reset. 2428 **/ 2429 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw) 2430 { 2431 s32 ret_val = 0; 2432 u16 phy_data; 2433 2434 if (hw->mac.type != e1000_pchlan) 2435 return 0; 2436 2437 /* Set MDIO slow mode before any other MDIO access */ 2438 if (hw->phy.type == e1000_phy_82577) { 2439 ret_val = e1000_set_mdio_slow_mode_hv(hw); 2440 if (ret_val) 2441 return ret_val; 2442 } 2443 2444 if (((hw->phy.type == e1000_phy_82577) && 2445 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) || 2446 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) { 2447 /* Disable generation of early preamble */ 2448 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431); 2449 if (ret_val) 2450 return ret_val; 2451 2452 /* Preamble tuning for SSC */ 2453 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204); 2454 if (ret_val) 2455 return ret_val; 2456 } 2457 2458 if (hw->phy.type == e1000_phy_82578) { 2459 /* Return registers to default by doing a soft reset then 2460 * writing 0x3140 to the control register. 2461 */ 2462 if (hw->phy.revision < 2) { 2463 e1000e_phy_sw_reset(hw); 2464 ret_val = e1e_wphy(hw, MII_BMCR, 0x3140); 2465 if (ret_val) 2466 return ret_val; 2467 } 2468 } 2469 2470 /* Select page 0 */ 2471 ret_val = hw->phy.ops.acquire(hw); 2472 if (ret_val) 2473 return ret_val; 2474 2475 hw->phy.addr = 1; 2476 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0); 2477 hw->phy.ops.release(hw); 2478 if (ret_val) 2479 return ret_val; 2480 2481 /* Configure the K1 Si workaround during phy reset assuming there is 2482 * link so that it disables K1 if link is in 1Gbps. 2483 */ 2484 ret_val = e1000_k1_gig_workaround_hv(hw, true); 2485 if (ret_val) 2486 return ret_val; 2487 2488 /* Workaround for link disconnects on a busy hub in half duplex */ 2489 ret_val = hw->phy.ops.acquire(hw); 2490 if (ret_val) 2491 return ret_val; 2492 ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data); 2493 if (ret_val) 2494 goto release; 2495 ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF); 2496 if (ret_val) 2497 goto release; 2498 2499 /* set MSE higher to enable link to stay up when noise is high */ 2500 ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034); 2501 release: 2502 hw->phy.ops.release(hw); 2503 2504 return ret_val; 2505 } 2506 2507 /** 2508 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY 2509 * @hw: pointer to the HW structure 2510 **/ 2511 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw) 2512 { 2513 u32 mac_reg; 2514 u16 i, phy_reg = 0; 2515 s32 ret_val; 2516 2517 ret_val = hw->phy.ops.acquire(hw); 2518 if (ret_val) 2519 return; 2520 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); 2521 if (ret_val) 2522 goto release; 2523 2524 /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */ 2525 for (i = 0; i < (hw->mac.rar_entry_count); i++) { 2526 mac_reg = er32(RAL(i)); 2527 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i), 2528 (u16)(mac_reg & 0xFFFF)); 2529 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i), 2530 (u16)((mac_reg >> 16) & 0xFFFF)); 2531 2532 mac_reg = er32(RAH(i)); 2533 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i), 2534 (u16)(mac_reg & 0xFFFF)); 2535 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i), 2536 (u16)((mac_reg & E1000_RAH_AV) 2537 >> 16)); 2538 } 2539 2540 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); 2541 2542 release: 2543 hw->phy.ops.release(hw); 2544 } 2545 2546 /** 2547 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation 2548 * with 82579 PHY 2549 * @hw: pointer to the HW structure 2550 * @enable: flag to enable/disable workaround when enabling/disabling jumbos 2551 **/ 2552 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable) 2553 { 2554 s32 ret_val = 0; 2555 u16 phy_reg, data; 2556 u32 mac_reg; 2557 u16 i; 2558 2559 if (hw->mac.type < e1000_pch2lan) 2560 return 0; 2561 2562 /* disable Rx path while enabling/disabling workaround */ 2563 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); 2564 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14)); 2565 if (ret_val) 2566 return ret_val; 2567 2568 if (enable) { 2569 /* Write Rx addresses (rar_entry_count for RAL/H, and 2570 * SHRAL/H) and initial CRC values to the MAC 2571 */ 2572 for (i = 0; i < hw->mac.rar_entry_count; i++) { 2573 u8 mac_addr[ETH_ALEN] = { 0 }; 2574 u32 addr_high, addr_low; 2575 2576 addr_high = er32(RAH(i)); 2577 if (!(addr_high & E1000_RAH_AV)) 2578 continue; 2579 addr_low = er32(RAL(i)); 2580 mac_addr[0] = (addr_low & 0xFF); 2581 mac_addr[1] = ((addr_low >> 8) & 0xFF); 2582 mac_addr[2] = ((addr_low >> 16) & 0xFF); 2583 mac_addr[3] = ((addr_low >> 24) & 0xFF); 2584 mac_addr[4] = (addr_high & 0xFF); 2585 mac_addr[5] = ((addr_high >> 8) & 0xFF); 2586 2587 ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr)); 2588 } 2589 2590 /* Write Rx addresses to the PHY */ 2591 e1000_copy_rx_addrs_to_phy_ich8lan(hw); 2592 2593 /* Enable jumbo frame workaround in the MAC */ 2594 mac_reg = er32(FFLT_DBG); 2595 mac_reg &= ~BIT(14); 2596 mac_reg |= (7 << 15); 2597 ew32(FFLT_DBG, mac_reg); 2598 2599 mac_reg = er32(RCTL); 2600 mac_reg |= E1000_RCTL_SECRC; 2601 ew32(RCTL, mac_reg); 2602 2603 ret_val = e1000e_read_kmrn_reg(hw, 2604 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2605 &data); 2606 if (ret_val) 2607 return ret_val; 2608 ret_val = e1000e_write_kmrn_reg(hw, 2609 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2610 data | BIT(0)); 2611 if (ret_val) 2612 return ret_val; 2613 ret_val = e1000e_read_kmrn_reg(hw, 2614 E1000_KMRNCTRLSTA_HD_CTRL, 2615 &data); 2616 if (ret_val) 2617 return ret_val; 2618 data &= ~(0xF << 8); 2619 data |= (0xB << 8); 2620 ret_val = e1000e_write_kmrn_reg(hw, 2621 E1000_KMRNCTRLSTA_HD_CTRL, 2622 data); 2623 if (ret_val) 2624 return ret_val; 2625 2626 /* Enable jumbo frame workaround in the PHY */ 2627 e1e_rphy(hw, PHY_REG(769, 23), &data); 2628 data &= ~(0x7F << 5); 2629 data |= (0x37 << 5); 2630 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); 2631 if (ret_val) 2632 return ret_val; 2633 e1e_rphy(hw, PHY_REG(769, 16), &data); 2634 data &= ~BIT(13); 2635 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); 2636 if (ret_val) 2637 return ret_val; 2638 e1e_rphy(hw, PHY_REG(776, 20), &data); 2639 data &= ~(0x3FF << 2); 2640 data |= (E1000_TX_PTR_GAP << 2); 2641 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); 2642 if (ret_val) 2643 return ret_val; 2644 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100); 2645 if (ret_val) 2646 return ret_val; 2647 e1e_rphy(hw, HV_PM_CTRL, &data); 2648 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10)); 2649 if (ret_val) 2650 return ret_val; 2651 } else { 2652 /* Write MAC register values back to h/w defaults */ 2653 mac_reg = er32(FFLT_DBG); 2654 mac_reg &= ~(0xF << 14); 2655 ew32(FFLT_DBG, mac_reg); 2656 2657 mac_reg = er32(RCTL); 2658 mac_reg &= ~E1000_RCTL_SECRC; 2659 ew32(RCTL, mac_reg); 2660 2661 ret_val = e1000e_read_kmrn_reg(hw, 2662 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2663 &data); 2664 if (ret_val) 2665 return ret_val; 2666 ret_val = e1000e_write_kmrn_reg(hw, 2667 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2668 data & ~BIT(0)); 2669 if (ret_val) 2670 return ret_val; 2671 ret_val = e1000e_read_kmrn_reg(hw, 2672 E1000_KMRNCTRLSTA_HD_CTRL, 2673 &data); 2674 if (ret_val) 2675 return ret_val; 2676 data &= ~(0xF << 8); 2677 data |= (0xB << 8); 2678 ret_val = e1000e_write_kmrn_reg(hw, 2679 E1000_KMRNCTRLSTA_HD_CTRL, 2680 data); 2681 if (ret_val) 2682 return ret_val; 2683 2684 /* Write PHY register values back to h/w defaults */ 2685 e1e_rphy(hw, PHY_REG(769, 23), &data); 2686 data &= ~(0x7F << 5); 2687 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); 2688 if (ret_val) 2689 return ret_val; 2690 e1e_rphy(hw, PHY_REG(769, 16), &data); 2691 data |= BIT(13); 2692 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); 2693 if (ret_val) 2694 return ret_val; 2695 e1e_rphy(hw, PHY_REG(776, 20), &data); 2696 data &= ~(0x3FF << 2); 2697 data |= (0x8 << 2); 2698 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); 2699 if (ret_val) 2700 return ret_val; 2701 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00); 2702 if (ret_val) 2703 return ret_val; 2704 e1e_rphy(hw, HV_PM_CTRL, &data); 2705 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10)); 2706 if (ret_val) 2707 return ret_val; 2708 } 2709 2710 /* re-enable Rx path after enabling/disabling workaround */ 2711 return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14)); 2712 } 2713 2714 /** 2715 * e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds 2716 * @hw: pointer to the HW structure 2717 * 2718 * A series of PHY workarounds to be done after every PHY reset. 2719 **/ 2720 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw) 2721 { 2722 s32 ret_val = 0; 2723 2724 if (hw->mac.type != e1000_pch2lan) 2725 return 0; 2726 2727 /* Set MDIO slow mode before any other MDIO access */ 2728 ret_val = e1000_set_mdio_slow_mode_hv(hw); 2729 if (ret_val) 2730 return ret_val; 2731 2732 ret_val = hw->phy.ops.acquire(hw); 2733 if (ret_val) 2734 return ret_val; 2735 /* set MSE higher to enable link to stay up when noise is high */ 2736 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034); 2737 if (ret_val) 2738 goto release; 2739 /* drop link after 5 times MSE threshold was reached */ 2740 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005); 2741 release: 2742 hw->phy.ops.release(hw); 2743 2744 return ret_val; 2745 } 2746 2747 /** 2748 * e1000_k1_gig_workaround_lv - K1 Si workaround 2749 * @hw: pointer to the HW structure 2750 * 2751 * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps 2752 * Disable K1 in 1000Mbps and 100Mbps 2753 **/ 2754 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw) 2755 { 2756 s32 ret_val = 0; 2757 u16 status_reg = 0; 2758 2759 if (hw->mac.type != e1000_pch2lan) 2760 return 0; 2761 2762 /* Set K1 beacon duration based on 10Mbs speed */ 2763 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg); 2764 if (ret_val) 2765 return ret_val; 2766 2767 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) 2768 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) { 2769 if (status_reg & 2770 (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) { 2771 u16 pm_phy_reg; 2772 2773 /* LV 1G/100 Packet drop issue wa */ 2774 ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg); 2775 if (ret_val) 2776 return ret_val; 2777 pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE; 2778 ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg); 2779 if (ret_val) 2780 return ret_val; 2781 } else { 2782 u32 mac_reg; 2783 2784 mac_reg = er32(FEXTNVM4); 2785 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; 2786 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC; 2787 ew32(FEXTNVM4, mac_reg); 2788 } 2789 } 2790 2791 return ret_val; 2792 } 2793 2794 /** 2795 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware 2796 * @hw: pointer to the HW structure 2797 * @gate: boolean set to true to gate, false to ungate 2798 * 2799 * Gate/ungate the automatic PHY configuration via hardware; perform 2800 * the configuration via software instead. 2801 **/ 2802 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate) 2803 { 2804 u32 extcnf_ctrl; 2805 2806 if (hw->mac.type < e1000_pch2lan) 2807 return; 2808 2809 extcnf_ctrl = er32(EXTCNF_CTRL); 2810 2811 if (gate) 2812 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG; 2813 else 2814 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG; 2815 2816 ew32(EXTCNF_CTRL, extcnf_ctrl); 2817 } 2818 2819 /** 2820 * e1000_lan_init_done_ich8lan - Check for PHY config completion 2821 * @hw: pointer to the HW structure 2822 * 2823 * Check the appropriate indication the MAC has finished configuring the 2824 * PHY after a software reset. 2825 **/ 2826 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw) 2827 { 2828 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT; 2829 2830 /* Wait for basic configuration completes before proceeding */ 2831 do { 2832 data = er32(STATUS); 2833 data &= E1000_STATUS_LAN_INIT_DONE; 2834 usleep_range(100, 200); 2835 } while ((!data) && --loop); 2836 2837 /* If basic configuration is incomplete before the above loop 2838 * count reaches 0, loading the configuration from NVM will 2839 * leave the PHY in a bad state possibly resulting in no link. 2840 */ 2841 if (loop == 0) 2842 e_dbg("LAN_INIT_DONE not set, increase timeout\n"); 2843 2844 /* Clear the Init Done bit for the next init event */ 2845 data = er32(STATUS); 2846 data &= ~E1000_STATUS_LAN_INIT_DONE; 2847 ew32(STATUS, data); 2848 } 2849 2850 /** 2851 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset 2852 * @hw: pointer to the HW structure 2853 **/ 2854 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw) 2855 { 2856 s32 ret_val = 0; 2857 u16 reg; 2858 2859 if (hw->phy.ops.check_reset_block(hw)) 2860 return 0; 2861 2862 /* Allow time for h/w to get to quiescent state after reset */ 2863 usleep_range(10000, 11000); 2864 2865 /* Perform any necessary post-reset workarounds */ 2866 switch (hw->mac.type) { 2867 case e1000_pchlan: 2868 ret_val = e1000_hv_phy_workarounds_ich8lan(hw); 2869 if (ret_val) 2870 return ret_val; 2871 break; 2872 case e1000_pch2lan: 2873 ret_val = e1000_lv_phy_workarounds_ich8lan(hw); 2874 if (ret_val) 2875 return ret_val; 2876 break; 2877 default: 2878 break; 2879 } 2880 2881 /* Clear the host wakeup bit after lcd reset */ 2882 if (hw->mac.type >= e1000_pchlan) { 2883 e1e_rphy(hw, BM_PORT_GEN_CFG, ®); 2884 reg &= ~BM_WUC_HOST_WU_BIT; 2885 e1e_wphy(hw, BM_PORT_GEN_CFG, reg); 2886 } 2887 2888 /* Configure the LCD with the extended configuration region in NVM */ 2889 ret_val = e1000_sw_lcd_config_ich8lan(hw); 2890 if (ret_val) 2891 return ret_val; 2892 2893 /* Configure the LCD with the OEM bits in NVM */ 2894 ret_val = e1000_oem_bits_config_ich8lan(hw, true); 2895 2896 if (hw->mac.type == e1000_pch2lan) { 2897 /* Ungate automatic PHY configuration on non-managed 82579 */ 2898 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 2899 usleep_range(10000, 11000); 2900 e1000_gate_hw_phy_config_ich8lan(hw, false); 2901 } 2902 2903 /* Set EEE LPI Update Timer to 200usec */ 2904 ret_val = hw->phy.ops.acquire(hw); 2905 if (ret_val) 2906 return ret_val; 2907 ret_val = e1000_write_emi_reg_locked(hw, 2908 I82579_LPI_UPDATE_TIMER, 2909 0x1387); 2910 hw->phy.ops.release(hw); 2911 } 2912 2913 return ret_val; 2914 } 2915 2916 /** 2917 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset 2918 * @hw: pointer to the HW structure 2919 * 2920 * Resets the PHY 2921 * This is a function pointer entry point called by drivers 2922 * or other shared routines. 2923 **/ 2924 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw) 2925 { 2926 s32 ret_val = 0; 2927 2928 /* Gate automatic PHY configuration by hardware on non-managed 82579 */ 2929 if ((hw->mac.type == e1000_pch2lan) && 2930 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) 2931 e1000_gate_hw_phy_config_ich8lan(hw, true); 2932 2933 ret_val = e1000e_phy_hw_reset_generic(hw); 2934 if (ret_val) 2935 return ret_val; 2936 2937 return e1000_post_phy_reset_ich8lan(hw); 2938 } 2939 2940 /** 2941 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state 2942 * @hw: pointer to the HW structure 2943 * @active: true to enable LPLU, false to disable 2944 * 2945 * Sets the LPLU state according to the active flag. For PCH, if OEM write 2946 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set 2947 * the phy speed. This function will manually set the LPLU bit and restart 2948 * auto-neg as hw would do. D3 and D0 LPLU will call the same function 2949 * since it configures the same bit. 2950 **/ 2951 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active) 2952 { 2953 s32 ret_val; 2954 u16 oem_reg; 2955 2956 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg); 2957 if (ret_val) 2958 return ret_val; 2959 2960 if (active) 2961 oem_reg |= HV_OEM_BITS_LPLU; 2962 else 2963 oem_reg &= ~HV_OEM_BITS_LPLU; 2964 2965 if (!hw->phy.ops.check_reset_block(hw)) 2966 oem_reg |= HV_OEM_BITS_RESTART_AN; 2967 2968 return e1e_wphy(hw, HV_OEM_BITS, oem_reg); 2969 } 2970 2971 /** 2972 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state 2973 * @hw: pointer to the HW structure 2974 * @active: true to enable LPLU, false to disable 2975 * 2976 * Sets the LPLU D0 state according to the active flag. When 2977 * activating LPLU this function also disables smart speed 2978 * and vice versa. LPLU will not be activated unless the 2979 * device autonegotiation advertisement meets standards of 2980 * either 10 or 10/100 or 10/100/1000 at all duplexes. 2981 * This is a function pointer entry point only called by 2982 * PHY setup routines. 2983 **/ 2984 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active) 2985 { 2986 struct e1000_phy_info *phy = &hw->phy; 2987 u32 phy_ctrl; 2988 s32 ret_val = 0; 2989 u16 data; 2990 2991 if (phy->type == e1000_phy_ife) 2992 return 0; 2993 2994 phy_ctrl = er32(PHY_CTRL); 2995 2996 if (active) { 2997 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; 2998 ew32(PHY_CTRL, phy_ctrl); 2999 3000 if (phy->type != e1000_phy_igp_3) 3001 return 0; 3002 3003 /* Call gig speed drop workaround on LPLU before accessing 3004 * any PHY registers 3005 */ 3006 if (hw->mac.type == e1000_ich8lan) 3007 e1000e_gig_downshift_workaround_ich8lan(hw); 3008 3009 /* When LPLU is enabled, we should disable SmartSpeed */ 3010 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); 3011 if (ret_val) 3012 return ret_val; 3013 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 3014 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); 3015 if (ret_val) 3016 return ret_val; 3017 } else { 3018 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; 3019 ew32(PHY_CTRL, phy_ctrl); 3020 3021 if (phy->type != e1000_phy_igp_3) 3022 return 0; 3023 3024 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 3025 * during Dx states where the power conservation is most 3026 * important. During driver activity we should enable 3027 * SmartSpeed, so performance is maintained. 3028 */ 3029 if (phy->smart_speed == e1000_smart_speed_on) { 3030 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3031 &data); 3032 if (ret_val) 3033 return ret_val; 3034 3035 data |= IGP01E1000_PSCFR_SMART_SPEED; 3036 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3037 data); 3038 if (ret_val) 3039 return ret_val; 3040 } else if (phy->smart_speed == e1000_smart_speed_off) { 3041 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3042 &data); 3043 if (ret_val) 3044 return ret_val; 3045 3046 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 3047 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3048 data); 3049 if (ret_val) 3050 return ret_val; 3051 } 3052 } 3053 3054 return 0; 3055 } 3056 3057 /** 3058 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state 3059 * @hw: pointer to the HW structure 3060 * @active: true to enable LPLU, false to disable 3061 * 3062 * Sets the LPLU D3 state according to the active flag. When 3063 * activating LPLU this function also disables smart speed 3064 * and vice versa. LPLU will not be activated unless the 3065 * device autonegotiation advertisement meets standards of 3066 * either 10 or 10/100 or 10/100/1000 at all duplexes. 3067 * This is a function pointer entry point only called by 3068 * PHY setup routines. 3069 **/ 3070 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active) 3071 { 3072 struct e1000_phy_info *phy = &hw->phy; 3073 u32 phy_ctrl; 3074 s32 ret_val = 0; 3075 u16 data; 3076 3077 phy_ctrl = er32(PHY_CTRL); 3078 3079 if (!active) { 3080 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; 3081 ew32(PHY_CTRL, phy_ctrl); 3082 3083 if (phy->type != e1000_phy_igp_3) 3084 return 0; 3085 3086 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 3087 * during Dx states where the power conservation is most 3088 * important. During driver activity we should enable 3089 * SmartSpeed, so performance is maintained. 3090 */ 3091 if (phy->smart_speed == e1000_smart_speed_on) { 3092 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3093 &data); 3094 if (ret_val) 3095 return ret_val; 3096 3097 data |= IGP01E1000_PSCFR_SMART_SPEED; 3098 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3099 data); 3100 if (ret_val) 3101 return ret_val; 3102 } else if (phy->smart_speed == e1000_smart_speed_off) { 3103 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3104 &data); 3105 if (ret_val) 3106 return ret_val; 3107 3108 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 3109 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3110 data); 3111 if (ret_val) 3112 return ret_val; 3113 } 3114 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || 3115 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || 3116 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { 3117 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; 3118 ew32(PHY_CTRL, phy_ctrl); 3119 3120 if (phy->type != e1000_phy_igp_3) 3121 return 0; 3122 3123 /* Call gig speed drop workaround on LPLU before accessing 3124 * any PHY registers 3125 */ 3126 if (hw->mac.type == e1000_ich8lan) 3127 e1000e_gig_downshift_workaround_ich8lan(hw); 3128 3129 /* When LPLU is enabled, we should disable SmartSpeed */ 3130 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); 3131 if (ret_val) 3132 return ret_val; 3133 3134 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 3135 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); 3136 } 3137 3138 return ret_val; 3139 } 3140 3141 /** 3142 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1 3143 * @hw: pointer to the HW structure 3144 * @bank: pointer to the variable that returns the active bank 3145 * 3146 * Reads signature byte from the NVM using the flash access registers. 3147 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank. 3148 **/ 3149 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank) 3150 { 3151 u32 eecd; 3152 struct e1000_nvm_info *nvm = &hw->nvm; 3153 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16); 3154 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1; 3155 u32 nvm_dword = 0; 3156 u8 sig_byte = 0; 3157 s32 ret_val; 3158 3159 switch (hw->mac.type) { 3160 case e1000_pch_spt: 3161 case e1000_pch_cnp: 3162 case e1000_pch_tgp: 3163 case e1000_pch_adp: 3164 case e1000_pch_mtp: 3165 bank1_offset = nvm->flash_bank_size; 3166 act_offset = E1000_ICH_NVM_SIG_WORD; 3167 3168 /* set bank to 0 in case flash read fails */ 3169 *bank = 0; 3170 3171 /* Check bank 0 */ 3172 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, 3173 &nvm_dword); 3174 if (ret_val) 3175 return ret_val; 3176 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8); 3177 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 3178 E1000_ICH_NVM_SIG_VALUE) { 3179 *bank = 0; 3180 return 0; 3181 } 3182 3183 /* Check bank 1 */ 3184 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset + 3185 bank1_offset, 3186 &nvm_dword); 3187 if (ret_val) 3188 return ret_val; 3189 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8); 3190 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 3191 E1000_ICH_NVM_SIG_VALUE) { 3192 *bank = 1; 3193 return 0; 3194 } 3195 3196 e_dbg("ERROR: No valid NVM bank present\n"); 3197 return -E1000_ERR_NVM; 3198 case e1000_ich8lan: 3199 case e1000_ich9lan: 3200 eecd = er32(EECD); 3201 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) == 3202 E1000_EECD_SEC1VAL_VALID_MASK) { 3203 if (eecd & E1000_EECD_SEC1VAL) 3204 *bank = 1; 3205 else 3206 *bank = 0; 3207 3208 return 0; 3209 } 3210 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n"); 3211 fallthrough; 3212 default: 3213 /* set bank to 0 in case flash read fails */ 3214 *bank = 0; 3215 3216 /* Check bank 0 */ 3217 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset, 3218 &sig_byte); 3219 if (ret_val) 3220 return ret_val; 3221 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 3222 E1000_ICH_NVM_SIG_VALUE) { 3223 *bank = 0; 3224 return 0; 3225 } 3226 3227 /* Check bank 1 */ 3228 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset + 3229 bank1_offset, 3230 &sig_byte); 3231 if (ret_val) 3232 return ret_val; 3233 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 3234 E1000_ICH_NVM_SIG_VALUE) { 3235 *bank = 1; 3236 return 0; 3237 } 3238 3239 e_dbg("ERROR: No valid NVM bank present\n"); 3240 return -E1000_ERR_NVM; 3241 } 3242 } 3243 3244 /** 3245 * e1000_read_nvm_spt - NVM access for SPT 3246 * @hw: pointer to the HW structure 3247 * @offset: The offset (in bytes) of the word(s) to read. 3248 * @words: Size of data to read in words. 3249 * @data: pointer to the word(s) to read at offset. 3250 * 3251 * Reads a word(s) from the NVM 3252 **/ 3253 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words, 3254 u16 *data) 3255 { 3256 struct e1000_nvm_info *nvm = &hw->nvm; 3257 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3258 u32 act_offset; 3259 s32 ret_val = 0; 3260 u32 bank = 0; 3261 u32 dword = 0; 3262 u16 offset_to_read; 3263 u16 i; 3264 3265 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || 3266 (words == 0)) { 3267 e_dbg("nvm parameter(s) out of bounds\n"); 3268 ret_val = -E1000_ERR_NVM; 3269 goto out; 3270 } 3271 3272 nvm->ops.acquire(hw); 3273 3274 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 3275 if (ret_val) { 3276 e_dbg("Could not detect valid bank, assuming bank 0\n"); 3277 bank = 0; 3278 } 3279 3280 act_offset = (bank) ? nvm->flash_bank_size : 0; 3281 act_offset += offset; 3282 3283 ret_val = 0; 3284 3285 for (i = 0; i < words; i += 2) { 3286 if (words - i == 1) { 3287 if (dev_spec->shadow_ram[offset + i].modified) { 3288 data[i] = 3289 dev_spec->shadow_ram[offset + i].value; 3290 } else { 3291 offset_to_read = act_offset + i - 3292 ((act_offset + i) % 2); 3293 ret_val = 3294 e1000_read_flash_dword_ich8lan(hw, 3295 offset_to_read, 3296 &dword); 3297 if (ret_val) 3298 break; 3299 if ((act_offset + i) % 2 == 0) 3300 data[i] = (u16)(dword & 0xFFFF); 3301 else 3302 data[i] = (u16)((dword >> 16) & 0xFFFF); 3303 } 3304 } else { 3305 offset_to_read = act_offset + i; 3306 if (!(dev_spec->shadow_ram[offset + i].modified) || 3307 !(dev_spec->shadow_ram[offset + i + 1].modified)) { 3308 ret_val = 3309 e1000_read_flash_dword_ich8lan(hw, 3310 offset_to_read, 3311 &dword); 3312 if (ret_val) 3313 break; 3314 } 3315 if (dev_spec->shadow_ram[offset + i].modified) 3316 data[i] = 3317 dev_spec->shadow_ram[offset + i].value; 3318 else 3319 data[i] = (u16)(dword & 0xFFFF); 3320 if (dev_spec->shadow_ram[offset + i].modified) 3321 data[i + 1] = 3322 dev_spec->shadow_ram[offset + i + 1].value; 3323 else 3324 data[i + 1] = (u16)(dword >> 16 & 0xFFFF); 3325 } 3326 } 3327 3328 nvm->ops.release(hw); 3329 3330 out: 3331 if (ret_val) 3332 e_dbg("NVM read error: %d\n", ret_val); 3333 3334 return ret_val; 3335 } 3336 3337 /** 3338 * e1000_read_nvm_ich8lan - Read word(s) from the NVM 3339 * @hw: pointer to the HW structure 3340 * @offset: The offset (in bytes) of the word(s) to read. 3341 * @words: Size of data to read in words 3342 * @data: Pointer to the word(s) to read at offset. 3343 * 3344 * Reads a word(s) from the NVM using the flash access registers. 3345 **/ 3346 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, 3347 u16 *data) 3348 { 3349 struct e1000_nvm_info *nvm = &hw->nvm; 3350 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3351 u32 act_offset; 3352 s32 ret_val = 0; 3353 u32 bank = 0; 3354 u16 i, word; 3355 3356 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || 3357 (words == 0)) { 3358 e_dbg("nvm parameter(s) out of bounds\n"); 3359 ret_val = -E1000_ERR_NVM; 3360 goto out; 3361 } 3362 3363 nvm->ops.acquire(hw); 3364 3365 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 3366 if (ret_val) { 3367 e_dbg("Could not detect valid bank, assuming bank 0\n"); 3368 bank = 0; 3369 } 3370 3371 act_offset = (bank) ? nvm->flash_bank_size : 0; 3372 act_offset += offset; 3373 3374 ret_val = 0; 3375 for (i = 0; i < words; i++) { 3376 if (dev_spec->shadow_ram[offset + i].modified) { 3377 data[i] = dev_spec->shadow_ram[offset + i].value; 3378 } else { 3379 ret_val = e1000_read_flash_word_ich8lan(hw, 3380 act_offset + i, 3381 &word); 3382 if (ret_val) 3383 break; 3384 data[i] = word; 3385 } 3386 } 3387 3388 nvm->ops.release(hw); 3389 3390 out: 3391 if (ret_val) 3392 e_dbg("NVM read error: %d\n", ret_val); 3393 3394 return ret_val; 3395 } 3396 3397 /** 3398 * e1000_flash_cycle_init_ich8lan - Initialize flash 3399 * @hw: pointer to the HW structure 3400 * 3401 * This function does initial flash setup so that a new read/write/erase cycle 3402 * can be started. 3403 **/ 3404 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw) 3405 { 3406 union ich8_hws_flash_status hsfsts; 3407 s32 ret_val = -E1000_ERR_NVM; 3408 3409 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3410 3411 /* Check if the flash descriptor is valid */ 3412 if (!hsfsts.hsf_status.fldesvalid) { 3413 e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n"); 3414 return -E1000_ERR_NVM; 3415 } 3416 3417 /* Clear FCERR and DAEL in hw status by writing 1 */ 3418 hsfsts.hsf_status.flcerr = 1; 3419 hsfsts.hsf_status.dael = 1; 3420 if (hw->mac.type >= e1000_pch_spt) 3421 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF); 3422 else 3423 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); 3424 3425 /* Either we should have a hardware SPI cycle in progress 3426 * bit to check against, in order to start a new cycle or 3427 * FDONE bit should be changed in the hardware so that it 3428 * is 1 after hardware reset, which can then be used as an 3429 * indication whether a cycle is in progress or has been 3430 * completed. 3431 */ 3432 3433 if (!hsfsts.hsf_status.flcinprog) { 3434 /* There is no cycle running at present, 3435 * so we can start a cycle. 3436 * Begin by setting Flash Cycle Done. 3437 */ 3438 hsfsts.hsf_status.flcdone = 1; 3439 if (hw->mac.type >= e1000_pch_spt) 3440 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF); 3441 else 3442 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); 3443 ret_val = 0; 3444 } else { 3445 s32 i; 3446 3447 /* Otherwise poll for sometime so the current 3448 * cycle has a chance to end before giving up. 3449 */ 3450 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) { 3451 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3452 if (!hsfsts.hsf_status.flcinprog) { 3453 ret_val = 0; 3454 break; 3455 } 3456 udelay(1); 3457 } 3458 if (!ret_val) { 3459 /* Successful in waiting for previous cycle to timeout, 3460 * now set the Flash Cycle Done. 3461 */ 3462 hsfsts.hsf_status.flcdone = 1; 3463 if (hw->mac.type >= e1000_pch_spt) 3464 ew32flash(ICH_FLASH_HSFSTS, 3465 hsfsts.regval & 0xFFFF); 3466 else 3467 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); 3468 } else { 3469 e_dbg("Flash controller busy, cannot get access\n"); 3470 } 3471 } 3472 3473 return ret_val; 3474 } 3475 3476 /** 3477 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase) 3478 * @hw: pointer to the HW structure 3479 * @timeout: maximum time to wait for completion 3480 * 3481 * This function starts a flash cycle and waits for its completion. 3482 **/ 3483 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout) 3484 { 3485 union ich8_hws_flash_ctrl hsflctl; 3486 union ich8_hws_flash_status hsfsts; 3487 u32 i = 0; 3488 3489 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ 3490 if (hw->mac.type >= e1000_pch_spt) 3491 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16; 3492 else 3493 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 3494 hsflctl.hsf_ctrl.flcgo = 1; 3495 3496 if (hw->mac.type >= e1000_pch_spt) 3497 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16); 3498 else 3499 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 3500 3501 /* wait till FDONE bit is set to 1 */ 3502 do { 3503 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3504 if (hsfsts.hsf_status.flcdone) 3505 break; 3506 udelay(1); 3507 } while (i++ < timeout); 3508 3509 if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr) 3510 return 0; 3511 3512 return -E1000_ERR_NVM; 3513 } 3514 3515 /** 3516 * e1000_read_flash_dword_ich8lan - Read dword from flash 3517 * @hw: pointer to the HW structure 3518 * @offset: offset to data location 3519 * @data: pointer to the location for storing the data 3520 * 3521 * Reads the flash dword at offset into data. Offset is converted 3522 * to bytes before read. 3523 **/ 3524 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset, 3525 u32 *data) 3526 { 3527 /* Must convert word offset into bytes. */ 3528 offset <<= 1; 3529 return e1000_read_flash_data32_ich8lan(hw, offset, data); 3530 } 3531 3532 /** 3533 * e1000_read_flash_word_ich8lan - Read word from flash 3534 * @hw: pointer to the HW structure 3535 * @offset: offset to data location 3536 * @data: pointer to the location for storing the data 3537 * 3538 * Reads the flash word at offset into data. Offset is converted 3539 * to bytes before read. 3540 **/ 3541 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, 3542 u16 *data) 3543 { 3544 /* Must convert offset into bytes. */ 3545 offset <<= 1; 3546 3547 return e1000_read_flash_data_ich8lan(hw, offset, 2, data); 3548 } 3549 3550 /** 3551 * e1000_read_flash_byte_ich8lan - Read byte from flash 3552 * @hw: pointer to the HW structure 3553 * @offset: The offset of the byte to read. 3554 * @data: Pointer to a byte to store the value read. 3555 * 3556 * Reads a single byte from the NVM using the flash access registers. 3557 **/ 3558 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, 3559 u8 *data) 3560 { 3561 s32 ret_val; 3562 u16 word = 0; 3563 3564 /* In SPT, only 32 bits access is supported, 3565 * so this function should not be called. 3566 */ 3567 if (hw->mac.type >= e1000_pch_spt) 3568 return -E1000_ERR_NVM; 3569 else 3570 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word); 3571 3572 if (ret_val) 3573 return ret_val; 3574 3575 *data = (u8)word; 3576 3577 return 0; 3578 } 3579 3580 /** 3581 * e1000_read_flash_data_ich8lan - Read byte or word from NVM 3582 * @hw: pointer to the HW structure 3583 * @offset: The offset (in bytes) of the byte or word to read. 3584 * @size: Size of data to read, 1=byte 2=word 3585 * @data: Pointer to the word to store the value read. 3586 * 3587 * Reads a byte or word from the NVM using the flash access registers. 3588 **/ 3589 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 3590 u8 size, u16 *data) 3591 { 3592 union ich8_hws_flash_status hsfsts; 3593 union ich8_hws_flash_ctrl hsflctl; 3594 u32 flash_linear_addr; 3595 u32 flash_data = 0; 3596 s32 ret_val = -E1000_ERR_NVM; 3597 u8 count = 0; 3598 3599 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) 3600 return -E1000_ERR_NVM; 3601 3602 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 3603 hw->nvm.flash_base_addr); 3604 3605 do { 3606 udelay(1); 3607 /* Steps */ 3608 ret_val = e1000_flash_cycle_init_ich8lan(hw); 3609 if (ret_val) 3610 break; 3611 3612 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 3613 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ 3614 hsflctl.hsf_ctrl.fldbcount = size - 1; 3615 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; 3616 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 3617 3618 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 3619 3620 ret_val = 3621 e1000_flash_cycle_ich8lan(hw, 3622 ICH_FLASH_READ_COMMAND_TIMEOUT); 3623 3624 /* Check if FCERR is set to 1, if set to 1, clear it 3625 * and try the whole sequence a few more times, else 3626 * read in (shift in) the Flash Data0, the order is 3627 * least significant byte first msb to lsb 3628 */ 3629 if (!ret_val) { 3630 flash_data = er32flash(ICH_FLASH_FDATA0); 3631 if (size == 1) 3632 *data = (u8)(flash_data & 0x000000FF); 3633 else if (size == 2) 3634 *data = (u16)(flash_data & 0x0000FFFF); 3635 break; 3636 } else { 3637 /* If we've gotten here, then things are probably 3638 * completely hosed, but if the error condition is 3639 * detected, it won't hurt to give it another try... 3640 * ICH_FLASH_CYCLE_REPEAT_COUNT times. 3641 */ 3642 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3643 if (hsfsts.hsf_status.flcerr) { 3644 /* Repeat for some time before giving up. */ 3645 continue; 3646 } else if (!hsfsts.hsf_status.flcdone) { 3647 e_dbg("Timeout error - flash cycle did not complete.\n"); 3648 break; 3649 } 3650 } 3651 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 3652 3653 return ret_val; 3654 } 3655 3656 /** 3657 * e1000_read_flash_data32_ich8lan - Read dword from NVM 3658 * @hw: pointer to the HW structure 3659 * @offset: The offset (in bytes) of the dword to read. 3660 * @data: Pointer to the dword to store the value read. 3661 * 3662 * Reads a byte or word from the NVM using the flash access registers. 3663 **/ 3664 3665 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, 3666 u32 *data) 3667 { 3668 union ich8_hws_flash_status hsfsts; 3669 union ich8_hws_flash_ctrl hsflctl; 3670 u32 flash_linear_addr; 3671 s32 ret_val = -E1000_ERR_NVM; 3672 u8 count = 0; 3673 3674 if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt) 3675 return -E1000_ERR_NVM; 3676 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 3677 hw->nvm.flash_base_addr); 3678 3679 do { 3680 udelay(1); 3681 /* Steps */ 3682 ret_val = e1000_flash_cycle_init_ich8lan(hw); 3683 if (ret_val) 3684 break; 3685 /* In SPT, This register is in Lan memory space, not flash. 3686 * Therefore, only 32 bit access is supported 3687 */ 3688 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16; 3689 3690 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ 3691 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1; 3692 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; 3693 /* In SPT, This register is in Lan memory space, not flash. 3694 * Therefore, only 32 bit access is supported 3695 */ 3696 ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16); 3697 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 3698 3699 ret_val = 3700 e1000_flash_cycle_ich8lan(hw, 3701 ICH_FLASH_READ_COMMAND_TIMEOUT); 3702 3703 /* Check if FCERR is set to 1, if set to 1, clear it 3704 * and try the whole sequence a few more times, else 3705 * read in (shift in) the Flash Data0, the order is 3706 * least significant byte first msb to lsb 3707 */ 3708 if (!ret_val) { 3709 *data = er32flash(ICH_FLASH_FDATA0); 3710 break; 3711 } else { 3712 /* If we've gotten here, then things are probably 3713 * completely hosed, but if the error condition is 3714 * detected, it won't hurt to give it another try... 3715 * ICH_FLASH_CYCLE_REPEAT_COUNT times. 3716 */ 3717 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3718 if (hsfsts.hsf_status.flcerr) { 3719 /* Repeat for some time before giving up. */ 3720 continue; 3721 } else if (!hsfsts.hsf_status.flcdone) { 3722 e_dbg("Timeout error - flash cycle did not complete.\n"); 3723 break; 3724 } 3725 } 3726 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 3727 3728 return ret_val; 3729 } 3730 3731 /** 3732 * e1000_write_nvm_ich8lan - Write word(s) to the NVM 3733 * @hw: pointer to the HW structure 3734 * @offset: The offset (in bytes) of the word(s) to write. 3735 * @words: Size of data to write in words 3736 * @data: Pointer to the word(s) to write at offset. 3737 * 3738 * Writes a byte or word to the NVM using the flash access registers. 3739 **/ 3740 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, 3741 u16 *data) 3742 { 3743 struct e1000_nvm_info *nvm = &hw->nvm; 3744 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3745 u16 i; 3746 3747 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || 3748 (words == 0)) { 3749 e_dbg("nvm parameter(s) out of bounds\n"); 3750 return -E1000_ERR_NVM; 3751 } 3752 3753 nvm->ops.acquire(hw); 3754 3755 for (i = 0; i < words; i++) { 3756 dev_spec->shadow_ram[offset + i].modified = true; 3757 dev_spec->shadow_ram[offset + i].value = data[i]; 3758 } 3759 3760 nvm->ops.release(hw); 3761 3762 return 0; 3763 } 3764 3765 /** 3766 * e1000_update_nvm_checksum_spt - Update the checksum for NVM 3767 * @hw: pointer to the HW structure 3768 * 3769 * The NVM checksum is updated by calling the generic update_nvm_checksum, 3770 * which writes the checksum to the shadow ram. The changes in the shadow 3771 * ram are then committed to the EEPROM by processing each bank at a time 3772 * checking for the modified bit and writing only the pending changes. 3773 * After a successful commit, the shadow ram is cleared and is ready for 3774 * future writes. 3775 **/ 3776 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw) 3777 { 3778 struct e1000_nvm_info *nvm = &hw->nvm; 3779 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3780 u32 i, act_offset, new_bank_offset, old_bank_offset, bank; 3781 s32 ret_val; 3782 u32 dword = 0; 3783 3784 ret_val = e1000e_update_nvm_checksum_generic(hw); 3785 if (ret_val) 3786 goto out; 3787 3788 if (nvm->type != e1000_nvm_flash_sw) 3789 goto out; 3790 3791 nvm->ops.acquire(hw); 3792 3793 /* We're writing to the opposite bank so if we're on bank 1, 3794 * write to bank 0 etc. We also need to erase the segment that 3795 * is going to be written 3796 */ 3797 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 3798 if (ret_val) { 3799 e_dbg("Could not detect valid bank, assuming bank 0\n"); 3800 bank = 0; 3801 } 3802 3803 if (bank == 0) { 3804 new_bank_offset = nvm->flash_bank_size; 3805 old_bank_offset = 0; 3806 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); 3807 if (ret_val) 3808 goto release; 3809 } else { 3810 old_bank_offset = nvm->flash_bank_size; 3811 new_bank_offset = 0; 3812 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); 3813 if (ret_val) 3814 goto release; 3815 } 3816 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) { 3817 /* Determine whether to write the value stored 3818 * in the other NVM bank or a modified value stored 3819 * in the shadow RAM 3820 */ 3821 ret_val = e1000_read_flash_dword_ich8lan(hw, 3822 i + old_bank_offset, 3823 &dword); 3824 3825 if (dev_spec->shadow_ram[i].modified) { 3826 dword &= 0xffff0000; 3827 dword |= (dev_spec->shadow_ram[i].value & 0xffff); 3828 } 3829 if (dev_spec->shadow_ram[i + 1].modified) { 3830 dword &= 0x0000ffff; 3831 dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff) 3832 << 16); 3833 } 3834 if (ret_val) 3835 break; 3836 3837 /* If the word is 0x13, then make sure the signature bits 3838 * (15:14) are 11b until the commit has completed. 3839 * This will allow us to write 10b which indicates the 3840 * signature is valid. We want to do this after the write 3841 * has completed so that we don't mark the segment valid 3842 * while the write is still in progress 3843 */ 3844 if (i == E1000_ICH_NVM_SIG_WORD - 1) 3845 dword |= E1000_ICH_NVM_SIG_MASK << 16; 3846 3847 /* Convert offset to bytes. */ 3848 act_offset = (i + new_bank_offset) << 1; 3849 3850 usleep_range(100, 200); 3851 3852 /* Write the data to the new bank. Offset in words */ 3853 act_offset = i + new_bank_offset; 3854 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, 3855 dword); 3856 if (ret_val) 3857 break; 3858 } 3859 3860 /* Don't bother writing the segment valid bits if sector 3861 * programming failed. 3862 */ 3863 if (ret_val) { 3864 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */ 3865 e_dbg("Flash commit failed.\n"); 3866 goto release; 3867 } 3868 3869 /* Finally validate the new segment by setting bit 15:14 3870 * to 10b in word 0x13 , this can be done without an 3871 * erase as well since these bits are 11 to start with 3872 * and we need to change bit 14 to 0b 3873 */ 3874 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; 3875 3876 /*offset in words but we read dword */ 3877 --act_offset; 3878 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword); 3879 3880 if (ret_val) 3881 goto release; 3882 3883 dword &= 0xBFFFFFFF; 3884 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword); 3885 3886 if (ret_val) 3887 goto release; 3888 3889 /* And invalidate the previously valid segment by setting 3890 * its signature word (0x13) high_byte to 0b. This can be 3891 * done without an erase because flash erase sets all bits 3892 * to 1's. We can write 1's to 0's without an erase 3893 */ 3894 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; 3895 3896 /* offset in words but we read dword */ 3897 act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1; 3898 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword); 3899 3900 if (ret_val) 3901 goto release; 3902 3903 dword &= 0x00FFFFFF; 3904 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword); 3905 3906 if (ret_val) 3907 goto release; 3908 3909 /* Great! Everything worked, we can now clear the cached entries. */ 3910 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { 3911 dev_spec->shadow_ram[i].modified = false; 3912 dev_spec->shadow_ram[i].value = 0xFFFF; 3913 } 3914 3915 release: 3916 nvm->ops.release(hw); 3917 3918 /* Reload the EEPROM, or else modifications will not appear 3919 * until after the next adapter reset. 3920 */ 3921 if (!ret_val) { 3922 nvm->ops.reload(hw); 3923 usleep_range(10000, 11000); 3924 } 3925 3926 out: 3927 if (ret_val) 3928 e_dbg("NVM update error: %d\n", ret_val); 3929 3930 return ret_val; 3931 } 3932 3933 /** 3934 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM 3935 * @hw: pointer to the HW structure 3936 * 3937 * The NVM checksum is updated by calling the generic update_nvm_checksum, 3938 * which writes the checksum to the shadow ram. The changes in the shadow 3939 * ram are then committed to the EEPROM by processing each bank at a time 3940 * checking for the modified bit and writing only the pending changes. 3941 * After a successful commit, the shadow ram is cleared and is ready for 3942 * future writes. 3943 **/ 3944 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw) 3945 { 3946 struct e1000_nvm_info *nvm = &hw->nvm; 3947 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3948 u32 i, act_offset, new_bank_offset, old_bank_offset, bank; 3949 s32 ret_val; 3950 u16 data = 0; 3951 3952 ret_val = e1000e_update_nvm_checksum_generic(hw); 3953 if (ret_val) 3954 goto out; 3955 3956 if (nvm->type != e1000_nvm_flash_sw) 3957 goto out; 3958 3959 nvm->ops.acquire(hw); 3960 3961 /* We're writing to the opposite bank so if we're on bank 1, 3962 * write to bank 0 etc. We also need to erase the segment that 3963 * is going to be written 3964 */ 3965 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 3966 if (ret_val) { 3967 e_dbg("Could not detect valid bank, assuming bank 0\n"); 3968 bank = 0; 3969 } 3970 3971 if (bank == 0) { 3972 new_bank_offset = nvm->flash_bank_size; 3973 old_bank_offset = 0; 3974 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); 3975 if (ret_val) 3976 goto release; 3977 } else { 3978 old_bank_offset = nvm->flash_bank_size; 3979 new_bank_offset = 0; 3980 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); 3981 if (ret_val) 3982 goto release; 3983 } 3984 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { 3985 if (dev_spec->shadow_ram[i].modified) { 3986 data = dev_spec->shadow_ram[i].value; 3987 } else { 3988 ret_val = e1000_read_flash_word_ich8lan(hw, i + 3989 old_bank_offset, 3990 &data); 3991 if (ret_val) 3992 break; 3993 } 3994 3995 /* If the word is 0x13, then make sure the signature bits 3996 * (15:14) are 11b until the commit has completed. 3997 * This will allow us to write 10b which indicates the 3998 * signature is valid. We want to do this after the write 3999 * has completed so that we don't mark the segment valid 4000 * while the write is still in progress 4001 */ 4002 if (i == E1000_ICH_NVM_SIG_WORD) 4003 data |= E1000_ICH_NVM_SIG_MASK; 4004 4005 /* Convert offset to bytes. */ 4006 act_offset = (i + new_bank_offset) << 1; 4007 4008 usleep_range(100, 200); 4009 /* Write the bytes to the new bank. */ 4010 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, 4011 act_offset, 4012 (u8)data); 4013 if (ret_val) 4014 break; 4015 4016 usleep_range(100, 200); 4017 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, 4018 act_offset + 1, 4019 (u8)(data >> 8)); 4020 if (ret_val) 4021 break; 4022 } 4023 4024 /* Don't bother writing the segment valid bits if sector 4025 * programming failed. 4026 */ 4027 if (ret_val) { 4028 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */ 4029 e_dbg("Flash commit failed.\n"); 4030 goto release; 4031 } 4032 4033 /* Finally validate the new segment by setting bit 15:14 4034 * to 10b in word 0x13 , this can be done without an 4035 * erase as well since these bits are 11 to start with 4036 * and we need to change bit 14 to 0b 4037 */ 4038 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; 4039 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data); 4040 if (ret_val) 4041 goto release; 4042 4043 data &= 0xBFFF; 4044 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, 4045 act_offset * 2 + 1, 4046 (u8)(data >> 8)); 4047 if (ret_val) 4048 goto release; 4049 4050 /* And invalidate the previously valid segment by setting 4051 * its signature word (0x13) high_byte to 0b. This can be 4052 * done without an erase because flash erase sets all bits 4053 * to 1's. We can write 1's to 0's without an erase 4054 */ 4055 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; 4056 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0); 4057 if (ret_val) 4058 goto release; 4059 4060 /* Great! Everything worked, we can now clear the cached entries. */ 4061 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { 4062 dev_spec->shadow_ram[i].modified = false; 4063 dev_spec->shadow_ram[i].value = 0xFFFF; 4064 } 4065 4066 release: 4067 nvm->ops.release(hw); 4068 4069 /* Reload the EEPROM, or else modifications will not appear 4070 * until after the next adapter reset. 4071 */ 4072 if (!ret_val) { 4073 nvm->ops.reload(hw); 4074 usleep_range(10000, 11000); 4075 } 4076 4077 out: 4078 if (ret_val) 4079 e_dbg("NVM update error: %d\n", ret_val); 4080 4081 return ret_val; 4082 } 4083 4084 /** 4085 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum 4086 * @hw: pointer to the HW structure 4087 * 4088 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19. 4089 * If the bit is 0, that the EEPROM had been modified, but the checksum was not 4090 * calculated, in which case we need to calculate the checksum and set bit 6. 4091 **/ 4092 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw) 4093 { 4094 s32 ret_val; 4095 u16 data; 4096 u16 word; 4097 u16 valid_csum_mask; 4098 4099 /* Read NVM and check Invalid Image CSUM bit. If this bit is 0, 4100 * the checksum needs to be fixed. This bit is an indication that 4101 * the NVM was prepared by OEM software and did not calculate 4102 * the checksum...a likely scenario. 4103 */ 4104 switch (hw->mac.type) { 4105 case e1000_pch_lpt: 4106 case e1000_pch_spt: 4107 case e1000_pch_cnp: 4108 case e1000_pch_tgp: 4109 case e1000_pch_adp: 4110 case e1000_pch_mtp: 4111 word = NVM_COMPAT; 4112 valid_csum_mask = NVM_COMPAT_VALID_CSUM; 4113 break; 4114 default: 4115 word = NVM_FUTURE_INIT_WORD1; 4116 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM; 4117 break; 4118 } 4119 4120 ret_val = e1000_read_nvm(hw, word, 1, &data); 4121 if (ret_val) 4122 return ret_val; 4123 4124 if (!(data & valid_csum_mask)) { 4125 data |= valid_csum_mask; 4126 ret_val = e1000_write_nvm(hw, word, 1, &data); 4127 if (ret_val) 4128 return ret_val; 4129 ret_val = e1000e_update_nvm_checksum(hw); 4130 if (ret_val) 4131 return ret_val; 4132 } 4133 4134 return e1000e_validate_nvm_checksum_generic(hw); 4135 } 4136 4137 /** 4138 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only 4139 * @hw: pointer to the HW structure 4140 * 4141 * To prevent malicious write/erase of the NVM, set it to be read-only 4142 * so that the hardware ignores all write/erase cycles of the NVM via 4143 * the flash control registers. The shadow-ram copy of the NVM will 4144 * still be updated, however any updates to this copy will not stick 4145 * across driver reloads. 4146 **/ 4147 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw) 4148 { 4149 struct e1000_nvm_info *nvm = &hw->nvm; 4150 union ich8_flash_protected_range pr0; 4151 union ich8_hws_flash_status hsfsts; 4152 u32 gfpreg; 4153 4154 nvm->ops.acquire(hw); 4155 4156 gfpreg = er32flash(ICH_FLASH_GFPREG); 4157 4158 /* Write-protect GbE Sector of NVM */ 4159 pr0.regval = er32flash(ICH_FLASH_PR0); 4160 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK; 4161 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK); 4162 pr0.range.wpe = true; 4163 ew32flash(ICH_FLASH_PR0, pr0.regval); 4164 4165 /* Lock down a subset of GbE Flash Control Registers, e.g. 4166 * PR0 to prevent the write-protection from being lifted. 4167 * Once FLOCKDN is set, the registers protected by it cannot 4168 * be written until FLOCKDN is cleared by a hardware reset. 4169 */ 4170 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4171 hsfsts.hsf_status.flockdn = true; 4172 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval); 4173 4174 nvm->ops.release(hw); 4175 } 4176 4177 /** 4178 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM 4179 * @hw: pointer to the HW structure 4180 * @offset: The offset (in bytes) of the byte/word to read. 4181 * @size: Size of data to read, 1=byte 2=word 4182 * @data: The byte(s) to write to the NVM. 4183 * 4184 * Writes one/two bytes to the NVM using the flash access registers. 4185 **/ 4186 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 4187 u8 size, u16 data) 4188 { 4189 union ich8_hws_flash_status hsfsts; 4190 union ich8_hws_flash_ctrl hsflctl; 4191 u32 flash_linear_addr; 4192 u32 flash_data = 0; 4193 s32 ret_val; 4194 u8 count = 0; 4195 4196 if (hw->mac.type >= e1000_pch_spt) { 4197 if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK) 4198 return -E1000_ERR_NVM; 4199 } else { 4200 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) 4201 return -E1000_ERR_NVM; 4202 } 4203 4204 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 4205 hw->nvm.flash_base_addr); 4206 4207 do { 4208 udelay(1); 4209 /* Steps */ 4210 ret_val = e1000_flash_cycle_init_ich8lan(hw); 4211 if (ret_val) 4212 break; 4213 /* In SPT, This register is in Lan memory space, not 4214 * flash. Therefore, only 32 bit access is supported 4215 */ 4216 if (hw->mac.type >= e1000_pch_spt) 4217 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16; 4218 else 4219 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 4220 4221 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ 4222 hsflctl.hsf_ctrl.fldbcount = size - 1; 4223 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; 4224 /* In SPT, This register is in Lan memory space, 4225 * not flash. Therefore, only 32 bit access is 4226 * supported 4227 */ 4228 if (hw->mac.type >= e1000_pch_spt) 4229 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16); 4230 else 4231 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 4232 4233 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 4234 4235 if (size == 1) 4236 flash_data = (u32)data & 0x00FF; 4237 else 4238 flash_data = (u32)data; 4239 4240 ew32flash(ICH_FLASH_FDATA0, flash_data); 4241 4242 /* check if FCERR is set to 1 , if set to 1, clear it 4243 * and try the whole sequence a few more times else done 4244 */ 4245 ret_val = 4246 e1000_flash_cycle_ich8lan(hw, 4247 ICH_FLASH_WRITE_COMMAND_TIMEOUT); 4248 if (!ret_val) 4249 break; 4250 4251 /* If we're here, then things are most likely 4252 * completely hosed, but if the error condition 4253 * is detected, it won't hurt to give it another 4254 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. 4255 */ 4256 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4257 if (hsfsts.hsf_status.flcerr) 4258 /* Repeat for some time before giving up. */ 4259 continue; 4260 if (!hsfsts.hsf_status.flcdone) { 4261 e_dbg("Timeout error - flash cycle did not complete.\n"); 4262 break; 4263 } 4264 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 4265 4266 return ret_val; 4267 } 4268 4269 /** 4270 * e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM 4271 * @hw: pointer to the HW structure 4272 * @offset: The offset (in bytes) of the dwords to read. 4273 * @data: The 4 bytes to write to the NVM. 4274 * 4275 * Writes one/two/four bytes to the NVM using the flash access registers. 4276 **/ 4277 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, 4278 u32 data) 4279 { 4280 union ich8_hws_flash_status hsfsts; 4281 union ich8_hws_flash_ctrl hsflctl; 4282 u32 flash_linear_addr; 4283 s32 ret_val; 4284 u8 count = 0; 4285 4286 if (hw->mac.type >= e1000_pch_spt) { 4287 if (offset > ICH_FLASH_LINEAR_ADDR_MASK) 4288 return -E1000_ERR_NVM; 4289 } 4290 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 4291 hw->nvm.flash_base_addr); 4292 do { 4293 udelay(1); 4294 /* Steps */ 4295 ret_val = e1000_flash_cycle_init_ich8lan(hw); 4296 if (ret_val) 4297 break; 4298 4299 /* In SPT, This register is in Lan memory space, not 4300 * flash. Therefore, only 32 bit access is supported 4301 */ 4302 if (hw->mac.type >= e1000_pch_spt) 4303 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) 4304 >> 16; 4305 else 4306 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 4307 4308 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1; 4309 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; 4310 4311 /* In SPT, This register is in Lan memory space, 4312 * not flash. Therefore, only 32 bit access is 4313 * supported 4314 */ 4315 if (hw->mac.type >= e1000_pch_spt) 4316 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16); 4317 else 4318 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 4319 4320 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 4321 4322 ew32flash(ICH_FLASH_FDATA0, data); 4323 4324 /* check if FCERR is set to 1 , if set to 1, clear it 4325 * and try the whole sequence a few more times else done 4326 */ 4327 ret_val = 4328 e1000_flash_cycle_ich8lan(hw, 4329 ICH_FLASH_WRITE_COMMAND_TIMEOUT); 4330 4331 if (!ret_val) 4332 break; 4333 4334 /* If we're here, then things are most likely 4335 * completely hosed, but if the error condition 4336 * is detected, it won't hurt to give it another 4337 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. 4338 */ 4339 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4340 4341 if (hsfsts.hsf_status.flcerr) 4342 /* Repeat for some time before giving up. */ 4343 continue; 4344 if (!hsfsts.hsf_status.flcdone) { 4345 e_dbg("Timeout error - flash cycle did not complete.\n"); 4346 break; 4347 } 4348 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 4349 4350 return ret_val; 4351 } 4352 4353 /** 4354 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM 4355 * @hw: pointer to the HW structure 4356 * @offset: The index of the byte to read. 4357 * @data: The byte to write to the NVM. 4358 * 4359 * Writes a single byte to the NVM using the flash access registers. 4360 **/ 4361 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, 4362 u8 data) 4363 { 4364 u16 word = (u16)data; 4365 4366 return e1000_write_flash_data_ich8lan(hw, offset, 1, word); 4367 } 4368 4369 /** 4370 * e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM 4371 * @hw: pointer to the HW structure 4372 * @offset: The offset of the word to write. 4373 * @dword: The dword to write to the NVM. 4374 * 4375 * Writes a single dword to the NVM using the flash access registers. 4376 * Goes through a retry algorithm before giving up. 4377 **/ 4378 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw, 4379 u32 offset, u32 dword) 4380 { 4381 s32 ret_val; 4382 u16 program_retries; 4383 4384 /* Must convert word offset into bytes. */ 4385 offset <<= 1; 4386 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword); 4387 4388 if (!ret_val) 4389 return ret_val; 4390 for (program_retries = 0; program_retries < 100; program_retries++) { 4391 e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset); 4392 usleep_range(100, 200); 4393 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword); 4394 if (!ret_val) 4395 break; 4396 } 4397 if (program_retries == 100) 4398 return -E1000_ERR_NVM; 4399 4400 return 0; 4401 } 4402 4403 /** 4404 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM 4405 * @hw: pointer to the HW structure 4406 * @offset: The offset of the byte to write. 4407 * @byte: The byte to write to the NVM. 4408 * 4409 * Writes a single byte to the NVM using the flash access registers. 4410 * Goes through a retry algorithm before giving up. 4411 **/ 4412 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, 4413 u32 offset, u8 byte) 4414 { 4415 s32 ret_val; 4416 u16 program_retries; 4417 4418 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); 4419 if (!ret_val) 4420 return ret_val; 4421 4422 for (program_retries = 0; program_retries < 100; program_retries++) { 4423 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset); 4424 usleep_range(100, 200); 4425 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); 4426 if (!ret_val) 4427 break; 4428 } 4429 if (program_retries == 100) 4430 return -E1000_ERR_NVM; 4431 4432 return 0; 4433 } 4434 4435 /** 4436 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM 4437 * @hw: pointer to the HW structure 4438 * @bank: 0 for first bank, 1 for second bank, etc. 4439 * 4440 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based. 4441 * bank N is 4096 * N + flash_reg_addr. 4442 **/ 4443 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank) 4444 { 4445 struct e1000_nvm_info *nvm = &hw->nvm; 4446 union ich8_hws_flash_status hsfsts; 4447 union ich8_hws_flash_ctrl hsflctl; 4448 u32 flash_linear_addr; 4449 /* bank size is in 16bit words - adjust to bytes */ 4450 u32 flash_bank_size = nvm->flash_bank_size * 2; 4451 s32 ret_val; 4452 s32 count = 0; 4453 s32 j, iteration, sector_size; 4454 4455 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4456 4457 /* Determine HW Sector size: Read BERASE bits of hw flash status 4458 * register 4459 * 00: The Hw sector is 256 bytes, hence we need to erase 16 4460 * consecutive sectors. The start index for the nth Hw sector 4461 * can be calculated as = bank * 4096 + n * 256 4462 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. 4463 * The start index for the nth Hw sector can be calculated 4464 * as = bank * 4096 4465 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192 4466 * (ich9 only, otherwise error condition) 4467 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536 4468 */ 4469 switch (hsfsts.hsf_status.berasesz) { 4470 case 0: 4471 /* Hw sector size 256 */ 4472 sector_size = ICH_FLASH_SEG_SIZE_256; 4473 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256; 4474 break; 4475 case 1: 4476 sector_size = ICH_FLASH_SEG_SIZE_4K; 4477 iteration = 1; 4478 break; 4479 case 2: 4480 sector_size = ICH_FLASH_SEG_SIZE_8K; 4481 iteration = 1; 4482 break; 4483 case 3: 4484 sector_size = ICH_FLASH_SEG_SIZE_64K; 4485 iteration = 1; 4486 break; 4487 default: 4488 return -E1000_ERR_NVM; 4489 } 4490 4491 /* Start with the base address, then add the sector offset. */ 4492 flash_linear_addr = hw->nvm.flash_base_addr; 4493 flash_linear_addr += (bank) ? flash_bank_size : 0; 4494 4495 for (j = 0; j < iteration; j++) { 4496 do { 4497 u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT; 4498 4499 /* Steps */ 4500 ret_val = e1000_flash_cycle_init_ich8lan(hw); 4501 if (ret_val) 4502 return ret_val; 4503 4504 /* Write a value 11 (block Erase) in Flash 4505 * Cycle field in hw flash control 4506 */ 4507 if (hw->mac.type >= e1000_pch_spt) 4508 hsflctl.regval = 4509 er32flash(ICH_FLASH_HSFSTS) >> 16; 4510 else 4511 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 4512 4513 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; 4514 if (hw->mac.type >= e1000_pch_spt) 4515 ew32flash(ICH_FLASH_HSFSTS, 4516 hsflctl.regval << 16); 4517 else 4518 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 4519 4520 /* Write the last 24 bits of an index within the 4521 * block into Flash Linear address field in Flash 4522 * Address. 4523 */ 4524 flash_linear_addr += (j * sector_size); 4525 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 4526 4527 ret_val = e1000_flash_cycle_ich8lan(hw, timeout); 4528 if (!ret_val) 4529 break; 4530 4531 /* Check if FCERR is set to 1. If 1, 4532 * clear it and try the whole sequence 4533 * a few more times else Done 4534 */ 4535 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4536 if (hsfsts.hsf_status.flcerr) 4537 /* repeat for some time before giving up */ 4538 continue; 4539 else if (!hsfsts.hsf_status.flcdone) 4540 return ret_val; 4541 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT); 4542 } 4543 4544 return 0; 4545 } 4546 4547 /** 4548 * e1000_valid_led_default_ich8lan - Set the default LED settings 4549 * @hw: pointer to the HW structure 4550 * @data: Pointer to the LED settings 4551 * 4552 * Reads the LED default settings from the NVM to data. If the NVM LED 4553 * settings is all 0's or F's, set the LED default to a valid LED default 4554 * setting. 4555 **/ 4556 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data) 4557 { 4558 s32 ret_val; 4559 4560 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); 4561 if (ret_val) { 4562 e_dbg("NVM Read Error\n"); 4563 return ret_val; 4564 } 4565 4566 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) 4567 *data = ID_LED_DEFAULT_ICH8LAN; 4568 4569 return 0; 4570 } 4571 4572 /** 4573 * e1000_id_led_init_pchlan - store LED configurations 4574 * @hw: pointer to the HW structure 4575 * 4576 * PCH does not control LEDs via the LEDCTL register, rather it uses 4577 * the PHY LED configuration register. 4578 * 4579 * PCH also does not have an "always on" or "always off" mode which 4580 * complicates the ID feature. Instead of using the "on" mode to indicate 4581 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()), 4582 * use "link_up" mode. The LEDs will still ID on request if there is no 4583 * link based on logic in e1000_led_[on|off]_pchlan(). 4584 **/ 4585 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw) 4586 { 4587 struct e1000_mac_info *mac = &hw->mac; 4588 s32 ret_val; 4589 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP; 4590 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT; 4591 u16 data, i, temp, shift; 4592 4593 /* Get default ID LED modes */ 4594 ret_val = hw->nvm.ops.valid_led_default(hw, &data); 4595 if (ret_val) 4596 return ret_val; 4597 4598 mac->ledctl_default = er32(LEDCTL); 4599 mac->ledctl_mode1 = mac->ledctl_default; 4600 mac->ledctl_mode2 = mac->ledctl_default; 4601 4602 for (i = 0; i < 4; i++) { 4603 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK; 4604 shift = (i * 5); 4605 switch (temp) { 4606 case ID_LED_ON1_DEF2: 4607 case ID_LED_ON1_ON2: 4608 case ID_LED_ON1_OFF2: 4609 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); 4610 mac->ledctl_mode1 |= (ledctl_on << shift); 4611 break; 4612 case ID_LED_OFF1_DEF2: 4613 case ID_LED_OFF1_ON2: 4614 case ID_LED_OFF1_OFF2: 4615 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); 4616 mac->ledctl_mode1 |= (ledctl_off << shift); 4617 break; 4618 default: 4619 /* Do nothing */ 4620 break; 4621 } 4622 switch (temp) { 4623 case ID_LED_DEF1_ON2: 4624 case ID_LED_ON1_ON2: 4625 case ID_LED_OFF1_ON2: 4626 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); 4627 mac->ledctl_mode2 |= (ledctl_on << shift); 4628 break; 4629 case ID_LED_DEF1_OFF2: 4630 case ID_LED_ON1_OFF2: 4631 case ID_LED_OFF1_OFF2: 4632 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); 4633 mac->ledctl_mode2 |= (ledctl_off << shift); 4634 break; 4635 default: 4636 /* Do nothing */ 4637 break; 4638 } 4639 } 4640 4641 return 0; 4642 } 4643 4644 /** 4645 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width 4646 * @hw: pointer to the HW structure 4647 * 4648 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability 4649 * register, so the the bus width is hard coded. 4650 **/ 4651 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw) 4652 { 4653 struct e1000_bus_info *bus = &hw->bus; 4654 s32 ret_val; 4655 4656 ret_val = e1000e_get_bus_info_pcie(hw); 4657 4658 /* ICH devices are "PCI Express"-ish. They have 4659 * a configuration space, but do not contain 4660 * PCI Express Capability registers, so bus width 4661 * must be hardcoded. 4662 */ 4663 if (bus->width == e1000_bus_width_unknown) 4664 bus->width = e1000_bus_width_pcie_x1; 4665 4666 return ret_val; 4667 } 4668 4669 /** 4670 * e1000_reset_hw_ich8lan - Reset the hardware 4671 * @hw: pointer to the HW structure 4672 * 4673 * Does a full reset of the hardware which includes a reset of the PHY and 4674 * MAC. 4675 **/ 4676 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw) 4677 { 4678 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 4679 u16 kum_cfg; 4680 u32 ctrl, reg; 4681 s32 ret_val; 4682 4683 /* Prevent the PCI-E bus from sticking if there is no TLP connection 4684 * on the last TLP read/write transaction when MAC is reset. 4685 */ 4686 ret_val = e1000e_disable_pcie_master(hw); 4687 if (ret_val) 4688 e_dbg("PCI-E Master disable polling has failed.\n"); 4689 4690 e_dbg("Masking off all interrupts\n"); 4691 ew32(IMC, 0xffffffff); 4692 4693 /* Disable the Transmit and Receive units. Then delay to allow 4694 * any pending transactions to complete before we hit the MAC 4695 * with the global reset. 4696 */ 4697 ew32(RCTL, 0); 4698 ew32(TCTL, E1000_TCTL_PSP); 4699 e1e_flush(); 4700 4701 usleep_range(10000, 11000); 4702 4703 /* Workaround for ICH8 bit corruption issue in FIFO memory */ 4704 if (hw->mac.type == e1000_ich8lan) { 4705 /* Set Tx and Rx buffer allocation to 8k apiece. */ 4706 ew32(PBA, E1000_PBA_8K); 4707 /* Set Packet Buffer Size to 16k. */ 4708 ew32(PBS, E1000_PBS_16K); 4709 } 4710 4711 if (hw->mac.type == e1000_pchlan) { 4712 /* Save the NVM K1 bit setting */ 4713 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg); 4714 if (ret_val) 4715 return ret_val; 4716 4717 if (kum_cfg & E1000_NVM_K1_ENABLE) 4718 dev_spec->nvm_k1_enabled = true; 4719 else 4720 dev_spec->nvm_k1_enabled = false; 4721 } 4722 4723 ctrl = er32(CTRL); 4724 4725 if (!hw->phy.ops.check_reset_block(hw)) { 4726 /* Full-chip reset requires MAC and PHY reset at the same 4727 * time to make sure the interface between MAC and the 4728 * external PHY is reset. 4729 */ 4730 ctrl |= E1000_CTRL_PHY_RST; 4731 4732 /* Gate automatic PHY configuration by hardware on 4733 * non-managed 82579 4734 */ 4735 if ((hw->mac.type == e1000_pch2lan) && 4736 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) 4737 e1000_gate_hw_phy_config_ich8lan(hw, true); 4738 } 4739 ret_val = e1000_acquire_swflag_ich8lan(hw); 4740 e_dbg("Issuing a global reset to ich8lan\n"); 4741 ew32(CTRL, (ctrl | E1000_CTRL_RST)); 4742 /* cannot issue a flush here because it hangs the hardware */ 4743 msleep(20); 4744 4745 /* Set Phy Config Counter to 50msec */ 4746 if (hw->mac.type == e1000_pch2lan) { 4747 reg = er32(FEXTNVM3); 4748 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; 4749 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; 4750 ew32(FEXTNVM3, reg); 4751 } 4752 4753 if (!ret_val) 4754 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); 4755 4756 if (ctrl & E1000_CTRL_PHY_RST) { 4757 ret_val = hw->phy.ops.get_cfg_done(hw); 4758 if (ret_val) 4759 return ret_val; 4760 4761 ret_val = e1000_post_phy_reset_ich8lan(hw); 4762 if (ret_val) 4763 return ret_val; 4764 } 4765 4766 /* For PCH, this write will make sure that any noise 4767 * will be detected as a CRC error and be dropped rather than show up 4768 * as a bad packet to the DMA engine. 4769 */ 4770 if (hw->mac.type == e1000_pchlan) 4771 ew32(CRC_OFFSET, 0x65656565); 4772 4773 ew32(IMC, 0xffffffff); 4774 er32(ICR); 4775 4776 reg = er32(KABGTXD); 4777 reg |= E1000_KABGTXD_BGSQLBIAS; 4778 ew32(KABGTXD, reg); 4779 4780 return 0; 4781 } 4782 4783 /** 4784 * e1000_init_hw_ich8lan - Initialize the hardware 4785 * @hw: pointer to the HW structure 4786 * 4787 * Prepares the hardware for transmit and receive by doing the following: 4788 * - initialize hardware bits 4789 * - initialize LED identification 4790 * - setup receive address registers 4791 * - setup flow control 4792 * - setup transmit descriptors 4793 * - clear statistics 4794 **/ 4795 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw) 4796 { 4797 struct e1000_mac_info *mac = &hw->mac; 4798 u32 ctrl_ext, txdctl, snoop; 4799 s32 ret_val; 4800 u16 i; 4801 4802 e1000_initialize_hw_bits_ich8lan(hw); 4803 4804 /* Initialize identification LED */ 4805 ret_val = mac->ops.id_led_init(hw); 4806 /* An error is not fatal and we should not stop init due to this */ 4807 if (ret_val) 4808 e_dbg("Error initializing identification LED\n"); 4809 4810 /* Setup the receive address. */ 4811 e1000e_init_rx_addrs(hw, mac->rar_entry_count); 4812 4813 /* Zero out the Multicast HASH table */ 4814 e_dbg("Zeroing the MTA\n"); 4815 for (i = 0; i < mac->mta_reg_count; i++) 4816 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); 4817 4818 /* The 82578 Rx buffer will stall if wakeup is enabled in host and 4819 * the ME. Disable wakeup by clearing the host wakeup bit. 4820 * Reset the phy after disabling host wakeup to reset the Rx buffer. 4821 */ 4822 if (hw->phy.type == e1000_phy_82578) { 4823 e1e_rphy(hw, BM_PORT_GEN_CFG, &i); 4824 i &= ~BM_WUC_HOST_WU_BIT; 4825 e1e_wphy(hw, BM_PORT_GEN_CFG, i); 4826 ret_val = e1000_phy_hw_reset_ich8lan(hw); 4827 if (ret_val) 4828 return ret_val; 4829 } 4830 4831 /* Setup link and flow control */ 4832 ret_val = mac->ops.setup_link(hw); 4833 4834 /* Set the transmit descriptor write-back policy for both queues */ 4835 txdctl = er32(TXDCTL(0)); 4836 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) | 4837 E1000_TXDCTL_FULL_TX_DESC_WB); 4838 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) | 4839 E1000_TXDCTL_MAX_TX_DESC_PREFETCH); 4840 ew32(TXDCTL(0), txdctl); 4841 txdctl = er32(TXDCTL(1)); 4842 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) | 4843 E1000_TXDCTL_FULL_TX_DESC_WB); 4844 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) | 4845 E1000_TXDCTL_MAX_TX_DESC_PREFETCH); 4846 ew32(TXDCTL(1), txdctl); 4847 4848 /* ICH8 has opposite polarity of no_snoop bits. 4849 * By default, we should use snoop behavior. 4850 */ 4851 if (mac->type == e1000_ich8lan) 4852 snoop = PCIE_ICH8_SNOOP_ALL; 4853 else 4854 snoop = (u32)~(PCIE_NO_SNOOP_ALL); 4855 e1000e_set_pcie_no_snoop(hw, snoop); 4856 4857 ctrl_ext = er32(CTRL_EXT); 4858 ctrl_ext |= E1000_CTRL_EXT_RO_DIS; 4859 ew32(CTRL_EXT, ctrl_ext); 4860 4861 /* Clear all of the statistics registers (clear on read). It is 4862 * important that we do this after we have tried to establish link 4863 * because the symbol error count will increment wildly if there 4864 * is no link. 4865 */ 4866 e1000_clear_hw_cntrs_ich8lan(hw); 4867 4868 return ret_val; 4869 } 4870 4871 /** 4872 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits 4873 * @hw: pointer to the HW structure 4874 * 4875 * Sets/Clears required hardware bits necessary for correctly setting up the 4876 * hardware for transmit and receive. 4877 **/ 4878 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw) 4879 { 4880 u32 reg; 4881 4882 /* Extended Device Control */ 4883 reg = er32(CTRL_EXT); 4884 reg |= BIT(22); 4885 /* Enable PHY low-power state when MAC is at D3 w/o WoL */ 4886 if (hw->mac.type >= e1000_pchlan) 4887 reg |= E1000_CTRL_EXT_PHYPDEN; 4888 ew32(CTRL_EXT, reg); 4889 4890 /* Transmit Descriptor Control 0 */ 4891 reg = er32(TXDCTL(0)); 4892 reg |= BIT(22); 4893 ew32(TXDCTL(0), reg); 4894 4895 /* Transmit Descriptor Control 1 */ 4896 reg = er32(TXDCTL(1)); 4897 reg |= BIT(22); 4898 ew32(TXDCTL(1), reg); 4899 4900 /* Transmit Arbitration Control 0 */ 4901 reg = er32(TARC(0)); 4902 if (hw->mac.type == e1000_ich8lan) 4903 reg |= BIT(28) | BIT(29); 4904 reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27); 4905 ew32(TARC(0), reg); 4906 4907 /* Transmit Arbitration Control 1 */ 4908 reg = er32(TARC(1)); 4909 if (er32(TCTL) & E1000_TCTL_MULR) 4910 reg &= ~BIT(28); 4911 else 4912 reg |= BIT(28); 4913 reg |= BIT(24) | BIT(26) | BIT(30); 4914 ew32(TARC(1), reg); 4915 4916 /* Device Status */ 4917 if (hw->mac.type == e1000_ich8lan) { 4918 reg = er32(STATUS); 4919 reg &= ~BIT(31); 4920 ew32(STATUS, reg); 4921 } 4922 4923 /* work-around descriptor data corruption issue during nfs v2 udp 4924 * traffic, just disable the nfs filtering capability 4925 */ 4926 reg = er32(RFCTL); 4927 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS); 4928 4929 /* Disable IPv6 extension header parsing because some malformed 4930 * IPv6 headers can hang the Rx. 4931 */ 4932 if (hw->mac.type == e1000_ich8lan) 4933 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS); 4934 ew32(RFCTL, reg); 4935 4936 /* Enable ECC on Lynxpoint */ 4937 if (hw->mac.type >= e1000_pch_lpt) { 4938 reg = er32(PBECCSTS); 4939 reg |= E1000_PBECCSTS_ECC_ENABLE; 4940 ew32(PBECCSTS, reg); 4941 4942 reg = er32(CTRL); 4943 reg |= E1000_CTRL_MEHE; 4944 ew32(CTRL, reg); 4945 } 4946 } 4947 4948 /** 4949 * e1000_setup_link_ich8lan - Setup flow control and link settings 4950 * @hw: pointer to the HW structure 4951 * 4952 * Determines which flow control settings to use, then configures flow 4953 * control. Calls the appropriate media-specific link configuration 4954 * function. Assuming the adapter has a valid link partner, a valid link 4955 * should be established. Assumes the hardware has previously been reset 4956 * and the transmitter and receiver are not enabled. 4957 **/ 4958 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw) 4959 { 4960 s32 ret_val; 4961 4962 if (hw->phy.ops.check_reset_block(hw)) 4963 return 0; 4964 4965 /* ICH parts do not have a word in the NVM to determine 4966 * the default flow control setting, so we explicitly 4967 * set it to full. 4968 */ 4969 if (hw->fc.requested_mode == e1000_fc_default) { 4970 /* Workaround h/w hang when Tx flow control enabled */ 4971 if (hw->mac.type == e1000_pchlan) 4972 hw->fc.requested_mode = e1000_fc_rx_pause; 4973 else 4974 hw->fc.requested_mode = e1000_fc_full; 4975 } 4976 4977 /* Save off the requested flow control mode for use later. Depending 4978 * on the link partner's capabilities, we may or may not use this mode. 4979 */ 4980 hw->fc.current_mode = hw->fc.requested_mode; 4981 4982 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode); 4983 4984 /* Continue to configure the copper link. */ 4985 ret_val = hw->mac.ops.setup_physical_interface(hw); 4986 if (ret_val) 4987 return ret_val; 4988 4989 ew32(FCTTV, hw->fc.pause_time); 4990 if ((hw->phy.type == e1000_phy_82578) || 4991 (hw->phy.type == e1000_phy_82579) || 4992 (hw->phy.type == e1000_phy_i217) || 4993 (hw->phy.type == e1000_phy_82577)) { 4994 ew32(FCRTV_PCH, hw->fc.refresh_time); 4995 4996 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27), 4997 hw->fc.pause_time); 4998 if (ret_val) 4999 return ret_val; 5000 } 5001 5002 return e1000e_set_fc_watermarks(hw); 5003 } 5004 5005 /** 5006 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface 5007 * @hw: pointer to the HW structure 5008 * 5009 * Configures the kumeran interface to the PHY to wait the appropriate time 5010 * when polling the PHY, then call the generic setup_copper_link to finish 5011 * configuring the copper link. 5012 **/ 5013 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw) 5014 { 5015 u32 ctrl; 5016 s32 ret_val; 5017 u16 reg_data; 5018 5019 ctrl = er32(CTRL); 5020 ctrl |= E1000_CTRL_SLU; 5021 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 5022 ew32(CTRL, ctrl); 5023 5024 /* Set the mac to wait the maximum time between each iteration 5025 * and increase the max iterations when polling the phy; 5026 * this fixes erroneous timeouts at 10Mbps. 5027 */ 5028 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF); 5029 if (ret_val) 5030 return ret_val; 5031 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, 5032 ®_data); 5033 if (ret_val) 5034 return ret_val; 5035 reg_data |= 0x3F; 5036 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, 5037 reg_data); 5038 if (ret_val) 5039 return ret_val; 5040 5041 switch (hw->phy.type) { 5042 case e1000_phy_igp_3: 5043 ret_val = e1000e_copper_link_setup_igp(hw); 5044 if (ret_val) 5045 return ret_val; 5046 break; 5047 case e1000_phy_bm: 5048 case e1000_phy_82578: 5049 ret_val = e1000e_copper_link_setup_m88(hw); 5050 if (ret_val) 5051 return ret_val; 5052 break; 5053 case e1000_phy_82577: 5054 case e1000_phy_82579: 5055 ret_val = e1000_copper_link_setup_82577(hw); 5056 if (ret_val) 5057 return ret_val; 5058 break; 5059 case e1000_phy_ife: 5060 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, ®_data); 5061 if (ret_val) 5062 return ret_val; 5063 5064 reg_data &= ~IFE_PMC_AUTO_MDIX; 5065 5066 switch (hw->phy.mdix) { 5067 case 1: 5068 reg_data &= ~IFE_PMC_FORCE_MDIX; 5069 break; 5070 case 2: 5071 reg_data |= IFE_PMC_FORCE_MDIX; 5072 break; 5073 case 0: 5074 default: 5075 reg_data |= IFE_PMC_AUTO_MDIX; 5076 break; 5077 } 5078 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data); 5079 if (ret_val) 5080 return ret_val; 5081 break; 5082 default: 5083 break; 5084 } 5085 5086 return e1000e_setup_copper_link(hw); 5087 } 5088 5089 /** 5090 * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface 5091 * @hw: pointer to the HW structure 5092 * 5093 * Calls the PHY specific link setup function and then calls the 5094 * generic setup_copper_link to finish configuring the link for 5095 * Lynxpoint PCH devices 5096 **/ 5097 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw) 5098 { 5099 u32 ctrl; 5100 s32 ret_val; 5101 5102 ctrl = er32(CTRL); 5103 ctrl |= E1000_CTRL_SLU; 5104 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 5105 ew32(CTRL, ctrl); 5106 5107 ret_val = e1000_copper_link_setup_82577(hw); 5108 if (ret_val) 5109 return ret_val; 5110 5111 return e1000e_setup_copper_link(hw); 5112 } 5113 5114 /** 5115 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex 5116 * @hw: pointer to the HW structure 5117 * @speed: pointer to store current link speed 5118 * @duplex: pointer to store the current link duplex 5119 * 5120 * Calls the generic get_speed_and_duplex to retrieve the current link 5121 * information and then calls the Kumeran lock loss workaround for links at 5122 * gigabit speeds. 5123 **/ 5124 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed, 5125 u16 *duplex) 5126 { 5127 s32 ret_val; 5128 5129 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex); 5130 if (ret_val) 5131 return ret_val; 5132 5133 if ((hw->mac.type == e1000_ich8lan) && 5134 (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) { 5135 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw); 5136 } 5137 5138 return ret_val; 5139 } 5140 5141 /** 5142 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround 5143 * @hw: pointer to the HW structure 5144 * 5145 * Work-around for 82566 Kumeran PCS lock loss: 5146 * On link status change (i.e. PCI reset, speed change) and link is up and 5147 * speed is gigabit- 5148 * 0) if workaround is optionally disabled do nothing 5149 * 1) wait 1ms for Kumeran link to come up 5150 * 2) check Kumeran Diagnostic register PCS lock loss bit 5151 * 3) if not set the link is locked (all is good), otherwise... 5152 * 4) reset the PHY 5153 * 5) repeat up to 10 times 5154 * Note: this is only called for IGP3 copper when speed is 1gb. 5155 **/ 5156 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw) 5157 { 5158 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 5159 u32 phy_ctrl; 5160 s32 ret_val; 5161 u16 i, data; 5162 bool link; 5163 5164 if (!dev_spec->kmrn_lock_loss_workaround_enabled) 5165 return 0; 5166 5167 /* Make sure link is up before proceeding. If not just return. 5168 * Attempting this while link is negotiating fouled up link 5169 * stability 5170 */ 5171 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 5172 if (!link) 5173 return 0; 5174 5175 for (i = 0; i < 10; i++) { 5176 /* read once to clear */ 5177 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); 5178 if (ret_val) 5179 return ret_val; 5180 /* and again to get new status */ 5181 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); 5182 if (ret_val) 5183 return ret_val; 5184 5185 /* check for PCS lock */ 5186 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) 5187 return 0; 5188 5189 /* Issue PHY reset */ 5190 e1000_phy_hw_reset(hw); 5191 mdelay(5); 5192 } 5193 /* Disable GigE link negotiation */ 5194 phy_ctrl = er32(PHY_CTRL); 5195 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE | 5196 E1000_PHY_CTRL_NOND0A_GBE_DISABLE); 5197 ew32(PHY_CTRL, phy_ctrl); 5198 5199 /* Call gig speed drop workaround on Gig disable before accessing 5200 * any PHY registers 5201 */ 5202 e1000e_gig_downshift_workaround_ich8lan(hw); 5203 5204 /* unable to acquire PCS lock */ 5205 return -E1000_ERR_PHY; 5206 } 5207 5208 /** 5209 * e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state 5210 * @hw: pointer to the HW structure 5211 * @state: boolean value used to set the current Kumeran workaround state 5212 * 5213 * If ICH8, set the current Kumeran workaround state (enabled - true 5214 * /disabled - false). 5215 **/ 5216 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw, 5217 bool state) 5218 { 5219 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 5220 5221 if (hw->mac.type != e1000_ich8lan) { 5222 e_dbg("Workaround applies to ICH8 only.\n"); 5223 return; 5224 } 5225 5226 dev_spec->kmrn_lock_loss_workaround_enabled = state; 5227 } 5228 5229 /** 5230 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3 5231 * @hw: pointer to the HW structure 5232 * 5233 * Workaround for 82566 power-down on D3 entry: 5234 * 1) disable gigabit link 5235 * 2) write VR power-down enable 5236 * 3) read it back 5237 * Continue if successful, else issue LCD reset and repeat 5238 **/ 5239 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw) 5240 { 5241 u32 reg; 5242 u16 data; 5243 u8 retry = 0; 5244 5245 if (hw->phy.type != e1000_phy_igp_3) 5246 return; 5247 5248 /* Try the workaround twice (if needed) */ 5249 do { 5250 /* Disable link */ 5251 reg = er32(PHY_CTRL); 5252 reg |= (E1000_PHY_CTRL_GBE_DISABLE | 5253 E1000_PHY_CTRL_NOND0A_GBE_DISABLE); 5254 ew32(PHY_CTRL, reg); 5255 5256 /* Call gig speed drop workaround on Gig disable before 5257 * accessing any PHY registers 5258 */ 5259 if (hw->mac.type == e1000_ich8lan) 5260 e1000e_gig_downshift_workaround_ich8lan(hw); 5261 5262 /* Write VR power-down enable */ 5263 e1e_rphy(hw, IGP3_VR_CTRL, &data); 5264 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; 5265 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN); 5266 5267 /* Read it back and test */ 5268 e1e_rphy(hw, IGP3_VR_CTRL, &data); 5269 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; 5270 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry) 5271 break; 5272 5273 /* Issue PHY reset and repeat at most one more time */ 5274 reg = er32(CTRL); 5275 ew32(CTRL, reg | E1000_CTRL_PHY_RST); 5276 retry++; 5277 } while (retry); 5278 } 5279 5280 /** 5281 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working 5282 * @hw: pointer to the HW structure 5283 * 5284 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC), 5285 * LPLU, Gig disable, MDIC PHY reset): 5286 * 1) Set Kumeran Near-end loopback 5287 * 2) Clear Kumeran Near-end loopback 5288 * Should only be called for ICH8[m] devices with any 1G Phy. 5289 **/ 5290 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw) 5291 { 5292 s32 ret_val; 5293 u16 reg_data; 5294 5295 if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife)) 5296 return; 5297 5298 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, 5299 ®_data); 5300 if (ret_val) 5301 return; 5302 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK; 5303 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, 5304 reg_data); 5305 if (ret_val) 5306 return; 5307 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK; 5308 e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data); 5309 } 5310 5311 /** 5312 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx 5313 * @hw: pointer to the HW structure 5314 * 5315 * During S0 to Sx transition, it is possible the link remains at gig 5316 * instead of negotiating to a lower speed. Before going to Sx, set 5317 * 'Gig Disable' to force link speed negotiation to a lower speed based on 5318 * the LPLU setting in the NVM or custom setting. For PCH and newer parts, 5319 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also 5320 * needs to be written. 5321 * Parts that support (and are linked to a partner which support) EEE in 5322 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power 5323 * than 10Mbps w/o EEE. 5324 **/ 5325 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw) 5326 { 5327 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 5328 u32 phy_ctrl; 5329 s32 ret_val; 5330 5331 phy_ctrl = er32(PHY_CTRL); 5332 phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE; 5333 5334 if (hw->phy.type == e1000_phy_i217) { 5335 u16 phy_reg, device_id = hw->adapter->pdev->device; 5336 5337 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) || 5338 (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) || 5339 (device_id == E1000_DEV_ID_PCH_I218_LM3) || 5340 (device_id == E1000_DEV_ID_PCH_I218_V3) || 5341 (hw->mac.type >= e1000_pch_spt)) { 5342 u32 fextnvm6 = er32(FEXTNVM6); 5343 5344 ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK); 5345 } 5346 5347 ret_val = hw->phy.ops.acquire(hw); 5348 if (ret_val) 5349 goto out; 5350 5351 if (!dev_spec->eee_disable) { 5352 u16 eee_advert; 5353 5354 ret_val = 5355 e1000_read_emi_reg_locked(hw, 5356 I217_EEE_ADVERTISEMENT, 5357 &eee_advert); 5358 if (ret_val) 5359 goto release; 5360 5361 /* Disable LPLU if both link partners support 100BaseT 5362 * EEE and 100Full is advertised on both ends of the 5363 * link, and enable Auto Enable LPI since there will 5364 * be no driver to enable LPI while in Sx. 5365 */ 5366 if ((eee_advert & I82579_EEE_100_SUPPORTED) && 5367 (dev_spec->eee_lp_ability & 5368 I82579_EEE_100_SUPPORTED) && 5369 (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) { 5370 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU | 5371 E1000_PHY_CTRL_NOND0A_LPLU); 5372 5373 /* Set Auto Enable LPI after link up */ 5374 e1e_rphy_locked(hw, 5375 I217_LPI_GPIO_CTRL, &phy_reg); 5376 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI; 5377 e1e_wphy_locked(hw, 5378 I217_LPI_GPIO_CTRL, phy_reg); 5379 } 5380 } 5381 5382 /* For i217 Intel Rapid Start Technology support, 5383 * when the system is going into Sx and no manageability engine 5384 * is present, the driver must configure proxy to reset only on 5385 * power good. LPI (Low Power Idle) state must also reset only 5386 * on power good, as well as the MTA (Multicast table array). 5387 * The SMBus release must also be disabled on LCD reset. 5388 */ 5389 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 5390 /* Enable proxy to reset only on power good. */ 5391 e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg); 5392 phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE; 5393 e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg); 5394 5395 /* Set bit enable LPI (EEE) to reset only on 5396 * power good. 5397 */ 5398 e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg); 5399 phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET; 5400 e1e_wphy_locked(hw, I217_SxCTRL, phy_reg); 5401 5402 /* Disable the SMB release on LCD reset. */ 5403 e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg); 5404 phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE; 5405 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg); 5406 } 5407 5408 /* Enable MTA to reset for Intel Rapid Start Technology 5409 * Support 5410 */ 5411 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg); 5412 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET; 5413 e1e_wphy_locked(hw, I217_CGFREG, phy_reg); 5414 5415 release: 5416 hw->phy.ops.release(hw); 5417 } 5418 out: 5419 ew32(PHY_CTRL, phy_ctrl); 5420 5421 if (hw->mac.type == e1000_ich8lan) 5422 e1000e_gig_downshift_workaround_ich8lan(hw); 5423 5424 if (hw->mac.type >= e1000_pchlan) { 5425 e1000_oem_bits_config_ich8lan(hw, false); 5426 5427 /* Reset PHY to activate OEM bits on 82577/8 */ 5428 if (hw->mac.type == e1000_pchlan) 5429 e1000e_phy_hw_reset_generic(hw); 5430 5431 ret_val = hw->phy.ops.acquire(hw); 5432 if (ret_val) 5433 return; 5434 e1000_write_smbus_addr(hw); 5435 hw->phy.ops.release(hw); 5436 } 5437 } 5438 5439 /** 5440 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0 5441 * @hw: pointer to the HW structure 5442 * 5443 * During Sx to S0 transitions on non-managed devices or managed devices 5444 * on which PHY resets are not blocked, if the PHY registers cannot be 5445 * accessed properly by the s/w toggle the LANPHYPC value to power cycle 5446 * the PHY. 5447 * On i217, setup Intel Rapid Start Technology. 5448 **/ 5449 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw) 5450 { 5451 s32 ret_val; 5452 5453 if (hw->mac.type < e1000_pch2lan) 5454 return; 5455 5456 ret_val = e1000_init_phy_workarounds_pchlan(hw); 5457 if (ret_val) { 5458 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val); 5459 return; 5460 } 5461 5462 /* For i217 Intel Rapid Start Technology support when the system 5463 * is transitioning from Sx and no manageability engine is present 5464 * configure SMBus to restore on reset, disable proxy, and enable 5465 * the reset on MTA (Multicast table array). 5466 */ 5467 if (hw->phy.type == e1000_phy_i217) { 5468 u16 phy_reg; 5469 5470 ret_val = hw->phy.ops.acquire(hw); 5471 if (ret_val) { 5472 e_dbg("Failed to setup iRST\n"); 5473 return; 5474 } 5475 5476 /* Clear Auto Enable LPI after link up */ 5477 e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg); 5478 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI; 5479 e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg); 5480 5481 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 5482 /* Restore clear on SMB if no manageability engine 5483 * is present 5484 */ 5485 ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg); 5486 if (ret_val) 5487 goto release; 5488 phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE; 5489 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg); 5490 5491 /* Disable Proxy */ 5492 e1e_wphy_locked(hw, I217_PROXY_CTRL, 0); 5493 } 5494 /* Enable reset on MTA */ 5495 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg); 5496 if (ret_val) 5497 goto release; 5498 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET; 5499 e1e_wphy_locked(hw, I217_CGFREG, phy_reg); 5500 release: 5501 if (ret_val) 5502 e_dbg("Error %d in resume workarounds\n", ret_val); 5503 hw->phy.ops.release(hw); 5504 } 5505 } 5506 5507 /** 5508 * e1000_cleanup_led_ich8lan - Restore the default LED operation 5509 * @hw: pointer to the HW structure 5510 * 5511 * Return the LED back to the default configuration. 5512 **/ 5513 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw) 5514 { 5515 if (hw->phy.type == e1000_phy_ife) 5516 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); 5517 5518 ew32(LEDCTL, hw->mac.ledctl_default); 5519 return 0; 5520 } 5521 5522 /** 5523 * e1000_led_on_ich8lan - Turn LEDs on 5524 * @hw: pointer to the HW structure 5525 * 5526 * Turn on the LEDs. 5527 **/ 5528 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw) 5529 { 5530 if (hw->phy.type == e1000_phy_ife) 5531 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 5532 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); 5533 5534 ew32(LEDCTL, hw->mac.ledctl_mode2); 5535 return 0; 5536 } 5537 5538 /** 5539 * e1000_led_off_ich8lan - Turn LEDs off 5540 * @hw: pointer to the HW structure 5541 * 5542 * Turn off the LEDs. 5543 **/ 5544 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw) 5545 { 5546 if (hw->phy.type == e1000_phy_ife) 5547 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 5548 (IFE_PSCL_PROBE_MODE | 5549 IFE_PSCL_PROBE_LEDS_OFF)); 5550 5551 ew32(LEDCTL, hw->mac.ledctl_mode1); 5552 return 0; 5553 } 5554 5555 /** 5556 * e1000_setup_led_pchlan - Configures SW controllable LED 5557 * @hw: pointer to the HW structure 5558 * 5559 * This prepares the SW controllable LED for use. 5560 **/ 5561 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw) 5562 { 5563 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1); 5564 } 5565 5566 /** 5567 * e1000_cleanup_led_pchlan - Restore the default LED operation 5568 * @hw: pointer to the HW structure 5569 * 5570 * Return the LED back to the default configuration. 5571 **/ 5572 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw) 5573 { 5574 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default); 5575 } 5576 5577 /** 5578 * e1000_led_on_pchlan - Turn LEDs on 5579 * @hw: pointer to the HW structure 5580 * 5581 * Turn on the LEDs. 5582 **/ 5583 static s32 e1000_led_on_pchlan(struct e1000_hw *hw) 5584 { 5585 u16 data = (u16)hw->mac.ledctl_mode2; 5586 u32 i, led; 5587 5588 /* If no link, then turn LED on by setting the invert bit 5589 * for each LED that's mode is "link_up" in ledctl_mode2. 5590 */ 5591 if (!(er32(STATUS) & E1000_STATUS_LU)) { 5592 for (i = 0; i < 3; i++) { 5593 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; 5594 if ((led & E1000_PHY_LED0_MODE_MASK) != 5595 E1000_LEDCTL_MODE_LINK_UP) 5596 continue; 5597 if (led & E1000_PHY_LED0_IVRT) 5598 data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); 5599 else 5600 data |= (E1000_PHY_LED0_IVRT << (i * 5)); 5601 } 5602 } 5603 5604 return e1e_wphy(hw, HV_LED_CONFIG, data); 5605 } 5606 5607 /** 5608 * e1000_led_off_pchlan - Turn LEDs off 5609 * @hw: pointer to the HW structure 5610 * 5611 * Turn off the LEDs. 5612 **/ 5613 static s32 e1000_led_off_pchlan(struct e1000_hw *hw) 5614 { 5615 u16 data = (u16)hw->mac.ledctl_mode1; 5616 u32 i, led; 5617 5618 /* If no link, then turn LED off by clearing the invert bit 5619 * for each LED that's mode is "link_up" in ledctl_mode1. 5620 */ 5621 if (!(er32(STATUS) & E1000_STATUS_LU)) { 5622 for (i = 0; i < 3; i++) { 5623 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; 5624 if ((led & E1000_PHY_LED0_MODE_MASK) != 5625 E1000_LEDCTL_MODE_LINK_UP) 5626 continue; 5627 if (led & E1000_PHY_LED0_IVRT) 5628 data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); 5629 else 5630 data |= (E1000_PHY_LED0_IVRT << (i * 5)); 5631 } 5632 } 5633 5634 return e1e_wphy(hw, HV_LED_CONFIG, data); 5635 } 5636 5637 /** 5638 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset 5639 * @hw: pointer to the HW structure 5640 * 5641 * Read appropriate register for the config done bit for completion status 5642 * and configure the PHY through s/w for EEPROM-less parts. 5643 * 5644 * NOTE: some silicon which is EEPROM-less will fail trying to read the 5645 * config done bit, so only an error is logged and continues. If we were 5646 * to return with error, EEPROM-less silicon would not be able to be reset 5647 * or change link. 5648 **/ 5649 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw) 5650 { 5651 s32 ret_val = 0; 5652 u32 bank = 0; 5653 u32 status; 5654 5655 e1000e_get_cfg_done_generic(hw); 5656 5657 /* Wait for indication from h/w that it has completed basic config */ 5658 if (hw->mac.type >= e1000_ich10lan) { 5659 e1000_lan_init_done_ich8lan(hw); 5660 } else { 5661 ret_val = e1000e_get_auto_rd_done(hw); 5662 if (ret_val) { 5663 /* When auto config read does not complete, do not 5664 * return with an error. This can happen in situations 5665 * where there is no eeprom and prevents getting link. 5666 */ 5667 e_dbg("Auto Read Done did not complete\n"); 5668 ret_val = 0; 5669 } 5670 } 5671 5672 /* Clear PHY Reset Asserted bit */ 5673 status = er32(STATUS); 5674 if (status & E1000_STATUS_PHYRA) 5675 ew32(STATUS, status & ~E1000_STATUS_PHYRA); 5676 else 5677 e_dbg("PHY Reset Asserted not set - needs delay\n"); 5678 5679 /* If EEPROM is not marked present, init the IGP 3 PHY manually */ 5680 if (hw->mac.type <= e1000_ich9lan) { 5681 if (!(er32(EECD) & E1000_EECD_PRES) && 5682 (hw->phy.type == e1000_phy_igp_3)) { 5683 e1000e_phy_init_script_igp3(hw); 5684 } 5685 } else { 5686 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) { 5687 /* Maybe we should do a basic PHY config */ 5688 e_dbg("EEPROM not present\n"); 5689 ret_val = -E1000_ERR_CONFIG; 5690 } 5691 } 5692 5693 return ret_val; 5694 } 5695 5696 /** 5697 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down 5698 * @hw: pointer to the HW structure 5699 * 5700 * In the case of a PHY power down to save power, or to turn off link during a 5701 * driver unload, or wake on lan is not enabled, remove the link. 5702 **/ 5703 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw) 5704 { 5705 /* If the management interface is not enabled, then power down */ 5706 if (!(hw->mac.ops.check_mng_mode(hw) || 5707 hw->phy.ops.check_reset_block(hw))) 5708 e1000_power_down_phy_copper(hw); 5709 } 5710 5711 /** 5712 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters 5713 * @hw: pointer to the HW structure 5714 * 5715 * Clears hardware counters specific to the silicon family and calls 5716 * clear_hw_cntrs_generic to clear all general purpose counters. 5717 **/ 5718 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw) 5719 { 5720 u16 phy_data; 5721 s32 ret_val; 5722 5723 e1000e_clear_hw_cntrs_base(hw); 5724 5725 er32(ALGNERRC); 5726 er32(RXERRC); 5727 er32(TNCRS); 5728 er32(CEXTERR); 5729 er32(TSCTC); 5730 er32(TSCTFC); 5731 5732 er32(MGTPRC); 5733 er32(MGTPDC); 5734 er32(MGTPTC); 5735 5736 er32(IAC); 5737 er32(ICRXOC); 5738 5739 /* Clear PHY statistics registers */ 5740 if ((hw->phy.type == e1000_phy_82578) || 5741 (hw->phy.type == e1000_phy_82579) || 5742 (hw->phy.type == e1000_phy_i217) || 5743 (hw->phy.type == e1000_phy_82577)) { 5744 ret_val = hw->phy.ops.acquire(hw); 5745 if (ret_val) 5746 return; 5747 ret_val = hw->phy.ops.set_page(hw, 5748 HV_STATS_PAGE << IGP_PAGE_SHIFT); 5749 if (ret_val) 5750 goto release; 5751 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data); 5752 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data); 5753 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data); 5754 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data); 5755 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data); 5756 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data); 5757 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data); 5758 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data); 5759 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data); 5760 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data); 5761 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data); 5762 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data); 5763 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data); 5764 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data); 5765 release: 5766 hw->phy.ops.release(hw); 5767 } 5768 } 5769 5770 static const struct e1000_mac_operations ich8_mac_ops = { 5771 /* check_mng_mode dependent on mac type */ 5772 .check_for_link = e1000_check_for_copper_link_ich8lan, 5773 /* cleanup_led dependent on mac type */ 5774 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan, 5775 .get_bus_info = e1000_get_bus_info_ich8lan, 5776 .set_lan_id = e1000_set_lan_id_single_port, 5777 .get_link_up_info = e1000_get_link_up_info_ich8lan, 5778 /* led_on dependent on mac type */ 5779 /* led_off dependent on mac type */ 5780 .update_mc_addr_list = e1000e_update_mc_addr_list_generic, 5781 .reset_hw = e1000_reset_hw_ich8lan, 5782 .init_hw = e1000_init_hw_ich8lan, 5783 .setup_link = e1000_setup_link_ich8lan, 5784 .setup_physical_interface = e1000_setup_copper_link_ich8lan, 5785 /* id_led_init dependent on mac type */ 5786 .config_collision_dist = e1000e_config_collision_dist_generic, 5787 .rar_set = e1000e_rar_set_generic, 5788 .rar_get_count = e1000e_rar_get_count_generic, 5789 }; 5790 5791 static const struct e1000_phy_operations ich8_phy_ops = { 5792 .acquire = e1000_acquire_swflag_ich8lan, 5793 .check_reset_block = e1000_check_reset_block_ich8lan, 5794 .commit = NULL, 5795 .get_cfg_done = e1000_get_cfg_done_ich8lan, 5796 .get_cable_length = e1000e_get_cable_length_igp_2, 5797 .read_reg = e1000e_read_phy_reg_igp, 5798 .release = e1000_release_swflag_ich8lan, 5799 .reset = e1000_phy_hw_reset_ich8lan, 5800 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan, 5801 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan, 5802 .write_reg = e1000e_write_phy_reg_igp, 5803 }; 5804 5805 static const struct e1000_nvm_operations ich8_nvm_ops = { 5806 .acquire = e1000_acquire_nvm_ich8lan, 5807 .read = e1000_read_nvm_ich8lan, 5808 .release = e1000_release_nvm_ich8lan, 5809 .reload = e1000e_reload_nvm_generic, 5810 .update = e1000_update_nvm_checksum_ich8lan, 5811 .valid_led_default = e1000_valid_led_default_ich8lan, 5812 .validate = e1000_validate_nvm_checksum_ich8lan, 5813 .write = e1000_write_nvm_ich8lan, 5814 }; 5815 5816 static const struct e1000_nvm_operations spt_nvm_ops = { 5817 .acquire = e1000_acquire_nvm_ich8lan, 5818 .release = e1000_release_nvm_ich8lan, 5819 .read = e1000_read_nvm_spt, 5820 .update = e1000_update_nvm_checksum_spt, 5821 .reload = e1000e_reload_nvm_generic, 5822 .valid_led_default = e1000_valid_led_default_ich8lan, 5823 .validate = e1000_validate_nvm_checksum_ich8lan, 5824 .write = e1000_write_nvm_ich8lan, 5825 }; 5826 5827 const struct e1000_info e1000_ich8_info = { 5828 .mac = e1000_ich8lan, 5829 .flags = FLAG_HAS_WOL 5830 | FLAG_IS_ICH 5831 | FLAG_HAS_CTRLEXT_ON_LOAD 5832 | FLAG_HAS_AMT 5833 | FLAG_HAS_FLASH 5834 | FLAG_APME_IN_WUC, 5835 .pba = 8, 5836 .max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN, 5837 .get_variants = e1000_get_variants_ich8lan, 5838 .mac_ops = &ich8_mac_ops, 5839 .phy_ops = &ich8_phy_ops, 5840 .nvm_ops = &ich8_nvm_ops, 5841 }; 5842 5843 const struct e1000_info e1000_ich9_info = { 5844 .mac = e1000_ich9lan, 5845 .flags = FLAG_HAS_JUMBO_FRAMES 5846 | FLAG_IS_ICH 5847 | FLAG_HAS_WOL 5848 | FLAG_HAS_CTRLEXT_ON_LOAD 5849 | FLAG_HAS_AMT 5850 | FLAG_HAS_FLASH 5851 | FLAG_APME_IN_WUC, 5852 .pba = 18, 5853 .max_hw_frame_size = DEFAULT_JUMBO, 5854 .get_variants = e1000_get_variants_ich8lan, 5855 .mac_ops = &ich8_mac_ops, 5856 .phy_ops = &ich8_phy_ops, 5857 .nvm_ops = &ich8_nvm_ops, 5858 }; 5859 5860 const struct e1000_info e1000_ich10_info = { 5861 .mac = e1000_ich10lan, 5862 .flags = FLAG_HAS_JUMBO_FRAMES 5863 | FLAG_IS_ICH 5864 | FLAG_HAS_WOL 5865 | FLAG_HAS_CTRLEXT_ON_LOAD 5866 | FLAG_HAS_AMT 5867 | FLAG_HAS_FLASH 5868 | FLAG_APME_IN_WUC, 5869 .pba = 18, 5870 .max_hw_frame_size = DEFAULT_JUMBO, 5871 .get_variants = e1000_get_variants_ich8lan, 5872 .mac_ops = &ich8_mac_ops, 5873 .phy_ops = &ich8_phy_ops, 5874 .nvm_ops = &ich8_nvm_ops, 5875 }; 5876 5877 const struct e1000_info e1000_pch_info = { 5878 .mac = e1000_pchlan, 5879 .flags = FLAG_IS_ICH 5880 | FLAG_HAS_WOL 5881 | FLAG_HAS_CTRLEXT_ON_LOAD 5882 | FLAG_HAS_AMT 5883 | FLAG_HAS_FLASH 5884 | FLAG_HAS_JUMBO_FRAMES 5885 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */ 5886 | FLAG_APME_IN_WUC, 5887 .flags2 = FLAG2_HAS_PHY_STATS, 5888 .pba = 26, 5889 .max_hw_frame_size = 4096, 5890 .get_variants = e1000_get_variants_ich8lan, 5891 .mac_ops = &ich8_mac_ops, 5892 .phy_ops = &ich8_phy_ops, 5893 .nvm_ops = &ich8_nvm_ops, 5894 }; 5895 5896 const struct e1000_info e1000_pch2_info = { 5897 .mac = e1000_pch2lan, 5898 .flags = FLAG_IS_ICH 5899 | FLAG_HAS_WOL 5900 | FLAG_HAS_HW_TIMESTAMP 5901 | FLAG_HAS_CTRLEXT_ON_LOAD 5902 | FLAG_HAS_AMT 5903 | FLAG_HAS_FLASH 5904 | FLAG_HAS_JUMBO_FRAMES 5905 | FLAG_APME_IN_WUC, 5906 .flags2 = FLAG2_HAS_PHY_STATS 5907 | FLAG2_HAS_EEE 5908 | FLAG2_CHECK_SYSTIM_OVERFLOW, 5909 .pba = 26, 5910 .max_hw_frame_size = 9022, 5911 .get_variants = e1000_get_variants_ich8lan, 5912 .mac_ops = &ich8_mac_ops, 5913 .phy_ops = &ich8_phy_ops, 5914 .nvm_ops = &ich8_nvm_ops, 5915 }; 5916 5917 const struct e1000_info e1000_pch_lpt_info = { 5918 .mac = e1000_pch_lpt, 5919 .flags = FLAG_IS_ICH 5920 | FLAG_HAS_WOL 5921 | FLAG_HAS_HW_TIMESTAMP 5922 | FLAG_HAS_CTRLEXT_ON_LOAD 5923 | FLAG_HAS_AMT 5924 | FLAG_HAS_FLASH 5925 | FLAG_HAS_JUMBO_FRAMES 5926 | FLAG_APME_IN_WUC, 5927 .flags2 = FLAG2_HAS_PHY_STATS 5928 | FLAG2_HAS_EEE 5929 | FLAG2_CHECK_SYSTIM_OVERFLOW, 5930 .pba = 26, 5931 .max_hw_frame_size = 9022, 5932 .get_variants = e1000_get_variants_ich8lan, 5933 .mac_ops = &ich8_mac_ops, 5934 .phy_ops = &ich8_phy_ops, 5935 .nvm_ops = &ich8_nvm_ops, 5936 }; 5937 5938 const struct e1000_info e1000_pch_spt_info = { 5939 .mac = e1000_pch_spt, 5940 .flags = FLAG_IS_ICH 5941 | FLAG_HAS_WOL 5942 | FLAG_HAS_HW_TIMESTAMP 5943 | FLAG_HAS_CTRLEXT_ON_LOAD 5944 | FLAG_HAS_AMT 5945 | FLAG_HAS_FLASH 5946 | FLAG_HAS_JUMBO_FRAMES 5947 | FLAG_APME_IN_WUC, 5948 .flags2 = FLAG2_HAS_PHY_STATS 5949 | FLAG2_HAS_EEE, 5950 .pba = 26, 5951 .max_hw_frame_size = 9022, 5952 .get_variants = e1000_get_variants_ich8lan, 5953 .mac_ops = &ich8_mac_ops, 5954 .phy_ops = &ich8_phy_ops, 5955 .nvm_ops = &spt_nvm_ops, 5956 }; 5957 5958 const struct e1000_info e1000_pch_cnp_info = { 5959 .mac = e1000_pch_cnp, 5960 .flags = FLAG_IS_ICH 5961 | FLAG_HAS_WOL 5962 | FLAG_HAS_HW_TIMESTAMP 5963 | FLAG_HAS_CTRLEXT_ON_LOAD 5964 | FLAG_HAS_AMT 5965 | FLAG_HAS_FLASH 5966 | FLAG_HAS_JUMBO_FRAMES 5967 | FLAG_APME_IN_WUC, 5968 .flags2 = FLAG2_HAS_PHY_STATS 5969 | FLAG2_HAS_EEE, 5970 .pba = 26, 5971 .max_hw_frame_size = 9022, 5972 .get_variants = e1000_get_variants_ich8lan, 5973 .mac_ops = &ich8_mac_ops, 5974 .phy_ops = &ich8_phy_ops, 5975 .nvm_ops = &spt_nvm_ops, 5976 }; 5977