xref: /linux/drivers/net/ethernet/intel/e1000e/e1000.h (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21 
22 /* Linux PRO/1000 Ethernet Driver main header file */
23 
24 #ifndef _E1000_H_
25 #define _E1000_H_
26 
27 #include <linux/bitops.h>
28 #include <linux/types.h>
29 #include <linux/timer.h>
30 #include <linux/workqueue.h>
31 #include <linux/io.h>
32 #include <linux/netdevice.h>
33 #include <linux/pci.h>
34 #include <linux/pci-aspm.h>
35 #include <linux/crc32.h>
36 #include <linux/if_vlan.h>
37 #include <linux/timecounter.h>
38 #include <linux/net_tstamp.h>
39 #include <linux/ptp_clock_kernel.h>
40 #include <linux/ptp_classify.h>
41 #include <linux/mii.h>
42 #include <linux/mdio.h>
43 #include <linux/pm_qos.h>
44 #include "hw.h"
45 
46 struct e1000_info;
47 
48 #define e_dbg(format, arg...) \
49 	netdev_dbg(hw->adapter->netdev, format, ## arg)
50 #define e_err(format, arg...) \
51 	netdev_err(adapter->netdev, format, ## arg)
52 #define e_info(format, arg...) \
53 	netdev_info(adapter->netdev, format, ## arg)
54 #define e_warn(format, arg...) \
55 	netdev_warn(adapter->netdev, format, ## arg)
56 #define e_notice(format, arg...) \
57 	netdev_notice(adapter->netdev, format, ## arg)
58 
59 /* Interrupt modes, as used by the IntMode parameter */
60 #define E1000E_INT_MODE_LEGACY		0
61 #define E1000E_INT_MODE_MSI		1
62 #define E1000E_INT_MODE_MSIX		2
63 
64 /* Tx/Rx descriptor defines */
65 #define E1000_DEFAULT_TXD		256
66 #define E1000_MAX_TXD			4096
67 #define E1000_MIN_TXD			64
68 
69 #define E1000_DEFAULT_RXD		256
70 #define E1000_MAX_RXD			4096
71 #define E1000_MIN_RXD			64
72 
73 #define E1000_MIN_ITR_USECS		10 /* 100000 irq/sec */
74 #define E1000_MAX_ITR_USECS		10000 /* 100    irq/sec */
75 
76 #define E1000_FC_PAUSE_TIME		0x0680 /* 858 usec */
77 
78 /* How many Tx Descriptors do we need to call netif_wake_queue ? */
79 /* How many Rx Buffers do we bundle into one write to the hardware ? */
80 #define E1000_RX_BUFFER_WRITE		16 /* Must be power of 2 */
81 
82 #define AUTO_ALL_MODES			0
83 #define E1000_EEPROM_APME		0x0400
84 
85 #define E1000_MNG_VLAN_NONE		(-1)
86 
87 #define DEFAULT_JUMBO			9234
88 
89 /* Time to wait before putting the device into D3 if there's no link (in ms). */
90 #define LINK_TIMEOUT		100
91 
92 /* Count for polling __E1000_RESET condition every 10-20msec.
93  * Experimentation has shown the reset can take approximately 210msec.
94  */
95 #define E1000_CHECK_RESET_COUNT		25
96 
97 #define DEFAULT_RDTR			0
98 #define DEFAULT_RADV			8
99 #define BURST_RDTR			0x20
100 #define BURST_RADV			0x20
101 #define PCICFG_DESC_RING_STATUS		0xe4
102 #define FLUSH_DESC_REQUIRED		0x100
103 
104 /* in the case of WTHRESH, it appears at least the 82571/2 hardware
105  * writes back 4 descriptors when WTHRESH=5, and 3 descriptors when
106  * WTHRESH=4, so a setting of 5 gives the most efficient bus
107  * utilization but to avoid possible Tx stalls, set it to 1
108  */
109 #define E1000_TXDCTL_DMA_BURST_ENABLE                          \
110 	(E1000_TXDCTL_GRAN | /* set descriptor granularity */  \
111 	 E1000_TXDCTL_COUNT_DESC |                             \
112 	 (1u << 16) | /* wthresh must be +1 more than desired */\
113 	 (1u << 8)  | /* hthresh */                             \
114 	 0x1f)        /* pthresh */
115 
116 #define E1000_RXDCTL_DMA_BURST_ENABLE                          \
117 	(0x01000000 | /* set descriptor granularity */         \
118 	 (4u << 16) | /* set writeback threshold    */         \
119 	 (4u << 8)  | /* set prefetch threshold     */         \
120 	 0x20)        /* set hthresh                */
121 
122 #define E1000_TIDV_FPD BIT(31)
123 #define E1000_RDTR_FPD BIT(31)
124 
125 enum e1000_boards {
126 	board_82571,
127 	board_82572,
128 	board_82573,
129 	board_82574,
130 	board_82583,
131 	board_80003es2lan,
132 	board_ich8lan,
133 	board_ich9lan,
134 	board_ich10lan,
135 	board_pchlan,
136 	board_pch2lan,
137 	board_pch_lpt,
138 	board_pch_spt
139 };
140 
141 struct e1000_ps_page {
142 	struct page *page;
143 	u64 dma; /* must be u64 - written to hw */
144 };
145 
146 /* wrappers around a pointer to a socket buffer,
147  * so a DMA handle can be stored along with the buffer
148  */
149 struct e1000_buffer {
150 	dma_addr_t dma;
151 	struct sk_buff *skb;
152 	union {
153 		/* Tx */
154 		struct {
155 			unsigned long time_stamp;
156 			u16 length;
157 			u16 next_to_watch;
158 			unsigned int segs;
159 			unsigned int bytecount;
160 			u16 mapped_as_page;
161 		};
162 		/* Rx */
163 		struct {
164 			/* arrays of page information for packet split */
165 			struct e1000_ps_page *ps_pages;
166 			struct page *page;
167 		};
168 	};
169 };
170 
171 struct e1000_ring {
172 	struct e1000_adapter *adapter;	/* back pointer to adapter */
173 	void *desc;			/* pointer to ring memory  */
174 	dma_addr_t dma;			/* phys address of ring    */
175 	unsigned int size;		/* length of ring in bytes */
176 	unsigned int count;		/* number of desc. in ring */
177 
178 	u16 next_to_use;
179 	u16 next_to_clean;
180 
181 	void __iomem *head;
182 	void __iomem *tail;
183 
184 	/* array of buffer information structs */
185 	struct e1000_buffer *buffer_info;
186 
187 	char name[IFNAMSIZ + 5];
188 	u32 ims_val;
189 	u32 itr_val;
190 	void __iomem *itr_register;
191 	int set_itr;
192 
193 	struct sk_buff *rx_skb_top;
194 };
195 
196 /* PHY register snapshot values */
197 struct e1000_phy_regs {
198 	u16 bmcr;		/* basic mode control register    */
199 	u16 bmsr;		/* basic mode status register     */
200 	u16 advertise;		/* auto-negotiation advertisement */
201 	u16 lpa;		/* link partner ability register  */
202 	u16 expansion;		/* auto-negotiation expansion reg */
203 	u16 ctrl1000;		/* 1000BASE-T control register    */
204 	u16 stat1000;		/* 1000BASE-T status register     */
205 	u16 estatus;		/* extended status register       */
206 };
207 
208 /* board specific private data structure */
209 struct e1000_adapter {
210 	struct timer_list watchdog_timer;
211 	struct timer_list phy_info_timer;
212 	struct timer_list blink_timer;
213 
214 	struct work_struct reset_task;
215 	struct work_struct watchdog_task;
216 
217 	const struct e1000_info *ei;
218 
219 	unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
220 	u32 bd_number;
221 	u32 rx_buffer_len;
222 	u16 mng_vlan_id;
223 	u16 link_speed;
224 	u16 link_duplex;
225 	u16 eeprom_vers;
226 
227 	/* track device up/down/testing state */
228 	unsigned long state;
229 
230 	/* Interrupt Throttle Rate */
231 	u32 itr;
232 	u32 itr_setting;
233 	u16 tx_itr;
234 	u16 rx_itr;
235 
236 	/* Tx - one ring per active queue */
237 	struct e1000_ring *tx_ring ____cacheline_aligned_in_smp;
238 	u32 tx_fifo_limit;
239 
240 	struct napi_struct napi;
241 
242 	unsigned int uncorr_errors;	/* uncorrectable ECC errors */
243 	unsigned int corr_errors;	/* correctable ECC errors */
244 	unsigned int restart_queue;
245 	u32 txd_cmd;
246 
247 	bool detect_tx_hung;
248 	bool tx_hang_recheck;
249 	u8 tx_timeout_factor;
250 
251 	u32 tx_int_delay;
252 	u32 tx_abs_int_delay;
253 
254 	unsigned int total_tx_bytes;
255 	unsigned int total_tx_packets;
256 	unsigned int total_rx_bytes;
257 	unsigned int total_rx_packets;
258 
259 	/* Tx stats */
260 	u64 tpt_old;
261 	u64 colc_old;
262 	u32 gotc;
263 	u64 gotc_old;
264 	u32 tx_timeout_count;
265 	u32 tx_fifo_head;
266 	u32 tx_head_addr;
267 	u32 tx_fifo_size;
268 	u32 tx_dma_failed;
269 	u32 tx_hwtstamp_timeouts;
270 
271 	/* Rx */
272 	bool (*clean_rx)(struct e1000_ring *ring, int *work_done,
273 			 int work_to_do) ____cacheline_aligned_in_smp;
274 	void (*alloc_rx_buf)(struct e1000_ring *ring, int cleaned_count,
275 			     gfp_t gfp);
276 	struct e1000_ring *rx_ring;
277 
278 	u32 rx_int_delay;
279 	u32 rx_abs_int_delay;
280 
281 	/* Rx stats */
282 	u64 hw_csum_err;
283 	u64 hw_csum_good;
284 	u64 rx_hdr_split;
285 	u32 gorc;
286 	u64 gorc_old;
287 	u32 alloc_rx_buff_failed;
288 	u32 rx_dma_failed;
289 	u32 rx_hwtstamp_cleared;
290 
291 	unsigned int rx_ps_pages;
292 	u16 rx_ps_bsize0;
293 	u32 max_frame_size;
294 	u32 min_frame_size;
295 
296 	/* OS defined structs */
297 	struct net_device *netdev;
298 	struct pci_dev *pdev;
299 
300 	/* structs defined in e1000_hw.h */
301 	struct e1000_hw hw;
302 
303 	spinlock_t stats64_lock;	/* protects statistics counters */
304 	struct e1000_hw_stats stats;
305 	struct e1000_phy_info phy_info;
306 	struct e1000_phy_stats phy_stats;
307 
308 	/* Snapshot of PHY registers */
309 	struct e1000_phy_regs phy_regs;
310 
311 	struct e1000_ring test_tx_ring;
312 	struct e1000_ring test_rx_ring;
313 	u32 test_icr;
314 
315 	u32 msg_enable;
316 	unsigned int num_vectors;
317 	struct msix_entry *msix_entries;
318 	int int_mode;
319 	u32 eiac_mask;
320 
321 	u32 eeprom_wol;
322 	u32 wol;
323 	u32 pba;
324 	u32 max_hw_frame_size;
325 
326 	bool fc_autoneg;
327 
328 	unsigned int flags;
329 	unsigned int flags2;
330 	struct work_struct downshift_task;
331 	struct work_struct update_phy_task;
332 	struct work_struct print_hang_task;
333 
334 	int phy_hang_count;
335 
336 	u16 tx_ring_count;
337 	u16 rx_ring_count;
338 
339 	struct hwtstamp_config hwtstamp_config;
340 	struct delayed_work systim_overflow_work;
341 	struct sk_buff *tx_hwtstamp_skb;
342 	unsigned long tx_hwtstamp_start;
343 	struct work_struct tx_hwtstamp_work;
344 	spinlock_t systim_lock;	/* protects SYSTIML/H regsters */
345 	struct cyclecounter cc;
346 	struct timecounter tc;
347 	struct ptp_clock *ptp_clock;
348 	struct ptp_clock_info ptp_clock_info;
349 	struct pm_qos_request pm_qos_req;
350 	s32 ptp_delta;
351 
352 	u16 eee_advert;
353 };
354 
355 struct e1000_info {
356 	enum e1000_mac_type	mac;
357 	unsigned int		flags;
358 	unsigned int		flags2;
359 	u32			pba;
360 	u32			max_hw_frame_size;
361 	s32			(*get_variants)(struct e1000_adapter *);
362 	const struct e1000_mac_operations *mac_ops;
363 	const struct e1000_phy_operations *phy_ops;
364 	const struct e1000_nvm_operations *nvm_ops;
365 };
366 
367 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca);
368 
369 /* The system time is maintained by a 64-bit counter comprised of the 32-bit
370  * SYSTIMH and SYSTIML registers.  How the counter increments (and therefore
371  * its resolution) is based on the contents of the TIMINCA register - it
372  * increments every incperiod (bits 31:24) clock ticks by incvalue (bits 23:0).
373  * For the best accuracy, the incperiod should be as small as possible.  The
374  * incvalue is scaled by a factor as large as possible (while still fitting
375  * in bits 23:0) so that relatively small clock corrections can be made.
376  *
377  * As a result, a shift of INCVALUE_SHIFT_n is used to fit a value of
378  * INCVALUE_n into the TIMINCA register allowing 32+8+(24-INCVALUE_SHIFT_n)
379  * bits to count nanoseconds leaving the rest for fractional nonseconds.
380  */
381 #define INCVALUE_96MHz		125
382 #define INCVALUE_SHIFT_96MHz	17
383 #define INCPERIOD_SHIFT_96MHz	2
384 #define INCPERIOD_96MHz		(12 >> INCPERIOD_SHIFT_96MHz)
385 
386 #define INCVALUE_25MHz		40
387 #define INCVALUE_SHIFT_25MHz	18
388 #define INCPERIOD_25MHz		1
389 
390 #define INCVALUE_24MHz		125
391 #define INCVALUE_SHIFT_24MHz	14
392 #define INCPERIOD_24MHz		3
393 
394 /* Another drawback of scaling the incvalue by a large factor is the
395  * 64-bit SYSTIM register overflows more quickly.  This is dealt with
396  * by simply reading the clock before it overflows.
397  *
398  * Clock	ns bits	Overflows after
399  * ~~~~~~	~~~~~~~	~~~~~~~~~~~~~~~
400  * 96MHz	47-bit	2^(47-INCPERIOD_SHIFT_96MHz) / 10^9 / 3600 = 9.77 hrs
401  * 25MHz	46-bit	2^46 / 10^9 / 3600 = 19.55 hours
402  */
403 #define E1000_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 60 * 4)
404 #define E1000_MAX_82574_SYSTIM_REREADS	50
405 #define E1000_82574_SYSTIM_EPSILON	(1ULL << 35ULL)
406 
407 /* hardware capability, feature, and workaround flags */
408 #define FLAG_HAS_AMT                      BIT(0)
409 #define FLAG_HAS_FLASH                    BIT(1)
410 #define FLAG_HAS_HW_VLAN_FILTER           BIT(2)
411 #define FLAG_HAS_WOL                      BIT(3)
412 /* reserved BIT(4) */
413 #define FLAG_HAS_CTRLEXT_ON_LOAD          BIT(5)
414 #define FLAG_HAS_SWSM_ON_LOAD             BIT(6)
415 #define FLAG_HAS_JUMBO_FRAMES             BIT(7)
416 #define FLAG_READ_ONLY_NVM                BIT(8)
417 #define FLAG_IS_ICH                       BIT(9)
418 #define FLAG_HAS_MSIX                     BIT(10)
419 #define FLAG_HAS_SMART_POWER_DOWN         BIT(11)
420 #define FLAG_IS_QUAD_PORT_A               BIT(12)
421 #define FLAG_IS_QUAD_PORT                 BIT(13)
422 #define FLAG_HAS_HW_TIMESTAMP             BIT(14)
423 #define FLAG_APME_IN_WUC                  BIT(15)
424 #define FLAG_APME_IN_CTRL3                BIT(16)
425 #define FLAG_APME_CHECK_PORT_B            BIT(17)
426 #define FLAG_DISABLE_FC_PAUSE_TIME        BIT(18)
427 #define FLAG_NO_WAKE_UCAST                BIT(19)
428 #define FLAG_MNG_PT_ENABLED               BIT(20)
429 #define FLAG_RESET_OVERWRITES_LAA         BIT(21)
430 #define FLAG_TARC_SPEED_MODE_BIT          BIT(22)
431 #define FLAG_TARC_SET_BIT_ZERO            BIT(23)
432 #define FLAG_RX_NEEDS_RESTART             BIT(24)
433 #define FLAG_LSC_GIG_SPEED_DROP           BIT(25)
434 #define FLAG_SMART_POWER_DOWN             BIT(26)
435 #define FLAG_MSI_ENABLED                  BIT(27)
436 /* reserved BIT(28) */
437 #define FLAG_TSO_FORCE                    BIT(29)
438 #define FLAG_RESTART_NOW                  BIT(30)
439 #define FLAG_MSI_TEST_FAILED              BIT(31)
440 
441 #define FLAG2_CRC_STRIPPING               BIT(0)
442 #define FLAG2_HAS_PHY_WAKEUP              BIT(1)
443 #define FLAG2_IS_DISCARDING               BIT(2)
444 #define FLAG2_DISABLE_ASPM_L1             BIT(3)
445 #define FLAG2_HAS_PHY_STATS               BIT(4)
446 #define FLAG2_HAS_EEE                     BIT(5)
447 #define FLAG2_DMA_BURST                   BIT(6)
448 #define FLAG2_DISABLE_ASPM_L0S            BIT(7)
449 #define FLAG2_DISABLE_AIM                 BIT(8)
450 #define FLAG2_CHECK_PHY_HANG              BIT(9)
451 #define FLAG2_NO_DISABLE_RX               BIT(10)
452 #define FLAG2_PCIM2PCI_ARBITER_WA         BIT(11)
453 #define FLAG2_DFLT_CRC_STRIPPING          BIT(12)
454 #define FLAG2_CHECK_RX_HWTSTAMP           BIT(13)
455 
456 #define E1000_RX_DESC_PS(R, i)	    \
457 	(&(((union e1000_rx_desc_packet_split *)((R).desc))[i]))
458 #define E1000_RX_DESC_EXT(R, i)	    \
459 	(&(((union e1000_rx_desc_extended *)((R).desc))[i]))
460 #define E1000_GET_DESC(R, i, type)	(&(((struct type *)((R).desc))[i]))
461 #define E1000_TX_DESC(R, i)		E1000_GET_DESC(R, i, e1000_tx_desc)
462 #define E1000_CONTEXT_DESC(R, i)	E1000_GET_DESC(R, i, e1000_context_desc)
463 
464 enum e1000_state_t {
465 	__E1000_TESTING,
466 	__E1000_RESETTING,
467 	__E1000_ACCESS_SHARED_RESOURCE,
468 	__E1000_DOWN
469 };
470 
471 enum latency_range {
472 	lowest_latency = 0,
473 	low_latency = 1,
474 	bulk_latency = 2,
475 	latency_invalid = 255
476 };
477 
478 extern char e1000e_driver_name[];
479 extern const char e1000e_driver_version[];
480 
481 void e1000e_check_options(struct e1000_adapter *adapter);
482 void e1000e_set_ethtool_ops(struct net_device *netdev);
483 
484 int e1000e_open(struct net_device *netdev);
485 int e1000e_close(struct net_device *netdev);
486 void e1000e_up(struct e1000_adapter *adapter);
487 void e1000e_down(struct e1000_adapter *adapter, bool reset);
488 void e1000e_reinit_locked(struct e1000_adapter *adapter);
489 void e1000e_reset(struct e1000_adapter *adapter);
490 void e1000e_power_up_phy(struct e1000_adapter *adapter);
491 int e1000e_setup_rx_resources(struct e1000_ring *ring);
492 int e1000e_setup_tx_resources(struct e1000_ring *ring);
493 void e1000e_free_rx_resources(struct e1000_ring *ring);
494 void e1000e_free_tx_resources(struct e1000_ring *ring);
495 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
496 					     struct rtnl_link_stats64 *stats);
497 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter);
498 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter);
499 void e1000e_get_hw_control(struct e1000_adapter *adapter);
500 void e1000e_release_hw_control(struct e1000_adapter *adapter);
501 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr);
502 
503 extern unsigned int copybreak;
504 
505 extern const struct e1000_info e1000_82571_info;
506 extern const struct e1000_info e1000_82572_info;
507 extern const struct e1000_info e1000_82573_info;
508 extern const struct e1000_info e1000_82574_info;
509 extern const struct e1000_info e1000_82583_info;
510 extern const struct e1000_info e1000_ich8_info;
511 extern const struct e1000_info e1000_ich9_info;
512 extern const struct e1000_info e1000_ich10_info;
513 extern const struct e1000_info e1000_pch_info;
514 extern const struct e1000_info e1000_pch2_info;
515 extern const struct e1000_info e1000_pch_lpt_info;
516 extern const struct e1000_info e1000_pch_spt_info;
517 extern const struct e1000_info e1000_es2_info;
518 
519 void e1000e_ptp_init(struct e1000_adapter *adapter);
520 void e1000e_ptp_remove(struct e1000_adapter *adapter);
521 
522 static inline s32 e1000_phy_hw_reset(struct e1000_hw *hw)
523 {
524 	return hw->phy.ops.reset(hw);
525 }
526 
527 static inline s32 e1e_rphy(struct e1000_hw *hw, u32 offset, u16 *data)
528 {
529 	return hw->phy.ops.read_reg(hw, offset, data);
530 }
531 
532 static inline s32 e1e_rphy_locked(struct e1000_hw *hw, u32 offset, u16 *data)
533 {
534 	return hw->phy.ops.read_reg_locked(hw, offset, data);
535 }
536 
537 static inline s32 e1e_wphy(struct e1000_hw *hw, u32 offset, u16 data)
538 {
539 	return hw->phy.ops.write_reg(hw, offset, data);
540 }
541 
542 static inline s32 e1e_wphy_locked(struct e1000_hw *hw, u32 offset, u16 data)
543 {
544 	return hw->phy.ops.write_reg_locked(hw, offset, data);
545 }
546 
547 void e1000e_reload_nvm_generic(struct e1000_hw *hw);
548 
549 static inline s32 e1000e_read_mac_addr(struct e1000_hw *hw)
550 {
551 	if (hw->mac.ops.read_mac_addr)
552 		return hw->mac.ops.read_mac_addr(hw);
553 
554 	return e1000_read_mac_addr_generic(hw);
555 }
556 
557 static inline s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
558 {
559 	return hw->nvm.ops.validate(hw);
560 }
561 
562 static inline s32 e1000e_update_nvm_checksum(struct e1000_hw *hw)
563 {
564 	return hw->nvm.ops.update(hw);
565 }
566 
567 static inline s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words,
568 				 u16 *data)
569 {
570 	return hw->nvm.ops.read(hw, offset, words, data);
571 }
572 
573 static inline s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words,
574 				  u16 *data)
575 {
576 	return hw->nvm.ops.write(hw, offset, words, data);
577 }
578 
579 static inline s32 e1000_get_phy_info(struct e1000_hw *hw)
580 {
581 	return hw->phy.ops.get_info(hw);
582 }
583 
584 static inline u32 __er32(struct e1000_hw *hw, unsigned long reg)
585 {
586 	return readl(hw->hw_addr + reg);
587 }
588 
589 #define er32(reg)	__er32(hw, E1000_##reg)
590 
591 s32 __ew32_prepare(struct e1000_hw *hw);
592 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val);
593 
594 #define ew32(reg, val)	__ew32(hw, E1000_##reg, (val))
595 
596 #define e1e_flush()	er32(STATUS)
597 
598 #define E1000_WRITE_REG_ARRAY(a, reg, offset, value) \
599 	(__ew32((a), (reg + ((offset) << 2)), (value)))
600 
601 #define E1000_READ_REG_ARRAY(a, reg, offset) \
602 	(readl((a)->hw_addr + reg + ((offset) << 2)))
603 
604 #endif /* _E1000_H_ */
605