xref: /linux/drivers/net/ethernet/intel/e1000e/82571.c (revision c4bbe83d27c2446a033cc0381c3fb6be5e8c41c7)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 /* 82571EB Gigabit Ethernet Controller
5  * 82571EB Gigabit Ethernet Controller (Copper)
6  * 82571EB Gigabit Ethernet Controller (Fiber)
7  * 82571EB Dual Port Gigabit Mezzanine Adapter
8  * 82571EB Quad Port Gigabit Mezzanine Adapter
9  * 82571PT Gigabit PT Quad Port Server ExpressModule
10  * 82572EI Gigabit Ethernet Controller (Copper)
11  * 82572EI Gigabit Ethernet Controller (Fiber)
12  * 82572EI Gigabit Ethernet Controller
13  * 82573V Gigabit Ethernet Controller (Copper)
14  * 82573E Gigabit Ethernet Controller (Copper)
15  * 82573L Gigabit Ethernet Controller
16  * 82574L Gigabit Network Connection
17  * 82583V Gigabit Network Connection
18  */
19 
20 #include "e1000.h"
21 
22 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
23 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
24 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
25 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
26 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
27 				      u16 words, u16 *data);
28 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
29 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
30 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
31 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
32 static s32 e1000_led_on_82574(struct e1000_hw *hw);
33 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
34 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
35 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
36 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
37 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
38 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
39 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
40 
41 /**
42  *  e1000_init_phy_params_82571 - Init PHY func ptrs.
43  *  @hw: pointer to the HW structure
44  **/
45 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
46 {
47 	struct e1000_phy_info *phy = &hw->phy;
48 	s32 ret_val;
49 
50 	if (hw->phy.media_type != e1000_media_type_copper) {
51 		phy->type = e1000_phy_none;
52 		return 0;
53 	}
54 
55 	phy->addr = 1;
56 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
57 	phy->reset_delay_us = 100;
58 
59 	phy->ops.power_up = e1000_power_up_phy_copper;
60 	phy->ops.power_down = e1000_power_down_phy_copper_82571;
61 
62 	switch (hw->mac.type) {
63 	case e1000_82571:
64 	case e1000_82572:
65 		phy->type = e1000_phy_igp_2;
66 		break;
67 	case e1000_82573:
68 		phy->type = e1000_phy_m88;
69 		break;
70 	case e1000_82574:
71 	case e1000_82583:
72 		phy->type = e1000_phy_bm;
73 		phy->ops.acquire = e1000_get_hw_semaphore_82574;
74 		phy->ops.release = e1000_put_hw_semaphore_82574;
75 		phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
76 		phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
77 		break;
78 	default:
79 		return -E1000_ERR_PHY;
80 	}
81 
82 	/* This can only be done after all function pointers are setup. */
83 	ret_val = e1000_get_phy_id_82571(hw);
84 	if (ret_val) {
85 		e_dbg("Error getting PHY ID\n");
86 		return ret_val;
87 	}
88 
89 	/* Verify phy id */
90 	switch (hw->mac.type) {
91 	case e1000_82571:
92 	case e1000_82572:
93 		if (phy->id != IGP01E1000_I_PHY_ID)
94 			ret_val = -E1000_ERR_PHY;
95 		break;
96 	case e1000_82573:
97 		if (phy->id != M88E1111_I_PHY_ID)
98 			ret_val = -E1000_ERR_PHY;
99 		break;
100 	case e1000_82574:
101 	case e1000_82583:
102 		if (phy->id != BME1000_E_PHY_ID_R2)
103 			ret_val = -E1000_ERR_PHY;
104 		break;
105 	default:
106 		ret_val = -E1000_ERR_PHY;
107 		break;
108 	}
109 
110 	if (ret_val)
111 		e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
112 
113 	return ret_val;
114 }
115 
116 /**
117  *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
118  *  @hw: pointer to the HW structure
119  **/
120 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
121 {
122 	struct e1000_nvm_info *nvm = &hw->nvm;
123 	u32 eecd = er32(EECD);
124 	u16 size;
125 
126 	nvm->opcode_bits = 8;
127 	nvm->delay_usec = 1;
128 	switch (nvm->override) {
129 	case e1000_nvm_override_spi_large:
130 		nvm->page_size = 32;
131 		nvm->address_bits = 16;
132 		break;
133 	case e1000_nvm_override_spi_small:
134 		nvm->page_size = 8;
135 		nvm->address_bits = 8;
136 		break;
137 	default:
138 		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
139 		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
140 		break;
141 	}
142 
143 	switch (hw->mac.type) {
144 	case e1000_82573:
145 	case e1000_82574:
146 	case e1000_82583:
147 		if (((eecd >> 15) & 0x3) == 0x3) {
148 			nvm->type = e1000_nvm_flash_hw;
149 			nvm->word_size = 2048;
150 			/* Autonomous Flash update bit must be cleared due
151 			 * to Flash update issue.
152 			 */
153 			eecd &= ~E1000_EECD_AUPDEN;
154 			ew32(EECD, eecd);
155 			break;
156 		}
157 		fallthrough;
158 	default:
159 		nvm->type = e1000_nvm_eeprom_spi;
160 		size = (u16)FIELD_GET(E1000_EECD_SIZE_EX_MASK, eecd);
161 		/* Added to a constant, "size" becomes the left-shift value
162 		 * for setting word_size.
163 		 */
164 		size += NVM_WORD_SIZE_BASE_SHIFT;
165 
166 		/* EEPROM access above 16k is unsupported */
167 		if (size > 14)
168 			size = 14;
169 		nvm->word_size = BIT(size);
170 		break;
171 	}
172 
173 	/* Function Pointers */
174 	switch (hw->mac.type) {
175 	case e1000_82574:
176 	case e1000_82583:
177 		nvm->ops.acquire = e1000_get_hw_semaphore_82574;
178 		nvm->ops.release = e1000_put_hw_semaphore_82574;
179 		break;
180 	default:
181 		break;
182 	}
183 
184 	return 0;
185 }
186 
187 /**
188  *  e1000_init_mac_params_82571 - Init MAC func ptrs.
189  *  @hw: pointer to the HW structure
190  **/
191 static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
192 {
193 	struct e1000_mac_info *mac = &hw->mac;
194 	u32 swsm = 0;
195 	u32 swsm2 = 0;
196 	bool force_clear_smbi = false;
197 
198 	/* Set media type and media-dependent function pointers */
199 	switch (hw->adapter->pdev->device) {
200 	case E1000_DEV_ID_82571EB_FIBER:
201 	case E1000_DEV_ID_82572EI_FIBER:
202 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
203 		hw->phy.media_type = e1000_media_type_fiber;
204 		mac->ops.setup_physical_interface =
205 		    e1000_setup_fiber_serdes_link_82571;
206 		mac->ops.check_for_link = e1000e_check_for_fiber_link;
207 		mac->ops.get_link_up_info =
208 		    e1000e_get_speed_and_duplex_fiber_serdes;
209 		break;
210 	case E1000_DEV_ID_82571EB_SERDES:
211 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
212 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
213 	case E1000_DEV_ID_82572EI_SERDES:
214 		hw->phy.media_type = e1000_media_type_internal_serdes;
215 		mac->ops.setup_physical_interface =
216 		    e1000_setup_fiber_serdes_link_82571;
217 		mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
218 		mac->ops.get_link_up_info =
219 		    e1000e_get_speed_and_duplex_fiber_serdes;
220 		break;
221 	default:
222 		hw->phy.media_type = e1000_media_type_copper;
223 		mac->ops.setup_physical_interface =
224 		    e1000_setup_copper_link_82571;
225 		mac->ops.check_for_link = e1000e_check_for_copper_link;
226 		mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper;
227 		break;
228 	}
229 
230 	/* Set mta register count */
231 	mac->mta_reg_count = 128;
232 	/* Set rar entry count */
233 	mac->rar_entry_count = E1000_RAR_ENTRIES;
234 	/* Adaptive IFS supported */
235 	mac->adaptive_ifs = true;
236 
237 	/* MAC-specific function pointers */
238 	switch (hw->mac.type) {
239 	case e1000_82573:
240 		mac->ops.set_lan_id = e1000_set_lan_id_single_port;
241 		mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
242 		mac->ops.led_on = e1000e_led_on_generic;
243 		mac->ops.blink_led = e1000e_blink_led_generic;
244 
245 		/* FWSM register */
246 		mac->has_fwsm = true;
247 		/* ARC supported; valid only if manageability features are
248 		 * enabled.
249 		 */
250 		mac->arc_subsystem_valid = !!(er32(FWSM) &
251 					      E1000_FWSM_MODE_MASK);
252 		break;
253 	case e1000_82574:
254 	case e1000_82583:
255 		mac->ops.set_lan_id = e1000_set_lan_id_single_port;
256 		mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
257 		mac->ops.led_on = e1000_led_on_82574;
258 		break;
259 	default:
260 		mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
261 		mac->ops.led_on = e1000e_led_on_generic;
262 		mac->ops.blink_led = e1000e_blink_led_generic;
263 
264 		/* FWSM register */
265 		mac->has_fwsm = true;
266 		break;
267 	}
268 
269 	/* Ensure that the inter-port SWSM.SMBI lock bit is clear before
270 	 * first NVM or PHY access. This should be done for single-port
271 	 * devices, and for one port only on dual-port devices so that
272 	 * for those devices we can still use the SMBI lock to synchronize
273 	 * inter-port accesses to the PHY & NVM.
274 	 */
275 	switch (hw->mac.type) {
276 	case e1000_82571:
277 	case e1000_82572:
278 		swsm2 = er32(SWSM2);
279 
280 		if (!(swsm2 & E1000_SWSM2_LOCK)) {
281 			/* Only do this for the first interface on this card */
282 			ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK);
283 			force_clear_smbi = true;
284 		} else {
285 			force_clear_smbi = false;
286 		}
287 		break;
288 	default:
289 		force_clear_smbi = true;
290 		break;
291 	}
292 
293 	if (force_clear_smbi) {
294 		/* Make sure SWSM.SMBI is clear */
295 		swsm = er32(SWSM);
296 		if (swsm & E1000_SWSM_SMBI) {
297 			/* This bit should not be set on a first interface, and
298 			 * indicates that the bootagent or EFI code has
299 			 * improperly left this bit enabled
300 			 */
301 			e_dbg("Please update your 82571 Bootagent\n");
302 		}
303 		ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
304 	}
305 
306 	/* Initialize device specific counter of SMBI acquisition timeouts. */
307 	hw->dev_spec.e82571.smb_counter = 0;
308 
309 	return 0;
310 }
311 
312 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
313 {
314 	struct e1000_hw *hw = &adapter->hw;
315 	static int global_quad_port_a;	/* global port a indication */
316 	struct pci_dev *pdev = adapter->pdev;
317 	int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
318 	s32 rc;
319 
320 	rc = e1000_init_mac_params_82571(hw);
321 	if (rc)
322 		return rc;
323 
324 	rc = e1000_init_nvm_params_82571(hw);
325 	if (rc)
326 		return rc;
327 
328 	rc = e1000_init_phy_params_82571(hw);
329 	if (rc)
330 		return rc;
331 
332 	/* tag quad port adapters first, it's used below */
333 	switch (pdev->device) {
334 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
335 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
336 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
337 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
338 		adapter->flags |= FLAG_IS_QUAD_PORT;
339 		/* mark the first port */
340 		if (global_quad_port_a == 0)
341 			adapter->flags |= FLAG_IS_QUAD_PORT_A;
342 		/* Reset for multiple quad port adapters */
343 		global_quad_port_a++;
344 		if (global_quad_port_a == 4)
345 			global_quad_port_a = 0;
346 		break;
347 	default:
348 		break;
349 	}
350 
351 	switch (adapter->hw.mac.type) {
352 	case e1000_82571:
353 		/* these dual ports don't have WoL on port B at all */
354 		if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
355 		     (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
356 		     (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
357 		    (is_port_b))
358 			adapter->flags &= ~FLAG_HAS_WOL;
359 		/* quad ports only support WoL on port A */
360 		if (adapter->flags & FLAG_IS_QUAD_PORT &&
361 		    (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
362 			adapter->flags &= ~FLAG_HAS_WOL;
363 		/* Does not support WoL on any port */
364 		if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
365 			adapter->flags &= ~FLAG_HAS_WOL;
366 		break;
367 	case e1000_82573:
368 		if (pdev->device == E1000_DEV_ID_82573L) {
369 			adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
370 			adapter->max_hw_frame_size = DEFAULT_JUMBO;
371 		}
372 		break;
373 	default:
374 		break;
375 	}
376 
377 	return 0;
378 }
379 
380 /**
381  *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
382  *  @hw: pointer to the HW structure
383  *
384  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
385  *  revision in the hardware structure.
386  **/
387 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
388 {
389 	struct e1000_phy_info *phy = &hw->phy;
390 	s32 ret_val;
391 	u16 phy_id = 0;
392 
393 	switch (hw->mac.type) {
394 	case e1000_82571:
395 	case e1000_82572:
396 		/* The 82571 firmware may still be configuring the PHY.
397 		 * In this case, we cannot access the PHY until the
398 		 * configuration is done.  So we explicitly set the
399 		 * PHY ID.
400 		 */
401 		phy->id = IGP01E1000_I_PHY_ID;
402 		break;
403 	case e1000_82573:
404 		return e1000e_get_phy_id(hw);
405 	case e1000_82574:
406 	case e1000_82583:
407 		ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
408 		if (ret_val)
409 			return ret_val;
410 
411 		phy->id = (u32)(phy_id << 16);
412 		usleep_range(20, 40);
413 		ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
414 		if (ret_val)
415 			return ret_val;
416 
417 		phy->id |= (u32)(phy_id);
418 		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
419 		break;
420 	default:
421 		return -E1000_ERR_PHY;
422 	}
423 
424 	return 0;
425 }
426 
427 /**
428  *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
429  *  @hw: pointer to the HW structure
430  *
431  *  Acquire the HW semaphore to access the PHY or NVM
432  **/
433 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
434 {
435 	u32 swsm;
436 	s32 sw_timeout = hw->nvm.word_size + 1;
437 	s32 fw_timeout = hw->nvm.word_size + 1;
438 	s32 i = 0;
439 
440 	/* If we have timedout 3 times on trying to acquire
441 	 * the inter-port SMBI semaphore, there is old code
442 	 * operating on the other port, and it is not
443 	 * releasing SMBI. Modify the number of times that
444 	 * we try for the semaphore to interwork with this
445 	 * older code.
446 	 */
447 	if (hw->dev_spec.e82571.smb_counter > 2)
448 		sw_timeout = 1;
449 
450 	/* Get the SW semaphore */
451 	while (i < sw_timeout) {
452 		swsm = er32(SWSM);
453 		if (!(swsm & E1000_SWSM_SMBI))
454 			break;
455 
456 		usleep_range(50, 100);
457 		i++;
458 	}
459 
460 	if (i == sw_timeout) {
461 		e_dbg("Driver can't access device - SMBI bit is set.\n");
462 		hw->dev_spec.e82571.smb_counter++;
463 	}
464 	/* Get the FW semaphore. */
465 	for (i = 0; i < fw_timeout; i++) {
466 		swsm = er32(SWSM);
467 		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
468 
469 		/* Semaphore acquired if bit latched */
470 		if (er32(SWSM) & E1000_SWSM_SWESMBI)
471 			break;
472 
473 		usleep_range(50, 100);
474 	}
475 
476 	if (i == fw_timeout) {
477 		/* Release semaphores */
478 		e1000_put_hw_semaphore_82571(hw);
479 		e_dbg("Driver can't access the NVM\n");
480 		return -E1000_ERR_NVM;
481 	}
482 
483 	return 0;
484 }
485 
486 /**
487  *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
488  *  @hw: pointer to the HW structure
489  *
490  *  Release hardware semaphore used to access the PHY or NVM
491  **/
492 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
493 {
494 	u32 swsm;
495 
496 	swsm = er32(SWSM);
497 	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
498 	ew32(SWSM, swsm);
499 }
500 
501 /**
502  *  e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
503  *  @hw: pointer to the HW structure
504  *
505  *  Acquire the HW semaphore during reset.
506  *
507  **/
508 static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
509 {
510 	u32 extcnf_ctrl;
511 	s32 i = 0;
512 
513 	extcnf_ctrl = er32(EXTCNF_CTRL);
514 	do {
515 		extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
516 		ew32(EXTCNF_CTRL, extcnf_ctrl);
517 		extcnf_ctrl = er32(EXTCNF_CTRL);
518 
519 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
520 			break;
521 
522 		usleep_range(2000, 4000);
523 		i++;
524 	} while (i < MDIO_OWNERSHIP_TIMEOUT);
525 
526 	if (i == MDIO_OWNERSHIP_TIMEOUT) {
527 		/* Release semaphores */
528 		e1000_put_hw_semaphore_82573(hw);
529 		e_dbg("Driver can't access the PHY\n");
530 		return -E1000_ERR_PHY;
531 	}
532 
533 	return 0;
534 }
535 
536 /**
537  *  e1000_put_hw_semaphore_82573 - Release hardware semaphore
538  *  @hw: pointer to the HW structure
539  *
540  *  Release hardware semaphore used during reset.
541  *
542  **/
543 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
544 {
545 	u32 extcnf_ctrl;
546 
547 	extcnf_ctrl = er32(EXTCNF_CTRL);
548 	extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
549 	ew32(EXTCNF_CTRL, extcnf_ctrl);
550 }
551 
552 static DEFINE_MUTEX(swflag_mutex);
553 
554 /**
555  *  e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
556  *  @hw: pointer to the HW structure
557  *
558  *  Acquire the HW semaphore to access the PHY or NVM.
559  *
560  **/
561 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
562 {
563 	s32 ret_val;
564 
565 	mutex_lock(&swflag_mutex);
566 	ret_val = e1000_get_hw_semaphore_82573(hw);
567 	if (ret_val)
568 		mutex_unlock(&swflag_mutex);
569 	return ret_val;
570 }
571 
572 /**
573  *  e1000_put_hw_semaphore_82574 - Release hardware semaphore
574  *  @hw: pointer to the HW structure
575  *
576  *  Release hardware semaphore used to access the PHY or NVM
577  *
578  **/
579 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
580 {
581 	e1000_put_hw_semaphore_82573(hw);
582 	mutex_unlock(&swflag_mutex);
583 }
584 
585 /**
586  *  e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
587  *  @hw: pointer to the HW structure
588  *  @active: true to enable LPLU, false to disable
589  *
590  *  Sets the LPLU D0 state according to the active flag.
591  *  LPLU will not be activated unless the
592  *  device autonegotiation advertisement meets standards of
593  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
594  *  This is a function pointer entry point only called by
595  *  PHY setup routines.
596  **/
597 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
598 {
599 	u32 data = er32(POEMB);
600 
601 	if (active)
602 		data |= E1000_PHY_CTRL_D0A_LPLU;
603 	else
604 		data &= ~E1000_PHY_CTRL_D0A_LPLU;
605 
606 	ew32(POEMB, data);
607 	return 0;
608 }
609 
610 /**
611  *  e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
612  *  @hw: pointer to the HW structure
613  *  @active: boolean used to enable/disable lplu
614  *
615  *  The low power link up (lplu) state is set to the power management level D3
616  *  when active is true, else clear lplu for D3. LPLU
617  *  is used during Dx states where the power conservation is most important.
618  *  During driver activity, SmartSpeed should be enabled so performance is
619  *  maintained.
620  **/
621 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
622 {
623 	u32 data = er32(POEMB);
624 
625 	if (!active) {
626 		data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
627 	} else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
628 		   (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
629 		   (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
630 		data |= E1000_PHY_CTRL_NOND0A_LPLU;
631 	}
632 
633 	ew32(POEMB, data);
634 	return 0;
635 }
636 
637 /**
638  *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
639  *  @hw: pointer to the HW structure
640  *
641  *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
642  *  Then for non-82573 hardware, set the EEPROM access request bit and wait
643  *  for EEPROM access grant bit.  If the access grant bit is not set, release
644  *  hardware semaphore.
645  **/
646 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
647 {
648 	s32 ret_val;
649 
650 	ret_val = e1000_get_hw_semaphore_82571(hw);
651 	if (ret_val)
652 		return ret_val;
653 
654 	switch (hw->mac.type) {
655 	case e1000_82573:
656 		break;
657 	default:
658 		ret_val = e1000e_acquire_nvm(hw);
659 		break;
660 	}
661 
662 	if (ret_val)
663 		e1000_put_hw_semaphore_82571(hw);
664 
665 	return ret_val;
666 }
667 
668 /**
669  *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
670  *  @hw: pointer to the HW structure
671  *
672  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
673  **/
674 static void e1000_release_nvm_82571(struct e1000_hw *hw)
675 {
676 	e1000e_release_nvm(hw);
677 	e1000_put_hw_semaphore_82571(hw);
678 }
679 
680 /**
681  *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
682  *  @hw: pointer to the HW structure
683  *  @offset: offset within the EEPROM to be written to
684  *  @words: number of words to write
685  *  @data: 16 bit word(s) to be written to the EEPROM
686  *
687  *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
688  *
689  *  If e1000e_update_nvm_checksum is not called after this function, the
690  *  EEPROM will most likely contain an invalid checksum.
691  **/
692 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
693 				 u16 *data)
694 {
695 	s32 ret_val;
696 
697 	switch (hw->mac.type) {
698 	case e1000_82573:
699 	case e1000_82574:
700 	case e1000_82583:
701 		ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
702 		break;
703 	case e1000_82571:
704 	case e1000_82572:
705 		ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
706 		break;
707 	default:
708 		ret_val = -E1000_ERR_NVM;
709 		break;
710 	}
711 
712 	return ret_val;
713 }
714 
715 /**
716  *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
717  *  @hw: pointer to the HW structure
718  *
719  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
720  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
721  *  value to the EEPROM.
722  **/
723 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
724 {
725 	u32 eecd;
726 	s32 ret_val;
727 	u16 i;
728 
729 	ret_val = e1000e_update_nvm_checksum_generic(hw);
730 	if (ret_val)
731 		return ret_val;
732 
733 	/* If our nvm is an EEPROM, then we're done
734 	 * otherwise, commit the checksum to the flash NVM.
735 	 */
736 	if (hw->nvm.type != e1000_nvm_flash_hw)
737 		return 0;
738 
739 	/* Check for pending operations. */
740 	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
741 		usleep_range(1000, 2000);
742 		if (!(er32(EECD) & E1000_EECD_FLUPD))
743 			break;
744 	}
745 
746 	if (i == E1000_FLASH_UPDATES)
747 		return -E1000_ERR_NVM;
748 
749 	/* Reset the firmware if using STM opcode. */
750 	if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
751 		/* The enabling of and the actual reset must be done
752 		 * in two write cycles.
753 		 */
754 		ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
755 		e1e_flush();
756 		ew32(HICR, E1000_HICR_FW_RESET);
757 	}
758 
759 	/* Commit the write to flash */
760 	eecd = er32(EECD) | E1000_EECD_FLUPD;
761 	ew32(EECD, eecd);
762 
763 	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
764 		usleep_range(1000, 2000);
765 		if (!(er32(EECD) & E1000_EECD_FLUPD))
766 			break;
767 	}
768 
769 	if (i == E1000_FLASH_UPDATES)
770 		return -E1000_ERR_NVM;
771 
772 	return 0;
773 }
774 
775 /**
776  *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
777  *  @hw: pointer to the HW structure
778  *
779  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
780  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
781  **/
782 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
783 {
784 	if (hw->nvm.type == e1000_nvm_flash_hw)
785 		e1000_fix_nvm_checksum_82571(hw);
786 
787 	return e1000e_validate_nvm_checksum_generic(hw);
788 }
789 
790 /**
791  *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
792  *  @hw: pointer to the HW structure
793  *  @offset: offset within the EEPROM to be written to
794  *  @words: number of words to write
795  *  @data: 16 bit word(s) to be written to the EEPROM
796  *
797  *  After checking for invalid values, poll the EEPROM to ensure the previous
798  *  command has completed before trying to write the next word.  After write
799  *  poll for completion.
800  *
801  *  If e1000e_update_nvm_checksum is not called after this function, the
802  *  EEPROM will most likely contain an invalid checksum.
803  **/
804 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
805 				      u16 words, u16 *data)
806 {
807 	struct e1000_nvm_info *nvm = &hw->nvm;
808 	u32 i, eewr = 0;
809 	s32 ret_val = 0;
810 
811 	/* A check for invalid values:  offset too large, too many words,
812 	 * and not enough words.
813 	 */
814 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
815 	    (words == 0)) {
816 		e_dbg("nvm parameter(s) out of bounds\n");
817 		return -E1000_ERR_NVM;
818 	}
819 
820 	for (i = 0; i < words; i++) {
821 		eewr = ((data[i] << E1000_NVM_RW_REG_DATA) |
822 			((offset + i) << E1000_NVM_RW_ADDR_SHIFT) |
823 			E1000_NVM_RW_REG_START);
824 
825 		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
826 		if (ret_val)
827 			break;
828 
829 		ew32(EEWR, eewr);
830 
831 		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
832 		if (ret_val)
833 			break;
834 	}
835 
836 	return ret_val;
837 }
838 
839 /**
840  *  e1000_get_cfg_done_82571 - Poll for configuration done
841  *  @hw: pointer to the HW structure
842  *
843  *  Reads the management control register for the config done bit to be set.
844  **/
845 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
846 {
847 	s32 timeout = PHY_CFG_TIMEOUT;
848 
849 	while (timeout) {
850 		if (er32(EEMNGCTL) & E1000_NVM_CFG_DONE_PORT_0)
851 			break;
852 		usleep_range(1000, 2000);
853 		timeout--;
854 	}
855 	if (!timeout) {
856 		e_dbg("MNG configuration cycle has not completed.\n");
857 		return -E1000_ERR_RESET;
858 	}
859 
860 	return 0;
861 }
862 
863 /**
864  *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
865  *  @hw: pointer to the HW structure
866  *  @active: true to enable LPLU, false to disable
867  *
868  *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
869  *  this function also disables smart speed and vice versa.  LPLU will not be
870  *  activated unless the device autonegotiation advertisement meets standards
871  *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
872  *  pointer entry point only called by PHY setup routines.
873  **/
874 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
875 {
876 	struct e1000_phy_info *phy = &hw->phy;
877 	s32 ret_val;
878 	u16 data;
879 
880 	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
881 	if (ret_val)
882 		return ret_val;
883 
884 	if (active) {
885 		data |= IGP02E1000_PM_D0_LPLU;
886 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
887 		if (ret_val)
888 			return ret_val;
889 
890 		/* When LPLU is enabled, we should disable SmartSpeed */
891 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
892 		if (ret_val)
893 			return ret_val;
894 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
895 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
896 		if (ret_val)
897 			return ret_val;
898 	} else {
899 		data &= ~IGP02E1000_PM_D0_LPLU;
900 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
901 		if (ret_val)
902 			return ret_val;
903 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
904 		 * during Dx states where the power conservation is most
905 		 * important.  During driver activity we should enable
906 		 * SmartSpeed, so performance is maintained.
907 		 */
908 		if (phy->smart_speed == e1000_smart_speed_on) {
909 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
910 					   &data);
911 			if (ret_val)
912 				return ret_val;
913 
914 			data |= IGP01E1000_PSCFR_SMART_SPEED;
915 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
916 					   data);
917 			if (ret_val)
918 				return ret_val;
919 		} else if (phy->smart_speed == e1000_smart_speed_off) {
920 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
921 					   &data);
922 			if (ret_val)
923 				return ret_val;
924 
925 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
926 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
927 					   data);
928 			if (ret_val)
929 				return ret_val;
930 		}
931 	}
932 
933 	return 0;
934 }
935 
936 /**
937  *  e1000_reset_hw_82571 - Reset hardware
938  *  @hw: pointer to the HW structure
939  *
940  *  This resets the hardware into a known state.
941  **/
942 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
943 {
944 	u32 ctrl, ctrl_ext, eecd, tctl;
945 	s32 ret_val;
946 
947 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
948 	 * on the last TLP read/write transaction when MAC is reset.
949 	 */
950 	ret_val = e1000e_disable_pcie_master(hw);
951 	if (ret_val)
952 		e_dbg("PCI-E Master disable polling has failed.\n");
953 
954 	e_dbg("Masking off all interrupts\n");
955 	ew32(IMC, 0xffffffff);
956 
957 	ew32(RCTL, 0);
958 	tctl = er32(TCTL);
959 	tctl &= ~E1000_TCTL_EN;
960 	ew32(TCTL, tctl);
961 	e1e_flush();
962 
963 	usleep_range(10000, 11000);
964 
965 	/* Must acquire the MDIO ownership before MAC reset.
966 	 * Ownership defaults to firmware after a reset.
967 	 */
968 	switch (hw->mac.type) {
969 	case e1000_82573:
970 		ret_val = e1000_get_hw_semaphore_82573(hw);
971 		break;
972 	case e1000_82574:
973 	case e1000_82583:
974 		ret_val = e1000_get_hw_semaphore_82574(hw);
975 		break;
976 	default:
977 		break;
978 	}
979 
980 	ctrl = er32(CTRL);
981 
982 	e_dbg("Issuing a global reset to MAC\n");
983 	ew32(CTRL, ctrl | E1000_CTRL_RST);
984 
985 	/* Must release MDIO ownership and mutex after MAC reset. */
986 	switch (hw->mac.type) {
987 	case e1000_82573:
988 		/* Release mutex only if the hw semaphore is acquired */
989 		if (!ret_val)
990 			e1000_put_hw_semaphore_82573(hw);
991 		break;
992 	case e1000_82574:
993 	case e1000_82583:
994 		/* Release mutex only if the hw semaphore is acquired */
995 		if (!ret_val)
996 			e1000_put_hw_semaphore_82574(hw);
997 		break;
998 	default:
999 		break;
1000 	}
1001 
1002 	if (hw->nvm.type == e1000_nvm_flash_hw) {
1003 		usleep_range(10, 20);
1004 		ctrl_ext = er32(CTRL_EXT);
1005 		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1006 		ew32(CTRL_EXT, ctrl_ext);
1007 		e1e_flush();
1008 	}
1009 
1010 	ret_val = e1000e_get_auto_rd_done(hw);
1011 	if (ret_val)
1012 		/* We don't want to continue accessing MAC registers. */
1013 		return ret_val;
1014 
1015 	/* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1016 	 * Need to wait for Phy configuration completion before accessing
1017 	 * NVM and Phy.
1018 	 */
1019 
1020 	switch (hw->mac.type) {
1021 	case e1000_82571:
1022 	case e1000_82572:
1023 		/* REQ and GNT bits need to be cleared when using AUTO_RD
1024 		 * to access the EEPROM.
1025 		 */
1026 		eecd = er32(EECD);
1027 		eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT);
1028 		ew32(EECD, eecd);
1029 		break;
1030 	case e1000_82573:
1031 	case e1000_82574:
1032 	case e1000_82583:
1033 		msleep(25);
1034 		break;
1035 	default:
1036 		break;
1037 	}
1038 
1039 	/* Clear any pending interrupt events. */
1040 	ew32(IMC, 0xffffffff);
1041 	er32(ICR);
1042 
1043 	if (hw->mac.type == e1000_82571) {
1044 		/* Install any alternate MAC address into RAR0 */
1045 		ret_val = e1000_check_alt_mac_addr_generic(hw);
1046 		if (ret_val)
1047 			return ret_val;
1048 
1049 		e1000e_set_laa_state_82571(hw, true);
1050 	}
1051 
1052 	/* Reinitialize the 82571 serdes link state machine */
1053 	if (hw->phy.media_type == e1000_media_type_internal_serdes)
1054 		hw->mac.serdes_link_state = e1000_serdes_link_down;
1055 
1056 	return 0;
1057 }
1058 
1059 /**
1060  *  e1000_init_hw_82571 - Initialize hardware
1061  *  @hw: pointer to the HW structure
1062  *
1063  *  This inits the hardware readying it for operation.
1064  **/
1065 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
1066 {
1067 	struct e1000_mac_info *mac = &hw->mac;
1068 	u32 reg_data;
1069 	s32 ret_val;
1070 	u16 i, rar_count = mac->rar_entry_count;
1071 
1072 	e1000_initialize_hw_bits_82571(hw);
1073 
1074 	/* Initialize identification LED */
1075 	ret_val = mac->ops.id_led_init(hw);
1076 	/* An error is not fatal and we should not stop init due to this */
1077 	if (ret_val)
1078 		e_dbg("Error initializing identification LED\n");
1079 
1080 	/* Disabling VLAN filtering */
1081 	e_dbg("Initializing the IEEE VLAN\n");
1082 	mac->ops.clear_vfta(hw);
1083 
1084 	/* Setup the receive address.
1085 	 * If, however, a locally administered address was assigned to the
1086 	 * 82571, we must reserve a RAR for it to work around an issue where
1087 	 * resetting one port will reload the MAC on the other port.
1088 	 */
1089 	if (e1000e_get_laa_state_82571(hw))
1090 		rar_count--;
1091 	e1000e_init_rx_addrs(hw, rar_count);
1092 
1093 	/* Zero out the Multicast HASH table */
1094 	e_dbg("Zeroing the MTA\n");
1095 	for (i = 0; i < mac->mta_reg_count; i++)
1096 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1097 
1098 	/* Setup link and flow control */
1099 	ret_val = mac->ops.setup_link(hw);
1100 
1101 	/* Set the transmit descriptor write-back policy */
1102 	reg_data = er32(TXDCTL(0));
1103 	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1104 		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
1105 	ew32(TXDCTL(0), reg_data);
1106 
1107 	/* ...for both queues. */
1108 	switch (mac->type) {
1109 	case e1000_82573:
1110 		e1000e_enable_tx_pkt_filtering(hw);
1111 		fallthrough;
1112 	case e1000_82574:
1113 	case e1000_82583:
1114 		reg_data = er32(GCR);
1115 		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1116 		ew32(GCR, reg_data);
1117 		break;
1118 	default:
1119 		reg_data = er32(TXDCTL(1));
1120 		reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1121 			    E1000_TXDCTL_FULL_TX_DESC_WB |
1122 			    E1000_TXDCTL_COUNT_DESC);
1123 		ew32(TXDCTL(1), reg_data);
1124 		break;
1125 	}
1126 
1127 	/* Clear all of the statistics registers (clear on read).  It is
1128 	 * important that we do this after we have tried to establish link
1129 	 * because the symbol error count will increment wildly if there
1130 	 * is no link.
1131 	 */
1132 	e1000_clear_hw_cntrs_82571(hw);
1133 
1134 	return ret_val;
1135 }
1136 
1137 /**
1138  *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1139  *  @hw: pointer to the HW structure
1140  *
1141  *  Initializes required hardware-dependent bits needed for normal operation.
1142  **/
1143 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1144 {
1145 	u32 reg;
1146 
1147 	/* Transmit Descriptor Control 0 */
1148 	reg = er32(TXDCTL(0));
1149 	reg |= BIT(22);
1150 	ew32(TXDCTL(0), reg);
1151 
1152 	/* Transmit Descriptor Control 1 */
1153 	reg = er32(TXDCTL(1));
1154 	reg |= BIT(22);
1155 	ew32(TXDCTL(1), reg);
1156 
1157 	/* Transmit Arbitration Control 0 */
1158 	reg = er32(TARC(0));
1159 	reg &= ~(0xF << 27);	/* 30:27 */
1160 	switch (hw->mac.type) {
1161 	case e1000_82571:
1162 	case e1000_82572:
1163 		reg |= BIT(23) | BIT(24) | BIT(25) | BIT(26);
1164 		break;
1165 	case e1000_82574:
1166 	case e1000_82583:
1167 		reg |= BIT(26);
1168 		break;
1169 	default:
1170 		break;
1171 	}
1172 	ew32(TARC(0), reg);
1173 
1174 	/* Transmit Arbitration Control 1 */
1175 	reg = er32(TARC(1));
1176 	switch (hw->mac.type) {
1177 	case e1000_82571:
1178 	case e1000_82572:
1179 		reg &= ~(BIT(29) | BIT(30));
1180 		reg |= BIT(22) | BIT(24) | BIT(25) | BIT(26);
1181 		if (er32(TCTL) & E1000_TCTL_MULR)
1182 			reg &= ~BIT(28);
1183 		else
1184 			reg |= BIT(28);
1185 		ew32(TARC(1), reg);
1186 		break;
1187 	default:
1188 		break;
1189 	}
1190 
1191 	/* Device Control */
1192 	switch (hw->mac.type) {
1193 	case e1000_82573:
1194 	case e1000_82574:
1195 	case e1000_82583:
1196 		reg = er32(CTRL);
1197 		reg &= ~BIT(29);
1198 		ew32(CTRL, reg);
1199 		break;
1200 	default:
1201 		break;
1202 	}
1203 
1204 	/* Extended Device Control */
1205 	switch (hw->mac.type) {
1206 	case e1000_82573:
1207 	case e1000_82574:
1208 	case e1000_82583:
1209 		reg = er32(CTRL_EXT);
1210 		reg &= ~BIT(23);
1211 		reg |= BIT(22);
1212 		ew32(CTRL_EXT, reg);
1213 		break;
1214 	default:
1215 		break;
1216 	}
1217 
1218 	if (hw->mac.type == e1000_82571) {
1219 		reg = er32(PBA_ECC);
1220 		reg |= E1000_PBA_ECC_CORR_EN;
1221 		ew32(PBA_ECC, reg);
1222 	}
1223 
1224 	/* Workaround for hardware errata.
1225 	 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1226 	 */
1227 	if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) {
1228 		reg = er32(CTRL_EXT);
1229 		reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1230 		ew32(CTRL_EXT, reg);
1231 	}
1232 
1233 	/* Disable IPv6 extension header parsing because some malformed
1234 	 * IPv6 headers can hang the Rx.
1235 	 */
1236 	if (hw->mac.type <= e1000_82573) {
1237 		reg = er32(RFCTL);
1238 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
1239 		ew32(RFCTL, reg);
1240 	}
1241 
1242 	/* PCI-Ex Control Registers */
1243 	switch (hw->mac.type) {
1244 	case e1000_82574:
1245 	case e1000_82583:
1246 		reg = er32(GCR);
1247 		reg |= BIT(22);
1248 		ew32(GCR, reg);
1249 
1250 		/* Workaround for hardware errata.
1251 		 * apply workaround for hardware errata documented in errata
1252 		 * docs Fixes issue where some error prone or unreliable PCIe
1253 		 * completions are occurring, particularly with ASPM enabled.
1254 		 * Without fix, issue can cause Tx timeouts.
1255 		 */
1256 		reg = er32(GCR2);
1257 		reg |= 1;
1258 		ew32(GCR2, reg);
1259 		break;
1260 	default:
1261 		break;
1262 	}
1263 }
1264 
1265 /**
1266  *  e1000_clear_vfta_82571 - Clear VLAN filter table
1267  *  @hw: pointer to the HW structure
1268  *
1269  *  Clears the register array which contains the VLAN filter table by
1270  *  setting all the values to 0.
1271  **/
1272 static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1273 {
1274 	u32 offset;
1275 	u32 vfta_value = 0;
1276 	u32 vfta_offset = 0;
1277 	u32 vfta_bit_in_reg = 0;
1278 
1279 	switch (hw->mac.type) {
1280 	case e1000_82573:
1281 	case e1000_82574:
1282 	case e1000_82583:
1283 		if (hw->mng_cookie.vlan_id != 0) {
1284 			/* The VFTA is a 4096b bit-field, each identifying
1285 			 * a single VLAN ID.  The following operations
1286 			 * determine which 32b entry (i.e. offset) into the
1287 			 * array we want to set the VLAN ID (i.e. bit) of
1288 			 * the manageability unit.
1289 			 */
1290 			vfta_offset = (hw->mng_cookie.vlan_id >>
1291 				       E1000_VFTA_ENTRY_SHIFT) &
1292 			    E1000_VFTA_ENTRY_MASK;
1293 			vfta_bit_in_reg =
1294 			    BIT(hw->mng_cookie.vlan_id &
1295 				E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1296 		}
1297 		break;
1298 	default:
1299 		break;
1300 	}
1301 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1302 		/* If the offset we want to clear is the same offset of the
1303 		 * manageability VLAN ID, then clear all bits except that of
1304 		 * the manageability unit.
1305 		 */
1306 		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1307 		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1308 		e1e_flush();
1309 	}
1310 }
1311 
1312 /**
1313  *  e1000_check_mng_mode_82574 - Check manageability is enabled
1314  *  @hw: pointer to the HW structure
1315  *
1316  *  Reads the NVM Initialization Control Word 2 and returns true
1317  *  (>0) if any manageability is enabled, else false (0).
1318  **/
1319 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1320 {
1321 	u16 data;
1322 
1323 	e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1324 	return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1325 }
1326 
1327 /**
1328  *  e1000_led_on_82574 - Turn LED on
1329  *  @hw: pointer to the HW structure
1330  *
1331  *  Turn LED on.
1332  **/
1333 static s32 e1000_led_on_82574(struct e1000_hw *hw)
1334 {
1335 	u32 ctrl;
1336 	u32 i;
1337 
1338 	ctrl = hw->mac.ledctl_mode2;
1339 	if (!(E1000_STATUS_LU & er32(STATUS))) {
1340 		/* If no link, then turn LED on by setting the invert bit
1341 		 * for each LED that's "on" (0x0E) in ledctl_mode2.
1342 		 */
1343 		for (i = 0; i < 4; i++)
1344 			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1345 			    E1000_LEDCTL_MODE_LED_ON)
1346 				ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1347 	}
1348 	ew32(LEDCTL, ctrl);
1349 
1350 	return 0;
1351 }
1352 
1353 /**
1354  *  e1000_check_phy_82574 - check 82574 phy hung state
1355  *  @hw: pointer to the HW structure
1356  *
1357  *  Returns whether phy is hung or not
1358  **/
1359 bool e1000_check_phy_82574(struct e1000_hw *hw)
1360 {
1361 	u16 status_1kbt = 0;
1362 	u16 receive_errors = 0;
1363 	s32 ret_val;
1364 
1365 	/* Read PHY Receive Error counter first, if its is max - all F's then
1366 	 * read the Base1000T status register If both are max then PHY is hung.
1367 	 */
1368 	ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
1369 	if (ret_val)
1370 		return false;
1371 	if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
1372 		ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
1373 		if (ret_val)
1374 			return false;
1375 		if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1376 		    E1000_IDLE_ERROR_COUNT_MASK)
1377 			return true;
1378 	}
1379 
1380 	return false;
1381 }
1382 
1383 /**
1384  *  e1000_setup_link_82571 - Setup flow control and link settings
1385  *  @hw: pointer to the HW structure
1386  *
1387  *  Determines which flow control settings to use, then configures flow
1388  *  control.  Calls the appropriate media-specific link configuration
1389  *  function.  Assuming the adapter has a valid link partner, a valid link
1390  *  should be established.  Assumes the hardware has previously been reset
1391  *  and the transmitter and receiver are not enabled.
1392  **/
1393 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1394 {
1395 	/* 82573 does not have a word in the NVM to determine
1396 	 * the default flow control setting, so we explicitly
1397 	 * set it to full.
1398 	 */
1399 	switch (hw->mac.type) {
1400 	case e1000_82573:
1401 	case e1000_82574:
1402 	case e1000_82583:
1403 		if (hw->fc.requested_mode == e1000_fc_default)
1404 			hw->fc.requested_mode = e1000_fc_full;
1405 		break;
1406 	default:
1407 		break;
1408 	}
1409 
1410 	return e1000e_setup_link_generic(hw);
1411 }
1412 
1413 /**
1414  *  e1000_setup_copper_link_82571 - Configure copper link settings
1415  *  @hw: pointer to the HW structure
1416  *
1417  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1418  *  for link, once link is established calls to configure collision distance
1419  *  and flow control are called.
1420  **/
1421 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1422 {
1423 	u32 ctrl;
1424 	s32 ret_val;
1425 
1426 	ctrl = er32(CTRL);
1427 	ctrl |= E1000_CTRL_SLU;
1428 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1429 	ew32(CTRL, ctrl);
1430 
1431 	switch (hw->phy.type) {
1432 	case e1000_phy_m88:
1433 	case e1000_phy_bm:
1434 		ret_val = e1000e_copper_link_setup_m88(hw);
1435 		break;
1436 	case e1000_phy_igp_2:
1437 		ret_val = e1000e_copper_link_setup_igp(hw);
1438 		break;
1439 	default:
1440 		return -E1000_ERR_PHY;
1441 	}
1442 
1443 	if (ret_val)
1444 		return ret_val;
1445 
1446 	return e1000e_setup_copper_link(hw);
1447 }
1448 
1449 /**
1450  *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1451  *  @hw: pointer to the HW structure
1452  *
1453  *  Configures collision distance and flow control for fiber and serdes links.
1454  *  Upon successful setup, poll for link.
1455  **/
1456 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1457 {
1458 	switch (hw->mac.type) {
1459 	case e1000_82571:
1460 	case e1000_82572:
1461 		/* If SerDes loopback mode is entered, there is no form
1462 		 * of reset to take the adapter out of that mode.  So we
1463 		 * have to explicitly take the adapter out of loopback
1464 		 * mode.  This prevents drivers from twiddling their thumbs
1465 		 * if another tool failed to take it out of loopback mode.
1466 		 */
1467 		ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1468 		break;
1469 	default:
1470 		break;
1471 	}
1472 
1473 	return e1000e_setup_fiber_serdes_link(hw);
1474 }
1475 
1476 /**
1477  *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1478  *  @hw: pointer to the HW structure
1479  *
1480  *  Reports the link state as up or down.
1481  *
1482  *  If autonegotiation is supported by the link partner, the link state is
1483  *  determined by the result of autonegotiation. This is the most likely case.
1484  *  If autonegotiation is not supported by the link partner, and the link
1485  *  has a valid signal, force the link up.
1486  *
1487  *  The link state is represented internally here by 4 states:
1488  *
1489  *  1) down
1490  *  2) autoneg_progress
1491  *  3) autoneg_complete (the link successfully autonegotiated)
1492  *  4) forced_up (the link has been forced up, it did not autonegotiate)
1493  *
1494  **/
1495 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1496 {
1497 	struct e1000_mac_info *mac = &hw->mac;
1498 	u32 rxcw;
1499 	u32 ctrl;
1500 	u32 status;
1501 	u32 txcw;
1502 	u32 i;
1503 	s32 ret_val = 0;
1504 
1505 	ctrl = er32(CTRL);
1506 	status = er32(STATUS);
1507 	er32(RXCW);
1508 	/* SYNCH bit and IV bit are sticky */
1509 	usleep_range(10, 20);
1510 	rxcw = er32(RXCW);
1511 
1512 	if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1513 		/* Receiver is synchronized with no invalid bits.  */
1514 		switch (mac->serdes_link_state) {
1515 		case e1000_serdes_link_autoneg_complete:
1516 			if (!(status & E1000_STATUS_LU)) {
1517 				/* We have lost link, retry autoneg before
1518 				 * reporting link failure
1519 				 */
1520 				mac->serdes_link_state =
1521 				    e1000_serdes_link_autoneg_progress;
1522 				mac->serdes_has_link = false;
1523 				e_dbg("AN_UP     -> AN_PROG\n");
1524 			} else {
1525 				mac->serdes_has_link = true;
1526 			}
1527 			break;
1528 
1529 		case e1000_serdes_link_forced_up:
1530 			/* If we are receiving /C/ ordered sets, re-enable
1531 			 * auto-negotiation in the TXCW register and disable
1532 			 * forced link in the Device Control register in an
1533 			 * attempt to auto-negotiate with our link partner.
1534 			 */
1535 			if (rxcw & E1000_RXCW_C) {
1536 				/* Enable autoneg, and unforce link up */
1537 				ew32(TXCW, mac->txcw);
1538 				ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1539 				mac->serdes_link_state =
1540 				    e1000_serdes_link_autoneg_progress;
1541 				mac->serdes_has_link = false;
1542 				e_dbg("FORCED_UP -> AN_PROG\n");
1543 			} else {
1544 				mac->serdes_has_link = true;
1545 			}
1546 			break;
1547 
1548 		case e1000_serdes_link_autoneg_progress:
1549 			if (rxcw & E1000_RXCW_C) {
1550 				/* We received /C/ ordered sets, meaning the
1551 				 * link partner has autonegotiated, and we can
1552 				 * trust the Link Up (LU) status bit.
1553 				 */
1554 				if (status & E1000_STATUS_LU) {
1555 					mac->serdes_link_state =
1556 					    e1000_serdes_link_autoneg_complete;
1557 					e_dbg("AN_PROG   -> AN_UP\n");
1558 					mac->serdes_has_link = true;
1559 				} else {
1560 					/* Autoneg completed, but failed. */
1561 					mac->serdes_link_state =
1562 					    e1000_serdes_link_down;
1563 					e_dbg("AN_PROG   -> DOWN\n");
1564 				}
1565 			} else {
1566 				/* The link partner did not autoneg.
1567 				 * Force link up and full duplex, and change
1568 				 * state to forced.
1569 				 */
1570 				ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1571 				ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1572 				ew32(CTRL, ctrl);
1573 
1574 				/* Configure Flow Control after link up. */
1575 				ret_val = e1000e_config_fc_after_link_up(hw);
1576 				if (ret_val) {
1577 					e_dbg("Error config flow control\n");
1578 					break;
1579 				}
1580 				mac->serdes_link_state =
1581 				    e1000_serdes_link_forced_up;
1582 				mac->serdes_has_link = true;
1583 				e_dbg("AN_PROG   -> FORCED_UP\n");
1584 			}
1585 			break;
1586 
1587 		case e1000_serdes_link_down:
1588 		default:
1589 			/* The link was down but the receiver has now gained
1590 			 * valid sync, so lets see if we can bring the link
1591 			 * up.
1592 			 */
1593 			ew32(TXCW, mac->txcw);
1594 			ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1595 			mac->serdes_link_state =
1596 			    e1000_serdes_link_autoneg_progress;
1597 			mac->serdes_has_link = false;
1598 			e_dbg("DOWN      -> AN_PROG\n");
1599 			break;
1600 		}
1601 	} else {
1602 		if (!(rxcw & E1000_RXCW_SYNCH)) {
1603 			mac->serdes_has_link = false;
1604 			mac->serdes_link_state = e1000_serdes_link_down;
1605 			e_dbg("ANYSTATE  -> DOWN\n");
1606 		} else {
1607 			/* Check several times, if SYNCH bit and CONFIG
1608 			 * bit both are consistently 1 then simply ignore
1609 			 * the IV bit and restart Autoneg
1610 			 */
1611 			for (i = 0; i < AN_RETRY_COUNT; i++) {
1612 				usleep_range(10, 20);
1613 				rxcw = er32(RXCW);
1614 				if ((rxcw & E1000_RXCW_SYNCH) &&
1615 				    (rxcw & E1000_RXCW_C))
1616 					continue;
1617 
1618 				if (rxcw & E1000_RXCW_IV) {
1619 					mac->serdes_has_link = false;
1620 					mac->serdes_link_state =
1621 					    e1000_serdes_link_down;
1622 					e_dbg("ANYSTATE  -> DOWN\n");
1623 					break;
1624 				}
1625 			}
1626 
1627 			if (i == AN_RETRY_COUNT) {
1628 				txcw = er32(TXCW);
1629 				txcw |= E1000_TXCW_ANE;
1630 				ew32(TXCW, txcw);
1631 				mac->serdes_link_state =
1632 				    e1000_serdes_link_autoneg_progress;
1633 				mac->serdes_has_link = false;
1634 				e_dbg("ANYSTATE  -> AN_PROG\n");
1635 			}
1636 		}
1637 	}
1638 
1639 	return ret_val;
1640 }
1641 
1642 /**
1643  *  e1000_valid_led_default_82571 - Verify a valid default LED config
1644  *  @hw: pointer to the HW structure
1645  *  @data: pointer to the NVM (EEPROM)
1646  *
1647  *  Read the EEPROM for the current default LED configuration.  If the
1648  *  LED configuration is not valid, set to a valid LED configuration.
1649  **/
1650 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1651 {
1652 	s32 ret_val;
1653 
1654 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1655 	if (ret_val) {
1656 		e_dbg("NVM Read Error\n");
1657 		return ret_val;
1658 	}
1659 
1660 	switch (hw->mac.type) {
1661 	case e1000_82573:
1662 	case e1000_82574:
1663 	case e1000_82583:
1664 		if (*data == ID_LED_RESERVED_F746)
1665 			*data = ID_LED_DEFAULT_82573;
1666 		break;
1667 	default:
1668 		if (*data == ID_LED_RESERVED_0000 ||
1669 		    *data == ID_LED_RESERVED_FFFF)
1670 			*data = ID_LED_DEFAULT;
1671 		break;
1672 	}
1673 
1674 	return 0;
1675 }
1676 
1677 /**
1678  *  e1000e_get_laa_state_82571 - Get locally administered address state
1679  *  @hw: pointer to the HW structure
1680  *
1681  *  Retrieve and return the current locally administered address state.
1682  **/
1683 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1684 {
1685 	if (hw->mac.type != e1000_82571)
1686 		return false;
1687 
1688 	return hw->dev_spec.e82571.laa_is_present;
1689 }
1690 
1691 /**
1692  *  e1000e_set_laa_state_82571 - Set locally administered address state
1693  *  @hw: pointer to the HW structure
1694  *  @state: enable/disable locally administered address
1695  *
1696  *  Enable/Disable the current locally administered address state.
1697  **/
1698 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1699 {
1700 	if (hw->mac.type != e1000_82571)
1701 		return;
1702 
1703 	hw->dev_spec.e82571.laa_is_present = state;
1704 
1705 	/* If workaround is activated... */
1706 	if (state)
1707 		/* Hold a copy of the LAA in RAR[14] This is done so that
1708 		 * between the time RAR[0] gets clobbered and the time it
1709 		 * gets fixed, the actual LAA is in one of the RARs and no
1710 		 * incoming packets directed to this port are dropped.
1711 		 * Eventually the LAA will be in RAR[0] and RAR[14].
1712 		 */
1713 		hw->mac.ops.rar_set(hw, hw->mac.addr,
1714 				    hw->mac.rar_entry_count - 1);
1715 }
1716 
1717 /**
1718  *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1719  *  @hw: pointer to the HW structure
1720  *
1721  *  Verifies that the EEPROM has completed the update.  After updating the
1722  *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
1723  *  the checksum fix is not implemented, we need to set the bit and update
1724  *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
1725  *  we need to return bad checksum.
1726  **/
1727 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1728 {
1729 	struct e1000_nvm_info *nvm = &hw->nvm;
1730 	s32 ret_val;
1731 	u16 data;
1732 
1733 	if (nvm->type != e1000_nvm_flash_hw)
1734 		return 0;
1735 
1736 	/* Check bit 4 of word 10h.  If it is 0, firmware is done updating
1737 	 * 10h-12h.  Checksum may need to be fixed.
1738 	 */
1739 	ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1740 	if (ret_val)
1741 		return ret_val;
1742 
1743 	if (!(data & 0x10)) {
1744 		/* Read 0x23 and check bit 15.  This bit is a 1
1745 		 * when the checksum has already been fixed.  If
1746 		 * the checksum is still wrong and this bit is a
1747 		 * 1, we need to return bad checksum.  Otherwise,
1748 		 * we need to set this bit to a 1 and update the
1749 		 * checksum.
1750 		 */
1751 		ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1752 		if (ret_val)
1753 			return ret_val;
1754 
1755 		if (!(data & 0x8000)) {
1756 			data |= 0x8000;
1757 			ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1758 			if (ret_val)
1759 				return ret_val;
1760 			ret_val = e1000e_update_nvm_checksum(hw);
1761 			if (ret_val)
1762 				return ret_val;
1763 		}
1764 	}
1765 
1766 	return 0;
1767 }
1768 
1769 /**
1770  *  e1000_read_mac_addr_82571 - Read device MAC address
1771  *  @hw: pointer to the HW structure
1772  **/
1773 static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1774 {
1775 	if (hw->mac.type == e1000_82571) {
1776 		s32 ret_val;
1777 
1778 		/* If there's an alternate MAC address place it in RAR0
1779 		 * so that it will override the Si installed default perm
1780 		 * address.
1781 		 */
1782 		ret_val = e1000_check_alt_mac_addr_generic(hw);
1783 		if (ret_val)
1784 			return ret_val;
1785 	}
1786 
1787 	return e1000_read_mac_addr_generic(hw);
1788 }
1789 
1790 /**
1791  * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1792  * @hw: pointer to the HW structure
1793  *
1794  * In the case of a PHY power down to save power, or to turn off link during a
1795  * driver unload, or wake on lan is not enabled, remove the link.
1796  **/
1797 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1798 {
1799 	struct e1000_phy_info *phy = &hw->phy;
1800 	struct e1000_mac_info *mac = &hw->mac;
1801 
1802 	if (!phy->ops.check_reset_block)
1803 		return;
1804 
1805 	/* If the management interface is not enabled, then power down */
1806 	if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1807 		e1000_power_down_phy_copper(hw);
1808 }
1809 
1810 /**
1811  *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1812  *  @hw: pointer to the HW structure
1813  *
1814  *  Clears the hardware counters by reading the counter registers.
1815  **/
1816 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1817 {
1818 	e1000e_clear_hw_cntrs_base(hw);
1819 
1820 	er32(PRC64);
1821 	er32(PRC127);
1822 	er32(PRC255);
1823 	er32(PRC511);
1824 	er32(PRC1023);
1825 	er32(PRC1522);
1826 	er32(PTC64);
1827 	er32(PTC127);
1828 	er32(PTC255);
1829 	er32(PTC511);
1830 	er32(PTC1023);
1831 	er32(PTC1522);
1832 
1833 	er32(ALGNERRC);
1834 	er32(RXERRC);
1835 	er32(TNCRS);
1836 	er32(CEXTERR);
1837 	er32(TSCTC);
1838 	er32(TSCTFC);
1839 
1840 	er32(MGTPRC);
1841 	er32(MGTPDC);
1842 	er32(MGTPTC);
1843 
1844 	er32(IAC);
1845 	er32(ICRXOC);
1846 
1847 	er32(ICRXPTC);
1848 	er32(ICRXATC);
1849 	er32(ICTXPTC);
1850 	er32(ICTXATC);
1851 	er32(ICTXQEC);
1852 	er32(ICTXQMTC);
1853 	er32(ICRXDMTC);
1854 }
1855 
1856 static const struct e1000_mac_operations e82571_mac_ops = {
1857 	/* .check_mng_mode: mac type dependent */
1858 	/* .check_for_link: media type dependent */
1859 	.id_led_init		= e1000e_id_led_init_generic,
1860 	.cleanup_led		= e1000e_cleanup_led_generic,
1861 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_82571,
1862 	.get_bus_info		= e1000e_get_bus_info_pcie,
1863 	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
1864 	/* .get_link_up_info: media type dependent */
1865 	/* .led_on: mac type dependent */
1866 	.led_off		= e1000e_led_off_generic,
1867 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
1868 	.write_vfta		= e1000_write_vfta_generic,
1869 	.clear_vfta		= e1000_clear_vfta_82571,
1870 	.reset_hw		= e1000_reset_hw_82571,
1871 	.init_hw		= e1000_init_hw_82571,
1872 	.setup_link		= e1000_setup_link_82571,
1873 	/* .setup_physical_interface: media type dependent */
1874 	.setup_led		= e1000e_setup_led_generic,
1875 	.config_collision_dist	= e1000e_config_collision_dist_generic,
1876 	.read_mac_addr		= e1000_read_mac_addr_82571,
1877 	.rar_set		= e1000e_rar_set_generic,
1878 	.rar_get_count		= e1000e_rar_get_count_generic,
1879 };
1880 
1881 static const struct e1000_phy_operations e82_phy_ops_igp = {
1882 	.acquire		= e1000_get_hw_semaphore_82571,
1883 	.check_polarity		= e1000_check_polarity_igp,
1884 	.check_reset_block	= e1000e_check_reset_block_generic,
1885 	.commit			= NULL,
1886 	.force_speed_duplex	= e1000e_phy_force_speed_duplex_igp,
1887 	.get_cfg_done		= e1000_get_cfg_done_82571,
1888 	.get_cable_length	= e1000e_get_cable_length_igp_2,
1889 	.get_info		= e1000e_get_phy_info_igp,
1890 	.read_reg		= e1000e_read_phy_reg_igp,
1891 	.release		= e1000_put_hw_semaphore_82571,
1892 	.reset			= e1000e_phy_hw_reset_generic,
1893 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
1894 	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1895 	.write_reg		= e1000e_write_phy_reg_igp,
1896 	.cfg_on_link_up		= NULL,
1897 };
1898 
1899 static const struct e1000_phy_operations e82_phy_ops_m88 = {
1900 	.acquire		= e1000_get_hw_semaphore_82571,
1901 	.check_polarity		= e1000_check_polarity_m88,
1902 	.check_reset_block	= e1000e_check_reset_block_generic,
1903 	.commit			= e1000e_phy_sw_reset,
1904 	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
1905 	.get_cfg_done		= e1000e_get_cfg_done_generic,
1906 	.get_cable_length	= e1000e_get_cable_length_m88,
1907 	.get_info		= e1000e_get_phy_info_m88,
1908 	.read_reg		= e1000e_read_phy_reg_m88,
1909 	.release		= e1000_put_hw_semaphore_82571,
1910 	.reset			= e1000e_phy_hw_reset_generic,
1911 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
1912 	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1913 	.write_reg		= e1000e_write_phy_reg_m88,
1914 	.cfg_on_link_up		= NULL,
1915 };
1916 
1917 static const struct e1000_phy_operations e82_phy_ops_bm = {
1918 	.acquire		= e1000_get_hw_semaphore_82571,
1919 	.check_polarity		= e1000_check_polarity_m88,
1920 	.check_reset_block	= e1000e_check_reset_block_generic,
1921 	.commit			= e1000e_phy_sw_reset,
1922 	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
1923 	.get_cfg_done		= e1000e_get_cfg_done_generic,
1924 	.get_cable_length	= e1000e_get_cable_length_m88,
1925 	.get_info		= e1000e_get_phy_info_m88,
1926 	.read_reg		= e1000e_read_phy_reg_bm2,
1927 	.release		= e1000_put_hw_semaphore_82571,
1928 	.reset			= e1000e_phy_hw_reset_generic,
1929 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
1930 	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1931 	.write_reg		= e1000e_write_phy_reg_bm2,
1932 	.cfg_on_link_up		= NULL,
1933 };
1934 
1935 static const struct e1000_nvm_operations e82571_nvm_ops = {
1936 	.acquire		= e1000_acquire_nvm_82571,
1937 	.read			= e1000e_read_nvm_eerd,
1938 	.release		= e1000_release_nvm_82571,
1939 	.reload			= e1000e_reload_nvm_generic,
1940 	.update			= e1000_update_nvm_checksum_82571,
1941 	.valid_led_default	= e1000_valid_led_default_82571,
1942 	.validate		= e1000_validate_nvm_checksum_82571,
1943 	.write			= e1000_write_nvm_82571,
1944 };
1945 
1946 const struct e1000_info e1000_82571_info = {
1947 	.mac			= e1000_82571,
1948 	.flags			= FLAG_HAS_HW_VLAN_FILTER
1949 				  | FLAG_HAS_JUMBO_FRAMES
1950 				  | FLAG_HAS_WOL
1951 				  | FLAG_APME_IN_CTRL3
1952 				  | FLAG_HAS_CTRLEXT_ON_LOAD
1953 				  | FLAG_HAS_SMART_POWER_DOWN
1954 				  | FLAG_RESET_OVERWRITES_LAA /* errata */
1955 				  | FLAG_TARC_SPEED_MODE_BIT /* errata */
1956 				  | FLAG_APME_CHECK_PORT_B,
1957 	.flags2			= FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1958 				  | FLAG2_DMA_BURST,
1959 	.pba			= 38,
1960 	.max_hw_frame_size	= DEFAULT_JUMBO,
1961 	.get_variants		= e1000_get_variants_82571,
1962 	.mac_ops		= &e82571_mac_ops,
1963 	.phy_ops		= &e82_phy_ops_igp,
1964 	.nvm_ops		= &e82571_nvm_ops,
1965 };
1966 
1967 const struct e1000_info e1000_82572_info = {
1968 	.mac			= e1000_82572,
1969 	.flags			= FLAG_HAS_HW_VLAN_FILTER
1970 				  | FLAG_HAS_JUMBO_FRAMES
1971 				  | FLAG_HAS_WOL
1972 				  | FLAG_APME_IN_CTRL3
1973 				  | FLAG_HAS_CTRLEXT_ON_LOAD
1974 				  | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1975 	.flags2			= FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1976 				  | FLAG2_DMA_BURST,
1977 	.pba			= 38,
1978 	.max_hw_frame_size	= DEFAULT_JUMBO,
1979 	.get_variants		= e1000_get_variants_82571,
1980 	.mac_ops		= &e82571_mac_ops,
1981 	.phy_ops		= &e82_phy_ops_igp,
1982 	.nvm_ops		= &e82571_nvm_ops,
1983 };
1984 
1985 const struct e1000_info e1000_82573_info = {
1986 	.mac			= e1000_82573,
1987 	.flags			= FLAG_HAS_HW_VLAN_FILTER
1988 				  | FLAG_HAS_WOL
1989 				  | FLAG_APME_IN_CTRL3
1990 				  | FLAG_HAS_SMART_POWER_DOWN
1991 				  | FLAG_HAS_AMT
1992 				  | FLAG_HAS_SWSM_ON_LOAD,
1993 	.flags2			= FLAG2_DISABLE_ASPM_L1
1994 				  | FLAG2_DISABLE_ASPM_L0S,
1995 	.pba			= 20,
1996 	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
1997 	.get_variants		= e1000_get_variants_82571,
1998 	.mac_ops		= &e82571_mac_ops,
1999 	.phy_ops		= &e82_phy_ops_m88,
2000 	.nvm_ops		= &e82571_nvm_ops,
2001 };
2002 
2003 const struct e1000_info e1000_82574_info = {
2004 	.mac			= e1000_82574,
2005 	.flags			= FLAG_HAS_HW_VLAN_FILTER
2006 				  | FLAG_HAS_MSIX
2007 				  | FLAG_HAS_JUMBO_FRAMES
2008 				  | FLAG_HAS_WOL
2009 				  | FLAG_HAS_HW_TIMESTAMP
2010 				  | FLAG_APME_IN_CTRL3
2011 				  | FLAG_HAS_SMART_POWER_DOWN
2012 				  | FLAG_HAS_AMT
2013 				  | FLAG_HAS_CTRLEXT_ON_LOAD,
2014 	.flags2			 = FLAG2_CHECK_PHY_HANG
2015 				  | FLAG2_DISABLE_ASPM_L0S
2016 				  | FLAG2_DISABLE_ASPM_L1
2017 				  | FLAG2_NO_DISABLE_RX
2018 				  | FLAG2_DMA_BURST
2019 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
2020 	.pba			= 32,
2021 	.max_hw_frame_size	= DEFAULT_JUMBO,
2022 	.get_variants		= e1000_get_variants_82571,
2023 	.mac_ops		= &e82571_mac_ops,
2024 	.phy_ops		= &e82_phy_ops_bm,
2025 	.nvm_ops		= &e82571_nvm_ops,
2026 };
2027 
2028 const struct e1000_info e1000_82583_info = {
2029 	.mac			= e1000_82583,
2030 	.flags			= FLAG_HAS_HW_VLAN_FILTER
2031 				  | FLAG_HAS_WOL
2032 				  | FLAG_HAS_HW_TIMESTAMP
2033 				  | FLAG_APME_IN_CTRL3
2034 				  | FLAG_HAS_SMART_POWER_DOWN
2035 				  | FLAG_HAS_AMT
2036 				  | FLAG_HAS_JUMBO_FRAMES
2037 				  | FLAG_HAS_CTRLEXT_ON_LOAD,
2038 	.flags2			= FLAG2_DISABLE_ASPM_L0S
2039 				  | FLAG2_DISABLE_ASPM_L1
2040 				  | FLAG2_NO_DISABLE_RX
2041 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
2042 	.pba			= 32,
2043 	.max_hw_frame_size	= DEFAULT_JUMBO,
2044 	.get_variants		= e1000_get_variants_82571,
2045 	.mac_ops		= &e82571_mac_ops,
2046 	.phy_ops		= &e82_phy_ops_bm,
2047 	.nvm_ops		= &e82571_nvm_ops,
2048 };
2049