xref: /linux/drivers/net/ethernet/intel/e1000e/82571.c (revision 3932b9ca55b0be314a36d3e84faff3e823c081f5)
1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21 
22 /* 82571EB Gigabit Ethernet Controller
23  * 82571EB Gigabit Ethernet Controller (Copper)
24  * 82571EB Gigabit Ethernet Controller (Fiber)
25  * 82571EB Dual Port Gigabit Mezzanine Adapter
26  * 82571EB Quad Port Gigabit Mezzanine Adapter
27  * 82571PT Gigabit PT Quad Port Server ExpressModule
28  * 82572EI Gigabit Ethernet Controller (Copper)
29  * 82572EI Gigabit Ethernet Controller (Fiber)
30  * 82572EI Gigabit Ethernet Controller
31  * 82573V Gigabit Ethernet Controller (Copper)
32  * 82573E Gigabit Ethernet Controller (Copper)
33  * 82573L Gigabit Ethernet Controller
34  * 82574L Gigabit Network Connection
35  * 82583V Gigabit Network Connection
36  */
37 
38 #include "e1000.h"
39 
40 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
41 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
42 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
43 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
44 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
45 				      u16 words, u16 *data);
46 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
47 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
48 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
49 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
50 static s32 e1000_led_on_82574(struct e1000_hw *hw);
51 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
52 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
53 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
54 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
55 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
56 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
57 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
58 
59 /**
60  *  e1000_init_phy_params_82571 - Init PHY func ptrs.
61  *  @hw: pointer to the HW structure
62  **/
63 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
64 {
65 	struct e1000_phy_info *phy = &hw->phy;
66 	s32 ret_val;
67 
68 	if (hw->phy.media_type != e1000_media_type_copper) {
69 		phy->type = e1000_phy_none;
70 		return 0;
71 	}
72 
73 	phy->addr = 1;
74 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
75 	phy->reset_delay_us = 100;
76 
77 	phy->ops.power_up = e1000_power_up_phy_copper;
78 	phy->ops.power_down = e1000_power_down_phy_copper_82571;
79 
80 	switch (hw->mac.type) {
81 	case e1000_82571:
82 	case e1000_82572:
83 		phy->type = e1000_phy_igp_2;
84 		break;
85 	case e1000_82573:
86 		phy->type = e1000_phy_m88;
87 		break;
88 	case e1000_82574:
89 	case e1000_82583:
90 		phy->type = e1000_phy_bm;
91 		phy->ops.acquire = e1000_get_hw_semaphore_82574;
92 		phy->ops.release = e1000_put_hw_semaphore_82574;
93 		phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
94 		phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
95 		break;
96 	default:
97 		return -E1000_ERR_PHY;
98 	}
99 
100 	/* This can only be done after all function pointers are setup. */
101 	ret_val = e1000_get_phy_id_82571(hw);
102 	if (ret_val) {
103 		e_dbg("Error getting PHY ID\n");
104 		return ret_val;
105 	}
106 
107 	/* Verify phy id */
108 	switch (hw->mac.type) {
109 	case e1000_82571:
110 	case e1000_82572:
111 		if (phy->id != IGP01E1000_I_PHY_ID)
112 			ret_val = -E1000_ERR_PHY;
113 		break;
114 	case e1000_82573:
115 		if (phy->id != M88E1111_I_PHY_ID)
116 			ret_val = -E1000_ERR_PHY;
117 		break;
118 	case e1000_82574:
119 	case e1000_82583:
120 		if (phy->id != BME1000_E_PHY_ID_R2)
121 			ret_val = -E1000_ERR_PHY;
122 		break;
123 	default:
124 		ret_val = -E1000_ERR_PHY;
125 		break;
126 	}
127 
128 	if (ret_val)
129 		e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
130 
131 	return ret_val;
132 }
133 
134 /**
135  *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
136  *  @hw: pointer to the HW structure
137  **/
138 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
139 {
140 	struct e1000_nvm_info *nvm = &hw->nvm;
141 	u32 eecd = er32(EECD);
142 	u16 size;
143 
144 	nvm->opcode_bits = 8;
145 	nvm->delay_usec = 1;
146 	switch (nvm->override) {
147 	case e1000_nvm_override_spi_large:
148 		nvm->page_size = 32;
149 		nvm->address_bits = 16;
150 		break;
151 	case e1000_nvm_override_spi_small:
152 		nvm->page_size = 8;
153 		nvm->address_bits = 8;
154 		break;
155 	default:
156 		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
157 		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
158 		break;
159 	}
160 
161 	switch (hw->mac.type) {
162 	case e1000_82573:
163 	case e1000_82574:
164 	case e1000_82583:
165 		if (((eecd >> 15) & 0x3) == 0x3) {
166 			nvm->type = e1000_nvm_flash_hw;
167 			nvm->word_size = 2048;
168 			/* Autonomous Flash update bit must be cleared due
169 			 * to Flash update issue.
170 			 */
171 			eecd &= ~E1000_EECD_AUPDEN;
172 			ew32(EECD, eecd);
173 			break;
174 		}
175 		/* Fall Through */
176 	default:
177 		nvm->type = e1000_nvm_eeprom_spi;
178 		size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
179 			     E1000_EECD_SIZE_EX_SHIFT);
180 		/* Added to a constant, "size" becomes the left-shift value
181 		 * for setting word_size.
182 		 */
183 		size += NVM_WORD_SIZE_BASE_SHIFT;
184 
185 		/* EEPROM access above 16k is unsupported */
186 		if (size > 14)
187 			size = 14;
188 		nvm->word_size = 1 << size;
189 		break;
190 	}
191 
192 	/* Function Pointers */
193 	switch (hw->mac.type) {
194 	case e1000_82574:
195 	case e1000_82583:
196 		nvm->ops.acquire = e1000_get_hw_semaphore_82574;
197 		nvm->ops.release = e1000_put_hw_semaphore_82574;
198 		break;
199 	default:
200 		break;
201 	}
202 
203 	return 0;
204 }
205 
206 /**
207  *  e1000_init_mac_params_82571 - Init MAC func ptrs.
208  *  @hw: pointer to the HW structure
209  **/
210 static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
211 {
212 	struct e1000_mac_info *mac = &hw->mac;
213 	u32 swsm = 0;
214 	u32 swsm2 = 0;
215 	bool force_clear_smbi = false;
216 
217 	/* Set media type and media-dependent function pointers */
218 	switch (hw->adapter->pdev->device) {
219 	case E1000_DEV_ID_82571EB_FIBER:
220 	case E1000_DEV_ID_82572EI_FIBER:
221 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
222 		hw->phy.media_type = e1000_media_type_fiber;
223 		mac->ops.setup_physical_interface =
224 		    e1000_setup_fiber_serdes_link_82571;
225 		mac->ops.check_for_link = e1000e_check_for_fiber_link;
226 		mac->ops.get_link_up_info =
227 		    e1000e_get_speed_and_duplex_fiber_serdes;
228 		break;
229 	case E1000_DEV_ID_82571EB_SERDES:
230 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
231 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
232 	case E1000_DEV_ID_82572EI_SERDES:
233 		hw->phy.media_type = e1000_media_type_internal_serdes;
234 		mac->ops.setup_physical_interface =
235 		    e1000_setup_fiber_serdes_link_82571;
236 		mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
237 		mac->ops.get_link_up_info =
238 		    e1000e_get_speed_and_duplex_fiber_serdes;
239 		break;
240 	default:
241 		hw->phy.media_type = e1000_media_type_copper;
242 		mac->ops.setup_physical_interface =
243 		    e1000_setup_copper_link_82571;
244 		mac->ops.check_for_link = e1000e_check_for_copper_link;
245 		mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper;
246 		break;
247 	}
248 
249 	/* Set mta register count */
250 	mac->mta_reg_count = 128;
251 	/* Set rar entry count */
252 	mac->rar_entry_count = E1000_RAR_ENTRIES;
253 	/* Adaptive IFS supported */
254 	mac->adaptive_ifs = true;
255 
256 	/* MAC-specific function pointers */
257 	switch (hw->mac.type) {
258 	case e1000_82573:
259 		mac->ops.set_lan_id = e1000_set_lan_id_single_port;
260 		mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
261 		mac->ops.led_on = e1000e_led_on_generic;
262 		mac->ops.blink_led = e1000e_blink_led_generic;
263 
264 		/* FWSM register */
265 		mac->has_fwsm = true;
266 		/* ARC supported; valid only if manageability features are
267 		 * enabled.
268 		 */
269 		mac->arc_subsystem_valid = !!(er32(FWSM) &
270 					      E1000_FWSM_MODE_MASK);
271 		break;
272 	case e1000_82574:
273 	case e1000_82583:
274 		mac->ops.set_lan_id = e1000_set_lan_id_single_port;
275 		mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
276 		mac->ops.led_on = e1000_led_on_82574;
277 		break;
278 	default:
279 		mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
280 		mac->ops.led_on = e1000e_led_on_generic;
281 		mac->ops.blink_led = e1000e_blink_led_generic;
282 
283 		/* FWSM register */
284 		mac->has_fwsm = true;
285 		break;
286 	}
287 
288 	/* Ensure that the inter-port SWSM.SMBI lock bit is clear before
289 	 * first NVM or PHY access. This should be done for single-port
290 	 * devices, and for one port only on dual-port devices so that
291 	 * for those devices we can still use the SMBI lock to synchronize
292 	 * inter-port accesses to the PHY & NVM.
293 	 */
294 	switch (hw->mac.type) {
295 	case e1000_82571:
296 	case e1000_82572:
297 		swsm2 = er32(SWSM2);
298 
299 		if (!(swsm2 & E1000_SWSM2_LOCK)) {
300 			/* Only do this for the first interface on this card */
301 			ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK);
302 			force_clear_smbi = true;
303 		} else {
304 			force_clear_smbi = false;
305 		}
306 		break;
307 	default:
308 		force_clear_smbi = true;
309 		break;
310 	}
311 
312 	if (force_clear_smbi) {
313 		/* Make sure SWSM.SMBI is clear */
314 		swsm = er32(SWSM);
315 		if (swsm & E1000_SWSM_SMBI) {
316 			/* This bit should not be set on a first interface, and
317 			 * indicates that the bootagent or EFI code has
318 			 * improperly left this bit enabled
319 			 */
320 			e_dbg("Please update your 82571 Bootagent\n");
321 		}
322 		ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
323 	}
324 
325 	/* Initialize device specific counter of SMBI acquisition timeouts. */
326 	hw->dev_spec.e82571.smb_counter = 0;
327 
328 	return 0;
329 }
330 
331 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
332 {
333 	struct e1000_hw *hw = &adapter->hw;
334 	static int global_quad_port_a;	/* global port a indication */
335 	struct pci_dev *pdev = adapter->pdev;
336 	int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
337 	s32 rc;
338 
339 	rc = e1000_init_mac_params_82571(hw);
340 	if (rc)
341 		return rc;
342 
343 	rc = e1000_init_nvm_params_82571(hw);
344 	if (rc)
345 		return rc;
346 
347 	rc = e1000_init_phy_params_82571(hw);
348 	if (rc)
349 		return rc;
350 
351 	/* tag quad port adapters first, it's used below */
352 	switch (pdev->device) {
353 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
354 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
355 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
356 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
357 		adapter->flags |= FLAG_IS_QUAD_PORT;
358 		/* mark the first port */
359 		if (global_quad_port_a == 0)
360 			adapter->flags |= FLAG_IS_QUAD_PORT_A;
361 		/* Reset for multiple quad port adapters */
362 		global_quad_port_a++;
363 		if (global_quad_port_a == 4)
364 			global_quad_port_a = 0;
365 		break;
366 	default:
367 		break;
368 	}
369 
370 	switch (adapter->hw.mac.type) {
371 	case e1000_82571:
372 		/* these dual ports don't have WoL on port B at all */
373 		if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
374 		     (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
375 		     (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
376 		    (is_port_b))
377 			adapter->flags &= ~FLAG_HAS_WOL;
378 		/* quad ports only support WoL on port A */
379 		if (adapter->flags & FLAG_IS_QUAD_PORT &&
380 		    (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
381 			adapter->flags &= ~FLAG_HAS_WOL;
382 		/* Does not support WoL on any port */
383 		if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
384 			adapter->flags &= ~FLAG_HAS_WOL;
385 		break;
386 	case e1000_82573:
387 		if (pdev->device == E1000_DEV_ID_82573L) {
388 			adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
389 			adapter->max_hw_frame_size = DEFAULT_JUMBO;
390 		}
391 		break;
392 	default:
393 		break;
394 	}
395 
396 	return 0;
397 }
398 
399 /**
400  *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
401  *  @hw: pointer to the HW structure
402  *
403  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
404  *  revision in the hardware structure.
405  **/
406 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
407 {
408 	struct e1000_phy_info *phy = &hw->phy;
409 	s32 ret_val;
410 	u16 phy_id = 0;
411 
412 	switch (hw->mac.type) {
413 	case e1000_82571:
414 	case e1000_82572:
415 		/* The 82571 firmware may still be configuring the PHY.
416 		 * In this case, we cannot access the PHY until the
417 		 * configuration is done.  So we explicitly set the
418 		 * PHY ID.
419 		 */
420 		phy->id = IGP01E1000_I_PHY_ID;
421 		break;
422 	case e1000_82573:
423 		return e1000e_get_phy_id(hw);
424 	case e1000_82574:
425 	case e1000_82583:
426 		ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
427 		if (ret_val)
428 			return ret_val;
429 
430 		phy->id = (u32)(phy_id << 16);
431 		usleep_range(20, 40);
432 		ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
433 		if (ret_val)
434 			return ret_val;
435 
436 		phy->id |= (u32)(phy_id);
437 		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
438 		break;
439 	default:
440 		return -E1000_ERR_PHY;
441 	}
442 
443 	return 0;
444 }
445 
446 /**
447  *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
448  *  @hw: pointer to the HW structure
449  *
450  *  Acquire the HW semaphore to access the PHY or NVM
451  **/
452 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
453 {
454 	u32 swsm;
455 	s32 sw_timeout = hw->nvm.word_size + 1;
456 	s32 fw_timeout = hw->nvm.word_size + 1;
457 	s32 i = 0;
458 
459 	/* If we have timedout 3 times on trying to acquire
460 	 * the inter-port SMBI semaphore, there is old code
461 	 * operating on the other port, and it is not
462 	 * releasing SMBI. Modify the number of times that
463 	 * we try for the semaphore to interwork with this
464 	 * older code.
465 	 */
466 	if (hw->dev_spec.e82571.smb_counter > 2)
467 		sw_timeout = 1;
468 
469 	/* Get the SW semaphore */
470 	while (i < sw_timeout) {
471 		swsm = er32(SWSM);
472 		if (!(swsm & E1000_SWSM_SMBI))
473 			break;
474 
475 		usleep_range(50, 100);
476 		i++;
477 	}
478 
479 	if (i == sw_timeout) {
480 		e_dbg("Driver can't access device - SMBI bit is set.\n");
481 		hw->dev_spec.e82571.smb_counter++;
482 	}
483 	/* Get the FW semaphore. */
484 	for (i = 0; i < fw_timeout; i++) {
485 		swsm = er32(SWSM);
486 		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
487 
488 		/* Semaphore acquired if bit latched */
489 		if (er32(SWSM) & E1000_SWSM_SWESMBI)
490 			break;
491 
492 		usleep_range(50, 100);
493 	}
494 
495 	if (i == fw_timeout) {
496 		/* Release semaphores */
497 		e1000_put_hw_semaphore_82571(hw);
498 		e_dbg("Driver can't access the NVM\n");
499 		return -E1000_ERR_NVM;
500 	}
501 
502 	return 0;
503 }
504 
505 /**
506  *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
507  *  @hw: pointer to the HW structure
508  *
509  *  Release hardware semaphore used to access the PHY or NVM
510  **/
511 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
512 {
513 	u32 swsm;
514 
515 	swsm = er32(SWSM);
516 	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
517 	ew32(SWSM, swsm);
518 }
519 
520 /**
521  *  e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
522  *  @hw: pointer to the HW structure
523  *
524  *  Acquire the HW semaphore during reset.
525  *
526  **/
527 static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
528 {
529 	u32 extcnf_ctrl;
530 	s32 i = 0;
531 
532 	extcnf_ctrl = er32(EXTCNF_CTRL);
533 	do {
534 		extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
535 		ew32(EXTCNF_CTRL, extcnf_ctrl);
536 		extcnf_ctrl = er32(EXTCNF_CTRL);
537 
538 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
539 			break;
540 
541 		usleep_range(2000, 4000);
542 		i++;
543 	} while (i < MDIO_OWNERSHIP_TIMEOUT);
544 
545 	if (i == MDIO_OWNERSHIP_TIMEOUT) {
546 		/* Release semaphores */
547 		e1000_put_hw_semaphore_82573(hw);
548 		e_dbg("Driver can't access the PHY\n");
549 		return -E1000_ERR_PHY;
550 	}
551 
552 	return 0;
553 }
554 
555 /**
556  *  e1000_put_hw_semaphore_82573 - Release hardware semaphore
557  *  @hw: pointer to the HW structure
558  *
559  *  Release hardware semaphore used during reset.
560  *
561  **/
562 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
563 {
564 	u32 extcnf_ctrl;
565 
566 	extcnf_ctrl = er32(EXTCNF_CTRL);
567 	extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
568 	ew32(EXTCNF_CTRL, extcnf_ctrl);
569 }
570 
571 static DEFINE_MUTEX(swflag_mutex);
572 
573 /**
574  *  e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
575  *  @hw: pointer to the HW structure
576  *
577  *  Acquire the HW semaphore to access the PHY or NVM.
578  *
579  **/
580 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
581 {
582 	s32 ret_val;
583 
584 	mutex_lock(&swflag_mutex);
585 	ret_val = e1000_get_hw_semaphore_82573(hw);
586 	if (ret_val)
587 		mutex_unlock(&swflag_mutex);
588 	return ret_val;
589 }
590 
591 /**
592  *  e1000_put_hw_semaphore_82574 - Release hardware semaphore
593  *  @hw: pointer to the HW structure
594  *
595  *  Release hardware semaphore used to access the PHY or NVM
596  *
597  **/
598 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
599 {
600 	e1000_put_hw_semaphore_82573(hw);
601 	mutex_unlock(&swflag_mutex);
602 }
603 
604 /**
605  *  e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
606  *  @hw: pointer to the HW structure
607  *  @active: true to enable LPLU, false to disable
608  *
609  *  Sets the LPLU D0 state according to the active flag.
610  *  LPLU will not be activated unless the
611  *  device autonegotiation advertisement meets standards of
612  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
613  *  This is a function pointer entry point only called by
614  *  PHY setup routines.
615  **/
616 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
617 {
618 	u32 data = er32(POEMB);
619 
620 	if (active)
621 		data |= E1000_PHY_CTRL_D0A_LPLU;
622 	else
623 		data &= ~E1000_PHY_CTRL_D0A_LPLU;
624 
625 	ew32(POEMB, data);
626 	return 0;
627 }
628 
629 /**
630  *  e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
631  *  @hw: pointer to the HW structure
632  *  @active: boolean used to enable/disable lplu
633  *
634  *  The low power link up (lplu) state is set to the power management level D3
635  *  when active is true, else clear lplu for D3. LPLU
636  *  is used during Dx states where the power conservation is most important.
637  *  During driver activity, SmartSpeed should be enabled so performance is
638  *  maintained.
639  **/
640 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
641 {
642 	u32 data = er32(POEMB);
643 
644 	if (!active) {
645 		data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
646 	} else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
647 		   (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
648 		   (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
649 		data |= E1000_PHY_CTRL_NOND0A_LPLU;
650 	}
651 
652 	ew32(POEMB, data);
653 	return 0;
654 }
655 
656 /**
657  *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
658  *  @hw: pointer to the HW structure
659  *
660  *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
661  *  Then for non-82573 hardware, set the EEPROM access request bit and wait
662  *  for EEPROM access grant bit.  If the access grant bit is not set, release
663  *  hardware semaphore.
664  **/
665 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
666 {
667 	s32 ret_val;
668 
669 	ret_val = e1000_get_hw_semaphore_82571(hw);
670 	if (ret_val)
671 		return ret_val;
672 
673 	switch (hw->mac.type) {
674 	case e1000_82573:
675 		break;
676 	default:
677 		ret_val = e1000e_acquire_nvm(hw);
678 		break;
679 	}
680 
681 	if (ret_val)
682 		e1000_put_hw_semaphore_82571(hw);
683 
684 	return ret_val;
685 }
686 
687 /**
688  *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
689  *  @hw: pointer to the HW structure
690  *
691  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
692  **/
693 static void e1000_release_nvm_82571(struct e1000_hw *hw)
694 {
695 	e1000e_release_nvm(hw);
696 	e1000_put_hw_semaphore_82571(hw);
697 }
698 
699 /**
700  *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
701  *  @hw: pointer to the HW structure
702  *  @offset: offset within the EEPROM to be written to
703  *  @words: number of words to write
704  *  @data: 16 bit word(s) to be written to the EEPROM
705  *
706  *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
707  *
708  *  If e1000e_update_nvm_checksum is not called after this function, the
709  *  EEPROM will most likely contain an invalid checksum.
710  **/
711 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
712 				 u16 *data)
713 {
714 	s32 ret_val;
715 
716 	switch (hw->mac.type) {
717 	case e1000_82573:
718 	case e1000_82574:
719 	case e1000_82583:
720 		ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
721 		break;
722 	case e1000_82571:
723 	case e1000_82572:
724 		ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
725 		break;
726 	default:
727 		ret_val = -E1000_ERR_NVM;
728 		break;
729 	}
730 
731 	return ret_val;
732 }
733 
734 /**
735  *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
736  *  @hw: pointer to the HW structure
737  *
738  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
739  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
740  *  value to the EEPROM.
741  **/
742 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
743 {
744 	u32 eecd;
745 	s32 ret_val;
746 	u16 i;
747 
748 	ret_val = e1000e_update_nvm_checksum_generic(hw);
749 	if (ret_val)
750 		return ret_val;
751 
752 	/* If our nvm is an EEPROM, then we're done
753 	 * otherwise, commit the checksum to the flash NVM.
754 	 */
755 	if (hw->nvm.type != e1000_nvm_flash_hw)
756 		return 0;
757 
758 	/* Check for pending operations. */
759 	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
760 		usleep_range(1000, 2000);
761 		if (!(er32(EECD) & E1000_EECD_FLUPD))
762 			break;
763 	}
764 
765 	if (i == E1000_FLASH_UPDATES)
766 		return -E1000_ERR_NVM;
767 
768 	/* Reset the firmware if using STM opcode. */
769 	if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
770 		/* The enabling of and the actual reset must be done
771 		 * in two write cycles.
772 		 */
773 		ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
774 		e1e_flush();
775 		ew32(HICR, E1000_HICR_FW_RESET);
776 	}
777 
778 	/* Commit the write to flash */
779 	eecd = er32(EECD) | E1000_EECD_FLUPD;
780 	ew32(EECD, eecd);
781 
782 	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
783 		usleep_range(1000, 2000);
784 		if (!(er32(EECD) & E1000_EECD_FLUPD))
785 			break;
786 	}
787 
788 	if (i == E1000_FLASH_UPDATES)
789 		return -E1000_ERR_NVM;
790 
791 	return 0;
792 }
793 
794 /**
795  *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
796  *  @hw: pointer to the HW structure
797  *
798  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
799  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
800  **/
801 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
802 {
803 	if (hw->nvm.type == e1000_nvm_flash_hw)
804 		e1000_fix_nvm_checksum_82571(hw);
805 
806 	return e1000e_validate_nvm_checksum_generic(hw);
807 }
808 
809 /**
810  *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
811  *  @hw: pointer to the HW structure
812  *  @offset: offset within the EEPROM to be written to
813  *  @words: number of words to write
814  *  @data: 16 bit word(s) to be written to the EEPROM
815  *
816  *  After checking for invalid values, poll the EEPROM to ensure the previous
817  *  command has completed before trying to write the next word.  After write
818  *  poll for completion.
819  *
820  *  If e1000e_update_nvm_checksum is not called after this function, the
821  *  EEPROM will most likely contain an invalid checksum.
822  **/
823 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
824 				      u16 words, u16 *data)
825 {
826 	struct e1000_nvm_info *nvm = &hw->nvm;
827 	u32 i, eewr = 0;
828 	s32 ret_val = 0;
829 
830 	/* A check for invalid values:  offset too large, too many words,
831 	 * and not enough words.
832 	 */
833 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
834 	    (words == 0)) {
835 		e_dbg("nvm parameter(s) out of bounds\n");
836 		return -E1000_ERR_NVM;
837 	}
838 
839 	for (i = 0; i < words; i++) {
840 		eewr = ((data[i] << E1000_NVM_RW_REG_DATA) |
841 			((offset + i) << E1000_NVM_RW_ADDR_SHIFT) |
842 			E1000_NVM_RW_REG_START);
843 
844 		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
845 		if (ret_val)
846 			break;
847 
848 		ew32(EEWR, eewr);
849 
850 		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
851 		if (ret_val)
852 			break;
853 	}
854 
855 	return ret_val;
856 }
857 
858 /**
859  *  e1000_get_cfg_done_82571 - Poll for configuration done
860  *  @hw: pointer to the HW structure
861  *
862  *  Reads the management control register for the config done bit to be set.
863  **/
864 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
865 {
866 	s32 timeout = PHY_CFG_TIMEOUT;
867 
868 	while (timeout) {
869 		if (er32(EEMNGCTL) & E1000_NVM_CFG_DONE_PORT_0)
870 			break;
871 		usleep_range(1000, 2000);
872 		timeout--;
873 	}
874 	if (!timeout) {
875 		e_dbg("MNG configuration cycle has not completed.\n");
876 		return -E1000_ERR_RESET;
877 	}
878 
879 	return 0;
880 }
881 
882 /**
883  *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
884  *  @hw: pointer to the HW structure
885  *  @active: true to enable LPLU, false to disable
886  *
887  *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
888  *  this function also disables smart speed and vice versa.  LPLU will not be
889  *  activated unless the device autonegotiation advertisement meets standards
890  *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
891  *  pointer entry point only called by PHY setup routines.
892  **/
893 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
894 {
895 	struct e1000_phy_info *phy = &hw->phy;
896 	s32 ret_val;
897 	u16 data;
898 
899 	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
900 	if (ret_val)
901 		return ret_val;
902 
903 	if (active) {
904 		data |= IGP02E1000_PM_D0_LPLU;
905 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
906 		if (ret_val)
907 			return ret_val;
908 
909 		/* When LPLU is enabled, we should disable SmartSpeed */
910 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
911 		if (ret_val)
912 			return ret_val;
913 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
914 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
915 		if (ret_val)
916 			return ret_val;
917 	} else {
918 		data &= ~IGP02E1000_PM_D0_LPLU;
919 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
920 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
921 		 * during Dx states where the power conservation is most
922 		 * important.  During driver activity we should enable
923 		 * SmartSpeed, so performance is maintained.
924 		 */
925 		if (phy->smart_speed == e1000_smart_speed_on) {
926 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
927 					   &data);
928 			if (ret_val)
929 				return ret_val;
930 
931 			data |= IGP01E1000_PSCFR_SMART_SPEED;
932 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
933 					   data);
934 			if (ret_val)
935 				return ret_val;
936 		} else if (phy->smart_speed == e1000_smart_speed_off) {
937 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
938 					   &data);
939 			if (ret_val)
940 				return ret_val;
941 
942 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
943 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
944 					   data);
945 			if (ret_val)
946 				return ret_val;
947 		}
948 	}
949 
950 	return 0;
951 }
952 
953 /**
954  *  e1000_reset_hw_82571 - Reset hardware
955  *  @hw: pointer to the HW structure
956  *
957  *  This resets the hardware into a known state.
958  **/
959 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
960 {
961 	u32 ctrl, ctrl_ext, eecd, tctl;
962 	s32 ret_val;
963 
964 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
965 	 * on the last TLP read/write transaction when MAC is reset.
966 	 */
967 	ret_val = e1000e_disable_pcie_master(hw);
968 	if (ret_val)
969 		e_dbg("PCI-E Master disable polling has failed.\n");
970 
971 	e_dbg("Masking off all interrupts\n");
972 	ew32(IMC, 0xffffffff);
973 
974 	ew32(RCTL, 0);
975 	tctl = er32(TCTL);
976 	tctl &= ~E1000_TCTL_EN;
977 	ew32(TCTL, tctl);
978 	e1e_flush();
979 
980 	usleep_range(10000, 20000);
981 
982 	/* Must acquire the MDIO ownership before MAC reset.
983 	 * Ownership defaults to firmware after a reset.
984 	 */
985 	switch (hw->mac.type) {
986 	case e1000_82573:
987 		ret_val = e1000_get_hw_semaphore_82573(hw);
988 		break;
989 	case e1000_82574:
990 	case e1000_82583:
991 		ret_val = e1000_get_hw_semaphore_82574(hw);
992 		break;
993 	default:
994 		break;
995 	}
996 
997 	ctrl = er32(CTRL);
998 
999 	e_dbg("Issuing a global reset to MAC\n");
1000 	ew32(CTRL, ctrl | E1000_CTRL_RST);
1001 
1002 	/* Must release MDIO ownership and mutex after MAC reset. */
1003 	switch (hw->mac.type) {
1004 	case e1000_82573:
1005 		/* Release mutex only if the hw semaphore is acquired */
1006 		if (!ret_val)
1007 			e1000_put_hw_semaphore_82573(hw);
1008 		break;
1009 	case e1000_82574:
1010 	case e1000_82583:
1011 		/* Release mutex only if the hw semaphore is acquired */
1012 		if (!ret_val)
1013 			e1000_put_hw_semaphore_82574(hw);
1014 		break;
1015 	default:
1016 		break;
1017 	}
1018 
1019 	if (hw->nvm.type == e1000_nvm_flash_hw) {
1020 		usleep_range(10, 20);
1021 		ctrl_ext = er32(CTRL_EXT);
1022 		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1023 		ew32(CTRL_EXT, ctrl_ext);
1024 		e1e_flush();
1025 	}
1026 
1027 	ret_val = e1000e_get_auto_rd_done(hw);
1028 	if (ret_val)
1029 		/* We don't want to continue accessing MAC registers. */
1030 		return ret_val;
1031 
1032 	/* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1033 	 * Need to wait for Phy configuration completion before accessing
1034 	 * NVM and Phy.
1035 	 */
1036 
1037 	switch (hw->mac.type) {
1038 	case e1000_82571:
1039 	case e1000_82572:
1040 		/* REQ and GNT bits need to be cleared when using AUTO_RD
1041 		 * to access the EEPROM.
1042 		 */
1043 		eecd = er32(EECD);
1044 		eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT);
1045 		ew32(EECD, eecd);
1046 		break;
1047 	case e1000_82573:
1048 	case e1000_82574:
1049 	case e1000_82583:
1050 		msleep(25);
1051 		break;
1052 	default:
1053 		break;
1054 	}
1055 
1056 	/* Clear any pending interrupt events. */
1057 	ew32(IMC, 0xffffffff);
1058 	er32(ICR);
1059 
1060 	if (hw->mac.type == e1000_82571) {
1061 		/* Install any alternate MAC address into RAR0 */
1062 		ret_val = e1000_check_alt_mac_addr_generic(hw);
1063 		if (ret_val)
1064 			return ret_val;
1065 
1066 		e1000e_set_laa_state_82571(hw, true);
1067 	}
1068 
1069 	/* Reinitialize the 82571 serdes link state machine */
1070 	if (hw->phy.media_type == e1000_media_type_internal_serdes)
1071 		hw->mac.serdes_link_state = e1000_serdes_link_down;
1072 
1073 	return 0;
1074 }
1075 
1076 /**
1077  *  e1000_init_hw_82571 - Initialize hardware
1078  *  @hw: pointer to the HW structure
1079  *
1080  *  This inits the hardware readying it for operation.
1081  **/
1082 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
1083 {
1084 	struct e1000_mac_info *mac = &hw->mac;
1085 	u32 reg_data;
1086 	s32 ret_val;
1087 	u16 i, rar_count = mac->rar_entry_count;
1088 
1089 	e1000_initialize_hw_bits_82571(hw);
1090 
1091 	/* Initialize identification LED */
1092 	ret_val = mac->ops.id_led_init(hw);
1093 	/* An error is not fatal and we should not stop init due to this */
1094 	if (ret_val)
1095 		e_dbg("Error initializing identification LED\n");
1096 
1097 	/* Disabling VLAN filtering */
1098 	e_dbg("Initializing the IEEE VLAN\n");
1099 	mac->ops.clear_vfta(hw);
1100 
1101 	/* Setup the receive address.
1102 	 * If, however, a locally administered address was assigned to the
1103 	 * 82571, we must reserve a RAR for it to work around an issue where
1104 	 * resetting one port will reload the MAC on the other port.
1105 	 */
1106 	if (e1000e_get_laa_state_82571(hw))
1107 		rar_count--;
1108 	e1000e_init_rx_addrs(hw, rar_count);
1109 
1110 	/* Zero out the Multicast HASH table */
1111 	e_dbg("Zeroing the MTA\n");
1112 	for (i = 0; i < mac->mta_reg_count; i++)
1113 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1114 
1115 	/* Setup link and flow control */
1116 	ret_val = mac->ops.setup_link(hw);
1117 
1118 	/* Set the transmit descriptor write-back policy */
1119 	reg_data = er32(TXDCTL(0));
1120 	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1121 		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
1122 	ew32(TXDCTL(0), reg_data);
1123 
1124 	/* ...for both queues. */
1125 	switch (mac->type) {
1126 	case e1000_82573:
1127 		e1000e_enable_tx_pkt_filtering(hw);
1128 		/* fall through */
1129 	case e1000_82574:
1130 	case e1000_82583:
1131 		reg_data = er32(GCR);
1132 		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1133 		ew32(GCR, reg_data);
1134 		break;
1135 	default:
1136 		reg_data = er32(TXDCTL(1));
1137 		reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1138 			    E1000_TXDCTL_FULL_TX_DESC_WB |
1139 			    E1000_TXDCTL_COUNT_DESC);
1140 		ew32(TXDCTL(1), reg_data);
1141 		break;
1142 	}
1143 
1144 	/* Clear all of the statistics registers (clear on read).  It is
1145 	 * important that we do this after we have tried to establish link
1146 	 * because the symbol error count will increment wildly if there
1147 	 * is no link.
1148 	 */
1149 	e1000_clear_hw_cntrs_82571(hw);
1150 
1151 	return ret_val;
1152 }
1153 
1154 /**
1155  *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1156  *  @hw: pointer to the HW structure
1157  *
1158  *  Initializes required hardware-dependent bits needed for normal operation.
1159  **/
1160 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1161 {
1162 	u32 reg;
1163 
1164 	/* Transmit Descriptor Control 0 */
1165 	reg = er32(TXDCTL(0));
1166 	reg |= (1 << 22);
1167 	ew32(TXDCTL(0), reg);
1168 
1169 	/* Transmit Descriptor Control 1 */
1170 	reg = er32(TXDCTL(1));
1171 	reg |= (1 << 22);
1172 	ew32(TXDCTL(1), reg);
1173 
1174 	/* Transmit Arbitration Control 0 */
1175 	reg = er32(TARC(0));
1176 	reg &= ~(0xF << 27);	/* 30:27 */
1177 	switch (hw->mac.type) {
1178 	case e1000_82571:
1179 	case e1000_82572:
1180 		reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1181 		break;
1182 	case e1000_82574:
1183 	case e1000_82583:
1184 		reg |= (1 << 26);
1185 		break;
1186 	default:
1187 		break;
1188 	}
1189 	ew32(TARC(0), reg);
1190 
1191 	/* Transmit Arbitration Control 1 */
1192 	reg = er32(TARC(1));
1193 	switch (hw->mac.type) {
1194 	case e1000_82571:
1195 	case e1000_82572:
1196 		reg &= ~((1 << 29) | (1 << 30));
1197 		reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1198 		if (er32(TCTL) & E1000_TCTL_MULR)
1199 			reg &= ~(1 << 28);
1200 		else
1201 			reg |= (1 << 28);
1202 		ew32(TARC(1), reg);
1203 		break;
1204 	default:
1205 		break;
1206 	}
1207 
1208 	/* Device Control */
1209 	switch (hw->mac.type) {
1210 	case e1000_82573:
1211 	case e1000_82574:
1212 	case e1000_82583:
1213 		reg = er32(CTRL);
1214 		reg &= ~(1 << 29);
1215 		ew32(CTRL, reg);
1216 		break;
1217 	default:
1218 		break;
1219 	}
1220 
1221 	/* Extended Device Control */
1222 	switch (hw->mac.type) {
1223 	case e1000_82573:
1224 	case e1000_82574:
1225 	case e1000_82583:
1226 		reg = er32(CTRL_EXT);
1227 		reg &= ~(1 << 23);
1228 		reg |= (1 << 22);
1229 		ew32(CTRL_EXT, reg);
1230 		break;
1231 	default:
1232 		break;
1233 	}
1234 
1235 	if (hw->mac.type == e1000_82571) {
1236 		reg = er32(PBA_ECC);
1237 		reg |= E1000_PBA_ECC_CORR_EN;
1238 		ew32(PBA_ECC, reg);
1239 	}
1240 
1241 	/* Workaround for hardware errata.
1242 	 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1243 	 */
1244 	if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) {
1245 		reg = er32(CTRL_EXT);
1246 		reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1247 		ew32(CTRL_EXT, reg);
1248 	}
1249 
1250 	/* Disable IPv6 extension header parsing because some malformed
1251 	 * IPv6 headers can hang the Rx.
1252 	 */
1253 	if (hw->mac.type <= e1000_82573) {
1254 		reg = er32(RFCTL);
1255 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
1256 		ew32(RFCTL, reg);
1257 	}
1258 
1259 	/* PCI-Ex Control Registers */
1260 	switch (hw->mac.type) {
1261 	case e1000_82574:
1262 	case e1000_82583:
1263 		reg = er32(GCR);
1264 		reg |= (1 << 22);
1265 		ew32(GCR, reg);
1266 
1267 		/* Workaround for hardware errata.
1268 		 * apply workaround for hardware errata documented in errata
1269 		 * docs Fixes issue where some error prone or unreliable PCIe
1270 		 * completions are occurring, particularly with ASPM enabled.
1271 		 * Without fix, issue can cause Tx timeouts.
1272 		 */
1273 		reg = er32(GCR2);
1274 		reg |= 1;
1275 		ew32(GCR2, reg);
1276 		break;
1277 	default:
1278 		break;
1279 	}
1280 }
1281 
1282 /**
1283  *  e1000_clear_vfta_82571 - Clear VLAN filter table
1284  *  @hw: pointer to the HW structure
1285  *
1286  *  Clears the register array which contains the VLAN filter table by
1287  *  setting all the values to 0.
1288  **/
1289 static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1290 {
1291 	u32 offset;
1292 	u32 vfta_value = 0;
1293 	u32 vfta_offset = 0;
1294 	u32 vfta_bit_in_reg = 0;
1295 
1296 	switch (hw->mac.type) {
1297 	case e1000_82573:
1298 	case e1000_82574:
1299 	case e1000_82583:
1300 		if (hw->mng_cookie.vlan_id != 0) {
1301 			/* The VFTA is a 4096b bit-field, each identifying
1302 			 * a single VLAN ID.  The following operations
1303 			 * determine which 32b entry (i.e. offset) into the
1304 			 * array we want to set the VLAN ID (i.e. bit) of
1305 			 * the manageability unit.
1306 			 */
1307 			vfta_offset = (hw->mng_cookie.vlan_id >>
1308 				       E1000_VFTA_ENTRY_SHIFT) &
1309 			    E1000_VFTA_ENTRY_MASK;
1310 			vfta_bit_in_reg =
1311 			    1 << (hw->mng_cookie.vlan_id &
1312 				  E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1313 		}
1314 		break;
1315 	default:
1316 		break;
1317 	}
1318 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1319 		/* If the offset we want to clear is the same offset of the
1320 		 * manageability VLAN ID, then clear all bits except that of
1321 		 * the manageability unit.
1322 		 */
1323 		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1324 		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1325 		e1e_flush();
1326 	}
1327 }
1328 
1329 /**
1330  *  e1000_check_mng_mode_82574 - Check manageability is enabled
1331  *  @hw: pointer to the HW structure
1332  *
1333  *  Reads the NVM Initialization Control Word 2 and returns true
1334  *  (>0) if any manageability is enabled, else false (0).
1335  **/
1336 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1337 {
1338 	u16 data;
1339 
1340 	e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1341 	return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1342 }
1343 
1344 /**
1345  *  e1000_led_on_82574 - Turn LED on
1346  *  @hw: pointer to the HW structure
1347  *
1348  *  Turn LED on.
1349  **/
1350 static s32 e1000_led_on_82574(struct e1000_hw *hw)
1351 {
1352 	u32 ctrl;
1353 	u32 i;
1354 
1355 	ctrl = hw->mac.ledctl_mode2;
1356 	if (!(E1000_STATUS_LU & er32(STATUS))) {
1357 		/* If no link, then turn LED on by setting the invert bit
1358 		 * for each LED that's "on" (0x0E) in ledctl_mode2.
1359 		 */
1360 		for (i = 0; i < 4; i++)
1361 			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1362 			    E1000_LEDCTL_MODE_LED_ON)
1363 				ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1364 	}
1365 	ew32(LEDCTL, ctrl);
1366 
1367 	return 0;
1368 }
1369 
1370 /**
1371  *  e1000_check_phy_82574 - check 82574 phy hung state
1372  *  @hw: pointer to the HW structure
1373  *
1374  *  Returns whether phy is hung or not
1375  **/
1376 bool e1000_check_phy_82574(struct e1000_hw *hw)
1377 {
1378 	u16 status_1kbt = 0;
1379 	u16 receive_errors = 0;
1380 	s32 ret_val;
1381 
1382 	/* Read PHY Receive Error counter first, if its is max - all F's then
1383 	 * read the Base1000T status register If both are max then PHY is hung.
1384 	 */
1385 	ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
1386 	if (ret_val)
1387 		return false;
1388 	if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
1389 		ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
1390 		if (ret_val)
1391 			return false;
1392 		if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1393 		    E1000_IDLE_ERROR_COUNT_MASK)
1394 			return true;
1395 	}
1396 
1397 	return false;
1398 }
1399 
1400 /**
1401  *  e1000_setup_link_82571 - Setup flow control and link settings
1402  *  @hw: pointer to the HW structure
1403  *
1404  *  Determines which flow control settings to use, then configures flow
1405  *  control.  Calls the appropriate media-specific link configuration
1406  *  function.  Assuming the adapter has a valid link partner, a valid link
1407  *  should be established.  Assumes the hardware has previously been reset
1408  *  and the transmitter and receiver are not enabled.
1409  **/
1410 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1411 {
1412 	/* 82573 does not have a word in the NVM to determine
1413 	 * the default flow control setting, so we explicitly
1414 	 * set it to full.
1415 	 */
1416 	switch (hw->mac.type) {
1417 	case e1000_82573:
1418 	case e1000_82574:
1419 	case e1000_82583:
1420 		if (hw->fc.requested_mode == e1000_fc_default)
1421 			hw->fc.requested_mode = e1000_fc_full;
1422 		break;
1423 	default:
1424 		break;
1425 	}
1426 
1427 	return e1000e_setup_link_generic(hw);
1428 }
1429 
1430 /**
1431  *  e1000_setup_copper_link_82571 - Configure copper link settings
1432  *  @hw: pointer to the HW structure
1433  *
1434  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1435  *  for link, once link is established calls to configure collision distance
1436  *  and flow control are called.
1437  **/
1438 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1439 {
1440 	u32 ctrl;
1441 	s32 ret_val;
1442 
1443 	ctrl = er32(CTRL);
1444 	ctrl |= E1000_CTRL_SLU;
1445 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1446 	ew32(CTRL, ctrl);
1447 
1448 	switch (hw->phy.type) {
1449 	case e1000_phy_m88:
1450 	case e1000_phy_bm:
1451 		ret_val = e1000e_copper_link_setup_m88(hw);
1452 		break;
1453 	case e1000_phy_igp_2:
1454 		ret_val = e1000e_copper_link_setup_igp(hw);
1455 		break;
1456 	default:
1457 		return -E1000_ERR_PHY;
1458 	}
1459 
1460 	if (ret_val)
1461 		return ret_val;
1462 
1463 	return e1000e_setup_copper_link(hw);
1464 }
1465 
1466 /**
1467  *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1468  *  @hw: pointer to the HW structure
1469  *
1470  *  Configures collision distance and flow control for fiber and serdes links.
1471  *  Upon successful setup, poll for link.
1472  **/
1473 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1474 {
1475 	switch (hw->mac.type) {
1476 	case e1000_82571:
1477 	case e1000_82572:
1478 		/* If SerDes loopback mode is entered, there is no form
1479 		 * of reset to take the adapter out of that mode.  So we
1480 		 * have to explicitly take the adapter out of loopback
1481 		 * mode.  This prevents drivers from twiddling their thumbs
1482 		 * if another tool failed to take it out of loopback mode.
1483 		 */
1484 		ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1485 		break;
1486 	default:
1487 		break;
1488 	}
1489 
1490 	return e1000e_setup_fiber_serdes_link(hw);
1491 }
1492 
1493 /**
1494  *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1495  *  @hw: pointer to the HW structure
1496  *
1497  *  Reports the link state as up or down.
1498  *
1499  *  If autonegotiation is supported by the link partner, the link state is
1500  *  determined by the result of autonegotiation. This is the most likely case.
1501  *  If autonegotiation is not supported by the link partner, and the link
1502  *  has a valid signal, force the link up.
1503  *
1504  *  The link state is represented internally here by 4 states:
1505  *
1506  *  1) down
1507  *  2) autoneg_progress
1508  *  3) autoneg_complete (the link successfully autonegotiated)
1509  *  4) forced_up (the link has been forced up, it did not autonegotiate)
1510  *
1511  **/
1512 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1513 {
1514 	struct e1000_mac_info *mac = &hw->mac;
1515 	u32 rxcw;
1516 	u32 ctrl;
1517 	u32 status;
1518 	u32 txcw;
1519 	u32 i;
1520 	s32 ret_val = 0;
1521 
1522 	ctrl = er32(CTRL);
1523 	status = er32(STATUS);
1524 	er32(RXCW);
1525 	/* SYNCH bit and IV bit are sticky */
1526 	usleep_range(10, 20);
1527 	rxcw = er32(RXCW);
1528 
1529 	if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1530 		/* Receiver is synchronized with no invalid bits.  */
1531 		switch (mac->serdes_link_state) {
1532 		case e1000_serdes_link_autoneg_complete:
1533 			if (!(status & E1000_STATUS_LU)) {
1534 				/* We have lost link, retry autoneg before
1535 				 * reporting link failure
1536 				 */
1537 				mac->serdes_link_state =
1538 				    e1000_serdes_link_autoneg_progress;
1539 				mac->serdes_has_link = false;
1540 				e_dbg("AN_UP     -> AN_PROG\n");
1541 			} else {
1542 				mac->serdes_has_link = true;
1543 			}
1544 			break;
1545 
1546 		case e1000_serdes_link_forced_up:
1547 			/* If we are receiving /C/ ordered sets, re-enable
1548 			 * auto-negotiation in the TXCW register and disable
1549 			 * forced link in the Device Control register in an
1550 			 * attempt to auto-negotiate with our link partner.
1551 			 */
1552 			if (rxcw & E1000_RXCW_C) {
1553 				/* Enable autoneg, and unforce link up */
1554 				ew32(TXCW, mac->txcw);
1555 				ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1556 				mac->serdes_link_state =
1557 				    e1000_serdes_link_autoneg_progress;
1558 				mac->serdes_has_link = false;
1559 				e_dbg("FORCED_UP -> AN_PROG\n");
1560 			} else {
1561 				mac->serdes_has_link = true;
1562 			}
1563 			break;
1564 
1565 		case e1000_serdes_link_autoneg_progress:
1566 			if (rxcw & E1000_RXCW_C) {
1567 				/* We received /C/ ordered sets, meaning the
1568 				 * link partner has autonegotiated, and we can
1569 				 * trust the Link Up (LU) status bit.
1570 				 */
1571 				if (status & E1000_STATUS_LU) {
1572 					mac->serdes_link_state =
1573 					    e1000_serdes_link_autoneg_complete;
1574 					e_dbg("AN_PROG   -> AN_UP\n");
1575 					mac->serdes_has_link = true;
1576 				} else {
1577 					/* Autoneg completed, but failed. */
1578 					mac->serdes_link_state =
1579 					    e1000_serdes_link_down;
1580 					e_dbg("AN_PROG   -> DOWN\n");
1581 				}
1582 			} else {
1583 				/* The link partner did not autoneg.
1584 				 * Force link up and full duplex, and change
1585 				 * state to forced.
1586 				 */
1587 				ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1588 				ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1589 				ew32(CTRL, ctrl);
1590 
1591 				/* Configure Flow Control after link up. */
1592 				ret_val = e1000e_config_fc_after_link_up(hw);
1593 				if (ret_val) {
1594 					e_dbg("Error config flow control\n");
1595 					break;
1596 				}
1597 				mac->serdes_link_state =
1598 				    e1000_serdes_link_forced_up;
1599 				mac->serdes_has_link = true;
1600 				e_dbg("AN_PROG   -> FORCED_UP\n");
1601 			}
1602 			break;
1603 
1604 		case e1000_serdes_link_down:
1605 		default:
1606 			/* The link was down but the receiver has now gained
1607 			 * valid sync, so lets see if we can bring the link
1608 			 * up.
1609 			 */
1610 			ew32(TXCW, mac->txcw);
1611 			ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1612 			mac->serdes_link_state =
1613 			    e1000_serdes_link_autoneg_progress;
1614 			mac->serdes_has_link = false;
1615 			e_dbg("DOWN      -> AN_PROG\n");
1616 			break;
1617 		}
1618 	} else {
1619 		if (!(rxcw & E1000_RXCW_SYNCH)) {
1620 			mac->serdes_has_link = false;
1621 			mac->serdes_link_state = e1000_serdes_link_down;
1622 			e_dbg("ANYSTATE  -> DOWN\n");
1623 		} else {
1624 			/* Check several times, if SYNCH bit and CONFIG
1625 			 * bit both are consistently 1 then simply ignore
1626 			 * the IV bit and restart Autoneg
1627 			 */
1628 			for (i = 0; i < AN_RETRY_COUNT; i++) {
1629 				usleep_range(10, 20);
1630 				rxcw = er32(RXCW);
1631 				if ((rxcw & E1000_RXCW_SYNCH) &&
1632 				    (rxcw & E1000_RXCW_C))
1633 					continue;
1634 
1635 				if (rxcw & E1000_RXCW_IV) {
1636 					mac->serdes_has_link = false;
1637 					mac->serdes_link_state =
1638 					    e1000_serdes_link_down;
1639 					e_dbg("ANYSTATE  -> DOWN\n");
1640 					break;
1641 				}
1642 			}
1643 
1644 			if (i == AN_RETRY_COUNT) {
1645 				txcw = er32(TXCW);
1646 				txcw |= E1000_TXCW_ANE;
1647 				ew32(TXCW, txcw);
1648 				mac->serdes_link_state =
1649 				    e1000_serdes_link_autoneg_progress;
1650 				mac->serdes_has_link = false;
1651 				e_dbg("ANYSTATE  -> AN_PROG\n");
1652 			}
1653 		}
1654 	}
1655 
1656 	return ret_val;
1657 }
1658 
1659 /**
1660  *  e1000_valid_led_default_82571 - Verify a valid default LED config
1661  *  @hw: pointer to the HW structure
1662  *  @data: pointer to the NVM (EEPROM)
1663  *
1664  *  Read the EEPROM for the current default LED configuration.  If the
1665  *  LED configuration is not valid, set to a valid LED configuration.
1666  **/
1667 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1668 {
1669 	s32 ret_val;
1670 
1671 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1672 	if (ret_val) {
1673 		e_dbg("NVM Read Error\n");
1674 		return ret_val;
1675 	}
1676 
1677 	switch (hw->mac.type) {
1678 	case e1000_82573:
1679 	case e1000_82574:
1680 	case e1000_82583:
1681 		if (*data == ID_LED_RESERVED_F746)
1682 			*data = ID_LED_DEFAULT_82573;
1683 		break;
1684 	default:
1685 		if (*data == ID_LED_RESERVED_0000 ||
1686 		    *data == ID_LED_RESERVED_FFFF)
1687 			*data = ID_LED_DEFAULT;
1688 		break;
1689 	}
1690 
1691 	return 0;
1692 }
1693 
1694 /**
1695  *  e1000e_get_laa_state_82571 - Get locally administered address state
1696  *  @hw: pointer to the HW structure
1697  *
1698  *  Retrieve and return the current locally administered address state.
1699  **/
1700 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1701 {
1702 	if (hw->mac.type != e1000_82571)
1703 		return false;
1704 
1705 	return hw->dev_spec.e82571.laa_is_present;
1706 }
1707 
1708 /**
1709  *  e1000e_set_laa_state_82571 - Set locally administered address state
1710  *  @hw: pointer to the HW structure
1711  *  @state: enable/disable locally administered address
1712  *
1713  *  Enable/Disable the current locally administered address state.
1714  **/
1715 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1716 {
1717 	if (hw->mac.type != e1000_82571)
1718 		return;
1719 
1720 	hw->dev_spec.e82571.laa_is_present = state;
1721 
1722 	/* If workaround is activated... */
1723 	if (state)
1724 		/* Hold a copy of the LAA in RAR[14] This is done so that
1725 		 * between the time RAR[0] gets clobbered and the time it
1726 		 * gets fixed, the actual LAA is in one of the RARs and no
1727 		 * incoming packets directed to this port are dropped.
1728 		 * Eventually the LAA will be in RAR[0] and RAR[14].
1729 		 */
1730 		hw->mac.ops.rar_set(hw, hw->mac.addr,
1731 				    hw->mac.rar_entry_count - 1);
1732 }
1733 
1734 /**
1735  *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1736  *  @hw: pointer to the HW structure
1737  *
1738  *  Verifies that the EEPROM has completed the update.  After updating the
1739  *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
1740  *  the checksum fix is not implemented, we need to set the bit and update
1741  *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
1742  *  we need to return bad checksum.
1743  **/
1744 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1745 {
1746 	struct e1000_nvm_info *nvm = &hw->nvm;
1747 	s32 ret_val;
1748 	u16 data;
1749 
1750 	if (nvm->type != e1000_nvm_flash_hw)
1751 		return 0;
1752 
1753 	/* Check bit 4 of word 10h.  If it is 0, firmware is done updating
1754 	 * 10h-12h.  Checksum may need to be fixed.
1755 	 */
1756 	ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1757 	if (ret_val)
1758 		return ret_val;
1759 
1760 	if (!(data & 0x10)) {
1761 		/* Read 0x23 and check bit 15.  This bit is a 1
1762 		 * when the checksum has already been fixed.  If
1763 		 * the checksum is still wrong and this bit is a
1764 		 * 1, we need to return bad checksum.  Otherwise,
1765 		 * we need to set this bit to a 1 and update the
1766 		 * checksum.
1767 		 */
1768 		ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1769 		if (ret_val)
1770 			return ret_val;
1771 
1772 		if (!(data & 0x8000)) {
1773 			data |= 0x8000;
1774 			ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1775 			if (ret_val)
1776 				return ret_val;
1777 			ret_val = e1000e_update_nvm_checksum(hw);
1778 			if (ret_val)
1779 				return ret_val;
1780 		}
1781 	}
1782 
1783 	return 0;
1784 }
1785 
1786 /**
1787  *  e1000_read_mac_addr_82571 - Read device MAC address
1788  *  @hw: pointer to the HW structure
1789  **/
1790 static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1791 {
1792 	if (hw->mac.type == e1000_82571) {
1793 		s32 ret_val;
1794 
1795 		/* If there's an alternate MAC address place it in RAR0
1796 		 * so that it will override the Si installed default perm
1797 		 * address.
1798 		 */
1799 		ret_val = e1000_check_alt_mac_addr_generic(hw);
1800 		if (ret_val)
1801 			return ret_val;
1802 	}
1803 
1804 	return e1000_read_mac_addr_generic(hw);
1805 }
1806 
1807 /**
1808  * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1809  * @hw: pointer to the HW structure
1810  *
1811  * In the case of a PHY power down to save power, or to turn off link during a
1812  * driver unload, or wake on lan is not enabled, remove the link.
1813  **/
1814 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1815 {
1816 	struct e1000_phy_info *phy = &hw->phy;
1817 	struct e1000_mac_info *mac = &hw->mac;
1818 
1819 	if (!phy->ops.check_reset_block)
1820 		return;
1821 
1822 	/* If the management interface is not enabled, then power down */
1823 	if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1824 		e1000_power_down_phy_copper(hw);
1825 }
1826 
1827 /**
1828  *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1829  *  @hw: pointer to the HW structure
1830  *
1831  *  Clears the hardware counters by reading the counter registers.
1832  **/
1833 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1834 {
1835 	e1000e_clear_hw_cntrs_base(hw);
1836 
1837 	er32(PRC64);
1838 	er32(PRC127);
1839 	er32(PRC255);
1840 	er32(PRC511);
1841 	er32(PRC1023);
1842 	er32(PRC1522);
1843 	er32(PTC64);
1844 	er32(PTC127);
1845 	er32(PTC255);
1846 	er32(PTC511);
1847 	er32(PTC1023);
1848 	er32(PTC1522);
1849 
1850 	er32(ALGNERRC);
1851 	er32(RXERRC);
1852 	er32(TNCRS);
1853 	er32(CEXTERR);
1854 	er32(TSCTC);
1855 	er32(TSCTFC);
1856 
1857 	er32(MGTPRC);
1858 	er32(MGTPDC);
1859 	er32(MGTPTC);
1860 
1861 	er32(IAC);
1862 	er32(ICRXOC);
1863 
1864 	er32(ICRXPTC);
1865 	er32(ICRXATC);
1866 	er32(ICTXPTC);
1867 	er32(ICTXATC);
1868 	er32(ICTXQEC);
1869 	er32(ICTXQMTC);
1870 	er32(ICRXDMTC);
1871 }
1872 
1873 static const struct e1000_mac_operations e82571_mac_ops = {
1874 	/* .check_mng_mode: mac type dependent */
1875 	/* .check_for_link: media type dependent */
1876 	.id_led_init		= e1000e_id_led_init_generic,
1877 	.cleanup_led		= e1000e_cleanup_led_generic,
1878 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_82571,
1879 	.get_bus_info		= e1000e_get_bus_info_pcie,
1880 	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
1881 	/* .get_link_up_info: media type dependent */
1882 	/* .led_on: mac type dependent */
1883 	.led_off		= e1000e_led_off_generic,
1884 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
1885 	.write_vfta		= e1000_write_vfta_generic,
1886 	.clear_vfta		= e1000_clear_vfta_82571,
1887 	.reset_hw		= e1000_reset_hw_82571,
1888 	.init_hw		= e1000_init_hw_82571,
1889 	.setup_link		= e1000_setup_link_82571,
1890 	/* .setup_physical_interface: media type dependent */
1891 	.setup_led		= e1000e_setup_led_generic,
1892 	.config_collision_dist	= e1000e_config_collision_dist_generic,
1893 	.read_mac_addr		= e1000_read_mac_addr_82571,
1894 	.rar_set		= e1000e_rar_set_generic,
1895 	.rar_get_count		= e1000e_rar_get_count_generic,
1896 };
1897 
1898 static const struct e1000_phy_operations e82_phy_ops_igp = {
1899 	.acquire		= e1000_get_hw_semaphore_82571,
1900 	.check_polarity		= e1000_check_polarity_igp,
1901 	.check_reset_block	= e1000e_check_reset_block_generic,
1902 	.commit			= NULL,
1903 	.force_speed_duplex	= e1000e_phy_force_speed_duplex_igp,
1904 	.get_cfg_done		= e1000_get_cfg_done_82571,
1905 	.get_cable_length	= e1000e_get_cable_length_igp_2,
1906 	.get_info		= e1000e_get_phy_info_igp,
1907 	.read_reg		= e1000e_read_phy_reg_igp,
1908 	.release		= e1000_put_hw_semaphore_82571,
1909 	.reset			= e1000e_phy_hw_reset_generic,
1910 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
1911 	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1912 	.write_reg		= e1000e_write_phy_reg_igp,
1913 	.cfg_on_link_up		= NULL,
1914 };
1915 
1916 static const struct e1000_phy_operations e82_phy_ops_m88 = {
1917 	.acquire		= e1000_get_hw_semaphore_82571,
1918 	.check_polarity		= e1000_check_polarity_m88,
1919 	.check_reset_block	= e1000e_check_reset_block_generic,
1920 	.commit			= e1000e_phy_sw_reset,
1921 	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
1922 	.get_cfg_done		= e1000e_get_cfg_done_generic,
1923 	.get_cable_length	= e1000e_get_cable_length_m88,
1924 	.get_info		= e1000e_get_phy_info_m88,
1925 	.read_reg		= e1000e_read_phy_reg_m88,
1926 	.release		= e1000_put_hw_semaphore_82571,
1927 	.reset			= e1000e_phy_hw_reset_generic,
1928 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
1929 	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1930 	.write_reg		= e1000e_write_phy_reg_m88,
1931 	.cfg_on_link_up		= NULL,
1932 };
1933 
1934 static const struct e1000_phy_operations e82_phy_ops_bm = {
1935 	.acquire		= e1000_get_hw_semaphore_82571,
1936 	.check_polarity		= e1000_check_polarity_m88,
1937 	.check_reset_block	= e1000e_check_reset_block_generic,
1938 	.commit			= e1000e_phy_sw_reset,
1939 	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
1940 	.get_cfg_done		= e1000e_get_cfg_done_generic,
1941 	.get_cable_length	= e1000e_get_cable_length_m88,
1942 	.get_info		= e1000e_get_phy_info_m88,
1943 	.read_reg		= e1000e_read_phy_reg_bm2,
1944 	.release		= e1000_put_hw_semaphore_82571,
1945 	.reset			= e1000e_phy_hw_reset_generic,
1946 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
1947 	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1948 	.write_reg		= e1000e_write_phy_reg_bm2,
1949 	.cfg_on_link_up		= NULL,
1950 };
1951 
1952 static const struct e1000_nvm_operations e82571_nvm_ops = {
1953 	.acquire		= e1000_acquire_nvm_82571,
1954 	.read			= e1000e_read_nvm_eerd,
1955 	.release		= e1000_release_nvm_82571,
1956 	.reload			= e1000e_reload_nvm_generic,
1957 	.update			= e1000_update_nvm_checksum_82571,
1958 	.valid_led_default	= e1000_valid_led_default_82571,
1959 	.validate		= e1000_validate_nvm_checksum_82571,
1960 	.write			= e1000_write_nvm_82571,
1961 };
1962 
1963 const struct e1000_info e1000_82571_info = {
1964 	.mac			= e1000_82571,
1965 	.flags			= FLAG_HAS_HW_VLAN_FILTER
1966 				  | FLAG_HAS_JUMBO_FRAMES
1967 				  | FLAG_HAS_WOL
1968 				  | FLAG_APME_IN_CTRL3
1969 				  | FLAG_HAS_CTRLEXT_ON_LOAD
1970 				  | FLAG_HAS_SMART_POWER_DOWN
1971 				  | FLAG_RESET_OVERWRITES_LAA /* errata */
1972 				  | FLAG_TARC_SPEED_MODE_BIT /* errata */
1973 				  | FLAG_APME_CHECK_PORT_B,
1974 	.flags2			= FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1975 				  | FLAG2_DMA_BURST,
1976 	.pba			= 38,
1977 	.max_hw_frame_size	= DEFAULT_JUMBO,
1978 	.get_variants		= e1000_get_variants_82571,
1979 	.mac_ops		= &e82571_mac_ops,
1980 	.phy_ops		= &e82_phy_ops_igp,
1981 	.nvm_ops		= &e82571_nvm_ops,
1982 };
1983 
1984 const struct e1000_info e1000_82572_info = {
1985 	.mac			= e1000_82572,
1986 	.flags			= FLAG_HAS_HW_VLAN_FILTER
1987 				  | FLAG_HAS_JUMBO_FRAMES
1988 				  | FLAG_HAS_WOL
1989 				  | FLAG_APME_IN_CTRL3
1990 				  | FLAG_HAS_CTRLEXT_ON_LOAD
1991 				  | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1992 	.flags2			= FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1993 				  | FLAG2_DMA_BURST,
1994 	.pba			= 38,
1995 	.max_hw_frame_size	= DEFAULT_JUMBO,
1996 	.get_variants		= e1000_get_variants_82571,
1997 	.mac_ops		= &e82571_mac_ops,
1998 	.phy_ops		= &e82_phy_ops_igp,
1999 	.nvm_ops		= &e82571_nvm_ops,
2000 };
2001 
2002 const struct e1000_info e1000_82573_info = {
2003 	.mac			= e1000_82573,
2004 	.flags			= FLAG_HAS_HW_VLAN_FILTER
2005 				  | FLAG_HAS_WOL
2006 				  | FLAG_APME_IN_CTRL3
2007 				  | FLAG_HAS_SMART_POWER_DOWN
2008 				  | FLAG_HAS_AMT
2009 				  | FLAG_HAS_SWSM_ON_LOAD,
2010 	.flags2			= FLAG2_DISABLE_ASPM_L1
2011 				  | FLAG2_DISABLE_ASPM_L0S,
2012 	.pba			= 20,
2013 	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
2014 	.get_variants		= e1000_get_variants_82571,
2015 	.mac_ops		= &e82571_mac_ops,
2016 	.phy_ops		= &e82_phy_ops_m88,
2017 	.nvm_ops		= &e82571_nvm_ops,
2018 };
2019 
2020 const struct e1000_info e1000_82574_info = {
2021 	.mac			= e1000_82574,
2022 	.flags			= FLAG_HAS_HW_VLAN_FILTER
2023 				  | FLAG_HAS_MSIX
2024 				  | FLAG_HAS_JUMBO_FRAMES
2025 				  | FLAG_HAS_WOL
2026 				  | FLAG_HAS_HW_TIMESTAMP
2027 				  | FLAG_APME_IN_CTRL3
2028 				  | FLAG_HAS_SMART_POWER_DOWN
2029 				  | FLAG_HAS_AMT
2030 				  | FLAG_HAS_CTRLEXT_ON_LOAD,
2031 	.flags2			 = FLAG2_CHECK_PHY_HANG
2032 				  | FLAG2_DISABLE_ASPM_L0S
2033 				  | FLAG2_DISABLE_ASPM_L1
2034 				  | FLAG2_NO_DISABLE_RX
2035 				  | FLAG2_DMA_BURST,
2036 	.pba			= 32,
2037 	.max_hw_frame_size	= DEFAULT_JUMBO,
2038 	.get_variants		= e1000_get_variants_82571,
2039 	.mac_ops		= &e82571_mac_ops,
2040 	.phy_ops		= &e82_phy_ops_bm,
2041 	.nvm_ops		= &e82571_nvm_ops,
2042 };
2043 
2044 const struct e1000_info e1000_82583_info = {
2045 	.mac			= e1000_82583,
2046 	.flags			= FLAG_HAS_HW_VLAN_FILTER
2047 				  | FLAG_HAS_WOL
2048 				  | FLAG_HAS_HW_TIMESTAMP
2049 				  | FLAG_APME_IN_CTRL3
2050 				  | FLAG_HAS_SMART_POWER_DOWN
2051 				  | FLAG_HAS_AMT
2052 				  | FLAG_HAS_JUMBO_FRAMES
2053 				  | FLAG_HAS_CTRLEXT_ON_LOAD,
2054 	.flags2			= FLAG2_DISABLE_ASPM_L0S
2055 				  | FLAG2_DISABLE_ASPM_L1
2056 				  | FLAG2_NO_DISABLE_RX,
2057 	.pba			= 32,
2058 	.max_hw_frame_size	= DEFAULT_JUMBO,
2059 	.get_variants		= e1000_get_variants_82571,
2060 	.mac_ops		= &e82571_mac_ops,
2061 	.phy_ops		= &e82_phy_ops_bm,
2062 	.nvm_ops		= &e82571_nvm_ops,
2063 };
2064