xref: /linux/drivers/net/ethernet/intel/e1000e/80003es2lan.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2011 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 /*
30  * 80003ES2LAN Gigabit Ethernet Controller (Copper)
31  * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
32  */
33 
34 #include "e1000.h"
35 
36 #define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL	 0x00
37 #define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL	 0x02
38 #define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL	 0x10
39 #define E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE	 0x1F
40 
41 #define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS	 0x0008
42 #define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS	 0x0800
43 #define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING	 0x0010
44 
45 #define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
46 #define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT	 0x0000
47 #define E1000_KMRNCTRLSTA_OPMODE_E_IDLE		 0x2000
48 
49 #define E1000_KMRNCTRLSTA_OPMODE_MASK		 0x000C
50 #define E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO	 0x0004
51 
52 #define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
53 #define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN	 0x00010000
54 
55 #define DEFAULT_TIPG_IPGT_1000_80003ES2LAN	 0x8
56 #define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN	 0x9
57 
58 /* GG82563 PHY Specific Status Register (Page 0, Register 16 */
59 #define GG82563_PSCR_POLARITY_REVERSAL_DISABLE	 0x0002 /* 1=Reversal Disab. */
60 #define GG82563_PSCR_CROSSOVER_MODE_MASK	 0x0060
61 #define GG82563_PSCR_CROSSOVER_MODE_MDI		 0x0000 /* 00=Manual MDI */
62 #define GG82563_PSCR_CROSSOVER_MODE_MDIX	 0x0020 /* 01=Manual MDIX */
63 #define GG82563_PSCR_CROSSOVER_MODE_AUTO	 0x0060 /* 11=Auto crossover */
64 
65 /* PHY Specific Control Register 2 (Page 0, Register 26) */
66 #define GG82563_PSCR2_REVERSE_AUTO_NEG		 0x2000
67 						/* 1=Reverse Auto-Negotiation */
68 
69 /* MAC Specific Control Register (Page 2, Register 21) */
70 /* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
71 #define GG82563_MSCR_TX_CLK_MASK		 0x0007
72 #define GG82563_MSCR_TX_CLK_10MBPS_2_5		 0x0004
73 #define GG82563_MSCR_TX_CLK_100MBPS_25		 0x0005
74 #define GG82563_MSCR_TX_CLK_1000MBPS_25		 0x0007
75 
76 #define GG82563_MSCR_ASSERT_CRS_ON_TX		 0x0010 /* 1=Assert */
77 
78 /* DSP Distance Register (Page 5, Register 26) */
79 #define GG82563_DSPD_CABLE_LENGTH		 0x0007 /* 0 = <50M
80 							   1 = 50-80M
81 							   2 = 80-110M
82 							   3 = 110-140M
83 							   4 = >140M */
84 
85 /* Kumeran Mode Control Register (Page 193, Register 16) */
86 #define GG82563_KMCR_PASS_FALSE_CARRIER		 0x0800
87 
88 /* Max number of times Kumeran read/write should be validated */
89 #define GG82563_MAX_KMRN_RETRY  0x5
90 
91 /* Power Management Control Register (Page 193, Register 20) */
92 #define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE	 0x0001
93 					   /* 1=Enable SERDES Electrical Idle */
94 
95 /* In-Band Control Register (Page 194, Register 18) */
96 #define GG82563_ICR_DIS_PADDING			 0x0010 /* Disable Padding */
97 
98 /*
99  * A table for the GG82563 cable length where the range is defined
100  * with a lower bound at "index" and the upper bound at
101  * "index + 5".
102  */
103 static const u16 e1000_gg82563_cable_length_table[] = {
104 	 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
105 #define GG82563_CABLE_LENGTH_TABLE_SIZE \
106 		ARRAY_SIZE(e1000_gg82563_cable_length_table)
107 
108 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
109 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
110 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
111 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
112 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
113 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
114 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
115 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw);
116 static s32  e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
117                                             u16 *data);
118 static s32  e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
119                                              u16 data);
120 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
121 
122 /**
123  *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
124  *  @hw: pointer to the HW structure
125  **/
126 static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
127 {
128 	struct e1000_phy_info *phy = &hw->phy;
129 	s32 ret_val;
130 
131 	if (hw->phy.media_type != e1000_media_type_copper) {
132 		phy->type	= e1000_phy_none;
133 		return 0;
134 	} else {
135 		phy->ops.power_up = e1000_power_up_phy_copper;
136 		phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
137 	}
138 
139 	phy->addr		= 1;
140 	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
141 	phy->reset_delay_us      = 100;
142 	phy->type		= e1000_phy_gg82563;
143 
144 	/* This can only be done after all function pointers are setup. */
145 	ret_val = e1000e_get_phy_id(hw);
146 
147 	/* Verify phy id */
148 	if (phy->id != GG82563_E_PHY_ID)
149 		return -E1000_ERR_PHY;
150 
151 	return ret_val;
152 }
153 
154 /**
155  *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
156  *  @hw: pointer to the HW structure
157  **/
158 static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
159 {
160 	struct e1000_nvm_info *nvm = &hw->nvm;
161 	u32 eecd = er32(EECD);
162 	u16 size;
163 
164 	nvm->opcode_bits	= 8;
165 	nvm->delay_usec	 = 1;
166 	switch (nvm->override) {
167 	case e1000_nvm_override_spi_large:
168 		nvm->page_size    = 32;
169 		nvm->address_bits = 16;
170 		break;
171 	case e1000_nvm_override_spi_small:
172 		nvm->page_size    = 8;
173 		nvm->address_bits = 8;
174 		break;
175 	default:
176 		nvm->page_size    = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
177 		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
178 		break;
179 	}
180 
181 	nvm->type = e1000_nvm_eeprom_spi;
182 
183 	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
184 			  E1000_EECD_SIZE_EX_SHIFT);
185 
186 	/*
187 	 * Added to a constant, "size" becomes the left-shift value
188 	 * for setting word_size.
189 	 */
190 	size += NVM_WORD_SIZE_BASE_SHIFT;
191 
192 	/* EEPROM access above 16k is unsupported */
193 	if (size > 14)
194 		size = 14;
195 	nvm->word_size	= 1 << size;
196 
197 	return 0;
198 }
199 
200 /**
201  *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
202  *  @hw: pointer to the HW structure
203  **/
204 static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter)
205 {
206 	struct e1000_hw *hw = &adapter->hw;
207 	struct e1000_mac_info *mac = &hw->mac;
208 	struct e1000_mac_operations *func = &mac->ops;
209 
210 	/* Set media type */
211 	switch (adapter->pdev->device) {
212 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
213 		hw->phy.media_type = e1000_media_type_internal_serdes;
214 		break;
215 	default:
216 		hw->phy.media_type = e1000_media_type_copper;
217 		break;
218 	}
219 
220 	/* Set mta register count */
221 	mac->mta_reg_count = 128;
222 	/* Set rar entry count */
223 	mac->rar_entry_count = E1000_RAR_ENTRIES;
224 	/* FWSM register */
225 	mac->has_fwsm = true;
226 	/* ARC supported; valid only if manageability features are enabled. */
227 	mac->arc_subsystem_valid =
228 	        (er32(FWSM) & E1000_FWSM_MODE_MASK)
229 	                ? true : false;
230 	/* Adaptive IFS not supported */
231 	mac->adaptive_ifs = false;
232 
233 	/* check for link */
234 	switch (hw->phy.media_type) {
235 	case e1000_media_type_copper:
236 		func->setup_physical_interface = e1000_setup_copper_link_80003es2lan;
237 		func->check_for_link = e1000e_check_for_copper_link;
238 		break;
239 	case e1000_media_type_fiber:
240 		func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
241 		func->check_for_link = e1000e_check_for_fiber_link;
242 		break;
243 	case e1000_media_type_internal_serdes:
244 		func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
245 		func->check_for_link = e1000e_check_for_serdes_link;
246 		break;
247 	default:
248 		return -E1000_ERR_CONFIG;
249 		break;
250 	}
251 
252 	/* set lan id for port to determine which phy lock to use */
253 	hw->mac.ops.set_lan_id(hw);
254 
255 	return 0;
256 }
257 
258 static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
259 {
260 	struct e1000_hw *hw = &adapter->hw;
261 	s32 rc;
262 
263 	rc = e1000_init_mac_params_80003es2lan(adapter);
264 	if (rc)
265 		return rc;
266 
267 	rc = e1000_init_nvm_params_80003es2lan(hw);
268 	if (rc)
269 		return rc;
270 
271 	rc = e1000_init_phy_params_80003es2lan(hw);
272 	if (rc)
273 		return rc;
274 
275 	return 0;
276 }
277 
278 /**
279  *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
280  *  @hw: pointer to the HW structure
281  *
282  *  A wrapper to acquire access rights to the correct PHY.
283  **/
284 static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
285 {
286 	u16 mask;
287 
288 	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
289 	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
290 }
291 
292 /**
293  *  e1000_release_phy_80003es2lan - Release rights to access PHY
294  *  @hw: pointer to the HW structure
295  *
296  *  A wrapper to release access rights to the correct PHY.
297  **/
298 static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
299 {
300 	u16 mask;
301 
302 	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
303 	e1000_release_swfw_sync_80003es2lan(hw, mask);
304 }
305 
306 /**
307  *  e1000_acquire_mac_csr_80003es2lan - Acquire rights to access Kumeran register
308  *  @hw: pointer to the HW structure
309  *
310  *  Acquire the semaphore to access the Kumeran interface.
311  *
312  **/
313 static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
314 {
315 	u16 mask;
316 
317 	mask = E1000_SWFW_CSR_SM;
318 
319 	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
320 }
321 
322 /**
323  *  e1000_release_mac_csr_80003es2lan - Release rights to access Kumeran Register
324  *  @hw: pointer to the HW structure
325  *
326  *  Release the semaphore used to access the Kumeran interface
327  **/
328 static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
329 {
330 	u16 mask;
331 
332 	mask = E1000_SWFW_CSR_SM;
333 
334 	e1000_release_swfw_sync_80003es2lan(hw, mask);
335 }
336 
337 /**
338  *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
339  *  @hw: pointer to the HW structure
340  *
341  *  Acquire the semaphore to access the EEPROM.
342  **/
343 static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
344 {
345 	s32 ret_val;
346 
347 	ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
348 	if (ret_val)
349 		return ret_val;
350 
351 	ret_val = e1000e_acquire_nvm(hw);
352 
353 	if (ret_val)
354 		e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
355 
356 	return ret_val;
357 }
358 
359 /**
360  *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
361  *  @hw: pointer to the HW structure
362  *
363  *  Release the semaphore used to access the EEPROM.
364  **/
365 static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
366 {
367 	e1000e_release_nvm(hw);
368 	e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
369 }
370 
371 /**
372  *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
373  *  @hw: pointer to the HW structure
374  *  @mask: specifies which semaphore to acquire
375  *
376  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
377  *  will also specify which port we're acquiring the lock for.
378  **/
379 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
380 {
381 	u32 swfw_sync;
382 	u32 swmask = mask;
383 	u32 fwmask = mask << 16;
384 	s32 i = 0;
385 	s32 timeout = 50;
386 
387 	while (i < timeout) {
388 		if (e1000e_get_hw_semaphore(hw))
389 			return -E1000_ERR_SWFW_SYNC;
390 
391 		swfw_sync = er32(SW_FW_SYNC);
392 		if (!(swfw_sync & (fwmask | swmask)))
393 			break;
394 
395 		/*
396 		 * Firmware currently using resource (fwmask)
397 		 * or other software thread using resource (swmask)
398 		 */
399 		e1000e_put_hw_semaphore(hw);
400 		mdelay(5);
401 		i++;
402 	}
403 
404 	if (i == timeout) {
405 		e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
406 		return -E1000_ERR_SWFW_SYNC;
407 	}
408 
409 	swfw_sync |= swmask;
410 	ew32(SW_FW_SYNC, swfw_sync);
411 
412 	e1000e_put_hw_semaphore(hw);
413 
414 	return 0;
415 }
416 
417 /**
418  *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
419  *  @hw: pointer to the HW structure
420  *  @mask: specifies which semaphore to acquire
421  *
422  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
423  *  will also specify which port we're releasing the lock for.
424  **/
425 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
426 {
427 	u32 swfw_sync;
428 
429 	while (e1000e_get_hw_semaphore(hw) != 0)
430 		; /* Empty */
431 
432 	swfw_sync = er32(SW_FW_SYNC);
433 	swfw_sync &= ~mask;
434 	ew32(SW_FW_SYNC, swfw_sync);
435 
436 	e1000e_put_hw_semaphore(hw);
437 }
438 
439 /**
440  *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
441  *  @hw: pointer to the HW structure
442  *  @offset: offset of the register to read
443  *  @data: pointer to the data returned from the operation
444  *
445  *  Read the GG82563 PHY register.
446  **/
447 static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
448 						  u32 offset, u16 *data)
449 {
450 	s32 ret_val;
451 	u32 page_select;
452 	u16 temp;
453 
454 	ret_val = e1000_acquire_phy_80003es2lan(hw);
455 	if (ret_val)
456 		return ret_val;
457 
458 	/* Select Configuration Page */
459 	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
460 		page_select = GG82563_PHY_PAGE_SELECT;
461 	} else {
462 		/*
463 		 * Use Alternative Page Select register to access
464 		 * registers 30 and 31
465 		 */
466 		page_select = GG82563_PHY_PAGE_SELECT_ALT;
467 	}
468 
469 	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
470 	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
471 	if (ret_val) {
472 		e1000_release_phy_80003es2lan(hw);
473 		return ret_val;
474 	}
475 
476 	if (hw->dev_spec.e80003es2lan.mdic_wa_enable == true) {
477 		/*
478 		 * The "ready" bit in the MDIC register may be incorrectly set
479 		 * before the device has completed the "Page Select" MDI
480 		 * transaction.  So we wait 200us after each MDI command...
481 		 */
482 		udelay(200);
483 
484 		/* ...and verify the command was successful. */
485 		ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
486 
487 		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
488 			ret_val = -E1000_ERR_PHY;
489 			e1000_release_phy_80003es2lan(hw);
490 			return ret_val;
491 		}
492 
493 		udelay(200);
494 
495 		ret_val = e1000e_read_phy_reg_mdic(hw,
496 		                                  MAX_PHY_REG_ADDRESS & offset,
497 		                                  data);
498 
499 		udelay(200);
500 	} else {
501 		ret_val = e1000e_read_phy_reg_mdic(hw,
502 		                                  MAX_PHY_REG_ADDRESS & offset,
503 		                                  data);
504 	}
505 
506 	e1000_release_phy_80003es2lan(hw);
507 
508 	return ret_val;
509 }
510 
511 /**
512  *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
513  *  @hw: pointer to the HW structure
514  *  @offset: offset of the register to read
515  *  @data: value to write to the register
516  *
517  *  Write to the GG82563 PHY register.
518  **/
519 static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
520 						   u32 offset, u16 data)
521 {
522 	s32 ret_val;
523 	u32 page_select;
524 	u16 temp;
525 
526 	ret_val = e1000_acquire_phy_80003es2lan(hw);
527 	if (ret_val)
528 		return ret_val;
529 
530 	/* Select Configuration Page */
531 	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
532 		page_select = GG82563_PHY_PAGE_SELECT;
533 	} else {
534 		/*
535 		 * Use Alternative Page Select register to access
536 		 * registers 30 and 31
537 		 */
538 		page_select = GG82563_PHY_PAGE_SELECT_ALT;
539 	}
540 
541 	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
542 	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
543 	if (ret_val) {
544 		e1000_release_phy_80003es2lan(hw);
545 		return ret_val;
546 	}
547 
548 	if (hw->dev_spec.e80003es2lan.mdic_wa_enable == true) {
549 		/*
550 		 * The "ready" bit in the MDIC register may be incorrectly set
551 		 * before the device has completed the "Page Select" MDI
552 		 * transaction.  So we wait 200us after each MDI command...
553 		 */
554 		udelay(200);
555 
556 		/* ...and verify the command was successful. */
557 		ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
558 
559 		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
560 			e1000_release_phy_80003es2lan(hw);
561 			return -E1000_ERR_PHY;
562 		}
563 
564 		udelay(200);
565 
566 		ret_val = e1000e_write_phy_reg_mdic(hw,
567 		                                  MAX_PHY_REG_ADDRESS & offset,
568 		                                  data);
569 
570 		udelay(200);
571 	} else {
572 		ret_val = e1000e_write_phy_reg_mdic(hw,
573 		                                  MAX_PHY_REG_ADDRESS & offset,
574 		                                  data);
575 	}
576 
577 	e1000_release_phy_80003es2lan(hw);
578 
579 	return ret_val;
580 }
581 
582 /**
583  *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
584  *  @hw: pointer to the HW structure
585  *  @offset: offset of the register to read
586  *  @words: number of words to write
587  *  @data: buffer of data to write to the NVM
588  *
589  *  Write "words" of data to the ESB2 NVM.
590  **/
591 static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
592 				       u16 words, u16 *data)
593 {
594 	return e1000e_write_nvm_spi(hw, offset, words, data);
595 }
596 
597 /**
598  *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
599  *  @hw: pointer to the HW structure
600  *
601  *  Wait a specific amount of time for manageability processes to complete.
602  *  This is a function pointer entry point called by the phy module.
603  **/
604 static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
605 {
606 	s32 timeout = PHY_CFG_TIMEOUT;
607 	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
608 
609 	if (hw->bus.func == 1)
610 		mask = E1000_NVM_CFG_DONE_PORT_1;
611 
612 	while (timeout) {
613 		if (er32(EEMNGCTL) & mask)
614 			break;
615 		usleep_range(1000, 2000);
616 		timeout--;
617 	}
618 	if (!timeout) {
619 		e_dbg("MNG configuration cycle has not completed.\n");
620 		return -E1000_ERR_RESET;
621 	}
622 
623 	return 0;
624 }
625 
626 /**
627  *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
628  *  @hw: pointer to the HW structure
629  *
630  *  Force the speed and duplex settings onto the PHY.  This is a
631  *  function pointer entry point called by the phy module.
632  **/
633 static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
634 {
635 	s32 ret_val;
636 	u16 phy_data;
637 	bool link;
638 
639 	/*
640 	 * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
641 	 * forced whenever speed and duplex are forced.
642 	 */
643 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
644 	if (ret_val)
645 		return ret_val;
646 
647 	phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
648 	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
649 	if (ret_val)
650 		return ret_val;
651 
652 	e_dbg("GG82563 PSCR: %X\n", phy_data);
653 
654 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
655 	if (ret_val)
656 		return ret_val;
657 
658 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
659 
660 	/* Reset the phy to commit changes. */
661 	phy_data |= MII_CR_RESET;
662 
663 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
664 	if (ret_val)
665 		return ret_val;
666 
667 	udelay(1);
668 
669 	if (hw->phy.autoneg_wait_to_complete) {
670 		e_dbg("Waiting for forced speed/duplex link "
671 			 "on GG82563 phy.\n");
672 
673 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
674 						     100000, &link);
675 		if (ret_val)
676 			return ret_val;
677 
678 		if (!link) {
679 			/*
680 			 * We didn't get link.
681 			 * Reset the DSP and cross our fingers.
682 			 */
683 			ret_val = e1000e_phy_reset_dsp(hw);
684 			if (ret_val)
685 				return ret_val;
686 		}
687 
688 		/* Try once more */
689 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
690 						     100000, &link);
691 		if (ret_val)
692 			return ret_val;
693 	}
694 
695 	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
696 	if (ret_val)
697 		return ret_val;
698 
699 	/*
700 	 * Resetting the phy means we need to verify the TX_CLK corresponds
701 	 * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
702 	 */
703 	phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
704 	if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
705 		phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
706 	else
707 		phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
708 
709 	/*
710 	 * In addition, we must re-enable CRS on Tx for both half and full
711 	 * duplex.
712 	 */
713 	phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
714 	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
715 
716 	return ret_val;
717 }
718 
719 /**
720  *  e1000_get_cable_length_80003es2lan - Set approximate cable length
721  *  @hw: pointer to the HW structure
722  *
723  *  Find the approximate cable length as measured by the GG82563 PHY.
724  *  This is a function pointer entry point called by the phy module.
725  **/
726 static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
727 {
728 	struct e1000_phy_info *phy = &hw->phy;
729 	s32 ret_val = 0;
730 	u16 phy_data, index;
731 
732 	ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
733 	if (ret_val)
734 		goto out;
735 
736 	index = phy_data & GG82563_DSPD_CABLE_LENGTH;
737 
738 	if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5) {
739 		ret_val = -E1000_ERR_PHY;
740 		goto out;
741 	}
742 
743 	phy->min_cable_length = e1000_gg82563_cable_length_table[index];
744 	phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
745 
746 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
747 
748 out:
749 	return ret_val;
750 }
751 
752 /**
753  *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
754  *  @hw: pointer to the HW structure
755  *  @speed: pointer to speed buffer
756  *  @duplex: pointer to duplex buffer
757  *
758  *  Retrieve the current speed and duplex configuration.
759  **/
760 static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
761 					      u16 *duplex)
762 {
763 	s32 ret_val;
764 
765 	if (hw->phy.media_type == e1000_media_type_copper) {
766 		ret_val = e1000e_get_speed_and_duplex_copper(hw,
767 								    speed,
768 								    duplex);
769 		hw->phy.ops.cfg_on_link_up(hw);
770 	} else {
771 		ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
772 								  speed,
773 								  duplex);
774 	}
775 
776 	return ret_val;
777 }
778 
779 /**
780  *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
781  *  @hw: pointer to the HW structure
782  *
783  *  Perform a global reset to the ESB2 controller.
784  **/
785 static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
786 {
787 	u32 ctrl;
788 	s32 ret_val;
789 
790 	/*
791 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
792 	 * on the last TLP read/write transaction when MAC is reset.
793 	 */
794 	ret_val = e1000e_disable_pcie_master(hw);
795 	if (ret_val)
796 		e_dbg("PCI-E Master disable polling has failed.\n");
797 
798 	e_dbg("Masking off all interrupts\n");
799 	ew32(IMC, 0xffffffff);
800 
801 	ew32(RCTL, 0);
802 	ew32(TCTL, E1000_TCTL_PSP);
803 	e1e_flush();
804 
805 	usleep_range(10000, 20000);
806 
807 	ctrl = er32(CTRL);
808 
809 	ret_val = e1000_acquire_phy_80003es2lan(hw);
810 	e_dbg("Issuing a global reset to MAC\n");
811 	ew32(CTRL, ctrl | E1000_CTRL_RST);
812 	e1000_release_phy_80003es2lan(hw);
813 
814 	ret_val = e1000e_get_auto_rd_done(hw);
815 	if (ret_val)
816 		/* We don't want to continue accessing MAC registers. */
817 		return ret_val;
818 
819 	/* Clear any pending interrupt events. */
820 	ew32(IMC, 0xffffffff);
821 	er32(ICR);
822 
823 	ret_val = e1000_check_alt_mac_addr_generic(hw);
824 
825 	return ret_val;
826 }
827 
828 /**
829  *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
830  *  @hw: pointer to the HW structure
831  *
832  *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
833  **/
834 static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
835 {
836 	struct e1000_mac_info *mac = &hw->mac;
837 	u32 reg_data;
838 	s32 ret_val;
839 	u16 kum_reg_data;
840 	u16 i;
841 
842 	e1000_initialize_hw_bits_80003es2lan(hw);
843 
844 	/* Initialize identification LED */
845 	ret_val = e1000e_id_led_init(hw);
846 	if (ret_val)
847 		e_dbg("Error initializing identification LED\n");
848 		/* This is not fatal and we should not stop init due to this */
849 
850 	/* Disabling VLAN filtering */
851 	e_dbg("Initializing the IEEE VLAN\n");
852 	mac->ops.clear_vfta(hw);
853 
854 	/* Setup the receive address. */
855 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
856 
857 	/* Zero out the Multicast HASH table */
858 	e_dbg("Zeroing the MTA\n");
859 	for (i = 0; i < mac->mta_reg_count; i++)
860 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
861 
862 	/* Setup link and flow control */
863 	ret_val = e1000e_setup_link(hw);
864 
865 	/* Disable IBIST slave mode (far-end loopback) */
866 	e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
867 					&kum_reg_data);
868 	kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
869 	e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
870 					 kum_reg_data);
871 
872 	/* Set the transmit descriptor write-back policy */
873 	reg_data = er32(TXDCTL(0));
874 	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
875 		   E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
876 	ew32(TXDCTL(0), reg_data);
877 
878 	/* ...for both queues. */
879 	reg_data = er32(TXDCTL(1));
880 	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
881 		   E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
882 	ew32(TXDCTL(1), reg_data);
883 
884 	/* Enable retransmit on late collisions */
885 	reg_data = er32(TCTL);
886 	reg_data |= E1000_TCTL_RTLC;
887 	ew32(TCTL, reg_data);
888 
889 	/* Configure Gigabit Carry Extend Padding */
890 	reg_data = er32(TCTL_EXT);
891 	reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
892 	reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
893 	ew32(TCTL_EXT, reg_data);
894 
895 	/* Configure Transmit Inter-Packet Gap */
896 	reg_data = er32(TIPG);
897 	reg_data &= ~E1000_TIPG_IPGT_MASK;
898 	reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
899 	ew32(TIPG, reg_data);
900 
901 	reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
902 	reg_data &= ~0x00100000;
903 	E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
904 
905 	/* default to true to enable the MDIC W/A */
906 	hw->dev_spec.e80003es2lan.mdic_wa_enable = true;
907 
908 	ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
909 	                              E1000_KMRNCTRLSTA_OFFSET >>
910 	                              E1000_KMRNCTRLSTA_OFFSET_SHIFT,
911 	                              &i);
912 	if (!ret_val) {
913 		if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
914 		     E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
915 			hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
916 	}
917 
918 	/*
919 	 * Clear all of the statistics registers (clear on read).  It is
920 	 * important that we do this after we have tried to establish link
921 	 * because the symbol error count will increment wildly if there
922 	 * is no link.
923 	 */
924 	e1000_clear_hw_cntrs_80003es2lan(hw);
925 
926 	return ret_val;
927 }
928 
929 /**
930  *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
931  *  @hw: pointer to the HW structure
932  *
933  *  Initializes required hardware-dependent bits needed for normal operation.
934  **/
935 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
936 {
937 	u32 reg;
938 
939 	/* Transmit Descriptor Control 0 */
940 	reg = er32(TXDCTL(0));
941 	reg |= (1 << 22);
942 	ew32(TXDCTL(0), reg);
943 
944 	/* Transmit Descriptor Control 1 */
945 	reg = er32(TXDCTL(1));
946 	reg |= (1 << 22);
947 	ew32(TXDCTL(1), reg);
948 
949 	/* Transmit Arbitration Control 0 */
950 	reg = er32(TARC(0));
951 	reg &= ~(0xF << 27); /* 30:27 */
952 	if (hw->phy.media_type != e1000_media_type_copper)
953 		reg &= ~(1 << 20);
954 	ew32(TARC(0), reg);
955 
956 	/* Transmit Arbitration Control 1 */
957 	reg = er32(TARC(1));
958 	if (er32(TCTL) & E1000_TCTL_MULR)
959 		reg &= ~(1 << 28);
960 	else
961 		reg |= (1 << 28);
962 	ew32(TARC(1), reg);
963 }
964 
965 /**
966  *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
967  *  @hw: pointer to the HW structure
968  *
969  *  Setup some GG82563 PHY registers for obtaining link
970  **/
971 static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
972 {
973 	struct e1000_phy_info *phy = &hw->phy;
974 	s32 ret_val;
975 	u32 ctrl_ext;
976 	u16 data;
977 
978 	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
979 	if (ret_val)
980 		return ret_val;
981 
982 	data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
983 	/* Use 25MHz for both link down and 1000Base-T for Tx clock. */
984 	data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
985 
986 	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
987 	if (ret_val)
988 		return ret_val;
989 
990 	/*
991 	 * Options:
992 	 *   MDI/MDI-X = 0 (default)
993 	 *   0 - Auto for all speeds
994 	 *   1 - MDI mode
995 	 *   2 - MDI-X mode
996 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
997 	 */
998 	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
999 	if (ret_val)
1000 		return ret_val;
1001 
1002 	data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
1003 
1004 	switch (phy->mdix) {
1005 	case 1:
1006 		data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
1007 		break;
1008 	case 2:
1009 		data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
1010 		break;
1011 	case 0:
1012 	default:
1013 		data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
1014 		break;
1015 	}
1016 
1017 	/*
1018 	 * Options:
1019 	 *   disable_polarity_correction = 0 (default)
1020 	 *       Automatic Correction for Reversed Cable Polarity
1021 	 *   0 - Disabled
1022 	 *   1 - Enabled
1023 	 */
1024 	data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1025 	if (phy->disable_polarity_correction)
1026 		data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1027 
1028 	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
1029 	if (ret_val)
1030 		return ret_val;
1031 
1032 	/* SW Reset the PHY so all changes take effect */
1033 	ret_val = e1000e_commit_phy(hw);
1034 	if (ret_val) {
1035 		e_dbg("Error Resetting the PHY\n");
1036 		return ret_val;
1037 	}
1038 
1039 	/* Bypass Rx and Tx FIFO's */
1040 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1041 					E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
1042 					E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
1043 					E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
1044 	if (ret_val)
1045 		return ret_val;
1046 
1047 	ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
1048 				       E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
1049 				       &data);
1050 	if (ret_val)
1051 		return ret_val;
1052 	data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
1053 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1054 					E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE,
1055 					data);
1056 	if (ret_val)
1057 		return ret_val;
1058 
1059 	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
1060 	if (ret_val)
1061 		return ret_val;
1062 
1063 	data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
1064 	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
1065 	if (ret_val)
1066 		return ret_val;
1067 
1068 	ctrl_ext = er32(CTRL_EXT);
1069 	ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
1070 	ew32(CTRL_EXT, ctrl_ext);
1071 
1072 	ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
1073 	if (ret_val)
1074 		return ret_val;
1075 
1076 	/*
1077 	 * Do not init these registers when the HW is in IAMT mode, since the
1078 	 * firmware will have already initialized them.  We only initialize
1079 	 * them if the HW is not in IAMT mode.
1080 	 */
1081 	if (!e1000e_check_mng_mode(hw)) {
1082 		/* Enable Electrical Idle on the PHY */
1083 		data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
1084 		ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
1085 		if (ret_val)
1086 			return ret_val;
1087 
1088 		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
1089 		if (ret_val)
1090 			return ret_val;
1091 
1092 		data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1093 		ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
1094 		if (ret_val)
1095 			return ret_val;
1096 	}
1097 
1098 	/*
1099 	 * Workaround: Disable padding in Kumeran interface in the MAC
1100 	 * and in the PHY to avoid CRC errors.
1101 	 */
1102 	ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1103 	if (ret_val)
1104 		return ret_val;
1105 
1106 	data |= GG82563_ICR_DIS_PADDING;
1107 	ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1108 	if (ret_val)
1109 		return ret_val;
1110 
1111 	return 0;
1112 }
1113 
1114 /**
1115  *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1116  *  @hw: pointer to the HW structure
1117  *
1118  *  Essentially a wrapper for setting up all things "copper" related.
1119  *  This is a function pointer entry point called by the mac module.
1120  **/
1121 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1122 {
1123 	u32 ctrl;
1124 	s32 ret_val;
1125 	u16 reg_data;
1126 
1127 	ctrl = er32(CTRL);
1128 	ctrl |= E1000_CTRL_SLU;
1129 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1130 	ew32(CTRL, ctrl);
1131 
1132 	/*
1133 	 * Set the mac to wait the maximum time between each
1134 	 * iteration and increase the max iterations when
1135 	 * polling the phy; this fixes erroneous timeouts at 10Mbps.
1136 	 */
1137 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
1138 	                                           0xFFFF);
1139 	if (ret_val)
1140 		return ret_val;
1141 	ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1142 	                                          &reg_data);
1143 	if (ret_val)
1144 		return ret_val;
1145 	reg_data |= 0x3F;
1146 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1147 	                                           reg_data);
1148 	if (ret_val)
1149 		return ret_val;
1150 	ret_val = e1000_read_kmrn_reg_80003es2lan(hw,
1151 				      E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1152 				      &reg_data);
1153 	if (ret_val)
1154 		return ret_val;
1155 	reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1156 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1157 					E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1158 					reg_data);
1159 	if (ret_val)
1160 		return ret_val;
1161 
1162 	ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1163 	if (ret_val)
1164 		return ret_val;
1165 
1166 	ret_val = e1000e_setup_copper_link(hw);
1167 
1168 	return 0;
1169 }
1170 
1171 /**
1172  *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1173  *  @hw: pointer to the HW structure
1174  *  @duplex: current duplex setting
1175  *
1176  *  Configure the KMRN interface by applying last minute quirks for
1177  *  10/100 operation.
1178  **/
1179 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1180 {
1181 	s32 ret_val = 0;
1182 	u16 speed;
1183 	u16 duplex;
1184 
1185 	if (hw->phy.media_type == e1000_media_type_copper) {
1186 		ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
1187 		                                             &duplex);
1188 		if (ret_val)
1189 			return ret_val;
1190 
1191 		if (speed == SPEED_1000)
1192 			ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1193 		else
1194 			ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1195 	}
1196 
1197 	return ret_val;
1198 }
1199 
1200 /**
1201  *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1202  *  @hw: pointer to the HW structure
1203  *  @duplex: current duplex setting
1204  *
1205  *  Configure the KMRN interface by applying last minute quirks for
1206  *  10/100 operation.
1207  **/
1208 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1209 {
1210 	s32 ret_val;
1211 	u32 tipg;
1212 	u32 i = 0;
1213 	u16 reg_data, reg_data2;
1214 
1215 	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1216 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1217 	                               E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1218 	                               reg_data);
1219 	if (ret_val)
1220 		return ret_val;
1221 
1222 	/* Configure Transmit Inter-Packet Gap */
1223 	tipg = er32(TIPG);
1224 	tipg &= ~E1000_TIPG_IPGT_MASK;
1225 	tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1226 	ew32(TIPG, tipg);
1227 
1228 	do {
1229 		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1230 		if (ret_val)
1231 			return ret_val;
1232 
1233 		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1234 		if (ret_val)
1235 			return ret_val;
1236 		i++;
1237 	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1238 
1239 	if (duplex == HALF_DUPLEX)
1240 		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1241 	else
1242 		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1243 
1244 	ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1245 
1246 	return 0;
1247 }
1248 
1249 /**
1250  *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1251  *  @hw: pointer to the HW structure
1252  *
1253  *  Configure the KMRN interface by applying last minute quirks for
1254  *  gigabit operation.
1255  **/
1256 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1257 {
1258 	s32 ret_val;
1259 	u16 reg_data, reg_data2;
1260 	u32 tipg;
1261 	u32 i = 0;
1262 
1263 	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1264 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
1265 	                               E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1266 	                               reg_data);
1267 	if (ret_val)
1268 		return ret_val;
1269 
1270 	/* Configure Transmit Inter-Packet Gap */
1271 	tipg = er32(TIPG);
1272 	tipg &= ~E1000_TIPG_IPGT_MASK;
1273 	tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1274 	ew32(TIPG, tipg);
1275 
1276 	do {
1277 		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1278 		if (ret_val)
1279 			return ret_val;
1280 
1281 		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1282 		if (ret_val)
1283 			return ret_val;
1284 		i++;
1285 	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1286 
1287 	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1288 	ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1289 
1290 	return ret_val;
1291 }
1292 
1293 /**
1294  *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1295  *  @hw: pointer to the HW structure
1296  *  @offset: register offset to be read
1297  *  @data: pointer to the read data
1298  *
1299  *  Acquire semaphore, then read the PHY register at offset
1300  *  using the kumeran interface.  The information retrieved is stored in data.
1301  *  Release the semaphore before exiting.
1302  **/
1303 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1304 					   u16 *data)
1305 {
1306 	u32 kmrnctrlsta;
1307 	s32 ret_val = 0;
1308 
1309 	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1310 	if (ret_val)
1311 		return ret_val;
1312 
1313 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1314 	               E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
1315 	ew32(KMRNCTRLSTA, kmrnctrlsta);
1316 	e1e_flush();
1317 
1318 	udelay(2);
1319 
1320 	kmrnctrlsta = er32(KMRNCTRLSTA);
1321 	*data = (u16)kmrnctrlsta;
1322 
1323 	e1000_release_mac_csr_80003es2lan(hw);
1324 
1325 	return ret_val;
1326 }
1327 
1328 /**
1329  *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1330  *  @hw: pointer to the HW structure
1331  *  @offset: register offset to write to
1332  *  @data: data to write at register offset
1333  *
1334  *  Acquire semaphore, then write the data to PHY register
1335  *  at the offset using the kumeran interface.  Release semaphore
1336  *  before exiting.
1337  **/
1338 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1339 					    u16 data)
1340 {
1341 	u32 kmrnctrlsta;
1342 	s32 ret_val = 0;
1343 
1344 	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1345 	if (ret_val)
1346 		return ret_val;
1347 
1348 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1349 	               E1000_KMRNCTRLSTA_OFFSET) | data;
1350 	ew32(KMRNCTRLSTA, kmrnctrlsta);
1351 	e1e_flush();
1352 
1353 	udelay(2);
1354 
1355 	e1000_release_mac_csr_80003es2lan(hw);
1356 
1357 	return ret_val;
1358 }
1359 
1360 /**
1361  *  e1000_read_mac_addr_80003es2lan - Read device MAC address
1362  *  @hw: pointer to the HW structure
1363  **/
1364 static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
1365 {
1366 	s32 ret_val = 0;
1367 
1368 	/*
1369 	 * If there's an alternate MAC address place it in RAR0
1370 	 * so that it will override the Si installed default perm
1371 	 * address.
1372 	 */
1373 	ret_val = e1000_check_alt_mac_addr_generic(hw);
1374 	if (ret_val)
1375 		goto out;
1376 
1377 	ret_val = e1000_read_mac_addr_generic(hw);
1378 
1379 out:
1380 	return ret_val;
1381 }
1382 
1383 /**
1384  * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
1385  * @hw: pointer to the HW structure
1386  *
1387  * In the case of a PHY power down to save power, or to turn off link during a
1388  * driver unload, or wake on lan is not enabled, remove the link.
1389  **/
1390 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
1391 {
1392 	/* If the management interface is not enabled, then power down */
1393 	if (!(hw->mac.ops.check_mng_mode(hw) ||
1394 	      hw->phy.ops.check_reset_block(hw)))
1395 		e1000_power_down_phy_copper(hw);
1396 }
1397 
1398 /**
1399  *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1400  *  @hw: pointer to the HW structure
1401  *
1402  *  Clears the hardware counters by reading the counter registers.
1403  **/
1404 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1405 {
1406 	e1000e_clear_hw_cntrs_base(hw);
1407 
1408 	er32(PRC64);
1409 	er32(PRC127);
1410 	er32(PRC255);
1411 	er32(PRC511);
1412 	er32(PRC1023);
1413 	er32(PRC1522);
1414 	er32(PTC64);
1415 	er32(PTC127);
1416 	er32(PTC255);
1417 	er32(PTC511);
1418 	er32(PTC1023);
1419 	er32(PTC1522);
1420 
1421 	er32(ALGNERRC);
1422 	er32(RXERRC);
1423 	er32(TNCRS);
1424 	er32(CEXTERR);
1425 	er32(TSCTC);
1426 	er32(TSCTFC);
1427 
1428 	er32(MGTPRC);
1429 	er32(MGTPDC);
1430 	er32(MGTPTC);
1431 
1432 	er32(IAC);
1433 	er32(ICRXOC);
1434 
1435 	er32(ICRXPTC);
1436 	er32(ICRXATC);
1437 	er32(ICTXPTC);
1438 	er32(ICTXATC);
1439 	er32(ICTXQEC);
1440 	er32(ICTXQMTC);
1441 	er32(ICRXDMTC);
1442 }
1443 
1444 static const struct e1000_mac_operations es2_mac_ops = {
1445 	.read_mac_addr		= e1000_read_mac_addr_80003es2lan,
1446 	.id_led_init		= e1000e_id_led_init,
1447 	.blink_led		= e1000e_blink_led_generic,
1448 	.check_mng_mode		= e1000e_check_mng_mode_generic,
1449 	/* check_for_link dependent on media type */
1450 	.cleanup_led		= e1000e_cleanup_led_generic,
1451 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_80003es2lan,
1452 	.get_bus_info		= e1000e_get_bus_info_pcie,
1453 	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
1454 	.get_link_up_info	= e1000_get_link_up_info_80003es2lan,
1455 	.led_on			= e1000e_led_on_generic,
1456 	.led_off		= e1000e_led_off_generic,
1457 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
1458 	.write_vfta		= e1000_write_vfta_generic,
1459 	.clear_vfta		= e1000_clear_vfta_generic,
1460 	.reset_hw		= e1000_reset_hw_80003es2lan,
1461 	.init_hw		= e1000_init_hw_80003es2lan,
1462 	.setup_link		= e1000e_setup_link,
1463 	/* setup_physical_interface dependent on media type */
1464 	.setup_led		= e1000e_setup_led_generic,
1465 };
1466 
1467 static const struct e1000_phy_operations es2_phy_ops = {
1468 	.acquire		= e1000_acquire_phy_80003es2lan,
1469 	.check_polarity		= e1000_check_polarity_m88,
1470 	.check_reset_block	= e1000e_check_reset_block_generic,
1471 	.commit		 	= e1000e_phy_sw_reset,
1472 	.force_speed_duplex 	= e1000_phy_force_speed_duplex_80003es2lan,
1473 	.get_cfg_done       	= e1000_get_cfg_done_80003es2lan,
1474 	.get_cable_length   	= e1000_get_cable_length_80003es2lan,
1475 	.get_info       	= e1000e_get_phy_info_m88,
1476 	.read_reg       	= e1000_read_phy_reg_gg82563_80003es2lan,
1477 	.release		= e1000_release_phy_80003es2lan,
1478 	.reset		  	= e1000e_phy_hw_reset_generic,
1479 	.set_d0_lplu_state  	= NULL,
1480 	.set_d3_lplu_state  	= e1000e_set_d3_lplu_state,
1481 	.write_reg      	= e1000_write_phy_reg_gg82563_80003es2lan,
1482 	.cfg_on_link_up      	= e1000_cfg_on_link_up_80003es2lan,
1483 };
1484 
1485 static const struct e1000_nvm_operations es2_nvm_ops = {
1486 	.acquire		= e1000_acquire_nvm_80003es2lan,
1487 	.read			= e1000e_read_nvm_eerd,
1488 	.release		= e1000_release_nvm_80003es2lan,
1489 	.update			= e1000e_update_nvm_checksum_generic,
1490 	.valid_led_default	= e1000e_valid_led_default,
1491 	.validate		= e1000e_validate_nvm_checksum_generic,
1492 	.write			= e1000_write_nvm_80003es2lan,
1493 };
1494 
1495 const struct e1000_info e1000_es2_info = {
1496 	.mac			= e1000_80003es2lan,
1497 	.flags			= FLAG_HAS_HW_VLAN_FILTER
1498 				  | FLAG_HAS_JUMBO_FRAMES
1499 				  | FLAG_HAS_WOL
1500 				  | FLAG_APME_IN_CTRL3
1501 				  | FLAG_HAS_CTRLEXT_ON_LOAD
1502 				  | FLAG_RX_NEEDS_RESTART /* errata */
1503 				  | FLAG_TARC_SET_BIT_ZERO /* errata */
1504 				  | FLAG_APME_CHECK_PORT_B
1505 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
1506 				  | FLAG_TIPG_MEDIUM_FOR_80003ESLAN,
1507 	.flags2			= FLAG2_DMA_BURST,
1508 	.pba			= 38,
1509 	.max_hw_frame_size	= DEFAULT_JUMBO,
1510 	.get_variants		= e1000_get_variants_80003es2lan,
1511 	.mac_ops		= &es2_mac_ops,
1512 	.phy_ops		= &es2_phy_ops,
1513 	.nvm_ops		= &es2_nvm_ops,
1514 };
1515 
1516