xref: /linux/drivers/net/ethernet/intel/e1000e/80003es2lan.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21 
22 /* 80003ES2LAN Gigabit Ethernet Controller (Copper)
23  * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
24  */
25 
26 #include "e1000.h"
27 
28 /* A table for the GG82563 cable length where the range is defined
29  * with a lower bound at "index" and the upper bound at
30  * "index + 5".
31  */
32 static const u16 e1000_gg82563_cable_length_table[] = {
33 	0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF
34 };
35 
36 #define GG82563_CABLE_LENGTH_TABLE_SIZE \
37 		ARRAY_SIZE(e1000_gg82563_cable_length_table)
38 
39 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
40 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
41 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
42 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
43 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
44 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
45 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
46 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
47 					   u16 *data);
48 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
49 					    u16 data);
50 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
51 
52 /**
53  *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
54  *  @hw: pointer to the HW structure
55  **/
56 static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
57 {
58 	struct e1000_phy_info *phy = &hw->phy;
59 	s32 ret_val;
60 
61 	if (hw->phy.media_type != e1000_media_type_copper) {
62 		phy->type = e1000_phy_none;
63 		return 0;
64 	} else {
65 		phy->ops.power_up = e1000_power_up_phy_copper;
66 		phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
67 	}
68 
69 	phy->addr = 1;
70 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
71 	phy->reset_delay_us = 100;
72 	phy->type = e1000_phy_gg82563;
73 
74 	/* This can only be done after all function pointers are setup. */
75 	ret_val = e1000e_get_phy_id(hw);
76 
77 	/* Verify phy id */
78 	if (phy->id != GG82563_E_PHY_ID)
79 		return -E1000_ERR_PHY;
80 
81 	return ret_val;
82 }
83 
84 /**
85  *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
86  *  @hw: pointer to the HW structure
87  **/
88 static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
89 {
90 	struct e1000_nvm_info *nvm = &hw->nvm;
91 	u32 eecd = er32(EECD);
92 	u16 size;
93 
94 	nvm->opcode_bits = 8;
95 	nvm->delay_usec = 1;
96 	switch (nvm->override) {
97 	case e1000_nvm_override_spi_large:
98 		nvm->page_size = 32;
99 		nvm->address_bits = 16;
100 		break;
101 	case e1000_nvm_override_spi_small:
102 		nvm->page_size = 8;
103 		nvm->address_bits = 8;
104 		break;
105 	default:
106 		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
107 		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
108 		break;
109 	}
110 
111 	nvm->type = e1000_nvm_eeprom_spi;
112 
113 	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
114 		     E1000_EECD_SIZE_EX_SHIFT);
115 
116 	/* Added to a constant, "size" becomes the left-shift value
117 	 * for setting word_size.
118 	 */
119 	size += NVM_WORD_SIZE_BASE_SHIFT;
120 
121 	/* EEPROM access above 16k is unsupported */
122 	if (size > 14)
123 		size = 14;
124 	nvm->word_size = BIT(size);
125 
126 	return 0;
127 }
128 
129 /**
130  *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
131  *  @hw: pointer to the HW structure
132  **/
133 static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
134 {
135 	struct e1000_mac_info *mac = &hw->mac;
136 
137 	/* Set media type and media-dependent function pointers */
138 	switch (hw->adapter->pdev->device) {
139 	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
140 		hw->phy.media_type = e1000_media_type_internal_serdes;
141 		mac->ops.check_for_link = e1000e_check_for_serdes_link;
142 		mac->ops.setup_physical_interface =
143 		    e1000e_setup_fiber_serdes_link;
144 		break;
145 	default:
146 		hw->phy.media_type = e1000_media_type_copper;
147 		mac->ops.check_for_link = e1000e_check_for_copper_link;
148 		mac->ops.setup_physical_interface =
149 		    e1000_setup_copper_link_80003es2lan;
150 		break;
151 	}
152 
153 	/* Set mta register count */
154 	mac->mta_reg_count = 128;
155 	/* Set rar entry count */
156 	mac->rar_entry_count = E1000_RAR_ENTRIES;
157 	/* FWSM register */
158 	mac->has_fwsm = true;
159 	/* ARC supported; valid only if manageability features are enabled. */
160 	mac->arc_subsystem_valid = !!(er32(FWSM) & E1000_FWSM_MODE_MASK);
161 	/* Adaptive IFS not supported */
162 	mac->adaptive_ifs = false;
163 
164 	/* set lan id for port to determine which phy lock to use */
165 	hw->mac.ops.set_lan_id(hw);
166 
167 	return 0;
168 }
169 
170 static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
171 {
172 	struct e1000_hw *hw = &adapter->hw;
173 	s32 rc;
174 
175 	rc = e1000_init_mac_params_80003es2lan(hw);
176 	if (rc)
177 		return rc;
178 
179 	rc = e1000_init_nvm_params_80003es2lan(hw);
180 	if (rc)
181 		return rc;
182 
183 	rc = e1000_init_phy_params_80003es2lan(hw);
184 	if (rc)
185 		return rc;
186 
187 	return 0;
188 }
189 
190 /**
191  *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
192  *  @hw: pointer to the HW structure
193  *
194  *  A wrapper to acquire access rights to the correct PHY.
195  **/
196 static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
197 {
198 	u16 mask;
199 
200 	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
201 	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
202 }
203 
204 /**
205  *  e1000_release_phy_80003es2lan - Release rights to access PHY
206  *  @hw: pointer to the HW structure
207  *
208  *  A wrapper to release access rights to the correct PHY.
209  **/
210 static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
211 {
212 	u16 mask;
213 
214 	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
215 	e1000_release_swfw_sync_80003es2lan(hw, mask);
216 }
217 
218 /**
219  *  e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register
220  *  @hw: pointer to the HW structure
221  *
222  *  Acquire the semaphore to access the Kumeran interface.
223  *
224  **/
225 static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
226 {
227 	u16 mask;
228 
229 	mask = E1000_SWFW_CSR_SM;
230 
231 	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
232 }
233 
234 /**
235  *  e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register
236  *  @hw: pointer to the HW structure
237  *
238  *  Release the semaphore used to access the Kumeran interface
239  **/
240 static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
241 {
242 	u16 mask;
243 
244 	mask = E1000_SWFW_CSR_SM;
245 
246 	e1000_release_swfw_sync_80003es2lan(hw, mask);
247 }
248 
249 /**
250  *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
251  *  @hw: pointer to the HW structure
252  *
253  *  Acquire the semaphore to access the EEPROM.
254  **/
255 static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
256 {
257 	s32 ret_val;
258 
259 	ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
260 	if (ret_val)
261 		return ret_val;
262 
263 	ret_val = e1000e_acquire_nvm(hw);
264 
265 	if (ret_val)
266 		e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
267 
268 	return ret_val;
269 }
270 
271 /**
272  *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
273  *  @hw: pointer to the HW structure
274  *
275  *  Release the semaphore used to access the EEPROM.
276  **/
277 static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
278 {
279 	e1000e_release_nvm(hw);
280 	e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
281 }
282 
283 /**
284  *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
285  *  @hw: pointer to the HW structure
286  *  @mask: specifies which semaphore to acquire
287  *
288  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
289  *  will also specify which port we're acquiring the lock for.
290  **/
291 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
292 {
293 	u32 swfw_sync;
294 	u32 swmask = mask;
295 	u32 fwmask = mask << 16;
296 	s32 i = 0;
297 	s32 timeout = 50;
298 
299 	while (i < timeout) {
300 		if (e1000e_get_hw_semaphore(hw))
301 			return -E1000_ERR_SWFW_SYNC;
302 
303 		swfw_sync = er32(SW_FW_SYNC);
304 		if (!(swfw_sync & (fwmask | swmask)))
305 			break;
306 
307 		/* Firmware currently using resource (fwmask)
308 		 * or other software thread using resource (swmask)
309 		 */
310 		e1000e_put_hw_semaphore(hw);
311 		mdelay(5);
312 		i++;
313 	}
314 
315 	if (i == timeout) {
316 		e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
317 		return -E1000_ERR_SWFW_SYNC;
318 	}
319 
320 	swfw_sync |= swmask;
321 	ew32(SW_FW_SYNC, swfw_sync);
322 
323 	e1000e_put_hw_semaphore(hw);
324 
325 	return 0;
326 }
327 
328 /**
329  *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
330  *  @hw: pointer to the HW structure
331  *  @mask: specifies which semaphore to acquire
332  *
333  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
334  *  will also specify which port we're releasing the lock for.
335  **/
336 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
337 {
338 	u32 swfw_sync;
339 
340 	while (e1000e_get_hw_semaphore(hw) != 0)
341 		; /* Empty */
342 
343 	swfw_sync = er32(SW_FW_SYNC);
344 	swfw_sync &= ~mask;
345 	ew32(SW_FW_SYNC, swfw_sync);
346 
347 	e1000e_put_hw_semaphore(hw);
348 }
349 
350 /**
351  *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
352  *  @hw: pointer to the HW structure
353  *  @offset: offset of the register to read
354  *  @data: pointer to the data returned from the operation
355  *
356  *  Read the GG82563 PHY register.
357  **/
358 static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
359 						  u32 offset, u16 *data)
360 {
361 	s32 ret_val;
362 	u32 page_select;
363 	u16 temp;
364 
365 	ret_val = e1000_acquire_phy_80003es2lan(hw);
366 	if (ret_val)
367 		return ret_val;
368 
369 	/* Select Configuration Page */
370 	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
371 		page_select = GG82563_PHY_PAGE_SELECT;
372 	} else {
373 		/* Use Alternative Page Select register to access
374 		 * registers 30 and 31
375 		 */
376 		page_select = GG82563_PHY_PAGE_SELECT_ALT;
377 	}
378 
379 	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
380 	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
381 	if (ret_val) {
382 		e1000_release_phy_80003es2lan(hw);
383 		return ret_val;
384 	}
385 
386 	if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
387 		/* The "ready" bit in the MDIC register may be incorrectly set
388 		 * before the device has completed the "Page Select" MDI
389 		 * transaction.  So we wait 200us after each MDI command...
390 		 */
391 		usleep_range(200, 400);
392 
393 		/* ...and verify the command was successful. */
394 		ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
395 
396 		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
397 			e1000_release_phy_80003es2lan(hw);
398 			return -E1000_ERR_PHY;
399 		}
400 
401 		usleep_range(200, 400);
402 
403 		ret_val = e1000e_read_phy_reg_mdic(hw,
404 						   MAX_PHY_REG_ADDRESS & offset,
405 						   data);
406 
407 		usleep_range(200, 400);
408 	} else {
409 		ret_val = e1000e_read_phy_reg_mdic(hw,
410 						   MAX_PHY_REG_ADDRESS & offset,
411 						   data);
412 	}
413 
414 	e1000_release_phy_80003es2lan(hw);
415 
416 	return ret_val;
417 }
418 
419 /**
420  *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
421  *  @hw: pointer to the HW structure
422  *  @offset: offset of the register to read
423  *  @data: value to write to the register
424  *
425  *  Write to the GG82563 PHY register.
426  **/
427 static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
428 						   u32 offset, u16 data)
429 {
430 	s32 ret_val;
431 	u32 page_select;
432 	u16 temp;
433 
434 	ret_val = e1000_acquire_phy_80003es2lan(hw);
435 	if (ret_val)
436 		return ret_val;
437 
438 	/* Select Configuration Page */
439 	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
440 		page_select = GG82563_PHY_PAGE_SELECT;
441 	} else {
442 		/* Use Alternative Page Select register to access
443 		 * registers 30 and 31
444 		 */
445 		page_select = GG82563_PHY_PAGE_SELECT_ALT;
446 	}
447 
448 	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
449 	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
450 	if (ret_val) {
451 		e1000_release_phy_80003es2lan(hw);
452 		return ret_val;
453 	}
454 
455 	if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
456 		/* The "ready" bit in the MDIC register may be incorrectly set
457 		 * before the device has completed the "Page Select" MDI
458 		 * transaction.  So we wait 200us after each MDI command...
459 		 */
460 		usleep_range(200, 400);
461 
462 		/* ...and verify the command was successful. */
463 		ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
464 
465 		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
466 			e1000_release_phy_80003es2lan(hw);
467 			return -E1000_ERR_PHY;
468 		}
469 
470 		usleep_range(200, 400);
471 
472 		ret_val = e1000e_write_phy_reg_mdic(hw,
473 						    MAX_PHY_REG_ADDRESS &
474 						    offset, data);
475 
476 		usleep_range(200, 400);
477 	} else {
478 		ret_val = e1000e_write_phy_reg_mdic(hw,
479 						    MAX_PHY_REG_ADDRESS &
480 						    offset, data);
481 	}
482 
483 	e1000_release_phy_80003es2lan(hw);
484 
485 	return ret_val;
486 }
487 
488 /**
489  *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
490  *  @hw: pointer to the HW structure
491  *  @offset: offset of the register to read
492  *  @words: number of words to write
493  *  @data: buffer of data to write to the NVM
494  *
495  *  Write "words" of data to the ESB2 NVM.
496  **/
497 static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
498 				       u16 words, u16 *data)
499 {
500 	return e1000e_write_nvm_spi(hw, offset, words, data);
501 }
502 
503 /**
504  *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
505  *  @hw: pointer to the HW structure
506  *
507  *  Wait a specific amount of time for manageability processes to complete.
508  *  This is a function pointer entry point called by the phy module.
509  **/
510 static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
511 {
512 	s32 timeout = PHY_CFG_TIMEOUT;
513 	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
514 
515 	if (hw->bus.func == 1)
516 		mask = E1000_NVM_CFG_DONE_PORT_1;
517 
518 	while (timeout) {
519 		if (er32(EEMNGCTL) & mask)
520 			break;
521 		usleep_range(1000, 2000);
522 		timeout--;
523 	}
524 	if (!timeout) {
525 		e_dbg("MNG configuration cycle has not completed.\n");
526 		return -E1000_ERR_RESET;
527 	}
528 
529 	return 0;
530 }
531 
532 /**
533  *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
534  *  @hw: pointer to the HW structure
535  *
536  *  Force the speed and duplex settings onto the PHY.  This is a
537  *  function pointer entry point called by the phy module.
538  **/
539 static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
540 {
541 	s32 ret_val;
542 	u16 phy_data;
543 	bool link;
544 
545 	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
546 	 * forced whenever speed and duplex are forced.
547 	 */
548 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
549 	if (ret_val)
550 		return ret_val;
551 
552 	phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
553 	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
554 	if (ret_val)
555 		return ret_val;
556 
557 	e_dbg("GG82563 PSCR: %X\n", phy_data);
558 
559 	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
560 	if (ret_val)
561 		return ret_val;
562 
563 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
564 
565 	/* Reset the phy to commit changes. */
566 	phy_data |= BMCR_RESET;
567 
568 	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
569 	if (ret_val)
570 		return ret_val;
571 
572 	udelay(1);
573 
574 	if (hw->phy.autoneg_wait_to_complete) {
575 		e_dbg("Waiting for forced speed/duplex link on GG82563 phy.\n");
576 
577 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
578 						      100000, &link);
579 		if (ret_val)
580 			return ret_val;
581 
582 		if (!link) {
583 			/* We didn't get link.
584 			 * Reset the DSP and cross our fingers.
585 			 */
586 			ret_val = e1000e_phy_reset_dsp(hw);
587 			if (ret_val)
588 				return ret_val;
589 		}
590 
591 		/* Try once more */
592 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
593 						      100000, &link);
594 		if (ret_val)
595 			return ret_val;
596 	}
597 
598 	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
599 	if (ret_val)
600 		return ret_val;
601 
602 	/* Resetting the phy means we need to verify the TX_CLK corresponds
603 	 * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
604 	 */
605 	phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
606 	if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
607 		phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
608 	else
609 		phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
610 
611 	/* In addition, we must re-enable CRS on Tx for both half and full
612 	 * duplex.
613 	 */
614 	phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
615 	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
616 
617 	return ret_val;
618 }
619 
620 /**
621  *  e1000_get_cable_length_80003es2lan - Set approximate cable length
622  *  @hw: pointer to the HW structure
623  *
624  *  Find the approximate cable length as measured by the GG82563 PHY.
625  *  This is a function pointer entry point called by the phy module.
626  **/
627 static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
628 {
629 	struct e1000_phy_info *phy = &hw->phy;
630 	s32 ret_val;
631 	u16 phy_data, index;
632 
633 	ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
634 	if (ret_val)
635 		return ret_val;
636 
637 	index = phy_data & GG82563_DSPD_CABLE_LENGTH;
638 
639 	if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5)
640 		return -E1000_ERR_PHY;
641 
642 	phy->min_cable_length = e1000_gg82563_cable_length_table[index];
643 	phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
644 
645 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
646 
647 	return 0;
648 }
649 
650 /**
651  *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
652  *  @hw: pointer to the HW structure
653  *  @speed: pointer to speed buffer
654  *  @duplex: pointer to duplex buffer
655  *
656  *  Retrieve the current speed and duplex configuration.
657  **/
658 static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
659 					      u16 *duplex)
660 {
661 	s32 ret_val;
662 
663 	if (hw->phy.media_type == e1000_media_type_copper) {
664 		ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
665 		hw->phy.ops.cfg_on_link_up(hw);
666 	} else {
667 		ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
668 								   speed,
669 								   duplex);
670 	}
671 
672 	return ret_val;
673 }
674 
675 /**
676  *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
677  *  @hw: pointer to the HW structure
678  *
679  *  Perform a global reset to the ESB2 controller.
680  **/
681 static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
682 {
683 	u32 ctrl;
684 	s32 ret_val;
685 	u16 kum_reg_data;
686 
687 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
688 	 * on the last TLP read/write transaction when MAC is reset.
689 	 */
690 	ret_val = e1000e_disable_pcie_master(hw);
691 	if (ret_val)
692 		e_dbg("PCI-E Master disable polling has failed.\n");
693 
694 	e_dbg("Masking off all interrupts\n");
695 	ew32(IMC, 0xffffffff);
696 
697 	ew32(RCTL, 0);
698 	ew32(TCTL, E1000_TCTL_PSP);
699 	e1e_flush();
700 
701 	usleep_range(10000, 20000);
702 
703 	ctrl = er32(CTRL);
704 
705 	ret_val = e1000_acquire_phy_80003es2lan(hw);
706 	if (ret_val)
707 		return ret_val;
708 
709 	e_dbg("Issuing a global reset to MAC\n");
710 	ew32(CTRL, ctrl | E1000_CTRL_RST);
711 	e1000_release_phy_80003es2lan(hw);
712 
713 	/* Disable IBIST slave mode (far-end loopback) */
714 	ret_val =
715 	    e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
716 					    &kum_reg_data);
717 	if (ret_val)
718 		return ret_val;
719 	kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
720 	e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
721 					 kum_reg_data);
722 
723 	ret_val = e1000e_get_auto_rd_done(hw);
724 	if (ret_val)
725 		/* We don't want to continue accessing MAC registers. */
726 		return ret_val;
727 
728 	/* Clear any pending interrupt events. */
729 	ew32(IMC, 0xffffffff);
730 	er32(ICR);
731 
732 	return e1000_check_alt_mac_addr_generic(hw);
733 }
734 
735 /**
736  *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
737  *  @hw: pointer to the HW structure
738  *
739  *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
740  **/
741 static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
742 {
743 	struct e1000_mac_info *mac = &hw->mac;
744 	u32 reg_data;
745 	s32 ret_val;
746 	u16 kum_reg_data;
747 	u16 i;
748 
749 	e1000_initialize_hw_bits_80003es2lan(hw);
750 
751 	/* Initialize identification LED */
752 	ret_val = mac->ops.id_led_init(hw);
753 	/* An error is not fatal and we should not stop init due to this */
754 	if (ret_val)
755 		e_dbg("Error initializing identification LED\n");
756 
757 	/* Disabling VLAN filtering */
758 	e_dbg("Initializing the IEEE VLAN\n");
759 	mac->ops.clear_vfta(hw);
760 
761 	/* Setup the receive address. */
762 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
763 
764 	/* Zero out the Multicast HASH table */
765 	e_dbg("Zeroing the MTA\n");
766 	for (i = 0; i < mac->mta_reg_count; i++)
767 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
768 
769 	/* Setup link and flow control */
770 	ret_val = mac->ops.setup_link(hw);
771 	if (ret_val)
772 		return ret_val;
773 
774 	/* Disable IBIST slave mode (far-end loopback) */
775 	e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
776 					&kum_reg_data);
777 	kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
778 	e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
779 					 kum_reg_data);
780 
781 	/* Set the transmit descriptor write-back policy */
782 	reg_data = er32(TXDCTL(0));
783 	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
784 		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
785 	ew32(TXDCTL(0), reg_data);
786 
787 	/* ...for both queues. */
788 	reg_data = er32(TXDCTL(1));
789 	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
790 		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
791 	ew32(TXDCTL(1), reg_data);
792 
793 	/* Enable retransmit on late collisions */
794 	reg_data = er32(TCTL);
795 	reg_data |= E1000_TCTL_RTLC;
796 	ew32(TCTL, reg_data);
797 
798 	/* Configure Gigabit Carry Extend Padding */
799 	reg_data = er32(TCTL_EXT);
800 	reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
801 	reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
802 	ew32(TCTL_EXT, reg_data);
803 
804 	/* Configure Transmit Inter-Packet Gap */
805 	reg_data = er32(TIPG);
806 	reg_data &= ~E1000_TIPG_IPGT_MASK;
807 	reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
808 	ew32(TIPG, reg_data);
809 
810 	reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
811 	reg_data &= ~0x00100000;
812 	E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
813 
814 	/* default to true to enable the MDIC W/A */
815 	hw->dev_spec.e80003es2lan.mdic_wa_enable = true;
816 
817 	ret_val =
818 	    e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET >>
819 					    E1000_KMRNCTRLSTA_OFFSET_SHIFT, &i);
820 	if (!ret_val) {
821 		if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
822 		    E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
823 			hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
824 	}
825 
826 	/* Clear all of the statistics registers (clear on read).  It is
827 	 * important that we do this after we have tried to establish link
828 	 * because the symbol error count will increment wildly if there
829 	 * is no link.
830 	 */
831 	e1000_clear_hw_cntrs_80003es2lan(hw);
832 
833 	return ret_val;
834 }
835 
836 /**
837  *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
838  *  @hw: pointer to the HW structure
839  *
840  *  Initializes required hardware-dependent bits needed for normal operation.
841  **/
842 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
843 {
844 	u32 reg;
845 
846 	/* Transmit Descriptor Control 0 */
847 	reg = er32(TXDCTL(0));
848 	reg |= BIT(22);
849 	ew32(TXDCTL(0), reg);
850 
851 	/* Transmit Descriptor Control 1 */
852 	reg = er32(TXDCTL(1));
853 	reg |= BIT(22);
854 	ew32(TXDCTL(1), reg);
855 
856 	/* Transmit Arbitration Control 0 */
857 	reg = er32(TARC(0));
858 	reg &= ~(0xF << 27);	/* 30:27 */
859 	if (hw->phy.media_type != e1000_media_type_copper)
860 		reg &= ~BIT(20);
861 	ew32(TARC(0), reg);
862 
863 	/* Transmit Arbitration Control 1 */
864 	reg = er32(TARC(1));
865 	if (er32(TCTL) & E1000_TCTL_MULR)
866 		reg &= ~BIT(28);
867 	else
868 		reg |= BIT(28);
869 	ew32(TARC(1), reg);
870 
871 	/* Disable IPv6 extension header parsing because some malformed
872 	 * IPv6 headers can hang the Rx.
873 	 */
874 	reg = er32(RFCTL);
875 	reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
876 	ew32(RFCTL, reg);
877 }
878 
879 /**
880  *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
881  *  @hw: pointer to the HW structure
882  *
883  *  Setup some GG82563 PHY registers for obtaining link
884  **/
885 static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
886 {
887 	struct e1000_phy_info *phy = &hw->phy;
888 	s32 ret_val;
889 	u32 reg;
890 	u16 data;
891 
892 	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
893 	if (ret_val)
894 		return ret_val;
895 
896 	data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
897 	/* Use 25MHz for both link down and 1000Base-T for Tx clock. */
898 	data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
899 
900 	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
901 	if (ret_val)
902 		return ret_val;
903 
904 	/* Options:
905 	 *   MDI/MDI-X = 0 (default)
906 	 *   0 - Auto for all speeds
907 	 *   1 - MDI mode
908 	 *   2 - MDI-X mode
909 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
910 	 */
911 	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
912 	if (ret_val)
913 		return ret_val;
914 
915 	data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
916 
917 	switch (phy->mdix) {
918 	case 1:
919 		data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
920 		break;
921 	case 2:
922 		data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
923 		break;
924 	case 0:
925 	default:
926 		data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
927 		break;
928 	}
929 
930 	/* Options:
931 	 *   disable_polarity_correction = 0 (default)
932 	 *       Automatic Correction for Reversed Cable Polarity
933 	 *   0 - Disabled
934 	 *   1 - Enabled
935 	 */
936 	data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
937 	if (phy->disable_polarity_correction)
938 		data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
939 
940 	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
941 	if (ret_val)
942 		return ret_val;
943 
944 	/* SW Reset the PHY so all changes take effect */
945 	ret_val = hw->phy.ops.commit(hw);
946 	if (ret_val) {
947 		e_dbg("Error Resetting the PHY\n");
948 		return ret_val;
949 	}
950 
951 	/* Bypass Rx and Tx FIFO's */
952 	reg = E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL;
953 	data = (E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
954 		E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
955 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
956 	if (ret_val)
957 		return ret_val;
958 
959 	reg = E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE;
960 	ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, &data);
961 	if (ret_val)
962 		return ret_val;
963 	data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
964 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
965 	if (ret_val)
966 		return ret_val;
967 
968 	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
969 	if (ret_val)
970 		return ret_val;
971 
972 	data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
973 	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
974 	if (ret_val)
975 		return ret_val;
976 
977 	reg = er32(CTRL_EXT);
978 	reg &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
979 	ew32(CTRL_EXT, reg);
980 
981 	ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
982 	if (ret_val)
983 		return ret_val;
984 
985 	/* Do not init these registers when the HW is in IAMT mode, since the
986 	 * firmware will have already initialized them.  We only initialize
987 	 * them if the HW is not in IAMT mode.
988 	 */
989 	if (!hw->mac.ops.check_mng_mode(hw)) {
990 		/* Enable Electrical Idle on the PHY */
991 		data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
992 		ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
993 		if (ret_val)
994 			return ret_val;
995 
996 		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
997 		if (ret_val)
998 			return ret_val;
999 
1000 		data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1001 		ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
1002 		if (ret_val)
1003 			return ret_val;
1004 	}
1005 
1006 	/* Workaround: Disable padding in Kumeran interface in the MAC
1007 	 * and in the PHY to avoid CRC errors.
1008 	 */
1009 	ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1010 	if (ret_val)
1011 		return ret_val;
1012 
1013 	data |= GG82563_ICR_DIS_PADDING;
1014 	ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1015 	if (ret_val)
1016 		return ret_val;
1017 
1018 	return 0;
1019 }
1020 
1021 /**
1022  *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1023  *  @hw: pointer to the HW structure
1024  *
1025  *  Essentially a wrapper for setting up all things "copper" related.
1026  *  This is a function pointer entry point called by the mac module.
1027  **/
1028 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1029 {
1030 	u32 ctrl;
1031 	s32 ret_val;
1032 	u16 reg_data;
1033 
1034 	ctrl = er32(CTRL);
1035 	ctrl |= E1000_CTRL_SLU;
1036 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1037 	ew32(CTRL, ctrl);
1038 
1039 	/* Set the mac to wait the maximum time between each
1040 	 * iteration and increase the max iterations when
1041 	 * polling the phy; this fixes erroneous timeouts at 10Mbps.
1042 	 */
1043 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
1044 						   0xFFFF);
1045 	if (ret_val)
1046 		return ret_val;
1047 	ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1048 						  &reg_data);
1049 	if (ret_val)
1050 		return ret_val;
1051 	reg_data |= 0x3F;
1052 	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1053 						   reg_data);
1054 	if (ret_val)
1055 		return ret_val;
1056 	ret_val =
1057 	    e1000_read_kmrn_reg_80003es2lan(hw,
1058 					    E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1059 					    &reg_data);
1060 	if (ret_val)
1061 		return ret_val;
1062 	reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1063 	ret_val =
1064 	    e1000_write_kmrn_reg_80003es2lan(hw,
1065 					     E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1066 					     reg_data);
1067 	if (ret_val)
1068 		return ret_val;
1069 
1070 	ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1071 	if (ret_val)
1072 		return ret_val;
1073 
1074 	return e1000e_setup_copper_link(hw);
1075 }
1076 
1077 /**
1078  *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1079  *  @hw: pointer to the HW structure
1080  *  @duplex: current duplex setting
1081  *
1082  *  Configure the KMRN interface by applying last minute quirks for
1083  *  10/100 operation.
1084  **/
1085 static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1086 {
1087 	s32 ret_val = 0;
1088 	u16 speed;
1089 	u16 duplex;
1090 
1091 	if (hw->phy.media_type == e1000_media_type_copper) {
1092 		ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
1093 							     &duplex);
1094 		if (ret_val)
1095 			return ret_val;
1096 
1097 		if (speed == SPEED_1000)
1098 			ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1099 		else
1100 			ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1101 	}
1102 
1103 	return ret_val;
1104 }
1105 
1106 /**
1107  *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1108  *  @hw: pointer to the HW structure
1109  *  @duplex: current duplex setting
1110  *
1111  *  Configure the KMRN interface by applying last minute quirks for
1112  *  10/100 operation.
1113  **/
1114 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1115 {
1116 	s32 ret_val;
1117 	u32 tipg;
1118 	u32 i = 0;
1119 	u16 reg_data, reg_data2;
1120 
1121 	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1122 	ret_val =
1123 	    e1000_write_kmrn_reg_80003es2lan(hw,
1124 					     E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1125 					     reg_data);
1126 	if (ret_val)
1127 		return ret_val;
1128 
1129 	/* Configure Transmit Inter-Packet Gap */
1130 	tipg = er32(TIPG);
1131 	tipg &= ~E1000_TIPG_IPGT_MASK;
1132 	tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1133 	ew32(TIPG, tipg);
1134 
1135 	do {
1136 		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1137 		if (ret_val)
1138 			return ret_val;
1139 
1140 		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1141 		if (ret_val)
1142 			return ret_val;
1143 		i++;
1144 	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1145 
1146 	if (duplex == HALF_DUPLEX)
1147 		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1148 	else
1149 		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1150 
1151 	return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1152 }
1153 
1154 /**
1155  *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1156  *  @hw: pointer to the HW structure
1157  *
1158  *  Configure the KMRN interface by applying last minute quirks for
1159  *  gigabit operation.
1160  **/
1161 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1162 {
1163 	s32 ret_val;
1164 	u16 reg_data, reg_data2;
1165 	u32 tipg;
1166 	u32 i = 0;
1167 
1168 	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1169 	ret_val =
1170 	    e1000_write_kmrn_reg_80003es2lan(hw,
1171 					     E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1172 					     reg_data);
1173 	if (ret_val)
1174 		return ret_val;
1175 
1176 	/* Configure Transmit Inter-Packet Gap */
1177 	tipg = er32(TIPG);
1178 	tipg &= ~E1000_TIPG_IPGT_MASK;
1179 	tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1180 	ew32(TIPG, tipg);
1181 
1182 	do {
1183 		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1184 		if (ret_val)
1185 			return ret_val;
1186 
1187 		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1188 		if (ret_val)
1189 			return ret_val;
1190 		i++;
1191 	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1192 
1193 	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1194 
1195 	return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1196 }
1197 
1198 /**
1199  *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1200  *  @hw: pointer to the HW structure
1201  *  @offset: register offset to be read
1202  *  @data: pointer to the read data
1203  *
1204  *  Acquire semaphore, then read the PHY register at offset
1205  *  using the kumeran interface.  The information retrieved is stored in data.
1206  *  Release the semaphore before exiting.
1207  **/
1208 static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1209 					   u16 *data)
1210 {
1211 	u32 kmrnctrlsta;
1212 	s32 ret_val;
1213 
1214 	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1215 	if (ret_val)
1216 		return ret_val;
1217 
1218 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1219 		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
1220 	ew32(KMRNCTRLSTA, kmrnctrlsta);
1221 	e1e_flush();
1222 
1223 	udelay(2);
1224 
1225 	kmrnctrlsta = er32(KMRNCTRLSTA);
1226 	*data = (u16)kmrnctrlsta;
1227 
1228 	e1000_release_mac_csr_80003es2lan(hw);
1229 
1230 	return ret_val;
1231 }
1232 
1233 /**
1234  *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1235  *  @hw: pointer to the HW structure
1236  *  @offset: register offset to write to
1237  *  @data: data to write at register offset
1238  *
1239  *  Acquire semaphore, then write the data to PHY register
1240  *  at the offset using the kumeran interface.  Release semaphore
1241  *  before exiting.
1242  **/
1243 static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1244 					    u16 data)
1245 {
1246 	u32 kmrnctrlsta;
1247 	s32 ret_val;
1248 
1249 	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1250 	if (ret_val)
1251 		return ret_val;
1252 
1253 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1254 		       E1000_KMRNCTRLSTA_OFFSET) | data;
1255 	ew32(KMRNCTRLSTA, kmrnctrlsta);
1256 	e1e_flush();
1257 
1258 	udelay(2);
1259 
1260 	e1000_release_mac_csr_80003es2lan(hw);
1261 
1262 	return ret_val;
1263 }
1264 
1265 /**
1266  *  e1000_read_mac_addr_80003es2lan - Read device MAC address
1267  *  @hw: pointer to the HW structure
1268  **/
1269 static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
1270 {
1271 	s32 ret_val;
1272 
1273 	/* If there's an alternate MAC address place it in RAR0
1274 	 * so that it will override the Si installed default perm
1275 	 * address.
1276 	 */
1277 	ret_val = e1000_check_alt_mac_addr_generic(hw);
1278 	if (ret_val)
1279 		return ret_val;
1280 
1281 	return e1000_read_mac_addr_generic(hw);
1282 }
1283 
1284 /**
1285  * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
1286  * @hw: pointer to the HW structure
1287  *
1288  * In the case of a PHY power down to save power, or to turn off link during a
1289  * driver unload, or wake on lan is not enabled, remove the link.
1290  **/
1291 static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
1292 {
1293 	/* If the management interface is not enabled, then power down */
1294 	if (!(hw->mac.ops.check_mng_mode(hw) ||
1295 	      hw->phy.ops.check_reset_block(hw)))
1296 		e1000_power_down_phy_copper(hw);
1297 }
1298 
1299 /**
1300  *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1301  *  @hw: pointer to the HW structure
1302  *
1303  *  Clears the hardware counters by reading the counter registers.
1304  **/
1305 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1306 {
1307 	e1000e_clear_hw_cntrs_base(hw);
1308 
1309 	er32(PRC64);
1310 	er32(PRC127);
1311 	er32(PRC255);
1312 	er32(PRC511);
1313 	er32(PRC1023);
1314 	er32(PRC1522);
1315 	er32(PTC64);
1316 	er32(PTC127);
1317 	er32(PTC255);
1318 	er32(PTC511);
1319 	er32(PTC1023);
1320 	er32(PTC1522);
1321 
1322 	er32(ALGNERRC);
1323 	er32(RXERRC);
1324 	er32(TNCRS);
1325 	er32(CEXTERR);
1326 	er32(TSCTC);
1327 	er32(TSCTFC);
1328 
1329 	er32(MGTPRC);
1330 	er32(MGTPDC);
1331 	er32(MGTPTC);
1332 
1333 	er32(IAC);
1334 	er32(ICRXOC);
1335 
1336 	er32(ICRXPTC);
1337 	er32(ICRXATC);
1338 	er32(ICTXPTC);
1339 	er32(ICTXATC);
1340 	er32(ICTXQEC);
1341 	er32(ICTXQMTC);
1342 	er32(ICRXDMTC);
1343 }
1344 
1345 static const struct e1000_mac_operations es2_mac_ops = {
1346 	.read_mac_addr		= e1000_read_mac_addr_80003es2lan,
1347 	.id_led_init		= e1000e_id_led_init_generic,
1348 	.blink_led		= e1000e_blink_led_generic,
1349 	.check_mng_mode		= e1000e_check_mng_mode_generic,
1350 	/* check_for_link dependent on media type */
1351 	.cleanup_led		= e1000e_cleanup_led_generic,
1352 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_80003es2lan,
1353 	.get_bus_info		= e1000e_get_bus_info_pcie,
1354 	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
1355 	.get_link_up_info	= e1000_get_link_up_info_80003es2lan,
1356 	.led_on			= e1000e_led_on_generic,
1357 	.led_off		= e1000e_led_off_generic,
1358 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
1359 	.write_vfta		= e1000_write_vfta_generic,
1360 	.clear_vfta		= e1000_clear_vfta_generic,
1361 	.reset_hw		= e1000_reset_hw_80003es2lan,
1362 	.init_hw		= e1000_init_hw_80003es2lan,
1363 	.setup_link		= e1000e_setup_link_generic,
1364 	/* setup_physical_interface dependent on media type */
1365 	.setup_led		= e1000e_setup_led_generic,
1366 	.config_collision_dist	= e1000e_config_collision_dist_generic,
1367 	.rar_set		= e1000e_rar_set_generic,
1368 	.rar_get_count		= e1000e_rar_get_count_generic,
1369 };
1370 
1371 static const struct e1000_phy_operations es2_phy_ops = {
1372 	.acquire		= e1000_acquire_phy_80003es2lan,
1373 	.check_polarity		= e1000_check_polarity_m88,
1374 	.check_reset_block	= e1000e_check_reset_block_generic,
1375 	.commit			= e1000e_phy_sw_reset,
1376 	.force_speed_duplex	= e1000_phy_force_speed_duplex_80003es2lan,
1377 	.get_cfg_done		= e1000_get_cfg_done_80003es2lan,
1378 	.get_cable_length	= e1000_get_cable_length_80003es2lan,
1379 	.get_info		= e1000e_get_phy_info_m88,
1380 	.read_reg		= e1000_read_phy_reg_gg82563_80003es2lan,
1381 	.release		= e1000_release_phy_80003es2lan,
1382 	.reset			= e1000e_phy_hw_reset_generic,
1383 	.set_d0_lplu_state	= NULL,
1384 	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1385 	.write_reg		= e1000_write_phy_reg_gg82563_80003es2lan,
1386 	.cfg_on_link_up		= e1000_cfg_on_link_up_80003es2lan,
1387 };
1388 
1389 static const struct e1000_nvm_operations es2_nvm_ops = {
1390 	.acquire		= e1000_acquire_nvm_80003es2lan,
1391 	.read			= e1000e_read_nvm_eerd,
1392 	.release		= e1000_release_nvm_80003es2lan,
1393 	.reload			= e1000e_reload_nvm_generic,
1394 	.update			= e1000e_update_nvm_checksum_generic,
1395 	.valid_led_default	= e1000e_valid_led_default,
1396 	.validate		= e1000e_validate_nvm_checksum_generic,
1397 	.write			= e1000_write_nvm_80003es2lan,
1398 };
1399 
1400 const struct e1000_info e1000_es2_info = {
1401 	.mac			= e1000_80003es2lan,
1402 	.flags			= FLAG_HAS_HW_VLAN_FILTER
1403 				  | FLAG_HAS_JUMBO_FRAMES
1404 				  | FLAG_HAS_WOL
1405 				  | FLAG_APME_IN_CTRL3
1406 				  | FLAG_HAS_CTRLEXT_ON_LOAD
1407 				  | FLAG_RX_NEEDS_RESTART /* errata */
1408 				  | FLAG_TARC_SET_BIT_ZERO /* errata */
1409 				  | FLAG_APME_CHECK_PORT_B
1410 				  | FLAG_DISABLE_FC_PAUSE_TIME, /* errata */
1411 	.flags2			= FLAG2_DMA_BURST,
1412 	.pba			= 38,
1413 	.max_hw_frame_size	= DEFAULT_JUMBO,
1414 	.get_variants		= e1000_get_variants_80003es2lan,
1415 	.mac_ops		= &es2_mac_ops,
1416 	.phy_ops		= &es2_phy_ops,
1417 	.nvm_ops		= &es2_nvm_ops,
1418 };
1419