xref: /linux/drivers/net/ethernet/intel/e1000/e1000_main.c (revision faabed295cccc2aba2b67f2e7b309f2892d55004)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2006 Intel Corporation. */
3 
4 #include "e1000.h"
5 #include <net/ip6_checksum.h>
6 #include <linux/io.h>
7 #include <linux/prefetch.h>
8 #include <linux/bitops.h>
9 #include <linux/if_vlan.h>
10 
11 char e1000_driver_name[] = "e1000";
12 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
13 #define DRV_VERSION "7.3.21-k8-NAPI"
14 const char e1000_driver_version[] = DRV_VERSION;
15 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
16 
17 /* e1000_pci_tbl - PCI Device ID Table
18  *
19  * Last entry must be all 0s
20  *
21  * Macro expands to...
22  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
23  */
24 static const struct pci_device_id e1000_pci_tbl[] = {
25 	INTEL_E1000_ETHERNET_DEVICE(0x1000),
26 	INTEL_E1000_ETHERNET_DEVICE(0x1001),
27 	INTEL_E1000_ETHERNET_DEVICE(0x1004),
28 	INTEL_E1000_ETHERNET_DEVICE(0x1008),
29 	INTEL_E1000_ETHERNET_DEVICE(0x1009),
30 	INTEL_E1000_ETHERNET_DEVICE(0x100C),
31 	INTEL_E1000_ETHERNET_DEVICE(0x100D),
32 	INTEL_E1000_ETHERNET_DEVICE(0x100E),
33 	INTEL_E1000_ETHERNET_DEVICE(0x100F),
34 	INTEL_E1000_ETHERNET_DEVICE(0x1010),
35 	INTEL_E1000_ETHERNET_DEVICE(0x1011),
36 	INTEL_E1000_ETHERNET_DEVICE(0x1012),
37 	INTEL_E1000_ETHERNET_DEVICE(0x1013),
38 	INTEL_E1000_ETHERNET_DEVICE(0x1014),
39 	INTEL_E1000_ETHERNET_DEVICE(0x1015),
40 	INTEL_E1000_ETHERNET_DEVICE(0x1016),
41 	INTEL_E1000_ETHERNET_DEVICE(0x1017),
42 	INTEL_E1000_ETHERNET_DEVICE(0x1018),
43 	INTEL_E1000_ETHERNET_DEVICE(0x1019),
44 	INTEL_E1000_ETHERNET_DEVICE(0x101A),
45 	INTEL_E1000_ETHERNET_DEVICE(0x101D),
46 	INTEL_E1000_ETHERNET_DEVICE(0x101E),
47 	INTEL_E1000_ETHERNET_DEVICE(0x1026),
48 	INTEL_E1000_ETHERNET_DEVICE(0x1027),
49 	INTEL_E1000_ETHERNET_DEVICE(0x1028),
50 	INTEL_E1000_ETHERNET_DEVICE(0x1075),
51 	INTEL_E1000_ETHERNET_DEVICE(0x1076),
52 	INTEL_E1000_ETHERNET_DEVICE(0x1077),
53 	INTEL_E1000_ETHERNET_DEVICE(0x1078),
54 	INTEL_E1000_ETHERNET_DEVICE(0x1079),
55 	INTEL_E1000_ETHERNET_DEVICE(0x107A),
56 	INTEL_E1000_ETHERNET_DEVICE(0x107B),
57 	INTEL_E1000_ETHERNET_DEVICE(0x107C),
58 	INTEL_E1000_ETHERNET_DEVICE(0x108A),
59 	INTEL_E1000_ETHERNET_DEVICE(0x1099),
60 	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
61 	INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
62 	/* required last entry */
63 	{0,}
64 };
65 
66 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
67 
68 int e1000_up(struct e1000_adapter *adapter);
69 void e1000_down(struct e1000_adapter *adapter);
70 void e1000_reinit_locked(struct e1000_adapter *adapter);
71 void e1000_reset(struct e1000_adapter *adapter);
72 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
73 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
74 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
75 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
76 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
77 				    struct e1000_tx_ring *txdr);
78 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
79 				    struct e1000_rx_ring *rxdr);
80 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
81 				    struct e1000_tx_ring *tx_ring);
82 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
83 				    struct e1000_rx_ring *rx_ring);
84 void e1000_update_stats(struct e1000_adapter *adapter);
85 
86 static int e1000_init_module(void);
87 static void e1000_exit_module(void);
88 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
89 static void e1000_remove(struct pci_dev *pdev);
90 static int e1000_alloc_queues(struct e1000_adapter *adapter);
91 static int e1000_sw_init(struct e1000_adapter *adapter);
92 int e1000_open(struct net_device *netdev);
93 int e1000_close(struct net_device *netdev);
94 static void e1000_configure_tx(struct e1000_adapter *adapter);
95 static void e1000_configure_rx(struct e1000_adapter *adapter);
96 static void e1000_setup_rctl(struct e1000_adapter *adapter);
97 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
98 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
99 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
100 				struct e1000_tx_ring *tx_ring);
101 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
102 				struct e1000_rx_ring *rx_ring);
103 static void e1000_set_rx_mode(struct net_device *netdev);
104 static void e1000_update_phy_info_task(struct work_struct *work);
105 static void e1000_watchdog(struct work_struct *work);
106 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
107 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
108 				    struct net_device *netdev);
109 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
110 static int e1000_set_mac(struct net_device *netdev, void *p);
111 static irqreturn_t e1000_intr(int irq, void *data);
112 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
113 			       struct e1000_tx_ring *tx_ring);
114 static int e1000_clean(struct napi_struct *napi, int budget);
115 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
116 			       struct e1000_rx_ring *rx_ring,
117 			       int *work_done, int work_to_do);
118 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
119 				     struct e1000_rx_ring *rx_ring,
120 				     int *work_done, int work_to_do);
121 static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
122 					 struct e1000_rx_ring *rx_ring,
123 					 int cleaned_count)
124 {
125 }
126 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
127 				   struct e1000_rx_ring *rx_ring,
128 				   int cleaned_count);
129 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
130 					 struct e1000_rx_ring *rx_ring,
131 					 int cleaned_count);
132 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
133 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
134 			   int cmd);
135 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
136 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
137 static void e1000_tx_timeout(struct net_device *dev, unsigned int txqueue);
138 static void e1000_reset_task(struct work_struct *work);
139 static void e1000_smartspeed(struct e1000_adapter *adapter);
140 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
141 				       struct sk_buff *skb);
142 
143 static bool e1000_vlan_used(struct e1000_adapter *adapter);
144 static void e1000_vlan_mode(struct net_device *netdev,
145 			    netdev_features_t features);
146 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
147 				     bool filter_on);
148 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
149 				 __be16 proto, u16 vid);
150 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
151 				  __be16 proto, u16 vid);
152 static void e1000_restore_vlan(struct e1000_adapter *adapter);
153 
154 static int __maybe_unused e1000_suspend(struct device *dev);
155 static int __maybe_unused e1000_resume(struct device *dev);
156 static void e1000_shutdown(struct pci_dev *pdev);
157 
158 #ifdef CONFIG_NET_POLL_CONTROLLER
159 /* for netdump / net console */
160 static void e1000_netpoll (struct net_device *netdev);
161 #endif
162 
163 #define COPYBREAK_DEFAULT 256
164 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
165 module_param(copybreak, uint, 0644);
166 MODULE_PARM_DESC(copybreak,
167 	"Maximum size of packet that is copied to a new buffer on receive");
168 
169 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
170 						pci_channel_state_t state);
171 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
172 static void e1000_io_resume(struct pci_dev *pdev);
173 
174 static const struct pci_error_handlers e1000_err_handler = {
175 	.error_detected = e1000_io_error_detected,
176 	.slot_reset = e1000_io_slot_reset,
177 	.resume = e1000_io_resume,
178 };
179 
180 static SIMPLE_DEV_PM_OPS(e1000_pm_ops, e1000_suspend, e1000_resume);
181 
182 static struct pci_driver e1000_driver = {
183 	.name     = e1000_driver_name,
184 	.id_table = e1000_pci_tbl,
185 	.probe    = e1000_probe,
186 	.remove   = e1000_remove,
187 	.driver = {
188 		.pm = &e1000_pm_ops,
189 	},
190 	.shutdown = e1000_shutdown,
191 	.err_handler = &e1000_err_handler
192 };
193 
194 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
195 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
196 MODULE_LICENSE("GPL v2");
197 MODULE_VERSION(DRV_VERSION);
198 
199 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
200 static int debug = -1;
201 module_param(debug, int, 0);
202 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
203 
204 /**
205  * e1000_get_hw_dev - return device
206  * used by hardware layer to print debugging information
207  *
208  **/
209 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
210 {
211 	struct e1000_adapter *adapter = hw->back;
212 	return adapter->netdev;
213 }
214 
215 /**
216  * e1000_init_module - Driver Registration Routine
217  *
218  * e1000_init_module is the first routine called when the driver is
219  * loaded. All it does is register with the PCI subsystem.
220  **/
221 static int __init e1000_init_module(void)
222 {
223 	int ret;
224 	pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
225 
226 	pr_info("%s\n", e1000_copyright);
227 
228 	ret = pci_register_driver(&e1000_driver);
229 	if (copybreak != COPYBREAK_DEFAULT) {
230 		if (copybreak == 0)
231 			pr_info("copybreak disabled\n");
232 		else
233 			pr_info("copybreak enabled for "
234 				   "packets <= %u bytes\n", copybreak);
235 	}
236 	return ret;
237 }
238 
239 module_init(e1000_init_module);
240 
241 /**
242  * e1000_exit_module - Driver Exit Cleanup Routine
243  *
244  * e1000_exit_module is called just before the driver is removed
245  * from memory.
246  **/
247 static void __exit e1000_exit_module(void)
248 {
249 	pci_unregister_driver(&e1000_driver);
250 }
251 
252 module_exit(e1000_exit_module);
253 
254 static int e1000_request_irq(struct e1000_adapter *adapter)
255 {
256 	struct net_device *netdev = adapter->netdev;
257 	irq_handler_t handler = e1000_intr;
258 	int irq_flags = IRQF_SHARED;
259 	int err;
260 
261 	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
262 			  netdev);
263 	if (err) {
264 		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
265 	}
266 
267 	return err;
268 }
269 
270 static void e1000_free_irq(struct e1000_adapter *adapter)
271 {
272 	struct net_device *netdev = adapter->netdev;
273 
274 	free_irq(adapter->pdev->irq, netdev);
275 }
276 
277 /**
278  * e1000_irq_disable - Mask off interrupt generation on the NIC
279  * @adapter: board private structure
280  **/
281 static void e1000_irq_disable(struct e1000_adapter *adapter)
282 {
283 	struct e1000_hw *hw = &adapter->hw;
284 
285 	ew32(IMC, ~0);
286 	E1000_WRITE_FLUSH();
287 	synchronize_irq(adapter->pdev->irq);
288 }
289 
290 /**
291  * e1000_irq_enable - Enable default interrupt generation settings
292  * @adapter: board private structure
293  **/
294 static void e1000_irq_enable(struct e1000_adapter *adapter)
295 {
296 	struct e1000_hw *hw = &adapter->hw;
297 
298 	ew32(IMS, IMS_ENABLE_MASK);
299 	E1000_WRITE_FLUSH();
300 }
301 
302 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
303 {
304 	struct e1000_hw *hw = &adapter->hw;
305 	struct net_device *netdev = adapter->netdev;
306 	u16 vid = hw->mng_cookie.vlan_id;
307 	u16 old_vid = adapter->mng_vlan_id;
308 
309 	if (!e1000_vlan_used(adapter))
310 		return;
311 
312 	if (!test_bit(vid, adapter->active_vlans)) {
313 		if (hw->mng_cookie.status &
314 		    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
315 			e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
316 			adapter->mng_vlan_id = vid;
317 		} else {
318 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
319 		}
320 		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
321 		    (vid != old_vid) &&
322 		    !test_bit(old_vid, adapter->active_vlans))
323 			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
324 					       old_vid);
325 	} else {
326 		adapter->mng_vlan_id = vid;
327 	}
328 }
329 
330 static void e1000_init_manageability(struct e1000_adapter *adapter)
331 {
332 	struct e1000_hw *hw = &adapter->hw;
333 
334 	if (adapter->en_mng_pt) {
335 		u32 manc = er32(MANC);
336 
337 		/* disable hardware interception of ARP */
338 		manc &= ~(E1000_MANC_ARP_EN);
339 
340 		ew32(MANC, manc);
341 	}
342 }
343 
344 static void e1000_release_manageability(struct e1000_adapter *adapter)
345 {
346 	struct e1000_hw *hw = &adapter->hw;
347 
348 	if (adapter->en_mng_pt) {
349 		u32 manc = er32(MANC);
350 
351 		/* re-enable hardware interception of ARP */
352 		manc |= E1000_MANC_ARP_EN;
353 
354 		ew32(MANC, manc);
355 	}
356 }
357 
358 /**
359  * e1000_configure - configure the hardware for RX and TX
360  * @adapter = private board structure
361  **/
362 static void e1000_configure(struct e1000_adapter *adapter)
363 {
364 	struct net_device *netdev = adapter->netdev;
365 	int i;
366 
367 	e1000_set_rx_mode(netdev);
368 
369 	e1000_restore_vlan(adapter);
370 	e1000_init_manageability(adapter);
371 
372 	e1000_configure_tx(adapter);
373 	e1000_setup_rctl(adapter);
374 	e1000_configure_rx(adapter);
375 	/* call E1000_DESC_UNUSED which always leaves
376 	 * at least 1 descriptor unused to make sure
377 	 * next_to_use != next_to_clean
378 	 */
379 	for (i = 0; i < adapter->num_rx_queues; i++) {
380 		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
381 		adapter->alloc_rx_buf(adapter, ring,
382 				      E1000_DESC_UNUSED(ring));
383 	}
384 }
385 
386 int e1000_up(struct e1000_adapter *adapter)
387 {
388 	struct e1000_hw *hw = &adapter->hw;
389 
390 	/* hardware has been reset, we need to reload some things */
391 	e1000_configure(adapter);
392 
393 	clear_bit(__E1000_DOWN, &adapter->flags);
394 
395 	napi_enable(&adapter->napi);
396 
397 	e1000_irq_enable(adapter);
398 
399 	netif_wake_queue(adapter->netdev);
400 
401 	/* fire a link change interrupt to start the watchdog */
402 	ew32(ICS, E1000_ICS_LSC);
403 	return 0;
404 }
405 
406 /**
407  * e1000_power_up_phy - restore link in case the phy was powered down
408  * @adapter: address of board private structure
409  *
410  * The phy may be powered down to save power and turn off link when the
411  * driver is unloaded and wake on lan is not enabled (among others)
412  * *** this routine MUST be followed by a call to e1000_reset ***
413  **/
414 void e1000_power_up_phy(struct e1000_adapter *adapter)
415 {
416 	struct e1000_hw *hw = &adapter->hw;
417 	u16 mii_reg = 0;
418 
419 	/* Just clear the power down bit to wake the phy back up */
420 	if (hw->media_type == e1000_media_type_copper) {
421 		/* according to the manual, the phy will retain its
422 		 * settings across a power-down/up cycle
423 		 */
424 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
425 		mii_reg &= ~MII_CR_POWER_DOWN;
426 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
427 	}
428 }
429 
430 static void e1000_power_down_phy(struct e1000_adapter *adapter)
431 {
432 	struct e1000_hw *hw = &adapter->hw;
433 
434 	/* Power down the PHY so no link is implied when interface is down *
435 	 * The PHY cannot be powered down if any of the following is true *
436 	 * (a) WoL is enabled
437 	 * (b) AMT is active
438 	 * (c) SoL/IDER session is active
439 	 */
440 	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
441 	   hw->media_type == e1000_media_type_copper) {
442 		u16 mii_reg = 0;
443 
444 		switch (hw->mac_type) {
445 		case e1000_82540:
446 		case e1000_82545:
447 		case e1000_82545_rev_3:
448 		case e1000_82546:
449 		case e1000_ce4100:
450 		case e1000_82546_rev_3:
451 		case e1000_82541:
452 		case e1000_82541_rev_2:
453 		case e1000_82547:
454 		case e1000_82547_rev_2:
455 			if (er32(MANC) & E1000_MANC_SMBUS_EN)
456 				goto out;
457 			break;
458 		default:
459 			goto out;
460 		}
461 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
462 		mii_reg |= MII_CR_POWER_DOWN;
463 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
464 		msleep(1);
465 	}
466 out:
467 	return;
468 }
469 
470 static void e1000_down_and_stop(struct e1000_adapter *adapter)
471 {
472 	set_bit(__E1000_DOWN, &adapter->flags);
473 
474 	cancel_delayed_work_sync(&adapter->watchdog_task);
475 
476 	/*
477 	 * Since the watchdog task can reschedule other tasks, we should cancel
478 	 * it first, otherwise we can run into the situation when a work is
479 	 * still running after the adapter has been turned down.
480 	 */
481 
482 	cancel_delayed_work_sync(&adapter->phy_info_task);
483 	cancel_delayed_work_sync(&adapter->fifo_stall_task);
484 
485 	/* Only kill reset task if adapter is not resetting */
486 	if (!test_bit(__E1000_RESETTING, &adapter->flags))
487 		cancel_work_sync(&adapter->reset_task);
488 }
489 
490 void e1000_down(struct e1000_adapter *adapter)
491 {
492 	struct e1000_hw *hw = &adapter->hw;
493 	struct net_device *netdev = adapter->netdev;
494 	u32 rctl, tctl;
495 
496 	/* disable receives in the hardware */
497 	rctl = er32(RCTL);
498 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
499 	/* flush and sleep below */
500 
501 	netif_tx_disable(netdev);
502 
503 	/* disable transmits in the hardware */
504 	tctl = er32(TCTL);
505 	tctl &= ~E1000_TCTL_EN;
506 	ew32(TCTL, tctl);
507 	/* flush both disables and wait for them to finish */
508 	E1000_WRITE_FLUSH();
509 	msleep(10);
510 
511 	/* Set the carrier off after transmits have been disabled in the
512 	 * hardware, to avoid race conditions with e1000_watchdog() (which
513 	 * may be running concurrently to us, checking for the carrier
514 	 * bit to decide whether it should enable transmits again). Such
515 	 * a race condition would result into transmission being disabled
516 	 * in the hardware until the next IFF_DOWN+IFF_UP cycle.
517 	 */
518 	netif_carrier_off(netdev);
519 
520 	napi_disable(&adapter->napi);
521 
522 	e1000_irq_disable(adapter);
523 
524 	/* Setting DOWN must be after irq_disable to prevent
525 	 * a screaming interrupt.  Setting DOWN also prevents
526 	 * tasks from rescheduling.
527 	 */
528 	e1000_down_and_stop(adapter);
529 
530 	adapter->link_speed = 0;
531 	adapter->link_duplex = 0;
532 
533 	e1000_reset(adapter);
534 	e1000_clean_all_tx_rings(adapter);
535 	e1000_clean_all_rx_rings(adapter);
536 }
537 
538 void e1000_reinit_locked(struct e1000_adapter *adapter)
539 {
540 	WARN_ON(in_interrupt());
541 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
542 		msleep(1);
543 
544 	/* only run the task if not already down */
545 	if (!test_bit(__E1000_DOWN, &adapter->flags)) {
546 		e1000_down(adapter);
547 		e1000_up(adapter);
548 	}
549 
550 	clear_bit(__E1000_RESETTING, &adapter->flags);
551 }
552 
553 void e1000_reset(struct e1000_adapter *adapter)
554 {
555 	struct e1000_hw *hw = &adapter->hw;
556 	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
557 	bool legacy_pba_adjust = false;
558 	u16 hwm;
559 
560 	/* Repartition Pba for greater than 9k mtu
561 	 * To take effect CTRL.RST is required.
562 	 */
563 
564 	switch (hw->mac_type) {
565 	case e1000_82542_rev2_0:
566 	case e1000_82542_rev2_1:
567 	case e1000_82543:
568 	case e1000_82544:
569 	case e1000_82540:
570 	case e1000_82541:
571 	case e1000_82541_rev_2:
572 		legacy_pba_adjust = true;
573 		pba = E1000_PBA_48K;
574 		break;
575 	case e1000_82545:
576 	case e1000_82545_rev_3:
577 	case e1000_82546:
578 	case e1000_ce4100:
579 	case e1000_82546_rev_3:
580 		pba = E1000_PBA_48K;
581 		break;
582 	case e1000_82547:
583 	case e1000_82547_rev_2:
584 		legacy_pba_adjust = true;
585 		pba = E1000_PBA_30K;
586 		break;
587 	case e1000_undefined:
588 	case e1000_num_macs:
589 		break;
590 	}
591 
592 	if (legacy_pba_adjust) {
593 		if (hw->max_frame_size > E1000_RXBUFFER_8192)
594 			pba -= 8; /* allocate more FIFO for Tx */
595 
596 		if (hw->mac_type == e1000_82547) {
597 			adapter->tx_fifo_head = 0;
598 			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
599 			adapter->tx_fifo_size =
600 				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
601 			atomic_set(&adapter->tx_fifo_stall, 0);
602 		}
603 	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
604 		/* adjust PBA for jumbo frames */
605 		ew32(PBA, pba);
606 
607 		/* To maintain wire speed transmits, the Tx FIFO should be
608 		 * large enough to accommodate two full transmit packets,
609 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
610 		 * the Rx FIFO should be large enough to accommodate at least
611 		 * one full receive packet and is similarly rounded up and
612 		 * expressed in KB.
613 		 */
614 		pba = er32(PBA);
615 		/* upper 16 bits has Tx packet buffer allocation size in KB */
616 		tx_space = pba >> 16;
617 		/* lower 16 bits has Rx packet buffer allocation size in KB */
618 		pba &= 0xffff;
619 		/* the Tx fifo also stores 16 bytes of information about the Tx
620 		 * but don't include ethernet FCS because hardware appends it
621 		 */
622 		min_tx_space = (hw->max_frame_size +
623 				sizeof(struct e1000_tx_desc) -
624 				ETH_FCS_LEN) * 2;
625 		min_tx_space = ALIGN(min_tx_space, 1024);
626 		min_tx_space >>= 10;
627 		/* software strips receive CRC, so leave room for it */
628 		min_rx_space = hw->max_frame_size;
629 		min_rx_space = ALIGN(min_rx_space, 1024);
630 		min_rx_space >>= 10;
631 
632 		/* If current Tx allocation is less than the min Tx FIFO size,
633 		 * and the min Tx FIFO size is less than the current Rx FIFO
634 		 * allocation, take space away from current Rx allocation
635 		 */
636 		if (tx_space < min_tx_space &&
637 		    ((min_tx_space - tx_space) < pba)) {
638 			pba = pba - (min_tx_space - tx_space);
639 
640 			/* PCI/PCIx hardware has PBA alignment constraints */
641 			switch (hw->mac_type) {
642 			case e1000_82545 ... e1000_82546_rev_3:
643 				pba &= ~(E1000_PBA_8K - 1);
644 				break;
645 			default:
646 				break;
647 			}
648 
649 			/* if short on Rx space, Rx wins and must trump Tx
650 			 * adjustment or use Early Receive if available
651 			 */
652 			if (pba < min_rx_space)
653 				pba = min_rx_space;
654 		}
655 	}
656 
657 	ew32(PBA, pba);
658 
659 	/* flow control settings:
660 	 * The high water mark must be low enough to fit one full frame
661 	 * (or the size used for early receive) above it in the Rx FIFO.
662 	 * Set it to the lower of:
663 	 * - 90% of the Rx FIFO size, and
664 	 * - the full Rx FIFO size minus the early receive size (for parts
665 	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
666 	 * - the full Rx FIFO size minus one full frame
667 	 */
668 	hwm = min(((pba << 10) * 9 / 10),
669 		  ((pba << 10) - hw->max_frame_size));
670 
671 	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
672 	hw->fc_low_water = hw->fc_high_water - 8;
673 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
674 	hw->fc_send_xon = 1;
675 	hw->fc = hw->original_fc;
676 
677 	/* Allow time for pending master requests to run */
678 	e1000_reset_hw(hw);
679 	if (hw->mac_type >= e1000_82544)
680 		ew32(WUC, 0);
681 
682 	if (e1000_init_hw(hw))
683 		e_dev_err("Hardware Error\n");
684 	e1000_update_mng_vlan(adapter);
685 
686 	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
687 	if (hw->mac_type >= e1000_82544 &&
688 	    hw->autoneg == 1 &&
689 	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
690 		u32 ctrl = er32(CTRL);
691 		/* clear phy power management bit if we are in gig only mode,
692 		 * which if enabled will attempt negotiation to 100Mb, which
693 		 * can cause a loss of link at power off or driver unload
694 		 */
695 		ctrl &= ~E1000_CTRL_SWDPIN3;
696 		ew32(CTRL, ctrl);
697 	}
698 
699 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
700 	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
701 
702 	e1000_reset_adaptive(hw);
703 	e1000_phy_get_info(hw, &adapter->phy_info);
704 
705 	e1000_release_manageability(adapter);
706 }
707 
708 /* Dump the eeprom for users having checksum issues */
709 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
710 {
711 	struct net_device *netdev = adapter->netdev;
712 	struct ethtool_eeprom eeprom;
713 	const struct ethtool_ops *ops = netdev->ethtool_ops;
714 	u8 *data;
715 	int i;
716 	u16 csum_old, csum_new = 0;
717 
718 	eeprom.len = ops->get_eeprom_len(netdev);
719 	eeprom.offset = 0;
720 
721 	data = kmalloc(eeprom.len, GFP_KERNEL);
722 	if (!data)
723 		return;
724 
725 	ops->get_eeprom(netdev, &eeprom, data);
726 
727 	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
728 		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
729 	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
730 		csum_new += data[i] + (data[i + 1] << 8);
731 	csum_new = EEPROM_SUM - csum_new;
732 
733 	pr_err("/*********************/\n");
734 	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
735 	pr_err("Calculated              : 0x%04x\n", csum_new);
736 
737 	pr_err("Offset    Values\n");
738 	pr_err("========  ======\n");
739 	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
740 
741 	pr_err("Include this output when contacting your support provider.\n");
742 	pr_err("This is not a software error! Something bad happened to\n");
743 	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
744 	pr_err("result in further problems, possibly loss of data,\n");
745 	pr_err("corruption or system hangs!\n");
746 	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
747 	pr_err("which is invalid and requires you to set the proper MAC\n");
748 	pr_err("address manually before continuing to enable this network\n");
749 	pr_err("device. Please inspect the EEPROM dump and report the\n");
750 	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
751 	pr_err("/*********************/\n");
752 
753 	kfree(data);
754 }
755 
756 /**
757  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
758  * @pdev: PCI device information struct
759  *
760  * Return true if an adapter needs ioport resources
761  **/
762 static int e1000_is_need_ioport(struct pci_dev *pdev)
763 {
764 	switch (pdev->device) {
765 	case E1000_DEV_ID_82540EM:
766 	case E1000_DEV_ID_82540EM_LOM:
767 	case E1000_DEV_ID_82540EP:
768 	case E1000_DEV_ID_82540EP_LOM:
769 	case E1000_DEV_ID_82540EP_LP:
770 	case E1000_DEV_ID_82541EI:
771 	case E1000_DEV_ID_82541EI_MOBILE:
772 	case E1000_DEV_ID_82541ER:
773 	case E1000_DEV_ID_82541ER_LOM:
774 	case E1000_DEV_ID_82541GI:
775 	case E1000_DEV_ID_82541GI_LF:
776 	case E1000_DEV_ID_82541GI_MOBILE:
777 	case E1000_DEV_ID_82544EI_COPPER:
778 	case E1000_DEV_ID_82544EI_FIBER:
779 	case E1000_DEV_ID_82544GC_COPPER:
780 	case E1000_DEV_ID_82544GC_LOM:
781 	case E1000_DEV_ID_82545EM_COPPER:
782 	case E1000_DEV_ID_82545EM_FIBER:
783 	case E1000_DEV_ID_82546EB_COPPER:
784 	case E1000_DEV_ID_82546EB_FIBER:
785 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
786 		return true;
787 	default:
788 		return false;
789 	}
790 }
791 
792 static netdev_features_t e1000_fix_features(struct net_device *netdev,
793 	netdev_features_t features)
794 {
795 	/* Since there is no support for separate Rx/Tx vlan accel
796 	 * enable/disable make sure Tx flag is always in same state as Rx.
797 	 */
798 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
799 		features |= NETIF_F_HW_VLAN_CTAG_TX;
800 	else
801 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
802 
803 	return features;
804 }
805 
806 static int e1000_set_features(struct net_device *netdev,
807 	netdev_features_t features)
808 {
809 	struct e1000_adapter *adapter = netdev_priv(netdev);
810 	netdev_features_t changed = features ^ netdev->features;
811 
812 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
813 		e1000_vlan_mode(netdev, features);
814 
815 	if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
816 		return 0;
817 
818 	netdev->features = features;
819 	adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
820 
821 	if (netif_running(netdev))
822 		e1000_reinit_locked(adapter);
823 	else
824 		e1000_reset(adapter);
825 
826 	return 1;
827 }
828 
829 static const struct net_device_ops e1000_netdev_ops = {
830 	.ndo_open		= e1000_open,
831 	.ndo_stop		= e1000_close,
832 	.ndo_start_xmit		= e1000_xmit_frame,
833 	.ndo_set_rx_mode	= e1000_set_rx_mode,
834 	.ndo_set_mac_address	= e1000_set_mac,
835 	.ndo_tx_timeout		= e1000_tx_timeout,
836 	.ndo_change_mtu		= e1000_change_mtu,
837 	.ndo_do_ioctl		= e1000_ioctl,
838 	.ndo_validate_addr	= eth_validate_addr,
839 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
840 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
841 #ifdef CONFIG_NET_POLL_CONTROLLER
842 	.ndo_poll_controller	= e1000_netpoll,
843 #endif
844 	.ndo_fix_features	= e1000_fix_features,
845 	.ndo_set_features	= e1000_set_features,
846 };
847 
848 /**
849  * e1000_init_hw_struct - initialize members of hw struct
850  * @adapter: board private struct
851  * @hw: structure used by e1000_hw.c
852  *
853  * Factors out initialization of the e1000_hw struct to its own function
854  * that can be called very early at init (just after struct allocation).
855  * Fields are initialized based on PCI device information and
856  * OS network device settings (MTU size).
857  * Returns negative error codes if MAC type setup fails.
858  */
859 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
860 				struct e1000_hw *hw)
861 {
862 	struct pci_dev *pdev = adapter->pdev;
863 
864 	/* PCI config space info */
865 	hw->vendor_id = pdev->vendor;
866 	hw->device_id = pdev->device;
867 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
868 	hw->subsystem_id = pdev->subsystem_device;
869 	hw->revision_id = pdev->revision;
870 
871 	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
872 
873 	hw->max_frame_size = adapter->netdev->mtu +
874 			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
875 	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
876 
877 	/* identify the MAC */
878 	if (e1000_set_mac_type(hw)) {
879 		e_err(probe, "Unknown MAC Type\n");
880 		return -EIO;
881 	}
882 
883 	switch (hw->mac_type) {
884 	default:
885 		break;
886 	case e1000_82541:
887 	case e1000_82547:
888 	case e1000_82541_rev_2:
889 	case e1000_82547_rev_2:
890 		hw->phy_init_script = 1;
891 		break;
892 	}
893 
894 	e1000_set_media_type(hw);
895 	e1000_get_bus_info(hw);
896 
897 	hw->wait_autoneg_complete = false;
898 	hw->tbi_compatibility_en = true;
899 	hw->adaptive_ifs = true;
900 
901 	/* Copper options */
902 
903 	if (hw->media_type == e1000_media_type_copper) {
904 		hw->mdix = AUTO_ALL_MODES;
905 		hw->disable_polarity_correction = false;
906 		hw->master_slave = E1000_MASTER_SLAVE;
907 	}
908 
909 	return 0;
910 }
911 
912 /**
913  * e1000_probe - Device Initialization Routine
914  * @pdev: PCI device information struct
915  * @ent: entry in e1000_pci_tbl
916  *
917  * Returns 0 on success, negative on failure
918  *
919  * e1000_probe initializes an adapter identified by a pci_dev structure.
920  * The OS initialization, configuring of the adapter private structure,
921  * and a hardware reset occur.
922  **/
923 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
924 {
925 	struct net_device *netdev;
926 	struct e1000_adapter *adapter = NULL;
927 	struct e1000_hw *hw;
928 
929 	static int cards_found;
930 	static int global_quad_port_a; /* global ksp3 port a indication */
931 	int i, err, pci_using_dac;
932 	u16 eeprom_data = 0;
933 	u16 tmp = 0;
934 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
935 	int bars, need_ioport;
936 	bool disable_dev = false;
937 
938 	/* do not allocate ioport bars when not needed */
939 	need_ioport = e1000_is_need_ioport(pdev);
940 	if (need_ioport) {
941 		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
942 		err = pci_enable_device(pdev);
943 	} else {
944 		bars = pci_select_bars(pdev, IORESOURCE_MEM);
945 		err = pci_enable_device_mem(pdev);
946 	}
947 	if (err)
948 		return err;
949 
950 	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
951 	if (err)
952 		goto err_pci_reg;
953 
954 	pci_set_master(pdev);
955 	err = pci_save_state(pdev);
956 	if (err)
957 		goto err_alloc_etherdev;
958 
959 	err = -ENOMEM;
960 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
961 	if (!netdev)
962 		goto err_alloc_etherdev;
963 
964 	SET_NETDEV_DEV(netdev, &pdev->dev);
965 
966 	pci_set_drvdata(pdev, netdev);
967 	adapter = netdev_priv(netdev);
968 	adapter->netdev = netdev;
969 	adapter->pdev = pdev;
970 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
971 	adapter->bars = bars;
972 	adapter->need_ioport = need_ioport;
973 
974 	hw = &adapter->hw;
975 	hw->back = adapter;
976 
977 	err = -EIO;
978 	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
979 	if (!hw->hw_addr)
980 		goto err_ioremap;
981 
982 	if (adapter->need_ioport) {
983 		for (i = BAR_1; i < PCI_STD_NUM_BARS; i++) {
984 			if (pci_resource_len(pdev, i) == 0)
985 				continue;
986 			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
987 				hw->io_base = pci_resource_start(pdev, i);
988 				break;
989 			}
990 		}
991 	}
992 
993 	/* make ready for any if (hw->...) below */
994 	err = e1000_init_hw_struct(adapter, hw);
995 	if (err)
996 		goto err_sw_init;
997 
998 	/* there is a workaround being applied below that limits
999 	 * 64-bit DMA addresses to 64-bit hardware.  There are some
1000 	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1001 	 */
1002 	pci_using_dac = 0;
1003 	if ((hw->bus_type == e1000_bus_type_pcix) &&
1004 	    !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1005 		pci_using_dac = 1;
1006 	} else {
1007 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1008 		if (err) {
1009 			pr_err("No usable DMA config, aborting\n");
1010 			goto err_dma;
1011 		}
1012 	}
1013 
1014 	netdev->netdev_ops = &e1000_netdev_ops;
1015 	e1000_set_ethtool_ops(netdev);
1016 	netdev->watchdog_timeo = 5 * HZ;
1017 	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1018 
1019 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1020 
1021 	adapter->bd_number = cards_found;
1022 
1023 	/* setup the private structure */
1024 
1025 	err = e1000_sw_init(adapter);
1026 	if (err)
1027 		goto err_sw_init;
1028 
1029 	err = -EIO;
1030 	if (hw->mac_type == e1000_ce4100) {
1031 		hw->ce4100_gbe_mdio_base_virt =
1032 					ioremap(pci_resource_start(pdev, BAR_1),
1033 						pci_resource_len(pdev, BAR_1));
1034 
1035 		if (!hw->ce4100_gbe_mdio_base_virt)
1036 			goto err_mdio_ioremap;
1037 	}
1038 
1039 	if (hw->mac_type >= e1000_82543) {
1040 		netdev->hw_features = NETIF_F_SG |
1041 				   NETIF_F_HW_CSUM |
1042 				   NETIF_F_HW_VLAN_CTAG_RX;
1043 		netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1044 				   NETIF_F_HW_VLAN_CTAG_FILTER;
1045 	}
1046 
1047 	if ((hw->mac_type >= e1000_82544) &&
1048 	   (hw->mac_type != e1000_82547))
1049 		netdev->hw_features |= NETIF_F_TSO;
1050 
1051 	netdev->priv_flags |= IFF_SUPP_NOFCS;
1052 
1053 	netdev->features |= netdev->hw_features;
1054 	netdev->hw_features |= (NETIF_F_RXCSUM |
1055 				NETIF_F_RXALL |
1056 				NETIF_F_RXFCS);
1057 
1058 	if (pci_using_dac) {
1059 		netdev->features |= NETIF_F_HIGHDMA;
1060 		netdev->vlan_features |= NETIF_F_HIGHDMA;
1061 	}
1062 
1063 	netdev->vlan_features |= (NETIF_F_TSO |
1064 				  NETIF_F_HW_CSUM |
1065 				  NETIF_F_SG);
1066 
1067 	/* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1068 	if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1069 	    hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1070 		netdev->priv_flags |= IFF_UNICAST_FLT;
1071 
1072 	/* MTU range: 46 - 16110 */
1073 	netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1074 	netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1075 
1076 	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1077 
1078 	/* initialize eeprom parameters */
1079 	if (e1000_init_eeprom_params(hw)) {
1080 		e_err(probe, "EEPROM initialization failed\n");
1081 		goto err_eeprom;
1082 	}
1083 
1084 	/* before reading the EEPROM, reset the controller to
1085 	 * put the device in a known good starting state
1086 	 */
1087 
1088 	e1000_reset_hw(hw);
1089 
1090 	/* make sure the EEPROM is good */
1091 	if (e1000_validate_eeprom_checksum(hw) < 0) {
1092 		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1093 		e1000_dump_eeprom(adapter);
1094 		/* set MAC address to all zeroes to invalidate and temporary
1095 		 * disable this device for the user. This blocks regular
1096 		 * traffic while still permitting ethtool ioctls from reaching
1097 		 * the hardware as well as allowing the user to run the
1098 		 * interface after manually setting a hw addr using
1099 		 * `ip set address`
1100 		 */
1101 		memset(hw->mac_addr, 0, netdev->addr_len);
1102 	} else {
1103 		/* copy the MAC address out of the EEPROM */
1104 		if (e1000_read_mac_addr(hw))
1105 			e_err(probe, "EEPROM Read Error\n");
1106 	}
1107 	/* don't block initialization here due to bad MAC address */
1108 	memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1109 
1110 	if (!is_valid_ether_addr(netdev->dev_addr))
1111 		e_err(probe, "Invalid MAC Address\n");
1112 
1113 
1114 	INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1115 	INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1116 			  e1000_82547_tx_fifo_stall_task);
1117 	INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1118 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
1119 
1120 	e1000_check_options(adapter);
1121 
1122 	/* Initial Wake on LAN setting
1123 	 * If APM wake is enabled in the EEPROM,
1124 	 * enable the ACPI Magic Packet filter
1125 	 */
1126 
1127 	switch (hw->mac_type) {
1128 	case e1000_82542_rev2_0:
1129 	case e1000_82542_rev2_1:
1130 	case e1000_82543:
1131 		break;
1132 	case e1000_82544:
1133 		e1000_read_eeprom(hw,
1134 			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1135 		eeprom_apme_mask = E1000_EEPROM_82544_APM;
1136 		break;
1137 	case e1000_82546:
1138 	case e1000_82546_rev_3:
1139 		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1140 			e1000_read_eeprom(hw,
1141 				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1142 			break;
1143 		}
1144 		/* Fall Through */
1145 	default:
1146 		e1000_read_eeprom(hw,
1147 			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1148 		break;
1149 	}
1150 	if (eeprom_data & eeprom_apme_mask)
1151 		adapter->eeprom_wol |= E1000_WUFC_MAG;
1152 
1153 	/* now that we have the eeprom settings, apply the special cases
1154 	 * where the eeprom may be wrong or the board simply won't support
1155 	 * wake on lan on a particular port
1156 	 */
1157 	switch (pdev->device) {
1158 	case E1000_DEV_ID_82546GB_PCIE:
1159 		adapter->eeprom_wol = 0;
1160 		break;
1161 	case E1000_DEV_ID_82546EB_FIBER:
1162 	case E1000_DEV_ID_82546GB_FIBER:
1163 		/* Wake events only supported on port A for dual fiber
1164 		 * regardless of eeprom setting
1165 		 */
1166 		if (er32(STATUS) & E1000_STATUS_FUNC_1)
1167 			adapter->eeprom_wol = 0;
1168 		break;
1169 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1170 		/* if quad port adapter, disable WoL on all but port A */
1171 		if (global_quad_port_a != 0)
1172 			adapter->eeprom_wol = 0;
1173 		else
1174 			adapter->quad_port_a = true;
1175 		/* Reset for multiple quad port adapters */
1176 		if (++global_quad_port_a == 4)
1177 			global_quad_port_a = 0;
1178 		break;
1179 	}
1180 
1181 	/* initialize the wol settings based on the eeprom settings */
1182 	adapter->wol = adapter->eeprom_wol;
1183 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1184 
1185 	/* Auto detect PHY address */
1186 	if (hw->mac_type == e1000_ce4100) {
1187 		for (i = 0; i < 32; i++) {
1188 			hw->phy_addr = i;
1189 			e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1190 
1191 			if (tmp != 0 && tmp != 0xFF)
1192 				break;
1193 		}
1194 
1195 		if (i >= 32)
1196 			goto err_eeprom;
1197 	}
1198 
1199 	/* reset the hardware with the new settings */
1200 	e1000_reset(adapter);
1201 
1202 	strcpy(netdev->name, "eth%d");
1203 	err = register_netdev(netdev);
1204 	if (err)
1205 		goto err_register;
1206 
1207 	e1000_vlan_filter_on_off(adapter, false);
1208 
1209 	/* print bus type/speed/width info */
1210 	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1211 	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1212 	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1213 		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
1214 		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
1215 		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1216 	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1217 	       netdev->dev_addr);
1218 
1219 	/* carrier off reporting is important to ethtool even BEFORE open */
1220 	netif_carrier_off(netdev);
1221 
1222 	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1223 
1224 	cards_found++;
1225 	return 0;
1226 
1227 err_register:
1228 err_eeprom:
1229 	e1000_phy_hw_reset(hw);
1230 
1231 	if (hw->flash_address)
1232 		iounmap(hw->flash_address);
1233 	kfree(adapter->tx_ring);
1234 	kfree(adapter->rx_ring);
1235 err_dma:
1236 err_sw_init:
1237 err_mdio_ioremap:
1238 	iounmap(hw->ce4100_gbe_mdio_base_virt);
1239 	iounmap(hw->hw_addr);
1240 err_ioremap:
1241 	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1242 	free_netdev(netdev);
1243 err_alloc_etherdev:
1244 	pci_release_selected_regions(pdev, bars);
1245 err_pci_reg:
1246 	if (!adapter || disable_dev)
1247 		pci_disable_device(pdev);
1248 	return err;
1249 }
1250 
1251 /**
1252  * e1000_remove - Device Removal Routine
1253  * @pdev: PCI device information struct
1254  *
1255  * e1000_remove is called by the PCI subsystem to alert the driver
1256  * that it should release a PCI device. That could be caused by a
1257  * Hot-Plug event, or because the driver is going to be removed from
1258  * memory.
1259  **/
1260 static void e1000_remove(struct pci_dev *pdev)
1261 {
1262 	struct net_device *netdev = pci_get_drvdata(pdev);
1263 	struct e1000_adapter *adapter = netdev_priv(netdev);
1264 	struct e1000_hw *hw = &adapter->hw;
1265 	bool disable_dev;
1266 
1267 	e1000_down_and_stop(adapter);
1268 	e1000_release_manageability(adapter);
1269 
1270 	unregister_netdev(netdev);
1271 
1272 	e1000_phy_hw_reset(hw);
1273 
1274 	kfree(adapter->tx_ring);
1275 	kfree(adapter->rx_ring);
1276 
1277 	if (hw->mac_type == e1000_ce4100)
1278 		iounmap(hw->ce4100_gbe_mdio_base_virt);
1279 	iounmap(hw->hw_addr);
1280 	if (hw->flash_address)
1281 		iounmap(hw->flash_address);
1282 	pci_release_selected_regions(pdev, adapter->bars);
1283 
1284 	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1285 	free_netdev(netdev);
1286 
1287 	if (disable_dev)
1288 		pci_disable_device(pdev);
1289 }
1290 
1291 /**
1292  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1293  * @adapter: board private structure to initialize
1294  *
1295  * e1000_sw_init initializes the Adapter private data structure.
1296  * e1000_init_hw_struct MUST be called before this function
1297  **/
1298 static int e1000_sw_init(struct e1000_adapter *adapter)
1299 {
1300 	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1301 
1302 	adapter->num_tx_queues = 1;
1303 	adapter->num_rx_queues = 1;
1304 
1305 	if (e1000_alloc_queues(adapter)) {
1306 		e_err(probe, "Unable to allocate memory for queues\n");
1307 		return -ENOMEM;
1308 	}
1309 
1310 	/* Explicitly disable IRQ since the NIC can be in any state. */
1311 	e1000_irq_disable(adapter);
1312 
1313 	spin_lock_init(&adapter->stats_lock);
1314 
1315 	set_bit(__E1000_DOWN, &adapter->flags);
1316 
1317 	return 0;
1318 }
1319 
1320 /**
1321  * e1000_alloc_queues - Allocate memory for all rings
1322  * @adapter: board private structure to initialize
1323  *
1324  * We allocate one ring per queue at run-time since we don't know the
1325  * number of queues at compile-time.
1326  **/
1327 static int e1000_alloc_queues(struct e1000_adapter *adapter)
1328 {
1329 	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1330 				   sizeof(struct e1000_tx_ring), GFP_KERNEL);
1331 	if (!adapter->tx_ring)
1332 		return -ENOMEM;
1333 
1334 	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1335 				   sizeof(struct e1000_rx_ring), GFP_KERNEL);
1336 	if (!adapter->rx_ring) {
1337 		kfree(adapter->tx_ring);
1338 		return -ENOMEM;
1339 	}
1340 
1341 	return E1000_SUCCESS;
1342 }
1343 
1344 /**
1345  * e1000_open - Called when a network interface is made active
1346  * @netdev: network interface device structure
1347  *
1348  * Returns 0 on success, negative value on failure
1349  *
1350  * The open entry point is called when a network interface is made
1351  * active by the system (IFF_UP).  At this point all resources needed
1352  * for transmit and receive operations are allocated, the interrupt
1353  * handler is registered with the OS, the watchdog task is started,
1354  * and the stack is notified that the interface is ready.
1355  **/
1356 int e1000_open(struct net_device *netdev)
1357 {
1358 	struct e1000_adapter *adapter = netdev_priv(netdev);
1359 	struct e1000_hw *hw = &adapter->hw;
1360 	int err;
1361 
1362 	/* disallow open during test */
1363 	if (test_bit(__E1000_TESTING, &adapter->flags))
1364 		return -EBUSY;
1365 
1366 	netif_carrier_off(netdev);
1367 
1368 	/* allocate transmit descriptors */
1369 	err = e1000_setup_all_tx_resources(adapter);
1370 	if (err)
1371 		goto err_setup_tx;
1372 
1373 	/* allocate receive descriptors */
1374 	err = e1000_setup_all_rx_resources(adapter);
1375 	if (err)
1376 		goto err_setup_rx;
1377 
1378 	e1000_power_up_phy(adapter);
1379 
1380 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1381 	if ((hw->mng_cookie.status &
1382 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1383 		e1000_update_mng_vlan(adapter);
1384 	}
1385 
1386 	/* before we allocate an interrupt, we must be ready to handle it.
1387 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1388 	 * as soon as we call pci_request_irq, so we have to setup our
1389 	 * clean_rx handler before we do so.
1390 	 */
1391 	e1000_configure(adapter);
1392 
1393 	err = e1000_request_irq(adapter);
1394 	if (err)
1395 		goto err_req_irq;
1396 
1397 	/* From here on the code is the same as e1000_up() */
1398 	clear_bit(__E1000_DOWN, &adapter->flags);
1399 
1400 	napi_enable(&adapter->napi);
1401 
1402 	e1000_irq_enable(adapter);
1403 
1404 	netif_start_queue(netdev);
1405 
1406 	/* fire a link status change interrupt to start the watchdog */
1407 	ew32(ICS, E1000_ICS_LSC);
1408 
1409 	return E1000_SUCCESS;
1410 
1411 err_req_irq:
1412 	e1000_power_down_phy(adapter);
1413 	e1000_free_all_rx_resources(adapter);
1414 err_setup_rx:
1415 	e1000_free_all_tx_resources(adapter);
1416 err_setup_tx:
1417 	e1000_reset(adapter);
1418 
1419 	return err;
1420 }
1421 
1422 /**
1423  * e1000_close - Disables a network interface
1424  * @netdev: network interface device structure
1425  *
1426  * Returns 0, this is not allowed to fail
1427  *
1428  * The close entry point is called when an interface is de-activated
1429  * by the OS.  The hardware is still under the drivers control, but
1430  * needs to be disabled.  A global MAC reset is issued to stop the
1431  * hardware, and all transmit and receive resources are freed.
1432  **/
1433 int e1000_close(struct net_device *netdev)
1434 {
1435 	struct e1000_adapter *adapter = netdev_priv(netdev);
1436 	struct e1000_hw *hw = &adapter->hw;
1437 	int count = E1000_CHECK_RESET_COUNT;
1438 
1439 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags) && count--)
1440 		usleep_range(10000, 20000);
1441 
1442 	WARN_ON(count < 0);
1443 
1444 	/* signal that we're down so that the reset task will no longer run */
1445 	set_bit(__E1000_DOWN, &adapter->flags);
1446 	clear_bit(__E1000_RESETTING, &adapter->flags);
1447 
1448 	e1000_down(adapter);
1449 	e1000_power_down_phy(adapter);
1450 	e1000_free_irq(adapter);
1451 
1452 	e1000_free_all_tx_resources(adapter);
1453 	e1000_free_all_rx_resources(adapter);
1454 
1455 	/* kill manageability vlan ID if supported, but not if a vlan with
1456 	 * the same ID is registered on the host OS (let 8021q kill it)
1457 	 */
1458 	if ((hw->mng_cookie.status &
1459 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1460 	    !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1461 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1462 				       adapter->mng_vlan_id);
1463 	}
1464 
1465 	return 0;
1466 }
1467 
1468 /**
1469  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1470  * @adapter: address of board private structure
1471  * @start: address of beginning of memory
1472  * @len: length of memory
1473  **/
1474 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1475 				  unsigned long len)
1476 {
1477 	struct e1000_hw *hw = &adapter->hw;
1478 	unsigned long begin = (unsigned long)start;
1479 	unsigned long end = begin + len;
1480 
1481 	/* First rev 82545 and 82546 need to not allow any memory
1482 	 * write location to cross 64k boundary due to errata 23
1483 	 */
1484 	if (hw->mac_type == e1000_82545 ||
1485 	    hw->mac_type == e1000_ce4100 ||
1486 	    hw->mac_type == e1000_82546) {
1487 		return ((begin ^ (end - 1)) >> 16) == 0;
1488 	}
1489 
1490 	return true;
1491 }
1492 
1493 /**
1494  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1495  * @adapter: board private structure
1496  * @txdr:    tx descriptor ring (for a specific queue) to setup
1497  *
1498  * Return 0 on success, negative on failure
1499  **/
1500 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1501 				    struct e1000_tx_ring *txdr)
1502 {
1503 	struct pci_dev *pdev = adapter->pdev;
1504 	int size;
1505 
1506 	size = sizeof(struct e1000_tx_buffer) * txdr->count;
1507 	txdr->buffer_info = vzalloc(size);
1508 	if (!txdr->buffer_info)
1509 		return -ENOMEM;
1510 
1511 	/* round up to nearest 4K */
1512 
1513 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1514 	txdr->size = ALIGN(txdr->size, 4096);
1515 
1516 	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1517 					GFP_KERNEL);
1518 	if (!txdr->desc) {
1519 setup_tx_desc_die:
1520 		vfree(txdr->buffer_info);
1521 		return -ENOMEM;
1522 	}
1523 
1524 	/* Fix for errata 23, can't cross 64kB boundary */
1525 	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1526 		void *olddesc = txdr->desc;
1527 		dma_addr_t olddma = txdr->dma;
1528 		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1529 		      txdr->size, txdr->desc);
1530 		/* Try again, without freeing the previous */
1531 		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1532 						&txdr->dma, GFP_KERNEL);
1533 		/* Failed allocation, critical failure */
1534 		if (!txdr->desc) {
1535 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1536 					  olddma);
1537 			goto setup_tx_desc_die;
1538 		}
1539 
1540 		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1541 			/* give up */
1542 			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1543 					  txdr->dma);
1544 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1545 					  olddma);
1546 			e_err(probe, "Unable to allocate aligned memory "
1547 			      "for the transmit descriptor ring\n");
1548 			vfree(txdr->buffer_info);
1549 			return -ENOMEM;
1550 		} else {
1551 			/* Free old allocation, new allocation was successful */
1552 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1553 					  olddma);
1554 		}
1555 	}
1556 	memset(txdr->desc, 0, txdr->size);
1557 
1558 	txdr->next_to_use = 0;
1559 	txdr->next_to_clean = 0;
1560 
1561 	return 0;
1562 }
1563 
1564 /**
1565  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1566  * 				  (Descriptors) for all queues
1567  * @adapter: board private structure
1568  *
1569  * Return 0 on success, negative on failure
1570  **/
1571 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1572 {
1573 	int i, err = 0;
1574 
1575 	for (i = 0; i < adapter->num_tx_queues; i++) {
1576 		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1577 		if (err) {
1578 			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1579 			for (i-- ; i >= 0; i--)
1580 				e1000_free_tx_resources(adapter,
1581 							&adapter->tx_ring[i]);
1582 			break;
1583 		}
1584 	}
1585 
1586 	return err;
1587 }
1588 
1589 /**
1590  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1591  * @adapter: board private structure
1592  *
1593  * Configure the Tx unit of the MAC after a reset.
1594  **/
1595 static void e1000_configure_tx(struct e1000_adapter *adapter)
1596 {
1597 	u64 tdba;
1598 	struct e1000_hw *hw = &adapter->hw;
1599 	u32 tdlen, tctl, tipg;
1600 	u32 ipgr1, ipgr2;
1601 
1602 	/* Setup the HW Tx Head and Tail descriptor pointers */
1603 
1604 	switch (adapter->num_tx_queues) {
1605 	case 1:
1606 	default:
1607 		tdba = adapter->tx_ring[0].dma;
1608 		tdlen = adapter->tx_ring[0].count *
1609 			sizeof(struct e1000_tx_desc);
1610 		ew32(TDLEN, tdlen);
1611 		ew32(TDBAH, (tdba >> 32));
1612 		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1613 		ew32(TDT, 0);
1614 		ew32(TDH, 0);
1615 		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1616 					   E1000_TDH : E1000_82542_TDH);
1617 		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1618 					   E1000_TDT : E1000_82542_TDT);
1619 		break;
1620 	}
1621 
1622 	/* Set the default values for the Tx Inter Packet Gap timer */
1623 	if ((hw->media_type == e1000_media_type_fiber ||
1624 	     hw->media_type == e1000_media_type_internal_serdes))
1625 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1626 	else
1627 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1628 
1629 	switch (hw->mac_type) {
1630 	case e1000_82542_rev2_0:
1631 	case e1000_82542_rev2_1:
1632 		tipg = DEFAULT_82542_TIPG_IPGT;
1633 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1634 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1635 		break;
1636 	default:
1637 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1638 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1639 		break;
1640 	}
1641 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1642 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1643 	ew32(TIPG, tipg);
1644 
1645 	/* Set the Tx Interrupt Delay register */
1646 
1647 	ew32(TIDV, adapter->tx_int_delay);
1648 	if (hw->mac_type >= e1000_82540)
1649 		ew32(TADV, adapter->tx_abs_int_delay);
1650 
1651 	/* Program the Transmit Control Register */
1652 
1653 	tctl = er32(TCTL);
1654 	tctl &= ~E1000_TCTL_CT;
1655 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1656 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1657 
1658 	e1000_config_collision_dist(hw);
1659 
1660 	/* Setup Transmit Descriptor Settings for eop descriptor */
1661 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1662 
1663 	/* only set IDE if we are delaying interrupts using the timers */
1664 	if (adapter->tx_int_delay)
1665 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1666 
1667 	if (hw->mac_type < e1000_82543)
1668 		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1669 	else
1670 		adapter->txd_cmd |= E1000_TXD_CMD_RS;
1671 
1672 	/* Cache if we're 82544 running in PCI-X because we'll
1673 	 * need this to apply a workaround later in the send path.
1674 	 */
1675 	if (hw->mac_type == e1000_82544 &&
1676 	    hw->bus_type == e1000_bus_type_pcix)
1677 		adapter->pcix_82544 = true;
1678 
1679 	ew32(TCTL, tctl);
1680 
1681 }
1682 
1683 /**
1684  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1685  * @adapter: board private structure
1686  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1687  *
1688  * Returns 0 on success, negative on failure
1689  **/
1690 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1691 				    struct e1000_rx_ring *rxdr)
1692 {
1693 	struct pci_dev *pdev = adapter->pdev;
1694 	int size, desc_len;
1695 
1696 	size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1697 	rxdr->buffer_info = vzalloc(size);
1698 	if (!rxdr->buffer_info)
1699 		return -ENOMEM;
1700 
1701 	desc_len = sizeof(struct e1000_rx_desc);
1702 
1703 	/* Round up to nearest 4K */
1704 
1705 	rxdr->size = rxdr->count * desc_len;
1706 	rxdr->size = ALIGN(rxdr->size, 4096);
1707 
1708 	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1709 					GFP_KERNEL);
1710 	if (!rxdr->desc) {
1711 setup_rx_desc_die:
1712 		vfree(rxdr->buffer_info);
1713 		return -ENOMEM;
1714 	}
1715 
1716 	/* Fix for errata 23, can't cross 64kB boundary */
1717 	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1718 		void *olddesc = rxdr->desc;
1719 		dma_addr_t olddma = rxdr->dma;
1720 		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1721 		      rxdr->size, rxdr->desc);
1722 		/* Try again, without freeing the previous */
1723 		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1724 						&rxdr->dma, GFP_KERNEL);
1725 		/* Failed allocation, critical failure */
1726 		if (!rxdr->desc) {
1727 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1728 					  olddma);
1729 			goto setup_rx_desc_die;
1730 		}
1731 
1732 		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1733 			/* give up */
1734 			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1735 					  rxdr->dma);
1736 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1737 					  olddma);
1738 			e_err(probe, "Unable to allocate aligned memory for "
1739 			      "the Rx descriptor ring\n");
1740 			goto setup_rx_desc_die;
1741 		} else {
1742 			/* Free old allocation, new allocation was successful */
1743 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1744 					  olddma);
1745 		}
1746 	}
1747 	memset(rxdr->desc, 0, rxdr->size);
1748 
1749 	rxdr->next_to_clean = 0;
1750 	rxdr->next_to_use = 0;
1751 	rxdr->rx_skb_top = NULL;
1752 
1753 	return 0;
1754 }
1755 
1756 /**
1757  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1758  * 				  (Descriptors) for all queues
1759  * @adapter: board private structure
1760  *
1761  * Return 0 on success, negative on failure
1762  **/
1763 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1764 {
1765 	int i, err = 0;
1766 
1767 	for (i = 0; i < adapter->num_rx_queues; i++) {
1768 		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1769 		if (err) {
1770 			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1771 			for (i-- ; i >= 0; i--)
1772 				e1000_free_rx_resources(adapter,
1773 							&adapter->rx_ring[i]);
1774 			break;
1775 		}
1776 	}
1777 
1778 	return err;
1779 }
1780 
1781 /**
1782  * e1000_setup_rctl - configure the receive control registers
1783  * @adapter: Board private structure
1784  **/
1785 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1786 {
1787 	struct e1000_hw *hw = &adapter->hw;
1788 	u32 rctl;
1789 
1790 	rctl = er32(RCTL);
1791 
1792 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1793 
1794 	rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1795 		E1000_RCTL_RDMTS_HALF |
1796 		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1797 
1798 	if (hw->tbi_compatibility_on == 1)
1799 		rctl |= E1000_RCTL_SBP;
1800 	else
1801 		rctl &= ~E1000_RCTL_SBP;
1802 
1803 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
1804 		rctl &= ~E1000_RCTL_LPE;
1805 	else
1806 		rctl |= E1000_RCTL_LPE;
1807 
1808 	/* Setup buffer sizes */
1809 	rctl &= ~E1000_RCTL_SZ_4096;
1810 	rctl |= E1000_RCTL_BSEX;
1811 	switch (adapter->rx_buffer_len) {
1812 	case E1000_RXBUFFER_2048:
1813 	default:
1814 		rctl |= E1000_RCTL_SZ_2048;
1815 		rctl &= ~E1000_RCTL_BSEX;
1816 		break;
1817 	case E1000_RXBUFFER_4096:
1818 		rctl |= E1000_RCTL_SZ_4096;
1819 		break;
1820 	case E1000_RXBUFFER_8192:
1821 		rctl |= E1000_RCTL_SZ_8192;
1822 		break;
1823 	case E1000_RXBUFFER_16384:
1824 		rctl |= E1000_RCTL_SZ_16384;
1825 		break;
1826 	}
1827 
1828 	/* This is useful for sniffing bad packets. */
1829 	if (adapter->netdev->features & NETIF_F_RXALL) {
1830 		/* UPE and MPE will be handled by normal PROMISC logic
1831 		 * in e1000e_set_rx_mode
1832 		 */
1833 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1834 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1835 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1836 
1837 		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1838 			  E1000_RCTL_DPF | /* Allow filtered pause */
1839 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1840 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1841 		 * and that breaks VLANs.
1842 		 */
1843 	}
1844 
1845 	ew32(RCTL, rctl);
1846 }
1847 
1848 /**
1849  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1850  * @adapter: board private structure
1851  *
1852  * Configure the Rx unit of the MAC after a reset.
1853  **/
1854 static void e1000_configure_rx(struct e1000_adapter *adapter)
1855 {
1856 	u64 rdba;
1857 	struct e1000_hw *hw = &adapter->hw;
1858 	u32 rdlen, rctl, rxcsum;
1859 
1860 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
1861 		rdlen = adapter->rx_ring[0].count *
1862 			sizeof(struct e1000_rx_desc);
1863 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1864 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1865 	} else {
1866 		rdlen = adapter->rx_ring[0].count *
1867 			sizeof(struct e1000_rx_desc);
1868 		adapter->clean_rx = e1000_clean_rx_irq;
1869 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1870 	}
1871 
1872 	/* disable receives while setting up the descriptors */
1873 	rctl = er32(RCTL);
1874 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1875 
1876 	/* set the Receive Delay Timer Register */
1877 	ew32(RDTR, adapter->rx_int_delay);
1878 
1879 	if (hw->mac_type >= e1000_82540) {
1880 		ew32(RADV, adapter->rx_abs_int_delay);
1881 		if (adapter->itr_setting != 0)
1882 			ew32(ITR, 1000000000 / (adapter->itr * 256));
1883 	}
1884 
1885 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1886 	 * the Base and Length of the Rx Descriptor Ring
1887 	 */
1888 	switch (adapter->num_rx_queues) {
1889 	case 1:
1890 	default:
1891 		rdba = adapter->rx_ring[0].dma;
1892 		ew32(RDLEN, rdlen);
1893 		ew32(RDBAH, (rdba >> 32));
1894 		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1895 		ew32(RDT, 0);
1896 		ew32(RDH, 0);
1897 		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1898 					   E1000_RDH : E1000_82542_RDH);
1899 		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1900 					   E1000_RDT : E1000_82542_RDT);
1901 		break;
1902 	}
1903 
1904 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
1905 	if (hw->mac_type >= e1000_82543) {
1906 		rxcsum = er32(RXCSUM);
1907 		if (adapter->rx_csum)
1908 			rxcsum |= E1000_RXCSUM_TUOFL;
1909 		else
1910 			/* don't need to clear IPPCSE as it defaults to 0 */
1911 			rxcsum &= ~E1000_RXCSUM_TUOFL;
1912 		ew32(RXCSUM, rxcsum);
1913 	}
1914 
1915 	/* Enable Receives */
1916 	ew32(RCTL, rctl | E1000_RCTL_EN);
1917 }
1918 
1919 /**
1920  * e1000_free_tx_resources - Free Tx Resources per Queue
1921  * @adapter: board private structure
1922  * @tx_ring: Tx descriptor ring for a specific queue
1923  *
1924  * Free all transmit software resources
1925  **/
1926 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1927 				    struct e1000_tx_ring *tx_ring)
1928 {
1929 	struct pci_dev *pdev = adapter->pdev;
1930 
1931 	e1000_clean_tx_ring(adapter, tx_ring);
1932 
1933 	vfree(tx_ring->buffer_info);
1934 	tx_ring->buffer_info = NULL;
1935 
1936 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1937 			  tx_ring->dma);
1938 
1939 	tx_ring->desc = NULL;
1940 }
1941 
1942 /**
1943  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1944  * @adapter: board private structure
1945  *
1946  * Free all transmit software resources
1947  **/
1948 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1949 {
1950 	int i;
1951 
1952 	for (i = 0; i < adapter->num_tx_queues; i++)
1953 		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1954 }
1955 
1956 static void
1957 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1958 				 struct e1000_tx_buffer *buffer_info)
1959 {
1960 	if (buffer_info->dma) {
1961 		if (buffer_info->mapped_as_page)
1962 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1963 				       buffer_info->length, DMA_TO_DEVICE);
1964 		else
1965 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1966 					 buffer_info->length,
1967 					 DMA_TO_DEVICE);
1968 		buffer_info->dma = 0;
1969 	}
1970 	if (buffer_info->skb) {
1971 		dev_kfree_skb_any(buffer_info->skb);
1972 		buffer_info->skb = NULL;
1973 	}
1974 	buffer_info->time_stamp = 0;
1975 	/* buffer_info must be completely set up in the transmit path */
1976 }
1977 
1978 /**
1979  * e1000_clean_tx_ring - Free Tx Buffers
1980  * @adapter: board private structure
1981  * @tx_ring: ring to be cleaned
1982  **/
1983 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1984 				struct e1000_tx_ring *tx_ring)
1985 {
1986 	struct e1000_hw *hw = &adapter->hw;
1987 	struct e1000_tx_buffer *buffer_info;
1988 	unsigned long size;
1989 	unsigned int i;
1990 
1991 	/* Free all the Tx ring sk_buffs */
1992 
1993 	for (i = 0; i < tx_ring->count; i++) {
1994 		buffer_info = &tx_ring->buffer_info[i];
1995 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1996 	}
1997 
1998 	netdev_reset_queue(adapter->netdev);
1999 	size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
2000 	memset(tx_ring->buffer_info, 0, size);
2001 
2002 	/* Zero out the descriptor ring */
2003 
2004 	memset(tx_ring->desc, 0, tx_ring->size);
2005 
2006 	tx_ring->next_to_use = 0;
2007 	tx_ring->next_to_clean = 0;
2008 	tx_ring->last_tx_tso = false;
2009 
2010 	writel(0, hw->hw_addr + tx_ring->tdh);
2011 	writel(0, hw->hw_addr + tx_ring->tdt);
2012 }
2013 
2014 /**
2015  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2016  * @adapter: board private structure
2017  **/
2018 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2019 {
2020 	int i;
2021 
2022 	for (i = 0; i < adapter->num_tx_queues; i++)
2023 		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2024 }
2025 
2026 /**
2027  * e1000_free_rx_resources - Free Rx Resources
2028  * @adapter: board private structure
2029  * @rx_ring: ring to clean the resources from
2030  *
2031  * Free all receive software resources
2032  **/
2033 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2034 				    struct e1000_rx_ring *rx_ring)
2035 {
2036 	struct pci_dev *pdev = adapter->pdev;
2037 
2038 	e1000_clean_rx_ring(adapter, rx_ring);
2039 
2040 	vfree(rx_ring->buffer_info);
2041 	rx_ring->buffer_info = NULL;
2042 
2043 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2044 			  rx_ring->dma);
2045 
2046 	rx_ring->desc = NULL;
2047 }
2048 
2049 /**
2050  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2051  * @adapter: board private structure
2052  *
2053  * Free all receive software resources
2054  **/
2055 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2056 {
2057 	int i;
2058 
2059 	for (i = 0; i < adapter->num_rx_queues; i++)
2060 		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2061 }
2062 
2063 #define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2064 static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2065 {
2066 	return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2067 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2068 }
2069 
2070 static void *e1000_alloc_frag(const struct e1000_adapter *a)
2071 {
2072 	unsigned int len = e1000_frag_len(a);
2073 	u8 *data = netdev_alloc_frag(len);
2074 
2075 	if (likely(data))
2076 		data += E1000_HEADROOM;
2077 	return data;
2078 }
2079 
2080 /**
2081  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2082  * @adapter: board private structure
2083  * @rx_ring: ring to free buffers from
2084  **/
2085 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2086 				struct e1000_rx_ring *rx_ring)
2087 {
2088 	struct e1000_hw *hw = &adapter->hw;
2089 	struct e1000_rx_buffer *buffer_info;
2090 	struct pci_dev *pdev = adapter->pdev;
2091 	unsigned long size;
2092 	unsigned int i;
2093 
2094 	/* Free all the Rx netfrags */
2095 	for (i = 0; i < rx_ring->count; i++) {
2096 		buffer_info = &rx_ring->buffer_info[i];
2097 		if (adapter->clean_rx == e1000_clean_rx_irq) {
2098 			if (buffer_info->dma)
2099 				dma_unmap_single(&pdev->dev, buffer_info->dma,
2100 						 adapter->rx_buffer_len,
2101 						 DMA_FROM_DEVICE);
2102 			if (buffer_info->rxbuf.data) {
2103 				skb_free_frag(buffer_info->rxbuf.data);
2104 				buffer_info->rxbuf.data = NULL;
2105 			}
2106 		} else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2107 			if (buffer_info->dma)
2108 				dma_unmap_page(&pdev->dev, buffer_info->dma,
2109 					       adapter->rx_buffer_len,
2110 					       DMA_FROM_DEVICE);
2111 			if (buffer_info->rxbuf.page) {
2112 				put_page(buffer_info->rxbuf.page);
2113 				buffer_info->rxbuf.page = NULL;
2114 			}
2115 		}
2116 
2117 		buffer_info->dma = 0;
2118 	}
2119 
2120 	/* there also may be some cached data from a chained receive */
2121 	napi_free_frags(&adapter->napi);
2122 	rx_ring->rx_skb_top = NULL;
2123 
2124 	size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2125 	memset(rx_ring->buffer_info, 0, size);
2126 
2127 	/* Zero out the descriptor ring */
2128 	memset(rx_ring->desc, 0, rx_ring->size);
2129 
2130 	rx_ring->next_to_clean = 0;
2131 	rx_ring->next_to_use = 0;
2132 
2133 	writel(0, hw->hw_addr + rx_ring->rdh);
2134 	writel(0, hw->hw_addr + rx_ring->rdt);
2135 }
2136 
2137 /**
2138  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2139  * @adapter: board private structure
2140  **/
2141 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2142 {
2143 	int i;
2144 
2145 	for (i = 0; i < adapter->num_rx_queues; i++)
2146 		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2147 }
2148 
2149 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2150  * and memory write and invalidate disabled for certain operations
2151  */
2152 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2153 {
2154 	struct e1000_hw *hw = &adapter->hw;
2155 	struct net_device *netdev = adapter->netdev;
2156 	u32 rctl;
2157 
2158 	e1000_pci_clear_mwi(hw);
2159 
2160 	rctl = er32(RCTL);
2161 	rctl |= E1000_RCTL_RST;
2162 	ew32(RCTL, rctl);
2163 	E1000_WRITE_FLUSH();
2164 	mdelay(5);
2165 
2166 	if (netif_running(netdev))
2167 		e1000_clean_all_rx_rings(adapter);
2168 }
2169 
2170 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2171 {
2172 	struct e1000_hw *hw = &adapter->hw;
2173 	struct net_device *netdev = adapter->netdev;
2174 	u32 rctl;
2175 
2176 	rctl = er32(RCTL);
2177 	rctl &= ~E1000_RCTL_RST;
2178 	ew32(RCTL, rctl);
2179 	E1000_WRITE_FLUSH();
2180 	mdelay(5);
2181 
2182 	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2183 		e1000_pci_set_mwi(hw);
2184 
2185 	if (netif_running(netdev)) {
2186 		/* No need to loop, because 82542 supports only 1 queue */
2187 		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2188 		e1000_configure_rx(adapter);
2189 		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2190 	}
2191 }
2192 
2193 /**
2194  * e1000_set_mac - Change the Ethernet Address of the NIC
2195  * @netdev: network interface device structure
2196  * @p: pointer to an address structure
2197  *
2198  * Returns 0 on success, negative on failure
2199  **/
2200 static int e1000_set_mac(struct net_device *netdev, void *p)
2201 {
2202 	struct e1000_adapter *adapter = netdev_priv(netdev);
2203 	struct e1000_hw *hw = &adapter->hw;
2204 	struct sockaddr *addr = p;
2205 
2206 	if (!is_valid_ether_addr(addr->sa_data))
2207 		return -EADDRNOTAVAIL;
2208 
2209 	/* 82542 2.0 needs to be in reset to write receive address registers */
2210 
2211 	if (hw->mac_type == e1000_82542_rev2_0)
2212 		e1000_enter_82542_rst(adapter);
2213 
2214 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2215 	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2216 
2217 	e1000_rar_set(hw, hw->mac_addr, 0);
2218 
2219 	if (hw->mac_type == e1000_82542_rev2_0)
2220 		e1000_leave_82542_rst(adapter);
2221 
2222 	return 0;
2223 }
2224 
2225 /**
2226  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2227  * @netdev: network interface device structure
2228  *
2229  * The set_rx_mode entry point is called whenever the unicast or multicast
2230  * address lists or the network interface flags are updated. This routine is
2231  * responsible for configuring the hardware for proper unicast, multicast,
2232  * promiscuous mode, and all-multi behavior.
2233  **/
2234 static void e1000_set_rx_mode(struct net_device *netdev)
2235 {
2236 	struct e1000_adapter *adapter = netdev_priv(netdev);
2237 	struct e1000_hw *hw = &adapter->hw;
2238 	struct netdev_hw_addr *ha;
2239 	bool use_uc = false;
2240 	u32 rctl;
2241 	u32 hash_value;
2242 	int i, rar_entries = E1000_RAR_ENTRIES;
2243 	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2244 	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2245 
2246 	if (!mcarray)
2247 		return;
2248 
2249 	/* Check for Promiscuous and All Multicast modes */
2250 
2251 	rctl = er32(RCTL);
2252 
2253 	if (netdev->flags & IFF_PROMISC) {
2254 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2255 		rctl &= ~E1000_RCTL_VFE;
2256 	} else {
2257 		if (netdev->flags & IFF_ALLMULTI)
2258 			rctl |= E1000_RCTL_MPE;
2259 		else
2260 			rctl &= ~E1000_RCTL_MPE;
2261 		/* Enable VLAN filter if there is a VLAN */
2262 		if (e1000_vlan_used(adapter))
2263 			rctl |= E1000_RCTL_VFE;
2264 	}
2265 
2266 	if (netdev_uc_count(netdev) > rar_entries - 1) {
2267 		rctl |= E1000_RCTL_UPE;
2268 	} else if (!(netdev->flags & IFF_PROMISC)) {
2269 		rctl &= ~E1000_RCTL_UPE;
2270 		use_uc = true;
2271 	}
2272 
2273 	ew32(RCTL, rctl);
2274 
2275 	/* 82542 2.0 needs to be in reset to write receive address registers */
2276 
2277 	if (hw->mac_type == e1000_82542_rev2_0)
2278 		e1000_enter_82542_rst(adapter);
2279 
2280 	/* load the first 14 addresses into the exact filters 1-14. Unicast
2281 	 * addresses take precedence to avoid disabling unicast filtering
2282 	 * when possible.
2283 	 *
2284 	 * RAR 0 is used for the station MAC address
2285 	 * if there are not 14 addresses, go ahead and clear the filters
2286 	 */
2287 	i = 1;
2288 	if (use_uc)
2289 		netdev_for_each_uc_addr(ha, netdev) {
2290 			if (i == rar_entries)
2291 				break;
2292 			e1000_rar_set(hw, ha->addr, i++);
2293 		}
2294 
2295 	netdev_for_each_mc_addr(ha, netdev) {
2296 		if (i == rar_entries) {
2297 			/* load any remaining addresses into the hash table */
2298 			u32 hash_reg, hash_bit, mta;
2299 			hash_value = e1000_hash_mc_addr(hw, ha->addr);
2300 			hash_reg = (hash_value >> 5) & 0x7F;
2301 			hash_bit = hash_value & 0x1F;
2302 			mta = (1 << hash_bit);
2303 			mcarray[hash_reg] |= mta;
2304 		} else {
2305 			e1000_rar_set(hw, ha->addr, i++);
2306 		}
2307 	}
2308 
2309 	for (; i < rar_entries; i++) {
2310 		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2311 		E1000_WRITE_FLUSH();
2312 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2313 		E1000_WRITE_FLUSH();
2314 	}
2315 
2316 	/* write the hash table completely, write from bottom to avoid
2317 	 * both stupid write combining chipsets, and flushing each write
2318 	 */
2319 	for (i = mta_reg_count - 1; i >= 0 ; i--) {
2320 		/* If we are on an 82544 has an errata where writing odd
2321 		 * offsets overwrites the previous even offset, but writing
2322 		 * backwards over the range solves the issue by always
2323 		 * writing the odd offset first
2324 		 */
2325 		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2326 	}
2327 	E1000_WRITE_FLUSH();
2328 
2329 	if (hw->mac_type == e1000_82542_rev2_0)
2330 		e1000_leave_82542_rst(adapter);
2331 
2332 	kfree(mcarray);
2333 }
2334 
2335 /**
2336  * e1000_update_phy_info_task - get phy info
2337  * @work: work struct contained inside adapter struct
2338  *
2339  * Need to wait a few seconds after link up to get diagnostic information from
2340  * the phy
2341  */
2342 static void e1000_update_phy_info_task(struct work_struct *work)
2343 {
2344 	struct e1000_adapter *adapter = container_of(work,
2345 						     struct e1000_adapter,
2346 						     phy_info_task.work);
2347 
2348 	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2349 }
2350 
2351 /**
2352  * e1000_82547_tx_fifo_stall_task - task to complete work
2353  * @work: work struct contained inside adapter struct
2354  **/
2355 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2356 {
2357 	struct e1000_adapter *adapter = container_of(work,
2358 						     struct e1000_adapter,
2359 						     fifo_stall_task.work);
2360 	struct e1000_hw *hw = &adapter->hw;
2361 	struct net_device *netdev = adapter->netdev;
2362 	u32 tctl;
2363 
2364 	if (atomic_read(&adapter->tx_fifo_stall)) {
2365 		if ((er32(TDT) == er32(TDH)) &&
2366 		   (er32(TDFT) == er32(TDFH)) &&
2367 		   (er32(TDFTS) == er32(TDFHS))) {
2368 			tctl = er32(TCTL);
2369 			ew32(TCTL, tctl & ~E1000_TCTL_EN);
2370 			ew32(TDFT, adapter->tx_head_addr);
2371 			ew32(TDFH, adapter->tx_head_addr);
2372 			ew32(TDFTS, adapter->tx_head_addr);
2373 			ew32(TDFHS, adapter->tx_head_addr);
2374 			ew32(TCTL, tctl);
2375 			E1000_WRITE_FLUSH();
2376 
2377 			adapter->tx_fifo_head = 0;
2378 			atomic_set(&adapter->tx_fifo_stall, 0);
2379 			netif_wake_queue(netdev);
2380 		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2381 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
2382 		}
2383 	}
2384 }
2385 
2386 bool e1000_has_link(struct e1000_adapter *adapter)
2387 {
2388 	struct e1000_hw *hw = &adapter->hw;
2389 	bool link_active = false;
2390 
2391 	/* get_link_status is set on LSC (link status) interrupt or rx
2392 	 * sequence error interrupt (except on intel ce4100).
2393 	 * get_link_status will stay false until the
2394 	 * e1000_check_for_link establishes link for copper adapters
2395 	 * ONLY
2396 	 */
2397 	switch (hw->media_type) {
2398 	case e1000_media_type_copper:
2399 		if (hw->mac_type == e1000_ce4100)
2400 			hw->get_link_status = 1;
2401 		if (hw->get_link_status) {
2402 			e1000_check_for_link(hw);
2403 			link_active = !hw->get_link_status;
2404 		} else {
2405 			link_active = true;
2406 		}
2407 		break;
2408 	case e1000_media_type_fiber:
2409 		e1000_check_for_link(hw);
2410 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2411 		break;
2412 	case e1000_media_type_internal_serdes:
2413 		e1000_check_for_link(hw);
2414 		link_active = hw->serdes_has_link;
2415 		break;
2416 	default:
2417 		break;
2418 	}
2419 
2420 	return link_active;
2421 }
2422 
2423 /**
2424  * e1000_watchdog - work function
2425  * @work: work struct contained inside adapter struct
2426  **/
2427 static void e1000_watchdog(struct work_struct *work)
2428 {
2429 	struct e1000_adapter *adapter = container_of(work,
2430 						     struct e1000_adapter,
2431 						     watchdog_task.work);
2432 	struct e1000_hw *hw = &adapter->hw;
2433 	struct net_device *netdev = adapter->netdev;
2434 	struct e1000_tx_ring *txdr = adapter->tx_ring;
2435 	u32 link, tctl;
2436 
2437 	link = e1000_has_link(adapter);
2438 	if ((netif_carrier_ok(netdev)) && link)
2439 		goto link_up;
2440 
2441 	if (link) {
2442 		if (!netif_carrier_ok(netdev)) {
2443 			u32 ctrl;
2444 			/* update snapshot of PHY registers on LSC */
2445 			e1000_get_speed_and_duplex(hw,
2446 						   &adapter->link_speed,
2447 						   &adapter->link_duplex);
2448 
2449 			ctrl = er32(CTRL);
2450 			pr_info("%s NIC Link is Up %d Mbps %s, "
2451 				"Flow Control: %s\n",
2452 				netdev->name,
2453 				adapter->link_speed,
2454 				adapter->link_duplex == FULL_DUPLEX ?
2455 				"Full Duplex" : "Half Duplex",
2456 				((ctrl & E1000_CTRL_TFCE) && (ctrl &
2457 				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2458 				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2459 				E1000_CTRL_TFCE) ? "TX" : "None")));
2460 
2461 			/* adjust timeout factor according to speed/duplex */
2462 			adapter->tx_timeout_factor = 1;
2463 			switch (adapter->link_speed) {
2464 			case SPEED_10:
2465 				adapter->tx_timeout_factor = 16;
2466 				break;
2467 			case SPEED_100:
2468 				/* maybe add some timeout factor ? */
2469 				break;
2470 			}
2471 
2472 			/* enable transmits in the hardware */
2473 			tctl = er32(TCTL);
2474 			tctl |= E1000_TCTL_EN;
2475 			ew32(TCTL, tctl);
2476 
2477 			netif_carrier_on(netdev);
2478 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2479 				schedule_delayed_work(&adapter->phy_info_task,
2480 						      2 * HZ);
2481 			adapter->smartspeed = 0;
2482 		}
2483 	} else {
2484 		if (netif_carrier_ok(netdev)) {
2485 			adapter->link_speed = 0;
2486 			adapter->link_duplex = 0;
2487 			pr_info("%s NIC Link is Down\n",
2488 				netdev->name);
2489 			netif_carrier_off(netdev);
2490 
2491 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2492 				schedule_delayed_work(&adapter->phy_info_task,
2493 						      2 * HZ);
2494 		}
2495 
2496 		e1000_smartspeed(adapter);
2497 	}
2498 
2499 link_up:
2500 	e1000_update_stats(adapter);
2501 
2502 	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2503 	adapter->tpt_old = adapter->stats.tpt;
2504 	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2505 	adapter->colc_old = adapter->stats.colc;
2506 
2507 	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2508 	adapter->gorcl_old = adapter->stats.gorcl;
2509 	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2510 	adapter->gotcl_old = adapter->stats.gotcl;
2511 
2512 	e1000_update_adaptive(hw);
2513 
2514 	if (!netif_carrier_ok(netdev)) {
2515 		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2516 			/* We've lost link, so the controller stops DMA,
2517 			 * but we've got queued Tx work that's never going
2518 			 * to get done, so reset controller to flush Tx.
2519 			 * (Do the reset outside of interrupt context).
2520 			 */
2521 			adapter->tx_timeout_count++;
2522 			schedule_work(&adapter->reset_task);
2523 			/* exit immediately since reset is imminent */
2524 			return;
2525 		}
2526 	}
2527 
2528 	/* Simple mode for Interrupt Throttle Rate (ITR) */
2529 	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2530 		/* Symmetric Tx/Rx gets a reduced ITR=2000;
2531 		 * Total asymmetrical Tx or Rx gets ITR=8000;
2532 		 * everyone else is between 2000-8000.
2533 		 */
2534 		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2535 		u32 dif = (adapter->gotcl > adapter->gorcl ?
2536 			    adapter->gotcl - adapter->gorcl :
2537 			    adapter->gorcl - adapter->gotcl) / 10000;
2538 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2539 
2540 		ew32(ITR, 1000000000 / (itr * 256));
2541 	}
2542 
2543 	/* Cause software interrupt to ensure rx ring is cleaned */
2544 	ew32(ICS, E1000_ICS_RXDMT0);
2545 
2546 	/* Force detection of hung controller every watchdog period */
2547 	adapter->detect_tx_hung = true;
2548 
2549 	/* Reschedule the task */
2550 	if (!test_bit(__E1000_DOWN, &adapter->flags))
2551 		schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2552 }
2553 
2554 enum latency_range {
2555 	lowest_latency = 0,
2556 	low_latency = 1,
2557 	bulk_latency = 2,
2558 	latency_invalid = 255
2559 };
2560 
2561 /**
2562  * e1000_update_itr - update the dynamic ITR value based on statistics
2563  * @adapter: pointer to adapter
2564  * @itr_setting: current adapter->itr
2565  * @packets: the number of packets during this measurement interval
2566  * @bytes: the number of bytes during this measurement interval
2567  *
2568  *      Stores a new ITR value based on packets and byte
2569  *      counts during the last interrupt.  The advantage of per interrupt
2570  *      computation is faster updates and more accurate ITR for the current
2571  *      traffic pattern.  Constants in this function were computed
2572  *      based on theoretical maximum wire speed and thresholds were set based
2573  *      on testing data as well as attempting to minimize response time
2574  *      while increasing bulk throughput.
2575  *      this functionality is controlled by the InterruptThrottleRate module
2576  *      parameter (see e1000_param.c)
2577  **/
2578 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2579 				     u16 itr_setting, int packets, int bytes)
2580 {
2581 	unsigned int retval = itr_setting;
2582 	struct e1000_hw *hw = &adapter->hw;
2583 
2584 	if (unlikely(hw->mac_type < e1000_82540))
2585 		goto update_itr_done;
2586 
2587 	if (packets == 0)
2588 		goto update_itr_done;
2589 
2590 	switch (itr_setting) {
2591 	case lowest_latency:
2592 		/* jumbo frames get bulk treatment*/
2593 		if (bytes/packets > 8000)
2594 			retval = bulk_latency;
2595 		else if ((packets < 5) && (bytes > 512))
2596 			retval = low_latency;
2597 		break;
2598 	case low_latency:  /* 50 usec aka 20000 ints/s */
2599 		if (bytes > 10000) {
2600 			/* jumbo frames need bulk latency setting */
2601 			if (bytes/packets > 8000)
2602 				retval = bulk_latency;
2603 			else if ((packets < 10) || ((bytes/packets) > 1200))
2604 				retval = bulk_latency;
2605 			else if ((packets > 35))
2606 				retval = lowest_latency;
2607 		} else if (bytes/packets > 2000)
2608 			retval = bulk_latency;
2609 		else if (packets <= 2 && bytes < 512)
2610 			retval = lowest_latency;
2611 		break;
2612 	case bulk_latency: /* 250 usec aka 4000 ints/s */
2613 		if (bytes > 25000) {
2614 			if (packets > 35)
2615 				retval = low_latency;
2616 		} else if (bytes < 6000) {
2617 			retval = low_latency;
2618 		}
2619 		break;
2620 	}
2621 
2622 update_itr_done:
2623 	return retval;
2624 }
2625 
2626 static void e1000_set_itr(struct e1000_adapter *adapter)
2627 {
2628 	struct e1000_hw *hw = &adapter->hw;
2629 	u16 current_itr;
2630 	u32 new_itr = adapter->itr;
2631 
2632 	if (unlikely(hw->mac_type < e1000_82540))
2633 		return;
2634 
2635 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2636 	if (unlikely(adapter->link_speed != SPEED_1000)) {
2637 		current_itr = 0;
2638 		new_itr = 4000;
2639 		goto set_itr_now;
2640 	}
2641 
2642 	adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2643 					   adapter->total_tx_packets,
2644 					   adapter->total_tx_bytes);
2645 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2646 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2647 		adapter->tx_itr = low_latency;
2648 
2649 	adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2650 					   adapter->total_rx_packets,
2651 					   adapter->total_rx_bytes);
2652 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2653 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2654 		adapter->rx_itr = low_latency;
2655 
2656 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2657 
2658 	switch (current_itr) {
2659 	/* counts and packets in update_itr are dependent on these numbers */
2660 	case lowest_latency:
2661 		new_itr = 70000;
2662 		break;
2663 	case low_latency:
2664 		new_itr = 20000; /* aka hwitr = ~200 */
2665 		break;
2666 	case bulk_latency:
2667 		new_itr = 4000;
2668 		break;
2669 	default:
2670 		break;
2671 	}
2672 
2673 set_itr_now:
2674 	if (new_itr != adapter->itr) {
2675 		/* this attempts to bias the interrupt rate towards Bulk
2676 		 * by adding intermediate steps when interrupt rate is
2677 		 * increasing
2678 		 */
2679 		new_itr = new_itr > adapter->itr ?
2680 			  min(adapter->itr + (new_itr >> 2), new_itr) :
2681 			  new_itr;
2682 		adapter->itr = new_itr;
2683 		ew32(ITR, 1000000000 / (new_itr * 256));
2684 	}
2685 }
2686 
2687 #define E1000_TX_FLAGS_CSUM		0x00000001
2688 #define E1000_TX_FLAGS_VLAN		0x00000002
2689 #define E1000_TX_FLAGS_TSO		0x00000004
2690 #define E1000_TX_FLAGS_IPV4		0x00000008
2691 #define E1000_TX_FLAGS_NO_FCS		0x00000010
2692 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
2693 #define E1000_TX_FLAGS_VLAN_SHIFT	16
2694 
2695 static int e1000_tso(struct e1000_adapter *adapter,
2696 		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2697 		     __be16 protocol)
2698 {
2699 	struct e1000_context_desc *context_desc;
2700 	struct e1000_tx_buffer *buffer_info;
2701 	unsigned int i;
2702 	u32 cmd_length = 0;
2703 	u16 ipcse = 0, tucse, mss;
2704 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
2705 
2706 	if (skb_is_gso(skb)) {
2707 		int err;
2708 
2709 		err = skb_cow_head(skb, 0);
2710 		if (err < 0)
2711 			return err;
2712 
2713 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2714 		mss = skb_shinfo(skb)->gso_size;
2715 		if (protocol == htons(ETH_P_IP)) {
2716 			struct iphdr *iph = ip_hdr(skb);
2717 			iph->tot_len = 0;
2718 			iph->check = 0;
2719 			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2720 								 iph->daddr, 0,
2721 								 IPPROTO_TCP,
2722 								 0);
2723 			cmd_length = E1000_TXD_CMD_IP;
2724 			ipcse = skb_transport_offset(skb) - 1;
2725 		} else if (skb_is_gso_v6(skb)) {
2726 			tcp_v6_gso_csum_prep(skb);
2727 			ipcse = 0;
2728 		}
2729 		ipcss = skb_network_offset(skb);
2730 		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2731 		tucss = skb_transport_offset(skb);
2732 		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2733 		tucse = 0;
2734 
2735 		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2736 			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2737 
2738 		i = tx_ring->next_to_use;
2739 		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2740 		buffer_info = &tx_ring->buffer_info[i];
2741 
2742 		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2743 		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2744 		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2745 		context_desc->upper_setup.tcp_fields.tucss = tucss;
2746 		context_desc->upper_setup.tcp_fields.tucso = tucso;
2747 		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2748 		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2749 		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2750 		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2751 
2752 		buffer_info->time_stamp = jiffies;
2753 		buffer_info->next_to_watch = i;
2754 
2755 		if (++i == tx_ring->count)
2756 			i = 0;
2757 
2758 		tx_ring->next_to_use = i;
2759 
2760 		return true;
2761 	}
2762 	return false;
2763 }
2764 
2765 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2766 			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2767 			  __be16 protocol)
2768 {
2769 	struct e1000_context_desc *context_desc;
2770 	struct e1000_tx_buffer *buffer_info;
2771 	unsigned int i;
2772 	u8 css;
2773 	u32 cmd_len = E1000_TXD_CMD_DEXT;
2774 
2775 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2776 		return false;
2777 
2778 	switch (protocol) {
2779 	case cpu_to_be16(ETH_P_IP):
2780 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2781 			cmd_len |= E1000_TXD_CMD_TCP;
2782 		break;
2783 	case cpu_to_be16(ETH_P_IPV6):
2784 		/* XXX not handling all IPV6 headers */
2785 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2786 			cmd_len |= E1000_TXD_CMD_TCP;
2787 		break;
2788 	default:
2789 		if (unlikely(net_ratelimit()))
2790 			e_warn(drv, "checksum_partial proto=%x!\n",
2791 			       skb->protocol);
2792 		break;
2793 	}
2794 
2795 	css = skb_checksum_start_offset(skb);
2796 
2797 	i = tx_ring->next_to_use;
2798 	buffer_info = &tx_ring->buffer_info[i];
2799 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2800 
2801 	context_desc->lower_setup.ip_config = 0;
2802 	context_desc->upper_setup.tcp_fields.tucss = css;
2803 	context_desc->upper_setup.tcp_fields.tucso =
2804 		css + skb->csum_offset;
2805 	context_desc->upper_setup.tcp_fields.tucse = 0;
2806 	context_desc->tcp_seg_setup.data = 0;
2807 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2808 
2809 	buffer_info->time_stamp = jiffies;
2810 	buffer_info->next_to_watch = i;
2811 
2812 	if (unlikely(++i == tx_ring->count))
2813 		i = 0;
2814 
2815 	tx_ring->next_to_use = i;
2816 
2817 	return true;
2818 }
2819 
2820 #define E1000_MAX_TXD_PWR	12
2821 #define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
2822 
2823 static int e1000_tx_map(struct e1000_adapter *adapter,
2824 			struct e1000_tx_ring *tx_ring,
2825 			struct sk_buff *skb, unsigned int first,
2826 			unsigned int max_per_txd, unsigned int nr_frags,
2827 			unsigned int mss)
2828 {
2829 	struct e1000_hw *hw = &adapter->hw;
2830 	struct pci_dev *pdev = adapter->pdev;
2831 	struct e1000_tx_buffer *buffer_info;
2832 	unsigned int len = skb_headlen(skb);
2833 	unsigned int offset = 0, size, count = 0, i;
2834 	unsigned int f, bytecount, segs;
2835 
2836 	i = tx_ring->next_to_use;
2837 
2838 	while (len) {
2839 		buffer_info = &tx_ring->buffer_info[i];
2840 		size = min(len, max_per_txd);
2841 		/* Workaround for Controller erratum --
2842 		 * descriptor for non-tso packet in a linear SKB that follows a
2843 		 * tso gets written back prematurely before the data is fully
2844 		 * DMA'd to the controller
2845 		 */
2846 		if (!skb->data_len && tx_ring->last_tx_tso &&
2847 		    !skb_is_gso(skb)) {
2848 			tx_ring->last_tx_tso = false;
2849 			size -= 4;
2850 		}
2851 
2852 		/* Workaround for premature desc write-backs
2853 		 * in TSO mode.  Append 4-byte sentinel desc
2854 		 */
2855 		if (unlikely(mss && !nr_frags && size == len && size > 8))
2856 			size -= 4;
2857 		/* work-around for errata 10 and it applies
2858 		 * to all controllers in PCI-X mode
2859 		 * The fix is to make sure that the first descriptor of a
2860 		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2861 		 */
2862 		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2863 			     (size > 2015) && count == 0))
2864 			size = 2015;
2865 
2866 		/* Workaround for potential 82544 hang in PCI-X.  Avoid
2867 		 * terminating buffers within evenly-aligned dwords.
2868 		 */
2869 		if (unlikely(adapter->pcix_82544 &&
2870 		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2871 		   size > 4))
2872 			size -= 4;
2873 
2874 		buffer_info->length = size;
2875 		/* set time_stamp *before* dma to help avoid a possible race */
2876 		buffer_info->time_stamp = jiffies;
2877 		buffer_info->mapped_as_page = false;
2878 		buffer_info->dma = dma_map_single(&pdev->dev,
2879 						  skb->data + offset,
2880 						  size, DMA_TO_DEVICE);
2881 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2882 			goto dma_error;
2883 		buffer_info->next_to_watch = i;
2884 
2885 		len -= size;
2886 		offset += size;
2887 		count++;
2888 		if (len) {
2889 			i++;
2890 			if (unlikely(i == tx_ring->count))
2891 				i = 0;
2892 		}
2893 	}
2894 
2895 	for (f = 0; f < nr_frags; f++) {
2896 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2897 
2898 		len = skb_frag_size(frag);
2899 		offset = 0;
2900 
2901 		while (len) {
2902 			unsigned long bufend;
2903 			i++;
2904 			if (unlikely(i == tx_ring->count))
2905 				i = 0;
2906 
2907 			buffer_info = &tx_ring->buffer_info[i];
2908 			size = min(len, max_per_txd);
2909 			/* Workaround for premature desc write-backs
2910 			 * in TSO mode.  Append 4-byte sentinel desc
2911 			 */
2912 			if (unlikely(mss && f == (nr_frags-1) &&
2913 			    size == len && size > 8))
2914 				size -= 4;
2915 			/* Workaround for potential 82544 hang in PCI-X.
2916 			 * Avoid terminating buffers within evenly-aligned
2917 			 * dwords.
2918 			 */
2919 			bufend = (unsigned long)
2920 				page_to_phys(skb_frag_page(frag));
2921 			bufend += offset + size - 1;
2922 			if (unlikely(adapter->pcix_82544 &&
2923 				     !(bufend & 4) &&
2924 				     size > 4))
2925 				size -= 4;
2926 
2927 			buffer_info->length = size;
2928 			buffer_info->time_stamp = jiffies;
2929 			buffer_info->mapped_as_page = true;
2930 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2931 						offset, size, DMA_TO_DEVICE);
2932 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2933 				goto dma_error;
2934 			buffer_info->next_to_watch = i;
2935 
2936 			len -= size;
2937 			offset += size;
2938 			count++;
2939 		}
2940 	}
2941 
2942 	segs = skb_shinfo(skb)->gso_segs ?: 1;
2943 	/* multiply data chunks by size of headers */
2944 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2945 
2946 	tx_ring->buffer_info[i].skb = skb;
2947 	tx_ring->buffer_info[i].segs = segs;
2948 	tx_ring->buffer_info[i].bytecount = bytecount;
2949 	tx_ring->buffer_info[first].next_to_watch = i;
2950 
2951 	return count;
2952 
2953 dma_error:
2954 	dev_err(&pdev->dev, "TX DMA map failed\n");
2955 	buffer_info->dma = 0;
2956 	if (count)
2957 		count--;
2958 
2959 	while (count--) {
2960 		if (i == 0)
2961 			i += tx_ring->count;
2962 		i--;
2963 		buffer_info = &tx_ring->buffer_info[i];
2964 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2965 	}
2966 
2967 	return 0;
2968 }
2969 
2970 static void e1000_tx_queue(struct e1000_adapter *adapter,
2971 			   struct e1000_tx_ring *tx_ring, int tx_flags,
2972 			   int count)
2973 {
2974 	struct e1000_tx_desc *tx_desc = NULL;
2975 	struct e1000_tx_buffer *buffer_info;
2976 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2977 	unsigned int i;
2978 
2979 	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2980 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2981 			     E1000_TXD_CMD_TSE;
2982 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2983 
2984 		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2985 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2986 	}
2987 
2988 	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2989 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2990 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2991 	}
2992 
2993 	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2994 		txd_lower |= E1000_TXD_CMD_VLE;
2995 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2996 	}
2997 
2998 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2999 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
3000 
3001 	i = tx_ring->next_to_use;
3002 
3003 	while (count--) {
3004 		buffer_info = &tx_ring->buffer_info[i];
3005 		tx_desc = E1000_TX_DESC(*tx_ring, i);
3006 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3007 		tx_desc->lower.data =
3008 			cpu_to_le32(txd_lower | buffer_info->length);
3009 		tx_desc->upper.data = cpu_to_le32(txd_upper);
3010 		if (unlikely(++i == tx_ring->count))
3011 			i = 0;
3012 	}
3013 
3014 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3015 
3016 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3017 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3018 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3019 
3020 	/* Force memory writes to complete before letting h/w
3021 	 * know there are new descriptors to fetch.  (Only
3022 	 * applicable for weak-ordered memory model archs,
3023 	 * such as IA-64).
3024 	 */
3025 	dma_wmb();
3026 
3027 	tx_ring->next_to_use = i;
3028 }
3029 
3030 /* 82547 workaround to avoid controller hang in half-duplex environment.
3031  * The workaround is to avoid queuing a large packet that would span
3032  * the internal Tx FIFO ring boundary by notifying the stack to resend
3033  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3034  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3035  * to the beginning of the Tx FIFO.
3036  */
3037 
3038 #define E1000_FIFO_HDR			0x10
3039 #define E1000_82547_PAD_LEN		0x3E0
3040 
3041 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3042 				       struct sk_buff *skb)
3043 {
3044 	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3045 	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3046 
3047 	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3048 
3049 	if (adapter->link_duplex != HALF_DUPLEX)
3050 		goto no_fifo_stall_required;
3051 
3052 	if (atomic_read(&adapter->tx_fifo_stall))
3053 		return 1;
3054 
3055 	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3056 		atomic_set(&adapter->tx_fifo_stall, 1);
3057 		return 1;
3058 	}
3059 
3060 no_fifo_stall_required:
3061 	adapter->tx_fifo_head += skb_fifo_len;
3062 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3063 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
3064 	return 0;
3065 }
3066 
3067 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3068 {
3069 	struct e1000_adapter *adapter = netdev_priv(netdev);
3070 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3071 
3072 	netif_stop_queue(netdev);
3073 	/* Herbert's original patch had:
3074 	 *  smp_mb__after_netif_stop_queue();
3075 	 * but since that doesn't exist yet, just open code it.
3076 	 */
3077 	smp_mb();
3078 
3079 	/* We need to check again in a case another CPU has just
3080 	 * made room available.
3081 	 */
3082 	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3083 		return -EBUSY;
3084 
3085 	/* A reprieve! */
3086 	netif_start_queue(netdev);
3087 	++adapter->restart_queue;
3088 	return 0;
3089 }
3090 
3091 static int e1000_maybe_stop_tx(struct net_device *netdev,
3092 			       struct e1000_tx_ring *tx_ring, int size)
3093 {
3094 	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3095 		return 0;
3096 	return __e1000_maybe_stop_tx(netdev, size);
3097 }
3098 
3099 #define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3100 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3101 				    struct net_device *netdev)
3102 {
3103 	struct e1000_adapter *adapter = netdev_priv(netdev);
3104 	struct e1000_hw *hw = &adapter->hw;
3105 	struct e1000_tx_ring *tx_ring;
3106 	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3107 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3108 	unsigned int tx_flags = 0;
3109 	unsigned int len = skb_headlen(skb);
3110 	unsigned int nr_frags;
3111 	unsigned int mss;
3112 	int count = 0;
3113 	int tso;
3114 	unsigned int f;
3115 	__be16 protocol = vlan_get_protocol(skb);
3116 
3117 	/* This goes back to the question of how to logically map a Tx queue
3118 	 * to a flow.  Right now, performance is impacted slightly negatively
3119 	 * if using multiple Tx queues.  If the stack breaks away from a
3120 	 * single qdisc implementation, we can look at this again.
3121 	 */
3122 	tx_ring = adapter->tx_ring;
3123 
3124 	/* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3125 	 * packets may get corrupted during padding by HW.
3126 	 * To WA this issue, pad all small packets manually.
3127 	 */
3128 	if (eth_skb_pad(skb))
3129 		return NETDEV_TX_OK;
3130 
3131 	mss = skb_shinfo(skb)->gso_size;
3132 	/* The controller does a simple calculation to
3133 	 * make sure there is enough room in the FIFO before
3134 	 * initiating the DMA for each buffer.  The calc is:
3135 	 * 4 = ceil(buffer len/mss).  To make sure we don't
3136 	 * overrun the FIFO, adjust the max buffer len if mss
3137 	 * drops.
3138 	 */
3139 	if (mss) {
3140 		u8 hdr_len;
3141 		max_per_txd = min(mss << 2, max_per_txd);
3142 		max_txd_pwr = fls(max_per_txd) - 1;
3143 
3144 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3145 		if (skb->data_len && hdr_len == len) {
3146 			switch (hw->mac_type) {
3147 			case e1000_82544: {
3148 				unsigned int pull_size;
3149 
3150 				/* Make sure we have room to chop off 4 bytes,
3151 				 * and that the end alignment will work out to
3152 				 * this hardware's requirements
3153 				 * NOTE: this is a TSO only workaround
3154 				 * if end byte alignment not correct move us
3155 				 * into the next dword
3156 				 */
3157 				if ((unsigned long)(skb_tail_pointer(skb) - 1)
3158 				    & 4)
3159 					break;
3160 				/* fall through */
3161 				pull_size = min((unsigned int)4, skb->data_len);
3162 				if (!__pskb_pull_tail(skb, pull_size)) {
3163 					e_err(drv, "__pskb_pull_tail "
3164 					      "failed.\n");
3165 					dev_kfree_skb_any(skb);
3166 					return NETDEV_TX_OK;
3167 				}
3168 				len = skb_headlen(skb);
3169 				break;
3170 			}
3171 			default:
3172 				/* do nothing */
3173 				break;
3174 			}
3175 		}
3176 	}
3177 
3178 	/* reserve a descriptor for the offload context */
3179 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3180 		count++;
3181 	count++;
3182 
3183 	/* Controller Erratum workaround */
3184 	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3185 		count++;
3186 
3187 	count += TXD_USE_COUNT(len, max_txd_pwr);
3188 
3189 	if (adapter->pcix_82544)
3190 		count++;
3191 
3192 	/* work-around for errata 10 and it applies to all controllers
3193 	 * in PCI-X mode, so add one more descriptor to the count
3194 	 */
3195 	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3196 			(len > 2015)))
3197 		count++;
3198 
3199 	nr_frags = skb_shinfo(skb)->nr_frags;
3200 	for (f = 0; f < nr_frags; f++)
3201 		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3202 				       max_txd_pwr);
3203 	if (adapter->pcix_82544)
3204 		count += nr_frags;
3205 
3206 	/* need: count + 2 desc gap to keep tail from touching
3207 	 * head, otherwise try next time
3208 	 */
3209 	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3210 		return NETDEV_TX_BUSY;
3211 
3212 	if (unlikely((hw->mac_type == e1000_82547) &&
3213 		     (e1000_82547_fifo_workaround(adapter, skb)))) {
3214 		netif_stop_queue(netdev);
3215 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3216 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
3217 		return NETDEV_TX_BUSY;
3218 	}
3219 
3220 	if (skb_vlan_tag_present(skb)) {
3221 		tx_flags |= E1000_TX_FLAGS_VLAN;
3222 		tx_flags |= (skb_vlan_tag_get(skb) <<
3223 			     E1000_TX_FLAGS_VLAN_SHIFT);
3224 	}
3225 
3226 	first = tx_ring->next_to_use;
3227 
3228 	tso = e1000_tso(adapter, tx_ring, skb, protocol);
3229 	if (tso < 0) {
3230 		dev_kfree_skb_any(skb);
3231 		return NETDEV_TX_OK;
3232 	}
3233 
3234 	if (likely(tso)) {
3235 		if (likely(hw->mac_type != e1000_82544))
3236 			tx_ring->last_tx_tso = true;
3237 		tx_flags |= E1000_TX_FLAGS_TSO;
3238 	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3239 		tx_flags |= E1000_TX_FLAGS_CSUM;
3240 
3241 	if (protocol == htons(ETH_P_IP))
3242 		tx_flags |= E1000_TX_FLAGS_IPV4;
3243 
3244 	if (unlikely(skb->no_fcs))
3245 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
3246 
3247 	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3248 			     nr_frags, mss);
3249 
3250 	if (count) {
3251 		/* The descriptors needed is higher than other Intel drivers
3252 		 * due to a number of workarounds.  The breakdown is below:
3253 		 * Data descriptors: MAX_SKB_FRAGS + 1
3254 		 * Context Descriptor: 1
3255 		 * Keep head from touching tail: 2
3256 		 * Workarounds: 3
3257 		 */
3258 		int desc_needed = MAX_SKB_FRAGS + 7;
3259 
3260 		netdev_sent_queue(netdev, skb->len);
3261 		skb_tx_timestamp(skb);
3262 
3263 		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3264 
3265 		/* 82544 potentially requires twice as many data descriptors
3266 		 * in order to guarantee buffers don't end on evenly-aligned
3267 		 * dwords
3268 		 */
3269 		if (adapter->pcix_82544)
3270 			desc_needed += MAX_SKB_FRAGS + 1;
3271 
3272 		/* Make sure there is space in the ring for the next send. */
3273 		e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3274 
3275 		if (!netdev_xmit_more() ||
3276 		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3277 			writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3278 		}
3279 	} else {
3280 		dev_kfree_skb_any(skb);
3281 		tx_ring->buffer_info[first].time_stamp = 0;
3282 		tx_ring->next_to_use = first;
3283 	}
3284 
3285 	return NETDEV_TX_OK;
3286 }
3287 
3288 #define NUM_REGS 38 /* 1 based count */
3289 static void e1000_regdump(struct e1000_adapter *adapter)
3290 {
3291 	struct e1000_hw *hw = &adapter->hw;
3292 	u32 regs[NUM_REGS];
3293 	u32 *regs_buff = regs;
3294 	int i = 0;
3295 
3296 	static const char * const reg_name[] = {
3297 		"CTRL",  "STATUS",
3298 		"RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3299 		"TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3300 		"TIDV", "TXDCTL", "TADV", "TARC0",
3301 		"TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3302 		"TXDCTL1", "TARC1",
3303 		"CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3304 		"TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3305 		"RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3306 	};
3307 
3308 	regs_buff[0]  = er32(CTRL);
3309 	regs_buff[1]  = er32(STATUS);
3310 
3311 	regs_buff[2]  = er32(RCTL);
3312 	regs_buff[3]  = er32(RDLEN);
3313 	regs_buff[4]  = er32(RDH);
3314 	regs_buff[5]  = er32(RDT);
3315 	regs_buff[6]  = er32(RDTR);
3316 
3317 	regs_buff[7]  = er32(TCTL);
3318 	regs_buff[8]  = er32(TDBAL);
3319 	regs_buff[9]  = er32(TDBAH);
3320 	regs_buff[10] = er32(TDLEN);
3321 	regs_buff[11] = er32(TDH);
3322 	regs_buff[12] = er32(TDT);
3323 	regs_buff[13] = er32(TIDV);
3324 	regs_buff[14] = er32(TXDCTL);
3325 	regs_buff[15] = er32(TADV);
3326 	regs_buff[16] = er32(TARC0);
3327 
3328 	regs_buff[17] = er32(TDBAL1);
3329 	regs_buff[18] = er32(TDBAH1);
3330 	regs_buff[19] = er32(TDLEN1);
3331 	regs_buff[20] = er32(TDH1);
3332 	regs_buff[21] = er32(TDT1);
3333 	regs_buff[22] = er32(TXDCTL1);
3334 	regs_buff[23] = er32(TARC1);
3335 	regs_buff[24] = er32(CTRL_EXT);
3336 	regs_buff[25] = er32(ERT);
3337 	regs_buff[26] = er32(RDBAL0);
3338 	regs_buff[27] = er32(RDBAH0);
3339 	regs_buff[28] = er32(TDFH);
3340 	regs_buff[29] = er32(TDFT);
3341 	regs_buff[30] = er32(TDFHS);
3342 	regs_buff[31] = er32(TDFTS);
3343 	regs_buff[32] = er32(TDFPC);
3344 	regs_buff[33] = er32(RDFH);
3345 	regs_buff[34] = er32(RDFT);
3346 	regs_buff[35] = er32(RDFHS);
3347 	regs_buff[36] = er32(RDFTS);
3348 	regs_buff[37] = er32(RDFPC);
3349 
3350 	pr_info("Register dump\n");
3351 	for (i = 0; i < NUM_REGS; i++)
3352 		pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3353 }
3354 
3355 /*
3356  * e1000_dump: Print registers, tx ring and rx ring
3357  */
3358 static void e1000_dump(struct e1000_adapter *adapter)
3359 {
3360 	/* this code doesn't handle multiple rings */
3361 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3362 	struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3363 	int i;
3364 
3365 	if (!netif_msg_hw(adapter))
3366 		return;
3367 
3368 	/* Print Registers */
3369 	e1000_regdump(adapter);
3370 
3371 	/* transmit dump */
3372 	pr_info("TX Desc ring0 dump\n");
3373 
3374 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3375 	 *
3376 	 * Legacy Transmit Descriptor
3377 	 *   +--------------------------------------------------------------+
3378 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3379 	 *   +--------------------------------------------------------------+
3380 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3381 	 *   +--------------------------------------------------------------+
3382 	 *   63       48 47        36 35    32 31     24 23    16 15        0
3383 	 *
3384 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3385 	 *   63      48 47    40 39       32 31             16 15    8 7      0
3386 	 *   +----------------------------------------------------------------+
3387 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3388 	 *   +----------------------------------------------------------------+
3389 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3390 	 *   +----------------------------------------------------------------+
3391 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3392 	 *
3393 	 * Extended Data Descriptor (DTYP=0x1)
3394 	 *   +----------------------------------------------------------------+
3395 	 * 0 |                     Buffer Address [63:0]                      |
3396 	 *   +----------------------------------------------------------------+
3397 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3398 	 *   +----------------------------------------------------------------+
3399 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3400 	 */
3401 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3402 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3403 
3404 	if (!netif_msg_tx_done(adapter))
3405 		goto rx_ring_summary;
3406 
3407 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3408 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3409 		struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3410 		struct my_u { __le64 a; __le64 b; };
3411 		struct my_u *u = (struct my_u *)tx_desc;
3412 		const char *type;
3413 
3414 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3415 			type = "NTC/U";
3416 		else if (i == tx_ring->next_to_use)
3417 			type = "NTU";
3418 		else if (i == tx_ring->next_to_clean)
3419 			type = "NTC";
3420 		else
3421 			type = "";
3422 
3423 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3424 			((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3425 			le64_to_cpu(u->a), le64_to_cpu(u->b),
3426 			(u64)buffer_info->dma, buffer_info->length,
3427 			buffer_info->next_to_watch,
3428 			(u64)buffer_info->time_stamp, buffer_info->skb, type);
3429 	}
3430 
3431 rx_ring_summary:
3432 	/* receive dump */
3433 	pr_info("\nRX Desc ring dump\n");
3434 
3435 	/* Legacy Receive Descriptor Format
3436 	 *
3437 	 * +-----------------------------------------------------+
3438 	 * |                Buffer Address [63:0]                |
3439 	 * +-----------------------------------------------------+
3440 	 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3441 	 * +-----------------------------------------------------+
3442 	 * 63       48 47    40 39      32 31         16 15      0
3443 	 */
3444 	pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3445 
3446 	if (!netif_msg_rx_status(adapter))
3447 		goto exit;
3448 
3449 	for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3450 		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3451 		struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3452 		struct my_u { __le64 a; __le64 b; };
3453 		struct my_u *u = (struct my_u *)rx_desc;
3454 		const char *type;
3455 
3456 		if (i == rx_ring->next_to_use)
3457 			type = "NTU";
3458 		else if (i == rx_ring->next_to_clean)
3459 			type = "NTC";
3460 		else
3461 			type = "";
3462 
3463 		pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3464 			i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3465 			(u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3466 	} /* for */
3467 
3468 	/* dump the descriptor caches */
3469 	/* rx */
3470 	pr_info("Rx descriptor cache in 64bit format\n");
3471 	for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3472 		pr_info("R%04X: %08X|%08X %08X|%08X\n",
3473 			i,
3474 			readl(adapter->hw.hw_addr + i+4),
3475 			readl(adapter->hw.hw_addr + i),
3476 			readl(adapter->hw.hw_addr + i+12),
3477 			readl(adapter->hw.hw_addr + i+8));
3478 	}
3479 	/* tx */
3480 	pr_info("Tx descriptor cache in 64bit format\n");
3481 	for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3482 		pr_info("T%04X: %08X|%08X %08X|%08X\n",
3483 			i,
3484 			readl(adapter->hw.hw_addr + i+4),
3485 			readl(adapter->hw.hw_addr + i),
3486 			readl(adapter->hw.hw_addr + i+12),
3487 			readl(adapter->hw.hw_addr + i+8));
3488 	}
3489 exit:
3490 	return;
3491 }
3492 
3493 /**
3494  * e1000_tx_timeout - Respond to a Tx Hang
3495  * @netdev: network interface device structure
3496  **/
3497 static void e1000_tx_timeout(struct net_device *netdev, unsigned int txqueue)
3498 {
3499 	struct e1000_adapter *adapter = netdev_priv(netdev);
3500 
3501 	/* Do the reset outside of interrupt context */
3502 	adapter->tx_timeout_count++;
3503 	schedule_work(&adapter->reset_task);
3504 }
3505 
3506 static void e1000_reset_task(struct work_struct *work)
3507 {
3508 	struct e1000_adapter *adapter =
3509 		container_of(work, struct e1000_adapter, reset_task);
3510 
3511 	e_err(drv, "Reset adapter\n");
3512 	e1000_reinit_locked(adapter);
3513 }
3514 
3515 /**
3516  * e1000_change_mtu - Change the Maximum Transfer Unit
3517  * @netdev: network interface device structure
3518  * @new_mtu: new value for maximum frame size
3519  *
3520  * Returns 0 on success, negative on failure
3521  **/
3522 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3523 {
3524 	struct e1000_adapter *adapter = netdev_priv(netdev);
3525 	struct e1000_hw *hw = &adapter->hw;
3526 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3527 
3528 	/* Adapter-specific max frame size limits. */
3529 	switch (hw->mac_type) {
3530 	case e1000_undefined ... e1000_82542_rev2_1:
3531 		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3532 			e_err(probe, "Jumbo Frames not supported.\n");
3533 			return -EINVAL;
3534 		}
3535 		break;
3536 	default:
3537 		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3538 		break;
3539 	}
3540 
3541 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3542 		msleep(1);
3543 	/* e1000_down has a dependency on max_frame_size */
3544 	hw->max_frame_size = max_frame;
3545 	if (netif_running(netdev)) {
3546 		/* prevent buffers from being reallocated */
3547 		adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3548 		e1000_down(adapter);
3549 	}
3550 
3551 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3552 	 * means we reserve 2 more, this pushes us to allocate from the next
3553 	 * larger slab size.
3554 	 * i.e. RXBUFFER_2048 --> size-4096 slab
3555 	 * however with the new *_jumbo_rx* routines, jumbo receives will use
3556 	 * fragmented skbs
3557 	 */
3558 
3559 	if (max_frame <= E1000_RXBUFFER_2048)
3560 		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3561 	else
3562 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3563 		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3564 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3565 		adapter->rx_buffer_len = PAGE_SIZE;
3566 #endif
3567 
3568 	/* adjust allocation if LPE protects us, and we aren't using SBP */
3569 	if (!hw->tbi_compatibility_on &&
3570 	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3571 	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3572 		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3573 
3574 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
3575 		   netdev->mtu, new_mtu);
3576 	netdev->mtu = new_mtu;
3577 
3578 	if (netif_running(netdev))
3579 		e1000_up(adapter);
3580 	else
3581 		e1000_reset(adapter);
3582 
3583 	clear_bit(__E1000_RESETTING, &adapter->flags);
3584 
3585 	return 0;
3586 }
3587 
3588 /**
3589  * e1000_update_stats - Update the board statistics counters
3590  * @adapter: board private structure
3591  **/
3592 void e1000_update_stats(struct e1000_adapter *adapter)
3593 {
3594 	struct net_device *netdev = adapter->netdev;
3595 	struct e1000_hw *hw = &adapter->hw;
3596 	struct pci_dev *pdev = adapter->pdev;
3597 	unsigned long flags;
3598 	u16 phy_tmp;
3599 
3600 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3601 
3602 	/* Prevent stats update while adapter is being reset, or if the pci
3603 	 * connection is down.
3604 	 */
3605 	if (adapter->link_speed == 0)
3606 		return;
3607 	if (pci_channel_offline(pdev))
3608 		return;
3609 
3610 	spin_lock_irqsave(&adapter->stats_lock, flags);
3611 
3612 	/* these counters are modified from e1000_tbi_adjust_stats,
3613 	 * called from the interrupt context, so they must only
3614 	 * be written while holding adapter->stats_lock
3615 	 */
3616 
3617 	adapter->stats.crcerrs += er32(CRCERRS);
3618 	adapter->stats.gprc += er32(GPRC);
3619 	adapter->stats.gorcl += er32(GORCL);
3620 	adapter->stats.gorch += er32(GORCH);
3621 	adapter->stats.bprc += er32(BPRC);
3622 	adapter->stats.mprc += er32(MPRC);
3623 	adapter->stats.roc += er32(ROC);
3624 
3625 	adapter->stats.prc64 += er32(PRC64);
3626 	adapter->stats.prc127 += er32(PRC127);
3627 	adapter->stats.prc255 += er32(PRC255);
3628 	adapter->stats.prc511 += er32(PRC511);
3629 	adapter->stats.prc1023 += er32(PRC1023);
3630 	adapter->stats.prc1522 += er32(PRC1522);
3631 
3632 	adapter->stats.symerrs += er32(SYMERRS);
3633 	adapter->stats.mpc += er32(MPC);
3634 	adapter->stats.scc += er32(SCC);
3635 	adapter->stats.ecol += er32(ECOL);
3636 	adapter->stats.mcc += er32(MCC);
3637 	adapter->stats.latecol += er32(LATECOL);
3638 	adapter->stats.dc += er32(DC);
3639 	adapter->stats.sec += er32(SEC);
3640 	adapter->stats.rlec += er32(RLEC);
3641 	adapter->stats.xonrxc += er32(XONRXC);
3642 	adapter->stats.xontxc += er32(XONTXC);
3643 	adapter->stats.xoffrxc += er32(XOFFRXC);
3644 	adapter->stats.xofftxc += er32(XOFFTXC);
3645 	adapter->stats.fcruc += er32(FCRUC);
3646 	adapter->stats.gptc += er32(GPTC);
3647 	adapter->stats.gotcl += er32(GOTCL);
3648 	adapter->stats.gotch += er32(GOTCH);
3649 	adapter->stats.rnbc += er32(RNBC);
3650 	adapter->stats.ruc += er32(RUC);
3651 	adapter->stats.rfc += er32(RFC);
3652 	adapter->stats.rjc += er32(RJC);
3653 	adapter->stats.torl += er32(TORL);
3654 	adapter->stats.torh += er32(TORH);
3655 	adapter->stats.totl += er32(TOTL);
3656 	adapter->stats.toth += er32(TOTH);
3657 	adapter->stats.tpr += er32(TPR);
3658 
3659 	adapter->stats.ptc64 += er32(PTC64);
3660 	adapter->stats.ptc127 += er32(PTC127);
3661 	adapter->stats.ptc255 += er32(PTC255);
3662 	adapter->stats.ptc511 += er32(PTC511);
3663 	adapter->stats.ptc1023 += er32(PTC1023);
3664 	adapter->stats.ptc1522 += er32(PTC1522);
3665 
3666 	adapter->stats.mptc += er32(MPTC);
3667 	adapter->stats.bptc += er32(BPTC);
3668 
3669 	/* used for adaptive IFS */
3670 
3671 	hw->tx_packet_delta = er32(TPT);
3672 	adapter->stats.tpt += hw->tx_packet_delta;
3673 	hw->collision_delta = er32(COLC);
3674 	adapter->stats.colc += hw->collision_delta;
3675 
3676 	if (hw->mac_type >= e1000_82543) {
3677 		adapter->stats.algnerrc += er32(ALGNERRC);
3678 		adapter->stats.rxerrc += er32(RXERRC);
3679 		adapter->stats.tncrs += er32(TNCRS);
3680 		adapter->stats.cexterr += er32(CEXTERR);
3681 		adapter->stats.tsctc += er32(TSCTC);
3682 		adapter->stats.tsctfc += er32(TSCTFC);
3683 	}
3684 
3685 	/* Fill out the OS statistics structure */
3686 	netdev->stats.multicast = adapter->stats.mprc;
3687 	netdev->stats.collisions = adapter->stats.colc;
3688 
3689 	/* Rx Errors */
3690 
3691 	/* RLEC on some newer hardware can be incorrect so build
3692 	 * our own version based on RUC and ROC
3693 	 */
3694 	netdev->stats.rx_errors = adapter->stats.rxerrc +
3695 		adapter->stats.crcerrs + adapter->stats.algnerrc +
3696 		adapter->stats.ruc + adapter->stats.roc +
3697 		adapter->stats.cexterr;
3698 	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3699 	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3700 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3701 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3702 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3703 
3704 	/* Tx Errors */
3705 	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3706 	netdev->stats.tx_errors = adapter->stats.txerrc;
3707 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3708 	netdev->stats.tx_window_errors = adapter->stats.latecol;
3709 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3710 	if (hw->bad_tx_carr_stats_fd &&
3711 	    adapter->link_duplex == FULL_DUPLEX) {
3712 		netdev->stats.tx_carrier_errors = 0;
3713 		adapter->stats.tncrs = 0;
3714 	}
3715 
3716 	/* Tx Dropped needs to be maintained elsewhere */
3717 
3718 	/* Phy Stats */
3719 	if (hw->media_type == e1000_media_type_copper) {
3720 		if ((adapter->link_speed == SPEED_1000) &&
3721 		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3722 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3723 			adapter->phy_stats.idle_errors += phy_tmp;
3724 		}
3725 
3726 		if ((hw->mac_type <= e1000_82546) &&
3727 		   (hw->phy_type == e1000_phy_m88) &&
3728 		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3729 			adapter->phy_stats.receive_errors += phy_tmp;
3730 	}
3731 
3732 	/* Management Stats */
3733 	if (hw->has_smbus) {
3734 		adapter->stats.mgptc += er32(MGTPTC);
3735 		adapter->stats.mgprc += er32(MGTPRC);
3736 		adapter->stats.mgpdc += er32(MGTPDC);
3737 	}
3738 
3739 	spin_unlock_irqrestore(&adapter->stats_lock, flags);
3740 }
3741 
3742 /**
3743  * e1000_intr - Interrupt Handler
3744  * @irq: interrupt number
3745  * @data: pointer to a network interface device structure
3746  **/
3747 static irqreturn_t e1000_intr(int irq, void *data)
3748 {
3749 	struct net_device *netdev = data;
3750 	struct e1000_adapter *adapter = netdev_priv(netdev);
3751 	struct e1000_hw *hw = &adapter->hw;
3752 	u32 icr = er32(ICR);
3753 
3754 	if (unlikely((!icr)))
3755 		return IRQ_NONE;  /* Not our interrupt */
3756 
3757 	/* we might have caused the interrupt, but the above
3758 	 * read cleared it, and just in case the driver is
3759 	 * down there is nothing to do so return handled
3760 	 */
3761 	if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3762 		return IRQ_HANDLED;
3763 
3764 	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3765 		hw->get_link_status = 1;
3766 		/* guard against interrupt when we're going down */
3767 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3768 			schedule_delayed_work(&adapter->watchdog_task, 1);
3769 	}
3770 
3771 	/* disable interrupts, without the synchronize_irq bit */
3772 	ew32(IMC, ~0);
3773 	E1000_WRITE_FLUSH();
3774 
3775 	if (likely(napi_schedule_prep(&adapter->napi))) {
3776 		adapter->total_tx_bytes = 0;
3777 		adapter->total_tx_packets = 0;
3778 		adapter->total_rx_bytes = 0;
3779 		adapter->total_rx_packets = 0;
3780 		__napi_schedule(&adapter->napi);
3781 	} else {
3782 		/* this really should not happen! if it does it is basically a
3783 		 * bug, but not a hard error, so enable ints and continue
3784 		 */
3785 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3786 			e1000_irq_enable(adapter);
3787 	}
3788 
3789 	return IRQ_HANDLED;
3790 }
3791 
3792 /**
3793  * e1000_clean - NAPI Rx polling callback
3794  * @adapter: board private structure
3795  **/
3796 static int e1000_clean(struct napi_struct *napi, int budget)
3797 {
3798 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3799 						     napi);
3800 	int tx_clean_complete = 0, work_done = 0;
3801 
3802 	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3803 
3804 	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3805 
3806 	if (!tx_clean_complete || work_done == budget)
3807 		return budget;
3808 
3809 	/* Exit the polling mode, but don't re-enable interrupts if stack might
3810 	 * poll us due to busy-polling
3811 	 */
3812 	if (likely(napi_complete_done(napi, work_done))) {
3813 		if (likely(adapter->itr_setting & 3))
3814 			e1000_set_itr(adapter);
3815 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3816 			e1000_irq_enable(adapter);
3817 	}
3818 
3819 	return work_done;
3820 }
3821 
3822 /**
3823  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3824  * @adapter: board private structure
3825  **/
3826 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3827 			       struct e1000_tx_ring *tx_ring)
3828 {
3829 	struct e1000_hw *hw = &adapter->hw;
3830 	struct net_device *netdev = adapter->netdev;
3831 	struct e1000_tx_desc *tx_desc, *eop_desc;
3832 	struct e1000_tx_buffer *buffer_info;
3833 	unsigned int i, eop;
3834 	unsigned int count = 0;
3835 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3836 	unsigned int bytes_compl = 0, pkts_compl = 0;
3837 
3838 	i = tx_ring->next_to_clean;
3839 	eop = tx_ring->buffer_info[i].next_to_watch;
3840 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
3841 
3842 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3843 	       (count < tx_ring->count)) {
3844 		bool cleaned = false;
3845 		dma_rmb();	/* read buffer_info after eop_desc */
3846 		for ( ; !cleaned; count++) {
3847 			tx_desc = E1000_TX_DESC(*tx_ring, i);
3848 			buffer_info = &tx_ring->buffer_info[i];
3849 			cleaned = (i == eop);
3850 
3851 			if (cleaned) {
3852 				total_tx_packets += buffer_info->segs;
3853 				total_tx_bytes += buffer_info->bytecount;
3854 				if (buffer_info->skb) {
3855 					bytes_compl += buffer_info->skb->len;
3856 					pkts_compl++;
3857 				}
3858 
3859 			}
3860 			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3861 			tx_desc->upper.data = 0;
3862 
3863 			if (unlikely(++i == tx_ring->count))
3864 				i = 0;
3865 		}
3866 
3867 		eop = tx_ring->buffer_info[i].next_to_watch;
3868 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
3869 	}
3870 
3871 	/* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3872 	 * which will reuse the cleaned buffers.
3873 	 */
3874 	smp_store_release(&tx_ring->next_to_clean, i);
3875 
3876 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3877 
3878 #define TX_WAKE_THRESHOLD 32
3879 	if (unlikely(count && netif_carrier_ok(netdev) &&
3880 		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3881 		/* Make sure that anybody stopping the queue after this
3882 		 * sees the new next_to_clean.
3883 		 */
3884 		smp_mb();
3885 
3886 		if (netif_queue_stopped(netdev) &&
3887 		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3888 			netif_wake_queue(netdev);
3889 			++adapter->restart_queue;
3890 		}
3891 	}
3892 
3893 	if (adapter->detect_tx_hung) {
3894 		/* Detect a transmit hang in hardware, this serializes the
3895 		 * check with the clearing of time_stamp and movement of i
3896 		 */
3897 		adapter->detect_tx_hung = false;
3898 		if (tx_ring->buffer_info[eop].time_stamp &&
3899 		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3900 			       (adapter->tx_timeout_factor * HZ)) &&
3901 		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3902 
3903 			/* detected Tx unit hang */
3904 			e_err(drv, "Detected Tx Unit Hang\n"
3905 			      "  Tx Queue             <%lu>\n"
3906 			      "  TDH                  <%x>\n"
3907 			      "  TDT                  <%x>\n"
3908 			      "  next_to_use          <%x>\n"
3909 			      "  next_to_clean        <%x>\n"
3910 			      "buffer_info[next_to_clean]\n"
3911 			      "  time_stamp           <%lx>\n"
3912 			      "  next_to_watch        <%x>\n"
3913 			      "  jiffies              <%lx>\n"
3914 			      "  next_to_watch.status <%x>\n",
3915 				(unsigned long)(tx_ring - adapter->tx_ring),
3916 				readl(hw->hw_addr + tx_ring->tdh),
3917 				readl(hw->hw_addr + tx_ring->tdt),
3918 				tx_ring->next_to_use,
3919 				tx_ring->next_to_clean,
3920 				tx_ring->buffer_info[eop].time_stamp,
3921 				eop,
3922 				jiffies,
3923 				eop_desc->upper.fields.status);
3924 			e1000_dump(adapter);
3925 			netif_stop_queue(netdev);
3926 		}
3927 	}
3928 	adapter->total_tx_bytes += total_tx_bytes;
3929 	adapter->total_tx_packets += total_tx_packets;
3930 	netdev->stats.tx_bytes += total_tx_bytes;
3931 	netdev->stats.tx_packets += total_tx_packets;
3932 	return count < tx_ring->count;
3933 }
3934 
3935 /**
3936  * e1000_rx_checksum - Receive Checksum Offload for 82543
3937  * @adapter:     board private structure
3938  * @status_err:  receive descriptor status and error fields
3939  * @csum:        receive descriptor csum field
3940  * @sk_buff:     socket buffer with received data
3941  **/
3942 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3943 			      u32 csum, struct sk_buff *skb)
3944 {
3945 	struct e1000_hw *hw = &adapter->hw;
3946 	u16 status = (u16)status_err;
3947 	u8 errors = (u8)(status_err >> 24);
3948 
3949 	skb_checksum_none_assert(skb);
3950 
3951 	/* 82543 or newer only */
3952 	if (unlikely(hw->mac_type < e1000_82543))
3953 		return;
3954 	/* Ignore Checksum bit is set */
3955 	if (unlikely(status & E1000_RXD_STAT_IXSM))
3956 		return;
3957 	/* TCP/UDP checksum error bit is set */
3958 	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3959 		/* let the stack verify checksum errors */
3960 		adapter->hw_csum_err++;
3961 		return;
3962 	}
3963 	/* TCP/UDP Checksum has not been calculated */
3964 	if (!(status & E1000_RXD_STAT_TCPCS))
3965 		return;
3966 
3967 	/* It must be a TCP or UDP packet with a valid checksum */
3968 	if (likely(status & E1000_RXD_STAT_TCPCS)) {
3969 		/* TCP checksum is good */
3970 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3971 	}
3972 	adapter->hw_csum_good++;
3973 }
3974 
3975 /**
3976  * e1000_consume_page - helper function for jumbo Rx path
3977  **/
3978 static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
3979 			       u16 length)
3980 {
3981 	bi->rxbuf.page = NULL;
3982 	skb->len += length;
3983 	skb->data_len += length;
3984 	skb->truesize += PAGE_SIZE;
3985 }
3986 
3987 /**
3988  * e1000_receive_skb - helper function to handle rx indications
3989  * @adapter: board private structure
3990  * @status: descriptor status field as written by hardware
3991  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3992  * @skb: pointer to sk_buff to be indicated to stack
3993  */
3994 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3995 			      __le16 vlan, struct sk_buff *skb)
3996 {
3997 	skb->protocol = eth_type_trans(skb, adapter->netdev);
3998 
3999 	if (status & E1000_RXD_STAT_VP) {
4000 		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4001 
4002 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4003 	}
4004 	napi_gro_receive(&adapter->napi, skb);
4005 }
4006 
4007 /**
4008  * e1000_tbi_adjust_stats
4009  * @hw: Struct containing variables accessed by shared code
4010  * @frame_len: The length of the frame in question
4011  * @mac_addr: The Ethernet destination address of the frame in question
4012  *
4013  * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4014  */
4015 static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4016 				   struct e1000_hw_stats *stats,
4017 				   u32 frame_len, const u8 *mac_addr)
4018 {
4019 	u64 carry_bit;
4020 
4021 	/* First adjust the frame length. */
4022 	frame_len--;
4023 	/* We need to adjust the statistics counters, since the hardware
4024 	 * counters overcount this packet as a CRC error and undercount
4025 	 * the packet as a good packet
4026 	 */
4027 	/* This packet should not be counted as a CRC error. */
4028 	stats->crcerrs--;
4029 	/* This packet does count as a Good Packet Received. */
4030 	stats->gprc++;
4031 
4032 	/* Adjust the Good Octets received counters */
4033 	carry_bit = 0x80000000 & stats->gorcl;
4034 	stats->gorcl += frame_len;
4035 	/* If the high bit of Gorcl (the low 32 bits of the Good Octets
4036 	 * Received Count) was one before the addition,
4037 	 * AND it is zero after, then we lost the carry out,
4038 	 * need to add one to Gorch (Good Octets Received Count High).
4039 	 * This could be simplified if all environments supported
4040 	 * 64-bit integers.
4041 	 */
4042 	if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4043 		stats->gorch++;
4044 	/* Is this a broadcast or multicast?  Check broadcast first,
4045 	 * since the test for a multicast frame will test positive on
4046 	 * a broadcast frame.
4047 	 */
4048 	if (is_broadcast_ether_addr(mac_addr))
4049 		stats->bprc++;
4050 	else if (is_multicast_ether_addr(mac_addr))
4051 		stats->mprc++;
4052 
4053 	if (frame_len == hw->max_frame_size) {
4054 		/* In this case, the hardware has overcounted the number of
4055 		 * oversize frames.
4056 		 */
4057 		if (stats->roc > 0)
4058 			stats->roc--;
4059 	}
4060 
4061 	/* Adjust the bin counters when the extra byte put the frame in the
4062 	 * wrong bin. Remember that the frame_len was adjusted above.
4063 	 */
4064 	if (frame_len == 64) {
4065 		stats->prc64++;
4066 		stats->prc127--;
4067 	} else if (frame_len == 127) {
4068 		stats->prc127++;
4069 		stats->prc255--;
4070 	} else if (frame_len == 255) {
4071 		stats->prc255++;
4072 		stats->prc511--;
4073 	} else if (frame_len == 511) {
4074 		stats->prc511++;
4075 		stats->prc1023--;
4076 	} else if (frame_len == 1023) {
4077 		stats->prc1023++;
4078 		stats->prc1522--;
4079 	} else if (frame_len == 1522) {
4080 		stats->prc1522++;
4081 	}
4082 }
4083 
4084 static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4085 				    u8 status, u8 errors,
4086 				    u32 length, const u8 *data)
4087 {
4088 	struct e1000_hw *hw = &adapter->hw;
4089 	u8 last_byte = *(data + length - 1);
4090 
4091 	if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4092 		unsigned long irq_flags;
4093 
4094 		spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4095 		e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4096 		spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4097 
4098 		return true;
4099 	}
4100 
4101 	return false;
4102 }
4103 
4104 static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4105 					  unsigned int bufsz)
4106 {
4107 	struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4108 
4109 	if (unlikely(!skb))
4110 		adapter->alloc_rx_buff_failed++;
4111 	return skb;
4112 }
4113 
4114 /**
4115  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4116  * @adapter: board private structure
4117  * @rx_ring: ring to clean
4118  * @work_done: amount of napi work completed this call
4119  * @work_to_do: max amount of work allowed for this call to do
4120  *
4121  * the return value indicates whether actual cleaning was done, there
4122  * is no guarantee that everything was cleaned
4123  */
4124 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4125 				     struct e1000_rx_ring *rx_ring,
4126 				     int *work_done, int work_to_do)
4127 {
4128 	struct net_device *netdev = adapter->netdev;
4129 	struct pci_dev *pdev = adapter->pdev;
4130 	struct e1000_rx_desc *rx_desc, *next_rxd;
4131 	struct e1000_rx_buffer *buffer_info, *next_buffer;
4132 	u32 length;
4133 	unsigned int i;
4134 	int cleaned_count = 0;
4135 	bool cleaned = false;
4136 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4137 
4138 	i = rx_ring->next_to_clean;
4139 	rx_desc = E1000_RX_DESC(*rx_ring, i);
4140 	buffer_info = &rx_ring->buffer_info[i];
4141 
4142 	while (rx_desc->status & E1000_RXD_STAT_DD) {
4143 		struct sk_buff *skb;
4144 		u8 status;
4145 
4146 		if (*work_done >= work_to_do)
4147 			break;
4148 		(*work_done)++;
4149 		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4150 
4151 		status = rx_desc->status;
4152 
4153 		if (++i == rx_ring->count)
4154 			i = 0;
4155 
4156 		next_rxd = E1000_RX_DESC(*rx_ring, i);
4157 		prefetch(next_rxd);
4158 
4159 		next_buffer = &rx_ring->buffer_info[i];
4160 
4161 		cleaned = true;
4162 		cleaned_count++;
4163 		dma_unmap_page(&pdev->dev, buffer_info->dma,
4164 			       adapter->rx_buffer_len, DMA_FROM_DEVICE);
4165 		buffer_info->dma = 0;
4166 
4167 		length = le16_to_cpu(rx_desc->length);
4168 
4169 		/* errors is only valid for DD + EOP descriptors */
4170 		if (unlikely((status & E1000_RXD_STAT_EOP) &&
4171 		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4172 			u8 *mapped = page_address(buffer_info->rxbuf.page);
4173 
4174 			if (e1000_tbi_should_accept(adapter, status,
4175 						    rx_desc->errors,
4176 						    length, mapped)) {
4177 				length--;
4178 			} else if (netdev->features & NETIF_F_RXALL) {
4179 				goto process_skb;
4180 			} else {
4181 				/* an error means any chain goes out the window
4182 				 * too
4183 				 */
4184 				dev_kfree_skb(rx_ring->rx_skb_top);
4185 				rx_ring->rx_skb_top = NULL;
4186 				goto next_desc;
4187 			}
4188 		}
4189 
4190 #define rxtop rx_ring->rx_skb_top
4191 process_skb:
4192 		if (!(status & E1000_RXD_STAT_EOP)) {
4193 			/* this descriptor is only the beginning (or middle) */
4194 			if (!rxtop) {
4195 				/* this is the beginning of a chain */
4196 				rxtop = napi_get_frags(&adapter->napi);
4197 				if (!rxtop)
4198 					break;
4199 
4200 				skb_fill_page_desc(rxtop, 0,
4201 						   buffer_info->rxbuf.page,
4202 						   0, length);
4203 			} else {
4204 				/* this is the middle of a chain */
4205 				skb_fill_page_desc(rxtop,
4206 				    skb_shinfo(rxtop)->nr_frags,
4207 				    buffer_info->rxbuf.page, 0, length);
4208 			}
4209 			e1000_consume_page(buffer_info, rxtop, length);
4210 			goto next_desc;
4211 		} else {
4212 			if (rxtop) {
4213 				/* end of the chain */
4214 				skb_fill_page_desc(rxtop,
4215 				    skb_shinfo(rxtop)->nr_frags,
4216 				    buffer_info->rxbuf.page, 0, length);
4217 				skb = rxtop;
4218 				rxtop = NULL;
4219 				e1000_consume_page(buffer_info, skb, length);
4220 			} else {
4221 				struct page *p;
4222 				/* no chain, got EOP, this buf is the packet
4223 				 * copybreak to save the put_page/alloc_page
4224 				 */
4225 				p = buffer_info->rxbuf.page;
4226 				if (length <= copybreak) {
4227 					u8 *vaddr;
4228 
4229 					if (likely(!(netdev->features & NETIF_F_RXFCS)))
4230 						length -= 4;
4231 					skb = e1000_alloc_rx_skb(adapter,
4232 								 length);
4233 					if (!skb)
4234 						break;
4235 
4236 					vaddr = kmap_atomic(p);
4237 					memcpy(skb_tail_pointer(skb), vaddr,
4238 					       length);
4239 					kunmap_atomic(vaddr);
4240 					/* re-use the page, so don't erase
4241 					 * buffer_info->rxbuf.page
4242 					 */
4243 					skb_put(skb, length);
4244 					e1000_rx_checksum(adapter,
4245 							  status | rx_desc->errors << 24,
4246 							  le16_to_cpu(rx_desc->csum), skb);
4247 
4248 					total_rx_bytes += skb->len;
4249 					total_rx_packets++;
4250 
4251 					e1000_receive_skb(adapter, status,
4252 							  rx_desc->special, skb);
4253 					goto next_desc;
4254 				} else {
4255 					skb = napi_get_frags(&adapter->napi);
4256 					if (!skb) {
4257 						adapter->alloc_rx_buff_failed++;
4258 						break;
4259 					}
4260 					skb_fill_page_desc(skb, 0, p, 0,
4261 							   length);
4262 					e1000_consume_page(buffer_info, skb,
4263 							   length);
4264 				}
4265 			}
4266 		}
4267 
4268 		/* Receive Checksum Offload XXX recompute due to CRC strip? */
4269 		e1000_rx_checksum(adapter,
4270 				  (u32)(status) |
4271 				  ((u32)(rx_desc->errors) << 24),
4272 				  le16_to_cpu(rx_desc->csum), skb);
4273 
4274 		total_rx_bytes += (skb->len - 4); /* don't count FCS */
4275 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4276 			pskb_trim(skb, skb->len - 4);
4277 		total_rx_packets++;
4278 
4279 		if (status & E1000_RXD_STAT_VP) {
4280 			__le16 vlan = rx_desc->special;
4281 			u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4282 
4283 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4284 		}
4285 
4286 		napi_gro_frags(&adapter->napi);
4287 
4288 next_desc:
4289 		rx_desc->status = 0;
4290 
4291 		/* return some buffers to hardware, one at a time is too slow */
4292 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4293 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4294 			cleaned_count = 0;
4295 		}
4296 
4297 		/* use prefetched values */
4298 		rx_desc = next_rxd;
4299 		buffer_info = next_buffer;
4300 	}
4301 	rx_ring->next_to_clean = i;
4302 
4303 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4304 	if (cleaned_count)
4305 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4306 
4307 	adapter->total_rx_packets += total_rx_packets;
4308 	adapter->total_rx_bytes += total_rx_bytes;
4309 	netdev->stats.rx_bytes += total_rx_bytes;
4310 	netdev->stats.rx_packets += total_rx_packets;
4311 	return cleaned;
4312 }
4313 
4314 /* this should improve performance for small packets with large amounts
4315  * of reassembly being done in the stack
4316  */
4317 static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4318 				       struct e1000_rx_buffer *buffer_info,
4319 				       u32 length, const void *data)
4320 {
4321 	struct sk_buff *skb;
4322 
4323 	if (length > copybreak)
4324 		return NULL;
4325 
4326 	skb = e1000_alloc_rx_skb(adapter, length);
4327 	if (!skb)
4328 		return NULL;
4329 
4330 	dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4331 				length, DMA_FROM_DEVICE);
4332 
4333 	skb_put_data(skb, data, length);
4334 
4335 	return skb;
4336 }
4337 
4338 /**
4339  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4340  * @adapter: board private structure
4341  * @rx_ring: ring to clean
4342  * @work_done: amount of napi work completed this call
4343  * @work_to_do: max amount of work allowed for this call to do
4344  */
4345 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4346 			       struct e1000_rx_ring *rx_ring,
4347 			       int *work_done, int work_to_do)
4348 {
4349 	struct net_device *netdev = adapter->netdev;
4350 	struct pci_dev *pdev = adapter->pdev;
4351 	struct e1000_rx_desc *rx_desc, *next_rxd;
4352 	struct e1000_rx_buffer *buffer_info, *next_buffer;
4353 	u32 length;
4354 	unsigned int i;
4355 	int cleaned_count = 0;
4356 	bool cleaned = false;
4357 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4358 
4359 	i = rx_ring->next_to_clean;
4360 	rx_desc = E1000_RX_DESC(*rx_ring, i);
4361 	buffer_info = &rx_ring->buffer_info[i];
4362 
4363 	while (rx_desc->status & E1000_RXD_STAT_DD) {
4364 		struct sk_buff *skb;
4365 		u8 *data;
4366 		u8 status;
4367 
4368 		if (*work_done >= work_to_do)
4369 			break;
4370 		(*work_done)++;
4371 		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4372 
4373 		status = rx_desc->status;
4374 		length = le16_to_cpu(rx_desc->length);
4375 
4376 		data = buffer_info->rxbuf.data;
4377 		prefetch(data);
4378 		skb = e1000_copybreak(adapter, buffer_info, length, data);
4379 		if (!skb) {
4380 			unsigned int frag_len = e1000_frag_len(adapter);
4381 
4382 			skb = build_skb(data - E1000_HEADROOM, frag_len);
4383 			if (!skb) {
4384 				adapter->alloc_rx_buff_failed++;
4385 				break;
4386 			}
4387 
4388 			skb_reserve(skb, E1000_HEADROOM);
4389 			dma_unmap_single(&pdev->dev, buffer_info->dma,
4390 					 adapter->rx_buffer_len,
4391 					 DMA_FROM_DEVICE);
4392 			buffer_info->dma = 0;
4393 			buffer_info->rxbuf.data = NULL;
4394 		}
4395 
4396 		if (++i == rx_ring->count)
4397 			i = 0;
4398 
4399 		next_rxd = E1000_RX_DESC(*rx_ring, i);
4400 		prefetch(next_rxd);
4401 
4402 		next_buffer = &rx_ring->buffer_info[i];
4403 
4404 		cleaned = true;
4405 		cleaned_count++;
4406 
4407 		/* !EOP means multiple descriptors were used to store a single
4408 		 * packet, if thats the case we need to toss it.  In fact, we
4409 		 * to toss every packet with the EOP bit clear and the next
4410 		 * frame that _does_ have the EOP bit set, as it is by
4411 		 * definition only a frame fragment
4412 		 */
4413 		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4414 			adapter->discarding = true;
4415 
4416 		if (adapter->discarding) {
4417 			/* All receives must fit into a single buffer */
4418 			netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4419 			dev_kfree_skb(skb);
4420 			if (status & E1000_RXD_STAT_EOP)
4421 				adapter->discarding = false;
4422 			goto next_desc;
4423 		}
4424 
4425 		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4426 			if (e1000_tbi_should_accept(adapter, status,
4427 						    rx_desc->errors,
4428 						    length, data)) {
4429 				length--;
4430 			} else if (netdev->features & NETIF_F_RXALL) {
4431 				goto process_skb;
4432 			} else {
4433 				dev_kfree_skb(skb);
4434 				goto next_desc;
4435 			}
4436 		}
4437 
4438 process_skb:
4439 		total_rx_bytes += (length - 4); /* don't count FCS */
4440 		total_rx_packets++;
4441 
4442 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4443 			/* adjust length to remove Ethernet CRC, this must be
4444 			 * done after the TBI_ACCEPT workaround above
4445 			 */
4446 			length -= 4;
4447 
4448 		if (buffer_info->rxbuf.data == NULL)
4449 			skb_put(skb, length);
4450 		else /* copybreak skb */
4451 			skb_trim(skb, length);
4452 
4453 		/* Receive Checksum Offload */
4454 		e1000_rx_checksum(adapter,
4455 				  (u32)(status) |
4456 				  ((u32)(rx_desc->errors) << 24),
4457 				  le16_to_cpu(rx_desc->csum), skb);
4458 
4459 		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4460 
4461 next_desc:
4462 		rx_desc->status = 0;
4463 
4464 		/* return some buffers to hardware, one at a time is too slow */
4465 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4466 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4467 			cleaned_count = 0;
4468 		}
4469 
4470 		/* use prefetched values */
4471 		rx_desc = next_rxd;
4472 		buffer_info = next_buffer;
4473 	}
4474 	rx_ring->next_to_clean = i;
4475 
4476 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4477 	if (cleaned_count)
4478 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4479 
4480 	adapter->total_rx_packets += total_rx_packets;
4481 	adapter->total_rx_bytes += total_rx_bytes;
4482 	netdev->stats.rx_bytes += total_rx_bytes;
4483 	netdev->stats.rx_packets += total_rx_packets;
4484 	return cleaned;
4485 }
4486 
4487 /**
4488  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4489  * @adapter: address of board private structure
4490  * @rx_ring: pointer to receive ring structure
4491  * @cleaned_count: number of buffers to allocate this pass
4492  **/
4493 static void
4494 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4495 			     struct e1000_rx_ring *rx_ring, int cleaned_count)
4496 {
4497 	struct pci_dev *pdev = adapter->pdev;
4498 	struct e1000_rx_desc *rx_desc;
4499 	struct e1000_rx_buffer *buffer_info;
4500 	unsigned int i;
4501 
4502 	i = rx_ring->next_to_use;
4503 	buffer_info = &rx_ring->buffer_info[i];
4504 
4505 	while (cleaned_count--) {
4506 		/* allocate a new page if necessary */
4507 		if (!buffer_info->rxbuf.page) {
4508 			buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4509 			if (unlikely(!buffer_info->rxbuf.page)) {
4510 				adapter->alloc_rx_buff_failed++;
4511 				break;
4512 			}
4513 		}
4514 
4515 		if (!buffer_info->dma) {
4516 			buffer_info->dma = dma_map_page(&pdev->dev,
4517 							buffer_info->rxbuf.page, 0,
4518 							adapter->rx_buffer_len,
4519 							DMA_FROM_DEVICE);
4520 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4521 				put_page(buffer_info->rxbuf.page);
4522 				buffer_info->rxbuf.page = NULL;
4523 				buffer_info->dma = 0;
4524 				adapter->alloc_rx_buff_failed++;
4525 				break;
4526 			}
4527 		}
4528 
4529 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4530 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4531 
4532 		if (unlikely(++i == rx_ring->count))
4533 			i = 0;
4534 		buffer_info = &rx_ring->buffer_info[i];
4535 	}
4536 
4537 	if (likely(rx_ring->next_to_use != i)) {
4538 		rx_ring->next_to_use = i;
4539 		if (unlikely(i-- == 0))
4540 			i = (rx_ring->count - 1);
4541 
4542 		/* Force memory writes to complete before letting h/w
4543 		 * know there are new descriptors to fetch.  (Only
4544 		 * applicable for weak-ordered memory model archs,
4545 		 * such as IA-64).
4546 		 */
4547 		dma_wmb();
4548 		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4549 	}
4550 }
4551 
4552 /**
4553  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4554  * @adapter: address of board private structure
4555  **/
4556 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4557 				   struct e1000_rx_ring *rx_ring,
4558 				   int cleaned_count)
4559 {
4560 	struct e1000_hw *hw = &adapter->hw;
4561 	struct pci_dev *pdev = adapter->pdev;
4562 	struct e1000_rx_desc *rx_desc;
4563 	struct e1000_rx_buffer *buffer_info;
4564 	unsigned int i;
4565 	unsigned int bufsz = adapter->rx_buffer_len;
4566 
4567 	i = rx_ring->next_to_use;
4568 	buffer_info = &rx_ring->buffer_info[i];
4569 
4570 	while (cleaned_count--) {
4571 		void *data;
4572 
4573 		if (buffer_info->rxbuf.data)
4574 			goto skip;
4575 
4576 		data = e1000_alloc_frag(adapter);
4577 		if (!data) {
4578 			/* Better luck next round */
4579 			adapter->alloc_rx_buff_failed++;
4580 			break;
4581 		}
4582 
4583 		/* Fix for errata 23, can't cross 64kB boundary */
4584 		if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4585 			void *olddata = data;
4586 			e_err(rx_err, "skb align check failed: %u bytes at "
4587 			      "%p\n", bufsz, data);
4588 			/* Try again, without freeing the previous */
4589 			data = e1000_alloc_frag(adapter);
4590 			/* Failed allocation, critical failure */
4591 			if (!data) {
4592 				skb_free_frag(olddata);
4593 				adapter->alloc_rx_buff_failed++;
4594 				break;
4595 			}
4596 
4597 			if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4598 				/* give up */
4599 				skb_free_frag(data);
4600 				skb_free_frag(olddata);
4601 				adapter->alloc_rx_buff_failed++;
4602 				break;
4603 			}
4604 
4605 			/* Use new allocation */
4606 			skb_free_frag(olddata);
4607 		}
4608 		buffer_info->dma = dma_map_single(&pdev->dev,
4609 						  data,
4610 						  adapter->rx_buffer_len,
4611 						  DMA_FROM_DEVICE);
4612 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4613 			skb_free_frag(data);
4614 			buffer_info->dma = 0;
4615 			adapter->alloc_rx_buff_failed++;
4616 			break;
4617 		}
4618 
4619 		/* XXX if it was allocated cleanly it will never map to a
4620 		 * boundary crossing
4621 		 */
4622 
4623 		/* Fix for errata 23, can't cross 64kB boundary */
4624 		if (!e1000_check_64k_bound(adapter,
4625 					(void *)(unsigned long)buffer_info->dma,
4626 					adapter->rx_buffer_len)) {
4627 			e_err(rx_err, "dma align check failed: %u bytes at "
4628 			      "%p\n", adapter->rx_buffer_len,
4629 			      (void *)(unsigned long)buffer_info->dma);
4630 
4631 			dma_unmap_single(&pdev->dev, buffer_info->dma,
4632 					 adapter->rx_buffer_len,
4633 					 DMA_FROM_DEVICE);
4634 
4635 			skb_free_frag(data);
4636 			buffer_info->rxbuf.data = NULL;
4637 			buffer_info->dma = 0;
4638 
4639 			adapter->alloc_rx_buff_failed++;
4640 			break;
4641 		}
4642 		buffer_info->rxbuf.data = data;
4643  skip:
4644 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4645 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4646 
4647 		if (unlikely(++i == rx_ring->count))
4648 			i = 0;
4649 		buffer_info = &rx_ring->buffer_info[i];
4650 	}
4651 
4652 	if (likely(rx_ring->next_to_use != i)) {
4653 		rx_ring->next_to_use = i;
4654 		if (unlikely(i-- == 0))
4655 			i = (rx_ring->count - 1);
4656 
4657 		/* Force memory writes to complete before letting h/w
4658 		 * know there are new descriptors to fetch.  (Only
4659 		 * applicable for weak-ordered memory model archs,
4660 		 * such as IA-64).
4661 		 */
4662 		dma_wmb();
4663 		writel(i, hw->hw_addr + rx_ring->rdt);
4664 	}
4665 }
4666 
4667 /**
4668  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4669  * @adapter:
4670  **/
4671 static void e1000_smartspeed(struct e1000_adapter *adapter)
4672 {
4673 	struct e1000_hw *hw = &adapter->hw;
4674 	u16 phy_status;
4675 	u16 phy_ctrl;
4676 
4677 	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4678 	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4679 		return;
4680 
4681 	if (adapter->smartspeed == 0) {
4682 		/* If Master/Slave config fault is asserted twice,
4683 		 * we assume back-to-back
4684 		 */
4685 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4686 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4687 			return;
4688 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4689 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4690 			return;
4691 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4692 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4693 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4694 			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4695 					    phy_ctrl);
4696 			adapter->smartspeed++;
4697 			if (!e1000_phy_setup_autoneg(hw) &&
4698 			   !e1000_read_phy_reg(hw, PHY_CTRL,
4699 					       &phy_ctrl)) {
4700 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4701 					     MII_CR_RESTART_AUTO_NEG);
4702 				e1000_write_phy_reg(hw, PHY_CTRL,
4703 						    phy_ctrl);
4704 			}
4705 		}
4706 		return;
4707 	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4708 		/* If still no link, perhaps using 2/3 pair cable */
4709 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4710 		phy_ctrl |= CR_1000T_MS_ENABLE;
4711 		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4712 		if (!e1000_phy_setup_autoneg(hw) &&
4713 		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4714 			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4715 				     MII_CR_RESTART_AUTO_NEG);
4716 			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4717 		}
4718 	}
4719 	/* Restart process after E1000_SMARTSPEED_MAX iterations */
4720 	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4721 		adapter->smartspeed = 0;
4722 }
4723 
4724 /**
4725  * e1000_ioctl -
4726  * @netdev:
4727  * @ifreq:
4728  * @cmd:
4729  **/
4730 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4731 {
4732 	switch (cmd) {
4733 	case SIOCGMIIPHY:
4734 	case SIOCGMIIREG:
4735 	case SIOCSMIIREG:
4736 		return e1000_mii_ioctl(netdev, ifr, cmd);
4737 	default:
4738 		return -EOPNOTSUPP;
4739 	}
4740 }
4741 
4742 /**
4743  * e1000_mii_ioctl -
4744  * @netdev:
4745  * @ifreq:
4746  * @cmd:
4747  **/
4748 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4749 			   int cmd)
4750 {
4751 	struct e1000_adapter *adapter = netdev_priv(netdev);
4752 	struct e1000_hw *hw = &adapter->hw;
4753 	struct mii_ioctl_data *data = if_mii(ifr);
4754 	int retval;
4755 	u16 mii_reg;
4756 	unsigned long flags;
4757 
4758 	if (hw->media_type != e1000_media_type_copper)
4759 		return -EOPNOTSUPP;
4760 
4761 	switch (cmd) {
4762 	case SIOCGMIIPHY:
4763 		data->phy_id = hw->phy_addr;
4764 		break;
4765 	case SIOCGMIIREG:
4766 		spin_lock_irqsave(&adapter->stats_lock, flags);
4767 		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4768 				   &data->val_out)) {
4769 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4770 			return -EIO;
4771 		}
4772 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4773 		break;
4774 	case SIOCSMIIREG:
4775 		if (data->reg_num & ~(0x1F))
4776 			return -EFAULT;
4777 		mii_reg = data->val_in;
4778 		spin_lock_irqsave(&adapter->stats_lock, flags);
4779 		if (e1000_write_phy_reg(hw, data->reg_num,
4780 					mii_reg)) {
4781 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4782 			return -EIO;
4783 		}
4784 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4785 		if (hw->media_type == e1000_media_type_copper) {
4786 			switch (data->reg_num) {
4787 			case PHY_CTRL:
4788 				if (mii_reg & MII_CR_POWER_DOWN)
4789 					break;
4790 				if (mii_reg & MII_CR_AUTO_NEG_EN) {
4791 					hw->autoneg = 1;
4792 					hw->autoneg_advertised = 0x2F;
4793 				} else {
4794 					u32 speed;
4795 					if (mii_reg & 0x40)
4796 						speed = SPEED_1000;
4797 					else if (mii_reg & 0x2000)
4798 						speed = SPEED_100;
4799 					else
4800 						speed = SPEED_10;
4801 					retval = e1000_set_spd_dplx(
4802 						adapter, speed,
4803 						((mii_reg & 0x100)
4804 						 ? DUPLEX_FULL :
4805 						 DUPLEX_HALF));
4806 					if (retval)
4807 						return retval;
4808 				}
4809 				if (netif_running(adapter->netdev))
4810 					e1000_reinit_locked(adapter);
4811 				else
4812 					e1000_reset(adapter);
4813 				break;
4814 			case M88E1000_PHY_SPEC_CTRL:
4815 			case M88E1000_EXT_PHY_SPEC_CTRL:
4816 				if (e1000_phy_reset(hw))
4817 					return -EIO;
4818 				break;
4819 			}
4820 		} else {
4821 			switch (data->reg_num) {
4822 			case PHY_CTRL:
4823 				if (mii_reg & MII_CR_POWER_DOWN)
4824 					break;
4825 				if (netif_running(adapter->netdev))
4826 					e1000_reinit_locked(adapter);
4827 				else
4828 					e1000_reset(adapter);
4829 				break;
4830 			}
4831 		}
4832 		break;
4833 	default:
4834 		return -EOPNOTSUPP;
4835 	}
4836 	return E1000_SUCCESS;
4837 }
4838 
4839 void e1000_pci_set_mwi(struct e1000_hw *hw)
4840 {
4841 	struct e1000_adapter *adapter = hw->back;
4842 	int ret_val = pci_set_mwi(adapter->pdev);
4843 
4844 	if (ret_val)
4845 		e_err(probe, "Error in setting MWI\n");
4846 }
4847 
4848 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4849 {
4850 	struct e1000_adapter *adapter = hw->back;
4851 
4852 	pci_clear_mwi(adapter->pdev);
4853 }
4854 
4855 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4856 {
4857 	struct e1000_adapter *adapter = hw->back;
4858 	return pcix_get_mmrbc(adapter->pdev);
4859 }
4860 
4861 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4862 {
4863 	struct e1000_adapter *adapter = hw->back;
4864 	pcix_set_mmrbc(adapter->pdev, mmrbc);
4865 }
4866 
4867 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4868 {
4869 	outl(value, port);
4870 }
4871 
4872 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4873 {
4874 	u16 vid;
4875 
4876 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4877 		return true;
4878 	return false;
4879 }
4880 
4881 static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4882 			      netdev_features_t features)
4883 {
4884 	struct e1000_hw *hw = &adapter->hw;
4885 	u32 ctrl;
4886 
4887 	ctrl = er32(CTRL);
4888 	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4889 		/* enable VLAN tag insert/strip */
4890 		ctrl |= E1000_CTRL_VME;
4891 	} else {
4892 		/* disable VLAN tag insert/strip */
4893 		ctrl &= ~E1000_CTRL_VME;
4894 	}
4895 	ew32(CTRL, ctrl);
4896 }
4897 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4898 				     bool filter_on)
4899 {
4900 	struct e1000_hw *hw = &adapter->hw;
4901 	u32 rctl;
4902 
4903 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4904 		e1000_irq_disable(adapter);
4905 
4906 	__e1000_vlan_mode(adapter, adapter->netdev->features);
4907 	if (filter_on) {
4908 		/* enable VLAN receive filtering */
4909 		rctl = er32(RCTL);
4910 		rctl &= ~E1000_RCTL_CFIEN;
4911 		if (!(adapter->netdev->flags & IFF_PROMISC))
4912 			rctl |= E1000_RCTL_VFE;
4913 		ew32(RCTL, rctl);
4914 		e1000_update_mng_vlan(adapter);
4915 	} else {
4916 		/* disable VLAN receive filtering */
4917 		rctl = er32(RCTL);
4918 		rctl &= ~E1000_RCTL_VFE;
4919 		ew32(RCTL, rctl);
4920 	}
4921 
4922 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4923 		e1000_irq_enable(adapter);
4924 }
4925 
4926 static void e1000_vlan_mode(struct net_device *netdev,
4927 			    netdev_features_t features)
4928 {
4929 	struct e1000_adapter *adapter = netdev_priv(netdev);
4930 
4931 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4932 		e1000_irq_disable(adapter);
4933 
4934 	__e1000_vlan_mode(adapter, features);
4935 
4936 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4937 		e1000_irq_enable(adapter);
4938 }
4939 
4940 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4941 				 __be16 proto, u16 vid)
4942 {
4943 	struct e1000_adapter *adapter = netdev_priv(netdev);
4944 	struct e1000_hw *hw = &adapter->hw;
4945 	u32 vfta, index;
4946 
4947 	if ((hw->mng_cookie.status &
4948 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4949 	    (vid == adapter->mng_vlan_id))
4950 		return 0;
4951 
4952 	if (!e1000_vlan_used(adapter))
4953 		e1000_vlan_filter_on_off(adapter, true);
4954 
4955 	/* add VID to filter table */
4956 	index = (vid >> 5) & 0x7F;
4957 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4958 	vfta |= (1 << (vid & 0x1F));
4959 	e1000_write_vfta(hw, index, vfta);
4960 
4961 	set_bit(vid, adapter->active_vlans);
4962 
4963 	return 0;
4964 }
4965 
4966 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4967 				  __be16 proto, u16 vid)
4968 {
4969 	struct e1000_adapter *adapter = netdev_priv(netdev);
4970 	struct e1000_hw *hw = &adapter->hw;
4971 	u32 vfta, index;
4972 
4973 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4974 		e1000_irq_disable(adapter);
4975 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4976 		e1000_irq_enable(adapter);
4977 
4978 	/* remove VID from filter table */
4979 	index = (vid >> 5) & 0x7F;
4980 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4981 	vfta &= ~(1 << (vid & 0x1F));
4982 	e1000_write_vfta(hw, index, vfta);
4983 
4984 	clear_bit(vid, adapter->active_vlans);
4985 
4986 	if (!e1000_vlan_used(adapter))
4987 		e1000_vlan_filter_on_off(adapter, false);
4988 
4989 	return 0;
4990 }
4991 
4992 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4993 {
4994 	u16 vid;
4995 
4996 	if (!e1000_vlan_used(adapter))
4997 		return;
4998 
4999 	e1000_vlan_filter_on_off(adapter, true);
5000 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5001 		e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5002 }
5003 
5004 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5005 {
5006 	struct e1000_hw *hw = &adapter->hw;
5007 
5008 	hw->autoneg = 0;
5009 
5010 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
5011 	 * for the switch() below to work
5012 	 */
5013 	if ((spd & 1) || (dplx & ~1))
5014 		goto err_inval;
5015 
5016 	/* Fiber NICs only allow 1000 gbps Full duplex */
5017 	if ((hw->media_type == e1000_media_type_fiber) &&
5018 	    spd != SPEED_1000 &&
5019 	    dplx != DUPLEX_FULL)
5020 		goto err_inval;
5021 
5022 	switch (spd + dplx) {
5023 	case SPEED_10 + DUPLEX_HALF:
5024 		hw->forced_speed_duplex = e1000_10_half;
5025 		break;
5026 	case SPEED_10 + DUPLEX_FULL:
5027 		hw->forced_speed_duplex = e1000_10_full;
5028 		break;
5029 	case SPEED_100 + DUPLEX_HALF:
5030 		hw->forced_speed_duplex = e1000_100_half;
5031 		break;
5032 	case SPEED_100 + DUPLEX_FULL:
5033 		hw->forced_speed_duplex = e1000_100_full;
5034 		break;
5035 	case SPEED_1000 + DUPLEX_FULL:
5036 		hw->autoneg = 1;
5037 		hw->autoneg_advertised = ADVERTISE_1000_FULL;
5038 		break;
5039 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
5040 	default:
5041 		goto err_inval;
5042 	}
5043 
5044 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5045 	hw->mdix = AUTO_ALL_MODES;
5046 
5047 	return 0;
5048 
5049 err_inval:
5050 	e_err(probe, "Unsupported Speed/Duplex configuration\n");
5051 	return -EINVAL;
5052 }
5053 
5054 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5055 {
5056 	struct net_device *netdev = pci_get_drvdata(pdev);
5057 	struct e1000_adapter *adapter = netdev_priv(netdev);
5058 	struct e1000_hw *hw = &adapter->hw;
5059 	u32 ctrl, ctrl_ext, rctl, status;
5060 	u32 wufc = adapter->wol;
5061 
5062 	netif_device_detach(netdev);
5063 
5064 	if (netif_running(netdev)) {
5065 		int count = E1000_CHECK_RESET_COUNT;
5066 
5067 		while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5068 			usleep_range(10000, 20000);
5069 
5070 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5071 		e1000_down(adapter);
5072 	}
5073 
5074 	status = er32(STATUS);
5075 	if (status & E1000_STATUS_LU)
5076 		wufc &= ~E1000_WUFC_LNKC;
5077 
5078 	if (wufc) {
5079 		e1000_setup_rctl(adapter);
5080 		e1000_set_rx_mode(netdev);
5081 
5082 		rctl = er32(RCTL);
5083 
5084 		/* turn on all-multi mode if wake on multicast is enabled */
5085 		if (wufc & E1000_WUFC_MC)
5086 			rctl |= E1000_RCTL_MPE;
5087 
5088 		/* enable receives in the hardware */
5089 		ew32(RCTL, rctl | E1000_RCTL_EN);
5090 
5091 		if (hw->mac_type >= e1000_82540) {
5092 			ctrl = er32(CTRL);
5093 			/* advertise wake from D3Cold */
5094 			#define E1000_CTRL_ADVD3WUC 0x00100000
5095 			/* phy power management enable */
5096 			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5097 			ctrl |= E1000_CTRL_ADVD3WUC |
5098 				E1000_CTRL_EN_PHY_PWR_MGMT;
5099 			ew32(CTRL, ctrl);
5100 		}
5101 
5102 		if (hw->media_type == e1000_media_type_fiber ||
5103 		    hw->media_type == e1000_media_type_internal_serdes) {
5104 			/* keep the laser running in D3 */
5105 			ctrl_ext = er32(CTRL_EXT);
5106 			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5107 			ew32(CTRL_EXT, ctrl_ext);
5108 		}
5109 
5110 		ew32(WUC, E1000_WUC_PME_EN);
5111 		ew32(WUFC, wufc);
5112 	} else {
5113 		ew32(WUC, 0);
5114 		ew32(WUFC, 0);
5115 	}
5116 
5117 	e1000_release_manageability(adapter);
5118 
5119 	*enable_wake = !!wufc;
5120 
5121 	/* make sure adapter isn't asleep if manageability is enabled */
5122 	if (adapter->en_mng_pt)
5123 		*enable_wake = true;
5124 
5125 	if (netif_running(netdev))
5126 		e1000_free_irq(adapter);
5127 
5128 	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5129 		pci_disable_device(pdev);
5130 
5131 	return 0;
5132 }
5133 
5134 static int __maybe_unused e1000_suspend(struct device *dev)
5135 {
5136 	int retval;
5137 	struct pci_dev *pdev = to_pci_dev(dev);
5138 	bool wake;
5139 
5140 	retval = __e1000_shutdown(pdev, &wake);
5141 	device_set_wakeup_enable(dev, wake);
5142 
5143 	return retval;
5144 }
5145 
5146 static int __maybe_unused e1000_resume(struct device *dev)
5147 {
5148 	struct pci_dev *pdev = to_pci_dev(dev);
5149 	struct net_device *netdev = pci_get_drvdata(pdev);
5150 	struct e1000_adapter *adapter = netdev_priv(netdev);
5151 	struct e1000_hw *hw = &adapter->hw;
5152 	u32 err;
5153 
5154 	if (adapter->need_ioport)
5155 		err = pci_enable_device(pdev);
5156 	else
5157 		err = pci_enable_device_mem(pdev);
5158 	if (err) {
5159 		pr_err("Cannot enable PCI device from suspend\n");
5160 		return err;
5161 	}
5162 
5163 	/* flush memory to make sure state is correct */
5164 	smp_mb__before_atomic();
5165 	clear_bit(__E1000_DISABLED, &adapter->flags);
5166 	pci_set_master(pdev);
5167 
5168 	pci_enable_wake(pdev, PCI_D3hot, 0);
5169 	pci_enable_wake(pdev, PCI_D3cold, 0);
5170 
5171 	if (netif_running(netdev)) {
5172 		err = e1000_request_irq(adapter);
5173 		if (err)
5174 			return err;
5175 	}
5176 
5177 	e1000_power_up_phy(adapter);
5178 	e1000_reset(adapter);
5179 	ew32(WUS, ~0);
5180 
5181 	e1000_init_manageability(adapter);
5182 
5183 	if (netif_running(netdev))
5184 		e1000_up(adapter);
5185 
5186 	netif_device_attach(netdev);
5187 
5188 	return 0;
5189 }
5190 
5191 static void e1000_shutdown(struct pci_dev *pdev)
5192 {
5193 	bool wake;
5194 
5195 	__e1000_shutdown(pdev, &wake);
5196 
5197 	if (system_state == SYSTEM_POWER_OFF) {
5198 		pci_wake_from_d3(pdev, wake);
5199 		pci_set_power_state(pdev, PCI_D3hot);
5200 	}
5201 }
5202 
5203 #ifdef CONFIG_NET_POLL_CONTROLLER
5204 /* Polling 'interrupt' - used by things like netconsole to send skbs
5205  * without having to re-enable interrupts. It's not called while
5206  * the interrupt routine is executing.
5207  */
5208 static void e1000_netpoll(struct net_device *netdev)
5209 {
5210 	struct e1000_adapter *adapter = netdev_priv(netdev);
5211 
5212 	if (disable_hardirq(adapter->pdev->irq))
5213 		e1000_intr(adapter->pdev->irq, netdev);
5214 	enable_irq(adapter->pdev->irq);
5215 }
5216 #endif
5217 
5218 /**
5219  * e1000_io_error_detected - called when PCI error is detected
5220  * @pdev: Pointer to PCI device
5221  * @state: The current pci connection state
5222  *
5223  * This function is called after a PCI bus error affecting
5224  * this device has been detected.
5225  */
5226 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5227 						pci_channel_state_t state)
5228 {
5229 	struct net_device *netdev = pci_get_drvdata(pdev);
5230 	struct e1000_adapter *adapter = netdev_priv(netdev);
5231 
5232 	netif_device_detach(netdev);
5233 
5234 	if (state == pci_channel_io_perm_failure)
5235 		return PCI_ERS_RESULT_DISCONNECT;
5236 
5237 	if (netif_running(netdev))
5238 		e1000_down(adapter);
5239 
5240 	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5241 		pci_disable_device(pdev);
5242 
5243 	/* Request a slot slot reset. */
5244 	return PCI_ERS_RESULT_NEED_RESET;
5245 }
5246 
5247 /**
5248  * e1000_io_slot_reset - called after the pci bus has been reset.
5249  * @pdev: Pointer to PCI device
5250  *
5251  * Restart the card from scratch, as if from a cold-boot. Implementation
5252  * resembles the first-half of the e1000_resume routine.
5253  */
5254 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5255 {
5256 	struct net_device *netdev = pci_get_drvdata(pdev);
5257 	struct e1000_adapter *adapter = netdev_priv(netdev);
5258 	struct e1000_hw *hw = &adapter->hw;
5259 	int err;
5260 
5261 	if (adapter->need_ioport)
5262 		err = pci_enable_device(pdev);
5263 	else
5264 		err = pci_enable_device_mem(pdev);
5265 	if (err) {
5266 		pr_err("Cannot re-enable PCI device after reset.\n");
5267 		return PCI_ERS_RESULT_DISCONNECT;
5268 	}
5269 
5270 	/* flush memory to make sure state is correct */
5271 	smp_mb__before_atomic();
5272 	clear_bit(__E1000_DISABLED, &adapter->flags);
5273 	pci_set_master(pdev);
5274 
5275 	pci_enable_wake(pdev, PCI_D3hot, 0);
5276 	pci_enable_wake(pdev, PCI_D3cold, 0);
5277 
5278 	e1000_reset(adapter);
5279 	ew32(WUS, ~0);
5280 
5281 	return PCI_ERS_RESULT_RECOVERED;
5282 }
5283 
5284 /**
5285  * e1000_io_resume - called when traffic can start flowing again.
5286  * @pdev: Pointer to PCI device
5287  *
5288  * This callback is called when the error recovery driver tells us that
5289  * its OK to resume normal operation. Implementation resembles the
5290  * second-half of the e1000_resume routine.
5291  */
5292 static void e1000_io_resume(struct pci_dev *pdev)
5293 {
5294 	struct net_device *netdev = pci_get_drvdata(pdev);
5295 	struct e1000_adapter *adapter = netdev_priv(netdev);
5296 
5297 	e1000_init_manageability(adapter);
5298 
5299 	if (netif_running(netdev)) {
5300 		if (e1000_up(adapter)) {
5301 			pr_info("can't bring device back up after reset\n");
5302 			return;
5303 		}
5304 	}
5305 
5306 	netif_device_attach(netdev);
5307 }
5308 
5309 /* e1000_main.c */
5310