xref: /linux/drivers/net/ethernet/intel/e1000/e1000_main.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31 #include <linux/io.h>
32 #include <linux/prefetch.h>
33 #include <linux/bitops.h>
34 #include <linux/if_vlan.h>
35 
36 /* Intel Media SOC GbE MDIO physical base address */
37 static unsigned long ce4100_gbe_mdio_base_phy;
38 /* Intel Media SOC GbE MDIO virtual base address */
39 void __iomem *ce4100_gbe_mdio_base_virt;
40 
41 char e1000_driver_name[] = "e1000";
42 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
43 #define DRV_VERSION "7.3.21-k8-NAPI"
44 const char e1000_driver_version[] = DRV_VERSION;
45 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
46 
47 /* e1000_pci_tbl - PCI Device ID Table
48  *
49  * Last entry must be all 0s
50  *
51  * Macro expands to...
52  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
53  */
54 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
55 	INTEL_E1000_ETHERNET_DEVICE(0x1000),
56 	INTEL_E1000_ETHERNET_DEVICE(0x1001),
57 	INTEL_E1000_ETHERNET_DEVICE(0x1004),
58 	INTEL_E1000_ETHERNET_DEVICE(0x1008),
59 	INTEL_E1000_ETHERNET_DEVICE(0x1009),
60 	INTEL_E1000_ETHERNET_DEVICE(0x100C),
61 	INTEL_E1000_ETHERNET_DEVICE(0x100D),
62 	INTEL_E1000_ETHERNET_DEVICE(0x100E),
63 	INTEL_E1000_ETHERNET_DEVICE(0x100F),
64 	INTEL_E1000_ETHERNET_DEVICE(0x1010),
65 	INTEL_E1000_ETHERNET_DEVICE(0x1011),
66 	INTEL_E1000_ETHERNET_DEVICE(0x1012),
67 	INTEL_E1000_ETHERNET_DEVICE(0x1013),
68 	INTEL_E1000_ETHERNET_DEVICE(0x1014),
69 	INTEL_E1000_ETHERNET_DEVICE(0x1015),
70 	INTEL_E1000_ETHERNET_DEVICE(0x1016),
71 	INTEL_E1000_ETHERNET_DEVICE(0x1017),
72 	INTEL_E1000_ETHERNET_DEVICE(0x1018),
73 	INTEL_E1000_ETHERNET_DEVICE(0x1019),
74 	INTEL_E1000_ETHERNET_DEVICE(0x101A),
75 	INTEL_E1000_ETHERNET_DEVICE(0x101D),
76 	INTEL_E1000_ETHERNET_DEVICE(0x101E),
77 	INTEL_E1000_ETHERNET_DEVICE(0x1026),
78 	INTEL_E1000_ETHERNET_DEVICE(0x1027),
79 	INTEL_E1000_ETHERNET_DEVICE(0x1028),
80 	INTEL_E1000_ETHERNET_DEVICE(0x1075),
81 	INTEL_E1000_ETHERNET_DEVICE(0x1076),
82 	INTEL_E1000_ETHERNET_DEVICE(0x1077),
83 	INTEL_E1000_ETHERNET_DEVICE(0x1078),
84 	INTEL_E1000_ETHERNET_DEVICE(0x1079),
85 	INTEL_E1000_ETHERNET_DEVICE(0x107A),
86 	INTEL_E1000_ETHERNET_DEVICE(0x107B),
87 	INTEL_E1000_ETHERNET_DEVICE(0x107C),
88 	INTEL_E1000_ETHERNET_DEVICE(0x108A),
89 	INTEL_E1000_ETHERNET_DEVICE(0x1099),
90 	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
91 	INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
92 	/* required last entry */
93 	{0,}
94 };
95 
96 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
97 
98 int e1000_up(struct e1000_adapter *adapter);
99 void e1000_down(struct e1000_adapter *adapter);
100 void e1000_reinit_locked(struct e1000_adapter *adapter);
101 void e1000_reset(struct e1000_adapter *adapter);
102 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
103 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
104 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
105 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
106 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
107                              struct e1000_tx_ring *txdr);
108 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
109                              struct e1000_rx_ring *rxdr);
110 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
111                              struct e1000_tx_ring *tx_ring);
112 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
113                              struct e1000_rx_ring *rx_ring);
114 void e1000_update_stats(struct e1000_adapter *adapter);
115 
116 static int e1000_init_module(void);
117 static void e1000_exit_module(void);
118 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
119 static void __devexit e1000_remove(struct pci_dev *pdev);
120 static int e1000_alloc_queues(struct e1000_adapter *adapter);
121 static int e1000_sw_init(struct e1000_adapter *adapter);
122 static int e1000_open(struct net_device *netdev);
123 static int e1000_close(struct net_device *netdev);
124 static void e1000_configure_tx(struct e1000_adapter *adapter);
125 static void e1000_configure_rx(struct e1000_adapter *adapter);
126 static void e1000_setup_rctl(struct e1000_adapter *adapter);
127 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
128 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
129 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
130                                 struct e1000_tx_ring *tx_ring);
131 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
132                                 struct e1000_rx_ring *rx_ring);
133 static void e1000_set_rx_mode(struct net_device *netdev);
134 static void e1000_update_phy_info_task(struct work_struct *work);
135 static void e1000_watchdog(struct work_struct *work);
136 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
137 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
138 				    struct net_device *netdev);
139 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
140 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
141 static int e1000_set_mac(struct net_device *netdev, void *p);
142 static irqreturn_t e1000_intr(int irq, void *data);
143 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
144 			       struct e1000_tx_ring *tx_ring);
145 static int e1000_clean(struct napi_struct *napi, int budget);
146 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
147 			       struct e1000_rx_ring *rx_ring,
148 			       int *work_done, int work_to_do);
149 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
150 				     struct e1000_rx_ring *rx_ring,
151 				     int *work_done, int work_to_do);
152 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
153 				   struct e1000_rx_ring *rx_ring,
154 				   int cleaned_count);
155 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
156 					 struct e1000_rx_ring *rx_ring,
157 					 int cleaned_count);
158 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
159 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
160 			   int cmd);
161 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
162 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
163 static void e1000_tx_timeout(struct net_device *dev);
164 static void e1000_reset_task(struct work_struct *work);
165 static void e1000_smartspeed(struct e1000_adapter *adapter);
166 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
167                                        struct sk_buff *skb);
168 
169 static bool e1000_vlan_used(struct e1000_adapter *adapter);
170 static void e1000_vlan_mode(struct net_device *netdev, u32 features);
171 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
172 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
173 static void e1000_restore_vlan(struct e1000_adapter *adapter);
174 
175 #ifdef CONFIG_PM
176 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
177 static int e1000_resume(struct pci_dev *pdev);
178 #endif
179 static void e1000_shutdown(struct pci_dev *pdev);
180 
181 #ifdef CONFIG_NET_POLL_CONTROLLER
182 /* for netdump / net console */
183 static void e1000_netpoll (struct net_device *netdev);
184 #endif
185 
186 #define COPYBREAK_DEFAULT 256
187 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
188 module_param(copybreak, uint, 0644);
189 MODULE_PARM_DESC(copybreak,
190 	"Maximum size of packet that is copied to a new buffer on receive");
191 
192 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
193                      pci_channel_state_t state);
194 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
195 static void e1000_io_resume(struct pci_dev *pdev);
196 
197 static struct pci_error_handlers e1000_err_handler = {
198 	.error_detected = e1000_io_error_detected,
199 	.slot_reset = e1000_io_slot_reset,
200 	.resume = e1000_io_resume,
201 };
202 
203 static struct pci_driver e1000_driver = {
204 	.name     = e1000_driver_name,
205 	.id_table = e1000_pci_tbl,
206 	.probe    = e1000_probe,
207 	.remove   = __devexit_p(e1000_remove),
208 #ifdef CONFIG_PM
209 	/* Power Management Hooks */
210 	.suspend  = e1000_suspend,
211 	.resume   = e1000_resume,
212 #endif
213 	.shutdown = e1000_shutdown,
214 	.err_handler = &e1000_err_handler
215 };
216 
217 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
218 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
219 MODULE_LICENSE("GPL");
220 MODULE_VERSION(DRV_VERSION);
221 
222 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
223 module_param(debug, int, 0);
224 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
225 
226 /**
227  * e1000_get_hw_dev - return device
228  * used by hardware layer to print debugging information
229  *
230  **/
231 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
232 {
233 	struct e1000_adapter *adapter = hw->back;
234 	return adapter->netdev;
235 }
236 
237 /**
238  * e1000_init_module - Driver Registration Routine
239  *
240  * e1000_init_module is the first routine called when the driver is
241  * loaded. All it does is register with the PCI subsystem.
242  **/
243 
244 static int __init e1000_init_module(void)
245 {
246 	int ret;
247 	pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
248 
249 	pr_info("%s\n", e1000_copyright);
250 
251 	ret = pci_register_driver(&e1000_driver);
252 	if (copybreak != COPYBREAK_DEFAULT) {
253 		if (copybreak == 0)
254 			pr_info("copybreak disabled\n");
255 		else
256 			pr_info("copybreak enabled for "
257 				   "packets <= %u bytes\n", copybreak);
258 	}
259 	return ret;
260 }
261 
262 module_init(e1000_init_module);
263 
264 /**
265  * e1000_exit_module - Driver Exit Cleanup Routine
266  *
267  * e1000_exit_module is called just before the driver is removed
268  * from memory.
269  **/
270 
271 static void __exit e1000_exit_module(void)
272 {
273 	pci_unregister_driver(&e1000_driver);
274 }
275 
276 module_exit(e1000_exit_module);
277 
278 static int e1000_request_irq(struct e1000_adapter *adapter)
279 {
280 	struct net_device *netdev = adapter->netdev;
281 	irq_handler_t handler = e1000_intr;
282 	int irq_flags = IRQF_SHARED;
283 	int err;
284 
285 	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
286 	                  netdev);
287 	if (err) {
288 		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
289 	}
290 
291 	return err;
292 }
293 
294 static void e1000_free_irq(struct e1000_adapter *adapter)
295 {
296 	struct net_device *netdev = adapter->netdev;
297 
298 	free_irq(adapter->pdev->irq, netdev);
299 }
300 
301 /**
302  * e1000_irq_disable - Mask off interrupt generation on the NIC
303  * @adapter: board private structure
304  **/
305 
306 static void e1000_irq_disable(struct e1000_adapter *adapter)
307 {
308 	struct e1000_hw *hw = &adapter->hw;
309 
310 	ew32(IMC, ~0);
311 	E1000_WRITE_FLUSH();
312 	synchronize_irq(adapter->pdev->irq);
313 }
314 
315 /**
316  * e1000_irq_enable - Enable default interrupt generation settings
317  * @adapter: board private structure
318  **/
319 
320 static void e1000_irq_enable(struct e1000_adapter *adapter)
321 {
322 	struct e1000_hw *hw = &adapter->hw;
323 
324 	ew32(IMS, IMS_ENABLE_MASK);
325 	E1000_WRITE_FLUSH();
326 }
327 
328 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
329 {
330 	struct e1000_hw *hw = &adapter->hw;
331 	struct net_device *netdev = adapter->netdev;
332 	u16 vid = hw->mng_cookie.vlan_id;
333 	u16 old_vid = adapter->mng_vlan_id;
334 
335 	if (!e1000_vlan_used(adapter))
336 		return;
337 
338 	if (!test_bit(vid, adapter->active_vlans)) {
339 		if (hw->mng_cookie.status &
340 		    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
341 			e1000_vlan_rx_add_vid(netdev, vid);
342 			adapter->mng_vlan_id = vid;
343 		} else {
344 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
345 		}
346 		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
347 		    (vid != old_vid) &&
348 		    !test_bit(old_vid, adapter->active_vlans))
349 			e1000_vlan_rx_kill_vid(netdev, old_vid);
350 	} else {
351 		adapter->mng_vlan_id = vid;
352 	}
353 }
354 
355 static void e1000_init_manageability(struct e1000_adapter *adapter)
356 {
357 	struct e1000_hw *hw = &adapter->hw;
358 
359 	if (adapter->en_mng_pt) {
360 		u32 manc = er32(MANC);
361 
362 		/* disable hardware interception of ARP */
363 		manc &= ~(E1000_MANC_ARP_EN);
364 
365 		ew32(MANC, manc);
366 	}
367 }
368 
369 static void e1000_release_manageability(struct e1000_adapter *adapter)
370 {
371 	struct e1000_hw *hw = &adapter->hw;
372 
373 	if (adapter->en_mng_pt) {
374 		u32 manc = er32(MANC);
375 
376 		/* re-enable hardware interception of ARP */
377 		manc |= E1000_MANC_ARP_EN;
378 
379 		ew32(MANC, manc);
380 	}
381 }
382 
383 /**
384  * e1000_configure - configure the hardware for RX and TX
385  * @adapter = private board structure
386  **/
387 static void e1000_configure(struct e1000_adapter *adapter)
388 {
389 	struct net_device *netdev = adapter->netdev;
390 	int i;
391 
392 	e1000_set_rx_mode(netdev);
393 
394 	e1000_restore_vlan(adapter);
395 	e1000_init_manageability(adapter);
396 
397 	e1000_configure_tx(adapter);
398 	e1000_setup_rctl(adapter);
399 	e1000_configure_rx(adapter);
400 	/* call E1000_DESC_UNUSED which always leaves
401 	 * at least 1 descriptor unused to make sure
402 	 * next_to_use != next_to_clean */
403 	for (i = 0; i < adapter->num_rx_queues; i++) {
404 		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
405 		adapter->alloc_rx_buf(adapter, ring,
406 		                      E1000_DESC_UNUSED(ring));
407 	}
408 }
409 
410 int e1000_up(struct e1000_adapter *adapter)
411 {
412 	struct e1000_hw *hw = &adapter->hw;
413 
414 	/* hardware has been reset, we need to reload some things */
415 	e1000_configure(adapter);
416 
417 	clear_bit(__E1000_DOWN, &adapter->flags);
418 
419 	napi_enable(&adapter->napi);
420 
421 	e1000_irq_enable(adapter);
422 
423 	netif_wake_queue(adapter->netdev);
424 
425 	/* fire a link change interrupt to start the watchdog */
426 	ew32(ICS, E1000_ICS_LSC);
427 	return 0;
428 }
429 
430 /**
431  * e1000_power_up_phy - restore link in case the phy was powered down
432  * @adapter: address of board private structure
433  *
434  * The phy may be powered down to save power and turn off link when the
435  * driver is unloaded and wake on lan is not enabled (among others)
436  * *** this routine MUST be followed by a call to e1000_reset ***
437  *
438  **/
439 
440 void e1000_power_up_phy(struct e1000_adapter *adapter)
441 {
442 	struct e1000_hw *hw = &adapter->hw;
443 	u16 mii_reg = 0;
444 
445 	/* Just clear the power down bit to wake the phy back up */
446 	if (hw->media_type == e1000_media_type_copper) {
447 		/* according to the manual, the phy will retain its
448 		 * settings across a power-down/up cycle */
449 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
450 		mii_reg &= ~MII_CR_POWER_DOWN;
451 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
452 	}
453 }
454 
455 static void e1000_power_down_phy(struct e1000_adapter *adapter)
456 {
457 	struct e1000_hw *hw = &adapter->hw;
458 
459 	/* Power down the PHY so no link is implied when interface is down *
460 	 * The PHY cannot be powered down if any of the following is true *
461 	 * (a) WoL is enabled
462 	 * (b) AMT is active
463 	 * (c) SoL/IDER session is active */
464 	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
465 	   hw->media_type == e1000_media_type_copper) {
466 		u16 mii_reg = 0;
467 
468 		switch (hw->mac_type) {
469 		case e1000_82540:
470 		case e1000_82545:
471 		case e1000_82545_rev_3:
472 		case e1000_82546:
473 		case e1000_ce4100:
474 		case e1000_82546_rev_3:
475 		case e1000_82541:
476 		case e1000_82541_rev_2:
477 		case e1000_82547:
478 		case e1000_82547_rev_2:
479 			if (er32(MANC) & E1000_MANC_SMBUS_EN)
480 				goto out;
481 			break;
482 		default:
483 			goto out;
484 		}
485 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
486 		mii_reg |= MII_CR_POWER_DOWN;
487 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
488 		msleep(1);
489 	}
490 out:
491 	return;
492 }
493 
494 static void e1000_down_and_stop(struct e1000_adapter *adapter)
495 {
496 	set_bit(__E1000_DOWN, &adapter->flags);
497 	cancel_work_sync(&adapter->reset_task);
498 	cancel_delayed_work_sync(&adapter->watchdog_task);
499 	cancel_delayed_work_sync(&adapter->phy_info_task);
500 	cancel_delayed_work_sync(&adapter->fifo_stall_task);
501 }
502 
503 void e1000_down(struct e1000_adapter *adapter)
504 {
505 	struct e1000_hw *hw = &adapter->hw;
506 	struct net_device *netdev = adapter->netdev;
507 	u32 rctl, tctl;
508 
509 
510 	/* disable receives in the hardware */
511 	rctl = er32(RCTL);
512 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
513 	/* flush and sleep below */
514 
515 	netif_tx_disable(netdev);
516 
517 	/* disable transmits in the hardware */
518 	tctl = er32(TCTL);
519 	tctl &= ~E1000_TCTL_EN;
520 	ew32(TCTL, tctl);
521 	/* flush both disables and wait for them to finish */
522 	E1000_WRITE_FLUSH();
523 	msleep(10);
524 
525 	napi_disable(&adapter->napi);
526 
527 	e1000_irq_disable(adapter);
528 
529 	/*
530 	 * Setting DOWN must be after irq_disable to prevent
531 	 * a screaming interrupt.  Setting DOWN also prevents
532 	 * tasks from rescheduling.
533 	 */
534 	e1000_down_and_stop(adapter);
535 
536 	adapter->link_speed = 0;
537 	adapter->link_duplex = 0;
538 	netif_carrier_off(netdev);
539 
540 	e1000_reset(adapter);
541 	e1000_clean_all_tx_rings(adapter);
542 	e1000_clean_all_rx_rings(adapter);
543 }
544 
545 static void e1000_reinit_safe(struct e1000_adapter *adapter)
546 {
547 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
548 		msleep(1);
549 	mutex_lock(&adapter->mutex);
550 	e1000_down(adapter);
551 	e1000_up(adapter);
552 	mutex_unlock(&adapter->mutex);
553 	clear_bit(__E1000_RESETTING, &adapter->flags);
554 }
555 
556 void e1000_reinit_locked(struct e1000_adapter *adapter)
557 {
558 	/* if rtnl_lock is not held the call path is bogus */
559 	ASSERT_RTNL();
560 	WARN_ON(in_interrupt());
561 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
562 		msleep(1);
563 	e1000_down(adapter);
564 	e1000_up(adapter);
565 	clear_bit(__E1000_RESETTING, &adapter->flags);
566 }
567 
568 void e1000_reset(struct e1000_adapter *adapter)
569 {
570 	struct e1000_hw *hw = &adapter->hw;
571 	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
572 	bool legacy_pba_adjust = false;
573 	u16 hwm;
574 
575 	/* Repartition Pba for greater than 9k mtu
576 	 * To take effect CTRL.RST is required.
577 	 */
578 
579 	switch (hw->mac_type) {
580 	case e1000_82542_rev2_0:
581 	case e1000_82542_rev2_1:
582 	case e1000_82543:
583 	case e1000_82544:
584 	case e1000_82540:
585 	case e1000_82541:
586 	case e1000_82541_rev_2:
587 		legacy_pba_adjust = true;
588 		pba = E1000_PBA_48K;
589 		break;
590 	case e1000_82545:
591 	case e1000_82545_rev_3:
592 	case e1000_82546:
593 	case e1000_ce4100:
594 	case e1000_82546_rev_3:
595 		pba = E1000_PBA_48K;
596 		break;
597 	case e1000_82547:
598 	case e1000_82547_rev_2:
599 		legacy_pba_adjust = true;
600 		pba = E1000_PBA_30K;
601 		break;
602 	case e1000_undefined:
603 	case e1000_num_macs:
604 		break;
605 	}
606 
607 	if (legacy_pba_adjust) {
608 		if (hw->max_frame_size > E1000_RXBUFFER_8192)
609 			pba -= 8; /* allocate more FIFO for Tx */
610 
611 		if (hw->mac_type == e1000_82547) {
612 			adapter->tx_fifo_head = 0;
613 			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
614 			adapter->tx_fifo_size =
615 				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
616 			atomic_set(&adapter->tx_fifo_stall, 0);
617 		}
618 	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
619 		/* adjust PBA for jumbo frames */
620 		ew32(PBA, pba);
621 
622 		/* To maintain wire speed transmits, the Tx FIFO should be
623 		 * large enough to accommodate two full transmit packets,
624 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
625 		 * the Rx FIFO should be large enough to accommodate at least
626 		 * one full receive packet and is similarly rounded up and
627 		 * expressed in KB. */
628 		pba = er32(PBA);
629 		/* upper 16 bits has Tx packet buffer allocation size in KB */
630 		tx_space = pba >> 16;
631 		/* lower 16 bits has Rx packet buffer allocation size in KB */
632 		pba &= 0xffff;
633 		/*
634 		 * the tx fifo also stores 16 bytes of information about the tx
635 		 * but don't include ethernet FCS because hardware appends it
636 		 */
637 		min_tx_space = (hw->max_frame_size +
638 		                sizeof(struct e1000_tx_desc) -
639 		                ETH_FCS_LEN) * 2;
640 		min_tx_space = ALIGN(min_tx_space, 1024);
641 		min_tx_space >>= 10;
642 		/* software strips receive CRC, so leave room for it */
643 		min_rx_space = hw->max_frame_size;
644 		min_rx_space = ALIGN(min_rx_space, 1024);
645 		min_rx_space >>= 10;
646 
647 		/* If current Tx allocation is less than the min Tx FIFO size,
648 		 * and the min Tx FIFO size is less than the current Rx FIFO
649 		 * allocation, take space away from current Rx allocation */
650 		if (tx_space < min_tx_space &&
651 		    ((min_tx_space - tx_space) < pba)) {
652 			pba = pba - (min_tx_space - tx_space);
653 
654 			/* PCI/PCIx hardware has PBA alignment constraints */
655 			switch (hw->mac_type) {
656 			case e1000_82545 ... e1000_82546_rev_3:
657 				pba &= ~(E1000_PBA_8K - 1);
658 				break;
659 			default:
660 				break;
661 			}
662 
663 			/* if short on rx space, rx wins and must trump tx
664 			 * adjustment or use Early Receive if available */
665 			if (pba < min_rx_space)
666 				pba = min_rx_space;
667 		}
668 	}
669 
670 	ew32(PBA, pba);
671 
672 	/*
673 	 * flow control settings:
674 	 * The high water mark must be low enough to fit one full frame
675 	 * (or the size used for early receive) above it in the Rx FIFO.
676 	 * Set it to the lower of:
677 	 * - 90% of the Rx FIFO size, and
678 	 * - the full Rx FIFO size minus the early receive size (for parts
679 	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
680 	 * - the full Rx FIFO size minus one full frame
681 	 */
682 	hwm = min(((pba << 10) * 9 / 10),
683 		  ((pba << 10) - hw->max_frame_size));
684 
685 	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
686 	hw->fc_low_water = hw->fc_high_water - 8;
687 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
688 	hw->fc_send_xon = 1;
689 	hw->fc = hw->original_fc;
690 
691 	/* Allow time for pending master requests to run */
692 	e1000_reset_hw(hw);
693 	if (hw->mac_type >= e1000_82544)
694 		ew32(WUC, 0);
695 
696 	if (e1000_init_hw(hw))
697 		e_dev_err("Hardware Error\n");
698 	e1000_update_mng_vlan(adapter);
699 
700 	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
701 	if (hw->mac_type >= e1000_82544 &&
702 	    hw->autoneg == 1 &&
703 	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
704 		u32 ctrl = er32(CTRL);
705 		/* clear phy power management bit if we are in gig only mode,
706 		 * which if enabled will attempt negotiation to 100Mb, which
707 		 * can cause a loss of link at power off or driver unload */
708 		ctrl &= ~E1000_CTRL_SWDPIN3;
709 		ew32(CTRL, ctrl);
710 	}
711 
712 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
713 	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
714 
715 	e1000_reset_adaptive(hw);
716 	e1000_phy_get_info(hw, &adapter->phy_info);
717 
718 	e1000_release_manageability(adapter);
719 }
720 
721 /**
722  *  Dump the eeprom for users having checksum issues
723  **/
724 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
725 {
726 	struct net_device *netdev = adapter->netdev;
727 	struct ethtool_eeprom eeprom;
728 	const struct ethtool_ops *ops = netdev->ethtool_ops;
729 	u8 *data;
730 	int i;
731 	u16 csum_old, csum_new = 0;
732 
733 	eeprom.len = ops->get_eeprom_len(netdev);
734 	eeprom.offset = 0;
735 
736 	data = kmalloc(eeprom.len, GFP_KERNEL);
737 	if (!data) {
738 		pr_err("Unable to allocate memory to dump EEPROM data\n");
739 		return;
740 	}
741 
742 	ops->get_eeprom(netdev, &eeprom, data);
743 
744 	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
745 		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
746 	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
747 		csum_new += data[i] + (data[i + 1] << 8);
748 	csum_new = EEPROM_SUM - csum_new;
749 
750 	pr_err("/*********************/\n");
751 	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
752 	pr_err("Calculated              : 0x%04x\n", csum_new);
753 
754 	pr_err("Offset    Values\n");
755 	pr_err("========  ======\n");
756 	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
757 
758 	pr_err("Include this output when contacting your support provider.\n");
759 	pr_err("This is not a software error! Something bad happened to\n");
760 	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
761 	pr_err("result in further problems, possibly loss of data,\n");
762 	pr_err("corruption or system hangs!\n");
763 	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
764 	pr_err("which is invalid and requires you to set the proper MAC\n");
765 	pr_err("address manually before continuing to enable this network\n");
766 	pr_err("device. Please inspect the EEPROM dump and report the\n");
767 	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
768 	pr_err("/*********************/\n");
769 
770 	kfree(data);
771 }
772 
773 /**
774  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
775  * @pdev: PCI device information struct
776  *
777  * Return true if an adapter needs ioport resources
778  **/
779 static int e1000_is_need_ioport(struct pci_dev *pdev)
780 {
781 	switch (pdev->device) {
782 	case E1000_DEV_ID_82540EM:
783 	case E1000_DEV_ID_82540EM_LOM:
784 	case E1000_DEV_ID_82540EP:
785 	case E1000_DEV_ID_82540EP_LOM:
786 	case E1000_DEV_ID_82540EP_LP:
787 	case E1000_DEV_ID_82541EI:
788 	case E1000_DEV_ID_82541EI_MOBILE:
789 	case E1000_DEV_ID_82541ER:
790 	case E1000_DEV_ID_82541ER_LOM:
791 	case E1000_DEV_ID_82541GI:
792 	case E1000_DEV_ID_82541GI_LF:
793 	case E1000_DEV_ID_82541GI_MOBILE:
794 	case E1000_DEV_ID_82544EI_COPPER:
795 	case E1000_DEV_ID_82544EI_FIBER:
796 	case E1000_DEV_ID_82544GC_COPPER:
797 	case E1000_DEV_ID_82544GC_LOM:
798 	case E1000_DEV_ID_82545EM_COPPER:
799 	case E1000_DEV_ID_82545EM_FIBER:
800 	case E1000_DEV_ID_82546EB_COPPER:
801 	case E1000_DEV_ID_82546EB_FIBER:
802 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
803 		return true;
804 	default:
805 		return false;
806 	}
807 }
808 
809 static u32 e1000_fix_features(struct net_device *netdev, u32 features)
810 {
811 	/*
812 	 * Since there is no support for separate rx/tx vlan accel
813 	 * enable/disable make sure tx flag is always in same state as rx.
814 	 */
815 	if (features & NETIF_F_HW_VLAN_RX)
816 		features |= NETIF_F_HW_VLAN_TX;
817 	else
818 		features &= ~NETIF_F_HW_VLAN_TX;
819 
820 	return features;
821 }
822 
823 static int e1000_set_features(struct net_device *netdev, u32 features)
824 {
825 	struct e1000_adapter *adapter = netdev_priv(netdev);
826 	u32 changed = features ^ netdev->features;
827 
828 	if (changed & NETIF_F_HW_VLAN_RX)
829 		e1000_vlan_mode(netdev, features);
830 
831 	if (!(changed & NETIF_F_RXCSUM))
832 		return 0;
833 
834 	adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
835 
836 	if (netif_running(netdev))
837 		e1000_reinit_locked(adapter);
838 	else
839 		e1000_reset(adapter);
840 
841 	return 0;
842 }
843 
844 static const struct net_device_ops e1000_netdev_ops = {
845 	.ndo_open		= e1000_open,
846 	.ndo_stop		= e1000_close,
847 	.ndo_start_xmit		= e1000_xmit_frame,
848 	.ndo_get_stats		= e1000_get_stats,
849 	.ndo_set_rx_mode	= e1000_set_rx_mode,
850 	.ndo_set_mac_address	= e1000_set_mac,
851 	.ndo_tx_timeout		= e1000_tx_timeout,
852 	.ndo_change_mtu		= e1000_change_mtu,
853 	.ndo_do_ioctl		= e1000_ioctl,
854 	.ndo_validate_addr	= eth_validate_addr,
855 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
856 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
857 #ifdef CONFIG_NET_POLL_CONTROLLER
858 	.ndo_poll_controller	= e1000_netpoll,
859 #endif
860 	.ndo_fix_features	= e1000_fix_features,
861 	.ndo_set_features	= e1000_set_features,
862 };
863 
864 /**
865  * e1000_init_hw_struct - initialize members of hw struct
866  * @adapter: board private struct
867  * @hw: structure used by e1000_hw.c
868  *
869  * Factors out initialization of the e1000_hw struct to its own function
870  * that can be called very early at init (just after struct allocation).
871  * Fields are initialized based on PCI device information and
872  * OS network device settings (MTU size).
873  * Returns negative error codes if MAC type setup fails.
874  */
875 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
876 				struct e1000_hw *hw)
877 {
878 	struct pci_dev *pdev = adapter->pdev;
879 
880 	/* PCI config space info */
881 	hw->vendor_id = pdev->vendor;
882 	hw->device_id = pdev->device;
883 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
884 	hw->subsystem_id = pdev->subsystem_device;
885 	hw->revision_id = pdev->revision;
886 
887 	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
888 
889 	hw->max_frame_size = adapter->netdev->mtu +
890 			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
891 	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
892 
893 	/* identify the MAC */
894 	if (e1000_set_mac_type(hw)) {
895 		e_err(probe, "Unknown MAC Type\n");
896 		return -EIO;
897 	}
898 
899 	switch (hw->mac_type) {
900 	default:
901 		break;
902 	case e1000_82541:
903 	case e1000_82547:
904 	case e1000_82541_rev_2:
905 	case e1000_82547_rev_2:
906 		hw->phy_init_script = 1;
907 		break;
908 	}
909 
910 	e1000_set_media_type(hw);
911 	e1000_get_bus_info(hw);
912 
913 	hw->wait_autoneg_complete = false;
914 	hw->tbi_compatibility_en = true;
915 	hw->adaptive_ifs = true;
916 
917 	/* Copper options */
918 
919 	if (hw->media_type == e1000_media_type_copper) {
920 		hw->mdix = AUTO_ALL_MODES;
921 		hw->disable_polarity_correction = false;
922 		hw->master_slave = E1000_MASTER_SLAVE;
923 	}
924 
925 	return 0;
926 }
927 
928 /**
929  * e1000_probe - Device Initialization Routine
930  * @pdev: PCI device information struct
931  * @ent: entry in e1000_pci_tbl
932  *
933  * Returns 0 on success, negative on failure
934  *
935  * e1000_probe initializes an adapter identified by a pci_dev structure.
936  * The OS initialization, configuring of the adapter private structure,
937  * and a hardware reset occur.
938  **/
939 static int __devinit e1000_probe(struct pci_dev *pdev,
940 				 const struct pci_device_id *ent)
941 {
942 	struct net_device *netdev;
943 	struct e1000_adapter *adapter;
944 	struct e1000_hw *hw;
945 
946 	static int cards_found = 0;
947 	static int global_quad_port_a = 0; /* global ksp3 port a indication */
948 	int i, err, pci_using_dac;
949 	u16 eeprom_data = 0;
950 	u16 tmp = 0;
951 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
952 	int bars, need_ioport;
953 
954 	/* do not allocate ioport bars when not needed */
955 	need_ioport = e1000_is_need_ioport(pdev);
956 	if (need_ioport) {
957 		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
958 		err = pci_enable_device(pdev);
959 	} else {
960 		bars = pci_select_bars(pdev, IORESOURCE_MEM);
961 		err = pci_enable_device_mem(pdev);
962 	}
963 	if (err)
964 		return err;
965 
966 	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
967 	if (err)
968 		goto err_pci_reg;
969 
970 	pci_set_master(pdev);
971 	err = pci_save_state(pdev);
972 	if (err)
973 		goto err_alloc_etherdev;
974 
975 	err = -ENOMEM;
976 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
977 	if (!netdev)
978 		goto err_alloc_etherdev;
979 
980 	SET_NETDEV_DEV(netdev, &pdev->dev);
981 
982 	pci_set_drvdata(pdev, netdev);
983 	adapter = netdev_priv(netdev);
984 	adapter->netdev = netdev;
985 	adapter->pdev = pdev;
986 	adapter->msg_enable = (1 << debug) - 1;
987 	adapter->bars = bars;
988 	adapter->need_ioport = need_ioport;
989 
990 	hw = &adapter->hw;
991 	hw->back = adapter;
992 
993 	err = -EIO;
994 	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
995 	if (!hw->hw_addr)
996 		goto err_ioremap;
997 
998 	if (adapter->need_ioport) {
999 		for (i = BAR_1; i <= BAR_5; i++) {
1000 			if (pci_resource_len(pdev, i) == 0)
1001 				continue;
1002 			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1003 				hw->io_base = pci_resource_start(pdev, i);
1004 				break;
1005 			}
1006 		}
1007 	}
1008 
1009 	/* make ready for any if (hw->...) below */
1010 	err = e1000_init_hw_struct(adapter, hw);
1011 	if (err)
1012 		goto err_sw_init;
1013 
1014 	/*
1015 	 * there is a workaround being applied below that limits
1016 	 * 64-bit DMA addresses to 64-bit hardware.  There are some
1017 	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1018 	 */
1019 	pci_using_dac = 0;
1020 	if ((hw->bus_type == e1000_bus_type_pcix) &&
1021 	    !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
1022 		/*
1023 		 * according to DMA-API-HOWTO, coherent calls will always
1024 		 * succeed if the set call did
1025 		 */
1026 		dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1027 		pci_using_dac = 1;
1028 	} else {
1029 		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1030 		if (err) {
1031 			pr_err("No usable DMA config, aborting\n");
1032 			goto err_dma;
1033 		}
1034 		dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1035 	}
1036 
1037 	netdev->netdev_ops = &e1000_netdev_ops;
1038 	e1000_set_ethtool_ops(netdev);
1039 	netdev->watchdog_timeo = 5 * HZ;
1040 	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1041 
1042 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1043 
1044 	adapter->bd_number = cards_found;
1045 
1046 	/* setup the private structure */
1047 
1048 	err = e1000_sw_init(adapter);
1049 	if (err)
1050 		goto err_sw_init;
1051 
1052 	err = -EIO;
1053 	if (hw->mac_type == e1000_ce4100) {
1054 		ce4100_gbe_mdio_base_phy = pci_resource_start(pdev, BAR_1);
1055 		ce4100_gbe_mdio_base_virt = ioremap(ce4100_gbe_mdio_base_phy,
1056 		                                pci_resource_len(pdev, BAR_1));
1057 
1058 		if (!ce4100_gbe_mdio_base_virt)
1059 			goto err_mdio_ioremap;
1060 	}
1061 
1062 	if (hw->mac_type >= e1000_82543) {
1063 		netdev->hw_features = NETIF_F_SG |
1064 				   NETIF_F_HW_CSUM |
1065 				   NETIF_F_HW_VLAN_RX;
1066 		netdev->features = NETIF_F_HW_VLAN_TX |
1067 				   NETIF_F_HW_VLAN_FILTER;
1068 	}
1069 
1070 	if ((hw->mac_type >= e1000_82544) &&
1071 	   (hw->mac_type != e1000_82547))
1072 		netdev->hw_features |= NETIF_F_TSO;
1073 
1074 	netdev->features |= netdev->hw_features;
1075 	netdev->hw_features |= NETIF_F_RXCSUM;
1076 
1077 	if (pci_using_dac) {
1078 		netdev->features |= NETIF_F_HIGHDMA;
1079 		netdev->vlan_features |= NETIF_F_HIGHDMA;
1080 	}
1081 
1082 	netdev->vlan_features |= NETIF_F_TSO;
1083 	netdev->vlan_features |= NETIF_F_HW_CSUM;
1084 	netdev->vlan_features |= NETIF_F_SG;
1085 
1086 	netdev->priv_flags |= IFF_UNICAST_FLT;
1087 
1088 	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1089 
1090 	/* initialize eeprom parameters */
1091 	if (e1000_init_eeprom_params(hw)) {
1092 		e_err(probe, "EEPROM initialization failed\n");
1093 		goto err_eeprom;
1094 	}
1095 
1096 	/* before reading the EEPROM, reset the controller to
1097 	 * put the device in a known good starting state */
1098 
1099 	e1000_reset_hw(hw);
1100 
1101 	/* make sure the EEPROM is good */
1102 	if (e1000_validate_eeprom_checksum(hw) < 0) {
1103 		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1104 		e1000_dump_eeprom(adapter);
1105 		/*
1106 		 * set MAC address to all zeroes to invalidate and temporary
1107 		 * disable this device for the user. This blocks regular
1108 		 * traffic while still permitting ethtool ioctls from reaching
1109 		 * the hardware as well as allowing the user to run the
1110 		 * interface after manually setting a hw addr using
1111 		 * `ip set address`
1112 		 */
1113 		memset(hw->mac_addr, 0, netdev->addr_len);
1114 	} else {
1115 		/* copy the MAC address out of the EEPROM */
1116 		if (e1000_read_mac_addr(hw))
1117 			e_err(probe, "EEPROM Read Error\n");
1118 	}
1119 	/* don't block initalization here due to bad MAC address */
1120 	memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1121 	memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1122 
1123 	if (!is_valid_ether_addr(netdev->perm_addr))
1124 		e_err(probe, "Invalid MAC Address\n");
1125 
1126 
1127 	INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1128 	INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1129 			  e1000_82547_tx_fifo_stall_task);
1130 	INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1131 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
1132 
1133 	e1000_check_options(adapter);
1134 
1135 	/* Initial Wake on LAN setting
1136 	 * If APM wake is enabled in the EEPROM,
1137 	 * enable the ACPI Magic Packet filter
1138 	 */
1139 
1140 	switch (hw->mac_type) {
1141 	case e1000_82542_rev2_0:
1142 	case e1000_82542_rev2_1:
1143 	case e1000_82543:
1144 		break;
1145 	case e1000_82544:
1146 		e1000_read_eeprom(hw,
1147 			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1148 		eeprom_apme_mask = E1000_EEPROM_82544_APM;
1149 		break;
1150 	case e1000_82546:
1151 	case e1000_82546_rev_3:
1152 		if (er32(STATUS) & E1000_STATUS_FUNC_1){
1153 			e1000_read_eeprom(hw,
1154 				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1155 			break;
1156 		}
1157 		/* Fall Through */
1158 	default:
1159 		e1000_read_eeprom(hw,
1160 			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1161 		break;
1162 	}
1163 	if (eeprom_data & eeprom_apme_mask)
1164 		adapter->eeprom_wol |= E1000_WUFC_MAG;
1165 
1166 	/* now that we have the eeprom settings, apply the special cases
1167 	 * where the eeprom may be wrong or the board simply won't support
1168 	 * wake on lan on a particular port */
1169 	switch (pdev->device) {
1170 	case E1000_DEV_ID_82546GB_PCIE:
1171 		adapter->eeprom_wol = 0;
1172 		break;
1173 	case E1000_DEV_ID_82546EB_FIBER:
1174 	case E1000_DEV_ID_82546GB_FIBER:
1175 		/* Wake events only supported on port A for dual fiber
1176 		 * regardless of eeprom setting */
1177 		if (er32(STATUS) & E1000_STATUS_FUNC_1)
1178 			adapter->eeprom_wol = 0;
1179 		break;
1180 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1181 		/* if quad port adapter, disable WoL on all but port A */
1182 		if (global_quad_port_a != 0)
1183 			adapter->eeprom_wol = 0;
1184 		else
1185 			adapter->quad_port_a = 1;
1186 		/* Reset for multiple quad port adapters */
1187 		if (++global_quad_port_a == 4)
1188 			global_quad_port_a = 0;
1189 		break;
1190 	}
1191 
1192 	/* initialize the wol settings based on the eeprom settings */
1193 	adapter->wol = adapter->eeprom_wol;
1194 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1195 
1196 	/* Auto detect PHY address */
1197 	if (hw->mac_type == e1000_ce4100) {
1198 		for (i = 0; i < 32; i++) {
1199 			hw->phy_addr = i;
1200 			e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1201 			if (tmp == 0 || tmp == 0xFF) {
1202 				if (i == 31)
1203 					goto err_eeprom;
1204 				continue;
1205 			} else
1206 				break;
1207 		}
1208 	}
1209 
1210 	/* reset the hardware with the new settings */
1211 	e1000_reset(adapter);
1212 
1213 	strcpy(netdev->name, "eth%d");
1214 	err = register_netdev(netdev);
1215 	if (err)
1216 		goto err_register;
1217 
1218 	e1000_vlan_mode(netdev, netdev->features);
1219 
1220 	/* print bus type/speed/width info */
1221 	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1222 	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1223 	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1224 		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
1225 		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
1226 		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1227 	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1228 	       netdev->dev_addr);
1229 
1230 	/* carrier off reporting is important to ethtool even BEFORE open */
1231 	netif_carrier_off(netdev);
1232 
1233 	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1234 
1235 	cards_found++;
1236 	return 0;
1237 
1238 err_register:
1239 err_eeprom:
1240 	e1000_phy_hw_reset(hw);
1241 
1242 	if (hw->flash_address)
1243 		iounmap(hw->flash_address);
1244 	kfree(adapter->tx_ring);
1245 	kfree(adapter->rx_ring);
1246 err_dma:
1247 err_sw_init:
1248 err_mdio_ioremap:
1249 	iounmap(ce4100_gbe_mdio_base_virt);
1250 	iounmap(hw->hw_addr);
1251 err_ioremap:
1252 	free_netdev(netdev);
1253 err_alloc_etherdev:
1254 	pci_release_selected_regions(pdev, bars);
1255 err_pci_reg:
1256 	pci_disable_device(pdev);
1257 	return err;
1258 }
1259 
1260 /**
1261  * e1000_remove - Device Removal Routine
1262  * @pdev: PCI device information struct
1263  *
1264  * e1000_remove is called by the PCI subsystem to alert the driver
1265  * that it should release a PCI device.  The could be caused by a
1266  * Hot-Plug event, or because the driver is going to be removed from
1267  * memory.
1268  **/
1269 
1270 static void __devexit e1000_remove(struct pci_dev *pdev)
1271 {
1272 	struct net_device *netdev = pci_get_drvdata(pdev);
1273 	struct e1000_adapter *adapter = netdev_priv(netdev);
1274 	struct e1000_hw *hw = &adapter->hw;
1275 
1276 	e1000_down_and_stop(adapter);
1277 	e1000_release_manageability(adapter);
1278 
1279 	unregister_netdev(netdev);
1280 
1281 	e1000_phy_hw_reset(hw);
1282 
1283 	kfree(adapter->tx_ring);
1284 	kfree(adapter->rx_ring);
1285 
1286 	iounmap(hw->hw_addr);
1287 	if (hw->flash_address)
1288 		iounmap(hw->flash_address);
1289 	pci_release_selected_regions(pdev, adapter->bars);
1290 
1291 	free_netdev(netdev);
1292 
1293 	pci_disable_device(pdev);
1294 }
1295 
1296 /**
1297  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1298  * @adapter: board private structure to initialize
1299  *
1300  * e1000_sw_init initializes the Adapter private data structure.
1301  * e1000_init_hw_struct MUST be called before this function
1302  **/
1303 
1304 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1305 {
1306 	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1307 
1308 	adapter->num_tx_queues = 1;
1309 	adapter->num_rx_queues = 1;
1310 
1311 	if (e1000_alloc_queues(adapter)) {
1312 		e_err(probe, "Unable to allocate memory for queues\n");
1313 		return -ENOMEM;
1314 	}
1315 
1316 	/* Explicitly disable IRQ since the NIC can be in any state. */
1317 	e1000_irq_disable(adapter);
1318 
1319 	spin_lock_init(&adapter->stats_lock);
1320 	mutex_init(&adapter->mutex);
1321 
1322 	set_bit(__E1000_DOWN, &adapter->flags);
1323 
1324 	return 0;
1325 }
1326 
1327 /**
1328  * e1000_alloc_queues - Allocate memory for all rings
1329  * @adapter: board private structure to initialize
1330  *
1331  * We allocate one ring per queue at run-time since we don't know the
1332  * number of queues at compile-time.
1333  **/
1334 
1335 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1336 {
1337 	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1338 	                           sizeof(struct e1000_tx_ring), GFP_KERNEL);
1339 	if (!adapter->tx_ring)
1340 		return -ENOMEM;
1341 
1342 	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1343 	                           sizeof(struct e1000_rx_ring), GFP_KERNEL);
1344 	if (!adapter->rx_ring) {
1345 		kfree(adapter->tx_ring);
1346 		return -ENOMEM;
1347 	}
1348 
1349 	return E1000_SUCCESS;
1350 }
1351 
1352 /**
1353  * e1000_open - Called when a network interface is made active
1354  * @netdev: network interface device structure
1355  *
1356  * Returns 0 on success, negative value on failure
1357  *
1358  * The open entry point is called when a network interface is made
1359  * active by the system (IFF_UP).  At this point all resources needed
1360  * for transmit and receive operations are allocated, the interrupt
1361  * handler is registered with the OS, the watchdog task is started,
1362  * and the stack is notified that the interface is ready.
1363  **/
1364 
1365 static int e1000_open(struct net_device *netdev)
1366 {
1367 	struct e1000_adapter *adapter = netdev_priv(netdev);
1368 	struct e1000_hw *hw = &adapter->hw;
1369 	int err;
1370 
1371 	/* disallow open during test */
1372 	if (test_bit(__E1000_TESTING, &adapter->flags))
1373 		return -EBUSY;
1374 
1375 	netif_carrier_off(netdev);
1376 
1377 	/* allocate transmit descriptors */
1378 	err = e1000_setup_all_tx_resources(adapter);
1379 	if (err)
1380 		goto err_setup_tx;
1381 
1382 	/* allocate receive descriptors */
1383 	err = e1000_setup_all_rx_resources(adapter);
1384 	if (err)
1385 		goto err_setup_rx;
1386 
1387 	e1000_power_up_phy(adapter);
1388 
1389 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1390 	if ((hw->mng_cookie.status &
1391 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1392 		e1000_update_mng_vlan(adapter);
1393 	}
1394 
1395 	/* before we allocate an interrupt, we must be ready to handle it.
1396 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1397 	 * as soon as we call pci_request_irq, so we have to setup our
1398 	 * clean_rx handler before we do so.  */
1399 	e1000_configure(adapter);
1400 
1401 	err = e1000_request_irq(adapter);
1402 	if (err)
1403 		goto err_req_irq;
1404 
1405 	/* From here on the code is the same as e1000_up() */
1406 	clear_bit(__E1000_DOWN, &adapter->flags);
1407 
1408 	napi_enable(&adapter->napi);
1409 
1410 	e1000_irq_enable(adapter);
1411 
1412 	netif_start_queue(netdev);
1413 
1414 	/* fire a link status change interrupt to start the watchdog */
1415 	ew32(ICS, E1000_ICS_LSC);
1416 
1417 	return E1000_SUCCESS;
1418 
1419 err_req_irq:
1420 	e1000_power_down_phy(adapter);
1421 	e1000_free_all_rx_resources(adapter);
1422 err_setup_rx:
1423 	e1000_free_all_tx_resources(adapter);
1424 err_setup_tx:
1425 	e1000_reset(adapter);
1426 
1427 	return err;
1428 }
1429 
1430 /**
1431  * e1000_close - Disables a network interface
1432  * @netdev: network interface device structure
1433  *
1434  * Returns 0, this is not allowed to fail
1435  *
1436  * The close entry point is called when an interface is de-activated
1437  * by the OS.  The hardware is still under the drivers control, but
1438  * needs to be disabled.  A global MAC reset is issued to stop the
1439  * hardware, and all transmit and receive resources are freed.
1440  **/
1441 
1442 static int e1000_close(struct net_device *netdev)
1443 {
1444 	struct e1000_adapter *adapter = netdev_priv(netdev);
1445 	struct e1000_hw *hw = &adapter->hw;
1446 
1447 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1448 	e1000_down(adapter);
1449 	e1000_power_down_phy(adapter);
1450 	e1000_free_irq(adapter);
1451 
1452 	e1000_free_all_tx_resources(adapter);
1453 	e1000_free_all_rx_resources(adapter);
1454 
1455 	/* kill manageability vlan ID if supported, but not if a vlan with
1456 	 * the same ID is registered on the host OS (let 8021q kill it) */
1457 	if ((hw->mng_cookie.status &
1458 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1459 	     !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1460 		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1461 	}
1462 
1463 	return 0;
1464 }
1465 
1466 /**
1467  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1468  * @adapter: address of board private structure
1469  * @start: address of beginning of memory
1470  * @len: length of memory
1471  **/
1472 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1473 				  unsigned long len)
1474 {
1475 	struct e1000_hw *hw = &adapter->hw;
1476 	unsigned long begin = (unsigned long)start;
1477 	unsigned long end = begin + len;
1478 
1479 	/* First rev 82545 and 82546 need to not allow any memory
1480 	 * write location to cross 64k boundary due to errata 23 */
1481 	if (hw->mac_type == e1000_82545 ||
1482 	    hw->mac_type == e1000_ce4100 ||
1483 	    hw->mac_type == e1000_82546) {
1484 		return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1485 	}
1486 
1487 	return true;
1488 }
1489 
1490 /**
1491  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1492  * @adapter: board private structure
1493  * @txdr:    tx descriptor ring (for a specific queue) to setup
1494  *
1495  * Return 0 on success, negative on failure
1496  **/
1497 
1498 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1499 				    struct e1000_tx_ring *txdr)
1500 {
1501 	struct pci_dev *pdev = adapter->pdev;
1502 	int size;
1503 
1504 	size = sizeof(struct e1000_buffer) * txdr->count;
1505 	txdr->buffer_info = vzalloc(size);
1506 	if (!txdr->buffer_info) {
1507 		e_err(probe, "Unable to allocate memory for the Tx descriptor "
1508 		      "ring\n");
1509 		return -ENOMEM;
1510 	}
1511 
1512 	/* round up to nearest 4K */
1513 
1514 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1515 	txdr->size = ALIGN(txdr->size, 4096);
1516 
1517 	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1518 					GFP_KERNEL);
1519 	if (!txdr->desc) {
1520 setup_tx_desc_die:
1521 		vfree(txdr->buffer_info);
1522 		e_err(probe, "Unable to allocate memory for the Tx descriptor "
1523 		      "ring\n");
1524 		return -ENOMEM;
1525 	}
1526 
1527 	/* Fix for errata 23, can't cross 64kB boundary */
1528 	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1529 		void *olddesc = txdr->desc;
1530 		dma_addr_t olddma = txdr->dma;
1531 		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1532 		      txdr->size, txdr->desc);
1533 		/* Try again, without freeing the previous */
1534 		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1535 						&txdr->dma, GFP_KERNEL);
1536 		/* Failed allocation, critical failure */
1537 		if (!txdr->desc) {
1538 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1539 					  olddma);
1540 			goto setup_tx_desc_die;
1541 		}
1542 
1543 		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1544 			/* give up */
1545 			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1546 					  txdr->dma);
1547 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1548 					  olddma);
1549 			e_err(probe, "Unable to allocate aligned memory "
1550 			      "for the transmit descriptor ring\n");
1551 			vfree(txdr->buffer_info);
1552 			return -ENOMEM;
1553 		} else {
1554 			/* Free old allocation, new allocation was successful */
1555 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1556 					  olddma);
1557 		}
1558 	}
1559 	memset(txdr->desc, 0, txdr->size);
1560 
1561 	txdr->next_to_use = 0;
1562 	txdr->next_to_clean = 0;
1563 
1564 	return 0;
1565 }
1566 
1567 /**
1568  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1569  * 				  (Descriptors) for all queues
1570  * @adapter: board private structure
1571  *
1572  * Return 0 on success, negative on failure
1573  **/
1574 
1575 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1576 {
1577 	int i, err = 0;
1578 
1579 	for (i = 0; i < adapter->num_tx_queues; i++) {
1580 		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1581 		if (err) {
1582 			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1583 			for (i-- ; i >= 0; i--)
1584 				e1000_free_tx_resources(adapter,
1585 							&adapter->tx_ring[i]);
1586 			break;
1587 		}
1588 	}
1589 
1590 	return err;
1591 }
1592 
1593 /**
1594  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1595  * @adapter: board private structure
1596  *
1597  * Configure the Tx unit of the MAC after a reset.
1598  **/
1599 
1600 static void e1000_configure_tx(struct e1000_adapter *adapter)
1601 {
1602 	u64 tdba;
1603 	struct e1000_hw *hw = &adapter->hw;
1604 	u32 tdlen, tctl, tipg;
1605 	u32 ipgr1, ipgr2;
1606 
1607 	/* Setup the HW Tx Head and Tail descriptor pointers */
1608 
1609 	switch (adapter->num_tx_queues) {
1610 	case 1:
1611 	default:
1612 		tdba = adapter->tx_ring[0].dma;
1613 		tdlen = adapter->tx_ring[0].count *
1614 			sizeof(struct e1000_tx_desc);
1615 		ew32(TDLEN, tdlen);
1616 		ew32(TDBAH, (tdba >> 32));
1617 		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1618 		ew32(TDT, 0);
1619 		ew32(TDH, 0);
1620 		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1621 		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1622 		break;
1623 	}
1624 
1625 	/* Set the default values for the Tx Inter Packet Gap timer */
1626 	if ((hw->media_type == e1000_media_type_fiber ||
1627 	     hw->media_type == e1000_media_type_internal_serdes))
1628 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1629 	else
1630 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1631 
1632 	switch (hw->mac_type) {
1633 	case e1000_82542_rev2_0:
1634 	case e1000_82542_rev2_1:
1635 		tipg = DEFAULT_82542_TIPG_IPGT;
1636 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1637 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1638 		break;
1639 	default:
1640 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1641 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1642 		break;
1643 	}
1644 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1645 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1646 	ew32(TIPG, tipg);
1647 
1648 	/* Set the Tx Interrupt Delay register */
1649 
1650 	ew32(TIDV, adapter->tx_int_delay);
1651 	if (hw->mac_type >= e1000_82540)
1652 		ew32(TADV, adapter->tx_abs_int_delay);
1653 
1654 	/* Program the Transmit Control Register */
1655 
1656 	tctl = er32(TCTL);
1657 	tctl &= ~E1000_TCTL_CT;
1658 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1659 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1660 
1661 	e1000_config_collision_dist(hw);
1662 
1663 	/* Setup Transmit Descriptor Settings for eop descriptor */
1664 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1665 
1666 	/* only set IDE if we are delaying interrupts using the timers */
1667 	if (adapter->tx_int_delay)
1668 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1669 
1670 	if (hw->mac_type < e1000_82543)
1671 		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1672 	else
1673 		adapter->txd_cmd |= E1000_TXD_CMD_RS;
1674 
1675 	/* Cache if we're 82544 running in PCI-X because we'll
1676 	 * need this to apply a workaround later in the send path. */
1677 	if (hw->mac_type == e1000_82544 &&
1678 	    hw->bus_type == e1000_bus_type_pcix)
1679 		adapter->pcix_82544 = 1;
1680 
1681 	ew32(TCTL, tctl);
1682 
1683 }
1684 
1685 /**
1686  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1687  * @adapter: board private structure
1688  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1689  *
1690  * Returns 0 on success, negative on failure
1691  **/
1692 
1693 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1694 				    struct e1000_rx_ring *rxdr)
1695 {
1696 	struct pci_dev *pdev = adapter->pdev;
1697 	int size, desc_len;
1698 
1699 	size = sizeof(struct e1000_buffer) * rxdr->count;
1700 	rxdr->buffer_info = vzalloc(size);
1701 	if (!rxdr->buffer_info) {
1702 		e_err(probe, "Unable to allocate memory for the Rx descriptor "
1703 		      "ring\n");
1704 		return -ENOMEM;
1705 	}
1706 
1707 	desc_len = sizeof(struct e1000_rx_desc);
1708 
1709 	/* Round up to nearest 4K */
1710 
1711 	rxdr->size = rxdr->count * desc_len;
1712 	rxdr->size = ALIGN(rxdr->size, 4096);
1713 
1714 	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1715 					GFP_KERNEL);
1716 
1717 	if (!rxdr->desc) {
1718 		e_err(probe, "Unable to allocate memory for the Rx descriptor "
1719 		      "ring\n");
1720 setup_rx_desc_die:
1721 		vfree(rxdr->buffer_info);
1722 		return -ENOMEM;
1723 	}
1724 
1725 	/* Fix for errata 23, can't cross 64kB boundary */
1726 	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1727 		void *olddesc = rxdr->desc;
1728 		dma_addr_t olddma = rxdr->dma;
1729 		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1730 		      rxdr->size, rxdr->desc);
1731 		/* Try again, without freeing the previous */
1732 		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1733 						&rxdr->dma, GFP_KERNEL);
1734 		/* Failed allocation, critical failure */
1735 		if (!rxdr->desc) {
1736 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1737 					  olddma);
1738 			e_err(probe, "Unable to allocate memory for the Rx "
1739 			      "descriptor ring\n");
1740 			goto setup_rx_desc_die;
1741 		}
1742 
1743 		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1744 			/* give up */
1745 			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1746 					  rxdr->dma);
1747 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1748 					  olddma);
1749 			e_err(probe, "Unable to allocate aligned memory for "
1750 			      "the Rx descriptor ring\n");
1751 			goto setup_rx_desc_die;
1752 		} else {
1753 			/* Free old allocation, new allocation was successful */
1754 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1755 					  olddma);
1756 		}
1757 	}
1758 	memset(rxdr->desc, 0, rxdr->size);
1759 
1760 	rxdr->next_to_clean = 0;
1761 	rxdr->next_to_use = 0;
1762 	rxdr->rx_skb_top = NULL;
1763 
1764 	return 0;
1765 }
1766 
1767 /**
1768  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1769  * 				  (Descriptors) for all queues
1770  * @adapter: board private structure
1771  *
1772  * Return 0 on success, negative on failure
1773  **/
1774 
1775 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1776 {
1777 	int i, err = 0;
1778 
1779 	for (i = 0; i < adapter->num_rx_queues; i++) {
1780 		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1781 		if (err) {
1782 			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1783 			for (i-- ; i >= 0; i--)
1784 				e1000_free_rx_resources(adapter,
1785 							&adapter->rx_ring[i]);
1786 			break;
1787 		}
1788 	}
1789 
1790 	return err;
1791 }
1792 
1793 /**
1794  * e1000_setup_rctl - configure the receive control registers
1795  * @adapter: Board private structure
1796  **/
1797 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1798 {
1799 	struct e1000_hw *hw = &adapter->hw;
1800 	u32 rctl;
1801 
1802 	rctl = er32(RCTL);
1803 
1804 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1805 
1806 	rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1807 		E1000_RCTL_RDMTS_HALF |
1808 		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1809 
1810 	if (hw->tbi_compatibility_on == 1)
1811 		rctl |= E1000_RCTL_SBP;
1812 	else
1813 		rctl &= ~E1000_RCTL_SBP;
1814 
1815 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
1816 		rctl &= ~E1000_RCTL_LPE;
1817 	else
1818 		rctl |= E1000_RCTL_LPE;
1819 
1820 	/* Setup buffer sizes */
1821 	rctl &= ~E1000_RCTL_SZ_4096;
1822 	rctl |= E1000_RCTL_BSEX;
1823 	switch (adapter->rx_buffer_len) {
1824 		case E1000_RXBUFFER_2048:
1825 		default:
1826 			rctl |= E1000_RCTL_SZ_2048;
1827 			rctl &= ~E1000_RCTL_BSEX;
1828 			break;
1829 		case E1000_RXBUFFER_4096:
1830 			rctl |= E1000_RCTL_SZ_4096;
1831 			break;
1832 		case E1000_RXBUFFER_8192:
1833 			rctl |= E1000_RCTL_SZ_8192;
1834 			break;
1835 		case E1000_RXBUFFER_16384:
1836 			rctl |= E1000_RCTL_SZ_16384;
1837 			break;
1838 	}
1839 
1840 	ew32(RCTL, rctl);
1841 }
1842 
1843 /**
1844  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1845  * @adapter: board private structure
1846  *
1847  * Configure the Rx unit of the MAC after a reset.
1848  **/
1849 
1850 static void e1000_configure_rx(struct e1000_adapter *adapter)
1851 {
1852 	u64 rdba;
1853 	struct e1000_hw *hw = &adapter->hw;
1854 	u32 rdlen, rctl, rxcsum;
1855 
1856 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
1857 		rdlen = adapter->rx_ring[0].count *
1858 		        sizeof(struct e1000_rx_desc);
1859 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1860 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1861 	} else {
1862 		rdlen = adapter->rx_ring[0].count *
1863 		        sizeof(struct e1000_rx_desc);
1864 		adapter->clean_rx = e1000_clean_rx_irq;
1865 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1866 	}
1867 
1868 	/* disable receives while setting up the descriptors */
1869 	rctl = er32(RCTL);
1870 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1871 
1872 	/* set the Receive Delay Timer Register */
1873 	ew32(RDTR, adapter->rx_int_delay);
1874 
1875 	if (hw->mac_type >= e1000_82540) {
1876 		ew32(RADV, adapter->rx_abs_int_delay);
1877 		if (adapter->itr_setting != 0)
1878 			ew32(ITR, 1000000000 / (adapter->itr * 256));
1879 	}
1880 
1881 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1882 	 * the Base and Length of the Rx Descriptor Ring */
1883 	switch (adapter->num_rx_queues) {
1884 	case 1:
1885 	default:
1886 		rdba = adapter->rx_ring[0].dma;
1887 		ew32(RDLEN, rdlen);
1888 		ew32(RDBAH, (rdba >> 32));
1889 		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1890 		ew32(RDT, 0);
1891 		ew32(RDH, 0);
1892 		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1893 		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1894 		break;
1895 	}
1896 
1897 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
1898 	if (hw->mac_type >= e1000_82543) {
1899 		rxcsum = er32(RXCSUM);
1900 		if (adapter->rx_csum)
1901 			rxcsum |= E1000_RXCSUM_TUOFL;
1902 		else
1903 			/* don't need to clear IPPCSE as it defaults to 0 */
1904 			rxcsum &= ~E1000_RXCSUM_TUOFL;
1905 		ew32(RXCSUM, rxcsum);
1906 	}
1907 
1908 	/* Enable Receives */
1909 	ew32(RCTL, rctl | E1000_RCTL_EN);
1910 }
1911 
1912 /**
1913  * e1000_free_tx_resources - Free Tx Resources per Queue
1914  * @adapter: board private structure
1915  * @tx_ring: Tx descriptor ring for a specific queue
1916  *
1917  * Free all transmit software resources
1918  **/
1919 
1920 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1921 				    struct e1000_tx_ring *tx_ring)
1922 {
1923 	struct pci_dev *pdev = adapter->pdev;
1924 
1925 	e1000_clean_tx_ring(adapter, tx_ring);
1926 
1927 	vfree(tx_ring->buffer_info);
1928 	tx_ring->buffer_info = NULL;
1929 
1930 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1931 			  tx_ring->dma);
1932 
1933 	tx_ring->desc = NULL;
1934 }
1935 
1936 /**
1937  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1938  * @adapter: board private structure
1939  *
1940  * Free all transmit software resources
1941  **/
1942 
1943 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1944 {
1945 	int i;
1946 
1947 	for (i = 0; i < adapter->num_tx_queues; i++)
1948 		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1949 }
1950 
1951 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1952 					     struct e1000_buffer *buffer_info)
1953 {
1954 	if (buffer_info->dma) {
1955 		if (buffer_info->mapped_as_page)
1956 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1957 				       buffer_info->length, DMA_TO_DEVICE);
1958 		else
1959 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1960 					 buffer_info->length,
1961 					 DMA_TO_DEVICE);
1962 		buffer_info->dma = 0;
1963 	}
1964 	if (buffer_info->skb) {
1965 		dev_kfree_skb_any(buffer_info->skb);
1966 		buffer_info->skb = NULL;
1967 	}
1968 	buffer_info->time_stamp = 0;
1969 	/* buffer_info must be completely set up in the transmit path */
1970 }
1971 
1972 /**
1973  * e1000_clean_tx_ring - Free Tx Buffers
1974  * @adapter: board private structure
1975  * @tx_ring: ring to be cleaned
1976  **/
1977 
1978 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1979 				struct e1000_tx_ring *tx_ring)
1980 {
1981 	struct e1000_hw *hw = &adapter->hw;
1982 	struct e1000_buffer *buffer_info;
1983 	unsigned long size;
1984 	unsigned int i;
1985 
1986 	/* Free all the Tx ring sk_buffs */
1987 
1988 	for (i = 0; i < tx_ring->count; i++) {
1989 		buffer_info = &tx_ring->buffer_info[i];
1990 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1991 	}
1992 
1993 	size = sizeof(struct e1000_buffer) * tx_ring->count;
1994 	memset(tx_ring->buffer_info, 0, size);
1995 
1996 	/* Zero out the descriptor ring */
1997 
1998 	memset(tx_ring->desc, 0, tx_ring->size);
1999 
2000 	tx_ring->next_to_use = 0;
2001 	tx_ring->next_to_clean = 0;
2002 	tx_ring->last_tx_tso = 0;
2003 
2004 	writel(0, hw->hw_addr + tx_ring->tdh);
2005 	writel(0, hw->hw_addr + tx_ring->tdt);
2006 }
2007 
2008 /**
2009  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2010  * @adapter: board private structure
2011  **/
2012 
2013 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2014 {
2015 	int i;
2016 
2017 	for (i = 0; i < adapter->num_tx_queues; i++)
2018 		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2019 }
2020 
2021 /**
2022  * e1000_free_rx_resources - Free Rx Resources
2023  * @adapter: board private structure
2024  * @rx_ring: ring to clean the resources from
2025  *
2026  * Free all receive software resources
2027  **/
2028 
2029 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2030 				    struct e1000_rx_ring *rx_ring)
2031 {
2032 	struct pci_dev *pdev = adapter->pdev;
2033 
2034 	e1000_clean_rx_ring(adapter, rx_ring);
2035 
2036 	vfree(rx_ring->buffer_info);
2037 	rx_ring->buffer_info = NULL;
2038 
2039 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2040 			  rx_ring->dma);
2041 
2042 	rx_ring->desc = NULL;
2043 }
2044 
2045 /**
2046  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2047  * @adapter: board private structure
2048  *
2049  * Free all receive software resources
2050  **/
2051 
2052 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2053 {
2054 	int i;
2055 
2056 	for (i = 0; i < adapter->num_rx_queues; i++)
2057 		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2058 }
2059 
2060 /**
2061  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2062  * @adapter: board private structure
2063  * @rx_ring: ring to free buffers from
2064  **/
2065 
2066 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2067 				struct e1000_rx_ring *rx_ring)
2068 {
2069 	struct e1000_hw *hw = &adapter->hw;
2070 	struct e1000_buffer *buffer_info;
2071 	struct pci_dev *pdev = adapter->pdev;
2072 	unsigned long size;
2073 	unsigned int i;
2074 
2075 	/* Free all the Rx ring sk_buffs */
2076 	for (i = 0; i < rx_ring->count; i++) {
2077 		buffer_info = &rx_ring->buffer_info[i];
2078 		if (buffer_info->dma &&
2079 		    adapter->clean_rx == e1000_clean_rx_irq) {
2080 			dma_unmap_single(&pdev->dev, buffer_info->dma,
2081 			                 buffer_info->length,
2082 					 DMA_FROM_DEVICE);
2083 		} else if (buffer_info->dma &&
2084 		           adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2085 			dma_unmap_page(&pdev->dev, buffer_info->dma,
2086 				       buffer_info->length,
2087 				       DMA_FROM_DEVICE);
2088 		}
2089 
2090 		buffer_info->dma = 0;
2091 		if (buffer_info->page) {
2092 			put_page(buffer_info->page);
2093 			buffer_info->page = NULL;
2094 		}
2095 		if (buffer_info->skb) {
2096 			dev_kfree_skb(buffer_info->skb);
2097 			buffer_info->skb = NULL;
2098 		}
2099 	}
2100 
2101 	/* there also may be some cached data from a chained receive */
2102 	if (rx_ring->rx_skb_top) {
2103 		dev_kfree_skb(rx_ring->rx_skb_top);
2104 		rx_ring->rx_skb_top = NULL;
2105 	}
2106 
2107 	size = sizeof(struct e1000_buffer) * rx_ring->count;
2108 	memset(rx_ring->buffer_info, 0, size);
2109 
2110 	/* Zero out the descriptor ring */
2111 	memset(rx_ring->desc, 0, rx_ring->size);
2112 
2113 	rx_ring->next_to_clean = 0;
2114 	rx_ring->next_to_use = 0;
2115 
2116 	writel(0, hw->hw_addr + rx_ring->rdh);
2117 	writel(0, hw->hw_addr + rx_ring->rdt);
2118 }
2119 
2120 /**
2121  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2122  * @adapter: board private structure
2123  **/
2124 
2125 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2126 {
2127 	int i;
2128 
2129 	for (i = 0; i < adapter->num_rx_queues; i++)
2130 		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2131 }
2132 
2133 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2134  * and memory write and invalidate disabled for certain operations
2135  */
2136 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2137 {
2138 	struct e1000_hw *hw = &adapter->hw;
2139 	struct net_device *netdev = adapter->netdev;
2140 	u32 rctl;
2141 
2142 	e1000_pci_clear_mwi(hw);
2143 
2144 	rctl = er32(RCTL);
2145 	rctl |= E1000_RCTL_RST;
2146 	ew32(RCTL, rctl);
2147 	E1000_WRITE_FLUSH();
2148 	mdelay(5);
2149 
2150 	if (netif_running(netdev))
2151 		e1000_clean_all_rx_rings(adapter);
2152 }
2153 
2154 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2155 {
2156 	struct e1000_hw *hw = &adapter->hw;
2157 	struct net_device *netdev = adapter->netdev;
2158 	u32 rctl;
2159 
2160 	rctl = er32(RCTL);
2161 	rctl &= ~E1000_RCTL_RST;
2162 	ew32(RCTL, rctl);
2163 	E1000_WRITE_FLUSH();
2164 	mdelay(5);
2165 
2166 	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2167 		e1000_pci_set_mwi(hw);
2168 
2169 	if (netif_running(netdev)) {
2170 		/* No need to loop, because 82542 supports only 1 queue */
2171 		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2172 		e1000_configure_rx(adapter);
2173 		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2174 	}
2175 }
2176 
2177 /**
2178  * e1000_set_mac - Change the Ethernet Address of the NIC
2179  * @netdev: network interface device structure
2180  * @p: pointer to an address structure
2181  *
2182  * Returns 0 on success, negative on failure
2183  **/
2184 
2185 static int e1000_set_mac(struct net_device *netdev, void *p)
2186 {
2187 	struct e1000_adapter *adapter = netdev_priv(netdev);
2188 	struct e1000_hw *hw = &adapter->hw;
2189 	struct sockaddr *addr = p;
2190 
2191 	if (!is_valid_ether_addr(addr->sa_data))
2192 		return -EADDRNOTAVAIL;
2193 
2194 	/* 82542 2.0 needs to be in reset to write receive address registers */
2195 
2196 	if (hw->mac_type == e1000_82542_rev2_0)
2197 		e1000_enter_82542_rst(adapter);
2198 
2199 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2200 	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2201 
2202 	e1000_rar_set(hw, hw->mac_addr, 0);
2203 
2204 	if (hw->mac_type == e1000_82542_rev2_0)
2205 		e1000_leave_82542_rst(adapter);
2206 
2207 	return 0;
2208 }
2209 
2210 /**
2211  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2212  * @netdev: network interface device structure
2213  *
2214  * The set_rx_mode entry point is called whenever the unicast or multicast
2215  * address lists or the network interface flags are updated. This routine is
2216  * responsible for configuring the hardware for proper unicast, multicast,
2217  * promiscuous mode, and all-multi behavior.
2218  **/
2219 
2220 static void e1000_set_rx_mode(struct net_device *netdev)
2221 {
2222 	struct e1000_adapter *adapter = netdev_priv(netdev);
2223 	struct e1000_hw *hw = &adapter->hw;
2224 	struct netdev_hw_addr *ha;
2225 	bool use_uc = false;
2226 	u32 rctl;
2227 	u32 hash_value;
2228 	int i, rar_entries = E1000_RAR_ENTRIES;
2229 	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2230 	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2231 
2232 	if (!mcarray) {
2233 		e_err(probe, "memory allocation failed\n");
2234 		return;
2235 	}
2236 
2237 	/* Check for Promiscuous and All Multicast modes */
2238 
2239 	rctl = er32(RCTL);
2240 
2241 	if (netdev->flags & IFF_PROMISC) {
2242 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2243 		rctl &= ~E1000_RCTL_VFE;
2244 	} else {
2245 		if (netdev->flags & IFF_ALLMULTI)
2246 			rctl |= E1000_RCTL_MPE;
2247 		else
2248 			rctl &= ~E1000_RCTL_MPE;
2249 		/* Enable VLAN filter if there is a VLAN */
2250 		if (e1000_vlan_used(adapter))
2251 			rctl |= E1000_RCTL_VFE;
2252 	}
2253 
2254 	if (netdev_uc_count(netdev) > rar_entries - 1) {
2255 		rctl |= E1000_RCTL_UPE;
2256 	} else if (!(netdev->flags & IFF_PROMISC)) {
2257 		rctl &= ~E1000_RCTL_UPE;
2258 		use_uc = true;
2259 	}
2260 
2261 	ew32(RCTL, rctl);
2262 
2263 	/* 82542 2.0 needs to be in reset to write receive address registers */
2264 
2265 	if (hw->mac_type == e1000_82542_rev2_0)
2266 		e1000_enter_82542_rst(adapter);
2267 
2268 	/* load the first 14 addresses into the exact filters 1-14. Unicast
2269 	 * addresses take precedence to avoid disabling unicast filtering
2270 	 * when possible.
2271 	 *
2272 	 * RAR 0 is used for the station MAC address
2273 	 * if there are not 14 addresses, go ahead and clear the filters
2274 	 */
2275 	i = 1;
2276 	if (use_uc)
2277 		netdev_for_each_uc_addr(ha, netdev) {
2278 			if (i == rar_entries)
2279 				break;
2280 			e1000_rar_set(hw, ha->addr, i++);
2281 		}
2282 
2283 	netdev_for_each_mc_addr(ha, netdev) {
2284 		if (i == rar_entries) {
2285 			/* load any remaining addresses into the hash table */
2286 			u32 hash_reg, hash_bit, mta;
2287 			hash_value = e1000_hash_mc_addr(hw, ha->addr);
2288 			hash_reg = (hash_value >> 5) & 0x7F;
2289 			hash_bit = hash_value & 0x1F;
2290 			mta = (1 << hash_bit);
2291 			mcarray[hash_reg] |= mta;
2292 		} else {
2293 			e1000_rar_set(hw, ha->addr, i++);
2294 		}
2295 	}
2296 
2297 	for (; i < rar_entries; i++) {
2298 		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2299 		E1000_WRITE_FLUSH();
2300 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2301 		E1000_WRITE_FLUSH();
2302 	}
2303 
2304 	/* write the hash table completely, write from bottom to avoid
2305 	 * both stupid write combining chipsets, and flushing each write */
2306 	for (i = mta_reg_count - 1; i >= 0 ; i--) {
2307 		/*
2308 		 * If we are on an 82544 has an errata where writing odd
2309 		 * offsets overwrites the previous even offset, but writing
2310 		 * backwards over the range solves the issue by always
2311 		 * writing the odd offset first
2312 		 */
2313 		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2314 	}
2315 	E1000_WRITE_FLUSH();
2316 
2317 	if (hw->mac_type == e1000_82542_rev2_0)
2318 		e1000_leave_82542_rst(adapter);
2319 
2320 	kfree(mcarray);
2321 }
2322 
2323 /**
2324  * e1000_update_phy_info_task - get phy info
2325  * @work: work struct contained inside adapter struct
2326  *
2327  * Need to wait a few seconds after link up to get diagnostic information from
2328  * the phy
2329  */
2330 static void e1000_update_phy_info_task(struct work_struct *work)
2331 {
2332 	struct e1000_adapter *adapter = container_of(work,
2333 						     struct e1000_adapter,
2334 						     phy_info_task.work);
2335 	if (test_bit(__E1000_DOWN, &adapter->flags))
2336 		return;
2337 	mutex_lock(&adapter->mutex);
2338 	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2339 	mutex_unlock(&adapter->mutex);
2340 }
2341 
2342 /**
2343  * e1000_82547_tx_fifo_stall_task - task to complete work
2344  * @work: work struct contained inside adapter struct
2345  **/
2346 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2347 {
2348 	struct e1000_adapter *adapter = container_of(work,
2349 						     struct e1000_adapter,
2350 						     fifo_stall_task.work);
2351 	struct e1000_hw *hw = &adapter->hw;
2352 	struct net_device *netdev = adapter->netdev;
2353 	u32 tctl;
2354 
2355 	if (test_bit(__E1000_DOWN, &adapter->flags))
2356 		return;
2357 	mutex_lock(&adapter->mutex);
2358 	if (atomic_read(&adapter->tx_fifo_stall)) {
2359 		if ((er32(TDT) == er32(TDH)) &&
2360 		   (er32(TDFT) == er32(TDFH)) &&
2361 		   (er32(TDFTS) == er32(TDFHS))) {
2362 			tctl = er32(TCTL);
2363 			ew32(TCTL, tctl & ~E1000_TCTL_EN);
2364 			ew32(TDFT, adapter->tx_head_addr);
2365 			ew32(TDFH, adapter->tx_head_addr);
2366 			ew32(TDFTS, adapter->tx_head_addr);
2367 			ew32(TDFHS, adapter->tx_head_addr);
2368 			ew32(TCTL, tctl);
2369 			E1000_WRITE_FLUSH();
2370 
2371 			adapter->tx_fifo_head = 0;
2372 			atomic_set(&adapter->tx_fifo_stall, 0);
2373 			netif_wake_queue(netdev);
2374 		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2375 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
2376 		}
2377 	}
2378 	mutex_unlock(&adapter->mutex);
2379 }
2380 
2381 bool e1000_has_link(struct e1000_adapter *adapter)
2382 {
2383 	struct e1000_hw *hw = &adapter->hw;
2384 	bool link_active = false;
2385 
2386 	/* get_link_status is set on LSC (link status) interrupt or rx
2387 	 * sequence error interrupt (except on intel ce4100).
2388 	 * get_link_status will stay false until the
2389 	 * e1000_check_for_link establishes link for copper adapters
2390 	 * ONLY
2391 	 */
2392 	switch (hw->media_type) {
2393 	case e1000_media_type_copper:
2394 		if (hw->mac_type == e1000_ce4100)
2395 			hw->get_link_status = 1;
2396 		if (hw->get_link_status) {
2397 			e1000_check_for_link(hw);
2398 			link_active = !hw->get_link_status;
2399 		} else {
2400 			link_active = true;
2401 		}
2402 		break;
2403 	case e1000_media_type_fiber:
2404 		e1000_check_for_link(hw);
2405 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2406 		break;
2407 	case e1000_media_type_internal_serdes:
2408 		e1000_check_for_link(hw);
2409 		link_active = hw->serdes_has_link;
2410 		break;
2411 	default:
2412 		break;
2413 	}
2414 
2415 	return link_active;
2416 }
2417 
2418 /**
2419  * e1000_watchdog - work function
2420  * @work: work struct contained inside adapter struct
2421  **/
2422 static void e1000_watchdog(struct work_struct *work)
2423 {
2424 	struct e1000_adapter *adapter = container_of(work,
2425 						     struct e1000_adapter,
2426 						     watchdog_task.work);
2427 	struct e1000_hw *hw = &adapter->hw;
2428 	struct net_device *netdev = adapter->netdev;
2429 	struct e1000_tx_ring *txdr = adapter->tx_ring;
2430 	u32 link, tctl;
2431 
2432 	if (test_bit(__E1000_DOWN, &adapter->flags))
2433 		return;
2434 
2435 	mutex_lock(&adapter->mutex);
2436 	link = e1000_has_link(adapter);
2437 	if ((netif_carrier_ok(netdev)) && link)
2438 		goto link_up;
2439 
2440 	if (link) {
2441 		if (!netif_carrier_ok(netdev)) {
2442 			u32 ctrl;
2443 			bool txb2b = true;
2444 			/* update snapshot of PHY registers on LSC */
2445 			e1000_get_speed_and_duplex(hw,
2446 			                           &adapter->link_speed,
2447 			                           &adapter->link_duplex);
2448 
2449 			ctrl = er32(CTRL);
2450 			pr_info("%s NIC Link is Up %d Mbps %s, "
2451 				"Flow Control: %s\n",
2452 				netdev->name,
2453 				adapter->link_speed,
2454 				adapter->link_duplex == FULL_DUPLEX ?
2455 				"Full Duplex" : "Half Duplex",
2456 				((ctrl & E1000_CTRL_TFCE) && (ctrl &
2457 				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2458 				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2459 				E1000_CTRL_TFCE) ? "TX" : "None")));
2460 
2461 			/* adjust timeout factor according to speed/duplex */
2462 			adapter->tx_timeout_factor = 1;
2463 			switch (adapter->link_speed) {
2464 			case SPEED_10:
2465 				txb2b = false;
2466 				adapter->tx_timeout_factor = 16;
2467 				break;
2468 			case SPEED_100:
2469 				txb2b = false;
2470 				/* maybe add some timeout factor ? */
2471 				break;
2472 			}
2473 
2474 			/* enable transmits in the hardware */
2475 			tctl = er32(TCTL);
2476 			tctl |= E1000_TCTL_EN;
2477 			ew32(TCTL, tctl);
2478 
2479 			netif_carrier_on(netdev);
2480 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2481 				schedule_delayed_work(&adapter->phy_info_task,
2482 						      2 * HZ);
2483 			adapter->smartspeed = 0;
2484 		}
2485 	} else {
2486 		if (netif_carrier_ok(netdev)) {
2487 			adapter->link_speed = 0;
2488 			adapter->link_duplex = 0;
2489 			pr_info("%s NIC Link is Down\n",
2490 				netdev->name);
2491 			netif_carrier_off(netdev);
2492 
2493 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2494 				schedule_delayed_work(&adapter->phy_info_task,
2495 						      2 * HZ);
2496 		}
2497 
2498 		e1000_smartspeed(adapter);
2499 	}
2500 
2501 link_up:
2502 	e1000_update_stats(adapter);
2503 
2504 	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2505 	adapter->tpt_old = adapter->stats.tpt;
2506 	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2507 	adapter->colc_old = adapter->stats.colc;
2508 
2509 	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2510 	adapter->gorcl_old = adapter->stats.gorcl;
2511 	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2512 	adapter->gotcl_old = adapter->stats.gotcl;
2513 
2514 	e1000_update_adaptive(hw);
2515 
2516 	if (!netif_carrier_ok(netdev)) {
2517 		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2518 			/* We've lost link, so the controller stops DMA,
2519 			 * but we've got queued Tx work that's never going
2520 			 * to get done, so reset controller to flush Tx.
2521 			 * (Do the reset outside of interrupt context). */
2522 			adapter->tx_timeout_count++;
2523 			schedule_work(&adapter->reset_task);
2524 			/* exit immediately since reset is imminent */
2525 			goto unlock;
2526 		}
2527 	}
2528 
2529 	/* Simple mode for Interrupt Throttle Rate (ITR) */
2530 	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2531 		/*
2532 		 * Symmetric Tx/Rx gets a reduced ITR=2000;
2533 		 * Total asymmetrical Tx or Rx gets ITR=8000;
2534 		 * everyone else is between 2000-8000.
2535 		 */
2536 		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2537 		u32 dif = (adapter->gotcl > adapter->gorcl ?
2538 			    adapter->gotcl - adapter->gorcl :
2539 			    adapter->gorcl - adapter->gotcl) / 10000;
2540 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2541 
2542 		ew32(ITR, 1000000000 / (itr * 256));
2543 	}
2544 
2545 	/* Cause software interrupt to ensure rx ring is cleaned */
2546 	ew32(ICS, E1000_ICS_RXDMT0);
2547 
2548 	/* Force detection of hung controller every watchdog period */
2549 	adapter->detect_tx_hung = true;
2550 
2551 	/* Reschedule the task */
2552 	if (!test_bit(__E1000_DOWN, &adapter->flags))
2553 		schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2554 
2555 unlock:
2556 	mutex_unlock(&adapter->mutex);
2557 }
2558 
2559 enum latency_range {
2560 	lowest_latency = 0,
2561 	low_latency = 1,
2562 	bulk_latency = 2,
2563 	latency_invalid = 255
2564 };
2565 
2566 /**
2567  * e1000_update_itr - update the dynamic ITR value based on statistics
2568  * @adapter: pointer to adapter
2569  * @itr_setting: current adapter->itr
2570  * @packets: the number of packets during this measurement interval
2571  * @bytes: the number of bytes during this measurement interval
2572  *
2573  *      Stores a new ITR value based on packets and byte
2574  *      counts during the last interrupt.  The advantage of per interrupt
2575  *      computation is faster updates and more accurate ITR for the current
2576  *      traffic pattern.  Constants in this function were computed
2577  *      based on theoretical maximum wire speed and thresholds were set based
2578  *      on testing data as well as attempting to minimize response time
2579  *      while increasing bulk throughput.
2580  *      this functionality is controlled by the InterruptThrottleRate module
2581  *      parameter (see e1000_param.c)
2582  **/
2583 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2584 				     u16 itr_setting, int packets, int bytes)
2585 {
2586 	unsigned int retval = itr_setting;
2587 	struct e1000_hw *hw = &adapter->hw;
2588 
2589 	if (unlikely(hw->mac_type < e1000_82540))
2590 		goto update_itr_done;
2591 
2592 	if (packets == 0)
2593 		goto update_itr_done;
2594 
2595 	switch (itr_setting) {
2596 	case lowest_latency:
2597 		/* jumbo frames get bulk treatment*/
2598 		if (bytes/packets > 8000)
2599 			retval = bulk_latency;
2600 		else if ((packets < 5) && (bytes > 512))
2601 			retval = low_latency;
2602 		break;
2603 	case low_latency:  /* 50 usec aka 20000 ints/s */
2604 		if (bytes > 10000) {
2605 			/* jumbo frames need bulk latency setting */
2606 			if (bytes/packets > 8000)
2607 				retval = bulk_latency;
2608 			else if ((packets < 10) || ((bytes/packets) > 1200))
2609 				retval = bulk_latency;
2610 			else if ((packets > 35))
2611 				retval = lowest_latency;
2612 		} else if (bytes/packets > 2000)
2613 			retval = bulk_latency;
2614 		else if (packets <= 2 && bytes < 512)
2615 			retval = lowest_latency;
2616 		break;
2617 	case bulk_latency: /* 250 usec aka 4000 ints/s */
2618 		if (bytes > 25000) {
2619 			if (packets > 35)
2620 				retval = low_latency;
2621 		} else if (bytes < 6000) {
2622 			retval = low_latency;
2623 		}
2624 		break;
2625 	}
2626 
2627 update_itr_done:
2628 	return retval;
2629 }
2630 
2631 static void e1000_set_itr(struct e1000_adapter *adapter)
2632 {
2633 	struct e1000_hw *hw = &adapter->hw;
2634 	u16 current_itr;
2635 	u32 new_itr = adapter->itr;
2636 
2637 	if (unlikely(hw->mac_type < e1000_82540))
2638 		return;
2639 
2640 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2641 	if (unlikely(adapter->link_speed != SPEED_1000)) {
2642 		current_itr = 0;
2643 		new_itr = 4000;
2644 		goto set_itr_now;
2645 	}
2646 
2647 	adapter->tx_itr = e1000_update_itr(adapter,
2648 	                            adapter->tx_itr,
2649 	                            adapter->total_tx_packets,
2650 	                            adapter->total_tx_bytes);
2651 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2652 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2653 		adapter->tx_itr = low_latency;
2654 
2655 	adapter->rx_itr = e1000_update_itr(adapter,
2656 	                            adapter->rx_itr,
2657 	                            adapter->total_rx_packets,
2658 	                            adapter->total_rx_bytes);
2659 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2660 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2661 		adapter->rx_itr = low_latency;
2662 
2663 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2664 
2665 	switch (current_itr) {
2666 	/* counts and packets in update_itr are dependent on these numbers */
2667 	case lowest_latency:
2668 		new_itr = 70000;
2669 		break;
2670 	case low_latency:
2671 		new_itr = 20000; /* aka hwitr = ~200 */
2672 		break;
2673 	case bulk_latency:
2674 		new_itr = 4000;
2675 		break;
2676 	default:
2677 		break;
2678 	}
2679 
2680 set_itr_now:
2681 	if (new_itr != adapter->itr) {
2682 		/* this attempts to bias the interrupt rate towards Bulk
2683 		 * by adding intermediate steps when interrupt rate is
2684 		 * increasing */
2685 		new_itr = new_itr > adapter->itr ?
2686 		             min(adapter->itr + (new_itr >> 2), new_itr) :
2687 		             new_itr;
2688 		adapter->itr = new_itr;
2689 		ew32(ITR, 1000000000 / (new_itr * 256));
2690 	}
2691 }
2692 
2693 #define E1000_TX_FLAGS_CSUM		0x00000001
2694 #define E1000_TX_FLAGS_VLAN		0x00000002
2695 #define E1000_TX_FLAGS_TSO		0x00000004
2696 #define E1000_TX_FLAGS_IPV4		0x00000008
2697 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
2698 #define E1000_TX_FLAGS_VLAN_SHIFT	16
2699 
2700 static int e1000_tso(struct e1000_adapter *adapter,
2701 		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2702 {
2703 	struct e1000_context_desc *context_desc;
2704 	struct e1000_buffer *buffer_info;
2705 	unsigned int i;
2706 	u32 cmd_length = 0;
2707 	u16 ipcse = 0, tucse, mss;
2708 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
2709 	int err;
2710 
2711 	if (skb_is_gso(skb)) {
2712 		if (skb_header_cloned(skb)) {
2713 			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2714 			if (err)
2715 				return err;
2716 		}
2717 
2718 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2719 		mss = skb_shinfo(skb)->gso_size;
2720 		if (skb->protocol == htons(ETH_P_IP)) {
2721 			struct iphdr *iph = ip_hdr(skb);
2722 			iph->tot_len = 0;
2723 			iph->check = 0;
2724 			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2725 								 iph->daddr, 0,
2726 								 IPPROTO_TCP,
2727 								 0);
2728 			cmd_length = E1000_TXD_CMD_IP;
2729 			ipcse = skb_transport_offset(skb) - 1;
2730 		} else if (skb->protocol == htons(ETH_P_IPV6)) {
2731 			ipv6_hdr(skb)->payload_len = 0;
2732 			tcp_hdr(skb)->check =
2733 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2734 						 &ipv6_hdr(skb)->daddr,
2735 						 0, IPPROTO_TCP, 0);
2736 			ipcse = 0;
2737 		}
2738 		ipcss = skb_network_offset(skb);
2739 		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2740 		tucss = skb_transport_offset(skb);
2741 		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2742 		tucse = 0;
2743 
2744 		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2745 			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2746 
2747 		i = tx_ring->next_to_use;
2748 		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2749 		buffer_info = &tx_ring->buffer_info[i];
2750 
2751 		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2752 		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2753 		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2754 		context_desc->upper_setup.tcp_fields.tucss = tucss;
2755 		context_desc->upper_setup.tcp_fields.tucso = tucso;
2756 		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2757 		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2758 		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2759 		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2760 
2761 		buffer_info->time_stamp = jiffies;
2762 		buffer_info->next_to_watch = i;
2763 
2764 		if (++i == tx_ring->count) i = 0;
2765 		tx_ring->next_to_use = i;
2766 
2767 		return true;
2768 	}
2769 	return false;
2770 }
2771 
2772 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2773 			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2774 {
2775 	struct e1000_context_desc *context_desc;
2776 	struct e1000_buffer *buffer_info;
2777 	unsigned int i;
2778 	u8 css;
2779 	u32 cmd_len = E1000_TXD_CMD_DEXT;
2780 
2781 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2782 		return false;
2783 
2784 	switch (skb->protocol) {
2785 	case cpu_to_be16(ETH_P_IP):
2786 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2787 			cmd_len |= E1000_TXD_CMD_TCP;
2788 		break;
2789 	case cpu_to_be16(ETH_P_IPV6):
2790 		/* XXX not handling all IPV6 headers */
2791 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2792 			cmd_len |= E1000_TXD_CMD_TCP;
2793 		break;
2794 	default:
2795 		if (unlikely(net_ratelimit()))
2796 			e_warn(drv, "checksum_partial proto=%x!\n",
2797 			       skb->protocol);
2798 		break;
2799 	}
2800 
2801 	css = skb_checksum_start_offset(skb);
2802 
2803 	i = tx_ring->next_to_use;
2804 	buffer_info = &tx_ring->buffer_info[i];
2805 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2806 
2807 	context_desc->lower_setup.ip_config = 0;
2808 	context_desc->upper_setup.tcp_fields.tucss = css;
2809 	context_desc->upper_setup.tcp_fields.tucso =
2810 		css + skb->csum_offset;
2811 	context_desc->upper_setup.tcp_fields.tucse = 0;
2812 	context_desc->tcp_seg_setup.data = 0;
2813 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2814 
2815 	buffer_info->time_stamp = jiffies;
2816 	buffer_info->next_to_watch = i;
2817 
2818 	if (unlikely(++i == tx_ring->count)) i = 0;
2819 	tx_ring->next_to_use = i;
2820 
2821 	return true;
2822 }
2823 
2824 #define E1000_MAX_TXD_PWR	12
2825 #define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
2826 
2827 static int e1000_tx_map(struct e1000_adapter *adapter,
2828 			struct e1000_tx_ring *tx_ring,
2829 			struct sk_buff *skb, unsigned int first,
2830 			unsigned int max_per_txd, unsigned int nr_frags,
2831 			unsigned int mss)
2832 {
2833 	struct e1000_hw *hw = &adapter->hw;
2834 	struct pci_dev *pdev = adapter->pdev;
2835 	struct e1000_buffer *buffer_info;
2836 	unsigned int len = skb_headlen(skb);
2837 	unsigned int offset = 0, size, count = 0, i;
2838 	unsigned int f, bytecount, segs;
2839 
2840 	i = tx_ring->next_to_use;
2841 
2842 	while (len) {
2843 		buffer_info = &tx_ring->buffer_info[i];
2844 		size = min(len, max_per_txd);
2845 		/* Workaround for Controller erratum --
2846 		 * descriptor for non-tso packet in a linear SKB that follows a
2847 		 * tso gets written back prematurely before the data is fully
2848 		 * DMA'd to the controller */
2849 		if (!skb->data_len && tx_ring->last_tx_tso &&
2850 		    !skb_is_gso(skb)) {
2851 			tx_ring->last_tx_tso = 0;
2852 			size -= 4;
2853 		}
2854 
2855 		/* Workaround for premature desc write-backs
2856 		 * in TSO mode.  Append 4-byte sentinel desc */
2857 		if (unlikely(mss && !nr_frags && size == len && size > 8))
2858 			size -= 4;
2859 		/* work-around for errata 10 and it applies
2860 		 * to all controllers in PCI-X mode
2861 		 * The fix is to make sure that the first descriptor of a
2862 		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2863 		 */
2864 		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2865 		                (size > 2015) && count == 0))
2866 		        size = 2015;
2867 
2868 		/* Workaround for potential 82544 hang in PCI-X.  Avoid
2869 		 * terminating buffers within evenly-aligned dwords. */
2870 		if (unlikely(adapter->pcix_82544 &&
2871 		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2872 		   size > 4))
2873 			size -= 4;
2874 
2875 		buffer_info->length = size;
2876 		/* set time_stamp *before* dma to help avoid a possible race */
2877 		buffer_info->time_stamp = jiffies;
2878 		buffer_info->mapped_as_page = false;
2879 		buffer_info->dma = dma_map_single(&pdev->dev,
2880 						  skb->data + offset,
2881 						  size,	DMA_TO_DEVICE);
2882 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2883 			goto dma_error;
2884 		buffer_info->next_to_watch = i;
2885 
2886 		len -= size;
2887 		offset += size;
2888 		count++;
2889 		if (len) {
2890 			i++;
2891 			if (unlikely(i == tx_ring->count))
2892 				i = 0;
2893 		}
2894 	}
2895 
2896 	for (f = 0; f < nr_frags; f++) {
2897 		const struct skb_frag_struct *frag;
2898 
2899 		frag = &skb_shinfo(skb)->frags[f];
2900 		len = skb_frag_size(frag);
2901 		offset = 0;
2902 
2903 		while (len) {
2904 			unsigned long bufend;
2905 			i++;
2906 			if (unlikely(i == tx_ring->count))
2907 				i = 0;
2908 
2909 			buffer_info = &tx_ring->buffer_info[i];
2910 			size = min(len, max_per_txd);
2911 			/* Workaround for premature desc write-backs
2912 			 * in TSO mode.  Append 4-byte sentinel desc */
2913 			if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2914 				size -= 4;
2915 			/* Workaround for potential 82544 hang in PCI-X.
2916 			 * Avoid terminating buffers within evenly-aligned
2917 			 * dwords. */
2918 			bufend = (unsigned long)
2919 				page_to_phys(skb_frag_page(frag));
2920 			bufend += offset + size - 1;
2921 			if (unlikely(adapter->pcix_82544 &&
2922 				     !(bufend & 4) &&
2923 				     size > 4))
2924 				size -= 4;
2925 
2926 			buffer_info->length = size;
2927 			buffer_info->time_stamp = jiffies;
2928 			buffer_info->mapped_as_page = true;
2929 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2930 						offset, size, DMA_TO_DEVICE);
2931 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2932 				goto dma_error;
2933 			buffer_info->next_to_watch = i;
2934 
2935 			len -= size;
2936 			offset += size;
2937 			count++;
2938 		}
2939 	}
2940 
2941 	segs = skb_shinfo(skb)->gso_segs ?: 1;
2942 	/* multiply data chunks by size of headers */
2943 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2944 
2945 	tx_ring->buffer_info[i].skb = skb;
2946 	tx_ring->buffer_info[i].segs = segs;
2947 	tx_ring->buffer_info[i].bytecount = bytecount;
2948 	tx_ring->buffer_info[first].next_to_watch = i;
2949 
2950 	return count;
2951 
2952 dma_error:
2953 	dev_err(&pdev->dev, "TX DMA map failed\n");
2954 	buffer_info->dma = 0;
2955 	if (count)
2956 		count--;
2957 
2958 	while (count--) {
2959 		if (i==0)
2960 			i += tx_ring->count;
2961 		i--;
2962 		buffer_info = &tx_ring->buffer_info[i];
2963 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2964 	}
2965 
2966 	return 0;
2967 }
2968 
2969 static void e1000_tx_queue(struct e1000_adapter *adapter,
2970 			   struct e1000_tx_ring *tx_ring, int tx_flags,
2971 			   int count)
2972 {
2973 	struct e1000_hw *hw = &adapter->hw;
2974 	struct e1000_tx_desc *tx_desc = NULL;
2975 	struct e1000_buffer *buffer_info;
2976 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2977 	unsigned int i;
2978 
2979 	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2980 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2981 		             E1000_TXD_CMD_TSE;
2982 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2983 
2984 		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2985 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2986 	}
2987 
2988 	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2989 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2990 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2991 	}
2992 
2993 	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2994 		txd_lower |= E1000_TXD_CMD_VLE;
2995 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2996 	}
2997 
2998 	i = tx_ring->next_to_use;
2999 
3000 	while (count--) {
3001 		buffer_info = &tx_ring->buffer_info[i];
3002 		tx_desc = E1000_TX_DESC(*tx_ring, i);
3003 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3004 		tx_desc->lower.data =
3005 			cpu_to_le32(txd_lower | buffer_info->length);
3006 		tx_desc->upper.data = cpu_to_le32(txd_upper);
3007 		if (unlikely(++i == tx_ring->count)) i = 0;
3008 	}
3009 
3010 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3011 
3012 	/* Force memory writes to complete before letting h/w
3013 	 * know there are new descriptors to fetch.  (Only
3014 	 * applicable for weak-ordered memory model archs,
3015 	 * such as IA-64). */
3016 	wmb();
3017 
3018 	tx_ring->next_to_use = i;
3019 	writel(i, hw->hw_addr + tx_ring->tdt);
3020 	/* we need this if more than one processor can write to our tail
3021 	 * at a time, it syncronizes IO on IA64/Altix systems */
3022 	mmiowb();
3023 }
3024 
3025 /**
3026  * 82547 workaround to avoid controller hang in half-duplex environment.
3027  * The workaround is to avoid queuing a large packet that would span
3028  * the internal Tx FIFO ring boundary by notifying the stack to resend
3029  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3030  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3031  * to the beginning of the Tx FIFO.
3032  **/
3033 
3034 #define E1000_FIFO_HDR			0x10
3035 #define E1000_82547_PAD_LEN		0x3E0
3036 
3037 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3038 				       struct sk_buff *skb)
3039 {
3040 	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3041 	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3042 
3043 	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3044 
3045 	if (adapter->link_duplex != HALF_DUPLEX)
3046 		goto no_fifo_stall_required;
3047 
3048 	if (atomic_read(&adapter->tx_fifo_stall))
3049 		return 1;
3050 
3051 	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3052 		atomic_set(&adapter->tx_fifo_stall, 1);
3053 		return 1;
3054 	}
3055 
3056 no_fifo_stall_required:
3057 	adapter->tx_fifo_head += skb_fifo_len;
3058 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3059 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
3060 	return 0;
3061 }
3062 
3063 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3064 {
3065 	struct e1000_adapter *adapter = netdev_priv(netdev);
3066 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3067 
3068 	netif_stop_queue(netdev);
3069 	/* Herbert's original patch had:
3070 	 *  smp_mb__after_netif_stop_queue();
3071 	 * but since that doesn't exist yet, just open code it. */
3072 	smp_mb();
3073 
3074 	/* We need to check again in a case another CPU has just
3075 	 * made room available. */
3076 	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3077 		return -EBUSY;
3078 
3079 	/* A reprieve! */
3080 	netif_start_queue(netdev);
3081 	++adapter->restart_queue;
3082 	return 0;
3083 }
3084 
3085 static int e1000_maybe_stop_tx(struct net_device *netdev,
3086                                struct e1000_tx_ring *tx_ring, int size)
3087 {
3088 	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3089 		return 0;
3090 	return __e1000_maybe_stop_tx(netdev, size);
3091 }
3092 
3093 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3094 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3095 				    struct net_device *netdev)
3096 {
3097 	struct e1000_adapter *adapter = netdev_priv(netdev);
3098 	struct e1000_hw *hw = &adapter->hw;
3099 	struct e1000_tx_ring *tx_ring;
3100 	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3101 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3102 	unsigned int tx_flags = 0;
3103 	unsigned int len = skb_headlen(skb);
3104 	unsigned int nr_frags;
3105 	unsigned int mss;
3106 	int count = 0;
3107 	int tso;
3108 	unsigned int f;
3109 
3110 	/* This goes back to the question of how to logically map a tx queue
3111 	 * to a flow.  Right now, performance is impacted slightly negatively
3112 	 * if using multiple tx queues.  If the stack breaks away from a
3113 	 * single qdisc implementation, we can look at this again. */
3114 	tx_ring = adapter->tx_ring;
3115 
3116 	if (unlikely(skb->len <= 0)) {
3117 		dev_kfree_skb_any(skb);
3118 		return NETDEV_TX_OK;
3119 	}
3120 
3121 	mss = skb_shinfo(skb)->gso_size;
3122 	/* The controller does a simple calculation to
3123 	 * make sure there is enough room in the FIFO before
3124 	 * initiating the DMA for each buffer.  The calc is:
3125 	 * 4 = ceil(buffer len/mss).  To make sure we don't
3126 	 * overrun the FIFO, adjust the max buffer len if mss
3127 	 * drops. */
3128 	if (mss) {
3129 		u8 hdr_len;
3130 		max_per_txd = min(mss << 2, max_per_txd);
3131 		max_txd_pwr = fls(max_per_txd) - 1;
3132 
3133 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3134 		if (skb->data_len && hdr_len == len) {
3135 			switch (hw->mac_type) {
3136 				unsigned int pull_size;
3137 			case e1000_82544:
3138 				/* Make sure we have room to chop off 4 bytes,
3139 				 * and that the end alignment will work out to
3140 				 * this hardware's requirements
3141 				 * NOTE: this is a TSO only workaround
3142 				 * if end byte alignment not correct move us
3143 				 * into the next dword */
3144 				if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3145 					break;
3146 				/* fall through */
3147 				pull_size = min((unsigned int)4, skb->data_len);
3148 				if (!__pskb_pull_tail(skb, pull_size)) {
3149 					e_err(drv, "__pskb_pull_tail "
3150 					      "failed.\n");
3151 					dev_kfree_skb_any(skb);
3152 					return NETDEV_TX_OK;
3153 				}
3154 				len = skb_headlen(skb);
3155 				break;
3156 			default:
3157 				/* do nothing */
3158 				break;
3159 			}
3160 		}
3161 	}
3162 
3163 	/* reserve a descriptor for the offload context */
3164 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3165 		count++;
3166 	count++;
3167 
3168 	/* Controller Erratum workaround */
3169 	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3170 		count++;
3171 
3172 	count += TXD_USE_COUNT(len, max_txd_pwr);
3173 
3174 	if (adapter->pcix_82544)
3175 		count++;
3176 
3177 	/* work-around for errata 10 and it applies to all controllers
3178 	 * in PCI-X mode, so add one more descriptor to the count
3179 	 */
3180 	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3181 			(len > 2015)))
3182 		count++;
3183 
3184 	nr_frags = skb_shinfo(skb)->nr_frags;
3185 	for (f = 0; f < nr_frags; f++)
3186 		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3187 				       max_txd_pwr);
3188 	if (adapter->pcix_82544)
3189 		count += nr_frags;
3190 
3191 	/* need: count + 2 desc gap to keep tail from touching
3192 	 * head, otherwise try next time */
3193 	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3194 		return NETDEV_TX_BUSY;
3195 
3196 	if (unlikely((hw->mac_type == e1000_82547) &&
3197 		     (e1000_82547_fifo_workaround(adapter, skb)))) {
3198 		netif_stop_queue(netdev);
3199 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3200 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
3201 		return NETDEV_TX_BUSY;
3202 	}
3203 
3204 	if (vlan_tx_tag_present(skb)) {
3205 		tx_flags |= E1000_TX_FLAGS_VLAN;
3206 		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3207 	}
3208 
3209 	first = tx_ring->next_to_use;
3210 
3211 	tso = e1000_tso(adapter, tx_ring, skb);
3212 	if (tso < 0) {
3213 		dev_kfree_skb_any(skb);
3214 		return NETDEV_TX_OK;
3215 	}
3216 
3217 	if (likely(tso)) {
3218 		if (likely(hw->mac_type != e1000_82544))
3219 			tx_ring->last_tx_tso = 1;
3220 		tx_flags |= E1000_TX_FLAGS_TSO;
3221 	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3222 		tx_flags |= E1000_TX_FLAGS_CSUM;
3223 
3224 	if (likely(skb->protocol == htons(ETH_P_IP)))
3225 		tx_flags |= E1000_TX_FLAGS_IPV4;
3226 
3227 	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3228 	                     nr_frags, mss);
3229 
3230 	if (count) {
3231 		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3232 		/* Make sure there is space in the ring for the next send. */
3233 		e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3234 
3235 	} else {
3236 		dev_kfree_skb_any(skb);
3237 		tx_ring->buffer_info[first].time_stamp = 0;
3238 		tx_ring->next_to_use = first;
3239 	}
3240 
3241 	return NETDEV_TX_OK;
3242 }
3243 
3244 /**
3245  * e1000_tx_timeout - Respond to a Tx Hang
3246  * @netdev: network interface device structure
3247  **/
3248 
3249 static void e1000_tx_timeout(struct net_device *netdev)
3250 {
3251 	struct e1000_adapter *adapter = netdev_priv(netdev);
3252 
3253 	/* Do the reset outside of interrupt context */
3254 	adapter->tx_timeout_count++;
3255 	schedule_work(&adapter->reset_task);
3256 }
3257 
3258 static void e1000_reset_task(struct work_struct *work)
3259 {
3260 	struct e1000_adapter *adapter =
3261 		container_of(work, struct e1000_adapter, reset_task);
3262 
3263 	if (test_bit(__E1000_DOWN, &adapter->flags))
3264 		return;
3265 	e1000_reinit_safe(adapter);
3266 }
3267 
3268 /**
3269  * e1000_get_stats - Get System Network Statistics
3270  * @netdev: network interface device structure
3271  *
3272  * Returns the address of the device statistics structure.
3273  * The statistics are actually updated from the watchdog.
3274  **/
3275 
3276 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3277 {
3278 	/* only return the current stats */
3279 	return &netdev->stats;
3280 }
3281 
3282 /**
3283  * e1000_change_mtu - Change the Maximum Transfer Unit
3284  * @netdev: network interface device structure
3285  * @new_mtu: new value for maximum frame size
3286  *
3287  * Returns 0 on success, negative on failure
3288  **/
3289 
3290 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3291 {
3292 	struct e1000_adapter *adapter = netdev_priv(netdev);
3293 	struct e1000_hw *hw = &adapter->hw;
3294 	int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3295 
3296 	if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3297 	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3298 		e_err(probe, "Invalid MTU setting\n");
3299 		return -EINVAL;
3300 	}
3301 
3302 	/* Adapter-specific max frame size limits. */
3303 	switch (hw->mac_type) {
3304 	case e1000_undefined ... e1000_82542_rev2_1:
3305 		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3306 			e_err(probe, "Jumbo Frames not supported.\n");
3307 			return -EINVAL;
3308 		}
3309 		break;
3310 	default:
3311 		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3312 		break;
3313 	}
3314 
3315 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3316 		msleep(1);
3317 	/* e1000_down has a dependency on max_frame_size */
3318 	hw->max_frame_size = max_frame;
3319 	if (netif_running(netdev))
3320 		e1000_down(adapter);
3321 
3322 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3323 	 * means we reserve 2 more, this pushes us to allocate from the next
3324 	 * larger slab size.
3325 	 * i.e. RXBUFFER_2048 --> size-4096 slab
3326 	 *  however with the new *_jumbo_rx* routines, jumbo receives will use
3327 	 *  fragmented skbs */
3328 
3329 	if (max_frame <= E1000_RXBUFFER_2048)
3330 		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3331 	else
3332 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3333 		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3334 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3335 		adapter->rx_buffer_len = PAGE_SIZE;
3336 #endif
3337 
3338 	/* adjust allocation if LPE protects us, and we aren't using SBP */
3339 	if (!hw->tbi_compatibility_on &&
3340 	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3341 	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3342 		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3343 
3344 	pr_info("%s changing MTU from %d to %d\n",
3345 		netdev->name, netdev->mtu, new_mtu);
3346 	netdev->mtu = new_mtu;
3347 
3348 	if (netif_running(netdev))
3349 		e1000_up(adapter);
3350 	else
3351 		e1000_reset(adapter);
3352 
3353 	clear_bit(__E1000_RESETTING, &adapter->flags);
3354 
3355 	return 0;
3356 }
3357 
3358 /**
3359  * e1000_update_stats - Update the board statistics counters
3360  * @adapter: board private structure
3361  **/
3362 
3363 void e1000_update_stats(struct e1000_adapter *adapter)
3364 {
3365 	struct net_device *netdev = adapter->netdev;
3366 	struct e1000_hw *hw = &adapter->hw;
3367 	struct pci_dev *pdev = adapter->pdev;
3368 	unsigned long flags;
3369 	u16 phy_tmp;
3370 
3371 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3372 
3373 	/*
3374 	 * Prevent stats update while adapter is being reset, or if the pci
3375 	 * connection is down.
3376 	 */
3377 	if (adapter->link_speed == 0)
3378 		return;
3379 	if (pci_channel_offline(pdev))
3380 		return;
3381 
3382 	spin_lock_irqsave(&adapter->stats_lock, flags);
3383 
3384 	/* these counters are modified from e1000_tbi_adjust_stats,
3385 	 * called from the interrupt context, so they must only
3386 	 * be written while holding adapter->stats_lock
3387 	 */
3388 
3389 	adapter->stats.crcerrs += er32(CRCERRS);
3390 	adapter->stats.gprc += er32(GPRC);
3391 	adapter->stats.gorcl += er32(GORCL);
3392 	adapter->stats.gorch += er32(GORCH);
3393 	adapter->stats.bprc += er32(BPRC);
3394 	adapter->stats.mprc += er32(MPRC);
3395 	adapter->stats.roc += er32(ROC);
3396 
3397 	adapter->stats.prc64 += er32(PRC64);
3398 	adapter->stats.prc127 += er32(PRC127);
3399 	adapter->stats.prc255 += er32(PRC255);
3400 	adapter->stats.prc511 += er32(PRC511);
3401 	adapter->stats.prc1023 += er32(PRC1023);
3402 	adapter->stats.prc1522 += er32(PRC1522);
3403 
3404 	adapter->stats.symerrs += er32(SYMERRS);
3405 	adapter->stats.mpc += er32(MPC);
3406 	adapter->stats.scc += er32(SCC);
3407 	adapter->stats.ecol += er32(ECOL);
3408 	adapter->stats.mcc += er32(MCC);
3409 	adapter->stats.latecol += er32(LATECOL);
3410 	adapter->stats.dc += er32(DC);
3411 	adapter->stats.sec += er32(SEC);
3412 	adapter->stats.rlec += er32(RLEC);
3413 	adapter->stats.xonrxc += er32(XONRXC);
3414 	adapter->stats.xontxc += er32(XONTXC);
3415 	adapter->stats.xoffrxc += er32(XOFFRXC);
3416 	adapter->stats.xofftxc += er32(XOFFTXC);
3417 	adapter->stats.fcruc += er32(FCRUC);
3418 	adapter->stats.gptc += er32(GPTC);
3419 	adapter->stats.gotcl += er32(GOTCL);
3420 	adapter->stats.gotch += er32(GOTCH);
3421 	adapter->stats.rnbc += er32(RNBC);
3422 	adapter->stats.ruc += er32(RUC);
3423 	adapter->stats.rfc += er32(RFC);
3424 	adapter->stats.rjc += er32(RJC);
3425 	adapter->stats.torl += er32(TORL);
3426 	adapter->stats.torh += er32(TORH);
3427 	adapter->stats.totl += er32(TOTL);
3428 	adapter->stats.toth += er32(TOTH);
3429 	adapter->stats.tpr += er32(TPR);
3430 
3431 	adapter->stats.ptc64 += er32(PTC64);
3432 	adapter->stats.ptc127 += er32(PTC127);
3433 	adapter->stats.ptc255 += er32(PTC255);
3434 	adapter->stats.ptc511 += er32(PTC511);
3435 	adapter->stats.ptc1023 += er32(PTC1023);
3436 	adapter->stats.ptc1522 += er32(PTC1522);
3437 
3438 	adapter->stats.mptc += er32(MPTC);
3439 	adapter->stats.bptc += er32(BPTC);
3440 
3441 	/* used for adaptive IFS */
3442 
3443 	hw->tx_packet_delta = er32(TPT);
3444 	adapter->stats.tpt += hw->tx_packet_delta;
3445 	hw->collision_delta = er32(COLC);
3446 	adapter->stats.colc += hw->collision_delta;
3447 
3448 	if (hw->mac_type >= e1000_82543) {
3449 		adapter->stats.algnerrc += er32(ALGNERRC);
3450 		adapter->stats.rxerrc += er32(RXERRC);
3451 		adapter->stats.tncrs += er32(TNCRS);
3452 		adapter->stats.cexterr += er32(CEXTERR);
3453 		adapter->stats.tsctc += er32(TSCTC);
3454 		adapter->stats.tsctfc += er32(TSCTFC);
3455 	}
3456 
3457 	/* Fill out the OS statistics structure */
3458 	netdev->stats.multicast = adapter->stats.mprc;
3459 	netdev->stats.collisions = adapter->stats.colc;
3460 
3461 	/* Rx Errors */
3462 
3463 	/* RLEC on some newer hardware can be incorrect so build
3464 	* our own version based on RUC and ROC */
3465 	netdev->stats.rx_errors = adapter->stats.rxerrc +
3466 		adapter->stats.crcerrs + adapter->stats.algnerrc +
3467 		adapter->stats.ruc + adapter->stats.roc +
3468 		adapter->stats.cexterr;
3469 	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3470 	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3471 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3472 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3473 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3474 
3475 	/* Tx Errors */
3476 	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3477 	netdev->stats.tx_errors = adapter->stats.txerrc;
3478 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3479 	netdev->stats.tx_window_errors = adapter->stats.latecol;
3480 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3481 	if (hw->bad_tx_carr_stats_fd &&
3482 	    adapter->link_duplex == FULL_DUPLEX) {
3483 		netdev->stats.tx_carrier_errors = 0;
3484 		adapter->stats.tncrs = 0;
3485 	}
3486 
3487 	/* Tx Dropped needs to be maintained elsewhere */
3488 
3489 	/* Phy Stats */
3490 	if (hw->media_type == e1000_media_type_copper) {
3491 		if ((adapter->link_speed == SPEED_1000) &&
3492 		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3493 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3494 			adapter->phy_stats.idle_errors += phy_tmp;
3495 		}
3496 
3497 		if ((hw->mac_type <= e1000_82546) &&
3498 		   (hw->phy_type == e1000_phy_m88) &&
3499 		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3500 			adapter->phy_stats.receive_errors += phy_tmp;
3501 	}
3502 
3503 	/* Management Stats */
3504 	if (hw->has_smbus) {
3505 		adapter->stats.mgptc += er32(MGTPTC);
3506 		adapter->stats.mgprc += er32(MGTPRC);
3507 		adapter->stats.mgpdc += er32(MGTPDC);
3508 	}
3509 
3510 	spin_unlock_irqrestore(&adapter->stats_lock, flags);
3511 }
3512 
3513 /**
3514  * e1000_intr - Interrupt Handler
3515  * @irq: interrupt number
3516  * @data: pointer to a network interface device structure
3517  **/
3518 
3519 static irqreturn_t e1000_intr(int irq, void *data)
3520 {
3521 	struct net_device *netdev = data;
3522 	struct e1000_adapter *adapter = netdev_priv(netdev);
3523 	struct e1000_hw *hw = &adapter->hw;
3524 	u32 icr = er32(ICR);
3525 
3526 	if (unlikely((!icr)))
3527 		return IRQ_NONE;  /* Not our interrupt */
3528 
3529 	/*
3530 	 * we might have caused the interrupt, but the above
3531 	 * read cleared it, and just in case the driver is
3532 	 * down there is nothing to do so return handled
3533 	 */
3534 	if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3535 		return IRQ_HANDLED;
3536 
3537 	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3538 		hw->get_link_status = 1;
3539 		/* guard against interrupt when we're going down */
3540 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3541 			schedule_delayed_work(&adapter->watchdog_task, 1);
3542 	}
3543 
3544 	/* disable interrupts, without the synchronize_irq bit */
3545 	ew32(IMC, ~0);
3546 	E1000_WRITE_FLUSH();
3547 
3548 	if (likely(napi_schedule_prep(&adapter->napi))) {
3549 		adapter->total_tx_bytes = 0;
3550 		adapter->total_tx_packets = 0;
3551 		adapter->total_rx_bytes = 0;
3552 		adapter->total_rx_packets = 0;
3553 		__napi_schedule(&adapter->napi);
3554 	} else {
3555 		/* this really should not happen! if it does it is basically a
3556 		 * bug, but not a hard error, so enable ints and continue */
3557 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3558 			e1000_irq_enable(adapter);
3559 	}
3560 
3561 	return IRQ_HANDLED;
3562 }
3563 
3564 /**
3565  * e1000_clean - NAPI Rx polling callback
3566  * @adapter: board private structure
3567  **/
3568 static int e1000_clean(struct napi_struct *napi, int budget)
3569 {
3570 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3571 	int tx_clean_complete = 0, work_done = 0;
3572 
3573 	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3574 
3575 	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3576 
3577 	if (!tx_clean_complete)
3578 		work_done = budget;
3579 
3580 	/* If budget not fully consumed, exit the polling mode */
3581 	if (work_done < budget) {
3582 		if (likely(adapter->itr_setting & 3))
3583 			e1000_set_itr(adapter);
3584 		napi_complete(napi);
3585 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3586 			e1000_irq_enable(adapter);
3587 	}
3588 
3589 	return work_done;
3590 }
3591 
3592 /**
3593  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3594  * @adapter: board private structure
3595  **/
3596 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3597 			       struct e1000_tx_ring *tx_ring)
3598 {
3599 	struct e1000_hw *hw = &adapter->hw;
3600 	struct net_device *netdev = adapter->netdev;
3601 	struct e1000_tx_desc *tx_desc, *eop_desc;
3602 	struct e1000_buffer *buffer_info;
3603 	unsigned int i, eop;
3604 	unsigned int count = 0;
3605 	unsigned int total_tx_bytes=0, total_tx_packets=0;
3606 
3607 	i = tx_ring->next_to_clean;
3608 	eop = tx_ring->buffer_info[i].next_to_watch;
3609 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
3610 
3611 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3612 	       (count < tx_ring->count)) {
3613 		bool cleaned = false;
3614 		rmb();	/* read buffer_info after eop_desc */
3615 		for ( ; !cleaned; count++) {
3616 			tx_desc = E1000_TX_DESC(*tx_ring, i);
3617 			buffer_info = &tx_ring->buffer_info[i];
3618 			cleaned = (i == eop);
3619 
3620 			if (cleaned) {
3621 				total_tx_packets += buffer_info->segs;
3622 				total_tx_bytes += buffer_info->bytecount;
3623 			}
3624 			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3625 			tx_desc->upper.data = 0;
3626 
3627 			if (unlikely(++i == tx_ring->count)) i = 0;
3628 		}
3629 
3630 		eop = tx_ring->buffer_info[i].next_to_watch;
3631 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
3632 	}
3633 
3634 	tx_ring->next_to_clean = i;
3635 
3636 #define TX_WAKE_THRESHOLD 32
3637 	if (unlikely(count && netif_carrier_ok(netdev) &&
3638 		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3639 		/* Make sure that anybody stopping the queue after this
3640 		 * sees the new next_to_clean.
3641 		 */
3642 		smp_mb();
3643 
3644 		if (netif_queue_stopped(netdev) &&
3645 		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3646 			netif_wake_queue(netdev);
3647 			++adapter->restart_queue;
3648 		}
3649 	}
3650 
3651 	if (adapter->detect_tx_hung) {
3652 		/* Detect a transmit hang in hardware, this serializes the
3653 		 * check with the clearing of time_stamp and movement of i */
3654 		adapter->detect_tx_hung = false;
3655 		if (tx_ring->buffer_info[eop].time_stamp &&
3656 		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3657 		               (adapter->tx_timeout_factor * HZ)) &&
3658 		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3659 
3660 			/* detected Tx unit hang */
3661 			e_err(drv, "Detected Tx Unit Hang\n"
3662 			      "  Tx Queue             <%lu>\n"
3663 			      "  TDH                  <%x>\n"
3664 			      "  TDT                  <%x>\n"
3665 			      "  next_to_use          <%x>\n"
3666 			      "  next_to_clean        <%x>\n"
3667 			      "buffer_info[next_to_clean]\n"
3668 			      "  time_stamp           <%lx>\n"
3669 			      "  next_to_watch        <%x>\n"
3670 			      "  jiffies              <%lx>\n"
3671 			      "  next_to_watch.status <%x>\n",
3672 				(unsigned long)((tx_ring - adapter->tx_ring) /
3673 					sizeof(struct e1000_tx_ring)),
3674 				readl(hw->hw_addr + tx_ring->tdh),
3675 				readl(hw->hw_addr + tx_ring->tdt),
3676 				tx_ring->next_to_use,
3677 				tx_ring->next_to_clean,
3678 				tx_ring->buffer_info[eop].time_stamp,
3679 				eop,
3680 				jiffies,
3681 				eop_desc->upper.fields.status);
3682 			netif_stop_queue(netdev);
3683 		}
3684 	}
3685 	adapter->total_tx_bytes += total_tx_bytes;
3686 	adapter->total_tx_packets += total_tx_packets;
3687 	netdev->stats.tx_bytes += total_tx_bytes;
3688 	netdev->stats.tx_packets += total_tx_packets;
3689 	return count < tx_ring->count;
3690 }
3691 
3692 /**
3693  * e1000_rx_checksum - Receive Checksum Offload for 82543
3694  * @adapter:     board private structure
3695  * @status_err:  receive descriptor status and error fields
3696  * @csum:        receive descriptor csum field
3697  * @sk_buff:     socket buffer with received data
3698  **/
3699 
3700 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3701 			      u32 csum, struct sk_buff *skb)
3702 {
3703 	struct e1000_hw *hw = &adapter->hw;
3704 	u16 status = (u16)status_err;
3705 	u8 errors = (u8)(status_err >> 24);
3706 
3707 	skb_checksum_none_assert(skb);
3708 
3709 	/* 82543 or newer only */
3710 	if (unlikely(hw->mac_type < e1000_82543)) return;
3711 	/* Ignore Checksum bit is set */
3712 	if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3713 	/* TCP/UDP checksum error bit is set */
3714 	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3715 		/* let the stack verify checksum errors */
3716 		adapter->hw_csum_err++;
3717 		return;
3718 	}
3719 	/* TCP/UDP Checksum has not been calculated */
3720 	if (!(status & E1000_RXD_STAT_TCPCS))
3721 		return;
3722 
3723 	/* It must be a TCP or UDP packet with a valid checksum */
3724 	if (likely(status & E1000_RXD_STAT_TCPCS)) {
3725 		/* TCP checksum is good */
3726 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3727 	}
3728 	adapter->hw_csum_good++;
3729 }
3730 
3731 /**
3732  * e1000_consume_page - helper function
3733  **/
3734 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3735                                u16 length)
3736 {
3737 	bi->page = NULL;
3738 	skb->len += length;
3739 	skb->data_len += length;
3740 	skb->truesize += PAGE_SIZE;
3741 }
3742 
3743 /**
3744  * e1000_receive_skb - helper function to handle rx indications
3745  * @adapter: board private structure
3746  * @status: descriptor status field as written by hardware
3747  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3748  * @skb: pointer to sk_buff to be indicated to stack
3749  */
3750 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3751 			      __le16 vlan, struct sk_buff *skb)
3752 {
3753 	skb->protocol = eth_type_trans(skb, adapter->netdev);
3754 
3755 	if (status & E1000_RXD_STAT_VP) {
3756 		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
3757 
3758 		__vlan_hwaccel_put_tag(skb, vid);
3759 	}
3760 	napi_gro_receive(&adapter->napi, skb);
3761 }
3762 
3763 /**
3764  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3765  * @adapter: board private structure
3766  * @rx_ring: ring to clean
3767  * @work_done: amount of napi work completed this call
3768  * @work_to_do: max amount of work allowed for this call to do
3769  *
3770  * the return value indicates whether actual cleaning was done, there
3771  * is no guarantee that everything was cleaned
3772  */
3773 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
3774 				     struct e1000_rx_ring *rx_ring,
3775 				     int *work_done, int work_to_do)
3776 {
3777 	struct e1000_hw *hw = &adapter->hw;
3778 	struct net_device *netdev = adapter->netdev;
3779 	struct pci_dev *pdev = adapter->pdev;
3780 	struct e1000_rx_desc *rx_desc, *next_rxd;
3781 	struct e1000_buffer *buffer_info, *next_buffer;
3782 	unsigned long irq_flags;
3783 	u32 length;
3784 	unsigned int i;
3785 	int cleaned_count = 0;
3786 	bool cleaned = false;
3787 	unsigned int total_rx_bytes=0, total_rx_packets=0;
3788 
3789 	i = rx_ring->next_to_clean;
3790 	rx_desc = E1000_RX_DESC(*rx_ring, i);
3791 	buffer_info = &rx_ring->buffer_info[i];
3792 
3793 	while (rx_desc->status & E1000_RXD_STAT_DD) {
3794 		struct sk_buff *skb;
3795 		u8 status;
3796 
3797 		if (*work_done >= work_to_do)
3798 			break;
3799 		(*work_done)++;
3800 		rmb(); /* read descriptor and rx_buffer_info after status DD */
3801 
3802 		status = rx_desc->status;
3803 		skb = buffer_info->skb;
3804 		buffer_info->skb = NULL;
3805 
3806 		if (++i == rx_ring->count) i = 0;
3807 		next_rxd = E1000_RX_DESC(*rx_ring, i);
3808 		prefetch(next_rxd);
3809 
3810 		next_buffer = &rx_ring->buffer_info[i];
3811 
3812 		cleaned = true;
3813 		cleaned_count++;
3814 		dma_unmap_page(&pdev->dev, buffer_info->dma,
3815 			       buffer_info->length, DMA_FROM_DEVICE);
3816 		buffer_info->dma = 0;
3817 
3818 		length = le16_to_cpu(rx_desc->length);
3819 
3820 		/* errors is only valid for DD + EOP descriptors */
3821 		if (unlikely((status & E1000_RXD_STAT_EOP) &&
3822 		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
3823 			u8 last_byte = *(skb->data + length - 1);
3824 			if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
3825 				       last_byte)) {
3826 				spin_lock_irqsave(&adapter->stats_lock,
3827 				                  irq_flags);
3828 				e1000_tbi_adjust_stats(hw, &adapter->stats,
3829 				                       length, skb->data);
3830 				spin_unlock_irqrestore(&adapter->stats_lock,
3831 				                       irq_flags);
3832 				length--;
3833 			} else {
3834 				/* recycle both page and skb */
3835 				buffer_info->skb = skb;
3836 				/* an error means any chain goes out the window
3837 				 * too */
3838 				if (rx_ring->rx_skb_top)
3839 					dev_kfree_skb(rx_ring->rx_skb_top);
3840 				rx_ring->rx_skb_top = NULL;
3841 				goto next_desc;
3842 			}
3843 		}
3844 
3845 #define rxtop rx_ring->rx_skb_top
3846 		if (!(status & E1000_RXD_STAT_EOP)) {
3847 			/* this descriptor is only the beginning (or middle) */
3848 			if (!rxtop) {
3849 				/* this is the beginning of a chain */
3850 				rxtop = skb;
3851 				skb_fill_page_desc(rxtop, 0, buffer_info->page,
3852 				                   0, length);
3853 			} else {
3854 				/* this is the middle of a chain */
3855 				skb_fill_page_desc(rxtop,
3856 				    skb_shinfo(rxtop)->nr_frags,
3857 				    buffer_info->page, 0, length);
3858 				/* re-use the skb, only consumed the page */
3859 				buffer_info->skb = skb;
3860 			}
3861 			e1000_consume_page(buffer_info, rxtop, length);
3862 			goto next_desc;
3863 		} else {
3864 			if (rxtop) {
3865 				/* end of the chain */
3866 				skb_fill_page_desc(rxtop,
3867 				    skb_shinfo(rxtop)->nr_frags,
3868 				    buffer_info->page, 0, length);
3869 				/* re-use the current skb, we only consumed the
3870 				 * page */
3871 				buffer_info->skb = skb;
3872 				skb = rxtop;
3873 				rxtop = NULL;
3874 				e1000_consume_page(buffer_info, skb, length);
3875 			} else {
3876 				/* no chain, got EOP, this buf is the packet
3877 				 * copybreak to save the put_page/alloc_page */
3878 				if (length <= copybreak &&
3879 				    skb_tailroom(skb) >= length) {
3880 					u8 *vaddr;
3881 					vaddr = kmap_atomic(buffer_info->page,
3882 					                    KM_SKB_DATA_SOFTIRQ);
3883 					memcpy(skb_tail_pointer(skb), vaddr, length);
3884 					kunmap_atomic(vaddr,
3885 					              KM_SKB_DATA_SOFTIRQ);
3886 					/* re-use the page, so don't erase
3887 					 * buffer_info->page */
3888 					skb_put(skb, length);
3889 				} else {
3890 					skb_fill_page_desc(skb, 0,
3891 					                   buffer_info->page, 0,
3892 				                           length);
3893 					e1000_consume_page(buffer_info, skb,
3894 					                   length);
3895 				}
3896 			}
3897 		}
3898 
3899 		/* Receive Checksum Offload XXX recompute due to CRC strip? */
3900 		e1000_rx_checksum(adapter,
3901 		                  (u32)(status) |
3902 		                  ((u32)(rx_desc->errors) << 24),
3903 		                  le16_to_cpu(rx_desc->csum), skb);
3904 
3905 		pskb_trim(skb, skb->len - 4);
3906 
3907 		/* probably a little skewed due to removing CRC */
3908 		total_rx_bytes += skb->len;
3909 		total_rx_packets++;
3910 
3911 		/* eth type trans needs skb->data to point to something */
3912 		if (!pskb_may_pull(skb, ETH_HLEN)) {
3913 			e_err(drv, "pskb_may_pull failed.\n");
3914 			dev_kfree_skb(skb);
3915 			goto next_desc;
3916 		}
3917 
3918 		e1000_receive_skb(adapter, status, rx_desc->special, skb);
3919 
3920 next_desc:
3921 		rx_desc->status = 0;
3922 
3923 		/* return some buffers to hardware, one at a time is too slow */
3924 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3925 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3926 			cleaned_count = 0;
3927 		}
3928 
3929 		/* use prefetched values */
3930 		rx_desc = next_rxd;
3931 		buffer_info = next_buffer;
3932 	}
3933 	rx_ring->next_to_clean = i;
3934 
3935 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
3936 	if (cleaned_count)
3937 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3938 
3939 	adapter->total_rx_packets += total_rx_packets;
3940 	adapter->total_rx_bytes += total_rx_bytes;
3941 	netdev->stats.rx_bytes += total_rx_bytes;
3942 	netdev->stats.rx_packets += total_rx_packets;
3943 	return cleaned;
3944 }
3945 
3946 /*
3947  * this should improve performance for small packets with large amounts
3948  * of reassembly being done in the stack
3949  */
3950 static void e1000_check_copybreak(struct net_device *netdev,
3951 				 struct e1000_buffer *buffer_info,
3952 				 u32 length, struct sk_buff **skb)
3953 {
3954 	struct sk_buff *new_skb;
3955 
3956 	if (length > copybreak)
3957 		return;
3958 
3959 	new_skb = netdev_alloc_skb_ip_align(netdev, length);
3960 	if (!new_skb)
3961 		return;
3962 
3963 	skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
3964 				       (*skb)->data - NET_IP_ALIGN,
3965 				       length + NET_IP_ALIGN);
3966 	/* save the skb in buffer_info as good */
3967 	buffer_info->skb = *skb;
3968 	*skb = new_skb;
3969 }
3970 
3971 /**
3972  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3973  * @adapter: board private structure
3974  * @rx_ring: ring to clean
3975  * @work_done: amount of napi work completed this call
3976  * @work_to_do: max amount of work allowed for this call to do
3977  */
3978 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3979 			       struct e1000_rx_ring *rx_ring,
3980 			       int *work_done, int work_to_do)
3981 {
3982 	struct e1000_hw *hw = &adapter->hw;
3983 	struct net_device *netdev = adapter->netdev;
3984 	struct pci_dev *pdev = adapter->pdev;
3985 	struct e1000_rx_desc *rx_desc, *next_rxd;
3986 	struct e1000_buffer *buffer_info, *next_buffer;
3987 	unsigned long flags;
3988 	u32 length;
3989 	unsigned int i;
3990 	int cleaned_count = 0;
3991 	bool cleaned = false;
3992 	unsigned int total_rx_bytes=0, total_rx_packets=0;
3993 
3994 	i = rx_ring->next_to_clean;
3995 	rx_desc = E1000_RX_DESC(*rx_ring, i);
3996 	buffer_info = &rx_ring->buffer_info[i];
3997 
3998 	while (rx_desc->status & E1000_RXD_STAT_DD) {
3999 		struct sk_buff *skb;
4000 		u8 status;
4001 
4002 		if (*work_done >= work_to_do)
4003 			break;
4004 		(*work_done)++;
4005 		rmb(); /* read descriptor and rx_buffer_info after status DD */
4006 
4007 		status = rx_desc->status;
4008 		skb = buffer_info->skb;
4009 		buffer_info->skb = NULL;
4010 
4011 		prefetch(skb->data - NET_IP_ALIGN);
4012 
4013 		if (++i == rx_ring->count) i = 0;
4014 		next_rxd = E1000_RX_DESC(*rx_ring, i);
4015 		prefetch(next_rxd);
4016 
4017 		next_buffer = &rx_ring->buffer_info[i];
4018 
4019 		cleaned = true;
4020 		cleaned_count++;
4021 		dma_unmap_single(&pdev->dev, buffer_info->dma,
4022 				 buffer_info->length, DMA_FROM_DEVICE);
4023 		buffer_info->dma = 0;
4024 
4025 		length = le16_to_cpu(rx_desc->length);
4026 		/* !EOP means multiple descriptors were used to store a single
4027 		 * packet, if thats the case we need to toss it.  In fact, we
4028 		 * to toss every packet with the EOP bit clear and the next
4029 		 * frame that _does_ have the EOP bit set, as it is by
4030 		 * definition only a frame fragment
4031 		 */
4032 		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4033 			adapter->discarding = true;
4034 
4035 		if (adapter->discarding) {
4036 			/* All receives must fit into a single buffer */
4037 			e_dbg("Receive packet consumed multiple buffers\n");
4038 			/* recycle */
4039 			buffer_info->skb = skb;
4040 			if (status & E1000_RXD_STAT_EOP)
4041 				adapter->discarding = false;
4042 			goto next_desc;
4043 		}
4044 
4045 		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4046 			u8 last_byte = *(skb->data + length - 1);
4047 			if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4048 				       last_byte)) {
4049 				spin_lock_irqsave(&adapter->stats_lock, flags);
4050 				e1000_tbi_adjust_stats(hw, &adapter->stats,
4051 				                       length, skb->data);
4052 				spin_unlock_irqrestore(&adapter->stats_lock,
4053 				                       flags);
4054 				length--;
4055 			} else {
4056 				/* recycle */
4057 				buffer_info->skb = skb;
4058 				goto next_desc;
4059 			}
4060 		}
4061 
4062 		/* adjust length to remove Ethernet CRC, this must be
4063 		 * done after the TBI_ACCEPT workaround above */
4064 		length -= 4;
4065 
4066 		/* probably a little skewed due to removing CRC */
4067 		total_rx_bytes += length;
4068 		total_rx_packets++;
4069 
4070 		e1000_check_copybreak(netdev, buffer_info, length, &skb);
4071 
4072 		skb_put(skb, length);
4073 
4074 		/* Receive Checksum Offload */
4075 		e1000_rx_checksum(adapter,
4076 				  (u32)(status) |
4077 				  ((u32)(rx_desc->errors) << 24),
4078 				  le16_to_cpu(rx_desc->csum), skb);
4079 
4080 		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4081 
4082 next_desc:
4083 		rx_desc->status = 0;
4084 
4085 		/* return some buffers to hardware, one at a time is too slow */
4086 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4087 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4088 			cleaned_count = 0;
4089 		}
4090 
4091 		/* use prefetched values */
4092 		rx_desc = next_rxd;
4093 		buffer_info = next_buffer;
4094 	}
4095 	rx_ring->next_to_clean = i;
4096 
4097 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4098 	if (cleaned_count)
4099 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4100 
4101 	adapter->total_rx_packets += total_rx_packets;
4102 	adapter->total_rx_bytes += total_rx_bytes;
4103 	netdev->stats.rx_bytes += total_rx_bytes;
4104 	netdev->stats.rx_packets += total_rx_packets;
4105 	return cleaned;
4106 }
4107 
4108 /**
4109  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4110  * @adapter: address of board private structure
4111  * @rx_ring: pointer to receive ring structure
4112  * @cleaned_count: number of buffers to allocate this pass
4113  **/
4114 
4115 static void
4116 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4117                              struct e1000_rx_ring *rx_ring, int cleaned_count)
4118 {
4119 	struct net_device *netdev = adapter->netdev;
4120 	struct pci_dev *pdev = adapter->pdev;
4121 	struct e1000_rx_desc *rx_desc;
4122 	struct e1000_buffer *buffer_info;
4123 	struct sk_buff *skb;
4124 	unsigned int i;
4125 	unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
4126 
4127 	i = rx_ring->next_to_use;
4128 	buffer_info = &rx_ring->buffer_info[i];
4129 
4130 	while (cleaned_count--) {
4131 		skb = buffer_info->skb;
4132 		if (skb) {
4133 			skb_trim(skb, 0);
4134 			goto check_page;
4135 		}
4136 
4137 		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4138 		if (unlikely(!skb)) {
4139 			/* Better luck next round */
4140 			adapter->alloc_rx_buff_failed++;
4141 			break;
4142 		}
4143 
4144 		/* Fix for errata 23, can't cross 64kB boundary */
4145 		if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4146 			struct sk_buff *oldskb = skb;
4147 			e_err(rx_err, "skb align check failed: %u bytes at "
4148 			      "%p\n", bufsz, skb->data);
4149 			/* Try again, without freeing the previous */
4150 			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4151 			/* Failed allocation, critical failure */
4152 			if (!skb) {
4153 				dev_kfree_skb(oldskb);
4154 				adapter->alloc_rx_buff_failed++;
4155 				break;
4156 			}
4157 
4158 			if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4159 				/* give up */
4160 				dev_kfree_skb(skb);
4161 				dev_kfree_skb(oldskb);
4162 				break; /* while (cleaned_count--) */
4163 			}
4164 
4165 			/* Use new allocation */
4166 			dev_kfree_skb(oldskb);
4167 		}
4168 		buffer_info->skb = skb;
4169 		buffer_info->length = adapter->rx_buffer_len;
4170 check_page:
4171 		/* allocate a new page if necessary */
4172 		if (!buffer_info->page) {
4173 			buffer_info->page = alloc_page(GFP_ATOMIC);
4174 			if (unlikely(!buffer_info->page)) {
4175 				adapter->alloc_rx_buff_failed++;
4176 				break;
4177 			}
4178 		}
4179 
4180 		if (!buffer_info->dma) {
4181 			buffer_info->dma = dma_map_page(&pdev->dev,
4182 			                                buffer_info->page, 0,
4183 							buffer_info->length,
4184 							DMA_FROM_DEVICE);
4185 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4186 				put_page(buffer_info->page);
4187 				dev_kfree_skb(skb);
4188 				buffer_info->page = NULL;
4189 				buffer_info->skb = NULL;
4190 				buffer_info->dma = 0;
4191 				adapter->alloc_rx_buff_failed++;
4192 				break; /* while !buffer_info->skb */
4193 			}
4194 		}
4195 
4196 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4197 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4198 
4199 		if (unlikely(++i == rx_ring->count))
4200 			i = 0;
4201 		buffer_info = &rx_ring->buffer_info[i];
4202 	}
4203 
4204 	if (likely(rx_ring->next_to_use != i)) {
4205 		rx_ring->next_to_use = i;
4206 		if (unlikely(i-- == 0))
4207 			i = (rx_ring->count - 1);
4208 
4209 		/* Force memory writes to complete before letting h/w
4210 		 * know there are new descriptors to fetch.  (Only
4211 		 * applicable for weak-ordered memory model archs,
4212 		 * such as IA-64). */
4213 		wmb();
4214 		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4215 	}
4216 }
4217 
4218 /**
4219  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4220  * @adapter: address of board private structure
4221  **/
4222 
4223 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4224 				   struct e1000_rx_ring *rx_ring,
4225 				   int cleaned_count)
4226 {
4227 	struct e1000_hw *hw = &adapter->hw;
4228 	struct net_device *netdev = adapter->netdev;
4229 	struct pci_dev *pdev = adapter->pdev;
4230 	struct e1000_rx_desc *rx_desc;
4231 	struct e1000_buffer *buffer_info;
4232 	struct sk_buff *skb;
4233 	unsigned int i;
4234 	unsigned int bufsz = adapter->rx_buffer_len;
4235 
4236 	i = rx_ring->next_to_use;
4237 	buffer_info = &rx_ring->buffer_info[i];
4238 
4239 	while (cleaned_count--) {
4240 		skb = buffer_info->skb;
4241 		if (skb) {
4242 			skb_trim(skb, 0);
4243 			goto map_skb;
4244 		}
4245 
4246 		skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4247 		if (unlikely(!skb)) {
4248 			/* Better luck next round */
4249 			adapter->alloc_rx_buff_failed++;
4250 			break;
4251 		}
4252 
4253 		/* Fix for errata 23, can't cross 64kB boundary */
4254 		if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4255 			struct sk_buff *oldskb = skb;
4256 			e_err(rx_err, "skb align check failed: %u bytes at "
4257 			      "%p\n", bufsz, skb->data);
4258 			/* Try again, without freeing the previous */
4259 			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4260 			/* Failed allocation, critical failure */
4261 			if (!skb) {
4262 				dev_kfree_skb(oldskb);
4263 				adapter->alloc_rx_buff_failed++;
4264 				break;
4265 			}
4266 
4267 			if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4268 				/* give up */
4269 				dev_kfree_skb(skb);
4270 				dev_kfree_skb(oldskb);
4271 				adapter->alloc_rx_buff_failed++;
4272 				break; /* while !buffer_info->skb */
4273 			}
4274 
4275 			/* Use new allocation */
4276 			dev_kfree_skb(oldskb);
4277 		}
4278 		buffer_info->skb = skb;
4279 		buffer_info->length = adapter->rx_buffer_len;
4280 map_skb:
4281 		buffer_info->dma = dma_map_single(&pdev->dev,
4282 						  skb->data,
4283 						  buffer_info->length,
4284 						  DMA_FROM_DEVICE);
4285 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4286 			dev_kfree_skb(skb);
4287 			buffer_info->skb = NULL;
4288 			buffer_info->dma = 0;
4289 			adapter->alloc_rx_buff_failed++;
4290 			break; /* while !buffer_info->skb */
4291 		}
4292 
4293 		/*
4294 		 * XXX if it was allocated cleanly it will never map to a
4295 		 * boundary crossing
4296 		 */
4297 
4298 		/* Fix for errata 23, can't cross 64kB boundary */
4299 		if (!e1000_check_64k_bound(adapter,
4300 					(void *)(unsigned long)buffer_info->dma,
4301 					adapter->rx_buffer_len)) {
4302 			e_err(rx_err, "dma align check failed: %u bytes at "
4303 			      "%p\n", adapter->rx_buffer_len,
4304 			      (void *)(unsigned long)buffer_info->dma);
4305 			dev_kfree_skb(skb);
4306 			buffer_info->skb = NULL;
4307 
4308 			dma_unmap_single(&pdev->dev, buffer_info->dma,
4309 					 adapter->rx_buffer_len,
4310 					 DMA_FROM_DEVICE);
4311 			buffer_info->dma = 0;
4312 
4313 			adapter->alloc_rx_buff_failed++;
4314 			break; /* while !buffer_info->skb */
4315 		}
4316 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4317 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4318 
4319 		if (unlikely(++i == rx_ring->count))
4320 			i = 0;
4321 		buffer_info = &rx_ring->buffer_info[i];
4322 	}
4323 
4324 	if (likely(rx_ring->next_to_use != i)) {
4325 		rx_ring->next_to_use = i;
4326 		if (unlikely(i-- == 0))
4327 			i = (rx_ring->count - 1);
4328 
4329 		/* Force memory writes to complete before letting h/w
4330 		 * know there are new descriptors to fetch.  (Only
4331 		 * applicable for weak-ordered memory model archs,
4332 		 * such as IA-64). */
4333 		wmb();
4334 		writel(i, hw->hw_addr + rx_ring->rdt);
4335 	}
4336 }
4337 
4338 /**
4339  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4340  * @adapter:
4341  **/
4342 
4343 static void e1000_smartspeed(struct e1000_adapter *adapter)
4344 {
4345 	struct e1000_hw *hw = &adapter->hw;
4346 	u16 phy_status;
4347 	u16 phy_ctrl;
4348 
4349 	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4350 	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4351 		return;
4352 
4353 	if (adapter->smartspeed == 0) {
4354 		/* If Master/Slave config fault is asserted twice,
4355 		 * we assume back-to-back */
4356 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4357 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4358 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4359 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4360 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4361 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4362 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4363 			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4364 					    phy_ctrl);
4365 			adapter->smartspeed++;
4366 			if (!e1000_phy_setup_autoneg(hw) &&
4367 			   !e1000_read_phy_reg(hw, PHY_CTRL,
4368 				   	       &phy_ctrl)) {
4369 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4370 					     MII_CR_RESTART_AUTO_NEG);
4371 				e1000_write_phy_reg(hw, PHY_CTRL,
4372 						    phy_ctrl);
4373 			}
4374 		}
4375 		return;
4376 	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4377 		/* If still no link, perhaps using 2/3 pair cable */
4378 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4379 		phy_ctrl |= CR_1000T_MS_ENABLE;
4380 		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4381 		if (!e1000_phy_setup_autoneg(hw) &&
4382 		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4383 			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4384 				     MII_CR_RESTART_AUTO_NEG);
4385 			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4386 		}
4387 	}
4388 	/* Restart process after E1000_SMARTSPEED_MAX iterations */
4389 	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4390 		adapter->smartspeed = 0;
4391 }
4392 
4393 /**
4394  * e1000_ioctl -
4395  * @netdev:
4396  * @ifreq:
4397  * @cmd:
4398  **/
4399 
4400 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4401 {
4402 	switch (cmd) {
4403 	case SIOCGMIIPHY:
4404 	case SIOCGMIIREG:
4405 	case SIOCSMIIREG:
4406 		return e1000_mii_ioctl(netdev, ifr, cmd);
4407 	default:
4408 		return -EOPNOTSUPP;
4409 	}
4410 }
4411 
4412 /**
4413  * e1000_mii_ioctl -
4414  * @netdev:
4415  * @ifreq:
4416  * @cmd:
4417  **/
4418 
4419 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4420 			   int cmd)
4421 {
4422 	struct e1000_adapter *adapter = netdev_priv(netdev);
4423 	struct e1000_hw *hw = &adapter->hw;
4424 	struct mii_ioctl_data *data = if_mii(ifr);
4425 	int retval;
4426 	u16 mii_reg;
4427 	unsigned long flags;
4428 
4429 	if (hw->media_type != e1000_media_type_copper)
4430 		return -EOPNOTSUPP;
4431 
4432 	switch (cmd) {
4433 	case SIOCGMIIPHY:
4434 		data->phy_id = hw->phy_addr;
4435 		break;
4436 	case SIOCGMIIREG:
4437 		spin_lock_irqsave(&adapter->stats_lock, flags);
4438 		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4439 				   &data->val_out)) {
4440 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4441 			return -EIO;
4442 		}
4443 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4444 		break;
4445 	case SIOCSMIIREG:
4446 		if (data->reg_num & ~(0x1F))
4447 			return -EFAULT;
4448 		mii_reg = data->val_in;
4449 		spin_lock_irqsave(&adapter->stats_lock, flags);
4450 		if (e1000_write_phy_reg(hw, data->reg_num,
4451 					mii_reg)) {
4452 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4453 			return -EIO;
4454 		}
4455 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4456 		if (hw->media_type == e1000_media_type_copper) {
4457 			switch (data->reg_num) {
4458 			case PHY_CTRL:
4459 				if (mii_reg & MII_CR_POWER_DOWN)
4460 					break;
4461 				if (mii_reg & MII_CR_AUTO_NEG_EN) {
4462 					hw->autoneg = 1;
4463 					hw->autoneg_advertised = 0x2F;
4464 				} else {
4465 					u32 speed;
4466 					if (mii_reg & 0x40)
4467 						speed = SPEED_1000;
4468 					else if (mii_reg & 0x2000)
4469 						speed = SPEED_100;
4470 					else
4471 						speed = SPEED_10;
4472 					retval = e1000_set_spd_dplx(
4473 						adapter, speed,
4474 						((mii_reg & 0x100)
4475 						 ? DUPLEX_FULL :
4476 						 DUPLEX_HALF));
4477 					if (retval)
4478 						return retval;
4479 				}
4480 				if (netif_running(adapter->netdev))
4481 					e1000_reinit_locked(adapter);
4482 				else
4483 					e1000_reset(adapter);
4484 				break;
4485 			case M88E1000_PHY_SPEC_CTRL:
4486 			case M88E1000_EXT_PHY_SPEC_CTRL:
4487 				if (e1000_phy_reset(hw))
4488 					return -EIO;
4489 				break;
4490 			}
4491 		} else {
4492 			switch (data->reg_num) {
4493 			case PHY_CTRL:
4494 				if (mii_reg & MII_CR_POWER_DOWN)
4495 					break;
4496 				if (netif_running(adapter->netdev))
4497 					e1000_reinit_locked(adapter);
4498 				else
4499 					e1000_reset(adapter);
4500 				break;
4501 			}
4502 		}
4503 		break;
4504 	default:
4505 		return -EOPNOTSUPP;
4506 	}
4507 	return E1000_SUCCESS;
4508 }
4509 
4510 void e1000_pci_set_mwi(struct e1000_hw *hw)
4511 {
4512 	struct e1000_adapter *adapter = hw->back;
4513 	int ret_val = pci_set_mwi(adapter->pdev);
4514 
4515 	if (ret_val)
4516 		e_err(probe, "Error in setting MWI\n");
4517 }
4518 
4519 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4520 {
4521 	struct e1000_adapter *adapter = hw->back;
4522 
4523 	pci_clear_mwi(adapter->pdev);
4524 }
4525 
4526 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4527 {
4528 	struct e1000_adapter *adapter = hw->back;
4529 	return pcix_get_mmrbc(adapter->pdev);
4530 }
4531 
4532 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4533 {
4534 	struct e1000_adapter *adapter = hw->back;
4535 	pcix_set_mmrbc(adapter->pdev, mmrbc);
4536 }
4537 
4538 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4539 {
4540 	outl(value, port);
4541 }
4542 
4543 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4544 {
4545 	u16 vid;
4546 
4547 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4548 		return true;
4549 	return false;
4550 }
4551 
4552 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4553 				     bool filter_on)
4554 {
4555 	struct e1000_hw *hw = &adapter->hw;
4556 	u32 rctl;
4557 
4558 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4559 		e1000_irq_disable(adapter);
4560 
4561 	if (filter_on) {
4562 		/* enable VLAN receive filtering */
4563 		rctl = er32(RCTL);
4564 		rctl &= ~E1000_RCTL_CFIEN;
4565 		if (!(adapter->netdev->flags & IFF_PROMISC))
4566 			rctl |= E1000_RCTL_VFE;
4567 		ew32(RCTL, rctl);
4568 		e1000_update_mng_vlan(adapter);
4569 	} else {
4570 		/* disable VLAN receive filtering */
4571 		rctl = er32(RCTL);
4572 		rctl &= ~E1000_RCTL_VFE;
4573 		ew32(RCTL, rctl);
4574 	}
4575 
4576 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4577 		e1000_irq_enable(adapter);
4578 }
4579 
4580 static void e1000_vlan_mode(struct net_device *netdev, u32 features)
4581 {
4582 	struct e1000_adapter *adapter = netdev_priv(netdev);
4583 	struct e1000_hw *hw = &adapter->hw;
4584 	u32 ctrl;
4585 
4586 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4587 		e1000_irq_disable(adapter);
4588 
4589 	ctrl = er32(CTRL);
4590 	if (features & NETIF_F_HW_VLAN_RX) {
4591 		/* enable VLAN tag insert/strip */
4592 		ctrl |= E1000_CTRL_VME;
4593 	} else {
4594 		/* disable VLAN tag insert/strip */
4595 		ctrl &= ~E1000_CTRL_VME;
4596 	}
4597 	ew32(CTRL, ctrl);
4598 
4599 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4600 		e1000_irq_enable(adapter);
4601 }
4602 
4603 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4604 {
4605 	struct e1000_adapter *adapter = netdev_priv(netdev);
4606 	struct e1000_hw *hw = &adapter->hw;
4607 	u32 vfta, index;
4608 
4609 	if ((hw->mng_cookie.status &
4610 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4611 	    (vid == adapter->mng_vlan_id))
4612 		return;
4613 
4614 	if (!e1000_vlan_used(adapter))
4615 		e1000_vlan_filter_on_off(adapter, true);
4616 
4617 	/* add VID to filter table */
4618 	index = (vid >> 5) & 0x7F;
4619 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4620 	vfta |= (1 << (vid & 0x1F));
4621 	e1000_write_vfta(hw, index, vfta);
4622 
4623 	set_bit(vid, adapter->active_vlans);
4624 }
4625 
4626 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4627 {
4628 	struct e1000_adapter *adapter = netdev_priv(netdev);
4629 	struct e1000_hw *hw = &adapter->hw;
4630 	u32 vfta, index;
4631 
4632 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4633 		e1000_irq_disable(adapter);
4634 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4635 		e1000_irq_enable(adapter);
4636 
4637 	/* remove VID from filter table */
4638 	index = (vid >> 5) & 0x7F;
4639 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4640 	vfta &= ~(1 << (vid & 0x1F));
4641 	e1000_write_vfta(hw, index, vfta);
4642 
4643 	clear_bit(vid, adapter->active_vlans);
4644 
4645 	if (!e1000_vlan_used(adapter))
4646 		e1000_vlan_filter_on_off(adapter, false);
4647 }
4648 
4649 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4650 {
4651 	u16 vid;
4652 
4653 	if (!e1000_vlan_used(adapter))
4654 		return;
4655 
4656 	e1000_vlan_filter_on_off(adapter, true);
4657 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4658 		e1000_vlan_rx_add_vid(adapter->netdev, vid);
4659 }
4660 
4661 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
4662 {
4663 	struct e1000_hw *hw = &adapter->hw;
4664 
4665 	hw->autoneg = 0;
4666 
4667 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
4668 	 * for the switch() below to work */
4669 	if ((spd & 1) || (dplx & ~1))
4670 		goto err_inval;
4671 
4672 	/* Fiber NICs only allow 1000 gbps Full duplex */
4673 	if ((hw->media_type == e1000_media_type_fiber) &&
4674 	    spd != SPEED_1000 &&
4675 	    dplx != DUPLEX_FULL)
4676 		goto err_inval;
4677 
4678 	switch (spd + dplx) {
4679 	case SPEED_10 + DUPLEX_HALF:
4680 		hw->forced_speed_duplex = e1000_10_half;
4681 		break;
4682 	case SPEED_10 + DUPLEX_FULL:
4683 		hw->forced_speed_duplex = e1000_10_full;
4684 		break;
4685 	case SPEED_100 + DUPLEX_HALF:
4686 		hw->forced_speed_duplex = e1000_100_half;
4687 		break;
4688 	case SPEED_100 + DUPLEX_FULL:
4689 		hw->forced_speed_duplex = e1000_100_full;
4690 		break;
4691 	case SPEED_1000 + DUPLEX_FULL:
4692 		hw->autoneg = 1;
4693 		hw->autoneg_advertised = ADVERTISE_1000_FULL;
4694 		break;
4695 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
4696 	default:
4697 		goto err_inval;
4698 	}
4699 	return 0;
4700 
4701 err_inval:
4702 	e_err(probe, "Unsupported Speed/Duplex configuration\n");
4703 	return -EINVAL;
4704 }
4705 
4706 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4707 {
4708 	struct net_device *netdev = pci_get_drvdata(pdev);
4709 	struct e1000_adapter *adapter = netdev_priv(netdev);
4710 	struct e1000_hw *hw = &adapter->hw;
4711 	u32 ctrl, ctrl_ext, rctl, status;
4712 	u32 wufc = adapter->wol;
4713 #ifdef CONFIG_PM
4714 	int retval = 0;
4715 #endif
4716 
4717 	netif_device_detach(netdev);
4718 
4719 	mutex_lock(&adapter->mutex);
4720 
4721 	if (netif_running(netdev)) {
4722 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4723 		e1000_down(adapter);
4724 	}
4725 
4726 #ifdef CONFIG_PM
4727 	retval = pci_save_state(pdev);
4728 	if (retval) {
4729 		mutex_unlock(&adapter->mutex);
4730 		return retval;
4731 	}
4732 #endif
4733 
4734 	status = er32(STATUS);
4735 	if (status & E1000_STATUS_LU)
4736 		wufc &= ~E1000_WUFC_LNKC;
4737 
4738 	if (wufc) {
4739 		e1000_setup_rctl(adapter);
4740 		e1000_set_rx_mode(netdev);
4741 
4742 		/* turn on all-multi mode if wake on multicast is enabled */
4743 		if (wufc & E1000_WUFC_MC) {
4744 			rctl = er32(RCTL);
4745 			rctl |= E1000_RCTL_MPE;
4746 			ew32(RCTL, rctl);
4747 		}
4748 
4749 		if (hw->mac_type >= e1000_82540) {
4750 			ctrl = er32(CTRL);
4751 			/* advertise wake from D3Cold */
4752 			#define E1000_CTRL_ADVD3WUC 0x00100000
4753 			/* phy power management enable */
4754 			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4755 			ctrl |= E1000_CTRL_ADVD3WUC |
4756 				E1000_CTRL_EN_PHY_PWR_MGMT;
4757 			ew32(CTRL, ctrl);
4758 		}
4759 
4760 		if (hw->media_type == e1000_media_type_fiber ||
4761 		    hw->media_type == e1000_media_type_internal_serdes) {
4762 			/* keep the laser running in D3 */
4763 			ctrl_ext = er32(CTRL_EXT);
4764 			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4765 			ew32(CTRL_EXT, ctrl_ext);
4766 		}
4767 
4768 		ew32(WUC, E1000_WUC_PME_EN);
4769 		ew32(WUFC, wufc);
4770 	} else {
4771 		ew32(WUC, 0);
4772 		ew32(WUFC, 0);
4773 	}
4774 
4775 	e1000_release_manageability(adapter);
4776 
4777 	*enable_wake = !!wufc;
4778 
4779 	/* make sure adapter isn't asleep if manageability is enabled */
4780 	if (adapter->en_mng_pt)
4781 		*enable_wake = true;
4782 
4783 	if (netif_running(netdev))
4784 		e1000_free_irq(adapter);
4785 
4786 	mutex_unlock(&adapter->mutex);
4787 
4788 	pci_disable_device(pdev);
4789 
4790 	return 0;
4791 }
4792 
4793 #ifdef CONFIG_PM
4794 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4795 {
4796 	int retval;
4797 	bool wake;
4798 
4799 	retval = __e1000_shutdown(pdev, &wake);
4800 	if (retval)
4801 		return retval;
4802 
4803 	if (wake) {
4804 		pci_prepare_to_sleep(pdev);
4805 	} else {
4806 		pci_wake_from_d3(pdev, false);
4807 		pci_set_power_state(pdev, PCI_D3hot);
4808 	}
4809 
4810 	return 0;
4811 }
4812 
4813 static int e1000_resume(struct pci_dev *pdev)
4814 {
4815 	struct net_device *netdev = pci_get_drvdata(pdev);
4816 	struct e1000_adapter *adapter = netdev_priv(netdev);
4817 	struct e1000_hw *hw = &adapter->hw;
4818 	u32 err;
4819 
4820 	pci_set_power_state(pdev, PCI_D0);
4821 	pci_restore_state(pdev);
4822 	pci_save_state(pdev);
4823 
4824 	if (adapter->need_ioport)
4825 		err = pci_enable_device(pdev);
4826 	else
4827 		err = pci_enable_device_mem(pdev);
4828 	if (err) {
4829 		pr_err("Cannot enable PCI device from suspend\n");
4830 		return err;
4831 	}
4832 	pci_set_master(pdev);
4833 
4834 	pci_enable_wake(pdev, PCI_D3hot, 0);
4835 	pci_enable_wake(pdev, PCI_D3cold, 0);
4836 
4837 	if (netif_running(netdev)) {
4838 		err = e1000_request_irq(adapter);
4839 		if (err)
4840 			return err;
4841 	}
4842 
4843 	e1000_power_up_phy(adapter);
4844 	e1000_reset(adapter);
4845 	ew32(WUS, ~0);
4846 
4847 	e1000_init_manageability(adapter);
4848 
4849 	if (netif_running(netdev))
4850 		e1000_up(adapter);
4851 
4852 	netif_device_attach(netdev);
4853 
4854 	return 0;
4855 }
4856 #endif
4857 
4858 static void e1000_shutdown(struct pci_dev *pdev)
4859 {
4860 	bool wake;
4861 
4862 	__e1000_shutdown(pdev, &wake);
4863 
4864 	if (system_state == SYSTEM_POWER_OFF) {
4865 		pci_wake_from_d3(pdev, wake);
4866 		pci_set_power_state(pdev, PCI_D3hot);
4867 	}
4868 }
4869 
4870 #ifdef CONFIG_NET_POLL_CONTROLLER
4871 /*
4872  * Polling 'interrupt' - used by things like netconsole to send skbs
4873  * without having to re-enable interrupts. It's not called while
4874  * the interrupt routine is executing.
4875  */
4876 static void e1000_netpoll(struct net_device *netdev)
4877 {
4878 	struct e1000_adapter *adapter = netdev_priv(netdev);
4879 
4880 	disable_irq(adapter->pdev->irq);
4881 	e1000_intr(adapter->pdev->irq, netdev);
4882 	enable_irq(adapter->pdev->irq);
4883 }
4884 #endif
4885 
4886 /**
4887  * e1000_io_error_detected - called when PCI error is detected
4888  * @pdev: Pointer to PCI device
4889  * @state: The current pci connection state
4890  *
4891  * This function is called after a PCI bus error affecting
4892  * this device has been detected.
4893  */
4894 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4895 						pci_channel_state_t state)
4896 {
4897 	struct net_device *netdev = pci_get_drvdata(pdev);
4898 	struct e1000_adapter *adapter = netdev_priv(netdev);
4899 
4900 	netif_device_detach(netdev);
4901 
4902 	if (state == pci_channel_io_perm_failure)
4903 		return PCI_ERS_RESULT_DISCONNECT;
4904 
4905 	if (netif_running(netdev))
4906 		e1000_down(adapter);
4907 	pci_disable_device(pdev);
4908 
4909 	/* Request a slot slot reset. */
4910 	return PCI_ERS_RESULT_NEED_RESET;
4911 }
4912 
4913 /**
4914  * e1000_io_slot_reset - called after the pci bus has been reset.
4915  * @pdev: Pointer to PCI device
4916  *
4917  * Restart the card from scratch, as if from a cold-boot. Implementation
4918  * resembles the first-half of the e1000_resume routine.
4919  */
4920 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4921 {
4922 	struct net_device *netdev = pci_get_drvdata(pdev);
4923 	struct e1000_adapter *adapter = netdev_priv(netdev);
4924 	struct e1000_hw *hw = &adapter->hw;
4925 	int err;
4926 
4927 	if (adapter->need_ioport)
4928 		err = pci_enable_device(pdev);
4929 	else
4930 		err = pci_enable_device_mem(pdev);
4931 	if (err) {
4932 		pr_err("Cannot re-enable PCI device after reset.\n");
4933 		return PCI_ERS_RESULT_DISCONNECT;
4934 	}
4935 	pci_set_master(pdev);
4936 
4937 	pci_enable_wake(pdev, PCI_D3hot, 0);
4938 	pci_enable_wake(pdev, PCI_D3cold, 0);
4939 
4940 	e1000_reset(adapter);
4941 	ew32(WUS, ~0);
4942 
4943 	return PCI_ERS_RESULT_RECOVERED;
4944 }
4945 
4946 /**
4947  * e1000_io_resume - called when traffic can start flowing again.
4948  * @pdev: Pointer to PCI device
4949  *
4950  * This callback is called when the error recovery driver tells us that
4951  * its OK to resume normal operation. Implementation resembles the
4952  * second-half of the e1000_resume routine.
4953  */
4954 static void e1000_io_resume(struct pci_dev *pdev)
4955 {
4956 	struct net_device *netdev = pci_get_drvdata(pdev);
4957 	struct e1000_adapter *adapter = netdev_priv(netdev);
4958 
4959 	e1000_init_manageability(adapter);
4960 
4961 	if (netif_running(netdev)) {
4962 		if (e1000_up(adapter)) {
4963 			pr_info("can't bring device back up after reset\n");
4964 			return;
4965 		}
4966 	}
4967 
4968 	netif_device_attach(netdev);
4969 }
4970 
4971 /* e1000_main.c */
4972