xref: /linux/drivers/net/ethernet/intel/e1000/e1000_main.c (revision ccde82e909467abdf098a8ee6f63e1ecf9a47ce5)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2006 Intel Corporation. */
3 
4 #include "e1000.h"
5 #include <net/ip6_checksum.h>
6 #include <linux/io.h>
7 #include <linux/prefetch.h>
8 #include <linux/bitops.h>
9 #include <linux/if_vlan.h>
10 
11 char e1000_driver_name[] = "e1000";
12 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
13 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
14 
15 /* e1000_pci_tbl - PCI Device ID Table
16  *
17  * Last entry must be all 0s
18  *
19  * Macro expands to...
20  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
21  */
22 static const struct pci_device_id e1000_pci_tbl[] = {
23 	INTEL_E1000_ETHERNET_DEVICE(0x1000),
24 	INTEL_E1000_ETHERNET_DEVICE(0x1001),
25 	INTEL_E1000_ETHERNET_DEVICE(0x1004),
26 	INTEL_E1000_ETHERNET_DEVICE(0x1008),
27 	INTEL_E1000_ETHERNET_DEVICE(0x1009),
28 	INTEL_E1000_ETHERNET_DEVICE(0x100C),
29 	INTEL_E1000_ETHERNET_DEVICE(0x100D),
30 	INTEL_E1000_ETHERNET_DEVICE(0x100E),
31 	INTEL_E1000_ETHERNET_DEVICE(0x100F),
32 	INTEL_E1000_ETHERNET_DEVICE(0x1010),
33 	INTEL_E1000_ETHERNET_DEVICE(0x1011),
34 	INTEL_E1000_ETHERNET_DEVICE(0x1012),
35 	INTEL_E1000_ETHERNET_DEVICE(0x1013),
36 	INTEL_E1000_ETHERNET_DEVICE(0x1014),
37 	INTEL_E1000_ETHERNET_DEVICE(0x1015),
38 	INTEL_E1000_ETHERNET_DEVICE(0x1016),
39 	INTEL_E1000_ETHERNET_DEVICE(0x1017),
40 	INTEL_E1000_ETHERNET_DEVICE(0x1018),
41 	INTEL_E1000_ETHERNET_DEVICE(0x1019),
42 	INTEL_E1000_ETHERNET_DEVICE(0x101A),
43 	INTEL_E1000_ETHERNET_DEVICE(0x101D),
44 	INTEL_E1000_ETHERNET_DEVICE(0x101E),
45 	INTEL_E1000_ETHERNET_DEVICE(0x1026),
46 	INTEL_E1000_ETHERNET_DEVICE(0x1027),
47 	INTEL_E1000_ETHERNET_DEVICE(0x1028),
48 	INTEL_E1000_ETHERNET_DEVICE(0x1075),
49 	INTEL_E1000_ETHERNET_DEVICE(0x1076),
50 	INTEL_E1000_ETHERNET_DEVICE(0x1077),
51 	INTEL_E1000_ETHERNET_DEVICE(0x1078),
52 	INTEL_E1000_ETHERNET_DEVICE(0x1079),
53 	INTEL_E1000_ETHERNET_DEVICE(0x107A),
54 	INTEL_E1000_ETHERNET_DEVICE(0x107B),
55 	INTEL_E1000_ETHERNET_DEVICE(0x107C),
56 	INTEL_E1000_ETHERNET_DEVICE(0x108A),
57 	INTEL_E1000_ETHERNET_DEVICE(0x1099),
58 	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
59 	INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
60 	/* required last entry */
61 	{0,}
62 };
63 
64 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
65 
66 int e1000_up(struct e1000_adapter *adapter);
67 void e1000_down(struct e1000_adapter *adapter);
68 void e1000_reinit_locked(struct e1000_adapter *adapter);
69 void e1000_reset(struct e1000_adapter *adapter);
70 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
71 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
72 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
73 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
74 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
75 				    struct e1000_tx_ring *txdr);
76 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
77 				    struct e1000_rx_ring *rxdr);
78 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
79 				    struct e1000_tx_ring *tx_ring);
80 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
81 				    struct e1000_rx_ring *rx_ring);
82 void e1000_update_stats(struct e1000_adapter *adapter);
83 
84 static int e1000_init_module(void);
85 static void e1000_exit_module(void);
86 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
87 static void e1000_remove(struct pci_dev *pdev);
88 static int e1000_alloc_queues(struct e1000_adapter *adapter);
89 static int e1000_sw_init(struct e1000_adapter *adapter);
90 int e1000_open(struct net_device *netdev);
91 int e1000_close(struct net_device *netdev);
92 static void e1000_configure_tx(struct e1000_adapter *adapter);
93 static void e1000_configure_rx(struct e1000_adapter *adapter);
94 static void e1000_setup_rctl(struct e1000_adapter *adapter);
95 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
96 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
97 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
98 				struct e1000_tx_ring *tx_ring);
99 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
100 				struct e1000_rx_ring *rx_ring);
101 static void e1000_set_rx_mode(struct net_device *netdev);
102 static void e1000_update_phy_info_task(struct work_struct *work);
103 static void e1000_watchdog(struct work_struct *work);
104 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
105 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
106 				    struct net_device *netdev);
107 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
108 static int e1000_set_mac(struct net_device *netdev, void *p);
109 static irqreturn_t e1000_intr(int irq, void *data);
110 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
111 			       struct e1000_tx_ring *tx_ring);
112 static int e1000_clean(struct napi_struct *napi, int budget);
113 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
114 			       struct e1000_rx_ring *rx_ring,
115 			       int *work_done, int work_to_do);
116 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
117 				     struct e1000_rx_ring *rx_ring,
118 				     int *work_done, int work_to_do);
119 static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
120 					 struct e1000_rx_ring *rx_ring,
121 					 int cleaned_count)
122 {
123 }
124 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
125 				   struct e1000_rx_ring *rx_ring,
126 				   int cleaned_count);
127 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
128 					 struct e1000_rx_ring *rx_ring,
129 					 int cleaned_count);
130 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
131 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
132 			   int cmd);
133 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
134 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
135 static void e1000_tx_timeout(struct net_device *dev, unsigned int txqueue);
136 static void e1000_reset_task(struct work_struct *work);
137 static void e1000_smartspeed(struct e1000_adapter *adapter);
138 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
139 				       struct sk_buff *skb);
140 
141 static bool e1000_vlan_used(struct e1000_adapter *adapter);
142 static void e1000_vlan_mode(struct net_device *netdev,
143 			    netdev_features_t features);
144 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
145 				     bool filter_on);
146 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
147 				 __be16 proto, u16 vid);
148 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
149 				  __be16 proto, u16 vid);
150 static void e1000_restore_vlan(struct e1000_adapter *adapter);
151 
152 static int e1000_suspend(struct device *dev);
153 static int e1000_resume(struct device *dev);
154 static void e1000_shutdown(struct pci_dev *pdev);
155 
156 #ifdef CONFIG_NET_POLL_CONTROLLER
157 /* for netdump / net console */
158 static void e1000_netpoll (struct net_device *netdev);
159 #endif
160 
161 #define COPYBREAK_DEFAULT 256
162 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
163 module_param(copybreak, uint, 0644);
164 MODULE_PARM_DESC(copybreak,
165 	"Maximum size of packet that is copied to a new buffer on receive");
166 
167 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
168 						pci_channel_state_t state);
169 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
170 static void e1000_io_resume(struct pci_dev *pdev);
171 
172 static const struct pci_error_handlers e1000_err_handler = {
173 	.error_detected = e1000_io_error_detected,
174 	.slot_reset = e1000_io_slot_reset,
175 	.resume = e1000_io_resume,
176 };
177 
178 static DEFINE_SIMPLE_DEV_PM_OPS(e1000_pm_ops, e1000_suspend, e1000_resume);
179 
180 static struct pci_driver e1000_driver = {
181 	.name     = e1000_driver_name,
182 	.id_table = e1000_pci_tbl,
183 	.probe    = e1000_probe,
184 	.remove   = e1000_remove,
185 	.driver.pm = pm_sleep_ptr(&e1000_pm_ops),
186 	.shutdown = e1000_shutdown,
187 	.err_handler = &e1000_err_handler
188 };
189 
190 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
191 MODULE_LICENSE("GPL v2");
192 
193 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
194 static int debug = -1;
195 module_param(debug, int, 0);
196 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
197 
198 /**
199  * e1000_get_hw_dev - helper function for getting netdev
200  * @hw: pointer to HW struct
201  *
202  * return device used by hardware layer to print debugging information
203  *
204  **/
205 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
206 {
207 	struct e1000_adapter *adapter = hw->back;
208 	return adapter->netdev;
209 }
210 
211 /**
212  * e1000_init_module - Driver Registration Routine
213  *
214  * e1000_init_module is the first routine called when the driver is
215  * loaded. All it does is register with the PCI subsystem.
216  **/
217 static int __init e1000_init_module(void)
218 {
219 	int ret;
220 	pr_info("%s\n", e1000_driver_string);
221 
222 	pr_info("%s\n", e1000_copyright);
223 
224 	ret = pci_register_driver(&e1000_driver);
225 	if (copybreak != COPYBREAK_DEFAULT) {
226 		if (copybreak == 0)
227 			pr_info("copybreak disabled\n");
228 		else
229 			pr_info("copybreak enabled for "
230 				   "packets <= %u bytes\n", copybreak);
231 	}
232 	return ret;
233 }
234 
235 module_init(e1000_init_module);
236 
237 /**
238  * e1000_exit_module - Driver Exit Cleanup Routine
239  *
240  * e1000_exit_module is called just before the driver is removed
241  * from memory.
242  **/
243 static void __exit e1000_exit_module(void)
244 {
245 	pci_unregister_driver(&e1000_driver);
246 }
247 
248 module_exit(e1000_exit_module);
249 
250 static int e1000_request_irq(struct e1000_adapter *adapter)
251 {
252 	struct net_device *netdev = adapter->netdev;
253 	irq_handler_t handler = e1000_intr;
254 	int irq_flags = IRQF_SHARED;
255 	int err;
256 
257 	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
258 			  netdev);
259 	if (err) {
260 		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
261 	}
262 
263 	return err;
264 }
265 
266 static void e1000_free_irq(struct e1000_adapter *adapter)
267 {
268 	struct net_device *netdev = adapter->netdev;
269 
270 	free_irq(adapter->pdev->irq, netdev);
271 }
272 
273 /**
274  * e1000_irq_disable - Mask off interrupt generation on the NIC
275  * @adapter: board private structure
276  **/
277 static void e1000_irq_disable(struct e1000_adapter *adapter)
278 {
279 	struct e1000_hw *hw = &adapter->hw;
280 
281 	ew32(IMC, ~0);
282 	E1000_WRITE_FLUSH();
283 	synchronize_irq(adapter->pdev->irq);
284 }
285 
286 /**
287  * e1000_irq_enable - Enable default interrupt generation settings
288  * @adapter: board private structure
289  **/
290 static void e1000_irq_enable(struct e1000_adapter *adapter)
291 {
292 	struct e1000_hw *hw = &adapter->hw;
293 
294 	ew32(IMS, IMS_ENABLE_MASK);
295 	E1000_WRITE_FLUSH();
296 }
297 
298 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
299 {
300 	struct e1000_hw *hw = &adapter->hw;
301 	struct net_device *netdev = adapter->netdev;
302 	u16 vid = hw->mng_cookie.vlan_id;
303 	u16 old_vid = adapter->mng_vlan_id;
304 
305 	if (!e1000_vlan_used(adapter))
306 		return;
307 
308 	if (!test_bit(vid, adapter->active_vlans)) {
309 		if (hw->mng_cookie.status &
310 		    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
311 			e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
312 			adapter->mng_vlan_id = vid;
313 		} else {
314 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
315 		}
316 		if (old_vid != E1000_MNG_VLAN_NONE && vid != old_vid &&
317 		    !test_bit(old_vid, adapter->active_vlans))
318 			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
319 					       old_vid);
320 	} else {
321 		adapter->mng_vlan_id = vid;
322 	}
323 }
324 
325 static void e1000_init_manageability(struct e1000_adapter *adapter)
326 {
327 	struct e1000_hw *hw = &adapter->hw;
328 
329 	if (adapter->en_mng_pt) {
330 		u32 manc = er32(MANC);
331 
332 		/* disable hardware interception of ARP */
333 		manc &= ~(E1000_MANC_ARP_EN);
334 
335 		ew32(MANC, manc);
336 	}
337 }
338 
339 static void e1000_release_manageability(struct e1000_adapter *adapter)
340 {
341 	struct e1000_hw *hw = &adapter->hw;
342 
343 	if (adapter->en_mng_pt) {
344 		u32 manc = er32(MANC);
345 
346 		/* re-enable hardware interception of ARP */
347 		manc |= E1000_MANC_ARP_EN;
348 
349 		ew32(MANC, manc);
350 	}
351 }
352 
353 /**
354  * e1000_configure - configure the hardware for RX and TX
355  * @adapter: private board structure
356  **/
357 static void e1000_configure(struct e1000_adapter *adapter)
358 {
359 	struct net_device *netdev = adapter->netdev;
360 	int i;
361 
362 	e1000_set_rx_mode(netdev);
363 
364 	e1000_restore_vlan(adapter);
365 	e1000_init_manageability(adapter);
366 
367 	e1000_configure_tx(adapter);
368 	e1000_setup_rctl(adapter);
369 	e1000_configure_rx(adapter);
370 	/* call E1000_DESC_UNUSED which always leaves
371 	 * at least 1 descriptor unused to make sure
372 	 * next_to_use != next_to_clean
373 	 */
374 	for (i = 0; i < adapter->num_rx_queues; i++) {
375 		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
376 		adapter->alloc_rx_buf(adapter, ring,
377 				      E1000_DESC_UNUSED(ring));
378 	}
379 }
380 
381 int e1000_up(struct e1000_adapter *adapter)
382 {
383 	struct e1000_hw *hw = &adapter->hw;
384 
385 	/* hardware has been reset, we need to reload some things */
386 	e1000_configure(adapter);
387 
388 	clear_bit(__E1000_DOWN, &adapter->flags);
389 
390 	napi_enable(&adapter->napi);
391 
392 	e1000_irq_enable(adapter);
393 
394 	netif_wake_queue(adapter->netdev);
395 
396 	/* fire a link change interrupt to start the watchdog */
397 	ew32(ICS, E1000_ICS_LSC);
398 	return 0;
399 }
400 
401 /**
402  * e1000_power_up_phy - restore link in case the phy was powered down
403  * @adapter: address of board private structure
404  *
405  * The phy may be powered down to save power and turn off link when the
406  * driver is unloaded and wake on lan is not enabled (among others)
407  * *** this routine MUST be followed by a call to e1000_reset ***
408  **/
409 void e1000_power_up_phy(struct e1000_adapter *adapter)
410 {
411 	struct e1000_hw *hw = &adapter->hw;
412 	u16 mii_reg = 0;
413 
414 	/* Just clear the power down bit to wake the phy back up */
415 	if (hw->media_type == e1000_media_type_copper) {
416 		/* according to the manual, the phy will retain its
417 		 * settings across a power-down/up cycle
418 		 */
419 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
420 		mii_reg &= ~MII_CR_POWER_DOWN;
421 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
422 	}
423 }
424 
425 static void e1000_power_down_phy(struct e1000_adapter *adapter)
426 {
427 	struct e1000_hw *hw = &adapter->hw;
428 
429 	/* Power down the PHY so no link is implied when interface is down *
430 	 * The PHY cannot be powered down if any of the following is true *
431 	 * (a) WoL is enabled
432 	 * (b) AMT is active
433 	 * (c) SoL/IDER session is active
434 	 */
435 	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
436 	   hw->media_type == e1000_media_type_copper) {
437 		u16 mii_reg = 0;
438 
439 		switch (hw->mac_type) {
440 		case e1000_82540:
441 		case e1000_82545:
442 		case e1000_82545_rev_3:
443 		case e1000_82546:
444 		case e1000_ce4100:
445 		case e1000_82546_rev_3:
446 		case e1000_82541:
447 		case e1000_82541_rev_2:
448 		case e1000_82547:
449 		case e1000_82547_rev_2:
450 			if (er32(MANC) & E1000_MANC_SMBUS_EN)
451 				goto out;
452 			break;
453 		default:
454 			goto out;
455 		}
456 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
457 		mii_reg |= MII_CR_POWER_DOWN;
458 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
459 		msleep(1);
460 	}
461 out:
462 	return;
463 }
464 
465 static void e1000_down_and_stop(struct e1000_adapter *adapter)
466 {
467 	set_bit(__E1000_DOWN, &adapter->flags);
468 
469 	cancel_delayed_work_sync(&adapter->watchdog_task);
470 
471 	/*
472 	 * Since the watchdog task can reschedule other tasks, we should cancel
473 	 * it first, otherwise we can run into the situation when a work is
474 	 * still running after the adapter has been turned down.
475 	 */
476 
477 	cancel_delayed_work_sync(&adapter->phy_info_task);
478 	cancel_delayed_work_sync(&adapter->fifo_stall_task);
479 }
480 
481 void e1000_down(struct e1000_adapter *adapter)
482 {
483 	struct e1000_hw *hw = &adapter->hw;
484 	struct net_device *netdev = adapter->netdev;
485 	u32 rctl, tctl;
486 
487 	/* disable receives in the hardware */
488 	rctl = er32(RCTL);
489 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
490 	/* flush and sleep below */
491 
492 	netif_tx_disable(netdev);
493 
494 	/* disable transmits in the hardware */
495 	tctl = er32(TCTL);
496 	tctl &= ~E1000_TCTL_EN;
497 	ew32(TCTL, tctl);
498 	/* flush both disables and wait for them to finish */
499 	E1000_WRITE_FLUSH();
500 	msleep(10);
501 
502 	/* Set the carrier off after transmits have been disabled in the
503 	 * hardware, to avoid race conditions with e1000_watchdog() (which
504 	 * may be running concurrently to us, checking for the carrier
505 	 * bit to decide whether it should enable transmits again). Such
506 	 * a race condition would result into transmission being disabled
507 	 * in the hardware until the next IFF_DOWN+IFF_UP cycle.
508 	 */
509 	netif_carrier_off(netdev);
510 
511 	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_RX, NULL);
512 	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_TX, NULL);
513 	napi_disable(&adapter->napi);
514 
515 	e1000_irq_disable(adapter);
516 
517 	/* Setting DOWN must be after irq_disable to prevent
518 	 * a screaming interrupt.  Setting DOWN also prevents
519 	 * tasks from rescheduling.
520 	 */
521 	e1000_down_and_stop(adapter);
522 
523 	adapter->link_speed = 0;
524 	adapter->link_duplex = 0;
525 
526 	e1000_reset(adapter);
527 	e1000_clean_all_tx_rings(adapter);
528 	e1000_clean_all_rx_rings(adapter);
529 }
530 
531 void e1000_reinit_locked(struct e1000_adapter *adapter)
532 {
533 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
534 		msleep(1);
535 
536 	/* only run the task if not already down */
537 	if (!test_bit(__E1000_DOWN, &adapter->flags)) {
538 		e1000_down(adapter);
539 		e1000_up(adapter);
540 	}
541 
542 	clear_bit(__E1000_RESETTING, &adapter->flags);
543 }
544 
545 void e1000_reset(struct e1000_adapter *adapter)
546 {
547 	struct e1000_hw *hw = &adapter->hw;
548 	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
549 	bool legacy_pba_adjust = false;
550 	u16 hwm;
551 
552 	/* Repartition Pba for greater than 9k mtu
553 	 * To take effect CTRL.RST is required.
554 	 */
555 
556 	switch (hw->mac_type) {
557 	case e1000_82542_rev2_0:
558 	case e1000_82542_rev2_1:
559 	case e1000_82543:
560 	case e1000_82544:
561 	case e1000_82540:
562 	case e1000_82541:
563 	case e1000_82541_rev_2:
564 		legacy_pba_adjust = true;
565 		pba = E1000_PBA_48K;
566 		break;
567 	case e1000_82545:
568 	case e1000_82545_rev_3:
569 	case e1000_82546:
570 	case e1000_ce4100:
571 	case e1000_82546_rev_3:
572 		pba = E1000_PBA_48K;
573 		break;
574 	case e1000_82547:
575 	case e1000_82547_rev_2:
576 		legacy_pba_adjust = true;
577 		pba = E1000_PBA_30K;
578 		break;
579 	case e1000_undefined:
580 	case e1000_num_macs:
581 		break;
582 	}
583 
584 	if (legacy_pba_adjust) {
585 		if (hw->max_frame_size > E1000_RXBUFFER_8192)
586 			pba -= 8; /* allocate more FIFO for Tx */
587 
588 		if (hw->mac_type == e1000_82547) {
589 			adapter->tx_fifo_head = 0;
590 			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
591 			adapter->tx_fifo_size =
592 				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
593 			atomic_set(&adapter->tx_fifo_stall, 0);
594 		}
595 	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
596 		/* adjust PBA for jumbo frames */
597 		ew32(PBA, pba);
598 
599 		/* To maintain wire speed transmits, the Tx FIFO should be
600 		 * large enough to accommodate two full transmit packets,
601 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
602 		 * the Rx FIFO should be large enough to accommodate at least
603 		 * one full receive packet and is similarly rounded up and
604 		 * expressed in KB.
605 		 */
606 		pba = er32(PBA);
607 		/* upper 16 bits has Tx packet buffer allocation size in KB */
608 		tx_space = pba >> 16;
609 		/* lower 16 bits has Rx packet buffer allocation size in KB */
610 		pba &= 0xffff;
611 		/* the Tx fifo also stores 16 bytes of information about the Tx
612 		 * but don't include ethernet FCS because hardware appends it
613 		 */
614 		min_tx_space = (hw->max_frame_size +
615 				sizeof(struct e1000_tx_desc) -
616 				ETH_FCS_LEN) * 2;
617 		min_tx_space = ALIGN(min_tx_space, 1024);
618 		min_tx_space >>= 10;
619 		/* software strips receive CRC, so leave room for it */
620 		min_rx_space = hw->max_frame_size;
621 		min_rx_space = ALIGN(min_rx_space, 1024);
622 		min_rx_space >>= 10;
623 
624 		/* If current Tx allocation is less than the min Tx FIFO size,
625 		 * and the min Tx FIFO size is less than the current Rx FIFO
626 		 * allocation, take space away from current Rx allocation
627 		 */
628 		if (tx_space < min_tx_space &&
629 		    ((min_tx_space - tx_space) < pba)) {
630 			pba = pba - (min_tx_space - tx_space);
631 
632 			/* PCI/PCIx hardware has PBA alignment constraints */
633 			switch (hw->mac_type) {
634 			case e1000_82545 ... e1000_82546_rev_3:
635 				pba &= ~(E1000_PBA_8K - 1);
636 				break;
637 			default:
638 				break;
639 			}
640 
641 			/* if short on Rx space, Rx wins and must trump Tx
642 			 * adjustment or use Early Receive if available
643 			 */
644 			if (pba < min_rx_space)
645 				pba = min_rx_space;
646 		}
647 	}
648 
649 	ew32(PBA, pba);
650 
651 	/* flow control settings:
652 	 * The high water mark must be low enough to fit one full frame
653 	 * (or the size used for early receive) above it in the Rx FIFO.
654 	 * Set it to the lower of:
655 	 * - 90% of the Rx FIFO size, and
656 	 * - the full Rx FIFO size minus the early receive size (for parts
657 	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
658 	 * - the full Rx FIFO size minus one full frame
659 	 */
660 	hwm = min(((pba << 10) * 9 / 10),
661 		  ((pba << 10) - hw->max_frame_size));
662 
663 	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
664 	hw->fc_low_water = hw->fc_high_water - 8;
665 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
666 	hw->fc_send_xon = 1;
667 	hw->fc = hw->original_fc;
668 
669 	/* Allow time for pending master requests to run */
670 	e1000_reset_hw(hw);
671 	if (hw->mac_type >= e1000_82544)
672 		ew32(WUC, 0);
673 
674 	if (e1000_init_hw(hw))
675 		e_dev_err("Hardware Error\n");
676 	e1000_update_mng_vlan(adapter);
677 
678 	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
679 	if (hw->mac_type >= e1000_82544 &&
680 	    hw->autoneg == 1 &&
681 	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
682 		u32 ctrl = er32(CTRL);
683 		/* clear phy power management bit if we are in gig only mode,
684 		 * which if enabled will attempt negotiation to 100Mb, which
685 		 * can cause a loss of link at power off or driver unload
686 		 */
687 		ctrl &= ~E1000_CTRL_SWDPIN3;
688 		ew32(CTRL, ctrl);
689 	}
690 
691 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
692 	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
693 
694 	e1000_reset_adaptive(hw);
695 	e1000_phy_get_info(hw, &adapter->phy_info);
696 
697 	e1000_release_manageability(adapter);
698 }
699 
700 /* Dump the eeprom for users having checksum issues */
701 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
702 {
703 	struct net_device *netdev = adapter->netdev;
704 	struct ethtool_eeprom eeprom;
705 	const struct ethtool_ops *ops = netdev->ethtool_ops;
706 	u8 *data;
707 	int i;
708 	u16 csum_old, csum_new = 0;
709 
710 	eeprom.len = ops->get_eeprom_len(netdev);
711 	eeprom.offset = 0;
712 
713 	data = kmalloc(eeprom.len, GFP_KERNEL);
714 	if (!data)
715 		return;
716 
717 	ops->get_eeprom(netdev, &eeprom, data);
718 
719 	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
720 		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
721 	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
722 		csum_new += data[i] + (data[i + 1] << 8);
723 	csum_new = EEPROM_SUM - csum_new;
724 
725 	pr_err("/*********************/\n");
726 	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
727 	pr_err("Calculated              : 0x%04x\n", csum_new);
728 
729 	pr_err("Offset    Values\n");
730 	pr_err("========  ======\n");
731 	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
732 
733 	pr_err("Include this output when contacting your support provider.\n");
734 	pr_err("This is not a software error! Something bad happened to\n");
735 	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
736 	pr_err("result in further problems, possibly loss of data,\n");
737 	pr_err("corruption or system hangs!\n");
738 	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
739 	pr_err("which is invalid and requires you to set the proper MAC\n");
740 	pr_err("address manually before continuing to enable this network\n");
741 	pr_err("device. Please inspect the EEPROM dump and report the\n");
742 	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
743 	pr_err("/*********************/\n");
744 
745 	kfree(data);
746 }
747 
748 /**
749  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
750  * @pdev: PCI device information struct
751  *
752  * Return true if an adapter needs ioport resources
753  **/
754 static int e1000_is_need_ioport(struct pci_dev *pdev)
755 {
756 	switch (pdev->device) {
757 	case E1000_DEV_ID_82540EM:
758 	case E1000_DEV_ID_82540EM_LOM:
759 	case E1000_DEV_ID_82540EP:
760 	case E1000_DEV_ID_82540EP_LOM:
761 	case E1000_DEV_ID_82540EP_LP:
762 	case E1000_DEV_ID_82541EI:
763 	case E1000_DEV_ID_82541EI_MOBILE:
764 	case E1000_DEV_ID_82541ER:
765 	case E1000_DEV_ID_82541ER_LOM:
766 	case E1000_DEV_ID_82541GI:
767 	case E1000_DEV_ID_82541GI_LF:
768 	case E1000_DEV_ID_82541GI_MOBILE:
769 	case E1000_DEV_ID_82544EI_COPPER:
770 	case E1000_DEV_ID_82544EI_FIBER:
771 	case E1000_DEV_ID_82544GC_COPPER:
772 	case E1000_DEV_ID_82544GC_LOM:
773 	case E1000_DEV_ID_82545EM_COPPER:
774 	case E1000_DEV_ID_82545EM_FIBER:
775 	case E1000_DEV_ID_82546EB_COPPER:
776 	case E1000_DEV_ID_82546EB_FIBER:
777 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
778 		return true;
779 	default:
780 		return false;
781 	}
782 }
783 
784 static netdev_features_t e1000_fix_features(struct net_device *netdev,
785 	netdev_features_t features)
786 {
787 	/* Since there is no support for separate Rx/Tx vlan accel
788 	 * enable/disable make sure Tx flag is always in same state as Rx.
789 	 */
790 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
791 		features |= NETIF_F_HW_VLAN_CTAG_TX;
792 	else
793 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
794 
795 	return features;
796 }
797 
798 static int e1000_set_features(struct net_device *netdev,
799 	netdev_features_t features)
800 {
801 	struct e1000_adapter *adapter = netdev_priv(netdev);
802 	netdev_features_t changed = features ^ netdev->features;
803 
804 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
805 		e1000_vlan_mode(netdev, features);
806 
807 	if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
808 		return 0;
809 
810 	netdev->features = features;
811 	adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
812 
813 	if (netif_running(netdev))
814 		e1000_reinit_locked(adapter);
815 	else
816 		e1000_reset(adapter);
817 
818 	return 1;
819 }
820 
821 static const struct net_device_ops e1000_netdev_ops = {
822 	.ndo_open		= e1000_open,
823 	.ndo_stop		= e1000_close,
824 	.ndo_start_xmit		= e1000_xmit_frame,
825 	.ndo_set_rx_mode	= e1000_set_rx_mode,
826 	.ndo_set_mac_address	= e1000_set_mac,
827 	.ndo_tx_timeout		= e1000_tx_timeout,
828 	.ndo_change_mtu		= e1000_change_mtu,
829 	.ndo_eth_ioctl		= e1000_ioctl,
830 	.ndo_validate_addr	= eth_validate_addr,
831 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
832 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
833 #ifdef CONFIG_NET_POLL_CONTROLLER
834 	.ndo_poll_controller	= e1000_netpoll,
835 #endif
836 	.ndo_fix_features	= e1000_fix_features,
837 	.ndo_set_features	= e1000_set_features,
838 };
839 
840 /**
841  * e1000_init_hw_struct - initialize members of hw struct
842  * @adapter: board private struct
843  * @hw: structure used by e1000_hw.c
844  *
845  * Factors out initialization of the e1000_hw struct to its own function
846  * that can be called very early at init (just after struct allocation).
847  * Fields are initialized based on PCI device information and
848  * OS network device settings (MTU size).
849  * Returns negative error codes if MAC type setup fails.
850  */
851 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
852 				struct e1000_hw *hw)
853 {
854 	struct pci_dev *pdev = adapter->pdev;
855 
856 	/* PCI config space info */
857 	hw->vendor_id = pdev->vendor;
858 	hw->device_id = pdev->device;
859 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
860 	hw->subsystem_id = pdev->subsystem_device;
861 	hw->revision_id = pdev->revision;
862 
863 	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
864 
865 	hw->max_frame_size = adapter->netdev->mtu +
866 			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
867 	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
868 
869 	/* identify the MAC */
870 	if (e1000_set_mac_type(hw)) {
871 		e_err(probe, "Unknown MAC Type\n");
872 		return -EIO;
873 	}
874 
875 	switch (hw->mac_type) {
876 	default:
877 		break;
878 	case e1000_82541:
879 	case e1000_82547:
880 	case e1000_82541_rev_2:
881 	case e1000_82547_rev_2:
882 		hw->phy_init_script = 1;
883 		break;
884 	}
885 
886 	e1000_set_media_type(hw);
887 	e1000_get_bus_info(hw);
888 
889 	hw->wait_autoneg_complete = false;
890 	hw->tbi_compatibility_en = true;
891 	hw->adaptive_ifs = true;
892 
893 	/* Copper options */
894 
895 	if (hw->media_type == e1000_media_type_copper) {
896 		hw->mdix = AUTO_ALL_MODES;
897 		hw->disable_polarity_correction = false;
898 		hw->master_slave = E1000_MASTER_SLAVE;
899 	}
900 
901 	return 0;
902 }
903 
904 /**
905  * e1000_probe - Device Initialization Routine
906  * @pdev: PCI device information struct
907  * @ent: entry in e1000_pci_tbl
908  *
909  * Returns 0 on success, negative on failure
910  *
911  * e1000_probe initializes an adapter identified by a pci_dev structure.
912  * The OS initialization, configuring of the adapter private structure,
913  * and a hardware reset occur.
914  **/
915 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
916 {
917 	struct net_device *netdev;
918 	struct e1000_adapter *adapter = NULL;
919 	struct e1000_hw *hw;
920 
921 	static int cards_found;
922 	static int global_quad_port_a; /* global ksp3 port a indication */
923 	int i, err, pci_using_dac;
924 	u16 eeprom_data = 0;
925 	u16 tmp = 0;
926 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
927 	int bars, need_ioport;
928 	bool disable_dev = false;
929 
930 	/* do not allocate ioport bars when not needed */
931 	need_ioport = e1000_is_need_ioport(pdev);
932 	if (need_ioport) {
933 		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
934 		err = pci_enable_device(pdev);
935 	} else {
936 		bars = pci_select_bars(pdev, IORESOURCE_MEM);
937 		err = pci_enable_device_mem(pdev);
938 	}
939 	if (err)
940 		return err;
941 
942 	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
943 	if (err)
944 		goto err_pci_reg;
945 
946 	pci_set_master(pdev);
947 	err = pci_save_state(pdev);
948 	if (err)
949 		goto err_alloc_etherdev;
950 
951 	err = -ENOMEM;
952 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
953 	if (!netdev)
954 		goto err_alloc_etherdev;
955 
956 	SET_NETDEV_DEV(netdev, &pdev->dev);
957 
958 	pci_set_drvdata(pdev, netdev);
959 	adapter = netdev_priv(netdev);
960 	adapter->netdev = netdev;
961 	adapter->pdev = pdev;
962 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
963 	adapter->bars = bars;
964 	adapter->need_ioport = need_ioport;
965 
966 	hw = &adapter->hw;
967 	hw->back = adapter;
968 
969 	err = -EIO;
970 	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
971 	if (!hw->hw_addr)
972 		goto err_ioremap;
973 
974 	if (adapter->need_ioport) {
975 		for (i = BAR_1; i < PCI_STD_NUM_BARS; i++) {
976 			if (pci_resource_len(pdev, i) == 0)
977 				continue;
978 			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
979 				hw->io_base = pci_resource_start(pdev, i);
980 				break;
981 			}
982 		}
983 	}
984 
985 	/* make ready for any if (hw->...) below */
986 	err = e1000_init_hw_struct(adapter, hw);
987 	if (err)
988 		goto err_sw_init;
989 
990 	/* there is a workaround being applied below that limits
991 	 * 64-bit DMA addresses to 64-bit hardware.  There are some
992 	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
993 	 */
994 	pci_using_dac = 0;
995 	if ((hw->bus_type == e1000_bus_type_pcix) &&
996 	    !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
997 		pci_using_dac = 1;
998 	} else {
999 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1000 		if (err) {
1001 			pr_err("No usable DMA config, aborting\n");
1002 			goto err_dma;
1003 		}
1004 	}
1005 
1006 	netdev->netdev_ops = &e1000_netdev_ops;
1007 	e1000_set_ethtool_ops(netdev);
1008 	netdev->watchdog_timeo = 5 * HZ;
1009 	netif_napi_add(netdev, &adapter->napi, e1000_clean);
1010 
1011 	strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
1012 
1013 	adapter->bd_number = cards_found;
1014 
1015 	/* setup the private structure */
1016 
1017 	err = e1000_sw_init(adapter);
1018 	if (err)
1019 		goto err_sw_init;
1020 
1021 	err = -EIO;
1022 	if (hw->mac_type == e1000_ce4100) {
1023 		hw->ce4100_gbe_mdio_base_virt =
1024 					ioremap(pci_resource_start(pdev, BAR_1),
1025 						pci_resource_len(pdev, BAR_1));
1026 
1027 		if (!hw->ce4100_gbe_mdio_base_virt)
1028 			goto err_mdio_ioremap;
1029 	}
1030 
1031 	if (hw->mac_type >= e1000_82543) {
1032 		netdev->hw_features = NETIF_F_SG |
1033 				   NETIF_F_HW_CSUM |
1034 				   NETIF_F_HW_VLAN_CTAG_RX;
1035 		netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1036 				   NETIF_F_HW_VLAN_CTAG_FILTER;
1037 	}
1038 
1039 	if ((hw->mac_type >= e1000_82544) &&
1040 	   (hw->mac_type != e1000_82547))
1041 		netdev->hw_features |= NETIF_F_TSO;
1042 
1043 	netdev->priv_flags |= IFF_SUPP_NOFCS;
1044 
1045 	netdev->features |= netdev->hw_features;
1046 	netdev->hw_features |= (NETIF_F_RXCSUM |
1047 				NETIF_F_RXALL |
1048 				NETIF_F_RXFCS);
1049 
1050 	if (pci_using_dac) {
1051 		netdev->features |= NETIF_F_HIGHDMA;
1052 		netdev->vlan_features |= NETIF_F_HIGHDMA;
1053 	}
1054 
1055 	netdev->vlan_features |= (NETIF_F_TSO |
1056 				  NETIF_F_HW_CSUM |
1057 				  NETIF_F_SG);
1058 
1059 	/* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1060 	if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1061 	    hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1062 		netdev->priv_flags |= IFF_UNICAST_FLT;
1063 
1064 	/* MTU range: 46 - 16110 */
1065 	netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1066 	netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1067 
1068 	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1069 
1070 	/* initialize eeprom parameters */
1071 	if (e1000_init_eeprom_params(hw)) {
1072 		e_err(probe, "EEPROM initialization failed\n");
1073 		goto err_eeprom;
1074 	}
1075 
1076 	/* before reading the EEPROM, reset the controller to
1077 	 * put the device in a known good starting state
1078 	 */
1079 
1080 	e1000_reset_hw(hw);
1081 
1082 	/* make sure the EEPROM is good */
1083 	if (e1000_validate_eeprom_checksum(hw) < 0) {
1084 		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1085 		e1000_dump_eeprom(adapter);
1086 		/* set MAC address to all zeroes to invalidate and temporary
1087 		 * disable this device for the user. This blocks regular
1088 		 * traffic while still permitting ethtool ioctls from reaching
1089 		 * the hardware as well as allowing the user to run the
1090 		 * interface after manually setting a hw addr using
1091 		 * `ip set address`
1092 		 */
1093 		memset(hw->mac_addr, 0, netdev->addr_len);
1094 	} else {
1095 		/* copy the MAC address out of the EEPROM */
1096 		if (e1000_read_mac_addr(hw))
1097 			e_err(probe, "EEPROM Read Error\n");
1098 	}
1099 	/* don't block initialization here due to bad MAC address */
1100 	eth_hw_addr_set(netdev, hw->mac_addr);
1101 
1102 	if (!is_valid_ether_addr(netdev->dev_addr))
1103 		e_err(probe, "Invalid MAC Address\n");
1104 
1105 
1106 	INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1107 	INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1108 			  e1000_82547_tx_fifo_stall_task);
1109 	INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1110 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
1111 
1112 	e1000_check_options(adapter);
1113 
1114 	/* Initial Wake on LAN setting
1115 	 * If APM wake is enabled in the EEPROM,
1116 	 * enable the ACPI Magic Packet filter
1117 	 */
1118 
1119 	switch (hw->mac_type) {
1120 	case e1000_82542_rev2_0:
1121 	case e1000_82542_rev2_1:
1122 	case e1000_82543:
1123 		break;
1124 	case e1000_82544:
1125 		e1000_read_eeprom(hw,
1126 			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1127 		eeprom_apme_mask = E1000_EEPROM_82544_APM;
1128 		break;
1129 	case e1000_82546:
1130 	case e1000_82546_rev_3:
1131 		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1132 			e1000_read_eeprom(hw,
1133 				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1134 			break;
1135 		}
1136 		fallthrough;
1137 	default:
1138 		e1000_read_eeprom(hw,
1139 			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1140 		break;
1141 	}
1142 	if (eeprom_data & eeprom_apme_mask)
1143 		adapter->eeprom_wol |= E1000_WUFC_MAG;
1144 
1145 	/* now that we have the eeprom settings, apply the special cases
1146 	 * where the eeprom may be wrong or the board simply won't support
1147 	 * wake on lan on a particular port
1148 	 */
1149 	switch (pdev->device) {
1150 	case E1000_DEV_ID_82546GB_PCIE:
1151 		adapter->eeprom_wol = 0;
1152 		break;
1153 	case E1000_DEV_ID_82546EB_FIBER:
1154 	case E1000_DEV_ID_82546GB_FIBER:
1155 		/* Wake events only supported on port A for dual fiber
1156 		 * regardless of eeprom setting
1157 		 */
1158 		if (er32(STATUS) & E1000_STATUS_FUNC_1)
1159 			adapter->eeprom_wol = 0;
1160 		break;
1161 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1162 		/* if quad port adapter, disable WoL on all but port A */
1163 		if (global_quad_port_a != 0)
1164 			adapter->eeprom_wol = 0;
1165 		else
1166 			adapter->quad_port_a = true;
1167 		/* Reset for multiple quad port adapters */
1168 		if (++global_quad_port_a == 4)
1169 			global_quad_port_a = 0;
1170 		break;
1171 	}
1172 
1173 	/* initialize the wol settings based on the eeprom settings */
1174 	adapter->wol = adapter->eeprom_wol;
1175 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1176 
1177 	/* Auto detect PHY address */
1178 	if (hw->mac_type == e1000_ce4100) {
1179 		for (i = 0; i < 32; i++) {
1180 			hw->phy_addr = i;
1181 			e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1182 
1183 			if (tmp != 0 && tmp != 0xFF)
1184 				break;
1185 		}
1186 
1187 		if (i >= 32)
1188 			goto err_eeprom;
1189 	}
1190 
1191 	/* reset the hardware with the new settings */
1192 	e1000_reset(adapter);
1193 
1194 	strcpy(netdev->name, "eth%d");
1195 	err = register_netdev(netdev);
1196 	if (err)
1197 		goto err_register;
1198 
1199 	e1000_vlan_filter_on_off(adapter, false);
1200 
1201 	/* print bus type/speed/width info */
1202 	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1203 	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1204 	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1205 		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
1206 		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
1207 		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1208 	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1209 	       netdev->dev_addr);
1210 
1211 	/* carrier off reporting is important to ethtool even BEFORE open */
1212 	netif_carrier_off(netdev);
1213 
1214 	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1215 
1216 	cards_found++;
1217 	return 0;
1218 
1219 err_register:
1220 err_eeprom:
1221 	e1000_phy_hw_reset(hw);
1222 
1223 	if (hw->flash_address)
1224 		iounmap(hw->flash_address);
1225 	kfree(adapter->tx_ring);
1226 	kfree(adapter->rx_ring);
1227 err_dma:
1228 err_sw_init:
1229 err_mdio_ioremap:
1230 	iounmap(hw->ce4100_gbe_mdio_base_virt);
1231 	iounmap(hw->hw_addr);
1232 err_ioremap:
1233 	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1234 	free_netdev(netdev);
1235 err_alloc_etherdev:
1236 	pci_release_selected_regions(pdev, bars);
1237 err_pci_reg:
1238 	if (!adapter || disable_dev)
1239 		pci_disable_device(pdev);
1240 	return err;
1241 }
1242 
1243 /**
1244  * e1000_remove - Device Removal Routine
1245  * @pdev: PCI device information struct
1246  *
1247  * e1000_remove is called by the PCI subsystem to alert the driver
1248  * that it should release a PCI device. That could be caused by a
1249  * Hot-Plug event, or because the driver is going to be removed from
1250  * memory.
1251  **/
1252 static void e1000_remove(struct pci_dev *pdev)
1253 {
1254 	struct net_device *netdev = pci_get_drvdata(pdev);
1255 	struct e1000_adapter *adapter = netdev_priv(netdev);
1256 	struct e1000_hw *hw = &adapter->hw;
1257 	bool disable_dev;
1258 
1259 	e1000_down_and_stop(adapter);
1260 	e1000_release_manageability(adapter);
1261 
1262 	unregister_netdev(netdev);
1263 
1264 	/* Only kill reset task if adapter is not resetting */
1265 	if (!test_bit(__E1000_RESETTING, &adapter->flags))
1266 		cancel_work_sync(&adapter->reset_task);
1267 
1268 	e1000_phy_hw_reset(hw);
1269 
1270 	kfree(adapter->tx_ring);
1271 	kfree(adapter->rx_ring);
1272 
1273 	if (hw->mac_type == e1000_ce4100)
1274 		iounmap(hw->ce4100_gbe_mdio_base_virt);
1275 	iounmap(hw->hw_addr);
1276 	if (hw->flash_address)
1277 		iounmap(hw->flash_address);
1278 	pci_release_selected_regions(pdev, adapter->bars);
1279 
1280 	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1281 	free_netdev(netdev);
1282 
1283 	if (disable_dev)
1284 		pci_disable_device(pdev);
1285 }
1286 
1287 /**
1288  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1289  * @adapter: board private structure to initialize
1290  *
1291  * e1000_sw_init initializes the Adapter private data structure.
1292  * e1000_init_hw_struct MUST be called before this function
1293  **/
1294 static int e1000_sw_init(struct e1000_adapter *adapter)
1295 {
1296 	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1297 
1298 	adapter->num_tx_queues = 1;
1299 	adapter->num_rx_queues = 1;
1300 
1301 	if (e1000_alloc_queues(adapter)) {
1302 		e_err(probe, "Unable to allocate memory for queues\n");
1303 		return -ENOMEM;
1304 	}
1305 
1306 	/* Explicitly disable IRQ since the NIC can be in any state. */
1307 	e1000_irq_disable(adapter);
1308 
1309 	spin_lock_init(&adapter->stats_lock);
1310 
1311 	set_bit(__E1000_DOWN, &adapter->flags);
1312 
1313 	return 0;
1314 }
1315 
1316 /**
1317  * e1000_alloc_queues - Allocate memory for all rings
1318  * @adapter: board private structure to initialize
1319  *
1320  * We allocate one ring per queue at run-time since we don't know the
1321  * number of queues at compile-time.
1322  **/
1323 static int e1000_alloc_queues(struct e1000_adapter *adapter)
1324 {
1325 	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1326 				   sizeof(struct e1000_tx_ring), GFP_KERNEL);
1327 	if (!adapter->tx_ring)
1328 		return -ENOMEM;
1329 
1330 	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1331 				   sizeof(struct e1000_rx_ring), GFP_KERNEL);
1332 	if (!adapter->rx_ring) {
1333 		kfree(adapter->tx_ring);
1334 		return -ENOMEM;
1335 	}
1336 
1337 	return E1000_SUCCESS;
1338 }
1339 
1340 /**
1341  * e1000_open - Called when a network interface is made active
1342  * @netdev: network interface device structure
1343  *
1344  * Returns 0 on success, negative value on failure
1345  *
1346  * The open entry point is called when a network interface is made
1347  * active by the system (IFF_UP).  At this point all resources needed
1348  * for transmit and receive operations are allocated, the interrupt
1349  * handler is registered with the OS, the watchdog task is started,
1350  * and the stack is notified that the interface is ready.
1351  **/
1352 int e1000_open(struct net_device *netdev)
1353 {
1354 	struct e1000_adapter *adapter = netdev_priv(netdev);
1355 	struct e1000_hw *hw = &adapter->hw;
1356 	int err;
1357 
1358 	/* disallow open during test */
1359 	if (test_bit(__E1000_TESTING, &adapter->flags))
1360 		return -EBUSY;
1361 
1362 	netif_carrier_off(netdev);
1363 
1364 	/* allocate transmit descriptors */
1365 	err = e1000_setup_all_tx_resources(adapter);
1366 	if (err)
1367 		goto err_setup_tx;
1368 
1369 	/* allocate receive descriptors */
1370 	err = e1000_setup_all_rx_resources(adapter);
1371 	if (err)
1372 		goto err_setup_rx;
1373 
1374 	e1000_power_up_phy(adapter);
1375 
1376 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1377 	if ((hw->mng_cookie.status &
1378 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1379 		e1000_update_mng_vlan(adapter);
1380 	}
1381 
1382 	/* before we allocate an interrupt, we must be ready to handle it.
1383 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1384 	 * as soon as we call pci_request_irq, so we have to setup our
1385 	 * clean_rx handler before we do so.
1386 	 */
1387 	e1000_configure(adapter);
1388 
1389 	err = e1000_request_irq(adapter);
1390 	if (err)
1391 		goto err_req_irq;
1392 
1393 	/* From here on the code is the same as e1000_up() */
1394 	clear_bit(__E1000_DOWN, &adapter->flags);
1395 
1396 	netif_napi_set_irq(&adapter->napi, adapter->pdev->irq);
1397 	napi_enable(&adapter->napi);
1398 	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_RX, &adapter->napi);
1399 	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_TX, &adapter->napi);
1400 
1401 	e1000_irq_enable(adapter);
1402 
1403 	netif_start_queue(netdev);
1404 
1405 	/* fire a link status change interrupt to start the watchdog */
1406 	ew32(ICS, E1000_ICS_LSC);
1407 
1408 	return E1000_SUCCESS;
1409 
1410 err_req_irq:
1411 	e1000_power_down_phy(adapter);
1412 	e1000_free_all_rx_resources(adapter);
1413 err_setup_rx:
1414 	e1000_free_all_tx_resources(adapter);
1415 err_setup_tx:
1416 	e1000_reset(adapter);
1417 
1418 	return err;
1419 }
1420 
1421 /**
1422  * e1000_close - Disables a network interface
1423  * @netdev: network interface device structure
1424  *
1425  * Returns 0, this is not allowed to fail
1426  *
1427  * The close entry point is called when an interface is de-activated
1428  * by the OS.  The hardware is still under the drivers control, but
1429  * needs to be disabled.  A global MAC reset is issued to stop the
1430  * hardware, and all transmit and receive resources are freed.
1431  **/
1432 int e1000_close(struct net_device *netdev)
1433 {
1434 	struct e1000_adapter *adapter = netdev_priv(netdev);
1435 	struct e1000_hw *hw = &adapter->hw;
1436 	int count = E1000_CHECK_RESET_COUNT;
1437 
1438 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags) && count--)
1439 		usleep_range(10000, 20000);
1440 
1441 	WARN_ON(count < 0);
1442 
1443 	/* signal that we're down so that the reset task will no longer run */
1444 	set_bit(__E1000_DOWN, &adapter->flags);
1445 	clear_bit(__E1000_RESETTING, &adapter->flags);
1446 
1447 	e1000_down(adapter);
1448 	e1000_power_down_phy(adapter);
1449 	e1000_free_irq(adapter);
1450 
1451 	e1000_free_all_tx_resources(adapter);
1452 	e1000_free_all_rx_resources(adapter);
1453 
1454 	/* kill manageability vlan ID if supported, but not if a vlan with
1455 	 * the same ID is registered on the host OS (let 8021q kill it)
1456 	 */
1457 	if ((hw->mng_cookie.status &
1458 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1459 	    !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1460 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1461 				       adapter->mng_vlan_id);
1462 	}
1463 
1464 	return 0;
1465 }
1466 
1467 /**
1468  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1469  * @adapter: address of board private structure
1470  * @start: address of beginning of memory
1471  * @len: length of memory
1472  **/
1473 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1474 				  unsigned long len)
1475 {
1476 	struct e1000_hw *hw = &adapter->hw;
1477 	unsigned long begin = (unsigned long)start;
1478 	unsigned long end = begin + len;
1479 
1480 	/* First rev 82545 and 82546 need to not allow any memory
1481 	 * write location to cross 64k boundary due to errata 23
1482 	 */
1483 	if (hw->mac_type == e1000_82545 ||
1484 	    hw->mac_type == e1000_ce4100 ||
1485 	    hw->mac_type == e1000_82546) {
1486 		return ((begin ^ (end - 1)) >> 16) == 0;
1487 	}
1488 
1489 	return true;
1490 }
1491 
1492 /**
1493  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1494  * @adapter: board private structure
1495  * @txdr:    tx descriptor ring (for a specific queue) to setup
1496  *
1497  * Return 0 on success, negative on failure
1498  **/
1499 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1500 				    struct e1000_tx_ring *txdr)
1501 {
1502 	struct pci_dev *pdev = adapter->pdev;
1503 	int size;
1504 
1505 	size = sizeof(struct e1000_tx_buffer) * txdr->count;
1506 	txdr->buffer_info = vzalloc(size);
1507 	if (!txdr->buffer_info)
1508 		return -ENOMEM;
1509 
1510 	/* round up to nearest 4K */
1511 
1512 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1513 	txdr->size = ALIGN(txdr->size, 4096);
1514 
1515 	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1516 					GFP_KERNEL);
1517 	if (!txdr->desc) {
1518 setup_tx_desc_die:
1519 		vfree(txdr->buffer_info);
1520 		return -ENOMEM;
1521 	}
1522 
1523 	/* Fix for errata 23, can't cross 64kB boundary */
1524 	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1525 		void *olddesc = txdr->desc;
1526 		dma_addr_t olddma = txdr->dma;
1527 		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1528 		      txdr->size, txdr->desc);
1529 		/* Try again, without freeing the previous */
1530 		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1531 						&txdr->dma, GFP_KERNEL);
1532 		/* Failed allocation, critical failure */
1533 		if (!txdr->desc) {
1534 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1535 					  olddma);
1536 			goto setup_tx_desc_die;
1537 		}
1538 
1539 		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1540 			/* give up */
1541 			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1542 					  txdr->dma);
1543 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1544 					  olddma);
1545 			e_err(probe, "Unable to allocate aligned memory "
1546 			      "for the transmit descriptor ring\n");
1547 			vfree(txdr->buffer_info);
1548 			return -ENOMEM;
1549 		} else {
1550 			/* Free old allocation, new allocation was successful */
1551 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1552 					  olddma);
1553 		}
1554 	}
1555 	memset(txdr->desc, 0, txdr->size);
1556 
1557 	txdr->next_to_use = 0;
1558 	txdr->next_to_clean = 0;
1559 
1560 	return 0;
1561 }
1562 
1563 /**
1564  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1565  * 				  (Descriptors) for all queues
1566  * @adapter: board private structure
1567  *
1568  * Return 0 on success, negative on failure
1569  **/
1570 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1571 {
1572 	int i, err = 0;
1573 
1574 	for (i = 0; i < adapter->num_tx_queues; i++) {
1575 		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1576 		if (err) {
1577 			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1578 			for (i-- ; i >= 0; i--)
1579 				e1000_free_tx_resources(adapter,
1580 							&adapter->tx_ring[i]);
1581 			break;
1582 		}
1583 	}
1584 
1585 	return err;
1586 }
1587 
1588 /**
1589  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1590  * @adapter: board private structure
1591  *
1592  * Configure the Tx unit of the MAC after a reset.
1593  **/
1594 static void e1000_configure_tx(struct e1000_adapter *adapter)
1595 {
1596 	u64 tdba;
1597 	struct e1000_hw *hw = &adapter->hw;
1598 	u32 tdlen, tctl, tipg;
1599 	u32 ipgr1, ipgr2;
1600 
1601 	/* Setup the HW Tx Head and Tail descriptor pointers */
1602 
1603 	switch (adapter->num_tx_queues) {
1604 	case 1:
1605 	default:
1606 		tdba = adapter->tx_ring[0].dma;
1607 		tdlen = adapter->tx_ring[0].count *
1608 			sizeof(struct e1000_tx_desc);
1609 		ew32(TDLEN, tdlen);
1610 		ew32(TDBAH, (tdba >> 32));
1611 		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1612 		ew32(TDT, 0);
1613 		ew32(TDH, 0);
1614 		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1615 					   E1000_TDH : E1000_82542_TDH);
1616 		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1617 					   E1000_TDT : E1000_82542_TDT);
1618 		break;
1619 	}
1620 
1621 	/* Set the default values for the Tx Inter Packet Gap timer */
1622 	if ((hw->media_type == e1000_media_type_fiber ||
1623 	     hw->media_type == e1000_media_type_internal_serdes))
1624 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1625 	else
1626 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1627 
1628 	switch (hw->mac_type) {
1629 	case e1000_82542_rev2_0:
1630 	case e1000_82542_rev2_1:
1631 		tipg = DEFAULT_82542_TIPG_IPGT;
1632 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1633 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1634 		break;
1635 	default:
1636 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1637 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1638 		break;
1639 	}
1640 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1641 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1642 	ew32(TIPG, tipg);
1643 
1644 	/* Set the Tx Interrupt Delay register */
1645 
1646 	ew32(TIDV, adapter->tx_int_delay);
1647 	if (hw->mac_type >= e1000_82540)
1648 		ew32(TADV, adapter->tx_abs_int_delay);
1649 
1650 	/* Program the Transmit Control Register */
1651 
1652 	tctl = er32(TCTL);
1653 	tctl &= ~E1000_TCTL_CT;
1654 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1655 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1656 
1657 	e1000_config_collision_dist(hw);
1658 
1659 	/* Setup Transmit Descriptor Settings for eop descriptor */
1660 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1661 
1662 	/* only set IDE if we are delaying interrupts using the timers */
1663 	if (adapter->tx_int_delay)
1664 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1665 
1666 	if (hw->mac_type < e1000_82543)
1667 		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1668 	else
1669 		adapter->txd_cmd |= E1000_TXD_CMD_RS;
1670 
1671 	/* Cache if we're 82544 running in PCI-X because we'll
1672 	 * need this to apply a workaround later in the send path.
1673 	 */
1674 	if (hw->mac_type == e1000_82544 &&
1675 	    hw->bus_type == e1000_bus_type_pcix)
1676 		adapter->pcix_82544 = true;
1677 
1678 	ew32(TCTL, tctl);
1679 
1680 }
1681 
1682 /**
1683  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1684  * @adapter: board private structure
1685  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1686  *
1687  * Returns 0 on success, negative on failure
1688  **/
1689 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1690 				    struct e1000_rx_ring *rxdr)
1691 {
1692 	struct pci_dev *pdev = adapter->pdev;
1693 	int size, desc_len;
1694 
1695 	size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1696 	rxdr->buffer_info = vzalloc(size);
1697 	if (!rxdr->buffer_info)
1698 		return -ENOMEM;
1699 
1700 	desc_len = sizeof(struct e1000_rx_desc);
1701 
1702 	/* Round up to nearest 4K */
1703 
1704 	rxdr->size = rxdr->count * desc_len;
1705 	rxdr->size = ALIGN(rxdr->size, 4096);
1706 
1707 	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1708 					GFP_KERNEL);
1709 	if (!rxdr->desc) {
1710 setup_rx_desc_die:
1711 		vfree(rxdr->buffer_info);
1712 		return -ENOMEM;
1713 	}
1714 
1715 	/* Fix for errata 23, can't cross 64kB boundary */
1716 	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1717 		void *olddesc = rxdr->desc;
1718 		dma_addr_t olddma = rxdr->dma;
1719 		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1720 		      rxdr->size, rxdr->desc);
1721 		/* Try again, without freeing the previous */
1722 		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1723 						&rxdr->dma, GFP_KERNEL);
1724 		/* Failed allocation, critical failure */
1725 		if (!rxdr->desc) {
1726 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1727 					  olddma);
1728 			goto setup_rx_desc_die;
1729 		}
1730 
1731 		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1732 			/* give up */
1733 			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1734 					  rxdr->dma);
1735 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1736 					  olddma);
1737 			e_err(probe, "Unable to allocate aligned memory for "
1738 			      "the Rx descriptor ring\n");
1739 			goto setup_rx_desc_die;
1740 		} else {
1741 			/* Free old allocation, new allocation was successful */
1742 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1743 					  olddma);
1744 		}
1745 	}
1746 	memset(rxdr->desc, 0, rxdr->size);
1747 
1748 	rxdr->next_to_clean = 0;
1749 	rxdr->next_to_use = 0;
1750 	rxdr->rx_skb_top = NULL;
1751 
1752 	return 0;
1753 }
1754 
1755 /**
1756  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1757  * 				  (Descriptors) for all queues
1758  * @adapter: board private structure
1759  *
1760  * Return 0 on success, negative on failure
1761  **/
1762 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1763 {
1764 	int i, err = 0;
1765 
1766 	for (i = 0; i < adapter->num_rx_queues; i++) {
1767 		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1768 		if (err) {
1769 			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1770 			for (i-- ; i >= 0; i--)
1771 				e1000_free_rx_resources(adapter,
1772 							&adapter->rx_ring[i]);
1773 			break;
1774 		}
1775 	}
1776 
1777 	return err;
1778 }
1779 
1780 /**
1781  * e1000_setup_rctl - configure the receive control registers
1782  * @adapter: Board private structure
1783  **/
1784 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1785 {
1786 	struct e1000_hw *hw = &adapter->hw;
1787 	u32 rctl;
1788 
1789 	rctl = er32(RCTL);
1790 
1791 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1792 
1793 	rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1794 		E1000_RCTL_RDMTS_HALF |
1795 		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1796 
1797 	if (hw->tbi_compatibility_on == 1)
1798 		rctl |= E1000_RCTL_SBP;
1799 	else
1800 		rctl &= ~E1000_RCTL_SBP;
1801 
1802 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
1803 		rctl &= ~E1000_RCTL_LPE;
1804 	else
1805 		rctl |= E1000_RCTL_LPE;
1806 
1807 	/* Setup buffer sizes */
1808 	rctl &= ~E1000_RCTL_SZ_4096;
1809 	rctl |= E1000_RCTL_BSEX;
1810 	switch (adapter->rx_buffer_len) {
1811 	case E1000_RXBUFFER_2048:
1812 	default:
1813 		rctl |= E1000_RCTL_SZ_2048;
1814 		rctl &= ~E1000_RCTL_BSEX;
1815 		break;
1816 	case E1000_RXBUFFER_4096:
1817 		rctl |= E1000_RCTL_SZ_4096;
1818 		break;
1819 	case E1000_RXBUFFER_8192:
1820 		rctl |= E1000_RCTL_SZ_8192;
1821 		break;
1822 	case E1000_RXBUFFER_16384:
1823 		rctl |= E1000_RCTL_SZ_16384;
1824 		break;
1825 	}
1826 
1827 	/* This is useful for sniffing bad packets. */
1828 	if (adapter->netdev->features & NETIF_F_RXALL) {
1829 		/* UPE and MPE will be handled by normal PROMISC logic
1830 		 * in e1000e_set_rx_mode
1831 		 */
1832 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1833 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1834 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1835 
1836 		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1837 			  E1000_RCTL_DPF | /* Allow filtered pause */
1838 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1839 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1840 		 * and that breaks VLANs.
1841 		 */
1842 	}
1843 
1844 	ew32(RCTL, rctl);
1845 }
1846 
1847 /**
1848  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1849  * @adapter: board private structure
1850  *
1851  * Configure the Rx unit of the MAC after a reset.
1852  **/
1853 static void e1000_configure_rx(struct e1000_adapter *adapter)
1854 {
1855 	u64 rdba;
1856 	struct e1000_hw *hw = &adapter->hw;
1857 	u32 rdlen, rctl, rxcsum;
1858 
1859 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
1860 		rdlen = adapter->rx_ring[0].count *
1861 			sizeof(struct e1000_rx_desc);
1862 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1863 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1864 	} else {
1865 		rdlen = adapter->rx_ring[0].count *
1866 			sizeof(struct e1000_rx_desc);
1867 		adapter->clean_rx = e1000_clean_rx_irq;
1868 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1869 	}
1870 
1871 	/* disable receives while setting up the descriptors */
1872 	rctl = er32(RCTL);
1873 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1874 
1875 	/* set the Receive Delay Timer Register */
1876 	ew32(RDTR, adapter->rx_int_delay);
1877 
1878 	if (hw->mac_type >= e1000_82540) {
1879 		ew32(RADV, adapter->rx_abs_int_delay);
1880 		if (adapter->itr_setting != 0)
1881 			ew32(ITR, 1000000000 / (adapter->itr * 256));
1882 	}
1883 
1884 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1885 	 * the Base and Length of the Rx Descriptor Ring
1886 	 */
1887 	switch (adapter->num_rx_queues) {
1888 	case 1:
1889 	default:
1890 		rdba = adapter->rx_ring[0].dma;
1891 		ew32(RDLEN, rdlen);
1892 		ew32(RDBAH, (rdba >> 32));
1893 		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1894 		ew32(RDT, 0);
1895 		ew32(RDH, 0);
1896 		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1897 					   E1000_RDH : E1000_82542_RDH);
1898 		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1899 					   E1000_RDT : E1000_82542_RDT);
1900 		break;
1901 	}
1902 
1903 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
1904 	if (hw->mac_type >= e1000_82543) {
1905 		rxcsum = er32(RXCSUM);
1906 		if (adapter->rx_csum)
1907 			rxcsum |= E1000_RXCSUM_TUOFL;
1908 		else
1909 			/* don't need to clear IPPCSE as it defaults to 0 */
1910 			rxcsum &= ~E1000_RXCSUM_TUOFL;
1911 		ew32(RXCSUM, rxcsum);
1912 	}
1913 
1914 	/* Enable Receives */
1915 	ew32(RCTL, rctl | E1000_RCTL_EN);
1916 }
1917 
1918 /**
1919  * e1000_free_tx_resources - Free Tx Resources per Queue
1920  * @adapter: board private structure
1921  * @tx_ring: Tx descriptor ring for a specific queue
1922  *
1923  * Free all transmit software resources
1924  **/
1925 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1926 				    struct e1000_tx_ring *tx_ring)
1927 {
1928 	struct pci_dev *pdev = adapter->pdev;
1929 
1930 	e1000_clean_tx_ring(adapter, tx_ring);
1931 
1932 	vfree(tx_ring->buffer_info);
1933 	tx_ring->buffer_info = NULL;
1934 
1935 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1936 			  tx_ring->dma);
1937 
1938 	tx_ring->desc = NULL;
1939 }
1940 
1941 /**
1942  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1943  * @adapter: board private structure
1944  *
1945  * Free all transmit software resources
1946  **/
1947 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1948 {
1949 	int i;
1950 
1951 	for (i = 0; i < adapter->num_tx_queues; i++)
1952 		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1953 }
1954 
1955 static void
1956 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1957 				 struct e1000_tx_buffer *buffer_info,
1958 				 int budget)
1959 {
1960 	if (buffer_info->dma) {
1961 		if (buffer_info->mapped_as_page)
1962 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1963 				       buffer_info->length, DMA_TO_DEVICE);
1964 		else
1965 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1966 					 buffer_info->length,
1967 					 DMA_TO_DEVICE);
1968 		buffer_info->dma = 0;
1969 	}
1970 	if (buffer_info->skb) {
1971 		napi_consume_skb(buffer_info->skb, budget);
1972 		buffer_info->skb = NULL;
1973 	}
1974 	buffer_info->time_stamp = 0;
1975 	/* buffer_info must be completely set up in the transmit path */
1976 }
1977 
1978 /**
1979  * e1000_clean_tx_ring - Free Tx Buffers
1980  * @adapter: board private structure
1981  * @tx_ring: ring to be cleaned
1982  **/
1983 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1984 				struct e1000_tx_ring *tx_ring)
1985 {
1986 	struct e1000_hw *hw = &adapter->hw;
1987 	struct e1000_tx_buffer *buffer_info;
1988 	unsigned long size;
1989 	unsigned int i;
1990 
1991 	/* Free all the Tx ring sk_buffs */
1992 
1993 	for (i = 0; i < tx_ring->count; i++) {
1994 		buffer_info = &tx_ring->buffer_info[i];
1995 		e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0);
1996 	}
1997 
1998 	netdev_reset_queue(adapter->netdev);
1999 	size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
2000 	memset(tx_ring->buffer_info, 0, size);
2001 
2002 	/* Zero out the descriptor ring */
2003 
2004 	memset(tx_ring->desc, 0, tx_ring->size);
2005 
2006 	tx_ring->next_to_use = 0;
2007 	tx_ring->next_to_clean = 0;
2008 	tx_ring->last_tx_tso = false;
2009 
2010 	writel(0, hw->hw_addr + tx_ring->tdh);
2011 	writel(0, hw->hw_addr + tx_ring->tdt);
2012 }
2013 
2014 /**
2015  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2016  * @adapter: board private structure
2017  **/
2018 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2019 {
2020 	int i;
2021 
2022 	for (i = 0; i < adapter->num_tx_queues; i++)
2023 		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2024 }
2025 
2026 /**
2027  * e1000_free_rx_resources - Free Rx Resources
2028  * @adapter: board private structure
2029  * @rx_ring: ring to clean the resources from
2030  *
2031  * Free all receive software resources
2032  **/
2033 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2034 				    struct e1000_rx_ring *rx_ring)
2035 {
2036 	struct pci_dev *pdev = adapter->pdev;
2037 
2038 	e1000_clean_rx_ring(adapter, rx_ring);
2039 
2040 	vfree(rx_ring->buffer_info);
2041 	rx_ring->buffer_info = NULL;
2042 
2043 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2044 			  rx_ring->dma);
2045 
2046 	rx_ring->desc = NULL;
2047 }
2048 
2049 /**
2050  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2051  * @adapter: board private structure
2052  *
2053  * Free all receive software resources
2054  **/
2055 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2056 {
2057 	int i;
2058 
2059 	for (i = 0; i < adapter->num_rx_queues; i++)
2060 		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2061 }
2062 
2063 #define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2064 static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2065 {
2066 	return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2067 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2068 }
2069 
2070 static void *e1000_alloc_frag(const struct e1000_adapter *a)
2071 {
2072 	unsigned int len = e1000_frag_len(a);
2073 	u8 *data = netdev_alloc_frag(len);
2074 
2075 	if (likely(data))
2076 		data += E1000_HEADROOM;
2077 	return data;
2078 }
2079 
2080 /**
2081  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2082  * @adapter: board private structure
2083  * @rx_ring: ring to free buffers from
2084  **/
2085 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2086 				struct e1000_rx_ring *rx_ring)
2087 {
2088 	struct e1000_hw *hw = &adapter->hw;
2089 	struct e1000_rx_buffer *buffer_info;
2090 	struct pci_dev *pdev = adapter->pdev;
2091 	unsigned long size;
2092 	unsigned int i;
2093 
2094 	/* Free all the Rx netfrags */
2095 	for (i = 0; i < rx_ring->count; i++) {
2096 		buffer_info = &rx_ring->buffer_info[i];
2097 		if (adapter->clean_rx == e1000_clean_rx_irq) {
2098 			if (buffer_info->dma)
2099 				dma_unmap_single(&pdev->dev, buffer_info->dma,
2100 						 adapter->rx_buffer_len,
2101 						 DMA_FROM_DEVICE);
2102 			if (buffer_info->rxbuf.data) {
2103 				skb_free_frag(buffer_info->rxbuf.data);
2104 				buffer_info->rxbuf.data = NULL;
2105 			}
2106 		} else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2107 			if (buffer_info->dma)
2108 				dma_unmap_page(&pdev->dev, buffer_info->dma,
2109 					       adapter->rx_buffer_len,
2110 					       DMA_FROM_DEVICE);
2111 			if (buffer_info->rxbuf.page) {
2112 				put_page(buffer_info->rxbuf.page);
2113 				buffer_info->rxbuf.page = NULL;
2114 			}
2115 		}
2116 
2117 		buffer_info->dma = 0;
2118 	}
2119 
2120 	/* there also may be some cached data from a chained receive */
2121 	napi_free_frags(&adapter->napi);
2122 	rx_ring->rx_skb_top = NULL;
2123 
2124 	size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2125 	memset(rx_ring->buffer_info, 0, size);
2126 
2127 	/* Zero out the descriptor ring */
2128 	memset(rx_ring->desc, 0, rx_ring->size);
2129 
2130 	rx_ring->next_to_clean = 0;
2131 	rx_ring->next_to_use = 0;
2132 
2133 	writel(0, hw->hw_addr + rx_ring->rdh);
2134 	writel(0, hw->hw_addr + rx_ring->rdt);
2135 }
2136 
2137 /**
2138  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2139  * @adapter: board private structure
2140  **/
2141 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2142 {
2143 	int i;
2144 
2145 	for (i = 0; i < adapter->num_rx_queues; i++)
2146 		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2147 }
2148 
2149 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2150  * and memory write and invalidate disabled for certain operations
2151  */
2152 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2153 {
2154 	struct e1000_hw *hw = &adapter->hw;
2155 	struct net_device *netdev = adapter->netdev;
2156 	u32 rctl;
2157 
2158 	e1000_pci_clear_mwi(hw);
2159 
2160 	rctl = er32(RCTL);
2161 	rctl |= E1000_RCTL_RST;
2162 	ew32(RCTL, rctl);
2163 	E1000_WRITE_FLUSH();
2164 	mdelay(5);
2165 
2166 	if (netif_running(netdev))
2167 		e1000_clean_all_rx_rings(adapter);
2168 }
2169 
2170 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2171 {
2172 	struct e1000_hw *hw = &adapter->hw;
2173 	struct net_device *netdev = adapter->netdev;
2174 	u32 rctl;
2175 
2176 	rctl = er32(RCTL);
2177 	rctl &= ~E1000_RCTL_RST;
2178 	ew32(RCTL, rctl);
2179 	E1000_WRITE_FLUSH();
2180 	mdelay(5);
2181 
2182 	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2183 		e1000_pci_set_mwi(hw);
2184 
2185 	if (netif_running(netdev)) {
2186 		/* No need to loop, because 82542 supports only 1 queue */
2187 		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2188 		e1000_configure_rx(adapter);
2189 		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2190 	}
2191 }
2192 
2193 /**
2194  * e1000_set_mac - Change the Ethernet Address of the NIC
2195  * @netdev: network interface device structure
2196  * @p: pointer to an address structure
2197  *
2198  * Returns 0 on success, negative on failure
2199  **/
2200 static int e1000_set_mac(struct net_device *netdev, void *p)
2201 {
2202 	struct e1000_adapter *adapter = netdev_priv(netdev);
2203 	struct e1000_hw *hw = &adapter->hw;
2204 	struct sockaddr *addr = p;
2205 
2206 	if (!is_valid_ether_addr(addr->sa_data))
2207 		return -EADDRNOTAVAIL;
2208 
2209 	/* 82542 2.0 needs to be in reset to write receive address registers */
2210 
2211 	if (hw->mac_type == e1000_82542_rev2_0)
2212 		e1000_enter_82542_rst(adapter);
2213 
2214 	eth_hw_addr_set(netdev, addr->sa_data);
2215 	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2216 
2217 	e1000_rar_set(hw, hw->mac_addr, 0);
2218 
2219 	if (hw->mac_type == e1000_82542_rev2_0)
2220 		e1000_leave_82542_rst(adapter);
2221 
2222 	return 0;
2223 }
2224 
2225 /**
2226  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2227  * @netdev: network interface device structure
2228  *
2229  * The set_rx_mode entry point is called whenever the unicast or multicast
2230  * address lists or the network interface flags are updated. This routine is
2231  * responsible for configuring the hardware for proper unicast, multicast,
2232  * promiscuous mode, and all-multi behavior.
2233  **/
2234 static void e1000_set_rx_mode(struct net_device *netdev)
2235 {
2236 	struct e1000_adapter *adapter = netdev_priv(netdev);
2237 	struct e1000_hw *hw = &adapter->hw;
2238 	struct netdev_hw_addr *ha;
2239 	bool use_uc = false;
2240 	u32 rctl;
2241 	u32 hash_value;
2242 	int i, rar_entries = E1000_RAR_ENTRIES;
2243 	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2244 	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2245 
2246 	if (!mcarray)
2247 		return;
2248 
2249 	/* Check for Promiscuous and All Multicast modes */
2250 
2251 	rctl = er32(RCTL);
2252 
2253 	if (netdev->flags & IFF_PROMISC) {
2254 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2255 		rctl &= ~E1000_RCTL_VFE;
2256 	} else {
2257 		if (netdev->flags & IFF_ALLMULTI)
2258 			rctl |= E1000_RCTL_MPE;
2259 		else
2260 			rctl &= ~E1000_RCTL_MPE;
2261 		/* Enable VLAN filter if there is a VLAN */
2262 		if (e1000_vlan_used(adapter))
2263 			rctl |= E1000_RCTL_VFE;
2264 	}
2265 
2266 	if (netdev_uc_count(netdev) > rar_entries - 1) {
2267 		rctl |= E1000_RCTL_UPE;
2268 	} else if (!(netdev->flags & IFF_PROMISC)) {
2269 		rctl &= ~E1000_RCTL_UPE;
2270 		use_uc = true;
2271 	}
2272 
2273 	ew32(RCTL, rctl);
2274 
2275 	/* 82542 2.0 needs to be in reset to write receive address registers */
2276 
2277 	if (hw->mac_type == e1000_82542_rev2_0)
2278 		e1000_enter_82542_rst(adapter);
2279 
2280 	/* load the first 14 addresses into the exact filters 1-14. Unicast
2281 	 * addresses take precedence to avoid disabling unicast filtering
2282 	 * when possible.
2283 	 *
2284 	 * RAR 0 is used for the station MAC address
2285 	 * if there are not 14 addresses, go ahead and clear the filters
2286 	 */
2287 	i = 1;
2288 	if (use_uc)
2289 		netdev_for_each_uc_addr(ha, netdev) {
2290 			if (i == rar_entries)
2291 				break;
2292 			e1000_rar_set(hw, ha->addr, i++);
2293 		}
2294 
2295 	netdev_for_each_mc_addr(ha, netdev) {
2296 		if (i == rar_entries) {
2297 			/* load any remaining addresses into the hash table */
2298 			u32 hash_reg, hash_bit, mta;
2299 			hash_value = e1000_hash_mc_addr(hw, ha->addr);
2300 			hash_reg = (hash_value >> 5) & 0x7F;
2301 			hash_bit = hash_value & 0x1F;
2302 			mta = (1 << hash_bit);
2303 			mcarray[hash_reg] |= mta;
2304 		} else {
2305 			e1000_rar_set(hw, ha->addr, i++);
2306 		}
2307 	}
2308 
2309 	for (; i < rar_entries; i++) {
2310 		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2311 		E1000_WRITE_FLUSH();
2312 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2313 		E1000_WRITE_FLUSH();
2314 	}
2315 
2316 	/* write the hash table completely, write from bottom to avoid
2317 	 * both stupid write combining chipsets, and flushing each write
2318 	 */
2319 	for (i = mta_reg_count - 1; i >= 0 ; i--) {
2320 		/* If we are on an 82544 has an errata where writing odd
2321 		 * offsets overwrites the previous even offset, but writing
2322 		 * backwards over the range solves the issue by always
2323 		 * writing the odd offset first
2324 		 */
2325 		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2326 	}
2327 	E1000_WRITE_FLUSH();
2328 
2329 	if (hw->mac_type == e1000_82542_rev2_0)
2330 		e1000_leave_82542_rst(adapter);
2331 
2332 	kfree(mcarray);
2333 }
2334 
2335 /**
2336  * e1000_update_phy_info_task - get phy info
2337  * @work: work struct contained inside adapter struct
2338  *
2339  * Need to wait a few seconds after link up to get diagnostic information from
2340  * the phy
2341  */
2342 static void e1000_update_phy_info_task(struct work_struct *work)
2343 {
2344 	struct e1000_adapter *adapter = container_of(work,
2345 						     struct e1000_adapter,
2346 						     phy_info_task.work);
2347 
2348 	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2349 }
2350 
2351 /**
2352  * e1000_82547_tx_fifo_stall_task - task to complete work
2353  * @work: work struct contained inside adapter struct
2354  **/
2355 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2356 {
2357 	struct e1000_adapter *adapter = container_of(work,
2358 						     struct e1000_adapter,
2359 						     fifo_stall_task.work);
2360 	struct e1000_hw *hw = &adapter->hw;
2361 	struct net_device *netdev = adapter->netdev;
2362 	u32 tctl;
2363 
2364 	if (atomic_read(&adapter->tx_fifo_stall)) {
2365 		if ((er32(TDT) == er32(TDH)) &&
2366 		   (er32(TDFT) == er32(TDFH)) &&
2367 		   (er32(TDFTS) == er32(TDFHS))) {
2368 			tctl = er32(TCTL);
2369 			ew32(TCTL, tctl & ~E1000_TCTL_EN);
2370 			ew32(TDFT, adapter->tx_head_addr);
2371 			ew32(TDFH, adapter->tx_head_addr);
2372 			ew32(TDFTS, adapter->tx_head_addr);
2373 			ew32(TDFHS, adapter->tx_head_addr);
2374 			ew32(TCTL, tctl);
2375 			E1000_WRITE_FLUSH();
2376 
2377 			adapter->tx_fifo_head = 0;
2378 			atomic_set(&adapter->tx_fifo_stall, 0);
2379 			netif_wake_queue(netdev);
2380 		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2381 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
2382 		}
2383 	}
2384 }
2385 
2386 bool e1000_has_link(struct e1000_adapter *adapter)
2387 {
2388 	struct e1000_hw *hw = &adapter->hw;
2389 	bool link_active = false;
2390 
2391 	/* get_link_status is set on LSC (link status) interrupt or rx
2392 	 * sequence error interrupt (except on intel ce4100).
2393 	 * get_link_status will stay false until the
2394 	 * e1000_check_for_link establishes link for copper adapters
2395 	 * ONLY
2396 	 */
2397 	switch (hw->media_type) {
2398 	case e1000_media_type_copper:
2399 		if (hw->mac_type == e1000_ce4100)
2400 			hw->get_link_status = 1;
2401 		if (hw->get_link_status) {
2402 			e1000_check_for_link(hw);
2403 			link_active = !hw->get_link_status;
2404 		} else {
2405 			link_active = true;
2406 		}
2407 		break;
2408 	case e1000_media_type_fiber:
2409 		e1000_check_for_link(hw);
2410 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2411 		break;
2412 	case e1000_media_type_internal_serdes:
2413 		e1000_check_for_link(hw);
2414 		link_active = hw->serdes_has_link;
2415 		break;
2416 	default:
2417 		break;
2418 	}
2419 
2420 	return link_active;
2421 }
2422 
2423 /**
2424  * e1000_watchdog - work function
2425  * @work: work struct contained inside adapter struct
2426  **/
2427 static void e1000_watchdog(struct work_struct *work)
2428 {
2429 	struct e1000_adapter *adapter = container_of(work,
2430 						     struct e1000_adapter,
2431 						     watchdog_task.work);
2432 	struct e1000_hw *hw = &adapter->hw;
2433 	struct net_device *netdev = adapter->netdev;
2434 	struct e1000_tx_ring *txdr = adapter->tx_ring;
2435 	u32 link, tctl;
2436 
2437 	link = e1000_has_link(adapter);
2438 	if ((netif_carrier_ok(netdev)) && link)
2439 		goto link_up;
2440 
2441 	if (link) {
2442 		if (!netif_carrier_ok(netdev)) {
2443 			u32 ctrl;
2444 			/* update snapshot of PHY registers on LSC */
2445 			e1000_get_speed_and_duplex(hw,
2446 						   &adapter->link_speed,
2447 						   &adapter->link_duplex);
2448 
2449 			ctrl = er32(CTRL);
2450 			pr_info("%s NIC Link is Up %d Mbps %s, "
2451 				"Flow Control: %s\n",
2452 				netdev->name,
2453 				adapter->link_speed,
2454 				adapter->link_duplex == FULL_DUPLEX ?
2455 				"Full Duplex" : "Half Duplex",
2456 				((ctrl & E1000_CTRL_TFCE) && (ctrl &
2457 				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2458 				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2459 				E1000_CTRL_TFCE) ? "TX" : "None")));
2460 
2461 			/* adjust timeout factor according to speed/duplex */
2462 			adapter->tx_timeout_factor = 1;
2463 			switch (adapter->link_speed) {
2464 			case SPEED_10:
2465 				adapter->tx_timeout_factor = 16;
2466 				break;
2467 			case SPEED_100:
2468 				/* maybe add some timeout factor ? */
2469 				break;
2470 			}
2471 
2472 			/* enable transmits in the hardware */
2473 			tctl = er32(TCTL);
2474 			tctl |= E1000_TCTL_EN;
2475 			ew32(TCTL, tctl);
2476 
2477 			netif_carrier_on(netdev);
2478 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2479 				schedule_delayed_work(&adapter->phy_info_task,
2480 						      2 * HZ);
2481 			adapter->smartspeed = 0;
2482 		}
2483 	} else {
2484 		if (netif_carrier_ok(netdev)) {
2485 			adapter->link_speed = 0;
2486 			adapter->link_duplex = 0;
2487 			pr_info("%s NIC Link is Down\n",
2488 				netdev->name);
2489 			netif_carrier_off(netdev);
2490 
2491 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2492 				schedule_delayed_work(&adapter->phy_info_task,
2493 						      2 * HZ);
2494 		}
2495 
2496 		e1000_smartspeed(adapter);
2497 	}
2498 
2499 link_up:
2500 	e1000_update_stats(adapter);
2501 
2502 	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2503 	adapter->tpt_old = adapter->stats.tpt;
2504 	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2505 	adapter->colc_old = adapter->stats.colc;
2506 
2507 	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2508 	adapter->gorcl_old = adapter->stats.gorcl;
2509 	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2510 	adapter->gotcl_old = adapter->stats.gotcl;
2511 
2512 	e1000_update_adaptive(hw);
2513 
2514 	if (!netif_carrier_ok(netdev)) {
2515 		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2516 			/* We've lost link, so the controller stops DMA,
2517 			 * but we've got queued Tx work that's never going
2518 			 * to get done, so reset controller to flush Tx.
2519 			 * (Do the reset outside of interrupt context).
2520 			 */
2521 			adapter->tx_timeout_count++;
2522 			schedule_work(&adapter->reset_task);
2523 			/* exit immediately since reset is imminent */
2524 			return;
2525 		}
2526 	}
2527 
2528 	/* Simple mode for Interrupt Throttle Rate (ITR) */
2529 	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2530 		/* Symmetric Tx/Rx gets a reduced ITR=2000;
2531 		 * Total asymmetrical Tx or Rx gets ITR=8000;
2532 		 * everyone else is between 2000-8000.
2533 		 */
2534 		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2535 		u32 dif = (adapter->gotcl > adapter->gorcl ?
2536 			    adapter->gotcl - adapter->gorcl :
2537 			    adapter->gorcl - adapter->gotcl) / 10000;
2538 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2539 
2540 		ew32(ITR, 1000000000 / (itr * 256));
2541 	}
2542 
2543 	/* Cause software interrupt to ensure rx ring is cleaned */
2544 	ew32(ICS, E1000_ICS_RXDMT0);
2545 
2546 	/* Force detection of hung controller every watchdog period */
2547 	adapter->detect_tx_hung = true;
2548 
2549 	/* Reschedule the task */
2550 	if (!test_bit(__E1000_DOWN, &adapter->flags))
2551 		schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2552 }
2553 
2554 enum latency_range {
2555 	lowest_latency = 0,
2556 	low_latency = 1,
2557 	bulk_latency = 2,
2558 	latency_invalid = 255
2559 };
2560 
2561 /**
2562  * e1000_update_itr - update the dynamic ITR value based on statistics
2563  * @adapter: pointer to adapter
2564  * @itr_setting: current adapter->itr
2565  * @packets: the number of packets during this measurement interval
2566  * @bytes: the number of bytes during this measurement interval
2567  *
2568  *      Stores a new ITR value based on packets and byte
2569  *      counts during the last interrupt.  The advantage of per interrupt
2570  *      computation is faster updates and more accurate ITR for the current
2571  *      traffic pattern.  Constants in this function were computed
2572  *      based on theoretical maximum wire speed and thresholds were set based
2573  *      on testing data as well as attempting to minimize response time
2574  *      while increasing bulk throughput.
2575  *      this functionality is controlled by the InterruptThrottleRate module
2576  *      parameter (see e1000_param.c)
2577  **/
2578 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2579 				     u16 itr_setting, int packets, int bytes)
2580 {
2581 	unsigned int retval = itr_setting;
2582 	struct e1000_hw *hw = &adapter->hw;
2583 
2584 	if (unlikely(hw->mac_type < e1000_82540))
2585 		goto update_itr_done;
2586 
2587 	if (packets == 0)
2588 		goto update_itr_done;
2589 
2590 	switch (itr_setting) {
2591 	case lowest_latency:
2592 		/* jumbo frames get bulk treatment*/
2593 		if (bytes/packets > 8000)
2594 			retval = bulk_latency;
2595 		else if ((packets < 5) && (bytes > 512))
2596 			retval = low_latency;
2597 		break;
2598 	case low_latency:  /* 50 usec aka 20000 ints/s */
2599 		if (bytes > 10000) {
2600 			/* jumbo frames need bulk latency setting */
2601 			if (bytes/packets > 8000)
2602 				retval = bulk_latency;
2603 			else if ((packets < 10) || ((bytes/packets) > 1200))
2604 				retval = bulk_latency;
2605 			else if ((packets > 35))
2606 				retval = lowest_latency;
2607 		} else if (bytes/packets > 2000)
2608 			retval = bulk_latency;
2609 		else if (packets <= 2 && bytes < 512)
2610 			retval = lowest_latency;
2611 		break;
2612 	case bulk_latency: /* 250 usec aka 4000 ints/s */
2613 		if (bytes > 25000) {
2614 			if (packets > 35)
2615 				retval = low_latency;
2616 		} else if (bytes < 6000) {
2617 			retval = low_latency;
2618 		}
2619 		break;
2620 	}
2621 
2622 update_itr_done:
2623 	return retval;
2624 }
2625 
2626 static void e1000_set_itr(struct e1000_adapter *adapter)
2627 {
2628 	struct e1000_hw *hw = &adapter->hw;
2629 	u16 current_itr;
2630 	u32 new_itr = adapter->itr;
2631 
2632 	if (unlikely(hw->mac_type < e1000_82540))
2633 		return;
2634 
2635 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2636 	if (unlikely(adapter->link_speed != SPEED_1000)) {
2637 		new_itr = 4000;
2638 		goto set_itr_now;
2639 	}
2640 
2641 	adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2642 					   adapter->total_tx_packets,
2643 					   adapter->total_tx_bytes);
2644 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2645 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2646 		adapter->tx_itr = low_latency;
2647 
2648 	adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2649 					   adapter->total_rx_packets,
2650 					   adapter->total_rx_bytes);
2651 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2652 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2653 		adapter->rx_itr = low_latency;
2654 
2655 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2656 
2657 	switch (current_itr) {
2658 	/* counts and packets in update_itr are dependent on these numbers */
2659 	case lowest_latency:
2660 		new_itr = 70000;
2661 		break;
2662 	case low_latency:
2663 		new_itr = 20000; /* aka hwitr = ~200 */
2664 		break;
2665 	case bulk_latency:
2666 		new_itr = 4000;
2667 		break;
2668 	default:
2669 		break;
2670 	}
2671 
2672 set_itr_now:
2673 	if (new_itr != adapter->itr) {
2674 		/* this attempts to bias the interrupt rate towards Bulk
2675 		 * by adding intermediate steps when interrupt rate is
2676 		 * increasing
2677 		 */
2678 		new_itr = new_itr > adapter->itr ?
2679 			  min(adapter->itr + (new_itr >> 2), new_itr) :
2680 			  new_itr;
2681 		adapter->itr = new_itr;
2682 		ew32(ITR, 1000000000 / (new_itr * 256));
2683 	}
2684 }
2685 
2686 #define E1000_TX_FLAGS_CSUM		0x00000001
2687 #define E1000_TX_FLAGS_VLAN		0x00000002
2688 #define E1000_TX_FLAGS_TSO		0x00000004
2689 #define E1000_TX_FLAGS_IPV4		0x00000008
2690 #define E1000_TX_FLAGS_NO_FCS		0x00000010
2691 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
2692 #define E1000_TX_FLAGS_VLAN_SHIFT	16
2693 
2694 static int e1000_tso(struct e1000_adapter *adapter,
2695 		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2696 		     __be16 protocol)
2697 {
2698 	struct e1000_context_desc *context_desc;
2699 	struct e1000_tx_buffer *buffer_info;
2700 	unsigned int i;
2701 	u32 cmd_length = 0;
2702 	u16 ipcse = 0, tucse, mss;
2703 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
2704 
2705 	if (skb_is_gso(skb)) {
2706 		int err;
2707 
2708 		err = skb_cow_head(skb, 0);
2709 		if (err < 0)
2710 			return err;
2711 
2712 		hdr_len = skb_tcp_all_headers(skb);
2713 		mss = skb_shinfo(skb)->gso_size;
2714 		if (protocol == htons(ETH_P_IP)) {
2715 			struct iphdr *iph = ip_hdr(skb);
2716 			iph->tot_len = 0;
2717 			iph->check = 0;
2718 			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2719 								 iph->daddr, 0,
2720 								 IPPROTO_TCP,
2721 								 0);
2722 			cmd_length = E1000_TXD_CMD_IP;
2723 			ipcse = skb_transport_offset(skb) - 1;
2724 		} else if (skb_is_gso_v6(skb)) {
2725 			tcp_v6_gso_csum_prep(skb);
2726 			ipcse = 0;
2727 		}
2728 		ipcss = skb_network_offset(skb);
2729 		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2730 		tucss = skb_transport_offset(skb);
2731 		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2732 		tucse = 0;
2733 
2734 		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2735 			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2736 
2737 		i = tx_ring->next_to_use;
2738 		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2739 		buffer_info = &tx_ring->buffer_info[i];
2740 
2741 		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2742 		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2743 		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2744 		context_desc->upper_setup.tcp_fields.tucss = tucss;
2745 		context_desc->upper_setup.tcp_fields.tucso = tucso;
2746 		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2747 		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2748 		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2749 		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2750 
2751 		buffer_info->time_stamp = jiffies;
2752 		buffer_info->next_to_watch = i;
2753 
2754 		if (++i == tx_ring->count)
2755 			i = 0;
2756 
2757 		tx_ring->next_to_use = i;
2758 
2759 		return true;
2760 	}
2761 	return false;
2762 }
2763 
2764 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2765 			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2766 			  __be16 protocol)
2767 {
2768 	struct e1000_context_desc *context_desc;
2769 	struct e1000_tx_buffer *buffer_info;
2770 	unsigned int i;
2771 	u8 css;
2772 	u32 cmd_len = E1000_TXD_CMD_DEXT;
2773 
2774 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2775 		return false;
2776 
2777 	switch (protocol) {
2778 	case cpu_to_be16(ETH_P_IP):
2779 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2780 			cmd_len |= E1000_TXD_CMD_TCP;
2781 		break;
2782 	case cpu_to_be16(ETH_P_IPV6):
2783 		/* XXX not handling all IPV6 headers */
2784 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2785 			cmd_len |= E1000_TXD_CMD_TCP;
2786 		break;
2787 	default:
2788 		if (unlikely(net_ratelimit()))
2789 			e_warn(drv, "checksum_partial proto=%x!\n",
2790 			       skb->protocol);
2791 		break;
2792 	}
2793 
2794 	css = skb_checksum_start_offset(skb);
2795 
2796 	i = tx_ring->next_to_use;
2797 	buffer_info = &tx_ring->buffer_info[i];
2798 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2799 
2800 	context_desc->lower_setup.ip_config = 0;
2801 	context_desc->upper_setup.tcp_fields.tucss = css;
2802 	context_desc->upper_setup.tcp_fields.tucso =
2803 		css + skb->csum_offset;
2804 	context_desc->upper_setup.tcp_fields.tucse = 0;
2805 	context_desc->tcp_seg_setup.data = 0;
2806 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2807 
2808 	buffer_info->time_stamp = jiffies;
2809 	buffer_info->next_to_watch = i;
2810 
2811 	if (unlikely(++i == tx_ring->count))
2812 		i = 0;
2813 
2814 	tx_ring->next_to_use = i;
2815 
2816 	return true;
2817 }
2818 
2819 #define E1000_MAX_TXD_PWR	12
2820 #define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
2821 
2822 static int e1000_tx_map(struct e1000_adapter *adapter,
2823 			struct e1000_tx_ring *tx_ring,
2824 			struct sk_buff *skb, unsigned int first,
2825 			unsigned int max_per_txd, unsigned int nr_frags,
2826 			unsigned int mss)
2827 {
2828 	struct e1000_hw *hw = &adapter->hw;
2829 	struct pci_dev *pdev = adapter->pdev;
2830 	struct e1000_tx_buffer *buffer_info;
2831 	unsigned int len = skb_headlen(skb);
2832 	unsigned int offset = 0, size, count = 0, i;
2833 	unsigned int f, bytecount, segs;
2834 
2835 	i = tx_ring->next_to_use;
2836 
2837 	while (len) {
2838 		buffer_info = &tx_ring->buffer_info[i];
2839 		size = min(len, max_per_txd);
2840 		/* Workaround for Controller erratum --
2841 		 * descriptor for non-tso packet in a linear SKB that follows a
2842 		 * tso gets written back prematurely before the data is fully
2843 		 * DMA'd to the controller
2844 		 */
2845 		if (!skb->data_len && tx_ring->last_tx_tso &&
2846 		    !skb_is_gso(skb)) {
2847 			tx_ring->last_tx_tso = false;
2848 			size -= 4;
2849 		}
2850 
2851 		/* Workaround for premature desc write-backs
2852 		 * in TSO mode.  Append 4-byte sentinel desc
2853 		 */
2854 		if (unlikely(mss && !nr_frags && size == len && size > 8))
2855 			size -= 4;
2856 		/* work-around for errata 10 and it applies
2857 		 * to all controllers in PCI-X mode
2858 		 * The fix is to make sure that the first descriptor of a
2859 		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2860 		 */
2861 		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2862 			     (size > 2015) && count == 0))
2863 			size = 2015;
2864 
2865 		/* Workaround for potential 82544 hang in PCI-X.  Avoid
2866 		 * terminating buffers within evenly-aligned dwords.
2867 		 */
2868 		if (unlikely(adapter->pcix_82544 &&
2869 		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2870 		   size > 4))
2871 			size -= 4;
2872 
2873 		buffer_info->length = size;
2874 		/* set time_stamp *before* dma to help avoid a possible race */
2875 		buffer_info->time_stamp = jiffies;
2876 		buffer_info->mapped_as_page = false;
2877 		buffer_info->dma = dma_map_single(&pdev->dev,
2878 						  skb->data + offset,
2879 						  size, DMA_TO_DEVICE);
2880 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2881 			goto dma_error;
2882 		buffer_info->next_to_watch = i;
2883 
2884 		len -= size;
2885 		offset += size;
2886 		count++;
2887 		if (len) {
2888 			i++;
2889 			if (unlikely(i == tx_ring->count))
2890 				i = 0;
2891 		}
2892 	}
2893 
2894 	for (f = 0; f < nr_frags; f++) {
2895 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2896 
2897 		len = skb_frag_size(frag);
2898 		offset = 0;
2899 
2900 		while (len) {
2901 			unsigned long bufend;
2902 			i++;
2903 			if (unlikely(i == tx_ring->count))
2904 				i = 0;
2905 
2906 			buffer_info = &tx_ring->buffer_info[i];
2907 			size = min(len, max_per_txd);
2908 			/* Workaround for premature desc write-backs
2909 			 * in TSO mode.  Append 4-byte sentinel desc
2910 			 */
2911 			if (unlikely(mss && f == (nr_frags-1) &&
2912 			    size == len && size > 8))
2913 				size -= 4;
2914 			/* Workaround for potential 82544 hang in PCI-X.
2915 			 * Avoid terminating buffers within evenly-aligned
2916 			 * dwords.
2917 			 */
2918 			bufend = (unsigned long)
2919 				page_to_phys(skb_frag_page(frag));
2920 			bufend += offset + size - 1;
2921 			if (unlikely(adapter->pcix_82544 &&
2922 				     !(bufend & 4) &&
2923 				     size > 4))
2924 				size -= 4;
2925 
2926 			buffer_info->length = size;
2927 			buffer_info->time_stamp = jiffies;
2928 			buffer_info->mapped_as_page = true;
2929 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2930 						offset, size, DMA_TO_DEVICE);
2931 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2932 				goto dma_error;
2933 			buffer_info->next_to_watch = i;
2934 
2935 			len -= size;
2936 			offset += size;
2937 			count++;
2938 		}
2939 	}
2940 
2941 	segs = skb_shinfo(skb)->gso_segs ?: 1;
2942 	/* multiply data chunks by size of headers */
2943 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2944 
2945 	tx_ring->buffer_info[i].skb = skb;
2946 	tx_ring->buffer_info[i].segs = segs;
2947 	tx_ring->buffer_info[i].bytecount = bytecount;
2948 	tx_ring->buffer_info[first].next_to_watch = i;
2949 
2950 	return count;
2951 
2952 dma_error:
2953 	dev_err(&pdev->dev, "TX DMA map failed\n");
2954 	buffer_info->dma = 0;
2955 	if (count)
2956 		count--;
2957 
2958 	while (count--) {
2959 		if (i == 0)
2960 			i += tx_ring->count;
2961 		i--;
2962 		buffer_info = &tx_ring->buffer_info[i];
2963 		e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0);
2964 	}
2965 
2966 	return 0;
2967 }
2968 
2969 static void e1000_tx_queue(struct e1000_adapter *adapter,
2970 			   struct e1000_tx_ring *tx_ring, int tx_flags,
2971 			   int count)
2972 {
2973 	struct e1000_tx_desc *tx_desc = NULL;
2974 	struct e1000_tx_buffer *buffer_info;
2975 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2976 	unsigned int i;
2977 
2978 	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2979 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2980 			     E1000_TXD_CMD_TSE;
2981 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2982 
2983 		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2984 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2985 	}
2986 
2987 	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2988 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2989 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2990 	}
2991 
2992 	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2993 		txd_lower |= E1000_TXD_CMD_VLE;
2994 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2995 	}
2996 
2997 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2998 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
2999 
3000 	i = tx_ring->next_to_use;
3001 
3002 	while (count--) {
3003 		buffer_info = &tx_ring->buffer_info[i];
3004 		tx_desc = E1000_TX_DESC(*tx_ring, i);
3005 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3006 		tx_desc->lower.data =
3007 			cpu_to_le32(txd_lower | buffer_info->length);
3008 		tx_desc->upper.data = cpu_to_le32(txd_upper);
3009 		if (unlikely(++i == tx_ring->count))
3010 			i = 0;
3011 	}
3012 
3013 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3014 
3015 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3016 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3017 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3018 
3019 	/* Force memory writes to complete before letting h/w
3020 	 * know there are new descriptors to fetch.  (Only
3021 	 * applicable for weak-ordered memory model archs,
3022 	 * such as IA-64).
3023 	 */
3024 	dma_wmb();
3025 
3026 	tx_ring->next_to_use = i;
3027 }
3028 
3029 /* 82547 workaround to avoid controller hang in half-duplex environment.
3030  * The workaround is to avoid queuing a large packet that would span
3031  * the internal Tx FIFO ring boundary by notifying the stack to resend
3032  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3033  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3034  * to the beginning of the Tx FIFO.
3035  */
3036 
3037 #define E1000_FIFO_HDR			0x10
3038 #define E1000_82547_PAD_LEN		0x3E0
3039 
3040 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3041 				       struct sk_buff *skb)
3042 {
3043 	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3044 	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3045 
3046 	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3047 
3048 	if (adapter->link_duplex != HALF_DUPLEX)
3049 		goto no_fifo_stall_required;
3050 
3051 	if (atomic_read(&adapter->tx_fifo_stall))
3052 		return 1;
3053 
3054 	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3055 		atomic_set(&adapter->tx_fifo_stall, 1);
3056 		return 1;
3057 	}
3058 
3059 no_fifo_stall_required:
3060 	adapter->tx_fifo_head += skb_fifo_len;
3061 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3062 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
3063 	return 0;
3064 }
3065 
3066 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3067 {
3068 	struct e1000_adapter *adapter = netdev_priv(netdev);
3069 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3070 
3071 	netif_stop_queue(netdev);
3072 	/* Herbert's original patch had:
3073 	 *  smp_mb__after_netif_stop_queue();
3074 	 * but since that doesn't exist yet, just open code it.
3075 	 */
3076 	smp_mb();
3077 
3078 	/* We need to check again in a case another CPU has just
3079 	 * made room available.
3080 	 */
3081 	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3082 		return -EBUSY;
3083 
3084 	/* A reprieve! */
3085 	netif_start_queue(netdev);
3086 	++adapter->restart_queue;
3087 	return 0;
3088 }
3089 
3090 static int e1000_maybe_stop_tx(struct net_device *netdev,
3091 			       struct e1000_tx_ring *tx_ring, int size)
3092 {
3093 	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3094 		return 0;
3095 	return __e1000_maybe_stop_tx(netdev, size);
3096 }
3097 
3098 #define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3099 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3100 				    struct net_device *netdev)
3101 {
3102 	struct e1000_adapter *adapter = netdev_priv(netdev);
3103 	struct e1000_hw *hw = &adapter->hw;
3104 	struct e1000_tx_ring *tx_ring;
3105 	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3106 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3107 	unsigned int tx_flags = 0;
3108 	unsigned int len = skb_headlen(skb);
3109 	unsigned int nr_frags;
3110 	unsigned int mss;
3111 	int count = 0;
3112 	int tso;
3113 	unsigned int f;
3114 	__be16 protocol = vlan_get_protocol(skb);
3115 
3116 	/* This goes back to the question of how to logically map a Tx queue
3117 	 * to a flow.  Right now, performance is impacted slightly negatively
3118 	 * if using multiple Tx queues.  If the stack breaks away from a
3119 	 * single qdisc implementation, we can look at this again.
3120 	 */
3121 	tx_ring = adapter->tx_ring;
3122 
3123 	/* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3124 	 * packets may get corrupted during padding by HW.
3125 	 * To WA this issue, pad all small packets manually.
3126 	 */
3127 	if (eth_skb_pad(skb))
3128 		return NETDEV_TX_OK;
3129 
3130 	mss = skb_shinfo(skb)->gso_size;
3131 	/* The controller does a simple calculation to
3132 	 * make sure there is enough room in the FIFO before
3133 	 * initiating the DMA for each buffer.  The calc is:
3134 	 * 4 = ceil(buffer len/mss).  To make sure we don't
3135 	 * overrun the FIFO, adjust the max buffer len if mss
3136 	 * drops.
3137 	 */
3138 	if (mss) {
3139 		u8 hdr_len;
3140 		max_per_txd = min(mss << 2, max_per_txd);
3141 		max_txd_pwr = fls(max_per_txd) - 1;
3142 
3143 		hdr_len = skb_tcp_all_headers(skb);
3144 		if (skb->data_len && hdr_len == len) {
3145 			switch (hw->mac_type) {
3146 			case e1000_82544: {
3147 				unsigned int pull_size;
3148 
3149 				/* Make sure we have room to chop off 4 bytes,
3150 				 * and that the end alignment will work out to
3151 				 * this hardware's requirements
3152 				 * NOTE: this is a TSO only workaround
3153 				 * if end byte alignment not correct move us
3154 				 * into the next dword
3155 				 */
3156 				if ((unsigned long)(skb_tail_pointer(skb) - 1)
3157 				    & 4)
3158 					break;
3159 				pull_size = min((unsigned int)4, skb->data_len);
3160 				if (!__pskb_pull_tail(skb, pull_size)) {
3161 					e_err(drv, "__pskb_pull_tail "
3162 					      "failed.\n");
3163 					dev_kfree_skb_any(skb);
3164 					return NETDEV_TX_OK;
3165 				}
3166 				len = skb_headlen(skb);
3167 				break;
3168 			}
3169 			default:
3170 				/* do nothing */
3171 				break;
3172 			}
3173 		}
3174 	}
3175 
3176 	/* reserve a descriptor for the offload context */
3177 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3178 		count++;
3179 	count++;
3180 
3181 	/* Controller Erratum workaround */
3182 	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3183 		count++;
3184 
3185 	count += TXD_USE_COUNT(len, max_txd_pwr);
3186 
3187 	if (adapter->pcix_82544)
3188 		count++;
3189 
3190 	/* work-around for errata 10 and it applies to all controllers
3191 	 * in PCI-X mode, so add one more descriptor to the count
3192 	 */
3193 	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3194 			(len > 2015)))
3195 		count++;
3196 
3197 	nr_frags = skb_shinfo(skb)->nr_frags;
3198 	for (f = 0; f < nr_frags; f++)
3199 		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3200 				       max_txd_pwr);
3201 	if (adapter->pcix_82544)
3202 		count += nr_frags;
3203 
3204 	/* need: count + 2 desc gap to keep tail from touching
3205 	 * head, otherwise try next time
3206 	 */
3207 	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3208 		return NETDEV_TX_BUSY;
3209 
3210 	if (unlikely((hw->mac_type == e1000_82547) &&
3211 		     (e1000_82547_fifo_workaround(adapter, skb)))) {
3212 		netif_stop_queue(netdev);
3213 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3214 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
3215 		return NETDEV_TX_BUSY;
3216 	}
3217 
3218 	if (skb_vlan_tag_present(skb)) {
3219 		tx_flags |= E1000_TX_FLAGS_VLAN;
3220 		tx_flags |= (skb_vlan_tag_get(skb) <<
3221 			     E1000_TX_FLAGS_VLAN_SHIFT);
3222 	}
3223 
3224 	first = tx_ring->next_to_use;
3225 
3226 	tso = e1000_tso(adapter, tx_ring, skb, protocol);
3227 	if (tso < 0) {
3228 		dev_kfree_skb_any(skb);
3229 		return NETDEV_TX_OK;
3230 	}
3231 
3232 	if (likely(tso)) {
3233 		if (likely(hw->mac_type != e1000_82544))
3234 			tx_ring->last_tx_tso = true;
3235 		tx_flags |= E1000_TX_FLAGS_TSO;
3236 	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3237 		tx_flags |= E1000_TX_FLAGS_CSUM;
3238 
3239 	if (protocol == htons(ETH_P_IP))
3240 		tx_flags |= E1000_TX_FLAGS_IPV4;
3241 
3242 	if (unlikely(skb->no_fcs))
3243 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
3244 
3245 	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3246 			     nr_frags, mss);
3247 
3248 	if (count) {
3249 		/* The descriptors needed is higher than other Intel drivers
3250 		 * due to a number of workarounds.  The breakdown is below:
3251 		 * Data descriptors: MAX_SKB_FRAGS + 1
3252 		 * Context Descriptor: 1
3253 		 * Keep head from touching tail: 2
3254 		 * Workarounds: 3
3255 		 */
3256 		int desc_needed = MAX_SKB_FRAGS + 7;
3257 
3258 		netdev_sent_queue(netdev, skb->len);
3259 		skb_tx_timestamp(skb);
3260 
3261 		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3262 
3263 		/* 82544 potentially requires twice as many data descriptors
3264 		 * in order to guarantee buffers don't end on evenly-aligned
3265 		 * dwords
3266 		 */
3267 		if (adapter->pcix_82544)
3268 			desc_needed += MAX_SKB_FRAGS + 1;
3269 
3270 		/* Make sure there is space in the ring for the next send. */
3271 		e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3272 
3273 		if (!netdev_xmit_more() ||
3274 		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3275 			writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3276 		}
3277 	} else {
3278 		dev_kfree_skb_any(skb);
3279 		tx_ring->buffer_info[first].time_stamp = 0;
3280 		tx_ring->next_to_use = first;
3281 	}
3282 
3283 	return NETDEV_TX_OK;
3284 }
3285 
3286 #define NUM_REGS 38 /* 1 based count */
3287 static void e1000_regdump(struct e1000_adapter *adapter)
3288 {
3289 	struct e1000_hw *hw = &adapter->hw;
3290 	u32 regs[NUM_REGS];
3291 	u32 *regs_buff = regs;
3292 	int i = 0;
3293 
3294 	static const char * const reg_name[] = {
3295 		"CTRL",  "STATUS",
3296 		"RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3297 		"TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3298 		"TIDV", "TXDCTL", "TADV", "TARC0",
3299 		"TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3300 		"TXDCTL1", "TARC1",
3301 		"CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3302 		"TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3303 		"RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3304 	};
3305 
3306 	regs_buff[0]  = er32(CTRL);
3307 	regs_buff[1]  = er32(STATUS);
3308 
3309 	regs_buff[2]  = er32(RCTL);
3310 	regs_buff[3]  = er32(RDLEN);
3311 	regs_buff[4]  = er32(RDH);
3312 	regs_buff[5]  = er32(RDT);
3313 	regs_buff[6]  = er32(RDTR);
3314 
3315 	regs_buff[7]  = er32(TCTL);
3316 	regs_buff[8]  = er32(TDBAL);
3317 	regs_buff[9]  = er32(TDBAH);
3318 	regs_buff[10] = er32(TDLEN);
3319 	regs_buff[11] = er32(TDH);
3320 	regs_buff[12] = er32(TDT);
3321 	regs_buff[13] = er32(TIDV);
3322 	regs_buff[14] = er32(TXDCTL);
3323 	regs_buff[15] = er32(TADV);
3324 	regs_buff[16] = er32(TARC0);
3325 
3326 	regs_buff[17] = er32(TDBAL1);
3327 	regs_buff[18] = er32(TDBAH1);
3328 	regs_buff[19] = er32(TDLEN1);
3329 	regs_buff[20] = er32(TDH1);
3330 	regs_buff[21] = er32(TDT1);
3331 	regs_buff[22] = er32(TXDCTL1);
3332 	regs_buff[23] = er32(TARC1);
3333 	regs_buff[24] = er32(CTRL_EXT);
3334 	regs_buff[25] = er32(ERT);
3335 	regs_buff[26] = er32(RDBAL0);
3336 	regs_buff[27] = er32(RDBAH0);
3337 	regs_buff[28] = er32(TDFH);
3338 	regs_buff[29] = er32(TDFT);
3339 	regs_buff[30] = er32(TDFHS);
3340 	regs_buff[31] = er32(TDFTS);
3341 	regs_buff[32] = er32(TDFPC);
3342 	regs_buff[33] = er32(RDFH);
3343 	regs_buff[34] = er32(RDFT);
3344 	regs_buff[35] = er32(RDFHS);
3345 	regs_buff[36] = er32(RDFTS);
3346 	regs_buff[37] = er32(RDFPC);
3347 
3348 	pr_info("Register dump\n");
3349 	for (i = 0; i < NUM_REGS; i++)
3350 		pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3351 }
3352 
3353 /*
3354  * e1000_dump: Print registers, tx ring and rx ring
3355  */
3356 static void e1000_dump(struct e1000_adapter *adapter)
3357 {
3358 	/* this code doesn't handle multiple rings */
3359 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3360 	struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3361 	int i;
3362 
3363 	if (!netif_msg_hw(adapter))
3364 		return;
3365 
3366 	/* Print Registers */
3367 	e1000_regdump(adapter);
3368 
3369 	/* transmit dump */
3370 	pr_info("TX Desc ring0 dump\n");
3371 
3372 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3373 	 *
3374 	 * Legacy Transmit Descriptor
3375 	 *   +--------------------------------------------------------------+
3376 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3377 	 *   +--------------------------------------------------------------+
3378 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3379 	 *   +--------------------------------------------------------------+
3380 	 *   63       48 47        36 35    32 31     24 23    16 15        0
3381 	 *
3382 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3383 	 *   63      48 47    40 39       32 31             16 15    8 7      0
3384 	 *   +----------------------------------------------------------------+
3385 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3386 	 *   +----------------------------------------------------------------+
3387 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3388 	 *   +----------------------------------------------------------------+
3389 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3390 	 *
3391 	 * Extended Data Descriptor (DTYP=0x1)
3392 	 *   +----------------------------------------------------------------+
3393 	 * 0 |                     Buffer Address [63:0]                      |
3394 	 *   +----------------------------------------------------------------+
3395 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3396 	 *   +----------------------------------------------------------------+
3397 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3398 	 */
3399 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3400 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3401 
3402 	if (!netif_msg_tx_done(adapter))
3403 		goto rx_ring_summary;
3404 
3405 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3406 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3407 		struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3408 		struct my_u { __le64 a; __le64 b; };
3409 		struct my_u *u = (struct my_u *)tx_desc;
3410 		const char *type;
3411 
3412 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3413 			type = "NTC/U";
3414 		else if (i == tx_ring->next_to_use)
3415 			type = "NTU";
3416 		else if (i == tx_ring->next_to_clean)
3417 			type = "NTC";
3418 		else
3419 			type = "";
3420 
3421 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3422 			((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3423 			le64_to_cpu(u->a), le64_to_cpu(u->b),
3424 			(u64)buffer_info->dma, buffer_info->length,
3425 			buffer_info->next_to_watch,
3426 			(u64)buffer_info->time_stamp, buffer_info->skb, type);
3427 	}
3428 
3429 rx_ring_summary:
3430 	/* receive dump */
3431 	pr_info("\nRX Desc ring dump\n");
3432 
3433 	/* Legacy Receive Descriptor Format
3434 	 *
3435 	 * +-----------------------------------------------------+
3436 	 * |                Buffer Address [63:0]                |
3437 	 * +-----------------------------------------------------+
3438 	 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3439 	 * +-----------------------------------------------------+
3440 	 * 63       48 47    40 39      32 31         16 15      0
3441 	 */
3442 	pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3443 
3444 	if (!netif_msg_rx_status(adapter))
3445 		goto exit;
3446 
3447 	for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3448 		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3449 		struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3450 		struct my_u { __le64 a; __le64 b; };
3451 		struct my_u *u = (struct my_u *)rx_desc;
3452 		const char *type;
3453 
3454 		if (i == rx_ring->next_to_use)
3455 			type = "NTU";
3456 		else if (i == rx_ring->next_to_clean)
3457 			type = "NTC";
3458 		else
3459 			type = "";
3460 
3461 		pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3462 			i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3463 			(u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3464 	} /* for */
3465 
3466 	/* dump the descriptor caches */
3467 	/* rx */
3468 	pr_info("Rx descriptor cache in 64bit format\n");
3469 	for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3470 		pr_info("R%04X: %08X|%08X %08X|%08X\n",
3471 			i,
3472 			readl(adapter->hw.hw_addr + i+4),
3473 			readl(adapter->hw.hw_addr + i),
3474 			readl(adapter->hw.hw_addr + i+12),
3475 			readl(adapter->hw.hw_addr + i+8));
3476 	}
3477 	/* tx */
3478 	pr_info("Tx descriptor cache in 64bit format\n");
3479 	for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3480 		pr_info("T%04X: %08X|%08X %08X|%08X\n",
3481 			i,
3482 			readl(adapter->hw.hw_addr + i+4),
3483 			readl(adapter->hw.hw_addr + i),
3484 			readl(adapter->hw.hw_addr + i+12),
3485 			readl(adapter->hw.hw_addr + i+8));
3486 	}
3487 exit:
3488 	return;
3489 }
3490 
3491 /**
3492  * e1000_tx_timeout - Respond to a Tx Hang
3493  * @netdev: network interface device structure
3494  * @txqueue: number of the Tx queue that hung (unused)
3495  **/
3496 static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
3497 {
3498 	struct e1000_adapter *adapter = netdev_priv(netdev);
3499 
3500 	/* Do the reset outside of interrupt context */
3501 	adapter->tx_timeout_count++;
3502 	schedule_work(&adapter->reset_task);
3503 }
3504 
3505 static void e1000_reset_task(struct work_struct *work)
3506 {
3507 	struct e1000_adapter *adapter =
3508 		container_of(work, struct e1000_adapter, reset_task);
3509 
3510 	e_err(drv, "Reset adapter\n");
3511 	rtnl_lock();
3512 	e1000_reinit_locked(adapter);
3513 	rtnl_unlock();
3514 }
3515 
3516 /**
3517  * e1000_change_mtu - Change the Maximum Transfer Unit
3518  * @netdev: network interface device structure
3519  * @new_mtu: new value for maximum frame size
3520  *
3521  * Returns 0 on success, negative on failure
3522  **/
3523 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3524 {
3525 	struct e1000_adapter *adapter = netdev_priv(netdev);
3526 	struct e1000_hw *hw = &adapter->hw;
3527 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3528 
3529 	/* Adapter-specific max frame size limits. */
3530 	switch (hw->mac_type) {
3531 	case e1000_undefined ... e1000_82542_rev2_1:
3532 		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3533 			e_err(probe, "Jumbo Frames not supported.\n");
3534 			return -EINVAL;
3535 		}
3536 		break;
3537 	default:
3538 		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3539 		break;
3540 	}
3541 
3542 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3543 		msleep(1);
3544 	/* e1000_down has a dependency on max_frame_size */
3545 	hw->max_frame_size = max_frame;
3546 	if (netif_running(netdev)) {
3547 		/* prevent buffers from being reallocated */
3548 		adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3549 		e1000_down(adapter);
3550 	}
3551 
3552 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3553 	 * means we reserve 2 more, this pushes us to allocate from the next
3554 	 * larger slab size.
3555 	 * i.e. RXBUFFER_2048 --> size-4096 slab
3556 	 * however with the new *_jumbo_rx* routines, jumbo receives will use
3557 	 * fragmented skbs
3558 	 */
3559 
3560 	if (max_frame <= E1000_RXBUFFER_2048)
3561 		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3562 	else
3563 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3564 		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3565 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3566 		adapter->rx_buffer_len = PAGE_SIZE;
3567 #endif
3568 
3569 	/* adjust allocation if LPE protects us, and we aren't using SBP */
3570 	if (!hw->tbi_compatibility_on &&
3571 	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3572 	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3573 		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3574 
3575 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
3576 		   netdev->mtu, new_mtu);
3577 	WRITE_ONCE(netdev->mtu, new_mtu);
3578 
3579 	if (netif_running(netdev))
3580 		e1000_up(adapter);
3581 	else
3582 		e1000_reset(adapter);
3583 
3584 	clear_bit(__E1000_RESETTING, &adapter->flags);
3585 
3586 	return 0;
3587 }
3588 
3589 /**
3590  * e1000_update_stats - Update the board statistics counters
3591  * @adapter: board private structure
3592  **/
3593 void e1000_update_stats(struct e1000_adapter *adapter)
3594 {
3595 	struct net_device *netdev = adapter->netdev;
3596 	struct e1000_hw *hw = &adapter->hw;
3597 	struct pci_dev *pdev = adapter->pdev;
3598 	unsigned long flags;
3599 	u16 phy_tmp;
3600 
3601 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3602 
3603 	/* Prevent stats update while adapter is being reset, or if the pci
3604 	 * connection is down.
3605 	 */
3606 	if (adapter->link_speed == 0)
3607 		return;
3608 	if (pci_channel_offline(pdev))
3609 		return;
3610 
3611 	spin_lock_irqsave(&adapter->stats_lock, flags);
3612 
3613 	/* these counters are modified from e1000_tbi_adjust_stats,
3614 	 * called from the interrupt context, so they must only
3615 	 * be written while holding adapter->stats_lock
3616 	 */
3617 
3618 	adapter->stats.crcerrs += er32(CRCERRS);
3619 	adapter->stats.gprc += er32(GPRC);
3620 	adapter->stats.gorcl += er32(GORCL);
3621 	adapter->stats.gorch += er32(GORCH);
3622 	adapter->stats.bprc += er32(BPRC);
3623 	adapter->stats.mprc += er32(MPRC);
3624 	adapter->stats.roc += er32(ROC);
3625 
3626 	adapter->stats.prc64 += er32(PRC64);
3627 	adapter->stats.prc127 += er32(PRC127);
3628 	adapter->stats.prc255 += er32(PRC255);
3629 	adapter->stats.prc511 += er32(PRC511);
3630 	adapter->stats.prc1023 += er32(PRC1023);
3631 	adapter->stats.prc1522 += er32(PRC1522);
3632 
3633 	adapter->stats.symerrs += er32(SYMERRS);
3634 	adapter->stats.mpc += er32(MPC);
3635 	adapter->stats.scc += er32(SCC);
3636 	adapter->stats.ecol += er32(ECOL);
3637 	adapter->stats.mcc += er32(MCC);
3638 	adapter->stats.latecol += er32(LATECOL);
3639 	adapter->stats.dc += er32(DC);
3640 	adapter->stats.sec += er32(SEC);
3641 	adapter->stats.rlec += er32(RLEC);
3642 	adapter->stats.xonrxc += er32(XONRXC);
3643 	adapter->stats.xontxc += er32(XONTXC);
3644 	adapter->stats.xoffrxc += er32(XOFFRXC);
3645 	adapter->stats.xofftxc += er32(XOFFTXC);
3646 	adapter->stats.fcruc += er32(FCRUC);
3647 	adapter->stats.gptc += er32(GPTC);
3648 	adapter->stats.gotcl += er32(GOTCL);
3649 	adapter->stats.gotch += er32(GOTCH);
3650 	adapter->stats.rnbc += er32(RNBC);
3651 	adapter->stats.ruc += er32(RUC);
3652 	adapter->stats.rfc += er32(RFC);
3653 	adapter->stats.rjc += er32(RJC);
3654 	adapter->stats.torl += er32(TORL);
3655 	adapter->stats.torh += er32(TORH);
3656 	adapter->stats.totl += er32(TOTL);
3657 	adapter->stats.toth += er32(TOTH);
3658 	adapter->stats.tpr += er32(TPR);
3659 
3660 	adapter->stats.ptc64 += er32(PTC64);
3661 	adapter->stats.ptc127 += er32(PTC127);
3662 	adapter->stats.ptc255 += er32(PTC255);
3663 	adapter->stats.ptc511 += er32(PTC511);
3664 	adapter->stats.ptc1023 += er32(PTC1023);
3665 	adapter->stats.ptc1522 += er32(PTC1522);
3666 
3667 	adapter->stats.mptc += er32(MPTC);
3668 	adapter->stats.bptc += er32(BPTC);
3669 
3670 	/* used for adaptive IFS */
3671 
3672 	hw->tx_packet_delta = er32(TPT);
3673 	adapter->stats.tpt += hw->tx_packet_delta;
3674 	hw->collision_delta = er32(COLC);
3675 	adapter->stats.colc += hw->collision_delta;
3676 
3677 	if (hw->mac_type >= e1000_82543) {
3678 		adapter->stats.algnerrc += er32(ALGNERRC);
3679 		adapter->stats.rxerrc += er32(RXERRC);
3680 		adapter->stats.tncrs += er32(TNCRS);
3681 		adapter->stats.cexterr += er32(CEXTERR);
3682 		adapter->stats.tsctc += er32(TSCTC);
3683 		adapter->stats.tsctfc += er32(TSCTFC);
3684 	}
3685 
3686 	/* Fill out the OS statistics structure */
3687 	netdev->stats.multicast = adapter->stats.mprc;
3688 	netdev->stats.collisions = adapter->stats.colc;
3689 
3690 	/* Rx Errors */
3691 
3692 	/* RLEC on some newer hardware can be incorrect so build
3693 	 * our own version based on RUC and ROC
3694 	 */
3695 	netdev->stats.rx_errors = adapter->stats.rxerrc +
3696 		adapter->stats.crcerrs + adapter->stats.algnerrc +
3697 		adapter->stats.ruc + adapter->stats.roc +
3698 		adapter->stats.cexterr;
3699 	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3700 	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3701 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3702 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3703 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3704 
3705 	/* Tx Errors */
3706 	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3707 	netdev->stats.tx_errors = adapter->stats.txerrc;
3708 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3709 	netdev->stats.tx_window_errors = adapter->stats.latecol;
3710 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3711 	if (hw->bad_tx_carr_stats_fd &&
3712 	    adapter->link_duplex == FULL_DUPLEX) {
3713 		netdev->stats.tx_carrier_errors = 0;
3714 		adapter->stats.tncrs = 0;
3715 	}
3716 
3717 	/* Tx Dropped needs to be maintained elsewhere */
3718 
3719 	/* Phy Stats */
3720 	if (hw->media_type == e1000_media_type_copper) {
3721 		if ((adapter->link_speed == SPEED_1000) &&
3722 		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3723 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3724 			adapter->phy_stats.idle_errors += phy_tmp;
3725 		}
3726 
3727 		if ((hw->mac_type <= e1000_82546) &&
3728 		   (hw->phy_type == e1000_phy_m88) &&
3729 		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3730 			adapter->phy_stats.receive_errors += phy_tmp;
3731 	}
3732 
3733 	/* Management Stats */
3734 	if (hw->has_smbus) {
3735 		adapter->stats.mgptc += er32(MGTPTC);
3736 		adapter->stats.mgprc += er32(MGTPRC);
3737 		adapter->stats.mgpdc += er32(MGTPDC);
3738 	}
3739 
3740 	spin_unlock_irqrestore(&adapter->stats_lock, flags);
3741 }
3742 
3743 /**
3744  * e1000_intr - Interrupt Handler
3745  * @irq: interrupt number
3746  * @data: pointer to a network interface device structure
3747  **/
3748 static irqreturn_t e1000_intr(int irq, void *data)
3749 {
3750 	struct net_device *netdev = data;
3751 	struct e1000_adapter *adapter = netdev_priv(netdev);
3752 	struct e1000_hw *hw = &adapter->hw;
3753 	u32 icr = er32(ICR);
3754 
3755 	if (unlikely((!icr)))
3756 		return IRQ_NONE;  /* Not our interrupt */
3757 
3758 	/* we might have caused the interrupt, but the above
3759 	 * read cleared it, and just in case the driver is
3760 	 * down there is nothing to do so return handled
3761 	 */
3762 	if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3763 		return IRQ_HANDLED;
3764 
3765 	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3766 		hw->get_link_status = 1;
3767 		/* guard against interrupt when we're going down */
3768 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3769 			schedule_delayed_work(&adapter->watchdog_task, 1);
3770 	}
3771 
3772 	/* disable interrupts, without the synchronize_irq bit */
3773 	ew32(IMC, ~0);
3774 	E1000_WRITE_FLUSH();
3775 
3776 	if (likely(napi_schedule_prep(&adapter->napi))) {
3777 		adapter->total_tx_bytes = 0;
3778 		adapter->total_tx_packets = 0;
3779 		adapter->total_rx_bytes = 0;
3780 		adapter->total_rx_packets = 0;
3781 		__napi_schedule(&adapter->napi);
3782 	} else {
3783 		/* this really should not happen! if it does it is basically a
3784 		 * bug, but not a hard error, so enable ints and continue
3785 		 */
3786 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3787 			e1000_irq_enable(adapter);
3788 	}
3789 
3790 	return IRQ_HANDLED;
3791 }
3792 
3793 /**
3794  * e1000_clean - NAPI Rx polling callback
3795  * @napi: napi struct containing references to driver info
3796  * @budget: budget given to driver for receive packets
3797  **/
3798 static int e1000_clean(struct napi_struct *napi, int budget)
3799 {
3800 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3801 						     napi);
3802 	int tx_clean_complete = 0, work_done = 0;
3803 
3804 	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3805 
3806 	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3807 
3808 	if (!tx_clean_complete || work_done == budget)
3809 		return budget;
3810 
3811 	/* Exit the polling mode, but don't re-enable interrupts if stack might
3812 	 * poll us due to busy-polling
3813 	 */
3814 	if (likely(napi_complete_done(napi, work_done))) {
3815 		if (likely(adapter->itr_setting & 3))
3816 			e1000_set_itr(adapter);
3817 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3818 			e1000_irq_enable(adapter);
3819 	}
3820 
3821 	return work_done;
3822 }
3823 
3824 /**
3825  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3826  * @adapter: board private structure
3827  * @tx_ring: ring to clean
3828  **/
3829 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3830 			       struct e1000_tx_ring *tx_ring)
3831 {
3832 	struct e1000_hw *hw = &adapter->hw;
3833 	struct net_device *netdev = adapter->netdev;
3834 	struct e1000_tx_desc *tx_desc, *eop_desc;
3835 	struct e1000_tx_buffer *buffer_info;
3836 	unsigned int i, eop;
3837 	unsigned int count = 0;
3838 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3839 	unsigned int bytes_compl = 0, pkts_compl = 0;
3840 
3841 	i = tx_ring->next_to_clean;
3842 	eop = tx_ring->buffer_info[i].next_to_watch;
3843 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
3844 
3845 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3846 	       (count < tx_ring->count)) {
3847 		bool cleaned = false;
3848 		dma_rmb();	/* read buffer_info after eop_desc */
3849 		for ( ; !cleaned; count++) {
3850 			tx_desc = E1000_TX_DESC(*tx_ring, i);
3851 			buffer_info = &tx_ring->buffer_info[i];
3852 			cleaned = (i == eop);
3853 
3854 			if (cleaned) {
3855 				total_tx_packets += buffer_info->segs;
3856 				total_tx_bytes += buffer_info->bytecount;
3857 				if (buffer_info->skb) {
3858 					bytes_compl += buffer_info->skb->len;
3859 					pkts_compl++;
3860 				}
3861 
3862 			}
3863 			e1000_unmap_and_free_tx_resource(adapter, buffer_info,
3864 							 64);
3865 			tx_desc->upper.data = 0;
3866 
3867 			if (unlikely(++i == tx_ring->count))
3868 				i = 0;
3869 		}
3870 
3871 		eop = tx_ring->buffer_info[i].next_to_watch;
3872 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
3873 	}
3874 
3875 	/* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3876 	 * which will reuse the cleaned buffers.
3877 	 */
3878 	smp_store_release(&tx_ring->next_to_clean, i);
3879 
3880 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3881 
3882 #define TX_WAKE_THRESHOLD 32
3883 	if (unlikely(count && netif_carrier_ok(netdev) &&
3884 		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3885 		/* Make sure that anybody stopping the queue after this
3886 		 * sees the new next_to_clean.
3887 		 */
3888 		smp_mb();
3889 
3890 		if (netif_queue_stopped(netdev) &&
3891 		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3892 			netif_wake_queue(netdev);
3893 			++adapter->restart_queue;
3894 		}
3895 	}
3896 
3897 	if (adapter->detect_tx_hung) {
3898 		/* Detect a transmit hang in hardware, this serializes the
3899 		 * check with the clearing of time_stamp and movement of i
3900 		 */
3901 		adapter->detect_tx_hung = false;
3902 		if (tx_ring->buffer_info[eop].time_stamp &&
3903 		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3904 			       (adapter->tx_timeout_factor * HZ)) &&
3905 		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3906 
3907 			/* detected Tx unit hang */
3908 			e_err(drv, "Detected Tx Unit Hang\n"
3909 			      "  Tx Queue             <%lu>\n"
3910 			      "  TDH                  <%x>\n"
3911 			      "  TDT                  <%x>\n"
3912 			      "  next_to_use          <%x>\n"
3913 			      "  next_to_clean        <%x>\n"
3914 			      "buffer_info[next_to_clean]\n"
3915 			      "  time_stamp           <%lx>\n"
3916 			      "  next_to_watch        <%x>\n"
3917 			      "  jiffies              <%lx>\n"
3918 			      "  next_to_watch.status <%x>\n",
3919 				(unsigned long)(tx_ring - adapter->tx_ring),
3920 				readl(hw->hw_addr + tx_ring->tdh),
3921 				readl(hw->hw_addr + tx_ring->tdt),
3922 				tx_ring->next_to_use,
3923 				tx_ring->next_to_clean,
3924 				tx_ring->buffer_info[eop].time_stamp,
3925 				eop,
3926 				jiffies,
3927 				eop_desc->upper.fields.status);
3928 			e1000_dump(adapter);
3929 			netif_stop_queue(netdev);
3930 		}
3931 	}
3932 	adapter->total_tx_bytes += total_tx_bytes;
3933 	adapter->total_tx_packets += total_tx_packets;
3934 	netdev->stats.tx_bytes += total_tx_bytes;
3935 	netdev->stats.tx_packets += total_tx_packets;
3936 	return count < tx_ring->count;
3937 }
3938 
3939 /**
3940  * e1000_rx_checksum - Receive Checksum Offload for 82543
3941  * @adapter:     board private structure
3942  * @status_err:  receive descriptor status and error fields
3943  * @csum:        receive descriptor csum field
3944  * @skb:         socket buffer with received data
3945  **/
3946 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3947 			      u32 csum, struct sk_buff *skb)
3948 {
3949 	struct e1000_hw *hw = &adapter->hw;
3950 	u16 status = (u16)status_err;
3951 	u8 errors = (u8)(status_err >> 24);
3952 
3953 	skb_checksum_none_assert(skb);
3954 
3955 	/* 82543 or newer only */
3956 	if (unlikely(hw->mac_type < e1000_82543))
3957 		return;
3958 	/* Ignore Checksum bit is set */
3959 	if (unlikely(status & E1000_RXD_STAT_IXSM))
3960 		return;
3961 	/* TCP/UDP checksum error bit is set */
3962 	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3963 		/* let the stack verify checksum errors */
3964 		adapter->hw_csum_err++;
3965 		return;
3966 	}
3967 	/* TCP/UDP Checksum has not been calculated */
3968 	if (!(status & E1000_RXD_STAT_TCPCS))
3969 		return;
3970 
3971 	/* It must be a TCP or UDP packet with a valid checksum */
3972 	if (likely(status & E1000_RXD_STAT_TCPCS)) {
3973 		/* TCP checksum is good */
3974 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3975 	}
3976 	adapter->hw_csum_good++;
3977 }
3978 
3979 /**
3980  * e1000_consume_page - helper function for jumbo Rx path
3981  * @bi: software descriptor shadow data
3982  * @skb: skb being modified
3983  * @length: length of data being added
3984  **/
3985 static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
3986 			       u16 length)
3987 {
3988 	bi->rxbuf.page = NULL;
3989 	skb->len += length;
3990 	skb->data_len += length;
3991 	skb->truesize += PAGE_SIZE;
3992 }
3993 
3994 /**
3995  * e1000_receive_skb - helper function to handle rx indications
3996  * @adapter: board private structure
3997  * @status: descriptor status field as written by hardware
3998  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3999  * @skb: pointer to sk_buff to be indicated to stack
4000  */
4001 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4002 			      __le16 vlan, struct sk_buff *skb)
4003 {
4004 	skb->protocol = eth_type_trans(skb, adapter->netdev);
4005 
4006 	if (status & E1000_RXD_STAT_VP) {
4007 		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4008 
4009 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4010 	}
4011 	napi_gro_receive(&adapter->napi, skb);
4012 }
4013 
4014 /**
4015  * e1000_tbi_adjust_stats
4016  * @hw: Struct containing variables accessed by shared code
4017  * @stats: point to stats struct
4018  * @frame_len: The length of the frame in question
4019  * @mac_addr: The Ethernet destination address of the frame in question
4020  *
4021  * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4022  */
4023 static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4024 				   struct e1000_hw_stats *stats,
4025 				   u32 frame_len, const u8 *mac_addr)
4026 {
4027 	u64 carry_bit;
4028 
4029 	/* First adjust the frame length. */
4030 	frame_len--;
4031 	/* We need to adjust the statistics counters, since the hardware
4032 	 * counters overcount this packet as a CRC error and undercount
4033 	 * the packet as a good packet
4034 	 */
4035 	/* This packet should not be counted as a CRC error. */
4036 	stats->crcerrs--;
4037 	/* This packet does count as a Good Packet Received. */
4038 	stats->gprc++;
4039 
4040 	/* Adjust the Good Octets received counters */
4041 	carry_bit = 0x80000000 & stats->gorcl;
4042 	stats->gorcl += frame_len;
4043 	/* If the high bit of Gorcl (the low 32 bits of the Good Octets
4044 	 * Received Count) was one before the addition,
4045 	 * AND it is zero after, then we lost the carry out,
4046 	 * need to add one to Gorch (Good Octets Received Count High).
4047 	 * This could be simplified if all environments supported
4048 	 * 64-bit integers.
4049 	 */
4050 	if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4051 		stats->gorch++;
4052 	/* Is this a broadcast or multicast?  Check broadcast first,
4053 	 * since the test for a multicast frame will test positive on
4054 	 * a broadcast frame.
4055 	 */
4056 	if (is_broadcast_ether_addr(mac_addr))
4057 		stats->bprc++;
4058 	else if (is_multicast_ether_addr(mac_addr))
4059 		stats->mprc++;
4060 
4061 	if (frame_len == hw->max_frame_size) {
4062 		/* In this case, the hardware has overcounted the number of
4063 		 * oversize frames.
4064 		 */
4065 		if (stats->roc > 0)
4066 			stats->roc--;
4067 	}
4068 
4069 	/* Adjust the bin counters when the extra byte put the frame in the
4070 	 * wrong bin. Remember that the frame_len was adjusted above.
4071 	 */
4072 	if (frame_len == 64) {
4073 		stats->prc64++;
4074 		stats->prc127--;
4075 	} else if (frame_len == 127) {
4076 		stats->prc127++;
4077 		stats->prc255--;
4078 	} else if (frame_len == 255) {
4079 		stats->prc255++;
4080 		stats->prc511--;
4081 	} else if (frame_len == 511) {
4082 		stats->prc511++;
4083 		stats->prc1023--;
4084 	} else if (frame_len == 1023) {
4085 		stats->prc1023++;
4086 		stats->prc1522--;
4087 	} else if (frame_len == 1522) {
4088 		stats->prc1522++;
4089 	}
4090 }
4091 
4092 static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4093 				    u8 status, u8 errors,
4094 				    u32 length, const u8 *data)
4095 {
4096 	struct e1000_hw *hw = &adapter->hw;
4097 	u8 last_byte = *(data + length - 1);
4098 
4099 	if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4100 		unsigned long irq_flags;
4101 
4102 		spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4103 		e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4104 		spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4105 
4106 		return true;
4107 	}
4108 
4109 	return false;
4110 }
4111 
4112 static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4113 					  unsigned int bufsz)
4114 {
4115 	struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4116 
4117 	if (unlikely(!skb))
4118 		adapter->alloc_rx_buff_failed++;
4119 	return skb;
4120 }
4121 
4122 /**
4123  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4124  * @adapter: board private structure
4125  * @rx_ring: ring to clean
4126  * @work_done: amount of napi work completed this call
4127  * @work_to_do: max amount of work allowed for this call to do
4128  *
4129  * the return value indicates whether actual cleaning was done, there
4130  * is no guarantee that everything was cleaned
4131  */
4132 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4133 				     struct e1000_rx_ring *rx_ring,
4134 				     int *work_done, int work_to_do)
4135 {
4136 	struct net_device *netdev = adapter->netdev;
4137 	struct pci_dev *pdev = adapter->pdev;
4138 	struct e1000_rx_desc *rx_desc, *next_rxd;
4139 	struct e1000_rx_buffer *buffer_info, *next_buffer;
4140 	u32 length;
4141 	unsigned int i;
4142 	int cleaned_count = 0;
4143 	bool cleaned = false;
4144 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4145 
4146 	i = rx_ring->next_to_clean;
4147 	rx_desc = E1000_RX_DESC(*rx_ring, i);
4148 	buffer_info = &rx_ring->buffer_info[i];
4149 
4150 	while (rx_desc->status & E1000_RXD_STAT_DD) {
4151 		struct sk_buff *skb;
4152 		u8 status;
4153 
4154 		if (*work_done >= work_to_do)
4155 			break;
4156 		(*work_done)++;
4157 		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4158 
4159 		status = rx_desc->status;
4160 
4161 		if (++i == rx_ring->count)
4162 			i = 0;
4163 
4164 		next_rxd = E1000_RX_DESC(*rx_ring, i);
4165 		prefetch(next_rxd);
4166 
4167 		next_buffer = &rx_ring->buffer_info[i];
4168 
4169 		cleaned = true;
4170 		cleaned_count++;
4171 		dma_unmap_page(&pdev->dev, buffer_info->dma,
4172 			       adapter->rx_buffer_len, DMA_FROM_DEVICE);
4173 		buffer_info->dma = 0;
4174 
4175 		length = le16_to_cpu(rx_desc->length);
4176 
4177 		/* errors is only valid for DD + EOP descriptors */
4178 		if (unlikely((status & E1000_RXD_STAT_EOP) &&
4179 		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4180 			u8 *mapped = page_address(buffer_info->rxbuf.page);
4181 
4182 			if (e1000_tbi_should_accept(adapter, status,
4183 						    rx_desc->errors,
4184 						    length, mapped)) {
4185 				length--;
4186 			} else if (netdev->features & NETIF_F_RXALL) {
4187 				goto process_skb;
4188 			} else {
4189 				/* an error means any chain goes out the window
4190 				 * too
4191 				 */
4192 				dev_kfree_skb(rx_ring->rx_skb_top);
4193 				rx_ring->rx_skb_top = NULL;
4194 				goto next_desc;
4195 			}
4196 		}
4197 
4198 #define rxtop rx_ring->rx_skb_top
4199 process_skb:
4200 		if (!(status & E1000_RXD_STAT_EOP)) {
4201 			/* this descriptor is only the beginning (or middle) */
4202 			if (!rxtop) {
4203 				/* this is the beginning of a chain */
4204 				rxtop = napi_get_frags(&adapter->napi);
4205 				if (!rxtop)
4206 					break;
4207 
4208 				skb_fill_page_desc(rxtop, 0,
4209 						   buffer_info->rxbuf.page,
4210 						   0, length);
4211 			} else {
4212 				/* this is the middle of a chain */
4213 				skb_fill_page_desc(rxtop,
4214 				    skb_shinfo(rxtop)->nr_frags,
4215 				    buffer_info->rxbuf.page, 0, length);
4216 			}
4217 			e1000_consume_page(buffer_info, rxtop, length);
4218 			goto next_desc;
4219 		} else {
4220 			if (rxtop) {
4221 				/* end of the chain */
4222 				skb_fill_page_desc(rxtop,
4223 				    skb_shinfo(rxtop)->nr_frags,
4224 				    buffer_info->rxbuf.page, 0, length);
4225 				skb = rxtop;
4226 				rxtop = NULL;
4227 				e1000_consume_page(buffer_info, skb, length);
4228 			} else {
4229 				struct page *p;
4230 				/* no chain, got EOP, this buf is the packet
4231 				 * copybreak to save the put_page/alloc_page
4232 				 */
4233 				p = buffer_info->rxbuf.page;
4234 				if (length <= copybreak) {
4235 					if (likely(!(netdev->features & NETIF_F_RXFCS)))
4236 						length -= 4;
4237 					skb = e1000_alloc_rx_skb(adapter,
4238 								 length);
4239 					if (!skb)
4240 						break;
4241 
4242 					memcpy(skb_tail_pointer(skb),
4243 					       page_address(p), length);
4244 
4245 					/* re-use the page, so don't erase
4246 					 * buffer_info->rxbuf.page
4247 					 */
4248 					skb_put(skb, length);
4249 					e1000_rx_checksum(adapter,
4250 							  status | rx_desc->errors << 24,
4251 							  le16_to_cpu(rx_desc->csum), skb);
4252 
4253 					total_rx_bytes += skb->len;
4254 					total_rx_packets++;
4255 
4256 					e1000_receive_skb(adapter, status,
4257 							  rx_desc->special, skb);
4258 					goto next_desc;
4259 				} else {
4260 					skb = napi_get_frags(&adapter->napi);
4261 					if (!skb) {
4262 						adapter->alloc_rx_buff_failed++;
4263 						break;
4264 					}
4265 					skb_fill_page_desc(skb, 0, p, 0,
4266 							   length);
4267 					e1000_consume_page(buffer_info, skb,
4268 							   length);
4269 				}
4270 			}
4271 		}
4272 
4273 		/* Receive Checksum Offload XXX recompute due to CRC strip? */
4274 		e1000_rx_checksum(adapter,
4275 				  (u32)(status) |
4276 				  ((u32)(rx_desc->errors) << 24),
4277 				  le16_to_cpu(rx_desc->csum), skb);
4278 
4279 		total_rx_bytes += (skb->len - 4); /* don't count FCS */
4280 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4281 			pskb_trim(skb, skb->len - 4);
4282 		total_rx_packets++;
4283 
4284 		if (status & E1000_RXD_STAT_VP) {
4285 			__le16 vlan = rx_desc->special;
4286 			u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4287 
4288 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4289 		}
4290 
4291 		napi_gro_frags(&adapter->napi);
4292 
4293 next_desc:
4294 		rx_desc->status = 0;
4295 
4296 		/* return some buffers to hardware, one at a time is too slow */
4297 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4298 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4299 			cleaned_count = 0;
4300 		}
4301 
4302 		/* use prefetched values */
4303 		rx_desc = next_rxd;
4304 		buffer_info = next_buffer;
4305 	}
4306 	rx_ring->next_to_clean = i;
4307 
4308 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4309 	if (cleaned_count)
4310 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4311 
4312 	adapter->total_rx_packets += total_rx_packets;
4313 	adapter->total_rx_bytes += total_rx_bytes;
4314 	netdev->stats.rx_bytes += total_rx_bytes;
4315 	netdev->stats.rx_packets += total_rx_packets;
4316 	return cleaned;
4317 }
4318 
4319 /* this should improve performance for small packets with large amounts
4320  * of reassembly being done in the stack
4321  */
4322 static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4323 				       struct e1000_rx_buffer *buffer_info,
4324 				       u32 length, const void *data)
4325 {
4326 	struct sk_buff *skb;
4327 
4328 	if (length > copybreak)
4329 		return NULL;
4330 
4331 	skb = e1000_alloc_rx_skb(adapter, length);
4332 	if (!skb)
4333 		return NULL;
4334 
4335 	dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4336 				length, DMA_FROM_DEVICE);
4337 
4338 	skb_put_data(skb, data, length);
4339 
4340 	return skb;
4341 }
4342 
4343 /**
4344  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4345  * @adapter: board private structure
4346  * @rx_ring: ring to clean
4347  * @work_done: amount of napi work completed this call
4348  * @work_to_do: max amount of work allowed for this call to do
4349  */
4350 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4351 			       struct e1000_rx_ring *rx_ring,
4352 			       int *work_done, int work_to_do)
4353 {
4354 	struct net_device *netdev = adapter->netdev;
4355 	struct pci_dev *pdev = adapter->pdev;
4356 	struct e1000_rx_desc *rx_desc, *next_rxd;
4357 	struct e1000_rx_buffer *buffer_info, *next_buffer;
4358 	u32 length;
4359 	unsigned int i;
4360 	int cleaned_count = 0;
4361 	bool cleaned = false;
4362 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4363 
4364 	i = rx_ring->next_to_clean;
4365 	rx_desc = E1000_RX_DESC(*rx_ring, i);
4366 	buffer_info = &rx_ring->buffer_info[i];
4367 
4368 	while (rx_desc->status & E1000_RXD_STAT_DD) {
4369 		struct sk_buff *skb;
4370 		u8 *data;
4371 		u8 status;
4372 
4373 		if (*work_done >= work_to_do)
4374 			break;
4375 		(*work_done)++;
4376 		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4377 
4378 		status = rx_desc->status;
4379 		length = le16_to_cpu(rx_desc->length);
4380 
4381 		data = buffer_info->rxbuf.data;
4382 		prefetch(data);
4383 		skb = e1000_copybreak(adapter, buffer_info, length, data);
4384 		if (!skb) {
4385 			unsigned int frag_len = e1000_frag_len(adapter);
4386 
4387 			skb = napi_build_skb(data - E1000_HEADROOM, frag_len);
4388 			if (!skb) {
4389 				adapter->alloc_rx_buff_failed++;
4390 				break;
4391 			}
4392 
4393 			skb_reserve(skb, E1000_HEADROOM);
4394 			dma_unmap_single(&pdev->dev, buffer_info->dma,
4395 					 adapter->rx_buffer_len,
4396 					 DMA_FROM_DEVICE);
4397 			buffer_info->dma = 0;
4398 			buffer_info->rxbuf.data = NULL;
4399 		}
4400 
4401 		if (++i == rx_ring->count)
4402 			i = 0;
4403 
4404 		next_rxd = E1000_RX_DESC(*rx_ring, i);
4405 		prefetch(next_rxd);
4406 
4407 		next_buffer = &rx_ring->buffer_info[i];
4408 
4409 		cleaned = true;
4410 		cleaned_count++;
4411 
4412 		/* !EOP means multiple descriptors were used to store a single
4413 		 * packet, if thats the case we need to toss it.  In fact, we
4414 		 * to toss every packet with the EOP bit clear and the next
4415 		 * frame that _does_ have the EOP bit set, as it is by
4416 		 * definition only a frame fragment
4417 		 */
4418 		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4419 			adapter->discarding = true;
4420 
4421 		if (adapter->discarding) {
4422 			/* All receives must fit into a single buffer */
4423 			netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4424 			dev_kfree_skb(skb);
4425 			if (status & E1000_RXD_STAT_EOP)
4426 				adapter->discarding = false;
4427 			goto next_desc;
4428 		}
4429 
4430 		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4431 			if (e1000_tbi_should_accept(adapter, status,
4432 						    rx_desc->errors,
4433 						    length, data)) {
4434 				length--;
4435 			} else if (netdev->features & NETIF_F_RXALL) {
4436 				goto process_skb;
4437 			} else {
4438 				dev_kfree_skb(skb);
4439 				goto next_desc;
4440 			}
4441 		}
4442 
4443 process_skb:
4444 		total_rx_bytes += (length - 4); /* don't count FCS */
4445 		total_rx_packets++;
4446 
4447 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4448 			/* adjust length to remove Ethernet CRC, this must be
4449 			 * done after the TBI_ACCEPT workaround above
4450 			 */
4451 			length -= 4;
4452 
4453 		if (buffer_info->rxbuf.data == NULL)
4454 			skb_put(skb, length);
4455 		else /* copybreak skb */
4456 			skb_trim(skb, length);
4457 
4458 		/* Receive Checksum Offload */
4459 		e1000_rx_checksum(adapter,
4460 				  (u32)(status) |
4461 				  ((u32)(rx_desc->errors) << 24),
4462 				  le16_to_cpu(rx_desc->csum), skb);
4463 
4464 		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4465 
4466 next_desc:
4467 		rx_desc->status = 0;
4468 
4469 		/* return some buffers to hardware, one at a time is too slow */
4470 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4471 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4472 			cleaned_count = 0;
4473 		}
4474 
4475 		/* use prefetched values */
4476 		rx_desc = next_rxd;
4477 		buffer_info = next_buffer;
4478 	}
4479 	rx_ring->next_to_clean = i;
4480 
4481 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4482 	if (cleaned_count)
4483 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4484 
4485 	adapter->total_rx_packets += total_rx_packets;
4486 	adapter->total_rx_bytes += total_rx_bytes;
4487 	netdev->stats.rx_bytes += total_rx_bytes;
4488 	netdev->stats.rx_packets += total_rx_packets;
4489 	return cleaned;
4490 }
4491 
4492 /**
4493  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4494  * @adapter: address of board private structure
4495  * @rx_ring: pointer to receive ring structure
4496  * @cleaned_count: number of buffers to allocate this pass
4497  **/
4498 static void
4499 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4500 			     struct e1000_rx_ring *rx_ring, int cleaned_count)
4501 {
4502 	struct pci_dev *pdev = adapter->pdev;
4503 	struct e1000_rx_desc *rx_desc;
4504 	struct e1000_rx_buffer *buffer_info;
4505 	unsigned int i;
4506 
4507 	i = rx_ring->next_to_use;
4508 	buffer_info = &rx_ring->buffer_info[i];
4509 
4510 	while (cleaned_count--) {
4511 		/* allocate a new page if necessary */
4512 		if (!buffer_info->rxbuf.page) {
4513 			buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4514 			if (unlikely(!buffer_info->rxbuf.page)) {
4515 				adapter->alloc_rx_buff_failed++;
4516 				break;
4517 			}
4518 		}
4519 
4520 		if (!buffer_info->dma) {
4521 			buffer_info->dma = dma_map_page(&pdev->dev,
4522 							buffer_info->rxbuf.page, 0,
4523 							adapter->rx_buffer_len,
4524 							DMA_FROM_DEVICE);
4525 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4526 				put_page(buffer_info->rxbuf.page);
4527 				buffer_info->rxbuf.page = NULL;
4528 				buffer_info->dma = 0;
4529 				adapter->alloc_rx_buff_failed++;
4530 				break;
4531 			}
4532 		}
4533 
4534 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4535 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4536 
4537 		if (unlikely(++i == rx_ring->count))
4538 			i = 0;
4539 		buffer_info = &rx_ring->buffer_info[i];
4540 	}
4541 
4542 	if (likely(rx_ring->next_to_use != i)) {
4543 		rx_ring->next_to_use = i;
4544 		if (unlikely(i-- == 0))
4545 			i = (rx_ring->count - 1);
4546 
4547 		/* Force memory writes to complete before letting h/w
4548 		 * know there are new descriptors to fetch.  (Only
4549 		 * applicable for weak-ordered memory model archs,
4550 		 * such as IA-64).
4551 		 */
4552 		dma_wmb();
4553 		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4554 	}
4555 }
4556 
4557 /**
4558  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4559  * @adapter: address of board private structure
4560  * @rx_ring: pointer to ring struct
4561  * @cleaned_count: number of new Rx buffers to try to allocate
4562  **/
4563 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4564 				   struct e1000_rx_ring *rx_ring,
4565 				   int cleaned_count)
4566 {
4567 	struct e1000_hw *hw = &adapter->hw;
4568 	struct pci_dev *pdev = adapter->pdev;
4569 	struct e1000_rx_desc *rx_desc;
4570 	struct e1000_rx_buffer *buffer_info;
4571 	unsigned int i;
4572 	unsigned int bufsz = adapter->rx_buffer_len;
4573 
4574 	i = rx_ring->next_to_use;
4575 	buffer_info = &rx_ring->buffer_info[i];
4576 
4577 	while (cleaned_count--) {
4578 		void *data;
4579 
4580 		if (buffer_info->rxbuf.data)
4581 			goto skip;
4582 
4583 		data = e1000_alloc_frag(adapter);
4584 		if (!data) {
4585 			/* Better luck next round */
4586 			adapter->alloc_rx_buff_failed++;
4587 			break;
4588 		}
4589 
4590 		/* Fix for errata 23, can't cross 64kB boundary */
4591 		if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4592 			void *olddata = data;
4593 			e_err(rx_err, "skb align check failed: %u bytes at "
4594 			      "%p\n", bufsz, data);
4595 			/* Try again, without freeing the previous */
4596 			data = e1000_alloc_frag(adapter);
4597 			/* Failed allocation, critical failure */
4598 			if (!data) {
4599 				skb_free_frag(olddata);
4600 				adapter->alloc_rx_buff_failed++;
4601 				break;
4602 			}
4603 
4604 			if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4605 				/* give up */
4606 				skb_free_frag(data);
4607 				skb_free_frag(olddata);
4608 				adapter->alloc_rx_buff_failed++;
4609 				break;
4610 			}
4611 
4612 			/* Use new allocation */
4613 			skb_free_frag(olddata);
4614 		}
4615 		buffer_info->dma = dma_map_single(&pdev->dev,
4616 						  data,
4617 						  adapter->rx_buffer_len,
4618 						  DMA_FROM_DEVICE);
4619 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4620 			skb_free_frag(data);
4621 			buffer_info->dma = 0;
4622 			adapter->alloc_rx_buff_failed++;
4623 			break;
4624 		}
4625 
4626 		/* XXX if it was allocated cleanly it will never map to a
4627 		 * boundary crossing
4628 		 */
4629 
4630 		/* Fix for errata 23, can't cross 64kB boundary */
4631 		if (!e1000_check_64k_bound(adapter,
4632 					(void *)(unsigned long)buffer_info->dma,
4633 					adapter->rx_buffer_len)) {
4634 			e_err(rx_err, "dma align check failed: %u bytes at "
4635 			      "%p\n", adapter->rx_buffer_len,
4636 			      (void *)(unsigned long)buffer_info->dma);
4637 
4638 			dma_unmap_single(&pdev->dev, buffer_info->dma,
4639 					 adapter->rx_buffer_len,
4640 					 DMA_FROM_DEVICE);
4641 
4642 			skb_free_frag(data);
4643 			buffer_info->rxbuf.data = NULL;
4644 			buffer_info->dma = 0;
4645 
4646 			adapter->alloc_rx_buff_failed++;
4647 			break;
4648 		}
4649 		buffer_info->rxbuf.data = data;
4650  skip:
4651 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4652 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4653 
4654 		if (unlikely(++i == rx_ring->count))
4655 			i = 0;
4656 		buffer_info = &rx_ring->buffer_info[i];
4657 	}
4658 
4659 	if (likely(rx_ring->next_to_use != i)) {
4660 		rx_ring->next_to_use = i;
4661 		if (unlikely(i-- == 0))
4662 			i = (rx_ring->count - 1);
4663 
4664 		/* Force memory writes to complete before letting h/w
4665 		 * know there are new descriptors to fetch.  (Only
4666 		 * applicable for weak-ordered memory model archs,
4667 		 * such as IA-64).
4668 		 */
4669 		dma_wmb();
4670 		writel(i, hw->hw_addr + rx_ring->rdt);
4671 	}
4672 }
4673 
4674 /**
4675  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4676  * @adapter: address of board private structure
4677  **/
4678 static void e1000_smartspeed(struct e1000_adapter *adapter)
4679 {
4680 	struct e1000_hw *hw = &adapter->hw;
4681 	u16 phy_status;
4682 	u16 phy_ctrl;
4683 
4684 	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4685 	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4686 		return;
4687 
4688 	if (adapter->smartspeed == 0) {
4689 		/* If Master/Slave config fault is asserted twice,
4690 		 * we assume back-to-back
4691 		 */
4692 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4693 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4694 			return;
4695 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4696 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4697 			return;
4698 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4699 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4700 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4701 			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4702 					    phy_ctrl);
4703 			adapter->smartspeed++;
4704 			if (!e1000_phy_setup_autoneg(hw) &&
4705 			   !e1000_read_phy_reg(hw, PHY_CTRL,
4706 					       &phy_ctrl)) {
4707 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4708 					     MII_CR_RESTART_AUTO_NEG);
4709 				e1000_write_phy_reg(hw, PHY_CTRL,
4710 						    phy_ctrl);
4711 			}
4712 		}
4713 		return;
4714 	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4715 		/* If still no link, perhaps using 2/3 pair cable */
4716 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4717 		phy_ctrl |= CR_1000T_MS_ENABLE;
4718 		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4719 		if (!e1000_phy_setup_autoneg(hw) &&
4720 		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4721 			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4722 				     MII_CR_RESTART_AUTO_NEG);
4723 			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4724 		}
4725 	}
4726 	/* Restart process after E1000_SMARTSPEED_MAX iterations */
4727 	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4728 		adapter->smartspeed = 0;
4729 }
4730 
4731 /**
4732  * e1000_ioctl - handle ioctl calls
4733  * @netdev: pointer to our netdev
4734  * @ifr: pointer to interface request structure
4735  * @cmd: ioctl data
4736  **/
4737 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4738 {
4739 	switch (cmd) {
4740 	case SIOCGMIIPHY:
4741 	case SIOCGMIIREG:
4742 	case SIOCSMIIREG:
4743 		return e1000_mii_ioctl(netdev, ifr, cmd);
4744 	default:
4745 		return -EOPNOTSUPP;
4746 	}
4747 }
4748 
4749 /**
4750  * e1000_mii_ioctl -
4751  * @netdev: pointer to our netdev
4752  * @ifr: pointer to interface request structure
4753  * @cmd: ioctl data
4754  **/
4755 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4756 			   int cmd)
4757 {
4758 	struct e1000_adapter *adapter = netdev_priv(netdev);
4759 	struct e1000_hw *hw = &adapter->hw;
4760 	struct mii_ioctl_data *data = if_mii(ifr);
4761 	int retval;
4762 	u16 mii_reg;
4763 	unsigned long flags;
4764 
4765 	if (hw->media_type != e1000_media_type_copper)
4766 		return -EOPNOTSUPP;
4767 
4768 	switch (cmd) {
4769 	case SIOCGMIIPHY:
4770 		data->phy_id = hw->phy_addr;
4771 		break;
4772 	case SIOCGMIIREG:
4773 		spin_lock_irqsave(&adapter->stats_lock, flags);
4774 		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4775 				   &data->val_out)) {
4776 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4777 			return -EIO;
4778 		}
4779 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4780 		break;
4781 	case SIOCSMIIREG:
4782 		if (data->reg_num & ~(0x1F))
4783 			return -EFAULT;
4784 		mii_reg = data->val_in;
4785 		spin_lock_irqsave(&adapter->stats_lock, flags);
4786 		if (e1000_write_phy_reg(hw, data->reg_num,
4787 					mii_reg)) {
4788 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4789 			return -EIO;
4790 		}
4791 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4792 		if (hw->media_type == e1000_media_type_copper) {
4793 			switch (data->reg_num) {
4794 			case PHY_CTRL:
4795 				if (mii_reg & MII_CR_POWER_DOWN)
4796 					break;
4797 				if (mii_reg & MII_CR_AUTO_NEG_EN) {
4798 					hw->autoneg = 1;
4799 					hw->autoneg_advertised = 0x2F;
4800 				} else {
4801 					u32 speed;
4802 					if (mii_reg & 0x40)
4803 						speed = SPEED_1000;
4804 					else if (mii_reg & 0x2000)
4805 						speed = SPEED_100;
4806 					else
4807 						speed = SPEED_10;
4808 					retval = e1000_set_spd_dplx(
4809 						adapter, speed,
4810 						((mii_reg & 0x100)
4811 						 ? DUPLEX_FULL :
4812 						 DUPLEX_HALF));
4813 					if (retval)
4814 						return retval;
4815 				}
4816 				if (netif_running(adapter->netdev))
4817 					e1000_reinit_locked(adapter);
4818 				else
4819 					e1000_reset(adapter);
4820 				break;
4821 			case M88E1000_PHY_SPEC_CTRL:
4822 			case M88E1000_EXT_PHY_SPEC_CTRL:
4823 				if (e1000_phy_reset(hw))
4824 					return -EIO;
4825 				break;
4826 			}
4827 		} else {
4828 			switch (data->reg_num) {
4829 			case PHY_CTRL:
4830 				if (mii_reg & MII_CR_POWER_DOWN)
4831 					break;
4832 				if (netif_running(adapter->netdev))
4833 					e1000_reinit_locked(adapter);
4834 				else
4835 					e1000_reset(adapter);
4836 				break;
4837 			}
4838 		}
4839 		break;
4840 	default:
4841 		return -EOPNOTSUPP;
4842 	}
4843 	return E1000_SUCCESS;
4844 }
4845 
4846 void e1000_pci_set_mwi(struct e1000_hw *hw)
4847 {
4848 	struct e1000_adapter *adapter = hw->back;
4849 	int ret_val = pci_set_mwi(adapter->pdev);
4850 
4851 	if (ret_val)
4852 		e_err(probe, "Error in setting MWI\n");
4853 }
4854 
4855 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4856 {
4857 	struct e1000_adapter *adapter = hw->back;
4858 
4859 	pci_clear_mwi(adapter->pdev);
4860 }
4861 
4862 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4863 {
4864 	struct e1000_adapter *adapter = hw->back;
4865 	return pcix_get_mmrbc(adapter->pdev);
4866 }
4867 
4868 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4869 {
4870 	struct e1000_adapter *adapter = hw->back;
4871 	pcix_set_mmrbc(adapter->pdev, mmrbc);
4872 }
4873 
4874 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4875 {
4876 	outl(value, port);
4877 }
4878 
4879 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4880 {
4881 	u16 vid;
4882 
4883 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4884 		return true;
4885 	return false;
4886 }
4887 
4888 static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4889 			      netdev_features_t features)
4890 {
4891 	struct e1000_hw *hw = &adapter->hw;
4892 	u32 ctrl;
4893 
4894 	ctrl = er32(CTRL);
4895 	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4896 		/* enable VLAN tag insert/strip */
4897 		ctrl |= E1000_CTRL_VME;
4898 	} else {
4899 		/* disable VLAN tag insert/strip */
4900 		ctrl &= ~E1000_CTRL_VME;
4901 	}
4902 	ew32(CTRL, ctrl);
4903 }
4904 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4905 				     bool filter_on)
4906 {
4907 	struct e1000_hw *hw = &adapter->hw;
4908 	u32 rctl;
4909 
4910 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4911 		e1000_irq_disable(adapter);
4912 
4913 	__e1000_vlan_mode(adapter, adapter->netdev->features);
4914 	if (filter_on) {
4915 		/* enable VLAN receive filtering */
4916 		rctl = er32(RCTL);
4917 		rctl &= ~E1000_RCTL_CFIEN;
4918 		if (!(adapter->netdev->flags & IFF_PROMISC))
4919 			rctl |= E1000_RCTL_VFE;
4920 		ew32(RCTL, rctl);
4921 		e1000_update_mng_vlan(adapter);
4922 	} else {
4923 		/* disable VLAN receive filtering */
4924 		rctl = er32(RCTL);
4925 		rctl &= ~E1000_RCTL_VFE;
4926 		ew32(RCTL, rctl);
4927 	}
4928 
4929 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4930 		e1000_irq_enable(adapter);
4931 }
4932 
4933 static void e1000_vlan_mode(struct net_device *netdev,
4934 			    netdev_features_t features)
4935 {
4936 	struct e1000_adapter *adapter = netdev_priv(netdev);
4937 
4938 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4939 		e1000_irq_disable(adapter);
4940 
4941 	__e1000_vlan_mode(adapter, features);
4942 
4943 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4944 		e1000_irq_enable(adapter);
4945 }
4946 
4947 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4948 				 __be16 proto, u16 vid)
4949 {
4950 	struct e1000_adapter *adapter = netdev_priv(netdev);
4951 	struct e1000_hw *hw = &adapter->hw;
4952 	u32 vfta, index;
4953 
4954 	if ((hw->mng_cookie.status &
4955 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4956 	    (vid == adapter->mng_vlan_id))
4957 		return 0;
4958 
4959 	if (!e1000_vlan_used(adapter))
4960 		e1000_vlan_filter_on_off(adapter, true);
4961 
4962 	/* add VID to filter table */
4963 	index = (vid >> 5) & 0x7F;
4964 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4965 	vfta |= (1 << (vid & 0x1F));
4966 	e1000_write_vfta(hw, index, vfta);
4967 
4968 	set_bit(vid, adapter->active_vlans);
4969 
4970 	return 0;
4971 }
4972 
4973 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4974 				  __be16 proto, u16 vid)
4975 {
4976 	struct e1000_adapter *adapter = netdev_priv(netdev);
4977 	struct e1000_hw *hw = &adapter->hw;
4978 	u32 vfta, index;
4979 
4980 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4981 		e1000_irq_disable(adapter);
4982 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4983 		e1000_irq_enable(adapter);
4984 
4985 	/* remove VID from filter table */
4986 	index = (vid >> 5) & 0x7F;
4987 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4988 	vfta &= ~(1 << (vid & 0x1F));
4989 	e1000_write_vfta(hw, index, vfta);
4990 
4991 	clear_bit(vid, adapter->active_vlans);
4992 
4993 	if (!e1000_vlan_used(adapter))
4994 		e1000_vlan_filter_on_off(adapter, false);
4995 
4996 	return 0;
4997 }
4998 
4999 static void e1000_restore_vlan(struct e1000_adapter *adapter)
5000 {
5001 	u16 vid;
5002 
5003 	if (!e1000_vlan_used(adapter))
5004 		return;
5005 
5006 	e1000_vlan_filter_on_off(adapter, true);
5007 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5008 		e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5009 }
5010 
5011 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5012 {
5013 	struct e1000_hw *hw = &adapter->hw;
5014 
5015 	hw->autoneg = 0;
5016 
5017 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
5018 	 * for the switch() below to work
5019 	 */
5020 	if ((spd & 1) || (dplx & ~1))
5021 		goto err_inval;
5022 
5023 	/* Fiber NICs only allow 1000 gbps Full duplex */
5024 	if ((hw->media_type == e1000_media_type_fiber) &&
5025 	    spd != SPEED_1000 &&
5026 	    dplx != DUPLEX_FULL)
5027 		goto err_inval;
5028 
5029 	switch (spd + dplx) {
5030 	case SPEED_10 + DUPLEX_HALF:
5031 		hw->forced_speed_duplex = e1000_10_half;
5032 		break;
5033 	case SPEED_10 + DUPLEX_FULL:
5034 		hw->forced_speed_duplex = e1000_10_full;
5035 		break;
5036 	case SPEED_100 + DUPLEX_HALF:
5037 		hw->forced_speed_duplex = e1000_100_half;
5038 		break;
5039 	case SPEED_100 + DUPLEX_FULL:
5040 		hw->forced_speed_duplex = e1000_100_full;
5041 		break;
5042 	case SPEED_1000 + DUPLEX_FULL:
5043 		hw->autoneg = 1;
5044 		hw->autoneg_advertised = ADVERTISE_1000_FULL;
5045 		break;
5046 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
5047 	default:
5048 		goto err_inval;
5049 	}
5050 
5051 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5052 	hw->mdix = AUTO_ALL_MODES;
5053 
5054 	return 0;
5055 
5056 err_inval:
5057 	e_err(probe, "Unsupported Speed/Duplex configuration\n");
5058 	return -EINVAL;
5059 }
5060 
5061 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5062 {
5063 	struct net_device *netdev = pci_get_drvdata(pdev);
5064 	struct e1000_adapter *adapter = netdev_priv(netdev);
5065 	struct e1000_hw *hw = &adapter->hw;
5066 	u32 ctrl, ctrl_ext, rctl, status;
5067 	u32 wufc = adapter->wol;
5068 
5069 	netif_device_detach(netdev);
5070 
5071 	if (netif_running(netdev)) {
5072 		int count = E1000_CHECK_RESET_COUNT;
5073 
5074 		while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5075 			usleep_range(10000, 20000);
5076 
5077 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5078 		rtnl_lock();
5079 		e1000_down(adapter);
5080 		rtnl_unlock();
5081 	}
5082 
5083 	status = er32(STATUS);
5084 	if (status & E1000_STATUS_LU)
5085 		wufc &= ~E1000_WUFC_LNKC;
5086 
5087 	if (wufc) {
5088 		e1000_setup_rctl(adapter);
5089 		e1000_set_rx_mode(netdev);
5090 
5091 		rctl = er32(RCTL);
5092 
5093 		/* turn on all-multi mode if wake on multicast is enabled */
5094 		if (wufc & E1000_WUFC_MC)
5095 			rctl |= E1000_RCTL_MPE;
5096 
5097 		/* enable receives in the hardware */
5098 		ew32(RCTL, rctl | E1000_RCTL_EN);
5099 
5100 		if (hw->mac_type >= e1000_82540) {
5101 			ctrl = er32(CTRL);
5102 			/* advertise wake from D3Cold */
5103 			#define E1000_CTRL_ADVD3WUC 0x00100000
5104 			/* phy power management enable */
5105 			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5106 			ctrl |= E1000_CTRL_ADVD3WUC |
5107 				E1000_CTRL_EN_PHY_PWR_MGMT;
5108 			ew32(CTRL, ctrl);
5109 		}
5110 
5111 		if (hw->media_type == e1000_media_type_fiber ||
5112 		    hw->media_type == e1000_media_type_internal_serdes) {
5113 			/* keep the laser running in D3 */
5114 			ctrl_ext = er32(CTRL_EXT);
5115 			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5116 			ew32(CTRL_EXT, ctrl_ext);
5117 		}
5118 
5119 		ew32(WUC, E1000_WUC_PME_EN);
5120 		ew32(WUFC, wufc);
5121 	} else {
5122 		ew32(WUC, 0);
5123 		ew32(WUFC, 0);
5124 	}
5125 
5126 	e1000_release_manageability(adapter);
5127 
5128 	*enable_wake = !!wufc;
5129 
5130 	/* make sure adapter isn't asleep if manageability is enabled */
5131 	if (adapter->en_mng_pt)
5132 		*enable_wake = true;
5133 
5134 	if (netif_running(netdev))
5135 		e1000_free_irq(adapter);
5136 
5137 	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5138 		pci_disable_device(pdev);
5139 
5140 	return 0;
5141 }
5142 
5143 static int e1000_suspend(struct device *dev)
5144 {
5145 	int retval;
5146 	struct pci_dev *pdev = to_pci_dev(dev);
5147 	bool wake;
5148 
5149 	retval = __e1000_shutdown(pdev, &wake);
5150 	device_set_wakeup_enable(dev, wake);
5151 
5152 	return retval;
5153 }
5154 
5155 static int e1000_resume(struct device *dev)
5156 {
5157 	struct pci_dev *pdev = to_pci_dev(dev);
5158 	struct net_device *netdev = pci_get_drvdata(pdev);
5159 	struct e1000_adapter *adapter = netdev_priv(netdev);
5160 	struct e1000_hw *hw = &adapter->hw;
5161 	u32 err;
5162 
5163 	if (adapter->need_ioport)
5164 		err = pci_enable_device(pdev);
5165 	else
5166 		err = pci_enable_device_mem(pdev);
5167 	if (err) {
5168 		pr_err("Cannot enable PCI device from suspend\n");
5169 		return err;
5170 	}
5171 
5172 	/* flush memory to make sure state is correct */
5173 	smp_mb__before_atomic();
5174 	clear_bit(__E1000_DISABLED, &adapter->flags);
5175 	pci_set_master(pdev);
5176 
5177 	pci_enable_wake(pdev, PCI_D3hot, 0);
5178 	pci_enable_wake(pdev, PCI_D3cold, 0);
5179 
5180 	if (netif_running(netdev)) {
5181 		err = e1000_request_irq(adapter);
5182 		if (err)
5183 			return err;
5184 	}
5185 
5186 	e1000_power_up_phy(adapter);
5187 	e1000_reset(adapter);
5188 	ew32(WUS, ~0);
5189 
5190 	e1000_init_manageability(adapter);
5191 
5192 	if (netif_running(netdev))
5193 		e1000_up(adapter);
5194 
5195 	netif_device_attach(netdev);
5196 
5197 	return 0;
5198 }
5199 
5200 static void e1000_shutdown(struct pci_dev *pdev)
5201 {
5202 	bool wake;
5203 
5204 	__e1000_shutdown(pdev, &wake);
5205 
5206 	if (system_state == SYSTEM_POWER_OFF) {
5207 		pci_wake_from_d3(pdev, wake);
5208 		pci_set_power_state(pdev, PCI_D3hot);
5209 	}
5210 }
5211 
5212 #ifdef CONFIG_NET_POLL_CONTROLLER
5213 /* Polling 'interrupt' - used by things like netconsole to send skbs
5214  * without having to re-enable interrupts. It's not called while
5215  * the interrupt routine is executing.
5216  */
5217 static void e1000_netpoll(struct net_device *netdev)
5218 {
5219 	struct e1000_adapter *adapter = netdev_priv(netdev);
5220 
5221 	if (disable_hardirq(adapter->pdev->irq))
5222 		e1000_intr(adapter->pdev->irq, netdev);
5223 	enable_irq(adapter->pdev->irq);
5224 }
5225 #endif
5226 
5227 /**
5228  * e1000_io_error_detected - called when PCI error is detected
5229  * @pdev: Pointer to PCI device
5230  * @state: The current pci connection state
5231  *
5232  * This function is called after a PCI bus error affecting
5233  * this device has been detected.
5234  */
5235 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5236 						pci_channel_state_t state)
5237 {
5238 	struct net_device *netdev = pci_get_drvdata(pdev);
5239 	struct e1000_adapter *adapter = netdev_priv(netdev);
5240 
5241 	rtnl_lock();
5242 	netif_device_detach(netdev);
5243 
5244 	if (state == pci_channel_io_perm_failure) {
5245 		rtnl_unlock();
5246 		return PCI_ERS_RESULT_DISCONNECT;
5247 	}
5248 
5249 	if (netif_running(netdev))
5250 		e1000_down(adapter);
5251 
5252 	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5253 		pci_disable_device(pdev);
5254 	rtnl_unlock();
5255 
5256 	/* Request a slot reset. */
5257 	return PCI_ERS_RESULT_NEED_RESET;
5258 }
5259 
5260 /**
5261  * e1000_io_slot_reset - called after the pci bus has been reset.
5262  * @pdev: Pointer to PCI device
5263  *
5264  * Restart the card from scratch, as if from a cold-boot. Implementation
5265  * resembles the first-half of the e1000_resume routine.
5266  */
5267 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5268 {
5269 	struct net_device *netdev = pci_get_drvdata(pdev);
5270 	struct e1000_adapter *adapter = netdev_priv(netdev);
5271 	struct e1000_hw *hw = &adapter->hw;
5272 	int err;
5273 
5274 	if (adapter->need_ioport)
5275 		err = pci_enable_device(pdev);
5276 	else
5277 		err = pci_enable_device_mem(pdev);
5278 	if (err) {
5279 		pr_err("Cannot re-enable PCI device after reset.\n");
5280 		return PCI_ERS_RESULT_DISCONNECT;
5281 	}
5282 
5283 	/* flush memory to make sure state is correct */
5284 	smp_mb__before_atomic();
5285 	clear_bit(__E1000_DISABLED, &adapter->flags);
5286 	pci_set_master(pdev);
5287 
5288 	pci_enable_wake(pdev, PCI_D3hot, 0);
5289 	pci_enable_wake(pdev, PCI_D3cold, 0);
5290 
5291 	e1000_reset(adapter);
5292 	ew32(WUS, ~0);
5293 
5294 	return PCI_ERS_RESULT_RECOVERED;
5295 }
5296 
5297 /**
5298  * e1000_io_resume - called when traffic can start flowing again.
5299  * @pdev: Pointer to PCI device
5300  *
5301  * This callback is called when the error recovery driver tells us that
5302  * its OK to resume normal operation. Implementation resembles the
5303  * second-half of the e1000_resume routine.
5304  */
5305 static void e1000_io_resume(struct pci_dev *pdev)
5306 {
5307 	struct net_device *netdev = pci_get_drvdata(pdev);
5308 	struct e1000_adapter *adapter = netdev_priv(netdev);
5309 
5310 	e1000_init_manageability(adapter);
5311 
5312 	if (netif_running(netdev)) {
5313 		if (e1000_up(adapter)) {
5314 			pr_info("can't bring device back up after reset\n");
5315 			return;
5316 		}
5317 	}
5318 
5319 	netif_device_attach(netdev);
5320 }
5321 
5322 /* e1000_main.c */
5323