1 /******************************************************************************* 2 3 Intel PRO/1000 Linux driver 4 Copyright(c) 1999 - 2006 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27 *******************************************************************************/ 28 29 #include "e1000.h" 30 #include <net/ip6_checksum.h> 31 #include <linux/io.h> 32 #include <linux/prefetch.h> 33 #include <linux/bitops.h> 34 #include <linux/if_vlan.h> 35 36 char e1000_driver_name[] = "e1000"; 37 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver"; 38 #define DRV_VERSION "7.3.21-k8-NAPI" 39 const char e1000_driver_version[] = DRV_VERSION; 40 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation."; 41 42 /* e1000_pci_tbl - PCI Device ID Table 43 * 44 * Last entry must be all 0s 45 * 46 * Macro expands to... 47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)} 48 */ 49 static const struct pci_device_id e1000_pci_tbl[] = { 50 INTEL_E1000_ETHERNET_DEVICE(0x1000), 51 INTEL_E1000_ETHERNET_DEVICE(0x1001), 52 INTEL_E1000_ETHERNET_DEVICE(0x1004), 53 INTEL_E1000_ETHERNET_DEVICE(0x1008), 54 INTEL_E1000_ETHERNET_DEVICE(0x1009), 55 INTEL_E1000_ETHERNET_DEVICE(0x100C), 56 INTEL_E1000_ETHERNET_DEVICE(0x100D), 57 INTEL_E1000_ETHERNET_DEVICE(0x100E), 58 INTEL_E1000_ETHERNET_DEVICE(0x100F), 59 INTEL_E1000_ETHERNET_DEVICE(0x1010), 60 INTEL_E1000_ETHERNET_DEVICE(0x1011), 61 INTEL_E1000_ETHERNET_DEVICE(0x1012), 62 INTEL_E1000_ETHERNET_DEVICE(0x1013), 63 INTEL_E1000_ETHERNET_DEVICE(0x1014), 64 INTEL_E1000_ETHERNET_DEVICE(0x1015), 65 INTEL_E1000_ETHERNET_DEVICE(0x1016), 66 INTEL_E1000_ETHERNET_DEVICE(0x1017), 67 INTEL_E1000_ETHERNET_DEVICE(0x1018), 68 INTEL_E1000_ETHERNET_DEVICE(0x1019), 69 INTEL_E1000_ETHERNET_DEVICE(0x101A), 70 INTEL_E1000_ETHERNET_DEVICE(0x101D), 71 INTEL_E1000_ETHERNET_DEVICE(0x101E), 72 INTEL_E1000_ETHERNET_DEVICE(0x1026), 73 INTEL_E1000_ETHERNET_DEVICE(0x1027), 74 INTEL_E1000_ETHERNET_DEVICE(0x1028), 75 INTEL_E1000_ETHERNET_DEVICE(0x1075), 76 INTEL_E1000_ETHERNET_DEVICE(0x1076), 77 INTEL_E1000_ETHERNET_DEVICE(0x1077), 78 INTEL_E1000_ETHERNET_DEVICE(0x1078), 79 INTEL_E1000_ETHERNET_DEVICE(0x1079), 80 INTEL_E1000_ETHERNET_DEVICE(0x107A), 81 INTEL_E1000_ETHERNET_DEVICE(0x107B), 82 INTEL_E1000_ETHERNET_DEVICE(0x107C), 83 INTEL_E1000_ETHERNET_DEVICE(0x108A), 84 INTEL_E1000_ETHERNET_DEVICE(0x1099), 85 INTEL_E1000_ETHERNET_DEVICE(0x10B5), 86 INTEL_E1000_ETHERNET_DEVICE(0x2E6E), 87 /* required last entry */ 88 {0,} 89 }; 90 91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); 92 93 int e1000_up(struct e1000_adapter *adapter); 94 void e1000_down(struct e1000_adapter *adapter); 95 void e1000_reinit_locked(struct e1000_adapter *adapter); 96 void e1000_reset(struct e1000_adapter *adapter); 97 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter); 98 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter); 99 void e1000_free_all_tx_resources(struct e1000_adapter *adapter); 100 void e1000_free_all_rx_resources(struct e1000_adapter *adapter); 101 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, 102 struct e1000_tx_ring *txdr); 103 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, 104 struct e1000_rx_ring *rxdr); 105 static void e1000_free_tx_resources(struct e1000_adapter *adapter, 106 struct e1000_tx_ring *tx_ring); 107 static void e1000_free_rx_resources(struct e1000_adapter *adapter, 108 struct e1000_rx_ring *rx_ring); 109 void e1000_update_stats(struct e1000_adapter *adapter); 110 111 static int e1000_init_module(void); 112 static void e1000_exit_module(void); 113 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent); 114 static void e1000_remove(struct pci_dev *pdev); 115 static int e1000_alloc_queues(struct e1000_adapter *adapter); 116 static int e1000_sw_init(struct e1000_adapter *adapter); 117 static int e1000_open(struct net_device *netdev); 118 static int e1000_close(struct net_device *netdev); 119 static void e1000_configure_tx(struct e1000_adapter *adapter); 120 static void e1000_configure_rx(struct e1000_adapter *adapter); 121 static void e1000_setup_rctl(struct e1000_adapter *adapter); 122 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter); 123 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter); 124 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, 125 struct e1000_tx_ring *tx_ring); 126 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, 127 struct e1000_rx_ring *rx_ring); 128 static void e1000_set_rx_mode(struct net_device *netdev); 129 static void e1000_update_phy_info_task(struct work_struct *work); 130 static void e1000_watchdog(struct work_struct *work); 131 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work); 132 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, 133 struct net_device *netdev); 134 static struct net_device_stats * e1000_get_stats(struct net_device *netdev); 135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu); 136 static int e1000_set_mac(struct net_device *netdev, void *p); 137 static irqreturn_t e1000_intr(int irq, void *data); 138 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, 139 struct e1000_tx_ring *tx_ring); 140 static int e1000_clean(struct napi_struct *napi, int budget); 141 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, 142 struct e1000_rx_ring *rx_ring, 143 int *work_done, int work_to_do); 144 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, 145 struct e1000_rx_ring *rx_ring, 146 int *work_done, int work_to_do); 147 static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter, 148 struct e1000_rx_ring *rx_ring, 149 int cleaned_count) 150 { 151 } 152 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, 153 struct e1000_rx_ring *rx_ring, 154 int cleaned_count); 155 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, 156 struct e1000_rx_ring *rx_ring, 157 int cleaned_count); 158 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); 159 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, 160 int cmd); 161 static void e1000_enter_82542_rst(struct e1000_adapter *adapter); 162 static void e1000_leave_82542_rst(struct e1000_adapter *adapter); 163 static void e1000_tx_timeout(struct net_device *dev); 164 static void e1000_reset_task(struct work_struct *work); 165 static void e1000_smartspeed(struct e1000_adapter *adapter); 166 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, 167 struct sk_buff *skb); 168 169 static bool e1000_vlan_used(struct e1000_adapter *adapter); 170 static void e1000_vlan_mode(struct net_device *netdev, 171 netdev_features_t features); 172 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter, 173 bool filter_on); 174 static int e1000_vlan_rx_add_vid(struct net_device *netdev, 175 __be16 proto, u16 vid); 176 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, 177 __be16 proto, u16 vid); 178 static void e1000_restore_vlan(struct e1000_adapter *adapter); 179 180 #ifdef CONFIG_PM 181 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state); 182 static int e1000_resume(struct pci_dev *pdev); 183 #endif 184 static void e1000_shutdown(struct pci_dev *pdev); 185 186 #ifdef CONFIG_NET_POLL_CONTROLLER 187 /* for netdump / net console */ 188 static void e1000_netpoll (struct net_device *netdev); 189 #endif 190 191 #define COPYBREAK_DEFAULT 256 192 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT; 193 module_param(copybreak, uint, 0644); 194 MODULE_PARM_DESC(copybreak, 195 "Maximum size of packet that is copied to a new buffer on receive"); 196 197 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, 198 pci_channel_state_t state); 199 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev); 200 static void e1000_io_resume(struct pci_dev *pdev); 201 202 static const struct pci_error_handlers e1000_err_handler = { 203 .error_detected = e1000_io_error_detected, 204 .slot_reset = e1000_io_slot_reset, 205 .resume = e1000_io_resume, 206 }; 207 208 static struct pci_driver e1000_driver = { 209 .name = e1000_driver_name, 210 .id_table = e1000_pci_tbl, 211 .probe = e1000_probe, 212 .remove = e1000_remove, 213 #ifdef CONFIG_PM 214 /* Power Management Hooks */ 215 .suspend = e1000_suspend, 216 .resume = e1000_resume, 217 #endif 218 .shutdown = e1000_shutdown, 219 .err_handler = &e1000_err_handler 220 }; 221 222 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 223 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); 224 MODULE_LICENSE("GPL"); 225 MODULE_VERSION(DRV_VERSION); 226 227 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 228 static int debug = -1; 229 module_param(debug, int, 0); 230 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 231 232 /** 233 * e1000_get_hw_dev - return device 234 * used by hardware layer to print debugging information 235 * 236 **/ 237 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw) 238 { 239 struct e1000_adapter *adapter = hw->back; 240 return adapter->netdev; 241 } 242 243 /** 244 * e1000_init_module - Driver Registration Routine 245 * 246 * e1000_init_module is the first routine called when the driver is 247 * loaded. All it does is register with the PCI subsystem. 248 **/ 249 static int __init e1000_init_module(void) 250 { 251 int ret; 252 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version); 253 254 pr_info("%s\n", e1000_copyright); 255 256 ret = pci_register_driver(&e1000_driver); 257 if (copybreak != COPYBREAK_DEFAULT) { 258 if (copybreak == 0) 259 pr_info("copybreak disabled\n"); 260 else 261 pr_info("copybreak enabled for " 262 "packets <= %u bytes\n", copybreak); 263 } 264 return ret; 265 } 266 267 module_init(e1000_init_module); 268 269 /** 270 * e1000_exit_module - Driver Exit Cleanup Routine 271 * 272 * e1000_exit_module is called just before the driver is removed 273 * from memory. 274 **/ 275 static void __exit e1000_exit_module(void) 276 { 277 pci_unregister_driver(&e1000_driver); 278 } 279 280 module_exit(e1000_exit_module); 281 282 static int e1000_request_irq(struct e1000_adapter *adapter) 283 { 284 struct net_device *netdev = adapter->netdev; 285 irq_handler_t handler = e1000_intr; 286 int irq_flags = IRQF_SHARED; 287 int err; 288 289 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name, 290 netdev); 291 if (err) { 292 e_err(probe, "Unable to allocate interrupt Error: %d\n", err); 293 } 294 295 return err; 296 } 297 298 static void e1000_free_irq(struct e1000_adapter *adapter) 299 { 300 struct net_device *netdev = adapter->netdev; 301 302 free_irq(adapter->pdev->irq, netdev); 303 } 304 305 /** 306 * e1000_irq_disable - Mask off interrupt generation on the NIC 307 * @adapter: board private structure 308 **/ 309 static void e1000_irq_disable(struct e1000_adapter *adapter) 310 { 311 struct e1000_hw *hw = &adapter->hw; 312 313 ew32(IMC, ~0); 314 E1000_WRITE_FLUSH(); 315 synchronize_irq(adapter->pdev->irq); 316 } 317 318 /** 319 * e1000_irq_enable - Enable default interrupt generation settings 320 * @adapter: board private structure 321 **/ 322 static void e1000_irq_enable(struct e1000_adapter *adapter) 323 { 324 struct e1000_hw *hw = &adapter->hw; 325 326 ew32(IMS, IMS_ENABLE_MASK); 327 E1000_WRITE_FLUSH(); 328 } 329 330 static void e1000_update_mng_vlan(struct e1000_adapter *adapter) 331 { 332 struct e1000_hw *hw = &adapter->hw; 333 struct net_device *netdev = adapter->netdev; 334 u16 vid = hw->mng_cookie.vlan_id; 335 u16 old_vid = adapter->mng_vlan_id; 336 337 if (!e1000_vlan_used(adapter)) 338 return; 339 340 if (!test_bit(vid, adapter->active_vlans)) { 341 if (hw->mng_cookie.status & 342 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) { 343 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid); 344 adapter->mng_vlan_id = vid; 345 } else { 346 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 347 } 348 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && 349 (vid != old_vid) && 350 !test_bit(old_vid, adapter->active_vlans)) 351 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), 352 old_vid); 353 } else { 354 adapter->mng_vlan_id = vid; 355 } 356 } 357 358 static void e1000_init_manageability(struct e1000_adapter *adapter) 359 { 360 struct e1000_hw *hw = &adapter->hw; 361 362 if (adapter->en_mng_pt) { 363 u32 manc = er32(MANC); 364 365 /* disable hardware interception of ARP */ 366 manc &= ~(E1000_MANC_ARP_EN); 367 368 ew32(MANC, manc); 369 } 370 } 371 372 static void e1000_release_manageability(struct e1000_adapter *adapter) 373 { 374 struct e1000_hw *hw = &adapter->hw; 375 376 if (adapter->en_mng_pt) { 377 u32 manc = er32(MANC); 378 379 /* re-enable hardware interception of ARP */ 380 manc |= E1000_MANC_ARP_EN; 381 382 ew32(MANC, manc); 383 } 384 } 385 386 /** 387 * e1000_configure - configure the hardware for RX and TX 388 * @adapter = private board structure 389 **/ 390 static void e1000_configure(struct e1000_adapter *adapter) 391 { 392 struct net_device *netdev = adapter->netdev; 393 int i; 394 395 e1000_set_rx_mode(netdev); 396 397 e1000_restore_vlan(adapter); 398 e1000_init_manageability(adapter); 399 400 e1000_configure_tx(adapter); 401 e1000_setup_rctl(adapter); 402 e1000_configure_rx(adapter); 403 /* call E1000_DESC_UNUSED which always leaves 404 * at least 1 descriptor unused to make sure 405 * next_to_use != next_to_clean 406 */ 407 for (i = 0; i < adapter->num_rx_queues; i++) { 408 struct e1000_rx_ring *ring = &adapter->rx_ring[i]; 409 adapter->alloc_rx_buf(adapter, ring, 410 E1000_DESC_UNUSED(ring)); 411 } 412 } 413 414 int e1000_up(struct e1000_adapter *adapter) 415 { 416 struct e1000_hw *hw = &adapter->hw; 417 418 /* hardware has been reset, we need to reload some things */ 419 e1000_configure(adapter); 420 421 clear_bit(__E1000_DOWN, &adapter->flags); 422 423 napi_enable(&adapter->napi); 424 425 e1000_irq_enable(adapter); 426 427 netif_wake_queue(adapter->netdev); 428 429 /* fire a link change interrupt to start the watchdog */ 430 ew32(ICS, E1000_ICS_LSC); 431 return 0; 432 } 433 434 /** 435 * e1000_power_up_phy - restore link in case the phy was powered down 436 * @adapter: address of board private structure 437 * 438 * The phy may be powered down to save power and turn off link when the 439 * driver is unloaded and wake on lan is not enabled (among others) 440 * *** this routine MUST be followed by a call to e1000_reset *** 441 **/ 442 void e1000_power_up_phy(struct e1000_adapter *adapter) 443 { 444 struct e1000_hw *hw = &adapter->hw; 445 u16 mii_reg = 0; 446 447 /* Just clear the power down bit to wake the phy back up */ 448 if (hw->media_type == e1000_media_type_copper) { 449 /* according to the manual, the phy will retain its 450 * settings across a power-down/up cycle 451 */ 452 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); 453 mii_reg &= ~MII_CR_POWER_DOWN; 454 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); 455 } 456 } 457 458 static void e1000_power_down_phy(struct e1000_adapter *adapter) 459 { 460 struct e1000_hw *hw = &adapter->hw; 461 462 /* Power down the PHY so no link is implied when interface is down * 463 * The PHY cannot be powered down if any of the following is true * 464 * (a) WoL is enabled 465 * (b) AMT is active 466 * (c) SoL/IDER session is active 467 */ 468 if (!adapter->wol && hw->mac_type >= e1000_82540 && 469 hw->media_type == e1000_media_type_copper) { 470 u16 mii_reg = 0; 471 472 switch (hw->mac_type) { 473 case e1000_82540: 474 case e1000_82545: 475 case e1000_82545_rev_3: 476 case e1000_82546: 477 case e1000_ce4100: 478 case e1000_82546_rev_3: 479 case e1000_82541: 480 case e1000_82541_rev_2: 481 case e1000_82547: 482 case e1000_82547_rev_2: 483 if (er32(MANC) & E1000_MANC_SMBUS_EN) 484 goto out; 485 break; 486 default: 487 goto out; 488 } 489 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); 490 mii_reg |= MII_CR_POWER_DOWN; 491 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); 492 msleep(1); 493 } 494 out: 495 return; 496 } 497 498 static void e1000_down_and_stop(struct e1000_adapter *adapter) 499 { 500 set_bit(__E1000_DOWN, &adapter->flags); 501 502 cancel_delayed_work_sync(&adapter->watchdog_task); 503 504 /* 505 * Since the watchdog task can reschedule other tasks, we should cancel 506 * it first, otherwise we can run into the situation when a work is 507 * still running after the adapter has been turned down. 508 */ 509 510 cancel_delayed_work_sync(&adapter->phy_info_task); 511 cancel_delayed_work_sync(&adapter->fifo_stall_task); 512 513 /* Only kill reset task if adapter is not resetting */ 514 if (!test_bit(__E1000_RESETTING, &adapter->flags)) 515 cancel_work_sync(&adapter->reset_task); 516 } 517 518 void e1000_down(struct e1000_adapter *adapter) 519 { 520 struct e1000_hw *hw = &adapter->hw; 521 struct net_device *netdev = adapter->netdev; 522 u32 rctl, tctl; 523 524 netif_carrier_off(netdev); 525 526 /* disable receives in the hardware */ 527 rctl = er32(RCTL); 528 ew32(RCTL, rctl & ~E1000_RCTL_EN); 529 /* flush and sleep below */ 530 531 netif_tx_disable(netdev); 532 533 /* disable transmits in the hardware */ 534 tctl = er32(TCTL); 535 tctl &= ~E1000_TCTL_EN; 536 ew32(TCTL, tctl); 537 /* flush both disables and wait for them to finish */ 538 E1000_WRITE_FLUSH(); 539 msleep(10); 540 541 napi_disable(&adapter->napi); 542 543 e1000_irq_disable(adapter); 544 545 /* Setting DOWN must be after irq_disable to prevent 546 * a screaming interrupt. Setting DOWN also prevents 547 * tasks from rescheduling. 548 */ 549 e1000_down_and_stop(adapter); 550 551 adapter->link_speed = 0; 552 adapter->link_duplex = 0; 553 554 e1000_reset(adapter); 555 e1000_clean_all_tx_rings(adapter); 556 e1000_clean_all_rx_rings(adapter); 557 } 558 559 void e1000_reinit_locked(struct e1000_adapter *adapter) 560 { 561 WARN_ON(in_interrupt()); 562 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 563 msleep(1); 564 e1000_down(adapter); 565 e1000_up(adapter); 566 clear_bit(__E1000_RESETTING, &adapter->flags); 567 } 568 569 void e1000_reset(struct e1000_adapter *adapter) 570 { 571 struct e1000_hw *hw = &adapter->hw; 572 u32 pba = 0, tx_space, min_tx_space, min_rx_space; 573 bool legacy_pba_adjust = false; 574 u16 hwm; 575 576 /* Repartition Pba for greater than 9k mtu 577 * To take effect CTRL.RST is required. 578 */ 579 580 switch (hw->mac_type) { 581 case e1000_82542_rev2_0: 582 case e1000_82542_rev2_1: 583 case e1000_82543: 584 case e1000_82544: 585 case e1000_82540: 586 case e1000_82541: 587 case e1000_82541_rev_2: 588 legacy_pba_adjust = true; 589 pba = E1000_PBA_48K; 590 break; 591 case e1000_82545: 592 case e1000_82545_rev_3: 593 case e1000_82546: 594 case e1000_ce4100: 595 case e1000_82546_rev_3: 596 pba = E1000_PBA_48K; 597 break; 598 case e1000_82547: 599 case e1000_82547_rev_2: 600 legacy_pba_adjust = true; 601 pba = E1000_PBA_30K; 602 break; 603 case e1000_undefined: 604 case e1000_num_macs: 605 break; 606 } 607 608 if (legacy_pba_adjust) { 609 if (hw->max_frame_size > E1000_RXBUFFER_8192) 610 pba -= 8; /* allocate more FIFO for Tx */ 611 612 if (hw->mac_type == e1000_82547) { 613 adapter->tx_fifo_head = 0; 614 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT; 615 adapter->tx_fifo_size = 616 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT; 617 atomic_set(&adapter->tx_fifo_stall, 0); 618 } 619 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) { 620 /* adjust PBA for jumbo frames */ 621 ew32(PBA, pba); 622 623 /* To maintain wire speed transmits, the Tx FIFO should be 624 * large enough to accommodate two full transmit packets, 625 * rounded up to the next 1KB and expressed in KB. Likewise, 626 * the Rx FIFO should be large enough to accommodate at least 627 * one full receive packet and is similarly rounded up and 628 * expressed in KB. 629 */ 630 pba = er32(PBA); 631 /* upper 16 bits has Tx packet buffer allocation size in KB */ 632 tx_space = pba >> 16; 633 /* lower 16 bits has Rx packet buffer allocation size in KB */ 634 pba &= 0xffff; 635 /* the Tx fifo also stores 16 bytes of information about the Tx 636 * but don't include ethernet FCS because hardware appends it 637 */ 638 min_tx_space = (hw->max_frame_size + 639 sizeof(struct e1000_tx_desc) - 640 ETH_FCS_LEN) * 2; 641 min_tx_space = ALIGN(min_tx_space, 1024); 642 min_tx_space >>= 10; 643 /* software strips receive CRC, so leave room for it */ 644 min_rx_space = hw->max_frame_size; 645 min_rx_space = ALIGN(min_rx_space, 1024); 646 min_rx_space >>= 10; 647 648 /* If current Tx allocation is less than the min Tx FIFO size, 649 * and the min Tx FIFO size is less than the current Rx FIFO 650 * allocation, take space away from current Rx allocation 651 */ 652 if (tx_space < min_tx_space && 653 ((min_tx_space - tx_space) < pba)) { 654 pba = pba - (min_tx_space - tx_space); 655 656 /* PCI/PCIx hardware has PBA alignment constraints */ 657 switch (hw->mac_type) { 658 case e1000_82545 ... e1000_82546_rev_3: 659 pba &= ~(E1000_PBA_8K - 1); 660 break; 661 default: 662 break; 663 } 664 665 /* if short on Rx space, Rx wins and must trump Tx 666 * adjustment or use Early Receive if available 667 */ 668 if (pba < min_rx_space) 669 pba = min_rx_space; 670 } 671 } 672 673 ew32(PBA, pba); 674 675 /* flow control settings: 676 * The high water mark must be low enough to fit one full frame 677 * (or the size used for early receive) above it in the Rx FIFO. 678 * Set it to the lower of: 679 * - 90% of the Rx FIFO size, and 680 * - the full Rx FIFO size minus the early receive size (for parts 681 * with ERT support assuming ERT set to E1000_ERT_2048), or 682 * - the full Rx FIFO size minus one full frame 683 */ 684 hwm = min(((pba << 10) * 9 / 10), 685 ((pba << 10) - hw->max_frame_size)); 686 687 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */ 688 hw->fc_low_water = hw->fc_high_water - 8; 689 hw->fc_pause_time = E1000_FC_PAUSE_TIME; 690 hw->fc_send_xon = 1; 691 hw->fc = hw->original_fc; 692 693 /* Allow time for pending master requests to run */ 694 e1000_reset_hw(hw); 695 if (hw->mac_type >= e1000_82544) 696 ew32(WUC, 0); 697 698 if (e1000_init_hw(hw)) 699 e_dev_err("Hardware Error\n"); 700 e1000_update_mng_vlan(adapter); 701 702 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */ 703 if (hw->mac_type >= e1000_82544 && 704 hw->autoneg == 1 && 705 hw->autoneg_advertised == ADVERTISE_1000_FULL) { 706 u32 ctrl = er32(CTRL); 707 /* clear phy power management bit if we are in gig only mode, 708 * which if enabled will attempt negotiation to 100Mb, which 709 * can cause a loss of link at power off or driver unload 710 */ 711 ctrl &= ~E1000_CTRL_SWDPIN3; 712 ew32(CTRL, ctrl); 713 } 714 715 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ 716 ew32(VET, ETHERNET_IEEE_VLAN_TYPE); 717 718 e1000_reset_adaptive(hw); 719 e1000_phy_get_info(hw, &adapter->phy_info); 720 721 e1000_release_manageability(adapter); 722 } 723 724 /* Dump the eeprom for users having checksum issues */ 725 static void e1000_dump_eeprom(struct e1000_adapter *adapter) 726 { 727 struct net_device *netdev = adapter->netdev; 728 struct ethtool_eeprom eeprom; 729 const struct ethtool_ops *ops = netdev->ethtool_ops; 730 u8 *data; 731 int i; 732 u16 csum_old, csum_new = 0; 733 734 eeprom.len = ops->get_eeprom_len(netdev); 735 eeprom.offset = 0; 736 737 data = kmalloc(eeprom.len, GFP_KERNEL); 738 if (!data) 739 return; 740 741 ops->get_eeprom(netdev, &eeprom, data); 742 743 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) + 744 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8); 745 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2) 746 csum_new += data[i] + (data[i + 1] << 8); 747 csum_new = EEPROM_SUM - csum_new; 748 749 pr_err("/*********************/\n"); 750 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old); 751 pr_err("Calculated : 0x%04x\n", csum_new); 752 753 pr_err("Offset Values\n"); 754 pr_err("======== ======\n"); 755 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0); 756 757 pr_err("Include this output when contacting your support provider.\n"); 758 pr_err("This is not a software error! Something bad happened to\n"); 759 pr_err("your hardware or EEPROM image. Ignoring this problem could\n"); 760 pr_err("result in further problems, possibly loss of data,\n"); 761 pr_err("corruption or system hangs!\n"); 762 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n"); 763 pr_err("which is invalid and requires you to set the proper MAC\n"); 764 pr_err("address manually before continuing to enable this network\n"); 765 pr_err("device. Please inspect the EEPROM dump and report the\n"); 766 pr_err("issue to your hardware vendor or Intel Customer Support.\n"); 767 pr_err("/*********************/\n"); 768 769 kfree(data); 770 } 771 772 /** 773 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not 774 * @pdev: PCI device information struct 775 * 776 * Return true if an adapter needs ioport resources 777 **/ 778 static int e1000_is_need_ioport(struct pci_dev *pdev) 779 { 780 switch (pdev->device) { 781 case E1000_DEV_ID_82540EM: 782 case E1000_DEV_ID_82540EM_LOM: 783 case E1000_DEV_ID_82540EP: 784 case E1000_DEV_ID_82540EP_LOM: 785 case E1000_DEV_ID_82540EP_LP: 786 case E1000_DEV_ID_82541EI: 787 case E1000_DEV_ID_82541EI_MOBILE: 788 case E1000_DEV_ID_82541ER: 789 case E1000_DEV_ID_82541ER_LOM: 790 case E1000_DEV_ID_82541GI: 791 case E1000_DEV_ID_82541GI_LF: 792 case E1000_DEV_ID_82541GI_MOBILE: 793 case E1000_DEV_ID_82544EI_COPPER: 794 case E1000_DEV_ID_82544EI_FIBER: 795 case E1000_DEV_ID_82544GC_COPPER: 796 case E1000_DEV_ID_82544GC_LOM: 797 case E1000_DEV_ID_82545EM_COPPER: 798 case E1000_DEV_ID_82545EM_FIBER: 799 case E1000_DEV_ID_82546EB_COPPER: 800 case E1000_DEV_ID_82546EB_FIBER: 801 case E1000_DEV_ID_82546EB_QUAD_COPPER: 802 return true; 803 default: 804 return false; 805 } 806 } 807 808 static netdev_features_t e1000_fix_features(struct net_device *netdev, 809 netdev_features_t features) 810 { 811 /* Since there is no support for separate Rx/Tx vlan accel 812 * enable/disable make sure Tx flag is always in same state as Rx. 813 */ 814 if (features & NETIF_F_HW_VLAN_CTAG_RX) 815 features |= NETIF_F_HW_VLAN_CTAG_TX; 816 else 817 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 818 819 return features; 820 } 821 822 static int e1000_set_features(struct net_device *netdev, 823 netdev_features_t features) 824 { 825 struct e1000_adapter *adapter = netdev_priv(netdev); 826 netdev_features_t changed = features ^ netdev->features; 827 828 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 829 e1000_vlan_mode(netdev, features); 830 831 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL))) 832 return 0; 833 834 netdev->features = features; 835 adapter->rx_csum = !!(features & NETIF_F_RXCSUM); 836 837 if (netif_running(netdev)) 838 e1000_reinit_locked(adapter); 839 else 840 e1000_reset(adapter); 841 842 return 0; 843 } 844 845 static const struct net_device_ops e1000_netdev_ops = { 846 .ndo_open = e1000_open, 847 .ndo_stop = e1000_close, 848 .ndo_start_xmit = e1000_xmit_frame, 849 .ndo_get_stats = e1000_get_stats, 850 .ndo_set_rx_mode = e1000_set_rx_mode, 851 .ndo_set_mac_address = e1000_set_mac, 852 .ndo_tx_timeout = e1000_tx_timeout, 853 .ndo_change_mtu = e1000_change_mtu, 854 .ndo_do_ioctl = e1000_ioctl, 855 .ndo_validate_addr = eth_validate_addr, 856 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, 857 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, 858 #ifdef CONFIG_NET_POLL_CONTROLLER 859 .ndo_poll_controller = e1000_netpoll, 860 #endif 861 .ndo_fix_features = e1000_fix_features, 862 .ndo_set_features = e1000_set_features, 863 }; 864 865 /** 866 * e1000_init_hw_struct - initialize members of hw struct 867 * @adapter: board private struct 868 * @hw: structure used by e1000_hw.c 869 * 870 * Factors out initialization of the e1000_hw struct to its own function 871 * that can be called very early at init (just after struct allocation). 872 * Fields are initialized based on PCI device information and 873 * OS network device settings (MTU size). 874 * Returns negative error codes if MAC type setup fails. 875 */ 876 static int e1000_init_hw_struct(struct e1000_adapter *adapter, 877 struct e1000_hw *hw) 878 { 879 struct pci_dev *pdev = adapter->pdev; 880 881 /* PCI config space info */ 882 hw->vendor_id = pdev->vendor; 883 hw->device_id = pdev->device; 884 hw->subsystem_vendor_id = pdev->subsystem_vendor; 885 hw->subsystem_id = pdev->subsystem_device; 886 hw->revision_id = pdev->revision; 887 888 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); 889 890 hw->max_frame_size = adapter->netdev->mtu + 891 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; 892 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; 893 894 /* identify the MAC */ 895 if (e1000_set_mac_type(hw)) { 896 e_err(probe, "Unknown MAC Type\n"); 897 return -EIO; 898 } 899 900 switch (hw->mac_type) { 901 default: 902 break; 903 case e1000_82541: 904 case e1000_82547: 905 case e1000_82541_rev_2: 906 case e1000_82547_rev_2: 907 hw->phy_init_script = 1; 908 break; 909 } 910 911 e1000_set_media_type(hw); 912 e1000_get_bus_info(hw); 913 914 hw->wait_autoneg_complete = false; 915 hw->tbi_compatibility_en = true; 916 hw->adaptive_ifs = true; 917 918 /* Copper options */ 919 920 if (hw->media_type == e1000_media_type_copper) { 921 hw->mdix = AUTO_ALL_MODES; 922 hw->disable_polarity_correction = false; 923 hw->master_slave = E1000_MASTER_SLAVE; 924 } 925 926 return 0; 927 } 928 929 /** 930 * e1000_probe - Device Initialization Routine 931 * @pdev: PCI device information struct 932 * @ent: entry in e1000_pci_tbl 933 * 934 * Returns 0 on success, negative on failure 935 * 936 * e1000_probe initializes an adapter identified by a pci_dev structure. 937 * The OS initialization, configuring of the adapter private structure, 938 * and a hardware reset occur. 939 **/ 940 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 941 { 942 struct net_device *netdev; 943 struct e1000_adapter *adapter; 944 struct e1000_hw *hw; 945 946 static int cards_found = 0; 947 static int global_quad_port_a = 0; /* global ksp3 port a indication */ 948 int i, err, pci_using_dac; 949 u16 eeprom_data = 0; 950 u16 tmp = 0; 951 u16 eeprom_apme_mask = E1000_EEPROM_APME; 952 int bars, need_ioport; 953 954 /* do not allocate ioport bars when not needed */ 955 need_ioport = e1000_is_need_ioport(pdev); 956 if (need_ioport) { 957 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO); 958 err = pci_enable_device(pdev); 959 } else { 960 bars = pci_select_bars(pdev, IORESOURCE_MEM); 961 err = pci_enable_device_mem(pdev); 962 } 963 if (err) 964 return err; 965 966 err = pci_request_selected_regions(pdev, bars, e1000_driver_name); 967 if (err) 968 goto err_pci_reg; 969 970 pci_set_master(pdev); 971 err = pci_save_state(pdev); 972 if (err) 973 goto err_alloc_etherdev; 974 975 err = -ENOMEM; 976 netdev = alloc_etherdev(sizeof(struct e1000_adapter)); 977 if (!netdev) 978 goto err_alloc_etherdev; 979 980 SET_NETDEV_DEV(netdev, &pdev->dev); 981 982 pci_set_drvdata(pdev, netdev); 983 adapter = netdev_priv(netdev); 984 adapter->netdev = netdev; 985 adapter->pdev = pdev; 986 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 987 adapter->bars = bars; 988 adapter->need_ioport = need_ioport; 989 990 hw = &adapter->hw; 991 hw->back = adapter; 992 993 err = -EIO; 994 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0); 995 if (!hw->hw_addr) 996 goto err_ioremap; 997 998 if (adapter->need_ioport) { 999 for (i = BAR_1; i <= BAR_5; i++) { 1000 if (pci_resource_len(pdev, i) == 0) 1001 continue; 1002 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { 1003 hw->io_base = pci_resource_start(pdev, i); 1004 break; 1005 } 1006 } 1007 } 1008 1009 /* make ready for any if (hw->...) below */ 1010 err = e1000_init_hw_struct(adapter, hw); 1011 if (err) 1012 goto err_sw_init; 1013 1014 /* there is a workaround being applied below that limits 1015 * 64-bit DMA addresses to 64-bit hardware. There are some 1016 * 32-bit adapters that Tx hang when given 64-bit DMA addresses 1017 */ 1018 pci_using_dac = 0; 1019 if ((hw->bus_type == e1000_bus_type_pcix) && 1020 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 1021 pci_using_dac = 1; 1022 } else { 1023 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 1024 if (err) { 1025 pr_err("No usable DMA config, aborting\n"); 1026 goto err_dma; 1027 } 1028 } 1029 1030 netdev->netdev_ops = &e1000_netdev_ops; 1031 e1000_set_ethtool_ops(netdev); 1032 netdev->watchdog_timeo = 5 * HZ; 1033 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); 1034 1035 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 1036 1037 adapter->bd_number = cards_found; 1038 1039 /* setup the private structure */ 1040 1041 err = e1000_sw_init(adapter); 1042 if (err) 1043 goto err_sw_init; 1044 1045 err = -EIO; 1046 if (hw->mac_type == e1000_ce4100) { 1047 hw->ce4100_gbe_mdio_base_virt = 1048 ioremap(pci_resource_start(pdev, BAR_1), 1049 pci_resource_len(pdev, BAR_1)); 1050 1051 if (!hw->ce4100_gbe_mdio_base_virt) 1052 goto err_mdio_ioremap; 1053 } 1054 1055 if (hw->mac_type >= e1000_82543) { 1056 netdev->hw_features = NETIF_F_SG | 1057 NETIF_F_HW_CSUM | 1058 NETIF_F_HW_VLAN_CTAG_RX; 1059 netdev->features = NETIF_F_HW_VLAN_CTAG_TX | 1060 NETIF_F_HW_VLAN_CTAG_FILTER; 1061 } 1062 1063 if ((hw->mac_type >= e1000_82544) && 1064 (hw->mac_type != e1000_82547)) 1065 netdev->hw_features |= NETIF_F_TSO; 1066 1067 netdev->priv_flags |= IFF_SUPP_NOFCS; 1068 1069 netdev->features |= netdev->hw_features; 1070 netdev->hw_features |= (NETIF_F_RXCSUM | 1071 NETIF_F_RXALL | 1072 NETIF_F_RXFCS); 1073 1074 if (pci_using_dac) { 1075 netdev->features |= NETIF_F_HIGHDMA; 1076 netdev->vlan_features |= NETIF_F_HIGHDMA; 1077 } 1078 1079 netdev->vlan_features |= (NETIF_F_TSO | 1080 NETIF_F_HW_CSUM | 1081 NETIF_F_SG); 1082 1083 /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */ 1084 if (hw->device_id != E1000_DEV_ID_82545EM_COPPER || 1085 hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE) 1086 netdev->priv_flags |= IFF_UNICAST_FLT; 1087 1088 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw); 1089 1090 /* initialize eeprom parameters */ 1091 if (e1000_init_eeprom_params(hw)) { 1092 e_err(probe, "EEPROM initialization failed\n"); 1093 goto err_eeprom; 1094 } 1095 1096 /* before reading the EEPROM, reset the controller to 1097 * put the device in a known good starting state 1098 */ 1099 1100 e1000_reset_hw(hw); 1101 1102 /* make sure the EEPROM is good */ 1103 if (e1000_validate_eeprom_checksum(hw) < 0) { 1104 e_err(probe, "The EEPROM Checksum Is Not Valid\n"); 1105 e1000_dump_eeprom(adapter); 1106 /* set MAC address to all zeroes to invalidate and temporary 1107 * disable this device for the user. This blocks regular 1108 * traffic while still permitting ethtool ioctls from reaching 1109 * the hardware as well as allowing the user to run the 1110 * interface after manually setting a hw addr using 1111 * `ip set address` 1112 */ 1113 memset(hw->mac_addr, 0, netdev->addr_len); 1114 } else { 1115 /* copy the MAC address out of the EEPROM */ 1116 if (e1000_read_mac_addr(hw)) 1117 e_err(probe, "EEPROM Read Error\n"); 1118 } 1119 /* don't block initialization here due to bad MAC address */ 1120 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len); 1121 1122 if (!is_valid_ether_addr(netdev->dev_addr)) 1123 e_err(probe, "Invalid MAC Address\n"); 1124 1125 1126 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog); 1127 INIT_DELAYED_WORK(&adapter->fifo_stall_task, 1128 e1000_82547_tx_fifo_stall_task); 1129 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task); 1130 INIT_WORK(&adapter->reset_task, e1000_reset_task); 1131 1132 e1000_check_options(adapter); 1133 1134 /* Initial Wake on LAN setting 1135 * If APM wake is enabled in the EEPROM, 1136 * enable the ACPI Magic Packet filter 1137 */ 1138 1139 switch (hw->mac_type) { 1140 case e1000_82542_rev2_0: 1141 case e1000_82542_rev2_1: 1142 case e1000_82543: 1143 break; 1144 case e1000_82544: 1145 e1000_read_eeprom(hw, 1146 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); 1147 eeprom_apme_mask = E1000_EEPROM_82544_APM; 1148 break; 1149 case e1000_82546: 1150 case e1000_82546_rev_3: 1151 if (er32(STATUS) & E1000_STATUS_FUNC_1){ 1152 e1000_read_eeprom(hw, 1153 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 1154 break; 1155 } 1156 /* Fall Through */ 1157 default: 1158 e1000_read_eeprom(hw, 1159 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 1160 break; 1161 } 1162 if (eeprom_data & eeprom_apme_mask) 1163 adapter->eeprom_wol |= E1000_WUFC_MAG; 1164 1165 /* now that we have the eeprom settings, apply the special cases 1166 * where the eeprom may be wrong or the board simply won't support 1167 * wake on lan on a particular port 1168 */ 1169 switch (pdev->device) { 1170 case E1000_DEV_ID_82546GB_PCIE: 1171 adapter->eeprom_wol = 0; 1172 break; 1173 case E1000_DEV_ID_82546EB_FIBER: 1174 case E1000_DEV_ID_82546GB_FIBER: 1175 /* Wake events only supported on port A for dual fiber 1176 * regardless of eeprom setting 1177 */ 1178 if (er32(STATUS) & E1000_STATUS_FUNC_1) 1179 adapter->eeprom_wol = 0; 1180 break; 1181 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 1182 /* if quad port adapter, disable WoL on all but port A */ 1183 if (global_quad_port_a != 0) 1184 adapter->eeprom_wol = 0; 1185 else 1186 adapter->quad_port_a = true; 1187 /* Reset for multiple quad port adapters */ 1188 if (++global_quad_port_a == 4) 1189 global_quad_port_a = 0; 1190 break; 1191 } 1192 1193 /* initialize the wol settings based on the eeprom settings */ 1194 adapter->wol = adapter->eeprom_wol; 1195 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1196 1197 /* Auto detect PHY address */ 1198 if (hw->mac_type == e1000_ce4100) { 1199 for (i = 0; i < 32; i++) { 1200 hw->phy_addr = i; 1201 e1000_read_phy_reg(hw, PHY_ID2, &tmp); 1202 if (tmp == 0 || tmp == 0xFF) { 1203 if (i == 31) 1204 goto err_eeprom; 1205 continue; 1206 } else 1207 break; 1208 } 1209 } 1210 1211 /* reset the hardware with the new settings */ 1212 e1000_reset(adapter); 1213 1214 strcpy(netdev->name, "eth%d"); 1215 err = register_netdev(netdev); 1216 if (err) 1217 goto err_register; 1218 1219 e1000_vlan_filter_on_off(adapter, false); 1220 1221 /* print bus type/speed/width info */ 1222 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n", 1223 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""), 1224 ((hw->bus_speed == e1000_bus_speed_133) ? 133 : 1225 (hw->bus_speed == e1000_bus_speed_120) ? 120 : 1226 (hw->bus_speed == e1000_bus_speed_100) ? 100 : 1227 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33), 1228 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32), 1229 netdev->dev_addr); 1230 1231 /* carrier off reporting is important to ethtool even BEFORE open */ 1232 netif_carrier_off(netdev); 1233 1234 e_info(probe, "Intel(R) PRO/1000 Network Connection\n"); 1235 1236 cards_found++; 1237 return 0; 1238 1239 err_register: 1240 err_eeprom: 1241 e1000_phy_hw_reset(hw); 1242 1243 if (hw->flash_address) 1244 iounmap(hw->flash_address); 1245 kfree(adapter->tx_ring); 1246 kfree(adapter->rx_ring); 1247 err_dma: 1248 err_sw_init: 1249 err_mdio_ioremap: 1250 iounmap(hw->ce4100_gbe_mdio_base_virt); 1251 iounmap(hw->hw_addr); 1252 err_ioremap: 1253 free_netdev(netdev); 1254 err_alloc_etherdev: 1255 pci_release_selected_regions(pdev, bars); 1256 err_pci_reg: 1257 pci_disable_device(pdev); 1258 return err; 1259 } 1260 1261 /** 1262 * e1000_remove - Device Removal Routine 1263 * @pdev: PCI device information struct 1264 * 1265 * e1000_remove is called by the PCI subsystem to alert the driver 1266 * that it should release a PCI device. The could be caused by a 1267 * Hot-Plug event, or because the driver is going to be removed from 1268 * memory. 1269 **/ 1270 static void e1000_remove(struct pci_dev *pdev) 1271 { 1272 struct net_device *netdev = pci_get_drvdata(pdev); 1273 struct e1000_adapter *adapter = netdev_priv(netdev); 1274 struct e1000_hw *hw = &adapter->hw; 1275 1276 e1000_down_and_stop(adapter); 1277 e1000_release_manageability(adapter); 1278 1279 unregister_netdev(netdev); 1280 1281 e1000_phy_hw_reset(hw); 1282 1283 kfree(adapter->tx_ring); 1284 kfree(adapter->rx_ring); 1285 1286 if (hw->mac_type == e1000_ce4100) 1287 iounmap(hw->ce4100_gbe_mdio_base_virt); 1288 iounmap(hw->hw_addr); 1289 if (hw->flash_address) 1290 iounmap(hw->flash_address); 1291 pci_release_selected_regions(pdev, adapter->bars); 1292 1293 free_netdev(netdev); 1294 1295 pci_disable_device(pdev); 1296 } 1297 1298 /** 1299 * e1000_sw_init - Initialize general software structures (struct e1000_adapter) 1300 * @adapter: board private structure to initialize 1301 * 1302 * e1000_sw_init initializes the Adapter private data structure. 1303 * e1000_init_hw_struct MUST be called before this function 1304 **/ 1305 static int e1000_sw_init(struct e1000_adapter *adapter) 1306 { 1307 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; 1308 1309 adapter->num_tx_queues = 1; 1310 adapter->num_rx_queues = 1; 1311 1312 if (e1000_alloc_queues(adapter)) { 1313 e_err(probe, "Unable to allocate memory for queues\n"); 1314 return -ENOMEM; 1315 } 1316 1317 /* Explicitly disable IRQ since the NIC can be in any state. */ 1318 e1000_irq_disable(adapter); 1319 1320 spin_lock_init(&adapter->stats_lock); 1321 1322 set_bit(__E1000_DOWN, &adapter->flags); 1323 1324 return 0; 1325 } 1326 1327 /** 1328 * e1000_alloc_queues - Allocate memory for all rings 1329 * @adapter: board private structure to initialize 1330 * 1331 * We allocate one ring per queue at run-time since we don't know the 1332 * number of queues at compile-time. 1333 **/ 1334 static int e1000_alloc_queues(struct e1000_adapter *adapter) 1335 { 1336 adapter->tx_ring = kcalloc(adapter->num_tx_queues, 1337 sizeof(struct e1000_tx_ring), GFP_KERNEL); 1338 if (!adapter->tx_ring) 1339 return -ENOMEM; 1340 1341 adapter->rx_ring = kcalloc(adapter->num_rx_queues, 1342 sizeof(struct e1000_rx_ring), GFP_KERNEL); 1343 if (!adapter->rx_ring) { 1344 kfree(adapter->tx_ring); 1345 return -ENOMEM; 1346 } 1347 1348 return E1000_SUCCESS; 1349 } 1350 1351 /** 1352 * e1000_open - Called when a network interface is made active 1353 * @netdev: network interface device structure 1354 * 1355 * Returns 0 on success, negative value on failure 1356 * 1357 * The open entry point is called when a network interface is made 1358 * active by the system (IFF_UP). At this point all resources needed 1359 * for transmit and receive operations are allocated, the interrupt 1360 * handler is registered with the OS, the watchdog task is started, 1361 * and the stack is notified that the interface is ready. 1362 **/ 1363 static int e1000_open(struct net_device *netdev) 1364 { 1365 struct e1000_adapter *adapter = netdev_priv(netdev); 1366 struct e1000_hw *hw = &adapter->hw; 1367 int err; 1368 1369 /* disallow open during test */ 1370 if (test_bit(__E1000_TESTING, &adapter->flags)) 1371 return -EBUSY; 1372 1373 netif_carrier_off(netdev); 1374 1375 /* allocate transmit descriptors */ 1376 err = e1000_setup_all_tx_resources(adapter); 1377 if (err) 1378 goto err_setup_tx; 1379 1380 /* allocate receive descriptors */ 1381 err = e1000_setup_all_rx_resources(adapter); 1382 if (err) 1383 goto err_setup_rx; 1384 1385 e1000_power_up_phy(adapter); 1386 1387 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 1388 if ((hw->mng_cookie.status & 1389 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { 1390 e1000_update_mng_vlan(adapter); 1391 } 1392 1393 /* before we allocate an interrupt, we must be ready to handle it. 1394 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 1395 * as soon as we call pci_request_irq, so we have to setup our 1396 * clean_rx handler before we do so. 1397 */ 1398 e1000_configure(adapter); 1399 1400 err = e1000_request_irq(adapter); 1401 if (err) 1402 goto err_req_irq; 1403 1404 /* From here on the code is the same as e1000_up() */ 1405 clear_bit(__E1000_DOWN, &adapter->flags); 1406 1407 napi_enable(&adapter->napi); 1408 1409 e1000_irq_enable(adapter); 1410 1411 netif_start_queue(netdev); 1412 1413 /* fire a link status change interrupt to start the watchdog */ 1414 ew32(ICS, E1000_ICS_LSC); 1415 1416 return E1000_SUCCESS; 1417 1418 err_req_irq: 1419 e1000_power_down_phy(adapter); 1420 e1000_free_all_rx_resources(adapter); 1421 err_setup_rx: 1422 e1000_free_all_tx_resources(adapter); 1423 err_setup_tx: 1424 e1000_reset(adapter); 1425 1426 return err; 1427 } 1428 1429 /** 1430 * e1000_close - Disables a network interface 1431 * @netdev: network interface device structure 1432 * 1433 * Returns 0, this is not allowed to fail 1434 * 1435 * The close entry point is called when an interface is de-activated 1436 * by the OS. The hardware is still under the drivers control, but 1437 * needs to be disabled. A global MAC reset is issued to stop the 1438 * hardware, and all transmit and receive resources are freed. 1439 **/ 1440 static int e1000_close(struct net_device *netdev) 1441 { 1442 struct e1000_adapter *adapter = netdev_priv(netdev); 1443 struct e1000_hw *hw = &adapter->hw; 1444 int count = E1000_CHECK_RESET_COUNT; 1445 1446 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--) 1447 usleep_range(10000, 20000); 1448 1449 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); 1450 e1000_down(adapter); 1451 e1000_power_down_phy(adapter); 1452 e1000_free_irq(adapter); 1453 1454 e1000_free_all_tx_resources(adapter); 1455 e1000_free_all_rx_resources(adapter); 1456 1457 /* kill manageability vlan ID if supported, but not if a vlan with 1458 * the same ID is registered on the host OS (let 8021q kill it) 1459 */ 1460 if ((hw->mng_cookie.status & 1461 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && 1462 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) { 1463 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), 1464 adapter->mng_vlan_id); 1465 } 1466 1467 return 0; 1468 } 1469 1470 /** 1471 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary 1472 * @adapter: address of board private structure 1473 * @start: address of beginning of memory 1474 * @len: length of memory 1475 **/ 1476 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start, 1477 unsigned long len) 1478 { 1479 struct e1000_hw *hw = &adapter->hw; 1480 unsigned long begin = (unsigned long)start; 1481 unsigned long end = begin + len; 1482 1483 /* First rev 82545 and 82546 need to not allow any memory 1484 * write location to cross 64k boundary due to errata 23 1485 */ 1486 if (hw->mac_type == e1000_82545 || 1487 hw->mac_type == e1000_ce4100 || 1488 hw->mac_type == e1000_82546) { 1489 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true; 1490 } 1491 1492 return true; 1493 } 1494 1495 /** 1496 * e1000_setup_tx_resources - allocate Tx resources (Descriptors) 1497 * @adapter: board private structure 1498 * @txdr: tx descriptor ring (for a specific queue) to setup 1499 * 1500 * Return 0 on success, negative on failure 1501 **/ 1502 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, 1503 struct e1000_tx_ring *txdr) 1504 { 1505 struct pci_dev *pdev = adapter->pdev; 1506 int size; 1507 1508 size = sizeof(struct e1000_tx_buffer) * txdr->count; 1509 txdr->buffer_info = vzalloc(size); 1510 if (!txdr->buffer_info) 1511 return -ENOMEM; 1512 1513 /* round up to nearest 4K */ 1514 1515 txdr->size = txdr->count * sizeof(struct e1000_tx_desc); 1516 txdr->size = ALIGN(txdr->size, 4096); 1517 1518 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma, 1519 GFP_KERNEL); 1520 if (!txdr->desc) { 1521 setup_tx_desc_die: 1522 vfree(txdr->buffer_info); 1523 return -ENOMEM; 1524 } 1525 1526 /* Fix for errata 23, can't cross 64kB boundary */ 1527 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { 1528 void *olddesc = txdr->desc; 1529 dma_addr_t olddma = txdr->dma; 1530 e_err(tx_err, "txdr align check failed: %u bytes at %p\n", 1531 txdr->size, txdr->desc); 1532 /* Try again, without freeing the previous */ 1533 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, 1534 &txdr->dma, GFP_KERNEL); 1535 /* Failed allocation, critical failure */ 1536 if (!txdr->desc) { 1537 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1538 olddma); 1539 goto setup_tx_desc_die; 1540 } 1541 1542 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { 1543 /* give up */ 1544 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc, 1545 txdr->dma); 1546 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1547 olddma); 1548 e_err(probe, "Unable to allocate aligned memory " 1549 "for the transmit descriptor ring\n"); 1550 vfree(txdr->buffer_info); 1551 return -ENOMEM; 1552 } else { 1553 /* Free old allocation, new allocation was successful */ 1554 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1555 olddma); 1556 } 1557 } 1558 memset(txdr->desc, 0, txdr->size); 1559 1560 txdr->next_to_use = 0; 1561 txdr->next_to_clean = 0; 1562 1563 return 0; 1564 } 1565 1566 /** 1567 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources 1568 * (Descriptors) for all queues 1569 * @adapter: board private structure 1570 * 1571 * Return 0 on success, negative on failure 1572 **/ 1573 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter) 1574 { 1575 int i, err = 0; 1576 1577 for (i = 0; i < adapter->num_tx_queues; i++) { 1578 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]); 1579 if (err) { 1580 e_err(probe, "Allocation for Tx Queue %u failed\n", i); 1581 for (i-- ; i >= 0; i--) 1582 e1000_free_tx_resources(adapter, 1583 &adapter->tx_ring[i]); 1584 break; 1585 } 1586 } 1587 1588 return err; 1589 } 1590 1591 /** 1592 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset 1593 * @adapter: board private structure 1594 * 1595 * Configure the Tx unit of the MAC after a reset. 1596 **/ 1597 static void e1000_configure_tx(struct e1000_adapter *adapter) 1598 { 1599 u64 tdba; 1600 struct e1000_hw *hw = &adapter->hw; 1601 u32 tdlen, tctl, tipg; 1602 u32 ipgr1, ipgr2; 1603 1604 /* Setup the HW Tx Head and Tail descriptor pointers */ 1605 1606 switch (adapter->num_tx_queues) { 1607 case 1: 1608 default: 1609 tdba = adapter->tx_ring[0].dma; 1610 tdlen = adapter->tx_ring[0].count * 1611 sizeof(struct e1000_tx_desc); 1612 ew32(TDLEN, tdlen); 1613 ew32(TDBAH, (tdba >> 32)); 1614 ew32(TDBAL, (tdba & 0x00000000ffffffffULL)); 1615 ew32(TDT, 0); 1616 ew32(TDH, 0); 1617 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? 1618 E1000_TDH : E1000_82542_TDH); 1619 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? 1620 E1000_TDT : E1000_82542_TDT); 1621 break; 1622 } 1623 1624 /* Set the default values for the Tx Inter Packet Gap timer */ 1625 if ((hw->media_type == e1000_media_type_fiber || 1626 hw->media_type == e1000_media_type_internal_serdes)) 1627 tipg = DEFAULT_82543_TIPG_IPGT_FIBER; 1628 else 1629 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; 1630 1631 switch (hw->mac_type) { 1632 case e1000_82542_rev2_0: 1633 case e1000_82542_rev2_1: 1634 tipg = DEFAULT_82542_TIPG_IPGT; 1635 ipgr1 = DEFAULT_82542_TIPG_IPGR1; 1636 ipgr2 = DEFAULT_82542_TIPG_IPGR2; 1637 break; 1638 default: 1639 ipgr1 = DEFAULT_82543_TIPG_IPGR1; 1640 ipgr2 = DEFAULT_82543_TIPG_IPGR2; 1641 break; 1642 } 1643 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; 1644 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; 1645 ew32(TIPG, tipg); 1646 1647 /* Set the Tx Interrupt Delay register */ 1648 1649 ew32(TIDV, adapter->tx_int_delay); 1650 if (hw->mac_type >= e1000_82540) 1651 ew32(TADV, adapter->tx_abs_int_delay); 1652 1653 /* Program the Transmit Control Register */ 1654 1655 tctl = er32(TCTL); 1656 tctl &= ~E1000_TCTL_CT; 1657 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | 1658 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); 1659 1660 e1000_config_collision_dist(hw); 1661 1662 /* Setup Transmit Descriptor Settings for eop descriptor */ 1663 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; 1664 1665 /* only set IDE if we are delaying interrupts using the timers */ 1666 if (adapter->tx_int_delay) 1667 adapter->txd_cmd |= E1000_TXD_CMD_IDE; 1668 1669 if (hw->mac_type < e1000_82543) 1670 adapter->txd_cmd |= E1000_TXD_CMD_RPS; 1671 else 1672 adapter->txd_cmd |= E1000_TXD_CMD_RS; 1673 1674 /* Cache if we're 82544 running in PCI-X because we'll 1675 * need this to apply a workaround later in the send path. 1676 */ 1677 if (hw->mac_type == e1000_82544 && 1678 hw->bus_type == e1000_bus_type_pcix) 1679 adapter->pcix_82544 = true; 1680 1681 ew32(TCTL, tctl); 1682 1683 } 1684 1685 /** 1686 * e1000_setup_rx_resources - allocate Rx resources (Descriptors) 1687 * @adapter: board private structure 1688 * @rxdr: rx descriptor ring (for a specific queue) to setup 1689 * 1690 * Returns 0 on success, negative on failure 1691 **/ 1692 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, 1693 struct e1000_rx_ring *rxdr) 1694 { 1695 struct pci_dev *pdev = adapter->pdev; 1696 int size, desc_len; 1697 1698 size = sizeof(struct e1000_rx_buffer) * rxdr->count; 1699 rxdr->buffer_info = vzalloc(size); 1700 if (!rxdr->buffer_info) 1701 return -ENOMEM; 1702 1703 desc_len = sizeof(struct e1000_rx_desc); 1704 1705 /* Round up to nearest 4K */ 1706 1707 rxdr->size = rxdr->count * desc_len; 1708 rxdr->size = ALIGN(rxdr->size, 4096); 1709 1710 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma, 1711 GFP_KERNEL); 1712 if (!rxdr->desc) { 1713 setup_rx_desc_die: 1714 vfree(rxdr->buffer_info); 1715 return -ENOMEM; 1716 } 1717 1718 /* Fix for errata 23, can't cross 64kB boundary */ 1719 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { 1720 void *olddesc = rxdr->desc; 1721 dma_addr_t olddma = rxdr->dma; 1722 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n", 1723 rxdr->size, rxdr->desc); 1724 /* Try again, without freeing the previous */ 1725 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, 1726 &rxdr->dma, GFP_KERNEL); 1727 /* Failed allocation, critical failure */ 1728 if (!rxdr->desc) { 1729 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1730 olddma); 1731 goto setup_rx_desc_die; 1732 } 1733 1734 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { 1735 /* give up */ 1736 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc, 1737 rxdr->dma); 1738 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1739 olddma); 1740 e_err(probe, "Unable to allocate aligned memory for " 1741 "the Rx descriptor ring\n"); 1742 goto setup_rx_desc_die; 1743 } else { 1744 /* Free old allocation, new allocation was successful */ 1745 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1746 olddma); 1747 } 1748 } 1749 memset(rxdr->desc, 0, rxdr->size); 1750 1751 rxdr->next_to_clean = 0; 1752 rxdr->next_to_use = 0; 1753 rxdr->rx_skb_top = NULL; 1754 1755 return 0; 1756 } 1757 1758 /** 1759 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources 1760 * (Descriptors) for all queues 1761 * @adapter: board private structure 1762 * 1763 * Return 0 on success, negative on failure 1764 **/ 1765 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter) 1766 { 1767 int i, err = 0; 1768 1769 for (i = 0; i < adapter->num_rx_queues; i++) { 1770 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]); 1771 if (err) { 1772 e_err(probe, "Allocation for Rx Queue %u failed\n", i); 1773 for (i-- ; i >= 0; i--) 1774 e1000_free_rx_resources(adapter, 1775 &adapter->rx_ring[i]); 1776 break; 1777 } 1778 } 1779 1780 return err; 1781 } 1782 1783 /** 1784 * e1000_setup_rctl - configure the receive control registers 1785 * @adapter: Board private structure 1786 **/ 1787 static void e1000_setup_rctl(struct e1000_adapter *adapter) 1788 { 1789 struct e1000_hw *hw = &adapter->hw; 1790 u32 rctl; 1791 1792 rctl = er32(RCTL); 1793 1794 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 1795 1796 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO | 1797 E1000_RCTL_RDMTS_HALF | 1798 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); 1799 1800 if (hw->tbi_compatibility_on == 1) 1801 rctl |= E1000_RCTL_SBP; 1802 else 1803 rctl &= ~E1000_RCTL_SBP; 1804 1805 if (adapter->netdev->mtu <= ETH_DATA_LEN) 1806 rctl &= ~E1000_RCTL_LPE; 1807 else 1808 rctl |= E1000_RCTL_LPE; 1809 1810 /* Setup buffer sizes */ 1811 rctl &= ~E1000_RCTL_SZ_4096; 1812 rctl |= E1000_RCTL_BSEX; 1813 switch (adapter->rx_buffer_len) { 1814 case E1000_RXBUFFER_2048: 1815 default: 1816 rctl |= E1000_RCTL_SZ_2048; 1817 rctl &= ~E1000_RCTL_BSEX; 1818 break; 1819 case E1000_RXBUFFER_4096: 1820 rctl |= E1000_RCTL_SZ_4096; 1821 break; 1822 case E1000_RXBUFFER_8192: 1823 rctl |= E1000_RCTL_SZ_8192; 1824 break; 1825 case E1000_RXBUFFER_16384: 1826 rctl |= E1000_RCTL_SZ_16384; 1827 break; 1828 } 1829 1830 /* This is useful for sniffing bad packets. */ 1831 if (adapter->netdev->features & NETIF_F_RXALL) { 1832 /* UPE and MPE will be handled by normal PROMISC logic 1833 * in e1000e_set_rx_mode 1834 */ 1835 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ 1836 E1000_RCTL_BAM | /* RX All Bcast Pkts */ 1837 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 1838 1839 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */ 1840 E1000_RCTL_DPF | /* Allow filtered pause */ 1841 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ 1842 /* Do not mess with E1000_CTRL_VME, it affects transmit as well, 1843 * and that breaks VLANs. 1844 */ 1845 } 1846 1847 ew32(RCTL, rctl); 1848 } 1849 1850 /** 1851 * e1000_configure_rx - Configure 8254x Receive Unit after Reset 1852 * @adapter: board private structure 1853 * 1854 * Configure the Rx unit of the MAC after a reset. 1855 **/ 1856 static void e1000_configure_rx(struct e1000_adapter *adapter) 1857 { 1858 u64 rdba; 1859 struct e1000_hw *hw = &adapter->hw; 1860 u32 rdlen, rctl, rxcsum; 1861 1862 if (adapter->netdev->mtu > ETH_DATA_LEN) { 1863 rdlen = adapter->rx_ring[0].count * 1864 sizeof(struct e1000_rx_desc); 1865 adapter->clean_rx = e1000_clean_jumbo_rx_irq; 1866 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; 1867 } else { 1868 rdlen = adapter->rx_ring[0].count * 1869 sizeof(struct e1000_rx_desc); 1870 adapter->clean_rx = e1000_clean_rx_irq; 1871 adapter->alloc_rx_buf = e1000_alloc_rx_buffers; 1872 } 1873 1874 /* disable receives while setting up the descriptors */ 1875 rctl = er32(RCTL); 1876 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1877 1878 /* set the Receive Delay Timer Register */ 1879 ew32(RDTR, adapter->rx_int_delay); 1880 1881 if (hw->mac_type >= e1000_82540) { 1882 ew32(RADV, adapter->rx_abs_int_delay); 1883 if (adapter->itr_setting != 0) 1884 ew32(ITR, 1000000000 / (adapter->itr * 256)); 1885 } 1886 1887 /* Setup the HW Rx Head and Tail Descriptor Pointers and 1888 * the Base and Length of the Rx Descriptor Ring 1889 */ 1890 switch (adapter->num_rx_queues) { 1891 case 1: 1892 default: 1893 rdba = adapter->rx_ring[0].dma; 1894 ew32(RDLEN, rdlen); 1895 ew32(RDBAH, (rdba >> 32)); 1896 ew32(RDBAL, (rdba & 0x00000000ffffffffULL)); 1897 ew32(RDT, 0); 1898 ew32(RDH, 0); 1899 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? 1900 E1000_RDH : E1000_82542_RDH); 1901 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? 1902 E1000_RDT : E1000_82542_RDT); 1903 break; 1904 } 1905 1906 /* Enable 82543 Receive Checksum Offload for TCP and UDP */ 1907 if (hw->mac_type >= e1000_82543) { 1908 rxcsum = er32(RXCSUM); 1909 if (adapter->rx_csum) 1910 rxcsum |= E1000_RXCSUM_TUOFL; 1911 else 1912 /* don't need to clear IPPCSE as it defaults to 0 */ 1913 rxcsum &= ~E1000_RXCSUM_TUOFL; 1914 ew32(RXCSUM, rxcsum); 1915 } 1916 1917 /* Enable Receives */ 1918 ew32(RCTL, rctl | E1000_RCTL_EN); 1919 } 1920 1921 /** 1922 * e1000_free_tx_resources - Free Tx Resources per Queue 1923 * @adapter: board private structure 1924 * @tx_ring: Tx descriptor ring for a specific queue 1925 * 1926 * Free all transmit software resources 1927 **/ 1928 static void e1000_free_tx_resources(struct e1000_adapter *adapter, 1929 struct e1000_tx_ring *tx_ring) 1930 { 1931 struct pci_dev *pdev = adapter->pdev; 1932 1933 e1000_clean_tx_ring(adapter, tx_ring); 1934 1935 vfree(tx_ring->buffer_info); 1936 tx_ring->buffer_info = NULL; 1937 1938 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1939 tx_ring->dma); 1940 1941 tx_ring->desc = NULL; 1942 } 1943 1944 /** 1945 * e1000_free_all_tx_resources - Free Tx Resources for All Queues 1946 * @adapter: board private structure 1947 * 1948 * Free all transmit software resources 1949 **/ 1950 void e1000_free_all_tx_resources(struct e1000_adapter *adapter) 1951 { 1952 int i; 1953 1954 for (i = 0; i < adapter->num_tx_queues; i++) 1955 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]); 1956 } 1957 1958 static void 1959 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter, 1960 struct e1000_tx_buffer *buffer_info) 1961 { 1962 if (buffer_info->dma) { 1963 if (buffer_info->mapped_as_page) 1964 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma, 1965 buffer_info->length, DMA_TO_DEVICE); 1966 else 1967 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, 1968 buffer_info->length, 1969 DMA_TO_DEVICE); 1970 buffer_info->dma = 0; 1971 } 1972 if (buffer_info->skb) { 1973 dev_kfree_skb_any(buffer_info->skb); 1974 buffer_info->skb = NULL; 1975 } 1976 buffer_info->time_stamp = 0; 1977 /* buffer_info must be completely set up in the transmit path */ 1978 } 1979 1980 /** 1981 * e1000_clean_tx_ring - Free Tx Buffers 1982 * @adapter: board private structure 1983 * @tx_ring: ring to be cleaned 1984 **/ 1985 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, 1986 struct e1000_tx_ring *tx_ring) 1987 { 1988 struct e1000_hw *hw = &adapter->hw; 1989 struct e1000_tx_buffer *buffer_info; 1990 unsigned long size; 1991 unsigned int i; 1992 1993 /* Free all the Tx ring sk_buffs */ 1994 1995 for (i = 0; i < tx_ring->count; i++) { 1996 buffer_info = &tx_ring->buffer_info[i]; 1997 e1000_unmap_and_free_tx_resource(adapter, buffer_info); 1998 } 1999 2000 netdev_reset_queue(adapter->netdev); 2001 size = sizeof(struct e1000_tx_buffer) * tx_ring->count; 2002 memset(tx_ring->buffer_info, 0, size); 2003 2004 /* Zero out the descriptor ring */ 2005 2006 memset(tx_ring->desc, 0, tx_ring->size); 2007 2008 tx_ring->next_to_use = 0; 2009 tx_ring->next_to_clean = 0; 2010 tx_ring->last_tx_tso = false; 2011 2012 writel(0, hw->hw_addr + tx_ring->tdh); 2013 writel(0, hw->hw_addr + tx_ring->tdt); 2014 } 2015 2016 /** 2017 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues 2018 * @adapter: board private structure 2019 **/ 2020 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter) 2021 { 2022 int i; 2023 2024 for (i = 0; i < adapter->num_tx_queues; i++) 2025 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]); 2026 } 2027 2028 /** 2029 * e1000_free_rx_resources - Free Rx Resources 2030 * @adapter: board private structure 2031 * @rx_ring: ring to clean the resources from 2032 * 2033 * Free all receive software resources 2034 **/ 2035 static void e1000_free_rx_resources(struct e1000_adapter *adapter, 2036 struct e1000_rx_ring *rx_ring) 2037 { 2038 struct pci_dev *pdev = adapter->pdev; 2039 2040 e1000_clean_rx_ring(adapter, rx_ring); 2041 2042 vfree(rx_ring->buffer_info); 2043 rx_ring->buffer_info = NULL; 2044 2045 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 2046 rx_ring->dma); 2047 2048 rx_ring->desc = NULL; 2049 } 2050 2051 /** 2052 * e1000_free_all_rx_resources - Free Rx Resources for All Queues 2053 * @adapter: board private structure 2054 * 2055 * Free all receive software resources 2056 **/ 2057 void e1000_free_all_rx_resources(struct e1000_adapter *adapter) 2058 { 2059 int i; 2060 2061 for (i = 0; i < adapter->num_rx_queues; i++) 2062 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]); 2063 } 2064 2065 #define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN) 2066 static unsigned int e1000_frag_len(const struct e1000_adapter *a) 2067 { 2068 return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) + 2069 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 2070 } 2071 2072 static void *e1000_alloc_frag(const struct e1000_adapter *a) 2073 { 2074 unsigned int len = e1000_frag_len(a); 2075 u8 *data = netdev_alloc_frag(len); 2076 2077 if (likely(data)) 2078 data += E1000_HEADROOM; 2079 return data; 2080 } 2081 2082 /** 2083 * e1000_clean_rx_ring - Free Rx Buffers per Queue 2084 * @adapter: board private structure 2085 * @rx_ring: ring to free buffers from 2086 **/ 2087 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, 2088 struct e1000_rx_ring *rx_ring) 2089 { 2090 struct e1000_hw *hw = &adapter->hw; 2091 struct e1000_rx_buffer *buffer_info; 2092 struct pci_dev *pdev = adapter->pdev; 2093 unsigned long size; 2094 unsigned int i; 2095 2096 /* Free all the Rx netfrags */ 2097 for (i = 0; i < rx_ring->count; i++) { 2098 buffer_info = &rx_ring->buffer_info[i]; 2099 if (adapter->clean_rx == e1000_clean_rx_irq) { 2100 if (buffer_info->dma) 2101 dma_unmap_single(&pdev->dev, buffer_info->dma, 2102 adapter->rx_buffer_len, 2103 DMA_FROM_DEVICE); 2104 if (buffer_info->rxbuf.data) { 2105 skb_free_frag(buffer_info->rxbuf.data); 2106 buffer_info->rxbuf.data = NULL; 2107 } 2108 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) { 2109 if (buffer_info->dma) 2110 dma_unmap_page(&pdev->dev, buffer_info->dma, 2111 adapter->rx_buffer_len, 2112 DMA_FROM_DEVICE); 2113 if (buffer_info->rxbuf.page) { 2114 put_page(buffer_info->rxbuf.page); 2115 buffer_info->rxbuf.page = NULL; 2116 } 2117 } 2118 2119 buffer_info->dma = 0; 2120 } 2121 2122 /* there also may be some cached data from a chained receive */ 2123 napi_free_frags(&adapter->napi); 2124 rx_ring->rx_skb_top = NULL; 2125 2126 size = sizeof(struct e1000_rx_buffer) * rx_ring->count; 2127 memset(rx_ring->buffer_info, 0, size); 2128 2129 /* Zero out the descriptor ring */ 2130 memset(rx_ring->desc, 0, rx_ring->size); 2131 2132 rx_ring->next_to_clean = 0; 2133 rx_ring->next_to_use = 0; 2134 2135 writel(0, hw->hw_addr + rx_ring->rdh); 2136 writel(0, hw->hw_addr + rx_ring->rdt); 2137 } 2138 2139 /** 2140 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues 2141 * @adapter: board private structure 2142 **/ 2143 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter) 2144 { 2145 int i; 2146 2147 for (i = 0; i < adapter->num_rx_queues; i++) 2148 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]); 2149 } 2150 2151 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset 2152 * and memory write and invalidate disabled for certain operations 2153 */ 2154 static void e1000_enter_82542_rst(struct e1000_adapter *adapter) 2155 { 2156 struct e1000_hw *hw = &adapter->hw; 2157 struct net_device *netdev = adapter->netdev; 2158 u32 rctl; 2159 2160 e1000_pci_clear_mwi(hw); 2161 2162 rctl = er32(RCTL); 2163 rctl |= E1000_RCTL_RST; 2164 ew32(RCTL, rctl); 2165 E1000_WRITE_FLUSH(); 2166 mdelay(5); 2167 2168 if (netif_running(netdev)) 2169 e1000_clean_all_rx_rings(adapter); 2170 } 2171 2172 static void e1000_leave_82542_rst(struct e1000_adapter *adapter) 2173 { 2174 struct e1000_hw *hw = &adapter->hw; 2175 struct net_device *netdev = adapter->netdev; 2176 u32 rctl; 2177 2178 rctl = er32(RCTL); 2179 rctl &= ~E1000_RCTL_RST; 2180 ew32(RCTL, rctl); 2181 E1000_WRITE_FLUSH(); 2182 mdelay(5); 2183 2184 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) 2185 e1000_pci_set_mwi(hw); 2186 2187 if (netif_running(netdev)) { 2188 /* No need to loop, because 82542 supports only 1 queue */ 2189 struct e1000_rx_ring *ring = &adapter->rx_ring[0]; 2190 e1000_configure_rx(adapter); 2191 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring)); 2192 } 2193 } 2194 2195 /** 2196 * e1000_set_mac - Change the Ethernet Address of the NIC 2197 * @netdev: network interface device structure 2198 * @p: pointer to an address structure 2199 * 2200 * Returns 0 on success, negative on failure 2201 **/ 2202 static int e1000_set_mac(struct net_device *netdev, void *p) 2203 { 2204 struct e1000_adapter *adapter = netdev_priv(netdev); 2205 struct e1000_hw *hw = &adapter->hw; 2206 struct sockaddr *addr = p; 2207 2208 if (!is_valid_ether_addr(addr->sa_data)) 2209 return -EADDRNOTAVAIL; 2210 2211 /* 82542 2.0 needs to be in reset to write receive address registers */ 2212 2213 if (hw->mac_type == e1000_82542_rev2_0) 2214 e1000_enter_82542_rst(adapter); 2215 2216 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 2217 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len); 2218 2219 e1000_rar_set(hw, hw->mac_addr, 0); 2220 2221 if (hw->mac_type == e1000_82542_rev2_0) 2222 e1000_leave_82542_rst(adapter); 2223 2224 return 0; 2225 } 2226 2227 /** 2228 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 2229 * @netdev: network interface device structure 2230 * 2231 * The set_rx_mode entry point is called whenever the unicast or multicast 2232 * address lists or the network interface flags are updated. This routine is 2233 * responsible for configuring the hardware for proper unicast, multicast, 2234 * promiscuous mode, and all-multi behavior. 2235 **/ 2236 static void e1000_set_rx_mode(struct net_device *netdev) 2237 { 2238 struct e1000_adapter *adapter = netdev_priv(netdev); 2239 struct e1000_hw *hw = &adapter->hw; 2240 struct netdev_hw_addr *ha; 2241 bool use_uc = false; 2242 u32 rctl; 2243 u32 hash_value; 2244 int i, rar_entries = E1000_RAR_ENTRIES; 2245 int mta_reg_count = E1000_NUM_MTA_REGISTERS; 2246 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC); 2247 2248 if (!mcarray) 2249 return; 2250 2251 /* Check for Promiscuous and All Multicast modes */ 2252 2253 rctl = er32(RCTL); 2254 2255 if (netdev->flags & IFF_PROMISC) { 2256 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 2257 rctl &= ~E1000_RCTL_VFE; 2258 } else { 2259 if (netdev->flags & IFF_ALLMULTI) 2260 rctl |= E1000_RCTL_MPE; 2261 else 2262 rctl &= ~E1000_RCTL_MPE; 2263 /* Enable VLAN filter if there is a VLAN */ 2264 if (e1000_vlan_used(adapter)) 2265 rctl |= E1000_RCTL_VFE; 2266 } 2267 2268 if (netdev_uc_count(netdev) > rar_entries - 1) { 2269 rctl |= E1000_RCTL_UPE; 2270 } else if (!(netdev->flags & IFF_PROMISC)) { 2271 rctl &= ~E1000_RCTL_UPE; 2272 use_uc = true; 2273 } 2274 2275 ew32(RCTL, rctl); 2276 2277 /* 82542 2.0 needs to be in reset to write receive address registers */ 2278 2279 if (hw->mac_type == e1000_82542_rev2_0) 2280 e1000_enter_82542_rst(adapter); 2281 2282 /* load the first 14 addresses into the exact filters 1-14. Unicast 2283 * addresses take precedence to avoid disabling unicast filtering 2284 * when possible. 2285 * 2286 * RAR 0 is used for the station MAC address 2287 * if there are not 14 addresses, go ahead and clear the filters 2288 */ 2289 i = 1; 2290 if (use_uc) 2291 netdev_for_each_uc_addr(ha, netdev) { 2292 if (i == rar_entries) 2293 break; 2294 e1000_rar_set(hw, ha->addr, i++); 2295 } 2296 2297 netdev_for_each_mc_addr(ha, netdev) { 2298 if (i == rar_entries) { 2299 /* load any remaining addresses into the hash table */ 2300 u32 hash_reg, hash_bit, mta; 2301 hash_value = e1000_hash_mc_addr(hw, ha->addr); 2302 hash_reg = (hash_value >> 5) & 0x7F; 2303 hash_bit = hash_value & 0x1F; 2304 mta = (1 << hash_bit); 2305 mcarray[hash_reg] |= mta; 2306 } else { 2307 e1000_rar_set(hw, ha->addr, i++); 2308 } 2309 } 2310 2311 for (; i < rar_entries; i++) { 2312 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0); 2313 E1000_WRITE_FLUSH(); 2314 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0); 2315 E1000_WRITE_FLUSH(); 2316 } 2317 2318 /* write the hash table completely, write from bottom to avoid 2319 * both stupid write combining chipsets, and flushing each write 2320 */ 2321 for (i = mta_reg_count - 1; i >= 0 ; i--) { 2322 /* If we are on an 82544 has an errata where writing odd 2323 * offsets overwrites the previous even offset, but writing 2324 * backwards over the range solves the issue by always 2325 * writing the odd offset first 2326 */ 2327 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]); 2328 } 2329 E1000_WRITE_FLUSH(); 2330 2331 if (hw->mac_type == e1000_82542_rev2_0) 2332 e1000_leave_82542_rst(adapter); 2333 2334 kfree(mcarray); 2335 } 2336 2337 /** 2338 * e1000_update_phy_info_task - get phy info 2339 * @work: work struct contained inside adapter struct 2340 * 2341 * Need to wait a few seconds after link up to get diagnostic information from 2342 * the phy 2343 */ 2344 static void e1000_update_phy_info_task(struct work_struct *work) 2345 { 2346 struct e1000_adapter *adapter = container_of(work, 2347 struct e1000_adapter, 2348 phy_info_task.work); 2349 2350 e1000_phy_get_info(&adapter->hw, &adapter->phy_info); 2351 } 2352 2353 /** 2354 * e1000_82547_tx_fifo_stall_task - task to complete work 2355 * @work: work struct contained inside adapter struct 2356 **/ 2357 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work) 2358 { 2359 struct e1000_adapter *adapter = container_of(work, 2360 struct e1000_adapter, 2361 fifo_stall_task.work); 2362 struct e1000_hw *hw = &adapter->hw; 2363 struct net_device *netdev = adapter->netdev; 2364 u32 tctl; 2365 2366 if (atomic_read(&adapter->tx_fifo_stall)) { 2367 if ((er32(TDT) == er32(TDH)) && 2368 (er32(TDFT) == er32(TDFH)) && 2369 (er32(TDFTS) == er32(TDFHS))) { 2370 tctl = er32(TCTL); 2371 ew32(TCTL, tctl & ~E1000_TCTL_EN); 2372 ew32(TDFT, adapter->tx_head_addr); 2373 ew32(TDFH, adapter->tx_head_addr); 2374 ew32(TDFTS, adapter->tx_head_addr); 2375 ew32(TDFHS, adapter->tx_head_addr); 2376 ew32(TCTL, tctl); 2377 E1000_WRITE_FLUSH(); 2378 2379 adapter->tx_fifo_head = 0; 2380 atomic_set(&adapter->tx_fifo_stall, 0); 2381 netif_wake_queue(netdev); 2382 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) { 2383 schedule_delayed_work(&adapter->fifo_stall_task, 1); 2384 } 2385 } 2386 } 2387 2388 bool e1000_has_link(struct e1000_adapter *adapter) 2389 { 2390 struct e1000_hw *hw = &adapter->hw; 2391 bool link_active = false; 2392 2393 /* get_link_status is set on LSC (link status) interrupt or rx 2394 * sequence error interrupt (except on intel ce4100). 2395 * get_link_status will stay false until the 2396 * e1000_check_for_link establishes link for copper adapters 2397 * ONLY 2398 */ 2399 switch (hw->media_type) { 2400 case e1000_media_type_copper: 2401 if (hw->mac_type == e1000_ce4100) 2402 hw->get_link_status = 1; 2403 if (hw->get_link_status) { 2404 e1000_check_for_link(hw); 2405 link_active = !hw->get_link_status; 2406 } else { 2407 link_active = true; 2408 } 2409 break; 2410 case e1000_media_type_fiber: 2411 e1000_check_for_link(hw); 2412 link_active = !!(er32(STATUS) & E1000_STATUS_LU); 2413 break; 2414 case e1000_media_type_internal_serdes: 2415 e1000_check_for_link(hw); 2416 link_active = hw->serdes_has_link; 2417 break; 2418 default: 2419 break; 2420 } 2421 2422 return link_active; 2423 } 2424 2425 /** 2426 * e1000_watchdog - work function 2427 * @work: work struct contained inside adapter struct 2428 **/ 2429 static void e1000_watchdog(struct work_struct *work) 2430 { 2431 struct e1000_adapter *adapter = container_of(work, 2432 struct e1000_adapter, 2433 watchdog_task.work); 2434 struct e1000_hw *hw = &adapter->hw; 2435 struct net_device *netdev = adapter->netdev; 2436 struct e1000_tx_ring *txdr = adapter->tx_ring; 2437 u32 link, tctl; 2438 2439 link = e1000_has_link(adapter); 2440 if ((netif_carrier_ok(netdev)) && link) 2441 goto link_up; 2442 2443 if (link) { 2444 if (!netif_carrier_ok(netdev)) { 2445 u32 ctrl; 2446 bool txb2b = true; 2447 /* update snapshot of PHY registers on LSC */ 2448 e1000_get_speed_and_duplex(hw, 2449 &adapter->link_speed, 2450 &adapter->link_duplex); 2451 2452 ctrl = er32(CTRL); 2453 pr_info("%s NIC Link is Up %d Mbps %s, " 2454 "Flow Control: %s\n", 2455 netdev->name, 2456 adapter->link_speed, 2457 adapter->link_duplex == FULL_DUPLEX ? 2458 "Full Duplex" : "Half Duplex", 2459 ((ctrl & E1000_CTRL_TFCE) && (ctrl & 2460 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl & 2461 E1000_CTRL_RFCE) ? "RX" : ((ctrl & 2462 E1000_CTRL_TFCE) ? "TX" : "None"))); 2463 2464 /* adjust timeout factor according to speed/duplex */ 2465 adapter->tx_timeout_factor = 1; 2466 switch (adapter->link_speed) { 2467 case SPEED_10: 2468 txb2b = false; 2469 adapter->tx_timeout_factor = 16; 2470 break; 2471 case SPEED_100: 2472 txb2b = false; 2473 /* maybe add some timeout factor ? */ 2474 break; 2475 } 2476 2477 /* enable transmits in the hardware */ 2478 tctl = er32(TCTL); 2479 tctl |= E1000_TCTL_EN; 2480 ew32(TCTL, tctl); 2481 2482 netif_carrier_on(netdev); 2483 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2484 schedule_delayed_work(&adapter->phy_info_task, 2485 2 * HZ); 2486 adapter->smartspeed = 0; 2487 } 2488 } else { 2489 if (netif_carrier_ok(netdev)) { 2490 adapter->link_speed = 0; 2491 adapter->link_duplex = 0; 2492 pr_info("%s NIC Link is Down\n", 2493 netdev->name); 2494 netif_carrier_off(netdev); 2495 2496 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2497 schedule_delayed_work(&adapter->phy_info_task, 2498 2 * HZ); 2499 } 2500 2501 e1000_smartspeed(adapter); 2502 } 2503 2504 link_up: 2505 e1000_update_stats(adapter); 2506 2507 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; 2508 adapter->tpt_old = adapter->stats.tpt; 2509 hw->collision_delta = adapter->stats.colc - adapter->colc_old; 2510 adapter->colc_old = adapter->stats.colc; 2511 2512 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; 2513 adapter->gorcl_old = adapter->stats.gorcl; 2514 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; 2515 adapter->gotcl_old = adapter->stats.gotcl; 2516 2517 e1000_update_adaptive(hw); 2518 2519 if (!netif_carrier_ok(netdev)) { 2520 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) { 2521 /* We've lost link, so the controller stops DMA, 2522 * but we've got queued Tx work that's never going 2523 * to get done, so reset controller to flush Tx. 2524 * (Do the reset outside of interrupt context). 2525 */ 2526 adapter->tx_timeout_count++; 2527 schedule_work(&adapter->reset_task); 2528 /* exit immediately since reset is imminent */ 2529 return; 2530 } 2531 } 2532 2533 /* Simple mode for Interrupt Throttle Rate (ITR) */ 2534 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) { 2535 /* Symmetric Tx/Rx gets a reduced ITR=2000; 2536 * Total asymmetrical Tx or Rx gets ITR=8000; 2537 * everyone else is between 2000-8000. 2538 */ 2539 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000; 2540 u32 dif = (adapter->gotcl > adapter->gorcl ? 2541 adapter->gotcl - adapter->gorcl : 2542 adapter->gorcl - adapter->gotcl) / 10000; 2543 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; 2544 2545 ew32(ITR, 1000000000 / (itr * 256)); 2546 } 2547 2548 /* Cause software interrupt to ensure rx ring is cleaned */ 2549 ew32(ICS, E1000_ICS_RXDMT0); 2550 2551 /* Force detection of hung controller every watchdog period */ 2552 adapter->detect_tx_hung = true; 2553 2554 /* Reschedule the task */ 2555 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2556 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ); 2557 } 2558 2559 enum latency_range { 2560 lowest_latency = 0, 2561 low_latency = 1, 2562 bulk_latency = 2, 2563 latency_invalid = 255 2564 }; 2565 2566 /** 2567 * e1000_update_itr - update the dynamic ITR value based on statistics 2568 * @adapter: pointer to adapter 2569 * @itr_setting: current adapter->itr 2570 * @packets: the number of packets during this measurement interval 2571 * @bytes: the number of bytes during this measurement interval 2572 * 2573 * Stores a new ITR value based on packets and byte 2574 * counts during the last interrupt. The advantage of per interrupt 2575 * computation is faster updates and more accurate ITR for the current 2576 * traffic pattern. Constants in this function were computed 2577 * based on theoretical maximum wire speed and thresholds were set based 2578 * on testing data as well as attempting to minimize response time 2579 * while increasing bulk throughput. 2580 * this functionality is controlled by the InterruptThrottleRate module 2581 * parameter (see e1000_param.c) 2582 **/ 2583 static unsigned int e1000_update_itr(struct e1000_adapter *adapter, 2584 u16 itr_setting, int packets, int bytes) 2585 { 2586 unsigned int retval = itr_setting; 2587 struct e1000_hw *hw = &adapter->hw; 2588 2589 if (unlikely(hw->mac_type < e1000_82540)) 2590 goto update_itr_done; 2591 2592 if (packets == 0) 2593 goto update_itr_done; 2594 2595 switch (itr_setting) { 2596 case lowest_latency: 2597 /* jumbo frames get bulk treatment*/ 2598 if (bytes/packets > 8000) 2599 retval = bulk_latency; 2600 else if ((packets < 5) && (bytes > 512)) 2601 retval = low_latency; 2602 break; 2603 case low_latency: /* 50 usec aka 20000 ints/s */ 2604 if (bytes > 10000) { 2605 /* jumbo frames need bulk latency setting */ 2606 if (bytes/packets > 8000) 2607 retval = bulk_latency; 2608 else if ((packets < 10) || ((bytes/packets) > 1200)) 2609 retval = bulk_latency; 2610 else if ((packets > 35)) 2611 retval = lowest_latency; 2612 } else if (bytes/packets > 2000) 2613 retval = bulk_latency; 2614 else if (packets <= 2 && bytes < 512) 2615 retval = lowest_latency; 2616 break; 2617 case bulk_latency: /* 250 usec aka 4000 ints/s */ 2618 if (bytes > 25000) { 2619 if (packets > 35) 2620 retval = low_latency; 2621 } else if (bytes < 6000) { 2622 retval = low_latency; 2623 } 2624 break; 2625 } 2626 2627 update_itr_done: 2628 return retval; 2629 } 2630 2631 static void e1000_set_itr(struct e1000_adapter *adapter) 2632 { 2633 struct e1000_hw *hw = &adapter->hw; 2634 u16 current_itr; 2635 u32 new_itr = adapter->itr; 2636 2637 if (unlikely(hw->mac_type < e1000_82540)) 2638 return; 2639 2640 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 2641 if (unlikely(adapter->link_speed != SPEED_1000)) { 2642 current_itr = 0; 2643 new_itr = 4000; 2644 goto set_itr_now; 2645 } 2646 2647 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr, 2648 adapter->total_tx_packets, 2649 adapter->total_tx_bytes); 2650 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2651 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) 2652 adapter->tx_itr = low_latency; 2653 2654 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr, 2655 adapter->total_rx_packets, 2656 adapter->total_rx_bytes); 2657 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2658 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) 2659 adapter->rx_itr = low_latency; 2660 2661 current_itr = max(adapter->rx_itr, adapter->tx_itr); 2662 2663 switch (current_itr) { 2664 /* counts and packets in update_itr are dependent on these numbers */ 2665 case lowest_latency: 2666 new_itr = 70000; 2667 break; 2668 case low_latency: 2669 new_itr = 20000; /* aka hwitr = ~200 */ 2670 break; 2671 case bulk_latency: 2672 new_itr = 4000; 2673 break; 2674 default: 2675 break; 2676 } 2677 2678 set_itr_now: 2679 if (new_itr != adapter->itr) { 2680 /* this attempts to bias the interrupt rate towards Bulk 2681 * by adding intermediate steps when interrupt rate is 2682 * increasing 2683 */ 2684 new_itr = new_itr > adapter->itr ? 2685 min(adapter->itr + (new_itr >> 2), new_itr) : 2686 new_itr; 2687 adapter->itr = new_itr; 2688 ew32(ITR, 1000000000 / (new_itr * 256)); 2689 } 2690 } 2691 2692 #define E1000_TX_FLAGS_CSUM 0x00000001 2693 #define E1000_TX_FLAGS_VLAN 0x00000002 2694 #define E1000_TX_FLAGS_TSO 0x00000004 2695 #define E1000_TX_FLAGS_IPV4 0x00000008 2696 #define E1000_TX_FLAGS_NO_FCS 0x00000010 2697 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 2698 #define E1000_TX_FLAGS_VLAN_SHIFT 16 2699 2700 static int e1000_tso(struct e1000_adapter *adapter, 2701 struct e1000_tx_ring *tx_ring, struct sk_buff *skb, 2702 __be16 protocol) 2703 { 2704 struct e1000_context_desc *context_desc; 2705 struct e1000_tx_buffer *buffer_info; 2706 unsigned int i; 2707 u32 cmd_length = 0; 2708 u16 ipcse = 0, tucse, mss; 2709 u8 ipcss, ipcso, tucss, tucso, hdr_len; 2710 2711 if (skb_is_gso(skb)) { 2712 int err; 2713 2714 err = skb_cow_head(skb, 0); 2715 if (err < 0) 2716 return err; 2717 2718 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2719 mss = skb_shinfo(skb)->gso_size; 2720 if (protocol == htons(ETH_P_IP)) { 2721 struct iphdr *iph = ip_hdr(skb); 2722 iph->tot_len = 0; 2723 iph->check = 0; 2724 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, 2725 iph->daddr, 0, 2726 IPPROTO_TCP, 2727 0); 2728 cmd_length = E1000_TXD_CMD_IP; 2729 ipcse = skb_transport_offset(skb) - 1; 2730 } else if (skb_is_gso_v6(skb)) { 2731 ipv6_hdr(skb)->payload_len = 0; 2732 tcp_hdr(skb)->check = 2733 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 2734 &ipv6_hdr(skb)->daddr, 2735 0, IPPROTO_TCP, 0); 2736 ipcse = 0; 2737 } 2738 ipcss = skb_network_offset(skb); 2739 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; 2740 tucss = skb_transport_offset(skb); 2741 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; 2742 tucse = 0; 2743 2744 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | 2745 E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); 2746 2747 i = tx_ring->next_to_use; 2748 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 2749 buffer_info = &tx_ring->buffer_info[i]; 2750 2751 context_desc->lower_setup.ip_fields.ipcss = ipcss; 2752 context_desc->lower_setup.ip_fields.ipcso = ipcso; 2753 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); 2754 context_desc->upper_setup.tcp_fields.tucss = tucss; 2755 context_desc->upper_setup.tcp_fields.tucso = tucso; 2756 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); 2757 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); 2758 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; 2759 context_desc->cmd_and_length = cpu_to_le32(cmd_length); 2760 2761 buffer_info->time_stamp = jiffies; 2762 buffer_info->next_to_watch = i; 2763 2764 if (++i == tx_ring->count) i = 0; 2765 tx_ring->next_to_use = i; 2766 2767 return true; 2768 } 2769 return false; 2770 } 2771 2772 static bool e1000_tx_csum(struct e1000_adapter *adapter, 2773 struct e1000_tx_ring *tx_ring, struct sk_buff *skb, 2774 __be16 protocol) 2775 { 2776 struct e1000_context_desc *context_desc; 2777 struct e1000_tx_buffer *buffer_info; 2778 unsigned int i; 2779 u8 css; 2780 u32 cmd_len = E1000_TXD_CMD_DEXT; 2781 2782 if (skb->ip_summed != CHECKSUM_PARTIAL) 2783 return false; 2784 2785 switch (protocol) { 2786 case cpu_to_be16(ETH_P_IP): 2787 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 2788 cmd_len |= E1000_TXD_CMD_TCP; 2789 break; 2790 case cpu_to_be16(ETH_P_IPV6): 2791 /* XXX not handling all IPV6 headers */ 2792 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 2793 cmd_len |= E1000_TXD_CMD_TCP; 2794 break; 2795 default: 2796 if (unlikely(net_ratelimit())) 2797 e_warn(drv, "checksum_partial proto=%x!\n", 2798 skb->protocol); 2799 break; 2800 } 2801 2802 css = skb_checksum_start_offset(skb); 2803 2804 i = tx_ring->next_to_use; 2805 buffer_info = &tx_ring->buffer_info[i]; 2806 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 2807 2808 context_desc->lower_setup.ip_config = 0; 2809 context_desc->upper_setup.tcp_fields.tucss = css; 2810 context_desc->upper_setup.tcp_fields.tucso = 2811 css + skb->csum_offset; 2812 context_desc->upper_setup.tcp_fields.tucse = 0; 2813 context_desc->tcp_seg_setup.data = 0; 2814 context_desc->cmd_and_length = cpu_to_le32(cmd_len); 2815 2816 buffer_info->time_stamp = jiffies; 2817 buffer_info->next_to_watch = i; 2818 2819 if (unlikely(++i == tx_ring->count)) i = 0; 2820 tx_ring->next_to_use = i; 2821 2822 return true; 2823 } 2824 2825 #define E1000_MAX_TXD_PWR 12 2826 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR) 2827 2828 static int e1000_tx_map(struct e1000_adapter *adapter, 2829 struct e1000_tx_ring *tx_ring, 2830 struct sk_buff *skb, unsigned int first, 2831 unsigned int max_per_txd, unsigned int nr_frags, 2832 unsigned int mss) 2833 { 2834 struct e1000_hw *hw = &adapter->hw; 2835 struct pci_dev *pdev = adapter->pdev; 2836 struct e1000_tx_buffer *buffer_info; 2837 unsigned int len = skb_headlen(skb); 2838 unsigned int offset = 0, size, count = 0, i; 2839 unsigned int f, bytecount, segs; 2840 2841 i = tx_ring->next_to_use; 2842 2843 while (len) { 2844 buffer_info = &tx_ring->buffer_info[i]; 2845 size = min(len, max_per_txd); 2846 /* Workaround for Controller erratum -- 2847 * descriptor for non-tso packet in a linear SKB that follows a 2848 * tso gets written back prematurely before the data is fully 2849 * DMA'd to the controller 2850 */ 2851 if (!skb->data_len && tx_ring->last_tx_tso && 2852 !skb_is_gso(skb)) { 2853 tx_ring->last_tx_tso = false; 2854 size -= 4; 2855 } 2856 2857 /* Workaround for premature desc write-backs 2858 * in TSO mode. Append 4-byte sentinel desc 2859 */ 2860 if (unlikely(mss && !nr_frags && size == len && size > 8)) 2861 size -= 4; 2862 /* work-around for errata 10 and it applies 2863 * to all controllers in PCI-X mode 2864 * The fix is to make sure that the first descriptor of a 2865 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes 2866 */ 2867 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && 2868 (size > 2015) && count == 0)) 2869 size = 2015; 2870 2871 /* Workaround for potential 82544 hang in PCI-X. Avoid 2872 * terminating buffers within evenly-aligned dwords. 2873 */ 2874 if (unlikely(adapter->pcix_82544 && 2875 !((unsigned long)(skb->data + offset + size - 1) & 4) && 2876 size > 4)) 2877 size -= 4; 2878 2879 buffer_info->length = size; 2880 /* set time_stamp *before* dma to help avoid a possible race */ 2881 buffer_info->time_stamp = jiffies; 2882 buffer_info->mapped_as_page = false; 2883 buffer_info->dma = dma_map_single(&pdev->dev, 2884 skb->data + offset, 2885 size, DMA_TO_DEVICE); 2886 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2887 goto dma_error; 2888 buffer_info->next_to_watch = i; 2889 2890 len -= size; 2891 offset += size; 2892 count++; 2893 if (len) { 2894 i++; 2895 if (unlikely(i == tx_ring->count)) 2896 i = 0; 2897 } 2898 } 2899 2900 for (f = 0; f < nr_frags; f++) { 2901 const struct skb_frag_struct *frag; 2902 2903 frag = &skb_shinfo(skb)->frags[f]; 2904 len = skb_frag_size(frag); 2905 offset = 0; 2906 2907 while (len) { 2908 unsigned long bufend; 2909 i++; 2910 if (unlikely(i == tx_ring->count)) 2911 i = 0; 2912 2913 buffer_info = &tx_ring->buffer_info[i]; 2914 size = min(len, max_per_txd); 2915 /* Workaround for premature desc write-backs 2916 * in TSO mode. Append 4-byte sentinel desc 2917 */ 2918 if (unlikely(mss && f == (nr_frags-1) && 2919 size == len && size > 8)) 2920 size -= 4; 2921 /* Workaround for potential 82544 hang in PCI-X. 2922 * Avoid terminating buffers within evenly-aligned 2923 * dwords. 2924 */ 2925 bufend = (unsigned long) 2926 page_to_phys(skb_frag_page(frag)); 2927 bufend += offset + size - 1; 2928 if (unlikely(adapter->pcix_82544 && 2929 !(bufend & 4) && 2930 size > 4)) 2931 size -= 4; 2932 2933 buffer_info->length = size; 2934 buffer_info->time_stamp = jiffies; 2935 buffer_info->mapped_as_page = true; 2936 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 2937 offset, size, DMA_TO_DEVICE); 2938 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2939 goto dma_error; 2940 buffer_info->next_to_watch = i; 2941 2942 len -= size; 2943 offset += size; 2944 count++; 2945 } 2946 } 2947 2948 segs = skb_shinfo(skb)->gso_segs ?: 1; 2949 /* multiply data chunks by size of headers */ 2950 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len; 2951 2952 tx_ring->buffer_info[i].skb = skb; 2953 tx_ring->buffer_info[i].segs = segs; 2954 tx_ring->buffer_info[i].bytecount = bytecount; 2955 tx_ring->buffer_info[first].next_to_watch = i; 2956 2957 return count; 2958 2959 dma_error: 2960 dev_err(&pdev->dev, "TX DMA map failed\n"); 2961 buffer_info->dma = 0; 2962 if (count) 2963 count--; 2964 2965 while (count--) { 2966 if (i==0) 2967 i += tx_ring->count; 2968 i--; 2969 buffer_info = &tx_ring->buffer_info[i]; 2970 e1000_unmap_and_free_tx_resource(adapter, buffer_info); 2971 } 2972 2973 return 0; 2974 } 2975 2976 static void e1000_tx_queue(struct e1000_adapter *adapter, 2977 struct e1000_tx_ring *tx_ring, int tx_flags, 2978 int count) 2979 { 2980 struct e1000_tx_desc *tx_desc = NULL; 2981 struct e1000_tx_buffer *buffer_info; 2982 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; 2983 unsigned int i; 2984 2985 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) { 2986 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | 2987 E1000_TXD_CMD_TSE; 2988 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 2989 2990 if (likely(tx_flags & E1000_TX_FLAGS_IPV4)) 2991 txd_upper |= E1000_TXD_POPTS_IXSM << 8; 2992 } 2993 2994 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) { 2995 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; 2996 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 2997 } 2998 2999 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) { 3000 txd_lower |= E1000_TXD_CMD_VLE; 3001 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); 3002 } 3003 3004 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) 3005 txd_lower &= ~(E1000_TXD_CMD_IFCS); 3006 3007 i = tx_ring->next_to_use; 3008 3009 while (count--) { 3010 buffer_info = &tx_ring->buffer_info[i]; 3011 tx_desc = E1000_TX_DESC(*tx_ring, i); 3012 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 3013 tx_desc->lower.data = 3014 cpu_to_le32(txd_lower | buffer_info->length); 3015 tx_desc->upper.data = cpu_to_le32(txd_upper); 3016 if (unlikely(++i == tx_ring->count)) i = 0; 3017 } 3018 3019 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); 3020 3021 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */ 3022 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) 3023 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS)); 3024 3025 /* Force memory writes to complete before letting h/w 3026 * know there are new descriptors to fetch. (Only 3027 * applicable for weak-ordered memory model archs, 3028 * such as IA-64). 3029 */ 3030 wmb(); 3031 3032 tx_ring->next_to_use = i; 3033 } 3034 3035 /* 82547 workaround to avoid controller hang in half-duplex environment. 3036 * The workaround is to avoid queuing a large packet that would span 3037 * the internal Tx FIFO ring boundary by notifying the stack to resend 3038 * the packet at a later time. This gives the Tx FIFO an opportunity to 3039 * flush all packets. When that occurs, we reset the Tx FIFO pointers 3040 * to the beginning of the Tx FIFO. 3041 */ 3042 3043 #define E1000_FIFO_HDR 0x10 3044 #define E1000_82547_PAD_LEN 0x3E0 3045 3046 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, 3047 struct sk_buff *skb) 3048 { 3049 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head; 3050 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR; 3051 3052 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR); 3053 3054 if (adapter->link_duplex != HALF_DUPLEX) 3055 goto no_fifo_stall_required; 3056 3057 if (atomic_read(&adapter->tx_fifo_stall)) 3058 return 1; 3059 3060 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) { 3061 atomic_set(&adapter->tx_fifo_stall, 1); 3062 return 1; 3063 } 3064 3065 no_fifo_stall_required: 3066 adapter->tx_fifo_head += skb_fifo_len; 3067 if (adapter->tx_fifo_head >= adapter->tx_fifo_size) 3068 adapter->tx_fifo_head -= adapter->tx_fifo_size; 3069 return 0; 3070 } 3071 3072 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) 3073 { 3074 struct e1000_adapter *adapter = netdev_priv(netdev); 3075 struct e1000_tx_ring *tx_ring = adapter->tx_ring; 3076 3077 netif_stop_queue(netdev); 3078 /* Herbert's original patch had: 3079 * smp_mb__after_netif_stop_queue(); 3080 * but since that doesn't exist yet, just open code it. 3081 */ 3082 smp_mb(); 3083 3084 /* We need to check again in a case another CPU has just 3085 * made room available. 3086 */ 3087 if (likely(E1000_DESC_UNUSED(tx_ring) < size)) 3088 return -EBUSY; 3089 3090 /* A reprieve! */ 3091 netif_start_queue(netdev); 3092 ++adapter->restart_queue; 3093 return 0; 3094 } 3095 3096 static int e1000_maybe_stop_tx(struct net_device *netdev, 3097 struct e1000_tx_ring *tx_ring, int size) 3098 { 3099 if (likely(E1000_DESC_UNUSED(tx_ring) >= size)) 3100 return 0; 3101 return __e1000_maybe_stop_tx(netdev, size); 3102 } 3103 3104 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) 3105 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, 3106 struct net_device *netdev) 3107 { 3108 struct e1000_adapter *adapter = netdev_priv(netdev); 3109 struct e1000_hw *hw = &adapter->hw; 3110 struct e1000_tx_ring *tx_ring; 3111 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD; 3112 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; 3113 unsigned int tx_flags = 0; 3114 unsigned int len = skb_headlen(skb); 3115 unsigned int nr_frags; 3116 unsigned int mss; 3117 int count = 0; 3118 int tso; 3119 unsigned int f; 3120 __be16 protocol = vlan_get_protocol(skb); 3121 3122 /* This goes back to the question of how to logically map a Tx queue 3123 * to a flow. Right now, performance is impacted slightly negatively 3124 * if using multiple Tx queues. If the stack breaks away from a 3125 * single qdisc implementation, we can look at this again. 3126 */ 3127 tx_ring = adapter->tx_ring; 3128 3129 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN, 3130 * packets may get corrupted during padding by HW. 3131 * To WA this issue, pad all small packets manually. 3132 */ 3133 if (eth_skb_pad(skb)) 3134 return NETDEV_TX_OK; 3135 3136 mss = skb_shinfo(skb)->gso_size; 3137 /* The controller does a simple calculation to 3138 * make sure there is enough room in the FIFO before 3139 * initiating the DMA for each buffer. The calc is: 3140 * 4 = ceil(buffer len/mss). To make sure we don't 3141 * overrun the FIFO, adjust the max buffer len if mss 3142 * drops. 3143 */ 3144 if (mss) { 3145 u8 hdr_len; 3146 max_per_txd = min(mss << 2, max_per_txd); 3147 max_txd_pwr = fls(max_per_txd) - 1; 3148 3149 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 3150 if (skb->data_len && hdr_len == len) { 3151 switch (hw->mac_type) { 3152 unsigned int pull_size; 3153 case e1000_82544: 3154 /* Make sure we have room to chop off 4 bytes, 3155 * and that the end alignment will work out to 3156 * this hardware's requirements 3157 * NOTE: this is a TSO only workaround 3158 * if end byte alignment not correct move us 3159 * into the next dword 3160 */ 3161 if ((unsigned long)(skb_tail_pointer(skb) - 1) 3162 & 4) 3163 break; 3164 /* fall through */ 3165 pull_size = min((unsigned int)4, skb->data_len); 3166 if (!__pskb_pull_tail(skb, pull_size)) { 3167 e_err(drv, "__pskb_pull_tail " 3168 "failed.\n"); 3169 dev_kfree_skb_any(skb); 3170 return NETDEV_TX_OK; 3171 } 3172 len = skb_headlen(skb); 3173 break; 3174 default: 3175 /* do nothing */ 3176 break; 3177 } 3178 } 3179 } 3180 3181 /* reserve a descriptor for the offload context */ 3182 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) 3183 count++; 3184 count++; 3185 3186 /* Controller Erratum workaround */ 3187 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb)) 3188 count++; 3189 3190 count += TXD_USE_COUNT(len, max_txd_pwr); 3191 3192 if (adapter->pcix_82544) 3193 count++; 3194 3195 /* work-around for errata 10 and it applies to all controllers 3196 * in PCI-X mode, so add one more descriptor to the count 3197 */ 3198 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && 3199 (len > 2015))) 3200 count++; 3201 3202 nr_frags = skb_shinfo(skb)->nr_frags; 3203 for (f = 0; f < nr_frags; f++) 3204 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]), 3205 max_txd_pwr); 3206 if (adapter->pcix_82544) 3207 count += nr_frags; 3208 3209 /* need: count + 2 desc gap to keep tail from touching 3210 * head, otherwise try next time 3211 */ 3212 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) 3213 return NETDEV_TX_BUSY; 3214 3215 if (unlikely((hw->mac_type == e1000_82547) && 3216 (e1000_82547_fifo_workaround(adapter, skb)))) { 3217 netif_stop_queue(netdev); 3218 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3219 schedule_delayed_work(&adapter->fifo_stall_task, 1); 3220 return NETDEV_TX_BUSY; 3221 } 3222 3223 if (skb_vlan_tag_present(skb)) { 3224 tx_flags |= E1000_TX_FLAGS_VLAN; 3225 tx_flags |= (skb_vlan_tag_get(skb) << 3226 E1000_TX_FLAGS_VLAN_SHIFT); 3227 } 3228 3229 first = tx_ring->next_to_use; 3230 3231 tso = e1000_tso(adapter, tx_ring, skb, protocol); 3232 if (tso < 0) { 3233 dev_kfree_skb_any(skb); 3234 return NETDEV_TX_OK; 3235 } 3236 3237 if (likely(tso)) { 3238 if (likely(hw->mac_type != e1000_82544)) 3239 tx_ring->last_tx_tso = true; 3240 tx_flags |= E1000_TX_FLAGS_TSO; 3241 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol))) 3242 tx_flags |= E1000_TX_FLAGS_CSUM; 3243 3244 if (protocol == htons(ETH_P_IP)) 3245 tx_flags |= E1000_TX_FLAGS_IPV4; 3246 3247 if (unlikely(skb->no_fcs)) 3248 tx_flags |= E1000_TX_FLAGS_NO_FCS; 3249 3250 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd, 3251 nr_frags, mss); 3252 3253 if (count) { 3254 netdev_sent_queue(netdev, skb->len); 3255 skb_tx_timestamp(skb); 3256 3257 e1000_tx_queue(adapter, tx_ring, tx_flags, count); 3258 /* Make sure there is space in the ring for the next send. */ 3259 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2); 3260 3261 if (!skb->xmit_more || 3262 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) { 3263 writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt); 3264 /* we need this if more than one processor can write to 3265 * our tail at a time, it synchronizes IO on IA64/Altix 3266 * systems 3267 */ 3268 mmiowb(); 3269 } 3270 } else { 3271 dev_kfree_skb_any(skb); 3272 tx_ring->buffer_info[first].time_stamp = 0; 3273 tx_ring->next_to_use = first; 3274 } 3275 3276 return NETDEV_TX_OK; 3277 } 3278 3279 #define NUM_REGS 38 /* 1 based count */ 3280 static void e1000_regdump(struct e1000_adapter *adapter) 3281 { 3282 struct e1000_hw *hw = &adapter->hw; 3283 u32 regs[NUM_REGS]; 3284 u32 *regs_buff = regs; 3285 int i = 0; 3286 3287 static const char * const reg_name[] = { 3288 "CTRL", "STATUS", 3289 "RCTL", "RDLEN", "RDH", "RDT", "RDTR", 3290 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT", 3291 "TIDV", "TXDCTL", "TADV", "TARC0", 3292 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1", 3293 "TXDCTL1", "TARC1", 3294 "CTRL_EXT", "ERT", "RDBAL", "RDBAH", 3295 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC", 3296 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC" 3297 }; 3298 3299 regs_buff[0] = er32(CTRL); 3300 regs_buff[1] = er32(STATUS); 3301 3302 regs_buff[2] = er32(RCTL); 3303 regs_buff[3] = er32(RDLEN); 3304 regs_buff[4] = er32(RDH); 3305 regs_buff[5] = er32(RDT); 3306 regs_buff[6] = er32(RDTR); 3307 3308 regs_buff[7] = er32(TCTL); 3309 regs_buff[8] = er32(TDBAL); 3310 regs_buff[9] = er32(TDBAH); 3311 regs_buff[10] = er32(TDLEN); 3312 regs_buff[11] = er32(TDH); 3313 regs_buff[12] = er32(TDT); 3314 regs_buff[13] = er32(TIDV); 3315 regs_buff[14] = er32(TXDCTL); 3316 regs_buff[15] = er32(TADV); 3317 regs_buff[16] = er32(TARC0); 3318 3319 regs_buff[17] = er32(TDBAL1); 3320 regs_buff[18] = er32(TDBAH1); 3321 regs_buff[19] = er32(TDLEN1); 3322 regs_buff[20] = er32(TDH1); 3323 regs_buff[21] = er32(TDT1); 3324 regs_buff[22] = er32(TXDCTL1); 3325 regs_buff[23] = er32(TARC1); 3326 regs_buff[24] = er32(CTRL_EXT); 3327 regs_buff[25] = er32(ERT); 3328 regs_buff[26] = er32(RDBAL0); 3329 regs_buff[27] = er32(RDBAH0); 3330 regs_buff[28] = er32(TDFH); 3331 regs_buff[29] = er32(TDFT); 3332 regs_buff[30] = er32(TDFHS); 3333 regs_buff[31] = er32(TDFTS); 3334 regs_buff[32] = er32(TDFPC); 3335 regs_buff[33] = er32(RDFH); 3336 regs_buff[34] = er32(RDFT); 3337 regs_buff[35] = er32(RDFHS); 3338 regs_buff[36] = er32(RDFTS); 3339 regs_buff[37] = er32(RDFPC); 3340 3341 pr_info("Register dump\n"); 3342 for (i = 0; i < NUM_REGS; i++) 3343 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]); 3344 } 3345 3346 /* 3347 * e1000_dump: Print registers, tx ring and rx ring 3348 */ 3349 static void e1000_dump(struct e1000_adapter *adapter) 3350 { 3351 /* this code doesn't handle multiple rings */ 3352 struct e1000_tx_ring *tx_ring = adapter->tx_ring; 3353 struct e1000_rx_ring *rx_ring = adapter->rx_ring; 3354 int i; 3355 3356 if (!netif_msg_hw(adapter)) 3357 return; 3358 3359 /* Print Registers */ 3360 e1000_regdump(adapter); 3361 3362 /* transmit dump */ 3363 pr_info("TX Desc ring0 dump\n"); 3364 3365 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended) 3366 * 3367 * Legacy Transmit Descriptor 3368 * +--------------------------------------------------------------+ 3369 * 0 | Buffer Address [63:0] (Reserved on Write Back) | 3370 * +--------------------------------------------------------------+ 3371 * 8 | Special | CSS | Status | CMD | CSO | Length | 3372 * +--------------------------------------------------------------+ 3373 * 63 48 47 36 35 32 31 24 23 16 15 0 3374 * 3375 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload 3376 * 63 48 47 40 39 32 31 16 15 8 7 0 3377 * +----------------------------------------------------------------+ 3378 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS | 3379 * +----------------------------------------------------------------+ 3380 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN | 3381 * +----------------------------------------------------------------+ 3382 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 3383 * 3384 * Extended Data Descriptor (DTYP=0x1) 3385 * +----------------------------------------------------------------+ 3386 * 0 | Buffer Address [63:0] | 3387 * +----------------------------------------------------------------+ 3388 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN | 3389 * +----------------------------------------------------------------+ 3390 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 3391 */ 3392 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n"); 3393 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n"); 3394 3395 if (!netif_msg_tx_done(adapter)) 3396 goto rx_ring_summary; 3397 3398 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { 3399 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); 3400 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i]; 3401 struct my_u { __le64 a; __le64 b; }; 3402 struct my_u *u = (struct my_u *)tx_desc; 3403 const char *type; 3404 3405 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean) 3406 type = "NTC/U"; 3407 else if (i == tx_ring->next_to_use) 3408 type = "NTU"; 3409 else if (i == tx_ring->next_to_clean) 3410 type = "NTC"; 3411 else 3412 type = ""; 3413 3414 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n", 3415 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i, 3416 le64_to_cpu(u->a), le64_to_cpu(u->b), 3417 (u64)buffer_info->dma, buffer_info->length, 3418 buffer_info->next_to_watch, 3419 (u64)buffer_info->time_stamp, buffer_info->skb, type); 3420 } 3421 3422 rx_ring_summary: 3423 /* receive dump */ 3424 pr_info("\nRX Desc ring dump\n"); 3425 3426 /* Legacy Receive Descriptor Format 3427 * 3428 * +-----------------------------------------------------+ 3429 * | Buffer Address [63:0] | 3430 * +-----------------------------------------------------+ 3431 * | VLAN Tag | Errors | Status 0 | Packet csum | Length | 3432 * +-----------------------------------------------------+ 3433 * 63 48 47 40 39 32 31 16 15 0 3434 */ 3435 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n"); 3436 3437 if (!netif_msg_rx_status(adapter)) 3438 goto exit; 3439 3440 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) { 3441 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i); 3442 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i]; 3443 struct my_u { __le64 a; __le64 b; }; 3444 struct my_u *u = (struct my_u *)rx_desc; 3445 const char *type; 3446 3447 if (i == rx_ring->next_to_use) 3448 type = "NTU"; 3449 else if (i == rx_ring->next_to_clean) 3450 type = "NTC"; 3451 else 3452 type = ""; 3453 3454 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n", 3455 i, le64_to_cpu(u->a), le64_to_cpu(u->b), 3456 (u64)buffer_info->dma, buffer_info->rxbuf.data, type); 3457 } /* for */ 3458 3459 /* dump the descriptor caches */ 3460 /* rx */ 3461 pr_info("Rx descriptor cache in 64bit format\n"); 3462 for (i = 0x6000; i <= 0x63FF ; i += 0x10) { 3463 pr_info("R%04X: %08X|%08X %08X|%08X\n", 3464 i, 3465 readl(adapter->hw.hw_addr + i+4), 3466 readl(adapter->hw.hw_addr + i), 3467 readl(adapter->hw.hw_addr + i+12), 3468 readl(adapter->hw.hw_addr + i+8)); 3469 } 3470 /* tx */ 3471 pr_info("Tx descriptor cache in 64bit format\n"); 3472 for (i = 0x7000; i <= 0x73FF ; i += 0x10) { 3473 pr_info("T%04X: %08X|%08X %08X|%08X\n", 3474 i, 3475 readl(adapter->hw.hw_addr + i+4), 3476 readl(adapter->hw.hw_addr + i), 3477 readl(adapter->hw.hw_addr + i+12), 3478 readl(adapter->hw.hw_addr + i+8)); 3479 } 3480 exit: 3481 return; 3482 } 3483 3484 /** 3485 * e1000_tx_timeout - Respond to a Tx Hang 3486 * @netdev: network interface device structure 3487 **/ 3488 static void e1000_tx_timeout(struct net_device *netdev) 3489 { 3490 struct e1000_adapter *adapter = netdev_priv(netdev); 3491 3492 /* Do the reset outside of interrupt context */ 3493 adapter->tx_timeout_count++; 3494 schedule_work(&adapter->reset_task); 3495 } 3496 3497 static void e1000_reset_task(struct work_struct *work) 3498 { 3499 struct e1000_adapter *adapter = 3500 container_of(work, struct e1000_adapter, reset_task); 3501 3502 e_err(drv, "Reset adapter\n"); 3503 e1000_reinit_locked(adapter); 3504 } 3505 3506 /** 3507 * e1000_get_stats - Get System Network Statistics 3508 * @netdev: network interface device structure 3509 * 3510 * Returns the address of the device statistics structure. 3511 * The statistics are actually updated from the watchdog. 3512 **/ 3513 static struct net_device_stats *e1000_get_stats(struct net_device *netdev) 3514 { 3515 /* only return the current stats */ 3516 return &netdev->stats; 3517 } 3518 3519 /** 3520 * e1000_change_mtu - Change the Maximum Transfer Unit 3521 * @netdev: network interface device structure 3522 * @new_mtu: new value for maximum frame size 3523 * 3524 * Returns 0 on success, negative on failure 3525 **/ 3526 static int e1000_change_mtu(struct net_device *netdev, int new_mtu) 3527 { 3528 struct e1000_adapter *adapter = netdev_priv(netdev); 3529 struct e1000_hw *hw = &adapter->hw; 3530 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; 3531 3532 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) || 3533 (max_frame > MAX_JUMBO_FRAME_SIZE)) { 3534 e_err(probe, "Invalid MTU setting\n"); 3535 return -EINVAL; 3536 } 3537 3538 /* Adapter-specific max frame size limits. */ 3539 switch (hw->mac_type) { 3540 case e1000_undefined ... e1000_82542_rev2_1: 3541 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) { 3542 e_err(probe, "Jumbo Frames not supported.\n"); 3543 return -EINVAL; 3544 } 3545 break; 3546 default: 3547 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */ 3548 break; 3549 } 3550 3551 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 3552 msleep(1); 3553 /* e1000_down has a dependency on max_frame_size */ 3554 hw->max_frame_size = max_frame; 3555 if (netif_running(netdev)) { 3556 /* prevent buffers from being reallocated */ 3557 adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers; 3558 e1000_down(adapter); 3559 } 3560 3561 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN 3562 * means we reserve 2 more, this pushes us to allocate from the next 3563 * larger slab size. 3564 * i.e. RXBUFFER_2048 --> size-4096 slab 3565 * however with the new *_jumbo_rx* routines, jumbo receives will use 3566 * fragmented skbs 3567 */ 3568 3569 if (max_frame <= E1000_RXBUFFER_2048) 3570 adapter->rx_buffer_len = E1000_RXBUFFER_2048; 3571 else 3572 #if (PAGE_SIZE >= E1000_RXBUFFER_16384) 3573 adapter->rx_buffer_len = E1000_RXBUFFER_16384; 3574 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096) 3575 adapter->rx_buffer_len = PAGE_SIZE; 3576 #endif 3577 3578 /* adjust allocation if LPE protects us, and we aren't using SBP */ 3579 if (!hw->tbi_compatibility_on && 3580 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) || 3581 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))) 3582 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; 3583 3584 pr_info("%s changing MTU from %d to %d\n", 3585 netdev->name, netdev->mtu, new_mtu); 3586 netdev->mtu = new_mtu; 3587 3588 if (netif_running(netdev)) 3589 e1000_up(adapter); 3590 else 3591 e1000_reset(adapter); 3592 3593 clear_bit(__E1000_RESETTING, &adapter->flags); 3594 3595 return 0; 3596 } 3597 3598 /** 3599 * e1000_update_stats - Update the board statistics counters 3600 * @adapter: board private structure 3601 **/ 3602 void e1000_update_stats(struct e1000_adapter *adapter) 3603 { 3604 struct net_device *netdev = adapter->netdev; 3605 struct e1000_hw *hw = &adapter->hw; 3606 struct pci_dev *pdev = adapter->pdev; 3607 unsigned long flags; 3608 u16 phy_tmp; 3609 3610 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF 3611 3612 /* Prevent stats update while adapter is being reset, or if the pci 3613 * connection is down. 3614 */ 3615 if (adapter->link_speed == 0) 3616 return; 3617 if (pci_channel_offline(pdev)) 3618 return; 3619 3620 spin_lock_irqsave(&adapter->stats_lock, flags); 3621 3622 /* these counters are modified from e1000_tbi_adjust_stats, 3623 * called from the interrupt context, so they must only 3624 * be written while holding adapter->stats_lock 3625 */ 3626 3627 adapter->stats.crcerrs += er32(CRCERRS); 3628 adapter->stats.gprc += er32(GPRC); 3629 adapter->stats.gorcl += er32(GORCL); 3630 adapter->stats.gorch += er32(GORCH); 3631 adapter->stats.bprc += er32(BPRC); 3632 adapter->stats.mprc += er32(MPRC); 3633 adapter->stats.roc += er32(ROC); 3634 3635 adapter->stats.prc64 += er32(PRC64); 3636 adapter->stats.prc127 += er32(PRC127); 3637 adapter->stats.prc255 += er32(PRC255); 3638 adapter->stats.prc511 += er32(PRC511); 3639 adapter->stats.prc1023 += er32(PRC1023); 3640 adapter->stats.prc1522 += er32(PRC1522); 3641 3642 adapter->stats.symerrs += er32(SYMERRS); 3643 adapter->stats.mpc += er32(MPC); 3644 adapter->stats.scc += er32(SCC); 3645 adapter->stats.ecol += er32(ECOL); 3646 adapter->stats.mcc += er32(MCC); 3647 adapter->stats.latecol += er32(LATECOL); 3648 adapter->stats.dc += er32(DC); 3649 adapter->stats.sec += er32(SEC); 3650 adapter->stats.rlec += er32(RLEC); 3651 adapter->stats.xonrxc += er32(XONRXC); 3652 adapter->stats.xontxc += er32(XONTXC); 3653 adapter->stats.xoffrxc += er32(XOFFRXC); 3654 adapter->stats.xofftxc += er32(XOFFTXC); 3655 adapter->stats.fcruc += er32(FCRUC); 3656 adapter->stats.gptc += er32(GPTC); 3657 adapter->stats.gotcl += er32(GOTCL); 3658 adapter->stats.gotch += er32(GOTCH); 3659 adapter->stats.rnbc += er32(RNBC); 3660 adapter->stats.ruc += er32(RUC); 3661 adapter->stats.rfc += er32(RFC); 3662 adapter->stats.rjc += er32(RJC); 3663 adapter->stats.torl += er32(TORL); 3664 adapter->stats.torh += er32(TORH); 3665 adapter->stats.totl += er32(TOTL); 3666 adapter->stats.toth += er32(TOTH); 3667 adapter->stats.tpr += er32(TPR); 3668 3669 adapter->stats.ptc64 += er32(PTC64); 3670 adapter->stats.ptc127 += er32(PTC127); 3671 adapter->stats.ptc255 += er32(PTC255); 3672 adapter->stats.ptc511 += er32(PTC511); 3673 adapter->stats.ptc1023 += er32(PTC1023); 3674 adapter->stats.ptc1522 += er32(PTC1522); 3675 3676 adapter->stats.mptc += er32(MPTC); 3677 adapter->stats.bptc += er32(BPTC); 3678 3679 /* used for adaptive IFS */ 3680 3681 hw->tx_packet_delta = er32(TPT); 3682 adapter->stats.tpt += hw->tx_packet_delta; 3683 hw->collision_delta = er32(COLC); 3684 adapter->stats.colc += hw->collision_delta; 3685 3686 if (hw->mac_type >= e1000_82543) { 3687 adapter->stats.algnerrc += er32(ALGNERRC); 3688 adapter->stats.rxerrc += er32(RXERRC); 3689 adapter->stats.tncrs += er32(TNCRS); 3690 adapter->stats.cexterr += er32(CEXTERR); 3691 adapter->stats.tsctc += er32(TSCTC); 3692 adapter->stats.tsctfc += er32(TSCTFC); 3693 } 3694 3695 /* Fill out the OS statistics structure */ 3696 netdev->stats.multicast = adapter->stats.mprc; 3697 netdev->stats.collisions = adapter->stats.colc; 3698 3699 /* Rx Errors */ 3700 3701 /* RLEC on some newer hardware can be incorrect so build 3702 * our own version based on RUC and ROC 3703 */ 3704 netdev->stats.rx_errors = adapter->stats.rxerrc + 3705 adapter->stats.crcerrs + adapter->stats.algnerrc + 3706 adapter->stats.ruc + adapter->stats.roc + 3707 adapter->stats.cexterr; 3708 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc; 3709 netdev->stats.rx_length_errors = adapter->stats.rlerrc; 3710 netdev->stats.rx_crc_errors = adapter->stats.crcerrs; 3711 netdev->stats.rx_frame_errors = adapter->stats.algnerrc; 3712 netdev->stats.rx_missed_errors = adapter->stats.mpc; 3713 3714 /* Tx Errors */ 3715 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol; 3716 netdev->stats.tx_errors = adapter->stats.txerrc; 3717 netdev->stats.tx_aborted_errors = adapter->stats.ecol; 3718 netdev->stats.tx_window_errors = adapter->stats.latecol; 3719 netdev->stats.tx_carrier_errors = adapter->stats.tncrs; 3720 if (hw->bad_tx_carr_stats_fd && 3721 adapter->link_duplex == FULL_DUPLEX) { 3722 netdev->stats.tx_carrier_errors = 0; 3723 adapter->stats.tncrs = 0; 3724 } 3725 3726 /* Tx Dropped needs to be maintained elsewhere */ 3727 3728 /* Phy Stats */ 3729 if (hw->media_type == e1000_media_type_copper) { 3730 if ((adapter->link_speed == SPEED_1000) && 3731 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { 3732 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; 3733 adapter->phy_stats.idle_errors += phy_tmp; 3734 } 3735 3736 if ((hw->mac_type <= e1000_82546) && 3737 (hw->phy_type == e1000_phy_m88) && 3738 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp)) 3739 adapter->phy_stats.receive_errors += phy_tmp; 3740 } 3741 3742 /* Management Stats */ 3743 if (hw->has_smbus) { 3744 adapter->stats.mgptc += er32(MGTPTC); 3745 adapter->stats.mgprc += er32(MGTPRC); 3746 adapter->stats.mgpdc += er32(MGTPDC); 3747 } 3748 3749 spin_unlock_irqrestore(&adapter->stats_lock, flags); 3750 } 3751 3752 /** 3753 * e1000_intr - Interrupt Handler 3754 * @irq: interrupt number 3755 * @data: pointer to a network interface device structure 3756 **/ 3757 static irqreturn_t e1000_intr(int irq, void *data) 3758 { 3759 struct net_device *netdev = data; 3760 struct e1000_adapter *adapter = netdev_priv(netdev); 3761 struct e1000_hw *hw = &adapter->hw; 3762 u32 icr = er32(ICR); 3763 3764 if (unlikely((!icr))) 3765 return IRQ_NONE; /* Not our interrupt */ 3766 3767 /* we might have caused the interrupt, but the above 3768 * read cleared it, and just in case the driver is 3769 * down there is nothing to do so return handled 3770 */ 3771 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags))) 3772 return IRQ_HANDLED; 3773 3774 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) { 3775 hw->get_link_status = 1; 3776 /* guard against interrupt when we're going down */ 3777 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3778 schedule_delayed_work(&adapter->watchdog_task, 1); 3779 } 3780 3781 /* disable interrupts, without the synchronize_irq bit */ 3782 ew32(IMC, ~0); 3783 E1000_WRITE_FLUSH(); 3784 3785 if (likely(napi_schedule_prep(&adapter->napi))) { 3786 adapter->total_tx_bytes = 0; 3787 adapter->total_tx_packets = 0; 3788 adapter->total_rx_bytes = 0; 3789 adapter->total_rx_packets = 0; 3790 __napi_schedule(&adapter->napi); 3791 } else { 3792 /* this really should not happen! if it does it is basically a 3793 * bug, but not a hard error, so enable ints and continue 3794 */ 3795 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3796 e1000_irq_enable(adapter); 3797 } 3798 3799 return IRQ_HANDLED; 3800 } 3801 3802 /** 3803 * e1000_clean - NAPI Rx polling callback 3804 * @adapter: board private structure 3805 **/ 3806 static int e1000_clean(struct napi_struct *napi, int budget) 3807 { 3808 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, 3809 napi); 3810 int tx_clean_complete = 0, work_done = 0; 3811 3812 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]); 3813 3814 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget); 3815 3816 if (!tx_clean_complete) 3817 work_done = budget; 3818 3819 /* If budget not fully consumed, exit the polling mode */ 3820 if (work_done < budget) { 3821 if (likely(adapter->itr_setting & 3)) 3822 e1000_set_itr(adapter); 3823 napi_complete(napi); 3824 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3825 e1000_irq_enable(adapter); 3826 } 3827 3828 return work_done; 3829 } 3830 3831 /** 3832 * e1000_clean_tx_irq - Reclaim resources after transmit completes 3833 * @adapter: board private structure 3834 **/ 3835 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, 3836 struct e1000_tx_ring *tx_ring) 3837 { 3838 struct e1000_hw *hw = &adapter->hw; 3839 struct net_device *netdev = adapter->netdev; 3840 struct e1000_tx_desc *tx_desc, *eop_desc; 3841 struct e1000_tx_buffer *buffer_info; 3842 unsigned int i, eop; 3843 unsigned int count = 0; 3844 unsigned int total_tx_bytes=0, total_tx_packets=0; 3845 unsigned int bytes_compl = 0, pkts_compl = 0; 3846 3847 i = tx_ring->next_to_clean; 3848 eop = tx_ring->buffer_info[i].next_to_watch; 3849 eop_desc = E1000_TX_DESC(*tx_ring, eop); 3850 3851 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && 3852 (count < tx_ring->count)) { 3853 bool cleaned = false; 3854 dma_rmb(); /* read buffer_info after eop_desc */ 3855 for ( ; !cleaned; count++) { 3856 tx_desc = E1000_TX_DESC(*tx_ring, i); 3857 buffer_info = &tx_ring->buffer_info[i]; 3858 cleaned = (i == eop); 3859 3860 if (cleaned) { 3861 total_tx_packets += buffer_info->segs; 3862 total_tx_bytes += buffer_info->bytecount; 3863 if (buffer_info->skb) { 3864 bytes_compl += buffer_info->skb->len; 3865 pkts_compl++; 3866 } 3867 3868 } 3869 e1000_unmap_and_free_tx_resource(adapter, buffer_info); 3870 tx_desc->upper.data = 0; 3871 3872 if (unlikely(++i == tx_ring->count)) i = 0; 3873 } 3874 3875 eop = tx_ring->buffer_info[i].next_to_watch; 3876 eop_desc = E1000_TX_DESC(*tx_ring, eop); 3877 } 3878 3879 tx_ring->next_to_clean = i; 3880 3881 netdev_completed_queue(netdev, pkts_compl, bytes_compl); 3882 3883 #define TX_WAKE_THRESHOLD 32 3884 if (unlikely(count && netif_carrier_ok(netdev) && 3885 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) { 3886 /* Make sure that anybody stopping the queue after this 3887 * sees the new next_to_clean. 3888 */ 3889 smp_mb(); 3890 3891 if (netif_queue_stopped(netdev) && 3892 !(test_bit(__E1000_DOWN, &adapter->flags))) { 3893 netif_wake_queue(netdev); 3894 ++adapter->restart_queue; 3895 } 3896 } 3897 3898 if (adapter->detect_tx_hung) { 3899 /* Detect a transmit hang in hardware, this serializes the 3900 * check with the clearing of time_stamp and movement of i 3901 */ 3902 adapter->detect_tx_hung = false; 3903 if (tx_ring->buffer_info[eop].time_stamp && 3904 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp + 3905 (adapter->tx_timeout_factor * HZ)) && 3906 !(er32(STATUS) & E1000_STATUS_TXOFF)) { 3907 3908 /* detected Tx unit hang */ 3909 e_err(drv, "Detected Tx Unit Hang\n" 3910 " Tx Queue <%lu>\n" 3911 " TDH <%x>\n" 3912 " TDT <%x>\n" 3913 " next_to_use <%x>\n" 3914 " next_to_clean <%x>\n" 3915 "buffer_info[next_to_clean]\n" 3916 " time_stamp <%lx>\n" 3917 " next_to_watch <%x>\n" 3918 " jiffies <%lx>\n" 3919 " next_to_watch.status <%x>\n", 3920 (unsigned long)(tx_ring - adapter->tx_ring), 3921 readl(hw->hw_addr + tx_ring->tdh), 3922 readl(hw->hw_addr + tx_ring->tdt), 3923 tx_ring->next_to_use, 3924 tx_ring->next_to_clean, 3925 tx_ring->buffer_info[eop].time_stamp, 3926 eop, 3927 jiffies, 3928 eop_desc->upper.fields.status); 3929 e1000_dump(adapter); 3930 netif_stop_queue(netdev); 3931 } 3932 } 3933 adapter->total_tx_bytes += total_tx_bytes; 3934 adapter->total_tx_packets += total_tx_packets; 3935 netdev->stats.tx_bytes += total_tx_bytes; 3936 netdev->stats.tx_packets += total_tx_packets; 3937 return count < tx_ring->count; 3938 } 3939 3940 /** 3941 * e1000_rx_checksum - Receive Checksum Offload for 82543 3942 * @adapter: board private structure 3943 * @status_err: receive descriptor status and error fields 3944 * @csum: receive descriptor csum field 3945 * @sk_buff: socket buffer with received data 3946 **/ 3947 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, 3948 u32 csum, struct sk_buff *skb) 3949 { 3950 struct e1000_hw *hw = &adapter->hw; 3951 u16 status = (u16)status_err; 3952 u8 errors = (u8)(status_err >> 24); 3953 3954 skb_checksum_none_assert(skb); 3955 3956 /* 82543 or newer only */ 3957 if (unlikely(hw->mac_type < e1000_82543)) return; 3958 /* Ignore Checksum bit is set */ 3959 if (unlikely(status & E1000_RXD_STAT_IXSM)) return; 3960 /* TCP/UDP checksum error bit is set */ 3961 if (unlikely(errors & E1000_RXD_ERR_TCPE)) { 3962 /* let the stack verify checksum errors */ 3963 adapter->hw_csum_err++; 3964 return; 3965 } 3966 /* TCP/UDP Checksum has not been calculated */ 3967 if (!(status & E1000_RXD_STAT_TCPCS)) 3968 return; 3969 3970 /* It must be a TCP or UDP packet with a valid checksum */ 3971 if (likely(status & E1000_RXD_STAT_TCPCS)) { 3972 /* TCP checksum is good */ 3973 skb->ip_summed = CHECKSUM_UNNECESSARY; 3974 } 3975 adapter->hw_csum_good++; 3976 } 3977 3978 /** 3979 * e1000_consume_page - helper function for jumbo Rx path 3980 **/ 3981 static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb, 3982 u16 length) 3983 { 3984 bi->rxbuf.page = NULL; 3985 skb->len += length; 3986 skb->data_len += length; 3987 skb->truesize += PAGE_SIZE; 3988 } 3989 3990 /** 3991 * e1000_receive_skb - helper function to handle rx indications 3992 * @adapter: board private structure 3993 * @status: descriptor status field as written by hardware 3994 * @vlan: descriptor vlan field as written by hardware (no le/be conversion) 3995 * @skb: pointer to sk_buff to be indicated to stack 3996 */ 3997 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status, 3998 __le16 vlan, struct sk_buff *skb) 3999 { 4000 skb->protocol = eth_type_trans(skb, adapter->netdev); 4001 4002 if (status & E1000_RXD_STAT_VP) { 4003 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; 4004 4005 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 4006 } 4007 napi_gro_receive(&adapter->napi, skb); 4008 } 4009 4010 /** 4011 * e1000_tbi_adjust_stats 4012 * @hw: Struct containing variables accessed by shared code 4013 * @frame_len: The length of the frame in question 4014 * @mac_addr: The Ethernet destination address of the frame in question 4015 * 4016 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT 4017 */ 4018 static void e1000_tbi_adjust_stats(struct e1000_hw *hw, 4019 struct e1000_hw_stats *stats, 4020 u32 frame_len, const u8 *mac_addr) 4021 { 4022 u64 carry_bit; 4023 4024 /* First adjust the frame length. */ 4025 frame_len--; 4026 /* We need to adjust the statistics counters, since the hardware 4027 * counters overcount this packet as a CRC error and undercount 4028 * the packet as a good packet 4029 */ 4030 /* This packet should not be counted as a CRC error. */ 4031 stats->crcerrs--; 4032 /* This packet does count as a Good Packet Received. */ 4033 stats->gprc++; 4034 4035 /* Adjust the Good Octets received counters */ 4036 carry_bit = 0x80000000 & stats->gorcl; 4037 stats->gorcl += frame_len; 4038 /* If the high bit of Gorcl (the low 32 bits of the Good Octets 4039 * Received Count) was one before the addition, 4040 * AND it is zero after, then we lost the carry out, 4041 * need to add one to Gorch (Good Octets Received Count High). 4042 * This could be simplified if all environments supported 4043 * 64-bit integers. 4044 */ 4045 if (carry_bit && ((stats->gorcl & 0x80000000) == 0)) 4046 stats->gorch++; 4047 /* Is this a broadcast or multicast? Check broadcast first, 4048 * since the test for a multicast frame will test positive on 4049 * a broadcast frame. 4050 */ 4051 if (is_broadcast_ether_addr(mac_addr)) 4052 stats->bprc++; 4053 else if (is_multicast_ether_addr(mac_addr)) 4054 stats->mprc++; 4055 4056 if (frame_len == hw->max_frame_size) { 4057 /* In this case, the hardware has overcounted the number of 4058 * oversize frames. 4059 */ 4060 if (stats->roc > 0) 4061 stats->roc--; 4062 } 4063 4064 /* Adjust the bin counters when the extra byte put the frame in the 4065 * wrong bin. Remember that the frame_len was adjusted above. 4066 */ 4067 if (frame_len == 64) { 4068 stats->prc64++; 4069 stats->prc127--; 4070 } else if (frame_len == 127) { 4071 stats->prc127++; 4072 stats->prc255--; 4073 } else if (frame_len == 255) { 4074 stats->prc255++; 4075 stats->prc511--; 4076 } else if (frame_len == 511) { 4077 stats->prc511++; 4078 stats->prc1023--; 4079 } else if (frame_len == 1023) { 4080 stats->prc1023++; 4081 stats->prc1522--; 4082 } else if (frame_len == 1522) { 4083 stats->prc1522++; 4084 } 4085 } 4086 4087 static bool e1000_tbi_should_accept(struct e1000_adapter *adapter, 4088 u8 status, u8 errors, 4089 u32 length, const u8 *data) 4090 { 4091 struct e1000_hw *hw = &adapter->hw; 4092 u8 last_byte = *(data + length - 1); 4093 4094 if (TBI_ACCEPT(hw, status, errors, length, last_byte)) { 4095 unsigned long irq_flags; 4096 4097 spin_lock_irqsave(&adapter->stats_lock, irq_flags); 4098 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data); 4099 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags); 4100 4101 return true; 4102 } 4103 4104 return false; 4105 } 4106 4107 static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter, 4108 unsigned int bufsz) 4109 { 4110 struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz); 4111 4112 if (unlikely(!skb)) 4113 adapter->alloc_rx_buff_failed++; 4114 return skb; 4115 } 4116 4117 /** 4118 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy 4119 * @adapter: board private structure 4120 * @rx_ring: ring to clean 4121 * @work_done: amount of napi work completed this call 4122 * @work_to_do: max amount of work allowed for this call to do 4123 * 4124 * the return value indicates whether actual cleaning was done, there 4125 * is no guarantee that everything was cleaned 4126 */ 4127 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, 4128 struct e1000_rx_ring *rx_ring, 4129 int *work_done, int work_to_do) 4130 { 4131 struct net_device *netdev = adapter->netdev; 4132 struct pci_dev *pdev = adapter->pdev; 4133 struct e1000_rx_desc *rx_desc, *next_rxd; 4134 struct e1000_rx_buffer *buffer_info, *next_buffer; 4135 u32 length; 4136 unsigned int i; 4137 int cleaned_count = 0; 4138 bool cleaned = false; 4139 unsigned int total_rx_bytes=0, total_rx_packets=0; 4140 4141 i = rx_ring->next_to_clean; 4142 rx_desc = E1000_RX_DESC(*rx_ring, i); 4143 buffer_info = &rx_ring->buffer_info[i]; 4144 4145 while (rx_desc->status & E1000_RXD_STAT_DD) { 4146 struct sk_buff *skb; 4147 u8 status; 4148 4149 if (*work_done >= work_to_do) 4150 break; 4151 (*work_done)++; 4152 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ 4153 4154 status = rx_desc->status; 4155 4156 if (++i == rx_ring->count) i = 0; 4157 next_rxd = E1000_RX_DESC(*rx_ring, i); 4158 prefetch(next_rxd); 4159 4160 next_buffer = &rx_ring->buffer_info[i]; 4161 4162 cleaned = true; 4163 cleaned_count++; 4164 dma_unmap_page(&pdev->dev, buffer_info->dma, 4165 adapter->rx_buffer_len, DMA_FROM_DEVICE); 4166 buffer_info->dma = 0; 4167 4168 length = le16_to_cpu(rx_desc->length); 4169 4170 /* errors is only valid for DD + EOP descriptors */ 4171 if (unlikely((status & E1000_RXD_STAT_EOP) && 4172 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) { 4173 u8 *mapped = page_address(buffer_info->rxbuf.page); 4174 4175 if (e1000_tbi_should_accept(adapter, status, 4176 rx_desc->errors, 4177 length, mapped)) { 4178 length--; 4179 } else if (netdev->features & NETIF_F_RXALL) { 4180 goto process_skb; 4181 } else { 4182 /* an error means any chain goes out the window 4183 * too 4184 */ 4185 if (rx_ring->rx_skb_top) 4186 dev_kfree_skb(rx_ring->rx_skb_top); 4187 rx_ring->rx_skb_top = NULL; 4188 goto next_desc; 4189 } 4190 } 4191 4192 #define rxtop rx_ring->rx_skb_top 4193 process_skb: 4194 if (!(status & E1000_RXD_STAT_EOP)) { 4195 /* this descriptor is only the beginning (or middle) */ 4196 if (!rxtop) { 4197 /* this is the beginning of a chain */ 4198 rxtop = napi_get_frags(&adapter->napi); 4199 if (!rxtop) 4200 break; 4201 4202 skb_fill_page_desc(rxtop, 0, 4203 buffer_info->rxbuf.page, 4204 0, length); 4205 } else { 4206 /* this is the middle of a chain */ 4207 skb_fill_page_desc(rxtop, 4208 skb_shinfo(rxtop)->nr_frags, 4209 buffer_info->rxbuf.page, 0, length); 4210 } 4211 e1000_consume_page(buffer_info, rxtop, length); 4212 goto next_desc; 4213 } else { 4214 if (rxtop) { 4215 /* end of the chain */ 4216 skb_fill_page_desc(rxtop, 4217 skb_shinfo(rxtop)->nr_frags, 4218 buffer_info->rxbuf.page, 0, length); 4219 skb = rxtop; 4220 rxtop = NULL; 4221 e1000_consume_page(buffer_info, skb, length); 4222 } else { 4223 struct page *p; 4224 /* no chain, got EOP, this buf is the packet 4225 * copybreak to save the put_page/alloc_page 4226 */ 4227 p = buffer_info->rxbuf.page; 4228 if (length <= copybreak) { 4229 u8 *vaddr; 4230 4231 if (likely(!(netdev->features & NETIF_F_RXFCS))) 4232 length -= 4; 4233 skb = e1000_alloc_rx_skb(adapter, 4234 length); 4235 if (!skb) 4236 break; 4237 4238 vaddr = kmap_atomic(p); 4239 memcpy(skb_tail_pointer(skb), vaddr, 4240 length); 4241 kunmap_atomic(vaddr); 4242 /* re-use the page, so don't erase 4243 * buffer_info->rxbuf.page 4244 */ 4245 skb_put(skb, length); 4246 e1000_rx_checksum(adapter, 4247 status | rx_desc->errors << 24, 4248 le16_to_cpu(rx_desc->csum), skb); 4249 4250 total_rx_bytes += skb->len; 4251 total_rx_packets++; 4252 4253 e1000_receive_skb(adapter, status, 4254 rx_desc->special, skb); 4255 goto next_desc; 4256 } else { 4257 skb = napi_get_frags(&adapter->napi); 4258 if (!skb) { 4259 adapter->alloc_rx_buff_failed++; 4260 break; 4261 } 4262 skb_fill_page_desc(skb, 0, p, 0, 4263 length); 4264 e1000_consume_page(buffer_info, skb, 4265 length); 4266 } 4267 } 4268 } 4269 4270 /* Receive Checksum Offload XXX recompute due to CRC strip? */ 4271 e1000_rx_checksum(adapter, 4272 (u32)(status) | 4273 ((u32)(rx_desc->errors) << 24), 4274 le16_to_cpu(rx_desc->csum), skb); 4275 4276 total_rx_bytes += (skb->len - 4); /* don't count FCS */ 4277 if (likely(!(netdev->features & NETIF_F_RXFCS))) 4278 pskb_trim(skb, skb->len - 4); 4279 total_rx_packets++; 4280 4281 if (status & E1000_RXD_STAT_VP) { 4282 __le16 vlan = rx_desc->special; 4283 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; 4284 4285 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 4286 } 4287 4288 napi_gro_frags(&adapter->napi); 4289 4290 next_desc: 4291 rx_desc->status = 0; 4292 4293 /* return some buffers to hardware, one at a time is too slow */ 4294 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { 4295 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4296 cleaned_count = 0; 4297 } 4298 4299 /* use prefetched values */ 4300 rx_desc = next_rxd; 4301 buffer_info = next_buffer; 4302 } 4303 rx_ring->next_to_clean = i; 4304 4305 cleaned_count = E1000_DESC_UNUSED(rx_ring); 4306 if (cleaned_count) 4307 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4308 4309 adapter->total_rx_packets += total_rx_packets; 4310 adapter->total_rx_bytes += total_rx_bytes; 4311 netdev->stats.rx_bytes += total_rx_bytes; 4312 netdev->stats.rx_packets += total_rx_packets; 4313 return cleaned; 4314 } 4315 4316 /* this should improve performance for small packets with large amounts 4317 * of reassembly being done in the stack 4318 */ 4319 static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter, 4320 struct e1000_rx_buffer *buffer_info, 4321 u32 length, const void *data) 4322 { 4323 struct sk_buff *skb; 4324 4325 if (length > copybreak) 4326 return NULL; 4327 4328 skb = e1000_alloc_rx_skb(adapter, length); 4329 if (!skb) 4330 return NULL; 4331 4332 dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma, 4333 length, DMA_FROM_DEVICE); 4334 4335 memcpy(skb_put(skb, length), data, length); 4336 4337 return skb; 4338 } 4339 4340 /** 4341 * e1000_clean_rx_irq - Send received data up the network stack; legacy 4342 * @adapter: board private structure 4343 * @rx_ring: ring to clean 4344 * @work_done: amount of napi work completed this call 4345 * @work_to_do: max amount of work allowed for this call to do 4346 */ 4347 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, 4348 struct e1000_rx_ring *rx_ring, 4349 int *work_done, int work_to_do) 4350 { 4351 struct net_device *netdev = adapter->netdev; 4352 struct pci_dev *pdev = adapter->pdev; 4353 struct e1000_rx_desc *rx_desc, *next_rxd; 4354 struct e1000_rx_buffer *buffer_info, *next_buffer; 4355 u32 length; 4356 unsigned int i; 4357 int cleaned_count = 0; 4358 bool cleaned = false; 4359 unsigned int total_rx_bytes=0, total_rx_packets=0; 4360 4361 i = rx_ring->next_to_clean; 4362 rx_desc = E1000_RX_DESC(*rx_ring, i); 4363 buffer_info = &rx_ring->buffer_info[i]; 4364 4365 while (rx_desc->status & E1000_RXD_STAT_DD) { 4366 struct sk_buff *skb; 4367 u8 *data; 4368 u8 status; 4369 4370 if (*work_done >= work_to_do) 4371 break; 4372 (*work_done)++; 4373 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ 4374 4375 status = rx_desc->status; 4376 length = le16_to_cpu(rx_desc->length); 4377 4378 data = buffer_info->rxbuf.data; 4379 prefetch(data); 4380 skb = e1000_copybreak(adapter, buffer_info, length, data); 4381 if (!skb) { 4382 unsigned int frag_len = e1000_frag_len(adapter); 4383 4384 skb = build_skb(data - E1000_HEADROOM, frag_len); 4385 if (!skb) { 4386 adapter->alloc_rx_buff_failed++; 4387 break; 4388 } 4389 4390 skb_reserve(skb, E1000_HEADROOM); 4391 dma_unmap_single(&pdev->dev, buffer_info->dma, 4392 adapter->rx_buffer_len, 4393 DMA_FROM_DEVICE); 4394 buffer_info->dma = 0; 4395 buffer_info->rxbuf.data = NULL; 4396 } 4397 4398 if (++i == rx_ring->count) i = 0; 4399 next_rxd = E1000_RX_DESC(*rx_ring, i); 4400 prefetch(next_rxd); 4401 4402 next_buffer = &rx_ring->buffer_info[i]; 4403 4404 cleaned = true; 4405 cleaned_count++; 4406 4407 /* !EOP means multiple descriptors were used to store a single 4408 * packet, if thats the case we need to toss it. In fact, we 4409 * to toss every packet with the EOP bit clear and the next 4410 * frame that _does_ have the EOP bit set, as it is by 4411 * definition only a frame fragment 4412 */ 4413 if (unlikely(!(status & E1000_RXD_STAT_EOP))) 4414 adapter->discarding = true; 4415 4416 if (adapter->discarding) { 4417 /* All receives must fit into a single buffer */ 4418 netdev_dbg(netdev, "Receive packet consumed multiple buffers\n"); 4419 dev_kfree_skb(skb); 4420 if (status & E1000_RXD_STAT_EOP) 4421 adapter->discarding = false; 4422 goto next_desc; 4423 } 4424 4425 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) { 4426 if (e1000_tbi_should_accept(adapter, status, 4427 rx_desc->errors, 4428 length, data)) { 4429 length--; 4430 } else if (netdev->features & NETIF_F_RXALL) { 4431 goto process_skb; 4432 } else { 4433 dev_kfree_skb(skb); 4434 goto next_desc; 4435 } 4436 } 4437 4438 process_skb: 4439 total_rx_bytes += (length - 4); /* don't count FCS */ 4440 total_rx_packets++; 4441 4442 if (likely(!(netdev->features & NETIF_F_RXFCS))) 4443 /* adjust length to remove Ethernet CRC, this must be 4444 * done after the TBI_ACCEPT workaround above 4445 */ 4446 length -= 4; 4447 4448 if (buffer_info->rxbuf.data == NULL) 4449 skb_put(skb, length); 4450 else /* copybreak skb */ 4451 skb_trim(skb, length); 4452 4453 /* Receive Checksum Offload */ 4454 e1000_rx_checksum(adapter, 4455 (u32)(status) | 4456 ((u32)(rx_desc->errors) << 24), 4457 le16_to_cpu(rx_desc->csum), skb); 4458 4459 e1000_receive_skb(adapter, status, rx_desc->special, skb); 4460 4461 next_desc: 4462 rx_desc->status = 0; 4463 4464 /* return some buffers to hardware, one at a time is too slow */ 4465 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { 4466 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4467 cleaned_count = 0; 4468 } 4469 4470 /* use prefetched values */ 4471 rx_desc = next_rxd; 4472 buffer_info = next_buffer; 4473 } 4474 rx_ring->next_to_clean = i; 4475 4476 cleaned_count = E1000_DESC_UNUSED(rx_ring); 4477 if (cleaned_count) 4478 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4479 4480 adapter->total_rx_packets += total_rx_packets; 4481 adapter->total_rx_bytes += total_rx_bytes; 4482 netdev->stats.rx_bytes += total_rx_bytes; 4483 netdev->stats.rx_packets += total_rx_packets; 4484 return cleaned; 4485 } 4486 4487 /** 4488 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers 4489 * @adapter: address of board private structure 4490 * @rx_ring: pointer to receive ring structure 4491 * @cleaned_count: number of buffers to allocate this pass 4492 **/ 4493 static void 4494 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, 4495 struct e1000_rx_ring *rx_ring, int cleaned_count) 4496 { 4497 struct pci_dev *pdev = adapter->pdev; 4498 struct e1000_rx_desc *rx_desc; 4499 struct e1000_rx_buffer *buffer_info; 4500 unsigned int i; 4501 4502 i = rx_ring->next_to_use; 4503 buffer_info = &rx_ring->buffer_info[i]; 4504 4505 while (cleaned_count--) { 4506 /* allocate a new page if necessary */ 4507 if (!buffer_info->rxbuf.page) { 4508 buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC); 4509 if (unlikely(!buffer_info->rxbuf.page)) { 4510 adapter->alloc_rx_buff_failed++; 4511 break; 4512 } 4513 } 4514 4515 if (!buffer_info->dma) { 4516 buffer_info->dma = dma_map_page(&pdev->dev, 4517 buffer_info->rxbuf.page, 0, 4518 adapter->rx_buffer_len, 4519 DMA_FROM_DEVICE); 4520 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 4521 put_page(buffer_info->rxbuf.page); 4522 buffer_info->rxbuf.page = NULL; 4523 buffer_info->dma = 0; 4524 adapter->alloc_rx_buff_failed++; 4525 break; 4526 } 4527 } 4528 4529 rx_desc = E1000_RX_DESC(*rx_ring, i); 4530 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 4531 4532 if (unlikely(++i == rx_ring->count)) 4533 i = 0; 4534 buffer_info = &rx_ring->buffer_info[i]; 4535 } 4536 4537 if (likely(rx_ring->next_to_use != i)) { 4538 rx_ring->next_to_use = i; 4539 if (unlikely(i-- == 0)) 4540 i = (rx_ring->count - 1); 4541 4542 /* Force memory writes to complete before letting h/w 4543 * know there are new descriptors to fetch. (Only 4544 * applicable for weak-ordered memory model archs, 4545 * such as IA-64). 4546 */ 4547 wmb(); 4548 writel(i, adapter->hw.hw_addr + rx_ring->rdt); 4549 } 4550 } 4551 4552 /** 4553 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended 4554 * @adapter: address of board private structure 4555 **/ 4556 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, 4557 struct e1000_rx_ring *rx_ring, 4558 int cleaned_count) 4559 { 4560 struct e1000_hw *hw = &adapter->hw; 4561 struct pci_dev *pdev = adapter->pdev; 4562 struct e1000_rx_desc *rx_desc; 4563 struct e1000_rx_buffer *buffer_info; 4564 unsigned int i; 4565 unsigned int bufsz = adapter->rx_buffer_len; 4566 4567 i = rx_ring->next_to_use; 4568 buffer_info = &rx_ring->buffer_info[i]; 4569 4570 while (cleaned_count--) { 4571 void *data; 4572 4573 if (buffer_info->rxbuf.data) 4574 goto skip; 4575 4576 data = e1000_alloc_frag(adapter); 4577 if (!data) { 4578 /* Better luck next round */ 4579 adapter->alloc_rx_buff_failed++; 4580 break; 4581 } 4582 4583 /* Fix for errata 23, can't cross 64kB boundary */ 4584 if (!e1000_check_64k_bound(adapter, data, bufsz)) { 4585 void *olddata = data; 4586 e_err(rx_err, "skb align check failed: %u bytes at " 4587 "%p\n", bufsz, data); 4588 /* Try again, without freeing the previous */ 4589 data = e1000_alloc_frag(adapter); 4590 /* Failed allocation, critical failure */ 4591 if (!data) { 4592 skb_free_frag(olddata); 4593 adapter->alloc_rx_buff_failed++; 4594 break; 4595 } 4596 4597 if (!e1000_check_64k_bound(adapter, data, bufsz)) { 4598 /* give up */ 4599 skb_free_frag(data); 4600 skb_free_frag(olddata); 4601 adapter->alloc_rx_buff_failed++; 4602 break; 4603 } 4604 4605 /* Use new allocation */ 4606 skb_free_frag(olddata); 4607 } 4608 buffer_info->dma = dma_map_single(&pdev->dev, 4609 data, 4610 adapter->rx_buffer_len, 4611 DMA_FROM_DEVICE); 4612 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 4613 skb_free_frag(data); 4614 buffer_info->dma = 0; 4615 adapter->alloc_rx_buff_failed++; 4616 break; 4617 } 4618 4619 /* XXX if it was allocated cleanly it will never map to a 4620 * boundary crossing 4621 */ 4622 4623 /* Fix for errata 23, can't cross 64kB boundary */ 4624 if (!e1000_check_64k_bound(adapter, 4625 (void *)(unsigned long)buffer_info->dma, 4626 adapter->rx_buffer_len)) { 4627 e_err(rx_err, "dma align check failed: %u bytes at " 4628 "%p\n", adapter->rx_buffer_len, 4629 (void *)(unsigned long)buffer_info->dma); 4630 4631 dma_unmap_single(&pdev->dev, buffer_info->dma, 4632 adapter->rx_buffer_len, 4633 DMA_FROM_DEVICE); 4634 4635 skb_free_frag(data); 4636 buffer_info->rxbuf.data = NULL; 4637 buffer_info->dma = 0; 4638 4639 adapter->alloc_rx_buff_failed++; 4640 break; 4641 } 4642 buffer_info->rxbuf.data = data; 4643 skip: 4644 rx_desc = E1000_RX_DESC(*rx_ring, i); 4645 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 4646 4647 if (unlikely(++i == rx_ring->count)) 4648 i = 0; 4649 buffer_info = &rx_ring->buffer_info[i]; 4650 } 4651 4652 if (likely(rx_ring->next_to_use != i)) { 4653 rx_ring->next_to_use = i; 4654 if (unlikely(i-- == 0)) 4655 i = (rx_ring->count - 1); 4656 4657 /* Force memory writes to complete before letting h/w 4658 * know there are new descriptors to fetch. (Only 4659 * applicable for weak-ordered memory model archs, 4660 * such as IA-64). 4661 */ 4662 wmb(); 4663 writel(i, hw->hw_addr + rx_ring->rdt); 4664 } 4665 } 4666 4667 /** 4668 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers. 4669 * @adapter: 4670 **/ 4671 static void e1000_smartspeed(struct e1000_adapter *adapter) 4672 { 4673 struct e1000_hw *hw = &adapter->hw; 4674 u16 phy_status; 4675 u16 phy_ctrl; 4676 4677 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg || 4678 !(hw->autoneg_advertised & ADVERTISE_1000_FULL)) 4679 return; 4680 4681 if (adapter->smartspeed == 0) { 4682 /* If Master/Slave config fault is asserted twice, 4683 * we assume back-to-back 4684 */ 4685 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); 4686 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; 4687 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); 4688 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; 4689 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); 4690 if (phy_ctrl & CR_1000T_MS_ENABLE) { 4691 phy_ctrl &= ~CR_1000T_MS_ENABLE; 4692 e1000_write_phy_reg(hw, PHY_1000T_CTRL, 4693 phy_ctrl); 4694 adapter->smartspeed++; 4695 if (!e1000_phy_setup_autoneg(hw) && 4696 !e1000_read_phy_reg(hw, PHY_CTRL, 4697 &phy_ctrl)) { 4698 phy_ctrl |= (MII_CR_AUTO_NEG_EN | 4699 MII_CR_RESTART_AUTO_NEG); 4700 e1000_write_phy_reg(hw, PHY_CTRL, 4701 phy_ctrl); 4702 } 4703 } 4704 return; 4705 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) { 4706 /* If still no link, perhaps using 2/3 pair cable */ 4707 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); 4708 phy_ctrl |= CR_1000T_MS_ENABLE; 4709 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl); 4710 if (!e1000_phy_setup_autoneg(hw) && 4711 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) { 4712 phy_ctrl |= (MII_CR_AUTO_NEG_EN | 4713 MII_CR_RESTART_AUTO_NEG); 4714 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl); 4715 } 4716 } 4717 /* Restart process after E1000_SMARTSPEED_MAX iterations */ 4718 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX) 4719 adapter->smartspeed = 0; 4720 } 4721 4722 /** 4723 * e1000_ioctl - 4724 * @netdev: 4725 * @ifreq: 4726 * @cmd: 4727 **/ 4728 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 4729 { 4730 switch (cmd) { 4731 case SIOCGMIIPHY: 4732 case SIOCGMIIREG: 4733 case SIOCSMIIREG: 4734 return e1000_mii_ioctl(netdev, ifr, cmd); 4735 default: 4736 return -EOPNOTSUPP; 4737 } 4738 } 4739 4740 /** 4741 * e1000_mii_ioctl - 4742 * @netdev: 4743 * @ifreq: 4744 * @cmd: 4745 **/ 4746 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, 4747 int cmd) 4748 { 4749 struct e1000_adapter *adapter = netdev_priv(netdev); 4750 struct e1000_hw *hw = &adapter->hw; 4751 struct mii_ioctl_data *data = if_mii(ifr); 4752 int retval; 4753 u16 mii_reg; 4754 unsigned long flags; 4755 4756 if (hw->media_type != e1000_media_type_copper) 4757 return -EOPNOTSUPP; 4758 4759 switch (cmd) { 4760 case SIOCGMIIPHY: 4761 data->phy_id = hw->phy_addr; 4762 break; 4763 case SIOCGMIIREG: 4764 spin_lock_irqsave(&adapter->stats_lock, flags); 4765 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F, 4766 &data->val_out)) { 4767 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4768 return -EIO; 4769 } 4770 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4771 break; 4772 case SIOCSMIIREG: 4773 if (data->reg_num & ~(0x1F)) 4774 return -EFAULT; 4775 mii_reg = data->val_in; 4776 spin_lock_irqsave(&adapter->stats_lock, flags); 4777 if (e1000_write_phy_reg(hw, data->reg_num, 4778 mii_reg)) { 4779 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4780 return -EIO; 4781 } 4782 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4783 if (hw->media_type == e1000_media_type_copper) { 4784 switch (data->reg_num) { 4785 case PHY_CTRL: 4786 if (mii_reg & MII_CR_POWER_DOWN) 4787 break; 4788 if (mii_reg & MII_CR_AUTO_NEG_EN) { 4789 hw->autoneg = 1; 4790 hw->autoneg_advertised = 0x2F; 4791 } else { 4792 u32 speed; 4793 if (mii_reg & 0x40) 4794 speed = SPEED_1000; 4795 else if (mii_reg & 0x2000) 4796 speed = SPEED_100; 4797 else 4798 speed = SPEED_10; 4799 retval = e1000_set_spd_dplx( 4800 adapter, speed, 4801 ((mii_reg & 0x100) 4802 ? DUPLEX_FULL : 4803 DUPLEX_HALF)); 4804 if (retval) 4805 return retval; 4806 } 4807 if (netif_running(adapter->netdev)) 4808 e1000_reinit_locked(adapter); 4809 else 4810 e1000_reset(adapter); 4811 break; 4812 case M88E1000_PHY_SPEC_CTRL: 4813 case M88E1000_EXT_PHY_SPEC_CTRL: 4814 if (e1000_phy_reset(hw)) 4815 return -EIO; 4816 break; 4817 } 4818 } else { 4819 switch (data->reg_num) { 4820 case PHY_CTRL: 4821 if (mii_reg & MII_CR_POWER_DOWN) 4822 break; 4823 if (netif_running(adapter->netdev)) 4824 e1000_reinit_locked(adapter); 4825 else 4826 e1000_reset(adapter); 4827 break; 4828 } 4829 } 4830 break; 4831 default: 4832 return -EOPNOTSUPP; 4833 } 4834 return E1000_SUCCESS; 4835 } 4836 4837 void e1000_pci_set_mwi(struct e1000_hw *hw) 4838 { 4839 struct e1000_adapter *adapter = hw->back; 4840 int ret_val = pci_set_mwi(adapter->pdev); 4841 4842 if (ret_val) 4843 e_err(probe, "Error in setting MWI\n"); 4844 } 4845 4846 void e1000_pci_clear_mwi(struct e1000_hw *hw) 4847 { 4848 struct e1000_adapter *adapter = hw->back; 4849 4850 pci_clear_mwi(adapter->pdev); 4851 } 4852 4853 int e1000_pcix_get_mmrbc(struct e1000_hw *hw) 4854 { 4855 struct e1000_adapter *adapter = hw->back; 4856 return pcix_get_mmrbc(adapter->pdev); 4857 } 4858 4859 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc) 4860 { 4861 struct e1000_adapter *adapter = hw->back; 4862 pcix_set_mmrbc(adapter->pdev, mmrbc); 4863 } 4864 4865 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value) 4866 { 4867 outl(value, port); 4868 } 4869 4870 static bool e1000_vlan_used(struct e1000_adapter *adapter) 4871 { 4872 u16 vid; 4873 4874 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 4875 return true; 4876 return false; 4877 } 4878 4879 static void __e1000_vlan_mode(struct e1000_adapter *adapter, 4880 netdev_features_t features) 4881 { 4882 struct e1000_hw *hw = &adapter->hw; 4883 u32 ctrl; 4884 4885 ctrl = er32(CTRL); 4886 if (features & NETIF_F_HW_VLAN_CTAG_RX) { 4887 /* enable VLAN tag insert/strip */ 4888 ctrl |= E1000_CTRL_VME; 4889 } else { 4890 /* disable VLAN tag insert/strip */ 4891 ctrl &= ~E1000_CTRL_VME; 4892 } 4893 ew32(CTRL, ctrl); 4894 } 4895 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter, 4896 bool filter_on) 4897 { 4898 struct e1000_hw *hw = &adapter->hw; 4899 u32 rctl; 4900 4901 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4902 e1000_irq_disable(adapter); 4903 4904 __e1000_vlan_mode(adapter, adapter->netdev->features); 4905 if (filter_on) { 4906 /* enable VLAN receive filtering */ 4907 rctl = er32(RCTL); 4908 rctl &= ~E1000_RCTL_CFIEN; 4909 if (!(adapter->netdev->flags & IFF_PROMISC)) 4910 rctl |= E1000_RCTL_VFE; 4911 ew32(RCTL, rctl); 4912 e1000_update_mng_vlan(adapter); 4913 } else { 4914 /* disable VLAN receive filtering */ 4915 rctl = er32(RCTL); 4916 rctl &= ~E1000_RCTL_VFE; 4917 ew32(RCTL, rctl); 4918 } 4919 4920 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4921 e1000_irq_enable(adapter); 4922 } 4923 4924 static void e1000_vlan_mode(struct net_device *netdev, 4925 netdev_features_t features) 4926 { 4927 struct e1000_adapter *adapter = netdev_priv(netdev); 4928 4929 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4930 e1000_irq_disable(adapter); 4931 4932 __e1000_vlan_mode(adapter, features); 4933 4934 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4935 e1000_irq_enable(adapter); 4936 } 4937 4938 static int e1000_vlan_rx_add_vid(struct net_device *netdev, 4939 __be16 proto, u16 vid) 4940 { 4941 struct e1000_adapter *adapter = netdev_priv(netdev); 4942 struct e1000_hw *hw = &adapter->hw; 4943 u32 vfta, index; 4944 4945 if ((hw->mng_cookie.status & 4946 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && 4947 (vid == adapter->mng_vlan_id)) 4948 return 0; 4949 4950 if (!e1000_vlan_used(adapter)) 4951 e1000_vlan_filter_on_off(adapter, true); 4952 4953 /* add VID to filter table */ 4954 index = (vid >> 5) & 0x7F; 4955 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); 4956 vfta |= (1 << (vid & 0x1F)); 4957 e1000_write_vfta(hw, index, vfta); 4958 4959 set_bit(vid, adapter->active_vlans); 4960 4961 return 0; 4962 } 4963 4964 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, 4965 __be16 proto, u16 vid) 4966 { 4967 struct e1000_adapter *adapter = netdev_priv(netdev); 4968 struct e1000_hw *hw = &adapter->hw; 4969 u32 vfta, index; 4970 4971 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4972 e1000_irq_disable(adapter); 4973 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4974 e1000_irq_enable(adapter); 4975 4976 /* remove VID from filter table */ 4977 index = (vid >> 5) & 0x7F; 4978 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); 4979 vfta &= ~(1 << (vid & 0x1F)); 4980 e1000_write_vfta(hw, index, vfta); 4981 4982 clear_bit(vid, adapter->active_vlans); 4983 4984 if (!e1000_vlan_used(adapter)) 4985 e1000_vlan_filter_on_off(adapter, false); 4986 4987 return 0; 4988 } 4989 4990 static void e1000_restore_vlan(struct e1000_adapter *adapter) 4991 { 4992 u16 vid; 4993 4994 if (!e1000_vlan_used(adapter)) 4995 return; 4996 4997 e1000_vlan_filter_on_off(adapter, true); 4998 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 4999 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); 5000 } 5001 5002 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) 5003 { 5004 struct e1000_hw *hw = &adapter->hw; 5005 5006 hw->autoneg = 0; 5007 5008 /* Make sure dplx is at most 1 bit and lsb of speed is not set 5009 * for the switch() below to work 5010 */ 5011 if ((spd & 1) || (dplx & ~1)) 5012 goto err_inval; 5013 5014 /* Fiber NICs only allow 1000 gbps Full duplex */ 5015 if ((hw->media_type == e1000_media_type_fiber) && 5016 spd != SPEED_1000 && 5017 dplx != DUPLEX_FULL) 5018 goto err_inval; 5019 5020 switch (spd + dplx) { 5021 case SPEED_10 + DUPLEX_HALF: 5022 hw->forced_speed_duplex = e1000_10_half; 5023 break; 5024 case SPEED_10 + DUPLEX_FULL: 5025 hw->forced_speed_duplex = e1000_10_full; 5026 break; 5027 case SPEED_100 + DUPLEX_HALF: 5028 hw->forced_speed_duplex = e1000_100_half; 5029 break; 5030 case SPEED_100 + DUPLEX_FULL: 5031 hw->forced_speed_duplex = e1000_100_full; 5032 break; 5033 case SPEED_1000 + DUPLEX_FULL: 5034 hw->autoneg = 1; 5035 hw->autoneg_advertised = ADVERTISE_1000_FULL; 5036 break; 5037 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 5038 default: 5039 goto err_inval; 5040 } 5041 5042 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 5043 hw->mdix = AUTO_ALL_MODES; 5044 5045 return 0; 5046 5047 err_inval: 5048 e_err(probe, "Unsupported Speed/Duplex configuration\n"); 5049 return -EINVAL; 5050 } 5051 5052 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake) 5053 { 5054 struct net_device *netdev = pci_get_drvdata(pdev); 5055 struct e1000_adapter *adapter = netdev_priv(netdev); 5056 struct e1000_hw *hw = &adapter->hw; 5057 u32 ctrl, ctrl_ext, rctl, status; 5058 u32 wufc = adapter->wol; 5059 #ifdef CONFIG_PM 5060 int retval = 0; 5061 #endif 5062 5063 netif_device_detach(netdev); 5064 5065 if (netif_running(netdev)) { 5066 int count = E1000_CHECK_RESET_COUNT; 5067 5068 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--) 5069 usleep_range(10000, 20000); 5070 5071 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); 5072 e1000_down(adapter); 5073 } 5074 5075 #ifdef CONFIG_PM 5076 retval = pci_save_state(pdev); 5077 if (retval) 5078 return retval; 5079 #endif 5080 5081 status = er32(STATUS); 5082 if (status & E1000_STATUS_LU) 5083 wufc &= ~E1000_WUFC_LNKC; 5084 5085 if (wufc) { 5086 e1000_setup_rctl(adapter); 5087 e1000_set_rx_mode(netdev); 5088 5089 rctl = er32(RCTL); 5090 5091 /* turn on all-multi mode if wake on multicast is enabled */ 5092 if (wufc & E1000_WUFC_MC) 5093 rctl |= E1000_RCTL_MPE; 5094 5095 /* enable receives in the hardware */ 5096 ew32(RCTL, rctl | E1000_RCTL_EN); 5097 5098 if (hw->mac_type >= e1000_82540) { 5099 ctrl = er32(CTRL); 5100 /* advertise wake from D3Cold */ 5101 #define E1000_CTRL_ADVD3WUC 0x00100000 5102 /* phy power management enable */ 5103 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 5104 ctrl |= E1000_CTRL_ADVD3WUC | 5105 E1000_CTRL_EN_PHY_PWR_MGMT; 5106 ew32(CTRL, ctrl); 5107 } 5108 5109 if (hw->media_type == e1000_media_type_fiber || 5110 hw->media_type == e1000_media_type_internal_serdes) { 5111 /* keep the laser running in D3 */ 5112 ctrl_ext = er32(CTRL_EXT); 5113 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; 5114 ew32(CTRL_EXT, ctrl_ext); 5115 } 5116 5117 ew32(WUC, E1000_WUC_PME_EN); 5118 ew32(WUFC, wufc); 5119 } else { 5120 ew32(WUC, 0); 5121 ew32(WUFC, 0); 5122 } 5123 5124 e1000_release_manageability(adapter); 5125 5126 *enable_wake = !!wufc; 5127 5128 /* make sure adapter isn't asleep if manageability is enabled */ 5129 if (adapter->en_mng_pt) 5130 *enable_wake = true; 5131 5132 if (netif_running(netdev)) 5133 e1000_free_irq(adapter); 5134 5135 pci_disable_device(pdev); 5136 5137 return 0; 5138 } 5139 5140 #ifdef CONFIG_PM 5141 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) 5142 { 5143 int retval; 5144 bool wake; 5145 5146 retval = __e1000_shutdown(pdev, &wake); 5147 if (retval) 5148 return retval; 5149 5150 if (wake) { 5151 pci_prepare_to_sleep(pdev); 5152 } else { 5153 pci_wake_from_d3(pdev, false); 5154 pci_set_power_state(pdev, PCI_D3hot); 5155 } 5156 5157 return 0; 5158 } 5159 5160 static int e1000_resume(struct pci_dev *pdev) 5161 { 5162 struct net_device *netdev = pci_get_drvdata(pdev); 5163 struct e1000_adapter *adapter = netdev_priv(netdev); 5164 struct e1000_hw *hw = &adapter->hw; 5165 u32 err; 5166 5167 pci_set_power_state(pdev, PCI_D0); 5168 pci_restore_state(pdev); 5169 pci_save_state(pdev); 5170 5171 if (adapter->need_ioport) 5172 err = pci_enable_device(pdev); 5173 else 5174 err = pci_enable_device_mem(pdev); 5175 if (err) { 5176 pr_err("Cannot enable PCI device from suspend\n"); 5177 return err; 5178 } 5179 pci_set_master(pdev); 5180 5181 pci_enable_wake(pdev, PCI_D3hot, 0); 5182 pci_enable_wake(pdev, PCI_D3cold, 0); 5183 5184 if (netif_running(netdev)) { 5185 err = e1000_request_irq(adapter); 5186 if (err) 5187 return err; 5188 } 5189 5190 e1000_power_up_phy(adapter); 5191 e1000_reset(adapter); 5192 ew32(WUS, ~0); 5193 5194 e1000_init_manageability(adapter); 5195 5196 if (netif_running(netdev)) 5197 e1000_up(adapter); 5198 5199 netif_device_attach(netdev); 5200 5201 return 0; 5202 } 5203 #endif 5204 5205 static void e1000_shutdown(struct pci_dev *pdev) 5206 { 5207 bool wake; 5208 5209 __e1000_shutdown(pdev, &wake); 5210 5211 if (system_state == SYSTEM_POWER_OFF) { 5212 pci_wake_from_d3(pdev, wake); 5213 pci_set_power_state(pdev, PCI_D3hot); 5214 } 5215 } 5216 5217 #ifdef CONFIG_NET_POLL_CONTROLLER 5218 /* Polling 'interrupt' - used by things like netconsole to send skbs 5219 * without having to re-enable interrupts. It's not called while 5220 * the interrupt routine is executing. 5221 */ 5222 static void e1000_netpoll(struct net_device *netdev) 5223 { 5224 struct e1000_adapter *adapter = netdev_priv(netdev); 5225 5226 disable_irq(adapter->pdev->irq); 5227 e1000_intr(adapter->pdev->irq, netdev); 5228 enable_irq(adapter->pdev->irq); 5229 } 5230 #endif 5231 5232 /** 5233 * e1000_io_error_detected - called when PCI error is detected 5234 * @pdev: Pointer to PCI device 5235 * @state: The current pci connection state 5236 * 5237 * This function is called after a PCI bus error affecting 5238 * this device has been detected. 5239 */ 5240 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, 5241 pci_channel_state_t state) 5242 { 5243 struct net_device *netdev = pci_get_drvdata(pdev); 5244 struct e1000_adapter *adapter = netdev_priv(netdev); 5245 5246 netif_device_detach(netdev); 5247 5248 if (state == pci_channel_io_perm_failure) 5249 return PCI_ERS_RESULT_DISCONNECT; 5250 5251 if (netif_running(netdev)) 5252 e1000_down(adapter); 5253 pci_disable_device(pdev); 5254 5255 /* Request a slot slot reset. */ 5256 return PCI_ERS_RESULT_NEED_RESET; 5257 } 5258 5259 /** 5260 * e1000_io_slot_reset - called after the pci bus has been reset. 5261 * @pdev: Pointer to PCI device 5262 * 5263 * Restart the card from scratch, as if from a cold-boot. Implementation 5264 * resembles the first-half of the e1000_resume routine. 5265 */ 5266 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) 5267 { 5268 struct net_device *netdev = pci_get_drvdata(pdev); 5269 struct e1000_adapter *adapter = netdev_priv(netdev); 5270 struct e1000_hw *hw = &adapter->hw; 5271 int err; 5272 5273 if (adapter->need_ioport) 5274 err = pci_enable_device(pdev); 5275 else 5276 err = pci_enable_device_mem(pdev); 5277 if (err) { 5278 pr_err("Cannot re-enable PCI device after reset.\n"); 5279 return PCI_ERS_RESULT_DISCONNECT; 5280 } 5281 pci_set_master(pdev); 5282 5283 pci_enable_wake(pdev, PCI_D3hot, 0); 5284 pci_enable_wake(pdev, PCI_D3cold, 0); 5285 5286 e1000_reset(adapter); 5287 ew32(WUS, ~0); 5288 5289 return PCI_ERS_RESULT_RECOVERED; 5290 } 5291 5292 /** 5293 * e1000_io_resume - called when traffic can start flowing again. 5294 * @pdev: Pointer to PCI device 5295 * 5296 * This callback is called when the error recovery driver tells us that 5297 * its OK to resume normal operation. Implementation resembles the 5298 * second-half of the e1000_resume routine. 5299 */ 5300 static void e1000_io_resume(struct pci_dev *pdev) 5301 { 5302 struct net_device *netdev = pci_get_drvdata(pdev); 5303 struct e1000_adapter *adapter = netdev_priv(netdev); 5304 5305 e1000_init_manageability(adapter); 5306 5307 if (netif_running(netdev)) { 5308 if (e1000_up(adapter)) { 5309 pr_info("can't bring device back up after reset\n"); 5310 return; 5311 } 5312 } 5313 5314 netif_device_attach(netdev); 5315 } 5316 5317 /* e1000_main.c */ 5318