1 /******************************************************************************* 2 3 Intel PRO/1000 Linux driver 4 Copyright(c) 1999 - 2006 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27 *******************************************************************************/ 28 29 #include "e1000.h" 30 #include <net/ip6_checksum.h> 31 #include <linux/io.h> 32 #include <linux/prefetch.h> 33 #include <linux/bitops.h> 34 #include <linux/if_vlan.h> 35 36 char e1000_driver_name[] = "e1000"; 37 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver"; 38 #define DRV_VERSION "7.3.21-k8-NAPI" 39 const char e1000_driver_version[] = DRV_VERSION; 40 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation."; 41 42 /* e1000_pci_tbl - PCI Device ID Table 43 * 44 * Last entry must be all 0s 45 * 46 * Macro expands to... 47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)} 48 */ 49 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = { 50 INTEL_E1000_ETHERNET_DEVICE(0x1000), 51 INTEL_E1000_ETHERNET_DEVICE(0x1001), 52 INTEL_E1000_ETHERNET_DEVICE(0x1004), 53 INTEL_E1000_ETHERNET_DEVICE(0x1008), 54 INTEL_E1000_ETHERNET_DEVICE(0x1009), 55 INTEL_E1000_ETHERNET_DEVICE(0x100C), 56 INTEL_E1000_ETHERNET_DEVICE(0x100D), 57 INTEL_E1000_ETHERNET_DEVICE(0x100E), 58 INTEL_E1000_ETHERNET_DEVICE(0x100F), 59 INTEL_E1000_ETHERNET_DEVICE(0x1010), 60 INTEL_E1000_ETHERNET_DEVICE(0x1011), 61 INTEL_E1000_ETHERNET_DEVICE(0x1012), 62 INTEL_E1000_ETHERNET_DEVICE(0x1013), 63 INTEL_E1000_ETHERNET_DEVICE(0x1014), 64 INTEL_E1000_ETHERNET_DEVICE(0x1015), 65 INTEL_E1000_ETHERNET_DEVICE(0x1016), 66 INTEL_E1000_ETHERNET_DEVICE(0x1017), 67 INTEL_E1000_ETHERNET_DEVICE(0x1018), 68 INTEL_E1000_ETHERNET_DEVICE(0x1019), 69 INTEL_E1000_ETHERNET_DEVICE(0x101A), 70 INTEL_E1000_ETHERNET_DEVICE(0x101D), 71 INTEL_E1000_ETHERNET_DEVICE(0x101E), 72 INTEL_E1000_ETHERNET_DEVICE(0x1026), 73 INTEL_E1000_ETHERNET_DEVICE(0x1027), 74 INTEL_E1000_ETHERNET_DEVICE(0x1028), 75 INTEL_E1000_ETHERNET_DEVICE(0x1075), 76 INTEL_E1000_ETHERNET_DEVICE(0x1076), 77 INTEL_E1000_ETHERNET_DEVICE(0x1077), 78 INTEL_E1000_ETHERNET_DEVICE(0x1078), 79 INTEL_E1000_ETHERNET_DEVICE(0x1079), 80 INTEL_E1000_ETHERNET_DEVICE(0x107A), 81 INTEL_E1000_ETHERNET_DEVICE(0x107B), 82 INTEL_E1000_ETHERNET_DEVICE(0x107C), 83 INTEL_E1000_ETHERNET_DEVICE(0x108A), 84 INTEL_E1000_ETHERNET_DEVICE(0x1099), 85 INTEL_E1000_ETHERNET_DEVICE(0x10B5), 86 INTEL_E1000_ETHERNET_DEVICE(0x2E6E), 87 /* required last entry */ 88 {0,} 89 }; 90 91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); 92 93 int e1000_up(struct e1000_adapter *adapter); 94 void e1000_down(struct e1000_adapter *adapter); 95 void e1000_reinit_locked(struct e1000_adapter *adapter); 96 void e1000_reset(struct e1000_adapter *adapter); 97 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter); 98 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter); 99 void e1000_free_all_tx_resources(struct e1000_adapter *adapter); 100 void e1000_free_all_rx_resources(struct e1000_adapter *adapter); 101 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, 102 struct e1000_tx_ring *txdr); 103 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, 104 struct e1000_rx_ring *rxdr); 105 static void e1000_free_tx_resources(struct e1000_adapter *adapter, 106 struct e1000_tx_ring *tx_ring); 107 static void e1000_free_rx_resources(struct e1000_adapter *adapter, 108 struct e1000_rx_ring *rx_ring); 109 void e1000_update_stats(struct e1000_adapter *adapter); 110 111 static int e1000_init_module(void); 112 static void e1000_exit_module(void); 113 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent); 114 static void __devexit e1000_remove(struct pci_dev *pdev); 115 static int e1000_alloc_queues(struct e1000_adapter *adapter); 116 static int e1000_sw_init(struct e1000_adapter *adapter); 117 static int e1000_open(struct net_device *netdev); 118 static int e1000_close(struct net_device *netdev); 119 static void e1000_configure_tx(struct e1000_adapter *adapter); 120 static void e1000_configure_rx(struct e1000_adapter *adapter); 121 static void e1000_setup_rctl(struct e1000_adapter *adapter); 122 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter); 123 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter); 124 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, 125 struct e1000_tx_ring *tx_ring); 126 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, 127 struct e1000_rx_ring *rx_ring); 128 static void e1000_set_rx_mode(struct net_device *netdev); 129 static void e1000_update_phy_info_task(struct work_struct *work); 130 static void e1000_watchdog(struct work_struct *work); 131 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work); 132 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, 133 struct net_device *netdev); 134 static struct net_device_stats * e1000_get_stats(struct net_device *netdev); 135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu); 136 static int e1000_set_mac(struct net_device *netdev, void *p); 137 static irqreturn_t e1000_intr(int irq, void *data); 138 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, 139 struct e1000_tx_ring *tx_ring); 140 static int e1000_clean(struct napi_struct *napi, int budget); 141 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, 142 struct e1000_rx_ring *rx_ring, 143 int *work_done, int work_to_do); 144 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, 145 struct e1000_rx_ring *rx_ring, 146 int *work_done, int work_to_do); 147 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, 148 struct e1000_rx_ring *rx_ring, 149 int cleaned_count); 150 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, 151 struct e1000_rx_ring *rx_ring, 152 int cleaned_count); 153 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); 154 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, 155 int cmd); 156 static void e1000_enter_82542_rst(struct e1000_adapter *adapter); 157 static void e1000_leave_82542_rst(struct e1000_adapter *adapter); 158 static void e1000_tx_timeout(struct net_device *dev); 159 static void e1000_reset_task(struct work_struct *work); 160 static void e1000_smartspeed(struct e1000_adapter *adapter); 161 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, 162 struct sk_buff *skb); 163 164 static bool e1000_vlan_used(struct e1000_adapter *adapter); 165 static void e1000_vlan_mode(struct net_device *netdev, 166 netdev_features_t features); 167 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter, 168 bool filter_on); 169 static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid); 170 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid); 171 static void e1000_restore_vlan(struct e1000_adapter *adapter); 172 173 #ifdef CONFIG_PM 174 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state); 175 static int e1000_resume(struct pci_dev *pdev); 176 #endif 177 static void e1000_shutdown(struct pci_dev *pdev); 178 179 #ifdef CONFIG_NET_POLL_CONTROLLER 180 /* for netdump / net console */ 181 static void e1000_netpoll (struct net_device *netdev); 182 #endif 183 184 #define COPYBREAK_DEFAULT 256 185 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT; 186 module_param(copybreak, uint, 0644); 187 MODULE_PARM_DESC(copybreak, 188 "Maximum size of packet that is copied to a new buffer on receive"); 189 190 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, 191 pci_channel_state_t state); 192 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev); 193 static void e1000_io_resume(struct pci_dev *pdev); 194 195 static struct pci_error_handlers e1000_err_handler = { 196 .error_detected = e1000_io_error_detected, 197 .slot_reset = e1000_io_slot_reset, 198 .resume = e1000_io_resume, 199 }; 200 201 static struct pci_driver e1000_driver = { 202 .name = e1000_driver_name, 203 .id_table = e1000_pci_tbl, 204 .probe = e1000_probe, 205 .remove = __devexit_p(e1000_remove), 206 #ifdef CONFIG_PM 207 /* Power Management Hooks */ 208 .suspend = e1000_suspend, 209 .resume = e1000_resume, 210 #endif 211 .shutdown = e1000_shutdown, 212 .err_handler = &e1000_err_handler 213 }; 214 215 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 216 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); 217 MODULE_LICENSE("GPL"); 218 MODULE_VERSION(DRV_VERSION); 219 220 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 221 static int debug = -1; 222 module_param(debug, int, 0); 223 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 224 225 /** 226 * e1000_get_hw_dev - return device 227 * used by hardware layer to print debugging information 228 * 229 **/ 230 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw) 231 { 232 struct e1000_adapter *adapter = hw->back; 233 return adapter->netdev; 234 } 235 236 /** 237 * e1000_init_module - Driver Registration Routine 238 * 239 * e1000_init_module is the first routine called when the driver is 240 * loaded. All it does is register with the PCI subsystem. 241 **/ 242 243 static int __init e1000_init_module(void) 244 { 245 int ret; 246 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version); 247 248 pr_info("%s\n", e1000_copyright); 249 250 ret = pci_register_driver(&e1000_driver); 251 if (copybreak != COPYBREAK_DEFAULT) { 252 if (copybreak == 0) 253 pr_info("copybreak disabled\n"); 254 else 255 pr_info("copybreak enabled for " 256 "packets <= %u bytes\n", copybreak); 257 } 258 return ret; 259 } 260 261 module_init(e1000_init_module); 262 263 /** 264 * e1000_exit_module - Driver Exit Cleanup Routine 265 * 266 * e1000_exit_module is called just before the driver is removed 267 * from memory. 268 **/ 269 270 static void __exit e1000_exit_module(void) 271 { 272 pci_unregister_driver(&e1000_driver); 273 } 274 275 module_exit(e1000_exit_module); 276 277 static int e1000_request_irq(struct e1000_adapter *adapter) 278 { 279 struct net_device *netdev = adapter->netdev; 280 irq_handler_t handler = e1000_intr; 281 int irq_flags = IRQF_SHARED; 282 int err; 283 284 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name, 285 netdev); 286 if (err) { 287 e_err(probe, "Unable to allocate interrupt Error: %d\n", err); 288 } 289 290 return err; 291 } 292 293 static void e1000_free_irq(struct e1000_adapter *adapter) 294 { 295 struct net_device *netdev = adapter->netdev; 296 297 free_irq(adapter->pdev->irq, netdev); 298 } 299 300 /** 301 * e1000_irq_disable - Mask off interrupt generation on the NIC 302 * @adapter: board private structure 303 **/ 304 305 static void e1000_irq_disable(struct e1000_adapter *adapter) 306 { 307 struct e1000_hw *hw = &adapter->hw; 308 309 ew32(IMC, ~0); 310 E1000_WRITE_FLUSH(); 311 synchronize_irq(adapter->pdev->irq); 312 } 313 314 /** 315 * e1000_irq_enable - Enable default interrupt generation settings 316 * @adapter: board private structure 317 **/ 318 319 static void e1000_irq_enable(struct e1000_adapter *adapter) 320 { 321 struct e1000_hw *hw = &adapter->hw; 322 323 ew32(IMS, IMS_ENABLE_MASK); 324 E1000_WRITE_FLUSH(); 325 } 326 327 static void e1000_update_mng_vlan(struct e1000_adapter *adapter) 328 { 329 struct e1000_hw *hw = &adapter->hw; 330 struct net_device *netdev = adapter->netdev; 331 u16 vid = hw->mng_cookie.vlan_id; 332 u16 old_vid = adapter->mng_vlan_id; 333 334 if (!e1000_vlan_used(adapter)) 335 return; 336 337 if (!test_bit(vid, adapter->active_vlans)) { 338 if (hw->mng_cookie.status & 339 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) { 340 e1000_vlan_rx_add_vid(netdev, vid); 341 adapter->mng_vlan_id = vid; 342 } else { 343 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 344 } 345 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && 346 (vid != old_vid) && 347 !test_bit(old_vid, adapter->active_vlans)) 348 e1000_vlan_rx_kill_vid(netdev, old_vid); 349 } else { 350 adapter->mng_vlan_id = vid; 351 } 352 } 353 354 static void e1000_init_manageability(struct e1000_adapter *adapter) 355 { 356 struct e1000_hw *hw = &adapter->hw; 357 358 if (adapter->en_mng_pt) { 359 u32 manc = er32(MANC); 360 361 /* disable hardware interception of ARP */ 362 manc &= ~(E1000_MANC_ARP_EN); 363 364 ew32(MANC, manc); 365 } 366 } 367 368 static void e1000_release_manageability(struct e1000_adapter *adapter) 369 { 370 struct e1000_hw *hw = &adapter->hw; 371 372 if (adapter->en_mng_pt) { 373 u32 manc = er32(MANC); 374 375 /* re-enable hardware interception of ARP */ 376 manc |= E1000_MANC_ARP_EN; 377 378 ew32(MANC, manc); 379 } 380 } 381 382 /** 383 * e1000_configure - configure the hardware for RX and TX 384 * @adapter = private board structure 385 **/ 386 static void e1000_configure(struct e1000_adapter *adapter) 387 { 388 struct net_device *netdev = adapter->netdev; 389 int i; 390 391 e1000_set_rx_mode(netdev); 392 393 e1000_restore_vlan(adapter); 394 e1000_init_manageability(adapter); 395 396 e1000_configure_tx(adapter); 397 e1000_setup_rctl(adapter); 398 e1000_configure_rx(adapter); 399 /* call E1000_DESC_UNUSED which always leaves 400 * at least 1 descriptor unused to make sure 401 * next_to_use != next_to_clean */ 402 for (i = 0; i < adapter->num_rx_queues; i++) { 403 struct e1000_rx_ring *ring = &adapter->rx_ring[i]; 404 adapter->alloc_rx_buf(adapter, ring, 405 E1000_DESC_UNUSED(ring)); 406 } 407 } 408 409 int e1000_up(struct e1000_adapter *adapter) 410 { 411 struct e1000_hw *hw = &adapter->hw; 412 413 /* hardware has been reset, we need to reload some things */ 414 e1000_configure(adapter); 415 416 clear_bit(__E1000_DOWN, &adapter->flags); 417 418 napi_enable(&adapter->napi); 419 420 e1000_irq_enable(adapter); 421 422 netif_wake_queue(adapter->netdev); 423 424 /* fire a link change interrupt to start the watchdog */ 425 ew32(ICS, E1000_ICS_LSC); 426 return 0; 427 } 428 429 /** 430 * e1000_power_up_phy - restore link in case the phy was powered down 431 * @adapter: address of board private structure 432 * 433 * The phy may be powered down to save power and turn off link when the 434 * driver is unloaded and wake on lan is not enabled (among others) 435 * *** this routine MUST be followed by a call to e1000_reset *** 436 * 437 **/ 438 439 void e1000_power_up_phy(struct e1000_adapter *adapter) 440 { 441 struct e1000_hw *hw = &adapter->hw; 442 u16 mii_reg = 0; 443 444 /* Just clear the power down bit to wake the phy back up */ 445 if (hw->media_type == e1000_media_type_copper) { 446 /* according to the manual, the phy will retain its 447 * settings across a power-down/up cycle */ 448 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); 449 mii_reg &= ~MII_CR_POWER_DOWN; 450 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); 451 } 452 } 453 454 static void e1000_power_down_phy(struct e1000_adapter *adapter) 455 { 456 struct e1000_hw *hw = &adapter->hw; 457 458 /* Power down the PHY so no link is implied when interface is down * 459 * The PHY cannot be powered down if any of the following is true * 460 * (a) WoL is enabled 461 * (b) AMT is active 462 * (c) SoL/IDER session is active */ 463 if (!adapter->wol && hw->mac_type >= e1000_82540 && 464 hw->media_type == e1000_media_type_copper) { 465 u16 mii_reg = 0; 466 467 switch (hw->mac_type) { 468 case e1000_82540: 469 case e1000_82545: 470 case e1000_82545_rev_3: 471 case e1000_82546: 472 case e1000_ce4100: 473 case e1000_82546_rev_3: 474 case e1000_82541: 475 case e1000_82541_rev_2: 476 case e1000_82547: 477 case e1000_82547_rev_2: 478 if (er32(MANC) & E1000_MANC_SMBUS_EN) 479 goto out; 480 break; 481 default: 482 goto out; 483 } 484 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); 485 mii_reg |= MII_CR_POWER_DOWN; 486 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); 487 msleep(1); 488 } 489 out: 490 return; 491 } 492 493 static void e1000_down_and_stop(struct e1000_adapter *adapter) 494 { 495 set_bit(__E1000_DOWN, &adapter->flags); 496 497 /* Only kill reset task if adapter is not resetting */ 498 if (!test_bit(__E1000_RESETTING, &adapter->flags)) 499 cancel_work_sync(&adapter->reset_task); 500 501 cancel_delayed_work_sync(&adapter->watchdog_task); 502 cancel_delayed_work_sync(&adapter->phy_info_task); 503 cancel_delayed_work_sync(&adapter->fifo_stall_task); 504 } 505 506 void e1000_down(struct e1000_adapter *adapter) 507 { 508 struct e1000_hw *hw = &adapter->hw; 509 struct net_device *netdev = adapter->netdev; 510 u32 rctl, tctl; 511 512 513 /* disable receives in the hardware */ 514 rctl = er32(RCTL); 515 ew32(RCTL, rctl & ~E1000_RCTL_EN); 516 /* flush and sleep below */ 517 518 netif_tx_disable(netdev); 519 520 /* disable transmits in the hardware */ 521 tctl = er32(TCTL); 522 tctl &= ~E1000_TCTL_EN; 523 ew32(TCTL, tctl); 524 /* flush both disables and wait for them to finish */ 525 E1000_WRITE_FLUSH(); 526 msleep(10); 527 528 napi_disable(&adapter->napi); 529 530 e1000_irq_disable(adapter); 531 532 /* 533 * Setting DOWN must be after irq_disable to prevent 534 * a screaming interrupt. Setting DOWN also prevents 535 * tasks from rescheduling. 536 */ 537 e1000_down_and_stop(adapter); 538 539 adapter->link_speed = 0; 540 adapter->link_duplex = 0; 541 netif_carrier_off(netdev); 542 543 e1000_reset(adapter); 544 e1000_clean_all_tx_rings(adapter); 545 e1000_clean_all_rx_rings(adapter); 546 } 547 548 static void e1000_reinit_safe(struct e1000_adapter *adapter) 549 { 550 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 551 msleep(1); 552 mutex_lock(&adapter->mutex); 553 e1000_down(adapter); 554 e1000_up(adapter); 555 mutex_unlock(&adapter->mutex); 556 clear_bit(__E1000_RESETTING, &adapter->flags); 557 } 558 559 void e1000_reinit_locked(struct e1000_adapter *adapter) 560 { 561 /* if rtnl_lock is not held the call path is bogus */ 562 ASSERT_RTNL(); 563 WARN_ON(in_interrupt()); 564 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 565 msleep(1); 566 e1000_down(adapter); 567 e1000_up(adapter); 568 clear_bit(__E1000_RESETTING, &adapter->flags); 569 } 570 571 void e1000_reset(struct e1000_adapter *adapter) 572 { 573 struct e1000_hw *hw = &adapter->hw; 574 u32 pba = 0, tx_space, min_tx_space, min_rx_space; 575 bool legacy_pba_adjust = false; 576 u16 hwm; 577 578 /* Repartition Pba for greater than 9k mtu 579 * To take effect CTRL.RST is required. 580 */ 581 582 switch (hw->mac_type) { 583 case e1000_82542_rev2_0: 584 case e1000_82542_rev2_1: 585 case e1000_82543: 586 case e1000_82544: 587 case e1000_82540: 588 case e1000_82541: 589 case e1000_82541_rev_2: 590 legacy_pba_adjust = true; 591 pba = E1000_PBA_48K; 592 break; 593 case e1000_82545: 594 case e1000_82545_rev_3: 595 case e1000_82546: 596 case e1000_ce4100: 597 case e1000_82546_rev_3: 598 pba = E1000_PBA_48K; 599 break; 600 case e1000_82547: 601 case e1000_82547_rev_2: 602 legacy_pba_adjust = true; 603 pba = E1000_PBA_30K; 604 break; 605 case e1000_undefined: 606 case e1000_num_macs: 607 break; 608 } 609 610 if (legacy_pba_adjust) { 611 if (hw->max_frame_size > E1000_RXBUFFER_8192) 612 pba -= 8; /* allocate more FIFO for Tx */ 613 614 if (hw->mac_type == e1000_82547) { 615 adapter->tx_fifo_head = 0; 616 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT; 617 adapter->tx_fifo_size = 618 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT; 619 atomic_set(&adapter->tx_fifo_stall, 0); 620 } 621 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) { 622 /* adjust PBA for jumbo frames */ 623 ew32(PBA, pba); 624 625 /* To maintain wire speed transmits, the Tx FIFO should be 626 * large enough to accommodate two full transmit packets, 627 * rounded up to the next 1KB and expressed in KB. Likewise, 628 * the Rx FIFO should be large enough to accommodate at least 629 * one full receive packet and is similarly rounded up and 630 * expressed in KB. */ 631 pba = er32(PBA); 632 /* upper 16 bits has Tx packet buffer allocation size in KB */ 633 tx_space = pba >> 16; 634 /* lower 16 bits has Rx packet buffer allocation size in KB */ 635 pba &= 0xffff; 636 /* 637 * the tx fifo also stores 16 bytes of information about the tx 638 * but don't include ethernet FCS because hardware appends it 639 */ 640 min_tx_space = (hw->max_frame_size + 641 sizeof(struct e1000_tx_desc) - 642 ETH_FCS_LEN) * 2; 643 min_tx_space = ALIGN(min_tx_space, 1024); 644 min_tx_space >>= 10; 645 /* software strips receive CRC, so leave room for it */ 646 min_rx_space = hw->max_frame_size; 647 min_rx_space = ALIGN(min_rx_space, 1024); 648 min_rx_space >>= 10; 649 650 /* If current Tx allocation is less than the min Tx FIFO size, 651 * and the min Tx FIFO size is less than the current Rx FIFO 652 * allocation, take space away from current Rx allocation */ 653 if (tx_space < min_tx_space && 654 ((min_tx_space - tx_space) < pba)) { 655 pba = pba - (min_tx_space - tx_space); 656 657 /* PCI/PCIx hardware has PBA alignment constraints */ 658 switch (hw->mac_type) { 659 case e1000_82545 ... e1000_82546_rev_3: 660 pba &= ~(E1000_PBA_8K - 1); 661 break; 662 default: 663 break; 664 } 665 666 /* if short on rx space, rx wins and must trump tx 667 * adjustment or use Early Receive if available */ 668 if (pba < min_rx_space) 669 pba = min_rx_space; 670 } 671 } 672 673 ew32(PBA, pba); 674 675 /* 676 * flow control settings: 677 * The high water mark must be low enough to fit one full frame 678 * (or the size used for early receive) above it in the Rx FIFO. 679 * Set it to the lower of: 680 * - 90% of the Rx FIFO size, and 681 * - the full Rx FIFO size minus the early receive size (for parts 682 * with ERT support assuming ERT set to E1000_ERT_2048), or 683 * - the full Rx FIFO size minus one full frame 684 */ 685 hwm = min(((pba << 10) * 9 / 10), 686 ((pba << 10) - hw->max_frame_size)); 687 688 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */ 689 hw->fc_low_water = hw->fc_high_water - 8; 690 hw->fc_pause_time = E1000_FC_PAUSE_TIME; 691 hw->fc_send_xon = 1; 692 hw->fc = hw->original_fc; 693 694 /* Allow time for pending master requests to run */ 695 e1000_reset_hw(hw); 696 if (hw->mac_type >= e1000_82544) 697 ew32(WUC, 0); 698 699 if (e1000_init_hw(hw)) 700 e_dev_err("Hardware Error\n"); 701 e1000_update_mng_vlan(adapter); 702 703 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */ 704 if (hw->mac_type >= e1000_82544 && 705 hw->autoneg == 1 && 706 hw->autoneg_advertised == ADVERTISE_1000_FULL) { 707 u32 ctrl = er32(CTRL); 708 /* clear phy power management bit if we are in gig only mode, 709 * which if enabled will attempt negotiation to 100Mb, which 710 * can cause a loss of link at power off or driver unload */ 711 ctrl &= ~E1000_CTRL_SWDPIN3; 712 ew32(CTRL, ctrl); 713 } 714 715 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ 716 ew32(VET, ETHERNET_IEEE_VLAN_TYPE); 717 718 e1000_reset_adaptive(hw); 719 e1000_phy_get_info(hw, &adapter->phy_info); 720 721 e1000_release_manageability(adapter); 722 } 723 724 /* Dump the eeprom for users having checksum issues */ 725 static void e1000_dump_eeprom(struct e1000_adapter *adapter) 726 { 727 struct net_device *netdev = adapter->netdev; 728 struct ethtool_eeprom eeprom; 729 const struct ethtool_ops *ops = netdev->ethtool_ops; 730 u8 *data; 731 int i; 732 u16 csum_old, csum_new = 0; 733 734 eeprom.len = ops->get_eeprom_len(netdev); 735 eeprom.offset = 0; 736 737 data = kmalloc(eeprom.len, GFP_KERNEL); 738 if (!data) 739 return; 740 741 ops->get_eeprom(netdev, &eeprom, data); 742 743 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) + 744 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8); 745 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2) 746 csum_new += data[i] + (data[i + 1] << 8); 747 csum_new = EEPROM_SUM - csum_new; 748 749 pr_err("/*********************/\n"); 750 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old); 751 pr_err("Calculated : 0x%04x\n", csum_new); 752 753 pr_err("Offset Values\n"); 754 pr_err("======== ======\n"); 755 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0); 756 757 pr_err("Include this output when contacting your support provider.\n"); 758 pr_err("This is not a software error! Something bad happened to\n"); 759 pr_err("your hardware or EEPROM image. Ignoring this problem could\n"); 760 pr_err("result in further problems, possibly loss of data,\n"); 761 pr_err("corruption or system hangs!\n"); 762 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n"); 763 pr_err("which is invalid and requires you to set the proper MAC\n"); 764 pr_err("address manually before continuing to enable this network\n"); 765 pr_err("device. Please inspect the EEPROM dump and report the\n"); 766 pr_err("issue to your hardware vendor or Intel Customer Support.\n"); 767 pr_err("/*********************/\n"); 768 769 kfree(data); 770 } 771 772 /** 773 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not 774 * @pdev: PCI device information struct 775 * 776 * Return true if an adapter needs ioport resources 777 **/ 778 static int e1000_is_need_ioport(struct pci_dev *pdev) 779 { 780 switch (pdev->device) { 781 case E1000_DEV_ID_82540EM: 782 case E1000_DEV_ID_82540EM_LOM: 783 case E1000_DEV_ID_82540EP: 784 case E1000_DEV_ID_82540EP_LOM: 785 case E1000_DEV_ID_82540EP_LP: 786 case E1000_DEV_ID_82541EI: 787 case E1000_DEV_ID_82541EI_MOBILE: 788 case E1000_DEV_ID_82541ER: 789 case E1000_DEV_ID_82541ER_LOM: 790 case E1000_DEV_ID_82541GI: 791 case E1000_DEV_ID_82541GI_LF: 792 case E1000_DEV_ID_82541GI_MOBILE: 793 case E1000_DEV_ID_82544EI_COPPER: 794 case E1000_DEV_ID_82544EI_FIBER: 795 case E1000_DEV_ID_82544GC_COPPER: 796 case E1000_DEV_ID_82544GC_LOM: 797 case E1000_DEV_ID_82545EM_COPPER: 798 case E1000_DEV_ID_82545EM_FIBER: 799 case E1000_DEV_ID_82546EB_COPPER: 800 case E1000_DEV_ID_82546EB_FIBER: 801 case E1000_DEV_ID_82546EB_QUAD_COPPER: 802 return true; 803 default: 804 return false; 805 } 806 } 807 808 static netdev_features_t e1000_fix_features(struct net_device *netdev, 809 netdev_features_t features) 810 { 811 /* 812 * Since there is no support for separate rx/tx vlan accel 813 * enable/disable make sure tx flag is always in same state as rx. 814 */ 815 if (features & NETIF_F_HW_VLAN_RX) 816 features |= NETIF_F_HW_VLAN_TX; 817 else 818 features &= ~NETIF_F_HW_VLAN_TX; 819 820 return features; 821 } 822 823 static int e1000_set_features(struct net_device *netdev, 824 netdev_features_t features) 825 { 826 struct e1000_adapter *adapter = netdev_priv(netdev); 827 netdev_features_t changed = features ^ netdev->features; 828 829 if (changed & NETIF_F_HW_VLAN_RX) 830 e1000_vlan_mode(netdev, features); 831 832 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL))) 833 return 0; 834 835 netdev->features = features; 836 adapter->rx_csum = !!(features & NETIF_F_RXCSUM); 837 838 if (netif_running(netdev)) 839 e1000_reinit_locked(adapter); 840 else 841 e1000_reset(adapter); 842 843 return 0; 844 } 845 846 static const struct net_device_ops e1000_netdev_ops = { 847 .ndo_open = e1000_open, 848 .ndo_stop = e1000_close, 849 .ndo_start_xmit = e1000_xmit_frame, 850 .ndo_get_stats = e1000_get_stats, 851 .ndo_set_rx_mode = e1000_set_rx_mode, 852 .ndo_set_mac_address = e1000_set_mac, 853 .ndo_tx_timeout = e1000_tx_timeout, 854 .ndo_change_mtu = e1000_change_mtu, 855 .ndo_do_ioctl = e1000_ioctl, 856 .ndo_validate_addr = eth_validate_addr, 857 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, 858 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, 859 #ifdef CONFIG_NET_POLL_CONTROLLER 860 .ndo_poll_controller = e1000_netpoll, 861 #endif 862 .ndo_fix_features = e1000_fix_features, 863 .ndo_set_features = e1000_set_features, 864 }; 865 866 /** 867 * e1000_init_hw_struct - initialize members of hw struct 868 * @adapter: board private struct 869 * @hw: structure used by e1000_hw.c 870 * 871 * Factors out initialization of the e1000_hw struct to its own function 872 * that can be called very early at init (just after struct allocation). 873 * Fields are initialized based on PCI device information and 874 * OS network device settings (MTU size). 875 * Returns negative error codes if MAC type setup fails. 876 */ 877 static int e1000_init_hw_struct(struct e1000_adapter *adapter, 878 struct e1000_hw *hw) 879 { 880 struct pci_dev *pdev = adapter->pdev; 881 882 /* PCI config space info */ 883 hw->vendor_id = pdev->vendor; 884 hw->device_id = pdev->device; 885 hw->subsystem_vendor_id = pdev->subsystem_vendor; 886 hw->subsystem_id = pdev->subsystem_device; 887 hw->revision_id = pdev->revision; 888 889 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); 890 891 hw->max_frame_size = adapter->netdev->mtu + 892 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; 893 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; 894 895 /* identify the MAC */ 896 if (e1000_set_mac_type(hw)) { 897 e_err(probe, "Unknown MAC Type\n"); 898 return -EIO; 899 } 900 901 switch (hw->mac_type) { 902 default: 903 break; 904 case e1000_82541: 905 case e1000_82547: 906 case e1000_82541_rev_2: 907 case e1000_82547_rev_2: 908 hw->phy_init_script = 1; 909 break; 910 } 911 912 e1000_set_media_type(hw); 913 e1000_get_bus_info(hw); 914 915 hw->wait_autoneg_complete = false; 916 hw->tbi_compatibility_en = true; 917 hw->adaptive_ifs = true; 918 919 /* Copper options */ 920 921 if (hw->media_type == e1000_media_type_copper) { 922 hw->mdix = AUTO_ALL_MODES; 923 hw->disable_polarity_correction = false; 924 hw->master_slave = E1000_MASTER_SLAVE; 925 } 926 927 return 0; 928 } 929 930 /** 931 * e1000_probe - Device Initialization Routine 932 * @pdev: PCI device information struct 933 * @ent: entry in e1000_pci_tbl 934 * 935 * Returns 0 on success, negative on failure 936 * 937 * e1000_probe initializes an adapter identified by a pci_dev structure. 938 * The OS initialization, configuring of the adapter private structure, 939 * and a hardware reset occur. 940 **/ 941 static int __devinit e1000_probe(struct pci_dev *pdev, 942 const struct pci_device_id *ent) 943 { 944 struct net_device *netdev; 945 struct e1000_adapter *adapter; 946 struct e1000_hw *hw; 947 948 static int cards_found = 0; 949 static int global_quad_port_a = 0; /* global ksp3 port a indication */ 950 int i, err, pci_using_dac; 951 u16 eeprom_data = 0; 952 u16 tmp = 0; 953 u16 eeprom_apme_mask = E1000_EEPROM_APME; 954 int bars, need_ioport; 955 956 /* do not allocate ioport bars when not needed */ 957 need_ioport = e1000_is_need_ioport(pdev); 958 if (need_ioport) { 959 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO); 960 err = pci_enable_device(pdev); 961 } else { 962 bars = pci_select_bars(pdev, IORESOURCE_MEM); 963 err = pci_enable_device_mem(pdev); 964 } 965 if (err) 966 return err; 967 968 err = pci_request_selected_regions(pdev, bars, e1000_driver_name); 969 if (err) 970 goto err_pci_reg; 971 972 pci_set_master(pdev); 973 err = pci_save_state(pdev); 974 if (err) 975 goto err_alloc_etherdev; 976 977 err = -ENOMEM; 978 netdev = alloc_etherdev(sizeof(struct e1000_adapter)); 979 if (!netdev) 980 goto err_alloc_etherdev; 981 982 SET_NETDEV_DEV(netdev, &pdev->dev); 983 984 pci_set_drvdata(pdev, netdev); 985 adapter = netdev_priv(netdev); 986 adapter->netdev = netdev; 987 adapter->pdev = pdev; 988 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 989 adapter->bars = bars; 990 adapter->need_ioport = need_ioport; 991 992 hw = &adapter->hw; 993 hw->back = adapter; 994 995 err = -EIO; 996 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0); 997 if (!hw->hw_addr) 998 goto err_ioremap; 999 1000 if (adapter->need_ioport) { 1001 for (i = BAR_1; i <= BAR_5; i++) { 1002 if (pci_resource_len(pdev, i) == 0) 1003 continue; 1004 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { 1005 hw->io_base = pci_resource_start(pdev, i); 1006 break; 1007 } 1008 } 1009 } 1010 1011 /* make ready for any if (hw->...) below */ 1012 err = e1000_init_hw_struct(adapter, hw); 1013 if (err) 1014 goto err_sw_init; 1015 1016 /* 1017 * there is a workaround being applied below that limits 1018 * 64-bit DMA addresses to 64-bit hardware. There are some 1019 * 32-bit adapters that Tx hang when given 64-bit DMA addresses 1020 */ 1021 pci_using_dac = 0; 1022 if ((hw->bus_type == e1000_bus_type_pcix) && 1023 !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) { 1024 /* 1025 * according to DMA-API-HOWTO, coherent calls will always 1026 * succeed if the set call did 1027 */ 1028 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); 1029 pci_using_dac = 1; 1030 } else { 1031 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); 1032 if (err) { 1033 pr_err("No usable DMA config, aborting\n"); 1034 goto err_dma; 1035 } 1036 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)); 1037 } 1038 1039 netdev->netdev_ops = &e1000_netdev_ops; 1040 e1000_set_ethtool_ops(netdev); 1041 netdev->watchdog_timeo = 5 * HZ; 1042 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); 1043 1044 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 1045 1046 adapter->bd_number = cards_found; 1047 1048 /* setup the private structure */ 1049 1050 err = e1000_sw_init(adapter); 1051 if (err) 1052 goto err_sw_init; 1053 1054 err = -EIO; 1055 if (hw->mac_type == e1000_ce4100) { 1056 hw->ce4100_gbe_mdio_base_virt = 1057 ioremap(pci_resource_start(pdev, BAR_1), 1058 pci_resource_len(pdev, BAR_1)); 1059 1060 if (!hw->ce4100_gbe_mdio_base_virt) 1061 goto err_mdio_ioremap; 1062 } 1063 1064 if (hw->mac_type >= e1000_82543) { 1065 netdev->hw_features = NETIF_F_SG | 1066 NETIF_F_HW_CSUM | 1067 NETIF_F_HW_VLAN_RX; 1068 netdev->features = NETIF_F_HW_VLAN_TX | 1069 NETIF_F_HW_VLAN_FILTER; 1070 } 1071 1072 if ((hw->mac_type >= e1000_82544) && 1073 (hw->mac_type != e1000_82547)) 1074 netdev->hw_features |= NETIF_F_TSO; 1075 1076 netdev->priv_flags |= IFF_SUPP_NOFCS; 1077 1078 netdev->features |= netdev->hw_features; 1079 netdev->hw_features |= (NETIF_F_RXCSUM | 1080 NETIF_F_RXALL | 1081 NETIF_F_RXFCS); 1082 1083 if (pci_using_dac) { 1084 netdev->features |= NETIF_F_HIGHDMA; 1085 netdev->vlan_features |= NETIF_F_HIGHDMA; 1086 } 1087 1088 netdev->vlan_features |= (NETIF_F_TSO | 1089 NETIF_F_HW_CSUM | 1090 NETIF_F_SG); 1091 1092 netdev->priv_flags |= IFF_UNICAST_FLT; 1093 1094 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw); 1095 1096 /* initialize eeprom parameters */ 1097 if (e1000_init_eeprom_params(hw)) { 1098 e_err(probe, "EEPROM initialization failed\n"); 1099 goto err_eeprom; 1100 } 1101 1102 /* before reading the EEPROM, reset the controller to 1103 * put the device in a known good starting state */ 1104 1105 e1000_reset_hw(hw); 1106 1107 /* make sure the EEPROM is good */ 1108 if (e1000_validate_eeprom_checksum(hw) < 0) { 1109 e_err(probe, "The EEPROM Checksum Is Not Valid\n"); 1110 e1000_dump_eeprom(adapter); 1111 /* 1112 * set MAC address to all zeroes to invalidate and temporary 1113 * disable this device for the user. This blocks regular 1114 * traffic while still permitting ethtool ioctls from reaching 1115 * the hardware as well as allowing the user to run the 1116 * interface after manually setting a hw addr using 1117 * `ip set address` 1118 */ 1119 memset(hw->mac_addr, 0, netdev->addr_len); 1120 } else { 1121 /* copy the MAC address out of the EEPROM */ 1122 if (e1000_read_mac_addr(hw)) 1123 e_err(probe, "EEPROM Read Error\n"); 1124 } 1125 /* don't block initalization here due to bad MAC address */ 1126 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len); 1127 memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len); 1128 1129 if (!is_valid_ether_addr(netdev->perm_addr)) 1130 e_err(probe, "Invalid MAC Address\n"); 1131 1132 1133 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog); 1134 INIT_DELAYED_WORK(&adapter->fifo_stall_task, 1135 e1000_82547_tx_fifo_stall_task); 1136 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task); 1137 INIT_WORK(&adapter->reset_task, e1000_reset_task); 1138 1139 e1000_check_options(adapter); 1140 1141 /* Initial Wake on LAN setting 1142 * If APM wake is enabled in the EEPROM, 1143 * enable the ACPI Magic Packet filter 1144 */ 1145 1146 switch (hw->mac_type) { 1147 case e1000_82542_rev2_0: 1148 case e1000_82542_rev2_1: 1149 case e1000_82543: 1150 break; 1151 case e1000_82544: 1152 e1000_read_eeprom(hw, 1153 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); 1154 eeprom_apme_mask = E1000_EEPROM_82544_APM; 1155 break; 1156 case e1000_82546: 1157 case e1000_82546_rev_3: 1158 if (er32(STATUS) & E1000_STATUS_FUNC_1){ 1159 e1000_read_eeprom(hw, 1160 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 1161 break; 1162 } 1163 /* Fall Through */ 1164 default: 1165 e1000_read_eeprom(hw, 1166 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 1167 break; 1168 } 1169 if (eeprom_data & eeprom_apme_mask) 1170 adapter->eeprom_wol |= E1000_WUFC_MAG; 1171 1172 /* now that we have the eeprom settings, apply the special cases 1173 * where the eeprom may be wrong or the board simply won't support 1174 * wake on lan on a particular port */ 1175 switch (pdev->device) { 1176 case E1000_DEV_ID_82546GB_PCIE: 1177 adapter->eeprom_wol = 0; 1178 break; 1179 case E1000_DEV_ID_82546EB_FIBER: 1180 case E1000_DEV_ID_82546GB_FIBER: 1181 /* Wake events only supported on port A for dual fiber 1182 * regardless of eeprom setting */ 1183 if (er32(STATUS) & E1000_STATUS_FUNC_1) 1184 adapter->eeprom_wol = 0; 1185 break; 1186 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 1187 /* if quad port adapter, disable WoL on all but port A */ 1188 if (global_quad_port_a != 0) 1189 adapter->eeprom_wol = 0; 1190 else 1191 adapter->quad_port_a = true; 1192 /* Reset for multiple quad port adapters */ 1193 if (++global_quad_port_a == 4) 1194 global_quad_port_a = 0; 1195 break; 1196 } 1197 1198 /* initialize the wol settings based on the eeprom settings */ 1199 adapter->wol = adapter->eeprom_wol; 1200 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1201 1202 /* Auto detect PHY address */ 1203 if (hw->mac_type == e1000_ce4100) { 1204 for (i = 0; i < 32; i++) { 1205 hw->phy_addr = i; 1206 e1000_read_phy_reg(hw, PHY_ID2, &tmp); 1207 if (tmp == 0 || tmp == 0xFF) { 1208 if (i == 31) 1209 goto err_eeprom; 1210 continue; 1211 } else 1212 break; 1213 } 1214 } 1215 1216 /* reset the hardware with the new settings */ 1217 e1000_reset(adapter); 1218 1219 strcpy(netdev->name, "eth%d"); 1220 err = register_netdev(netdev); 1221 if (err) 1222 goto err_register; 1223 1224 e1000_vlan_filter_on_off(adapter, false); 1225 1226 /* print bus type/speed/width info */ 1227 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n", 1228 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""), 1229 ((hw->bus_speed == e1000_bus_speed_133) ? 133 : 1230 (hw->bus_speed == e1000_bus_speed_120) ? 120 : 1231 (hw->bus_speed == e1000_bus_speed_100) ? 100 : 1232 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33), 1233 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32), 1234 netdev->dev_addr); 1235 1236 /* carrier off reporting is important to ethtool even BEFORE open */ 1237 netif_carrier_off(netdev); 1238 1239 e_info(probe, "Intel(R) PRO/1000 Network Connection\n"); 1240 1241 cards_found++; 1242 return 0; 1243 1244 err_register: 1245 err_eeprom: 1246 e1000_phy_hw_reset(hw); 1247 1248 if (hw->flash_address) 1249 iounmap(hw->flash_address); 1250 kfree(adapter->tx_ring); 1251 kfree(adapter->rx_ring); 1252 err_dma: 1253 err_sw_init: 1254 err_mdio_ioremap: 1255 iounmap(hw->ce4100_gbe_mdio_base_virt); 1256 iounmap(hw->hw_addr); 1257 err_ioremap: 1258 free_netdev(netdev); 1259 err_alloc_etherdev: 1260 pci_release_selected_regions(pdev, bars); 1261 err_pci_reg: 1262 pci_disable_device(pdev); 1263 return err; 1264 } 1265 1266 /** 1267 * e1000_remove - Device Removal Routine 1268 * @pdev: PCI device information struct 1269 * 1270 * e1000_remove is called by the PCI subsystem to alert the driver 1271 * that it should release a PCI device. The could be caused by a 1272 * Hot-Plug event, or because the driver is going to be removed from 1273 * memory. 1274 **/ 1275 1276 static void __devexit e1000_remove(struct pci_dev *pdev) 1277 { 1278 struct net_device *netdev = pci_get_drvdata(pdev); 1279 struct e1000_adapter *adapter = netdev_priv(netdev); 1280 struct e1000_hw *hw = &adapter->hw; 1281 1282 e1000_down_and_stop(adapter); 1283 e1000_release_manageability(adapter); 1284 1285 unregister_netdev(netdev); 1286 1287 e1000_phy_hw_reset(hw); 1288 1289 kfree(adapter->tx_ring); 1290 kfree(adapter->rx_ring); 1291 1292 if (hw->mac_type == e1000_ce4100) 1293 iounmap(hw->ce4100_gbe_mdio_base_virt); 1294 iounmap(hw->hw_addr); 1295 if (hw->flash_address) 1296 iounmap(hw->flash_address); 1297 pci_release_selected_regions(pdev, adapter->bars); 1298 1299 free_netdev(netdev); 1300 1301 pci_disable_device(pdev); 1302 } 1303 1304 /** 1305 * e1000_sw_init - Initialize general software structures (struct e1000_adapter) 1306 * @adapter: board private structure to initialize 1307 * 1308 * e1000_sw_init initializes the Adapter private data structure. 1309 * e1000_init_hw_struct MUST be called before this function 1310 **/ 1311 1312 static int __devinit e1000_sw_init(struct e1000_adapter *adapter) 1313 { 1314 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; 1315 1316 adapter->num_tx_queues = 1; 1317 adapter->num_rx_queues = 1; 1318 1319 if (e1000_alloc_queues(adapter)) { 1320 e_err(probe, "Unable to allocate memory for queues\n"); 1321 return -ENOMEM; 1322 } 1323 1324 /* Explicitly disable IRQ since the NIC can be in any state. */ 1325 e1000_irq_disable(adapter); 1326 1327 spin_lock_init(&adapter->stats_lock); 1328 mutex_init(&adapter->mutex); 1329 1330 set_bit(__E1000_DOWN, &adapter->flags); 1331 1332 return 0; 1333 } 1334 1335 /** 1336 * e1000_alloc_queues - Allocate memory for all rings 1337 * @adapter: board private structure to initialize 1338 * 1339 * We allocate one ring per queue at run-time since we don't know the 1340 * number of queues at compile-time. 1341 **/ 1342 1343 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter) 1344 { 1345 adapter->tx_ring = kcalloc(adapter->num_tx_queues, 1346 sizeof(struct e1000_tx_ring), GFP_KERNEL); 1347 if (!adapter->tx_ring) 1348 return -ENOMEM; 1349 1350 adapter->rx_ring = kcalloc(adapter->num_rx_queues, 1351 sizeof(struct e1000_rx_ring), GFP_KERNEL); 1352 if (!adapter->rx_ring) { 1353 kfree(adapter->tx_ring); 1354 return -ENOMEM; 1355 } 1356 1357 return E1000_SUCCESS; 1358 } 1359 1360 /** 1361 * e1000_open - Called when a network interface is made active 1362 * @netdev: network interface device structure 1363 * 1364 * Returns 0 on success, negative value on failure 1365 * 1366 * The open entry point is called when a network interface is made 1367 * active by the system (IFF_UP). At this point all resources needed 1368 * for transmit and receive operations are allocated, the interrupt 1369 * handler is registered with the OS, the watchdog task is started, 1370 * and the stack is notified that the interface is ready. 1371 **/ 1372 1373 static int e1000_open(struct net_device *netdev) 1374 { 1375 struct e1000_adapter *adapter = netdev_priv(netdev); 1376 struct e1000_hw *hw = &adapter->hw; 1377 int err; 1378 1379 /* disallow open during test */ 1380 if (test_bit(__E1000_TESTING, &adapter->flags)) 1381 return -EBUSY; 1382 1383 netif_carrier_off(netdev); 1384 1385 /* allocate transmit descriptors */ 1386 err = e1000_setup_all_tx_resources(adapter); 1387 if (err) 1388 goto err_setup_tx; 1389 1390 /* allocate receive descriptors */ 1391 err = e1000_setup_all_rx_resources(adapter); 1392 if (err) 1393 goto err_setup_rx; 1394 1395 e1000_power_up_phy(adapter); 1396 1397 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 1398 if ((hw->mng_cookie.status & 1399 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { 1400 e1000_update_mng_vlan(adapter); 1401 } 1402 1403 /* before we allocate an interrupt, we must be ready to handle it. 1404 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 1405 * as soon as we call pci_request_irq, so we have to setup our 1406 * clean_rx handler before we do so. */ 1407 e1000_configure(adapter); 1408 1409 err = e1000_request_irq(adapter); 1410 if (err) 1411 goto err_req_irq; 1412 1413 /* From here on the code is the same as e1000_up() */ 1414 clear_bit(__E1000_DOWN, &adapter->flags); 1415 1416 napi_enable(&adapter->napi); 1417 1418 e1000_irq_enable(adapter); 1419 1420 netif_start_queue(netdev); 1421 1422 /* fire a link status change interrupt to start the watchdog */ 1423 ew32(ICS, E1000_ICS_LSC); 1424 1425 return E1000_SUCCESS; 1426 1427 err_req_irq: 1428 e1000_power_down_phy(adapter); 1429 e1000_free_all_rx_resources(adapter); 1430 err_setup_rx: 1431 e1000_free_all_tx_resources(adapter); 1432 err_setup_tx: 1433 e1000_reset(adapter); 1434 1435 return err; 1436 } 1437 1438 /** 1439 * e1000_close - Disables a network interface 1440 * @netdev: network interface device structure 1441 * 1442 * Returns 0, this is not allowed to fail 1443 * 1444 * The close entry point is called when an interface is de-activated 1445 * by the OS. The hardware is still under the drivers control, but 1446 * needs to be disabled. A global MAC reset is issued to stop the 1447 * hardware, and all transmit and receive resources are freed. 1448 **/ 1449 1450 static int e1000_close(struct net_device *netdev) 1451 { 1452 struct e1000_adapter *adapter = netdev_priv(netdev); 1453 struct e1000_hw *hw = &adapter->hw; 1454 1455 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); 1456 e1000_down(adapter); 1457 e1000_power_down_phy(adapter); 1458 e1000_free_irq(adapter); 1459 1460 e1000_free_all_tx_resources(adapter); 1461 e1000_free_all_rx_resources(adapter); 1462 1463 /* kill manageability vlan ID if supported, but not if a vlan with 1464 * the same ID is registered on the host OS (let 8021q kill it) */ 1465 if ((hw->mng_cookie.status & 1466 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && 1467 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) { 1468 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); 1469 } 1470 1471 return 0; 1472 } 1473 1474 /** 1475 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary 1476 * @adapter: address of board private structure 1477 * @start: address of beginning of memory 1478 * @len: length of memory 1479 **/ 1480 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start, 1481 unsigned long len) 1482 { 1483 struct e1000_hw *hw = &adapter->hw; 1484 unsigned long begin = (unsigned long)start; 1485 unsigned long end = begin + len; 1486 1487 /* First rev 82545 and 82546 need to not allow any memory 1488 * write location to cross 64k boundary due to errata 23 */ 1489 if (hw->mac_type == e1000_82545 || 1490 hw->mac_type == e1000_ce4100 || 1491 hw->mac_type == e1000_82546) { 1492 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true; 1493 } 1494 1495 return true; 1496 } 1497 1498 /** 1499 * e1000_setup_tx_resources - allocate Tx resources (Descriptors) 1500 * @adapter: board private structure 1501 * @txdr: tx descriptor ring (for a specific queue) to setup 1502 * 1503 * Return 0 on success, negative on failure 1504 **/ 1505 1506 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, 1507 struct e1000_tx_ring *txdr) 1508 { 1509 struct pci_dev *pdev = adapter->pdev; 1510 int size; 1511 1512 size = sizeof(struct e1000_buffer) * txdr->count; 1513 txdr->buffer_info = vzalloc(size); 1514 if (!txdr->buffer_info) { 1515 e_err(probe, "Unable to allocate memory for the Tx descriptor " 1516 "ring\n"); 1517 return -ENOMEM; 1518 } 1519 1520 /* round up to nearest 4K */ 1521 1522 txdr->size = txdr->count * sizeof(struct e1000_tx_desc); 1523 txdr->size = ALIGN(txdr->size, 4096); 1524 1525 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma, 1526 GFP_KERNEL); 1527 if (!txdr->desc) { 1528 setup_tx_desc_die: 1529 vfree(txdr->buffer_info); 1530 e_err(probe, "Unable to allocate memory for the Tx descriptor " 1531 "ring\n"); 1532 return -ENOMEM; 1533 } 1534 1535 /* Fix for errata 23, can't cross 64kB boundary */ 1536 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { 1537 void *olddesc = txdr->desc; 1538 dma_addr_t olddma = txdr->dma; 1539 e_err(tx_err, "txdr align check failed: %u bytes at %p\n", 1540 txdr->size, txdr->desc); 1541 /* Try again, without freeing the previous */ 1542 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, 1543 &txdr->dma, GFP_KERNEL); 1544 /* Failed allocation, critical failure */ 1545 if (!txdr->desc) { 1546 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1547 olddma); 1548 goto setup_tx_desc_die; 1549 } 1550 1551 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { 1552 /* give up */ 1553 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc, 1554 txdr->dma); 1555 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1556 olddma); 1557 e_err(probe, "Unable to allocate aligned memory " 1558 "for the transmit descriptor ring\n"); 1559 vfree(txdr->buffer_info); 1560 return -ENOMEM; 1561 } else { 1562 /* Free old allocation, new allocation was successful */ 1563 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1564 olddma); 1565 } 1566 } 1567 memset(txdr->desc, 0, txdr->size); 1568 1569 txdr->next_to_use = 0; 1570 txdr->next_to_clean = 0; 1571 1572 return 0; 1573 } 1574 1575 /** 1576 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources 1577 * (Descriptors) for all queues 1578 * @adapter: board private structure 1579 * 1580 * Return 0 on success, negative on failure 1581 **/ 1582 1583 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter) 1584 { 1585 int i, err = 0; 1586 1587 for (i = 0; i < adapter->num_tx_queues; i++) { 1588 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]); 1589 if (err) { 1590 e_err(probe, "Allocation for Tx Queue %u failed\n", i); 1591 for (i-- ; i >= 0; i--) 1592 e1000_free_tx_resources(adapter, 1593 &adapter->tx_ring[i]); 1594 break; 1595 } 1596 } 1597 1598 return err; 1599 } 1600 1601 /** 1602 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset 1603 * @adapter: board private structure 1604 * 1605 * Configure the Tx unit of the MAC after a reset. 1606 **/ 1607 1608 static void e1000_configure_tx(struct e1000_adapter *adapter) 1609 { 1610 u64 tdba; 1611 struct e1000_hw *hw = &adapter->hw; 1612 u32 tdlen, tctl, tipg; 1613 u32 ipgr1, ipgr2; 1614 1615 /* Setup the HW Tx Head and Tail descriptor pointers */ 1616 1617 switch (adapter->num_tx_queues) { 1618 case 1: 1619 default: 1620 tdba = adapter->tx_ring[0].dma; 1621 tdlen = adapter->tx_ring[0].count * 1622 sizeof(struct e1000_tx_desc); 1623 ew32(TDLEN, tdlen); 1624 ew32(TDBAH, (tdba >> 32)); 1625 ew32(TDBAL, (tdba & 0x00000000ffffffffULL)); 1626 ew32(TDT, 0); 1627 ew32(TDH, 0); 1628 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH); 1629 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT); 1630 break; 1631 } 1632 1633 /* Set the default values for the Tx Inter Packet Gap timer */ 1634 if ((hw->media_type == e1000_media_type_fiber || 1635 hw->media_type == e1000_media_type_internal_serdes)) 1636 tipg = DEFAULT_82543_TIPG_IPGT_FIBER; 1637 else 1638 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; 1639 1640 switch (hw->mac_type) { 1641 case e1000_82542_rev2_0: 1642 case e1000_82542_rev2_1: 1643 tipg = DEFAULT_82542_TIPG_IPGT; 1644 ipgr1 = DEFAULT_82542_TIPG_IPGR1; 1645 ipgr2 = DEFAULT_82542_TIPG_IPGR2; 1646 break; 1647 default: 1648 ipgr1 = DEFAULT_82543_TIPG_IPGR1; 1649 ipgr2 = DEFAULT_82543_TIPG_IPGR2; 1650 break; 1651 } 1652 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; 1653 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; 1654 ew32(TIPG, tipg); 1655 1656 /* Set the Tx Interrupt Delay register */ 1657 1658 ew32(TIDV, adapter->tx_int_delay); 1659 if (hw->mac_type >= e1000_82540) 1660 ew32(TADV, adapter->tx_abs_int_delay); 1661 1662 /* Program the Transmit Control Register */ 1663 1664 tctl = er32(TCTL); 1665 tctl &= ~E1000_TCTL_CT; 1666 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | 1667 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); 1668 1669 e1000_config_collision_dist(hw); 1670 1671 /* Setup Transmit Descriptor Settings for eop descriptor */ 1672 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; 1673 1674 /* only set IDE if we are delaying interrupts using the timers */ 1675 if (adapter->tx_int_delay) 1676 adapter->txd_cmd |= E1000_TXD_CMD_IDE; 1677 1678 if (hw->mac_type < e1000_82543) 1679 adapter->txd_cmd |= E1000_TXD_CMD_RPS; 1680 else 1681 adapter->txd_cmd |= E1000_TXD_CMD_RS; 1682 1683 /* Cache if we're 82544 running in PCI-X because we'll 1684 * need this to apply a workaround later in the send path. */ 1685 if (hw->mac_type == e1000_82544 && 1686 hw->bus_type == e1000_bus_type_pcix) 1687 adapter->pcix_82544 = true; 1688 1689 ew32(TCTL, tctl); 1690 1691 } 1692 1693 /** 1694 * e1000_setup_rx_resources - allocate Rx resources (Descriptors) 1695 * @adapter: board private structure 1696 * @rxdr: rx descriptor ring (for a specific queue) to setup 1697 * 1698 * Returns 0 on success, negative on failure 1699 **/ 1700 1701 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, 1702 struct e1000_rx_ring *rxdr) 1703 { 1704 struct pci_dev *pdev = adapter->pdev; 1705 int size, desc_len; 1706 1707 size = sizeof(struct e1000_buffer) * rxdr->count; 1708 rxdr->buffer_info = vzalloc(size); 1709 if (!rxdr->buffer_info) { 1710 e_err(probe, "Unable to allocate memory for the Rx descriptor " 1711 "ring\n"); 1712 return -ENOMEM; 1713 } 1714 1715 desc_len = sizeof(struct e1000_rx_desc); 1716 1717 /* Round up to nearest 4K */ 1718 1719 rxdr->size = rxdr->count * desc_len; 1720 rxdr->size = ALIGN(rxdr->size, 4096); 1721 1722 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma, 1723 GFP_KERNEL); 1724 1725 if (!rxdr->desc) { 1726 e_err(probe, "Unable to allocate memory for the Rx descriptor " 1727 "ring\n"); 1728 setup_rx_desc_die: 1729 vfree(rxdr->buffer_info); 1730 return -ENOMEM; 1731 } 1732 1733 /* Fix for errata 23, can't cross 64kB boundary */ 1734 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { 1735 void *olddesc = rxdr->desc; 1736 dma_addr_t olddma = rxdr->dma; 1737 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n", 1738 rxdr->size, rxdr->desc); 1739 /* Try again, without freeing the previous */ 1740 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, 1741 &rxdr->dma, GFP_KERNEL); 1742 /* Failed allocation, critical failure */ 1743 if (!rxdr->desc) { 1744 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1745 olddma); 1746 e_err(probe, "Unable to allocate memory for the Rx " 1747 "descriptor ring\n"); 1748 goto setup_rx_desc_die; 1749 } 1750 1751 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { 1752 /* give up */ 1753 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc, 1754 rxdr->dma); 1755 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1756 olddma); 1757 e_err(probe, "Unable to allocate aligned memory for " 1758 "the Rx descriptor ring\n"); 1759 goto setup_rx_desc_die; 1760 } else { 1761 /* Free old allocation, new allocation was successful */ 1762 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1763 olddma); 1764 } 1765 } 1766 memset(rxdr->desc, 0, rxdr->size); 1767 1768 rxdr->next_to_clean = 0; 1769 rxdr->next_to_use = 0; 1770 rxdr->rx_skb_top = NULL; 1771 1772 return 0; 1773 } 1774 1775 /** 1776 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources 1777 * (Descriptors) for all queues 1778 * @adapter: board private structure 1779 * 1780 * Return 0 on success, negative on failure 1781 **/ 1782 1783 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter) 1784 { 1785 int i, err = 0; 1786 1787 for (i = 0; i < adapter->num_rx_queues; i++) { 1788 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]); 1789 if (err) { 1790 e_err(probe, "Allocation for Rx Queue %u failed\n", i); 1791 for (i-- ; i >= 0; i--) 1792 e1000_free_rx_resources(adapter, 1793 &adapter->rx_ring[i]); 1794 break; 1795 } 1796 } 1797 1798 return err; 1799 } 1800 1801 /** 1802 * e1000_setup_rctl - configure the receive control registers 1803 * @adapter: Board private structure 1804 **/ 1805 static void e1000_setup_rctl(struct e1000_adapter *adapter) 1806 { 1807 struct e1000_hw *hw = &adapter->hw; 1808 u32 rctl; 1809 1810 rctl = er32(RCTL); 1811 1812 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 1813 1814 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO | 1815 E1000_RCTL_RDMTS_HALF | 1816 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); 1817 1818 if (hw->tbi_compatibility_on == 1) 1819 rctl |= E1000_RCTL_SBP; 1820 else 1821 rctl &= ~E1000_RCTL_SBP; 1822 1823 if (adapter->netdev->mtu <= ETH_DATA_LEN) 1824 rctl &= ~E1000_RCTL_LPE; 1825 else 1826 rctl |= E1000_RCTL_LPE; 1827 1828 /* Setup buffer sizes */ 1829 rctl &= ~E1000_RCTL_SZ_4096; 1830 rctl |= E1000_RCTL_BSEX; 1831 switch (adapter->rx_buffer_len) { 1832 case E1000_RXBUFFER_2048: 1833 default: 1834 rctl |= E1000_RCTL_SZ_2048; 1835 rctl &= ~E1000_RCTL_BSEX; 1836 break; 1837 case E1000_RXBUFFER_4096: 1838 rctl |= E1000_RCTL_SZ_4096; 1839 break; 1840 case E1000_RXBUFFER_8192: 1841 rctl |= E1000_RCTL_SZ_8192; 1842 break; 1843 case E1000_RXBUFFER_16384: 1844 rctl |= E1000_RCTL_SZ_16384; 1845 break; 1846 } 1847 1848 /* This is useful for sniffing bad packets. */ 1849 if (adapter->netdev->features & NETIF_F_RXALL) { 1850 /* UPE and MPE will be handled by normal PROMISC logic 1851 * in e1000e_set_rx_mode */ 1852 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ 1853 E1000_RCTL_BAM | /* RX All Bcast Pkts */ 1854 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 1855 1856 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */ 1857 E1000_RCTL_DPF | /* Allow filtered pause */ 1858 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ 1859 /* Do not mess with E1000_CTRL_VME, it affects transmit as well, 1860 * and that breaks VLANs. 1861 */ 1862 } 1863 1864 ew32(RCTL, rctl); 1865 } 1866 1867 /** 1868 * e1000_configure_rx - Configure 8254x Receive Unit after Reset 1869 * @adapter: board private structure 1870 * 1871 * Configure the Rx unit of the MAC after a reset. 1872 **/ 1873 1874 static void e1000_configure_rx(struct e1000_adapter *adapter) 1875 { 1876 u64 rdba; 1877 struct e1000_hw *hw = &adapter->hw; 1878 u32 rdlen, rctl, rxcsum; 1879 1880 if (adapter->netdev->mtu > ETH_DATA_LEN) { 1881 rdlen = adapter->rx_ring[0].count * 1882 sizeof(struct e1000_rx_desc); 1883 adapter->clean_rx = e1000_clean_jumbo_rx_irq; 1884 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; 1885 } else { 1886 rdlen = adapter->rx_ring[0].count * 1887 sizeof(struct e1000_rx_desc); 1888 adapter->clean_rx = e1000_clean_rx_irq; 1889 adapter->alloc_rx_buf = e1000_alloc_rx_buffers; 1890 } 1891 1892 /* disable receives while setting up the descriptors */ 1893 rctl = er32(RCTL); 1894 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1895 1896 /* set the Receive Delay Timer Register */ 1897 ew32(RDTR, adapter->rx_int_delay); 1898 1899 if (hw->mac_type >= e1000_82540) { 1900 ew32(RADV, adapter->rx_abs_int_delay); 1901 if (adapter->itr_setting != 0) 1902 ew32(ITR, 1000000000 / (adapter->itr * 256)); 1903 } 1904 1905 /* Setup the HW Rx Head and Tail Descriptor Pointers and 1906 * the Base and Length of the Rx Descriptor Ring */ 1907 switch (adapter->num_rx_queues) { 1908 case 1: 1909 default: 1910 rdba = adapter->rx_ring[0].dma; 1911 ew32(RDLEN, rdlen); 1912 ew32(RDBAH, (rdba >> 32)); 1913 ew32(RDBAL, (rdba & 0x00000000ffffffffULL)); 1914 ew32(RDT, 0); 1915 ew32(RDH, 0); 1916 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH); 1917 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT); 1918 break; 1919 } 1920 1921 /* Enable 82543 Receive Checksum Offload for TCP and UDP */ 1922 if (hw->mac_type >= e1000_82543) { 1923 rxcsum = er32(RXCSUM); 1924 if (adapter->rx_csum) 1925 rxcsum |= E1000_RXCSUM_TUOFL; 1926 else 1927 /* don't need to clear IPPCSE as it defaults to 0 */ 1928 rxcsum &= ~E1000_RXCSUM_TUOFL; 1929 ew32(RXCSUM, rxcsum); 1930 } 1931 1932 /* Enable Receives */ 1933 ew32(RCTL, rctl | E1000_RCTL_EN); 1934 } 1935 1936 /** 1937 * e1000_free_tx_resources - Free Tx Resources per Queue 1938 * @adapter: board private structure 1939 * @tx_ring: Tx descriptor ring for a specific queue 1940 * 1941 * Free all transmit software resources 1942 **/ 1943 1944 static void e1000_free_tx_resources(struct e1000_adapter *adapter, 1945 struct e1000_tx_ring *tx_ring) 1946 { 1947 struct pci_dev *pdev = adapter->pdev; 1948 1949 e1000_clean_tx_ring(adapter, tx_ring); 1950 1951 vfree(tx_ring->buffer_info); 1952 tx_ring->buffer_info = NULL; 1953 1954 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1955 tx_ring->dma); 1956 1957 tx_ring->desc = NULL; 1958 } 1959 1960 /** 1961 * e1000_free_all_tx_resources - Free Tx Resources for All Queues 1962 * @adapter: board private structure 1963 * 1964 * Free all transmit software resources 1965 **/ 1966 1967 void e1000_free_all_tx_resources(struct e1000_adapter *adapter) 1968 { 1969 int i; 1970 1971 for (i = 0; i < adapter->num_tx_queues; i++) 1972 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]); 1973 } 1974 1975 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter, 1976 struct e1000_buffer *buffer_info) 1977 { 1978 if (buffer_info->dma) { 1979 if (buffer_info->mapped_as_page) 1980 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma, 1981 buffer_info->length, DMA_TO_DEVICE); 1982 else 1983 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, 1984 buffer_info->length, 1985 DMA_TO_DEVICE); 1986 buffer_info->dma = 0; 1987 } 1988 if (buffer_info->skb) { 1989 dev_kfree_skb_any(buffer_info->skb); 1990 buffer_info->skb = NULL; 1991 } 1992 buffer_info->time_stamp = 0; 1993 /* buffer_info must be completely set up in the transmit path */ 1994 } 1995 1996 /** 1997 * e1000_clean_tx_ring - Free Tx Buffers 1998 * @adapter: board private structure 1999 * @tx_ring: ring to be cleaned 2000 **/ 2001 2002 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, 2003 struct e1000_tx_ring *tx_ring) 2004 { 2005 struct e1000_hw *hw = &adapter->hw; 2006 struct e1000_buffer *buffer_info; 2007 unsigned long size; 2008 unsigned int i; 2009 2010 /* Free all the Tx ring sk_buffs */ 2011 2012 for (i = 0; i < tx_ring->count; i++) { 2013 buffer_info = &tx_ring->buffer_info[i]; 2014 e1000_unmap_and_free_tx_resource(adapter, buffer_info); 2015 } 2016 2017 size = sizeof(struct e1000_buffer) * tx_ring->count; 2018 memset(tx_ring->buffer_info, 0, size); 2019 2020 /* Zero out the descriptor ring */ 2021 2022 memset(tx_ring->desc, 0, tx_ring->size); 2023 2024 tx_ring->next_to_use = 0; 2025 tx_ring->next_to_clean = 0; 2026 tx_ring->last_tx_tso = false; 2027 2028 writel(0, hw->hw_addr + tx_ring->tdh); 2029 writel(0, hw->hw_addr + tx_ring->tdt); 2030 } 2031 2032 /** 2033 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues 2034 * @adapter: board private structure 2035 **/ 2036 2037 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter) 2038 { 2039 int i; 2040 2041 for (i = 0; i < adapter->num_tx_queues; i++) 2042 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]); 2043 } 2044 2045 /** 2046 * e1000_free_rx_resources - Free Rx Resources 2047 * @adapter: board private structure 2048 * @rx_ring: ring to clean the resources from 2049 * 2050 * Free all receive software resources 2051 **/ 2052 2053 static void e1000_free_rx_resources(struct e1000_adapter *adapter, 2054 struct e1000_rx_ring *rx_ring) 2055 { 2056 struct pci_dev *pdev = adapter->pdev; 2057 2058 e1000_clean_rx_ring(adapter, rx_ring); 2059 2060 vfree(rx_ring->buffer_info); 2061 rx_ring->buffer_info = NULL; 2062 2063 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 2064 rx_ring->dma); 2065 2066 rx_ring->desc = NULL; 2067 } 2068 2069 /** 2070 * e1000_free_all_rx_resources - Free Rx Resources for All Queues 2071 * @adapter: board private structure 2072 * 2073 * Free all receive software resources 2074 **/ 2075 2076 void e1000_free_all_rx_resources(struct e1000_adapter *adapter) 2077 { 2078 int i; 2079 2080 for (i = 0; i < adapter->num_rx_queues; i++) 2081 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]); 2082 } 2083 2084 /** 2085 * e1000_clean_rx_ring - Free Rx Buffers per Queue 2086 * @adapter: board private structure 2087 * @rx_ring: ring to free buffers from 2088 **/ 2089 2090 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, 2091 struct e1000_rx_ring *rx_ring) 2092 { 2093 struct e1000_hw *hw = &adapter->hw; 2094 struct e1000_buffer *buffer_info; 2095 struct pci_dev *pdev = adapter->pdev; 2096 unsigned long size; 2097 unsigned int i; 2098 2099 /* Free all the Rx ring sk_buffs */ 2100 for (i = 0; i < rx_ring->count; i++) { 2101 buffer_info = &rx_ring->buffer_info[i]; 2102 if (buffer_info->dma && 2103 adapter->clean_rx == e1000_clean_rx_irq) { 2104 dma_unmap_single(&pdev->dev, buffer_info->dma, 2105 buffer_info->length, 2106 DMA_FROM_DEVICE); 2107 } else if (buffer_info->dma && 2108 adapter->clean_rx == e1000_clean_jumbo_rx_irq) { 2109 dma_unmap_page(&pdev->dev, buffer_info->dma, 2110 buffer_info->length, 2111 DMA_FROM_DEVICE); 2112 } 2113 2114 buffer_info->dma = 0; 2115 if (buffer_info->page) { 2116 put_page(buffer_info->page); 2117 buffer_info->page = NULL; 2118 } 2119 if (buffer_info->skb) { 2120 dev_kfree_skb(buffer_info->skb); 2121 buffer_info->skb = NULL; 2122 } 2123 } 2124 2125 /* there also may be some cached data from a chained receive */ 2126 if (rx_ring->rx_skb_top) { 2127 dev_kfree_skb(rx_ring->rx_skb_top); 2128 rx_ring->rx_skb_top = NULL; 2129 } 2130 2131 size = sizeof(struct e1000_buffer) * rx_ring->count; 2132 memset(rx_ring->buffer_info, 0, size); 2133 2134 /* Zero out the descriptor ring */ 2135 memset(rx_ring->desc, 0, rx_ring->size); 2136 2137 rx_ring->next_to_clean = 0; 2138 rx_ring->next_to_use = 0; 2139 2140 writel(0, hw->hw_addr + rx_ring->rdh); 2141 writel(0, hw->hw_addr + rx_ring->rdt); 2142 } 2143 2144 /** 2145 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues 2146 * @adapter: board private structure 2147 **/ 2148 2149 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter) 2150 { 2151 int i; 2152 2153 for (i = 0; i < adapter->num_rx_queues; i++) 2154 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]); 2155 } 2156 2157 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset 2158 * and memory write and invalidate disabled for certain operations 2159 */ 2160 static void e1000_enter_82542_rst(struct e1000_adapter *adapter) 2161 { 2162 struct e1000_hw *hw = &adapter->hw; 2163 struct net_device *netdev = adapter->netdev; 2164 u32 rctl; 2165 2166 e1000_pci_clear_mwi(hw); 2167 2168 rctl = er32(RCTL); 2169 rctl |= E1000_RCTL_RST; 2170 ew32(RCTL, rctl); 2171 E1000_WRITE_FLUSH(); 2172 mdelay(5); 2173 2174 if (netif_running(netdev)) 2175 e1000_clean_all_rx_rings(adapter); 2176 } 2177 2178 static void e1000_leave_82542_rst(struct e1000_adapter *adapter) 2179 { 2180 struct e1000_hw *hw = &adapter->hw; 2181 struct net_device *netdev = adapter->netdev; 2182 u32 rctl; 2183 2184 rctl = er32(RCTL); 2185 rctl &= ~E1000_RCTL_RST; 2186 ew32(RCTL, rctl); 2187 E1000_WRITE_FLUSH(); 2188 mdelay(5); 2189 2190 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) 2191 e1000_pci_set_mwi(hw); 2192 2193 if (netif_running(netdev)) { 2194 /* No need to loop, because 82542 supports only 1 queue */ 2195 struct e1000_rx_ring *ring = &adapter->rx_ring[0]; 2196 e1000_configure_rx(adapter); 2197 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring)); 2198 } 2199 } 2200 2201 /** 2202 * e1000_set_mac - Change the Ethernet Address of the NIC 2203 * @netdev: network interface device structure 2204 * @p: pointer to an address structure 2205 * 2206 * Returns 0 on success, negative on failure 2207 **/ 2208 2209 static int e1000_set_mac(struct net_device *netdev, void *p) 2210 { 2211 struct e1000_adapter *adapter = netdev_priv(netdev); 2212 struct e1000_hw *hw = &adapter->hw; 2213 struct sockaddr *addr = p; 2214 2215 if (!is_valid_ether_addr(addr->sa_data)) 2216 return -EADDRNOTAVAIL; 2217 2218 /* 82542 2.0 needs to be in reset to write receive address registers */ 2219 2220 if (hw->mac_type == e1000_82542_rev2_0) 2221 e1000_enter_82542_rst(adapter); 2222 2223 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 2224 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len); 2225 2226 e1000_rar_set(hw, hw->mac_addr, 0); 2227 2228 if (hw->mac_type == e1000_82542_rev2_0) 2229 e1000_leave_82542_rst(adapter); 2230 2231 return 0; 2232 } 2233 2234 /** 2235 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 2236 * @netdev: network interface device structure 2237 * 2238 * The set_rx_mode entry point is called whenever the unicast or multicast 2239 * address lists or the network interface flags are updated. This routine is 2240 * responsible for configuring the hardware for proper unicast, multicast, 2241 * promiscuous mode, and all-multi behavior. 2242 **/ 2243 2244 static void e1000_set_rx_mode(struct net_device *netdev) 2245 { 2246 struct e1000_adapter *adapter = netdev_priv(netdev); 2247 struct e1000_hw *hw = &adapter->hw; 2248 struct netdev_hw_addr *ha; 2249 bool use_uc = false; 2250 u32 rctl; 2251 u32 hash_value; 2252 int i, rar_entries = E1000_RAR_ENTRIES; 2253 int mta_reg_count = E1000_NUM_MTA_REGISTERS; 2254 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC); 2255 2256 if (!mcarray) { 2257 e_err(probe, "memory allocation failed\n"); 2258 return; 2259 } 2260 2261 /* Check for Promiscuous and All Multicast modes */ 2262 2263 rctl = er32(RCTL); 2264 2265 if (netdev->flags & IFF_PROMISC) { 2266 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 2267 rctl &= ~E1000_RCTL_VFE; 2268 } else { 2269 if (netdev->flags & IFF_ALLMULTI) 2270 rctl |= E1000_RCTL_MPE; 2271 else 2272 rctl &= ~E1000_RCTL_MPE; 2273 /* Enable VLAN filter if there is a VLAN */ 2274 if (e1000_vlan_used(adapter)) 2275 rctl |= E1000_RCTL_VFE; 2276 } 2277 2278 if (netdev_uc_count(netdev) > rar_entries - 1) { 2279 rctl |= E1000_RCTL_UPE; 2280 } else if (!(netdev->flags & IFF_PROMISC)) { 2281 rctl &= ~E1000_RCTL_UPE; 2282 use_uc = true; 2283 } 2284 2285 ew32(RCTL, rctl); 2286 2287 /* 82542 2.0 needs to be in reset to write receive address registers */ 2288 2289 if (hw->mac_type == e1000_82542_rev2_0) 2290 e1000_enter_82542_rst(adapter); 2291 2292 /* load the first 14 addresses into the exact filters 1-14. Unicast 2293 * addresses take precedence to avoid disabling unicast filtering 2294 * when possible. 2295 * 2296 * RAR 0 is used for the station MAC address 2297 * if there are not 14 addresses, go ahead and clear the filters 2298 */ 2299 i = 1; 2300 if (use_uc) 2301 netdev_for_each_uc_addr(ha, netdev) { 2302 if (i == rar_entries) 2303 break; 2304 e1000_rar_set(hw, ha->addr, i++); 2305 } 2306 2307 netdev_for_each_mc_addr(ha, netdev) { 2308 if (i == rar_entries) { 2309 /* load any remaining addresses into the hash table */ 2310 u32 hash_reg, hash_bit, mta; 2311 hash_value = e1000_hash_mc_addr(hw, ha->addr); 2312 hash_reg = (hash_value >> 5) & 0x7F; 2313 hash_bit = hash_value & 0x1F; 2314 mta = (1 << hash_bit); 2315 mcarray[hash_reg] |= mta; 2316 } else { 2317 e1000_rar_set(hw, ha->addr, i++); 2318 } 2319 } 2320 2321 for (; i < rar_entries; i++) { 2322 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0); 2323 E1000_WRITE_FLUSH(); 2324 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0); 2325 E1000_WRITE_FLUSH(); 2326 } 2327 2328 /* write the hash table completely, write from bottom to avoid 2329 * both stupid write combining chipsets, and flushing each write */ 2330 for (i = mta_reg_count - 1; i >= 0 ; i--) { 2331 /* 2332 * If we are on an 82544 has an errata where writing odd 2333 * offsets overwrites the previous even offset, but writing 2334 * backwards over the range solves the issue by always 2335 * writing the odd offset first 2336 */ 2337 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]); 2338 } 2339 E1000_WRITE_FLUSH(); 2340 2341 if (hw->mac_type == e1000_82542_rev2_0) 2342 e1000_leave_82542_rst(adapter); 2343 2344 kfree(mcarray); 2345 } 2346 2347 /** 2348 * e1000_update_phy_info_task - get phy info 2349 * @work: work struct contained inside adapter struct 2350 * 2351 * Need to wait a few seconds after link up to get diagnostic information from 2352 * the phy 2353 */ 2354 static void e1000_update_phy_info_task(struct work_struct *work) 2355 { 2356 struct e1000_adapter *adapter = container_of(work, 2357 struct e1000_adapter, 2358 phy_info_task.work); 2359 if (test_bit(__E1000_DOWN, &adapter->flags)) 2360 return; 2361 mutex_lock(&adapter->mutex); 2362 e1000_phy_get_info(&adapter->hw, &adapter->phy_info); 2363 mutex_unlock(&adapter->mutex); 2364 } 2365 2366 /** 2367 * e1000_82547_tx_fifo_stall_task - task to complete work 2368 * @work: work struct contained inside adapter struct 2369 **/ 2370 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work) 2371 { 2372 struct e1000_adapter *adapter = container_of(work, 2373 struct e1000_adapter, 2374 fifo_stall_task.work); 2375 struct e1000_hw *hw = &adapter->hw; 2376 struct net_device *netdev = adapter->netdev; 2377 u32 tctl; 2378 2379 if (test_bit(__E1000_DOWN, &adapter->flags)) 2380 return; 2381 mutex_lock(&adapter->mutex); 2382 if (atomic_read(&adapter->tx_fifo_stall)) { 2383 if ((er32(TDT) == er32(TDH)) && 2384 (er32(TDFT) == er32(TDFH)) && 2385 (er32(TDFTS) == er32(TDFHS))) { 2386 tctl = er32(TCTL); 2387 ew32(TCTL, tctl & ~E1000_TCTL_EN); 2388 ew32(TDFT, adapter->tx_head_addr); 2389 ew32(TDFH, adapter->tx_head_addr); 2390 ew32(TDFTS, adapter->tx_head_addr); 2391 ew32(TDFHS, adapter->tx_head_addr); 2392 ew32(TCTL, tctl); 2393 E1000_WRITE_FLUSH(); 2394 2395 adapter->tx_fifo_head = 0; 2396 atomic_set(&adapter->tx_fifo_stall, 0); 2397 netif_wake_queue(netdev); 2398 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) { 2399 schedule_delayed_work(&adapter->fifo_stall_task, 1); 2400 } 2401 } 2402 mutex_unlock(&adapter->mutex); 2403 } 2404 2405 bool e1000_has_link(struct e1000_adapter *adapter) 2406 { 2407 struct e1000_hw *hw = &adapter->hw; 2408 bool link_active = false; 2409 2410 /* get_link_status is set on LSC (link status) interrupt or rx 2411 * sequence error interrupt (except on intel ce4100). 2412 * get_link_status will stay false until the 2413 * e1000_check_for_link establishes link for copper adapters 2414 * ONLY 2415 */ 2416 switch (hw->media_type) { 2417 case e1000_media_type_copper: 2418 if (hw->mac_type == e1000_ce4100) 2419 hw->get_link_status = 1; 2420 if (hw->get_link_status) { 2421 e1000_check_for_link(hw); 2422 link_active = !hw->get_link_status; 2423 } else { 2424 link_active = true; 2425 } 2426 break; 2427 case e1000_media_type_fiber: 2428 e1000_check_for_link(hw); 2429 link_active = !!(er32(STATUS) & E1000_STATUS_LU); 2430 break; 2431 case e1000_media_type_internal_serdes: 2432 e1000_check_for_link(hw); 2433 link_active = hw->serdes_has_link; 2434 break; 2435 default: 2436 break; 2437 } 2438 2439 return link_active; 2440 } 2441 2442 /** 2443 * e1000_watchdog - work function 2444 * @work: work struct contained inside adapter struct 2445 **/ 2446 static void e1000_watchdog(struct work_struct *work) 2447 { 2448 struct e1000_adapter *adapter = container_of(work, 2449 struct e1000_adapter, 2450 watchdog_task.work); 2451 struct e1000_hw *hw = &adapter->hw; 2452 struct net_device *netdev = adapter->netdev; 2453 struct e1000_tx_ring *txdr = adapter->tx_ring; 2454 u32 link, tctl; 2455 2456 if (test_bit(__E1000_DOWN, &adapter->flags)) 2457 return; 2458 2459 mutex_lock(&adapter->mutex); 2460 link = e1000_has_link(adapter); 2461 if ((netif_carrier_ok(netdev)) && link) 2462 goto link_up; 2463 2464 if (link) { 2465 if (!netif_carrier_ok(netdev)) { 2466 u32 ctrl; 2467 bool txb2b = true; 2468 /* update snapshot of PHY registers on LSC */ 2469 e1000_get_speed_and_duplex(hw, 2470 &adapter->link_speed, 2471 &adapter->link_duplex); 2472 2473 ctrl = er32(CTRL); 2474 pr_info("%s NIC Link is Up %d Mbps %s, " 2475 "Flow Control: %s\n", 2476 netdev->name, 2477 adapter->link_speed, 2478 adapter->link_duplex == FULL_DUPLEX ? 2479 "Full Duplex" : "Half Duplex", 2480 ((ctrl & E1000_CTRL_TFCE) && (ctrl & 2481 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl & 2482 E1000_CTRL_RFCE) ? "RX" : ((ctrl & 2483 E1000_CTRL_TFCE) ? "TX" : "None"))); 2484 2485 /* adjust timeout factor according to speed/duplex */ 2486 adapter->tx_timeout_factor = 1; 2487 switch (adapter->link_speed) { 2488 case SPEED_10: 2489 txb2b = false; 2490 adapter->tx_timeout_factor = 16; 2491 break; 2492 case SPEED_100: 2493 txb2b = false; 2494 /* maybe add some timeout factor ? */ 2495 break; 2496 } 2497 2498 /* enable transmits in the hardware */ 2499 tctl = er32(TCTL); 2500 tctl |= E1000_TCTL_EN; 2501 ew32(TCTL, tctl); 2502 2503 netif_carrier_on(netdev); 2504 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2505 schedule_delayed_work(&adapter->phy_info_task, 2506 2 * HZ); 2507 adapter->smartspeed = 0; 2508 } 2509 } else { 2510 if (netif_carrier_ok(netdev)) { 2511 adapter->link_speed = 0; 2512 adapter->link_duplex = 0; 2513 pr_info("%s NIC Link is Down\n", 2514 netdev->name); 2515 netif_carrier_off(netdev); 2516 2517 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2518 schedule_delayed_work(&adapter->phy_info_task, 2519 2 * HZ); 2520 } 2521 2522 e1000_smartspeed(adapter); 2523 } 2524 2525 link_up: 2526 e1000_update_stats(adapter); 2527 2528 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; 2529 adapter->tpt_old = adapter->stats.tpt; 2530 hw->collision_delta = adapter->stats.colc - adapter->colc_old; 2531 adapter->colc_old = adapter->stats.colc; 2532 2533 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; 2534 adapter->gorcl_old = adapter->stats.gorcl; 2535 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; 2536 adapter->gotcl_old = adapter->stats.gotcl; 2537 2538 e1000_update_adaptive(hw); 2539 2540 if (!netif_carrier_ok(netdev)) { 2541 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) { 2542 /* We've lost link, so the controller stops DMA, 2543 * but we've got queued Tx work that's never going 2544 * to get done, so reset controller to flush Tx. 2545 * (Do the reset outside of interrupt context). */ 2546 adapter->tx_timeout_count++; 2547 schedule_work(&adapter->reset_task); 2548 /* exit immediately since reset is imminent */ 2549 goto unlock; 2550 } 2551 } 2552 2553 /* Simple mode for Interrupt Throttle Rate (ITR) */ 2554 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) { 2555 /* 2556 * Symmetric Tx/Rx gets a reduced ITR=2000; 2557 * Total asymmetrical Tx or Rx gets ITR=8000; 2558 * everyone else is between 2000-8000. 2559 */ 2560 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000; 2561 u32 dif = (adapter->gotcl > adapter->gorcl ? 2562 adapter->gotcl - adapter->gorcl : 2563 adapter->gorcl - adapter->gotcl) / 10000; 2564 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; 2565 2566 ew32(ITR, 1000000000 / (itr * 256)); 2567 } 2568 2569 /* Cause software interrupt to ensure rx ring is cleaned */ 2570 ew32(ICS, E1000_ICS_RXDMT0); 2571 2572 /* Force detection of hung controller every watchdog period */ 2573 adapter->detect_tx_hung = true; 2574 2575 /* Reschedule the task */ 2576 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2577 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ); 2578 2579 unlock: 2580 mutex_unlock(&adapter->mutex); 2581 } 2582 2583 enum latency_range { 2584 lowest_latency = 0, 2585 low_latency = 1, 2586 bulk_latency = 2, 2587 latency_invalid = 255 2588 }; 2589 2590 /** 2591 * e1000_update_itr - update the dynamic ITR value based on statistics 2592 * @adapter: pointer to adapter 2593 * @itr_setting: current adapter->itr 2594 * @packets: the number of packets during this measurement interval 2595 * @bytes: the number of bytes during this measurement interval 2596 * 2597 * Stores a new ITR value based on packets and byte 2598 * counts during the last interrupt. The advantage of per interrupt 2599 * computation is faster updates and more accurate ITR for the current 2600 * traffic pattern. Constants in this function were computed 2601 * based on theoretical maximum wire speed and thresholds were set based 2602 * on testing data as well as attempting to minimize response time 2603 * while increasing bulk throughput. 2604 * this functionality is controlled by the InterruptThrottleRate module 2605 * parameter (see e1000_param.c) 2606 **/ 2607 static unsigned int e1000_update_itr(struct e1000_adapter *adapter, 2608 u16 itr_setting, int packets, int bytes) 2609 { 2610 unsigned int retval = itr_setting; 2611 struct e1000_hw *hw = &adapter->hw; 2612 2613 if (unlikely(hw->mac_type < e1000_82540)) 2614 goto update_itr_done; 2615 2616 if (packets == 0) 2617 goto update_itr_done; 2618 2619 switch (itr_setting) { 2620 case lowest_latency: 2621 /* jumbo frames get bulk treatment*/ 2622 if (bytes/packets > 8000) 2623 retval = bulk_latency; 2624 else if ((packets < 5) && (bytes > 512)) 2625 retval = low_latency; 2626 break; 2627 case low_latency: /* 50 usec aka 20000 ints/s */ 2628 if (bytes > 10000) { 2629 /* jumbo frames need bulk latency setting */ 2630 if (bytes/packets > 8000) 2631 retval = bulk_latency; 2632 else if ((packets < 10) || ((bytes/packets) > 1200)) 2633 retval = bulk_latency; 2634 else if ((packets > 35)) 2635 retval = lowest_latency; 2636 } else if (bytes/packets > 2000) 2637 retval = bulk_latency; 2638 else if (packets <= 2 && bytes < 512) 2639 retval = lowest_latency; 2640 break; 2641 case bulk_latency: /* 250 usec aka 4000 ints/s */ 2642 if (bytes > 25000) { 2643 if (packets > 35) 2644 retval = low_latency; 2645 } else if (bytes < 6000) { 2646 retval = low_latency; 2647 } 2648 break; 2649 } 2650 2651 update_itr_done: 2652 return retval; 2653 } 2654 2655 static void e1000_set_itr(struct e1000_adapter *adapter) 2656 { 2657 struct e1000_hw *hw = &adapter->hw; 2658 u16 current_itr; 2659 u32 new_itr = adapter->itr; 2660 2661 if (unlikely(hw->mac_type < e1000_82540)) 2662 return; 2663 2664 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 2665 if (unlikely(adapter->link_speed != SPEED_1000)) { 2666 current_itr = 0; 2667 new_itr = 4000; 2668 goto set_itr_now; 2669 } 2670 2671 adapter->tx_itr = e1000_update_itr(adapter, 2672 adapter->tx_itr, 2673 adapter->total_tx_packets, 2674 adapter->total_tx_bytes); 2675 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2676 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) 2677 adapter->tx_itr = low_latency; 2678 2679 adapter->rx_itr = e1000_update_itr(adapter, 2680 adapter->rx_itr, 2681 adapter->total_rx_packets, 2682 adapter->total_rx_bytes); 2683 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2684 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) 2685 adapter->rx_itr = low_latency; 2686 2687 current_itr = max(adapter->rx_itr, adapter->tx_itr); 2688 2689 switch (current_itr) { 2690 /* counts and packets in update_itr are dependent on these numbers */ 2691 case lowest_latency: 2692 new_itr = 70000; 2693 break; 2694 case low_latency: 2695 new_itr = 20000; /* aka hwitr = ~200 */ 2696 break; 2697 case bulk_latency: 2698 new_itr = 4000; 2699 break; 2700 default: 2701 break; 2702 } 2703 2704 set_itr_now: 2705 if (new_itr != adapter->itr) { 2706 /* this attempts to bias the interrupt rate towards Bulk 2707 * by adding intermediate steps when interrupt rate is 2708 * increasing */ 2709 new_itr = new_itr > adapter->itr ? 2710 min(adapter->itr + (new_itr >> 2), new_itr) : 2711 new_itr; 2712 adapter->itr = new_itr; 2713 ew32(ITR, 1000000000 / (new_itr * 256)); 2714 } 2715 } 2716 2717 #define E1000_TX_FLAGS_CSUM 0x00000001 2718 #define E1000_TX_FLAGS_VLAN 0x00000002 2719 #define E1000_TX_FLAGS_TSO 0x00000004 2720 #define E1000_TX_FLAGS_IPV4 0x00000008 2721 #define E1000_TX_FLAGS_NO_FCS 0x00000010 2722 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 2723 #define E1000_TX_FLAGS_VLAN_SHIFT 16 2724 2725 static int e1000_tso(struct e1000_adapter *adapter, 2726 struct e1000_tx_ring *tx_ring, struct sk_buff *skb) 2727 { 2728 struct e1000_context_desc *context_desc; 2729 struct e1000_buffer *buffer_info; 2730 unsigned int i; 2731 u32 cmd_length = 0; 2732 u16 ipcse = 0, tucse, mss; 2733 u8 ipcss, ipcso, tucss, tucso, hdr_len; 2734 int err; 2735 2736 if (skb_is_gso(skb)) { 2737 if (skb_header_cloned(skb)) { 2738 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2739 if (err) 2740 return err; 2741 } 2742 2743 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2744 mss = skb_shinfo(skb)->gso_size; 2745 if (skb->protocol == htons(ETH_P_IP)) { 2746 struct iphdr *iph = ip_hdr(skb); 2747 iph->tot_len = 0; 2748 iph->check = 0; 2749 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, 2750 iph->daddr, 0, 2751 IPPROTO_TCP, 2752 0); 2753 cmd_length = E1000_TXD_CMD_IP; 2754 ipcse = skb_transport_offset(skb) - 1; 2755 } else if (skb->protocol == htons(ETH_P_IPV6)) { 2756 ipv6_hdr(skb)->payload_len = 0; 2757 tcp_hdr(skb)->check = 2758 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 2759 &ipv6_hdr(skb)->daddr, 2760 0, IPPROTO_TCP, 0); 2761 ipcse = 0; 2762 } 2763 ipcss = skb_network_offset(skb); 2764 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; 2765 tucss = skb_transport_offset(skb); 2766 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; 2767 tucse = 0; 2768 2769 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | 2770 E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); 2771 2772 i = tx_ring->next_to_use; 2773 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 2774 buffer_info = &tx_ring->buffer_info[i]; 2775 2776 context_desc->lower_setup.ip_fields.ipcss = ipcss; 2777 context_desc->lower_setup.ip_fields.ipcso = ipcso; 2778 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); 2779 context_desc->upper_setup.tcp_fields.tucss = tucss; 2780 context_desc->upper_setup.tcp_fields.tucso = tucso; 2781 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); 2782 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); 2783 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; 2784 context_desc->cmd_and_length = cpu_to_le32(cmd_length); 2785 2786 buffer_info->time_stamp = jiffies; 2787 buffer_info->next_to_watch = i; 2788 2789 if (++i == tx_ring->count) i = 0; 2790 tx_ring->next_to_use = i; 2791 2792 return true; 2793 } 2794 return false; 2795 } 2796 2797 static bool e1000_tx_csum(struct e1000_adapter *adapter, 2798 struct e1000_tx_ring *tx_ring, struct sk_buff *skb) 2799 { 2800 struct e1000_context_desc *context_desc; 2801 struct e1000_buffer *buffer_info; 2802 unsigned int i; 2803 u8 css; 2804 u32 cmd_len = E1000_TXD_CMD_DEXT; 2805 2806 if (skb->ip_summed != CHECKSUM_PARTIAL) 2807 return false; 2808 2809 switch (skb->protocol) { 2810 case cpu_to_be16(ETH_P_IP): 2811 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 2812 cmd_len |= E1000_TXD_CMD_TCP; 2813 break; 2814 case cpu_to_be16(ETH_P_IPV6): 2815 /* XXX not handling all IPV6 headers */ 2816 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 2817 cmd_len |= E1000_TXD_CMD_TCP; 2818 break; 2819 default: 2820 if (unlikely(net_ratelimit())) 2821 e_warn(drv, "checksum_partial proto=%x!\n", 2822 skb->protocol); 2823 break; 2824 } 2825 2826 css = skb_checksum_start_offset(skb); 2827 2828 i = tx_ring->next_to_use; 2829 buffer_info = &tx_ring->buffer_info[i]; 2830 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 2831 2832 context_desc->lower_setup.ip_config = 0; 2833 context_desc->upper_setup.tcp_fields.tucss = css; 2834 context_desc->upper_setup.tcp_fields.tucso = 2835 css + skb->csum_offset; 2836 context_desc->upper_setup.tcp_fields.tucse = 0; 2837 context_desc->tcp_seg_setup.data = 0; 2838 context_desc->cmd_and_length = cpu_to_le32(cmd_len); 2839 2840 buffer_info->time_stamp = jiffies; 2841 buffer_info->next_to_watch = i; 2842 2843 if (unlikely(++i == tx_ring->count)) i = 0; 2844 tx_ring->next_to_use = i; 2845 2846 return true; 2847 } 2848 2849 #define E1000_MAX_TXD_PWR 12 2850 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR) 2851 2852 static int e1000_tx_map(struct e1000_adapter *adapter, 2853 struct e1000_tx_ring *tx_ring, 2854 struct sk_buff *skb, unsigned int first, 2855 unsigned int max_per_txd, unsigned int nr_frags, 2856 unsigned int mss) 2857 { 2858 struct e1000_hw *hw = &adapter->hw; 2859 struct pci_dev *pdev = adapter->pdev; 2860 struct e1000_buffer *buffer_info; 2861 unsigned int len = skb_headlen(skb); 2862 unsigned int offset = 0, size, count = 0, i; 2863 unsigned int f, bytecount, segs; 2864 2865 i = tx_ring->next_to_use; 2866 2867 while (len) { 2868 buffer_info = &tx_ring->buffer_info[i]; 2869 size = min(len, max_per_txd); 2870 /* Workaround for Controller erratum -- 2871 * descriptor for non-tso packet in a linear SKB that follows a 2872 * tso gets written back prematurely before the data is fully 2873 * DMA'd to the controller */ 2874 if (!skb->data_len && tx_ring->last_tx_tso && 2875 !skb_is_gso(skb)) { 2876 tx_ring->last_tx_tso = false; 2877 size -= 4; 2878 } 2879 2880 /* Workaround for premature desc write-backs 2881 * in TSO mode. Append 4-byte sentinel desc */ 2882 if (unlikely(mss && !nr_frags && size == len && size > 8)) 2883 size -= 4; 2884 /* work-around for errata 10 and it applies 2885 * to all controllers in PCI-X mode 2886 * The fix is to make sure that the first descriptor of a 2887 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes 2888 */ 2889 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && 2890 (size > 2015) && count == 0)) 2891 size = 2015; 2892 2893 /* Workaround for potential 82544 hang in PCI-X. Avoid 2894 * terminating buffers within evenly-aligned dwords. */ 2895 if (unlikely(adapter->pcix_82544 && 2896 !((unsigned long)(skb->data + offset + size - 1) & 4) && 2897 size > 4)) 2898 size -= 4; 2899 2900 buffer_info->length = size; 2901 /* set time_stamp *before* dma to help avoid a possible race */ 2902 buffer_info->time_stamp = jiffies; 2903 buffer_info->mapped_as_page = false; 2904 buffer_info->dma = dma_map_single(&pdev->dev, 2905 skb->data + offset, 2906 size, DMA_TO_DEVICE); 2907 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2908 goto dma_error; 2909 buffer_info->next_to_watch = i; 2910 2911 len -= size; 2912 offset += size; 2913 count++; 2914 if (len) { 2915 i++; 2916 if (unlikely(i == tx_ring->count)) 2917 i = 0; 2918 } 2919 } 2920 2921 for (f = 0; f < nr_frags; f++) { 2922 const struct skb_frag_struct *frag; 2923 2924 frag = &skb_shinfo(skb)->frags[f]; 2925 len = skb_frag_size(frag); 2926 offset = 0; 2927 2928 while (len) { 2929 unsigned long bufend; 2930 i++; 2931 if (unlikely(i == tx_ring->count)) 2932 i = 0; 2933 2934 buffer_info = &tx_ring->buffer_info[i]; 2935 size = min(len, max_per_txd); 2936 /* Workaround for premature desc write-backs 2937 * in TSO mode. Append 4-byte sentinel desc */ 2938 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8)) 2939 size -= 4; 2940 /* Workaround for potential 82544 hang in PCI-X. 2941 * Avoid terminating buffers within evenly-aligned 2942 * dwords. */ 2943 bufend = (unsigned long) 2944 page_to_phys(skb_frag_page(frag)); 2945 bufend += offset + size - 1; 2946 if (unlikely(adapter->pcix_82544 && 2947 !(bufend & 4) && 2948 size > 4)) 2949 size -= 4; 2950 2951 buffer_info->length = size; 2952 buffer_info->time_stamp = jiffies; 2953 buffer_info->mapped_as_page = true; 2954 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 2955 offset, size, DMA_TO_DEVICE); 2956 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2957 goto dma_error; 2958 buffer_info->next_to_watch = i; 2959 2960 len -= size; 2961 offset += size; 2962 count++; 2963 } 2964 } 2965 2966 segs = skb_shinfo(skb)->gso_segs ?: 1; 2967 /* multiply data chunks by size of headers */ 2968 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len; 2969 2970 tx_ring->buffer_info[i].skb = skb; 2971 tx_ring->buffer_info[i].segs = segs; 2972 tx_ring->buffer_info[i].bytecount = bytecount; 2973 tx_ring->buffer_info[first].next_to_watch = i; 2974 2975 return count; 2976 2977 dma_error: 2978 dev_err(&pdev->dev, "TX DMA map failed\n"); 2979 buffer_info->dma = 0; 2980 if (count) 2981 count--; 2982 2983 while (count--) { 2984 if (i==0) 2985 i += tx_ring->count; 2986 i--; 2987 buffer_info = &tx_ring->buffer_info[i]; 2988 e1000_unmap_and_free_tx_resource(adapter, buffer_info); 2989 } 2990 2991 return 0; 2992 } 2993 2994 static void e1000_tx_queue(struct e1000_adapter *adapter, 2995 struct e1000_tx_ring *tx_ring, int tx_flags, 2996 int count) 2997 { 2998 struct e1000_hw *hw = &adapter->hw; 2999 struct e1000_tx_desc *tx_desc = NULL; 3000 struct e1000_buffer *buffer_info; 3001 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; 3002 unsigned int i; 3003 3004 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) { 3005 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | 3006 E1000_TXD_CMD_TSE; 3007 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 3008 3009 if (likely(tx_flags & E1000_TX_FLAGS_IPV4)) 3010 txd_upper |= E1000_TXD_POPTS_IXSM << 8; 3011 } 3012 3013 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) { 3014 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; 3015 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 3016 } 3017 3018 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) { 3019 txd_lower |= E1000_TXD_CMD_VLE; 3020 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); 3021 } 3022 3023 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) 3024 txd_lower &= ~(E1000_TXD_CMD_IFCS); 3025 3026 i = tx_ring->next_to_use; 3027 3028 while (count--) { 3029 buffer_info = &tx_ring->buffer_info[i]; 3030 tx_desc = E1000_TX_DESC(*tx_ring, i); 3031 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 3032 tx_desc->lower.data = 3033 cpu_to_le32(txd_lower | buffer_info->length); 3034 tx_desc->upper.data = cpu_to_le32(txd_upper); 3035 if (unlikely(++i == tx_ring->count)) i = 0; 3036 } 3037 3038 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); 3039 3040 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */ 3041 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) 3042 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS)); 3043 3044 /* Force memory writes to complete before letting h/w 3045 * know there are new descriptors to fetch. (Only 3046 * applicable for weak-ordered memory model archs, 3047 * such as IA-64). */ 3048 wmb(); 3049 3050 tx_ring->next_to_use = i; 3051 writel(i, hw->hw_addr + tx_ring->tdt); 3052 /* we need this if more than one processor can write to our tail 3053 * at a time, it syncronizes IO on IA64/Altix systems */ 3054 mmiowb(); 3055 } 3056 3057 /* 82547 workaround to avoid controller hang in half-duplex environment. 3058 * The workaround is to avoid queuing a large packet that would span 3059 * the internal Tx FIFO ring boundary by notifying the stack to resend 3060 * the packet at a later time. This gives the Tx FIFO an opportunity to 3061 * flush all packets. When that occurs, we reset the Tx FIFO pointers 3062 * to the beginning of the Tx FIFO. 3063 */ 3064 3065 #define E1000_FIFO_HDR 0x10 3066 #define E1000_82547_PAD_LEN 0x3E0 3067 3068 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, 3069 struct sk_buff *skb) 3070 { 3071 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head; 3072 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR; 3073 3074 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR); 3075 3076 if (adapter->link_duplex != HALF_DUPLEX) 3077 goto no_fifo_stall_required; 3078 3079 if (atomic_read(&adapter->tx_fifo_stall)) 3080 return 1; 3081 3082 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) { 3083 atomic_set(&adapter->tx_fifo_stall, 1); 3084 return 1; 3085 } 3086 3087 no_fifo_stall_required: 3088 adapter->tx_fifo_head += skb_fifo_len; 3089 if (adapter->tx_fifo_head >= adapter->tx_fifo_size) 3090 adapter->tx_fifo_head -= adapter->tx_fifo_size; 3091 return 0; 3092 } 3093 3094 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) 3095 { 3096 struct e1000_adapter *adapter = netdev_priv(netdev); 3097 struct e1000_tx_ring *tx_ring = adapter->tx_ring; 3098 3099 netif_stop_queue(netdev); 3100 /* Herbert's original patch had: 3101 * smp_mb__after_netif_stop_queue(); 3102 * but since that doesn't exist yet, just open code it. */ 3103 smp_mb(); 3104 3105 /* We need to check again in a case another CPU has just 3106 * made room available. */ 3107 if (likely(E1000_DESC_UNUSED(tx_ring) < size)) 3108 return -EBUSY; 3109 3110 /* A reprieve! */ 3111 netif_start_queue(netdev); 3112 ++adapter->restart_queue; 3113 return 0; 3114 } 3115 3116 static int e1000_maybe_stop_tx(struct net_device *netdev, 3117 struct e1000_tx_ring *tx_ring, int size) 3118 { 3119 if (likely(E1000_DESC_UNUSED(tx_ring) >= size)) 3120 return 0; 3121 return __e1000_maybe_stop_tx(netdev, size); 3122 } 3123 3124 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) 3125 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, 3126 struct net_device *netdev) 3127 { 3128 struct e1000_adapter *adapter = netdev_priv(netdev); 3129 struct e1000_hw *hw = &adapter->hw; 3130 struct e1000_tx_ring *tx_ring; 3131 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD; 3132 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; 3133 unsigned int tx_flags = 0; 3134 unsigned int len = skb_headlen(skb); 3135 unsigned int nr_frags; 3136 unsigned int mss; 3137 int count = 0; 3138 int tso; 3139 unsigned int f; 3140 3141 /* This goes back to the question of how to logically map a tx queue 3142 * to a flow. Right now, performance is impacted slightly negatively 3143 * if using multiple tx queues. If the stack breaks away from a 3144 * single qdisc implementation, we can look at this again. */ 3145 tx_ring = adapter->tx_ring; 3146 3147 if (unlikely(skb->len <= 0)) { 3148 dev_kfree_skb_any(skb); 3149 return NETDEV_TX_OK; 3150 } 3151 3152 mss = skb_shinfo(skb)->gso_size; 3153 /* The controller does a simple calculation to 3154 * make sure there is enough room in the FIFO before 3155 * initiating the DMA for each buffer. The calc is: 3156 * 4 = ceil(buffer len/mss). To make sure we don't 3157 * overrun the FIFO, adjust the max buffer len if mss 3158 * drops. */ 3159 if (mss) { 3160 u8 hdr_len; 3161 max_per_txd = min(mss << 2, max_per_txd); 3162 max_txd_pwr = fls(max_per_txd) - 1; 3163 3164 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 3165 if (skb->data_len && hdr_len == len) { 3166 switch (hw->mac_type) { 3167 unsigned int pull_size; 3168 case e1000_82544: 3169 /* Make sure we have room to chop off 4 bytes, 3170 * and that the end alignment will work out to 3171 * this hardware's requirements 3172 * NOTE: this is a TSO only workaround 3173 * if end byte alignment not correct move us 3174 * into the next dword */ 3175 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4) 3176 break; 3177 /* fall through */ 3178 pull_size = min((unsigned int)4, skb->data_len); 3179 if (!__pskb_pull_tail(skb, pull_size)) { 3180 e_err(drv, "__pskb_pull_tail " 3181 "failed.\n"); 3182 dev_kfree_skb_any(skb); 3183 return NETDEV_TX_OK; 3184 } 3185 len = skb_headlen(skb); 3186 break; 3187 default: 3188 /* do nothing */ 3189 break; 3190 } 3191 } 3192 } 3193 3194 /* reserve a descriptor for the offload context */ 3195 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) 3196 count++; 3197 count++; 3198 3199 /* Controller Erratum workaround */ 3200 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb)) 3201 count++; 3202 3203 count += TXD_USE_COUNT(len, max_txd_pwr); 3204 3205 if (adapter->pcix_82544) 3206 count++; 3207 3208 /* work-around for errata 10 and it applies to all controllers 3209 * in PCI-X mode, so add one more descriptor to the count 3210 */ 3211 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && 3212 (len > 2015))) 3213 count++; 3214 3215 nr_frags = skb_shinfo(skb)->nr_frags; 3216 for (f = 0; f < nr_frags; f++) 3217 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]), 3218 max_txd_pwr); 3219 if (adapter->pcix_82544) 3220 count += nr_frags; 3221 3222 /* need: count + 2 desc gap to keep tail from touching 3223 * head, otherwise try next time */ 3224 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) 3225 return NETDEV_TX_BUSY; 3226 3227 if (unlikely((hw->mac_type == e1000_82547) && 3228 (e1000_82547_fifo_workaround(adapter, skb)))) { 3229 netif_stop_queue(netdev); 3230 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3231 schedule_delayed_work(&adapter->fifo_stall_task, 1); 3232 return NETDEV_TX_BUSY; 3233 } 3234 3235 if (vlan_tx_tag_present(skb)) { 3236 tx_flags |= E1000_TX_FLAGS_VLAN; 3237 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); 3238 } 3239 3240 first = tx_ring->next_to_use; 3241 3242 tso = e1000_tso(adapter, tx_ring, skb); 3243 if (tso < 0) { 3244 dev_kfree_skb_any(skb); 3245 return NETDEV_TX_OK; 3246 } 3247 3248 if (likely(tso)) { 3249 if (likely(hw->mac_type != e1000_82544)) 3250 tx_ring->last_tx_tso = true; 3251 tx_flags |= E1000_TX_FLAGS_TSO; 3252 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb))) 3253 tx_flags |= E1000_TX_FLAGS_CSUM; 3254 3255 if (likely(skb->protocol == htons(ETH_P_IP))) 3256 tx_flags |= E1000_TX_FLAGS_IPV4; 3257 3258 if (unlikely(skb->no_fcs)) 3259 tx_flags |= E1000_TX_FLAGS_NO_FCS; 3260 3261 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd, 3262 nr_frags, mss); 3263 3264 if (count) { 3265 skb_tx_timestamp(skb); 3266 3267 e1000_tx_queue(adapter, tx_ring, tx_flags, count); 3268 /* Make sure there is space in the ring for the next send. */ 3269 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2); 3270 3271 } else { 3272 dev_kfree_skb_any(skb); 3273 tx_ring->buffer_info[first].time_stamp = 0; 3274 tx_ring->next_to_use = first; 3275 } 3276 3277 return NETDEV_TX_OK; 3278 } 3279 3280 #define NUM_REGS 38 /* 1 based count */ 3281 static void e1000_regdump(struct e1000_adapter *adapter) 3282 { 3283 struct e1000_hw *hw = &adapter->hw; 3284 u32 regs[NUM_REGS]; 3285 u32 *regs_buff = regs; 3286 int i = 0; 3287 3288 static const char * const reg_name[] = { 3289 "CTRL", "STATUS", 3290 "RCTL", "RDLEN", "RDH", "RDT", "RDTR", 3291 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT", 3292 "TIDV", "TXDCTL", "TADV", "TARC0", 3293 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1", 3294 "TXDCTL1", "TARC1", 3295 "CTRL_EXT", "ERT", "RDBAL", "RDBAH", 3296 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC", 3297 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC" 3298 }; 3299 3300 regs_buff[0] = er32(CTRL); 3301 regs_buff[1] = er32(STATUS); 3302 3303 regs_buff[2] = er32(RCTL); 3304 regs_buff[3] = er32(RDLEN); 3305 regs_buff[4] = er32(RDH); 3306 regs_buff[5] = er32(RDT); 3307 regs_buff[6] = er32(RDTR); 3308 3309 regs_buff[7] = er32(TCTL); 3310 regs_buff[8] = er32(TDBAL); 3311 regs_buff[9] = er32(TDBAH); 3312 regs_buff[10] = er32(TDLEN); 3313 regs_buff[11] = er32(TDH); 3314 regs_buff[12] = er32(TDT); 3315 regs_buff[13] = er32(TIDV); 3316 regs_buff[14] = er32(TXDCTL); 3317 regs_buff[15] = er32(TADV); 3318 regs_buff[16] = er32(TARC0); 3319 3320 regs_buff[17] = er32(TDBAL1); 3321 regs_buff[18] = er32(TDBAH1); 3322 regs_buff[19] = er32(TDLEN1); 3323 regs_buff[20] = er32(TDH1); 3324 regs_buff[21] = er32(TDT1); 3325 regs_buff[22] = er32(TXDCTL1); 3326 regs_buff[23] = er32(TARC1); 3327 regs_buff[24] = er32(CTRL_EXT); 3328 regs_buff[25] = er32(ERT); 3329 regs_buff[26] = er32(RDBAL0); 3330 regs_buff[27] = er32(RDBAH0); 3331 regs_buff[28] = er32(TDFH); 3332 regs_buff[29] = er32(TDFT); 3333 regs_buff[30] = er32(TDFHS); 3334 regs_buff[31] = er32(TDFTS); 3335 regs_buff[32] = er32(TDFPC); 3336 regs_buff[33] = er32(RDFH); 3337 regs_buff[34] = er32(RDFT); 3338 regs_buff[35] = er32(RDFHS); 3339 regs_buff[36] = er32(RDFTS); 3340 regs_buff[37] = er32(RDFPC); 3341 3342 pr_info("Register dump\n"); 3343 for (i = 0; i < NUM_REGS; i++) 3344 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]); 3345 } 3346 3347 /* 3348 * e1000_dump: Print registers, tx ring and rx ring 3349 */ 3350 static void e1000_dump(struct e1000_adapter *adapter) 3351 { 3352 /* this code doesn't handle multiple rings */ 3353 struct e1000_tx_ring *tx_ring = adapter->tx_ring; 3354 struct e1000_rx_ring *rx_ring = adapter->rx_ring; 3355 int i; 3356 3357 if (!netif_msg_hw(adapter)) 3358 return; 3359 3360 /* Print Registers */ 3361 e1000_regdump(adapter); 3362 3363 /* 3364 * transmit dump 3365 */ 3366 pr_info("TX Desc ring0 dump\n"); 3367 3368 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended) 3369 * 3370 * Legacy Transmit Descriptor 3371 * +--------------------------------------------------------------+ 3372 * 0 | Buffer Address [63:0] (Reserved on Write Back) | 3373 * +--------------------------------------------------------------+ 3374 * 8 | Special | CSS | Status | CMD | CSO | Length | 3375 * +--------------------------------------------------------------+ 3376 * 63 48 47 36 35 32 31 24 23 16 15 0 3377 * 3378 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload 3379 * 63 48 47 40 39 32 31 16 15 8 7 0 3380 * +----------------------------------------------------------------+ 3381 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS | 3382 * +----------------------------------------------------------------+ 3383 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN | 3384 * +----------------------------------------------------------------+ 3385 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 3386 * 3387 * Extended Data Descriptor (DTYP=0x1) 3388 * +----------------------------------------------------------------+ 3389 * 0 | Buffer Address [63:0] | 3390 * +----------------------------------------------------------------+ 3391 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN | 3392 * +----------------------------------------------------------------+ 3393 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 3394 */ 3395 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n"); 3396 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n"); 3397 3398 if (!netif_msg_tx_done(adapter)) 3399 goto rx_ring_summary; 3400 3401 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { 3402 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); 3403 struct e1000_buffer *buffer_info = &tx_ring->buffer_info[i]; 3404 struct my_u { __le64 a; __le64 b; }; 3405 struct my_u *u = (struct my_u *)tx_desc; 3406 const char *type; 3407 3408 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean) 3409 type = "NTC/U"; 3410 else if (i == tx_ring->next_to_use) 3411 type = "NTU"; 3412 else if (i == tx_ring->next_to_clean) 3413 type = "NTC"; 3414 else 3415 type = ""; 3416 3417 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n", 3418 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i, 3419 le64_to_cpu(u->a), le64_to_cpu(u->b), 3420 (u64)buffer_info->dma, buffer_info->length, 3421 buffer_info->next_to_watch, 3422 (u64)buffer_info->time_stamp, buffer_info->skb, type); 3423 } 3424 3425 rx_ring_summary: 3426 /* 3427 * receive dump 3428 */ 3429 pr_info("\nRX Desc ring dump\n"); 3430 3431 /* Legacy Receive Descriptor Format 3432 * 3433 * +-----------------------------------------------------+ 3434 * | Buffer Address [63:0] | 3435 * +-----------------------------------------------------+ 3436 * | VLAN Tag | Errors | Status 0 | Packet csum | Length | 3437 * +-----------------------------------------------------+ 3438 * 63 48 47 40 39 32 31 16 15 0 3439 */ 3440 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n"); 3441 3442 if (!netif_msg_rx_status(adapter)) 3443 goto exit; 3444 3445 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) { 3446 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i); 3447 struct e1000_buffer *buffer_info = &rx_ring->buffer_info[i]; 3448 struct my_u { __le64 a; __le64 b; }; 3449 struct my_u *u = (struct my_u *)rx_desc; 3450 const char *type; 3451 3452 if (i == rx_ring->next_to_use) 3453 type = "NTU"; 3454 else if (i == rx_ring->next_to_clean) 3455 type = "NTC"; 3456 else 3457 type = ""; 3458 3459 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n", 3460 i, le64_to_cpu(u->a), le64_to_cpu(u->b), 3461 (u64)buffer_info->dma, buffer_info->skb, type); 3462 } /* for */ 3463 3464 /* dump the descriptor caches */ 3465 /* rx */ 3466 pr_info("Rx descriptor cache in 64bit format\n"); 3467 for (i = 0x6000; i <= 0x63FF ; i += 0x10) { 3468 pr_info("R%04X: %08X|%08X %08X|%08X\n", 3469 i, 3470 readl(adapter->hw.hw_addr + i+4), 3471 readl(adapter->hw.hw_addr + i), 3472 readl(adapter->hw.hw_addr + i+12), 3473 readl(adapter->hw.hw_addr + i+8)); 3474 } 3475 /* tx */ 3476 pr_info("Tx descriptor cache in 64bit format\n"); 3477 for (i = 0x7000; i <= 0x73FF ; i += 0x10) { 3478 pr_info("T%04X: %08X|%08X %08X|%08X\n", 3479 i, 3480 readl(adapter->hw.hw_addr + i+4), 3481 readl(adapter->hw.hw_addr + i), 3482 readl(adapter->hw.hw_addr + i+12), 3483 readl(adapter->hw.hw_addr + i+8)); 3484 } 3485 exit: 3486 return; 3487 } 3488 3489 /** 3490 * e1000_tx_timeout - Respond to a Tx Hang 3491 * @netdev: network interface device structure 3492 **/ 3493 3494 static void e1000_tx_timeout(struct net_device *netdev) 3495 { 3496 struct e1000_adapter *adapter = netdev_priv(netdev); 3497 3498 /* Do the reset outside of interrupt context */ 3499 adapter->tx_timeout_count++; 3500 schedule_work(&adapter->reset_task); 3501 } 3502 3503 static void e1000_reset_task(struct work_struct *work) 3504 { 3505 struct e1000_adapter *adapter = 3506 container_of(work, struct e1000_adapter, reset_task); 3507 3508 if (test_bit(__E1000_DOWN, &adapter->flags)) 3509 return; 3510 e_err(drv, "Reset adapter\n"); 3511 e1000_reinit_safe(adapter); 3512 } 3513 3514 /** 3515 * e1000_get_stats - Get System Network Statistics 3516 * @netdev: network interface device structure 3517 * 3518 * Returns the address of the device statistics structure. 3519 * The statistics are actually updated from the watchdog. 3520 **/ 3521 3522 static struct net_device_stats *e1000_get_stats(struct net_device *netdev) 3523 { 3524 /* only return the current stats */ 3525 return &netdev->stats; 3526 } 3527 3528 /** 3529 * e1000_change_mtu - Change the Maximum Transfer Unit 3530 * @netdev: network interface device structure 3531 * @new_mtu: new value for maximum frame size 3532 * 3533 * Returns 0 on success, negative on failure 3534 **/ 3535 3536 static int e1000_change_mtu(struct net_device *netdev, int new_mtu) 3537 { 3538 struct e1000_adapter *adapter = netdev_priv(netdev); 3539 struct e1000_hw *hw = &adapter->hw; 3540 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; 3541 3542 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) || 3543 (max_frame > MAX_JUMBO_FRAME_SIZE)) { 3544 e_err(probe, "Invalid MTU setting\n"); 3545 return -EINVAL; 3546 } 3547 3548 /* Adapter-specific max frame size limits. */ 3549 switch (hw->mac_type) { 3550 case e1000_undefined ... e1000_82542_rev2_1: 3551 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) { 3552 e_err(probe, "Jumbo Frames not supported.\n"); 3553 return -EINVAL; 3554 } 3555 break; 3556 default: 3557 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */ 3558 break; 3559 } 3560 3561 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 3562 msleep(1); 3563 /* e1000_down has a dependency on max_frame_size */ 3564 hw->max_frame_size = max_frame; 3565 if (netif_running(netdev)) 3566 e1000_down(adapter); 3567 3568 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN 3569 * means we reserve 2 more, this pushes us to allocate from the next 3570 * larger slab size. 3571 * i.e. RXBUFFER_2048 --> size-4096 slab 3572 * however with the new *_jumbo_rx* routines, jumbo receives will use 3573 * fragmented skbs */ 3574 3575 if (max_frame <= E1000_RXBUFFER_2048) 3576 adapter->rx_buffer_len = E1000_RXBUFFER_2048; 3577 else 3578 #if (PAGE_SIZE >= E1000_RXBUFFER_16384) 3579 adapter->rx_buffer_len = E1000_RXBUFFER_16384; 3580 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096) 3581 adapter->rx_buffer_len = PAGE_SIZE; 3582 #endif 3583 3584 /* adjust allocation if LPE protects us, and we aren't using SBP */ 3585 if (!hw->tbi_compatibility_on && 3586 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) || 3587 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))) 3588 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; 3589 3590 pr_info("%s changing MTU from %d to %d\n", 3591 netdev->name, netdev->mtu, new_mtu); 3592 netdev->mtu = new_mtu; 3593 3594 if (netif_running(netdev)) 3595 e1000_up(adapter); 3596 else 3597 e1000_reset(adapter); 3598 3599 clear_bit(__E1000_RESETTING, &adapter->flags); 3600 3601 return 0; 3602 } 3603 3604 /** 3605 * e1000_update_stats - Update the board statistics counters 3606 * @adapter: board private structure 3607 **/ 3608 3609 void e1000_update_stats(struct e1000_adapter *adapter) 3610 { 3611 struct net_device *netdev = adapter->netdev; 3612 struct e1000_hw *hw = &adapter->hw; 3613 struct pci_dev *pdev = adapter->pdev; 3614 unsigned long flags; 3615 u16 phy_tmp; 3616 3617 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF 3618 3619 /* 3620 * Prevent stats update while adapter is being reset, or if the pci 3621 * connection is down. 3622 */ 3623 if (adapter->link_speed == 0) 3624 return; 3625 if (pci_channel_offline(pdev)) 3626 return; 3627 3628 spin_lock_irqsave(&adapter->stats_lock, flags); 3629 3630 /* these counters are modified from e1000_tbi_adjust_stats, 3631 * called from the interrupt context, so they must only 3632 * be written while holding adapter->stats_lock 3633 */ 3634 3635 adapter->stats.crcerrs += er32(CRCERRS); 3636 adapter->stats.gprc += er32(GPRC); 3637 adapter->stats.gorcl += er32(GORCL); 3638 adapter->stats.gorch += er32(GORCH); 3639 adapter->stats.bprc += er32(BPRC); 3640 adapter->stats.mprc += er32(MPRC); 3641 adapter->stats.roc += er32(ROC); 3642 3643 adapter->stats.prc64 += er32(PRC64); 3644 adapter->stats.prc127 += er32(PRC127); 3645 adapter->stats.prc255 += er32(PRC255); 3646 adapter->stats.prc511 += er32(PRC511); 3647 adapter->stats.prc1023 += er32(PRC1023); 3648 adapter->stats.prc1522 += er32(PRC1522); 3649 3650 adapter->stats.symerrs += er32(SYMERRS); 3651 adapter->stats.mpc += er32(MPC); 3652 adapter->stats.scc += er32(SCC); 3653 adapter->stats.ecol += er32(ECOL); 3654 adapter->stats.mcc += er32(MCC); 3655 adapter->stats.latecol += er32(LATECOL); 3656 adapter->stats.dc += er32(DC); 3657 adapter->stats.sec += er32(SEC); 3658 adapter->stats.rlec += er32(RLEC); 3659 adapter->stats.xonrxc += er32(XONRXC); 3660 adapter->stats.xontxc += er32(XONTXC); 3661 adapter->stats.xoffrxc += er32(XOFFRXC); 3662 adapter->stats.xofftxc += er32(XOFFTXC); 3663 adapter->stats.fcruc += er32(FCRUC); 3664 adapter->stats.gptc += er32(GPTC); 3665 adapter->stats.gotcl += er32(GOTCL); 3666 adapter->stats.gotch += er32(GOTCH); 3667 adapter->stats.rnbc += er32(RNBC); 3668 adapter->stats.ruc += er32(RUC); 3669 adapter->stats.rfc += er32(RFC); 3670 adapter->stats.rjc += er32(RJC); 3671 adapter->stats.torl += er32(TORL); 3672 adapter->stats.torh += er32(TORH); 3673 adapter->stats.totl += er32(TOTL); 3674 adapter->stats.toth += er32(TOTH); 3675 adapter->stats.tpr += er32(TPR); 3676 3677 adapter->stats.ptc64 += er32(PTC64); 3678 adapter->stats.ptc127 += er32(PTC127); 3679 adapter->stats.ptc255 += er32(PTC255); 3680 adapter->stats.ptc511 += er32(PTC511); 3681 adapter->stats.ptc1023 += er32(PTC1023); 3682 adapter->stats.ptc1522 += er32(PTC1522); 3683 3684 adapter->stats.mptc += er32(MPTC); 3685 adapter->stats.bptc += er32(BPTC); 3686 3687 /* used for adaptive IFS */ 3688 3689 hw->tx_packet_delta = er32(TPT); 3690 adapter->stats.tpt += hw->tx_packet_delta; 3691 hw->collision_delta = er32(COLC); 3692 adapter->stats.colc += hw->collision_delta; 3693 3694 if (hw->mac_type >= e1000_82543) { 3695 adapter->stats.algnerrc += er32(ALGNERRC); 3696 adapter->stats.rxerrc += er32(RXERRC); 3697 adapter->stats.tncrs += er32(TNCRS); 3698 adapter->stats.cexterr += er32(CEXTERR); 3699 adapter->stats.tsctc += er32(TSCTC); 3700 adapter->stats.tsctfc += er32(TSCTFC); 3701 } 3702 3703 /* Fill out the OS statistics structure */ 3704 netdev->stats.multicast = adapter->stats.mprc; 3705 netdev->stats.collisions = adapter->stats.colc; 3706 3707 /* Rx Errors */ 3708 3709 /* RLEC on some newer hardware can be incorrect so build 3710 * our own version based on RUC and ROC */ 3711 netdev->stats.rx_errors = adapter->stats.rxerrc + 3712 adapter->stats.crcerrs + adapter->stats.algnerrc + 3713 adapter->stats.ruc + adapter->stats.roc + 3714 adapter->stats.cexterr; 3715 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc; 3716 netdev->stats.rx_length_errors = adapter->stats.rlerrc; 3717 netdev->stats.rx_crc_errors = adapter->stats.crcerrs; 3718 netdev->stats.rx_frame_errors = adapter->stats.algnerrc; 3719 netdev->stats.rx_missed_errors = adapter->stats.mpc; 3720 3721 /* Tx Errors */ 3722 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol; 3723 netdev->stats.tx_errors = adapter->stats.txerrc; 3724 netdev->stats.tx_aborted_errors = adapter->stats.ecol; 3725 netdev->stats.tx_window_errors = adapter->stats.latecol; 3726 netdev->stats.tx_carrier_errors = adapter->stats.tncrs; 3727 if (hw->bad_tx_carr_stats_fd && 3728 adapter->link_duplex == FULL_DUPLEX) { 3729 netdev->stats.tx_carrier_errors = 0; 3730 adapter->stats.tncrs = 0; 3731 } 3732 3733 /* Tx Dropped needs to be maintained elsewhere */ 3734 3735 /* Phy Stats */ 3736 if (hw->media_type == e1000_media_type_copper) { 3737 if ((adapter->link_speed == SPEED_1000) && 3738 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { 3739 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; 3740 adapter->phy_stats.idle_errors += phy_tmp; 3741 } 3742 3743 if ((hw->mac_type <= e1000_82546) && 3744 (hw->phy_type == e1000_phy_m88) && 3745 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp)) 3746 adapter->phy_stats.receive_errors += phy_tmp; 3747 } 3748 3749 /* Management Stats */ 3750 if (hw->has_smbus) { 3751 adapter->stats.mgptc += er32(MGTPTC); 3752 adapter->stats.mgprc += er32(MGTPRC); 3753 adapter->stats.mgpdc += er32(MGTPDC); 3754 } 3755 3756 spin_unlock_irqrestore(&adapter->stats_lock, flags); 3757 } 3758 3759 /** 3760 * e1000_intr - Interrupt Handler 3761 * @irq: interrupt number 3762 * @data: pointer to a network interface device structure 3763 **/ 3764 3765 static irqreturn_t e1000_intr(int irq, void *data) 3766 { 3767 struct net_device *netdev = data; 3768 struct e1000_adapter *adapter = netdev_priv(netdev); 3769 struct e1000_hw *hw = &adapter->hw; 3770 u32 icr = er32(ICR); 3771 3772 if (unlikely((!icr))) 3773 return IRQ_NONE; /* Not our interrupt */ 3774 3775 /* 3776 * we might have caused the interrupt, but the above 3777 * read cleared it, and just in case the driver is 3778 * down there is nothing to do so return handled 3779 */ 3780 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags))) 3781 return IRQ_HANDLED; 3782 3783 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) { 3784 hw->get_link_status = 1; 3785 /* guard against interrupt when we're going down */ 3786 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3787 schedule_delayed_work(&adapter->watchdog_task, 1); 3788 } 3789 3790 /* disable interrupts, without the synchronize_irq bit */ 3791 ew32(IMC, ~0); 3792 E1000_WRITE_FLUSH(); 3793 3794 if (likely(napi_schedule_prep(&adapter->napi))) { 3795 adapter->total_tx_bytes = 0; 3796 adapter->total_tx_packets = 0; 3797 adapter->total_rx_bytes = 0; 3798 adapter->total_rx_packets = 0; 3799 __napi_schedule(&adapter->napi); 3800 } else { 3801 /* this really should not happen! if it does it is basically a 3802 * bug, but not a hard error, so enable ints and continue */ 3803 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3804 e1000_irq_enable(adapter); 3805 } 3806 3807 return IRQ_HANDLED; 3808 } 3809 3810 /** 3811 * e1000_clean - NAPI Rx polling callback 3812 * @adapter: board private structure 3813 **/ 3814 static int e1000_clean(struct napi_struct *napi, int budget) 3815 { 3816 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi); 3817 int tx_clean_complete = 0, work_done = 0; 3818 3819 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]); 3820 3821 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget); 3822 3823 if (!tx_clean_complete) 3824 work_done = budget; 3825 3826 /* If budget not fully consumed, exit the polling mode */ 3827 if (work_done < budget) { 3828 if (likely(adapter->itr_setting & 3)) 3829 e1000_set_itr(adapter); 3830 napi_complete(napi); 3831 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3832 e1000_irq_enable(adapter); 3833 } 3834 3835 return work_done; 3836 } 3837 3838 /** 3839 * e1000_clean_tx_irq - Reclaim resources after transmit completes 3840 * @adapter: board private structure 3841 **/ 3842 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, 3843 struct e1000_tx_ring *tx_ring) 3844 { 3845 struct e1000_hw *hw = &adapter->hw; 3846 struct net_device *netdev = adapter->netdev; 3847 struct e1000_tx_desc *tx_desc, *eop_desc; 3848 struct e1000_buffer *buffer_info; 3849 unsigned int i, eop; 3850 unsigned int count = 0; 3851 unsigned int total_tx_bytes=0, total_tx_packets=0; 3852 3853 i = tx_ring->next_to_clean; 3854 eop = tx_ring->buffer_info[i].next_to_watch; 3855 eop_desc = E1000_TX_DESC(*tx_ring, eop); 3856 3857 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && 3858 (count < tx_ring->count)) { 3859 bool cleaned = false; 3860 rmb(); /* read buffer_info after eop_desc */ 3861 for ( ; !cleaned; count++) { 3862 tx_desc = E1000_TX_DESC(*tx_ring, i); 3863 buffer_info = &tx_ring->buffer_info[i]; 3864 cleaned = (i == eop); 3865 3866 if (cleaned) { 3867 total_tx_packets += buffer_info->segs; 3868 total_tx_bytes += buffer_info->bytecount; 3869 } 3870 e1000_unmap_and_free_tx_resource(adapter, buffer_info); 3871 tx_desc->upper.data = 0; 3872 3873 if (unlikely(++i == tx_ring->count)) i = 0; 3874 } 3875 3876 eop = tx_ring->buffer_info[i].next_to_watch; 3877 eop_desc = E1000_TX_DESC(*tx_ring, eop); 3878 } 3879 3880 tx_ring->next_to_clean = i; 3881 3882 #define TX_WAKE_THRESHOLD 32 3883 if (unlikely(count && netif_carrier_ok(netdev) && 3884 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) { 3885 /* Make sure that anybody stopping the queue after this 3886 * sees the new next_to_clean. 3887 */ 3888 smp_mb(); 3889 3890 if (netif_queue_stopped(netdev) && 3891 !(test_bit(__E1000_DOWN, &adapter->flags))) { 3892 netif_wake_queue(netdev); 3893 ++adapter->restart_queue; 3894 } 3895 } 3896 3897 if (adapter->detect_tx_hung) { 3898 /* Detect a transmit hang in hardware, this serializes the 3899 * check with the clearing of time_stamp and movement of i */ 3900 adapter->detect_tx_hung = false; 3901 if (tx_ring->buffer_info[eop].time_stamp && 3902 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp + 3903 (adapter->tx_timeout_factor * HZ)) && 3904 !(er32(STATUS) & E1000_STATUS_TXOFF)) { 3905 3906 /* detected Tx unit hang */ 3907 e_err(drv, "Detected Tx Unit Hang\n" 3908 " Tx Queue <%lu>\n" 3909 " TDH <%x>\n" 3910 " TDT <%x>\n" 3911 " next_to_use <%x>\n" 3912 " next_to_clean <%x>\n" 3913 "buffer_info[next_to_clean]\n" 3914 " time_stamp <%lx>\n" 3915 " next_to_watch <%x>\n" 3916 " jiffies <%lx>\n" 3917 " next_to_watch.status <%x>\n", 3918 (unsigned long)((tx_ring - adapter->tx_ring) / 3919 sizeof(struct e1000_tx_ring)), 3920 readl(hw->hw_addr + tx_ring->tdh), 3921 readl(hw->hw_addr + tx_ring->tdt), 3922 tx_ring->next_to_use, 3923 tx_ring->next_to_clean, 3924 tx_ring->buffer_info[eop].time_stamp, 3925 eop, 3926 jiffies, 3927 eop_desc->upper.fields.status); 3928 e1000_dump(adapter); 3929 netif_stop_queue(netdev); 3930 } 3931 } 3932 adapter->total_tx_bytes += total_tx_bytes; 3933 adapter->total_tx_packets += total_tx_packets; 3934 netdev->stats.tx_bytes += total_tx_bytes; 3935 netdev->stats.tx_packets += total_tx_packets; 3936 return count < tx_ring->count; 3937 } 3938 3939 /** 3940 * e1000_rx_checksum - Receive Checksum Offload for 82543 3941 * @adapter: board private structure 3942 * @status_err: receive descriptor status and error fields 3943 * @csum: receive descriptor csum field 3944 * @sk_buff: socket buffer with received data 3945 **/ 3946 3947 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, 3948 u32 csum, struct sk_buff *skb) 3949 { 3950 struct e1000_hw *hw = &adapter->hw; 3951 u16 status = (u16)status_err; 3952 u8 errors = (u8)(status_err >> 24); 3953 3954 skb_checksum_none_assert(skb); 3955 3956 /* 82543 or newer only */ 3957 if (unlikely(hw->mac_type < e1000_82543)) return; 3958 /* Ignore Checksum bit is set */ 3959 if (unlikely(status & E1000_RXD_STAT_IXSM)) return; 3960 /* TCP/UDP checksum error bit is set */ 3961 if (unlikely(errors & E1000_RXD_ERR_TCPE)) { 3962 /* let the stack verify checksum errors */ 3963 adapter->hw_csum_err++; 3964 return; 3965 } 3966 /* TCP/UDP Checksum has not been calculated */ 3967 if (!(status & E1000_RXD_STAT_TCPCS)) 3968 return; 3969 3970 /* It must be a TCP or UDP packet with a valid checksum */ 3971 if (likely(status & E1000_RXD_STAT_TCPCS)) { 3972 /* TCP checksum is good */ 3973 skb->ip_summed = CHECKSUM_UNNECESSARY; 3974 } 3975 adapter->hw_csum_good++; 3976 } 3977 3978 /** 3979 * e1000_consume_page - helper function 3980 **/ 3981 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb, 3982 u16 length) 3983 { 3984 bi->page = NULL; 3985 skb->len += length; 3986 skb->data_len += length; 3987 skb->truesize += PAGE_SIZE; 3988 } 3989 3990 /** 3991 * e1000_receive_skb - helper function to handle rx indications 3992 * @adapter: board private structure 3993 * @status: descriptor status field as written by hardware 3994 * @vlan: descriptor vlan field as written by hardware (no le/be conversion) 3995 * @skb: pointer to sk_buff to be indicated to stack 3996 */ 3997 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status, 3998 __le16 vlan, struct sk_buff *skb) 3999 { 4000 skb->protocol = eth_type_trans(skb, adapter->netdev); 4001 4002 if (status & E1000_RXD_STAT_VP) { 4003 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; 4004 4005 __vlan_hwaccel_put_tag(skb, vid); 4006 } 4007 napi_gro_receive(&adapter->napi, skb); 4008 } 4009 4010 /** 4011 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy 4012 * @adapter: board private structure 4013 * @rx_ring: ring to clean 4014 * @work_done: amount of napi work completed this call 4015 * @work_to_do: max amount of work allowed for this call to do 4016 * 4017 * the return value indicates whether actual cleaning was done, there 4018 * is no guarantee that everything was cleaned 4019 */ 4020 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, 4021 struct e1000_rx_ring *rx_ring, 4022 int *work_done, int work_to_do) 4023 { 4024 struct e1000_hw *hw = &adapter->hw; 4025 struct net_device *netdev = adapter->netdev; 4026 struct pci_dev *pdev = adapter->pdev; 4027 struct e1000_rx_desc *rx_desc, *next_rxd; 4028 struct e1000_buffer *buffer_info, *next_buffer; 4029 unsigned long irq_flags; 4030 u32 length; 4031 unsigned int i; 4032 int cleaned_count = 0; 4033 bool cleaned = false; 4034 unsigned int total_rx_bytes=0, total_rx_packets=0; 4035 4036 i = rx_ring->next_to_clean; 4037 rx_desc = E1000_RX_DESC(*rx_ring, i); 4038 buffer_info = &rx_ring->buffer_info[i]; 4039 4040 while (rx_desc->status & E1000_RXD_STAT_DD) { 4041 struct sk_buff *skb; 4042 u8 status; 4043 4044 if (*work_done >= work_to_do) 4045 break; 4046 (*work_done)++; 4047 rmb(); /* read descriptor and rx_buffer_info after status DD */ 4048 4049 status = rx_desc->status; 4050 skb = buffer_info->skb; 4051 buffer_info->skb = NULL; 4052 4053 if (++i == rx_ring->count) i = 0; 4054 next_rxd = E1000_RX_DESC(*rx_ring, i); 4055 prefetch(next_rxd); 4056 4057 next_buffer = &rx_ring->buffer_info[i]; 4058 4059 cleaned = true; 4060 cleaned_count++; 4061 dma_unmap_page(&pdev->dev, buffer_info->dma, 4062 buffer_info->length, DMA_FROM_DEVICE); 4063 buffer_info->dma = 0; 4064 4065 length = le16_to_cpu(rx_desc->length); 4066 4067 /* errors is only valid for DD + EOP descriptors */ 4068 if (unlikely((status & E1000_RXD_STAT_EOP) && 4069 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) { 4070 u8 *mapped; 4071 u8 last_byte; 4072 4073 mapped = page_address(buffer_info->page); 4074 last_byte = *(mapped + length - 1); 4075 if (TBI_ACCEPT(hw, status, rx_desc->errors, length, 4076 last_byte)) { 4077 spin_lock_irqsave(&adapter->stats_lock, 4078 irq_flags); 4079 e1000_tbi_adjust_stats(hw, &adapter->stats, 4080 length, mapped); 4081 spin_unlock_irqrestore(&adapter->stats_lock, 4082 irq_flags); 4083 length--; 4084 } else { 4085 if (netdev->features & NETIF_F_RXALL) 4086 goto process_skb; 4087 /* recycle both page and skb */ 4088 buffer_info->skb = skb; 4089 /* an error means any chain goes out the window 4090 * too */ 4091 if (rx_ring->rx_skb_top) 4092 dev_kfree_skb(rx_ring->rx_skb_top); 4093 rx_ring->rx_skb_top = NULL; 4094 goto next_desc; 4095 } 4096 } 4097 4098 #define rxtop rx_ring->rx_skb_top 4099 process_skb: 4100 if (!(status & E1000_RXD_STAT_EOP)) { 4101 /* this descriptor is only the beginning (or middle) */ 4102 if (!rxtop) { 4103 /* this is the beginning of a chain */ 4104 rxtop = skb; 4105 skb_fill_page_desc(rxtop, 0, buffer_info->page, 4106 0, length); 4107 } else { 4108 /* this is the middle of a chain */ 4109 skb_fill_page_desc(rxtop, 4110 skb_shinfo(rxtop)->nr_frags, 4111 buffer_info->page, 0, length); 4112 /* re-use the skb, only consumed the page */ 4113 buffer_info->skb = skb; 4114 } 4115 e1000_consume_page(buffer_info, rxtop, length); 4116 goto next_desc; 4117 } else { 4118 if (rxtop) { 4119 /* end of the chain */ 4120 skb_fill_page_desc(rxtop, 4121 skb_shinfo(rxtop)->nr_frags, 4122 buffer_info->page, 0, length); 4123 /* re-use the current skb, we only consumed the 4124 * page */ 4125 buffer_info->skb = skb; 4126 skb = rxtop; 4127 rxtop = NULL; 4128 e1000_consume_page(buffer_info, skb, length); 4129 } else { 4130 /* no chain, got EOP, this buf is the packet 4131 * copybreak to save the put_page/alloc_page */ 4132 if (length <= copybreak && 4133 skb_tailroom(skb) >= length) { 4134 u8 *vaddr; 4135 vaddr = kmap_atomic(buffer_info->page); 4136 memcpy(skb_tail_pointer(skb), vaddr, length); 4137 kunmap_atomic(vaddr); 4138 /* re-use the page, so don't erase 4139 * buffer_info->page */ 4140 skb_put(skb, length); 4141 } else { 4142 skb_fill_page_desc(skb, 0, 4143 buffer_info->page, 0, 4144 length); 4145 e1000_consume_page(buffer_info, skb, 4146 length); 4147 } 4148 } 4149 } 4150 4151 /* Receive Checksum Offload XXX recompute due to CRC strip? */ 4152 e1000_rx_checksum(adapter, 4153 (u32)(status) | 4154 ((u32)(rx_desc->errors) << 24), 4155 le16_to_cpu(rx_desc->csum), skb); 4156 4157 total_rx_bytes += (skb->len - 4); /* don't count FCS */ 4158 if (likely(!(netdev->features & NETIF_F_RXFCS))) 4159 pskb_trim(skb, skb->len - 4); 4160 total_rx_packets++; 4161 4162 /* eth type trans needs skb->data to point to something */ 4163 if (!pskb_may_pull(skb, ETH_HLEN)) { 4164 e_err(drv, "pskb_may_pull failed.\n"); 4165 dev_kfree_skb(skb); 4166 goto next_desc; 4167 } 4168 4169 e1000_receive_skb(adapter, status, rx_desc->special, skb); 4170 4171 next_desc: 4172 rx_desc->status = 0; 4173 4174 /* return some buffers to hardware, one at a time is too slow */ 4175 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { 4176 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4177 cleaned_count = 0; 4178 } 4179 4180 /* use prefetched values */ 4181 rx_desc = next_rxd; 4182 buffer_info = next_buffer; 4183 } 4184 rx_ring->next_to_clean = i; 4185 4186 cleaned_count = E1000_DESC_UNUSED(rx_ring); 4187 if (cleaned_count) 4188 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4189 4190 adapter->total_rx_packets += total_rx_packets; 4191 adapter->total_rx_bytes += total_rx_bytes; 4192 netdev->stats.rx_bytes += total_rx_bytes; 4193 netdev->stats.rx_packets += total_rx_packets; 4194 return cleaned; 4195 } 4196 4197 /* 4198 * this should improve performance for small packets with large amounts 4199 * of reassembly being done in the stack 4200 */ 4201 static void e1000_check_copybreak(struct net_device *netdev, 4202 struct e1000_buffer *buffer_info, 4203 u32 length, struct sk_buff **skb) 4204 { 4205 struct sk_buff *new_skb; 4206 4207 if (length > copybreak) 4208 return; 4209 4210 new_skb = netdev_alloc_skb_ip_align(netdev, length); 4211 if (!new_skb) 4212 return; 4213 4214 skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN, 4215 (*skb)->data - NET_IP_ALIGN, 4216 length + NET_IP_ALIGN); 4217 /* save the skb in buffer_info as good */ 4218 buffer_info->skb = *skb; 4219 *skb = new_skb; 4220 } 4221 4222 /** 4223 * e1000_clean_rx_irq - Send received data up the network stack; legacy 4224 * @adapter: board private structure 4225 * @rx_ring: ring to clean 4226 * @work_done: amount of napi work completed this call 4227 * @work_to_do: max amount of work allowed for this call to do 4228 */ 4229 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, 4230 struct e1000_rx_ring *rx_ring, 4231 int *work_done, int work_to_do) 4232 { 4233 struct e1000_hw *hw = &adapter->hw; 4234 struct net_device *netdev = adapter->netdev; 4235 struct pci_dev *pdev = adapter->pdev; 4236 struct e1000_rx_desc *rx_desc, *next_rxd; 4237 struct e1000_buffer *buffer_info, *next_buffer; 4238 unsigned long flags; 4239 u32 length; 4240 unsigned int i; 4241 int cleaned_count = 0; 4242 bool cleaned = false; 4243 unsigned int total_rx_bytes=0, total_rx_packets=0; 4244 4245 i = rx_ring->next_to_clean; 4246 rx_desc = E1000_RX_DESC(*rx_ring, i); 4247 buffer_info = &rx_ring->buffer_info[i]; 4248 4249 while (rx_desc->status & E1000_RXD_STAT_DD) { 4250 struct sk_buff *skb; 4251 u8 status; 4252 4253 if (*work_done >= work_to_do) 4254 break; 4255 (*work_done)++; 4256 rmb(); /* read descriptor and rx_buffer_info after status DD */ 4257 4258 status = rx_desc->status; 4259 skb = buffer_info->skb; 4260 buffer_info->skb = NULL; 4261 4262 prefetch(skb->data - NET_IP_ALIGN); 4263 4264 if (++i == rx_ring->count) i = 0; 4265 next_rxd = E1000_RX_DESC(*rx_ring, i); 4266 prefetch(next_rxd); 4267 4268 next_buffer = &rx_ring->buffer_info[i]; 4269 4270 cleaned = true; 4271 cleaned_count++; 4272 dma_unmap_single(&pdev->dev, buffer_info->dma, 4273 buffer_info->length, DMA_FROM_DEVICE); 4274 buffer_info->dma = 0; 4275 4276 length = le16_to_cpu(rx_desc->length); 4277 /* !EOP means multiple descriptors were used to store a single 4278 * packet, if thats the case we need to toss it. In fact, we 4279 * to toss every packet with the EOP bit clear and the next 4280 * frame that _does_ have the EOP bit set, as it is by 4281 * definition only a frame fragment 4282 */ 4283 if (unlikely(!(status & E1000_RXD_STAT_EOP))) 4284 adapter->discarding = true; 4285 4286 if (adapter->discarding) { 4287 /* All receives must fit into a single buffer */ 4288 e_dbg("Receive packet consumed multiple buffers\n"); 4289 /* recycle */ 4290 buffer_info->skb = skb; 4291 if (status & E1000_RXD_STAT_EOP) 4292 adapter->discarding = false; 4293 goto next_desc; 4294 } 4295 4296 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) { 4297 u8 last_byte = *(skb->data + length - 1); 4298 if (TBI_ACCEPT(hw, status, rx_desc->errors, length, 4299 last_byte)) { 4300 spin_lock_irqsave(&adapter->stats_lock, flags); 4301 e1000_tbi_adjust_stats(hw, &adapter->stats, 4302 length, skb->data); 4303 spin_unlock_irqrestore(&adapter->stats_lock, 4304 flags); 4305 length--; 4306 } else { 4307 if (netdev->features & NETIF_F_RXALL) 4308 goto process_skb; 4309 /* recycle */ 4310 buffer_info->skb = skb; 4311 goto next_desc; 4312 } 4313 } 4314 4315 process_skb: 4316 total_rx_bytes += (length - 4); /* don't count FCS */ 4317 total_rx_packets++; 4318 4319 if (likely(!(netdev->features & NETIF_F_RXFCS))) 4320 /* adjust length to remove Ethernet CRC, this must be 4321 * done after the TBI_ACCEPT workaround above 4322 */ 4323 length -= 4; 4324 4325 e1000_check_copybreak(netdev, buffer_info, length, &skb); 4326 4327 skb_put(skb, length); 4328 4329 /* Receive Checksum Offload */ 4330 e1000_rx_checksum(adapter, 4331 (u32)(status) | 4332 ((u32)(rx_desc->errors) << 24), 4333 le16_to_cpu(rx_desc->csum), skb); 4334 4335 e1000_receive_skb(adapter, status, rx_desc->special, skb); 4336 4337 next_desc: 4338 rx_desc->status = 0; 4339 4340 /* return some buffers to hardware, one at a time is too slow */ 4341 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { 4342 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4343 cleaned_count = 0; 4344 } 4345 4346 /* use prefetched values */ 4347 rx_desc = next_rxd; 4348 buffer_info = next_buffer; 4349 } 4350 rx_ring->next_to_clean = i; 4351 4352 cleaned_count = E1000_DESC_UNUSED(rx_ring); 4353 if (cleaned_count) 4354 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4355 4356 adapter->total_rx_packets += total_rx_packets; 4357 adapter->total_rx_bytes += total_rx_bytes; 4358 netdev->stats.rx_bytes += total_rx_bytes; 4359 netdev->stats.rx_packets += total_rx_packets; 4360 return cleaned; 4361 } 4362 4363 /** 4364 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers 4365 * @adapter: address of board private structure 4366 * @rx_ring: pointer to receive ring structure 4367 * @cleaned_count: number of buffers to allocate this pass 4368 **/ 4369 4370 static void 4371 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, 4372 struct e1000_rx_ring *rx_ring, int cleaned_count) 4373 { 4374 struct net_device *netdev = adapter->netdev; 4375 struct pci_dev *pdev = adapter->pdev; 4376 struct e1000_rx_desc *rx_desc; 4377 struct e1000_buffer *buffer_info; 4378 struct sk_buff *skb; 4379 unsigned int i; 4380 unsigned int bufsz = 256 - 16 /*for skb_reserve */ ; 4381 4382 i = rx_ring->next_to_use; 4383 buffer_info = &rx_ring->buffer_info[i]; 4384 4385 while (cleaned_count--) { 4386 skb = buffer_info->skb; 4387 if (skb) { 4388 skb_trim(skb, 0); 4389 goto check_page; 4390 } 4391 4392 skb = netdev_alloc_skb_ip_align(netdev, bufsz); 4393 if (unlikely(!skb)) { 4394 /* Better luck next round */ 4395 adapter->alloc_rx_buff_failed++; 4396 break; 4397 } 4398 4399 buffer_info->skb = skb; 4400 buffer_info->length = adapter->rx_buffer_len; 4401 check_page: 4402 /* allocate a new page if necessary */ 4403 if (!buffer_info->page) { 4404 buffer_info->page = alloc_page(GFP_ATOMIC); 4405 if (unlikely(!buffer_info->page)) { 4406 adapter->alloc_rx_buff_failed++; 4407 break; 4408 } 4409 } 4410 4411 if (!buffer_info->dma) { 4412 buffer_info->dma = dma_map_page(&pdev->dev, 4413 buffer_info->page, 0, 4414 buffer_info->length, 4415 DMA_FROM_DEVICE); 4416 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 4417 put_page(buffer_info->page); 4418 dev_kfree_skb(skb); 4419 buffer_info->page = NULL; 4420 buffer_info->skb = NULL; 4421 buffer_info->dma = 0; 4422 adapter->alloc_rx_buff_failed++; 4423 break; /* while !buffer_info->skb */ 4424 } 4425 } 4426 4427 rx_desc = E1000_RX_DESC(*rx_ring, i); 4428 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 4429 4430 if (unlikely(++i == rx_ring->count)) 4431 i = 0; 4432 buffer_info = &rx_ring->buffer_info[i]; 4433 } 4434 4435 if (likely(rx_ring->next_to_use != i)) { 4436 rx_ring->next_to_use = i; 4437 if (unlikely(i-- == 0)) 4438 i = (rx_ring->count - 1); 4439 4440 /* Force memory writes to complete before letting h/w 4441 * know there are new descriptors to fetch. (Only 4442 * applicable for weak-ordered memory model archs, 4443 * such as IA-64). */ 4444 wmb(); 4445 writel(i, adapter->hw.hw_addr + rx_ring->rdt); 4446 } 4447 } 4448 4449 /** 4450 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended 4451 * @adapter: address of board private structure 4452 **/ 4453 4454 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, 4455 struct e1000_rx_ring *rx_ring, 4456 int cleaned_count) 4457 { 4458 struct e1000_hw *hw = &adapter->hw; 4459 struct net_device *netdev = adapter->netdev; 4460 struct pci_dev *pdev = adapter->pdev; 4461 struct e1000_rx_desc *rx_desc; 4462 struct e1000_buffer *buffer_info; 4463 struct sk_buff *skb; 4464 unsigned int i; 4465 unsigned int bufsz = adapter->rx_buffer_len; 4466 4467 i = rx_ring->next_to_use; 4468 buffer_info = &rx_ring->buffer_info[i]; 4469 4470 while (cleaned_count--) { 4471 skb = buffer_info->skb; 4472 if (skb) { 4473 skb_trim(skb, 0); 4474 goto map_skb; 4475 } 4476 4477 skb = netdev_alloc_skb_ip_align(netdev, bufsz); 4478 if (unlikely(!skb)) { 4479 /* Better luck next round */ 4480 adapter->alloc_rx_buff_failed++; 4481 break; 4482 } 4483 4484 /* Fix for errata 23, can't cross 64kB boundary */ 4485 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { 4486 struct sk_buff *oldskb = skb; 4487 e_err(rx_err, "skb align check failed: %u bytes at " 4488 "%p\n", bufsz, skb->data); 4489 /* Try again, without freeing the previous */ 4490 skb = netdev_alloc_skb_ip_align(netdev, bufsz); 4491 /* Failed allocation, critical failure */ 4492 if (!skb) { 4493 dev_kfree_skb(oldskb); 4494 adapter->alloc_rx_buff_failed++; 4495 break; 4496 } 4497 4498 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) { 4499 /* give up */ 4500 dev_kfree_skb(skb); 4501 dev_kfree_skb(oldskb); 4502 adapter->alloc_rx_buff_failed++; 4503 break; /* while !buffer_info->skb */ 4504 } 4505 4506 /* Use new allocation */ 4507 dev_kfree_skb(oldskb); 4508 } 4509 buffer_info->skb = skb; 4510 buffer_info->length = adapter->rx_buffer_len; 4511 map_skb: 4512 buffer_info->dma = dma_map_single(&pdev->dev, 4513 skb->data, 4514 buffer_info->length, 4515 DMA_FROM_DEVICE); 4516 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 4517 dev_kfree_skb(skb); 4518 buffer_info->skb = NULL; 4519 buffer_info->dma = 0; 4520 adapter->alloc_rx_buff_failed++; 4521 break; /* while !buffer_info->skb */ 4522 } 4523 4524 /* 4525 * XXX if it was allocated cleanly it will never map to a 4526 * boundary crossing 4527 */ 4528 4529 /* Fix for errata 23, can't cross 64kB boundary */ 4530 if (!e1000_check_64k_bound(adapter, 4531 (void *)(unsigned long)buffer_info->dma, 4532 adapter->rx_buffer_len)) { 4533 e_err(rx_err, "dma align check failed: %u bytes at " 4534 "%p\n", adapter->rx_buffer_len, 4535 (void *)(unsigned long)buffer_info->dma); 4536 dev_kfree_skb(skb); 4537 buffer_info->skb = NULL; 4538 4539 dma_unmap_single(&pdev->dev, buffer_info->dma, 4540 adapter->rx_buffer_len, 4541 DMA_FROM_DEVICE); 4542 buffer_info->dma = 0; 4543 4544 adapter->alloc_rx_buff_failed++; 4545 break; /* while !buffer_info->skb */ 4546 } 4547 rx_desc = E1000_RX_DESC(*rx_ring, i); 4548 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 4549 4550 if (unlikely(++i == rx_ring->count)) 4551 i = 0; 4552 buffer_info = &rx_ring->buffer_info[i]; 4553 } 4554 4555 if (likely(rx_ring->next_to_use != i)) { 4556 rx_ring->next_to_use = i; 4557 if (unlikely(i-- == 0)) 4558 i = (rx_ring->count - 1); 4559 4560 /* Force memory writes to complete before letting h/w 4561 * know there are new descriptors to fetch. (Only 4562 * applicable for weak-ordered memory model archs, 4563 * such as IA-64). */ 4564 wmb(); 4565 writel(i, hw->hw_addr + rx_ring->rdt); 4566 } 4567 } 4568 4569 /** 4570 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers. 4571 * @adapter: 4572 **/ 4573 4574 static void e1000_smartspeed(struct e1000_adapter *adapter) 4575 { 4576 struct e1000_hw *hw = &adapter->hw; 4577 u16 phy_status; 4578 u16 phy_ctrl; 4579 4580 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg || 4581 !(hw->autoneg_advertised & ADVERTISE_1000_FULL)) 4582 return; 4583 4584 if (adapter->smartspeed == 0) { 4585 /* If Master/Slave config fault is asserted twice, 4586 * we assume back-to-back */ 4587 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); 4588 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; 4589 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); 4590 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return; 4591 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); 4592 if (phy_ctrl & CR_1000T_MS_ENABLE) { 4593 phy_ctrl &= ~CR_1000T_MS_ENABLE; 4594 e1000_write_phy_reg(hw, PHY_1000T_CTRL, 4595 phy_ctrl); 4596 adapter->smartspeed++; 4597 if (!e1000_phy_setup_autoneg(hw) && 4598 !e1000_read_phy_reg(hw, PHY_CTRL, 4599 &phy_ctrl)) { 4600 phy_ctrl |= (MII_CR_AUTO_NEG_EN | 4601 MII_CR_RESTART_AUTO_NEG); 4602 e1000_write_phy_reg(hw, PHY_CTRL, 4603 phy_ctrl); 4604 } 4605 } 4606 return; 4607 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) { 4608 /* If still no link, perhaps using 2/3 pair cable */ 4609 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); 4610 phy_ctrl |= CR_1000T_MS_ENABLE; 4611 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl); 4612 if (!e1000_phy_setup_autoneg(hw) && 4613 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) { 4614 phy_ctrl |= (MII_CR_AUTO_NEG_EN | 4615 MII_CR_RESTART_AUTO_NEG); 4616 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl); 4617 } 4618 } 4619 /* Restart process after E1000_SMARTSPEED_MAX iterations */ 4620 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX) 4621 adapter->smartspeed = 0; 4622 } 4623 4624 /** 4625 * e1000_ioctl - 4626 * @netdev: 4627 * @ifreq: 4628 * @cmd: 4629 **/ 4630 4631 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 4632 { 4633 switch (cmd) { 4634 case SIOCGMIIPHY: 4635 case SIOCGMIIREG: 4636 case SIOCSMIIREG: 4637 return e1000_mii_ioctl(netdev, ifr, cmd); 4638 default: 4639 return -EOPNOTSUPP; 4640 } 4641 } 4642 4643 /** 4644 * e1000_mii_ioctl - 4645 * @netdev: 4646 * @ifreq: 4647 * @cmd: 4648 **/ 4649 4650 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, 4651 int cmd) 4652 { 4653 struct e1000_adapter *adapter = netdev_priv(netdev); 4654 struct e1000_hw *hw = &adapter->hw; 4655 struct mii_ioctl_data *data = if_mii(ifr); 4656 int retval; 4657 u16 mii_reg; 4658 unsigned long flags; 4659 4660 if (hw->media_type != e1000_media_type_copper) 4661 return -EOPNOTSUPP; 4662 4663 switch (cmd) { 4664 case SIOCGMIIPHY: 4665 data->phy_id = hw->phy_addr; 4666 break; 4667 case SIOCGMIIREG: 4668 spin_lock_irqsave(&adapter->stats_lock, flags); 4669 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F, 4670 &data->val_out)) { 4671 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4672 return -EIO; 4673 } 4674 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4675 break; 4676 case SIOCSMIIREG: 4677 if (data->reg_num & ~(0x1F)) 4678 return -EFAULT; 4679 mii_reg = data->val_in; 4680 spin_lock_irqsave(&adapter->stats_lock, flags); 4681 if (e1000_write_phy_reg(hw, data->reg_num, 4682 mii_reg)) { 4683 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4684 return -EIO; 4685 } 4686 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4687 if (hw->media_type == e1000_media_type_copper) { 4688 switch (data->reg_num) { 4689 case PHY_CTRL: 4690 if (mii_reg & MII_CR_POWER_DOWN) 4691 break; 4692 if (mii_reg & MII_CR_AUTO_NEG_EN) { 4693 hw->autoneg = 1; 4694 hw->autoneg_advertised = 0x2F; 4695 } else { 4696 u32 speed; 4697 if (mii_reg & 0x40) 4698 speed = SPEED_1000; 4699 else if (mii_reg & 0x2000) 4700 speed = SPEED_100; 4701 else 4702 speed = SPEED_10; 4703 retval = e1000_set_spd_dplx( 4704 adapter, speed, 4705 ((mii_reg & 0x100) 4706 ? DUPLEX_FULL : 4707 DUPLEX_HALF)); 4708 if (retval) 4709 return retval; 4710 } 4711 if (netif_running(adapter->netdev)) 4712 e1000_reinit_locked(adapter); 4713 else 4714 e1000_reset(adapter); 4715 break; 4716 case M88E1000_PHY_SPEC_CTRL: 4717 case M88E1000_EXT_PHY_SPEC_CTRL: 4718 if (e1000_phy_reset(hw)) 4719 return -EIO; 4720 break; 4721 } 4722 } else { 4723 switch (data->reg_num) { 4724 case PHY_CTRL: 4725 if (mii_reg & MII_CR_POWER_DOWN) 4726 break; 4727 if (netif_running(adapter->netdev)) 4728 e1000_reinit_locked(adapter); 4729 else 4730 e1000_reset(adapter); 4731 break; 4732 } 4733 } 4734 break; 4735 default: 4736 return -EOPNOTSUPP; 4737 } 4738 return E1000_SUCCESS; 4739 } 4740 4741 void e1000_pci_set_mwi(struct e1000_hw *hw) 4742 { 4743 struct e1000_adapter *adapter = hw->back; 4744 int ret_val = pci_set_mwi(adapter->pdev); 4745 4746 if (ret_val) 4747 e_err(probe, "Error in setting MWI\n"); 4748 } 4749 4750 void e1000_pci_clear_mwi(struct e1000_hw *hw) 4751 { 4752 struct e1000_adapter *adapter = hw->back; 4753 4754 pci_clear_mwi(adapter->pdev); 4755 } 4756 4757 int e1000_pcix_get_mmrbc(struct e1000_hw *hw) 4758 { 4759 struct e1000_adapter *adapter = hw->back; 4760 return pcix_get_mmrbc(adapter->pdev); 4761 } 4762 4763 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc) 4764 { 4765 struct e1000_adapter *adapter = hw->back; 4766 pcix_set_mmrbc(adapter->pdev, mmrbc); 4767 } 4768 4769 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value) 4770 { 4771 outl(value, port); 4772 } 4773 4774 static bool e1000_vlan_used(struct e1000_adapter *adapter) 4775 { 4776 u16 vid; 4777 4778 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 4779 return true; 4780 return false; 4781 } 4782 4783 static void __e1000_vlan_mode(struct e1000_adapter *adapter, 4784 netdev_features_t features) 4785 { 4786 struct e1000_hw *hw = &adapter->hw; 4787 u32 ctrl; 4788 4789 ctrl = er32(CTRL); 4790 if (features & NETIF_F_HW_VLAN_RX) { 4791 /* enable VLAN tag insert/strip */ 4792 ctrl |= E1000_CTRL_VME; 4793 } else { 4794 /* disable VLAN tag insert/strip */ 4795 ctrl &= ~E1000_CTRL_VME; 4796 } 4797 ew32(CTRL, ctrl); 4798 } 4799 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter, 4800 bool filter_on) 4801 { 4802 struct e1000_hw *hw = &adapter->hw; 4803 u32 rctl; 4804 4805 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4806 e1000_irq_disable(adapter); 4807 4808 __e1000_vlan_mode(adapter, adapter->netdev->features); 4809 if (filter_on) { 4810 /* enable VLAN receive filtering */ 4811 rctl = er32(RCTL); 4812 rctl &= ~E1000_RCTL_CFIEN; 4813 if (!(adapter->netdev->flags & IFF_PROMISC)) 4814 rctl |= E1000_RCTL_VFE; 4815 ew32(RCTL, rctl); 4816 e1000_update_mng_vlan(adapter); 4817 } else { 4818 /* disable VLAN receive filtering */ 4819 rctl = er32(RCTL); 4820 rctl &= ~E1000_RCTL_VFE; 4821 ew32(RCTL, rctl); 4822 } 4823 4824 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4825 e1000_irq_enable(adapter); 4826 } 4827 4828 static void e1000_vlan_mode(struct net_device *netdev, 4829 netdev_features_t features) 4830 { 4831 struct e1000_adapter *adapter = netdev_priv(netdev); 4832 4833 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4834 e1000_irq_disable(adapter); 4835 4836 __e1000_vlan_mode(adapter, features); 4837 4838 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4839 e1000_irq_enable(adapter); 4840 } 4841 4842 static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid) 4843 { 4844 struct e1000_adapter *adapter = netdev_priv(netdev); 4845 struct e1000_hw *hw = &adapter->hw; 4846 u32 vfta, index; 4847 4848 if ((hw->mng_cookie.status & 4849 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && 4850 (vid == adapter->mng_vlan_id)) 4851 return 0; 4852 4853 if (!e1000_vlan_used(adapter)) 4854 e1000_vlan_filter_on_off(adapter, true); 4855 4856 /* add VID to filter table */ 4857 index = (vid >> 5) & 0x7F; 4858 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); 4859 vfta |= (1 << (vid & 0x1F)); 4860 e1000_write_vfta(hw, index, vfta); 4861 4862 set_bit(vid, adapter->active_vlans); 4863 4864 return 0; 4865 } 4866 4867 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) 4868 { 4869 struct e1000_adapter *adapter = netdev_priv(netdev); 4870 struct e1000_hw *hw = &adapter->hw; 4871 u32 vfta, index; 4872 4873 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4874 e1000_irq_disable(adapter); 4875 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4876 e1000_irq_enable(adapter); 4877 4878 /* remove VID from filter table */ 4879 index = (vid >> 5) & 0x7F; 4880 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); 4881 vfta &= ~(1 << (vid & 0x1F)); 4882 e1000_write_vfta(hw, index, vfta); 4883 4884 clear_bit(vid, adapter->active_vlans); 4885 4886 if (!e1000_vlan_used(adapter)) 4887 e1000_vlan_filter_on_off(adapter, false); 4888 4889 return 0; 4890 } 4891 4892 static void e1000_restore_vlan(struct e1000_adapter *adapter) 4893 { 4894 u16 vid; 4895 4896 if (!e1000_vlan_used(adapter)) 4897 return; 4898 4899 e1000_vlan_filter_on_off(adapter, true); 4900 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 4901 e1000_vlan_rx_add_vid(adapter->netdev, vid); 4902 } 4903 4904 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) 4905 { 4906 struct e1000_hw *hw = &adapter->hw; 4907 4908 hw->autoneg = 0; 4909 4910 /* Make sure dplx is at most 1 bit and lsb of speed is not set 4911 * for the switch() below to work */ 4912 if ((spd & 1) || (dplx & ~1)) 4913 goto err_inval; 4914 4915 /* Fiber NICs only allow 1000 gbps Full duplex */ 4916 if ((hw->media_type == e1000_media_type_fiber) && 4917 spd != SPEED_1000 && 4918 dplx != DUPLEX_FULL) 4919 goto err_inval; 4920 4921 switch (spd + dplx) { 4922 case SPEED_10 + DUPLEX_HALF: 4923 hw->forced_speed_duplex = e1000_10_half; 4924 break; 4925 case SPEED_10 + DUPLEX_FULL: 4926 hw->forced_speed_duplex = e1000_10_full; 4927 break; 4928 case SPEED_100 + DUPLEX_HALF: 4929 hw->forced_speed_duplex = e1000_100_half; 4930 break; 4931 case SPEED_100 + DUPLEX_FULL: 4932 hw->forced_speed_duplex = e1000_100_full; 4933 break; 4934 case SPEED_1000 + DUPLEX_FULL: 4935 hw->autoneg = 1; 4936 hw->autoneg_advertised = ADVERTISE_1000_FULL; 4937 break; 4938 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 4939 default: 4940 goto err_inval; 4941 } 4942 return 0; 4943 4944 err_inval: 4945 e_err(probe, "Unsupported Speed/Duplex configuration\n"); 4946 return -EINVAL; 4947 } 4948 4949 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake) 4950 { 4951 struct net_device *netdev = pci_get_drvdata(pdev); 4952 struct e1000_adapter *adapter = netdev_priv(netdev); 4953 struct e1000_hw *hw = &adapter->hw; 4954 u32 ctrl, ctrl_ext, rctl, status; 4955 u32 wufc = adapter->wol; 4956 #ifdef CONFIG_PM 4957 int retval = 0; 4958 #endif 4959 4960 netif_device_detach(netdev); 4961 4962 if (netif_running(netdev)) { 4963 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); 4964 e1000_down(adapter); 4965 } 4966 4967 #ifdef CONFIG_PM 4968 retval = pci_save_state(pdev); 4969 if (retval) 4970 return retval; 4971 #endif 4972 4973 status = er32(STATUS); 4974 if (status & E1000_STATUS_LU) 4975 wufc &= ~E1000_WUFC_LNKC; 4976 4977 if (wufc) { 4978 e1000_setup_rctl(adapter); 4979 e1000_set_rx_mode(netdev); 4980 4981 rctl = er32(RCTL); 4982 4983 /* turn on all-multi mode if wake on multicast is enabled */ 4984 if (wufc & E1000_WUFC_MC) 4985 rctl |= E1000_RCTL_MPE; 4986 4987 /* enable receives in the hardware */ 4988 ew32(RCTL, rctl | E1000_RCTL_EN); 4989 4990 if (hw->mac_type >= e1000_82540) { 4991 ctrl = er32(CTRL); 4992 /* advertise wake from D3Cold */ 4993 #define E1000_CTRL_ADVD3WUC 0x00100000 4994 /* phy power management enable */ 4995 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 4996 ctrl |= E1000_CTRL_ADVD3WUC | 4997 E1000_CTRL_EN_PHY_PWR_MGMT; 4998 ew32(CTRL, ctrl); 4999 } 5000 5001 if (hw->media_type == e1000_media_type_fiber || 5002 hw->media_type == e1000_media_type_internal_serdes) { 5003 /* keep the laser running in D3 */ 5004 ctrl_ext = er32(CTRL_EXT); 5005 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; 5006 ew32(CTRL_EXT, ctrl_ext); 5007 } 5008 5009 ew32(WUC, E1000_WUC_PME_EN); 5010 ew32(WUFC, wufc); 5011 } else { 5012 ew32(WUC, 0); 5013 ew32(WUFC, 0); 5014 } 5015 5016 e1000_release_manageability(adapter); 5017 5018 *enable_wake = !!wufc; 5019 5020 /* make sure adapter isn't asleep if manageability is enabled */ 5021 if (adapter->en_mng_pt) 5022 *enable_wake = true; 5023 5024 if (netif_running(netdev)) 5025 e1000_free_irq(adapter); 5026 5027 pci_disable_device(pdev); 5028 5029 return 0; 5030 } 5031 5032 #ifdef CONFIG_PM 5033 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) 5034 { 5035 int retval; 5036 bool wake; 5037 5038 retval = __e1000_shutdown(pdev, &wake); 5039 if (retval) 5040 return retval; 5041 5042 if (wake) { 5043 pci_prepare_to_sleep(pdev); 5044 } else { 5045 pci_wake_from_d3(pdev, false); 5046 pci_set_power_state(pdev, PCI_D3hot); 5047 } 5048 5049 return 0; 5050 } 5051 5052 static int e1000_resume(struct pci_dev *pdev) 5053 { 5054 struct net_device *netdev = pci_get_drvdata(pdev); 5055 struct e1000_adapter *adapter = netdev_priv(netdev); 5056 struct e1000_hw *hw = &adapter->hw; 5057 u32 err; 5058 5059 pci_set_power_state(pdev, PCI_D0); 5060 pci_restore_state(pdev); 5061 pci_save_state(pdev); 5062 5063 if (adapter->need_ioport) 5064 err = pci_enable_device(pdev); 5065 else 5066 err = pci_enable_device_mem(pdev); 5067 if (err) { 5068 pr_err("Cannot enable PCI device from suspend\n"); 5069 return err; 5070 } 5071 pci_set_master(pdev); 5072 5073 pci_enable_wake(pdev, PCI_D3hot, 0); 5074 pci_enable_wake(pdev, PCI_D3cold, 0); 5075 5076 if (netif_running(netdev)) { 5077 err = e1000_request_irq(adapter); 5078 if (err) 5079 return err; 5080 } 5081 5082 e1000_power_up_phy(adapter); 5083 e1000_reset(adapter); 5084 ew32(WUS, ~0); 5085 5086 e1000_init_manageability(adapter); 5087 5088 if (netif_running(netdev)) 5089 e1000_up(adapter); 5090 5091 netif_device_attach(netdev); 5092 5093 return 0; 5094 } 5095 #endif 5096 5097 static void e1000_shutdown(struct pci_dev *pdev) 5098 { 5099 bool wake; 5100 5101 __e1000_shutdown(pdev, &wake); 5102 5103 if (system_state == SYSTEM_POWER_OFF) { 5104 pci_wake_from_d3(pdev, wake); 5105 pci_set_power_state(pdev, PCI_D3hot); 5106 } 5107 } 5108 5109 #ifdef CONFIG_NET_POLL_CONTROLLER 5110 /* 5111 * Polling 'interrupt' - used by things like netconsole to send skbs 5112 * without having to re-enable interrupts. It's not called while 5113 * the interrupt routine is executing. 5114 */ 5115 static void e1000_netpoll(struct net_device *netdev) 5116 { 5117 struct e1000_adapter *adapter = netdev_priv(netdev); 5118 5119 disable_irq(adapter->pdev->irq); 5120 e1000_intr(adapter->pdev->irq, netdev); 5121 enable_irq(adapter->pdev->irq); 5122 } 5123 #endif 5124 5125 /** 5126 * e1000_io_error_detected - called when PCI error is detected 5127 * @pdev: Pointer to PCI device 5128 * @state: The current pci connection state 5129 * 5130 * This function is called after a PCI bus error affecting 5131 * this device has been detected. 5132 */ 5133 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, 5134 pci_channel_state_t state) 5135 { 5136 struct net_device *netdev = pci_get_drvdata(pdev); 5137 struct e1000_adapter *adapter = netdev_priv(netdev); 5138 5139 netif_device_detach(netdev); 5140 5141 if (state == pci_channel_io_perm_failure) 5142 return PCI_ERS_RESULT_DISCONNECT; 5143 5144 if (netif_running(netdev)) 5145 e1000_down(adapter); 5146 pci_disable_device(pdev); 5147 5148 /* Request a slot slot reset. */ 5149 return PCI_ERS_RESULT_NEED_RESET; 5150 } 5151 5152 /** 5153 * e1000_io_slot_reset - called after the pci bus has been reset. 5154 * @pdev: Pointer to PCI device 5155 * 5156 * Restart the card from scratch, as if from a cold-boot. Implementation 5157 * resembles the first-half of the e1000_resume routine. 5158 */ 5159 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) 5160 { 5161 struct net_device *netdev = pci_get_drvdata(pdev); 5162 struct e1000_adapter *adapter = netdev_priv(netdev); 5163 struct e1000_hw *hw = &adapter->hw; 5164 int err; 5165 5166 if (adapter->need_ioport) 5167 err = pci_enable_device(pdev); 5168 else 5169 err = pci_enable_device_mem(pdev); 5170 if (err) { 5171 pr_err("Cannot re-enable PCI device after reset.\n"); 5172 return PCI_ERS_RESULT_DISCONNECT; 5173 } 5174 pci_set_master(pdev); 5175 5176 pci_enable_wake(pdev, PCI_D3hot, 0); 5177 pci_enable_wake(pdev, PCI_D3cold, 0); 5178 5179 e1000_reset(adapter); 5180 ew32(WUS, ~0); 5181 5182 return PCI_ERS_RESULT_RECOVERED; 5183 } 5184 5185 /** 5186 * e1000_io_resume - called when traffic can start flowing again. 5187 * @pdev: Pointer to PCI device 5188 * 5189 * This callback is called when the error recovery driver tells us that 5190 * its OK to resume normal operation. Implementation resembles the 5191 * second-half of the e1000_resume routine. 5192 */ 5193 static void e1000_io_resume(struct pci_dev *pdev) 5194 { 5195 struct net_device *netdev = pci_get_drvdata(pdev); 5196 struct e1000_adapter *adapter = netdev_priv(netdev); 5197 5198 e1000_init_manageability(adapter); 5199 5200 if (netif_running(netdev)) { 5201 if (e1000_up(adapter)) { 5202 pr_info("can't bring device back up after reset\n"); 5203 return; 5204 } 5205 } 5206 5207 netif_device_attach(netdev); 5208 } 5209 5210 /* e1000_main.c */ 5211