xref: /linux/drivers/net/ethernet/intel/e1000/e1000_main.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2006 Intel Corporation. */
3 
4 #include "e1000.h"
5 #include <net/ip6_checksum.h>
6 #include <linux/io.h>
7 #include <linux/prefetch.h>
8 #include <linux/bitops.h>
9 #include <linux/if_vlan.h>
10 
11 char e1000_driver_name[] = "e1000";
12 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
13 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
14 
15 /* e1000_pci_tbl - PCI Device ID Table
16  *
17  * Last entry must be all 0s
18  *
19  * Macro expands to...
20  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
21  */
22 static const struct pci_device_id e1000_pci_tbl[] = {
23 	INTEL_E1000_ETHERNET_DEVICE(0x1000),
24 	INTEL_E1000_ETHERNET_DEVICE(0x1001),
25 	INTEL_E1000_ETHERNET_DEVICE(0x1004),
26 	INTEL_E1000_ETHERNET_DEVICE(0x1008),
27 	INTEL_E1000_ETHERNET_DEVICE(0x1009),
28 	INTEL_E1000_ETHERNET_DEVICE(0x100C),
29 	INTEL_E1000_ETHERNET_DEVICE(0x100D),
30 	INTEL_E1000_ETHERNET_DEVICE(0x100E),
31 	INTEL_E1000_ETHERNET_DEVICE(0x100F),
32 	INTEL_E1000_ETHERNET_DEVICE(0x1010),
33 	INTEL_E1000_ETHERNET_DEVICE(0x1011),
34 	INTEL_E1000_ETHERNET_DEVICE(0x1012),
35 	INTEL_E1000_ETHERNET_DEVICE(0x1013),
36 	INTEL_E1000_ETHERNET_DEVICE(0x1014),
37 	INTEL_E1000_ETHERNET_DEVICE(0x1015),
38 	INTEL_E1000_ETHERNET_DEVICE(0x1016),
39 	INTEL_E1000_ETHERNET_DEVICE(0x1017),
40 	INTEL_E1000_ETHERNET_DEVICE(0x1018),
41 	INTEL_E1000_ETHERNET_DEVICE(0x1019),
42 	INTEL_E1000_ETHERNET_DEVICE(0x101A),
43 	INTEL_E1000_ETHERNET_DEVICE(0x101D),
44 	INTEL_E1000_ETHERNET_DEVICE(0x101E),
45 	INTEL_E1000_ETHERNET_DEVICE(0x1026),
46 	INTEL_E1000_ETHERNET_DEVICE(0x1027),
47 	INTEL_E1000_ETHERNET_DEVICE(0x1028),
48 	INTEL_E1000_ETHERNET_DEVICE(0x1075),
49 	INTEL_E1000_ETHERNET_DEVICE(0x1076),
50 	INTEL_E1000_ETHERNET_DEVICE(0x1077),
51 	INTEL_E1000_ETHERNET_DEVICE(0x1078),
52 	INTEL_E1000_ETHERNET_DEVICE(0x1079),
53 	INTEL_E1000_ETHERNET_DEVICE(0x107A),
54 	INTEL_E1000_ETHERNET_DEVICE(0x107B),
55 	INTEL_E1000_ETHERNET_DEVICE(0x107C),
56 	INTEL_E1000_ETHERNET_DEVICE(0x108A),
57 	INTEL_E1000_ETHERNET_DEVICE(0x1099),
58 	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
59 	INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
60 	/* required last entry */
61 	{0,}
62 };
63 
64 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
65 
66 int e1000_up(struct e1000_adapter *adapter);
67 void e1000_down(struct e1000_adapter *adapter);
68 void e1000_reinit_locked(struct e1000_adapter *adapter);
69 void e1000_reset(struct e1000_adapter *adapter);
70 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
71 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
72 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
73 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
74 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
75 				    struct e1000_tx_ring *txdr);
76 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
77 				    struct e1000_rx_ring *rxdr);
78 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
79 				    struct e1000_tx_ring *tx_ring);
80 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
81 				    struct e1000_rx_ring *rx_ring);
82 void e1000_update_stats(struct e1000_adapter *adapter);
83 
84 static int e1000_init_module(void);
85 static void e1000_exit_module(void);
86 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
87 static void e1000_remove(struct pci_dev *pdev);
88 static int e1000_alloc_queues(struct e1000_adapter *adapter);
89 static int e1000_sw_init(struct e1000_adapter *adapter);
90 int e1000_open(struct net_device *netdev);
91 int e1000_close(struct net_device *netdev);
92 static void e1000_configure_tx(struct e1000_adapter *adapter);
93 static void e1000_configure_rx(struct e1000_adapter *adapter);
94 static void e1000_setup_rctl(struct e1000_adapter *adapter);
95 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
96 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
97 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
98 				struct e1000_tx_ring *tx_ring);
99 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
100 				struct e1000_rx_ring *rx_ring);
101 static void e1000_set_rx_mode(struct net_device *netdev);
102 static void e1000_update_phy_info_task(struct work_struct *work);
103 static void e1000_watchdog(struct work_struct *work);
104 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
105 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
106 				    struct net_device *netdev);
107 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
108 static int e1000_set_mac(struct net_device *netdev, void *p);
109 static irqreturn_t e1000_intr(int irq, void *data);
110 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
111 			       struct e1000_tx_ring *tx_ring);
112 static int e1000_clean(struct napi_struct *napi, int budget);
113 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
114 			       struct e1000_rx_ring *rx_ring,
115 			       int *work_done, int work_to_do);
116 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
117 				     struct e1000_rx_ring *rx_ring,
118 				     int *work_done, int work_to_do);
119 static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
120 					 struct e1000_rx_ring *rx_ring,
121 					 int cleaned_count)
122 {
123 }
124 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
125 				   struct e1000_rx_ring *rx_ring,
126 				   int cleaned_count);
127 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
128 					 struct e1000_rx_ring *rx_ring,
129 					 int cleaned_count);
130 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
131 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
132 			   int cmd);
133 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
134 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
135 static void e1000_tx_timeout(struct net_device *dev, unsigned int txqueue);
136 static void e1000_reset_task(struct work_struct *work);
137 static void e1000_smartspeed(struct e1000_adapter *adapter);
138 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
139 				       struct sk_buff *skb);
140 
141 static bool e1000_vlan_used(struct e1000_adapter *adapter);
142 static void e1000_vlan_mode(struct net_device *netdev,
143 			    netdev_features_t features);
144 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
145 				     bool filter_on);
146 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
147 				 __be16 proto, u16 vid);
148 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
149 				  __be16 proto, u16 vid);
150 static void e1000_restore_vlan(struct e1000_adapter *adapter);
151 
152 static int e1000_suspend(struct device *dev);
153 static int e1000_resume(struct device *dev);
154 static void e1000_shutdown(struct pci_dev *pdev);
155 
156 #ifdef CONFIG_NET_POLL_CONTROLLER
157 /* for netdump / net console */
158 static void e1000_netpoll (struct net_device *netdev);
159 #endif
160 
161 #define COPYBREAK_DEFAULT 256
162 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
163 module_param(copybreak, uint, 0644);
164 MODULE_PARM_DESC(copybreak,
165 	"Maximum size of packet that is copied to a new buffer on receive");
166 
167 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
168 						pci_channel_state_t state);
169 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
170 static void e1000_io_resume(struct pci_dev *pdev);
171 
172 static const struct pci_error_handlers e1000_err_handler = {
173 	.error_detected = e1000_io_error_detected,
174 	.slot_reset = e1000_io_slot_reset,
175 	.resume = e1000_io_resume,
176 };
177 
178 static DEFINE_SIMPLE_DEV_PM_OPS(e1000_pm_ops, e1000_suspend, e1000_resume);
179 
180 static struct pci_driver e1000_driver = {
181 	.name     = e1000_driver_name,
182 	.id_table = e1000_pci_tbl,
183 	.probe    = e1000_probe,
184 	.remove   = e1000_remove,
185 	.driver.pm = pm_sleep_ptr(&e1000_pm_ops),
186 	.shutdown = e1000_shutdown,
187 	.err_handler = &e1000_err_handler
188 };
189 
190 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
191 MODULE_LICENSE("GPL v2");
192 
193 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
194 static int debug = -1;
195 module_param(debug, int, 0);
196 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
197 
198 /**
199  * e1000_get_hw_dev - helper function for getting netdev
200  * @hw: pointer to HW struct
201  *
202  * return device used by hardware layer to print debugging information
203  *
204  **/
205 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
206 {
207 	struct e1000_adapter *adapter = hw->back;
208 	return adapter->netdev;
209 }
210 
211 /**
212  * e1000_init_module - Driver Registration Routine
213  *
214  * e1000_init_module is the first routine called when the driver is
215  * loaded. All it does is register with the PCI subsystem.
216  **/
217 static int __init e1000_init_module(void)
218 {
219 	int ret;
220 	pr_info("%s\n", e1000_driver_string);
221 
222 	pr_info("%s\n", e1000_copyright);
223 
224 	ret = pci_register_driver(&e1000_driver);
225 	if (copybreak != COPYBREAK_DEFAULT) {
226 		if (copybreak == 0)
227 			pr_info("copybreak disabled\n");
228 		else
229 			pr_info("copybreak enabled for "
230 				   "packets <= %u bytes\n", copybreak);
231 	}
232 	return ret;
233 }
234 
235 module_init(e1000_init_module);
236 
237 /**
238  * e1000_exit_module - Driver Exit Cleanup Routine
239  *
240  * e1000_exit_module is called just before the driver is removed
241  * from memory.
242  **/
243 static void __exit e1000_exit_module(void)
244 {
245 	pci_unregister_driver(&e1000_driver);
246 }
247 
248 module_exit(e1000_exit_module);
249 
250 static int e1000_request_irq(struct e1000_adapter *adapter)
251 {
252 	struct net_device *netdev = adapter->netdev;
253 	irq_handler_t handler = e1000_intr;
254 	int irq_flags = IRQF_SHARED;
255 	int err;
256 
257 	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
258 			  netdev);
259 	if (err) {
260 		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
261 	}
262 
263 	return err;
264 }
265 
266 static void e1000_free_irq(struct e1000_adapter *adapter)
267 {
268 	struct net_device *netdev = adapter->netdev;
269 
270 	free_irq(adapter->pdev->irq, netdev);
271 }
272 
273 /**
274  * e1000_irq_disable - Mask off interrupt generation on the NIC
275  * @adapter: board private structure
276  **/
277 static void e1000_irq_disable(struct e1000_adapter *adapter)
278 {
279 	struct e1000_hw *hw = &adapter->hw;
280 
281 	ew32(IMC, ~0);
282 	E1000_WRITE_FLUSH();
283 	synchronize_irq(adapter->pdev->irq);
284 }
285 
286 /**
287  * e1000_irq_enable - Enable default interrupt generation settings
288  * @adapter: board private structure
289  **/
290 static void e1000_irq_enable(struct e1000_adapter *adapter)
291 {
292 	struct e1000_hw *hw = &adapter->hw;
293 
294 	ew32(IMS, IMS_ENABLE_MASK);
295 	E1000_WRITE_FLUSH();
296 }
297 
298 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
299 {
300 	struct e1000_hw *hw = &adapter->hw;
301 	struct net_device *netdev = adapter->netdev;
302 	u16 vid = hw->mng_cookie.vlan_id;
303 	u16 old_vid = adapter->mng_vlan_id;
304 
305 	if (!e1000_vlan_used(adapter))
306 		return;
307 
308 	if (!test_bit(vid, adapter->active_vlans)) {
309 		if (hw->mng_cookie.status &
310 		    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
311 			e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
312 			adapter->mng_vlan_id = vid;
313 		} else {
314 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
315 		}
316 		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
317 		    (vid != old_vid) &&
318 		    !test_bit(old_vid, adapter->active_vlans))
319 			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
320 					       old_vid);
321 	} else {
322 		adapter->mng_vlan_id = vid;
323 	}
324 }
325 
326 static void e1000_init_manageability(struct e1000_adapter *adapter)
327 {
328 	struct e1000_hw *hw = &adapter->hw;
329 
330 	if (adapter->en_mng_pt) {
331 		u32 manc = er32(MANC);
332 
333 		/* disable hardware interception of ARP */
334 		manc &= ~(E1000_MANC_ARP_EN);
335 
336 		ew32(MANC, manc);
337 	}
338 }
339 
340 static void e1000_release_manageability(struct e1000_adapter *adapter)
341 {
342 	struct e1000_hw *hw = &adapter->hw;
343 
344 	if (adapter->en_mng_pt) {
345 		u32 manc = er32(MANC);
346 
347 		/* re-enable hardware interception of ARP */
348 		manc |= E1000_MANC_ARP_EN;
349 
350 		ew32(MANC, manc);
351 	}
352 }
353 
354 /**
355  * e1000_configure - configure the hardware for RX and TX
356  * @adapter: private board structure
357  **/
358 static void e1000_configure(struct e1000_adapter *adapter)
359 {
360 	struct net_device *netdev = adapter->netdev;
361 	int i;
362 
363 	e1000_set_rx_mode(netdev);
364 
365 	e1000_restore_vlan(adapter);
366 	e1000_init_manageability(adapter);
367 
368 	e1000_configure_tx(adapter);
369 	e1000_setup_rctl(adapter);
370 	e1000_configure_rx(adapter);
371 	/* call E1000_DESC_UNUSED which always leaves
372 	 * at least 1 descriptor unused to make sure
373 	 * next_to_use != next_to_clean
374 	 */
375 	for (i = 0; i < adapter->num_rx_queues; i++) {
376 		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
377 		adapter->alloc_rx_buf(adapter, ring,
378 				      E1000_DESC_UNUSED(ring));
379 	}
380 }
381 
382 int e1000_up(struct e1000_adapter *adapter)
383 {
384 	struct e1000_hw *hw = &adapter->hw;
385 
386 	/* hardware has been reset, we need to reload some things */
387 	e1000_configure(adapter);
388 
389 	clear_bit(__E1000_DOWN, &adapter->flags);
390 
391 	napi_enable(&adapter->napi);
392 
393 	e1000_irq_enable(adapter);
394 
395 	netif_wake_queue(adapter->netdev);
396 
397 	/* fire a link change interrupt to start the watchdog */
398 	ew32(ICS, E1000_ICS_LSC);
399 	return 0;
400 }
401 
402 /**
403  * e1000_power_up_phy - restore link in case the phy was powered down
404  * @adapter: address of board private structure
405  *
406  * The phy may be powered down to save power and turn off link when the
407  * driver is unloaded and wake on lan is not enabled (among others)
408  * *** this routine MUST be followed by a call to e1000_reset ***
409  **/
410 void e1000_power_up_phy(struct e1000_adapter *adapter)
411 {
412 	struct e1000_hw *hw = &adapter->hw;
413 	u16 mii_reg = 0;
414 
415 	/* Just clear the power down bit to wake the phy back up */
416 	if (hw->media_type == e1000_media_type_copper) {
417 		/* according to the manual, the phy will retain its
418 		 * settings across a power-down/up cycle
419 		 */
420 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
421 		mii_reg &= ~MII_CR_POWER_DOWN;
422 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
423 	}
424 }
425 
426 static void e1000_power_down_phy(struct e1000_adapter *adapter)
427 {
428 	struct e1000_hw *hw = &adapter->hw;
429 
430 	/* Power down the PHY so no link is implied when interface is down *
431 	 * The PHY cannot be powered down if any of the following is true *
432 	 * (a) WoL is enabled
433 	 * (b) AMT is active
434 	 * (c) SoL/IDER session is active
435 	 */
436 	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
437 	   hw->media_type == e1000_media_type_copper) {
438 		u16 mii_reg = 0;
439 
440 		switch (hw->mac_type) {
441 		case e1000_82540:
442 		case e1000_82545:
443 		case e1000_82545_rev_3:
444 		case e1000_82546:
445 		case e1000_ce4100:
446 		case e1000_82546_rev_3:
447 		case e1000_82541:
448 		case e1000_82541_rev_2:
449 		case e1000_82547:
450 		case e1000_82547_rev_2:
451 			if (er32(MANC) & E1000_MANC_SMBUS_EN)
452 				goto out;
453 			break;
454 		default:
455 			goto out;
456 		}
457 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
458 		mii_reg |= MII_CR_POWER_DOWN;
459 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
460 		msleep(1);
461 	}
462 out:
463 	return;
464 }
465 
466 static void e1000_down_and_stop(struct e1000_adapter *adapter)
467 {
468 	set_bit(__E1000_DOWN, &adapter->flags);
469 
470 	cancel_delayed_work_sync(&adapter->watchdog_task);
471 
472 	/*
473 	 * Since the watchdog task can reschedule other tasks, we should cancel
474 	 * it first, otherwise we can run into the situation when a work is
475 	 * still running after the adapter has been turned down.
476 	 */
477 
478 	cancel_delayed_work_sync(&adapter->phy_info_task);
479 	cancel_delayed_work_sync(&adapter->fifo_stall_task);
480 
481 	/* Only kill reset task if adapter is not resetting */
482 	if (!test_bit(__E1000_RESETTING, &adapter->flags))
483 		cancel_work_sync(&adapter->reset_task);
484 }
485 
486 void e1000_down(struct e1000_adapter *adapter)
487 {
488 	struct e1000_hw *hw = &adapter->hw;
489 	struct net_device *netdev = adapter->netdev;
490 	u32 rctl, tctl;
491 
492 	/* disable receives in the hardware */
493 	rctl = er32(RCTL);
494 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
495 	/* flush and sleep below */
496 
497 	netif_tx_disable(netdev);
498 
499 	/* disable transmits in the hardware */
500 	tctl = er32(TCTL);
501 	tctl &= ~E1000_TCTL_EN;
502 	ew32(TCTL, tctl);
503 	/* flush both disables and wait for them to finish */
504 	E1000_WRITE_FLUSH();
505 	msleep(10);
506 
507 	/* Set the carrier off after transmits have been disabled in the
508 	 * hardware, to avoid race conditions with e1000_watchdog() (which
509 	 * may be running concurrently to us, checking for the carrier
510 	 * bit to decide whether it should enable transmits again). Such
511 	 * a race condition would result into transmission being disabled
512 	 * in the hardware until the next IFF_DOWN+IFF_UP cycle.
513 	 */
514 	netif_carrier_off(netdev);
515 
516 	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_RX, NULL);
517 	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_TX, NULL);
518 	napi_disable(&adapter->napi);
519 
520 	e1000_irq_disable(adapter);
521 
522 	/* Setting DOWN must be after irq_disable to prevent
523 	 * a screaming interrupt.  Setting DOWN also prevents
524 	 * tasks from rescheduling.
525 	 */
526 	e1000_down_and_stop(adapter);
527 
528 	adapter->link_speed = 0;
529 	adapter->link_duplex = 0;
530 
531 	e1000_reset(adapter);
532 	e1000_clean_all_tx_rings(adapter);
533 	e1000_clean_all_rx_rings(adapter);
534 }
535 
536 void e1000_reinit_locked(struct e1000_adapter *adapter)
537 {
538 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
539 		msleep(1);
540 
541 	/* only run the task if not already down */
542 	if (!test_bit(__E1000_DOWN, &adapter->flags)) {
543 		e1000_down(adapter);
544 		e1000_up(adapter);
545 	}
546 
547 	clear_bit(__E1000_RESETTING, &adapter->flags);
548 }
549 
550 void e1000_reset(struct e1000_adapter *adapter)
551 {
552 	struct e1000_hw *hw = &adapter->hw;
553 	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
554 	bool legacy_pba_adjust = false;
555 	u16 hwm;
556 
557 	/* Repartition Pba for greater than 9k mtu
558 	 * To take effect CTRL.RST is required.
559 	 */
560 
561 	switch (hw->mac_type) {
562 	case e1000_82542_rev2_0:
563 	case e1000_82542_rev2_1:
564 	case e1000_82543:
565 	case e1000_82544:
566 	case e1000_82540:
567 	case e1000_82541:
568 	case e1000_82541_rev_2:
569 		legacy_pba_adjust = true;
570 		pba = E1000_PBA_48K;
571 		break;
572 	case e1000_82545:
573 	case e1000_82545_rev_3:
574 	case e1000_82546:
575 	case e1000_ce4100:
576 	case e1000_82546_rev_3:
577 		pba = E1000_PBA_48K;
578 		break;
579 	case e1000_82547:
580 	case e1000_82547_rev_2:
581 		legacy_pba_adjust = true;
582 		pba = E1000_PBA_30K;
583 		break;
584 	case e1000_undefined:
585 	case e1000_num_macs:
586 		break;
587 	}
588 
589 	if (legacy_pba_adjust) {
590 		if (hw->max_frame_size > E1000_RXBUFFER_8192)
591 			pba -= 8; /* allocate more FIFO for Tx */
592 
593 		if (hw->mac_type == e1000_82547) {
594 			adapter->tx_fifo_head = 0;
595 			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
596 			adapter->tx_fifo_size =
597 				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
598 			atomic_set(&adapter->tx_fifo_stall, 0);
599 		}
600 	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
601 		/* adjust PBA for jumbo frames */
602 		ew32(PBA, pba);
603 
604 		/* To maintain wire speed transmits, the Tx FIFO should be
605 		 * large enough to accommodate two full transmit packets,
606 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
607 		 * the Rx FIFO should be large enough to accommodate at least
608 		 * one full receive packet and is similarly rounded up and
609 		 * expressed in KB.
610 		 */
611 		pba = er32(PBA);
612 		/* upper 16 bits has Tx packet buffer allocation size in KB */
613 		tx_space = pba >> 16;
614 		/* lower 16 bits has Rx packet buffer allocation size in KB */
615 		pba &= 0xffff;
616 		/* the Tx fifo also stores 16 bytes of information about the Tx
617 		 * but don't include ethernet FCS because hardware appends it
618 		 */
619 		min_tx_space = (hw->max_frame_size +
620 				sizeof(struct e1000_tx_desc) -
621 				ETH_FCS_LEN) * 2;
622 		min_tx_space = ALIGN(min_tx_space, 1024);
623 		min_tx_space >>= 10;
624 		/* software strips receive CRC, so leave room for it */
625 		min_rx_space = hw->max_frame_size;
626 		min_rx_space = ALIGN(min_rx_space, 1024);
627 		min_rx_space >>= 10;
628 
629 		/* If current Tx allocation is less than the min Tx FIFO size,
630 		 * and the min Tx FIFO size is less than the current Rx FIFO
631 		 * allocation, take space away from current Rx allocation
632 		 */
633 		if (tx_space < min_tx_space &&
634 		    ((min_tx_space - tx_space) < pba)) {
635 			pba = pba - (min_tx_space - tx_space);
636 
637 			/* PCI/PCIx hardware has PBA alignment constraints */
638 			switch (hw->mac_type) {
639 			case e1000_82545 ... e1000_82546_rev_3:
640 				pba &= ~(E1000_PBA_8K - 1);
641 				break;
642 			default:
643 				break;
644 			}
645 
646 			/* if short on Rx space, Rx wins and must trump Tx
647 			 * adjustment or use Early Receive if available
648 			 */
649 			if (pba < min_rx_space)
650 				pba = min_rx_space;
651 		}
652 	}
653 
654 	ew32(PBA, pba);
655 
656 	/* flow control settings:
657 	 * The high water mark must be low enough to fit one full frame
658 	 * (or the size used for early receive) above it in the Rx FIFO.
659 	 * Set it to the lower of:
660 	 * - 90% of the Rx FIFO size, and
661 	 * - the full Rx FIFO size minus the early receive size (for parts
662 	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
663 	 * - the full Rx FIFO size minus one full frame
664 	 */
665 	hwm = min(((pba << 10) * 9 / 10),
666 		  ((pba << 10) - hw->max_frame_size));
667 
668 	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
669 	hw->fc_low_water = hw->fc_high_water - 8;
670 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
671 	hw->fc_send_xon = 1;
672 	hw->fc = hw->original_fc;
673 
674 	/* Allow time for pending master requests to run */
675 	e1000_reset_hw(hw);
676 	if (hw->mac_type >= e1000_82544)
677 		ew32(WUC, 0);
678 
679 	if (e1000_init_hw(hw))
680 		e_dev_err("Hardware Error\n");
681 	e1000_update_mng_vlan(adapter);
682 
683 	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
684 	if (hw->mac_type >= e1000_82544 &&
685 	    hw->autoneg == 1 &&
686 	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
687 		u32 ctrl = er32(CTRL);
688 		/* clear phy power management bit if we are in gig only mode,
689 		 * which if enabled will attempt negotiation to 100Mb, which
690 		 * can cause a loss of link at power off or driver unload
691 		 */
692 		ctrl &= ~E1000_CTRL_SWDPIN3;
693 		ew32(CTRL, ctrl);
694 	}
695 
696 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
697 	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
698 
699 	e1000_reset_adaptive(hw);
700 	e1000_phy_get_info(hw, &adapter->phy_info);
701 
702 	e1000_release_manageability(adapter);
703 }
704 
705 /* Dump the eeprom for users having checksum issues */
706 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
707 {
708 	struct net_device *netdev = adapter->netdev;
709 	struct ethtool_eeprom eeprom;
710 	const struct ethtool_ops *ops = netdev->ethtool_ops;
711 	u8 *data;
712 	int i;
713 	u16 csum_old, csum_new = 0;
714 
715 	eeprom.len = ops->get_eeprom_len(netdev);
716 	eeprom.offset = 0;
717 
718 	data = kmalloc(eeprom.len, GFP_KERNEL);
719 	if (!data)
720 		return;
721 
722 	ops->get_eeprom(netdev, &eeprom, data);
723 
724 	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
725 		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
726 	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
727 		csum_new += data[i] + (data[i + 1] << 8);
728 	csum_new = EEPROM_SUM - csum_new;
729 
730 	pr_err("/*********************/\n");
731 	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
732 	pr_err("Calculated              : 0x%04x\n", csum_new);
733 
734 	pr_err("Offset    Values\n");
735 	pr_err("========  ======\n");
736 	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
737 
738 	pr_err("Include this output when contacting your support provider.\n");
739 	pr_err("This is not a software error! Something bad happened to\n");
740 	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
741 	pr_err("result in further problems, possibly loss of data,\n");
742 	pr_err("corruption or system hangs!\n");
743 	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
744 	pr_err("which is invalid and requires you to set the proper MAC\n");
745 	pr_err("address manually before continuing to enable this network\n");
746 	pr_err("device. Please inspect the EEPROM dump and report the\n");
747 	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
748 	pr_err("/*********************/\n");
749 
750 	kfree(data);
751 }
752 
753 /**
754  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
755  * @pdev: PCI device information struct
756  *
757  * Return true if an adapter needs ioport resources
758  **/
759 static int e1000_is_need_ioport(struct pci_dev *pdev)
760 {
761 	switch (pdev->device) {
762 	case E1000_DEV_ID_82540EM:
763 	case E1000_DEV_ID_82540EM_LOM:
764 	case E1000_DEV_ID_82540EP:
765 	case E1000_DEV_ID_82540EP_LOM:
766 	case E1000_DEV_ID_82540EP_LP:
767 	case E1000_DEV_ID_82541EI:
768 	case E1000_DEV_ID_82541EI_MOBILE:
769 	case E1000_DEV_ID_82541ER:
770 	case E1000_DEV_ID_82541ER_LOM:
771 	case E1000_DEV_ID_82541GI:
772 	case E1000_DEV_ID_82541GI_LF:
773 	case E1000_DEV_ID_82541GI_MOBILE:
774 	case E1000_DEV_ID_82544EI_COPPER:
775 	case E1000_DEV_ID_82544EI_FIBER:
776 	case E1000_DEV_ID_82544GC_COPPER:
777 	case E1000_DEV_ID_82544GC_LOM:
778 	case E1000_DEV_ID_82545EM_COPPER:
779 	case E1000_DEV_ID_82545EM_FIBER:
780 	case E1000_DEV_ID_82546EB_COPPER:
781 	case E1000_DEV_ID_82546EB_FIBER:
782 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
783 		return true;
784 	default:
785 		return false;
786 	}
787 }
788 
789 static netdev_features_t e1000_fix_features(struct net_device *netdev,
790 	netdev_features_t features)
791 {
792 	/* Since there is no support for separate Rx/Tx vlan accel
793 	 * enable/disable make sure Tx flag is always in same state as Rx.
794 	 */
795 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
796 		features |= NETIF_F_HW_VLAN_CTAG_TX;
797 	else
798 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
799 
800 	return features;
801 }
802 
803 static int e1000_set_features(struct net_device *netdev,
804 	netdev_features_t features)
805 {
806 	struct e1000_adapter *adapter = netdev_priv(netdev);
807 	netdev_features_t changed = features ^ netdev->features;
808 
809 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
810 		e1000_vlan_mode(netdev, features);
811 
812 	if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
813 		return 0;
814 
815 	netdev->features = features;
816 	adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
817 
818 	if (netif_running(netdev))
819 		e1000_reinit_locked(adapter);
820 	else
821 		e1000_reset(adapter);
822 
823 	return 1;
824 }
825 
826 static const struct net_device_ops e1000_netdev_ops = {
827 	.ndo_open		= e1000_open,
828 	.ndo_stop		= e1000_close,
829 	.ndo_start_xmit		= e1000_xmit_frame,
830 	.ndo_set_rx_mode	= e1000_set_rx_mode,
831 	.ndo_set_mac_address	= e1000_set_mac,
832 	.ndo_tx_timeout		= e1000_tx_timeout,
833 	.ndo_change_mtu		= e1000_change_mtu,
834 	.ndo_eth_ioctl		= e1000_ioctl,
835 	.ndo_validate_addr	= eth_validate_addr,
836 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
837 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
838 #ifdef CONFIG_NET_POLL_CONTROLLER
839 	.ndo_poll_controller	= e1000_netpoll,
840 #endif
841 	.ndo_fix_features	= e1000_fix_features,
842 	.ndo_set_features	= e1000_set_features,
843 };
844 
845 /**
846  * e1000_init_hw_struct - initialize members of hw struct
847  * @adapter: board private struct
848  * @hw: structure used by e1000_hw.c
849  *
850  * Factors out initialization of the e1000_hw struct to its own function
851  * that can be called very early at init (just after struct allocation).
852  * Fields are initialized based on PCI device information and
853  * OS network device settings (MTU size).
854  * Returns negative error codes if MAC type setup fails.
855  */
856 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
857 				struct e1000_hw *hw)
858 {
859 	struct pci_dev *pdev = adapter->pdev;
860 
861 	/* PCI config space info */
862 	hw->vendor_id = pdev->vendor;
863 	hw->device_id = pdev->device;
864 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
865 	hw->subsystem_id = pdev->subsystem_device;
866 	hw->revision_id = pdev->revision;
867 
868 	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
869 
870 	hw->max_frame_size = adapter->netdev->mtu +
871 			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
872 	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
873 
874 	/* identify the MAC */
875 	if (e1000_set_mac_type(hw)) {
876 		e_err(probe, "Unknown MAC Type\n");
877 		return -EIO;
878 	}
879 
880 	switch (hw->mac_type) {
881 	default:
882 		break;
883 	case e1000_82541:
884 	case e1000_82547:
885 	case e1000_82541_rev_2:
886 	case e1000_82547_rev_2:
887 		hw->phy_init_script = 1;
888 		break;
889 	}
890 
891 	e1000_set_media_type(hw);
892 	e1000_get_bus_info(hw);
893 
894 	hw->wait_autoneg_complete = false;
895 	hw->tbi_compatibility_en = true;
896 	hw->adaptive_ifs = true;
897 
898 	/* Copper options */
899 
900 	if (hw->media_type == e1000_media_type_copper) {
901 		hw->mdix = AUTO_ALL_MODES;
902 		hw->disable_polarity_correction = false;
903 		hw->master_slave = E1000_MASTER_SLAVE;
904 	}
905 
906 	return 0;
907 }
908 
909 /**
910  * e1000_probe - Device Initialization Routine
911  * @pdev: PCI device information struct
912  * @ent: entry in e1000_pci_tbl
913  *
914  * Returns 0 on success, negative on failure
915  *
916  * e1000_probe initializes an adapter identified by a pci_dev structure.
917  * The OS initialization, configuring of the adapter private structure,
918  * and a hardware reset occur.
919  **/
920 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
921 {
922 	struct net_device *netdev;
923 	struct e1000_adapter *adapter = NULL;
924 	struct e1000_hw *hw;
925 
926 	static int cards_found;
927 	static int global_quad_port_a; /* global ksp3 port a indication */
928 	int i, err, pci_using_dac;
929 	u16 eeprom_data = 0;
930 	u16 tmp = 0;
931 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
932 	int bars, need_ioport;
933 	bool disable_dev = false;
934 
935 	/* do not allocate ioport bars when not needed */
936 	need_ioport = e1000_is_need_ioport(pdev);
937 	if (need_ioport) {
938 		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
939 		err = pci_enable_device(pdev);
940 	} else {
941 		bars = pci_select_bars(pdev, IORESOURCE_MEM);
942 		err = pci_enable_device_mem(pdev);
943 	}
944 	if (err)
945 		return err;
946 
947 	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
948 	if (err)
949 		goto err_pci_reg;
950 
951 	pci_set_master(pdev);
952 	err = pci_save_state(pdev);
953 	if (err)
954 		goto err_alloc_etherdev;
955 
956 	err = -ENOMEM;
957 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
958 	if (!netdev)
959 		goto err_alloc_etherdev;
960 
961 	SET_NETDEV_DEV(netdev, &pdev->dev);
962 
963 	pci_set_drvdata(pdev, netdev);
964 	adapter = netdev_priv(netdev);
965 	adapter->netdev = netdev;
966 	adapter->pdev = pdev;
967 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
968 	adapter->bars = bars;
969 	adapter->need_ioport = need_ioport;
970 
971 	hw = &adapter->hw;
972 	hw->back = adapter;
973 
974 	err = -EIO;
975 	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
976 	if (!hw->hw_addr)
977 		goto err_ioremap;
978 
979 	if (adapter->need_ioport) {
980 		for (i = BAR_1; i < PCI_STD_NUM_BARS; i++) {
981 			if (pci_resource_len(pdev, i) == 0)
982 				continue;
983 			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
984 				hw->io_base = pci_resource_start(pdev, i);
985 				break;
986 			}
987 		}
988 	}
989 
990 	/* make ready for any if (hw->...) below */
991 	err = e1000_init_hw_struct(adapter, hw);
992 	if (err)
993 		goto err_sw_init;
994 
995 	/* there is a workaround being applied below that limits
996 	 * 64-bit DMA addresses to 64-bit hardware.  There are some
997 	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
998 	 */
999 	pci_using_dac = 0;
1000 	if ((hw->bus_type == e1000_bus_type_pcix) &&
1001 	    !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1002 		pci_using_dac = 1;
1003 	} else {
1004 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1005 		if (err) {
1006 			pr_err("No usable DMA config, aborting\n");
1007 			goto err_dma;
1008 		}
1009 	}
1010 
1011 	netdev->netdev_ops = &e1000_netdev_ops;
1012 	e1000_set_ethtool_ops(netdev);
1013 	netdev->watchdog_timeo = 5 * HZ;
1014 	netif_napi_add(netdev, &adapter->napi, e1000_clean);
1015 
1016 	strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
1017 
1018 	adapter->bd_number = cards_found;
1019 
1020 	/* setup the private structure */
1021 
1022 	err = e1000_sw_init(adapter);
1023 	if (err)
1024 		goto err_sw_init;
1025 
1026 	err = -EIO;
1027 	if (hw->mac_type == e1000_ce4100) {
1028 		hw->ce4100_gbe_mdio_base_virt =
1029 					ioremap(pci_resource_start(pdev, BAR_1),
1030 						pci_resource_len(pdev, BAR_1));
1031 
1032 		if (!hw->ce4100_gbe_mdio_base_virt)
1033 			goto err_mdio_ioremap;
1034 	}
1035 
1036 	if (hw->mac_type >= e1000_82543) {
1037 		netdev->hw_features = NETIF_F_SG |
1038 				   NETIF_F_HW_CSUM |
1039 				   NETIF_F_HW_VLAN_CTAG_RX;
1040 		netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1041 				   NETIF_F_HW_VLAN_CTAG_FILTER;
1042 	}
1043 
1044 	if ((hw->mac_type >= e1000_82544) &&
1045 	   (hw->mac_type != e1000_82547))
1046 		netdev->hw_features |= NETIF_F_TSO;
1047 
1048 	netdev->priv_flags |= IFF_SUPP_NOFCS;
1049 
1050 	netdev->features |= netdev->hw_features;
1051 	netdev->hw_features |= (NETIF_F_RXCSUM |
1052 				NETIF_F_RXALL |
1053 				NETIF_F_RXFCS);
1054 
1055 	if (pci_using_dac) {
1056 		netdev->features |= NETIF_F_HIGHDMA;
1057 		netdev->vlan_features |= NETIF_F_HIGHDMA;
1058 	}
1059 
1060 	netdev->vlan_features |= (NETIF_F_TSO |
1061 				  NETIF_F_HW_CSUM |
1062 				  NETIF_F_SG);
1063 
1064 	/* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1065 	if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1066 	    hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1067 		netdev->priv_flags |= IFF_UNICAST_FLT;
1068 
1069 	/* MTU range: 46 - 16110 */
1070 	netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1071 	netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1072 
1073 	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1074 
1075 	/* initialize eeprom parameters */
1076 	if (e1000_init_eeprom_params(hw)) {
1077 		e_err(probe, "EEPROM initialization failed\n");
1078 		goto err_eeprom;
1079 	}
1080 
1081 	/* before reading the EEPROM, reset the controller to
1082 	 * put the device in a known good starting state
1083 	 */
1084 
1085 	e1000_reset_hw(hw);
1086 
1087 	/* make sure the EEPROM is good */
1088 	if (e1000_validate_eeprom_checksum(hw) < 0) {
1089 		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1090 		e1000_dump_eeprom(adapter);
1091 		/* set MAC address to all zeroes to invalidate and temporary
1092 		 * disable this device for the user. This blocks regular
1093 		 * traffic while still permitting ethtool ioctls from reaching
1094 		 * the hardware as well as allowing the user to run the
1095 		 * interface after manually setting a hw addr using
1096 		 * `ip set address`
1097 		 */
1098 		memset(hw->mac_addr, 0, netdev->addr_len);
1099 	} else {
1100 		/* copy the MAC address out of the EEPROM */
1101 		if (e1000_read_mac_addr(hw))
1102 			e_err(probe, "EEPROM Read Error\n");
1103 	}
1104 	/* don't block initialization here due to bad MAC address */
1105 	eth_hw_addr_set(netdev, hw->mac_addr);
1106 
1107 	if (!is_valid_ether_addr(netdev->dev_addr))
1108 		e_err(probe, "Invalid MAC Address\n");
1109 
1110 
1111 	INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1112 	INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1113 			  e1000_82547_tx_fifo_stall_task);
1114 	INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1115 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
1116 
1117 	e1000_check_options(adapter);
1118 
1119 	/* Initial Wake on LAN setting
1120 	 * If APM wake is enabled in the EEPROM,
1121 	 * enable the ACPI Magic Packet filter
1122 	 */
1123 
1124 	switch (hw->mac_type) {
1125 	case e1000_82542_rev2_0:
1126 	case e1000_82542_rev2_1:
1127 	case e1000_82543:
1128 		break;
1129 	case e1000_82544:
1130 		e1000_read_eeprom(hw,
1131 			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1132 		eeprom_apme_mask = E1000_EEPROM_82544_APM;
1133 		break;
1134 	case e1000_82546:
1135 	case e1000_82546_rev_3:
1136 		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1137 			e1000_read_eeprom(hw,
1138 				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1139 			break;
1140 		}
1141 		fallthrough;
1142 	default:
1143 		e1000_read_eeprom(hw,
1144 			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1145 		break;
1146 	}
1147 	if (eeprom_data & eeprom_apme_mask)
1148 		adapter->eeprom_wol |= E1000_WUFC_MAG;
1149 
1150 	/* now that we have the eeprom settings, apply the special cases
1151 	 * where the eeprom may be wrong or the board simply won't support
1152 	 * wake on lan on a particular port
1153 	 */
1154 	switch (pdev->device) {
1155 	case E1000_DEV_ID_82546GB_PCIE:
1156 		adapter->eeprom_wol = 0;
1157 		break;
1158 	case E1000_DEV_ID_82546EB_FIBER:
1159 	case E1000_DEV_ID_82546GB_FIBER:
1160 		/* Wake events only supported on port A for dual fiber
1161 		 * regardless of eeprom setting
1162 		 */
1163 		if (er32(STATUS) & E1000_STATUS_FUNC_1)
1164 			adapter->eeprom_wol = 0;
1165 		break;
1166 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1167 		/* if quad port adapter, disable WoL on all but port A */
1168 		if (global_quad_port_a != 0)
1169 			adapter->eeprom_wol = 0;
1170 		else
1171 			adapter->quad_port_a = true;
1172 		/* Reset for multiple quad port adapters */
1173 		if (++global_quad_port_a == 4)
1174 			global_quad_port_a = 0;
1175 		break;
1176 	}
1177 
1178 	/* initialize the wol settings based on the eeprom settings */
1179 	adapter->wol = adapter->eeprom_wol;
1180 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1181 
1182 	/* Auto detect PHY address */
1183 	if (hw->mac_type == e1000_ce4100) {
1184 		for (i = 0; i < 32; i++) {
1185 			hw->phy_addr = i;
1186 			e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1187 
1188 			if (tmp != 0 && tmp != 0xFF)
1189 				break;
1190 		}
1191 
1192 		if (i >= 32)
1193 			goto err_eeprom;
1194 	}
1195 
1196 	/* reset the hardware with the new settings */
1197 	e1000_reset(adapter);
1198 
1199 	strcpy(netdev->name, "eth%d");
1200 	err = register_netdev(netdev);
1201 	if (err)
1202 		goto err_register;
1203 
1204 	e1000_vlan_filter_on_off(adapter, false);
1205 
1206 	/* print bus type/speed/width info */
1207 	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1208 	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1209 	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1210 		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
1211 		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
1212 		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1213 	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1214 	       netdev->dev_addr);
1215 
1216 	/* carrier off reporting is important to ethtool even BEFORE open */
1217 	netif_carrier_off(netdev);
1218 
1219 	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1220 
1221 	cards_found++;
1222 	return 0;
1223 
1224 err_register:
1225 err_eeprom:
1226 	e1000_phy_hw_reset(hw);
1227 
1228 	if (hw->flash_address)
1229 		iounmap(hw->flash_address);
1230 	kfree(adapter->tx_ring);
1231 	kfree(adapter->rx_ring);
1232 err_dma:
1233 err_sw_init:
1234 err_mdio_ioremap:
1235 	iounmap(hw->ce4100_gbe_mdio_base_virt);
1236 	iounmap(hw->hw_addr);
1237 err_ioremap:
1238 	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1239 	free_netdev(netdev);
1240 err_alloc_etherdev:
1241 	pci_release_selected_regions(pdev, bars);
1242 err_pci_reg:
1243 	if (!adapter || disable_dev)
1244 		pci_disable_device(pdev);
1245 	return err;
1246 }
1247 
1248 /**
1249  * e1000_remove - Device Removal Routine
1250  * @pdev: PCI device information struct
1251  *
1252  * e1000_remove is called by the PCI subsystem to alert the driver
1253  * that it should release a PCI device. That could be caused by a
1254  * Hot-Plug event, or because the driver is going to be removed from
1255  * memory.
1256  **/
1257 static void e1000_remove(struct pci_dev *pdev)
1258 {
1259 	struct net_device *netdev = pci_get_drvdata(pdev);
1260 	struct e1000_adapter *adapter = netdev_priv(netdev);
1261 	struct e1000_hw *hw = &adapter->hw;
1262 	bool disable_dev;
1263 
1264 	e1000_down_and_stop(adapter);
1265 	e1000_release_manageability(adapter);
1266 
1267 	unregister_netdev(netdev);
1268 
1269 	e1000_phy_hw_reset(hw);
1270 
1271 	kfree(adapter->tx_ring);
1272 	kfree(adapter->rx_ring);
1273 
1274 	if (hw->mac_type == e1000_ce4100)
1275 		iounmap(hw->ce4100_gbe_mdio_base_virt);
1276 	iounmap(hw->hw_addr);
1277 	if (hw->flash_address)
1278 		iounmap(hw->flash_address);
1279 	pci_release_selected_regions(pdev, adapter->bars);
1280 
1281 	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1282 	free_netdev(netdev);
1283 
1284 	if (disable_dev)
1285 		pci_disable_device(pdev);
1286 }
1287 
1288 /**
1289  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1290  * @adapter: board private structure to initialize
1291  *
1292  * e1000_sw_init initializes the Adapter private data structure.
1293  * e1000_init_hw_struct MUST be called before this function
1294  **/
1295 static int e1000_sw_init(struct e1000_adapter *adapter)
1296 {
1297 	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1298 
1299 	adapter->num_tx_queues = 1;
1300 	adapter->num_rx_queues = 1;
1301 
1302 	if (e1000_alloc_queues(adapter)) {
1303 		e_err(probe, "Unable to allocate memory for queues\n");
1304 		return -ENOMEM;
1305 	}
1306 
1307 	/* Explicitly disable IRQ since the NIC can be in any state. */
1308 	e1000_irq_disable(adapter);
1309 
1310 	spin_lock_init(&adapter->stats_lock);
1311 
1312 	set_bit(__E1000_DOWN, &adapter->flags);
1313 
1314 	return 0;
1315 }
1316 
1317 /**
1318  * e1000_alloc_queues - Allocate memory for all rings
1319  * @adapter: board private structure to initialize
1320  *
1321  * We allocate one ring per queue at run-time since we don't know the
1322  * number of queues at compile-time.
1323  **/
1324 static int e1000_alloc_queues(struct e1000_adapter *adapter)
1325 {
1326 	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1327 				   sizeof(struct e1000_tx_ring), GFP_KERNEL);
1328 	if (!adapter->tx_ring)
1329 		return -ENOMEM;
1330 
1331 	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1332 				   sizeof(struct e1000_rx_ring), GFP_KERNEL);
1333 	if (!adapter->rx_ring) {
1334 		kfree(adapter->tx_ring);
1335 		return -ENOMEM;
1336 	}
1337 
1338 	return E1000_SUCCESS;
1339 }
1340 
1341 /**
1342  * e1000_open - Called when a network interface is made active
1343  * @netdev: network interface device structure
1344  *
1345  * Returns 0 on success, negative value on failure
1346  *
1347  * The open entry point is called when a network interface is made
1348  * active by the system (IFF_UP).  At this point all resources needed
1349  * for transmit and receive operations are allocated, the interrupt
1350  * handler is registered with the OS, the watchdog task is started,
1351  * and the stack is notified that the interface is ready.
1352  **/
1353 int e1000_open(struct net_device *netdev)
1354 {
1355 	struct e1000_adapter *adapter = netdev_priv(netdev);
1356 	struct e1000_hw *hw = &adapter->hw;
1357 	int err;
1358 
1359 	/* disallow open during test */
1360 	if (test_bit(__E1000_TESTING, &adapter->flags))
1361 		return -EBUSY;
1362 
1363 	netif_carrier_off(netdev);
1364 
1365 	/* allocate transmit descriptors */
1366 	err = e1000_setup_all_tx_resources(adapter);
1367 	if (err)
1368 		goto err_setup_tx;
1369 
1370 	/* allocate receive descriptors */
1371 	err = e1000_setup_all_rx_resources(adapter);
1372 	if (err)
1373 		goto err_setup_rx;
1374 
1375 	e1000_power_up_phy(adapter);
1376 
1377 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1378 	if ((hw->mng_cookie.status &
1379 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1380 		e1000_update_mng_vlan(adapter);
1381 	}
1382 
1383 	/* before we allocate an interrupt, we must be ready to handle it.
1384 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1385 	 * as soon as we call pci_request_irq, so we have to setup our
1386 	 * clean_rx handler before we do so.
1387 	 */
1388 	e1000_configure(adapter);
1389 
1390 	err = e1000_request_irq(adapter);
1391 	if (err)
1392 		goto err_req_irq;
1393 
1394 	/* From here on the code is the same as e1000_up() */
1395 	clear_bit(__E1000_DOWN, &adapter->flags);
1396 
1397 	netif_napi_set_irq(&adapter->napi, adapter->pdev->irq);
1398 	napi_enable(&adapter->napi);
1399 	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_RX, &adapter->napi);
1400 	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_TX, &adapter->napi);
1401 
1402 	e1000_irq_enable(adapter);
1403 
1404 	netif_start_queue(netdev);
1405 
1406 	/* fire a link status change interrupt to start the watchdog */
1407 	ew32(ICS, E1000_ICS_LSC);
1408 
1409 	return E1000_SUCCESS;
1410 
1411 err_req_irq:
1412 	e1000_power_down_phy(adapter);
1413 	e1000_free_all_rx_resources(adapter);
1414 err_setup_rx:
1415 	e1000_free_all_tx_resources(adapter);
1416 err_setup_tx:
1417 	e1000_reset(adapter);
1418 
1419 	return err;
1420 }
1421 
1422 /**
1423  * e1000_close - Disables a network interface
1424  * @netdev: network interface device structure
1425  *
1426  * Returns 0, this is not allowed to fail
1427  *
1428  * The close entry point is called when an interface is de-activated
1429  * by the OS.  The hardware is still under the drivers control, but
1430  * needs to be disabled.  A global MAC reset is issued to stop the
1431  * hardware, and all transmit and receive resources are freed.
1432  **/
1433 int e1000_close(struct net_device *netdev)
1434 {
1435 	struct e1000_adapter *adapter = netdev_priv(netdev);
1436 	struct e1000_hw *hw = &adapter->hw;
1437 	int count = E1000_CHECK_RESET_COUNT;
1438 
1439 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags) && count--)
1440 		usleep_range(10000, 20000);
1441 
1442 	WARN_ON(count < 0);
1443 
1444 	/* signal that we're down so that the reset task will no longer run */
1445 	set_bit(__E1000_DOWN, &adapter->flags);
1446 	clear_bit(__E1000_RESETTING, &adapter->flags);
1447 
1448 	e1000_down(adapter);
1449 	e1000_power_down_phy(adapter);
1450 	e1000_free_irq(adapter);
1451 
1452 	e1000_free_all_tx_resources(adapter);
1453 	e1000_free_all_rx_resources(adapter);
1454 
1455 	/* kill manageability vlan ID if supported, but not if a vlan with
1456 	 * the same ID is registered on the host OS (let 8021q kill it)
1457 	 */
1458 	if ((hw->mng_cookie.status &
1459 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1460 	    !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1461 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1462 				       adapter->mng_vlan_id);
1463 	}
1464 
1465 	return 0;
1466 }
1467 
1468 /**
1469  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1470  * @adapter: address of board private structure
1471  * @start: address of beginning of memory
1472  * @len: length of memory
1473  **/
1474 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1475 				  unsigned long len)
1476 {
1477 	struct e1000_hw *hw = &adapter->hw;
1478 	unsigned long begin = (unsigned long)start;
1479 	unsigned long end = begin + len;
1480 
1481 	/* First rev 82545 and 82546 need to not allow any memory
1482 	 * write location to cross 64k boundary due to errata 23
1483 	 */
1484 	if (hw->mac_type == e1000_82545 ||
1485 	    hw->mac_type == e1000_ce4100 ||
1486 	    hw->mac_type == e1000_82546) {
1487 		return ((begin ^ (end - 1)) >> 16) == 0;
1488 	}
1489 
1490 	return true;
1491 }
1492 
1493 /**
1494  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1495  * @adapter: board private structure
1496  * @txdr:    tx descriptor ring (for a specific queue) to setup
1497  *
1498  * Return 0 on success, negative on failure
1499  **/
1500 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1501 				    struct e1000_tx_ring *txdr)
1502 {
1503 	struct pci_dev *pdev = adapter->pdev;
1504 	int size;
1505 
1506 	size = sizeof(struct e1000_tx_buffer) * txdr->count;
1507 	txdr->buffer_info = vzalloc(size);
1508 	if (!txdr->buffer_info)
1509 		return -ENOMEM;
1510 
1511 	/* round up to nearest 4K */
1512 
1513 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1514 	txdr->size = ALIGN(txdr->size, 4096);
1515 
1516 	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1517 					GFP_KERNEL);
1518 	if (!txdr->desc) {
1519 setup_tx_desc_die:
1520 		vfree(txdr->buffer_info);
1521 		return -ENOMEM;
1522 	}
1523 
1524 	/* Fix for errata 23, can't cross 64kB boundary */
1525 	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1526 		void *olddesc = txdr->desc;
1527 		dma_addr_t olddma = txdr->dma;
1528 		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1529 		      txdr->size, txdr->desc);
1530 		/* Try again, without freeing the previous */
1531 		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1532 						&txdr->dma, GFP_KERNEL);
1533 		/* Failed allocation, critical failure */
1534 		if (!txdr->desc) {
1535 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1536 					  olddma);
1537 			goto setup_tx_desc_die;
1538 		}
1539 
1540 		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1541 			/* give up */
1542 			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1543 					  txdr->dma);
1544 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1545 					  olddma);
1546 			e_err(probe, "Unable to allocate aligned memory "
1547 			      "for the transmit descriptor ring\n");
1548 			vfree(txdr->buffer_info);
1549 			return -ENOMEM;
1550 		} else {
1551 			/* Free old allocation, new allocation was successful */
1552 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1553 					  olddma);
1554 		}
1555 	}
1556 	memset(txdr->desc, 0, txdr->size);
1557 
1558 	txdr->next_to_use = 0;
1559 	txdr->next_to_clean = 0;
1560 
1561 	return 0;
1562 }
1563 
1564 /**
1565  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1566  * 				  (Descriptors) for all queues
1567  * @adapter: board private structure
1568  *
1569  * Return 0 on success, negative on failure
1570  **/
1571 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1572 {
1573 	int i, err = 0;
1574 
1575 	for (i = 0; i < adapter->num_tx_queues; i++) {
1576 		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1577 		if (err) {
1578 			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1579 			for (i-- ; i >= 0; i--)
1580 				e1000_free_tx_resources(adapter,
1581 							&adapter->tx_ring[i]);
1582 			break;
1583 		}
1584 	}
1585 
1586 	return err;
1587 }
1588 
1589 /**
1590  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1591  * @adapter: board private structure
1592  *
1593  * Configure the Tx unit of the MAC after a reset.
1594  **/
1595 static void e1000_configure_tx(struct e1000_adapter *adapter)
1596 {
1597 	u64 tdba;
1598 	struct e1000_hw *hw = &adapter->hw;
1599 	u32 tdlen, tctl, tipg;
1600 	u32 ipgr1, ipgr2;
1601 
1602 	/* Setup the HW Tx Head and Tail descriptor pointers */
1603 
1604 	switch (adapter->num_tx_queues) {
1605 	case 1:
1606 	default:
1607 		tdba = adapter->tx_ring[0].dma;
1608 		tdlen = adapter->tx_ring[0].count *
1609 			sizeof(struct e1000_tx_desc);
1610 		ew32(TDLEN, tdlen);
1611 		ew32(TDBAH, (tdba >> 32));
1612 		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1613 		ew32(TDT, 0);
1614 		ew32(TDH, 0);
1615 		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1616 					   E1000_TDH : E1000_82542_TDH);
1617 		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1618 					   E1000_TDT : E1000_82542_TDT);
1619 		break;
1620 	}
1621 
1622 	/* Set the default values for the Tx Inter Packet Gap timer */
1623 	if ((hw->media_type == e1000_media_type_fiber ||
1624 	     hw->media_type == e1000_media_type_internal_serdes))
1625 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1626 	else
1627 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1628 
1629 	switch (hw->mac_type) {
1630 	case e1000_82542_rev2_0:
1631 	case e1000_82542_rev2_1:
1632 		tipg = DEFAULT_82542_TIPG_IPGT;
1633 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1634 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1635 		break;
1636 	default:
1637 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1638 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1639 		break;
1640 	}
1641 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1642 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1643 	ew32(TIPG, tipg);
1644 
1645 	/* Set the Tx Interrupt Delay register */
1646 
1647 	ew32(TIDV, adapter->tx_int_delay);
1648 	if (hw->mac_type >= e1000_82540)
1649 		ew32(TADV, adapter->tx_abs_int_delay);
1650 
1651 	/* Program the Transmit Control Register */
1652 
1653 	tctl = er32(TCTL);
1654 	tctl &= ~E1000_TCTL_CT;
1655 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1656 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1657 
1658 	e1000_config_collision_dist(hw);
1659 
1660 	/* Setup Transmit Descriptor Settings for eop descriptor */
1661 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1662 
1663 	/* only set IDE if we are delaying interrupts using the timers */
1664 	if (adapter->tx_int_delay)
1665 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1666 
1667 	if (hw->mac_type < e1000_82543)
1668 		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1669 	else
1670 		adapter->txd_cmd |= E1000_TXD_CMD_RS;
1671 
1672 	/* Cache if we're 82544 running in PCI-X because we'll
1673 	 * need this to apply a workaround later in the send path.
1674 	 */
1675 	if (hw->mac_type == e1000_82544 &&
1676 	    hw->bus_type == e1000_bus_type_pcix)
1677 		adapter->pcix_82544 = true;
1678 
1679 	ew32(TCTL, tctl);
1680 
1681 }
1682 
1683 /**
1684  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1685  * @adapter: board private structure
1686  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1687  *
1688  * Returns 0 on success, negative on failure
1689  **/
1690 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1691 				    struct e1000_rx_ring *rxdr)
1692 {
1693 	struct pci_dev *pdev = adapter->pdev;
1694 	int size, desc_len;
1695 
1696 	size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1697 	rxdr->buffer_info = vzalloc(size);
1698 	if (!rxdr->buffer_info)
1699 		return -ENOMEM;
1700 
1701 	desc_len = sizeof(struct e1000_rx_desc);
1702 
1703 	/* Round up to nearest 4K */
1704 
1705 	rxdr->size = rxdr->count * desc_len;
1706 	rxdr->size = ALIGN(rxdr->size, 4096);
1707 
1708 	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1709 					GFP_KERNEL);
1710 	if (!rxdr->desc) {
1711 setup_rx_desc_die:
1712 		vfree(rxdr->buffer_info);
1713 		return -ENOMEM;
1714 	}
1715 
1716 	/* Fix for errata 23, can't cross 64kB boundary */
1717 	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1718 		void *olddesc = rxdr->desc;
1719 		dma_addr_t olddma = rxdr->dma;
1720 		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1721 		      rxdr->size, rxdr->desc);
1722 		/* Try again, without freeing the previous */
1723 		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1724 						&rxdr->dma, GFP_KERNEL);
1725 		/* Failed allocation, critical failure */
1726 		if (!rxdr->desc) {
1727 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1728 					  olddma);
1729 			goto setup_rx_desc_die;
1730 		}
1731 
1732 		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1733 			/* give up */
1734 			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1735 					  rxdr->dma);
1736 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1737 					  olddma);
1738 			e_err(probe, "Unable to allocate aligned memory for "
1739 			      "the Rx descriptor ring\n");
1740 			goto setup_rx_desc_die;
1741 		} else {
1742 			/* Free old allocation, new allocation was successful */
1743 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1744 					  olddma);
1745 		}
1746 	}
1747 	memset(rxdr->desc, 0, rxdr->size);
1748 
1749 	rxdr->next_to_clean = 0;
1750 	rxdr->next_to_use = 0;
1751 	rxdr->rx_skb_top = NULL;
1752 
1753 	return 0;
1754 }
1755 
1756 /**
1757  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1758  * 				  (Descriptors) for all queues
1759  * @adapter: board private structure
1760  *
1761  * Return 0 on success, negative on failure
1762  **/
1763 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1764 {
1765 	int i, err = 0;
1766 
1767 	for (i = 0; i < adapter->num_rx_queues; i++) {
1768 		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1769 		if (err) {
1770 			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1771 			for (i-- ; i >= 0; i--)
1772 				e1000_free_rx_resources(adapter,
1773 							&adapter->rx_ring[i]);
1774 			break;
1775 		}
1776 	}
1777 
1778 	return err;
1779 }
1780 
1781 /**
1782  * e1000_setup_rctl - configure the receive control registers
1783  * @adapter: Board private structure
1784  **/
1785 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1786 {
1787 	struct e1000_hw *hw = &adapter->hw;
1788 	u32 rctl;
1789 
1790 	rctl = er32(RCTL);
1791 
1792 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1793 
1794 	rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1795 		E1000_RCTL_RDMTS_HALF |
1796 		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1797 
1798 	if (hw->tbi_compatibility_on == 1)
1799 		rctl |= E1000_RCTL_SBP;
1800 	else
1801 		rctl &= ~E1000_RCTL_SBP;
1802 
1803 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
1804 		rctl &= ~E1000_RCTL_LPE;
1805 	else
1806 		rctl |= E1000_RCTL_LPE;
1807 
1808 	/* Setup buffer sizes */
1809 	rctl &= ~E1000_RCTL_SZ_4096;
1810 	rctl |= E1000_RCTL_BSEX;
1811 	switch (adapter->rx_buffer_len) {
1812 	case E1000_RXBUFFER_2048:
1813 	default:
1814 		rctl |= E1000_RCTL_SZ_2048;
1815 		rctl &= ~E1000_RCTL_BSEX;
1816 		break;
1817 	case E1000_RXBUFFER_4096:
1818 		rctl |= E1000_RCTL_SZ_4096;
1819 		break;
1820 	case E1000_RXBUFFER_8192:
1821 		rctl |= E1000_RCTL_SZ_8192;
1822 		break;
1823 	case E1000_RXBUFFER_16384:
1824 		rctl |= E1000_RCTL_SZ_16384;
1825 		break;
1826 	}
1827 
1828 	/* This is useful for sniffing bad packets. */
1829 	if (adapter->netdev->features & NETIF_F_RXALL) {
1830 		/* UPE and MPE will be handled by normal PROMISC logic
1831 		 * in e1000e_set_rx_mode
1832 		 */
1833 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1834 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1835 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1836 
1837 		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1838 			  E1000_RCTL_DPF | /* Allow filtered pause */
1839 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1840 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1841 		 * and that breaks VLANs.
1842 		 */
1843 	}
1844 
1845 	ew32(RCTL, rctl);
1846 }
1847 
1848 /**
1849  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1850  * @adapter: board private structure
1851  *
1852  * Configure the Rx unit of the MAC after a reset.
1853  **/
1854 static void e1000_configure_rx(struct e1000_adapter *adapter)
1855 {
1856 	u64 rdba;
1857 	struct e1000_hw *hw = &adapter->hw;
1858 	u32 rdlen, rctl, rxcsum;
1859 
1860 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
1861 		rdlen = adapter->rx_ring[0].count *
1862 			sizeof(struct e1000_rx_desc);
1863 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1864 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1865 	} else {
1866 		rdlen = adapter->rx_ring[0].count *
1867 			sizeof(struct e1000_rx_desc);
1868 		adapter->clean_rx = e1000_clean_rx_irq;
1869 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1870 	}
1871 
1872 	/* disable receives while setting up the descriptors */
1873 	rctl = er32(RCTL);
1874 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1875 
1876 	/* set the Receive Delay Timer Register */
1877 	ew32(RDTR, adapter->rx_int_delay);
1878 
1879 	if (hw->mac_type >= e1000_82540) {
1880 		ew32(RADV, adapter->rx_abs_int_delay);
1881 		if (adapter->itr_setting != 0)
1882 			ew32(ITR, 1000000000 / (adapter->itr * 256));
1883 	}
1884 
1885 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1886 	 * the Base and Length of the Rx Descriptor Ring
1887 	 */
1888 	switch (adapter->num_rx_queues) {
1889 	case 1:
1890 	default:
1891 		rdba = adapter->rx_ring[0].dma;
1892 		ew32(RDLEN, rdlen);
1893 		ew32(RDBAH, (rdba >> 32));
1894 		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1895 		ew32(RDT, 0);
1896 		ew32(RDH, 0);
1897 		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1898 					   E1000_RDH : E1000_82542_RDH);
1899 		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1900 					   E1000_RDT : E1000_82542_RDT);
1901 		break;
1902 	}
1903 
1904 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
1905 	if (hw->mac_type >= e1000_82543) {
1906 		rxcsum = er32(RXCSUM);
1907 		if (adapter->rx_csum)
1908 			rxcsum |= E1000_RXCSUM_TUOFL;
1909 		else
1910 			/* don't need to clear IPPCSE as it defaults to 0 */
1911 			rxcsum &= ~E1000_RXCSUM_TUOFL;
1912 		ew32(RXCSUM, rxcsum);
1913 	}
1914 
1915 	/* Enable Receives */
1916 	ew32(RCTL, rctl | E1000_RCTL_EN);
1917 }
1918 
1919 /**
1920  * e1000_free_tx_resources - Free Tx Resources per Queue
1921  * @adapter: board private structure
1922  * @tx_ring: Tx descriptor ring for a specific queue
1923  *
1924  * Free all transmit software resources
1925  **/
1926 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1927 				    struct e1000_tx_ring *tx_ring)
1928 {
1929 	struct pci_dev *pdev = adapter->pdev;
1930 
1931 	e1000_clean_tx_ring(adapter, tx_ring);
1932 
1933 	vfree(tx_ring->buffer_info);
1934 	tx_ring->buffer_info = NULL;
1935 
1936 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1937 			  tx_ring->dma);
1938 
1939 	tx_ring->desc = NULL;
1940 }
1941 
1942 /**
1943  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1944  * @adapter: board private structure
1945  *
1946  * Free all transmit software resources
1947  **/
1948 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1949 {
1950 	int i;
1951 
1952 	for (i = 0; i < adapter->num_tx_queues; i++)
1953 		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1954 }
1955 
1956 static void
1957 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1958 				 struct e1000_tx_buffer *buffer_info,
1959 				 int budget)
1960 {
1961 	if (buffer_info->dma) {
1962 		if (buffer_info->mapped_as_page)
1963 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1964 				       buffer_info->length, DMA_TO_DEVICE);
1965 		else
1966 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1967 					 buffer_info->length,
1968 					 DMA_TO_DEVICE);
1969 		buffer_info->dma = 0;
1970 	}
1971 	if (buffer_info->skb) {
1972 		napi_consume_skb(buffer_info->skb, budget);
1973 		buffer_info->skb = NULL;
1974 	}
1975 	buffer_info->time_stamp = 0;
1976 	/* buffer_info must be completely set up in the transmit path */
1977 }
1978 
1979 /**
1980  * e1000_clean_tx_ring - Free Tx Buffers
1981  * @adapter: board private structure
1982  * @tx_ring: ring to be cleaned
1983  **/
1984 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1985 				struct e1000_tx_ring *tx_ring)
1986 {
1987 	struct e1000_hw *hw = &adapter->hw;
1988 	struct e1000_tx_buffer *buffer_info;
1989 	unsigned long size;
1990 	unsigned int i;
1991 
1992 	/* Free all the Tx ring sk_buffs */
1993 
1994 	for (i = 0; i < tx_ring->count; i++) {
1995 		buffer_info = &tx_ring->buffer_info[i];
1996 		e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0);
1997 	}
1998 
1999 	netdev_reset_queue(adapter->netdev);
2000 	size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
2001 	memset(tx_ring->buffer_info, 0, size);
2002 
2003 	/* Zero out the descriptor ring */
2004 
2005 	memset(tx_ring->desc, 0, tx_ring->size);
2006 
2007 	tx_ring->next_to_use = 0;
2008 	tx_ring->next_to_clean = 0;
2009 	tx_ring->last_tx_tso = false;
2010 
2011 	writel(0, hw->hw_addr + tx_ring->tdh);
2012 	writel(0, hw->hw_addr + tx_ring->tdt);
2013 }
2014 
2015 /**
2016  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2017  * @adapter: board private structure
2018  **/
2019 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2020 {
2021 	int i;
2022 
2023 	for (i = 0; i < adapter->num_tx_queues; i++)
2024 		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2025 }
2026 
2027 /**
2028  * e1000_free_rx_resources - Free Rx Resources
2029  * @adapter: board private structure
2030  * @rx_ring: ring to clean the resources from
2031  *
2032  * Free all receive software resources
2033  **/
2034 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2035 				    struct e1000_rx_ring *rx_ring)
2036 {
2037 	struct pci_dev *pdev = adapter->pdev;
2038 
2039 	e1000_clean_rx_ring(adapter, rx_ring);
2040 
2041 	vfree(rx_ring->buffer_info);
2042 	rx_ring->buffer_info = NULL;
2043 
2044 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2045 			  rx_ring->dma);
2046 
2047 	rx_ring->desc = NULL;
2048 }
2049 
2050 /**
2051  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2052  * @adapter: board private structure
2053  *
2054  * Free all receive software resources
2055  **/
2056 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2057 {
2058 	int i;
2059 
2060 	for (i = 0; i < adapter->num_rx_queues; i++)
2061 		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2062 }
2063 
2064 #define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2065 static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2066 {
2067 	return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2068 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2069 }
2070 
2071 static void *e1000_alloc_frag(const struct e1000_adapter *a)
2072 {
2073 	unsigned int len = e1000_frag_len(a);
2074 	u8 *data = netdev_alloc_frag(len);
2075 
2076 	if (likely(data))
2077 		data += E1000_HEADROOM;
2078 	return data;
2079 }
2080 
2081 /**
2082  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2083  * @adapter: board private structure
2084  * @rx_ring: ring to free buffers from
2085  **/
2086 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2087 				struct e1000_rx_ring *rx_ring)
2088 {
2089 	struct e1000_hw *hw = &adapter->hw;
2090 	struct e1000_rx_buffer *buffer_info;
2091 	struct pci_dev *pdev = adapter->pdev;
2092 	unsigned long size;
2093 	unsigned int i;
2094 
2095 	/* Free all the Rx netfrags */
2096 	for (i = 0; i < rx_ring->count; i++) {
2097 		buffer_info = &rx_ring->buffer_info[i];
2098 		if (adapter->clean_rx == e1000_clean_rx_irq) {
2099 			if (buffer_info->dma)
2100 				dma_unmap_single(&pdev->dev, buffer_info->dma,
2101 						 adapter->rx_buffer_len,
2102 						 DMA_FROM_DEVICE);
2103 			if (buffer_info->rxbuf.data) {
2104 				skb_free_frag(buffer_info->rxbuf.data);
2105 				buffer_info->rxbuf.data = NULL;
2106 			}
2107 		} else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2108 			if (buffer_info->dma)
2109 				dma_unmap_page(&pdev->dev, buffer_info->dma,
2110 					       adapter->rx_buffer_len,
2111 					       DMA_FROM_DEVICE);
2112 			if (buffer_info->rxbuf.page) {
2113 				put_page(buffer_info->rxbuf.page);
2114 				buffer_info->rxbuf.page = NULL;
2115 			}
2116 		}
2117 
2118 		buffer_info->dma = 0;
2119 	}
2120 
2121 	/* there also may be some cached data from a chained receive */
2122 	napi_free_frags(&adapter->napi);
2123 	rx_ring->rx_skb_top = NULL;
2124 
2125 	size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2126 	memset(rx_ring->buffer_info, 0, size);
2127 
2128 	/* Zero out the descriptor ring */
2129 	memset(rx_ring->desc, 0, rx_ring->size);
2130 
2131 	rx_ring->next_to_clean = 0;
2132 	rx_ring->next_to_use = 0;
2133 
2134 	writel(0, hw->hw_addr + rx_ring->rdh);
2135 	writel(0, hw->hw_addr + rx_ring->rdt);
2136 }
2137 
2138 /**
2139  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2140  * @adapter: board private structure
2141  **/
2142 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2143 {
2144 	int i;
2145 
2146 	for (i = 0; i < adapter->num_rx_queues; i++)
2147 		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2148 }
2149 
2150 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2151  * and memory write and invalidate disabled for certain operations
2152  */
2153 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2154 {
2155 	struct e1000_hw *hw = &adapter->hw;
2156 	struct net_device *netdev = adapter->netdev;
2157 	u32 rctl;
2158 
2159 	e1000_pci_clear_mwi(hw);
2160 
2161 	rctl = er32(RCTL);
2162 	rctl |= E1000_RCTL_RST;
2163 	ew32(RCTL, rctl);
2164 	E1000_WRITE_FLUSH();
2165 	mdelay(5);
2166 
2167 	if (netif_running(netdev))
2168 		e1000_clean_all_rx_rings(adapter);
2169 }
2170 
2171 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2172 {
2173 	struct e1000_hw *hw = &adapter->hw;
2174 	struct net_device *netdev = adapter->netdev;
2175 	u32 rctl;
2176 
2177 	rctl = er32(RCTL);
2178 	rctl &= ~E1000_RCTL_RST;
2179 	ew32(RCTL, rctl);
2180 	E1000_WRITE_FLUSH();
2181 	mdelay(5);
2182 
2183 	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2184 		e1000_pci_set_mwi(hw);
2185 
2186 	if (netif_running(netdev)) {
2187 		/* No need to loop, because 82542 supports only 1 queue */
2188 		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2189 		e1000_configure_rx(adapter);
2190 		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2191 	}
2192 }
2193 
2194 /**
2195  * e1000_set_mac - Change the Ethernet Address of the NIC
2196  * @netdev: network interface device structure
2197  * @p: pointer to an address structure
2198  *
2199  * Returns 0 on success, negative on failure
2200  **/
2201 static int e1000_set_mac(struct net_device *netdev, void *p)
2202 {
2203 	struct e1000_adapter *adapter = netdev_priv(netdev);
2204 	struct e1000_hw *hw = &adapter->hw;
2205 	struct sockaddr *addr = p;
2206 
2207 	if (!is_valid_ether_addr(addr->sa_data))
2208 		return -EADDRNOTAVAIL;
2209 
2210 	/* 82542 2.0 needs to be in reset to write receive address registers */
2211 
2212 	if (hw->mac_type == e1000_82542_rev2_0)
2213 		e1000_enter_82542_rst(adapter);
2214 
2215 	eth_hw_addr_set(netdev, addr->sa_data);
2216 	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2217 
2218 	e1000_rar_set(hw, hw->mac_addr, 0);
2219 
2220 	if (hw->mac_type == e1000_82542_rev2_0)
2221 		e1000_leave_82542_rst(adapter);
2222 
2223 	return 0;
2224 }
2225 
2226 /**
2227  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2228  * @netdev: network interface device structure
2229  *
2230  * The set_rx_mode entry point is called whenever the unicast or multicast
2231  * address lists or the network interface flags are updated. This routine is
2232  * responsible for configuring the hardware for proper unicast, multicast,
2233  * promiscuous mode, and all-multi behavior.
2234  **/
2235 static void e1000_set_rx_mode(struct net_device *netdev)
2236 {
2237 	struct e1000_adapter *adapter = netdev_priv(netdev);
2238 	struct e1000_hw *hw = &adapter->hw;
2239 	struct netdev_hw_addr *ha;
2240 	bool use_uc = false;
2241 	u32 rctl;
2242 	u32 hash_value;
2243 	int i, rar_entries = E1000_RAR_ENTRIES;
2244 	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2245 	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2246 
2247 	if (!mcarray)
2248 		return;
2249 
2250 	/* Check for Promiscuous and All Multicast modes */
2251 
2252 	rctl = er32(RCTL);
2253 
2254 	if (netdev->flags & IFF_PROMISC) {
2255 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2256 		rctl &= ~E1000_RCTL_VFE;
2257 	} else {
2258 		if (netdev->flags & IFF_ALLMULTI)
2259 			rctl |= E1000_RCTL_MPE;
2260 		else
2261 			rctl &= ~E1000_RCTL_MPE;
2262 		/* Enable VLAN filter if there is a VLAN */
2263 		if (e1000_vlan_used(adapter))
2264 			rctl |= E1000_RCTL_VFE;
2265 	}
2266 
2267 	if (netdev_uc_count(netdev) > rar_entries - 1) {
2268 		rctl |= E1000_RCTL_UPE;
2269 	} else if (!(netdev->flags & IFF_PROMISC)) {
2270 		rctl &= ~E1000_RCTL_UPE;
2271 		use_uc = true;
2272 	}
2273 
2274 	ew32(RCTL, rctl);
2275 
2276 	/* 82542 2.0 needs to be in reset to write receive address registers */
2277 
2278 	if (hw->mac_type == e1000_82542_rev2_0)
2279 		e1000_enter_82542_rst(adapter);
2280 
2281 	/* load the first 14 addresses into the exact filters 1-14. Unicast
2282 	 * addresses take precedence to avoid disabling unicast filtering
2283 	 * when possible.
2284 	 *
2285 	 * RAR 0 is used for the station MAC address
2286 	 * if there are not 14 addresses, go ahead and clear the filters
2287 	 */
2288 	i = 1;
2289 	if (use_uc)
2290 		netdev_for_each_uc_addr(ha, netdev) {
2291 			if (i == rar_entries)
2292 				break;
2293 			e1000_rar_set(hw, ha->addr, i++);
2294 		}
2295 
2296 	netdev_for_each_mc_addr(ha, netdev) {
2297 		if (i == rar_entries) {
2298 			/* load any remaining addresses into the hash table */
2299 			u32 hash_reg, hash_bit, mta;
2300 			hash_value = e1000_hash_mc_addr(hw, ha->addr);
2301 			hash_reg = (hash_value >> 5) & 0x7F;
2302 			hash_bit = hash_value & 0x1F;
2303 			mta = (1 << hash_bit);
2304 			mcarray[hash_reg] |= mta;
2305 		} else {
2306 			e1000_rar_set(hw, ha->addr, i++);
2307 		}
2308 	}
2309 
2310 	for (; i < rar_entries; i++) {
2311 		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2312 		E1000_WRITE_FLUSH();
2313 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2314 		E1000_WRITE_FLUSH();
2315 	}
2316 
2317 	/* write the hash table completely, write from bottom to avoid
2318 	 * both stupid write combining chipsets, and flushing each write
2319 	 */
2320 	for (i = mta_reg_count - 1; i >= 0 ; i--) {
2321 		/* If we are on an 82544 has an errata where writing odd
2322 		 * offsets overwrites the previous even offset, but writing
2323 		 * backwards over the range solves the issue by always
2324 		 * writing the odd offset first
2325 		 */
2326 		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2327 	}
2328 	E1000_WRITE_FLUSH();
2329 
2330 	if (hw->mac_type == e1000_82542_rev2_0)
2331 		e1000_leave_82542_rst(adapter);
2332 
2333 	kfree(mcarray);
2334 }
2335 
2336 /**
2337  * e1000_update_phy_info_task - get phy info
2338  * @work: work struct contained inside adapter struct
2339  *
2340  * Need to wait a few seconds after link up to get diagnostic information from
2341  * the phy
2342  */
2343 static void e1000_update_phy_info_task(struct work_struct *work)
2344 {
2345 	struct e1000_adapter *adapter = container_of(work,
2346 						     struct e1000_adapter,
2347 						     phy_info_task.work);
2348 
2349 	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2350 }
2351 
2352 /**
2353  * e1000_82547_tx_fifo_stall_task - task to complete work
2354  * @work: work struct contained inside adapter struct
2355  **/
2356 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2357 {
2358 	struct e1000_adapter *adapter = container_of(work,
2359 						     struct e1000_adapter,
2360 						     fifo_stall_task.work);
2361 	struct e1000_hw *hw = &adapter->hw;
2362 	struct net_device *netdev = adapter->netdev;
2363 	u32 tctl;
2364 
2365 	if (atomic_read(&adapter->tx_fifo_stall)) {
2366 		if ((er32(TDT) == er32(TDH)) &&
2367 		   (er32(TDFT) == er32(TDFH)) &&
2368 		   (er32(TDFTS) == er32(TDFHS))) {
2369 			tctl = er32(TCTL);
2370 			ew32(TCTL, tctl & ~E1000_TCTL_EN);
2371 			ew32(TDFT, adapter->tx_head_addr);
2372 			ew32(TDFH, adapter->tx_head_addr);
2373 			ew32(TDFTS, adapter->tx_head_addr);
2374 			ew32(TDFHS, adapter->tx_head_addr);
2375 			ew32(TCTL, tctl);
2376 			E1000_WRITE_FLUSH();
2377 
2378 			adapter->tx_fifo_head = 0;
2379 			atomic_set(&adapter->tx_fifo_stall, 0);
2380 			netif_wake_queue(netdev);
2381 		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2382 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
2383 		}
2384 	}
2385 }
2386 
2387 bool e1000_has_link(struct e1000_adapter *adapter)
2388 {
2389 	struct e1000_hw *hw = &adapter->hw;
2390 	bool link_active = false;
2391 
2392 	/* get_link_status is set on LSC (link status) interrupt or rx
2393 	 * sequence error interrupt (except on intel ce4100).
2394 	 * get_link_status will stay false until the
2395 	 * e1000_check_for_link establishes link for copper adapters
2396 	 * ONLY
2397 	 */
2398 	switch (hw->media_type) {
2399 	case e1000_media_type_copper:
2400 		if (hw->mac_type == e1000_ce4100)
2401 			hw->get_link_status = 1;
2402 		if (hw->get_link_status) {
2403 			e1000_check_for_link(hw);
2404 			link_active = !hw->get_link_status;
2405 		} else {
2406 			link_active = true;
2407 		}
2408 		break;
2409 	case e1000_media_type_fiber:
2410 		e1000_check_for_link(hw);
2411 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2412 		break;
2413 	case e1000_media_type_internal_serdes:
2414 		e1000_check_for_link(hw);
2415 		link_active = hw->serdes_has_link;
2416 		break;
2417 	default:
2418 		break;
2419 	}
2420 
2421 	return link_active;
2422 }
2423 
2424 /**
2425  * e1000_watchdog - work function
2426  * @work: work struct contained inside adapter struct
2427  **/
2428 static void e1000_watchdog(struct work_struct *work)
2429 {
2430 	struct e1000_adapter *adapter = container_of(work,
2431 						     struct e1000_adapter,
2432 						     watchdog_task.work);
2433 	struct e1000_hw *hw = &adapter->hw;
2434 	struct net_device *netdev = adapter->netdev;
2435 	struct e1000_tx_ring *txdr = adapter->tx_ring;
2436 	u32 link, tctl;
2437 
2438 	link = e1000_has_link(adapter);
2439 	if ((netif_carrier_ok(netdev)) && link)
2440 		goto link_up;
2441 
2442 	if (link) {
2443 		if (!netif_carrier_ok(netdev)) {
2444 			u32 ctrl;
2445 			/* update snapshot of PHY registers on LSC */
2446 			e1000_get_speed_and_duplex(hw,
2447 						   &adapter->link_speed,
2448 						   &adapter->link_duplex);
2449 
2450 			ctrl = er32(CTRL);
2451 			pr_info("%s NIC Link is Up %d Mbps %s, "
2452 				"Flow Control: %s\n",
2453 				netdev->name,
2454 				adapter->link_speed,
2455 				adapter->link_duplex == FULL_DUPLEX ?
2456 				"Full Duplex" : "Half Duplex",
2457 				((ctrl & E1000_CTRL_TFCE) && (ctrl &
2458 				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2459 				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2460 				E1000_CTRL_TFCE) ? "TX" : "None")));
2461 
2462 			/* adjust timeout factor according to speed/duplex */
2463 			adapter->tx_timeout_factor = 1;
2464 			switch (adapter->link_speed) {
2465 			case SPEED_10:
2466 				adapter->tx_timeout_factor = 16;
2467 				break;
2468 			case SPEED_100:
2469 				/* maybe add some timeout factor ? */
2470 				break;
2471 			}
2472 
2473 			/* enable transmits in the hardware */
2474 			tctl = er32(TCTL);
2475 			tctl |= E1000_TCTL_EN;
2476 			ew32(TCTL, tctl);
2477 
2478 			netif_carrier_on(netdev);
2479 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2480 				schedule_delayed_work(&adapter->phy_info_task,
2481 						      2 * HZ);
2482 			adapter->smartspeed = 0;
2483 		}
2484 	} else {
2485 		if (netif_carrier_ok(netdev)) {
2486 			adapter->link_speed = 0;
2487 			adapter->link_duplex = 0;
2488 			pr_info("%s NIC Link is Down\n",
2489 				netdev->name);
2490 			netif_carrier_off(netdev);
2491 
2492 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2493 				schedule_delayed_work(&adapter->phy_info_task,
2494 						      2 * HZ);
2495 		}
2496 
2497 		e1000_smartspeed(adapter);
2498 	}
2499 
2500 link_up:
2501 	e1000_update_stats(adapter);
2502 
2503 	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2504 	adapter->tpt_old = adapter->stats.tpt;
2505 	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2506 	adapter->colc_old = adapter->stats.colc;
2507 
2508 	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2509 	adapter->gorcl_old = adapter->stats.gorcl;
2510 	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2511 	adapter->gotcl_old = adapter->stats.gotcl;
2512 
2513 	e1000_update_adaptive(hw);
2514 
2515 	if (!netif_carrier_ok(netdev)) {
2516 		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2517 			/* We've lost link, so the controller stops DMA,
2518 			 * but we've got queued Tx work that's never going
2519 			 * to get done, so reset controller to flush Tx.
2520 			 * (Do the reset outside of interrupt context).
2521 			 */
2522 			adapter->tx_timeout_count++;
2523 			schedule_work(&adapter->reset_task);
2524 			/* exit immediately since reset is imminent */
2525 			return;
2526 		}
2527 	}
2528 
2529 	/* Simple mode for Interrupt Throttle Rate (ITR) */
2530 	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2531 		/* Symmetric Tx/Rx gets a reduced ITR=2000;
2532 		 * Total asymmetrical Tx or Rx gets ITR=8000;
2533 		 * everyone else is between 2000-8000.
2534 		 */
2535 		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2536 		u32 dif = (adapter->gotcl > adapter->gorcl ?
2537 			    adapter->gotcl - adapter->gorcl :
2538 			    adapter->gorcl - adapter->gotcl) / 10000;
2539 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2540 
2541 		ew32(ITR, 1000000000 / (itr * 256));
2542 	}
2543 
2544 	/* Cause software interrupt to ensure rx ring is cleaned */
2545 	ew32(ICS, E1000_ICS_RXDMT0);
2546 
2547 	/* Force detection of hung controller every watchdog period */
2548 	adapter->detect_tx_hung = true;
2549 
2550 	/* Reschedule the task */
2551 	if (!test_bit(__E1000_DOWN, &adapter->flags))
2552 		schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2553 }
2554 
2555 enum latency_range {
2556 	lowest_latency = 0,
2557 	low_latency = 1,
2558 	bulk_latency = 2,
2559 	latency_invalid = 255
2560 };
2561 
2562 /**
2563  * e1000_update_itr - update the dynamic ITR value based on statistics
2564  * @adapter: pointer to adapter
2565  * @itr_setting: current adapter->itr
2566  * @packets: the number of packets during this measurement interval
2567  * @bytes: the number of bytes during this measurement interval
2568  *
2569  *      Stores a new ITR value based on packets and byte
2570  *      counts during the last interrupt.  The advantage of per interrupt
2571  *      computation is faster updates and more accurate ITR for the current
2572  *      traffic pattern.  Constants in this function were computed
2573  *      based on theoretical maximum wire speed and thresholds were set based
2574  *      on testing data as well as attempting to minimize response time
2575  *      while increasing bulk throughput.
2576  *      this functionality is controlled by the InterruptThrottleRate module
2577  *      parameter (see e1000_param.c)
2578  **/
2579 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2580 				     u16 itr_setting, int packets, int bytes)
2581 {
2582 	unsigned int retval = itr_setting;
2583 	struct e1000_hw *hw = &adapter->hw;
2584 
2585 	if (unlikely(hw->mac_type < e1000_82540))
2586 		goto update_itr_done;
2587 
2588 	if (packets == 0)
2589 		goto update_itr_done;
2590 
2591 	switch (itr_setting) {
2592 	case lowest_latency:
2593 		/* jumbo frames get bulk treatment*/
2594 		if (bytes/packets > 8000)
2595 			retval = bulk_latency;
2596 		else if ((packets < 5) && (bytes > 512))
2597 			retval = low_latency;
2598 		break;
2599 	case low_latency:  /* 50 usec aka 20000 ints/s */
2600 		if (bytes > 10000) {
2601 			/* jumbo frames need bulk latency setting */
2602 			if (bytes/packets > 8000)
2603 				retval = bulk_latency;
2604 			else if ((packets < 10) || ((bytes/packets) > 1200))
2605 				retval = bulk_latency;
2606 			else if ((packets > 35))
2607 				retval = lowest_latency;
2608 		} else if (bytes/packets > 2000)
2609 			retval = bulk_latency;
2610 		else if (packets <= 2 && bytes < 512)
2611 			retval = lowest_latency;
2612 		break;
2613 	case bulk_latency: /* 250 usec aka 4000 ints/s */
2614 		if (bytes > 25000) {
2615 			if (packets > 35)
2616 				retval = low_latency;
2617 		} else if (bytes < 6000) {
2618 			retval = low_latency;
2619 		}
2620 		break;
2621 	}
2622 
2623 update_itr_done:
2624 	return retval;
2625 }
2626 
2627 static void e1000_set_itr(struct e1000_adapter *adapter)
2628 {
2629 	struct e1000_hw *hw = &adapter->hw;
2630 	u16 current_itr;
2631 	u32 new_itr = adapter->itr;
2632 
2633 	if (unlikely(hw->mac_type < e1000_82540))
2634 		return;
2635 
2636 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2637 	if (unlikely(adapter->link_speed != SPEED_1000)) {
2638 		new_itr = 4000;
2639 		goto set_itr_now;
2640 	}
2641 
2642 	adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2643 					   adapter->total_tx_packets,
2644 					   adapter->total_tx_bytes);
2645 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2646 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2647 		adapter->tx_itr = low_latency;
2648 
2649 	adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2650 					   adapter->total_rx_packets,
2651 					   adapter->total_rx_bytes);
2652 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2653 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2654 		adapter->rx_itr = low_latency;
2655 
2656 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2657 
2658 	switch (current_itr) {
2659 	/* counts and packets in update_itr are dependent on these numbers */
2660 	case lowest_latency:
2661 		new_itr = 70000;
2662 		break;
2663 	case low_latency:
2664 		new_itr = 20000; /* aka hwitr = ~200 */
2665 		break;
2666 	case bulk_latency:
2667 		new_itr = 4000;
2668 		break;
2669 	default:
2670 		break;
2671 	}
2672 
2673 set_itr_now:
2674 	if (new_itr != adapter->itr) {
2675 		/* this attempts to bias the interrupt rate towards Bulk
2676 		 * by adding intermediate steps when interrupt rate is
2677 		 * increasing
2678 		 */
2679 		new_itr = new_itr > adapter->itr ?
2680 			  min(adapter->itr + (new_itr >> 2), new_itr) :
2681 			  new_itr;
2682 		adapter->itr = new_itr;
2683 		ew32(ITR, 1000000000 / (new_itr * 256));
2684 	}
2685 }
2686 
2687 #define E1000_TX_FLAGS_CSUM		0x00000001
2688 #define E1000_TX_FLAGS_VLAN		0x00000002
2689 #define E1000_TX_FLAGS_TSO		0x00000004
2690 #define E1000_TX_FLAGS_IPV4		0x00000008
2691 #define E1000_TX_FLAGS_NO_FCS		0x00000010
2692 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
2693 #define E1000_TX_FLAGS_VLAN_SHIFT	16
2694 
2695 static int e1000_tso(struct e1000_adapter *adapter,
2696 		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2697 		     __be16 protocol)
2698 {
2699 	struct e1000_context_desc *context_desc;
2700 	struct e1000_tx_buffer *buffer_info;
2701 	unsigned int i;
2702 	u32 cmd_length = 0;
2703 	u16 ipcse = 0, tucse, mss;
2704 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
2705 
2706 	if (skb_is_gso(skb)) {
2707 		int err;
2708 
2709 		err = skb_cow_head(skb, 0);
2710 		if (err < 0)
2711 			return err;
2712 
2713 		hdr_len = skb_tcp_all_headers(skb);
2714 		mss = skb_shinfo(skb)->gso_size;
2715 		if (protocol == htons(ETH_P_IP)) {
2716 			struct iphdr *iph = ip_hdr(skb);
2717 			iph->tot_len = 0;
2718 			iph->check = 0;
2719 			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2720 								 iph->daddr, 0,
2721 								 IPPROTO_TCP,
2722 								 0);
2723 			cmd_length = E1000_TXD_CMD_IP;
2724 			ipcse = skb_transport_offset(skb) - 1;
2725 		} else if (skb_is_gso_v6(skb)) {
2726 			tcp_v6_gso_csum_prep(skb);
2727 			ipcse = 0;
2728 		}
2729 		ipcss = skb_network_offset(skb);
2730 		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2731 		tucss = skb_transport_offset(skb);
2732 		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2733 		tucse = 0;
2734 
2735 		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2736 			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2737 
2738 		i = tx_ring->next_to_use;
2739 		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2740 		buffer_info = &tx_ring->buffer_info[i];
2741 
2742 		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2743 		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2744 		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2745 		context_desc->upper_setup.tcp_fields.tucss = tucss;
2746 		context_desc->upper_setup.tcp_fields.tucso = tucso;
2747 		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2748 		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2749 		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2750 		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2751 
2752 		buffer_info->time_stamp = jiffies;
2753 		buffer_info->next_to_watch = i;
2754 
2755 		if (++i == tx_ring->count)
2756 			i = 0;
2757 
2758 		tx_ring->next_to_use = i;
2759 
2760 		return true;
2761 	}
2762 	return false;
2763 }
2764 
2765 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2766 			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2767 			  __be16 protocol)
2768 {
2769 	struct e1000_context_desc *context_desc;
2770 	struct e1000_tx_buffer *buffer_info;
2771 	unsigned int i;
2772 	u8 css;
2773 	u32 cmd_len = E1000_TXD_CMD_DEXT;
2774 
2775 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2776 		return false;
2777 
2778 	switch (protocol) {
2779 	case cpu_to_be16(ETH_P_IP):
2780 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2781 			cmd_len |= E1000_TXD_CMD_TCP;
2782 		break;
2783 	case cpu_to_be16(ETH_P_IPV6):
2784 		/* XXX not handling all IPV6 headers */
2785 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2786 			cmd_len |= E1000_TXD_CMD_TCP;
2787 		break;
2788 	default:
2789 		if (unlikely(net_ratelimit()))
2790 			e_warn(drv, "checksum_partial proto=%x!\n",
2791 			       skb->protocol);
2792 		break;
2793 	}
2794 
2795 	css = skb_checksum_start_offset(skb);
2796 
2797 	i = tx_ring->next_to_use;
2798 	buffer_info = &tx_ring->buffer_info[i];
2799 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2800 
2801 	context_desc->lower_setup.ip_config = 0;
2802 	context_desc->upper_setup.tcp_fields.tucss = css;
2803 	context_desc->upper_setup.tcp_fields.tucso =
2804 		css + skb->csum_offset;
2805 	context_desc->upper_setup.tcp_fields.tucse = 0;
2806 	context_desc->tcp_seg_setup.data = 0;
2807 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2808 
2809 	buffer_info->time_stamp = jiffies;
2810 	buffer_info->next_to_watch = i;
2811 
2812 	if (unlikely(++i == tx_ring->count))
2813 		i = 0;
2814 
2815 	tx_ring->next_to_use = i;
2816 
2817 	return true;
2818 }
2819 
2820 #define E1000_MAX_TXD_PWR	12
2821 #define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
2822 
2823 static int e1000_tx_map(struct e1000_adapter *adapter,
2824 			struct e1000_tx_ring *tx_ring,
2825 			struct sk_buff *skb, unsigned int first,
2826 			unsigned int max_per_txd, unsigned int nr_frags,
2827 			unsigned int mss)
2828 {
2829 	struct e1000_hw *hw = &adapter->hw;
2830 	struct pci_dev *pdev = adapter->pdev;
2831 	struct e1000_tx_buffer *buffer_info;
2832 	unsigned int len = skb_headlen(skb);
2833 	unsigned int offset = 0, size, count = 0, i;
2834 	unsigned int f, bytecount, segs;
2835 
2836 	i = tx_ring->next_to_use;
2837 
2838 	while (len) {
2839 		buffer_info = &tx_ring->buffer_info[i];
2840 		size = min(len, max_per_txd);
2841 		/* Workaround for Controller erratum --
2842 		 * descriptor for non-tso packet in a linear SKB that follows a
2843 		 * tso gets written back prematurely before the data is fully
2844 		 * DMA'd to the controller
2845 		 */
2846 		if (!skb->data_len && tx_ring->last_tx_tso &&
2847 		    !skb_is_gso(skb)) {
2848 			tx_ring->last_tx_tso = false;
2849 			size -= 4;
2850 		}
2851 
2852 		/* Workaround for premature desc write-backs
2853 		 * in TSO mode.  Append 4-byte sentinel desc
2854 		 */
2855 		if (unlikely(mss && !nr_frags && size == len && size > 8))
2856 			size -= 4;
2857 		/* work-around for errata 10 and it applies
2858 		 * to all controllers in PCI-X mode
2859 		 * The fix is to make sure that the first descriptor of a
2860 		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2861 		 */
2862 		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2863 			     (size > 2015) && count == 0))
2864 			size = 2015;
2865 
2866 		/* Workaround for potential 82544 hang in PCI-X.  Avoid
2867 		 * terminating buffers within evenly-aligned dwords.
2868 		 */
2869 		if (unlikely(adapter->pcix_82544 &&
2870 		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2871 		   size > 4))
2872 			size -= 4;
2873 
2874 		buffer_info->length = size;
2875 		/* set time_stamp *before* dma to help avoid a possible race */
2876 		buffer_info->time_stamp = jiffies;
2877 		buffer_info->mapped_as_page = false;
2878 		buffer_info->dma = dma_map_single(&pdev->dev,
2879 						  skb->data + offset,
2880 						  size, DMA_TO_DEVICE);
2881 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2882 			goto dma_error;
2883 		buffer_info->next_to_watch = i;
2884 
2885 		len -= size;
2886 		offset += size;
2887 		count++;
2888 		if (len) {
2889 			i++;
2890 			if (unlikely(i == tx_ring->count))
2891 				i = 0;
2892 		}
2893 	}
2894 
2895 	for (f = 0; f < nr_frags; f++) {
2896 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2897 
2898 		len = skb_frag_size(frag);
2899 		offset = 0;
2900 
2901 		while (len) {
2902 			unsigned long bufend;
2903 			i++;
2904 			if (unlikely(i == tx_ring->count))
2905 				i = 0;
2906 
2907 			buffer_info = &tx_ring->buffer_info[i];
2908 			size = min(len, max_per_txd);
2909 			/* Workaround for premature desc write-backs
2910 			 * in TSO mode.  Append 4-byte sentinel desc
2911 			 */
2912 			if (unlikely(mss && f == (nr_frags-1) &&
2913 			    size == len && size > 8))
2914 				size -= 4;
2915 			/* Workaround for potential 82544 hang in PCI-X.
2916 			 * Avoid terminating buffers within evenly-aligned
2917 			 * dwords.
2918 			 */
2919 			bufend = (unsigned long)
2920 				page_to_phys(skb_frag_page(frag));
2921 			bufend += offset + size - 1;
2922 			if (unlikely(adapter->pcix_82544 &&
2923 				     !(bufend & 4) &&
2924 				     size > 4))
2925 				size -= 4;
2926 
2927 			buffer_info->length = size;
2928 			buffer_info->time_stamp = jiffies;
2929 			buffer_info->mapped_as_page = true;
2930 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2931 						offset, size, DMA_TO_DEVICE);
2932 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2933 				goto dma_error;
2934 			buffer_info->next_to_watch = i;
2935 
2936 			len -= size;
2937 			offset += size;
2938 			count++;
2939 		}
2940 	}
2941 
2942 	segs = skb_shinfo(skb)->gso_segs ?: 1;
2943 	/* multiply data chunks by size of headers */
2944 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2945 
2946 	tx_ring->buffer_info[i].skb = skb;
2947 	tx_ring->buffer_info[i].segs = segs;
2948 	tx_ring->buffer_info[i].bytecount = bytecount;
2949 	tx_ring->buffer_info[first].next_to_watch = i;
2950 
2951 	return count;
2952 
2953 dma_error:
2954 	dev_err(&pdev->dev, "TX DMA map failed\n");
2955 	buffer_info->dma = 0;
2956 	if (count)
2957 		count--;
2958 
2959 	while (count--) {
2960 		if (i == 0)
2961 			i += tx_ring->count;
2962 		i--;
2963 		buffer_info = &tx_ring->buffer_info[i];
2964 		e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0);
2965 	}
2966 
2967 	return 0;
2968 }
2969 
2970 static void e1000_tx_queue(struct e1000_adapter *adapter,
2971 			   struct e1000_tx_ring *tx_ring, int tx_flags,
2972 			   int count)
2973 {
2974 	struct e1000_tx_desc *tx_desc = NULL;
2975 	struct e1000_tx_buffer *buffer_info;
2976 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2977 	unsigned int i;
2978 
2979 	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2980 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2981 			     E1000_TXD_CMD_TSE;
2982 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2983 
2984 		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2985 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2986 	}
2987 
2988 	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2989 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2990 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2991 	}
2992 
2993 	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2994 		txd_lower |= E1000_TXD_CMD_VLE;
2995 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2996 	}
2997 
2998 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2999 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
3000 
3001 	i = tx_ring->next_to_use;
3002 
3003 	while (count--) {
3004 		buffer_info = &tx_ring->buffer_info[i];
3005 		tx_desc = E1000_TX_DESC(*tx_ring, i);
3006 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3007 		tx_desc->lower.data =
3008 			cpu_to_le32(txd_lower | buffer_info->length);
3009 		tx_desc->upper.data = cpu_to_le32(txd_upper);
3010 		if (unlikely(++i == tx_ring->count))
3011 			i = 0;
3012 	}
3013 
3014 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3015 
3016 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3017 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3018 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3019 
3020 	/* Force memory writes to complete before letting h/w
3021 	 * know there are new descriptors to fetch.  (Only
3022 	 * applicable for weak-ordered memory model archs,
3023 	 * such as IA-64).
3024 	 */
3025 	dma_wmb();
3026 
3027 	tx_ring->next_to_use = i;
3028 }
3029 
3030 /* 82547 workaround to avoid controller hang in half-duplex environment.
3031  * The workaround is to avoid queuing a large packet that would span
3032  * the internal Tx FIFO ring boundary by notifying the stack to resend
3033  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3034  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3035  * to the beginning of the Tx FIFO.
3036  */
3037 
3038 #define E1000_FIFO_HDR			0x10
3039 #define E1000_82547_PAD_LEN		0x3E0
3040 
3041 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3042 				       struct sk_buff *skb)
3043 {
3044 	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3045 	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3046 
3047 	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3048 
3049 	if (adapter->link_duplex != HALF_DUPLEX)
3050 		goto no_fifo_stall_required;
3051 
3052 	if (atomic_read(&adapter->tx_fifo_stall))
3053 		return 1;
3054 
3055 	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3056 		atomic_set(&adapter->tx_fifo_stall, 1);
3057 		return 1;
3058 	}
3059 
3060 no_fifo_stall_required:
3061 	adapter->tx_fifo_head += skb_fifo_len;
3062 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3063 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
3064 	return 0;
3065 }
3066 
3067 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3068 {
3069 	struct e1000_adapter *adapter = netdev_priv(netdev);
3070 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3071 
3072 	netif_stop_queue(netdev);
3073 	/* Herbert's original patch had:
3074 	 *  smp_mb__after_netif_stop_queue();
3075 	 * but since that doesn't exist yet, just open code it.
3076 	 */
3077 	smp_mb();
3078 
3079 	/* We need to check again in a case another CPU has just
3080 	 * made room available.
3081 	 */
3082 	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3083 		return -EBUSY;
3084 
3085 	/* A reprieve! */
3086 	netif_start_queue(netdev);
3087 	++adapter->restart_queue;
3088 	return 0;
3089 }
3090 
3091 static int e1000_maybe_stop_tx(struct net_device *netdev,
3092 			       struct e1000_tx_ring *tx_ring, int size)
3093 {
3094 	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3095 		return 0;
3096 	return __e1000_maybe_stop_tx(netdev, size);
3097 }
3098 
3099 #define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3100 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3101 				    struct net_device *netdev)
3102 {
3103 	struct e1000_adapter *adapter = netdev_priv(netdev);
3104 	struct e1000_hw *hw = &adapter->hw;
3105 	struct e1000_tx_ring *tx_ring;
3106 	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3107 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3108 	unsigned int tx_flags = 0;
3109 	unsigned int len = skb_headlen(skb);
3110 	unsigned int nr_frags;
3111 	unsigned int mss;
3112 	int count = 0;
3113 	int tso;
3114 	unsigned int f;
3115 	__be16 protocol = vlan_get_protocol(skb);
3116 
3117 	/* This goes back to the question of how to logically map a Tx queue
3118 	 * to a flow.  Right now, performance is impacted slightly negatively
3119 	 * if using multiple Tx queues.  If the stack breaks away from a
3120 	 * single qdisc implementation, we can look at this again.
3121 	 */
3122 	tx_ring = adapter->tx_ring;
3123 
3124 	/* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3125 	 * packets may get corrupted during padding by HW.
3126 	 * To WA this issue, pad all small packets manually.
3127 	 */
3128 	if (eth_skb_pad(skb))
3129 		return NETDEV_TX_OK;
3130 
3131 	mss = skb_shinfo(skb)->gso_size;
3132 	/* The controller does a simple calculation to
3133 	 * make sure there is enough room in the FIFO before
3134 	 * initiating the DMA for each buffer.  The calc is:
3135 	 * 4 = ceil(buffer len/mss).  To make sure we don't
3136 	 * overrun the FIFO, adjust the max buffer len if mss
3137 	 * drops.
3138 	 */
3139 	if (mss) {
3140 		u8 hdr_len;
3141 		max_per_txd = min(mss << 2, max_per_txd);
3142 		max_txd_pwr = fls(max_per_txd) - 1;
3143 
3144 		hdr_len = skb_tcp_all_headers(skb);
3145 		if (skb->data_len && hdr_len == len) {
3146 			switch (hw->mac_type) {
3147 			case e1000_82544: {
3148 				unsigned int pull_size;
3149 
3150 				/* Make sure we have room to chop off 4 bytes,
3151 				 * and that the end alignment will work out to
3152 				 * this hardware's requirements
3153 				 * NOTE: this is a TSO only workaround
3154 				 * if end byte alignment not correct move us
3155 				 * into the next dword
3156 				 */
3157 				if ((unsigned long)(skb_tail_pointer(skb) - 1)
3158 				    & 4)
3159 					break;
3160 				pull_size = min((unsigned int)4, skb->data_len);
3161 				if (!__pskb_pull_tail(skb, pull_size)) {
3162 					e_err(drv, "__pskb_pull_tail "
3163 					      "failed.\n");
3164 					dev_kfree_skb_any(skb);
3165 					return NETDEV_TX_OK;
3166 				}
3167 				len = skb_headlen(skb);
3168 				break;
3169 			}
3170 			default:
3171 				/* do nothing */
3172 				break;
3173 			}
3174 		}
3175 	}
3176 
3177 	/* reserve a descriptor for the offload context */
3178 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3179 		count++;
3180 	count++;
3181 
3182 	/* Controller Erratum workaround */
3183 	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3184 		count++;
3185 
3186 	count += TXD_USE_COUNT(len, max_txd_pwr);
3187 
3188 	if (adapter->pcix_82544)
3189 		count++;
3190 
3191 	/* work-around for errata 10 and it applies to all controllers
3192 	 * in PCI-X mode, so add one more descriptor to the count
3193 	 */
3194 	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3195 			(len > 2015)))
3196 		count++;
3197 
3198 	nr_frags = skb_shinfo(skb)->nr_frags;
3199 	for (f = 0; f < nr_frags; f++)
3200 		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3201 				       max_txd_pwr);
3202 	if (adapter->pcix_82544)
3203 		count += nr_frags;
3204 
3205 	/* need: count + 2 desc gap to keep tail from touching
3206 	 * head, otherwise try next time
3207 	 */
3208 	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3209 		return NETDEV_TX_BUSY;
3210 
3211 	if (unlikely((hw->mac_type == e1000_82547) &&
3212 		     (e1000_82547_fifo_workaround(adapter, skb)))) {
3213 		netif_stop_queue(netdev);
3214 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3215 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
3216 		return NETDEV_TX_BUSY;
3217 	}
3218 
3219 	if (skb_vlan_tag_present(skb)) {
3220 		tx_flags |= E1000_TX_FLAGS_VLAN;
3221 		tx_flags |= (skb_vlan_tag_get(skb) <<
3222 			     E1000_TX_FLAGS_VLAN_SHIFT);
3223 	}
3224 
3225 	first = tx_ring->next_to_use;
3226 
3227 	tso = e1000_tso(adapter, tx_ring, skb, protocol);
3228 	if (tso < 0) {
3229 		dev_kfree_skb_any(skb);
3230 		return NETDEV_TX_OK;
3231 	}
3232 
3233 	if (likely(tso)) {
3234 		if (likely(hw->mac_type != e1000_82544))
3235 			tx_ring->last_tx_tso = true;
3236 		tx_flags |= E1000_TX_FLAGS_TSO;
3237 	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3238 		tx_flags |= E1000_TX_FLAGS_CSUM;
3239 
3240 	if (protocol == htons(ETH_P_IP))
3241 		tx_flags |= E1000_TX_FLAGS_IPV4;
3242 
3243 	if (unlikely(skb->no_fcs))
3244 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
3245 
3246 	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3247 			     nr_frags, mss);
3248 
3249 	if (count) {
3250 		/* The descriptors needed is higher than other Intel drivers
3251 		 * due to a number of workarounds.  The breakdown is below:
3252 		 * Data descriptors: MAX_SKB_FRAGS + 1
3253 		 * Context Descriptor: 1
3254 		 * Keep head from touching tail: 2
3255 		 * Workarounds: 3
3256 		 */
3257 		int desc_needed = MAX_SKB_FRAGS + 7;
3258 
3259 		netdev_sent_queue(netdev, skb->len);
3260 		skb_tx_timestamp(skb);
3261 
3262 		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3263 
3264 		/* 82544 potentially requires twice as many data descriptors
3265 		 * in order to guarantee buffers don't end on evenly-aligned
3266 		 * dwords
3267 		 */
3268 		if (adapter->pcix_82544)
3269 			desc_needed += MAX_SKB_FRAGS + 1;
3270 
3271 		/* Make sure there is space in the ring for the next send. */
3272 		e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3273 
3274 		if (!netdev_xmit_more() ||
3275 		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3276 			writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3277 		}
3278 	} else {
3279 		dev_kfree_skb_any(skb);
3280 		tx_ring->buffer_info[first].time_stamp = 0;
3281 		tx_ring->next_to_use = first;
3282 	}
3283 
3284 	return NETDEV_TX_OK;
3285 }
3286 
3287 #define NUM_REGS 38 /* 1 based count */
3288 static void e1000_regdump(struct e1000_adapter *adapter)
3289 {
3290 	struct e1000_hw *hw = &adapter->hw;
3291 	u32 regs[NUM_REGS];
3292 	u32 *regs_buff = regs;
3293 	int i = 0;
3294 
3295 	static const char * const reg_name[] = {
3296 		"CTRL",  "STATUS",
3297 		"RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3298 		"TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3299 		"TIDV", "TXDCTL", "TADV", "TARC0",
3300 		"TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3301 		"TXDCTL1", "TARC1",
3302 		"CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3303 		"TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3304 		"RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3305 	};
3306 
3307 	regs_buff[0]  = er32(CTRL);
3308 	regs_buff[1]  = er32(STATUS);
3309 
3310 	regs_buff[2]  = er32(RCTL);
3311 	regs_buff[3]  = er32(RDLEN);
3312 	regs_buff[4]  = er32(RDH);
3313 	regs_buff[5]  = er32(RDT);
3314 	regs_buff[6]  = er32(RDTR);
3315 
3316 	regs_buff[7]  = er32(TCTL);
3317 	regs_buff[8]  = er32(TDBAL);
3318 	regs_buff[9]  = er32(TDBAH);
3319 	regs_buff[10] = er32(TDLEN);
3320 	regs_buff[11] = er32(TDH);
3321 	regs_buff[12] = er32(TDT);
3322 	regs_buff[13] = er32(TIDV);
3323 	regs_buff[14] = er32(TXDCTL);
3324 	regs_buff[15] = er32(TADV);
3325 	regs_buff[16] = er32(TARC0);
3326 
3327 	regs_buff[17] = er32(TDBAL1);
3328 	regs_buff[18] = er32(TDBAH1);
3329 	regs_buff[19] = er32(TDLEN1);
3330 	regs_buff[20] = er32(TDH1);
3331 	regs_buff[21] = er32(TDT1);
3332 	regs_buff[22] = er32(TXDCTL1);
3333 	regs_buff[23] = er32(TARC1);
3334 	regs_buff[24] = er32(CTRL_EXT);
3335 	regs_buff[25] = er32(ERT);
3336 	regs_buff[26] = er32(RDBAL0);
3337 	regs_buff[27] = er32(RDBAH0);
3338 	regs_buff[28] = er32(TDFH);
3339 	regs_buff[29] = er32(TDFT);
3340 	regs_buff[30] = er32(TDFHS);
3341 	regs_buff[31] = er32(TDFTS);
3342 	regs_buff[32] = er32(TDFPC);
3343 	regs_buff[33] = er32(RDFH);
3344 	regs_buff[34] = er32(RDFT);
3345 	regs_buff[35] = er32(RDFHS);
3346 	regs_buff[36] = er32(RDFTS);
3347 	regs_buff[37] = er32(RDFPC);
3348 
3349 	pr_info("Register dump\n");
3350 	for (i = 0; i < NUM_REGS; i++)
3351 		pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3352 }
3353 
3354 /*
3355  * e1000_dump: Print registers, tx ring and rx ring
3356  */
3357 static void e1000_dump(struct e1000_adapter *adapter)
3358 {
3359 	/* this code doesn't handle multiple rings */
3360 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3361 	struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3362 	int i;
3363 
3364 	if (!netif_msg_hw(adapter))
3365 		return;
3366 
3367 	/* Print Registers */
3368 	e1000_regdump(adapter);
3369 
3370 	/* transmit dump */
3371 	pr_info("TX Desc ring0 dump\n");
3372 
3373 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3374 	 *
3375 	 * Legacy Transmit Descriptor
3376 	 *   +--------------------------------------------------------------+
3377 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3378 	 *   +--------------------------------------------------------------+
3379 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3380 	 *   +--------------------------------------------------------------+
3381 	 *   63       48 47        36 35    32 31     24 23    16 15        0
3382 	 *
3383 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3384 	 *   63      48 47    40 39       32 31             16 15    8 7      0
3385 	 *   +----------------------------------------------------------------+
3386 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3387 	 *   +----------------------------------------------------------------+
3388 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3389 	 *   +----------------------------------------------------------------+
3390 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3391 	 *
3392 	 * Extended Data Descriptor (DTYP=0x1)
3393 	 *   +----------------------------------------------------------------+
3394 	 * 0 |                     Buffer Address [63:0]                      |
3395 	 *   +----------------------------------------------------------------+
3396 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3397 	 *   +----------------------------------------------------------------+
3398 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3399 	 */
3400 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3401 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3402 
3403 	if (!netif_msg_tx_done(adapter))
3404 		goto rx_ring_summary;
3405 
3406 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3407 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3408 		struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3409 		struct my_u { __le64 a; __le64 b; };
3410 		struct my_u *u = (struct my_u *)tx_desc;
3411 		const char *type;
3412 
3413 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3414 			type = "NTC/U";
3415 		else if (i == tx_ring->next_to_use)
3416 			type = "NTU";
3417 		else if (i == tx_ring->next_to_clean)
3418 			type = "NTC";
3419 		else
3420 			type = "";
3421 
3422 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3423 			((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3424 			le64_to_cpu(u->a), le64_to_cpu(u->b),
3425 			(u64)buffer_info->dma, buffer_info->length,
3426 			buffer_info->next_to_watch,
3427 			(u64)buffer_info->time_stamp, buffer_info->skb, type);
3428 	}
3429 
3430 rx_ring_summary:
3431 	/* receive dump */
3432 	pr_info("\nRX Desc ring dump\n");
3433 
3434 	/* Legacy Receive Descriptor Format
3435 	 *
3436 	 * +-----------------------------------------------------+
3437 	 * |                Buffer Address [63:0]                |
3438 	 * +-----------------------------------------------------+
3439 	 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3440 	 * +-----------------------------------------------------+
3441 	 * 63       48 47    40 39      32 31         16 15      0
3442 	 */
3443 	pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3444 
3445 	if (!netif_msg_rx_status(adapter))
3446 		goto exit;
3447 
3448 	for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3449 		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3450 		struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3451 		struct my_u { __le64 a; __le64 b; };
3452 		struct my_u *u = (struct my_u *)rx_desc;
3453 		const char *type;
3454 
3455 		if (i == rx_ring->next_to_use)
3456 			type = "NTU";
3457 		else if (i == rx_ring->next_to_clean)
3458 			type = "NTC";
3459 		else
3460 			type = "";
3461 
3462 		pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3463 			i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3464 			(u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3465 	} /* for */
3466 
3467 	/* dump the descriptor caches */
3468 	/* rx */
3469 	pr_info("Rx descriptor cache in 64bit format\n");
3470 	for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3471 		pr_info("R%04X: %08X|%08X %08X|%08X\n",
3472 			i,
3473 			readl(adapter->hw.hw_addr + i+4),
3474 			readl(adapter->hw.hw_addr + i),
3475 			readl(adapter->hw.hw_addr + i+12),
3476 			readl(adapter->hw.hw_addr + i+8));
3477 	}
3478 	/* tx */
3479 	pr_info("Tx descriptor cache in 64bit format\n");
3480 	for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3481 		pr_info("T%04X: %08X|%08X %08X|%08X\n",
3482 			i,
3483 			readl(adapter->hw.hw_addr + i+4),
3484 			readl(adapter->hw.hw_addr + i),
3485 			readl(adapter->hw.hw_addr + i+12),
3486 			readl(adapter->hw.hw_addr + i+8));
3487 	}
3488 exit:
3489 	return;
3490 }
3491 
3492 /**
3493  * e1000_tx_timeout - Respond to a Tx Hang
3494  * @netdev: network interface device structure
3495  * @txqueue: number of the Tx queue that hung (unused)
3496  **/
3497 static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
3498 {
3499 	struct e1000_adapter *adapter = netdev_priv(netdev);
3500 
3501 	/* Do the reset outside of interrupt context */
3502 	adapter->tx_timeout_count++;
3503 	schedule_work(&adapter->reset_task);
3504 }
3505 
3506 static void e1000_reset_task(struct work_struct *work)
3507 {
3508 	struct e1000_adapter *adapter =
3509 		container_of(work, struct e1000_adapter, reset_task);
3510 
3511 	e_err(drv, "Reset adapter\n");
3512 	rtnl_lock();
3513 	e1000_reinit_locked(adapter);
3514 	rtnl_unlock();
3515 }
3516 
3517 /**
3518  * e1000_change_mtu - Change the Maximum Transfer Unit
3519  * @netdev: network interface device structure
3520  * @new_mtu: new value for maximum frame size
3521  *
3522  * Returns 0 on success, negative on failure
3523  **/
3524 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3525 {
3526 	struct e1000_adapter *adapter = netdev_priv(netdev);
3527 	struct e1000_hw *hw = &adapter->hw;
3528 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3529 
3530 	/* Adapter-specific max frame size limits. */
3531 	switch (hw->mac_type) {
3532 	case e1000_undefined ... e1000_82542_rev2_1:
3533 		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3534 			e_err(probe, "Jumbo Frames not supported.\n");
3535 			return -EINVAL;
3536 		}
3537 		break;
3538 	default:
3539 		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3540 		break;
3541 	}
3542 
3543 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3544 		msleep(1);
3545 	/* e1000_down has a dependency on max_frame_size */
3546 	hw->max_frame_size = max_frame;
3547 	if (netif_running(netdev)) {
3548 		/* prevent buffers from being reallocated */
3549 		adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3550 		e1000_down(adapter);
3551 	}
3552 
3553 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3554 	 * means we reserve 2 more, this pushes us to allocate from the next
3555 	 * larger slab size.
3556 	 * i.e. RXBUFFER_2048 --> size-4096 slab
3557 	 * however with the new *_jumbo_rx* routines, jumbo receives will use
3558 	 * fragmented skbs
3559 	 */
3560 
3561 	if (max_frame <= E1000_RXBUFFER_2048)
3562 		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3563 	else
3564 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3565 		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3566 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3567 		adapter->rx_buffer_len = PAGE_SIZE;
3568 #endif
3569 
3570 	/* adjust allocation if LPE protects us, and we aren't using SBP */
3571 	if (!hw->tbi_compatibility_on &&
3572 	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3573 	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3574 		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3575 
3576 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
3577 		   netdev->mtu, new_mtu);
3578 	WRITE_ONCE(netdev->mtu, new_mtu);
3579 
3580 	if (netif_running(netdev))
3581 		e1000_up(adapter);
3582 	else
3583 		e1000_reset(adapter);
3584 
3585 	clear_bit(__E1000_RESETTING, &adapter->flags);
3586 
3587 	return 0;
3588 }
3589 
3590 /**
3591  * e1000_update_stats - Update the board statistics counters
3592  * @adapter: board private structure
3593  **/
3594 void e1000_update_stats(struct e1000_adapter *adapter)
3595 {
3596 	struct net_device *netdev = adapter->netdev;
3597 	struct e1000_hw *hw = &adapter->hw;
3598 	struct pci_dev *pdev = adapter->pdev;
3599 	unsigned long flags;
3600 	u16 phy_tmp;
3601 
3602 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3603 
3604 	/* Prevent stats update while adapter is being reset, or if the pci
3605 	 * connection is down.
3606 	 */
3607 	if (adapter->link_speed == 0)
3608 		return;
3609 	if (pci_channel_offline(pdev))
3610 		return;
3611 
3612 	spin_lock_irqsave(&adapter->stats_lock, flags);
3613 
3614 	/* these counters are modified from e1000_tbi_adjust_stats,
3615 	 * called from the interrupt context, so they must only
3616 	 * be written while holding adapter->stats_lock
3617 	 */
3618 
3619 	adapter->stats.crcerrs += er32(CRCERRS);
3620 	adapter->stats.gprc += er32(GPRC);
3621 	adapter->stats.gorcl += er32(GORCL);
3622 	adapter->stats.gorch += er32(GORCH);
3623 	adapter->stats.bprc += er32(BPRC);
3624 	adapter->stats.mprc += er32(MPRC);
3625 	adapter->stats.roc += er32(ROC);
3626 
3627 	adapter->stats.prc64 += er32(PRC64);
3628 	adapter->stats.prc127 += er32(PRC127);
3629 	adapter->stats.prc255 += er32(PRC255);
3630 	adapter->stats.prc511 += er32(PRC511);
3631 	adapter->stats.prc1023 += er32(PRC1023);
3632 	adapter->stats.prc1522 += er32(PRC1522);
3633 
3634 	adapter->stats.symerrs += er32(SYMERRS);
3635 	adapter->stats.mpc += er32(MPC);
3636 	adapter->stats.scc += er32(SCC);
3637 	adapter->stats.ecol += er32(ECOL);
3638 	adapter->stats.mcc += er32(MCC);
3639 	adapter->stats.latecol += er32(LATECOL);
3640 	adapter->stats.dc += er32(DC);
3641 	adapter->stats.sec += er32(SEC);
3642 	adapter->stats.rlec += er32(RLEC);
3643 	adapter->stats.xonrxc += er32(XONRXC);
3644 	adapter->stats.xontxc += er32(XONTXC);
3645 	adapter->stats.xoffrxc += er32(XOFFRXC);
3646 	adapter->stats.xofftxc += er32(XOFFTXC);
3647 	adapter->stats.fcruc += er32(FCRUC);
3648 	adapter->stats.gptc += er32(GPTC);
3649 	adapter->stats.gotcl += er32(GOTCL);
3650 	adapter->stats.gotch += er32(GOTCH);
3651 	adapter->stats.rnbc += er32(RNBC);
3652 	adapter->stats.ruc += er32(RUC);
3653 	adapter->stats.rfc += er32(RFC);
3654 	adapter->stats.rjc += er32(RJC);
3655 	adapter->stats.torl += er32(TORL);
3656 	adapter->stats.torh += er32(TORH);
3657 	adapter->stats.totl += er32(TOTL);
3658 	adapter->stats.toth += er32(TOTH);
3659 	adapter->stats.tpr += er32(TPR);
3660 
3661 	adapter->stats.ptc64 += er32(PTC64);
3662 	adapter->stats.ptc127 += er32(PTC127);
3663 	adapter->stats.ptc255 += er32(PTC255);
3664 	adapter->stats.ptc511 += er32(PTC511);
3665 	adapter->stats.ptc1023 += er32(PTC1023);
3666 	adapter->stats.ptc1522 += er32(PTC1522);
3667 
3668 	adapter->stats.mptc += er32(MPTC);
3669 	adapter->stats.bptc += er32(BPTC);
3670 
3671 	/* used for adaptive IFS */
3672 
3673 	hw->tx_packet_delta = er32(TPT);
3674 	adapter->stats.tpt += hw->tx_packet_delta;
3675 	hw->collision_delta = er32(COLC);
3676 	adapter->stats.colc += hw->collision_delta;
3677 
3678 	if (hw->mac_type >= e1000_82543) {
3679 		adapter->stats.algnerrc += er32(ALGNERRC);
3680 		adapter->stats.rxerrc += er32(RXERRC);
3681 		adapter->stats.tncrs += er32(TNCRS);
3682 		adapter->stats.cexterr += er32(CEXTERR);
3683 		adapter->stats.tsctc += er32(TSCTC);
3684 		adapter->stats.tsctfc += er32(TSCTFC);
3685 	}
3686 
3687 	/* Fill out the OS statistics structure */
3688 	netdev->stats.multicast = adapter->stats.mprc;
3689 	netdev->stats.collisions = adapter->stats.colc;
3690 
3691 	/* Rx Errors */
3692 
3693 	/* RLEC on some newer hardware can be incorrect so build
3694 	 * our own version based on RUC and ROC
3695 	 */
3696 	netdev->stats.rx_errors = adapter->stats.rxerrc +
3697 		adapter->stats.crcerrs + adapter->stats.algnerrc +
3698 		adapter->stats.ruc + adapter->stats.roc +
3699 		adapter->stats.cexterr;
3700 	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3701 	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3702 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3703 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3704 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3705 
3706 	/* Tx Errors */
3707 	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3708 	netdev->stats.tx_errors = adapter->stats.txerrc;
3709 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3710 	netdev->stats.tx_window_errors = adapter->stats.latecol;
3711 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3712 	if (hw->bad_tx_carr_stats_fd &&
3713 	    adapter->link_duplex == FULL_DUPLEX) {
3714 		netdev->stats.tx_carrier_errors = 0;
3715 		adapter->stats.tncrs = 0;
3716 	}
3717 
3718 	/* Tx Dropped needs to be maintained elsewhere */
3719 
3720 	/* Phy Stats */
3721 	if (hw->media_type == e1000_media_type_copper) {
3722 		if ((adapter->link_speed == SPEED_1000) &&
3723 		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3724 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3725 			adapter->phy_stats.idle_errors += phy_tmp;
3726 		}
3727 
3728 		if ((hw->mac_type <= e1000_82546) &&
3729 		   (hw->phy_type == e1000_phy_m88) &&
3730 		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3731 			adapter->phy_stats.receive_errors += phy_tmp;
3732 	}
3733 
3734 	/* Management Stats */
3735 	if (hw->has_smbus) {
3736 		adapter->stats.mgptc += er32(MGTPTC);
3737 		adapter->stats.mgprc += er32(MGTPRC);
3738 		adapter->stats.mgpdc += er32(MGTPDC);
3739 	}
3740 
3741 	spin_unlock_irqrestore(&adapter->stats_lock, flags);
3742 }
3743 
3744 /**
3745  * e1000_intr - Interrupt Handler
3746  * @irq: interrupt number
3747  * @data: pointer to a network interface device structure
3748  **/
3749 static irqreturn_t e1000_intr(int irq, void *data)
3750 {
3751 	struct net_device *netdev = data;
3752 	struct e1000_adapter *adapter = netdev_priv(netdev);
3753 	struct e1000_hw *hw = &adapter->hw;
3754 	u32 icr = er32(ICR);
3755 
3756 	if (unlikely((!icr)))
3757 		return IRQ_NONE;  /* Not our interrupt */
3758 
3759 	/* we might have caused the interrupt, but the above
3760 	 * read cleared it, and just in case the driver is
3761 	 * down there is nothing to do so return handled
3762 	 */
3763 	if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3764 		return IRQ_HANDLED;
3765 
3766 	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3767 		hw->get_link_status = 1;
3768 		/* guard against interrupt when we're going down */
3769 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3770 			schedule_delayed_work(&adapter->watchdog_task, 1);
3771 	}
3772 
3773 	/* disable interrupts, without the synchronize_irq bit */
3774 	ew32(IMC, ~0);
3775 	E1000_WRITE_FLUSH();
3776 
3777 	if (likely(napi_schedule_prep(&adapter->napi))) {
3778 		adapter->total_tx_bytes = 0;
3779 		adapter->total_tx_packets = 0;
3780 		adapter->total_rx_bytes = 0;
3781 		adapter->total_rx_packets = 0;
3782 		__napi_schedule(&adapter->napi);
3783 	} else {
3784 		/* this really should not happen! if it does it is basically a
3785 		 * bug, but not a hard error, so enable ints and continue
3786 		 */
3787 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3788 			e1000_irq_enable(adapter);
3789 	}
3790 
3791 	return IRQ_HANDLED;
3792 }
3793 
3794 /**
3795  * e1000_clean - NAPI Rx polling callback
3796  * @napi: napi struct containing references to driver info
3797  * @budget: budget given to driver for receive packets
3798  **/
3799 static int e1000_clean(struct napi_struct *napi, int budget)
3800 {
3801 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3802 						     napi);
3803 	int tx_clean_complete = 0, work_done = 0;
3804 
3805 	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3806 
3807 	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3808 
3809 	if (!tx_clean_complete || work_done == budget)
3810 		return budget;
3811 
3812 	/* Exit the polling mode, but don't re-enable interrupts if stack might
3813 	 * poll us due to busy-polling
3814 	 */
3815 	if (likely(napi_complete_done(napi, work_done))) {
3816 		if (likely(adapter->itr_setting & 3))
3817 			e1000_set_itr(adapter);
3818 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3819 			e1000_irq_enable(adapter);
3820 	}
3821 
3822 	return work_done;
3823 }
3824 
3825 /**
3826  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3827  * @adapter: board private structure
3828  * @tx_ring: ring to clean
3829  **/
3830 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3831 			       struct e1000_tx_ring *tx_ring)
3832 {
3833 	struct e1000_hw *hw = &adapter->hw;
3834 	struct net_device *netdev = adapter->netdev;
3835 	struct e1000_tx_desc *tx_desc, *eop_desc;
3836 	struct e1000_tx_buffer *buffer_info;
3837 	unsigned int i, eop;
3838 	unsigned int count = 0;
3839 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3840 	unsigned int bytes_compl = 0, pkts_compl = 0;
3841 
3842 	i = tx_ring->next_to_clean;
3843 	eop = tx_ring->buffer_info[i].next_to_watch;
3844 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
3845 
3846 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3847 	       (count < tx_ring->count)) {
3848 		bool cleaned = false;
3849 		dma_rmb();	/* read buffer_info after eop_desc */
3850 		for ( ; !cleaned; count++) {
3851 			tx_desc = E1000_TX_DESC(*tx_ring, i);
3852 			buffer_info = &tx_ring->buffer_info[i];
3853 			cleaned = (i == eop);
3854 
3855 			if (cleaned) {
3856 				total_tx_packets += buffer_info->segs;
3857 				total_tx_bytes += buffer_info->bytecount;
3858 				if (buffer_info->skb) {
3859 					bytes_compl += buffer_info->skb->len;
3860 					pkts_compl++;
3861 				}
3862 
3863 			}
3864 			e1000_unmap_and_free_tx_resource(adapter, buffer_info,
3865 							 64);
3866 			tx_desc->upper.data = 0;
3867 
3868 			if (unlikely(++i == tx_ring->count))
3869 				i = 0;
3870 		}
3871 
3872 		eop = tx_ring->buffer_info[i].next_to_watch;
3873 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
3874 	}
3875 
3876 	/* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3877 	 * which will reuse the cleaned buffers.
3878 	 */
3879 	smp_store_release(&tx_ring->next_to_clean, i);
3880 
3881 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3882 
3883 #define TX_WAKE_THRESHOLD 32
3884 	if (unlikely(count && netif_carrier_ok(netdev) &&
3885 		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3886 		/* Make sure that anybody stopping the queue after this
3887 		 * sees the new next_to_clean.
3888 		 */
3889 		smp_mb();
3890 
3891 		if (netif_queue_stopped(netdev) &&
3892 		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3893 			netif_wake_queue(netdev);
3894 			++adapter->restart_queue;
3895 		}
3896 	}
3897 
3898 	if (adapter->detect_tx_hung) {
3899 		/* Detect a transmit hang in hardware, this serializes the
3900 		 * check with the clearing of time_stamp and movement of i
3901 		 */
3902 		adapter->detect_tx_hung = false;
3903 		if (tx_ring->buffer_info[eop].time_stamp &&
3904 		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3905 			       (adapter->tx_timeout_factor * HZ)) &&
3906 		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3907 
3908 			/* detected Tx unit hang */
3909 			e_err(drv, "Detected Tx Unit Hang\n"
3910 			      "  Tx Queue             <%lu>\n"
3911 			      "  TDH                  <%x>\n"
3912 			      "  TDT                  <%x>\n"
3913 			      "  next_to_use          <%x>\n"
3914 			      "  next_to_clean        <%x>\n"
3915 			      "buffer_info[next_to_clean]\n"
3916 			      "  time_stamp           <%lx>\n"
3917 			      "  next_to_watch        <%x>\n"
3918 			      "  jiffies              <%lx>\n"
3919 			      "  next_to_watch.status <%x>\n",
3920 				(unsigned long)(tx_ring - adapter->tx_ring),
3921 				readl(hw->hw_addr + tx_ring->tdh),
3922 				readl(hw->hw_addr + tx_ring->tdt),
3923 				tx_ring->next_to_use,
3924 				tx_ring->next_to_clean,
3925 				tx_ring->buffer_info[eop].time_stamp,
3926 				eop,
3927 				jiffies,
3928 				eop_desc->upper.fields.status);
3929 			e1000_dump(adapter);
3930 			netif_stop_queue(netdev);
3931 		}
3932 	}
3933 	adapter->total_tx_bytes += total_tx_bytes;
3934 	adapter->total_tx_packets += total_tx_packets;
3935 	netdev->stats.tx_bytes += total_tx_bytes;
3936 	netdev->stats.tx_packets += total_tx_packets;
3937 	return count < tx_ring->count;
3938 }
3939 
3940 /**
3941  * e1000_rx_checksum - Receive Checksum Offload for 82543
3942  * @adapter:     board private structure
3943  * @status_err:  receive descriptor status and error fields
3944  * @csum:        receive descriptor csum field
3945  * @skb:         socket buffer with received data
3946  **/
3947 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3948 			      u32 csum, struct sk_buff *skb)
3949 {
3950 	struct e1000_hw *hw = &adapter->hw;
3951 	u16 status = (u16)status_err;
3952 	u8 errors = (u8)(status_err >> 24);
3953 
3954 	skb_checksum_none_assert(skb);
3955 
3956 	/* 82543 or newer only */
3957 	if (unlikely(hw->mac_type < e1000_82543))
3958 		return;
3959 	/* Ignore Checksum bit is set */
3960 	if (unlikely(status & E1000_RXD_STAT_IXSM))
3961 		return;
3962 	/* TCP/UDP checksum error bit is set */
3963 	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3964 		/* let the stack verify checksum errors */
3965 		adapter->hw_csum_err++;
3966 		return;
3967 	}
3968 	/* TCP/UDP Checksum has not been calculated */
3969 	if (!(status & E1000_RXD_STAT_TCPCS))
3970 		return;
3971 
3972 	/* It must be a TCP or UDP packet with a valid checksum */
3973 	if (likely(status & E1000_RXD_STAT_TCPCS)) {
3974 		/* TCP checksum is good */
3975 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3976 	}
3977 	adapter->hw_csum_good++;
3978 }
3979 
3980 /**
3981  * e1000_consume_page - helper function for jumbo Rx path
3982  * @bi: software descriptor shadow data
3983  * @skb: skb being modified
3984  * @length: length of data being added
3985  **/
3986 static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
3987 			       u16 length)
3988 {
3989 	bi->rxbuf.page = NULL;
3990 	skb->len += length;
3991 	skb->data_len += length;
3992 	skb->truesize += PAGE_SIZE;
3993 }
3994 
3995 /**
3996  * e1000_receive_skb - helper function to handle rx indications
3997  * @adapter: board private structure
3998  * @status: descriptor status field as written by hardware
3999  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4000  * @skb: pointer to sk_buff to be indicated to stack
4001  */
4002 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4003 			      __le16 vlan, struct sk_buff *skb)
4004 {
4005 	skb->protocol = eth_type_trans(skb, adapter->netdev);
4006 
4007 	if (status & E1000_RXD_STAT_VP) {
4008 		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4009 
4010 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4011 	}
4012 	napi_gro_receive(&adapter->napi, skb);
4013 }
4014 
4015 /**
4016  * e1000_tbi_adjust_stats
4017  * @hw: Struct containing variables accessed by shared code
4018  * @stats: point to stats struct
4019  * @frame_len: The length of the frame in question
4020  * @mac_addr: The Ethernet destination address of the frame in question
4021  *
4022  * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4023  */
4024 static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4025 				   struct e1000_hw_stats *stats,
4026 				   u32 frame_len, const u8 *mac_addr)
4027 {
4028 	u64 carry_bit;
4029 
4030 	/* First adjust the frame length. */
4031 	frame_len--;
4032 	/* We need to adjust the statistics counters, since the hardware
4033 	 * counters overcount this packet as a CRC error and undercount
4034 	 * the packet as a good packet
4035 	 */
4036 	/* This packet should not be counted as a CRC error. */
4037 	stats->crcerrs--;
4038 	/* This packet does count as a Good Packet Received. */
4039 	stats->gprc++;
4040 
4041 	/* Adjust the Good Octets received counters */
4042 	carry_bit = 0x80000000 & stats->gorcl;
4043 	stats->gorcl += frame_len;
4044 	/* If the high bit of Gorcl (the low 32 bits of the Good Octets
4045 	 * Received Count) was one before the addition,
4046 	 * AND it is zero after, then we lost the carry out,
4047 	 * need to add one to Gorch (Good Octets Received Count High).
4048 	 * This could be simplified if all environments supported
4049 	 * 64-bit integers.
4050 	 */
4051 	if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4052 		stats->gorch++;
4053 	/* Is this a broadcast or multicast?  Check broadcast first,
4054 	 * since the test for a multicast frame will test positive on
4055 	 * a broadcast frame.
4056 	 */
4057 	if (is_broadcast_ether_addr(mac_addr))
4058 		stats->bprc++;
4059 	else if (is_multicast_ether_addr(mac_addr))
4060 		stats->mprc++;
4061 
4062 	if (frame_len == hw->max_frame_size) {
4063 		/* In this case, the hardware has overcounted the number of
4064 		 * oversize frames.
4065 		 */
4066 		if (stats->roc > 0)
4067 			stats->roc--;
4068 	}
4069 
4070 	/* Adjust the bin counters when the extra byte put the frame in the
4071 	 * wrong bin. Remember that the frame_len was adjusted above.
4072 	 */
4073 	if (frame_len == 64) {
4074 		stats->prc64++;
4075 		stats->prc127--;
4076 	} else if (frame_len == 127) {
4077 		stats->prc127++;
4078 		stats->prc255--;
4079 	} else if (frame_len == 255) {
4080 		stats->prc255++;
4081 		stats->prc511--;
4082 	} else if (frame_len == 511) {
4083 		stats->prc511++;
4084 		stats->prc1023--;
4085 	} else if (frame_len == 1023) {
4086 		stats->prc1023++;
4087 		stats->prc1522--;
4088 	} else if (frame_len == 1522) {
4089 		stats->prc1522++;
4090 	}
4091 }
4092 
4093 static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4094 				    u8 status, u8 errors,
4095 				    u32 length, const u8 *data)
4096 {
4097 	struct e1000_hw *hw = &adapter->hw;
4098 	u8 last_byte = *(data + length - 1);
4099 
4100 	if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4101 		unsigned long irq_flags;
4102 
4103 		spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4104 		e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4105 		spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4106 
4107 		return true;
4108 	}
4109 
4110 	return false;
4111 }
4112 
4113 static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4114 					  unsigned int bufsz)
4115 {
4116 	struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4117 
4118 	if (unlikely(!skb))
4119 		adapter->alloc_rx_buff_failed++;
4120 	return skb;
4121 }
4122 
4123 /**
4124  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4125  * @adapter: board private structure
4126  * @rx_ring: ring to clean
4127  * @work_done: amount of napi work completed this call
4128  * @work_to_do: max amount of work allowed for this call to do
4129  *
4130  * the return value indicates whether actual cleaning was done, there
4131  * is no guarantee that everything was cleaned
4132  */
4133 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4134 				     struct e1000_rx_ring *rx_ring,
4135 				     int *work_done, int work_to_do)
4136 {
4137 	struct net_device *netdev = adapter->netdev;
4138 	struct pci_dev *pdev = adapter->pdev;
4139 	struct e1000_rx_desc *rx_desc, *next_rxd;
4140 	struct e1000_rx_buffer *buffer_info, *next_buffer;
4141 	u32 length;
4142 	unsigned int i;
4143 	int cleaned_count = 0;
4144 	bool cleaned = false;
4145 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4146 
4147 	i = rx_ring->next_to_clean;
4148 	rx_desc = E1000_RX_DESC(*rx_ring, i);
4149 	buffer_info = &rx_ring->buffer_info[i];
4150 
4151 	while (rx_desc->status & E1000_RXD_STAT_DD) {
4152 		struct sk_buff *skb;
4153 		u8 status;
4154 
4155 		if (*work_done >= work_to_do)
4156 			break;
4157 		(*work_done)++;
4158 		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4159 
4160 		status = rx_desc->status;
4161 
4162 		if (++i == rx_ring->count)
4163 			i = 0;
4164 
4165 		next_rxd = E1000_RX_DESC(*rx_ring, i);
4166 		prefetch(next_rxd);
4167 
4168 		next_buffer = &rx_ring->buffer_info[i];
4169 
4170 		cleaned = true;
4171 		cleaned_count++;
4172 		dma_unmap_page(&pdev->dev, buffer_info->dma,
4173 			       adapter->rx_buffer_len, DMA_FROM_DEVICE);
4174 		buffer_info->dma = 0;
4175 
4176 		length = le16_to_cpu(rx_desc->length);
4177 
4178 		/* errors is only valid for DD + EOP descriptors */
4179 		if (unlikely((status & E1000_RXD_STAT_EOP) &&
4180 		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4181 			u8 *mapped = page_address(buffer_info->rxbuf.page);
4182 
4183 			if (e1000_tbi_should_accept(adapter, status,
4184 						    rx_desc->errors,
4185 						    length, mapped)) {
4186 				length--;
4187 			} else if (netdev->features & NETIF_F_RXALL) {
4188 				goto process_skb;
4189 			} else {
4190 				/* an error means any chain goes out the window
4191 				 * too
4192 				 */
4193 				dev_kfree_skb(rx_ring->rx_skb_top);
4194 				rx_ring->rx_skb_top = NULL;
4195 				goto next_desc;
4196 			}
4197 		}
4198 
4199 #define rxtop rx_ring->rx_skb_top
4200 process_skb:
4201 		if (!(status & E1000_RXD_STAT_EOP)) {
4202 			/* this descriptor is only the beginning (or middle) */
4203 			if (!rxtop) {
4204 				/* this is the beginning of a chain */
4205 				rxtop = napi_get_frags(&adapter->napi);
4206 				if (!rxtop)
4207 					break;
4208 
4209 				skb_fill_page_desc(rxtop, 0,
4210 						   buffer_info->rxbuf.page,
4211 						   0, length);
4212 			} else {
4213 				/* this is the middle of a chain */
4214 				skb_fill_page_desc(rxtop,
4215 				    skb_shinfo(rxtop)->nr_frags,
4216 				    buffer_info->rxbuf.page, 0, length);
4217 			}
4218 			e1000_consume_page(buffer_info, rxtop, length);
4219 			goto next_desc;
4220 		} else {
4221 			if (rxtop) {
4222 				/* end of the chain */
4223 				skb_fill_page_desc(rxtop,
4224 				    skb_shinfo(rxtop)->nr_frags,
4225 				    buffer_info->rxbuf.page, 0, length);
4226 				skb = rxtop;
4227 				rxtop = NULL;
4228 				e1000_consume_page(buffer_info, skb, length);
4229 			} else {
4230 				struct page *p;
4231 				/* no chain, got EOP, this buf is the packet
4232 				 * copybreak to save the put_page/alloc_page
4233 				 */
4234 				p = buffer_info->rxbuf.page;
4235 				if (length <= copybreak) {
4236 					if (likely(!(netdev->features & NETIF_F_RXFCS)))
4237 						length -= 4;
4238 					skb = e1000_alloc_rx_skb(adapter,
4239 								 length);
4240 					if (!skb)
4241 						break;
4242 
4243 					memcpy(skb_tail_pointer(skb),
4244 					       page_address(p), length);
4245 
4246 					/* re-use the page, so don't erase
4247 					 * buffer_info->rxbuf.page
4248 					 */
4249 					skb_put(skb, length);
4250 					e1000_rx_checksum(adapter,
4251 							  status | rx_desc->errors << 24,
4252 							  le16_to_cpu(rx_desc->csum), skb);
4253 
4254 					total_rx_bytes += skb->len;
4255 					total_rx_packets++;
4256 
4257 					e1000_receive_skb(adapter, status,
4258 							  rx_desc->special, skb);
4259 					goto next_desc;
4260 				} else {
4261 					skb = napi_get_frags(&adapter->napi);
4262 					if (!skb) {
4263 						adapter->alloc_rx_buff_failed++;
4264 						break;
4265 					}
4266 					skb_fill_page_desc(skb, 0, p, 0,
4267 							   length);
4268 					e1000_consume_page(buffer_info, skb,
4269 							   length);
4270 				}
4271 			}
4272 		}
4273 
4274 		/* Receive Checksum Offload XXX recompute due to CRC strip? */
4275 		e1000_rx_checksum(adapter,
4276 				  (u32)(status) |
4277 				  ((u32)(rx_desc->errors) << 24),
4278 				  le16_to_cpu(rx_desc->csum), skb);
4279 
4280 		total_rx_bytes += (skb->len - 4); /* don't count FCS */
4281 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4282 			pskb_trim(skb, skb->len - 4);
4283 		total_rx_packets++;
4284 
4285 		if (status & E1000_RXD_STAT_VP) {
4286 			__le16 vlan = rx_desc->special;
4287 			u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4288 
4289 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4290 		}
4291 
4292 		napi_gro_frags(&adapter->napi);
4293 
4294 next_desc:
4295 		rx_desc->status = 0;
4296 
4297 		/* return some buffers to hardware, one at a time is too slow */
4298 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4299 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4300 			cleaned_count = 0;
4301 		}
4302 
4303 		/* use prefetched values */
4304 		rx_desc = next_rxd;
4305 		buffer_info = next_buffer;
4306 	}
4307 	rx_ring->next_to_clean = i;
4308 
4309 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4310 	if (cleaned_count)
4311 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4312 
4313 	adapter->total_rx_packets += total_rx_packets;
4314 	adapter->total_rx_bytes += total_rx_bytes;
4315 	netdev->stats.rx_bytes += total_rx_bytes;
4316 	netdev->stats.rx_packets += total_rx_packets;
4317 	return cleaned;
4318 }
4319 
4320 /* this should improve performance for small packets with large amounts
4321  * of reassembly being done in the stack
4322  */
4323 static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4324 				       struct e1000_rx_buffer *buffer_info,
4325 				       u32 length, const void *data)
4326 {
4327 	struct sk_buff *skb;
4328 
4329 	if (length > copybreak)
4330 		return NULL;
4331 
4332 	skb = e1000_alloc_rx_skb(adapter, length);
4333 	if (!skb)
4334 		return NULL;
4335 
4336 	dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4337 				length, DMA_FROM_DEVICE);
4338 
4339 	skb_put_data(skb, data, length);
4340 
4341 	return skb;
4342 }
4343 
4344 /**
4345  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4346  * @adapter: board private structure
4347  * @rx_ring: ring to clean
4348  * @work_done: amount of napi work completed this call
4349  * @work_to_do: max amount of work allowed for this call to do
4350  */
4351 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4352 			       struct e1000_rx_ring *rx_ring,
4353 			       int *work_done, int work_to_do)
4354 {
4355 	struct net_device *netdev = adapter->netdev;
4356 	struct pci_dev *pdev = adapter->pdev;
4357 	struct e1000_rx_desc *rx_desc, *next_rxd;
4358 	struct e1000_rx_buffer *buffer_info, *next_buffer;
4359 	u32 length;
4360 	unsigned int i;
4361 	int cleaned_count = 0;
4362 	bool cleaned = false;
4363 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4364 
4365 	i = rx_ring->next_to_clean;
4366 	rx_desc = E1000_RX_DESC(*rx_ring, i);
4367 	buffer_info = &rx_ring->buffer_info[i];
4368 
4369 	while (rx_desc->status & E1000_RXD_STAT_DD) {
4370 		struct sk_buff *skb;
4371 		u8 *data;
4372 		u8 status;
4373 
4374 		if (*work_done >= work_to_do)
4375 			break;
4376 		(*work_done)++;
4377 		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4378 
4379 		status = rx_desc->status;
4380 		length = le16_to_cpu(rx_desc->length);
4381 
4382 		data = buffer_info->rxbuf.data;
4383 		prefetch(data);
4384 		skb = e1000_copybreak(adapter, buffer_info, length, data);
4385 		if (!skb) {
4386 			unsigned int frag_len = e1000_frag_len(adapter);
4387 
4388 			skb = napi_build_skb(data - E1000_HEADROOM, frag_len);
4389 			if (!skb) {
4390 				adapter->alloc_rx_buff_failed++;
4391 				break;
4392 			}
4393 
4394 			skb_reserve(skb, E1000_HEADROOM);
4395 			dma_unmap_single(&pdev->dev, buffer_info->dma,
4396 					 adapter->rx_buffer_len,
4397 					 DMA_FROM_DEVICE);
4398 			buffer_info->dma = 0;
4399 			buffer_info->rxbuf.data = NULL;
4400 		}
4401 
4402 		if (++i == rx_ring->count)
4403 			i = 0;
4404 
4405 		next_rxd = E1000_RX_DESC(*rx_ring, i);
4406 		prefetch(next_rxd);
4407 
4408 		next_buffer = &rx_ring->buffer_info[i];
4409 
4410 		cleaned = true;
4411 		cleaned_count++;
4412 
4413 		/* !EOP means multiple descriptors were used to store a single
4414 		 * packet, if thats the case we need to toss it.  In fact, we
4415 		 * to toss every packet with the EOP bit clear and the next
4416 		 * frame that _does_ have the EOP bit set, as it is by
4417 		 * definition only a frame fragment
4418 		 */
4419 		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4420 			adapter->discarding = true;
4421 
4422 		if (adapter->discarding) {
4423 			/* All receives must fit into a single buffer */
4424 			netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4425 			dev_kfree_skb(skb);
4426 			if (status & E1000_RXD_STAT_EOP)
4427 				adapter->discarding = false;
4428 			goto next_desc;
4429 		}
4430 
4431 		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4432 			if (e1000_tbi_should_accept(adapter, status,
4433 						    rx_desc->errors,
4434 						    length, data)) {
4435 				length--;
4436 			} else if (netdev->features & NETIF_F_RXALL) {
4437 				goto process_skb;
4438 			} else {
4439 				dev_kfree_skb(skb);
4440 				goto next_desc;
4441 			}
4442 		}
4443 
4444 process_skb:
4445 		total_rx_bytes += (length - 4); /* don't count FCS */
4446 		total_rx_packets++;
4447 
4448 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4449 			/* adjust length to remove Ethernet CRC, this must be
4450 			 * done after the TBI_ACCEPT workaround above
4451 			 */
4452 			length -= 4;
4453 
4454 		if (buffer_info->rxbuf.data == NULL)
4455 			skb_put(skb, length);
4456 		else /* copybreak skb */
4457 			skb_trim(skb, length);
4458 
4459 		/* Receive Checksum Offload */
4460 		e1000_rx_checksum(adapter,
4461 				  (u32)(status) |
4462 				  ((u32)(rx_desc->errors) << 24),
4463 				  le16_to_cpu(rx_desc->csum), skb);
4464 
4465 		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4466 
4467 next_desc:
4468 		rx_desc->status = 0;
4469 
4470 		/* return some buffers to hardware, one at a time is too slow */
4471 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4472 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4473 			cleaned_count = 0;
4474 		}
4475 
4476 		/* use prefetched values */
4477 		rx_desc = next_rxd;
4478 		buffer_info = next_buffer;
4479 	}
4480 	rx_ring->next_to_clean = i;
4481 
4482 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4483 	if (cleaned_count)
4484 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4485 
4486 	adapter->total_rx_packets += total_rx_packets;
4487 	adapter->total_rx_bytes += total_rx_bytes;
4488 	netdev->stats.rx_bytes += total_rx_bytes;
4489 	netdev->stats.rx_packets += total_rx_packets;
4490 	return cleaned;
4491 }
4492 
4493 /**
4494  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4495  * @adapter: address of board private structure
4496  * @rx_ring: pointer to receive ring structure
4497  * @cleaned_count: number of buffers to allocate this pass
4498  **/
4499 static void
4500 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4501 			     struct e1000_rx_ring *rx_ring, int cleaned_count)
4502 {
4503 	struct pci_dev *pdev = adapter->pdev;
4504 	struct e1000_rx_desc *rx_desc;
4505 	struct e1000_rx_buffer *buffer_info;
4506 	unsigned int i;
4507 
4508 	i = rx_ring->next_to_use;
4509 	buffer_info = &rx_ring->buffer_info[i];
4510 
4511 	while (cleaned_count--) {
4512 		/* allocate a new page if necessary */
4513 		if (!buffer_info->rxbuf.page) {
4514 			buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4515 			if (unlikely(!buffer_info->rxbuf.page)) {
4516 				adapter->alloc_rx_buff_failed++;
4517 				break;
4518 			}
4519 		}
4520 
4521 		if (!buffer_info->dma) {
4522 			buffer_info->dma = dma_map_page(&pdev->dev,
4523 							buffer_info->rxbuf.page, 0,
4524 							adapter->rx_buffer_len,
4525 							DMA_FROM_DEVICE);
4526 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4527 				put_page(buffer_info->rxbuf.page);
4528 				buffer_info->rxbuf.page = NULL;
4529 				buffer_info->dma = 0;
4530 				adapter->alloc_rx_buff_failed++;
4531 				break;
4532 			}
4533 		}
4534 
4535 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4536 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4537 
4538 		if (unlikely(++i == rx_ring->count))
4539 			i = 0;
4540 		buffer_info = &rx_ring->buffer_info[i];
4541 	}
4542 
4543 	if (likely(rx_ring->next_to_use != i)) {
4544 		rx_ring->next_to_use = i;
4545 		if (unlikely(i-- == 0))
4546 			i = (rx_ring->count - 1);
4547 
4548 		/* Force memory writes to complete before letting h/w
4549 		 * know there are new descriptors to fetch.  (Only
4550 		 * applicable for weak-ordered memory model archs,
4551 		 * such as IA-64).
4552 		 */
4553 		dma_wmb();
4554 		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4555 	}
4556 }
4557 
4558 /**
4559  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4560  * @adapter: address of board private structure
4561  * @rx_ring: pointer to ring struct
4562  * @cleaned_count: number of new Rx buffers to try to allocate
4563  **/
4564 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4565 				   struct e1000_rx_ring *rx_ring,
4566 				   int cleaned_count)
4567 {
4568 	struct e1000_hw *hw = &adapter->hw;
4569 	struct pci_dev *pdev = adapter->pdev;
4570 	struct e1000_rx_desc *rx_desc;
4571 	struct e1000_rx_buffer *buffer_info;
4572 	unsigned int i;
4573 	unsigned int bufsz = adapter->rx_buffer_len;
4574 
4575 	i = rx_ring->next_to_use;
4576 	buffer_info = &rx_ring->buffer_info[i];
4577 
4578 	while (cleaned_count--) {
4579 		void *data;
4580 
4581 		if (buffer_info->rxbuf.data)
4582 			goto skip;
4583 
4584 		data = e1000_alloc_frag(adapter);
4585 		if (!data) {
4586 			/* Better luck next round */
4587 			adapter->alloc_rx_buff_failed++;
4588 			break;
4589 		}
4590 
4591 		/* Fix for errata 23, can't cross 64kB boundary */
4592 		if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4593 			void *olddata = data;
4594 			e_err(rx_err, "skb align check failed: %u bytes at "
4595 			      "%p\n", bufsz, data);
4596 			/* Try again, without freeing the previous */
4597 			data = e1000_alloc_frag(adapter);
4598 			/* Failed allocation, critical failure */
4599 			if (!data) {
4600 				skb_free_frag(olddata);
4601 				adapter->alloc_rx_buff_failed++;
4602 				break;
4603 			}
4604 
4605 			if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4606 				/* give up */
4607 				skb_free_frag(data);
4608 				skb_free_frag(olddata);
4609 				adapter->alloc_rx_buff_failed++;
4610 				break;
4611 			}
4612 
4613 			/* Use new allocation */
4614 			skb_free_frag(olddata);
4615 		}
4616 		buffer_info->dma = dma_map_single(&pdev->dev,
4617 						  data,
4618 						  adapter->rx_buffer_len,
4619 						  DMA_FROM_DEVICE);
4620 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4621 			skb_free_frag(data);
4622 			buffer_info->dma = 0;
4623 			adapter->alloc_rx_buff_failed++;
4624 			break;
4625 		}
4626 
4627 		/* XXX if it was allocated cleanly it will never map to a
4628 		 * boundary crossing
4629 		 */
4630 
4631 		/* Fix for errata 23, can't cross 64kB boundary */
4632 		if (!e1000_check_64k_bound(adapter,
4633 					(void *)(unsigned long)buffer_info->dma,
4634 					adapter->rx_buffer_len)) {
4635 			e_err(rx_err, "dma align check failed: %u bytes at "
4636 			      "%p\n", adapter->rx_buffer_len,
4637 			      (void *)(unsigned long)buffer_info->dma);
4638 
4639 			dma_unmap_single(&pdev->dev, buffer_info->dma,
4640 					 adapter->rx_buffer_len,
4641 					 DMA_FROM_DEVICE);
4642 
4643 			skb_free_frag(data);
4644 			buffer_info->rxbuf.data = NULL;
4645 			buffer_info->dma = 0;
4646 
4647 			adapter->alloc_rx_buff_failed++;
4648 			break;
4649 		}
4650 		buffer_info->rxbuf.data = data;
4651  skip:
4652 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4653 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4654 
4655 		if (unlikely(++i == rx_ring->count))
4656 			i = 0;
4657 		buffer_info = &rx_ring->buffer_info[i];
4658 	}
4659 
4660 	if (likely(rx_ring->next_to_use != i)) {
4661 		rx_ring->next_to_use = i;
4662 		if (unlikely(i-- == 0))
4663 			i = (rx_ring->count - 1);
4664 
4665 		/* Force memory writes to complete before letting h/w
4666 		 * know there are new descriptors to fetch.  (Only
4667 		 * applicable for weak-ordered memory model archs,
4668 		 * such as IA-64).
4669 		 */
4670 		dma_wmb();
4671 		writel(i, hw->hw_addr + rx_ring->rdt);
4672 	}
4673 }
4674 
4675 /**
4676  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4677  * @adapter: address of board private structure
4678  **/
4679 static void e1000_smartspeed(struct e1000_adapter *adapter)
4680 {
4681 	struct e1000_hw *hw = &adapter->hw;
4682 	u16 phy_status;
4683 	u16 phy_ctrl;
4684 
4685 	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4686 	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4687 		return;
4688 
4689 	if (adapter->smartspeed == 0) {
4690 		/* If Master/Slave config fault is asserted twice,
4691 		 * we assume back-to-back
4692 		 */
4693 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4694 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4695 			return;
4696 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4697 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4698 			return;
4699 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4700 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4701 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4702 			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4703 					    phy_ctrl);
4704 			adapter->smartspeed++;
4705 			if (!e1000_phy_setup_autoneg(hw) &&
4706 			   !e1000_read_phy_reg(hw, PHY_CTRL,
4707 					       &phy_ctrl)) {
4708 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4709 					     MII_CR_RESTART_AUTO_NEG);
4710 				e1000_write_phy_reg(hw, PHY_CTRL,
4711 						    phy_ctrl);
4712 			}
4713 		}
4714 		return;
4715 	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4716 		/* If still no link, perhaps using 2/3 pair cable */
4717 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4718 		phy_ctrl |= CR_1000T_MS_ENABLE;
4719 		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4720 		if (!e1000_phy_setup_autoneg(hw) &&
4721 		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4722 			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4723 				     MII_CR_RESTART_AUTO_NEG);
4724 			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4725 		}
4726 	}
4727 	/* Restart process after E1000_SMARTSPEED_MAX iterations */
4728 	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4729 		adapter->smartspeed = 0;
4730 }
4731 
4732 /**
4733  * e1000_ioctl - handle ioctl calls
4734  * @netdev: pointer to our netdev
4735  * @ifr: pointer to interface request structure
4736  * @cmd: ioctl data
4737  **/
4738 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4739 {
4740 	switch (cmd) {
4741 	case SIOCGMIIPHY:
4742 	case SIOCGMIIREG:
4743 	case SIOCSMIIREG:
4744 		return e1000_mii_ioctl(netdev, ifr, cmd);
4745 	default:
4746 		return -EOPNOTSUPP;
4747 	}
4748 }
4749 
4750 /**
4751  * e1000_mii_ioctl -
4752  * @netdev: pointer to our netdev
4753  * @ifr: pointer to interface request structure
4754  * @cmd: ioctl data
4755  **/
4756 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4757 			   int cmd)
4758 {
4759 	struct e1000_adapter *adapter = netdev_priv(netdev);
4760 	struct e1000_hw *hw = &adapter->hw;
4761 	struct mii_ioctl_data *data = if_mii(ifr);
4762 	int retval;
4763 	u16 mii_reg;
4764 	unsigned long flags;
4765 
4766 	if (hw->media_type != e1000_media_type_copper)
4767 		return -EOPNOTSUPP;
4768 
4769 	switch (cmd) {
4770 	case SIOCGMIIPHY:
4771 		data->phy_id = hw->phy_addr;
4772 		break;
4773 	case SIOCGMIIREG:
4774 		spin_lock_irqsave(&adapter->stats_lock, flags);
4775 		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4776 				   &data->val_out)) {
4777 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4778 			return -EIO;
4779 		}
4780 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4781 		break;
4782 	case SIOCSMIIREG:
4783 		if (data->reg_num & ~(0x1F))
4784 			return -EFAULT;
4785 		mii_reg = data->val_in;
4786 		spin_lock_irqsave(&adapter->stats_lock, flags);
4787 		if (e1000_write_phy_reg(hw, data->reg_num,
4788 					mii_reg)) {
4789 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4790 			return -EIO;
4791 		}
4792 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4793 		if (hw->media_type == e1000_media_type_copper) {
4794 			switch (data->reg_num) {
4795 			case PHY_CTRL:
4796 				if (mii_reg & MII_CR_POWER_DOWN)
4797 					break;
4798 				if (mii_reg & MII_CR_AUTO_NEG_EN) {
4799 					hw->autoneg = 1;
4800 					hw->autoneg_advertised = 0x2F;
4801 				} else {
4802 					u32 speed;
4803 					if (mii_reg & 0x40)
4804 						speed = SPEED_1000;
4805 					else if (mii_reg & 0x2000)
4806 						speed = SPEED_100;
4807 					else
4808 						speed = SPEED_10;
4809 					retval = e1000_set_spd_dplx(
4810 						adapter, speed,
4811 						((mii_reg & 0x100)
4812 						 ? DUPLEX_FULL :
4813 						 DUPLEX_HALF));
4814 					if (retval)
4815 						return retval;
4816 				}
4817 				if (netif_running(adapter->netdev))
4818 					e1000_reinit_locked(adapter);
4819 				else
4820 					e1000_reset(adapter);
4821 				break;
4822 			case M88E1000_PHY_SPEC_CTRL:
4823 			case M88E1000_EXT_PHY_SPEC_CTRL:
4824 				if (e1000_phy_reset(hw))
4825 					return -EIO;
4826 				break;
4827 			}
4828 		} else {
4829 			switch (data->reg_num) {
4830 			case PHY_CTRL:
4831 				if (mii_reg & MII_CR_POWER_DOWN)
4832 					break;
4833 				if (netif_running(adapter->netdev))
4834 					e1000_reinit_locked(adapter);
4835 				else
4836 					e1000_reset(adapter);
4837 				break;
4838 			}
4839 		}
4840 		break;
4841 	default:
4842 		return -EOPNOTSUPP;
4843 	}
4844 	return E1000_SUCCESS;
4845 }
4846 
4847 void e1000_pci_set_mwi(struct e1000_hw *hw)
4848 {
4849 	struct e1000_adapter *adapter = hw->back;
4850 	int ret_val = pci_set_mwi(adapter->pdev);
4851 
4852 	if (ret_val)
4853 		e_err(probe, "Error in setting MWI\n");
4854 }
4855 
4856 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4857 {
4858 	struct e1000_adapter *adapter = hw->back;
4859 
4860 	pci_clear_mwi(adapter->pdev);
4861 }
4862 
4863 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4864 {
4865 	struct e1000_adapter *adapter = hw->back;
4866 	return pcix_get_mmrbc(adapter->pdev);
4867 }
4868 
4869 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4870 {
4871 	struct e1000_adapter *adapter = hw->back;
4872 	pcix_set_mmrbc(adapter->pdev, mmrbc);
4873 }
4874 
4875 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4876 {
4877 	outl(value, port);
4878 }
4879 
4880 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4881 {
4882 	u16 vid;
4883 
4884 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4885 		return true;
4886 	return false;
4887 }
4888 
4889 static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4890 			      netdev_features_t features)
4891 {
4892 	struct e1000_hw *hw = &adapter->hw;
4893 	u32 ctrl;
4894 
4895 	ctrl = er32(CTRL);
4896 	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4897 		/* enable VLAN tag insert/strip */
4898 		ctrl |= E1000_CTRL_VME;
4899 	} else {
4900 		/* disable VLAN tag insert/strip */
4901 		ctrl &= ~E1000_CTRL_VME;
4902 	}
4903 	ew32(CTRL, ctrl);
4904 }
4905 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4906 				     bool filter_on)
4907 {
4908 	struct e1000_hw *hw = &adapter->hw;
4909 	u32 rctl;
4910 
4911 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4912 		e1000_irq_disable(adapter);
4913 
4914 	__e1000_vlan_mode(adapter, adapter->netdev->features);
4915 	if (filter_on) {
4916 		/* enable VLAN receive filtering */
4917 		rctl = er32(RCTL);
4918 		rctl &= ~E1000_RCTL_CFIEN;
4919 		if (!(adapter->netdev->flags & IFF_PROMISC))
4920 			rctl |= E1000_RCTL_VFE;
4921 		ew32(RCTL, rctl);
4922 		e1000_update_mng_vlan(adapter);
4923 	} else {
4924 		/* disable VLAN receive filtering */
4925 		rctl = er32(RCTL);
4926 		rctl &= ~E1000_RCTL_VFE;
4927 		ew32(RCTL, rctl);
4928 	}
4929 
4930 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4931 		e1000_irq_enable(adapter);
4932 }
4933 
4934 static void e1000_vlan_mode(struct net_device *netdev,
4935 			    netdev_features_t features)
4936 {
4937 	struct e1000_adapter *adapter = netdev_priv(netdev);
4938 
4939 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4940 		e1000_irq_disable(adapter);
4941 
4942 	__e1000_vlan_mode(adapter, features);
4943 
4944 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4945 		e1000_irq_enable(adapter);
4946 }
4947 
4948 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4949 				 __be16 proto, u16 vid)
4950 {
4951 	struct e1000_adapter *adapter = netdev_priv(netdev);
4952 	struct e1000_hw *hw = &adapter->hw;
4953 	u32 vfta, index;
4954 
4955 	if ((hw->mng_cookie.status &
4956 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4957 	    (vid == adapter->mng_vlan_id))
4958 		return 0;
4959 
4960 	if (!e1000_vlan_used(adapter))
4961 		e1000_vlan_filter_on_off(adapter, true);
4962 
4963 	/* add VID to filter table */
4964 	index = (vid >> 5) & 0x7F;
4965 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4966 	vfta |= (1 << (vid & 0x1F));
4967 	e1000_write_vfta(hw, index, vfta);
4968 
4969 	set_bit(vid, adapter->active_vlans);
4970 
4971 	return 0;
4972 }
4973 
4974 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4975 				  __be16 proto, u16 vid)
4976 {
4977 	struct e1000_adapter *adapter = netdev_priv(netdev);
4978 	struct e1000_hw *hw = &adapter->hw;
4979 	u32 vfta, index;
4980 
4981 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4982 		e1000_irq_disable(adapter);
4983 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4984 		e1000_irq_enable(adapter);
4985 
4986 	/* remove VID from filter table */
4987 	index = (vid >> 5) & 0x7F;
4988 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4989 	vfta &= ~(1 << (vid & 0x1F));
4990 	e1000_write_vfta(hw, index, vfta);
4991 
4992 	clear_bit(vid, adapter->active_vlans);
4993 
4994 	if (!e1000_vlan_used(adapter))
4995 		e1000_vlan_filter_on_off(adapter, false);
4996 
4997 	return 0;
4998 }
4999 
5000 static void e1000_restore_vlan(struct e1000_adapter *adapter)
5001 {
5002 	u16 vid;
5003 
5004 	if (!e1000_vlan_used(adapter))
5005 		return;
5006 
5007 	e1000_vlan_filter_on_off(adapter, true);
5008 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5009 		e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5010 }
5011 
5012 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5013 {
5014 	struct e1000_hw *hw = &adapter->hw;
5015 
5016 	hw->autoneg = 0;
5017 
5018 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
5019 	 * for the switch() below to work
5020 	 */
5021 	if ((spd & 1) || (dplx & ~1))
5022 		goto err_inval;
5023 
5024 	/* Fiber NICs only allow 1000 gbps Full duplex */
5025 	if ((hw->media_type == e1000_media_type_fiber) &&
5026 	    spd != SPEED_1000 &&
5027 	    dplx != DUPLEX_FULL)
5028 		goto err_inval;
5029 
5030 	switch (spd + dplx) {
5031 	case SPEED_10 + DUPLEX_HALF:
5032 		hw->forced_speed_duplex = e1000_10_half;
5033 		break;
5034 	case SPEED_10 + DUPLEX_FULL:
5035 		hw->forced_speed_duplex = e1000_10_full;
5036 		break;
5037 	case SPEED_100 + DUPLEX_HALF:
5038 		hw->forced_speed_duplex = e1000_100_half;
5039 		break;
5040 	case SPEED_100 + DUPLEX_FULL:
5041 		hw->forced_speed_duplex = e1000_100_full;
5042 		break;
5043 	case SPEED_1000 + DUPLEX_FULL:
5044 		hw->autoneg = 1;
5045 		hw->autoneg_advertised = ADVERTISE_1000_FULL;
5046 		break;
5047 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
5048 	default:
5049 		goto err_inval;
5050 	}
5051 
5052 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5053 	hw->mdix = AUTO_ALL_MODES;
5054 
5055 	return 0;
5056 
5057 err_inval:
5058 	e_err(probe, "Unsupported Speed/Duplex configuration\n");
5059 	return -EINVAL;
5060 }
5061 
5062 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5063 {
5064 	struct net_device *netdev = pci_get_drvdata(pdev);
5065 	struct e1000_adapter *adapter = netdev_priv(netdev);
5066 	struct e1000_hw *hw = &adapter->hw;
5067 	u32 ctrl, ctrl_ext, rctl, status;
5068 	u32 wufc = adapter->wol;
5069 
5070 	netif_device_detach(netdev);
5071 
5072 	if (netif_running(netdev)) {
5073 		int count = E1000_CHECK_RESET_COUNT;
5074 
5075 		while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5076 			usleep_range(10000, 20000);
5077 
5078 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5079 		rtnl_lock();
5080 		e1000_down(adapter);
5081 		rtnl_unlock();
5082 	}
5083 
5084 	status = er32(STATUS);
5085 	if (status & E1000_STATUS_LU)
5086 		wufc &= ~E1000_WUFC_LNKC;
5087 
5088 	if (wufc) {
5089 		e1000_setup_rctl(adapter);
5090 		e1000_set_rx_mode(netdev);
5091 
5092 		rctl = er32(RCTL);
5093 
5094 		/* turn on all-multi mode if wake on multicast is enabled */
5095 		if (wufc & E1000_WUFC_MC)
5096 			rctl |= E1000_RCTL_MPE;
5097 
5098 		/* enable receives in the hardware */
5099 		ew32(RCTL, rctl | E1000_RCTL_EN);
5100 
5101 		if (hw->mac_type >= e1000_82540) {
5102 			ctrl = er32(CTRL);
5103 			/* advertise wake from D3Cold */
5104 			#define E1000_CTRL_ADVD3WUC 0x00100000
5105 			/* phy power management enable */
5106 			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5107 			ctrl |= E1000_CTRL_ADVD3WUC |
5108 				E1000_CTRL_EN_PHY_PWR_MGMT;
5109 			ew32(CTRL, ctrl);
5110 		}
5111 
5112 		if (hw->media_type == e1000_media_type_fiber ||
5113 		    hw->media_type == e1000_media_type_internal_serdes) {
5114 			/* keep the laser running in D3 */
5115 			ctrl_ext = er32(CTRL_EXT);
5116 			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5117 			ew32(CTRL_EXT, ctrl_ext);
5118 		}
5119 
5120 		ew32(WUC, E1000_WUC_PME_EN);
5121 		ew32(WUFC, wufc);
5122 	} else {
5123 		ew32(WUC, 0);
5124 		ew32(WUFC, 0);
5125 	}
5126 
5127 	e1000_release_manageability(adapter);
5128 
5129 	*enable_wake = !!wufc;
5130 
5131 	/* make sure adapter isn't asleep if manageability is enabled */
5132 	if (adapter->en_mng_pt)
5133 		*enable_wake = true;
5134 
5135 	if (netif_running(netdev))
5136 		e1000_free_irq(adapter);
5137 
5138 	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5139 		pci_disable_device(pdev);
5140 
5141 	return 0;
5142 }
5143 
5144 static int e1000_suspend(struct device *dev)
5145 {
5146 	int retval;
5147 	struct pci_dev *pdev = to_pci_dev(dev);
5148 	bool wake;
5149 
5150 	retval = __e1000_shutdown(pdev, &wake);
5151 	device_set_wakeup_enable(dev, wake);
5152 
5153 	return retval;
5154 }
5155 
5156 static int e1000_resume(struct device *dev)
5157 {
5158 	struct pci_dev *pdev = to_pci_dev(dev);
5159 	struct net_device *netdev = pci_get_drvdata(pdev);
5160 	struct e1000_adapter *adapter = netdev_priv(netdev);
5161 	struct e1000_hw *hw = &adapter->hw;
5162 	u32 err;
5163 
5164 	if (adapter->need_ioport)
5165 		err = pci_enable_device(pdev);
5166 	else
5167 		err = pci_enable_device_mem(pdev);
5168 	if (err) {
5169 		pr_err("Cannot enable PCI device from suspend\n");
5170 		return err;
5171 	}
5172 
5173 	/* flush memory to make sure state is correct */
5174 	smp_mb__before_atomic();
5175 	clear_bit(__E1000_DISABLED, &adapter->flags);
5176 	pci_set_master(pdev);
5177 
5178 	pci_enable_wake(pdev, PCI_D3hot, 0);
5179 	pci_enable_wake(pdev, PCI_D3cold, 0);
5180 
5181 	if (netif_running(netdev)) {
5182 		err = e1000_request_irq(adapter);
5183 		if (err)
5184 			return err;
5185 	}
5186 
5187 	e1000_power_up_phy(adapter);
5188 	e1000_reset(adapter);
5189 	ew32(WUS, ~0);
5190 
5191 	e1000_init_manageability(adapter);
5192 
5193 	if (netif_running(netdev))
5194 		e1000_up(adapter);
5195 
5196 	netif_device_attach(netdev);
5197 
5198 	return 0;
5199 }
5200 
5201 static void e1000_shutdown(struct pci_dev *pdev)
5202 {
5203 	bool wake;
5204 
5205 	__e1000_shutdown(pdev, &wake);
5206 
5207 	if (system_state == SYSTEM_POWER_OFF) {
5208 		pci_wake_from_d3(pdev, wake);
5209 		pci_set_power_state(pdev, PCI_D3hot);
5210 	}
5211 }
5212 
5213 #ifdef CONFIG_NET_POLL_CONTROLLER
5214 /* Polling 'interrupt' - used by things like netconsole to send skbs
5215  * without having to re-enable interrupts. It's not called while
5216  * the interrupt routine is executing.
5217  */
5218 static void e1000_netpoll(struct net_device *netdev)
5219 {
5220 	struct e1000_adapter *adapter = netdev_priv(netdev);
5221 
5222 	if (disable_hardirq(adapter->pdev->irq))
5223 		e1000_intr(adapter->pdev->irq, netdev);
5224 	enable_irq(adapter->pdev->irq);
5225 }
5226 #endif
5227 
5228 /**
5229  * e1000_io_error_detected - called when PCI error is detected
5230  * @pdev: Pointer to PCI device
5231  * @state: The current pci connection state
5232  *
5233  * This function is called after a PCI bus error affecting
5234  * this device has been detected.
5235  */
5236 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5237 						pci_channel_state_t state)
5238 {
5239 	struct net_device *netdev = pci_get_drvdata(pdev);
5240 	struct e1000_adapter *adapter = netdev_priv(netdev);
5241 
5242 	rtnl_lock();
5243 	netif_device_detach(netdev);
5244 
5245 	if (state == pci_channel_io_perm_failure) {
5246 		rtnl_unlock();
5247 		return PCI_ERS_RESULT_DISCONNECT;
5248 	}
5249 
5250 	if (netif_running(netdev))
5251 		e1000_down(adapter);
5252 
5253 	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5254 		pci_disable_device(pdev);
5255 	rtnl_unlock();
5256 
5257 	/* Request a slot reset. */
5258 	return PCI_ERS_RESULT_NEED_RESET;
5259 }
5260 
5261 /**
5262  * e1000_io_slot_reset - called after the pci bus has been reset.
5263  * @pdev: Pointer to PCI device
5264  *
5265  * Restart the card from scratch, as if from a cold-boot. Implementation
5266  * resembles the first-half of the e1000_resume routine.
5267  */
5268 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5269 {
5270 	struct net_device *netdev = pci_get_drvdata(pdev);
5271 	struct e1000_adapter *adapter = netdev_priv(netdev);
5272 	struct e1000_hw *hw = &adapter->hw;
5273 	int err;
5274 
5275 	if (adapter->need_ioport)
5276 		err = pci_enable_device(pdev);
5277 	else
5278 		err = pci_enable_device_mem(pdev);
5279 	if (err) {
5280 		pr_err("Cannot re-enable PCI device after reset.\n");
5281 		return PCI_ERS_RESULT_DISCONNECT;
5282 	}
5283 
5284 	/* flush memory to make sure state is correct */
5285 	smp_mb__before_atomic();
5286 	clear_bit(__E1000_DISABLED, &adapter->flags);
5287 	pci_set_master(pdev);
5288 
5289 	pci_enable_wake(pdev, PCI_D3hot, 0);
5290 	pci_enable_wake(pdev, PCI_D3cold, 0);
5291 
5292 	e1000_reset(adapter);
5293 	ew32(WUS, ~0);
5294 
5295 	return PCI_ERS_RESULT_RECOVERED;
5296 }
5297 
5298 /**
5299  * e1000_io_resume - called when traffic can start flowing again.
5300  * @pdev: Pointer to PCI device
5301  *
5302  * This callback is called when the error recovery driver tells us that
5303  * its OK to resume normal operation. Implementation resembles the
5304  * second-half of the e1000_resume routine.
5305  */
5306 static void e1000_io_resume(struct pci_dev *pdev)
5307 {
5308 	struct net_device *netdev = pci_get_drvdata(pdev);
5309 	struct e1000_adapter *adapter = netdev_priv(netdev);
5310 
5311 	e1000_init_manageability(adapter);
5312 
5313 	if (netif_running(netdev)) {
5314 		if (e1000_up(adapter)) {
5315 			pr_info("can't bring device back up after reset\n");
5316 			return;
5317 		}
5318 	}
5319 
5320 	netif_device_attach(netdev);
5321 }
5322 
5323 /* e1000_main.c */
5324