1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2006 Intel Corporation. */ 3 4 #include "e1000.h" 5 #include <net/ip6_checksum.h> 6 #include <linux/io.h> 7 #include <linux/prefetch.h> 8 #include <linux/bitops.h> 9 #include <linux/if_vlan.h> 10 11 char e1000_driver_name[] = "e1000"; 12 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver"; 13 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation."; 14 15 /* e1000_pci_tbl - PCI Device ID Table 16 * 17 * Last entry must be all 0s 18 * 19 * Macro expands to... 20 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)} 21 */ 22 static const struct pci_device_id e1000_pci_tbl[] = { 23 INTEL_E1000_ETHERNET_DEVICE(0x1000), 24 INTEL_E1000_ETHERNET_DEVICE(0x1001), 25 INTEL_E1000_ETHERNET_DEVICE(0x1004), 26 INTEL_E1000_ETHERNET_DEVICE(0x1008), 27 INTEL_E1000_ETHERNET_DEVICE(0x1009), 28 INTEL_E1000_ETHERNET_DEVICE(0x100C), 29 INTEL_E1000_ETHERNET_DEVICE(0x100D), 30 INTEL_E1000_ETHERNET_DEVICE(0x100E), 31 INTEL_E1000_ETHERNET_DEVICE(0x100F), 32 INTEL_E1000_ETHERNET_DEVICE(0x1010), 33 INTEL_E1000_ETHERNET_DEVICE(0x1011), 34 INTEL_E1000_ETHERNET_DEVICE(0x1012), 35 INTEL_E1000_ETHERNET_DEVICE(0x1013), 36 INTEL_E1000_ETHERNET_DEVICE(0x1014), 37 INTEL_E1000_ETHERNET_DEVICE(0x1015), 38 INTEL_E1000_ETHERNET_DEVICE(0x1016), 39 INTEL_E1000_ETHERNET_DEVICE(0x1017), 40 INTEL_E1000_ETHERNET_DEVICE(0x1018), 41 INTEL_E1000_ETHERNET_DEVICE(0x1019), 42 INTEL_E1000_ETHERNET_DEVICE(0x101A), 43 INTEL_E1000_ETHERNET_DEVICE(0x101D), 44 INTEL_E1000_ETHERNET_DEVICE(0x101E), 45 INTEL_E1000_ETHERNET_DEVICE(0x1026), 46 INTEL_E1000_ETHERNET_DEVICE(0x1027), 47 INTEL_E1000_ETHERNET_DEVICE(0x1028), 48 INTEL_E1000_ETHERNET_DEVICE(0x1075), 49 INTEL_E1000_ETHERNET_DEVICE(0x1076), 50 INTEL_E1000_ETHERNET_DEVICE(0x1077), 51 INTEL_E1000_ETHERNET_DEVICE(0x1078), 52 INTEL_E1000_ETHERNET_DEVICE(0x1079), 53 INTEL_E1000_ETHERNET_DEVICE(0x107A), 54 INTEL_E1000_ETHERNET_DEVICE(0x107B), 55 INTEL_E1000_ETHERNET_DEVICE(0x107C), 56 INTEL_E1000_ETHERNET_DEVICE(0x108A), 57 INTEL_E1000_ETHERNET_DEVICE(0x1099), 58 INTEL_E1000_ETHERNET_DEVICE(0x10B5), 59 INTEL_E1000_ETHERNET_DEVICE(0x2E6E), 60 /* required last entry */ 61 {0,} 62 }; 63 64 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); 65 66 int e1000_up(struct e1000_adapter *adapter); 67 void e1000_down(struct e1000_adapter *adapter); 68 void e1000_reinit_locked(struct e1000_adapter *adapter); 69 void e1000_reset(struct e1000_adapter *adapter); 70 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter); 71 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter); 72 void e1000_free_all_tx_resources(struct e1000_adapter *adapter); 73 void e1000_free_all_rx_resources(struct e1000_adapter *adapter); 74 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, 75 struct e1000_tx_ring *txdr); 76 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, 77 struct e1000_rx_ring *rxdr); 78 static void e1000_free_tx_resources(struct e1000_adapter *adapter, 79 struct e1000_tx_ring *tx_ring); 80 static void e1000_free_rx_resources(struct e1000_adapter *adapter, 81 struct e1000_rx_ring *rx_ring); 82 void e1000_update_stats(struct e1000_adapter *adapter); 83 84 static int e1000_init_module(void); 85 static void e1000_exit_module(void); 86 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent); 87 static void e1000_remove(struct pci_dev *pdev); 88 static int e1000_alloc_queues(struct e1000_adapter *adapter); 89 static int e1000_sw_init(struct e1000_adapter *adapter); 90 int e1000_open(struct net_device *netdev); 91 int e1000_close(struct net_device *netdev); 92 static void e1000_configure_tx(struct e1000_adapter *adapter); 93 static void e1000_configure_rx(struct e1000_adapter *adapter); 94 static void e1000_setup_rctl(struct e1000_adapter *adapter); 95 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter); 96 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter); 97 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, 98 struct e1000_tx_ring *tx_ring); 99 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, 100 struct e1000_rx_ring *rx_ring); 101 static void e1000_set_rx_mode(struct net_device *netdev); 102 static void e1000_update_phy_info_task(struct work_struct *work); 103 static void e1000_watchdog(struct work_struct *work); 104 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work); 105 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, 106 struct net_device *netdev); 107 static int e1000_change_mtu(struct net_device *netdev, int new_mtu); 108 static int e1000_set_mac(struct net_device *netdev, void *p); 109 static irqreturn_t e1000_intr(int irq, void *data); 110 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, 111 struct e1000_tx_ring *tx_ring); 112 static int e1000_clean(struct napi_struct *napi, int budget); 113 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, 114 struct e1000_rx_ring *rx_ring, 115 int *work_done, int work_to_do); 116 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, 117 struct e1000_rx_ring *rx_ring, 118 int *work_done, int work_to_do); 119 static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter, 120 struct e1000_rx_ring *rx_ring, 121 int cleaned_count) 122 { 123 } 124 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, 125 struct e1000_rx_ring *rx_ring, 126 int cleaned_count); 127 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, 128 struct e1000_rx_ring *rx_ring, 129 int cleaned_count); 130 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); 131 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, 132 int cmd); 133 static void e1000_enter_82542_rst(struct e1000_adapter *adapter); 134 static void e1000_leave_82542_rst(struct e1000_adapter *adapter); 135 static void e1000_tx_timeout(struct net_device *dev, unsigned int txqueue); 136 static void e1000_reset_task(struct work_struct *work); 137 static void e1000_smartspeed(struct e1000_adapter *adapter); 138 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, 139 struct sk_buff *skb); 140 141 static bool e1000_vlan_used(struct e1000_adapter *adapter); 142 static void e1000_vlan_mode(struct net_device *netdev, 143 netdev_features_t features); 144 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter, 145 bool filter_on); 146 static int e1000_vlan_rx_add_vid(struct net_device *netdev, 147 __be16 proto, u16 vid); 148 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, 149 __be16 proto, u16 vid); 150 static void e1000_restore_vlan(struct e1000_adapter *adapter); 151 152 static int __maybe_unused e1000_suspend(struct device *dev); 153 static int __maybe_unused e1000_resume(struct device *dev); 154 static void e1000_shutdown(struct pci_dev *pdev); 155 156 #ifdef CONFIG_NET_POLL_CONTROLLER 157 /* for netdump / net console */ 158 static void e1000_netpoll (struct net_device *netdev); 159 #endif 160 161 #define COPYBREAK_DEFAULT 256 162 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT; 163 module_param(copybreak, uint, 0644); 164 MODULE_PARM_DESC(copybreak, 165 "Maximum size of packet that is copied to a new buffer on receive"); 166 167 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, 168 pci_channel_state_t state); 169 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev); 170 static void e1000_io_resume(struct pci_dev *pdev); 171 172 static const struct pci_error_handlers e1000_err_handler = { 173 .error_detected = e1000_io_error_detected, 174 .slot_reset = e1000_io_slot_reset, 175 .resume = e1000_io_resume, 176 }; 177 178 static SIMPLE_DEV_PM_OPS(e1000_pm_ops, e1000_suspend, e1000_resume); 179 180 static struct pci_driver e1000_driver = { 181 .name = e1000_driver_name, 182 .id_table = e1000_pci_tbl, 183 .probe = e1000_probe, 184 .remove = e1000_remove, 185 .driver = { 186 .pm = &e1000_pm_ops, 187 }, 188 .shutdown = e1000_shutdown, 189 .err_handler = &e1000_err_handler 190 }; 191 192 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 193 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); 194 MODULE_LICENSE("GPL v2"); 195 196 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 197 static int debug = -1; 198 module_param(debug, int, 0); 199 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 200 201 /** 202 * e1000_get_hw_dev - helper function for getting netdev 203 * @hw: pointer to HW struct 204 * 205 * return device used by hardware layer to print debugging information 206 * 207 **/ 208 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw) 209 { 210 struct e1000_adapter *adapter = hw->back; 211 return adapter->netdev; 212 } 213 214 /** 215 * e1000_init_module - Driver Registration Routine 216 * 217 * e1000_init_module is the first routine called when the driver is 218 * loaded. All it does is register with the PCI subsystem. 219 **/ 220 static int __init e1000_init_module(void) 221 { 222 int ret; 223 pr_info("%s\n", e1000_driver_string); 224 225 pr_info("%s\n", e1000_copyright); 226 227 ret = pci_register_driver(&e1000_driver); 228 if (copybreak != COPYBREAK_DEFAULT) { 229 if (copybreak == 0) 230 pr_info("copybreak disabled\n"); 231 else 232 pr_info("copybreak enabled for " 233 "packets <= %u bytes\n", copybreak); 234 } 235 return ret; 236 } 237 238 module_init(e1000_init_module); 239 240 /** 241 * e1000_exit_module - Driver Exit Cleanup Routine 242 * 243 * e1000_exit_module is called just before the driver is removed 244 * from memory. 245 **/ 246 static void __exit e1000_exit_module(void) 247 { 248 pci_unregister_driver(&e1000_driver); 249 } 250 251 module_exit(e1000_exit_module); 252 253 static int e1000_request_irq(struct e1000_adapter *adapter) 254 { 255 struct net_device *netdev = adapter->netdev; 256 irq_handler_t handler = e1000_intr; 257 int irq_flags = IRQF_SHARED; 258 int err; 259 260 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name, 261 netdev); 262 if (err) { 263 e_err(probe, "Unable to allocate interrupt Error: %d\n", err); 264 } 265 266 return err; 267 } 268 269 static void e1000_free_irq(struct e1000_adapter *adapter) 270 { 271 struct net_device *netdev = adapter->netdev; 272 273 free_irq(adapter->pdev->irq, netdev); 274 } 275 276 /** 277 * e1000_irq_disable - Mask off interrupt generation on the NIC 278 * @adapter: board private structure 279 **/ 280 static void e1000_irq_disable(struct e1000_adapter *adapter) 281 { 282 struct e1000_hw *hw = &adapter->hw; 283 284 ew32(IMC, ~0); 285 E1000_WRITE_FLUSH(); 286 synchronize_irq(adapter->pdev->irq); 287 } 288 289 /** 290 * e1000_irq_enable - Enable default interrupt generation settings 291 * @adapter: board private structure 292 **/ 293 static void e1000_irq_enable(struct e1000_adapter *adapter) 294 { 295 struct e1000_hw *hw = &adapter->hw; 296 297 ew32(IMS, IMS_ENABLE_MASK); 298 E1000_WRITE_FLUSH(); 299 } 300 301 static void e1000_update_mng_vlan(struct e1000_adapter *adapter) 302 { 303 struct e1000_hw *hw = &adapter->hw; 304 struct net_device *netdev = adapter->netdev; 305 u16 vid = hw->mng_cookie.vlan_id; 306 u16 old_vid = adapter->mng_vlan_id; 307 308 if (!e1000_vlan_used(adapter)) 309 return; 310 311 if (!test_bit(vid, adapter->active_vlans)) { 312 if (hw->mng_cookie.status & 313 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) { 314 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid); 315 adapter->mng_vlan_id = vid; 316 } else { 317 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 318 } 319 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && 320 (vid != old_vid) && 321 !test_bit(old_vid, adapter->active_vlans)) 322 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), 323 old_vid); 324 } else { 325 adapter->mng_vlan_id = vid; 326 } 327 } 328 329 static void e1000_init_manageability(struct e1000_adapter *adapter) 330 { 331 struct e1000_hw *hw = &adapter->hw; 332 333 if (adapter->en_mng_pt) { 334 u32 manc = er32(MANC); 335 336 /* disable hardware interception of ARP */ 337 manc &= ~(E1000_MANC_ARP_EN); 338 339 ew32(MANC, manc); 340 } 341 } 342 343 static void e1000_release_manageability(struct e1000_adapter *adapter) 344 { 345 struct e1000_hw *hw = &adapter->hw; 346 347 if (adapter->en_mng_pt) { 348 u32 manc = er32(MANC); 349 350 /* re-enable hardware interception of ARP */ 351 manc |= E1000_MANC_ARP_EN; 352 353 ew32(MANC, manc); 354 } 355 } 356 357 /** 358 * e1000_configure - configure the hardware for RX and TX 359 * @adapter: private board structure 360 **/ 361 static void e1000_configure(struct e1000_adapter *adapter) 362 { 363 struct net_device *netdev = adapter->netdev; 364 int i; 365 366 e1000_set_rx_mode(netdev); 367 368 e1000_restore_vlan(adapter); 369 e1000_init_manageability(adapter); 370 371 e1000_configure_tx(adapter); 372 e1000_setup_rctl(adapter); 373 e1000_configure_rx(adapter); 374 /* call E1000_DESC_UNUSED which always leaves 375 * at least 1 descriptor unused to make sure 376 * next_to_use != next_to_clean 377 */ 378 for (i = 0; i < adapter->num_rx_queues; i++) { 379 struct e1000_rx_ring *ring = &adapter->rx_ring[i]; 380 adapter->alloc_rx_buf(adapter, ring, 381 E1000_DESC_UNUSED(ring)); 382 } 383 } 384 385 int e1000_up(struct e1000_adapter *adapter) 386 { 387 struct e1000_hw *hw = &adapter->hw; 388 389 /* hardware has been reset, we need to reload some things */ 390 e1000_configure(adapter); 391 392 clear_bit(__E1000_DOWN, &adapter->flags); 393 394 napi_enable(&adapter->napi); 395 396 e1000_irq_enable(adapter); 397 398 netif_wake_queue(adapter->netdev); 399 400 /* fire a link change interrupt to start the watchdog */ 401 ew32(ICS, E1000_ICS_LSC); 402 return 0; 403 } 404 405 /** 406 * e1000_power_up_phy - restore link in case the phy was powered down 407 * @adapter: address of board private structure 408 * 409 * The phy may be powered down to save power and turn off link when the 410 * driver is unloaded and wake on lan is not enabled (among others) 411 * *** this routine MUST be followed by a call to e1000_reset *** 412 **/ 413 void e1000_power_up_phy(struct e1000_adapter *adapter) 414 { 415 struct e1000_hw *hw = &adapter->hw; 416 u16 mii_reg = 0; 417 418 /* Just clear the power down bit to wake the phy back up */ 419 if (hw->media_type == e1000_media_type_copper) { 420 /* according to the manual, the phy will retain its 421 * settings across a power-down/up cycle 422 */ 423 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); 424 mii_reg &= ~MII_CR_POWER_DOWN; 425 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); 426 } 427 } 428 429 static void e1000_power_down_phy(struct e1000_adapter *adapter) 430 { 431 struct e1000_hw *hw = &adapter->hw; 432 433 /* Power down the PHY so no link is implied when interface is down * 434 * The PHY cannot be powered down if any of the following is true * 435 * (a) WoL is enabled 436 * (b) AMT is active 437 * (c) SoL/IDER session is active 438 */ 439 if (!adapter->wol && hw->mac_type >= e1000_82540 && 440 hw->media_type == e1000_media_type_copper) { 441 u16 mii_reg = 0; 442 443 switch (hw->mac_type) { 444 case e1000_82540: 445 case e1000_82545: 446 case e1000_82545_rev_3: 447 case e1000_82546: 448 case e1000_ce4100: 449 case e1000_82546_rev_3: 450 case e1000_82541: 451 case e1000_82541_rev_2: 452 case e1000_82547: 453 case e1000_82547_rev_2: 454 if (er32(MANC) & E1000_MANC_SMBUS_EN) 455 goto out; 456 break; 457 default: 458 goto out; 459 } 460 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); 461 mii_reg |= MII_CR_POWER_DOWN; 462 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); 463 msleep(1); 464 } 465 out: 466 return; 467 } 468 469 static void e1000_down_and_stop(struct e1000_adapter *adapter) 470 { 471 set_bit(__E1000_DOWN, &adapter->flags); 472 473 cancel_delayed_work_sync(&adapter->watchdog_task); 474 475 /* 476 * Since the watchdog task can reschedule other tasks, we should cancel 477 * it first, otherwise we can run into the situation when a work is 478 * still running after the adapter has been turned down. 479 */ 480 481 cancel_delayed_work_sync(&adapter->phy_info_task); 482 cancel_delayed_work_sync(&adapter->fifo_stall_task); 483 484 /* Only kill reset task if adapter is not resetting */ 485 if (!test_bit(__E1000_RESETTING, &adapter->flags)) 486 cancel_work_sync(&adapter->reset_task); 487 } 488 489 void e1000_down(struct e1000_adapter *adapter) 490 { 491 struct e1000_hw *hw = &adapter->hw; 492 struct net_device *netdev = adapter->netdev; 493 u32 rctl, tctl; 494 495 /* disable receives in the hardware */ 496 rctl = er32(RCTL); 497 ew32(RCTL, rctl & ~E1000_RCTL_EN); 498 /* flush and sleep below */ 499 500 netif_tx_disable(netdev); 501 502 /* disable transmits in the hardware */ 503 tctl = er32(TCTL); 504 tctl &= ~E1000_TCTL_EN; 505 ew32(TCTL, tctl); 506 /* flush both disables and wait for them to finish */ 507 E1000_WRITE_FLUSH(); 508 msleep(10); 509 510 /* Set the carrier off after transmits have been disabled in the 511 * hardware, to avoid race conditions with e1000_watchdog() (which 512 * may be running concurrently to us, checking for the carrier 513 * bit to decide whether it should enable transmits again). Such 514 * a race condition would result into transmission being disabled 515 * in the hardware until the next IFF_DOWN+IFF_UP cycle. 516 */ 517 netif_carrier_off(netdev); 518 519 napi_disable(&adapter->napi); 520 521 e1000_irq_disable(adapter); 522 523 /* Setting DOWN must be after irq_disable to prevent 524 * a screaming interrupt. Setting DOWN also prevents 525 * tasks from rescheduling. 526 */ 527 e1000_down_and_stop(adapter); 528 529 adapter->link_speed = 0; 530 adapter->link_duplex = 0; 531 532 e1000_reset(adapter); 533 e1000_clean_all_tx_rings(adapter); 534 e1000_clean_all_rx_rings(adapter); 535 } 536 537 void e1000_reinit_locked(struct e1000_adapter *adapter) 538 { 539 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 540 msleep(1); 541 542 /* only run the task if not already down */ 543 if (!test_bit(__E1000_DOWN, &adapter->flags)) { 544 e1000_down(adapter); 545 e1000_up(adapter); 546 } 547 548 clear_bit(__E1000_RESETTING, &adapter->flags); 549 } 550 551 void e1000_reset(struct e1000_adapter *adapter) 552 { 553 struct e1000_hw *hw = &adapter->hw; 554 u32 pba = 0, tx_space, min_tx_space, min_rx_space; 555 bool legacy_pba_adjust = false; 556 u16 hwm; 557 558 /* Repartition Pba for greater than 9k mtu 559 * To take effect CTRL.RST is required. 560 */ 561 562 switch (hw->mac_type) { 563 case e1000_82542_rev2_0: 564 case e1000_82542_rev2_1: 565 case e1000_82543: 566 case e1000_82544: 567 case e1000_82540: 568 case e1000_82541: 569 case e1000_82541_rev_2: 570 legacy_pba_adjust = true; 571 pba = E1000_PBA_48K; 572 break; 573 case e1000_82545: 574 case e1000_82545_rev_3: 575 case e1000_82546: 576 case e1000_ce4100: 577 case e1000_82546_rev_3: 578 pba = E1000_PBA_48K; 579 break; 580 case e1000_82547: 581 case e1000_82547_rev_2: 582 legacy_pba_adjust = true; 583 pba = E1000_PBA_30K; 584 break; 585 case e1000_undefined: 586 case e1000_num_macs: 587 break; 588 } 589 590 if (legacy_pba_adjust) { 591 if (hw->max_frame_size > E1000_RXBUFFER_8192) 592 pba -= 8; /* allocate more FIFO for Tx */ 593 594 if (hw->mac_type == e1000_82547) { 595 adapter->tx_fifo_head = 0; 596 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT; 597 adapter->tx_fifo_size = 598 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT; 599 atomic_set(&adapter->tx_fifo_stall, 0); 600 } 601 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) { 602 /* adjust PBA for jumbo frames */ 603 ew32(PBA, pba); 604 605 /* To maintain wire speed transmits, the Tx FIFO should be 606 * large enough to accommodate two full transmit packets, 607 * rounded up to the next 1KB and expressed in KB. Likewise, 608 * the Rx FIFO should be large enough to accommodate at least 609 * one full receive packet and is similarly rounded up and 610 * expressed in KB. 611 */ 612 pba = er32(PBA); 613 /* upper 16 bits has Tx packet buffer allocation size in KB */ 614 tx_space = pba >> 16; 615 /* lower 16 bits has Rx packet buffer allocation size in KB */ 616 pba &= 0xffff; 617 /* the Tx fifo also stores 16 bytes of information about the Tx 618 * but don't include ethernet FCS because hardware appends it 619 */ 620 min_tx_space = (hw->max_frame_size + 621 sizeof(struct e1000_tx_desc) - 622 ETH_FCS_LEN) * 2; 623 min_tx_space = ALIGN(min_tx_space, 1024); 624 min_tx_space >>= 10; 625 /* software strips receive CRC, so leave room for it */ 626 min_rx_space = hw->max_frame_size; 627 min_rx_space = ALIGN(min_rx_space, 1024); 628 min_rx_space >>= 10; 629 630 /* If current Tx allocation is less than the min Tx FIFO size, 631 * and the min Tx FIFO size is less than the current Rx FIFO 632 * allocation, take space away from current Rx allocation 633 */ 634 if (tx_space < min_tx_space && 635 ((min_tx_space - tx_space) < pba)) { 636 pba = pba - (min_tx_space - tx_space); 637 638 /* PCI/PCIx hardware has PBA alignment constraints */ 639 switch (hw->mac_type) { 640 case e1000_82545 ... e1000_82546_rev_3: 641 pba &= ~(E1000_PBA_8K - 1); 642 break; 643 default: 644 break; 645 } 646 647 /* if short on Rx space, Rx wins and must trump Tx 648 * adjustment or use Early Receive if available 649 */ 650 if (pba < min_rx_space) 651 pba = min_rx_space; 652 } 653 } 654 655 ew32(PBA, pba); 656 657 /* flow control settings: 658 * The high water mark must be low enough to fit one full frame 659 * (or the size used for early receive) above it in the Rx FIFO. 660 * Set it to the lower of: 661 * - 90% of the Rx FIFO size, and 662 * - the full Rx FIFO size minus the early receive size (for parts 663 * with ERT support assuming ERT set to E1000_ERT_2048), or 664 * - the full Rx FIFO size minus one full frame 665 */ 666 hwm = min(((pba << 10) * 9 / 10), 667 ((pba << 10) - hw->max_frame_size)); 668 669 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */ 670 hw->fc_low_water = hw->fc_high_water - 8; 671 hw->fc_pause_time = E1000_FC_PAUSE_TIME; 672 hw->fc_send_xon = 1; 673 hw->fc = hw->original_fc; 674 675 /* Allow time for pending master requests to run */ 676 e1000_reset_hw(hw); 677 if (hw->mac_type >= e1000_82544) 678 ew32(WUC, 0); 679 680 if (e1000_init_hw(hw)) 681 e_dev_err("Hardware Error\n"); 682 e1000_update_mng_vlan(adapter); 683 684 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */ 685 if (hw->mac_type >= e1000_82544 && 686 hw->autoneg == 1 && 687 hw->autoneg_advertised == ADVERTISE_1000_FULL) { 688 u32 ctrl = er32(CTRL); 689 /* clear phy power management bit if we are in gig only mode, 690 * which if enabled will attempt negotiation to 100Mb, which 691 * can cause a loss of link at power off or driver unload 692 */ 693 ctrl &= ~E1000_CTRL_SWDPIN3; 694 ew32(CTRL, ctrl); 695 } 696 697 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ 698 ew32(VET, ETHERNET_IEEE_VLAN_TYPE); 699 700 e1000_reset_adaptive(hw); 701 e1000_phy_get_info(hw, &adapter->phy_info); 702 703 e1000_release_manageability(adapter); 704 } 705 706 /* Dump the eeprom for users having checksum issues */ 707 static void e1000_dump_eeprom(struct e1000_adapter *adapter) 708 { 709 struct net_device *netdev = adapter->netdev; 710 struct ethtool_eeprom eeprom; 711 const struct ethtool_ops *ops = netdev->ethtool_ops; 712 u8 *data; 713 int i; 714 u16 csum_old, csum_new = 0; 715 716 eeprom.len = ops->get_eeprom_len(netdev); 717 eeprom.offset = 0; 718 719 data = kmalloc(eeprom.len, GFP_KERNEL); 720 if (!data) 721 return; 722 723 ops->get_eeprom(netdev, &eeprom, data); 724 725 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) + 726 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8); 727 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2) 728 csum_new += data[i] + (data[i + 1] << 8); 729 csum_new = EEPROM_SUM - csum_new; 730 731 pr_err("/*********************/\n"); 732 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old); 733 pr_err("Calculated : 0x%04x\n", csum_new); 734 735 pr_err("Offset Values\n"); 736 pr_err("======== ======\n"); 737 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0); 738 739 pr_err("Include this output when contacting your support provider.\n"); 740 pr_err("This is not a software error! Something bad happened to\n"); 741 pr_err("your hardware or EEPROM image. Ignoring this problem could\n"); 742 pr_err("result in further problems, possibly loss of data,\n"); 743 pr_err("corruption or system hangs!\n"); 744 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n"); 745 pr_err("which is invalid and requires you to set the proper MAC\n"); 746 pr_err("address manually before continuing to enable this network\n"); 747 pr_err("device. Please inspect the EEPROM dump and report the\n"); 748 pr_err("issue to your hardware vendor or Intel Customer Support.\n"); 749 pr_err("/*********************/\n"); 750 751 kfree(data); 752 } 753 754 /** 755 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not 756 * @pdev: PCI device information struct 757 * 758 * Return true if an adapter needs ioport resources 759 **/ 760 static int e1000_is_need_ioport(struct pci_dev *pdev) 761 { 762 switch (pdev->device) { 763 case E1000_DEV_ID_82540EM: 764 case E1000_DEV_ID_82540EM_LOM: 765 case E1000_DEV_ID_82540EP: 766 case E1000_DEV_ID_82540EP_LOM: 767 case E1000_DEV_ID_82540EP_LP: 768 case E1000_DEV_ID_82541EI: 769 case E1000_DEV_ID_82541EI_MOBILE: 770 case E1000_DEV_ID_82541ER: 771 case E1000_DEV_ID_82541ER_LOM: 772 case E1000_DEV_ID_82541GI: 773 case E1000_DEV_ID_82541GI_LF: 774 case E1000_DEV_ID_82541GI_MOBILE: 775 case E1000_DEV_ID_82544EI_COPPER: 776 case E1000_DEV_ID_82544EI_FIBER: 777 case E1000_DEV_ID_82544GC_COPPER: 778 case E1000_DEV_ID_82544GC_LOM: 779 case E1000_DEV_ID_82545EM_COPPER: 780 case E1000_DEV_ID_82545EM_FIBER: 781 case E1000_DEV_ID_82546EB_COPPER: 782 case E1000_DEV_ID_82546EB_FIBER: 783 case E1000_DEV_ID_82546EB_QUAD_COPPER: 784 return true; 785 default: 786 return false; 787 } 788 } 789 790 static netdev_features_t e1000_fix_features(struct net_device *netdev, 791 netdev_features_t features) 792 { 793 /* Since there is no support for separate Rx/Tx vlan accel 794 * enable/disable make sure Tx flag is always in same state as Rx. 795 */ 796 if (features & NETIF_F_HW_VLAN_CTAG_RX) 797 features |= NETIF_F_HW_VLAN_CTAG_TX; 798 else 799 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 800 801 return features; 802 } 803 804 static int e1000_set_features(struct net_device *netdev, 805 netdev_features_t features) 806 { 807 struct e1000_adapter *adapter = netdev_priv(netdev); 808 netdev_features_t changed = features ^ netdev->features; 809 810 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 811 e1000_vlan_mode(netdev, features); 812 813 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL))) 814 return 0; 815 816 netdev->features = features; 817 adapter->rx_csum = !!(features & NETIF_F_RXCSUM); 818 819 if (netif_running(netdev)) 820 e1000_reinit_locked(adapter); 821 else 822 e1000_reset(adapter); 823 824 return 1; 825 } 826 827 static const struct net_device_ops e1000_netdev_ops = { 828 .ndo_open = e1000_open, 829 .ndo_stop = e1000_close, 830 .ndo_start_xmit = e1000_xmit_frame, 831 .ndo_set_rx_mode = e1000_set_rx_mode, 832 .ndo_set_mac_address = e1000_set_mac, 833 .ndo_tx_timeout = e1000_tx_timeout, 834 .ndo_change_mtu = e1000_change_mtu, 835 .ndo_do_ioctl = e1000_ioctl, 836 .ndo_validate_addr = eth_validate_addr, 837 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, 838 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, 839 #ifdef CONFIG_NET_POLL_CONTROLLER 840 .ndo_poll_controller = e1000_netpoll, 841 #endif 842 .ndo_fix_features = e1000_fix_features, 843 .ndo_set_features = e1000_set_features, 844 }; 845 846 /** 847 * e1000_init_hw_struct - initialize members of hw struct 848 * @adapter: board private struct 849 * @hw: structure used by e1000_hw.c 850 * 851 * Factors out initialization of the e1000_hw struct to its own function 852 * that can be called very early at init (just after struct allocation). 853 * Fields are initialized based on PCI device information and 854 * OS network device settings (MTU size). 855 * Returns negative error codes if MAC type setup fails. 856 */ 857 static int e1000_init_hw_struct(struct e1000_adapter *adapter, 858 struct e1000_hw *hw) 859 { 860 struct pci_dev *pdev = adapter->pdev; 861 862 /* PCI config space info */ 863 hw->vendor_id = pdev->vendor; 864 hw->device_id = pdev->device; 865 hw->subsystem_vendor_id = pdev->subsystem_vendor; 866 hw->subsystem_id = pdev->subsystem_device; 867 hw->revision_id = pdev->revision; 868 869 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); 870 871 hw->max_frame_size = adapter->netdev->mtu + 872 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; 873 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; 874 875 /* identify the MAC */ 876 if (e1000_set_mac_type(hw)) { 877 e_err(probe, "Unknown MAC Type\n"); 878 return -EIO; 879 } 880 881 switch (hw->mac_type) { 882 default: 883 break; 884 case e1000_82541: 885 case e1000_82547: 886 case e1000_82541_rev_2: 887 case e1000_82547_rev_2: 888 hw->phy_init_script = 1; 889 break; 890 } 891 892 e1000_set_media_type(hw); 893 e1000_get_bus_info(hw); 894 895 hw->wait_autoneg_complete = false; 896 hw->tbi_compatibility_en = true; 897 hw->adaptive_ifs = true; 898 899 /* Copper options */ 900 901 if (hw->media_type == e1000_media_type_copper) { 902 hw->mdix = AUTO_ALL_MODES; 903 hw->disable_polarity_correction = false; 904 hw->master_slave = E1000_MASTER_SLAVE; 905 } 906 907 return 0; 908 } 909 910 /** 911 * e1000_probe - Device Initialization Routine 912 * @pdev: PCI device information struct 913 * @ent: entry in e1000_pci_tbl 914 * 915 * Returns 0 on success, negative on failure 916 * 917 * e1000_probe initializes an adapter identified by a pci_dev structure. 918 * The OS initialization, configuring of the adapter private structure, 919 * and a hardware reset occur. 920 **/ 921 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 922 { 923 struct net_device *netdev; 924 struct e1000_adapter *adapter = NULL; 925 struct e1000_hw *hw; 926 927 static int cards_found; 928 static int global_quad_port_a; /* global ksp3 port a indication */ 929 int i, err, pci_using_dac; 930 u16 eeprom_data = 0; 931 u16 tmp = 0; 932 u16 eeprom_apme_mask = E1000_EEPROM_APME; 933 int bars, need_ioport; 934 bool disable_dev = false; 935 936 /* do not allocate ioport bars when not needed */ 937 need_ioport = e1000_is_need_ioport(pdev); 938 if (need_ioport) { 939 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO); 940 err = pci_enable_device(pdev); 941 } else { 942 bars = pci_select_bars(pdev, IORESOURCE_MEM); 943 err = pci_enable_device_mem(pdev); 944 } 945 if (err) 946 return err; 947 948 err = pci_request_selected_regions(pdev, bars, e1000_driver_name); 949 if (err) 950 goto err_pci_reg; 951 952 pci_set_master(pdev); 953 err = pci_save_state(pdev); 954 if (err) 955 goto err_alloc_etherdev; 956 957 err = -ENOMEM; 958 netdev = alloc_etherdev(sizeof(struct e1000_adapter)); 959 if (!netdev) 960 goto err_alloc_etherdev; 961 962 SET_NETDEV_DEV(netdev, &pdev->dev); 963 964 pci_set_drvdata(pdev, netdev); 965 adapter = netdev_priv(netdev); 966 adapter->netdev = netdev; 967 adapter->pdev = pdev; 968 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 969 adapter->bars = bars; 970 adapter->need_ioport = need_ioport; 971 972 hw = &adapter->hw; 973 hw->back = adapter; 974 975 err = -EIO; 976 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0); 977 if (!hw->hw_addr) 978 goto err_ioremap; 979 980 if (adapter->need_ioport) { 981 for (i = BAR_1; i < PCI_STD_NUM_BARS; i++) { 982 if (pci_resource_len(pdev, i) == 0) 983 continue; 984 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { 985 hw->io_base = pci_resource_start(pdev, i); 986 break; 987 } 988 } 989 } 990 991 /* make ready for any if (hw->...) below */ 992 err = e1000_init_hw_struct(adapter, hw); 993 if (err) 994 goto err_sw_init; 995 996 /* there is a workaround being applied below that limits 997 * 64-bit DMA addresses to 64-bit hardware. There are some 998 * 32-bit adapters that Tx hang when given 64-bit DMA addresses 999 */ 1000 pci_using_dac = 0; 1001 if ((hw->bus_type == e1000_bus_type_pcix) && 1002 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 1003 pci_using_dac = 1; 1004 } else { 1005 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 1006 if (err) { 1007 pr_err("No usable DMA config, aborting\n"); 1008 goto err_dma; 1009 } 1010 } 1011 1012 netdev->netdev_ops = &e1000_netdev_ops; 1013 e1000_set_ethtool_ops(netdev); 1014 netdev->watchdog_timeo = 5 * HZ; 1015 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); 1016 1017 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 1018 1019 adapter->bd_number = cards_found; 1020 1021 /* setup the private structure */ 1022 1023 err = e1000_sw_init(adapter); 1024 if (err) 1025 goto err_sw_init; 1026 1027 err = -EIO; 1028 if (hw->mac_type == e1000_ce4100) { 1029 hw->ce4100_gbe_mdio_base_virt = 1030 ioremap(pci_resource_start(pdev, BAR_1), 1031 pci_resource_len(pdev, BAR_1)); 1032 1033 if (!hw->ce4100_gbe_mdio_base_virt) 1034 goto err_mdio_ioremap; 1035 } 1036 1037 if (hw->mac_type >= e1000_82543) { 1038 netdev->hw_features = NETIF_F_SG | 1039 NETIF_F_HW_CSUM | 1040 NETIF_F_HW_VLAN_CTAG_RX; 1041 netdev->features = NETIF_F_HW_VLAN_CTAG_TX | 1042 NETIF_F_HW_VLAN_CTAG_FILTER; 1043 } 1044 1045 if ((hw->mac_type >= e1000_82544) && 1046 (hw->mac_type != e1000_82547)) 1047 netdev->hw_features |= NETIF_F_TSO; 1048 1049 netdev->priv_flags |= IFF_SUPP_NOFCS; 1050 1051 netdev->features |= netdev->hw_features; 1052 netdev->hw_features |= (NETIF_F_RXCSUM | 1053 NETIF_F_RXALL | 1054 NETIF_F_RXFCS); 1055 1056 if (pci_using_dac) { 1057 netdev->features |= NETIF_F_HIGHDMA; 1058 netdev->vlan_features |= NETIF_F_HIGHDMA; 1059 } 1060 1061 netdev->vlan_features |= (NETIF_F_TSO | 1062 NETIF_F_HW_CSUM | 1063 NETIF_F_SG); 1064 1065 /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */ 1066 if (hw->device_id != E1000_DEV_ID_82545EM_COPPER || 1067 hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE) 1068 netdev->priv_flags |= IFF_UNICAST_FLT; 1069 1070 /* MTU range: 46 - 16110 */ 1071 netdev->min_mtu = ETH_ZLEN - ETH_HLEN; 1072 netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN); 1073 1074 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw); 1075 1076 /* initialize eeprom parameters */ 1077 if (e1000_init_eeprom_params(hw)) { 1078 e_err(probe, "EEPROM initialization failed\n"); 1079 goto err_eeprom; 1080 } 1081 1082 /* before reading the EEPROM, reset the controller to 1083 * put the device in a known good starting state 1084 */ 1085 1086 e1000_reset_hw(hw); 1087 1088 /* make sure the EEPROM is good */ 1089 if (e1000_validate_eeprom_checksum(hw) < 0) { 1090 e_err(probe, "The EEPROM Checksum Is Not Valid\n"); 1091 e1000_dump_eeprom(adapter); 1092 /* set MAC address to all zeroes to invalidate and temporary 1093 * disable this device for the user. This blocks regular 1094 * traffic while still permitting ethtool ioctls from reaching 1095 * the hardware as well as allowing the user to run the 1096 * interface after manually setting a hw addr using 1097 * `ip set address` 1098 */ 1099 memset(hw->mac_addr, 0, netdev->addr_len); 1100 } else { 1101 /* copy the MAC address out of the EEPROM */ 1102 if (e1000_read_mac_addr(hw)) 1103 e_err(probe, "EEPROM Read Error\n"); 1104 } 1105 /* don't block initialization here due to bad MAC address */ 1106 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len); 1107 1108 if (!is_valid_ether_addr(netdev->dev_addr)) 1109 e_err(probe, "Invalid MAC Address\n"); 1110 1111 1112 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog); 1113 INIT_DELAYED_WORK(&adapter->fifo_stall_task, 1114 e1000_82547_tx_fifo_stall_task); 1115 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task); 1116 INIT_WORK(&adapter->reset_task, e1000_reset_task); 1117 1118 e1000_check_options(adapter); 1119 1120 /* Initial Wake on LAN setting 1121 * If APM wake is enabled in the EEPROM, 1122 * enable the ACPI Magic Packet filter 1123 */ 1124 1125 switch (hw->mac_type) { 1126 case e1000_82542_rev2_0: 1127 case e1000_82542_rev2_1: 1128 case e1000_82543: 1129 break; 1130 case e1000_82544: 1131 e1000_read_eeprom(hw, 1132 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); 1133 eeprom_apme_mask = E1000_EEPROM_82544_APM; 1134 break; 1135 case e1000_82546: 1136 case e1000_82546_rev_3: 1137 if (er32(STATUS) & E1000_STATUS_FUNC_1) { 1138 e1000_read_eeprom(hw, 1139 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 1140 break; 1141 } 1142 fallthrough; 1143 default: 1144 e1000_read_eeprom(hw, 1145 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); 1146 break; 1147 } 1148 if (eeprom_data & eeprom_apme_mask) 1149 adapter->eeprom_wol |= E1000_WUFC_MAG; 1150 1151 /* now that we have the eeprom settings, apply the special cases 1152 * where the eeprom may be wrong or the board simply won't support 1153 * wake on lan on a particular port 1154 */ 1155 switch (pdev->device) { 1156 case E1000_DEV_ID_82546GB_PCIE: 1157 adapter->eeprom_wol = 0; 1158 break; 1159 case E1000_DEV_ID_82546EB_FIBER: 1160 case E1000_DEV_ID_82546GB_FIBER: 1161 /* Wake events only supported on port A for dual fiber 1162 * regardless of eeprom setting 1163 */ 1164 if (er32(STATUS) & E1000_STATUS_FUNC_1) 1165 adapter->eeprom_wol = 0; 1166 break; 1167 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 1168 /* if quad port adapter, disable WoL on all but port A */ 1169 if (global_quad_port_a != 0) 1170 adapter->eeprom_wol = 0; 1171 else 1172 adapter->quad_port_a = true; 1173 /* Reset for multiple quad port adapters */ 1174 if (++global_quad_port_a == 4) 1175 global_quad_port_a = 0; 1176 break; 1177 } 1178 1179 /* initialize the wol settings based on the eeprom settings */ 1180 adapter->wol = adapter->eeprom_wol; 1181 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1182 1183 /* Auto detect PHY address */ 1184 if (hw->mac_type == e1000_ce4100) { 1185 for (i = 0; i < 32; i++) { 1186 hw->phy_addr = i; 1187 e1000_read_phy_reg(hw, PHY_ID2, &tmp); 1188 1189 if (tmp != 0 && tmp != 0xFF) 1190 break; 1191 } 1192 1193 if (i >= 32) 1194 goto err_eeprom; 1195 } 1196 1197 /* reset the hardware with the new settings */ 1198 e1000_reset(adapter); 1199 1200 strcpy(netdev->name, "eth%d"); 1201 err = register_netdev(netdev); 1202 if (err) 1203 goto err_register; 1204 1205 e1000_vlan_filter_on_off(adapter, false); 1206 1207 /* print bus type/speed/width info */ 1208 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n", 1209 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""), 1210 ((hw->bus_speed == e1000_bus_speed_133) ? 133 : 1211 (hw->bus_speed == e1000_bus_speed_120) ? 120 : 1212 (hw->bus_speed == e1000_bus_speed_100) ? 100 : 1213 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33), 1214 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32), 1215 netdev->dev_addr); 1216 1217 /* carrier off reporting is important to ethtool even BEFORE open */ 1218 netif_carrier_off(netdev); 1219 1220 e_info(probe, "Intel(R) PRO/1000 Network Connection\n"); 1221 1222 cards_found++; 1223 return 0; 1224 1225 err_register: 1226 err_eeprom: 1227 e1000_phy_hw_reset(hw); 1228 1229 if (hw->flash_address) 1230 iounmap(hw->flash_address); 1231 kfree(adapter->tx_ring); 1232 kfree(adapter->rx_ring); 1233 err_dma: 1234 err_sw_init: 1235 err_mdio_ioremap: 1236 iounmap(hw->ce4100_gbe_mdio_base_virt); 1237 iounmap(hw->hw_addr); 1238 err_ioremap: 1239 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags); 1240 free_netdev(netdev); 1241 err_alloc_etherdev: 1242 pci_release_selected_regions(pdev, bars); 1243 err_pci_reg: 1244 if (!adapter || disable_dev) 1245 pci_disable_device(pdev); 1246 return err; 1247 } 1248 1249 /** 1250 * e1000_remove - Device Removal Routine 1251 * @pdev: PCI device information struct 1252 * 1253 * e1000_remove is called by the PCI subsystem to alert the driver 1254 * that it should release a PCI device. That could be caused by a 1255 * Hot-Plug event, or because the driver is going to be removed from 1256 * memory. 1257 **/ 1258 static void e1000_remove(struct pci_dev *pdev) 1259 { 1260 struct net_device *netdev = pci_get_drvdata(pdev); 1261 struct e1000_adapter *adapter = netdev_priv(netdev); 1262 struct e1000_hw *hw = &adapter->hw; 1263 bool disable_dev; 1264 1265 e1000_down_and_stop(adapter); 1266 e1000_release_manageability(adapter); 1267 1268 unregister_netdev(netdev); 1269 1270 e1000_phy_hw_reset(hw); 1271 1272 kfree(adapter->tx_ring); 1273 kfree(adapter->rx_ring); 1274 1275 if (hw->mac_type == e1000_ce4100) 1276 iounmap(hw->ce4100_gbe_mdio_base_virt); 1277 iounmap(hw->hw_addr); 1278 if (hw->flash_address) 1279 iounmap(hw->flash_address); 1280 pci_release_selected_regions(pdev, adapter->bars); 1281 1282 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags); 1283 free_netdev(netdev); 1284 1285 if (disable_dev) 1286 pci_disable_device(pdev); 1287 } 1288 1289 /** 1290 * e1000_sw_init - Initialize general software structures (struct e1000_adapter) 1291 * @adapter: board private structure to initialize 1292 * 1293 * e1000_sw_init initializes the Adapter private data structure. 1294 * e1000_init_hw_struct MUST be called before this function 1295 **/ 1296 static int e1000_sw_init(struct e1000_adapter *adapter) 1297 { 1298 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; 1299 1300 adapter->num_tx_queues = 1; 1301 adapter->num_rx_queues = 1; 1302 1303 if (e1000_alloc_queues(adapter)) { 1304 e_err(probe, "Unable to allocate memory for queues\n"); 1305 return -ENOMEM; 1306 } 1307 1308 /* Explicitly disable IRQ since the NIC can be in any state. */ 1309 e1000_irq_disable(adapter); 1310 1311 spin_lock_init(&adapter->stats_lock); 1312 1313 set_bit(__E1000_DOWN, &adapter->flags); 1314 1315 return 0; 1316 } 1317 1318 /** 1319 * e1000_alloc_queues - Allocate memory for all rings 1320 * @adapter: board private structure to initialize 1321 * 1322 * We allocate one ring per queue at run-time since we don't know the 1323 * number of queues at compile-time. 1324 **/ 1325 static int e1000_alloc_queues(struct e1000_adapter *adapter) 1326 { 1327 adapter->tx_ring = kcalloc(adapter->num_tx_queues, 1328 sizeof(struct e1000_tx_ring), GFP_KERNEL); 1329 if (!adapter->tx_ring) 1330 return -ENOMEM; 1331 1332 adapter->rx_ring = kcalloc(adapter->num_rx_queues, 1333 sizeof(struct e1000_rx_ring), GFP_KERNEL); 1334 if (!adapter->rx_ring) { 1335 kfree(adapter->tx_ring); 1336 return -ENOMEM; 1337 } 1338 1339 return E1000_SUCCESS; 1340 } 1341 1342 /** 1343 * e1000_open - Called when a network interface is made active 1344 * @netdev: network interface device structure 1345 * 1346 * Returns 0 on success, negative value on failure 1347 * 1348 * The open entry point is called when a network interface is made 1349 * active by the system (IFF_UP). At this point all resources needed 1350 * for transmit and receive operations are allocated, the interrupt 1351 * handler is registered with the OS, the watchdog task is started, 1352 * and the stack is notified that the interface is ready. 1353 **/ 1354 int e1000_open(struct net_device *netdev) 1355 { 1356 struct e1000_adapter *adapter = netdev_priv(netdev); 1357 struct e1000_hw *hw = &adapter->hw; 1358 int err; 1359 1360 /* disallow open during test */ 1361 if (test_bit(__E1000_TESTING, &adapter->flags)) 1362 return -EBUSY; 1363 1364 netif_carrier_off(netdev); 1365 1366 /* allocate transmit descriptors */ 1367 err = e1000_setup_all_tx_resources(adapter); 1368 if (err) 1369 goto err_setup_tx; 1370 1371 /* allocate receive descriptors */ 1372 err = e1000_setup_all_rx_resources(adapter); 1373 if (err) 1374 goto err_setup_rx; 1375 1376 e1000_power_up_phy(adapter); 1377 1378 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 1379 if ((hw->mng_cookie.status & 1380 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { 1381 e1000_update_mng_vlan(adapter); 1382 } 1383 1384 /* before we allocate an interrupt, we must be ready to handle it. 1385 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 1386 * as soon as we call pci_request_irq, so we have to setup our 1387 * clean_rx handler before we do so. 1388 */ 1389 e1000_configure(adapter); 1390 1391 err = e1000_request_irq(adapter); 1392 if (err) 1393 goto err_req_irq; 1394 1395 /* From here on the code is the same as e1000_up() */ 1396 clear_bit(__E1000_DOWN, &adapter->flags); 1397 1398 napi_enable(&adapter->napi); 1399 1400 e1000_irq_enable(adapter); 1401 1402 netif_start_queue(netdev); 1403 1404 /* fire a link status change interrupt to start the watchdog */ 1405 ew32(ICS, E1000_ICS_LSC); 1406 1407 return E1000_SUCCESS; 1408 1409 err_req_irq: 1410 e1000_power_down_phy(adapter); 1411 e1000_free_all_rx_resources(adapter); 1412 err_setup_rx: 1413 e1000_free_all_tx_resources(adapter); 1414 err_setup_tx: 1415 e1000_reset(adapter); 1416 1417 return err; 1418 } 1419 1420 /** 1421 * e1000_close - Disables a network interface 1422 * @netdev: network interface device structure 1423 * 1424 * Returns 0, this is not allowed to fail 1425 * 1426 * The close entry point is called when an interface is de-activated 1427 * by the OS. The hardware is still under the drivers control, but 1428 * needs to be disabled. A global MAC reset is issued to stop the 1429 * hardware, and all transmit and receive resources are freed. 1430 **/ 1431 int e1000_close(struct net_device *netdev) 1432 { 1433 struct e1000_adapter *adapter = netdev_priv(netdev); 1434 struct e1000_hw *hw = &adapter->hw; 1435 int count = E1000_CHECK_RESET_COUNT; 1436 1437 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags) && count--) 1438 usleep_range(10000, 20000); 1439 1440 WARN_ON(count < 0); 1441 1442 /* signal that we're down so that the reset task will no longer run */ 1443 set_bit(__E1000_DOWN, &adapter->flags); 1444 clear_bit(__E1000_RESETTING, &adapter->flags); 1445 1446 e1000_down(adapter); 1447 e1000_power_down_phy(adapter); 1448 e1000_free_irq(adapter); 1449 1450 e1000_free_all_tx_resources(adapter); 1451 e1000_free_all_rx_resources(adapter); 1452 1453 /* kill manageability vlan ID if supported, but not if a vlan with 1454 * the same ID is registered on the host OS (let 8021q kill it) 1455 */ 1456 if ((hw->mng_cookie.status & 1457 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && 1458 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) { 1459 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), 1460 adapter->mng_vlan_id); 1461 } 1462 1463 return 0; 1464 } 1465 1466 /** 1467 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary 1468 * @adapter: address of board private structure 1469 * @start: address of beginning of memory 1470 * @len: length of memory 1471 **/ 1472 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start, 1473 unsigned long len) 1474 { 1475 struct e1000_hw *hw = &adapter->hw; 1476 unsigned long begin = (unsigned long)start; 1477 unsigned long end = begin + len; 1478 1479 /* First rev 82545 and 82546 need to not allow any memory 1480 * write location to cross 64k boundary due to errata 23 1481 */ 1482 if (hw->mac_type == e1000_82545 || 1483 hw->mac_type == e1000_ce4100 || 1484 hw->mac_type == e1000_82546) { 1485 return ((begin ^ (end - 1)) >> 16) == 0; 1486 } 1487 1488 return true; 1489 } 1490 1491 /** 1492 * e1000_setup_tx_resources - allocate Tx resources (Descriptors) 1493 * @adapter: board private structure 1494 * @txdr: tx descriptor ring (for a specific queue) to setup 1495 * 1496 * Return 0 on success, negative on failure 1497 **/ 1498 static int e1000_setup_tx_resources(struct e1000_adapter *adapter, 1499 struct e1000_tx_ring *txdr) 1500 { 1501 struct pci_dev *pdev = adapter->pdev; 1502 int size; 1503 1504 size = sizeof(struct e1000_tx_buffer) * txdr->count; 1505 txdr->buffer_info = vzalloc(size); 1506 if (!txdr->buffer_info) 1507 return -ENOMEM; 1508 1509 /* round up to nearest 4K */ 1510 1511 txdr->size = txdr->count * sizeof(struct e1000_tx_desc); 1512 txdr->size = ALIGN(txdr->size, 4096); 1513 1514 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma, 1515 GFP_KERNEL); 1516 if (!txdr->desc) { 1517 setup_tx_desc_die: 1518 vfree(txdr->buffer_info); 1519 return -ENOMEM; 1520 } 1521 1522 /* Fix for errata 23, can't cross 64kB boundary */ 1523 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { 1524 void *olddesc = txdr->desc; 1525 dma_addr_t olddma = txdr->dma; 1526 e_err(tx_err, "txdr align check failed: %u bytes at %p\n", 1527 txdr->size, txdr->desc); 1528 /* Try again, without freeing the previous */ 1529 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, 1530 &txdr->dma, GFP_KERNEL); 1531 /* Failed allocation, critical failure */ 1532 if (!txdr->desc) { 1533 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1534 olddma); 1535 goto setup_tx_desc_die; 1536 } 1537 1538 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { 1539 /* give up */ 1540 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc, 1541 txdr->dma); 1542 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1543 olddma); 1544 e_err(probe, "Unable to allocate aligned memory " 1545 "for the transmit descriptor ring\n"); 1546 vfree(txdr->buffer_info); 1547 return -ENOMEM; 1548 } else { 1549 /* Free old allocation, new allocation was successful */ 1550 dma_free_coherent(&pdev->dev, txdr->size, olddesc, 1551 olddma); 1552 } 1553 } 1554 memset(txdr->desc, 0, txdr->size); 1555 1556 txdr->next_to_use = 0; 1557 txdr->next_to_clean = 0; 1558 1559 return 0; 1560 } 1561 1562 /** 1563 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources 1564 * (Descriptors) for all queues 1565 * @adapter: board private structure 1566 * 1567 * Return 0 on success, negative on failure 1568 **/ 1569 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter) 1570 { 1571 int i, err = 0; 1572 1573 for (i = 0; i < adapter->num_tx_queues; i++) { 1574 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]); 1575 if (err) { 1576 e_err(probe, "Allocation for Tx Queue %u failed\n", i); 1577 for (i-- ; i >= 0; i--) 1578 e1000_free_tx_resources(adapter, 1579 &adapter->tx_ring[i]); 1580 break; 1581 } 1582 } 1583 1584 return err; 1585 } 1586 1587 /** 1588 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset 1589 * @adapter: board private structure 1590 * 1591 * Configure the Tx unit of the MAC after a reset. 1592 **/ 1593 static void e1000_configure_tx(struct e1000_adapter *adapter) 1594 { 1595 u64 tdba; 1596 struct e1000_hw *hw = &adapter->hw; 1597 u32 tdlen, tctl, tipg; 1598 u32 ipgr1, ipgr2; 1599 1600 /* Setup the HW Tx Head and Tail descriptor pointers */ 1601 1602 switch (adapter->num_tx_queues) { 1603 case 1: 1604 default: 1605 tdba = adapter->tx_ring[0].dma; 1606 tdlen = adapter->tx_ring[0].count * 1607 sizeof(struct e1000_tx_desc); 1608 ew32(TDLEN, tdlen); 1609 ew32(TDBAH, (tdba >> 32)); 1610 ew32(TDBAL, (tdba & 0x00000000ffffffffULL)); 1611 ew32(TDT, 0); 1612 ew32(TDH, 0); 1613 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? 1614 E1000_TDH : E1000_82542_TDH); 1615 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? 1616 E1000_TDT : E1000_82542_TDT); 1617 break; 1618 } 1619 1620 /* Set the default values for the Tx Inter Packet Gap timer */ 1621 if ((hw->media_type == e1000_media_type_fiber || 1622 hw->media_type == e1000_media_type_internal_serdes)) 1623 tipg = DEFAULT_82543_TIPG_IPGT_FIBER; 1624 else 1625 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; 1626 1627 switch (hw->mac_type) { 1628 case e1000_82542_rev2_0: 1629 case e1000_82542_rev2_1: 1630 tipg = DEFAULT_82542_TIPG_IPGT; 1631 ipgr1 = DEFAULT_82542_TIPG_IPGR1; 1632 ipgr2 = DEFAULT_82542_TIPG_IPGR2; 1633 break; 1634 default: 1635 ipgr1 = DEFAULT_82543_TIPG_IPGR1; 1636 ipgr2 = DEFAULT_82543_TIPG_IPGR2; 1637 break; 1638 } 1639 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; 1640 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; 1641 ew32(TIPG, tipg); 1642 1643 /* Set the Tx Interrupt Delay register */ 1644 1645 ew32(TIDV, adapter->tx_int_delay); 1646 if (hw->mac_type >= e1000_82540) 1647 ew32(TADV, adapter->tx_abs_int_delay); 1648 1649 /* Program the Transmit Control Register */ 1650 1651 tctl = er32(TCTL); 1652 tctl &= ~E1000_TCTL_CT; 1653 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | 1654 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); 1655 1656 e1000_config_collision_dist(hw); 1657 1658 /* Setup Transmit Descriptor Settings for eop descriptor */ 1659 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; 1660 1661 /* only set IDE if we are delaying interrupts using the timers */ 1662 if (adapter->tx_int_delay) 1663 adapter->txd_cmd |= E1000_TXD_CMD_IDE; 1664 1665 if (hw->mac_type < e1000_82543) 1666 adapter->txd_cmd |= E1000_TXD_CMD_RPS; 1667 else 1668 adapter->txd_cmd |= E1000_TXD_CMD_RS; 1669 1670 /* Cache if we're 82544 running in PCI-X because we'll 1671 * need this to apply a workaround later in the send path. 1672 */ 1673 if (hw->mac_type == e1000_82544 && 1674 hw->bus_type == e1000_bus_type_pcix) 1675 adapter->pcix_82544 = true; 1676 1677 ew32(TCTL, tctl); 1678 1679 } 1680 1681 /** 1682 * e1000_setup_rx_resources - allocate Rx resources (Descriptors) 1683 * @adapter: board private structure 1684 * @rxdr: rx descriptor ring (for a specific queue) to setup 1685 * 1686 * Returns 0 on success, negative on failure 1687 **/ 1688 static int e1000_setup_rx_resources(struct e1000_adapter *adapter, 1689 struct e1000_rx_ring *rxdr) 1690 { 1691 struct pci_dev *pdev = adapter->pdev; 1692 int size, desc_len; 1693 1694 size = sizeof(struct e1000_rx_buffer) * rxdr->count; 1695 rxdr->buffer_info = vzalloc(size); 1696 if (!rxdr->buffer_info) 1697 return -ENOMEM; 1698 1699 desc_len = sizeof(struct e1000_rx_desc); 1700 1701 /* Round up to nearest 4K */ 1702 1703 rxdr->size = rxdr->count * desc_len; 1704 rxdr->size = ALIGN(rxdr->size, 4096); 1705 1706 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma, 1707 GFP_KERNEL); 1708 if (!rxdr->desc) { 1709 setup_rx_desc_die: 1710 vfree(rxdr->buffer_info); 1711 return -ENOMEM; 1712 } 1713 1714 /* Fix for errata 23, can't cross 64kB boundary */ 1715 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { 1716 void *olddesc = rxdr->desc; 1717 dma_addr_t olddma = rxdr->dma; 1718 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n", 1719 rxdr->size, rxdr->desc); 1720 /* Try again, without freeing the previous */ 1721 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, 1722 &rxdr->dma, GFP_KERNEL); 1723 /* Failed allocation, critical failure */ 1724 if (!rxdr->desc) { 1725 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1726 olddma); 1727 goto setup_rx_desc_die; 1728 } 1729 1730 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { 1731 /* give up */ 1732 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc, 1733 rxdr->dma); 1734 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1735 olddma); 1736 e_err(probe, "Unable to allocate aligned memory for " 1737 "the Rx descriptor ring\n"); 1738 goto setup_rx_desc_die; 1739 } else { 1740 /* Free old allocation, new allocation was successful */ 1741 dma_free_coherent(&pdev->dev, rxdr->size, olddesc, 1742 olddma); 1743 } 1744 } 1745 memset(rxdr->desc, 0, rxdr->size); 1746 1747 rxdr->next_to_clean = 0; 1748 rxdr->next_to_use = 0; 1749 rxdr->rx_skb_top = NULL; 1750 1751 return 0; 1752 } 1753 1754 /** 1755 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources 1756 * (Descriptors) for all queues 1757 * @adapter: board private structure 1758 * 1759 * Return 0 on success, negative on failure 1760 **/ 1761 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter) 1762 { 1763 int i, err = 0; 1764 1765 for (i = 0; i < adapter->num_rx_queues; i++) { 1766 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]); 1767 if (err) { 1768 e_err(probe, "Allocation for Rx Queue %u failed\n", i); 1769 for (i-- ; i >= 0; i--) 1770 e1000_free_rx_resources(adapter, 1771 &adapter->rx_ring[i]); 1772 break; 1773 } 1774 } 1775 1776 return err; 1777 } 1778 1779 /** 1780 * e1000_setup_rctl - configure the receive control registers 1781 * @adapter: Board private structure 1782 **/ 1783 static void e1000_setup_rctl(struct e1000_adapter *adapter) 1784 { 1785 struct e1000_hw *hw = &adapter->hw; 1786 u32 rctl; 1787 1788 rctl = er32(RCTL); 1789 1790 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 1791 1792 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO | 1793 E1000_RCTL_RDMTS_HALF | 1794 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); 1795 1796 if (hw->tbi_compatibility_on == 1) 1797 rctl |= E1000_RCTL_SBP; 1798 else 1799 rctl &= ~E1000_RCTL_SBP; 1800 1801 if (adapter->netdev->mtu <= ETH_DATA_LEN) 1802 rctl &= ~E1000_RCTL_LPE; 1803 else 1804 rctl |= E1000_RCTL_LPE; 1805 1806 /* Setup buffer sizes */ 1807 rctl &= ~E1000_RCTL_SZ_4096; 1808 rctl |= E1000_RCTL_BSEX; 1809 switch (adapter->rx_buffer_len) { 1810 case E1000_RXBUFFER_2048: 1811 default: 1812 rctl |= E1000_RCTL_SZ_2048; 1813 rctl &= ~E1000_RCTL_BSEX; 1814 break; 1815 case E1000_RXBUFFER_4096: 1816 rctl |= E1000_RCTL_SZ_4096; 1817 break; 1818 case E1000_RXBUFFER_8192: 1819 rctl |= E1000_RCTL_SZ_8192; 1820 break; 1821 case E1000_RXBUFFER_16384: 1822 rctl |= E1000_RCTL_SZ_16384; 1823 break; 1824 } 1825 1826 /* This is useful for sniffing bad packets. */ 1827 if (adapter->netdev->features & NETIF_F_RXALL) { 1828 /* UPE and MPE will be handled by normal PROMISC logic 1829 * in e1000e_set_rx_mode 1830 */ 1831 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ 1832 E1000_RCTL_BAM | /* RX All Bcast Pkts */ 1833 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 1834 1835 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */ 1836 E1000_RCTL_DPF | /* Allow filtered pause */ 1837 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ 1838 /* Do not mess with E1000_CTRL_VME, it affects transmit as well, 1839 * and that breaks VLANs. 1840 */ 1841 } 1842 1843 ew32(RCTL, rctl); 1844 } 1845 1846 /** 1847 * e1000_configure_rx - Configure 8254x Receive Unit after Reset 1848 * @adapter: board private structure 1849 * 1850 * Configure the Rx unit of the MAC after a reset. 1851 **/ 1852 static void e1000_configure_rx(struct e1000_adapter *adapter) 1853 { 1854 u64 rdba; 1855 struct e1000_hw *hw = &adapter->hw; 1856 u32 rdlen, rctl, rxcsum; 1857 1858 if (adapter->netdev->mtu > ETH_DATA_LEN) { 1859 rdlen = adapter->rx_ring[0].count * 1860 sizeof(struct e1000_rx_desc); 1861 adapter->clean_rx = e1000_clean_jumbo_rx_irq; 1862 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; 1863 } else { 1864 rdlen = adapter->rx_ring[0].count * 1865 sizeof(struct e1000_rx_desc); 1866 adapter->clean_rx = e1000_clean_rx_irq; 1867 adapter->alloc_rx_buf = e1000_alloc_rx_buffers; 1868 } 1869 1870 /* disable receives while setting up the descriptors */ 1871 rctl = er32(RCTL); 1872 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1873 1874 /* set the Receive Delay Timer Register */ 1875 ew32(RDTR, adapter->rx_int_delay); 1876 1877 if (hw->mac_type >= e1000_82540) { 1878 ew32(RADV, adapter->rx_abs_int_delay); 1879 if (adapter->itr_setting != 0) 1880 ew32(ITR, 1000000000 / (adapter->itr * 256)); 1881 } 1882 1883 /* Setup the HW Rx Head and Tail Descriptor Pointers and 1884 * the Base and Length of the Rx Descriptor Ring 1885 */ 1886 switch (adapter->num_rx_queues) { 1887 case 1: 1888 default: 1889 rdba = adapter->rx_ring[0].dma; 1890 ew32(RDLEN, rdlen); 1891 ew32(RDBAH, (rdba >> 32)); 1892 ew32(RDBAL, (rdba & 0x00000000ffffffffULL)); 1893 ew32(RDT, 0); 1894 ew32(RDH, 0); 1895 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? 1896 E1000_RDH : E1000_82542_RDH); 1897 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? 1898 E1000_RDT : E1000_82542_RDT); 1899 break; 1900 } 1901 1902 /* Enable 82543 Receive Checksum Offload for TCP and UDP */ 1903 if (hw->mac_type >= e1000_82543) { 1904 rxcsum = er32(RXCSUM); 1905 if (adapter->rx_csum) 1906 rxcsum |= E1000_RXCSUM_TUOFL; 1907 else 1908 /* don't need to clear IPPCSE as it defaults to 0 */ 1909 rxcsum &= ~E1000_RXCSUM_TUOFL; 1910 ew32(RXCSUM, rxcsum); 1911 } 1912 1913 /* Enable Receives */ 1914 ew32(RCTL, rctl | E1000_RCTL_EN); 1915 } 1916 1917 /** 1918 * e1000_free_tx_resources - Free Tx Resources per Queue 1919 * @adapter: board private structure 1920 * @tx_ring: Tx descriptor ring for a specific queue 1921 * 1922 * Free all transmit software resources 1923 **/ 1924 static void e1000_free_tx_resources(struct e1000_adapter *adapter, 1925 struct e1000_tx_ring *tx_ring) 1926 { 1927 struct pci_dev *pdev = adapter->pdev; 1928 1929 e1000_clean_tx_ring(adapter, tx_ring); 1930 1931 vfree(tx_ring->buffer_info); 1932 tx_ring->buffer_info = NULL; 1933 1934 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 1935 tx_ring->dma); 1936 1937 tx_ring->desc = NULL; 1938 } 1939 1940 /** 1941 * e1000_free_all_tx_resources - Free Tx Resources for All Queues 1942 * @adapter: board private structure 1943 * 1944 * Free all transmit software resources 1945 **/ 1946 void e1000_free_all_tx_resources(struct e1000_adapter *adapter) 1947 { 1948 int i; 1949 1950 for (i = 0; i < adapter->num_tx_queues; i++) 1951 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]); 1952 } 1953 1954 static void 1955 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter, 1956 struct e1000_tx_buffer *buffer_info) 1957 { 1958 if (buffer_info->dma) { 1959 if (buffer_info->mapped_as_page) 1960 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma, 1961 buffer_info->length, DMA_TO_DEVICE); 1962 else 1963 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, 1964 buffer_info->length, 1965 DMA_TO_DEVICE); 1966 buffer_info->dma = 0; 1967 } 1968 if (buffer_info->skb) { 1969 dev_kfree_skb_any(buffer_info->skb); 1970 buffer_info->skb = NULL; 1971 } 1972 buffer_info->time_stamp = 0; 1973 /* buffer_info must be completely set up in the transmit path */ 1974 } 1975 1976 /** 1977 * e1000_clean_tx_ring - Free Tx Buffers 1978 * @adapter: board private structure 1979 * @tx_ring: ring to be cleaned 1980 **/ 1981 static void e1000_clean_tx_ring(struct e1000_adapter *adapter, 1982 struct e1000_tx_ring *tx_ring) 1983 { 1984 struct e1000_hw *hw = &adapter->hw; 1985 struct e1000_tx_buffer *buffer_info; 1986 unsigned long size; 1987 unsigned int i; 1988 1989 /* Free all the Tx ring sk_buffs */ 1990 1991 for (i = 0; i < tx_ring->count; i++) { 1992 buffer_info = &tx_ring->buffer_info[i]; 1993 e1000_unmap_and_free_tx_resource(adapter, buffer_info); 1994 } 1995 1996 netdev_reset_queue(adapter->netdev); 1997 size = sizeof(struct e1000_tx_buffer) * tx_ring->count; 1998 memset(tx_ring->buffer_info, 0, size); 1999 2000 /* Zero out the descriptor ring */ 2001 2002 memset(tx_ring->desc, 0, tx_ring->size); 2003 2004 tx_ring->next_to_use = 0; 2005 tx_ring->next_to_clean = 0; 2006 tx_ring->last_tx_tso = false; 2007 2008 writel(0, hw->hw_addr + tx_ring->tdh); 2009 writel(0, hw->hw_addr + tx_ring->tdt); 2010 } 2011 2012 /** 2013 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues 2014 * @adapter: board private structure 2015 **/ 2016 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter) 2017 { 2018 int i; 2019 2020 for (i = 0; i < adapter->num_tx_queues; i++) 2021 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]); 2022 } 2023 2024 /** 2025 * e1000_free_rx_resources - Free Rx Resources 2026 * @adapter: board private structure 2027 * @rx_ring: ring to clean the resources from 2028 * 2029 * Free all receive software resources 2030 **/ 2031 static void e1000_free_rx_resources(struct e1000_adapter *adapter, 2032 struct e1000_rx_ring *rx_ring) 2033 { 2034 struct pci_dev *pdev = adapter->pdev; 2035 2036 e1000_clean_rx_ring(adapter, rx_ring); 2037 2038 vfree(rx_ring->buffer_info); 2039 rx_ring->buffer_info = NULL; 2040 2041 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 2042 rx_ring->dma); 2043 2044 rx_ring->desc = NULL; 2045 } 2046 2047 /** 2048 * e1000_free_all_rx_resources - Free Rx Resources for All Queues 2049 * @adapter: board private structure 2050 * 2051 * Free all receive software resources 2052 **/ 2053 void e1000_free_all_rx_resources(struct e1000_adapter *adapter) 2054 { 2055 int i; 2056 2057 for (i = 0; i < adapter->num_rx_queues; i++) 2058 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]); 2059 } 2060 2061 #define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN) 2062 static unsigned int e1000_frag_len(const struct e1000_adapter *a) 2063 { 2064 return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) + 2065 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 2066 } 2067 2068 static void *e1000_alloc_frag(const struct e1000_adapter *a) 2069 { 2070 unsigned int len = e1000_frag_len(a); 2071 u8 *data = netdev_alloc_frag(len); 2072 2073 if (likely(data)) 2074 data += E1000_HEADROOM; 2075 return data; 2076 } 2077 2078 /** 2079 * e1000_clean_rx_ring - Free Rx Buffers per Queue 2080 * @adapter: board private structure 2081 * @rx_ring: ring to free buffers from 2082 **/ 2083 static void e1000_clean_rx_ring(struct e1000_adapter *adapter, 2084 struct e1000_rx_ring *rx_ring) 2085 { 2086 struct e1000_hw *hw = &adapter->hw; 2087 struct e1000_rx_buffer *buffer_info; 2088 struct pci_dev *pdev = adapter->pdev; 2089 unsigned long size; 2090 unsigned int i; 2091 2092 /* Free all the Rx netfrags */ 2093 for (i = 0; i < rx_ring->count; i++) { 2094 buffer_info = &rx_ring->buffer_info[i]; 2095 if (adapter->clean_rx == e1000_clean_rx_irq) { 2096 if (buffer_info->dma) 2097 dma_unmap_single(&pdev->dev, buffer_info->dma, 2098 adapter->rx_buffer_len, 2099 DMA_FROM_DEVICE); 2100 if (buffer_info->rxbuf.data) { 2101 skb_free_frag(buffer_info->rxbuf.data); 2102 buffer_info->rxbuf.data = NULL; 2103 } 2104 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) { 2105 if (buffer_info->dma) 2106 dma_unmap_page(&pdev->dev, buffer_info->dma, 2107 adapter->rx_buffer_len, 2108 DMA_FROM_DEVICE); 2109 if (buffer_info->rxbuf.page) { 2110 put_page(buffer_info->rxbuf.page); 2111 buffer_info->rxbuf.page = NULL; 2112 } 2113 } 2114 2115 buffer_info->dma = 0; 2116 } 2117 2118 /* there also may be some cached data from a chained receive */ 2119 napi_free_frags(&adapter->napi); 2120 rx_ring->rx_skb_top = NULL; 2121 2122 size = sizeof(struct e1000_rx_buffer) * rx_ring->count; 2123 memset(rx_ring->buffer_info, 0, size); 2124 2125 /* Zero out the descriptor ring */ 2126 memset(rx_ring->desc, 0, rx_ring->size); 2127 2128 rx_ring->next_to_clean = 0; 2129 rx_ring->next_to_use = 0; 2130 2131 writel(0, hw->hw_addr + rx_ring->rdh); 2132 writel(0, hw->hw_addr + rx_ring->rdt); 2133 } 2134 2135 /** 2136 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues 2137 * @adapter: board private structure 2138 **/ 2139 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter) 2140 { 2141 int i; 2142 2143 for (i = 0; i < adapter->num_rx_queues; i++) 2144 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]); 2145 } 2146 2147 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset 2148 * and memory write and invalidate disabled for certain operations 2149 */ 2150 static void e1000_enter_82542_rst(struct e1000_adapter *adapter) 2151 { 2152 struct e1000_hw *hw = &adapter->hw; 2153 struct net_device *netdev = adapter->netdev; 2154 u32 rctl; 2155 2156 e1000_pci_clear_mwi(hw); 2157 2158 rctl = er32(RCTL); 2159 rctl |= E1000_RCTL_RST; 2160 ew32(RCTL, rctl); 2161 E1000_WRITE_FLUSH(); 2162 mdelay(5); 2163 2164 if (netif_running(netdev)) 2165 e1000_clean_all_rx_rings(adapter); 2166 } 2167 2168 static void e1000_leave_82542_rst(struct e1000_adapter *adapter) 2169 { 2170 struct e1000_hw *hw = &adapter->hw; 2171 struct net_device *netdev = adapter->netdev; 2172 u32 rctl; 2173 2174 rctl = er32(RCTL); 2175 rctl &= ~E1000_RCTL_RST; 2176 ew32(RCTL, rctl); 2177 E1000_WRITE_FLUSH(); 2178 mdelay(5); 2179 2180 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) 2181 e1000_pci_set_mwi(hw); 2182 2183 if (netif_running(netdev)) { 2184 /* No need to loop, because 82542 supports only 1 queue */ 2185 struct e1000_rx_ring *ring = &adapter->rx_ring[0]; 2186 e1000_configure_rx(adapter); 2187 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring)); 2188 } 2189 } 2190 2191 /** 2192 * e1000_set_mac - Change the Ethernet Address of the NIC 2193 * @netdev: network interface device structure 2194 * @p: pointer to an address structure 2195 * 2196 * Returns 0 on success, negative on failure 2197 **/ 2198 static int e1000_set_mac(struct net_device *netdev, void *p) 2199 { 2200 struct e1000_adapter *adapter = netdev_priv(netdev); 2201 struct e1000_hw *hw = &adapter->hw; 2202 struct sockaddr *addr = p; 2203 2204 if (!is_valid_ether_addr(addr->sa_data)) 2205 return -EADDRNOTAVAIL; 2206 2207 /* 82542 2.0 needs to be in reset to write receive address registers */ 2208 2209 if (hw->mac_type == e1000_82542_rev2_0) 2210 e1000_enter_82542_rst(adapter); 2211 2212 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 2213 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len); 2214 2215 e1000_rar_set(hw, hw->mac_addr, 0); 2216 2217 if (hw->mac_type == e1000_82542_rev2_0) 2218 e1000_leave_82542_rst(adapter); 2219 2220 return 0; 2221 } 2222 2223 /** 2224 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 2225 * @netdev: network interface device structure 2226 * 2227 * The set_rx_mode entry point is called whenever the unicast or multicast 2228 * address lists or the network interface flags are updated. This routine is 2229 * responsible for configuring the hardware for proper unicast, multicast, 2230 * promiscuous mode, and all-multi behavior. 2231 **/ 2232 static void e1000_set_rx_mode(struct net_device *netdev) 2233 { 2234 struct e1000_adapter *adapter = netdev_priv(netdev); 2235 struct e1000_hw *hw = &adapter->hw; 2236 struct netdev_hw_addr *ha; 2237 bool use_uc = false; 2238 u32 rctl; 2239 u32 hash_value; 2240 int i, rar_entries = E1000_RAR_ENTRIES; 2241 int mta_reg_count = E1000_NUM_MTA_REGISTERS; 2242 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC); 2243 2244 if (!mcarray) 2245 return; 2246 2247 /* Check for Promiscuous and All Multicast modes */ 2248 2249 rctl = er32(RCTL); 2250 2251 if (netdev->flags & IFF_PROMISC) { 2252 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 2253 rctl &= ~E1000_RCTL_VFE; 2254 } else { 2255 if (netdev->flags & IFF_ALLMULTI) 2256 rctl |= E1000_RCTL_MPE; 2257 else 2258 rctl &= ~E1000_RCTL_MPE; 2259 /* Enable VLAN filter if there is a VLAN */ 2260 if (e1000_vlan_used(adapter)) 2261 rctl |= E1000_RCTL_VFE; 2262 } 2263 2264 if (netdev_uc_count(netdev) > rar_entries - 1) { 2265 rctl |= E1000_RCTL_UPE; 2266 } else if (!(netdev->flags & IFF_PROMISC)) { 2267 rctl &= ~E1000_RCTL_UPE; 2268 use_uc = true; 2269 } 2270 2271 ew32(RCTL, rctl); 2272 2273 /* 82542 2.0 needs to be in reset to write receive address registers */ 2274 2275 if (hw->mac_type == e1000_82542_rev2_0) 2276 e1000_enter_82542_rst(adapter); 2277 2278 /* load the first 14 addresses into the exact filters 1-14. Unicast 2279 * addresses take precedence to avoid disabling unicast filtering 2280 * when possible. 2281 * 2282 * RAR 0 is used for the station MAC address 2283 * if there are not 14 addresses, go ahead and clear the filters 2284 */ 2285 i = 1; 2286 if (use_uc) 2287 netdev_for_each_uc_addr(ha, netdev) { 2288 if (i == rar_entries) 2289 break; 2290 e1000_rar_set(hw, ha->addr, i++); 2291 } 2292 2293 netdev_for_each_mc_addr(ha, netdev) { 2294 if (i == rar_entries) { 2295 /* load any remaining addresses into the hash table */ 2296 u32 hash_reg, hash_bit, mta; 2297 hash_value = e1000_hash_mc_addr(hw, ha->addr); 2298 hash_reg = (hash_value >> 5) & 0x7F; 2299 hash_bit = hash_value & 0x1F; 2300 mta = (1 << hash_bit); 2301 mcarray[hash_reg] |= mta; 2302 } else { 2303 e1000_rar_set(hw, ha->addr, i++); 2304 } 2305 } 2306 2307 for (; i < rar_entries; i++) { 2308 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0); 2309 E1000_WRITE_FLUSH(); 2310 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0); 2311 E1000_WRITE_FLUSH(); 2312 } 2313 2314 /* write the hash table completely, write from bottom to avoid 2315 * both stupid write combining chipsets, and flushing each write 2316 */ 2317 for (i = mta_reg_count - 1; i >= 0 ; i--) { 2318 /* If we are on an 82544 has an errata where writing odd 2319 * offsets overwrites the previous even offset, but writing 2320 * backwards over the range solves the issue by always 2321 * writing the odd offset first 2322 */ 2323 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]); 2324 } 2325 E1000_WRITE_FLUSH(); 2326 2327 if (hw->mac_type == e1000_82542_rev2_0) 2328 e1000_leave_82542_rst(adapter); 2329 2330 kfree(mcarray); 2331 } 2332 2333 /** 2334 * e1000_update_phy_info_task - get phy info 2335 * @work: work struct contained inside adapter struct 2336 * 2337 * Need to wait a few seconds after link up to get diagnostic information from 2338 * the phy 2339 */ 2340 static void e1000_update_phy_info_task(struct work_struct *work) 2341 { 2342 struct e1000_adapter *adapter = container_of(work, 2343 struct e1000_adapter, 2344 phy_info_task.work); 2345 2346 e1000_phy_get_info(&adapter->hw, &adapter->phy_info); 2347 } 2348 2349 /** 2350 * e1000_82547_tx_fifo_stall_task - task to complete work 2351 * @work: work struct contained inside adapter struct 2352 **/ 2353 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work) 2354 { 2355 struct e1000_adapter *adapter = container_of(work, 2356 struct e1000_adapter, 2357 fifo_stall_task.work); 2358 struct e1000_hw *hw = &adapter->hw; 2359 struct net_device *netdev = adapter->netdev; 2360 u32 tctl; 2361 2362 if (atomic_read(&adapter->tx_fifo_stall)) { 2363 if ((er32(TDT) == er32(TDH)) && 2364 (er32(TDFT) == er32(TDFH)) && 2365 (er32(TDFTS) == er32(TDFHS))) { 2366 tctl = er32(TCTL); 2367 ew32(TCTL, tctl & ~E1000_TCTL_EN); 2368 ew32(TDFT, adapter->tx_head_addr); 2369 ew32(TDFH, adapter->tx_head_addr); 2370 ew32(TDFTS, adapter->tx_head_addr); 2371 ew32(TDFHS, adapter->tx_head_addr); 2372 ew32(TCTL, tctl); 2373 E1000_WRITE_FLUSH(); 2374 2375 adapter->tx_fifo_head = 0; 2376 atomic_set(&adapter->tx_fifo_stall, 0); 2377 netif_wake_queue(netdev); 2378 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) { 2379 schedule_delayed_work(&adapter->fifo_stall_task, 1); 2380 } 2381 } 2382 } 2383 2384 bool e1000_has_link(struct e1000_adapter *adapter) 2385 { 2386 struct e1000_hw *hw = &adapter->hw; 2387 bool link_active = false; 2388 2389 /* get_link_status is set on LSC (link status) interrupt or rx 2390 * sequence error interrupt (except on intel ce4100). 2391 * get_link_status will stay false until the 2392 * e1000_check_for_link establishes link for copper adapters 2393 * ONLY 2394 */ 2395 switch (hw->media_type) { 2396 case e1000_media_type_copper: 2397 if (hw->mac_type == e1000_ce4100) 2398 hw->get_link_status = 1; 2399 if (hw->get_link_status) { 2400 e1000_check_for_link(hw); 2401 link_active = !hw->get_link_status; 2402 } else { 2403 link_active = true; 2404 } 2405 break; 2406 case e1000_media_type_fiber: 2407 e1000_check_for_link(hw); 2408 link_active = !!(er32(STATUS) & E1000_STATUS_LU); 2409 break; 2410 case e1000_media_type_internal_serdes: 2411 e1000_check_for_link(hw); 2412 link_active = hw->serdes_has_link; 2413 break; 2414 default: 2415 break; 2416 } 2417 2418 return link_active; 2419 } 2420 2421 /** 2422 * e1000_watchdog - work function 2423 * @work: work struct contained inside adapter struct 2424 **/ 2425 static void e1000_watchdog(struct work_struct *work) 2426 { 2427 struct e1000_adapter *adapter = container_of(work, 2428 struct e1000_adapter, 2429 watchdog_task.work); 2430 struct e1000_hw *hw = &adapter->hw; 2431 struct net_device *netdev = adapter->netdev; 2432 struct e1000_tx_ring *txdr = adapter->tx_ring; 2433 u32 link, tctl; 2434 2435 link = e1000_has_link(adapter); 2436 if ((netif_carrier_ok(netdev)) && link) 2437 goto link_up; 2438 2439 if (link) { 2440 if (!netif_carrier_ok(netdev)) { 2441 u32 ctrl; 2442 /* update snapshot of PHY registers on LSC */ 2443 e1000_get_speed_and_duplex(hw, 2444 &adapter->link_speed, 2445 &adapter->link_duplex); 2446 2447 ctrl = er32(CTRL); 2448 pr_info("%s NIC Link is Up %d Mbps %s, " 2449 "Flow Control: %s\n", 2450 netdev->name, 2451 adapter->link_speed, 2452 adapter->link_duplex == FULL_DUPLEX ? 2453 "Full Duplex" : "Half Duplex", 2454 ((ctrl & E1000_CTRL_TFCE) && (ctrl & 2455 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl & 2456 E1000_CTRL_RFCE) ? "RX" : ((ctrl & 2457 E1000_CTRL_TFCE) ? "TX" : "None"))); 2458 2459 /* adjust timeout factor according to speed/duplex */ 2460 adapter->tx_timeout_factor = 1; 2461 switch (adapter->link_speed) { 2462 case SPEED_10: 2463 adapter->tx_timeout_factor = 16; 2464 break; 2465 case SPEED_100: 2466 /* maybe add some timeout factor ? */ 2467 break; 2468 } 2469 2470 /* enable transmits in the hardware */ 2471 tctl = er32(TCTL); 2472 tctl |= E1000_TCTL_EN; 2473 ew32(TCTL, tctl); 2474 2475 netif_carrier_on(netdev); 2476 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2477 schedule_delayed_work(&adapter->phy_info_task, 2478 2 * HZ); 2479 adapter->smartspeed = 0; 2480 } 2481 } else { 2482 if (netif_carrier_ok(netdev)) { 2483 adapter->link_speed = 0; 2484 adapter->link_duplex = 0; 2485 pr_info("%s NIC Link is Down\n", 2486 netdev->name); 2487 netif_carrier_off(netdev); 2488 2489 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2490 schedule_delayed_work(&adapter->phy_info_task, 2491 2 * HZ); 2492 } 2493 2494 e1000_smartspeed(adapter); 2495 } 2496 2497 link_up: 2498 e1000_update_stats(adapter); 2499 2500 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; 2501 adapter->tpt_old = adapter->stats.tpt; 2502 hw->collision_delta = adapter->stats.colc - adapter->colc_old; 2503 adapter->colc_old = adapter->stats.colc; 2504 2505 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; 2506 adapter->gorcl_old = adapter->stats.gorcl; 2507 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; 2508 adapter->gotcl_old = adapter->stats.gotcl; 2509 2510 e1000_update_adaptive(hw); 2511 2512 if (!netif_carrier_ok(netdev)) { 2513 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) { 2514 /* We've lost link, so the controller stops DMA, 2515 * but we've got queued Tx work that's never going 2516 * to get done, so reset controller to flush Tx. 2517 * (Do the reset outside of interrupt context). 2518 */ 2519 adapter->tx_timeout_count++; 2520 schedule_work(&adapter->reset_task); 2521 /* exit immediately since reset is imminent */ 2522 return; 2523 } 2524 } 2525 2526 /* Simple mode for Interrupt Throttle Rate (ITR) */ 2527 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) { 2528 /* Symmetric Tx/Rx gets a reduced ITR=2000; 2529 * Total asymmetrical Tx or Rx gets ITR=8000; 2530 * everyone else is between 2000-8000. 2531 */ 2532 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000; 2533 u32 dif = (adapter->gotcl > adapter->gorcl ? 2534 adapter->gotcl - adapter->gorcl : 2535 adapter->gorcl - adapter->gotcl) / 10000; 2536 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; 2537 2538 ew32(ITR, 1000000000 / (itr * 256)); 2539 } 2540 2541 /* Cause software interrupt to ensure rx ring is cleaned */ 2542 ew32(ICS, E1000_ICS_RXDMT0); 2543 2544 /* Force detection of hung controller every watchdog period */ 2545 adapter->detect_tx_hung = true; 2546 2547 /* Reschedule the task */ 2548 if (!test_bit(__E1000_DOWN, &adapter->flags)) 2549 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ); 2550 } 2551 2552 enum latency_range { 2553 lowest_latency = 0, 2554 low_latency = 1, 2555 bulk_latency = 2, 2556 latency_invalid = 255 2557 }; 2558 2559 /** 2560 * e1000_update_itr - update the dynamic ITR value based on statistics 2561 * @adapter: pointer to adapter 2562 * @itr_setting: current adapter->itr 2563 * @packets: the number of packets during this measurement interval 2564 * @bytes: the number of bytes during this measurement interval 2565 * 2566 * Stores a new ITR value based on packets and byte 2567 * counts during the last interrupt. The advantage of per interrupt 2568 * computation is faster updates and more accurate ITR for the current 2569 * traffic pattern. Constants in this function were computed 2570 * based on theoretical maximum wire speed and thresholds were set based 2571 * on testing data as well as attempting to minimize response time 2572 * while increasing bulk throughput. 2573 * this functionality is controlled by the InterruptThrottleRate module 2574 * parameter (see e1000_param.c) 2575 **/ 2576 static unsigned int e1000_update_itr(struct e1000_adapter *adapter, 2577 u16 itr_setting, int packets, int bytes) 2578 { 2579 unsigned int retval = itr_setting; 2580 struct e1000_hw *hw = &adapter->hw; 2581 2582 if (unlikely(hw->mac_type < e1000_82540)) 2583 goto update_itr_done; 2584 2585 if (packets == 0) 2586 goto update_itr_done; 2587 2588 switch (itr_setting) { 2589 case lowest_latency: 2590 /* jumbo frames get bulk treatment*/ 2591 if (bytes/packets > 8000) 2592 retval = bulk_latency; 2593 else if ((packets < 5) && (bytes > 512)) 2594 retval = low_latency; 2595 break; 2596 case low_latency: /* 50 usec aka 20000 ints/s */ 2597 if (bytes > 10000) { 2598 /* jumbo frames need bulk latency setting */ 2599 if (bytes/packets > 8000) 2600 retval = bulk_latency; 2601 else if ((packets < 10) || ((bytes/packets) > 1200)) 2602 retval = bulk_latency; 2603 else if ((packets > 35)) 2604 retval = lowest_latency; 2605 } else if (bytes/packets > 2000) 2606 retval = bulk_latency; 2607 else if (packets <= 2 && bytes < 512) 2608 retval = lowest_latency; 2609 break; 2610 case bulk_latency: /* 250 usec aka 4000 ints/s */ 2611 if (bytes > 25000) { 2612 if (packets > 35) 2613 retval = low_latency; 2614 } else if (bytes < 6000) { 2615 retval = low_latency; 2616 } 2617 break; 2618 } 2619 2620 update_itr_done: 2621 return retval; 2622 } 2623 2624 static void e1000_set_itr(struct e1000_adapter *adapter) 2625 { 2626 struct e1000_hw *hw = &adapter->hw; 2627 u16 current_itr; 2628 u32 new_itr = adapter->itr; 2629 2630 if (unlikely(hw->mac_type < e1000_82540)) 2631 return; 2632 2633 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 2634 if (unlikely(adapter->link_speed != SPEED_1000)) { 2635 current_itr = 0; 2636 new_itr = 4000; 2637 goto set_itr_now; 2638 } 2639 2640 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr, 2641 adapter->total_tx_packets, 2642 adapter->total_tx_bytes); 2643 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2644 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) 2645 adapter->tx_itr = low_latency; 2646 2647 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr, 2648 adapter->total_rx_packets, 2649 adapter->total_rx_bytes); 2650 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2651 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) 2652 adapter->rx_itr = low_latency; 2653 2654 current_itr = max(adapter->rx_itr, adapter->tx_itr); 2655 2656 switch (current_itr) { 2657 /* counts and packets in update_itr are dependent on these numbers */ 2658 case lowest_latency: 2659 new_itr = 70000; 2660 break; 2661 case low_latency: 2662 new_itr = 20000; /* aka hwitr = ~200 */ 2663 break; 2664 case bulk_latency: 2665 new_itr = 4000; 2666 break; 2667 default: 2668 break; 2669 } 2670 2671 set_itr_now: 2672 if (new_itr != adapter->itr) { 2673 /* this attempts to bias the interrupt rate towards Bulk 2674 * by adding intermediate steps when interrupt rate is 2675 * increasing 2676 */ 2677 new_itr = new_itr > adapter->itr ? 2678 min(adapter->itr + (new_itr >> 2), new_itr) : 2679 new_itr; 2680 adapter->itr = new_itr; 2681 ew32(ITR, 1000000000 / (new_itr * 256)); 2682 } 2683 } 2684 2685 #define E1000_TX_FLAGS_CSUM 0x00000001 2686 #define E1000_TX_FLAGS_VLAN 0x00000002 2687 #define E1000_TX_FLAGS_TSO 0x00000004 2688 #define E1000_TX_FLAGS_IPV4 0x00000008 2689 #define E1000_TX_FLAGS_NO_FCS 0x00000010 2690 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 2691 #define E1000_TX_FLAGS_VLAN_SHIFT 16 2692 2693 static int e1000_tso(struct e1000_adapter *adapter, 2694 struct e1000_tx_ring *tx_ring, struct sk_buff *skb, 2695 __be16 protocol) 2696 { 2697 struct e1000_context_desc *context_desc; 2698 struct e1000_tx_buffer *buffer_info; 2699 unsigned int i; 2700 u32 cmd_length = 0; 2701 u16 ipcse = 0, tucse, mss; 2702 u8 ipcss, ipcso, tucss, tucso, hdr_len; 2703 2704 if (skb_is_gso(skb)) { 2705 int err; 2706 2707 err = skb_cow_head(skb, 0); 2708 if (err < 0) 2709 return err; 2710 2711 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2712 mss = skb_shinfo(skb)->gso_size; 2713 if (protocol == htons(ETH_P_IP)) { 2714 struct iphdr *iph = ip_hdr(skb); 2715 iph->tot_len = 0; 2716 iph->check = 0; 2717 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, 2718 iph->daddr, 0, 2719 IPPROTO_TCP, 2720 0); 2721 cmd_length = E1000_TXD_CMD_IP; 2722 ipcse = skb_transport_offset(skb) - 1; 2723 } else if (skb_is_gso_v6(skb)) { 2724 tcp_v6_gso_csum_prep(skb); 2725 ipcse = 0; 2726 } 2727 ipcss = skb_network_offset(skb); 2728 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; 2729 tucss = skb_transport_offset(skb); 2730 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; 2731 tucse = 0; 2732 2733 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | 2734 E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); 2735 2736 i = tx_ring->next_to_use; 2737 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 2738 buffer_info = &tx_ring->buffer_info[i]; 2739 2740 context_desc->lower_setup.ip_fields.ipcss = ipcss; 2741 context_desc->lower_setup.ip_fields.ipcso = ipcso; 2742 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); 2743 context_desc->upper_setup.tcp_fields.tucss = tucss; 2744 context_desc->upper_setup.tcp_fields.tucso = tucso; 2745 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); 2746 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); 2747 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; 2748 context_desc->cmd_and_length = cpu_to_le32(cmd_length); 2749 2750 buffer_info->time_stamp = jiffies; 2751 buffer_info->next_to_watch = i; 2752 2753 if (++i == tx_ring->count) 2754 i = 0; 2755 2756 tx_ring->next_to_use = i; 2757 2758 return true; 2759 } 2760 return false; 2761 } 2762 2763 static bool e1000_tx_csum(struct e1000_adapter *adapter, 2764 struct e1000_tx_ring *tx_ring, struct sk_buff *skb, 2765 __be16 protocol) 2766 { 2767 struct e1000_context_desc *context_desc; 2768 struct e1000_tx_buffer *buffer_info; 2769 unsigned int i; 2770 u8 css; 2771 u32 cmd_len = E1000_TXD_CMD_DEXT; 2772 2773 if (skb->ip_summed != CHECKSUM_PARTIAL) 2774 return false; 2775 2776 switch (protocol) { 2777 case cpu_to_be16(ETH_P_IP): 2778 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 2779 cmd_len |= E1000_TXD_CMD_TCP; 2780 break; 2781 case cpu_to_be16(ETH_P_IPV6): 2782 /* XXX not handling all IPV6 headers */ 2783 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 2784 cmd_len |= E1000_TXD_CMD_TCP; 2785 break; 2786 default: 2787 if (unlikely(net_ratelimit())) 2788 e_warn(drv, "checksum_partial proto=%x!\n", 2789 skb->protocol); 2790 break; 2791 } 2792 2793 css = skb_checksum_start_offset(skb); 2794 2795 i = tx_ring->next_to_use; 2796 buffer_info = &tx_ring->buffer_info[i]; 2797 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 2798 2799 context_desc->lower_setup.ip_config = 0; 2800 context_desc->upper_setup.tcp_fields.tucss = css; 2801 context_desc->upper_setup.tcp_fields.tucso = 2802 css + skb->csum_offset; 2803 context_desc->upper_setup.tcp_fields.tucse = 0; 2804 context_desc->tcp_seg_setup.data = 0; 2805 context_desc->cmd_and_length = cpu_to_le32(cmd_len); 2806 2807 buffer_info->time_stamp = jiffies; 2808 buffer_info->next_to_watch = i; 2809 2810 if (unlikely(++i == tx_ring->count)) 2811 i = 0; 2812 2813 tx_ring->next_to_use = i; 2814 2815 return true; 2816 } 2817 2818 #define E1000_MAX_TXD_PWR 12 2819 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR) 2820 2821 static int e1000_tx_map(struct e1000_adapter *adapter, 2822 struct e1000_tx_ring *tx_ring, 2823 struct sk_buff *skb, unsigned int first, 2824 unsigned int max_per_txd, unsigned int nr_frags, 2825 unsigned int mss) 2826 { 2827 struct e1000_hw *hw = &adapter->hw; 2828 struct pci_dev *pdev = adapter->pdev; 2829 struct e1000_tx_buffer *buffer_info; 2830 unsigned int len = skb_headlen(skb); 2831 unsigned int offset = 0, size, count = 0, i; 2832 unsigned int f, bytecount, segs; 2833 2834 i = tx_ring->next_to_use; 2835 2836 while (len) { 2837 buffer_info = &tx_ring->buffer_info[i]; 2838 size = min(len, max_per_txd); 2839 /* Workaround for Controller erratum -- 2840 * descriptor for non-tso packet in a linear SKB that follows a 2841 * tso gets written back prematurely before the data is fully 2842 * DMA'd to the controller 2843 */ 2844 if (!skb->data_len && tx_ring->last_tx_tso && 2845 !skb_is_gso(skb)) { 2846 tx_ring->last_tx_tso = false; 2847 size -= 4; 2848 } 2849 2850 /* Workaround for premature desc write-backs 2851 * in TSO mode. Append 4-byte sentinel desc 2852 */ 2853 if (unlikely(mss && !nr_frags && size == len && size > 8)) 2854 size -= 4; 2855 /* work-around for errata 10 and it applies 2856 * to all controllers in PCI-X mode 2857 * The fix is to make sure that the first descriptor of a 2858 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes 2859 */ 2860 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && 2861 (size > 2015) && count == 0)) 2862 size = 2015; 2863 2864 /* Workaround for potential 82544 hang in PCI-X. Avoid 2865 * terminating buffers within evenly-aligned dwords. 2866 */ 2867 if (unlikely(adapter->pcix_82544 && 2868 !((unsigned long)(skb->data + offset + size - 1) & 4) && 2869 size > 4)) 2870 size -= 4; 2871 2872 buffer_info->length = size; 2873 /* set time_stamp *before* dma to help avoid a possible race */ 2874 buffer_info->time_stamp = jiffies; 2875 buffer_info->mapped_as_page = false; 2876 buffer_info->dma = dma_map_single(&pdev->dev, 2877 skb->data + offset, 2878 size, DMA_TO_DEVICE); 2879 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2880 goto dma_error; 2881 buffer_info->next_to_watch = i; 2882 2883 len -= size; 2884 offset += size; 2885 count++; 2886 if (len) { 2887 i++; 2888 if (unlikely(i == tx_ring->count)) 2889 i = 0; 2890 } 2891 } 2892 2893 for (f = 0; f < nr_frags; f++) { 2894 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; 2895 2896 len = skb_frag_size(frag); 2897 offset = 0; 2898 2899 while (len) { 2900 unsigned long bufend; 2901 i++; 2902 if (unlikely(i == tx_ring->count)) 2903 i = 0; 2904 2905 buffer_info = &tx_ring->buffer_info[i]; 2906 size = min(len, max_per_txd); 2907 /* Workaround for premature desc write-backs 2908 * in TSO mode. Append 4-byte sentinel desc 2909 */ 2910 if (unlikely(mss && f == (nr_frags-1) && 2911 size == len && size > 8)) 2912 size -= 4; 2913 /* Workaround for potential 82544 hang in PCI-X. 2914 * Avoid terminating buffers within evenly-aligned 2915 * dwords. 2916 */ 2917 bufend = (unsigned long) 2918 page_to_phys(skb_frag_page(frag)); 2919 bufend += offset + size - 1; 2920 if (unlikely(adapter->pcix_82544 && 2921 !(bufend & 4) && 2922 size > 4)) 2923 size -= 4; 2924 2925 buffer_info->length = size; 2926 buffer_info->time_stamp = jiffies; 2927 buffer_info->mapped_as_page = true; 2928 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 2929 offset, size, DMA_TO_DEVICE); 2930 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 2931 goto dma_error; 2932 buffer_info->next_to_watch = i; 2933 2934 len -= size; 2935 offset += size; 2936 count++; 2937 } 2938 } 2939 2940 segs = skb_shinfo(skb)->gso_segs ?: 1; 2941 /* multiply data chunks by size of headers */ 2942 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len; 2943 2944 tx_ring->buffer_info[i].skb = skb; 2945 tx_ring->buffer_info[i].segs = segs; 2946 tx_ring->buffer_info[i].bytecount = bytecount; 2947 tx_ring->buffer_info[first].next_to_watch = i; 2948 2949 return count; 2950 2951 dma_error: 2952 dev_err(&pdev->dev, "TX DMA map failed\n"); 2953 buffer_info->dma = 0; 2954 if (count) 2955 count--; 2956 2957 while (count--) { 2958 if (i == 0) 2959 i += tx_ring->count; 2960 i--; 2961 buffer_info = &tx_ring->buffer_info[i]; 2962 e1000_unmap_and_free_tx_resource(adapter, buffer_info); 2963 } 2964 2965 return 0; 2966 } 2967 2968 static void e1000_tx_queue(struct e1000_adapter *adapter, 2969 struct e1000_tx_ring *tx_ring, int tx_flags, 2970 int count) 2971 { 2972 struct e1000_tx_desc *tx_desc = NULL; 2973 struct e1000_tx_buffer *buffer_info; 2974 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; 2975 unsigned int i; 2976 2977 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) { 2978 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | 2979 E1000_TXD_CMD_TSE; 2980 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 2981 2982 if (likely(tx_flags & E1000_TX_FLAGS_IPV4)) 2983 txd_upper |= E1000_TXD_POPTS_IXSM << 8; 2984 } 2985 2986 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) { 2987 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; 2988 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 2989 } 2990 2991 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) { 2992 txd_lower |= E1000_TXD_CMD_VLE; 2993 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); 2994 } 2995 2996 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) 2997 txd_lower &= ~(E1000_TXD_CMD_IFCS); 2998 2999 i = tx_ring->next_to_use; 3000 3001 while (count--) { 3002 buffer_info = &tx_ring->buffer_info[i]; 3003 tx_desc = E1000_TX_DESC(*tx_ring, i); 3004 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 3005 tx_desc->lower.data = 3006 cpu_to_le32(txd_lower | buffer_info->length); 3007 tx_desc->upper.data = cpu_to_le32(txd_upper); 3008 if (unlikely(++i == tx_ring->count)) 3009 i = 0; 3010 } 3011 3012 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); 3013 3014 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */ 3015 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) 3016 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS)); 3017 3018 /* Force memory writes to complete before letting h/w 3019 * know there are new descriptors to fetch. (Only 3020 * applicable for weak-ordered memory model archs, 3021 * such as IA-64). 3022 */ 3023 dma_wmb(); 3024 3025 tx_ring->next_to_use = i; 3026 } 3027 3028 /* 82547 workaround to avoid controller hang in half-duplex environment. 3029 * The workaround is to avoid queuing a large packet that would span 3030 * the internal Tx FIFO ring boundary by notifying the stack to resend 3031 * the packet at a later time. This gives the Tx FIFO an opportunity to 3032 * flush all packets. When that occurs, we reset the Tx FIFO pointers 3033 * to the beginning of the Tx FIFO. 3034 */ 3035 3036 #define E1000_FIFO_HDR 0x10 3037 #define E1000_82547_PAD_LEN 0x3E0 3038 3039 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, 3040 struct sk_buff *skb) 3041 { 3042 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head; 3043 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR; 3044 3045 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR); 3046 3047 if (adapter->link_duplex != HALF_DUPLEX) 3048 goto no_fifo_stall_required; 3049 3050 if (atomic_read(&adapter->tx_fifo_stall)) 3051 return 1; 3052 3053 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) { 3054 atomic_set(&adapter->tx_fifo_stall, 1); 3055 return 1; 3056 } 3057 3058 no_fifo_stall_required: 3059 adapter->tx_fifo_head += skb_fifo_len; 3060 if (adapter->tx_fifo_head >= adapter->tx_fifo_size) 3061 adapter->tx_fifo_head -= adapter->tx_fifo_size; 3062 return 0; 3063 } 3064 3065 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) 3066 { 3067 struct e1000_adapter *adapter = netdev_priv(netdev); 3068 struct e1000_tx_ring *tx_ring = adapter->tx_ring; 3069 3070 netif_stop_queue(netdev); 3071 /* Herbert's original patch had: 3072 * smp_mb__after_netif_stop_queue(); 3073 * but since that doesn't exist yet, just open code it. 3074 */ 3075 smp_mb(); 3076 3077 /* We need to check again in a case another CPU has just 3078 * made room available. 3079 */ 3080 if (likely(E1000_DESC_UNUSED(tx_ring) < size)) 3081 return -EBUSY; 3082 3083 /* A reprieve! */ 3084 netif_start_queue(netdev); 3085 ++adapter->restart_queue; 3086 return 0; 3087 } 3088 3089 static int e1000_maybe_stop_tx(struct net_device *netdev, 3090 struct e1000_tx_ring *tx_ring, int size) 3091 { 3092 if (likely(E1000_DESC_UNUSED(tx_ring) >= size)) 3093 return 0; 3094 return __e1000_maybe_stop_tx(netdev, size); 3095 } 3096 3097 #define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X)) 3098 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, 3099 struct net_device *netdev) 3100 { 3101 struct e1000_adapter *adapter = netdev_priv(netdev); 3102 struct e1000_hw *hw = &adapter->hw; 3103 struct e1000_tx_ring *tx_ring; 3104 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD; 3105 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; 3106 unsigned int tx_flags = 0; 3107 unsigned int len = skb_headlen(skb); 3108 unsigned int nr_frags; 3109 unsigned int mss; 3110 int count = 0; 3111 int tso; 3112 unsigned int f; 3113 __be16 protocol = vlan_get_protocol(skb); 3114 3115 /* This goes back to the question of how to logically map a Tx queue 3116 * to a flow. Right now, performance is impacted slightly negatively 3117 * if using multiple Tx queues. If the stack breaks away from a 3118 * single qdisc implementation, we can look at this again. 3119 */ 3120 tx_ring = adapter->tx_ring; 3121 3122 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN, 3123 * packets may get corrupted during padding by HW. 3124 * To WA this issue, pad all small packets manually. 3125 */ 3126 if (eth_skb_pad(skb)) 3127 return NETDEV_TX_OK; 3128 3129 mss = skb_shinfo(skb)->gso_size; 3130 /* The controller does a simple calculation to 3131 * make sure there is enough room in the FIFO before 3132 * initiating the DMA for each buffer. The calc is: 3133 * 4 = ceil(buffer len/mss). To make sure we don't 3134 * overrun the FIFO, adjust the max buffer len if mss 3135 * drops. 3136 */ 3137 if (mss) { 3138 u8 hdr_len; 3139 max_per_txd = min(mss << 2, max_per_txd); 3140 max_txd_pwr = fls(max_per_txd) - 1; 3141 3142 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 3143 if (skb->data_len && hdr_len == len) { 3144 switch (hw->mac_type) { 3145 case e1000_82544: { 3146 unsigned int pull_size; 3147 3148 /* Make sure we have room to chop off 4 bytes, 3149 * and that the end alignment will work out to 3150 * this hardware's requirements 3151 * NOTE: this is a TSO only workaround 3152 * if end byte alignment not correct move us 3153 * into the next dword 3154 */ 3155 if ((unsigned long)(skb_tail_pointer(skb) - 1) 3156 & 4) 3157 break; 3158 pull_size = min((unsigned int)4, skb->data_len); 3159 if (!__pskb_pull_tail(skb, pull_size)) { 3160 e_err(drv, "__pskb_pull_tail " 3161 "failed.\n"); 3162 dev_kfree_skb_any(skb); 3163 return NETDEV_TX_OK; 3164 } 3165 len = skb_headlen(skb); 3166 break; 3167 } 3168 default: 3169 /* do nothing */ 3170 break; 3171 } 3172 } 3173 } 3174 3175 /* reserve a descriptor for the offload context */ 3176 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) 3177 count++; 3178 count++; 3179 3180 /* Controller Erratum workaround */ 3181 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb)) 3182 count++; 3183 3184 count += TXD_USE_COUNT(len, max_txd_pwr); 3185 3186 if (adapter->pcix_82544) 3187 count++; 3188 3189 /* work-around for errata 10 and it applies to all controllers 3190 * in PCI-X mode, so add one more descriptor to the count 3191 */ 3192 if (unlikely((hw->bus_type == e1000_bus_type_pcix) && 3193 (len > 2015))) 3194 count++; 3195 3196 nr_frags = skb_shinfo(skb)->nr_frags; 3197 for (f = 0; f < nr_frags; f++) 3198 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]), 3199 max_txd_pwr); 3200 if (adapter->pcix_82544) 3201 count += nr_frags; 3202 3203 /* need: count + 2 desc gap to keep tail from touching 3204 * head, otherwise try next time 3205 */ 3206 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) 3207 return NETDEV_TX_BUSY; 3208 3209 if (unlikely((hw->mac_type == e1000_82547) && 3210 (e1000_82547_fifo_workaround(adapter, skb)))) { 3211 netif_stop_queue(netdev); 3212 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3213 schedule_delayed_work(&adapter->fifo_stall_task, 1); 3214 return NETDEV_TX_BUSY; 3215 } 3216 3217 if (skb_vlan_tag_present(skb)) { 3218 tx_flags |= E1000_TX_FLAGS_VLAN; 3219 tx_flags |= (skb_vlan_tag_get(skb) << 3220 E1000_TX_FLAGS_VLAN_SHIFT); 3221 } 3222 3223 first = tx_ring->next_to_use; 3224 3225 tso = e1000_tso(adapter, tx_ring, skb, protocol); 3226 if (tso < 0) { 3227 dev_kfree_skb_any(skb); 3228 return NETDEV_TX_OK; 3229 } 3230 3231 if (likely(tso)) { 3232 if (likely(hw->mac_type != e1000_82544)) 3233 tx_ring->last_tx_tso = true; 3234 tx_flags |= E1000_TX_FLAGS_TSO; 3235 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol))) 3236 tx_flags |= E1000_TX_FLAGS_CSUM; 3237 3238 if (protocol == htons(ETH_P_IP)) 3239 tx_flags |= E1000_TX_FLAGS_IPV4; 3240 3241 if (unlikely(skb->no_fcs)) 3242 tx_flags |= E1000_TX_FLAGS_NO_FCS; 3243 3244 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd, 3245 nr_frags, mss); 3246 3247 if (count) { 3248 /* The descriptors needed is higher than other Intel drivers 3249 * due to a number of workarounds. The breakdown is below: 3250 * Data descriptors: MAX_SKB_FRAGS + 1 3251 * Context Descriptor: 1 3252 * Keep head from touching tail: 2 3253 * Workarounds: 3 3254 */ 3255 int desc_needed = MAX_SKB_FRAGS + 7; 3256 3257 netdev_sent_queue(netdev, skb->len); 3258 skb_tx_timestamp(skb); 3259 3260 e1000_tx_queue(adapter, tx_ring, tx_flags, count); 3261 3262 /* 82544 potentially requires twice as many data descriptors 3263 * in order to guarantee buffers don't end on evenly-aligned 3264 * dwords 3265 */ 3266 if (adapter->pcix_82544) 3267 desc_needed += MAX_SKB_FRAGS + 1; 3268 3269 /* Make sure there is space in the ring for the next send. */ 3270 e1000_maybe_stop_tx(netdev, tx_ring, desc_needed); 3271 3272 if (!netdev_xmit_more() || 3273 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) { 3274 writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt); 3275 } 3276 } else { 3277 dev_kfree_skb_any(skb); 3278 tx_ring->buffer_info[first].time_stamp = 0; 3279 tx_ring->next_to_use = first; 3280 } 3281 3282 return NETDEV_TX_OK; 3283 } 3284 3285 #define NUM_REGS 38 /* 1 based count */ 3286 static void e1000_regdump(struct e1000_adapter *adapter) 3287 { 3288 struct e1000_hw *hw = &adapter->hw; 3289 u32 regs[NUM_REGS]; 3290 u32 *regs_buff = regs; 3291 int i = 0; 3292 3293 static const char * const reg_name[] = { 3294 "CTRL", "STATUS", 3295 "RCTL", "RDLEN", "RDH", "RDT", "RDTR", 3296 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT", 3297 "TIDV", "TXDCTL", "TADV", "TARC0", 3298 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1", 3299 "TXDCTL1", "TARC1", 3300 "CTRL_EXT", "ERT", "RDBAL", "RDBAH", 3301 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC", 3302 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC" 3303 }; 3304 3305 regs_buff[0] = er32(CTRL); 3306 regs_buff[1] = er32(STATUS); 3307 3308 regs_buff[2] = er32(RCTL); 3309 regs_buff[3] = er32(RDLEN); 3310 regs_buff[4] = er32(RDH); 3311 regs_buff[5] = er32(RDT); 3312 regs_buff[6] = er32(RDTR); 3313 3314 regs_buff[7] = er32(TCTL); 3315 regs_buff[8] = er32(TDBAL); 3316 regs_buff[9] = er32(TDBAH); 3317 regs_buff[10] = er32(TDLEN); 3318 regs_buff[11] = er32(TDH); 3319 regs_buff[12] = er32(TDT); 3320 regs_buff[13] = er32(TIDV); 3321 regs_buff[14] = er32(TXDCTL); 3322 regs_buff[15] = er32(TADV); 3323 regs_buff[16] = er32(TARC0); 3324 3325 regs_buff[17] = er32(TDBAL1); 3326 regs_buff[18] = er32(TDBAH1); 3327 regs_buff[19] = er32(TDLEN1); 3328 regs_buff[20] = er32(TDH1); 3329 regs_buff[21] = er32(TDT1); 3330 regs_buff[22] = er32(TXDCTL1); 3331 regs_buff[23] = er32(TARC1); 3332 regs_buff[24] = er32(CTRL_EXT); 3333 regs_buff[25] = er32(ERT); 3334 regs_buff[26] = er32(RDBAL0); 3335 regs_buff[27] = er32(RDBAH0); 3336 regs_buff[28] = er32(TDFH); 3337 regs_buff[29] = er32(TDFT); 3338 regs_buff[30] = er32(TDFHS); 3339 regs_buff[31] = er32(TDFTS); 3340 regs_buff[32] = er32(TDFPC); 3341 regs_buff[33] = er32(RDFH); 3342 regs_buff[34] = er32(RDFT); 3343 regs_buff[35] = er32(RDFHS); 3344 regs_buff[36] = er32(RDFTS); 3345 regs_buff[37] = er32(RDFPC); 3346 3347 pr_info("Register dump\n"); 3348 for (i = 0; i < NUM_REGS; i++) 3349 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]); 3350 } 3351 3352 /* 3353 * e1000_dump: Print registers, tx ring and rx ring 3354 */ 3355 static void e1000_dump(struct e1000_adapter *adapter) 3356 { 3357 /* this code doesn't handle multiple rings */ 3358 struct e1000_tx_ring *tx_ring = adapter->tx_ring; 3359 struct e1000_rx_ring *rx_ring = adapter->rx_ring; 3360 int i; 3361 3362 if (!netif_msg_hw(adapter)) 3363 return; 3364 3365 /* Print Registers */ 3366 e1000_regdump(adapter); 3367 3368 /* transmit dump */ 3369 pr_info("TX Desc ring0 dump\n"); 3370 3371 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended) 3372 * 3373 * Legacy Transmit Descriptor 3374 * +--------------------------------------------------------------+ 3375 * 0 | Buffer Address [63:0] (Reserved on Write Back) | 3376 * +--------------------------------------------------------------+ 3377 * 8 | Special | CSS | Status | CMD | CSO | Length | 3378 * +--------------------------------------------------------------+ 3379 * 63 48 47 36 35 32 31 24 23 16 15 0 3380 * 3381 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload 3382 * 63 48 47 40 39 32 31 16 15 8 7 0 3383 * +----------------------------------------------------------------+ 3384 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS | 3385 * +----------------------------------------------------------------+ 3386 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN | 3387 * +----------------------------------------------------------------+ 3388 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 3389 * 3390 * Extended Data Descriptor (DTYP=0x1) 3391 * +----------------------------------------------------------------+ 3392 * 0 | Buffer Address [63:0] | 3393 * +----------------------------------------------------------------+ 3394 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN | 3395 * +----------------------------------------------------------------+ 3396 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 3397 */ 3398 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n"); 3399 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n"); 3400 3401 if (!netif_msg_tx_done(adapter)) 3402 goto rx_ring_summary; 3403 3404 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { 3405 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); 3406 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i]; 3407 struct my_u { __le64 a; __le64 b; }; 3408 struct my_u *u = (struct my_u *)tx_desc; 3409 const char *type; 3410 3411 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean) 3412 type = "NTC/U"; 3413 else if (i == tx_ring->next_to_use) 3414 type = "NTU"; 3415 else if (i == tx_ring->next_to_clean) 3416 type = "NTC"; 3417 else 3418 type = ""; 3419 3420 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n", 3421 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i, 3422 le64_to_cpu(u->a), le64_to_cpu(u->b), 3423 (u64)buffer_info->dma, buffer_info->length, 3424 buffer_info->next_to_watch, 3425 (u64)buffer_info->time_stamp, buffer_info->skb, type); 3426 } 3427 3428 rx_ring_summary: 3429 /* receive dump */ 3430 pr_info("\nRX Desc ring dump\n"); 3431 3432 /* Legacy Receive Descriptor Format 3433 * 3434 * +-----------------------------------------------------+ 3435 * | Buffer Address [63:0] | 3436 * +-----------------------------------------------------+ 3437 * | VLAN Tag | Errors | Status 0 | Packet csum | Length | 3438 * +-----------------------------------------------------+ 3439 * 63 48 47 40 39 32 31 16 15 0 3440 */ 3441 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n"); 3442 3443 if (!netif_msg_rx_status(adapter)) 3444 goto exit; 3445 3446 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) { 3447 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i); 3448 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i]; 3449 struct my_u { __le64 a; __le64 b; }; 3450 struct my_u *u = (struct my_u *)rx_desc; 3451 const char *type; 3452 3453 if (i == rx_ring->next_to_use) 3454 type = "NTU"; 3455 else if (i == rx_ring->next_to_clean) 3456 type = "NTC"; 3457 else 3458 type = ""; 3459 3460 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n", 3461 i, le64_to_cpu(u->a), le64_to_cpu(u->b), 3462 (u64)buffer_info->dma, buffer_info->rxbuf.data, type); 3463 } /* for */ 3464 3465 /* dump the descriptor caches */ 3466 /* rx */ 3467 pr_info("Rx descriptor cache in 64bit format\n"); 3468 for (i = 0x6000; i <= 0x63FF ; i += 0x10) { 3469 pr_info("R%04X: %08X|%08X %08X|%08X\n", 3470 i, 3471 readl(adapter->hw.hw_addr + i+4), 3472 readl(adapter->hw.hw_addr + i), 3473 readl(adapter->hw.hw_addr + i+12), 3474 readl(adapter->hw.hw_addr + i+8)); 3475 } 3476 /* tx */ 3477 pr_info("Tx descriptor cache in 64bit format\n"); 3478 for (i = 0x7000; i <= 0x73FF ; i += 0x10) { 3479 pr_info("T%04X: %08X|%08X %08X|%08X\n", 3480 i, 3481 readl(adapter->hw.hw_addr + i+4), 3482 readl(adapter->hw.hw_addr + i), 3483 readl(adapter->hw.hw_addr + i+12), 3484 readl(adapter->hw.hw_addr + i+8)); 3485 } 3486 exit: 3487 return; 3488 } 3489 3490 /** 3491 * e1000_tx_timeout - Respond to a Tx Hang 3492 * @netdev: network interface device structure 3493 * @txqueue: number of the Tx queue that hung (unused) 3494 **/ 3495 static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue) 3496 { 3497 struct e1000_adapter *adapter = netdev_priv(netdev); 3498 3499 /* Do the reset outside of interrupt context */ 3500 adapter->tx_timeout_count++; 3501 schedule_work(&adapter->reset_task); 3502 } 3503 3504 static void e1000_reset_task(struct work_struct *work) 3505 { 3506 struct e1000_adapter *adapter = 3507 container_of(work, struct e1000_adapter, reset_task); 3508 3509 e_err(drv, "Reset adapter\n"); 3510 e1000_reinit_locked(adapter); 3511 } 3512 3513 /** 3514 * e1000_change_mtu - Change the Maximum Transfer Unit 3515 * @netdev: network interface device structure 3516 * @new_mtu: new value for maximum frame size 3517 * 3518 * Returns 0 on success, negative on failure 3519 **/ 3520 static int e1000_change_mtu(struct net_device *netdev, int new_mtu) 3521 { 3522 struct e1000_adapter *adapter = netdev_priv(netdev); 3523 struct e1000_hw *hw = &adapter->hw; 3524 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 3525 3526 /* Adapter-specific max frame size limits. */ 3527 switch (hw->mac_type) { 3528 case e1000_undefined ... e1000_82542_rev2_1: 3529 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) { 3530 e_err(probe, "Jumbo Frames not supported.\n"); 3531 return -EINVAL; 3532 } 3533 break; 3534 default: 3535 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */ 3536 break; 3537 } 3538 3539 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 3540 msleep(1); 3541 /* e1000_down has a dependency on max_frame_size */ 3542 hw->max_frame_size = max_frame; 3543 if (netif_running(netdev)) { 3544 /* prevent buffers from being reallocated */ 3545 adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers; 3546 e1000_down(adapter); 3547 } 3548 3549 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN 3550 * means we reserve 2 more, this pushes us to allocate from the next 3551 * larger slab size. 3552 * i.e. RXBUFFER_2048 --> size-4096 slab 3553 * however with the new *_jumbo_rx* routines, jumbo receives will use 3554 * fragmented skbs 3555 */ 3556 3557 if (max_frame <= E1000_RXBUFFER_2048) 3558 adapter->rx_buffer_len = E1000_RXBUFFER_2048; 3559 else 3560 #if (PAGE_SIZE >= E1000_RXBUFFER_16384) 3561 adapter->rx_buffer_len = E1000_RXBUFFER_16384; 3562 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096) 3563 adapter->rx_buffer_len = PAGE_SIZE; 3564 #endif 3565 3566 /* adjust allocation if LPE protects us, and we aren't using SBP */ 3567 if (!hw->tbi_compatibility_on && 3568 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) || 3569 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))) 3570 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; 3571 3572 netdev_dbg(netdev, "changing MTU from %d to %d\n", 3573 netdev->mtu, new_mtu); 3574 netdev->mtu = new_mtu; 3575 3576 if (netif_running(netdev)) 3577 e1000_up(adapter); 3578 else 3579 e1000_reset(adapter); 3580 3581 clear_bit(__E1000_RESETTING, &adapter->flags); 3582 3583 return 0; 3584 } 3585 3586 /** 3587 * e1000_update_stats - Update the board statistics counters 3588 * @adapter: board private structure 3589 **/ 3590 void e1000_update_stats(struct e1000_adapter *adapter) 3591 { 3592 struct net_device *netdev = adapter->netdev; 3593 struct e1000_hw *hw = &adapter->hw; 3594 struct pci_dev *pdev = adapter->pdev; 3595 unsigned long flags; 3596 u16 phy_tmp; 3597 3598 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF 3599 3600 /* Prevent stats update while adapter is being reset, or if the pci 3601 * connection is down. 3602 */ 3603 if (adapter->link_speed == 0) 3604 return; 3605 if (pci_channel_offline(pdev)) 3606 return; 3607 3608 spin_lock_irqsave(&adapter->stats_lock, flags); 3609 3610 /* these counters are modified from e1000_tbi_adjust_stats, 3611 * called from the interrupt context, so they must only 3612 * be written while holding adapter->stats_lock 3613 */ 3614 3615 adapter->stats.crcerrs += er32(CRCERRS); 3616 adapter->stats.gprc += er32(GPRC); 3617 adapter->stats.gorcl += er32(GORCL); 3618 adapter->stats.gorch += er32(GORCH); 3619 adapter->stats.bprc += er32(BPRC); 3620 adapter->stats.mprc += er32(MPRC); 3621 adapter->stats.roc += er32(ROC); 3622 3623 adapter->stats.prc64 += er32(PRC64); 3624 adapter->stats.prc127 += er32(PRC127); 3625 adapter->stats.prc255 += er32(PRC255); 3626 adapter->stats.prc511 += er32(PRC511); 3627 adapter->stats.prc1023 += er32(PRC1023); 3628 adapter->stats.prc1522 += er32(PRC1522); 3629 3630 adapter->stats.symerrs += er32(SYMERRS); 3631 adapter->stats.mpc += er32(MPC); 3632 adapter->stats.scc += er32(SCC); 3633 adapter->stats.ecol += er32(ECOL); 3634 adapter->stats.mcc += er32(MCC); 3635 adapter->stats.latecol += er32(LATECOL); 3636 adapter->stats.dc += er32(DC); 3637 adapter->stats.sec += er32(SEC); 3638 adapter->stats.rlec += er32(RLEC); 3639 adapter->stats.xonrxc += er32(XONRXC); 3640 adapter->stats.xontxc += er32(XONTXC); 3641 adapter->stats.xoffrxc += er32(XOFFRXC); 3642 adapter->stats.xofftxc += er32(XOFFTXC); 3643 adapter->stats.fcruc += er32(FCRUC); 3644 adapter->stats.gptc += er32(GPTC); 3645 adapter->stats.gotcl += er32(GOTCL); 3646 adapter->stats.gotch += er32(GOTCH); 3647 adapter->stats.rnbc += er32(RNBC); 3648 adapter->stats.ruc += er32(RUC); 3649 adapter->stats.rfc += er32(RFC); 3650 adapter->stats.rjc += er32(RJC); 3651 adapter->stats.torl += er32(TORL); 3652 adapter->stats.torh += er32(TORH); 3653 adapter->stats.totl += er32(TOTL); 3654 adapter->stats.toth += er32(TOTH); 3655 adapter->stats.tpr += er32(TPR); 3656 3657 adapter->stats.ptc64 += er32(PTC64); 3658 adapter->stats.ptc127 += er32(PTC127); 3659 adapter->stats.ptc255 += er32(PTC255); 3660 adapter->stats.ptc511 += er32(PTC511); 3661 adapter->stats.ptc1023 += er32(PTC1023); 3662 adapter->stats.ptc1522 += er32(PTC1522); 3663 3664 adapter->stats.mptc += er32(MPTC); 3665 adapter->stats.bptc += er32(BPTC); 3666 3667 /* used for adaptive IFS */ 3668 3669 hw->tx_packet_delta = er32(TPT); 3670 adapter->stats.tpt += hw->tx_packet_delta; 3671 hw->collision_delta = er32(COLC); 3672 adapter->stats.colc += hw->collision_delta; 3673 3674 if (hw->mac_type >= e1000_82543) { 3675 adapter->stats.algnerrc += er32(ALGNERRC); 3676 adapter->stats.rxerrc += er32(RXERRC); 3677 adapter->stats.tncrs += er32(TNCRS); 3678 adapter->stats.cexterr += er32(CEXTERR); 3679 adapter->stats.tsctc += er32(TSCTC); 3680 adapter->stats.tsctfc += er32(TSCTFC); 3681 } 3682 3683 /* Fill out the OS statistics structure */ 3684 netdev->stats.multicast = adapter->stats.mprc; 3685 netdev->stats.collisions = adapter->stats.colc; 3686 3687 /* Rx Errors */ 3688 3689 /* RLEC on some newer hardware can be incorrect so build 3690 * our own version based on RUC and ROC 3691 */ 3692 netdev->stats.rx_errors = adapter->stats.rxerrc + 3693 adapter->stats.crcerrs + adapter->stats.algnerrc + 3694 adapter->stats.ruc + adapter->stats.roc + 3695 adapter->stats.cexterr; 3696 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc; 3697 netdev->stats.rx_length_errors = adapter->stats.rlerrc; 3698 netdev->stats.rx_crc_errors = adapter->stats.crcerrs; 3699 netdev->stats.rx_frame_errors = adapter->stats.algnerrc; 3700 netdev->stats.rx_missed_errors = adapter->stats.mpc; 3701 3702 /* Tx Errors */ 3703 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol; 3704 netdev->stats.tx_errors = adapter->stats.txerrc; 3705 netdev->stats.tx_aborted_errors = adapter->stats.ecol; 3706 netdev->stats.tx_window_errors = adapter->stats.latecol; 3707 netdev->stats.tx_carrier_errors = adapter->stats.tncrs; 3708 if (hw->bad_tx_carr_stats_fd && 3709 adapter->link_duplex == FULL_DUPLEX) { 3710 netdev->stats.tx_carrier_errors = 0; 3711 adapter->stats.tncrs = 0; 3712 } 3713 3714 /* Tx Dropped needs to be maintained elsewhere */ 3715 3716 /* Phy Stats */ 3717 if (hw->media_type == e1000_media_type_copper) { 3718 if ((adapter->link_speed == SPEED_1000) && 3719 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { 3720 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; 3721 adapter->phy_stats.idle_errors += phy_tmp; 3722 } 3723 3724 if ((hw->mac_type <= e1000_82546) && 3725 (hw->phy_type == e1000_phy_m88) && 3726 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp)) 3727 adapter->phy_stats.receive_errors += phy_tmp; 3728 } 3729 3730 /* Management Stats */ 3731 if (hw->has_smbus) { 3732 adapter->stats.mgptc += er32(MGTPTC); 3733 adapter->stats.mgprc += er32(MGTPRC); 3734 adapter->stats.mgpdc += er32(MGTPDC); 3735 } 3736 3737 spin_unlock_irqrestore(&adapter->stats_lock, flags); 3738 } 3739 3740 /** 3741 * e1000_intr - Interrupt Handler 3742 * @irq: interrupt number 3743 * @data: pointer to a network interface device structure 3744 **/ 3745 static irqreturn_t e1000_intr(int irq, void *data) 3746 { 3747 struct net_device *netdev = data; 3748 struct e1000_adapter *adapter = netdev_priv(netdev); 3749 struct e1000_hw *hw = &adapter->hw; 3750 u32 icr = er32(ICR); 3751 3752 if (unlikely((!icr))) 3753 return IRQ_NONE; /* Not our interrupt */ 3754 3755 /* we might have caused the interrupt, but the above 3756 * read cleared it, and just in case the driver is 3757 * down there is nothing to do so return handled 3758 */ 3759 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags))) 3760 return IRQ_HANDLED; 3761 3762 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) { 3763 hw->get_link_status = 1; 3764 /* guard against interrupt when we're going down */ 3765 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3766 schedule_delayed_work(&adapter->watchdog_task, 1); 3767 } 3768 3769 /* disable interrupts, without the synchronize_irq bit */ 3770 ew32(IMC, ~0); 3771 E1000_WRITE_FLUSH(); 3772 3773 if (likely(napi_schedule_prep(&adapter->napi))) { 3774 adapter->total_tx_bytes = 0; 3775 adapter->total_tx_packets = 0; 3776 adapter->total_rx_bytes = 0; 3777 adapter->total_rx_packets = 0; 3778 __napi_schedule(&adapter->napi); 3779 } else { 3780 /* this really should not happen! if it does it is basically a 3781 * bug, but not a hard error, so enable ints and continue 3782 */ 3783 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3784 e1000_irq_enable(adapter); 3785 } 3786 3787 return IRQ_HANDLED; 3788 } 3789 3790 /** 3791 * e1000_clean - NAPI Rx polling callback 3792 * @napi: napi struct containing references to driver info 3793 * @budget: budget given to driver for receive packets 3794 **/ 3795 static int e1000_clean(struct napi_struct *napi, int budget) 3796 { 3797 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, 3798 napi); 3799 int tx_clean_complete = 0, work_done = 0; 3800 3801 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]); 3802 3803 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget); 3804 3805 if (!tx_clean_complete || work_done == budget) 3806 return budget; 3807 3808 /* Exit the polling mode, but don't re-enable interrupts if stack might 3809 * poll us due to busy-polling 3810 */ 3811 if (likely(napi_complete_done(napi, work_done))) { 3812 if (likely(adapter->itr_setting & 3)) 3813 e1000_set_itr(adapter); 3814 if (!test_bit(__E1000_DOWN, &adapter->flags)) 3815 e1000_irq_enable(adapter); 3816 } 3817 3818 return work_done; 3819 } 3820 3821 /** 3822 * e1000_clean_tx_irq - Reclaim resources after transmit completes 3823 * @adapter: board private structure 3824 * @tx_ring: ring to clean 3825 **/ 3826 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, 3827 struct e1000_tx_ring *tx_ring) 3828 { 3829 struct e1000_hw *hw = &adapter->hw; 3830 struct net_device *netdev = adapter->netdev; 3831 struct e1000_tx_desc *tx_desc, *eop_desc; 3832 struct e1000_tx_buffer *buffer_info; 3833 unsigned int i, eop; 3834 unsigned int count = 0; 3835 unsigned int total_tx_bytes = 0, total_tx_packets = 0; 3836 unsigned int bytes_compl = 0, pkts_compl = 0; 3837 3838 i = tx_ring->next_to_clean; 3839 eop = tx_ring->buffer_info[i].next_to_watch; 3840 eop_desc = E1000_TX_DESC(*tx_ring, eop); 3841 3842 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && 3843 (count < tx_ring->count)) { 3844 bool cleaned = false; 3845 dma_rmb(); /* read buffer_info after eop_desc */ 3846 for ( ; !cleaned; count++) { 3847 tx_desc = E1000_TX_DESC(*tx_ring, i); 3848 buffer_info = &tx_ring->buffer_info[i]; 3849 cleaned = (i == eop); 3850 3851 if (cleaned) { 3852 total_tx_packets += buffer_info->segs; 3853 total_tx_bytes += buffer_info->bytecount; 3854 if (buffer_info->skb) { 3855 bytes_compl += buffer_info->skb->len; 3856 pkts_compl++; 3857 } 3858 3859 } 3860 e1000_unmap_and_free_tx_resource(adapter, buffer_info); 3861 tx_desc->upper.data = 0; 3862 3863 if (unlikely(++i == tx_ring->count)) 3864 i = 0; 3865 } 3866 3867 eop = tx_ring->buffer_info[i].next_to_watch; 3868 eop_desc = E1000_TX_DESC(*tx_ring, eop); 3869 } 3870 3871 /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame, 3872 * which will reuse the cleaned buffers. 3873 */ 3874 smp_store_release(&tx_ring->next_to_clean, i); 3875 3876 netdev_completed_queue(netdev, pkts_compl, bytes_compl); 3877 3878 #define TX_WAKE_THRESHOLD 32 3879 if (unlikely(count && netif_carrier_ok(netdev) && 3880 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) { 3881 /* Make sure that anybody stopping the queue after this 3882 * sees the new next_to_clean. 3883 */ 3884 smp_mb(); 3885 3886 if (netif_queue_stopped(netdev) && 3887 !(test_bit(__E1000_DOWN, &adapter->flags))) { 3888 netif_wake_queue(netdev); 3889 ++adapter->restart_queue; 3890 } 3891 } 3892 3893 if (adapter->detect_tx_hung) { 3894 /* Detect a transmit hang in hardware, this serializes the 3895 * check with the clearing of time_stamp and movement of i 3896 */ 3897 adapter->detect_tx_hung = false; 3898 if (tx_ring->buffer_info[eop].time_stamp && 3899 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp + 3900 (adapter->tx_timeout_factor * HZ)) && 3901 !(er32(STATUS) & E1000_STATUS_TXOFF)) { 3902 3903 /* detected Tx unit hang */ 3904 e_err(drv, "Detected Tx Unit Hang\n" 3905 " Tx Queue <%lu>\n" 3906 " TDH <%x>\n" 3907 " TDT <%x>\n" 3908 " next_to_use <%x>\n" 3909 " next_to_clean <%x>\n" 3910 "buffer_info[next_to_clean]\n" 3911 " time_stamp <%lx>\n" 3912 " next_to_watch <%x>\n" 3913 " jiffies <%lx>\n" 3914 " next_to_watch.status <%x>\n", 3915 (unsigned long)(tx_ring - adapter->tx_ring), 3916 readl(hw->hw_addr + tx_ring->tdh), 3917 readl(hw->hw_addr + tx_ring->tdt), 3918 tx_ring->next_to_use, 3919 tx_ring->next_to_clean, 3920 tx_ring->buffer_info[eop].time_stamp, 3921 eop, 3922 jiffies, 3923 eop_desc->upper.fields.status); 3924 e1000_dump(adapter); 3925 netif_stop_queue(netdev); 3926 } 3927 } 3928 adapter->total_tx_bytes += total_tx_bytes; 3929 adapter->total_tx_packets += total_tx_packets; 3930 netdev->stats.tx_bytes += total_tx_bytes; 3931 netdev->stats.tx_packets += total_tx_packets; 3932 return count < tx_ring->count; 3933 } 3934 3935 /** 3936 * e1000_rx_checksum - Receive Checksum Offload for 82543 3937 * @adapter: board private structure 3938 * @status_err: receive descriptor status and error fields 3939 * @csum: receive descriptor csum field 3940 * @skb: socket buffer with received data 3941 **/ 3942 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, 3943 u32 csum, struct sk_buff *skb) 3944 { 3945 struct e1000_hw *hw = &adapter->hw; 3946 u16 status = (u16)status_err; 3947 u8 errors = (u8)(status_err >> 24); 3948 3949 skb_checksum_none_assert(skb); 3950 3951 /* 82543 or newer only */ 3952 if (unlikely(hw->mac_type < e1000_82543)) 3953 return; 3954 /* Ignore Checksum bit is set */ 3955 if (unlikely(status & E1000_RXD_STAT_IXSM)) 3956 return; 3957 /* TCP/UDP checksum error bit is set */ 3958 if (unlikely(errors & E1000_RXD_ERR_TCPE)) { 3959 /* let the stack verify checksum errors */ 3960 adapter->hw_csum_err++; 3961 return; 3962 } 3963 /* TCP/UDP Checksum has not been calculated */ 3964 if (!(status & E1000_RXD_STAT_TCPCS)) 3965 return; 3966 3967 /* It must be a TCP or UDP packet with a valid checksum */ 3968 if (likely(status & E1000_RXD_STAT_TCPCS)) { 3969 /* TCP checksum is good */ 3970 skb->ip_summed = CHECKSUM_UNNECESSARY; 3971 } 3972 adapter->hw_csum_good++; 3973 } 3974 3975 /** 3976 * e1000_consume_page - helper function for jumbo Rx path 3977 * @bi: software descriptor shadow data 3978 * @skb: skb being modified 3979 * @length: length of data being added 3980 **/ 3981 static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb, 3982 u16 length) 3983 { 3984 bi->rxbuf.page = NULL; 3985 skb->len += length; 3986 skb->data_len += length; 3987 skb->truesize += PAGE_SIZE; 3988 } 3989 3990 /** 3991 * e1000_receive_skb - helper function to handle rx indications 3992 * @adapter: board private structure 3993 * @status: descriptor status field as written by hardware 3994 * @vlan: descriptor vlan field as written by hardware (no le/be conversion) 3995 * @skb: pointer to sk_buff to be indicated to stack 3996 */ 3997 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status, 3998 __le16 vlan, struct sk_buff *skb) 3999 { 4000 skb->protocol = eth_type_trans(skb, adapter->netdev); 4001 4002 if (status & E1000_RXD_STAT_VP) { 4003 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; 4004 4005 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 4006 } 4007 napi_gro_receive(&adapter->napi, skb); 4008 } 4009 4010 /** 4011 * e1000_tbi_adjust_stats 4012 * @hw: Struct containing variables accessed by shared code 4013 * @stats: point to stats struct 4014 * @frame_len: The length of the frame in question 4015 * @mac_addr: The Ethernet destination address of the frame in question 4016 * 4017 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT 4018 */ 4019 static void e1000_tbi_adjust_stats(struct e1000_hw *hw, 4020 struct e1000_hw_stats *stats, 4021 u32 frame_len, const u8 *mac_addr) 4022 { 4023 u64 carry_bit; 4024 4025 /* First adjust the frame length. */ 4026 frame_len--; 4027 /* We need to adjust the statistics counters, since the hardware 4028 * counters overcount this packet as a CRC error and undercount 4029 * the packet as a good packet 4030 */ 4031 /* This packet should not be counted as a CRC error. */ 4032 stats->crcerrs--; 4033 /* This packet does count as a Good Packet Received. */ 4034 stats->gprc++; 4035 4036 /* Adjust the Good Octets received counters */ 4037 carry_bit = 0x80000000 & stats->gorcl; 4038 stats->gorcl += frame_len; 4039 /* If the high bit of Gorcl (the low 32 bits of the Good Octets 4040 * Received Count) was one before the addition, 4041 * AND it is zero after, then we lost the carry out, 4042 * need to add one to Gorch (Good Octets Received Count High). 4043 * This could be simplified if all environments supported 4044 * 64-bit integers. 4045 */ 4046 if (carry_bit && ((stats->gorcl & 0x80000000) == 0)) 4047 stats->gorch++; 4048 /* Is this a broadcast or multicast? Check broadcast first, 4049 * since the test for a multicast frame will test positive on 4050 * a broadcast frame. 4051 */ 4052 if (is_broadcast_ether_addr(mac_addr)) 4053 stats->bprc++; 4054 else if (is_multicast_ether_addr(mac_addr)) 4055 stats->mprc++; 4056 4057 if (frame_len == hw->max_frame_size) { 4058 /* In this case, the hardware has overcounted the number of 4059 * oversize frames. 4060 */ 4061 if (stats->roc > 0) 4062 stats->roc--; 4063 } 4064 4065 /* Adjust the bin counters when the extra byte put the frame in the 4066 * wrong bin. Remember that the frame_len was adjusted above. 4067 */ 4068 if (frame_len == 64) { 4069 stats->prc64++; 4070 stats->prc127--; 4071 } else if (frame_len == 127) { 4072 stats->prc127++; 4073 stats->prc255--; 4074 } else if (frame_len == 255) { 4075 stats->prc255++; 4076 stats->prc511--; 4077 } else if (frame_len == 511) { 4078 stats->prc511++; 4079 stats->prc1023--; 4080 } else if (frame_len == 1023) { 4081 stats->prc1023++; 4082 stats->prc1522--; 4083 } else if (frame_len == 1522) { 4084 stats->prc1522++; 4085 } 4086 } 4087 4088 static bool e1000_tbi_should_accept(struct e1000_adapter *adapter, 4089 u8 status, u8 errors, 4090 u32 length, const u8 *data) 4091 { 4092 struct e1000_hw *hw = &adapter->hw; 4093 u8 last_byte = *(data + length - 1); 4094 4095 if (TBI_ACCEPT(hw, status, errors, length, last_byte)) { 4096 unsigned long irq_flags; 4097 4098 spin_lock_irqsave(&adapter->stats_lock, irq_flags); 4099 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data); 4100 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags); 4101 4102 return true; 4103 } 4104 4105 return false; 4106 } 4107 4108 static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter, 4109 unsigned int bufsz) 4110 { 4111 struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz); 4112 4113 if (unlikely(!skb)) 4114 adapter->alloc_rx_buff_failed++; 4115 return skb; 4116 } 4117 4118 /** 4119 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy 4120 * @adapter: board private structure 4121 * @rx_ring: ring to clean 4122 * @work_done: amount of napi work completed this call 4123 * @work_to_do: max amount of work allowed for this call to do 4124 * 4125 * the return value indicates whether actual cleaning was done, there 4126 * is no guarantee that everything was cleaned 4127 */ 4128 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, 4129 struct e1000_rx_ring *rx_ring, 4130 int *work_done, int work_to_do) 4131 { 4132 struct net_device *netdev = adapter->netdev; 4133 struct pci_dev *pdev = adapter->pdev; 4134 struct e1000_rx_desc *rx_desc, *next_rxd; 4135 struct e1000_rx_buffer *buffer_info, *next_buffer; 4136 u32 length; 4137 unsigned int i; 4138 int cleaned_count = 0; 4139 bool cleaned = false; 4140 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 4141 4142 i = rx_ring->next_to_clean; 4143 rx_desc = E1000_RX_DESC(*rx_ring, i); 4144 buffer_info = &rx_ring->buffer_info[i]; 4145 4146 while (rx_desc->status & E1000_RXD_STAT_DD) { 4147 struct sk_buff *skb; 4148 u8 status; 4149 4150 if (*work_done >= work_to_do) 4151 break; 4152 (*work_done)++; 4153 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ 4154 4155 status = rx_desc->status; 4156 4157 if (++i == rx_ring->count) 4158 i = 0; 4159 4160 next_rxd = E1000_RX_DESC(*rx_ring, i); 4161 prefetch(next_rxd); 4162 4163 next_buffer = &rx_ring->buffer_info[i]; 4164 4165 cleaned = true; 4166 cleaned_count++; 4167 dma_unmap_page(&pdev->dev, buffer_info->dma, 4168 adapter->rx_buffer_len, DMA_FROM_DEVICE); 4169 buffer_info->dma = 0; 4170 4171 length = le16_to_cpu(rx_desc->length); 4172 4173 /* errors is only valid for DD + EOP descriptors */ 4174 if (unlikely((status & E1000_RXD_STAT_EOP) && 4175 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) { 4176 u8 *mapped = page_address(buffer_info->rxbuf.page); 4177 4178 if (e1000_tbi_should_accept(adapter, status, 4179 rx_desc->errors, 4180 length, mapped)) { 4181 length--; 4182 } else if (netdev->features & NETIF_F_RXALL) { 4183 goto process_skb; 4184 } else { 4185 /* an error means any chain goes out the window 4186 * too 4187 */ 4188 dev_kfree_skb(rx_ring->rx_skb_top); 4189 rx_ring->rx_skb_top = NULL; 4190 goto next_desc; 4191 } 4192 } 4193 4194 #define rxtop rx_ring->rx_skb_top 4195 process_skb: 4196 if (!(status & E1000_RXD_STAT_EOP)) { 4197 /* this descriptor is only the beginning (or middle) */ 4198 if (!rxtop) { 4199 /* this is the beginning of a chain */ 4200 rxtop = napi_get_frags(&adapter->napi); 4201 if (!rxtop) 4202 break; 4203 4204 skb_fill_page_desc(rxtop, 0, 4205 buffer_info->rxbuf.page, 4206 0, length); 4207 } else { 4208 /* this is the middle of a chain */ 4209 skb_fill_page_desc(rxtop, 4210 skb_shinfo(rxtop)->nr_frags, 4211 buffer_info->rxbuf.page, 0, length); 4212 } 4213 e1000_consume_page(buffer_info, rxtop, length); 4214 goto next_desc; 4215 } else { 4216 if (rxtop) { 4217 /* end of the chain */ 4218 skb_fill_page_desc(rxtop, 4219 skb_shinfo(rxtop)->nr_frags, 4220 buffer_info->rxbuf.page, 0, length); 4221 skb = rxtop; 4222 rxtop = NULL; 4223 e1000_consume_page(buffer_info, skb, length); 4224 } else { 4225 struct page *p; 4226 /* no chain, got EOP, this buf is the packet 4227 * copybreak to save the put_page/alloc_page 4228 */ 4229 p = buffer_info->rxbuf.page; 4230 if (length <= copybreak) { 4231 u8 *vaddr; 4232 4233 if (likely(!(netdev->features & NETIF_F_RXFCS))) 4234 length -= 4; 4235 skb = e1000_alloc_rx_skb(adapter, 4236 length); 4237 if (!skb) 4238 break; 4239 4240 vaddr = kmap_atomic(p); 4241 memcpy(skb_tail_pointer(skb), vaddr, 4242 length); 4243 kunmap_atomic(vaddr); 4244 /* re-use the page, so don't erase 4245 * buffer_info->rxbuf.page 4246 */ 4247 skb_put(skb, length); 4248 e1000_rx_checksum(adapter, 4249 status | rx_desc->errors << 24, 4250 le16_to_cpu(rx_desc->csum), skb); 4251 4252 total_rx_bytes += skb->len; 4253 total_rx_packets++; 4254 4255 e1000_receive_skb(adapter, status, 4256 rx_desc->special, skb); 4257 goto next_desc; 4258 } else { 4259 skb = napi_get_frags(&adapter->napi); 4260 if (!skb) { 4261 adapter->alloc_rx_buff_failed++; 4262 break; 4263 } 4264 skb_fill_page_desc(skb, 0, p, 0, 4265 length); 4266 e1000_consume_page(buffer_info, skb, 4267 length); 4268 } 4269 } 4270 } 4271 4272 /* Receive Checksum Offload XXX recompute due to CRC strip? */ 4273 e1000_rx_checksum(adapter, 4274 (u32)(status) | 4275 ((u32)(rx_desc->errors) << 24), 4276 le16_to_cpu(rx_desc->csum), skb); 4277 4278 total_rx_bytes += (skb->len - 4); /* don't count FCS */ 4279 if (likely(!(netdev->features & NETIF_F_RXFCS))) 4280 pskb_trim(skb, skb->len - 4); 4281 total_rx_packets++; 4282 4283 if (status & E1000_RXD_STAT_VP) { 4284 __le16 vlan = rx_desc->special; 4285 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; 4286 4287 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 4288 } 4289 4290 napi_gro_frags(&adapter->napi); 4291 4292 next_desc: 4293 rx_desc->status = 0; 4294 4295 /* return some buffers to hardware, one at a time is too slow */ 4296 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { 4297 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4298 cleaned_count = 0; 4299 } 4300 4301 /* use prefetched values */ 4302 rx_desc = next_rxd; 4303 buffer_info = next_buffer; 4304 } 4305 rx_ring->next_to_clean = i; 4306 4307 cleaned_count = E1000_DESC_UNUSED(rx_ring); 4308 if (cleaned_count) 4309 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4310 4311 adapter->total_rx_packets += total_rx_packets; 4312 adapter->total_rx_bytes += total_rx_bytes; 4313 netdev->stats.rx_bytes += total_rx_bytes; 4314 netdev->stats.rx_packets += total_rx_packets; 4315 return cleaned; 4316 } 4317 4318 /* this should improve performance for small packets with large amounts 4319 * of reassembly being done in the stack 4320 */ 4321 static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter, 4322 struct e1000_rx_buffer *buffer_info, 4323 u32 length, const void *data) 4324 { 4325 struct sk_buff *skb; 4326 4327 if (length > copybreak) 4328 return NULL; 4329 4330 skb = e1000_alloc_rx_skb(adapter, length); 4331 if (!skb) 4332 return NULL; 4333 4334 dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma, 4335 length, DMA_FROM_DEVICE); 4336 4337 skb_put_data(skb, data, length); 4338 4339 return skb; 4340 } 4341 4342 /** 4343 * e1000_clean_rx_irq - Send received data up the network stack; legacy 4344 * @adapter: board private structure 4345 * @rx_ring: ring to clean 4346 * @work_done: amount of napi work completed this call 4347 * @work_to_do: max amount of work allowed for this call to do 4348 */ 4349 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, 4350 struct e1000_rx_ring *rx_ring, 4351 int *work_done, int work_to_do) 4352 { 4353 struct net_device *netdev = adapter->netdev; 4354 struct pci_dev *pdev = adapter->pdev; 4355 struct e1000_rx_desc *rx_desc, *next_rxd; 4356 struct e1000_rx_buffer *buffer_info, *next_buffer; 4357 u32 length; 4358 unsigned int i; 4359 int cleaned_count = 0; 4360 bool cleaned = false; 4361 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 4362 4363 i = rx_ring->next_to_clean; 4364 rx_desc = E1000_RX_DESC(*rx_ring, i); 4365 buffer_info = &rx_ring->buffer_info[i]; 4366 4367 while (rx_desc->status & E1000_RXD_STAT_DD) { 4368 struct sk_buff *skb; 4369 u8 *data; 4370 u8 status; 4371 4372 if (*work_done >= work_to_do) 4373 break; 4374 (*work_done)++; 4375 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ 4376 4377 status = rx_desc->status; 4378 length = le16_to_cpu(rx_desc->length); 4379 4380 data = buffer_info->rxbuf.data; 4381 prefetch(data); 4382 skb = e1000_copybreak(adapter, buffer_info, length, data); 4383 if (!skb) { 4384 unsigned int frag_len = e1000_frag_len(adapter); 4385 4386 skb = build_skb(data - E1000_HEADROOM, frag_len); 4387 if (!skb) { 4388 adapter->alloc_rx_buff_failed++; 4389 break; 4390 } 4391 4392 skb_reserve(skb, E1000_HEADROOM); 4393 dma_unmap_single(&pdev->dev, buffer_info->dma, 4394 adapter->rx_buffer_len, 4395 DMA_FROM_DEVICE); 4396 buffer_info->dma = 0; 4397 buffer_info->rxbuf.data = NULL; 4398 } 4399 4400 if (++i == rx_ring->count) 4401 i = 0; 4402 4403 next_rxd = E1000_RX_DESC(*rx_ring, i); 4404 prefetch(next_rxd); 4405 4406 next_buffer = &rx_ring->buffer_info[i]; 4407 4408 cleaned = true; 4409 cleaned_count++; 4410 4411 /* !EOP means multiple descriptors were used to store a single 4412 * packet, if thats the case we need to toss it. In fact, we 4413 * to toss every packet with the EOP bit clear and the next 4414 * frame that _does_ have the EOP bit set, as it is by 4415 * definition only a frame fragment 4416 */ 4417 if (unlikely(!(status & E1000_RXD_STAT_EOP))) 4418 adapter->discarding = true; 4419 4420 if (adapter->discarding) { 4421 /* All receives must fit into a single buffer */ 4422 netdev_dbg(netdev, "Receive packet consumed multiple buffers\n"); 4423 dev_kfree_skb(skb); 4424 if (status & E1000_RXD_STAT_EOP) 4425 adapter->discarding = false; 4426 goto next_desc; 4427 } 4428 4429 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) { 4430 if (e1000_tbi_should_accept(adapter, status, 4431 rx_desc->errors, 4432 length, data)) { 4433 length--; 4434 } else if (netdev->features & NETIF_F_RXALL) { 4435 goto process_skb; 4436 } else { 4437 dev_kfree_skb(skb); 4438 goto next_desc; 4439 } 4440 } 4441 4442 process_skb: 4443 total_rx_bytes += (length - 4); /* don't count FCS */ 4444 total_rx_packets++; 4445 4446 if (likely(!(netdev->features & NETIF_F_RXFCS))) 4447 /* adjust length to remove Ethernet CRC, this must be 4448 * done after the TBI_ACCEPT workaround above 4449 */ 4450 length -= 4; 4451 4452 if (buffer_info->rxbuf.data == NULL) 4453 skb_put(skb, length); 4454 else /* copybreak skb */ 4455 skb_trim(skb, length); 4456 4457 /* Receive Checksum Offload */ 4458 e1000_rx_checksum(adapter, 4459 (u32)(status) | 4460 ((u32)(rx_desc->errors) << 24), 4461 le16_to_cpu(rx_desc->csum), skb); 4462 4463 e1000_receive_skb(adapter, status, rx_desc->special, skb); 4464 4465 next_desc: 4466 rx_desc->status = 0; 4467 4468 /* return some buffers to hardware, one at a time is too slow */ 4469 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { 4470 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4471 cleaned_count = 0; 4472 } 4473 4474 /* use prefetched values */ 4475 rx_desc = next_rxd; 4476 buffer_info = next_buffer; 4477 } 4478 rx_ring->next_to_clean = i; 4479 4480 cleaned_count = E1000_DESC_UNUSED(rx_ring); 4481 if (cleaned_count) 4482 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); 4483 4484 adapter->total_rx_packets += total_rx_packets; 4485 adapter->total_rx_bytes += total_rx_bytes; 4486 netdev->stats.rx_bytes += total_rx_bytes; 4487 netdev->stats.rx_packets += total_rx_packets; 4488 return cleaned; 4489 } 4490 4491 /** 4492 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers 4493 * @adapter: address of board private structure 4494 * @rx_ring: pointer to receive ring structure 4495 * @cleaned_count: number of buffers to allocate this pass 4496 **/ 4497 static void 4498 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, 4499 struct e1000_rx_ring *rx_ring, int cleaned_count) 4500 { 4501 struct pci_dev *pdev = adapter->pdev; 4502 struct e1000_rx_desc *rx_desc; 4503 struct e1000_rx_buffer *buffer_info; 4504 unsigned int i; 4505 4506 i = rx_ring->next_to_use; 4507 buffer_info = &rx_ring->buffer_info[i]; 4508 4509 while (cleaned_count--) { 4510 /* allocate a new page if necessary */ 4511 if (!buffer_info->rxbuf.page) { 4512 buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC); 4513 if (unlikely(!buffer_info->rxbuf.page)) { 4514 adapter->alloc_rx_buff_failed++; 4515 break; 4516 } 4517 } 4518 4519 if (!buffer_info->dma) { 4520 buffer_info->dma = dma_map_page(&pdev->dev, 4521 buffer_info->rxbuf.page, 0, 4522 adapter->rx_buffer_len, 4523 DMA_FROM_DEVICE); 4524 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 4525 put_page(buffer_info->rxbuf.page); 4526 buffer_info->rxbuf.page = NULL; 4527 buffer_info->dma = 0; 4528 adapter->alloc_rx_buff_failed++; 4529 break; 4530 } 4531 } 4532 4533 rx_desc = E1000_RX_DESC(*rx_ring, i); 4534 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 4535 4536 if (unlikely(++i == rx_ring->count)) 4537 i = 0; 4538 buffer_info = &rx_ring->buffer_info[i]; 4539 } 4540 4541 if (likely(rx_ring->next_to_use != i)) { 4542 rx_ring->next_to_use = i; 4543 if (unlikely(i-- == 0)) 4544 i = (rx_ring->count - 1); 4545 4546 /* Force memory writes to complete before letting h/w 4547 * know there are new descriptors to fetch. (Only 4548 * applicable for weak-ordered memory model archs, 4549 * such as IA-64). 4550 */ 4551 dma_wmb(); 4552 writel(i, adapter->hw.hw_addr + rx_ring->rdt); 4553 } 4554 } 4555 4556 /** 4557 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended 4558 * @adapter: address of board private structure 4559 * @rx_ring: pointer to ring struct 4560 * @cleaned_count: number of new Rx buffers to try to allocate 4561 **/ 4562 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, 4563 struct e1000_rx_ring *rx_ring, 4564 int cleaned_count) 4565 { 4566 struct e1000_hw *hw = &adapter->hw; 4567 struct pci_dev *pdev = adapter->pdev; 4568 struct e1000_rx_desc *rx_desc; 4569 struct e1000_rx_buffer *buffer_info; 4570 unsigned int i; 4571 unsigned int bufsz = adapter->rx_buffer_len; 4572 4573 i = rx_ring->next_to_use; 4574 buffer_info = &rx_ring->buffer_info[i]; 4575 4576 while (cleaned_count--) { 4577 void *data; 4578 4579 if (buffer_info->rxbuf.data) 4580 goto skip; 4581 4582 data = e1000_alloc_frag(adapter); 4583 if (!data) { 4584 /* Better luck next round */ 4585 adapter->alloc_rx_buff_failed++; 4586 break; 4587 } 4588 4589 /* Fix for errata 23, can't cross 64kB boundary */ 4590 if (!e1000_check_64k_bound(adapter, data, bufsz)) { 4591 void *olddata = data; 4592 e_err(rx_err, "skb align check failed: %u bytes at " 4593 "%p\n", bufsz, data); 4594 /* Try again, without freeing the previous */ 4595 data = e1000_alloc_frag(adapter); 4596 /* Failed allocation, critical failure */ 4597 if (!data) { 4598 skb_free_frag(olddata); 4599 adapter->alloc_rx_buff_failed++; 4600 break; 4601 } 4602 4603 if (!e1000_check_64k_bound(adapter, data, bufsz)) { 4604 /* give up */ 4605 skb_free_frag(data); 4606 skb_free_frag(olddata); 4607 adapter->alloc_rx_buff_failed++; 4608 break; 4609 } 4610 4611 /* Use new allocation */ 4612 skb_free_frag(olddata); 4613 } 4614 buffer_info->dma = dma_map_single(&pdev->dev, 4615 data, 4616 adapter->rx_buffer_len, 4617 DMA_FROM_DEVICE); 4618 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 4619 skb_free_frag(data); 4620 buffer_info->dma = 0; 4621 adapter->alloc_rx_buff_failed++; 4622 break; 4623 } 4624 4625 /* XXX if it was allocated cleanly it will never map to a 4626 * boundary crossing 4627 */ 4628 4629 /* Fix for errata 23, can't cross 64kB boundary */ 4630 if (!e1000_check_64k_bound(adapter, 4631 (void *)(unsigned long)buffer_info->dma, 4632 adapter->rx_buffer_len)) { 4633 e_err(rx_err, "dma align check failed: %u bytes at " 4634 "%p\n", adapter->rx_buffer_len, 4635 (void *)(unsigned long)buffer_info->dma); 4636 4637 dma_unmap_single(&pdev->dev, buffer_info->dma, 4638 adapter->rx_buffer_len, 4639 DMA_FROM_DEVICE); 4640 4641 skb_free_frag(data); 4642 buffer_info->rxbuf.data = NULL; 4643 buffer_info->dma = 0; 4644 4645 adapter->alloc_rx_buff_failed++; 4646 break; 4647 } 4648 buffer_info->rxbuf.data = data; 4649 skip: 4650 rx_desc = E1000_RX_DESC(*rx_ring, i); 4651 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 4652 4653 if (unlikely(++i == rx_ring->count)) 4654 i = 0; 4655 buffer_info = &rx_ring->buffer_info[i]; 4656 } 4657 4658 if (likely(rx_ring->next_to_use != i)) { 4659 rx_ring->next_to_use = i; 4660 if (unlikely(i-- == 0)) 4661 i = (rx_ring->count - 1); 4662 4663 /* Force memory writes to complete before letting h/w 4664 * know there are new descriptors to fetch. (Only 4665 * applicable for weak-ordered memory model archs, 4666 * such as IA-64). 4667 */ 4668 dma_wmb(); 4669 writel(i, hw->hw_addr + rx_ring->rdt); 4670 } 4671 } 4672 4673 /** 4674 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers. 4675 * @adapter: address of board private structure 4676 **/ 4677 static void e1000_smartspeed(struct e1000_adapter *adapter) 4678 { 4679 struct e1000_hw *hw = &adapter->hw; 4680 u16 phy_status; 4681 u16 phy_ctrl; 4682 4683 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg || 4684 !(hw->autoneg_advertised & ADVERTISE_1000_FULL)) 4685 return; 4686 4687 if (adapter->smartspeed == 0) { 4688 /* If Master/Slave config fault is asserted twice, 4689 * we assume back-to-back 4690 */ 4691 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); 4692 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) 4693 return; 4694 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); 4695 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) 4696 return; 4697 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); 4698 if (phy_ctrl & CR_1000T_MS_ENABLE) { 4699 phy_ctrl &= ~CR_1000T_MS_ENABLE; 4700 e1000_write_phy_reg(hw, PHY_1000T_CTRL, 4701 phy_ctrl); 4702 adapter->smartspeed++; 4703 if (!e1000_phy_setup_autoneg(hw) && 4704 !e1000_read_phy_reg(hw, PHY_CTRL, 4705 &phy_ctrl)) { 4706 phy_ctrl |= (MII_CR_AUTO_NEG_EN | 4707 MII_CR_RESTART_AUTO_NEG); 4708 e1000_write_phy_reg(hw, PHY_CTRL, 4709 phy_ctrl); 4710 } 4711 } 4712 return; 4713 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) { 4714 /* If still no link, perhaps using 2/3 pair cable */ 4715 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); 4716 phy_ctrl |= CR_1000T_MS_ENABLE; 4717 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl); 4718 if (!e1000_phy_setup_autoneg(hw) && 4719 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) { 4720 phy_ctrl |= (MII_CR_AUTO_NEG_EN | 4721 MII_CR_RESTART_AUTO_NEG); 4722 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl); 4723 } 4724 } 4725 /* Restart process after E1000_SMARTSPEED_MAX iterations */ 4726 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX) 4727 adapter->smartspeed = 0; 4728 } 4729 4730 /** 4731 * e1000_ioctl - handle ioctl calls 4732 * @netdev: pointer to our netdev 4733 * @ifr: pointer to interface request structure 4734 * @cmd: ioctl data 4735 **/ 4736 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 4737 { 4738 switch (cmd) { 4739 case SIOCGMIIPHY: 4740 case SIOCGMIIREG: 4741 case SIOCSMIIREG: 4742 return e1000_mii_ioctl(netdev, ifr, cmd); 4743 default: 4744 return -EOPNOTSUPP; 4745 } 4746 } 4747 4748 /** 4749 * e1000_mii_ioctl - 4750 * @netdev: pointer to our netdev 4751 * @ifr: pointer to interface request structure 4752 * @cmd: ioctl data 4753 **/ 4754 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, 4755 int cmd) 4756 { 4757 struct e1000_adapter *adapter = netdev_priv(netdev); 4758 struct e1000_hw *hw = &adapter->hw; 4759 struct mii_ioctl_data *data = if_mii(ifr); 4760 int retval; 4761 u16 mii_reg; 4762 unsigned long flags; 4763 4764 if (hw->media_type != e1000_media_type_copper) 4765 return -EOPNOTSUPP; 4766 4767 switch (cmd) { 4768 case SIOCGMIIPHY: 4769 data->phy_id = hw->phy_addr; 4770 break; 4771 case SIOCGMIIREG: 4772 spin_lock_irqsave(&adapter->stats_lock, flags); 4773 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F, 4774 &data->val_out)) { 4775 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4776 return -EIO; 4777 } 4778 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4779 break; 4780 case SIOCSMIIREG: 4781 if (data->reg_num & ~(0x1F)) 4782 return -EFAULT; 4783 mii_reg = data->val_in; 4784 spin_lock_irqsave(&adapter->stats_lock, flags); 4785 if (e1000_write_phy_reg(hw, data->reg_num, 4786 mii_reg)) { 4787 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4788 return -EIO; 4789 } 4790 spin_unlock_irqrestore(&adapter->stats_lock, flags); 4791 if (hw->media_type == e1000_media_type_copper) { 4792 switch (data->reg_num) { 4793 case PHY_CTRL: 4794 if (mii_reg & MII_CR_POWER_DOWN) 4795 break; 4796 if (mii_reg & MII_CR_AUTO_NEG_EN) { 4797 hw->autoneg = 1; 4798 hw->autoneg_advertised = 0x2F; 4799 } else { 4800 u32 speed; 4801 if (mii_reg & 0x40) 4802 speed = SPEED_1000; 4803 else if (mii_reg & 0x2000) 4804 speed = SPEED_100; 4805 else 4806 speed = SPEED_10; 4807 retval = e1000_set_spd_dplx( 4808 adapter, speed, 4809 ((mii_reg & 0x100) 4810 ? DUPLEX_FULL : 4811 DUPLEX_HALF)); 4812 if (retval) 4813 return retval; 4814 } 4815 if (netif_running(adapter->netdev)) 4816 e1000_reinit_locked(adapter); 4817 else 4818 e1000_reset(adapter); 4819 break; 4820 case M88E1000_PHY_SPEC_CTRL: 4821 case M88E1000_EXT_PHY_SPEC_CTRL: 4822 if (e1000_phy_reset(hw)) 4823 return -EIO; 4824 break; 4825 } 4826 } else { 4827 switch (data->reg_num) { 4828 case PHY_CTRL: 4829 if (mii_reg & MII_CR_POWER_DOWN) 4830 break; 4831 if (netif_running(adapter->netdev)) 4832 e1000_reinit_locked(adapter); 4833 else 4834 e1000_reset(adapter); 4835 break; 4836 } 4837 } 4838 break; 4839 default: 4840 return -EOPNOTSUPP; 4841 } 4842 return E1000_SUCCESS; 4843 } 4844 4845 void e1000_pci_set_mwi(struct e1000_hw *hw) 4846 { 4847 struct e1000_adapter *adapter = hw->back; 4848 int ret_val = pci_set_mwi(adapter->pdev); 4849 4850 if (ret_val) 4851 e_err(probe, "Error in setting MWI\n"); 4852 } 4853 4854 void e1000_pci_clear_mwi(struct e1000_hw *hw) 4855 { 4856 struct e1000_adapter *adapter = hw->back; 4857 4858 pci_clear_mwi(adapter->pdev); 4859 } 4860 4861 int e1000_pcix_get_mmrbc(struct e1000_hw *hw) 4862 { 4863 struct e1000_adapter *adapter = hw->back; 4864 return pcix_get_mmrbc(adapter->pdev); 4865 } 4866 4867 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc) 4868 { 4869 struct e1000_adapter *adapter = hw->back; 4870 pcix_set_mmrbc(adapter->pdev, mmrbc); 4871 } 4872 4873 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value) 4874 { 4875 outl(value, port); 4876 } 4877 4878 static bool e1000_vlan_used(struct e1000_adapter *adapter) 4879 { 4880 u16 vid; 4881 4882 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 4883 return true; 4884 return false; 4885 } 4886 4887 static void __e1000_vlan_mode(struct e1000_adapter *adapter, 4888 netdev_features_t features) 4889 { 4890 struct e1000_hw *hw = &adapter->hw; 4891 u32 ctrl; 4892 4893 ctrl = er32(CTRL); 4894 if (features & NETIF_F_HW_VLAN_CTAG_RX) { 4895 /* enable VLAN tag insert/strip */ 4896 ctrl |= E1000_CTRL_VME; 4897 } else { 4898 /* disable VLAN tag insert/strip */ 4899 ctrl &= ~E1000_CTRL_VME; 4900 } 4901 ew32(CTRL, ctrl); 4902 } 4903 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter, 4904 bool filter_on) 4905 { 4906 struct e1000_hw *hw = &adapter->hw; 4907 u32 rctl; 4908 4909 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4910 e1000_irq_disable(adapter); 4911 4912 __e1000_vlan_mode(adapter, adapter->netdev->features); 4913 if (filter_on) { 4914 /* enable VLAN receive filtering */ 4915 rctl = er32(RCTL); 4916 rctl &= ~E1000_RCTL_CFIEN; 4917 if (!(adapter->netdev->flags & IFF_PROMISC)) 4918 rctl |= E1000_RCTL_VFE; 4919 ew32(RCTL, rctl); 4920 e1000_update_mng_vlan(adapter); 4921 } else { 4922 /* disable VLAN receive filtering */ 4923 rctl = er32(RCTL); 4924 rctl &= ~E1000_RCTL_VFE; 4925 ew32(RCTL, rctl); 4926 } 4927 4928 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4929 e1000_irq_enable(adapter); 4930 } 4931 4932 static void e1000_vlan_mode(struct net_device *netdev, 4933 netdev_features_t features) 4934 { 4935 struct e1000_adapter *adapter = netdev_priv(netdev); 4936 4937 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4938 e1000_irq_disable(adapter); 4939 4940 __e1000_vlan_mode(adapter, features); 4941 4942 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4943 e1000_irq_enable(adapter); 4944 } 4945 4946 static int e1000_vlan_rx_add_vid(struct net_device *netdev, 4947 __be16 proto, u16 vid) 4948 { 4949 struct e1000_adapter *adapter = netdev_priv(netdev); 4950 struct e1000_hw *hw = &adapter->hw; 4951 u32 vfta, index; 4952 4953 if ((hw->mng_cookie.status & 4954 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && 4955 (vid == adapter->mng_vlan_id)) 4956 return 0; 4957 4958 if (!e1000_vlan_used(adapter)) 4959 e1000_vlan_filter_on_off(adapter, true); 4960 4961 /* add VID to filter table */ 4962 index = (vid >> 5) & 0x7F; 4963 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); 4964 vfta |= (1 << (vid & 0x1F)); 4965 e1000_write_vfta(hw, index, vfta); 4966 4967 set_bit(vid, adapter->active_vlans); 4968 4969 return 0; 4970 } 4971 4972 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, 4973 __be16 proto, u16 vid) 4974 { 4975 struct e1000_adapter *adapter = netdev_priv(netdev); 4976 struct e1000_hw *hw = &adapter->hw; 4977 u32 vfta, index; 4978 4979 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4980 e1000_irq_disable(adapter); 4981 if (!test_bit(__E1000_DOWN, &adapter->flags)) 4982 e1000_irq_enable(adapter); 4983 4984 /* remove VID from filter table */ 4985 index = (vid >> 5) & 0x7F; 4986 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); 4987 vfta &= ~(1 << (vid & 0x1F)); 4988 e1000_write_vfta(hw, index, vfta); 4989 4990 clear_bit(vid, adapter->active_vlans); 4991 4992 if (!e1000_vlan_used(adapter)) 4993 e1000_vlan_filter_on_off(adapter, false); 4994 4995 return 0; 4996 } 4997 4998 static void e1000_restore_vlan(struct e1000_adapter *adapter) 4999 { 5000 u16 vid; 5001 5002 if (!e1000_vlan_used(adapter)) 5003 return; 5004 5005 e1000_vlan_filter_on_off(adapter, true); 5006 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 5007 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); 5008 } 5009 5010 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) 5011 { 5012 struct e1000_hw *hw = &adapter->hw; 5013 5014 hw->autoneg = 0; 5015 5016 /* Make sure dplx is at most 1 bit and lsb of speed is not set 5017 * for the switch() below to work 5018 */ 5019 if ((spd & 1) || (dplx & ~1)) 5020 goto err_inval; 5021 5022 /* Fiber NICs only allow 1000 gbps Full duplex */ 5023 if ((hw->media_type == e1000_media_type_fiber) && 5024 spd != SPEED_1000 && 5025 dplx != DUPLEX_FULL) 5026 goto err_inval; 5027 5028 switch (spd + dplx) { 5029 case SPEED_10 + DUPLEX_HALF: 5030 hw->forced_speed_duplex = e1000_10_half; 5031 break; 5032 case SPEED_10 + DUPLEX_FULL: 5033 hw->forced_speed_duplex = e1000_10_full; 5034 break; 5035 case SPEED_100 + DUPLEX_HALF: 5036 hw->forced_speed_duplex = e1000_100_half; 5037 break; 5038 case SPEED_100 + DUPLEX_FULL: 5039 hw->forced_speed_duplex = e1000_100_full; 5040 break; 5041 case SPEED_1000 + DUPLEX_FULL: 5042 hw->autoneg = 1; 5043 hw->autoneg_advertised = ADVERTISE_1000_FULL; 5044 break; 5045 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 5046 default: 5047 goto err_inval; 5048 } 5049 5050 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 5051 hw->mdix = AUTO_ALL_MODES; 5052 5053 return 0; 5054 5055 err_inval: 5056 e_err(probe, "Unsupported Speed/Duplex configuration\n"); 5057 return -EINVAL; 5058 } 5059 5060 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake) 5061 { 5062 struct net_device *netdev = pci_get_drvdata(pdev); 5063 struct e1000_adapter *adapter = netdev_priv(netdev); 5064 struct e1000_hw *hw = &adapter->hw; 5065 u32 ctrl, ctrl_ext, rctl, status; 5066 u32 wufc = adapter->wol; 5067 5068 netif_device_detach(netdev); 5069 5070 if (netif_running(netdev)) { 5071 int count = E1000_CHECK_RESET_COUNT; 5072 5073 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--) 5074 usleep_range(10000, 20000); 5075 5076 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); 5077 e1000_down(adapter); 5078 } 5079 5080 status = er32(STATUS); 5081 if (status & E1000_STATUS_LU) 5082 wufc &= ~E1000_WUFC_LNKC; 5083 5084 if (wufc) { 5085 e1000_setup_rctl(adapter); 5086 e1000_set_rx_mode(netdev); 5087 5088 rctl = er32(RCTL); 5089 5090 /* turn on all-multi mode if wake on multicast is enabled */ 5091 if (wufc & E1000_WUFC_MC) 5092 rctl |= E1000_RCTL_MPE; 5093 5094 /* enable receives in the hardware */ 5095 ew32(RCTL, rctl | E1000_RCTL_EN); 5096 5097 if (hw->mac_type >= e1000_82540) { 5098 ctrl = er32(CTRL); 5099 /* advertise wake from D3Cold */ 5100 #define E1000_CTRL_ADVD3WUC 0x00100000 5101 /* phy power management enable */ 5102 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 5103 ctrl |= E1000_CTRL_ADVD3WUC | 5104 E1000_CTRL_EN_PHY_PWR_MGMT; 5105 ew32(CTRL, ctrl); 5106 } 5107 5108 if (hw->media_type == e1000_media_type_fiber || 5109 hw->media_type == e1000_media_type_internal_serdes) { 5110 /* keep the laser running in D3 */ 5111 ctrl_ext = er32(CTRL_EXT); 5112 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; 5113 ew32(CTRL_EXT, ctrl_ext); 5114 } 5115 5116 ew32(WUC, E1000_WUC_PME_EN); 5117 ew32(WUFC, wufc); 5118 } else { 5119 ew32(WUC, 0); 5120 ew32(WUFC, 0); 5121 } 5122 5123 e1000_release_manageability(adapter); 5124 5125 *enable_wake = !!wufc; 5126 5127 /* make sure adapter isn't asleep if manageability is enabled */ 5128 if (adapter->en_mng_pt) 5129 *enable_wake = true; 5130 5131 if (netif_running(netdev)) 5132 e1000_free_irq(adapter); 5133 5134 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags)) 5135 pci_disable_device(pdev); 5136 5137 return 0; 5138 } 5139 5140 static int __maybe_unused e1000_suspend(struct device *dev) 5141 { 5142 int retval; 5143 struct pci_dev *pdev = to_pci_dev(dev); 5144 bool wake; 5145 5146 retval = __e1000_shutdown(pdev, &wake); 5147 device_set_wakeup_enable(dev, wake); 5148 5149 return retval; 5150 } 5151 5152 static int __maybe_unused e1000_resume(struct device *dev) 5153 { 5154 struct pci_dev *pdev = to_pci_dev(dev); 5155 struct net_device *netdev = pci_get_drvdata(pdev); 5156 struct e1000_adapter *adapter = netdev_priv(netdev); 5157 struct e1000_hw *hw = &adapter->hw; 5158 u32 err; 5159 5160 if (adapter->need_ioport) 5161 err = pci_enable_device(pdev); 5162 else 5163 err = pci_enable_device_mem(pdev); 5164 if (err) { 5165 pr_err("Cannot enable PCI device from suspend\n"); 5166 return err; 5167 } 5168 5169 /* flush memory to make sure state is correct */ 5170 smp_mb__before_atomic(); 5171 clear_bit(__E1000_DISABLED, &adapter->flags); 5172 pci_set_master(pdev); 5173 5174 pci_enable_wake(pdev, PCI_D3hot, 0); 5175 pci_enable_wake(pdev, PCI_D3cold, 0); 5176 5177 if (netif_running(netdev)) { 5178 err = e1000_request_irq(adapter); 5179 if (err) 5180 return err; 5181 } 5182 5183 e1000_power_up_phy(adapter); 5184 e1000_reset(adapter); 5185 ew32(WUS, ~0); 5186 5187 e1000_init_manageability(adapter); 5188 5189 if (netif_running(netdev)) 5190 e1000_up(adapter); 5191 5192 netif_device_attach(netdev); 5193 5194 return 0; 5195 } 5196 5197 static void e1000_shutdown(struct pci_dev *pdev) 5198 { 5199 bool wake; 5200 5201 __e1000_shutdown(pdev, &wake); 5202 5203 if (system_state == SYSTEM_POWER_OFF) { 5204 pci_wake_from_d3(pdev, wake); 5205 pci_set_power_state(pdev, PCI_D3hot); 5206 } 5207 } 5208 5209 #ifdef CONFIG_NET_POLL_CONTROLLER 5210 /* Polling 'interrupt' - used by things like netconsole to send skbs 5211 * without having to re-enable interrupts. It's not called while 5212 * the interrupt routine is executing. 5213 */ 5214 static void e1000_netpoll(struct net_device *netdev) 5215 { 5216 struct e1000_adapter *adapter = netdev_priv(netdev); 5217 5218 if (disable_hardirq(adapter->pdev->irq)) 5219 e1000_intr(adapter->pdev->irq, netdev); 5220 enable_irq(adapter->pdev->irq); 5221 } 5222 #endif 5223 5224 /** 5225 * e1000_io_error_detected - called when PCI error is detected 5226 * @pdev: Pointer to PCI device 5227 * @state: The current pci connection state 5228 * 5229 * This function is called after a PCI bus error affecting 5230 * this device has been detected. 5231 */ 5232 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, 5233 pci_channel_state_t state) 5234 { 5235 struct net_device *netdev = pci_get_drvdata(pdev); 5236 struct e1000_adapter *adapter = netdev_priv(netdev); 5237 5238 netif_device_detach(netdev); 5239 5240 if (state == pci_channel_io_perm_failure) 5241 return PCI_ERS_RESULT_DISCONNECT; 5242 5243 if (netif_running(netdev)) 5244 e1000_down(adapter); 5245 5246 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags)) 5247 pci_disable_device(pdev); 5248 5249 /* Request a slot slot reset. */ 5250 return PCI_ERS_RESULT_NEED_RESET; 5251 } 5252 5253 /** 5254 * e1000_io_slot_reset - called after the pci bus has been reset. 5255 * @pdev: Pointer to PCI device 5256 * 5257 * Restart the card from scratch, as if from a cold-boot. Implementation 5258 * resembles the first-half of the e1000_resume routine. 5259 */ 5260 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) 5261 { 5262 struct net_device *netdev = pci_get_drvdata(pdev); 5263 struct e1000_adapter *adapter = netdev_priv(netdev); 5264 struct e1000_hw *hw = &adapter->hw; 5265 int err; 5266 5267 if (adapter->need_ioport) 5268 err = pci_enable_device(pdev); 5269 else 5270 err = pci_enable_device_mem(pdev); 5271 if (err) { 5272 pr_err("Cannot re-enable PCI device after reset.\n"); 5273 return PCI_ERS_RESULT_DISCONNECT; 5274 } 5275 5276 /* flush memory to make sure state is correct */ 5277 smp_mb__before_atomic(); 5278 clear_bit(__E1000_DISABLED, &adapter->flags); 5279 pci_set_master(pdev); 5280 5281 pci_enable_wake(pdev, PCI_D3hot, 0); 5282 pci_enable_wake(pdev, PCI_D3cold, 0); 5283 5284 e1000_reset(adapter); 5285 ew32(WUS, ~0); 5286 5287 return PCI_ERS_RESULT_RECOVERED; 5288 } 5289 5290 /** 5291 * e1000_io_resume - called when traffic can start flowing again. 5292 * @pdev: Pointer to PCI device 5293 * 5294 * This callback is called when the error recovery driver tells us that 5295 * its OK to resume normal operation. Implementation resembles the 5296 * second-half of the e1000_resume routine. 5297 */ 5298 static void e1000_io_resume(struct pci_dev *pdev) 5299 { 5300 struct net_device *netdev = pci_get_drvdata(pdev); 5301 struct e1000_adapter *adapter = netdev_priv(netdev); 5302 5303 e1000_init_manageability(adapter); 5304 5305 if (netif_running(netdev)) { 5306 if (e1000_up(adapter)) { 5307 pr_info("can't bring device back up after reset\n"); 5308 return; 5309 } 5310 } 5311 5312 netif_device_attach(netdev); 5313 } 5314 5315 /* e1000_main.c */ 5316