xref: /linux/drivers/net/ethernet/intel/e1000/e1000_main.c (revision 48dea9a700c8728cc31a1dd44588b97578de86ee)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2006 Intel Corporation. */
3 
4 #include "e1000.h"
5 #include <net/ip6_checksum.h>
6 #include <linux/io.h>
7 #include <linux/prefetch.h>
8 #include <linux/bitops.h>
9 #include <linux/if_vlan.h>
10 
11 char e1000_driver_name[] = "e1000";
12 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
13 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
14 
15 /* e1000_pci_tbl - PCI Device ID Table
16  *
17  * Last entry must be all 0s
18  *
19  * Macro expands to...
20  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
21  */
22 static const struct pci_device_id e1000_pci_tbl[] = {
23 	INTEL_E1000_ETHERNET_DEVICE(0x1000),
24 	INTEL_E1000_ETHERNET_DEVICE(0x1001),
25 	INTEL_E1000_ETHERNET_DEVICE(0x1004),
26 	INTEL_E1000_ETHERNET_DEVICE(0x1008),
27 	INTEL_E1000_ETHERNET_DEVICE(0x1009),
28 	INTEL_E1000_ETHERNET_DEVICE(0x100C),
29 	INTEL_E1000_ETHERNET_DEVICE(0x100D),
30 	INTEL_E1000_ETHERNET_DEVICE(0x100E),
31 	INTEL_E1000_ETHERNET_DEVICE(0x100F),
32 	INTEL_E1000_ETHERNET_DEVICE(0x1010),
33 	INTEL_E1000_ETHERNET_DEVICE(0x1011),
34 	INTEL_E1000_ETHERNET_DEVICE(0x1012),
35 	INTEL_E1000_ETHERNET_DEVICE(0x1013),
36 	INTEL_E1000_ETHERNET_DEVICE(0x1014),
37 	INTEL_E1000_ETHERNET_DEVICE(0x1015),
38 	INTEL_E1000_ETHERNET_DEVICE(0x1016),
39 	INTEL_E1000_ETHERNET_DEVICE(0x1017),
40 	INTEL_E1000_ETHERNET_DEVICE(0x1018),
41 	INTEL_E1000_ETHERNET_DEVICE(0x1019),
42 	INTEL_E1000_ETHERNET_DEVICE(0x101A),
43 	INTEL_E1000_ETHERNET_DEVICE(0x101D),
44 	INTEL_E1000_ETHERNET_DEVICE(0x101E),
45 	INTEL_E1000_ETHERNET_DEVICE(0x1026),
46 	INTEL_E1000_ETHERNET_DEVICE(0x1027),
47 	INTEL_E1000_ETHERNET_DEVICE(0x1028),
48 	INTEL_E1000_ETHERNET_DEVICE(0x1075),
49 	INTEL_E1000_ETHERNET_DEVICE(0x1076),
50 	INTEL_E1000_ETHERNET_DEVICE(0x1077),
51 	INTEL_E1000_ETHERNET_DEVICE(0x1078),
52 	INTEL_E1000_ETHERNET_DEVICE(0x1079),
53 	INTEL_E1000_ETHERNET_DEVICE(0x107A),
54 	INTEL_E1000_ETHERNET_DEVICE(0x107B),
55 	INTEL_E1000_ETHERNET_DEVICE(0x107C),
56 	INTEL_E1000_ETHERNET_DEVICE(0x108A),
57 	INTEL_E1000_ETHERNET_DEVICE(0x1099),
58 	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
59 	INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
60 	/* required last entry */
61 	{0,}
62 };
63 
64 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
65 
66 int e1000_up(struct e1000_adapter *adapter);
67 void e1000_down(struct e1000_adapter *adapter);
68 void e1000_reinit_locked(struct e1000_adapter *adapter);
69 void e1000_reset(struct e1000_adapter *adapter);
70 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
71 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
72 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
73 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
74 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
75 				    struct e1000_tx_ring *txdr);
76 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
77 				    struct e1000_rx_ring *rxdr);
78 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
79 				    struct e1000_tx_ring *tx_ring);
80 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
81 				    struct e1000_rx_ring *rx_ring);
82 void e1000_update_stats(struct e1000_adapter *adapter);
83 
84 static int e1000_init_module(void);
85 static void e1000_exit_module(void);
86 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
87 static void e1000_remove(struct pci_dev *pdev);
88 static int e1000_alloc_queues(struct e1000_adapter *adapter);
89 static int e1000_sw_init(struct e1000_adapter *adapter);
90 int e1000_open(struct net_device *netdev);
91 int e1000_close(struct net_device *netdev);
92 static void e1000_configure_tx(struct e1000_adapter *adapter);
93 static void e1000_configure_rx(struct e1000_adapter *adapter);
94 static void e1000_setup_rctl(struct e1000_adapter *adapter);
95 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
96 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
97 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
98 				struct e1000_tx_ring *tx_ring);
99 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
100 				struct e1000_rx_ring *rx_ring);
101 static void e1000_set_rx_mode(struct net_device *netdev);
102 static void e1000_update_phy_info_task(struct work_struct *work);
103 static void e1000_watchdog(struct work_struct *work);
104 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
105 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
106 				    struct net_device *netdev);
107 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
108 static int e1000_set_mac(struct net_device *netdev, void *p);
109 static irqreturn_t e1000_intr(int irq, void *data);
110 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
111 			       struct e1000_tx_ring *tx_ring);
112 static int e1000_clean(struct napi_struct *napi, int budget);
113 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
114 			       struct e1000_rx_ring *rx_ring,
115 			       int *work_done, int work_to_do);
116 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
117 				     struct e1000_rx_ring *rx_ring,
118 				     int *work_done, int work_to_do);
119 static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
120 					 struct e1000_rx_ring *rx_ring,
121 					 int cleaned_count)
122 {
123 }
124 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
125 				   struct e1000_rx_ring *rx_ring,
126 				   int cleaned_count);
127 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
128 					 struct e1000_rx_ring *rx_ring,
129 					 int cleaned_count);
130 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
131 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
132 			   int cmd);
133 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
134 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
135 static void e1000_tx_timeout(struct net_device *dev, unsigned int txqueue);
136 static void e1000_reset_task(struct work_struct *work);
137 static void e1000_smartspeed(struct e1000_adapter *adapter);
138 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
139 				       struct sk_buff *skb);
140 
141 static bool e1000_vlan_used(struct e1000_adapter *adapter);
142 static void e1000_vlan_mode(struct net_device *netdev,
143 			    netdev_features_t features);
144 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
145 				     bool filter_on);
146 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
147 				 __be16 proto, u16 vid);
148 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
149 				  __be16 proto, u16 vid);
150 static void e1000_restore_vlan(struct e1000_adapter *adapter);
151 
152 static int __maybe_unused e1000_suspend(struct device *dev);
153 static int __maybe_unused e1000_resume(struct device *dev);
154 static void e1000_shutdown(struct pci_dev *pdev);
155 
156 #ifdef CONFIG_NET_POLL_CONTROLLER
157 /* for netdump / net console */
158 static void e1000_netpoll (struct net_device *netdev);
159 #endif
160 
161 #define COPYBREAK_DEFAULT 256
162 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
163 module_param(copybreak, uint, 0644);
164 MODULE_PARM_DESC(copybreak,
165 	"Maximum size of packet that is copied to a new buffer on receive");
166 
167 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
168 						pci_channel_state_t state);
169 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
170 static void e1000_io_resume(struct pci_dev *pdev);
171 
172 static const struct pci_error_handlers e1000_err_handler = {
173 	.error_detected = e1000_io_error_detected,
174 	.slot_reset = e1000_io_slot_reset,
175 	.resume = e1000_io_resume,
176 };
177 
178 static SIMPLE_DEV_PM_OPS(e1000_pm_ops, e1000_suspend, e1000_resume);
179 
180 static struct pci_driver e1000_driver = {
181 	.name     = e1000_driver_name,
182 	.id_table = e1000_pci_tbl,
183 	.probe    = e1000_probe,
184 	.remove   = e1000_remove,
185 	.driver = {
186 		.pm = &e1000_pm_ops,
187 	},
188 	.shutdown = e1000_shutdown,
189 	.err_handler = &e1000_err_handler
190 };
191 
192 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
193 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
194 MODULE_LICENSE("GPL v2");
195 
196 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
197 static int debug = -1;
198 module_param(debug, int, 0);
199 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
200 
201 /**
202  * e1000_get_hw_dev - return device
203  * used by hardware layer to print debugging information
204  *
205  **/
206 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
207 {
208 	struct e1000_adapter *adapter = hw->back;
209 	return adapter->netdev;
210 }
211 
212 /**
213  * e1000_init_module - Driver Registration Routine
214  *
215  * e1000_init_module is the first routine called when the driver is
216  * loaded. All it does is register with the PCI subsystem.
217  **/
218 static int __init e1000_init_module(void)
219 {
220 	int ret;
221 	pr_info("%s\n", e1000_driver_string);
222 
223 	pr_info("%s\n", e1000_copyright);
224 
225 	ret = pci_register_driver(&e1000_driver);
226 	if (copybreak != COPYBREAK_DEFAULT) {
227 		if (copybreak == 0)
228 			pr_info("copybreak disabled\n");
229 		else
230 			pr_info("copybreak enabled for "
231 				   "packets <= %u bytes\n", copybreak);
232 	}
233 	return ret;
234 }
235 
236 module_init(e1000_init_module);
237 
238 /**
239  * e1000_exit_module - Driver Exit Cleanup Routine
240  *
241  * e1000_exit_module is called just before the driver is removed
242  * from memory.
243  **/
244 static void __exit e1000_exit_module(void)
245 {
246 	pci_unregister_driver(&e1000_driver);
247 }
248 
249 module_exit(e1000_exit_module);
250 
251 static int e1000_request_irq(struct e1000_adapter *adapter)
252 {
253 	struct net_device *netdev = adapter->netdev;
254 	irq_handler_t handler = e1000_intr;
255 	int irq_flags = IRQF_SHARED;
256 	int err;
257 
258 	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
259 			  netdev);
260 	if (err) {
261 		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
262 	}
263 
264 	return err;
265 }
266 
267 static void e1000_free_irq(struct e1000_adapter *adapter)
268 {
269 	struct net_device *netdev = adapter->netdev;
270 
271 	free_irq(adapter->pdev->irq, netdev);
272 }
273 
274 /**
275  * e1000_irq_disable - Mask off interrupt generation on the NIC
276  * @adapter: board private structure
277  **/
278 static void e1000_irq_disable(struct e1000_adapter *adapter)
279 {
280 	struct e1000_hw *hw = &adapter->hw;
281 
282 	ew32(IMC, ~0);
283 	E1000_WRITE_FLUSH();
284 	synchronize_irq(adapter->pdev->irq);
285 }
286 
287 /**
288  * e1000_irq_enable - Enable default interrupt generation settings
289  * @adapter: board private structure
290  **/
291 static void e1000_irq_enable(struct e1000_adapter *adapter)
292 {
293 	struct e1000_hw *hw = &adapter->hw;
294 
295 	ew32(IMS, IMS_ENABLE_MASK);
296 	E1000_WRITE_FLUSH();
297 }
298 
299 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
300 {
301 	struct e1000_hw *hw = &adapter->hw;
302 	struct net_device *netdev = adapter->netdev;
303 	u16 vid = hw->mng_cookie.vlan_id;
304 	u16 old_vid = adapter->mng_vlan_id;
305 
306 	if (!e1000_vlan_used(adapter))
307 		return;
308 
309 	if (!test_bit(vid, adapter->active_vlans)) {
310 		if (hw->mng_cookie.status &
311 		    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
312 			e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
313 			adapter->mng_vlan_id = vid;
314 		} else {
315 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
316 		}
317 		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
318 		    (vid != old_vid) &&
319 		    !test_bit(old_vid, adapter->active_vlans))
320 			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
321 					       old_vid);
322 	} else {
323 		adapter->mng_vlan_id = vid;
324 	}
325 }
326 
327 static void e1000_init_manageability(struct e1000_adapter *adapter)
328 {
329 	struct e1000_hw *hw = &adapter->hw;
330 
331 	if (adapter->en_mng_pt) {
332 		u32 manc = er32(MANC);
333 
334 		/* disable hardware interception of ARP */
335 		manc &= ~(E1000_MANC_ARP_EN);
336 
337 		ew32(MANC, manc);
338 	}
339 }
340 
341 static void e1000_release_manageability(struct e1000_adapter *adapter)
342 {
343 	struct e1000_hw *hw = &adapter->hw;
344 
345 	if (adapter->en_mng_pt) {
346 		u32 manc = er32(MANC);
347 
348 		/* re-enable hardware interception of ARP */
349 		manc |= E1000_MANC_ARP_EN;
350 
351 		ew32(MANC, manc);
352 	}
353 }
354 
355 /**
356  * e1000_configure - configure the hardware for RX and TX
357  * @adapter = private board structure
358  **/
359 static void e1000_configure(struct e1000_adapter *adapter)
360 {
361 	struct net_device *netdev = adapter->netdev;
362 	int i;
363 
364 	e1000_set_rx_mode(netdev);
365 
366 	e1000_restore_vlan(adapter);
367 	e1000_init_manageability(adapter);
368 
369 	e1000_configure_tx(adapter);
370 	e1000_setup_rctl(adapter);
371 	e1000_configure_rx(adapter);
372 	/* call E1000_DESC_UNUSED which always leaves
373 	 * at least 1 descriptor unused to make sure
374 	 * next_to_use != next_to_clean
375 	 */
376 	for (i = 0; i < adapter->num_rx_queues; i++) {
377 		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
378 		adapter->alloc_rx_buf(adapter, ring,
379 				      E1000_DESC_UNUSED(ring));
380 	}
381 }
382 
383 int e1000_up(struct e1000_adapter *adapter)
384 {
385 	struct e1000_hw *hw = &adapter->hw;
386 
387 	/* hardware has been reset, we need to reload some things */
388 	e1000_configure(adapter);
389 
390 	clear_bit(__E1000_DOWN, &adapter->flags);
391 
392 	napi_enable(&adapter->napi);
393 
394 	e1000_irq_enable(adapter);
395 
396 	netif_wake_queue(adapter->netdev);
397 
398 	/* fire a link change interrupt to start the watchdog */
399 	ew32(ICS, E1000_ICS_LSC);
400 	return 0;
401 }
402 
403 /**
404  * e1000_power_up_phy - restore link in case the phy was powered down
405  * @adapter: address of board private structure
406  *
407  * The phy may be powered down to save power and turn off link when the
408  * driver is unloaded and wake on lan is not enabled (among others)
409  * *** this routine MUST be followed by a call to e1000_reset ***
410  **/
411 void e1000_power_up_phy(struct e1000_adapter *adapter)
412 {
413 	struct e1000_hw *hw = &adapter->hw;
414 	u16 mii_reg = 0;
415 
416 	/* Just clear the power down bit to wake the phy back up */
417 	if (hw->media_type == e1000_media_type_copper) {
418 		/* according to the manual, the phy will retain its
419 		 * settings across a power-down/up cycle
420 		 */
421 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
422 		mii_reg &= ~MII_CR_POWER_DOWN;
423 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
424 	}
425 }
426 
427 static void e1000_power_down_phy(struct e1000_adapter *adapter)
428 {
429 	struct e1000_hw *hw = &adapter->hw;
430 
431 	/* Power down the PHY so no link is implied when interface is down *
432 	 * The PHY cannot be powered down if any of the following is true *
433 	 * (a) WoL is enabled
434 	 * (b) AMT is active
435 	 * (c) SoL/IDER session is active
436 	 */
437 	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
438 	   hw->media_type == e1000_media_type_copper) {
439 		u16 mii_reg = 0;
440 
441 		switch (hw->mac_type) {
442 		case e1000_82540:
443 		case e1000_82545:
444 		case e1000_82545_rev_3:
445 		case e1000_82546:
446 		case e1000_ce4100:
447 		case e1000_82546_rev_3:
448 		case e1000_82541:
449 		case e1000_82541_rev_2:
450 		case e1000_82547:
451 		case e1000_82547_rev_2:
452 			if (er32(MANC) & E1000_MANC_SMBUS_EN)
453 				goto out;
454 			break;
455 		default:
456 			goto out;
457 		}
458 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
459 		mii_reg |= MII_CR_POWER_DOWN;
460 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
461 		msleep(1);
462 	}
463 out:
464 	return;
465 }
466 
467 static void e1000_down_and_stop(struct e1000_adapter *adapter)
468 {
469 	set_bit(__E1000_DOWN, &adapter->flags);
470 
471 	cancel_delayed_work_sync(&adapter->watchdog_task);
472 
473 	/*
474 	 * Since the watchdog task can reschedule other tasks, we should cancel
475 	 * it first, otherwise we can run into the situation when a work is
476 	 * still running after the adapter has been turned down.
477 	 */
478 
479 	cancel_delayed_work_sync(&adapter->phy_info_task);
480 	cancel_delayed_work_sync(&adapter->fifo_stall_task);
481 
482 	/* Only kill reset task if adapter is not resetting */
483 	if (!test_bit(__E1000_RESETTING, &adapter->flags))
484 		cancel_work_sync(&adapter->reset_task);
485 }
486 
487 void e1000_down(struct e1000_adapter *adapter)
488 {
489 	struct e1000_hw *hw = &adapter->hw;
490 	struct net_device *netdev = adapter->netdev;
491 	u32 rctl, tctl;
492 
493 	/* disable receives in the hardware */
494 	rctl = er32(RCTL);
495 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
496 	/* flush and sleep below */
497 
498 	netif_tx_disable(netdev);
499 
500 	/* disable transmits in the hardware */
501 	tctl = er32(TCTL);
502 	tctl &= ~E1000_TCTL_EN;
503 	ew32(TCTL, tctl);
504 	/* flush both disables and wait for them to finish */
505 	E1000_WRITE_FLUSH();
506 	msleep(10);
507 
508 	/* Set the carrier off after transmits have been disabled in the
509 	 * hardware, to avoid race conditions with e1000_watchdog() (which
510 	 * may be running concurrently to us, checking for the carrier
511 	 * bit to decide whether it should enable transmits again). Such
512 	 * a race condition would result into transmission being disabled
513 	 * in the hardware until the next IFF_DOWN+IFF_UP cycle.
514 	 */
515 	netif_carrier_off(netdev);
516 
517 	napi_disable(&adapter->napi);
518 
519 	e1000_irq_disable(adapter);
520 
521 	/* Setting DOWN must be after irq_disable to prevent
522 	 * a screaming interrupt.  Setting DOWN also prevents
523 	 * tasks from rescheduling.
524 	 */
525 	e1000_down_and_stop(adapter);
526 
527 	adapter->link_speed = 0;
528 	adapter->link_duplex = 0;
529 
530 	e1000_reset(adapter);
531 	e1000_clean_all_tx_rings(adapter);
532 	e1000_clean_all_rx_rings(adapter);
533 }
534 
535 void e1000_reinit_locked(struct e1000_adapter *adapter)
536 {
537 	WARN_ON(in_interrupt());
538 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
539 		msleep(1);
540 
541 	/* only run the task if not already down */
542 	if (!test_bit(__E1000_DOWN, &adapter->flags)) {
543 		e1000_down(adapter);
544 		e1000_up(adapter);
545 	}
546 
547 	clear_bit(__E1000_RESETTING, &adapter->flags);
548 }
549 
550 void e1000_reset(struct e1000_adapter *adapter)
551 {
552 	struct e1000_hw *hw = &adapter->hw;
553 	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
554 	bool legacy_pba_adjust = false;
555 	u16 hwm;
556 
557 	/* Repartition Pba for greater than 9k mtu
558 	 * To take effect CTRL.RST is required.
559 	 */
560 
561 	switch (hw->mac_type) {
562 	case e1000_82542_rev2_0:
563 	case e1000_82542_rev2_1:
564 	case e1000_82543:
565 	case e1000_82544:
566 	case e1000_82540:
567 	case e1000_82541:
568 	case e1000_82541_rev_2:
569 		legacy_pba_adjust = true;
570 		pba = E1000_PBA_48K;
571 		break;
572 	case e1000_82545:
573 	case e1000_82545_rev_3:
574 	case e1000_82546:
575 	case e1000_ce4100:
576 	case e1000_82546_rev_3:
577 		pba = E1000_PBA_48K;
578 		break;
579 	case e1000_82547:
580 	case e1000_82547_rev_2:
581 		legacy_pba_adjust = true;
582 		pba = E1000_PBA_30K;
583 		break;
584 	case e1000_undefined:
585 	case e1000_num_macs:
586 		break;
587 	}
588 
589 	if (legacy_pba_adjust) {
590 		if (hw->max_frame_size > E1000_RXBUFFER_8192)
591 			pba -= 8; /* allocate more FIFO for Tx */
592 
593 		if (hw->mac_type == e1000_82547) {
594 			adapter->tx_fifo_head = 0;
595 			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
596 			adapter->tx_fifo_size =
597 				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
598 			atomic_set(&adapter->tx_fifo_stall, 0);
599 		}
600 	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
601 		/* adjust PBA for jumbo frames */
602 		ew32(PBA, pba);
603 
604 		/* To maintain wire speed transmits, the Tx FIFO should be
605 		 * large enough to accommodate two full transmit packets,
606 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
607 		 * the Rx FIFO should be large enough to accommodate at least
608 		 * one full receive packet and is similarly rounded up and
609 		 * expressed in KB.
610 		 */
611 		pba = er32(PBA);
612 		/* upper 16 bits has Tx packet buffer allocation size in KB */
613 		tx_space = pba >> 16;
614 		/* lower 16 bits has Rx packet buffer allocation size in KB */
615 		pba &= 0xffff;
616 		/* the Tx fifo also stores 16 bytes of information about the Tx
617 		 * but don't include ethernet FCS because hardware appends it
618 		 */
619 		min_tx_space = (hw->max_frame_size +
620 				sizeof(struct e1000_tx_desc) -
621 				ETH_FCS_LEN) * 2;
622 		min_tx_space = ALIGN(min_tx_space, 1024);
623 		min_tx_space >>= 10;
624 		/* software strips receive CRC, so leave room for it */
625 		min_rx_space = hw->max_frame_size;
626 		min_rx_space = ALIGN(min_rx_space, 1024);
627 		min_rx_space >>= 10;
628 
629 		/* If current Tx allocation is less than the min Tx FIFO size,
630 		 * and the min Tx FIFO size is less than the current Rx FIFO
631 		 * allocation, take space away from current Rx allocation
632 		 */
633 		if (tx_space < min_tx_space &&
634 		    ((min_tx_space - tx_space) < pba)) {
635 			pba = pba - (min_tx_space - tx_space);
636 
637 			/* PCI/PCIx hardware has PBA alignment constraints */
638 			switch (hw->mac_type) {
639 			case e1000_82545 ... e1000_82546_rev_3:
640 				pba &= ~(E1000_PBA_8K - 1);
641 				break;
642 			default:
643 				break;
644 			}
645 
646 			/* if short on Rx space, Rx wins and must trump Tx
647 			 * adjustment or use Early Receive if available
648 			 */
649 			if (pba < min_rx_space)
650 				pba = min_rx_space;
651 		}
652 	}
653 
654 	ew32(PBA, pba);
655 
656 	/* flow control settings:
657 	 * The high water mark must be low enough to fit one full frame
658 	 * (or the size used for early receive) above it in the Rx FIFO.
659 	 * Set it to the lower of:
660 	 * - 90% of the Rx FIFO size, and
661 	 * - the full Rx FIFO size minus the early receive size (for parts
662 	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
663 	 * - the full Rx FIFO size minus one full frame
664 	 */
665 	hwm = min(((pba << 10) * 9 / 10),
666 		  ((pba << 10) - hw->max_frame_size));
667 
668 	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
669 	hw->fc_low_water = hw->fc_high_water - 8;
670 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
671 	hw->fc_send_xon = 1;
672 	hw->fc = hw->original_fc;
673 
674 	/* Allow time for pending master requests to run */
675 	e1000_reset_hw(hw);
676 	if (hw->mac_type >= e1000_82544)
677 		ew32(WUC, 0);
678 
679 	if (e1000_init_hw(hw))
680 		e_dev_err("Hardware Error\n");
681 	e1000_update_mng_vlan(adapter);
682 
683 	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
684 	if (hw->mac_type >= e1000_82544 &&
685 	    hw->autoneg == 1 &&
686 	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
687 		u32 ctrl = er32(CTRL);
688 		/* clear phy power management bit if we are in gig only mode,
689 		 * which if enabled will attempt negotiation to 100Mb, which
690 		 * can cause a loss of link at power off or driver unload
691 		 */
692 		ctrl &= ~E1000_CTRL_SWDPIN3;
693 		ew32(CTRL, ctrl);
694 	}
695 
696 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
697 	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
698 
699 	e1000_reset_adaptive(hw);
700 	e1000_phy_get_info(hw, &adapter->phy_info);
701 
702 	e1000_release_manageability(adapter);
703 }
704 
705 /* Dump the eeprom for users having checksum issues */
706 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
707 {
708 	struct net_device *netdev = adapter->netdev;
709 	struct ethtool_eeprom eeprom;
710 	const struct ethtool_ops *ops = netdev->ethtool_ops;
711 	u8 *data;
712 	int i;
713 	u16 csum_old, csum_new = 0;
714 
715 	eeprom.len = ops->get_eeprom_len(netdev);
716 	eeprom.offset = 0;
717 
718 	data = kmalloc(eeprom.len, GFP_KERNEL);
719 	if (!data)
720 		return;
721 
722 	ops->get_eeprom(netdev, &eeprom, data);
723 
724 	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
725 		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
726 	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
727 		csum_new += data[i] + (data[i + 1] << 8);
728 	csum_new = EEPROM_SUM - csum_new;
729 
730 	pr_err("/*********************/\n");
731 	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
732 	pr_err("Calculated              : 0x%04x\n", csum_new);
733 
734 	pr_err("Offset    Values\n");
735 	pr_err("========  ======\n");
736 	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
737 
738 	pr_err("Include this output when contacting your support provider.\n");
739 	pr_err("This is not a software error! Something bad happened to\n");
740 	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
741 	pr_err("result in further problems, possibly loss of data,\n");
742 	pr_err("corruption or system hangs!\n");
743 	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
744 	pr_err("which is invalid and requires you to set the proper MAC\n");
745 	pr_err("address manually before continuing to enable this network\n");
746 	pr_err("device. Please inspect the EEPROM dump and report the\n");
747 	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
748 	pr_err("/*********************/\n");
749 
750 	kfree(data);
751 }
752 
753 /**
754  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
755  * @pdev: PCI device information struct
756  *
757  * Return true if an adapter needs ioport resources
758  **/
759 static int e1000_is_need_ioport(struct pci_dev *pdev)
760 {
761 	switch (pdev->device) {
762 	case E1000_DEV_ID_82540EM:
763 	case E1000_DEV_ID_82540EM_LOM:
764 	case E1000_DEV_ID_82540EP:
765 	case E1000_DEV_ID_82540EP_LOM:
766 	case E1000_DEV_ID_82540EP_LP:
767 	case E1000_DEV_ID_82541EI:
768 	case E1000_DEV_ID_82541EI_MOBILE:
769 	case E1000_DEV_ID_82541ER:
770 	case E1000_DEV_ID_82541ER_LOM:
771 	case E1000_DEV_ID_82541GI:
772 	case E1000_DEV_ID_82541GI_LF:
773 	case E1000_DEV_ID_82541GI_MOBILE:
774 	case E1000_DEV_ID_82544EI_COPPER:
775 	case E1000_DEV_ID_82544EI_FIBER:
776 	case E1000_DEV_ID_82544GC_COPPER:
777 	case E1000_DEV_ID_82544GC_LOM:
778 	case E1000_DEV_ID_82545EM_COPPER:
779 	case E1000_DEV_ID_82545EM_FIBER:
780 	case E1000_DEV_ID_82546EB_COPPER:
781 	case E1000_DEV_ID_82546EB_FIBER:
782 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
783 		return true;
784 	default:
785 		return false;
786 	}
787 }
788 
789 static netdev_features_t e1000_fix_features(struct net_device *netdev,
790 	netdev_features_t features)
791 {
792 	/* Since there is no support for separate Rx/Tx vlan accel
793 	 * enable/disable make sure Tx flag is always in same state as Rx.
794 	 */
795 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
796 		features |= NETIF_F_HW_VLAN_CTAG_TX;
797 	else
798 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
799 
800 	return features;
801 }
802 
803 static int e1000_set_features(struct net_device *netdev,
804 	netdev_features_t features)
805 {
806 	struct e1000_adapter *adapter = netdev_priv(netdev);
807 	netdev_features_t changed = features ^ netdev->features;
808 
809 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
810 		e1000_vlan_mode(netdev, features);
811 
812 	if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
813 		return 0;
814 
815 	netdev->features = features;
816 	adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
817 
818 	if (netif_running(netdev))
819 		e1000_reinit_locked(adapter);
820 	else
821 		e1000_reset(adapter);
822 
823 	return 1;
824 }
825 
826 static const struct net_device_ops e1000_netdev_ops = {
827 	.ndo_open		= e1000_open,
828 	.ndo_stop		= e1000_close,
829 	.ndo_start_xmit		= e1000_xmit_frame,
830 	.ndo_set_rx_mode	= e1000_set_rx_mode,
831 	.ndo_set_mac_address	= e1000_set_mac,
832 	.ndo_tx_timeout		= e1000_tx_timeout,
833 	.ndo_change_mtu		= e1000_change_mtu,
834 	.ndo_do_ioctl		= e1000_ioctl,
835 	.ndo_validate_addr	= eth_validate_addr,
836 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
837 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
838 #ifdef CONFIG_NET_POLL_CONTROLLER
839 	.ndo_poll_controller	= e1000_netpoll,
840 #endif
841 	.ndo_fix_features	= e1000_fix_features,
842 	.ndo_set_features	= e1000_set_features,
843 };
844 
845 /**
846  * e1000_init_hw_struct - initialize members of hw struct
847  * @adapter: board private struct
848  * @hw: structure used by e1000_hw.c
849  *
850  * Factors out initialization of the e1000_hw struct to its own function
851  * that can be called very early at init (just after struct allocation).
852  * Fields are initialized based on PCI device information and
853  * OS network device settings (MTU size).
854  * Returns negative error codes if MAC type setup fails.
855  */
856 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
857 				struct e1000_hw *hw)
858 {
859 	struct pci_dev *pdev = adapter->pdev;
860 
861 	/* PCI config space info */
862 	hw->vendor_id = pdev->vendor;
863 	hw->device_id = pdev->device;
864 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
865 	hw->subsystem_id = pdev->subsystem_device;
866 	hw->revision_id = pdev->revision;
867 
868 	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
869 
870 	hw->max_frame_size = adapter->netdev->mtu +
871 			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
872 	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
873 
874 	/* identify the MAC */
875 	if (e1000_set_mac_type(hw)) {
876 		e_err(probe, "Unknown MAC Type\n");
877 		return -EIO;
878 	}
879 
880 	switch (hw->mac_type) {
881 	default:
882 		break;
883 	case e1000_82541:
884 	case e1000_82547:
885 	case e1000_82541_rev_2:
886 	case e1000_82547_rev_2:
887 		hw->phy_init_script = 1;
888 		break;
889 	}
890 
891 	e1000_set_media_type(hw);
892 	e1000_get_bus_info(hw);
893 
894 	hw->wait_autoneg_complete = false;
895 	hw->tbi_compatibility_en = true;
896 	hw->adaptive_ifs = true;
897 
898 	/* Copper options */
899 
900 	if (hw->media_type == e1000_media_type_copper) {
901 		hw->mdix = AUTO_ALL_MODES;
902 		hw->disable_polarity_correction = false;
903 		hw->master_slave = E1000_MASTER_SLAVE;
904 	}
905 
906 	return 0;
907 }
908 
909 /**
910  * e1000_probe - Device Initialization Routine
911  * @pdev: PCI device information struct
912  * @ent: entry in e1000_pci_tbl
913  *
914  * Returns 0 on success, negative on failure
915  *
916  * e1000_probe initializes an adapter identified by a pci_dev structure.
917  * The OS initialization, configuring of the adapter private structure,
918  * and a hardware reset occur.
919  **/
920 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
921 {
922 	struct net_device *netdev;
923 	struct e1000_adapter *adapter = NULL;
924 	struct e1000_hw *hw;
925 
926 	static int cards_found;
927 	static int global_quad_port_a; /* global ksp3 port a indication */
928 	int i, err, pci_using_dac;
929 	u16 eeprom_data = 0;
930 	u16 tmp = 0;
931 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
932 	int bars, need_ioport;
933 	bool disable_dev = false;
934 
935 	/* do not allocate ioport bars when not needed */
936 	need_ioport = e1000_is_need_ioport(pdev);
937 	if (need_ioport) {
938 		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
939 		err = pci_enable_device(pdev);
940 	} else {
941 		bars = pci_select_bars(pdev, IORESOURCE_MEM);
942 		err = pci_enable_device_mem(pdev);
943 	}
944 	if (err)
945 		return err;
946 
947 	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
948 	if (err)
949 		goto err_pci_reg;
950 
951 	pci_set_master(pdev);
952 	err = pci_save_state(pdev);
953 	if (err)
954 		goto err_alloc_etherdev;
955 
956 	err = -ENOMEM;
957 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
958 	if (!netdev)
959 		goto err_alloc_etherdev;
960 
961 	SET_NETDEV_DEV(netdev, &pdev->dev);
962 
963 	pci_set_drvdata(pdev, netdev);
964 	adapter = netdev_priv(netdev);
965 	adapter->netdev = netdev;
966 	adapter->pdev = pdev;
967 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
968 	adapter->bars = bars;
969 	adapter->need_ioport = need_ioport;
970 
971 	hw = &adapter->hw;
972 	hw->back = adapter;
973 
974 	err = -EIO;
975 	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
976 	if (!hw->hw_addr)
977 		goto err_ioremap;
978 
979 	if (adapter->need_ioport) {
980 		for (i = BAR_1; i < PCI_STD_NUM_BARS; i++) {
981 			if (pci_resource_len(pdev, i) == 0)
982 				continue;
983 			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
984 				hw->io_base = pci_resource_start(pdev, i);
985 				break;
986 			}
987 		}
988 	}
989 
990 	/* make ready for any if (hw->...) below */
991 	err = e1000_init_hw_struct(adapter, hw);
992 	if (err)
993 		goto err_sw_init;
994 
995 	/* there is a workaround being applied below that limits
996 	 * 64-bit DMA addresses to 64-bit hardware.  There are some
997 	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
998 	 */
999 	pci_using_dac = 0;
1000 	if ((hw->bus_type == e1000_bus_type_pcix) &&
1001 	    !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1002 		pci_using_dac = 1;
1003 	} else {
1004 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1005 		if (err) {
1006 			pr_err("No usable DMA config, aborting\n");
1007 			goto err_dma;
1008 		}
1009 	}
1010 
1011 	netdev->netdev_ops = &e1000_netdev_ops;
1012 	e1000_set_ethtool_ops(netdev);
1013 	netdev->watchdog_timeo = 5 * HZ;
1014 	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1015 
1016 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1017 
1018 	adapter->bd_number = cards_found;
1019 
1020 	/* setup the private structure */
1021 
1022 	err = e1000_sw_init(adapter);
1023 	if (err)
1024 		goto err_sw_init;
1025 
1026 	err = -EIO;
1027 	if (hw->mac_type == e1000_ce4100) {
1028 		hw->ce4100_gbe_mdio_base_virt =
1029 					ioremap(pci_resource_start(pdev, BAR_1),
1030 						pci_resource_len(pdev, BAR_1));
1031 
1032 		if (!hw->ce4100_gbe_mdio_base_virt)
1033 			goto err_mdio_ioremap;
1034 	}
1035 
1036 	if (hw->mac_type >= e1000_82543) {
1037 		netdev->hw_features = NETIF_F_SG |
1038 				   NETIF_F_HW_CSUM |
1039 				   NETIF_F_HW_VLAN_CTAG_RX;
1040 		netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1041 				   NETIF_F_HW_VLAN_CTAG_FILTER;
1042 	}
1043 
1044 	if ((hw->mac_type >= e1000_82544) &&
1045 	   (hw->mac_type != e1000_82547))
1046 		netdev->hw_features |= NETIF_F_TSO;
1047 
1048 	netdev->priv_flags |= IFF_SUPP_NOFCS;
1049 
1050 	netdev->features |= netdev->hw_features;
1051 	netdev->hw_features |= (NETIF_F_RXCSUM |
1052 				NETIF_F_RXALL |
1053 				NETIF_F_RXFCS);
1054 
1055 	if (pci_using_dac) {
1056 		netdev->features |= NETIF_F_HIGHDMA;
1057 		netdev->vlan_features |= NETIF_F_HIGHDMA;
1058 	}
1059 
1060 	netdev->vlan_features |= (NETIF_F_TSO |
1061 				  NETIF_F_HW_CSUM |
1062 				  NETIF_F_SG);
1063 
1064 	/* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1065 	if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1066 	    hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1067 		netdev->priv_flags |= IFF_UNICAST_FLT;
1068 
1069 	/* MTU range: 46 - 16110 */
1070 	netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1071 	netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1072 
1073 	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1074 
1075 	/* initialize eeprom parameters */
1076 	if (e1000_init_eeprom_params(hw)) {
1077 		e_err(probe, "EEPROM initialization failed\n");
1078 		goto err_eeprom;
1079 	}
1080 
1081 	/* before reading the EEPROM, reset the controller to
1082 	 * put the device in a known good starting state
1083 	 */
1084 
1085 	e1000_reset_hw(hw);
1086 
1087 	/* make sure the EEPROM is good */
1088 	if (e1000_validate_eeprom_checksum(hw) < 0) {
1089 		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1090 		e1000_dump_eeprom(adapter);
1091 		/* set MAC address to all zeroes to invalidate and temporary
1092 		 * disable this device for the user. This blocks regular
1093 		 * traffic while still permitting ethtool ioctls from reaching
1094 		 * the hardware as well as allowing the user to run the
1095 		 * interface after manually setting a hw addr using
1096 		 * `ip set address`
1097 		 */
1098 		memset(hw->mac_addr, 0, netdev->addr_len);
1099 	} else {
1100 		/* copy the MAC address out of the EEPROM */
1101 		if (e1000_read_mac_addr(hw))
1102 			e_err(probe, "EEPROM Read Error\n");
1103 	}
1104 	/* don't block initialization here due to bad MAC address */
1105 	memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1106 
1107 	if (!is_valid_ether_addr(netdev->dev_addr))
1108 		e_err(probe, "Invalid MAC Address\n");
1109 
1110 
1111 	INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1112 	INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1113 			  e1000_82547_tx_fifo_stall_task);
1114 	INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1115 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
1116 
1117 	e1000_check_options(adapter);
1118 
1119 	/* Initial Wake on LAN setting
1120 	 * If APM wake is enabled in the EEPROM,
1121 	 * enable the ACPI Magic Packet filter
1122 	 */
1123 
1124 	switch (hw->mac_type) {
1125 	case e1000_82542_rev2_0:
1126 	case e1000_82542_rev2_1:
1127 	case e1000_82543:
1128 		break;
1129 	case e1000_82544:
1130 		e1000_read_eeprom(hw,
1131 			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1132 		eeprom_apme_mask = E1000_EEPROM_82544_APM;
1133 		break;
1134 	case e1000_82546:
1135 	case e1000_82546_rev_3:
1136 		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1137 			e1000_read_eeprom(hw,
1138 				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1139 			break;
1140 		}
1141 		fallthrough;
1142 	default:
1143 		e1000_read_eeprom(hw,
1144 			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1145 		break;
1146 	}
1147 	if (eeprom_data & eeprom_apme_mask)
1148 		adapter->eeprom_wol |= E1000_WUFC_MAG;
1149 
1150 	/* now that we have the eeprom settings, apply the special cases
1151 	 * where the eeprom may be wrong or the board simply won't support
1152 	 * wake on lan on a particular port
1153 	 */
1154 	switch (pdev->device) {
1155 	case E1000_DEV_ID_82546GB_PCIE:
1156 		adapter->eeprom_wol = 0;
1157 		break;
1158 	case E1000_DEV_ID_82546EB_FIBER:
1159 	case E1000_DEV_ID_82546GB_FIBER:
1160 		/* Wake events only supported on port A for dual fiber
1161 		 * regardless of eeprom setting
1162 		 */
1163 		if (er32(STATUS) & E1000_STATUS_FUNC_1)
1164 			adapter->eeprom_wol = 0;
1165 		break;
1166 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1167 		/* if quad port adapter, disable WoL on all but port A */
1168 		if (global_quad_port_a != 0)
1169 			adapter->eeprom_wol = 0;
1170 		else
1171 			adapter->quad_port_a = true;
1172 		/* Reset for multiple quad port adapters */
1173 		if (++global_quad_port_a == 4)
1174 			global_quad_port_a = 0;
1175 		break;
1176 	}
1177 
1178 	/* initialize the wol settings based on the eeprom settings */
1179 	adapter->wol = adapter->eeprom_wol;
1180 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1181 
1182 	/* Auto detect PHY address */
1183 	if (hw->mac_type == e1000_ce4100) {
1184 		for (i = 0; i < 32; i++) {
1185 			hw->phy_addr = i;
1186 			e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1187 
1188 			if (tmp != 0 && tmp != 0xFF)
1189 				break;
1190 		}
1191 
1192 		if (i >= 32)
1193 			goto err_eeprom;
1194 	}
1195 
1196 	/* reset the hardware with the new settings */
1197 	e1000_reset(adapter);
1198 
1199 	strcpy(netdev->name, "eth%d");
1200 	err = register_netdev(netdev);
1201 	if (err)
1202 		goto err_register;
1203 
1204 	e1000_vlan_filter_on_off(adapter, false);
1205 
1206 	/* print bus type/speed/width info */
1207 	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1208 	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1209 	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1210 		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
1211 		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
1212 		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1213 	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1214 	       netdev->dev_addr);
1215 
1216 	/* carrier off reporting is important to ethtool even BEFORE open */
1217 	netif_carrier_off(netdev);
1218 
1219 	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1220 
1221 	cards_found++;
1222 	return 0;
1223 
1224 err_register:
1225 err_eeprom:
1226 	e1000_phy_hw_reset(hw);
1227 
1228 	if (hw->flash_address)
1229 		iounmap(hw->flash_address);
1230 	kfree(adapter->tx_ring);
1231 	kfree(adapter->rx_ring);
1232 err_dma:
1233 err_sw_init:
1234 err_mdio_ioremap:
1235 	iounmap(hw->ce4100_gbe_mdio_base_virt);
1236 	iounmap(hw->hw_addr);
1237 err_ioremap:
1238 	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1239 	free_netdev(netdev);
1240 err_alloc_etherdev:
1241 	pci_release_selected_regions(pdev, bars);
1242 err_pci_reg:
1243 	if (!adapter || disable_dev)
1244 		pci_disable_device(pdev);
1245 	return err;
1246 }
1247 
1248 /**
1249  * e1000_remove - Device Removal Routine
1250  * @pdev: PCI device information struct
1251  *
1252  * e1000_remove is called by the PCI subsystem to alert the driver
1253  * that it should release a PCI device. That could be caused by a
1254  * Hot-Plug event, or because the driver is going to be removed from
1255  * memory.
1256  **/
1257 static void e1000_remove(struct pci_dev *pdev)
1258 {
1259 	struct net_device *netdev = pci_get_drvdata(pdev);
1260 	struct e1000_adapter *adapter = netdev_priv(netdev);
1261 	struct e1000_hw *hw = &adapter->hw;
1262 	bool disable_dev;
1263 
1264 	e1000_down_and_stop(adapter);
1265 	e1000_release_manageability(adapter);
1266 
1267 	unregister_netdev(netdev);
1268 
1269 	e1000_phy_hw_reset(hw);
1270 
1271 	kfree(adapter->tx_ring);
1272 	kfree(adapter->rx_ring);
1273 
1274 	if (hw->mac_type == e1000_ce4100)
1275 		iounmap(hw->ce4100_gbe_mdio_base_virt);
1276 	iounmap(hw->hw_addr);
1277 	if (hw->flash_address)
1278 		iounmap(hw->flash_address);
1279 	pci_release_selected_regions(pdev, adapter->bars);
1280 
1281 	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1282 	free_netdev(netdev);
1283 
1284 	if (disable_dev)
1285 		pci_disable_device(pdev);
1286 }
1287 
1288 /**
1289  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1290  * @adapter: board private structure to initialize
1291  *
1292  * e1000_sw_init initializes the Adapter private data structure.
1293  * e1000_init_hw_struct MUST be called before this function
1294  **/
1295 static int e1000_sw_init(struct e1000_adapter *adapter)
1296 {
1297 	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1298 
1299 	adapter->num_tx_queues = 1;
1300 	adapter->num_rx_queues = 1;
1301 
1302 	if (e1000_alloc_queues(adapter)) {
1303 		e_err(probe, "Unable to allocate memory for queues\n");
1304 		return -ENOMEM;
1305 	}
1306 
1307 	/* Explicitly disable IRQ since the NIC can be in any state. */
1308 	e1000_irq_disable(adapter);
1309 
1310 	spin_lock_init(&adapter->stats_lock);
1311 
1312 	set_bit(__E1000_DOWN, &adapter->flags);
1313 
1314 	return 0;
1315 }
1316 
1317 /**
1318  * e1000_alloc_queues - Allocate memory for all rings
1319  * @adapter: board private structure to initialize
1320  *
1321  * We allocate one ring per queue at run-time since we don't know the
1322  * number of queues at compile-time.
1323  **/
1324 static int e1000_alloc_queues(struct e1000_adapter *adapter)
1325 {
1326 	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1327 				   sizeof(struct e1000_tx_ring), GFP_KERNEL);
1328 	if (!adapter->tx_ring)
1329 		return -ENOMEM;
1330 
1331 	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1332 				   sizeof(struct e1000_rx_ring), GFP_KERNEL);
1333 	if (!adapter->rx_ring) {
1334 		kfree(adapter->tx_ring);
1335 		return -ENOMEM;
1336 	}
1337 
1338 	return E1000_SUCCESS;
1339 }
1340 
1341 /**
1342  * e1000_open - Called when a network interface is made active
1343  * @netdev: network interface device structure
1344  *
1345  * Returns 0 on success, negative value on failure
1346  *
1347  * The open entry point is called when a network interface is made
1348  * active by the system (IFF_UP).  At this point all resources needed
1349  * for transmit and receive operations are allocated, the interrupt
1350  * handler is registered with the OS, the watchdog task is started,
1351  * and the stack is notified that the interface is ready.
1352  **/
1353 int e1000_open(struct net_device *netdev)
1354 {
1355 	struct e1000_adapter *adapter = netdev_priv(netdev);
1356 	struct e1000_hw *hw = &adapter->hw;
1357 	int err;
1358 
1359 	/* disallow open during test */
1360 	if (test_bit(__E1000_TESTING, &adapter->flags))
1361 		return -EBUSY;
1362 
1363 	netif_carrier_off(netdev);
1364 
1365 	/* allocate transmit descriptors */
1366 	err = e1000_setup_all_tx_resources(adapter);
1367 	if (err)
1368 		goto err_setup_tx;
1369 
1370 	/* allocate receive descriptors */
1371 	err = e1000_setup_all_rx_resources(adapter);
1372 	if (err)
1373 		goto err_setup_rx;
1374 
1375 	e1000_power_up_phy(adapter);
1376 
1377 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1378 	if ((hw->mng_cookie.status &
1379 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1380 		e1000_update_mng_vlan(adapter);
1381 	}
1382 
1383 	/* before we allocate an interrupt, we must be ready to handle it.
1384 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1385 	 * as soon as we call pci_request_irq, so we have to setup our
1386 	 * clean_rx handler before we do so.
1387 	 */
1388 	e1000_configure(adapter);
1389 
1390 	err = e1000_request_irq(adapter);
1391 	if (err)
1392 		goto err_req_irq;
1393 
1394 	/* From here on the code is the same as e1000_up() */
1395 	clear_bit(__E1000_DOWN, &adapter->flags);
1396 
1397 	napi_enable(&adapter->napi);
1398 
1399 	e1000_irq_enable(adapter);
1400 
1401 	netif_start_queue(netdev);
1402 
1403 	/* fire a link status change interrupt to start the watchdog */
1404 	ew32(ICS, E1000_ICS_LSC);
1405 
1406 	return E1000_SUCCESS;
1407 
1408 err_req_irq:
1409 	e1000_power_down_phy(adapter);
1410 	e1000_free_all_rx_resources(adapter);
1411 err_setup_rx:
1412 	e1000_free_all_tx_resources(adapter);
1413 err_setup_tx:
1414 	e1000_reset(adapter);
1415 
1416 	return err;
1417 }
1418 
1419 /**
1420  * e1000_close - Disables a network interface
1421  * @netdev: network interface device structure
1422  *
1423  * Returns 0, this is not allowed to fail
1424  *
1425  * The close entry point is called when an interface is de-activated
1426  * by the OS.  The hardware is still under the drivers control, but
1427  * needs to be disabled.  A global MAC reset is issued to stop the
1428  * hardware, and all transmit and receive resources are freed.
1429  **/
1430 int e1000_close(struct net_device *netdev)
1431 {
1432 	struct e1000_adapter *adapter = netdev_priv(netdev);
1433 	struct e1000_hw *hw = &adapter->hw;
1434 	int count = E1000_CHECK_RESET_COUNT;
1435 
1436 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags) && count--)
1437 		usleep_range(10000, 20000);
1438 
1439 	WARN_ON(count < 0);
1440 
1441 	/* signal that we're down so that the reset task will no longer run */
1442 	set_bit(__E1000_DOWN, &adapter->flags);
1443 	clear_bit(__E1000_RESETTING, &adapter->flags);
1444 
1445 	e1000_down(adapter);
1446 	e1000_power_down_phy(adapter);
1447 	e1000_free_irq(adapter);
1448 
1449 	e1000_free_all_tx_resources(adapter);
1450 	e1000_free_all_rx_resources(adapter);
1451 
1452 	/* kill manageability vlan ID if supported, but not if a vlan with
1453 	 * the same ID is registered on the host OS (let 8021q kill it)
1454 	 */
1455 	if ((hw->mng_cookie.status &
1456 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1457 	    !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1458 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1459 				       adapter->mng_vlan_id);
1460 	}
1461 
1462 	return 0;
1463 }
1464 
1465 /**
1466  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1467  * @adapter: address of board private structure
1468  * @start: address of beginning of memory
1469  * @len: length of memory
1470  **/
1471 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1472 				  unsigned long len)
1473 {
1474 	struct e1000_hw *hw = &adapter->hw;
1475 	unsigned long begin = (unsigned long)start;
1476 	unsigned long end = begin + len;
1477 
1478 	/* First rev 82545 and 82546 need to not allow any memory
1479 	 * write location to cross 64k boundary due to errata 23
1480 	 */
1481 	if (hw->mac_type == e1000_82545 ||
1482 	    hw->mac_type == e1000_ce4100 ||
1483 	    hw->mac_type == e1000_82546) {
1484 		return ((begin ^ (end - 1)) >> 16) == 0;
1485 	}
1486 
1487 	return true;
1488 }
1489 
1490 /**
1491  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1492  * @adapter: board private structure
1493  * @txdr:    tx descriptor ring (for a specific queue) to setup
1494  *
1495  * Return 0 on success, negative on failure
1496  **/
1497 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1498 				    struct e1000_tx_ring *txdr)
1499 {
1500 	struct pci_dev *pdev = adapter->pdev;
1501 	int size;
1502 
1503 	size = sizeof(struct e1000_tx_buffer) * txdr->count;
1504 	txdr->buffer_info = vzalloc(size);
1505 	if (!txdr->buffer_info)
1506 		return -ENOMEM;
1507 
1508 	/* round up to nearest 4K */
1509 
1510 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1511 	txdr->size = ALIGN(txdr->size, 4096);
1512 
1513 	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1514 					GFP_KERNEL);
1515 	if (!txdr->desc) {
1516 setup_tx_desc_die:
1517 		vfree(txdr->buffer_info);
1518 		return -ENOMEM;
1519 	}
1520 
1521 	/* Fix for errata 23, can't cross 64kB boundary */
1522 	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1523 		void *olddesc = txdr->desc;
1524 		dma_addr_t olddma = txdr->dma;
1525 		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1526 		      txdr->size, txdr->desc);
1527 		/* Try again, without freeing the previous */
1528 		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1529 						&txdr->dma, GFP_KERNEL);
1530 		/* Failed allocation, critical failure */
1531 		if (!txdr->desc) {
1532 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1533 					  olddma);
1534 			goto setup_tx_desc_die;
1535 		}
1536 
1537 		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1538 			/* give up */
1539 			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1540 					  txdr->dma);
1541 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1542 					  olddma);
1543 			e_err(probe, "Unable to allocate aligned memory "
1544 			      "for the transmit descriptor ring\n");
1545 			vfree(txdr->buffer_info);
1546 			return -ENOMEM;
1547 		} else {
1548 			/* Free old allocation, new allocation was successful */
1549 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1550 					  olddma);
1551 		}
1552 	}
1553 	memset(txdr->desc, 0, txdr->size);
1554 
1555 	txdr->next_to_use = 0;
1556 	txdr->next_to_clean = 0;
1557 
1558 	return 0;
1559 }
1560 
1561 /**
1562  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1563  * 				  (Descriptors) for all queues
1564  * @adapter: board private structure
1565  *
1566  * Return 0 on success, negative on failure
1567  **/
1568 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1569 {
1570 	int i, err = 0;
1571 
1572 	for (i = 0; i < adapter->num_tx_queues; i++) {
1573 		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1574 		if (err) {
1575 			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1576 			for (i-- ; i >= 0; i--)
1577 				e1000_free_tx_resources(adapter,
1578 							&adapter->tx_ring[i]);
1579 			break;
1580 		}
1581 	}
1582 
1583 	return err;
1584 }
1585 
1586 /**
1587  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1588  * @adapter: board private structure
1589  *
1590  * Configure the Tx unit of the MAC after a reset.
1591  **/
1592 static void e1000_configure_tx(struct e1000_adapter *adapter)
1593 {
1594 	u64 tdba;
1595 	struct e1000_hw *hw = &adapter->hw;
1596 	u32 tdlen, tctl, tipg;
1597 	u32 ipgr1, ipgr2;
1598 
1599 	/* Setup the HW Tx Head and Tail descriptor pointers */
1600 
1601 	switch (adapter->num_tx_queues) {
1602 	case 1:
1603 	default:
1604 		tdba = adapter->tx_ring[0].dma;
1605 		tdlen = adapter->tx_ring[0].count *
1606 			sizeof(struct e1000_tx_desc);
1607 		ew32(TDLEN, tdlen);
1608 		ew32(TDBAH, (tdba >> 32));
1609 		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1610 		ew32(TDT, 0);
1611 		ew32(TDH, 0);
1612 		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1613 					   E1000_TDH : E1000_82542_TDH);
1614 		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1615 					   E1000_TDT : E1000_82542_TDT);
1616 		break;
1617 	}
1618 
1619 	/* Set the default values for the Tx Inter Packet Gap timer */
1620 	if ((hw->media_type == e1000_media_type_fiber ||
1621 	     hw->media_type == e1000_media_type_internal_serdes))
1622 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1623 	else
1624 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1625 
1626 	switch (hw->mac_type) {
1627 	case e1000_82542_rev2_0:
1628 	case e1000_82542_rev2_1:
1629 		tipg = DEFAULT_82542_TIPG_IPGT;
1630 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1631 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1632 		break;
1633 	default:
1634 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1635 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1636 		break;
1637 	}
1638 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1639 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1640 	ew32(TIPG, tipg);
1641 
1642 	/* Set the Tx Interrupt Delay register */
1643 
1644 	ew32(TIDV, adapter->tx_int_delay);
1645 	if (hw->mac_type >= e1000_82540)
1646 		ew32(TADV, adapter->tx_abs_int_delay);
1647 
1648 	/* Program the Transmit Control Register */
1649 
1650 	tctl = er32(TCTL);
1651 	tctl &= ~E1000_TCTL_CT;
1652 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1653 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1654 
1655 	e1000_config_collision_dist(hw);
1656 
1657 	/* Setup Transmit Descriptor Settings for eop descriptor */
1658 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1659 
1660 	/* only set IDE if we are delaying interrupts using the timers */
1661 	if (adapter->tx_int_delay)
1662 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1663 
1664 	if (hw->mac_type < e1000_82543)
1665 		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1666 	else
1667 		adapter->txd_cmd |= E1000_TXD_CMD_RS;
1668 
1669 	/* Cache if we're 82544 running in PCI-X because we'll
1670 	 * need this to apply a workaround later in the send path.
1671 	 */
1672 	if (hw->mac_type == e1000_82544 &&
1673 	    hw->bus_type == e1000_bus_type_pcix)
1674 		adapter->pcix_82544 = true;
1675 
1676 	ew32(TCTL, tctl);
1677 
1678 }
1679 
1680 /**
1681  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1682  * @adapter: board private structure
1683  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1684  *
1685  * Returns 0 on success, negative on failure
1686  **/
1687 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1688 				    struct e1000_rx_ring *rxdr)
1689 {
1690 	struct pci_dev *pdev = adapter->pdev;
1691 	int size, desc_len;
1692 
1693 	size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1694 	rxdr->buffer_info = vzalloc(size);
1695 	if (!rxdr->buffer_info)
1696 		return -ENOMEM;
1697 
1698 	desc_len = sizeof(struct e1000_rx_desc);
1699 
1700 	/* Round up to nearest 4K */
1701 
1702 	rxdr->size = rxdr->count * desc_len;
1703 	rxdr->size = ALIGN(rxdr->size, 4096);
1704 
1705 	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1706 					GFP_KERNEL);
1707 	if (!rxdr->desc) {
1708 setup_rx_desc_die:
1709 		vfree(rxdr->buffer_info);
1710 		return -ENOMEM;
1711 	}
1712 
1713 	/* Fix for errata 23, can't cross 64kB boundary */
1714 	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1715 		void *olddesc = rxdr->desc;
1716 		dma_addr_t olddma = rxdr->dma;
1717 		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1718 		      rxdr->size, rxdr->desc);
1719 		/* Try again, without freeing the previous */
1720 		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1721 						&rxdr->dma, GFP_KERNEL);
1722 		/* Failed allocation, critical failure */
1723 		if (!rxdr->desc) {
1724 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1725 					  olddma);
1726 			goto setup_rx_desc_die;
1727 		}
1728 
1729 		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1730 			/* give up */
1731 			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1732 					  rxdr->dma);
1733 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1734 					  olddma);
1735 			e_err(probe, "Unable to allocate aligned memory for "
1736 			      "the Rx descriptor ring\n");
1737 			goto setup_rx_desc_die;
1738 		} else {
1739 			/* Free old allocation, new allocation was successful */
1740 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1741 					  olddma);
1742 		}
1743 	}
1744 	memset(rxdr->desc, 0, rxdr->size);
1745 
1746 	rxdr->next_to_clean = 0;
1747 	rxdr->next_to_use = 0;
1748 	rxdr->rx_skb_top = NULL;
1749 
1750 	return 0;
1751 }
1752 
1753 /**
1754  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1755  * 				  (Descriptors) for all queues
1756  * @adapter: board private structure
1757  *
1758  * Return 0 on success, negative on failure
1759  **/
1760 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1761 {
1762 	int i, err = 0;
1763 
1764 	for (i = 0; i < adapter->num_rx_queues; i++) {
1765 		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1766 		if (err) {
1767 			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1768 			for (i-- ; i >= 0; i--)
1769 				e1000_free_rx_resources(adapter,
1770 							&adapter->rx_ring[i]);
1771 			break;
1772 		}
1773 	}
1774 
1775 	return err;
1776 }
1777 
1778 /**
1779  * e1000_setup_rctl - configure the receive control registers
1780  * @adapter: Board private structure
1781  **/
1782 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1783 {
1784 	struct e1000_hw *hw = &adapter->hw;
1785 	u32 rctl;
1786 
1787 	rctl = er32(RCTL);
1788 
1789 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1790 
1791 	rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1792 		E1000_RCTL_RDMTS_HALF |
1793 		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1794 
1795 	if (hw->tbi_compatibility_on == 1)
1796 		rctl |= E1000_RCTL_SBP;
1797 	else
1798 		rctl &= ~E1000_RCTL_SBP;
1799 
1800 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
1801 		rctl &= ~E1000_RCTL_LPE;
1802 	else
1803 		rctl |= E1000_RCTL_LPE;
1804 
1805 	/* Setup buffer sizes */
1806 	rctl &= ~E1000_RCTL_SZ_4096;
1807 	rctl |= E1000_RCTL_BSEX;
1808 	switch (adapter->rx_buffer_len) {
1809 	case E1000_RXBUFFER_2048:
1810 	default:
1811 		rctl |= E1000_RCTL_SZ_2048;
1812 		rctl &= ~E1000_RCTL_BSEX;
1813 		break;
1814 	case E1000_RXBUFFER_4096:
1815 		rctl |= E1000_RCTL_SZ_4096;
1816 		break;
1817 	case E1000_RXBUFFER_8192:
1818 		rctl |= E1000_RCTL_SZ_8192;
1819 		break;
1820 	case E1000_RXBUFFER_16384:
1821 		rctl |= E1000_RCTL_SZ_16384;
1822 		break;
1823 	}
1824 
1825 	/* This is useful for sniffing bad packets. */
1826 	if (adapter->netdev->features & NETIF_F_RXALL) {
1827 		/* UPE and MPE will be handled by normal PROMISC logic
1828 		 * in e1000e_set_rx_mode
1829 		 */
1830 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1831 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1832 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1833 
1834 		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1835 			  E1000_RCTL_DPF | /* Allow filtered pause */
1836 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1837 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1838 		 * and that breaks VLANs.
1839 		 */
1840 	}
1841 
1842 	ew32(RCTL, rctl);
1843 }
1844 
1845 /**
1846  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1847  * @adapter: board private structure
1848  *
1849  * Configure the Rx unit of the MAC after a reset.
1850  **/
1851 static void e1000_configure_rx(struct e1000_adapter *adapter)
1852 {
1853 	u64 rdba;
1854 	struct e1000_hw *hw = &adapter->hw;
1855 	u32 rdlen, rctl, rxcsum;
1856 
1857 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
1858 		rdlen = adapter->rx_ring[0].count *
1859 			sizeof(struct e1000_rx_desc);
1860 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1861 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1862 	} else {
1863 		rdlen = adapter->rx_ring[0].count *
1864 			sizeof(struct e1000_rx_desc);
1865 		adapter->clean_rx = e1000_clean_rx_irq;
1866 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1867 	}
1868 
1869 	/* disable receives while setting up the descriptors */
1870 	rctl = er32(RCTL);
1871 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1872 
1873 	/* set the Receive Delay Timer Register */
1874 	ew32(RDTR, adapter->rx_int_delay);
1875 
1876 	if (hw->mac_type >= e1000_82540) {
1877 		ew32(RADV, adapter->rx_abs_int_delay);
1878 		if (adapter->itr_setting != 0)
1879 			ew32(ITR, 1000000000 / (adapter->itr * 256));
1880 	}
1881 
1882 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1883 	 * the Base and Length of the Rx Descriptor Ring
1884 	 */
1885 	switch (adapter->num_rx_queues) {
1886 	case 1:
1887 	default:
1888 		rdba = adapter->rx_ring[0].dma;
1889 		ew32(RDLEN, rdlen);
1890 		ew32(RDBAH, (rdba >> 32));
1891 		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1892 		ew32(RDT, 0);
1893 		ew32(RDH, 0);
1894 		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1895 					   E1000_RDH : E1000_82542_RDH);
1896 		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1897 					   E1000_RDT : E1000_82542_RDT);
1898 		break;
1899 	}
1900 
1901 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
1902 	if (hw->mac_type >= e1000_82543) {
1903 		rxcsum = er32(RXCSUM);
1904 		if (adapter->rx_csum)
1905 			rxcsum |= E1000_RXCSUM_TUOFL;
1906 		else
1907 			/* don't need to clear IPPCSE as it defaults to 0 */
1908 			rxcsum &= ~E1000_RXCSUM_TUOFL;
1909 		ew32(RXCSUM, rxcsum);
1910 	}
1911 
1912 	/* Enable Receives */
1913 	ew32(RCTL, rctl | E1000_RCTL_EN);
1914 }
1915 
1916 /**
1917  * e1000_free_tx_resources - Free Tx Resources per Queue
1918  * @adapter: board private structure
1919  * @tx_ring: Tx descriptor ring for a specific queue
1920  *
1921  * Free all transmit software resources
1922  **/
1923 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1924 				    struct e1000_tx_ring *tx_ring)
1925 {
1926 	struct pci_dev *pdev = adapter->pdev;
1927 
1928 	e1000_clean_tx_ring(adapter, tx_ring);
1929 
1930 	vfree(tx_ring->buffer_info);
1931 	tx_ring->buffer_info = NULL;
1932 
1933 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1934 			  tx_ring->dma);
1935 
1936 	tx_ring->desc = NULL;
1937 }
1938 
1939 /**
1940  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1941  * @adapter: board private structure
1942  *
1943  * Free all transmit software resources
1944  **/
1945 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1946 {
1947 	int i;
1948 
1949 	for (i = 0; i < adapter->num_tx_queues; i++)
1950 		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1951 }
1952 
1953 static void
1954 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1955 				 struct e1000_tx_buffer *buffer_info)
1956 {
1957 	if (buffer_info->dma) {
1958 		if (buffer_info->mapped_as_page)
1959 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1960 				       buffer_info->length, DMA_TO_DEVICE);
1961 		else
1962 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1963 					 buffer_info->length,
1964 					 DMA_TO_DEVICE);
1965 		buffer_info->dma = 0;
1966 	}
1967 	if (buffer_info->skb) {
1968 		dev_kfree_skb_any(buffer_info->skb);
1969 		buffer_info->skb = NULL;
1970 	}
1971 	buffer_info->time_stamp = 0;
1972 	/* buffer_info must be completely set up in the transmit path */
1973 }
1974 
1975 /**
1976  * e1000_clean_tx_ring - Free Tx Buffers
1977  * @adapter: board private structure
1978  * @tx_ring: ring to be cleaned
1979  **/
1980 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1981 				struct e1000_tx_ring *tx_ring)
1982 {
1983 	struct e1000_hw *hw = &adapter->hw;
1984 	struct e1000_tx_buffer *buffer_info;
1985 	unsigned long size;
1986 	unsigned int i;
1987 
1988 	/* Free all the Tx ring sk_buffs */
1989 
1990 	for (i = 0; i < tx_ring->count; i++) {
1991 		buffer_info = &tx_ring->buffer_info[i];
1992 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1993 	}
1994 
1995 	netdev_reset_queue(adapter->netdev);
1996 	size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
1997 	memset(tx_ring->buffer_info, 0, size);
1998 
1999 	/* Zero out the descriptor ring */
2000 
2001 	memset(tx_ring->desc, 0, tx_ring->size);
2002 
2003 	tx_ring->next_to_use = 0;
2004 	tx_ring->next_to_clean = 0;
2005 	tx_ring->last_tx_tso = false;
2006 
2007 	writel(0, hw->hw_addr + tx_ring->tdh);
2008 	writel(0, hw->hw_addr + tx_ring->tdt);
2009 }
2010 
2011 /**
2012  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2013  * @adapter: board private structure
2014  **/
2015 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2016 {
2017 	int i;
2018 
2019 	for (i = 0; i < adapter->num_tx_queues; i++)
2020 		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2021 }
2022 
2023 /**
2024  * e1000_free_rx_resources - Free Rx Resources
2025  * @adapter: board private structure
2026  * @rx_ring: ring to clean the resources from
2027  *
2028  * Free all receive software resources
2029  **/
2030 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2031 				    struct e1000_rx_ring *rx_ring)
2032 {
2033 	struct pci_dev *pdev = adapter->pdev;
2034 
2035 	e1000_clean_rx_ring(adapter, rx_ring);
2036 
2037 	vfree(rx_ring->buffer_info);
2038 	rx_ring->buffer_info = NULL;
2039 
2040 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2041 			  rx_ring->dma);
2042 
2043 	rx_ring->desc = NULL;
2044 }
2045 
2046 /**
2047  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2048  * @adapter: board private structure
2049  *
2050  * Free all receive software resources
2051  **/
2052 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2053 {
2054 	int i;
2055 
2056 	for (i = 0; i < adapter->num_rx_queues; i++)
2057 		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2058 }
2059 
2060 #define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2061 static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2062 {
2063 	return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2064 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2065 }
2066 
2067 static void *e1000_alloc_frag(const struct e1000_adapter *a)
2068 {
2069 	unsigned int len = e1000_frag_len(a);
2070 	u8 *data = netdev_alloc_frag(len);
2071 
2072 	if (likely(data))
2073 		data += E1000_HEADROOM;
2074 	return data;
2075 }
2076 
2077 /**
2078  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2079  * @adapter: board private structure
2080  * @rx_ring: ring to free buffers from
2081  **/
2082 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2083 				struct e1000_rx_ring *rx_ring)
2084 {
2085 	struct e1000_hw *hw = &adapter->hw;
2086 	struct e1000_rx_buffer *buffer_info;
2087 	struct pci_dev *pdev = adapter->pdev;
2088 	unsigned long size;
2089 	unsigned int i;
2090 
2091 	/* Free all the Rx netfrags */
2092 	for (i = 0; i < rx_ring->count; i++) {
2093 		buffer_info = &rx_ring->buffer_info[i];
2094 		if (adapter->clean_rx == e1000_clean_rx_irq) {
2095 			if (buffer_info->dma)
2096 				dma_unmap_single(&pdev->dev, buffer_info->dma,
2097 						 adapter->rx_buffer_len,
2098 						 DMA_FROM_DEVICE);
2099 			if (buffer_info->rxbuf.data) {
2100 				skb_free_frag(buffer_info->rxbuf.data);
2101 				buffer_info->rxbuf.data = NULL;
2102 			}
2103 		} else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2104 			if (buffer_info->dma)
2105 				dma_unmap_page(&pdev->dev, buffer_info->dma,
2106 					       adapter->rx_buffer_len,
2107 					       DMA_FROM_DEVICE);
2108 			if (buffer_info->rxbuf.page) {
2109 				put_page(buffer_info->rxbuf.page);
2110 				buffer_info->rxbuf.page = NULL;
2111 			}
2112 		}
2113 
2114 		buffer_info->dma = 0;
2115 	}
2116 
2117 	/* there also may be some cached data from a chained receive */
2118 	napi_free_frags(&adapter->napi);
2119 	rx_ring->rx_skb_top = NULL;
2120 
2121 	size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2122 	memset(rx_ring->buffer_info, 0, size);
2123 
2124 	/* Zero out the descriptor ring */
2125 	memset(rx_ring->desc, 0, rx_ring->size);
2126 
2127 	rx_ring->next_to_clean = 0;
2128 	rx_ring->next_to_use = 0;
2129 
2130 	writel(0, hw->hw_addr + rx_ring->rdh);
2131 	writel(0, hw->hw_addr + rx_ring->rdt);
2132 }
2133 
2134 /**
2135  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2136  * @adapter: board private structure
2137  **/
2138 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2139 {
2140 	int i;
2141 
2142 	for (i = 0; i < adapter->num_rx_queues; i++)
2143 		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2144 }
2145 
2146 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2147  * and memory write and invalidate disabled for certain operations
2148  */
2149 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2150 {
2151 	struct e1000_hw *hw = &adapter->hw;
2152 	struct net_device *netdev = adapter->netdev;
2153 	u32 rctl;
2154 
2155 	e1000_pci_clear_mwi(hw);
2156 
2157 	rctl = er32(RCTL);
2158 	rctl |= E1000_RCTL_RST;
2159 	ew32(RCTL, rctl);
2160 	E1000_WRITE_FLUSH();
2161 	mdelay(5);
2162 
2163 	if (netif_running(netdev))
2164 		e1000_clean_all_rx_rings(adapter);
2165 }
2166 
2167 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2168 {
2169 	struct e1000_hw *hw = &adapter->hw;
2170 	struct net_device *netdev = adapter->netdev;
2171 	u32 rctl;
2172 
2173 	rctl = er32(RCTL);
2174 	rctl &= ~E1000_RCTL_RST;
2175 	ew32(RCTL, rctl);
2176 	E1000_WRITE_FLUSH();
2177 	mdelay(5);
2178 
2179 	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2180 		e1000_pci_set_mwi(hw);
2181 
2182 	if (netif_running(netdev)) {
2183 		/* No need to loop, because 82542 supports only 1 queue */
2184 		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2185 		e1000_configure_rx(adapter);
2186 		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2187 	}
2188 }
2189 
2190 /**
2191  * e1000_set_mac - Change the Ethernet Address of the NIC
2192  * @netdev: network interface device structure
2193  * @p: pointer to an address structure
2194  *
2195  * Returns 0 on success, negative on failure
2196  **/
2197 static int e1000_set_mac(struct net_device *netdev, void *p)
2198 {
2199 	struct e1000_adapter *adapter = netdev_priv(netdev);
2200 	struct e1000_hw *hw = &adapter->hw;
2201 	struct sockaddr *addr = p;
2202 
2203 	if (!is_valid_ether_addr(addr->sa_data))
2204 		return -EADDRNOTAVAIL;
2205 
2206 	/* 82542 2.0 needs to be in reset to write receive address registers */
2207 
2208 	if (hw->mac_type == e1000_82542_rev2_0)
2209 		e1000_enter_82542_rst(adapter);
2210 
2211 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2212 	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2213 
2214 	e1000_rar_set(hw, hw->mac_addr, 0);
2215 
2216 	if (hw->mac_type == e1000_82542_rev2_0)
2217 		e1000_leave_82542_rst(adapter);
2218 
2219 	return 0;
2220 }
2221 
2222 /**
2223  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2224  * @netdev: network interface device structure
2225  *
2226  * The set_rx_mode entry point is called whenever the unicast or multicast
2227  * address lists or the network interface flags are updated. This routine is
2228  * responsible for configuring the hardware for proper unicast, multicast,
2229  * promiscuous mode, and all-multi behavior.
2230  **/
2231 static void e1000_set_rx_mode(struct net_device *netdev)
2232 {
2233 	struct e1000_adapter *adapter = netdev_priv(netdev);
2234 	struct e1000_hw *hw = &adapter->hw;
2235 	struct netdev_hw_addr *ha;
2236 	bool use_uc = false;
2237 	u32 rctl;
2238 	u32 hash_value;
2239 	int i, rar_entries = E1000_RAR_ENTRIES;
2240 	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2241 	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2242 
2243 	if (!mcarray)
2244 		return;
2245 
2246 	/* Check for Promiscuous and All Multicast modes */
2247 
2248 	rctl = er32(RCTL);
2249 
2250 	if (netdev->flags & IFF_PROMISC) {
2251 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2252 		rctl &= ~E1000_RCTL_VFE;
2253 	} else {
2254 		if (netdev->flags & IFF_ALLMULTI)
2255 			rctl |= E1000_RCTL_MPE;
2256 		else
2257 			rctl &= ~E1000_RCTL_MPE;
2258 		/* Enable VLAN filter if there is a VLAN */
2259 		if (e1000_vlan_used(adapter))
2260 			rctl |= E1000_RCTL_VFE;
2261 	}
2262 
2263 	if (netdev_uc_count(netdev) > rar_entries - 1) {
2264 		rctl |= E1000_RCTL_UPE;
2265 	} else if (!(netdev->flags & IFF_PROMISC)) {
2266 		rctl &= ~E1000_RCTL_UPE;
2267 		use_uc = true;
2268 	}
2269 
2270 	ew32(RCTL, rctl);
2271 
2272 	/* 82542 2.0 needs to be in reset to write receive address registers */
2273 
2274 	if (hw->mac_type == e1000_82542_rev2_0)
2275 		e1000_enter_82542_rst(adapter);
2276 
2277 	/* load the first 14 addresses into the exact filters 1-14. Unicast
2278 	 * addresses take precedence to avoid disabling unicast filtering
2279 	 * when possible.
2280 	 *
2281 	 * RAR 0 is used for the station MAC address
2282 	 * if there are not 14 addresses, go ahead and clear the filters
2283 	 */
2284 	i = 1;
2285 	if (use_uc)
2286 		netdev_for_each_uc_addr(ha, netdev) {
2287 			if (i == rar_entries)
2288 				break;
2289 			e1000_rar_set(hw, ha->addr, i++);
2290 		}
2291 
2292 	netdev_for_each_mc_addr(ha, netdev) {
2293 		if (i == rar_entries) {
2294 			/* load any remaining addresses into the hash table */
2295 			u32 hash_reg, hash_bit, mta;
2296 			hash_value = e1000_hash_mc_addr(hw, ha->addr);
2297 			hash_reg = (hash_value >> 5) & 0x7F;
2298 			hash_bit = hash_value & 0x1F;
2299 			mta = (1 << hash_bit);
2300 			mcarray[hash_reg] |= mta;
2301 		} else {
2302 			e1000_rar_set(hw, ha->addr, i++);
2303 		}
2304 	}
2305 
2306 	for (; i < rar_entries; i++) {
2307 		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2308 		E1000_WRITE_FLUSH();
2309 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2310 		E1000_WRITE_FLUSH();
2311 	}
2312 
2313 	/* write the hash table completely, write from bottom to avoid
2314 	 * both stupid write combining chipsets, and flushing each write
2315 	 */
2316 	for (i = mta_reg_count - 1; i >= 0 ; i--) {
2317 		/* If we are on an 82544 has an errata where writing odd
2318 		 * offsets overwrites the previous even offset, but writing
2319 		 * backwards over the range solves the issue by always
2320 		 * writing the odd offset first
2321 		 */
2322 		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2323 	}
2324 	E1000_WRITE_FLUSH();
2325 
2326 	if (hw->mac_type == e1000_82542_rev2_0)
2327 		e1000_leave_82542_rst(adapter);
2328 
2329 	kfree(mcarray);
2330 }
2331 
2332 /**
2333  * e1000_update_phy_info_task - get phy info
2334  * @work: work struct contained inside adapter struct
2335  *
2336  * Need to wait a few seconds after link up to get diagnostic information from
2337  * the phy
2338  */
2339 static void e1000_update_phy_info_task(struct work_struct *work)
2340 {
2341 	struct e1000_adapter *adapter = container_of(work,
2342 						     struct e1000_adapter,
2343 						     phy_info_task.work);
2344 
2345 	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2346 }
2347 
2348 /**
2349  * e1000_82547_tx_fifo_stall_task - task to complete work
2350  * @work: work struct contained inside adapter struct
2351  **/
2352 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2353 {
2354 	struct e1000_adapter *adapter = container_of(work,
2355 						     struct e1000_adapter,
2356 						     fifo_stall_task.work);
2357 	struct e1000_hw *hw = &adapter->hw;
2358 	struct net_device *netdev = adapter->netdev;
2359 	u32 tctl;
2360 
2361 	if (atomic_read(&adapter->tx_fifo_stall)) {
2362 		if ((er32(TDT) == er32(TDH)) &&
2363 		   (er32(TDFT) == er32(TDFH)) &&
2364 		   (er32(TDFTS) == er32(TDFHS))) {
2365 			tctl = er32(TCTL);
2366 			ew32(TCTL, tctl & ~E1000_TCTL_EN);
2367 			ew32(TDFT, adapter->tx_head_addr);
2368 			ew32(TDFH, adapter->tx_head_addr);
2369 			ew32(TDFTS, adapter->tx_head_addr);
2370 			ew32(TDFHS, adapter->tx_head_addr);
2371 			ew32(TCTL, tctl);
2372 			E1000_WRITE_FLUSH();
2373 
2374 			adapter->tx_fifo_head = 0;
2375 			atomic_set(&adapter->tx_fifo_stall, 0);
2376 			netif_wake_queue(netdev);
2377 		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2378 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
2379 		}
2380 	}
2381 }
2382 
2383 bool e1000_has_link(struct e1000_adapter *adapter)
2384 {
2385 	struct e1000_hw *hw = &adapter->hw;
2386 	bool link_active = false;
2387 
2388 	/* get_link_status is set on LSC (link status) interrupt or rx
2389 	 * sequence error interrupt (except on intel ce4100).
2390 	 * get_link_status will stay false until the
2391 	 * e1000_check_for_link establishes link for copper adapters
2392 	 * ONLY
2393 	 */
2394 	switch (hw->media_type) {
2395 	case e1000_media_type_copper:
2396 		if (hw->mac_type == e1000_ce4100)
2397 			hw->get_link_status = 1;
2398 		if (hw->get_link_status) {
2399 			e1000_check_for_link(hw);
2400 			link_active = !hw->get_link_status;
2401 		} else {
2402 			link_active = true;
2403 		}
2404 		break;
2405 	case e1000_media_type_fiber:
2406 		e1000_check_for_link(hw);
2407 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2408 		break;
2409 	case e1000_media_type_internal_serdes:
2410 		e1000_check_for_link(hw);
2411 		link_active = hw->serdes_has_link;
2412 		break;
2413 	default:
2414 		break;
2415 	}
2416 
2417 	return link_active;
2418 }
2419 
2420 /**
2421  * e1000_watchdog - work function
2422  * @work: work struct contained inside adapter struct
2423  **/
2424 static void e1000_watchdog(struct work_struct *work)
2425 {
2426 	struct e1000_adapter *adapter = container_of(work,
2427 						     struct e1000_adapter,
2428 						     watchdog_task.work);
2429 	struct e1000_hw *hw = &adapter->hw;
2430 	struct net_device *netdev = adapter->netdev;
2431 	struct e1000_tx_ring *txdr = adapter->tx_ring;
2432 	u32 link, tctl;
2433 
2434 	link = e1000_has_link(adapter);
2435 	if ((netif_carrier_ok(netdev)) && link)
2436 		goto link_up;
2437 
2438 	if (link) {
2439 		if (!netif_carrier_ok(netdev)) {
2440 			u32 ctrl;
2441 			/* update snapshot of PHY registers on LSC */
2442 			e1000_get_speed_and_duplex(hw,
2443 						   &adapter->link_speed,
2444 						   &adapter->link_duplex);
2445 
2446 			ctrl = er32(CTRL);
2447 			pr_info("%s NIC Link is Up %d Mbps %s, "
2448 				"Flow Control: %s\n",
2449 				netdev->name,
2450 				adapter->link_speed,
2451 				adapter->link_duplex == FULL_DUPLEX ?
2452 				"Full Duplex" : "Half Duplex",
2453 				((ctrl & E1000_CTRL_TFCE) && (ctrl &
2454 				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2455 				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2456 				E1000_CTRL_TFCE) ? "TX" : "None")));
2457 
2458 			/* adjust timeout factor according to speed/duplex */
2459 			adapter->tx_timeout_factor = 1;
2460 			switch (adapter->link_speed) {
2461 			case SPEED_10:
2462 				adapter->tx_timeout_factor = 16;
2463 				break;
2464 			case SPEED_100:
2465 				/* maybe add some timeout factor ? */
2466 				break;
2467 			}
2468 
2469 			/* enable transmits in the hardware */
2470 			tctl = er32(TCTL);
2471 			tctl |= E1000_TCTL_EN;
2472 			ew32(TCTL, tctl);
2473 
2474 			netif_carrier_on(netdev);
2475 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2476 				schedule_delayed_work(&adapter->phy_info_task,
2477 						      2 * HZ);
2478 			adapter->smartspeed = 0;
2479 		}
2480 	} else {
2481 		if (netif_carrier_ok(netdev)) {
2482 			adapter->link_speed = 0;
2483 			adapter->link_duplex = 0;
2484 			pr_info("%s NIC Link is Down\n",
2485 				netdev->name);
2486 			netif_carrier_off(netdev);
2487 
2488 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2489 				schedule_delayed_work(&adapter->phy_info_task,
2490 						      2 * HZ);
2491 		}
2492 
2493 		e1000_smartspeed(adapter);
2494 	}
2495 
2496 link_up:
2497 	e1000_update_stats(adapter);
2498 
2499 	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2500 	adapter->tpt_old = adapter->stats.tpt;
2501 	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2502 	adapter->colc_old = adapter->stats.colc;
2503 
2504 	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2505 	adapter->gorcl_old = adapter->stats.gorcl;
2506 	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2507 	adapter->gotcl_old = adapter->stats.gotcl;
2508 
2509 	e1000_update_adaptive(hw);
2510 
2511 	if (!netif_carrier_ok(netdev)) {
2512 		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2513 			/* We've lost link, so the controller stops DMA,
2514 			 * but we've got queued Tx work that's never going
2515 			 * to get done, so reset controller to flush Tx.
2516 			 * (Do the reset outside of interrupt context).
2517 			 */
2518 			adapter->tx_timeout_count++;
2519 			schedule_work(&adapter->reset_task);
2520 			/* exit immediately since reset is imminent */
2521 			return;
2522 		}
2523 	}
2524 
2525 	/* Simple mode for Interrupt Throttle Rate (ITR) */
2526 	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2527 		/* Symmetric Tx/Rx gets a reduced ITR=2000;
2528 		 * Total asymmetrical Tx or Rx gets ITR=8000;
2529 		 * everyone else is between 2000-8000.
2530 		 */
2531 		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2532 		u32 dif = (adapter->gotcl > adapter->gorcl ?
2533 			    adapter->gotcl - adapter->gorcl :
2534 			    adapter->gorcl - adapter->gotcl) / 10000;
2535 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2536 
2537 		ew32(ITR, 1000000000 / (itr * 256));
2538 	}
2539 
2540 	/* Cause software interrupt to ensure rx ring is cleaned */
2541 	ew32(ICS, E1000_ICS_RXDMT0);
2542 
2543 	/* Force detection of hung controller every watchdog period */
2544 	adapter->detect_tx_hung = true;
2545 
2546 	/* Reschedule the task */
2547 	if (!test_bit(__E1000_DOWN, &adapter->flags))
2548 		schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2549 }
2550 
2551 enum latency_range {
2552 	lowest_latency = 0,
2553 	low_latency = 1,
2554 	bulk_latency = 2,
2555 	latency_invalid = 255
2556 };
2557 
2558 /**
2559  * e1000_update_itr - update the dynamic ITR value based on statistics
2560  * @adapter: pointer to adapter
2561  * @itr_setting: current adapter->itr
2562  * @packets: the number of packets during this measurement interval
2563  * @bytes: the number of bytes during this measurement interval
2564  *
2565  *      Stores a new ITR value based on packets and byte
2566  *      counts during the last interrupt.  The advantage of per interrupt
2567  *      computation is faster updates and more accurate ITR for the current
2568  *      traffic pattern.  Constants in this function were computed
2569  *      based on theoretical maximum wire speed and thresholds were set based
2570  *      on testing data as well as attempting to minimize response time
2571  *      while increasing bulk throughput.
2572  *      this functionality is controlled by the InterruptThrottleRate module
2573  *      parameter (see e1000_param.c)
2574  **/
2575 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2576 				     u16 itr_setting, int packets, int bytes)
2577 {
2578 	unsigned int retval = itr_setting;
2579 	struct e1000_hw *hw = &adapter->hw;
2580 
2581 	if (unlikely(hw->mac_type < e1000_82540))
2582 		goto update_itr_done;
2583 
2584 	if (packets == 0)
2585 		goto update_itr_done;
2586 
2587 	switch (itr_setting) {
2588 	case lowest_latency:
2589 		/* jumbo frames get bulk treatment*/
2590 		if (bytes/packets > 8000)
2591 			retval = bulk_latency;
2592 		else if ((packets < 5) && (bytes > 512))
2593 			retval = low_latency;
2594 		break;
2595 	case low_latency:  /* 50 usec aka 20000 ints/s */
2596 		if (bytes > 10000) {
2597 			/* jumbo frames need bulk latency setting */
2598 			if (bytes/packets > 8000)
2599 				retval = bulk_latency;
2600 			else if ((packets < 10) || ((bytes/packets) > 1200))
2601 				retval = bulk_latency;
2602 			else if ((packets > 35))
2603 				retval = lowest_latency;
2604 		} else if (bytes/packets > 2000)
2605 			retval = bulk_latency;
2606 		else if (packets <= 2 && bytes < 512)
2607 			retval = lowest_latency;
2608 		break;
2609 	case bulk_latency: /* 250 usec aka 4000 ints/s */
2610 		if (bytes > 25000) {
2611 			if (packets > 35)
2612 				retval = low_latency;
2613 		} else if (bytes < 6000) {
2614 			retval = low_latency;
2615 		}
2616 		break;
2617 	}
2618 
2619 update_itr_done:
2620 	return retval;
2621 }
2622 
2623 static void e1000_set_itr(struct e1000_adapter *adapter)
2624 {
2625 	struct e1000_hw *hw = &adapter->hw;
2626 	u16 current_itr;
2627 	u32 new_itr = adapter->itr;
2628 
2629 	if (unlikely(hw->mac_type < e1000_82540))
2630 		return;
2631 
2632 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2633 	if (unlikely(adapter->link_speed != SPEED_1000)) {
2634 		current_itr = 0;
2635 		new_itr = 4000;
2636 		goto set_itr_now;
2637 	}
2638 
2639 	adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2640 					   adapter->total_tx_packets,
2641 					   adapter->total_tx_bytes);
2642 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2643 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2644 		adapter->tx_itr = low_latency;
2645 
2646 	adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2647 					   adapter->total_rx_packets,
2648 					   adapter->total_rx_bytes);
2649 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2650 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2651 		adapter->rx_itr = low_latency;
2652 
2653 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2654 
2655 	switch (current_itr) {
2656 	/* counts and packets in update_itr are dependent on these numbers */
2657 	case lowest_latency:
2658 		new_itr = 70000;
2659 		break;
2660 	case low_latency:
2661 		new_itr = 20000; /* aka hwitr = ~200 */
2662 		break;
2663 	case bulk_latency:
2664 		new_itr = 4000;
2665 		break;
2666 	default:
2667 		break;
2668 	}
2669 
2670 set_itr_now:
2671 	if (new_itr != adapter->itr) {
2672 		/* this attempts to bias the interrupt rate towards Bulk
2673 		 * by adding intermediate steps when interrupt rate is
2674 		 * increasing
2675 		 */
2676 		new_itr = new_itr > adapter->itr ?
2677 			  min(adapter->itr + (new_itr >> 2), new_itr) :
2678 			  new_itr;
2679 		adapter->itr = new_itr;
2680 		ew32(ITR, 1000000000 / (new_itr * 256));
2681 	}
2682 }
2683 
2684 #define E1000_TX_FLAGS_CSUM		0x00000001
2685 #define E1000_TX_FLAGS_VLAN		0x00000002
2686 #define E1000_TX_FLAGS_TSO		0x00000004
2687 #define E1000_TX_FLAGS_IPV4		0x00000008
2688 #define E1000_TX_FLAGS_NO_FCS		0x00000010
2689 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
2690 #define E1000_TX_FLAGS_VLAN_SHIFT	16
2691 
2692 static int e1000_tso(struct e1000_adapter *adapter,
2693 		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2694 		     __be16 protocol)
2695 {
2696 	struct e1000_context_desc *context_desc;
2697 	struct e1000_tx_buffer *buffer_info;
2698 	unsigned int i;
2699 	u32 cmd_length = 0;
2700 	u16 ipcse = 0, tucse, mss;
2701 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
2702 
2703 	if (skb_is_gso(skb)) {
2704 		int err;
2705 
2706 		err = skb_cow_head(skb, 0);
2707 		if (err < 0)
2708 			return err;
2709 
2710 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2711 		mss = skb_shinfo(skb)->gso_size;
2712 		if (protocol == htons(ETH_P_IP)) {
2713 			struct iphdr *iph = ip_hdr(skb);
2714 			iph->tot_len = 0;
2715 			iph->check = 0;
2716 			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2717 								 iph->daddr, 0,
2718 								 IPPROTO_TCP,
2719 								 0);
2720 			cmd_length = E1000_TXD_CMD_IP;
2721 			ipcse = skb_transport_offset(skb) - 1;
2722 		} else if (skb_is_gso_v6(skb)) {
2723 			tcp_v6_gso_csum_prep(skb);
2724 			ipcse = 0;
2725 		}
2726 		ipcss = skb_network_offset(skb);
2727 		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2728 		tucss = skb_transport_offset(skb);
2729 		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2730 		tucse = 0;
2731 
2732 		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2733 			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2734 
2735 		i = tx_ring->next_to_use;
2736 		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2737 		buffer_info = &tx_ring->buffer_info[i];
2738 
2739 		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2740 		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2741 		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2742 		context_desc->upper_setup.tcp_fields.tucss = tucss;
2743 		context_desc->upper_setup.tcp_fields.tucso = tucso;
2744 		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2745 		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2746 		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2747 		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2748 
2749 		buffer_info->time_stamp = jiffies;
2750 		buffer_info->next_to_watch = i;
2751 
2752 		if (++i == tx_ring->count)
2753 			i = 0;
2754 
2755 		tx_ring->next_to_use = i;
2756 
2757 		return true;
2758 	}
2759 	return false;
2760 }
2761 
2762 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2763 			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2764 			  __be16 protocol)
2765 {
2766 	struct e1000_context_desc *context_desc;
2767 	struct e1000_tx_buffer *buffer_info;
2768 	unsigned int i;
2769 	u8 css;
2770 	u32 cmd_len = E1000_TXD_CMD_DEXT;
2771 
2772 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2773 		return false;
2774 
2775 	switch (protocol) {
2776 	case cpu_to_be16(ETH_P_IP):
2777 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2778 			cmd_len |= E1000_TXD_CMD_TCP;
2779 		break;
2780 	case cpu_to_be16(ETH_P_IPV6):
2781 		/* XXX not handling all IPV6 headers */
2782 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2783 			cmd_len |= E1000_TXD_CMD_TCP;
2784 		break;
2785 	default:
2786 		if (unlikely(net_ratelimit()))
2787 			e_warn(drv, "checksum_partial proto=%x!\n",
2788 			       skb->protocol);
2789 		break;
2790 	}
2791 
2792 	css = skb_checksum_start_offset(skb);
2793 
2794 	i = tx_ring->next_to_use;
2795 	buffer_info = &tx_ring->buffer_info[i];
2796 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2797 
2798 	context_desc->lower_setup.ip_config = 0;
2799 	context_desc->upper_setup.tcp_fields.tucss = css;
2800 	context_desc->upper_setup.tcp_fields.tucso =
2801 		css + skb->csum_offset;
2802 	context_desc->upper_setup.tcp_fields.tucse = 0;
2803 	context_desc->tcp_seg_setup.data = 0;
2804 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2805 
2806 	buffer_info->time_stamp = jiffies;
2807 	buffer_info->next_to_watch = i;
2808 
2809 	if (unlikely(++i == tx_ring->count))
2810 		i = 0;
2811 
2812 	tx_ring->next_to_use = i;
2813 
2814 	return true;
2815 }
2816 
2817 #define E1000_MAX_TXD_PWR	12
2818 #define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
2819 
2820 static int e1000_tx_map(struct e1000_adapter *adapter,
2821 			struct e1000_tx_ring *tx_ring,
2822 			struct sk_buff *skb, unsigned int first,
2823 			unsigned int max_per_txd, unsigned int nr_frags,
2824 			unsigned int mss)
2825 {
2826 	struct e1000_hw *hw = &adapter->hw;
2827 	struct pci_dev *pdev = adapter->pdev;
2828 	struct e1000_tx_buffer *buffer_info;
2829 	unsigned int len = skb_headlen(skb);
2830 	unsigned int offset = 0, size, count = 0, i;
2831 	unsigned int f, bytecount, segs;
2832 
2833 	i = tx_ring->next_to_use;
2834 
2835 	while (len) {
2836 		buffer_info = &tx_ring->buffer_info[i];
2837 		size = min(len, max_per_txd);
2838 		/* Workaround for Controller erratum --
2839 		 * descriptor for non-tso packet in a linear SKB that follows a
2840 		 * tso gets written back prematurely before the data is fully
2841 		 * DMA'd to the controller
2842 		 */
2843 		if (!skb->data_len && tx_ring->last_tx_tso &&
2844 		    !skb_is_gso(skb)) {
2845 			tx_ring->last_tx_tso = false;
2846 			size -= 4;
2847 		}
2848 
2849 		/* Workaround for premature desc write-backs
2850 		 * in TSO mode.  Append 4-byte sentinel desc
2851 		 */
2852 		if (unlikely(mss && !nr_frags && size == len && size > 8))
2853 			size -= 4;
2854 		/* work-around for errata 10 and it applies
2855 		 * to all controllers in PCI-X mode
2856 		 * The fix is to make sure that the first descriptor of a
2857 		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2858 		 */
2859 		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2860 			     (size > 2015) && count == 0))
2861 			size = 2015;
2862 
2863 		/* Workaround for potential 82544 hang in PCI-X.  Avoid
2864 		 * terminating buffers within evenly-aligned dwords.
2865 		 */
2866 		if (unlikely(adapter->pcix_82544 &&
2867 		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2868 		   size > 4))
2869 			size -= 4;
2870 
2871 		buffer_info->length = size;
2872 		/* set time_stamp *before* dma to help avoid a possible race */
2873 		buffer_info->time_stamp = jiffies;
2874 		buffer_info->mapped_as_page = false;
2875 		buffer_info->dma = dma_map_single(&pdev->dev,
2876 						  skb->data + offset,
2877 						  size, DMA_TO_DEVICE);
2878 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2879 			goto dma_error;
2880 		buffer_info->next_to_watch = i;
2881 
2882 		len -= size;
2883 		offset += size;
2884 		count++;
2885 		if (len) {
2886 			i++;
2887 			if (unlikely(i == tx_ring->count))
2888 				i = 0;
2889 		}
2890 	}
2891 
2892 	for (f = 0; f < nr_frags; f++) {
2893 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2894 
2895 		len = skb_frag_size(frag);
2896 		offset = 0;
2897 
2898 		while (len) {
2899 			unsigned long bufend;
2900 			i++;
2901 			if (unlikely(i == tx_ring->count))
2902 				i = 0;
2903 
2904 			buffer_info = &tx_ring->buffer_info[i];
2905 			size = min(len, max_per_txd);
2906 			/* Workaround for premature desc write-backs
2907 			 * in TSO mode.  Append 4-byte sentinel desc
2908 			 */
2909 			if (unlikely(mss && f == (nr_frags-1) &&
2910 			    size == len && size > 8))
2911 				size -= 4;
2912 			/* Workaround for potential 82544 hang in PCI-X.
2913 			 * Avoid terminating buffers within evenly-aligned
2914 			 * dwords.
2915 			 */
2916 			bufend = (unsigned long)
2917 				page_to_phys(skb_frag_page(frag));
2918 			bufend += offset + size - 1;
2919 			if (unlikely(adapter->pcix_82544 &&
2920 				     !(bufend & 4) &&
2921 				     size > 4))
2922 				size -= 4;
2923 
2924 			buffer_info->length = size;
2925 			buffer_info->time_stamp = jiffies;
2926 			buffer_info->mapped_as_page = true;
2927 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2928 						offset, size, DMA_TO_DEVICE);
2929 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2930 				goto dma_error;
2931 			buffer_info->next_to_watch = i;
2932 
2933 			len -= size;
2934 			offset += size;
2935 			count++;
2936 		}
2937 	}
2938 
2939 	segs = skb_shinfo(skb)->gso_segs ?: 1;
2940 	/* multiply data chunks by size of headers */
2941 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2942 
2943 	tx_ring->buffer_info[i].skb = skb;
2944 	tx_ring->buffer_info[i].segs = segs;
2945 	tx_ring->buffer_info[i].bytecount = bytecount;
2946 	tx_ring->buffer_info[first].next_to_watch = i;
2947 
2948 	return count;
2949 
2950 dma_error:
2951 	dev_err(&pdev->dev, "TX DMA map failed\n");
2952 	buffer_info->dma = 0;
2953 	if (count)
2954 		count--;
2955 
2956 	while (count--) {
2957 		if (i == 0)
2958 			i += tx_ring->count;
2959 		i--;
2960 		buffer_info = &tx_ring->buffer_info[i];
2961 		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2962 	}
2963 
2964 	return 0;
2965 }
2966 
2967 static void e1000_tx_queue(struct e1000_adapter *adapter,
2968 			   struct e1000_tx_ring *tx_ring, int tx_flags,
2969 			   int count)
2970 {
2971 	struct e1000_tx_desc *tx_desc = NULL;
2972 	struct e1000_tx_buffer *buffer_info;
2973 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2974 	unsigned int i;
2975 
2976 	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2977 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2978 			     E1000_TXD_CMD_TSE;
2979 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2980 
2981 		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2982 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2983 	}
2984 
2985 	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2986 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2987 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2988 	}
2989 
2990 	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2991 		txd_lower |= E1000_TXD_CMD_VLE;
2992 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2993 	}
2994 
2995 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2996 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
2997 
2998 	i = tx_ring->next_to_use;
2999 
3000 	while (count--) {
3001 		buffer_info = &tx_ring->buffer_info[i];
3002 		tx_desc = E1000_TX_DESC(*tx_ring, i);
3003 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3004 		tx_desc->lower.data =
3005 			cpu_to_le32(txd_lower | buffer_info->length);
3006 		tx_desc->upper.data = cpu_to_le32(txd_upper);
3007 		if (unlikely(++i == tx_ring->count))
3008 			i = 0;
3009 	}
3010 
3011 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3012 
3013 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3014 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3015 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3016 
3017 	/* Force memory writes to complete before letting h/w
3018 	 * know there are new descriptors to fetch.  (Only
3019 	 * applicable for weak-ordered memory model archs,
3020 	 * such as IA-64).
3021 	 */
3022 	dma_wmb();
3023 
3024 	tx_ring->next_to_use = i;
3025 }
3026 
3027 /* 82547 workaround to avoid controller hang in half-duplex environment.
3028  * The workaround is to avoid queuing a large packet that would span
3029  * the internal Tx FIFO ring boundary by notifying the stack to resend
3030  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3031  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3032  * to the beginning of the Tx FIFO.
3033  */
3034 
3035 #define E1000_FIFO_HDR			0x10
3036 #define E1000_82547_PAD_LEN		0x3E0
3037 
3038 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3039 				       struct sk_buff *skb)
3040 {
3041 	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3042 	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3043 
3044 	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3045 
3046 	if (adapter->link_duplex != HALF_DUPLEX)
3047 		goto no_fifo_stall_required;
3048 
3049 	if (atomic_read(&adapter->tx_fifo_stall))
3050 		return 1;
3051 
3052 	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3053 		atomic_set(&adapter->tx_fifo_stall, 1);
3054 		return 1;
3055 	}
3056 
3057 no_fifo_stall_required:
3058 	adapter->tx_fifo_head += skb_fifo_len;
3059 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3060 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
3061 	return 0;
3062 }
3063 
3064 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3065 {
3066 	struct e1000_adapter *adapter = netdev_priv(netdev);
3067 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3068 
3069 	netif_stop_queue(netdev);
3070 	/* Herbert's original patch had:
3071 	 *  smp_mb__after_netif_stop_queue();
3072 	 * but since that doesn't exist yet, just open code it.
3073 	 */
3074 	smp_mb();
3075 
3076 	/* We need to check again in a case another CPU has just
3077 	 * made room available.
3078 	 */
3079 	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3080 		return -EBUSY;
3081 
3082 	/* A reprieve! */
3083 	netif_start_queue(netdev);
3084 	++adapter->restart_queue;
3085 	return 0;
3086 }
3087 
3088 static int e1000_maybe_stop_tx(struct net_device *netdev,
3089 			       struct e1000_tx_ring *tx_ring, int size)
3090 {
3091 	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3092 		return 0;
3093 	return __e1000_maybe_stop_tx(netdev, size);
3094 }
3095 
3096 #define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3097 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3098 				    struct net_device *netdev)
3099 {
3100 	struct e1000_adapter *adapter = netdev_priv(netdev);
3101 	struct e1000_hw *hw = &adapter->hw;
3102 	struct e1000_tx_ring *tx_ring;
3103 	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3104 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3105 	unsigned int tx_flags = 0;
3106 	unsigned int len = skb_headlen(skb);
3107 	unsigned int nr_frags;
3108 	unsigned int mss;
3109 	int count = 0;
3110 	int tso;
3111 	unsigned int f;
3112 	__be16 protocol = vlan_get_protocol(skb);
3113 
3114 	/* This goes back to the question of how to logically map a Tx queue
3115 	 * to a flow.  Right now, performance is impacted slightly negatively
3116 	 * if using multiple Tx queues.  If the stack breaks away from a
3117 	 * single qdisc implementation, we can look at this again.
3118 	 */
3119 	tx_ring = adapter->tx_ring;
3120 
3121 	/* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3122 	 * packets may get corrupted during padding by HW.
3123 	 * To WA this issue, pad all small packets manually.
3124 	 */
3125 	if (eth_skb_pad(skb))
3126 		return NETDEV_TX_OK;
3127 
3128 	mss = skb_shinfo(skb)->gso_size;
3129 	/* The controller does a simple calculation to
3130 	 * make sure there is enough room in the FIFO before
3131 	 * initiating the DMA for each buffer.  The calc is:
3132 	 * 4 = ceil(buffer len/mss).  To make sure we don't
3133 	 * overrun the FIFO, adjust the max buffer len if mss
3134 	 * drops.
3135 	 */
3136 	if (mss) {
3137 		u8 hdr_len;
3138 		max_per_txd = min(mss << 2, max_per_txd);
3139 		max_txd_pwr = fls(max_per_txd) - 1;
3140 
3141 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3142 		if (skb->data_len && hdr_len == len) {
3143 			switch (hw->mac_type) {
3144 			case e1000_82544: {
3145 				unsigned int pull_size;
3146 
3147 				/* Make sure we have room to chop off 4 bytes,
3148 				 * and that the end alignment will work out to
3149 				 * this hardware's requirements
3150 				 * NOTE: this is a TSO only workaround
3151 				 * if end byte alignment not correct move us
3152 				 * into the next dword
3153 				 */
3154 				if ((unsigned long)(skb_tail_pointer(skb) - 1)
3155 				    & 4)
3156 					break;
3157 				pull_size = min((unsigned int)4, skb->data_len);
3158 				if (!__pskb_pull_tail(skb, pull_size)) {
3159 					e_err(drv, "__pskb_pull_tail "
3160 					      "failed.\n");
3161 					dev_kfree_skb_any(skb);
3162 					return NETDEV_TX_OK;
3163 				}
3164 				len = skb_headlen(skb);
3165 				break;
3166 			}
3167 			default:
3168 				/* do nothing */
3169 				break;
3170 			}
3171 		}
3172 	}
3173 
3174 	/* reserve a descriptor for the offload context */
3175 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3176 		count++;
3177 	count++;
3178 
3179 	/* Controller Erratum workaround */
3180 	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3181 		count++;
3182 
3183 	count += TXD_USE_COUNT(len, max_txd_pwr);
3184 
3185 	if (adapter->pcix_82544)
3186 		count++;
3187 
3188 	/* work-around for errata 10 and it applies to all controllers
3189 	 * in PCI-X mode, so add one more descriptor to the count
3190 	 */
3191 	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3192 			(len > 2015)))
3193 		count++;
3194 
3195 	nr_frags = skb_shinfo(skb)->nr_frags;
3196 	for (f = 0; f < nr_frags; f++)
3197 		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3198 				       max_txd_pwr);
3199 	if (adapter->pcix_82544)
3200 		count += nr_frags;
3201 
3202 	/* need: count + 2 desc gap to keep tail from touching
3203 	 * head, otherwise try next time
3204 	 */
3205 	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3206 		return NETDEV_TX_BUSY;
3207 
3208 	if (unlikely((hw->mac_type == e1000_82547) &&
3209 		     (e1000_82547_fifo_workaround(adapter, skb)))) {
3210 		netif_stop_queue(netdev);
3211 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3212 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
3213 		return NETDEV_TX_BUSY;
3214 	}
3215 
3216 	if (skb_vlan_tag_present(skb)) {
3217 		tx_flags |= E1000_TX_FLAGS_VLAN;
3218 		tx_flags |= (skb_vlan_tag_get(skb) <<
3219 			     E1000_TX_FLAGS_VLAN_SHIFT);
3220 	}
3221 
3222 	first = tx_ring->next_to_use;
3223 
3224 	tso = e1000_tso(adapter, tx_ring, skb, protocol);
3225 	if (tso < 0) {
3226 		dev_kfree_skb_any(skb);
3227 		return NETDEV_TX_OK;
3228 	}
3229 
3230 	if (likely(tso)) {
3231 		if (likely(hw->mac_type != e1000_82544))
3232 			tx_ring->last_tx_tso = true;
3233 		tx_flags |= E1000_TX_FLAGS_TSO;
3234 	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3235 		tx_flags |= E1000_TX_FLAGS_CSUM;
3236 
3237 	if (protocol == htons(ETH_P_IP))
3238 		tx_flags |= E1000_TX_FLAGS_IPV4;
3239 
3240 	if (unlikely(skb->no_fcs))
3241 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
3242 
3243 	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3244 			     nr_frags, mss);
3245 
3246 	if (count) {
3247 		/* The descriptors needed is higher than other Intel drivers
3248 		 * due to a number of workarounds.  The breakdown is below:
3249 		 * Data descriptors: MAX_SKB_FRAGS + 1
3250 		 * Context Descriptor: 1
3251 		 * Keep head from touching tail: 2
3252 		 * Workarounds: 3
3253 		 */
3254 		int desc_needed = MAX_SKB_FRAGS + 7;
3255 
3256 		netdev_sent_queue(netdev, skb->len);
3257 		skb_tx_timestamp(skb);
3258 
3259 		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3260 
3261 		/* 82544 potentially requires twice as many data descriptors
3262 		 * in order to guarantee buffers don't end on evenly-aligned
3263 		 * dwords
3264 		 */
3265 		if (adapter->pcix_82544)
3266 			desc_needed += MAX_SKB_FRAGS + 1;
3267 
3268 		/* Make sure there is space in the ring for the next send. */
3269 		e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3270 
3271 		if (!netdev_xmit_more() ||
3272 		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3273 			writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3274 		}
3275 	} else {
3276 		dev_kfree_skb_any(skb);
3277 		tx_ring->buffer_info[first].time_stamp = 0;
3278 		tx_ring->next_to_use = first;
3279 	}
3280 
3281 	return NETDEV_TX_OK;
3282 }
3283 
3284 #define NUM_REGS 38 /* 1 based count */
3285 static void e1000_regdump(struct e1000_adapter *adapter)
3286 {
3287 	struct e1000_hw *hw = &adapter->hw;
3288 	u32 regs[NUM_REGS];
3289 	u32 *regs_buff = regs;
3290 	int i = 0;
3291 
3292 	static const char * const reg_name[] = {
3293 		"CTRL",  "STATUS",
3294 		"RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3295 		"TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3296 		"TIDV", "TXDCTL", "TADV", "TARC0",
3297 		"TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3298 		"TXDCTL1", "TARC1",
3299 		"CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3300 		"TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3301 		"RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3302 	};
3303 
3304 	regs_buff[0]  = er32(CTRL);
3305 	regs_buff[1]  = er32(STATUS);
3306 
3307 	regs_buff[2]  = er32(RCTL);
3308 	regs_buff[3]  = er32(RDLEN);
3309 	regs_buff[4]  = er32(RDH);
3310 	regs_buff[5]  = er32(RDT);
3311 	regs_buff[6]  = er32(RDTR);
3312 
3313 	regs_buff[7]  = er32(TCTL);
3314 	regs_buff[8]  = er32(TDBAL);
3315 	regs_buff[9]  = er32(TDBAH);
3316 	regs_buff[10] = er32(TDLEN);
3317 	regs_buff[11] = er32(TDH);
3318 	regs_buff[12] = er32(TDT);
3319 	regs_buff[13] = er32(TIDV);
3320 	regs_buff[14] = er32(TXDCTL);
3321 	regs_buff[15] = er32(TADV);
3322 	regs_buff[16] = er32(TARC0);
3323 
3324 	regs_buff[17] = er32(TDBAL1);
3325 	regs_buff[18] = er32(TDBAH1);
3326 	regs_buff[19] = er32(TDLEN1);
3327 	regs_buff[20] = er32(TDH1);
3328 	regs_buff[21] = er32(TDT1);
3329 	regs_buff[22] = er32(TXDCTL1);
3330 	regs_buff[23] = er32(TARC1);
3331 	regs_buff[24] = er32(CTRL_EXT);
3332 	regs_buff[25] = er32(ERT);
3333 	regs_buff[26] = er32(RDBAL0);
3334 	regs_buff[27] = er32(RDBAH0);
3335 	regs_buff[28] = er32(TDFH);
3336 	regs_buff[29] = er32(TDFT);
3337 	regs_buff[30] = er32(TDFHS);
3338 	regs_buff[31] = er32(TDFTS);
3339 	regs_buff[32] = er32(TDFPC);
3340 	regs_buff[33] = er32(RDFH);
3341 	regs_buff[34] = er32(RDFT);
3342 	regs_buff[35] = er32(RDFHS);
3343 	regs_buff[36] = er32(RDFTS);
3344 	regs_buff[37] = er32(RDFPC);
3345 
3346 	pr_info("Register dump\n");
3347 	for (i = 0; i < NUM_REGS; i++)
3348 		pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3349 }
3350 
3351 /*
3352  * e1000_dump: Print registers, tx ring and rx ring
3353  */
3354 static void e1000_dump(struct e1000_adapter *adapter)
3355 {
3356 	/* this code doesn't handle multiple rings */
3357 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3358 	struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3359 	int i;
3360 
3361 	if (!netif_msg_hw(adapter))
3362 		return;
3363 
3364 	/* Print Registers */
3365 	e1000_regdump(adapter);
3366 
3367 	/* transmit dump */
3368 	pr_info("TX Desc ring0 dump\n");
3369 
3370 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3371 	 *
3372 	 * Legacy Transmit Descriptor
3373 	 *   +--------------------------------------------------------------+
3374 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3375 	 *   +--------------------------------------------------------------+
3376 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3377 	 *   +--------------------------------------------------------------+
3378 	 *   63       48 47        36 35    32 31     24 23    16 15        0
3379 	 *
3380 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3381 	 *   63      48 47    40 39       32 31             16 15    8 7      0
3382 	 *   +----------------------------------------------------------------+
3383 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3384 	 *   +----------------------------------------------------------------+
3385 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3386 	 *   +----------------------------------------------------------------+
3387 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3388 	 *
3389 	 * Extended Data Descriptor (DTYP=0x1)
3390 	 *   +----------------------------------------------------------------+
3391 	 * 0 |                     Buffer Address [63:0]                      |
3392 	 *   +----------------------------------------------------------------+
3393 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3394 	 *   +----------------------------------------------------------------+
3395 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3396 	 */
3397 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3398 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3399 
3400 	if (!netif_msg_tx_done(adapter))
3401 		goto rx_ring_summary;
3402 
3403 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3404 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3405 		struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3406 		struct my_u { __le64 a; __le64 b; };
3407 		struct my_u *u = (struct my_u *)tx_desc;
3408 		const char *type;
3409 
3410 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3411 			type = "NTC/U";
3412 		else if (i == tx_ring->next_to_use)
3413 			type = "NTU";
3414 		else if (i == tx_ring->next_to_clean)
3415 			type = "NTC";
3416 		else
3417 			type = "";
3418 
3419 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3420 			((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3421 			le64_to_cpu(u->a), le64_to_cpu(u->b),
3422 			(u64)buffer_info->dma, buffer_info->length,
3423 			buffer_info->next_to_watch,
3424 			(u64)buffer_info->time_stamp, buffer_info->skb, type);
3425 	}
3426 
3427 rx_ring_summary:
3428 	/* receive dump */
3429 	pr_info("\nRX Desc ring dump\n");
3430 
3431 	/* Legacy Receive Descriptor Format
3432 	 *
3433 	 * +-----------------------------------------------------+
3434 	 * |                Buffer Address [63:0]                |
3435 	 * +-----------------------------------------------------+
3436 	 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3437 	 * +-----------------------------------------------------+
3438 	 * 63       48 47    40 39      32 31         16 15      0
3439 	 */
3440 	pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3441 
3442 	if (!netif_msg_rx_status(adapter))
3443 		goto exit;
3444 
3445 	for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3446 		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3447 		struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3448 		struct my_u { __le64 a; __le64 b; };
3449 		struct my_u *u = (struct my_u *)rx_desc;
3450 		const char *type;
3451 
3452 		if (i == rx_ring->next_to_use)
3453 			type = "NTU";
3454 		else if (i == rx_ring->next_to_clean)
3455 			type = "NTC";
3456 		else
3457 			type = "";
3458 
3459 		pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3460 			i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3461 			(u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3462 	} /* for */
3463 
3464 	/* dump the descriptor caches */
3465 	/* rx */
3466 	pr_info("Rx descriptor cache in 64bit format\n");
3467 	for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3468 		pr_info("R%04X: %08X|%08X %08X|%08X\n",
3469 			i,
3470 			readl(adapter->hw.hw_addr + i+4),
3471 			readl(adapter->hw.hw_addr + i),
3472 			readl(adapter->hw.hw_addr + i+12),
3473 			readl(adapter->hw.hw_addr + i+8));
3474 	}
3475 	/* tx */
3476 	pr_info("Tx descriptor cache in 64bit format\n");
3477 	for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3478 		pr_info("T%04X: %08X|%08X %08X|%08X\n",
3479 			i,
3480 			readl(adapter->hw.hw_addr + i+4),
3481 			readl(adapter->hw.hw_addr + i),
3482 			readl(adapter->hw.hw_addr + i+12),
3483 			readl(adapter->hw.hw_addr + i+8));
3484 	}
3485 exit:
3486 	return;
3487 }
3488 
3489 /**
3490  * e1000_tx_timeout - Respond to a Tx Hang
3491  * @netdev: network interface device structure
3492  **/
3493 static void e1000_tx_timeout(struct net_device *netdev, unsigned int txqueue)
3494 {
3495 	struct e1000_adapter *adapter = netdev_priv(netdev);
3496 
3497 	/* Do the reset outside of interrupt context */
3498 	adapter->tx_timeout_count++;
3499 	schedule_work(&adapter->reset_task);
3500 }
3501 
3502 static void e1000_reset_task(struct work_struct *work)
3503 {
3504 	struct e1000_adapter *adapter =
3505 		container_of(work, struct e1000_adapter, reset_task);
3506 
3507 	e_err(drv, "Reset adapter\n");
3508 	e1000_reinit_locked(adapter);
3509 }
3510 
3511 /**
3512  * e1000_change_mtu - Change the Maximum Transfer Unit
3513  * @netdev: network interface device structure
3514  * @new_mtu: new value for maximum frame size
3515  *
3516  * Returns 0 on success, negative on failure
3517  **/
3518 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3519 {
3520 	struct e1000_adapter *adapter = netdev_priv(netdev);
3521 	struct e1000_hw *hw = &adapter->hw;
3522 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3523 
3524 	/* Adapter-specific max frame size limits. */
3525 	switch (hw->mac_type) {
3526 	case e1000_undefined ... e1000_82542_rev2_1:
3527 		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3528 			e_err(probe, "Jumbo Frames not supported.\n");
3529 			return -EINVAL;
3530 		}
3531 		break;
3532 	default:
3533 		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3534 		break;
3535 	}
3536 
3537 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3538 		msleep(1);
3539 	/* e1000_down has a dependency on max_frame_size */
3540 	hw->max_frame_size = max_frame;
3541 	if (netif_running(netdev)) {
3542 		/* prevent buffers from being reallocated */
3543 		adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3544 		e1000_down(adapter);
3545 	}
3546 
3547 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3548 	 * means we reserve 2 more, this pushes us to allocate from the next
3549 	 * larger slab size.
3550 	 * i.e. RXBUFFER_2048 --> size-4096 slab
3551 	 * however with the new *_jumbo_rx* routines, jumbo receives will use
3552 	 * fragmented skbs
3553 	 */
3554 
3555 	if (max_frame <= E1000_RXBUFFER_2048)
3556 		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3557 	else
3558 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3559 		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3560 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3561 		adapter->rx_buffer_len = PAGE_SIZE;
3562 #endif
3563 
3564 	/* adjust allocation if LPE protects us, and we aren't using SBP */
3565 	if (!hw->tbi_compatibility_on &&
3566 	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3567 	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3568 		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3569 
3570 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
3571 		   netdev->mtu, new_mtu);
3572 	netdev->mtu = new_mtu;
3573 
3574 	if (netif_running(netdev))
3575 		e1000_up(adapter);
3576 	else
3577 		e1000_reset(adapter);
3578 
3579 	clear_bit(__E1000_RESETTING, &adapter->flags);
3580 
3581 	return 0;
3582 }
3583 
3584 /**
3585  * e1000_update_stats - Update the board statistics counters
3586  * @adapter: board private structure
3587  **/
3588 void e1000_update_stats(struct e1000_adapter *adapter)
3589 {
3590 	struct net_device *netdev = adapter->netdev;
3591 	struct e1000_hw *hw = &adapter->hw;
3592 	struct pci_dev *pdev = adapter->pdev;
3593 	unsigned long flags;
3594 	u16 phy_tmp;
3595 
3596 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3597 
3598 	/* Prevent stats update while adapter is being reset, or if the pci
3599 	 * connection is down.
3600 	 */
3601 	if (adapter->link_speed == 0)
3602 		return;
3603 	if (pci_channel_offline(pdev))
3604 		return;
3605 
3606 	spin_lock_irqsave(&adapter->stats_lock, flags);
3607 
3608 	/* these counters are modified from e1000_tbi_adjust_stats,
3609 	 * called from the interrupt context, so they must only
3610 	 * be written while holding adapter->stats_lock
3611 	 */
3612 
3613 	adapter->stats.crcerrs += er32(CRCERRS);
3614 	adapter->stats.gprc += er32(GPRC);
3615 	adapter->stats.gorcl += er32(GORCL);
3616 	adapter->stats.gorch += er32(GORCH);
3617 	adapter->stats.bprc += er32(BPRC);
3618 	adapter->stats.mprc += er32(MPRC);
3619 	adapter->stats.roc += er32(ROC);
3620 
3621 	adapter->stats.prc64 += er32(PRC64);
3622 	adapter->stats.prc127 += er32(PRC127);
3623 	adapter->stats.prc255 += er32(PRC255);
3624 	adapter->stats.prc511 += er32(PRC511);
3625 	adapter->stats.prc1023 += er32(PRC1023);
3626 	adapter->stats.prc1522 += er32(PRC1522);
3627 
3628 	adapter->stats.symerrs += er32(SYMERRS);
3629 	adapter->stats.mpc += er32(MPC);
3630 	adapter->stats.scc += er32(SCC);
3631 	adapter->stats.ecol += er32(ECOL);
3632 	adapter->stats.mcc += er32(MCC);
3633 	adapter->stats.latecol += er32(LATECOL);
3634 	adapter->stats.dc += er32(DC);
3635 	adapter->stats.sec += er32(SEC);
3636 	adapter->stats.rlec += er32(RLEC);
3637 	adapter->stats.xonrxc += er32(XONRXC);
3638 	adapter->stats.xontxc += er32(XONTXC);
3639 	adapter->stats.xoffrxc += er32(XOFFRXC);
3640 	adapter->stats.xofftxc += er32(XOFFTXC);
3641 	adapter->stats.fcruc += er32(FCRUC);
3642 	adapter->stats.gptc += er32(GPTC);
3643 	adapter->stats.gotcl += er32(GOTCL);
3644 	adapter->stats.gotch += er32(GOTCH);
3645 	adapter->stats.rnbc += er32(RNBC);
3646 	adapter->stats.ruc += er32(RUC);
3647 	adapter->stats.rfc += er32(RFC);
3648 	adapter->stats.rjc += er32(RJC);
3649 	adapter->stats.torl += er32(TORL);
3650 	adapter->stats.torh += er32(TORH);
3651 	adapter->stats.totl += er32(TOTL);
3652 	adapter->stats.toth += er32(TOTH);
3653 	adapter->stats.tpr += er32(TPR);
3654 
3655 	adapter->stats.ptc64 += er32(PTC64);
3656 	adapter->stats.ptc127 += er32(PTC127);
3657 	adapter->stats.ptc255 += er32(PTC255);
3658 	adapter->stats.ptc511 += er32(PTC511);
3659 	adapter->stats.ptc1023 += er32(PTC1023);
3660 	adapter->stats.ptc1522 += er32(PTC1522);
3661 
3662 	adapter->stats.mptc += er32(MPTC);
3663 	adapter->stats.bptc += er32(BPTC);
3664 
3665 	/* used for adaptive IFS */
3666 
3667 	hw->tx_packet_delta = er32(TPT);
3668 	adapter->stats.tpt += hw->tx_packet_delta;
3669 	hw->collision_delta = er32(COLC);
3670 	adapter->stats.colc += hw->collision_delta;
3671 
3672 	if (hw->mac_type >= e1000_82543) {
3673 		adapter->stats.algnerrc += er32(ALGNERRC);
3674 		adapter->stats.rxerrc += er32(RXERRC);
3675 		adapter->stats.tncrs += er32(TNCRS);
3676 		adapter->stats.cexterr += er32(CEXTERR);
3677 		adapter->stats.tsctc += er32(TSCTC);
3678 		adapter->stats.tsctfc += er32(TSCTFC);
3679 	}
3680 
3681 	/* Fill out the OS statistics structure */
3682 	netdev->stats.multicast = adapter->stats.mprc;
3683 	netdev->stats.collisions = adapter->stats.colc;
3684 
3685 	/* Rx Errors */
3686 
3687 	/* RLEC on some newer hardware can be incorrect so build
3688 	 * our own version based on RUC and ROC
3689 	 */
3690 	netdev->stats.rx_errors = adapter->stats.rxerrc +
3691 		adapter->stats.crcerrs + adapter->stats.algnerrc +
3692 		adapter->stats.ruc + adapter->stats.roc +
3693 		adapter->stats.cexterr;
3694 	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3695 	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3696 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3697 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3698 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3699 
3700 	/* Tx Errors */
3701 	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3702 	netdev->stats.tx_errors = adapter->stats.txerrc;
3703 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3704 	netdev->stats.tx_window_errors = adapter->stats.latecol;
3705 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3706 	if (hw->bad_tx_carr_stats_fd &&
3707 	    adapter->link_duplex == FULL_DUPLEX) {
3708 		netdev->stats.tx_carrier_errors = 0;
3709 		adapter->stats.tncrs = 0;
3710 	}
3711 
3712 	/* Tx Dropped needs to be maintained elsewhere */
3713 
3714 	/* Phy Stats */
3715 	if (hw->media_type == e1000_media_type_copper) {
3716 		if ((adapter->link_speed == SPEED_1000) &&
3717 		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3718 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3719 			adapter->phy_stats.idle_errors += phy_tmp;
3720 		}
3721 
3722 		if ((hw->mac_type <= e1000_82546) &&
3723 		   (hw->phy_type == e1000_phy_m88) &&
3724 		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3725 			adapter->phy_stats.receive_errors += phy_tmp;
3726 	}
3727 
3728 	/* Management Stats */
3729 	if (hw->has_smbus) {
3730 		adapter->stats.mgptc += er32(MGTPTC);
3731 		adapter->stats.mgprc += er32(MGTPRC);
3732 		adapter->stats.mgpdc += er32(MGTPDC);
3733 	}
3734 
3735 	spin_unlock_irqrestore(&adapter->stats_lock, flags);
3736 }
3737 
3738 /**
3739  * e1000_intr - Interrupt Handler
3740  * @irq: interrupt number
3741  * @data: pointer to a network interface device structure
3742  **/
3743 static irqreturn_t e1000_intr(int irq, void *data)
3744 {
3745 	struct net_device *netdev = data;
3746 	struct e1000_adapter *adapter = netdev_priv(netdev);
3747 	struct e1000_hw *hw = &adapter->hw;
3748 	u32 icr = er32(ICR);
3749 
3750 	if (unlikely((!icr)))
3751 		return IRQ_NONE;  /* Not our interrupt */
3752 
3753 	/* we might have caused the interrupt, but the above
3754 	 * read cleared it, and just in case the driver is
3755 	 * down there is nothing to do so return handled
3756 	 */
3757 	if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3758 		return IRQ_HANDLED;
3759 
3760 	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3761 		hw->get_link_status = 1;
3762 		/* guard against interrupt when we're going down */
3763 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3764 			schedule_delayed_work(&adapter->watchdog_task, 1);
3765 	}
3766 
3767 	/* disable interrupts, without the synchronize_irq bit */
3768 	ew32(IMC, ~0);
3769 	E1000_WRITE_FLUSH();
3770 
3771 	if (likely(napi_schedule_prep(&adapter->napi))) {
3772 		adapter->total_tx_bytes = 0;
3773 		adapter->total_tx_packets = 0;
3774 		adapter->total_rx_bytes = 0;
3775 		adapter->total_rx_packets = 0;
3776 		__napi_schedule(&adapter->napi);
3777 	} else {
3778 		/* this really should not happen! if it does it is basically a
3779 		 * bug, but not a hard error, so enable ints and continue
3780 		 */
3781 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3782 			e1000_irq_enable(adapter);
3783 	}
3784 
3785 	return IRQ_HANDLED;
3786 }
3787 
3788 /**
3789  * e1000_clean - NAPI Rx polling callback
3790  * @adapter: board private structure
3791  **/
3792 static int e1000_clean(struct napi_struct *napi, int budget)
3793 {
3794 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3795 						     napi);
3796 	int tx_clean_complete = 0, work_done = 0;
3797 
3798 	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3799 
3800 	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3801 
3802 	if (!tx_clean_complete || work_done == budget)
3803 		return budget;
3804 
3805 	/* Exit the polling mode, but don't re-enable interrupts if stack might
3806 	 * poll us due to busy-polling
3807 	 */
3808 	if (likely(napi_complete_done(napi, work_done))) {
3809 		if (likely(adapter->itr_setting & 3))
3810 			e1000_set_itr(adapter);
3811 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3812 			e1000_irq_enable(adapter);
3813 	}
3814 
3815 	return work_done;
3816 }
3817 
3818 /**
3819  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3820  * @adapter: board private structure
3821  **/
3822 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3823 			       struct e1000_tx_ring *tx_ring)
3824 {
3825 	struct e1000_hw *hw = &adapter->hw;
3826 	struct net_device *netdev = adapter->netdev;
3827 	struct e1000_tx_desc *tx_desc, *eop_desc;
3828 	struct e1000_tx_buffer *buffer_info;
3829 	unsigned int i, eop;
3830 	unsigned int count = 0;
3831 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3832 	unsigned int bytes_compl = 0, pkts_compl = 0;
3833 
3834 	i = tx_ring->next_to_clean;
3835 	eop = tx_ring->buffer_info[i].next_to_watch;
3836 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
3837 
3838 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3839 	       (count < tx_ring->count)) {
3840 		bool cleaned = false;
3841 		dma_rmb();	/* read buffer_info after eop_desc */
3842 		for ( ; !cleaned; count++) {
3843 			tx_desc = E1000_TX_DESC(*tx_ring, i);
3844 			buffer_info = &tx_ring->buffer_info[i];
3845 			cleaned = (i == eop);
3846 
3847 			if (cleaned) {
3848 				total_tx_packets += buffer_info->segs;
3849 				total_tx_bytes += buffer_info->bytecount;
3850 				if (buffer_info->skb) {
3851 					bytes_compl += buffer_info->skb->len;
3852 					pkts_compl++;
3853 				}
3854 
3855 			}
3856 			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3857 			tx_desc->upper.data = 0;
3858 
3859 			if (unlikely(++i == tx_ring->count))
3860 				i = 0;
3861 		}
3862 
3863 		eop = tx_ring->buffer_info[i].next_to_watch;
3864 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
3865 	}
3866 
3867 	/* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3868 	 * which will reuse the cleaned buffers.
3869 	 */
3870 	smp_store_release(&tx_ring->next_to_clean, i);
3871 
3872 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3873 
3874 #define TX_WAKE_THRESHOLD 32
3875 	if (unlikely(count && netif_carrier_ok(netdev) &&
3876 		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3877 		/* Make sure that anybody stopping the queue after this
3878 		 * sees the new next_to_clean.
3879 		 */
3880 		smp_mb();
3881 
3882 		if (netif_queue_stopped(netdev) &&
3883 		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3884 			netif_wake_queue(netdev);
3885 			++adapter->restart_queue;
3886 		}
3887 	}
3888 
3889 	if (adapter->detect_tx_hung) {
3890 		/* Detect a transmit hang in hardware, this serializes the
3891 		 * check with the clearing of time_stamp and movement of i
3892 		 */
3893 		adapter->detect_tx_hung = false;
3894 		if (tx_ring->buffer_info[eop].time_stamp &&
3895 		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3896 			       (adapter->tx_timeout_factor * HZ)) &&
3897 		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3898 
3899 			/* detected Tx unit hang */
3900 			e_err(drv, "Detected Tx Unit Hang\n"
3901 			      "  Tx Queue             <%lu>\n"
3902 			      "  TDH                  <%x>\n"
3903 			      "  TDT                  <%x>\n"
3904 			      "  next_to_use          <%x>\n"
3905 			      "  next_to_clean        <%x>\n"
3906 			      "buffer_info[next_to_clean]\n"
3907 			      "  time_stamp           <%lx>\n"
3908 			      "  next_to_watch        <%x>\n"
3909 			      "  jiffies              <%lx>\n"
3910 			      "  next_to_watch.status <%x>\n",
3911 				(unsigned long)(tx_ring - adapter->tx_ring),
3912 				readl(hw->hw_addr + tx_ring->tdh),
3913 				readl(hw->hw_addr + tx_ring->tdt),
3914 				tx_ring->next_to_use,
3915 				tx_ring->next_to_clean,
3916 				tx_ring->buffer_info[eop].time_stamp,
3917 				eop,
3918 				jiffies,
3919 				eop_desc->upper.fields.status);
3920 			e1000_dump(adapter);
3921 			netif_stop_queue(netdev);
3922 		}
3923 	}
3924 	adapter->total_tx_bytes += total_tx_bytes;
3925 	adapter->total_tx_packets += total_tx_packets;
3926 	netdev->stats.tx_bytes += total_tx_bytes;
3927 	netdev->stats.tx_packets += total_tx_packets;
3928 	return count < tx_ring->count;
3929 }
3930 
3931 /**
3932  * e1000_rx_checksum - Receive Checksum Offload for 82543
3933  * @adapter:     board private structure
3934  * @status_err:  receive descriptor status and error fields
3935  * @csum:        receive descriptor csum field
3936  * @sk_buff:     socket buffer with received data
3937  **/
3938 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3939 			      u32 csum, struct sk_buff *skb)
3940 {
3941 	struct e1000_hw *hw = &adapter->hw;
3942 	u16 status = (u16)status_err;
3943 	u8 errors = (u8)(status_err >> 24);
3944 
3945 	skb_checksum_none_assert(skb);
3946 
3947 	/* 82543 or newer only */
3948 	if (unlikely(hw->mac_type < e1000_82543))
3949 		return;
3950 	/* Ignore Checksum bit is set */
3951 	if (unlikely(status & E1000_RXD_STAT_IXSM))
3952 		return;
3953 	/* TCP/UDP checksum error bit is set */
3954 	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3955 		/* let the stack verify checksum errors */
3956 		adapter->hw_csum_err++;
3957 		return;
3958 	}
3959 	/* TCP/UDP Checksum has not been calculated */
3960 	if (!(status & E1000_RXD_STAT_TCPCS))
3961 		return;
3962 
3963 	/* It must be a TCP or UDP packet with a valid checksum */
3964 	if (likely(status & E1000_RXD_STAT_TCPCS)) {
3965 		/* TCP checksum is good */
3966 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3967 	}
3968 	adapter->hw_csum_good++;
3969 }
3970 
3971 /**
3972  * e1000_consume_page - helper function for jumbo Rx path
3973  **/
3974 static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
3975 			       u16 length)
3976 {
3977 	bi->rxbuf.page = NULL;
3978 	skb->len += length;
3979 	skb->data_len += length;
3980 	skb->truesize += PAGE_SIZE;
3981 }
3982 
3983 /**
3984  * e1000_receive_skb - helper function to handle rx indications
3985  * @adapter: board private structure
3986  * @status: descriptor status field as written by hardware
3987  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3988  * @skb: pointer to sk_buff to be indicated to stack
3989  */
3990 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3991 			      __le16 vlan, struct sk_buff *skb)
3992 {
3993 	skb->protocol = eth_type_trans(skb, adapter->netdev);
3994 
3995 	if (status & E1000_RXD_STAT_VP) {
3996 		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
3997 
3998 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
3999 	}
4000 	napi_gro_receive(&adapter->napi, skb);
4001 }
4002 
4003 /**
4004  * e1000_tbi_adjust_stats
4005  * @hw: Struct containing variables accessed by shared code
4006  * @frame_len: The length of the frame in question
4007  * @mac_addr: The Ethernet destination address of the frame in question
4008  *
4009  * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4010  */
4011 static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4012 				   struct e1000_hw_stats *stats,
4013 				   u32 frame_len, const u8 *mac_addr)
4014 {
4015 	u64 carry_bit;
4016 
4017 	/* First adjust the frame length. */
4018 	frame_len--;
4019 	/* We need to adjust the statistics counters, since the hardware
4020 	 * counters overcount this packet as a CRC error and undercount
4021 	 * the packet as a good packet
4022 	 */
4023 	/* This packet should not be counted as a CRC error. */
4024 	stats->crcerrs--;
4025 	/* This packet does count as a Good Packet Received. */
4026 	stats->gprc++;
4027 
4028 	/* Adjust the Good Octets received counters */
4029 	carry_bit = 0x80000000 & stats->gorcl;
4030 	stats->gorcl += frame_len;
4031 	/* If the high bit of Gorcl (the low 32 bits of the Good Octets
4032 	 * Received Count) was one before the addition,
4033 	 * AND it is zero after, then we lost the carry out,
4034 	 * need to add one to Gorch (Good Octets Received Count High).
4035 	 * This could be simplified if all environments supported
4036 	 * 64-bit integers.
4037 	 */
4038 	if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4039 		stats->gorch++;
4040 	/* Is this a broadcast or multicast?  Check broadcast first,
4041 	 * since the test for a multicast frame will test positive on
4042 	 * a broadcast frame.
4043 	 */
4044 	if (is_broadcast_ether_addr(mac_addr))
4045 		stats->bprc++;
4046 	else if (is_multicast_ether_addr(mac_addr))
4047 		stats->mprc++;
4048 
4049 	if (frame_len == hw->max_frame_size) {
4050 		/* In this case, the hardware has overcounted the number of
4051 		 * oversize frames.
4052 		 */
4053 		if (stats->roc > 0)
4054 			stats->roc--;
4055 	}
4056 
4057 	/* Adjust the bin counters when the extra byte put the frame in the
4058 	 * wrong bin. Remember that the frame_len was adjusted above.
4059 	 */
4060 	if (frame_len == 64) {
4061 		stats->prc64++;
4062 		stats->prc127--;
4063 	} else if (frame_len == 127) {
4064 		stats->prc127++;
4065 		stats->prc255--;
4066 	} else if (frame_len == 255) {
4067 		stats->prc255++;
4068 		stats->prc511--;
4069 	} else if (frame_len == 511) {
4070 		stats->prc511++;
4071 		stats->prc1023--;
4072 	} else if (frame_len == 1023) {
4073 		stats->prc1023++;
4074 		stats->prc1522--;
4075 	} else if (frame_len == 1522) {
4076 		stats->prc1522++;
4077 	}
4078 }
4079 
4080 static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4081 				    u8 status, u8 errors,
4082 				    u32 length, const u8 *data)
4083 {
4084 	struct e1000_hw *hw = &adapter->hw;
4085 	u8 last_byte = *(data + length - 1);
4086 
4087 	if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4088 		unsigned long irq_flags;
4089 
4090 		spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4091 		e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4092 		spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4093 
4094 		return true;
4095 	}
4096 
4097 	return false;
4098 }
4099 
4100 static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4101 					  unsigned int bufsz)
4102 {
4103 	struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4104 
4105 	if (unlikely(!skb))
4106 		adapter->alloc_rx_buff_failed++;
4107 	return skb;
4108 }
4109 
4110 /**
4111  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4112  * @adapter: board private structure
4113  * @rx_ring: ring to clean
4114  * @work_done: amount of napi work completed this call
4115  * @work_to_do: max amount of work allowed for this call to do
4116  *
4117  * the return value indicates whether actual cleaning was done, there
4118  * is no guarantee that everything was cleaned
4119  */
4120 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4121 				     struct e1000_rx_ring *rx_ring,
4122 				     int *work_done, int work_to_do)
4123 {
4124 	struct net_device *netdev = adapter->netdev;
4125 	struct pci_dev *pdev = adapter->pdev;
4126 	struct e1000_rx_desc *rx_desc, *next_rxd;
4127 	struct e1000_rx_buffer *buffer_info, *next_buffer;
4128 	u32 length;
4129 	unsigned int i;
4130 	int cleaned_count = 0;
4131 	bool cleaned = false;
4132 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4133 
4134 	i = rx_ring->next_to_clean;
4135 	rx_desc = E1000_RX_DESC(*rx_ring, i);
4136 	buffer_info = &rx_ring->buffer_info[i];
4137 
4138 	while (rx_desc->status & E1000_RXD_STAT_DD) {
4139 		struct sk_buff *skb;
4140 		u8 status;
4141 
4142 		if (*work_done >= work_to_do)
4143 			break;
4144 		(*work_done)++;
4145 		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4146 
4147 		status = rx_desc->status;
4148 
4149 		if (++i == rx_ring->count)
4150 			i = 0;
4151 
4152 		next_rxd = E1000_RX_DESC(*rx_ring, i);
4153 		prefetch(next_rxd);
4154 
4155 		next_buffer = &rx_ring->buffer_info[i];
4156 
4157 		cleaned = true;
4158 		cleaned_count++;
4159 		dma_unmap_page(&pdev->dev, buffer_info->dma,
4160 			       adapter->rx_buffer_len, DMA_FROM_DEVICE);
4161 		buffer_info->dma = 0;
4162 
4163 		length = le16_to_cpu(rx_desc->length);
4164 
4165 		/* errors is only valid for DD + EOP descriptors */
4166 		if (unlikely((status & E1000_RXD_STAT_EOP) &&
4167 		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4168 			u8 *mapped = page_address(buffer_info->rxbuf.page);
4169 
4170 			if (e1000_tbi_should_accept(adapter, status,
4171 						    rx_desc->errors,
4172 						    length, mapped)) {
4173 				length--;
4174 			} else if (netdev->features & NETIF_F_RXALL) {
4175 				goto process_skb;
4176 			} else {
4177 				/* an error means any chain goes out the window
4178 				 * too
4179 				 */
4180 				dev_kfree_skb(rx_ring->rx_skb_top);
4181 				rx_ring->rx_skb_top = NULL;
4182 				goto next_desc;
4183 			}
4184 		}
4185 
4186 #define rxtop rx_ring->rx_skb_top
4187 process_skb:
4188 		if (!(status & E1000_RXD_STAT_EOP)) {
4189 			/* this descriptor is only the beginning (or middle) */
4190 			if (!rxtop) {
4191 				/* this is the beginning of a chain */
4192 				rxtop = napi_get_frags(&adapter->napi);
4193 				if (!rxtop)
4194 					break;
4195 
4196 				skb_fill_page_desc(rxtop, 0,
4197 						   buffer_info->rxbuf.page,
4198 						   0, length);
4199 			} else {
4200 				/* this is the middle of a chain */
4201 				skb_fill_page_desc(rxtop,
4202 				    skb_shinfo(rxtop)->nr_frags,
4203 				    buffer_info->rxbuf.page, 0, length);
4204 			}
4205 			e1000_consume_page(buffer_info, rxtop, length);
4206 			goto next_desc;
4207 		} else {
4208 			if (rxtop) {
4209 				/* end of the chain */
4210 				skb_fill_page_desc(rxtop,
4211 				    skb_shinfo(rxtop)->nr_frags,
4212 				    buffer_info->rxbuf.page, 0, length);
4213 				skb = rxtop;
4214 				rxtop = NULL;
4215 				e1000_consume_page(buffer_info, skb, length);
4216 			} else {
4217 				struct page *p;
4218 				/* no chain, got EOP, this buf is the packet
4219 				 * copybreak to save the put_page/alloc_page
4220 				 */
4221 				p = buffer_info->rxbuf.page;
4222 				if (length <= copybreak) {
4223 					u8 *vaddr;
4224 
4225 					if (likely(!(netdev->features & NETIF_F_RXFCS)))
4226 						length -= 4;
4227 					skb = e1000_alloc_rx_skb(adapter,
4228 								 length);
4229 					if (!skb)
4230 						break;
4231 
4232 					vaddr = kmap_atomic(p);
4233 					memcpy(skb_tail_pointer(skb), vaddr,
4234 					       length);
4235 					kunmap_atomic(vaddr);
4236 					/* re-use the page, so don't erase
4237 					 * buffer_info->rxbuf.page
4238 					 */
4239 					skb_put(skb, length);
4240 					e1000_rx_checksum(adapter,
4241 							  status | rx_desc->errors << 24,
4242 							  le16_to_cpu(rx_desc->csum), skb);
4243 
4244 					total_rx_bytes += skb->len;
4245 					total_rx_packets++;
4246 
4247 					e1000_receive_skb(adapter, status,
4248 							  rx_desc->special, skb);
4249 					goto next_desc;
4250 				} else {
4251 					skb = napi_get_frags(&adapter->napi);
4252 					if (!skb) {
4253 						adapter->alloc_rx_buff_failed++;
4254 						break;
4255 					}
4256 					skb_fill_page_desc(skb, 0, p, 0,
4257 							   length);
4258 					e1000_consume_page(buffer_info, skb,
4259 							   length);
4260 				}
4261 			}
4262 		}
4263 
4264 		/* Receive Checksum Offload XXX recompute due to CRC strip? */
4265 		e1000_rx_checksum(adapter,
4266 				  (u32)(status) |
4267 				  ((u32)(rx_desc->errors) << 24),
4268 				  le16_to_cpu(rx_desc->csum), skb);
4269 
4270 		total_rx_bytes += (skb->len - 4); /* don't count FCS */
4271 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4272 			pskb_trim(skb, skb->len - 4);
4273 		total_rx_packets++;
4274 
4275 		if (status & E1000_RXD_STAT_VP) {
4276 			__le16 vlan = rx_desc->special;
4277 			u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4278 
4279 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4280 		}
4281 
4282 		napi_gro_frags(&adapter->napi);
4283 
4284 next_desc:
4285 		rx_desc->status = 0;
4286 
4287 		/* return some buffers to hardware, one at a time is too slow */
4288 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4289 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4290 			cleaned_count = 0;
4291 		}
4292 
4293 		/* use prefetched values */
4294 		rx_desc = next_rxd;
4295 		buffer_info = next_buffer;
4296 	}
4297 	rx_ring->next_to_clean = i;
4298 
4299 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4300 	if (cleaned_count)
4301 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4302 
4303 	adapter->total_rx_packets += total_rx_packets;
4304 	adapter->total_rx_bytes += total_rx_bytes;
4305 	netdev->stats.rx_bytes += total_rx_bytes;
4306 	netdev->stats.rx_packets += total_rx_packets;
4307 	return cleaned;
4308 }
4309 
4310 /* this should improve performance for small packets with large amounts
4311  * of reassembly being done in the stack
4312  */
4313 static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4314 				       struct e1000_rx_buffer *buffer_info,
4315 				       u32 length, const void *data)
4316 {
4317 	struct sk_buff *skb;
4318 
4319 	if (length > copybreak)
4320 		return NULL;
4321 
4322 	skb = e1000_alloc_rx_skb(adapter, length);
4323 	if (!skb)
4324 		return NULL;
4325 
4326 	dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4327 				length, DMA_FROM_DEVICE);
4328 
4329 	skb_put_data(skb, data, length);
4330 
4331 	return skb;
4332 }
4333 
4334 /**
4335  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4336  * @adapter: board private structure
4337  * @rx_ring: ring to clean
4338  * @work_done: amount of napi work completed this call
4339  * @work_to_do: max amount of work allowed for this call to do
4340  */
4341 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4342 			       struct e1000_rx_ring *rx_ring,
4343 			       int *work_done, int work_to_do)
4344 {
4345 	struct net_device *netdev = adapter->netdev;
4346 	struct pci_dev *pdev = adapter->pdev;
4347 	struct e1000_rx_desc *rx_desc, *next_rxd;
4348 	struct e1000_rx_buffer *buffer_info, *next_buffer;
4349 	u32 length;
4350 	unsigned int i;
4351 	int cleaned_count = 0;
4352 	bool cleaned = false;
4353 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4354 
4355 	i = rx_ring->next_to_clean;
4356 	rx_desc = E1000_RX_DESC(*rx_ring, i);
4357 	buffer_info = &rx_ring->buffer_info[i];
4358 
4359 	while (rx_desc->status & E1000_RXD_STAT_DD) {
4360 		struct sk_buff *skb;
4361 		u8 *data;
4362 		u8 status;
4363 
4364 		if (*work_done >= work_to_do)
4365 			break;
4366 		(*work_done)++;
4367 		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4368 
4369 		status = rx_desc->status;
4370 		length = le16_to_cpu(rx_desc->length);
4371 
4372 		data = buffer_info->rxbuf.data;
4373 		prefetch(data);
4374 		skb = e1000_copybreak(adapter, buffer_info, length, data);
4375 		if (!skb) {
4376 			unsigned int frag_len = e1000_frag_len(adapter);
4377 
4378 			skb = build_skb(data - E1000_HEADROOM, frag_len);
4379 			if (!skb) {
4380 				adapter->alloc_rx_buff_failed++;
4381 				break;
4382 			}
4383 
4384 			skb_reserve(skb, E1000_HEADROOM);
4385 			dma_unmap_single(&pdev->dev, buffer_info->dma,
4386 					 adapter->rx_buffer_len,
4387 					 DMA_FROM_DEVICE);
4388 			buffer_info->dma = 0;
4389 			buffer_info->rxbuf.data = NULL;
4390 		}
4391 
4392 		if (++i == rx_ring->count)
4393 			i = 0;
4394 
4395 		next_rxd = E1000_RX_DESC(*rx_ring, i);
4396 		prefetch(next_rxd);
4397 
4398 		next_buffer = &rx_ring->buffer_info[i];
4399 
4400 		cleaned = true;
4401 		cleaned_count++;
4402 
4403 		/* !EOP means multiple descriptors were used to store a single
4404 		 * packet, if thats the case we need to toss it.  In fact, we
4405 		 * to toss every packet with the EOP bit clear and the next
4406 		 * frame that _does_ have the EOP bit set, as it is by
4407 		 * definition only a frame fragment
4408 		 */
4409 		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4410 			adapter->discarding = true;
4411 
4412 		if (adapter->discarding) {
4413 			/* All receives must fit into a single buffer */
4414 			netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4415 			dev_kfree_skb(skb);
4416 			if (status & E1000_RXD_STAT_EOP)
4417 				adapter->discarding = false;
4418 			goto next_desc;
4419 		}
4420 
4421 		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4422 			if (e1000_tbi_should_accept(adapter, status,
4423 						    rx_desc->errors,
4424 						    length, data)) {
4425 				length--;
4426 			} else if (netdev->features & NETIF_F_RXALL) {
4427 				goto process_skb;
4428 			} else {
4429 				dev_kfree_skb(skb);
4430 				goto next_desc;
4431 			}
4432 		}
4433 
4434 process_skb:
4435 		total_rx_bytes += (length - 4); /* don't count FCS */
4436 		total_rx_packets++;
4437 
4438 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4439 			/* adjust length to remove Ethernet CRC, this must be
4440 			 * done after the TBI_ACCEPT workaround above
4441 			 */
4442 			length -= 4;
4443 
4444 		if (buffer_info->rxbuf.data == NULL)
4445 			skb_put(skb, length);
4446 		else /* copybreak skb */
4447 			skb_trim(skb, length);
4448 
4449 		/* Receive Checksum Offload */
4450 		e1000_rx_checksum(adapter,
4451 				  (u32)(status) |
4452 				  ((u32)(rx_desc->errors) << 24),
4453 				  le16_to_cpu(rx_desc->csum), skb);
4454 
4455 		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4456 
4457 next_desc:
4458 		rx_desc->status = 0;
4459 
4460 		/* return some buffers to hardware, one at a time is too slow */
4461 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4462 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4463 			cleaned_count = 0;
4464 		}
4465 
4466 		/* use prefetched values */
4467 		rx_desc = next_rxd;
4468 		buffer_info = next_buffer;
4469 	}
4470 	rx_ring->next_to_clean = i;
4471 
4472 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4473 	if (cleaned_count)
4474 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4475 
4476 	adapter->total_rx_packets += total_rx_packets;
4477 	adapter->total_rx_bytes += total_rx_bytes;
4478 	netdev->stats.rx_bytes += total_rx_bytes;
4479 	netdev->stats.rx_packets += total_rx_packets;
4480 	return cleaned;
4481 }
4482 
4483 /**
4484  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4485  * @adapter: address of board private structure
4486  * @rx_ring: pointer to receive ring structure
4487  * @cleaned_count: number of buffers to allocate this pass
4488  **/
4489 static void
4490 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4491 			     struct e1000_rx_ring *rx_ring, int cleaned_count)
4492 {
4493 	struct pci_dev *pdev = adapter->pdev;
4494 	struct e1000_rx_desc *rx_desc;
4495 	struct e1000_rx_buffer *buffer_info;
4496 	unsigned int i;
4497 
4498 	i = rx_ring->next_to_use;
4499 	buffer_info = &rx_ring->buffer_info[i];
4500 
4501 	while (cleaned_count--) {
4502 		/* allocate a new page if necessary */
4503 		if (!buffer_info->rxbuf.page) {
4504 			buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4505 			if (unlikely(!buffer_info->rxbuf.page)) {
4506 				adapter->alloc_rx_buff_failed++;
4507 				break;
4508 			}
4509 		}
4510 
4511 		if (!buffer_info->dma) {
4512 			buffer_info->dma = dma_map_page(&pdev->dev,
4513 							buffer_info->rxbuf.page, 0,
4514 							adapter->rx_buffer_len,
4515 							DMA_FROM_DEVICE);
4516 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4517 				put_page(buffer_info->rxbuf.page);
4518 				buffer_info->rxbuf.page = NULL;
4519 				buffer_info->dma = 0;
4520 				adapter->alloc_rx_buff_failed++;
4521 				break;
4522 			}
4523 		}
4524 
4525 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4526 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4527 
4528 		if (unlikely(++i == rx_ring->count))
4529 			i = 0;
4530 		buffer_info = &rx_ring->buffer_info[i];
4531 	}
4532 
4533 	if (likely(rx_ring->next_to_use != i)) {
4534 		rx_ring->next_to_use = i;
4535 		if (unlikely(i-- == 0))
4536 			i = (rx_ring->count - 1);
4537 
4538 		/* Force memory writes to complete before letting h/w
4539 		 * know there are new descriptors to fetch.  (Only
4540 		 * applicable for weak-ordered memory model archs,
4541 		 * such as IA-64).
4542 		 */
4543 		dma_wmb();
4544 		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4545 	}
4546 }
4547 
4548 /**
4549  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4550  * @adapter: address of board private structure
4551  **/
4552 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4553 				   struct e1000_rx_ring *rx_ring,
4554 				   int cleaned_count)
4555 {
4556 	struct e1000_hw *hw = &adapter->hw;
4557 	struct pci_dev *pdev = adapter->pdev;
4558 	struct e1000_rx_desc *rx_desc;
4559 	struct e1000_rx_buffer *buffer_info;
4560 	unsigned int i;
4561 	unsigned int bufsz = adapter->rx_buffer_len;
4562 
4563 	i = rx_ring->next_to_use;
4564 	buffer_info = &rx_ring->buffer_info[i];
4565 
4566 	while (cleaned_count--) {
4567 		void *data;
4568 
4569 		if (buffer_info->rxbuf.data)
4570 			goto skip;
4571 
4572 		data = e1000_alloc_frag(adapter);
4573 		if (!data) {
4574 			/* Better luck next round */
4575 			adapter->alloc_rx_buff_failed++;
4576 			break;
4577 		}
4578 
4579 		/* Fix for errata 23, can't cross 64kB boundary */
4580 		if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4581 			void *olddata = data;
4582 			e_err(rx_err, "skb align check failed: %u bytes at "
4583 			      "%p\n", bufsz, data);
4584 			/* Try again, without freeing the previous */
4585 			data = e1000_alloc_frag(adapter);
4586 			/* Failed allocation, critical failure */
4587 			if (!data) {
4588 				skb_free_frag(olddata);
4589 				adapter->alloc_rx_buff_failed++;
4590 				break;
4591 			}
4592 
4593 			if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4594 				/* give up */
4595 				skb_free_frag(data);
4596 				skb_free_frag(olddata);
4597 				adapter->alloc_rx_buff_failed++;
4598 				break;
4599 			}
4600 
4601 			/* Use new allocation */
4602 			skb_free_frag(olddata);
4603 		}
4604 		buffer_info->dma = dma_map_single(&pdev->dev,
4605 						  data,
4606 						  adapter->rx_buffer_len,
4607 						  DMA_FROM_DEVICE);
4608 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4609 			skb_free_frag(data);
4610 			buffer_info->dma = 0;
4611 			adapter->alloc_rx_buff_failed++;
4612 			break;
4613 		}
4614 
4615 		/* XXX if it was allocated cleanly it will never map to a
4616 		 * boundary crossing
4617 		 */
4618 
4619 		/* Fix for errata 23, can't cross 64kB boundary */
4620 		if (!e1000_check_64k_bound(adapter,
4621 					(void *)(unsigned long)buffer_info->dma,
4622 					adapter->rx_buffer_len)) {
4623 			e_err(rx_err, "dma align check failed: %u bytes at "
4624 			      "%p\n", adapter->rx_buffer_len,
4625 			      (void *)(unsigned long)buffer_info->dma);
4626 
4627 			dma_unmap_single(&pdev->dev, buffer_info->dma,
4628 					 adapter->rx_buffer_len,
4629 					 DMA_FROM_DEVICE);
4630 
4631 			skb_free_frag(data);
4632 			buffer_info->rxbuf.data = NULL;
4633 			buffer_info->dma = 0;
4634 
4635 			adapter->alloc_rx_buff_failed++;
4636 			break;
4637 		}
4638 		buffer_info->rxbuf.data = data;
4639  skip:
4640 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4641 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4642 
4643 		if (unlikely(++i == rx_ring->count))
4644 			i = 0;
4645 		buffer_info = &rx_ring->buffer_info[i];
4646 	}
4647 
4648 	if (likely(rx_ring->next_to_use != i)) {
4649 		rx_ring->next_to_use = i;
4650 		if (unlikely(i-- == 0))
4651 			i = (rx_ring->count - 1);
4652 
4653 		/* Force memory writes to complete before letting h/w
4654 		 * know there are new descriptors to fetch.  (Only
4655 		 * applicable for weak-ordered memory model archs,
4656 		 * such as IA-64).
4657 		 */
4658 		dma_wmb();
4659 		writel(i, hw->hw_addr + rx_ring->rdt);
4660 	}
4661 }
4662 
4663 /**
4664  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4665  * @adapter:
4666  **/
4667 static void e1000_smartspeed(struct e1000_adapter *adapter)
4668 {
4669 	struct e1000_hw *hw = &adapter->hw;
4670 	u16 phy_status;
4671 	u16 phy_ctrl;
4672 
4673 	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4674 	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4675 		return;
4676 
4677 	if (adapter->smartspeed == 0) {
4678 		/* If Master/Slave config fault is asserted twice,
4679 		 * we assume back-to-back
4680 		 */
4681 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4682 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4683 			return;
4684 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4685 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4686 			return;
4687 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4688 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4689 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4690 			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4691 					    phy_ctrl);
4692 			adapter->smartspeed++;
4693 			if (!e1000_phy_setup_autoneg(hw) &&
4694 			   !e1000_read_phy_reg(hw, PHY_CTRL,
4695 					       &phy_ctrl)) {
4696 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4697 					     MII_CR_RESTART_AUTO_NEG);
4698 				e1000_write_phy_reg(hw, PHY_CTRL,
4699 						    phy_ctrl);
4700 			}
4701 		}
4702 		return;
4703 	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4704 		/* If still no link, perhaps using 2/3 pair cable */
4705 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4706 		phy_ctrl |= CR_1000T_MS_ENABLE;
4707 		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4708 		if (!e1000_phy_setup_autoneg(hw) &&
4709 		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4710 			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4711 				     MII_CR_RESTART_AUTO_NEG);
4712 			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4713 		}
4714 	}
4715 	/* Restart process after E1000_SMARTSPEED_MAX iterations */
4716 	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4717 		adapter->smartspeed = 0;
4718 }
4719 
4720 /**
4721  * e1000_ioctl -
4722  * @netdev:
4723  * @ifreq:
4724  * @cmd:
4725  **/
4726 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4727 {
4728 	switch (cmd) {
4729 	case SIOCGMIIPHY:
4730 	case SIOCGMIIREG:
4731 	case SIOCSMIIREG:
4732 		return e1000_mii_ioctl(netdev, ifr, cmd);
4733 	default:
4734 		return -EOPNOTSUPP;
4735 	}
4736 }
4737 
4738 /**
4739  * e1000_mii_ioctl -
4740  * @netdev:
4741  * @ifreq:
4742  * @cmd:
4743  **/
4744 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4745 			   int cmd)
4746 {
4747 	struct e1000_adapter *adapter = netdev_priv(netdev);
4748 	struct e1000_hw *hw = &adapter->hw;
4749 	struct mii_ioctl_data *data = if_mii(ifr);
4750 	int retval;
4751 	u16 mii_reg;
4752 	unsigned long flags;
4753 
4754 	if (hw->media_type != e1000_media_type_copper)
4755 		return -EOPNOTSUPP;
4756 
4757 	switch (cmd) {
4758 	case SIOCGMIIPHY:
4759 		data->phy_id = hw->phy_addr;
4760 		break;
4761 	case SIOCGMIIREG:
4762 		spin_lock_irqsave(&adapter->stats_lock, flags);
4763 		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4764 				   &data->val_out)) {
4765 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4766 			return -EIO;
4767 		}
4768 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4769 		break;
4770 	case SIOCSMIIREG:
4771 		if (data->reg_num & ~(0x1F))
4772 			return -EFAULT;
4773 		mii_reg = data->val_in;
4774 		spin_lock_irqsave(&adapter->stats_lock, flags);
4775 		if (e1000_write_phy_reg(hw, data->reg_num,
4776 					mii_reg)) {
4777 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4778 			return -EIO;
4779 		}
4780 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4781 		if (hw->media_type == e1000_media_type_copper) {
4782 			switch (data->reg_num) {
4783 			case PHY_CTRL:
4784 				if (mii_reg & MII_CR_POWER_DOWN)
4785 					break;
4786 				if (mii_reg & MII_CR_AUTO_NEG_EN) {
4787 					hw->autoneg = 1;
4788 					hw->autoneg_advertised = 0x2F;
4789 				} else {
4790 					u32 speed;
4791 					if (mii_reg & 0x40)
4792 						speed = SPEED_1000;
4793 					else if (mii_reg & 0x2000)
4794 						speed = SPEED_100;
4795 					else
4796 						speed = SPEED_10;
4797 					retval = e1000_set_spd_dplx(
4798 						adapter, speed,
4799 						((mii_reg & 0x100)
4800 						 ? DUPLEX_FULL :
4801 						 DUPLEX_HALF));
4802 					if (retval)
4803 						return retval;
4804 				}
4805 				if (netif_running(adapter->netdev))
4806 					e1000_reinit_locked(adapter);
4807 				else
4808 					e1000_reset(adapter);
4809 				break;
4810 			case M88E1000_PHY_SPEC_CTRL:
4811 			case M88E1000_EXT_PHY_SPEC_CTRL:
4812 				if (e1000_phy_reset(hw))
4813 					return -EIO;
4814 				break;
4815 			}
4816 		} else {
4817 			switch (data->reg_num) {
4818 			case PHY_CTRL:
4819 				if (mii_reg & MII_CR_POWER_DOWN)
4820 					break;
4821 				if (netif_running(adapter->netdev))
4822 					e1000_reinit_locked(adapter);
4823 				else
4824 					e1000_reset(adapter);
4825 				break;
4826 			}
4827 		}
4828 		break;
4829 	default:
4830 		return -EOPNOTSUPP;
4831 	}
4832 	return E1000_SUCCESS;
4833 }
4834 
4835 void e1000_pci_set_mwi(struct e1000_hw *hw)
4836 {
4837 	struct e1000_adapter *adapter = hw->back;
4838 	int ret_val = pci_set_mwi(adapter->pdev);
4839 
4840 	if (ret_val)
4841 		e_err(probe, "Error in setting MWI\n");
4842 }
4843 
4844 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4845 {
4846 	struct e1000_adapter *adapter = hw->back;
4847 
4848 	pci_clear_mwi(adapter->pdev);
4849 }
4850 
4851 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4852 {
4853 	struct e1000_adapter *adapter = hw->back;
4854 	return pcix_get_mmrbc(adapter->pdev);
4855 }
4856 
4857 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4858 {
4859 	struct e1000_adapter *adapter = hw->back;
4860 	pcix_set_mmrbc(adapter->pdev, mmrbc);
4861 }
4862 
4863 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4864 {
4865 	outl(value, port);
4866 }
4867 
4868 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4869 {
4870 	u16 vid;
4871 
4872 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4873 		return true;
4874 	return false;
4875 }
4876 
4877 static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4878 			      netdev_features_t features)
4879 {
4880 	struct e1000_hw *hw = &adapter->hw;
4881 	u32 ctrl;
4882 
4883 	ctrl = er32(CTRL);
4884 	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4885 		/* enable VLAN tag insert/strip */
4886 		ctrl |= E1000_CTRL_VME;
4887 	} else {
4888 		/* disable VLAN tag insert/strip */
4889 		ctrl &= ~E1000_CTRL_VME;
4890 	}
4891 	ew32(CTRL, ctrl);
4892 }
4893 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4894 				     bool filter_on)
4895 {
4896 	struct e1000_hw *hw = &adapter->hw;
4897 	u32 rctl;
4898 
4899 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4900 		e1000_irq_disable(adapter);
4901 
4902 	__e1000_vlan_mode(adapter, adapter->netdev->features);
4903 	if (filter_on) {
4904 		/* enable VLAN receive filtering */
4905 		rctl = er32(RCTL);
4906 		rctl &= ~E1000_RCTL_CFIEN;
4907 		if (!(adapter->netdev->flags & IFF_PROMISC))
4908 			rctl |= E1000_RCTL_VFE;
4909 		ew32(RCTL, rctl);
4910 		e1000_update_mng_vlan(adapter);
4911 	} else {
4912 		/* disable VLAN receive filtering */
4913 		rctl = er32(RCTL);
4914 		rctl &= ~E1000_RCTL_VFE;
4915 		ew32(RCTL, rctl);
4916 	}
4917 
4918 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4919 		e1000_irq_enable(adapter);
4920 }
4921 
4922 static void e1000_vlan_mode(struct net_device *netdev,
4923 			    netdev_features_t features)
4924 {
4925 	struct e1000_adapter *adapter = netdev_priv(netdev);
4926 
4927 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4928 		e1000_irq_disable(adapter);
4929 
4930 	__e1000_vlan_mode(adapter, features);
4931 
4932 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4933 		e1000_irq_enable(adapter);
4934 }
4935 
4936 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4937 				 __be16 proto, u16 vid)
4938 {
4939 	struct e1000_adapter *adapter = netdev_priv(netdev);
4940 	struct e1000_hw *hw = &adapter->hw;
4941 	u32 vfta, index;
4942 
4943 	if ((hw->mng_cookie.status &
4944 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4945 	    (vid == adapter->mng_vlan_id))
4946 		return 0;
4947 
4948 	if (!e1000_vlan_used(adapter))
4949 		e1000_vlan_filter_on_off(adapter, true);
4950 
4951 	/* add VID to filter table */
4952 	index = (vid >> 5) & 0x7F;
4953 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4954 	vfta |= (1 << (vid & 0x1F));
4955 	e1000_write_vfta(hw, index, vfta);
4956 
4957 	set_bit(vid, adapter->active_vlans);
4958 
4959 	return 0;
4960 }
4961 
4962 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4963 				  __be16 proto, u16 vid)
4964 {
4965 	struct e1000_adapter *adapter = netdev_priv(netdev);
4966 	struct e1000_hw *hw = &adapter->hw;
4967 	u32 vfta, index;
4968 
4969 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4970 		e1000_irq_disable(adapter);
4971 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4972 		e1000_irq_enable(adapter);
4973 
4974 	/* remove VID from filter table */
4975 	index = (vid >> 5) & 0x7F;
4976 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4977 	vfta &= ~(1 << (vid & 0x1F));
4978 	e1000_write_vfta(hw, index, vfta);
4979 
4980 	clear_bit(vid, adapter->active_vlans);
4981 
4982 	if (!e1000_vlan_used(adapter))
4983 		e1000_vlan_filter_on_off(adapter, false);
4984 
4985 	return 0;
4986 }
4987 
4988 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4989 {
4990 	u16 vid;
4991 
4992 	if (!e1000_vlan_used(adapter))
4993 		return;
4994 
4995 	e1000_vlan_filter_on_off(adapter, true);
4996 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4997 		e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
4998 }
4999 
5000 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5001 {
5002 	struct e1000_hw *hw = &adapter->hw;
5003 
5004 	hw->autoneg = 0;
5005 
5006 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
5007 	 * for the switch() below to work
5008 	 */
5009 	if ((spd & 1) || (dplx & ~1))
5010 		goto err_inval;
5011 
5012 	/* Fiber NICs only allow 1000 gbps Full duplex */
5013 	if ((hw->media_type == e1000_media_type_fiber) &&
5014 	    spd != SPEED_1000 &&
5015 	    dplx != DUPLEX_FULL)
5016 		goto err_inval;
5017 
5018 	switch (spd + dplx) {
5019 	case SPEED_10 + DUPLEX_HALF:
5020 		hw->forced_speed_duplex = e1000_10_half;
5021 		break;
5022 	case SPEED_10 + DUPLEX_FULL:
5023 		hw->forced_speed_duplex = e1000_10_full;
5024 		break;
5025 	case SPEED_100 + DUPLEX_HALF:
5026 		hw->forced_speed_duplex = e1000_100_half;
5027 		break;
5028 	case SPEED_100 + DUPLEX_FULL:
5029 		hw->forced_speed_duplex = e1000_100_full;
5030 		break;
5031 	case SPEED_1000 + DUPLEX_FULL:
5032 		hw->autoneg = 1;
5033 		hw->autoneg_advertised = ADVERTISE_1000_FULL;
5034 		break;
5035 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
5036 	default:
5037 		goto err_inval;
5038 	}
5039 
5040 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5041 	hw->mdix = AUTO_ALL_MODES;
5042 
5043 	return 0;
5044 
5045 err_inval:
5046 	e_err(probe, "Unsupported Speed/Duplex configuration\n");
5047 	return -EINVAL;
5048 }
5049 
5050 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5051 {
5052 	struct net_device *netdev = pci_get_drvdata(pdev);
5053 	struct e1000_adapter *adapter = netdev_priv(netdev);
5054 	struct e1000_hw *hw = &adapter->hw;
5055 	u32 ctrl, ctrl_ext, rctl, status;
5056 	u32 wufc = adapter->wol;
5057 
5058 	netif_device_detach(netdev);
5059 
5060 	if (netif_running(netdev)) {
5061 		int count = E1000_CHECK_RESET_COUNT;
5062 
5063 		while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5064 			usleep_range(10000, 20000);
5065 
5066 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5067 		e1000_down(adapter);
5068 	}
5069 
5070 	status = er32(STATUS);
5071 	if (status & E1000_STATUS_LU)
5072 		wufc &= ~E1000_WUFC_LNKC;
5073 
5074 	if (wufc) {
5075 		e1000_setup_rctl(adapter);
5076 		e1000_set_rx_mode(netdev);
5077 
5078 		rctl = er32(RCTL);
5079 
5080 		/* turn on all-multi mode if wake on multicast is enabled */
5081 		if (wufc & E1000_WUFC_MC)
5082 			rctl |= E1000_RCTL_MPE;
5083 
5084 		/* enable receives in the hardware */
5085 		ew32(RCTL, rctl | E1000_RCTL_EN);
5086 
5087 		if (hw->mac_type >= e1000_82540) {
5088 			ctrl = er32(CTRL);
5089 			/* advertise wake from D3Cold */
5090 			#define E1000_CTRL_ADVD3WUC 0x00100000
5091 			/* phy power management enable */
5092 			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5093 			ctrl |= E1000_CTRL_ADVD3WUC |
5094 				E1000_CTRL_EN_PHY_PWR_MGMT;
5095 			ew32(CTRL, ctrl);
5096 		}
5097 
5098 		if (hw->media_type == e1000_media_type_fiber ||
5099 		    hw->media_type == e1000_media_type_internal_serdes) {
5100 			/* keep the laser running in D3 */
5101 			ctrl_ext = er32(CTRL_EXT);
5102 			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5103 			ew32(CTRL_EXT, ctrl_ext);
5104 		}
5105 
5106 		ew32(WUC, E1000_WUC_PME_EN);
5107 		ew32(WUFC, wufc);
5108 	} else {
5109 		ew32(WUC, 0);
5110 		ew32(WUFC, 0);
5111 	}
5112 
5113 	e1000_release_manageability(adapter);
5114 
5115 	*enable_wake = !!wufc;
5116 
5117 	/* make sure adapter isn't asleep if manageability is enabled */
5118 	if (adapter->en_mng_pt)
5119 		*enable_wake = true;
5120 
5121 	if (netif_running(netdev))
5122 		e1000_free_irq(adapter);
5123 
5124 	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5125 		pci_disable_device(pdev);
5126 
5127 	return 0;
5128 }
5129 
5130 static int __maybe_unused e1000_suspend(struct device *dev)
5131 {
5132 	int retval;
5133 	struct pci_dev *pdev = to_pci_dev(dev);
5134 	bool wake;
5135 
5136 	retval = __e1000_shutdown(pdev, &wake);
5137 	device_set_wakeup_enable(dev, wake);
5138 
5139 	return retval;
5140 }
5141 
5142 static int __maybe_unused e1000_resume(struct device *dev)
5143 {
5144 	struct pci_dev *pdev = to_pci_dev(dev);
5145 	struct net_device *netdev = pci_get_drvdata(pdev);
5146 	struct e1000_adapter *adapter = netdev_priv(netdev);
5147 	struct e1000_hw *hw = &adapter->hw;
5148 	u32 err;
5149 
5150 	if (adapter->need_ioport)
5151 		err = pci_enable_device(pdev);
5152 	else
5153 		err = pci_enable_device_mem(pdev);
5154 	if (err) {
5155 		pr_err("Cannot enable PCI device from suspend\n");
5156 		return err;
5157 	}
5158 
5159 	/* flush memory to make sure state is correct */
5160 	smp_mb__before_atomic();
5161 	clear_bit(__E1000_DISABLED, &adapter->flags);
5162 	pci_set_master(pdev);
5163 
5164 	pci_enable_wake(pdev, PCI_D3hot, 0);
5165 	pci_enable_wake(pdev, PCI_D3cold, 0);
5166 
5167 	if (netif_running(netdev)) {
5168 		err = e1000_request_irq(adapter);
5169 		if (err)
5170 			return err;
5171 	}
5172 
5173 	e1000_power_up_phy(adapter);
5174 	e1000_reset(adapter);
5175 	ew32(WUS, ~0);
5176 
5177 	e1000_init_manageability(adapter);
5178 
5179 	if (netif_running(netdev))
5180 		e1000_up(adapter);
5181 
5182 	netif_device_attach(netdev);
5183 
5184 	return 0;
5185 }
5186 
5187 static void e1000_shutdown(struct pci_dev *pdev)
5188 {
5189 	bool wake;
5190 
5191 	__e1000_shutdown(pdev, &wake);
5192 
5193 	if (system_state == SYSTEM_POWER_OFF) {
5194 		pci_wake_from_d3(pdev, wake);
5195 		pci_set_power_state(pdev, PCI_D3hot);
5196 	}
5197 }
5198 
5199 #ifdef CONFIG_NET_POLL_CONTROLLER
5200 /* Polling 'interrupt' - used by things like netconsole to send skbs
5201  * without having to re-enable interrupts. It's not called while
5202  * the interrupt routine is executing.
5203  */
5204 static void e1000_netpoll(struct net_device *netdev)
5205 {
5206 	struct e1000_adapter *adapter = netdev_priv(netdev);
5207 
5208 	if (disable_hardirq(adapter->pdev->irq))
5209 		e1000_intr(adapter->pdev->irq, netdev);
5210 	enable_irq(adapter->pdev->irq);
5211 }
5212 #endif
5213 
5214 /**
5215  * e1000_io_error_detected - called when PCI error is detected
5216  * @pdev: Pointer to PCI device
5217  * @state: The current pci connection state
5218  *
5219  * This function is called after a PCI bus error affecting
5220  * this device has been detected.
5221  */
5222 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5223 						pci_channel_state_t state)
5224 {
5225 	struct net_device *netdev = pci_get_drvdata(pdev);
5226 	struct e1000_adapter *adapter = netdev_priv(netdev);
5227 
5228 	netif_device_detach(netdev);
5229 
5230 	if (state == pci_channel_io_perm_failure)
5231 		return PCI_ERS_RESULT_DISCONNECT;
5232 
5233 	if (netif_running(netdev))
5234 		e1000_down(adapter);
5235 
5236 	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5237 		pci_disable_device(pdev);
5238 
5239 	/* Request a slot slot reset. */
5240 	return PCI_ERS_RESULT_NEED_RESET;
5241 }
5242 
5243 /**
5244  * e1000_io_slot_reset - called after the pci bus has been reset.
5245  * @pdev: Pointer to PCI device
5246  *
5247  * Restart the card from scratch, as if from a cold-boot. Implementation
5248  * resembles the first-half of the e1000_resume routine.
5249  */
5250 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5251 {
5252 	struct net_device *netdev = pci_get_drvdata(pdev);
5253 	struct e1000_adapter *adapter = netdev_priv(netdev);
5254 	struct e1000_hw *hw = &adapter->hw;
5255 	int err;
5256 
5257 	if (adapter->need_ioport)
5258 		err = pci_enable_device(pdev);
5259 	else
5260 		err = pci_enable_device_mem(pdev);
5261 	if (err) {
5262 		pr_err("Cannot re-enable PCI device after reset.\n");
5263 		return PCI_ERS_RESULT_DISCONNECT;
5264 	}
5265 
5266 	/* flush memory to make sure state is correct */
5267 	smp_mb__before_atomic();
5268 	clear_bit(__E1000_DISABLED, &adapter->flags);
5269 	pci_set_master(pdev);
5270 
5271 	pci_enable_wake(pdev, PCI_D3hot, 0);
5272 	pci_enable_wake(pdev, PCI_D3cold, 0);
5273 
5274 	e1000_reset(adapter);
5275 	ew32(WUS, ~0);
5276 
5277 	return PCI_ERS_RESULT_RECOVERED;
5278 }
5279 
5280 /**
5281  * e1000_io_resume - called when traffic can start flowing again.
5282  * @pdev: Pointer to PCI device
5283  *
5284  * This callback is called when the error recovery driver tells us that
5285  * its OK to resume normal operation. Implementation resembles the
5286  * second-half of the e1000_resume routine.
5287  */
5288 static void e1000_io_resume(struct pci_dev *pdev)
5289 {
5290 	struct net_device *netdev = pci_get_drvdata(pdev);
5291 	struct e1000_adapter *adapter = netdev_priv(netdev);
5292 
5293 	e1000_init_manageability(adapter);
5294 
5295 	if (netif_running(netdev)) {
5296 		if (e1000_up(adapter)) {
5297 			pr_info("can't bring device back up after reset\n");
5298 			return;
5299 		}
5300 	}
5301 
5302 	netif_device_attach(netdev);
5303 }
5304 
5305 /* e1000_main.c */
5306