xref: /linux/drivers/net/ethernet/intel/e1000/e1000_main.c (revision 24168c5e6dfbdd5b414f048f47f75d64533296ca)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2006 Intel Corporation. */
3 
4 #include "e1000.h"
5 #include <net/ip6_checksum.h>
6 #include <linux/io.h>
7 #include <linux/prefetch.h>
8 #include <linux/bitops.h>
9 #include <linux/if_vlan.h>
10 
11 char e1000_driver_name[] = "e1000";
12 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
13 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
14 
15 /* e1000_pci_tbl - PCI Device ID Table
16  *
17  * Last entry must be all 0s
18  *
19  * Macro expands to...
20  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
21  */
22 static const struct pci_device_id e1000_pci_tbl[] = {
23 	INTEL_E1000_ETHERNET_DEVICE(0x1000),
24 	INTEL_E1000_ETHERNET_DEVICE(0x1001),
25 	INTEL_E1000_ETHERNET_DEVICE(0x1004),
26 	INTEL_E1000_ETHERNET_DEVICE(0x1008),
27 	INTEL_E1000_ETHERNET_DEVICE(0x1009),
28 	INTEL_E1000_ETHERNET_DEVICE(0x100C),
29 	INTEL_E1000_ETHERNET_DEVICE(0x100D),
30 	INTEL_E1000_ETHERNET_DEVICE(0x100E),
31 	INTEL_E1000_ETHERNET_DEVICE(0x100F),
32 	INTEL_E1000_ETHERNET_DEVICE(0x1010),
33 	INTEL_E1000_ETHERNET_DEVICE(0x1011),
34 	INTEL_E1000_ETHERNET_DEVICE(0x1012),
35 	INTEL_E1000_ETHERNET_DEVICE(0x1013),
36 	INTEL_E1000_ETHERNET_DEVICE(0x1014),
37 	INTEL_E1000_ETHERNET_DEVICE(0x1015),
38 	INTEL_E1000_ETHERNET_DEVICE(0x1016),
39 	INTEL_E1000_ETHERNET_DEVICE(0x1017),
40 	INTEL_E1000_ETHERNET_DEVICE(0x1018),
41 	INTEL_E1000_ETHERNET_DEVICE(0x1019),
42 	INTEL_E1000_ETHERNET_DEVICE(0x101A),
43 	INTEL_E1000_ETHERNET_DEVICE(0x101D),
44 	INTEL_E1000_ETHERNET_DEVICE(0x101E),
45 	INTEL_E1000_ETHERNET_DEVICE(0x1026),
46 	INTEL_E1000_ETHERNET_DEVICE(0x1027),
47 	INTEL_E1000_ETHERNET_DEVICE(0x1028),
48 	INTEL_E1000_ETHERNET_DEVICE(0x1075),
49 	INTEL_E1000_ETHERNET_DEVICE(0x1076),
50 	INTEL_E1000_ETHERNET_DEVICE(0x1077),
51 	INTEL_E1000_ETHERNET_DEVICE(0x1078),
52 	INTEL_E1000_ETHERNET_DEVICE(0x1079),
53 	INTEL_E1000_ETHERNET_DEVICE(0x107A),
54 	INTEL_E1000_ETHERNET_DEVICE(0x107B),
55 	INTEL_E1000_ETHERNET_DEVICE(0x107C),
56 	INTEL_E1000_ETHERNET_DEVICE(0x108A),
57 	INTEL_E1000_ETHERNET_DEVICE(0x1099),
58 	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
59 	INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
60 	/* required last entry */
61 	{0,}
62 };
63 
64 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
65 
66 int e1000_up(struct e1000_adapter *adapter);
67 void e1000_down(struct e1000_adapter *adapter);
68 void e1000_reinit_locked(struct e1000_adapter *adapter);
69 void e1000_reset(struct e1000_adapter *adapter);
70 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
71 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
72 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
73 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
74 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
75 				    struct e1000_tx_ring *txdr);
76 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
77 				    struct e1000_rx_ring *rxdr);
78 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
79 				    struct e1000_tx_ring *tx_ring);
80 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
81 				    struct e1000_rx_ring *rx_ring);
82 void e1000_update_stats(struct e1000_adapter *adapter);
83 
84 static int e1000_init_module(void);
85 static void e1000_exit_module(void);
86 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
87 static void e1000_remove(struct pci_dev *pdev);
88 static int e1000_alloc_queues(struct e1000_adapter *adapter);
89 static int e1000_sw_init(struct e1000_adapter *adapter);
90 int e1000_open(struct net_device *netdev);
91 int e1000_close(struct net_device *netdev);
92 static void e1000_configure_tx(struct e1000_adapter *adapter);
93 static void e1000_configure_rx(struct e1000_adapter *adapter);
94 static void e1000_setup_rctl(struct e1000_adapter *adapter);
95 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
96 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
97 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
98 				struct e1000_tx_ring *tx_ring);
99 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
100 				struct e1000_rx_ring *rx_ring);
101 static void e1000_set_rx_mode(struct net_device *netdev);
102 static void e1000_update_phy_info_task(struct work_struct *work);
103 static void e1000_watchdog(struct work_struct *work);
104 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
105 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
106 				    struct net_device *netdev);
107 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
108 static int e1000_set_mac(struct net_device *netdev, void *p);
109 static irqreturn_t e1000_intr(int irq, void *data);
110 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
111 			       struct e1000_tx_ring *tx_ring);
112 static int e1000_clean(struct napi_struct *napi, int budget);
113 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
114 			       struct e1000_rx_ring *rx_ring,
115 			       int *work_done, int work_to_do);
116 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
117 				     struct e1000_rx_ring *rx_ring,
118 				     int *work_done, int work_to_do);
119 static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
120 					 struct e1000_rx_ring *rx_ring,
121 					 int cleaned_count)
122 {
123 }
124 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
125 				   struct e1000_rx_ring *rx_ring,
126 				   int cleaned_count);
127 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
128 					 struct e1000_rx_ring *rx_ring,
129 					 int cleaned_count);
130 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
131 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
132 			   int cmd);
133 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
134 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
135 static void e1000_tx_timeout(struct net_device *dev, unsigned int txqueue);
136 static void e1000_reset_task(struct work_struct *work);
137 static void e1000_smartspeed(struct e1000_adapter *adapter);
138 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
139 				       struct sk_buff *skb);
140 
141 static bool e1000_vlan_used(struct e1000_adapter *adapter);
142 static void e1000_vlan_mode(struct net_device *netdev,
143 			    netdev_features_t features);
144 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
145 				     bool filter_on);
146 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
147 				 __be16 proto, u16 vid);
148 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
149 				  __be16 proto, u16 vid);
150 static void e1000_restore_vlan(struct e1000_adapter *adapter);
151 
152 static int e1000_suspend(struct device *dev);
153 static int e1000_resume(struct device *dev);
154 static void e1000_shutdown(struct pci_dev *pdev);
155 
156 #ifdef CONFIG_NET_POLL_CONTROLLER
157 /* for netdump / net console */
158 static void e1000_netpoll (struct net_device *netdev);
159 #endif
160 
161 #define COPYBREAK_DEFAULT 256
162 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
163 module_param(copybreak, uint, 0644);
164 MODULE_PARM_DESC(copybreak,
165 	"Maximum size of packet that is copied to a new buffer on receive");
166 
167 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
168 						pci_channel_state_t state);
169 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
170 static void e1000_io_resume(struct pci_dev *pdev);
171 
172 static const struct pci_error_handlers e1000_err_handler = {
173 	.error_detected = e1000_io_error_detected,
174 	.slot_reset = e1000_io_slot_reset,
175 	.resume = e1000_io_resume,
176 };
177 
178 static DEFINE_SIMPLE_DEV_PM_OPS(e1000_pm_ops, e1000_suspend, e1000_resume);
179 
180 static struct pci_driver e1000_driver = {
181 	.name     = e1000_driver_name,
182 	.id_table = e1000_pci_tbl,
183 	.probe    = e1000_probe,
184 	.remove   = e1000_remove,
185 	.driver.pm = pm_sleep_ptr(&e1000_pm_ops),
186 	.shutdown = e1000_shutdown,
187 	.err_handler = &e1000_err_handler
188 };
189 
190 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
191 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
192 MODULE_LICENSE("GPL v2");
193 
194 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
195 static int debug = -1;
196 module_param(debug, int, 0);
197 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
198 
199 /**
200  * e1000_get_hw_dev - helper function for getting netdev
201  * @hw: pointer to HW struct
202  *
203  * return device used by hardware layer to print debugging information
204  *
205  **/
206 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
207 {
208 	struct e1000_adapter *adapter = hw->back;
209 	return adapter->netdev;
210 }
211 
212 /**
213  * e1000_init_module - Driver Registration Routine
214  *
215  * e1000_init_module is the first routine called when the driver is
216  * loaded. All it does is register with the PCI subsystem.
217  **/
218 static int __init e1000_init_module(void)
219 {
220 	int ret;
221 	pr_info("%s\n", e1000_driver_string);
222 
223 	pr_info("%s\n", e1000_copyright);
224 
225 	ret = pci_register_driver(&e1000_driver);
226 	if (copybreak != COPYBREAK_DEFAULT) {
227 		if (copybreak == 0)
228 			pr_info("copybreak disabled\n");
229 		else
230 			pr_info("copybreak enabled for "
231 				   "packets <= %u bytes\n", copybreak);
232 	}
233 	return ret;
234 }
235 
236 module_init(e1000_init_module);
237 
238 /**
239  * e1000_exit_module - Driver Exit Cleanup Routine
240  *
241  * e1000_exit_module is called just before the driver is removed
242  * from memory.
243  **/
244 static void __exit e1000_exit_module(void)
245 {
246 	pci_unregister_driver(&e1000_driver);
247 }
248 
249 module_exit(e1000_exit_module);
250 
251 static int e1000_request_irq(struct e1000_adapter *adapter)
252 {
253 	struct net_device *netdev = adapter->netdev;
254 	irq_handler_t handler = e1000_intr;
255 	int irq_flags = IRQF_SHARED;
256 	int err;
257 
258 	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
259 			  netdev);
260 	if (err) {
261 		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
262 	}
263 
264 	return err;
265 }
266 
267 static void e1000_free_irq(struct e1000_adapter *adapter)
268 {
269 	struct net_device *netdev = adapter->netdev;
270 
271 	free_irq(adapter->pdev->irq, netdev);
272 }
273 
274 /**
275  * e1000_irq_disable - Mask off interrupt generation on the NIC
276  * @adapter: board private structure
277  **/
278 static void e1000_irq_disable(struct e1000_adapter *adapter)
279 {
280 	struct e1000_hw *hw = &adapter->hw;
281 
282 	ew32(IMC, ~0);
283 	E1000_WRITE_FLUSH();
284 	synchronize_irq(adapter->pdev->irq);
285 }
286 
287 /**
288  * e1000_irq_enable - Enable default interrupt generation settings
289  * @adapter: board private structure
290  **/
291 static void e1000_irq_enable(struct e1000_adapter *adapter)
292 {
293 	struct e1000_hw *hw = &adapter->hw;
294 
295 	ew32(IMS, IMS_ENABLE_MASK);
296 	E1000_WRITE_FLUSH();
297 }
298 
299 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
300 {
301 	struct e1000_hw *hw = &adapter->hw;
302 	struct net_device *netdev = adapter->netdev;
303 	u16 vid = hw->mng_cookie.vlan_id;
304 	u16 old_vid = adapter->mng_vlan_id;
305 
306 	if (!e1000_vlan_used(adapter))
307 		return;
308 
309 	if (!test_bit(vid, adapter->active_vlans)) {
310 		if (hw->mng_cookie.status &
311 		    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
312 			e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
313 			adapter->mng_vlan_id = vid;
314 		} else {
315 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
316 		}
317 		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
318 		    (vid != old_vid) &&
319 		    !test_bit(old_vid, adapter->active_vlans))
320 			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
321 					       old_vid);
322 	} else {
323 		adapter->mng_vlan_id = vid;
324 	}
325 }
326 
327 static void e1000_init_manageability(struct e1000_adapter *adapter)
328 {
329 	struct e1000_hw *hw = &adapter->hw;
330 
331 	if (adapter->en_mng_pt) {
332 		u32 manc = er32(MANC);
333 
334 		/* disable hardware interception of ARP */
335 		manc &= ~(E1000_MANC_ARP_EN);
336 
337 		ew32(MANC, manc);
338 	}
339 }
340 
341 static void e1000_release_manageability(struct e1000_adapter *adapter)
342 {
343 	struct e1000_hw *hw = &adapter->hw;
344 
345 	if (adapter->en_mng_pt) {
346 		u32 manc = er32(MANC);
347 
348 		/* re-enable hardware interception of ARP */
349 		manc |= E1000_MANC_ARP_EN;
350 
351 		ew32(MANC, manc);
352 	}
353 }
354 
355 /**
356  * e1000_configure - configure the hardware for RX and TX
357  * @adapter: private board structure
358  **/
359 static void e1000_configure(struct e1000_adapter *adapter)
360 {
361 	struct net_device *netdev = adapter->netdev;
362 	int i;
363 
364 	e1000_set_rx_mode(netdev);
365 
366 	e1000_restore_vlan(adapter);
367 	e1000_init_manageability(adapter);
368 
369 	e1000_configure_tx(adapter);
370 	e1000_setup_rctl(adapter);
371 	e1000_configure_rx(adapter);
372 	/* call E1000_DESC_UNUSED which always leaves
373 	 * at least 1 descriptor unused to make sure
374 	 * next_to_use != next_to_clean
375 	 */
376 	for (i = 0; i < adapter->num_rx_queues; i++) {
377 		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
378 		adapter->alloc_rx_buf(adapter, ring,
379 				      E1000_DESC_UNUSED(ring));
380 	}
381 }
382 
383 int e1000_up(struct e1000_adapter *adapter)
384 {
385 	struct e1000_hw *hw = &adapter->hw;
386 
387 	/* hardware has been reset, we need to reload some things */
388 	e1000_configure(adapter);
389 
390 	clear_bit(__E1000_DOWN, &adapter->flags);
391 
392 	napi_enable(&adapter->napi);
393 
394 	e1000_irq_enable(adapter);
395 
396 	netif_wake_queue(adapter->netdev);
397 
398 	/* fire a link change interrupt to start the watchdog */
399 	ew32(ICS, E1000_ICS_LSC);
400 	return 0;
401 }
402 
403 /**
404  * e1000_power_up_phy - restore link in case the phy was powered down
405  * @adapter: address of board private structure
406  *
407  * The phy may be powered down to save power and turn off link when the
408  * driver is unloaded and wake on lan is not enabled (among others)
409  * *** this routine MUST be followed by a call to e1000_reset ***
410  **/
411 void e1000_power_up_phy(struct e1000_adapter *adapter)
412 {
413 	struct e1000_hw *hw = &adapter->hw;
414 	u16 mii_reg = 0;
415 
416 	/* Just clear the power down bit to wake the phy back up */
417 	if (hw->media_type == e1000_media_type_copper) {
418 		/* according to the manual, the phy will retain its
419 		 * settings across a power-down/up cycle
420 		 */
421 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
422 		mii_reg &= ~MII_CR_POWER_DOWN;
423 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
424 	}
425 }
426 
427 static void e1000_power_down_phy(struct e1000_adapter *adapter)
428 {
429 	struct e1000_hw *hw = &adapter->hw;
430 
431 	/* Power down the PHY so no link is implied when interface is down *
432 	 * The PHY cannot be powered down if any of the following is true *
433 	 * (a) WoL is enabled
434 	 * (b) AMT is active
435 	 * (c) SoL/IDER session is active
436 	 */
437 	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
438 	   hw->media_type == e1000_media_type_copper) {
439 		u16 mii_reg = 0;
440 
441 		switch (hw->mac_type) {
442 		case e1000_82540:
443 		case e1000_82545:
444 		case e1000_82545_rev_3:
445 		case e1000_82546:
446 		case e1000_ce4100:
447 		case e1000_82546_rev_3:
448 		case e1000_82541:
449 		case e1000_82541_rev_2:
450 		case e1000_82547:
451 		case e1000_82547_rev_2:
452 			if (er32(MANC) & E1000_MANC_SMBUS_EN)
453 				goto out;
454 			break;
455 		default:
456 			goto out;
457 		}
458 		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
459 		mii_reg |= MII_CR_POWER_DOWN;
460 		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
461 		msleep(1);
462 	}
463 out:
464 	return;
465 }
466 
467 static void e1000_down_and_stop(struct e1000_adapter *adapter)
468 {
469 	set_bit(__E1000_DOWN, &adapter->flags);
470 
471 	cancel_delayed_work_sync(&adapter->watchdog_task);
472 
473 	/*
474 	 * Since the watchdog task can reschedule other tasks, we should cancel
475 	 * it first, otherwise we can run into the situation when a work is
476 	 * still running after the adapter has been turned down.
477 	 */
478 
479 	cancel_delayed_work_sync(&adapter->phy_info_task);
480 	cancel_delayed_work_sync(&adapter->fifo_stall_task);
481 
482 	/* Only kill reset task if adapter is not resetting */
483 	if (!test_bit(__E1000_RESETTING, &adapter->flags))
484 		cancel_work_sync(&adapter->reset_task);
485 }
486 
487 void e1000_down(struct e1000_adapter *adapter)
488 {
489 	struct e1000_hw *hw = &adapter->hw;
490 	struct net_device *netdev = adapter->netdev;
491 	u32 rctl, tctl;
492 
493 	/* disable receives in the hardware */
494 	rctl = er32(RCTL);
495 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
496 	/* flush and sleep below */
497 
498 	netif_tx_disable(netdev);
499 
500 	/* disable transmits in the hardware */
501 	tctl = er32(TCTL);
502 	tctl &= ~E1000_TCTL_EN;
503 	ew32(TCTL, tctl);
504 	/* flush both disables and wait for them to finish */
505 	E1000_WRITE_FLUSH();
506 	msleep(10);
507 
508 	/* Set the carrier off after transmits have been disabled in the
509 	 * hardware, to avoid race conditions with e1000_watchdog() (which
510 	 * may be running concurrently to us, checking for the carrier
511 	 * bit to decide whether it should enable transmits again). Such
512 	 * a race condition would result into transmission being disabled
513 	 * in the hardware until the next IFF_DOWN+IFF_UP cycle.
514 	 */
515 	netif_carrier_off(netdev);
516 
517 	napi_disable(&adapter->napi);
518 
519 	e1000_irq_disable(adapter);
520 
521 	/* Setting DOWN must be after irq_disable to prevent
522 	 * a screaming interrupt.  Setting DOWN also prevents
523 	 * tasks from rescheduling.
524 	 */
525 	e1000_down_and_stop(adapter);
526 
527 	adapter->link_speed = 0;
528 	adapter->link_duplex = 0;
529 
530 	e1000_reset(adapter);
531 	e1000_clean_all_tx_rings(adapter);
532 	e1000_clean_all_rx_rings(adapter);
533 }
534 
535 void e1000_reinit_locked(struct e1000_adapter *adapter)
536 {
537 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
538 		msleep(1);
539 
540 	/* only run the task if not already down */
541 	if (!test_bit(__E1000_DOWN, &adapter->flags)) {
542 		e1000_down(adapter);
543 		e1000_up(adapter);
544 	}
545 
546 	clear_bit(__E1000_RESETTING, &adapter->flags);
547 }
548 
549 void e1000_reset(struct e1000_adapter *adapter)
550 {
551 	struct e1000_hw *hw = &adapter->hw;
552 	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
553 	bool legacy_pba_adjust = false;
554 	u16 hwm;
555 
556 	/* Repartition Pba for greater than 9k mtu
557 	 * To take effect CTRL.RST is required.
558 	 */
559 
560 	switch (hw->mac_type) {
561 	case e1000_82542_rev2_0:
562 	case e1000_82542_rev2_1:
563 	case e1000_82543:
564 	case e1000_82544:
565 	case e1000_82540:
566 	case e1000_82541:
567 	case e1000_82541_rev_2:
568 		legacy_pba_adjust = true;
569 		pba = E1000_PBA_48K;
570 		break;
571 	case e1000_82545:
572 	case e1000_82545_rev_3:
573 	case e1000_82546:
574 	case e1000_ce4100:
575 	case e1000_82546_rev_3:
576 		pba = E1000_PBA_48K;
577 		break;
578 	case e1000_82547:
579 	case e1000_82547_rev_2:
580 		legacy_pba_adjust = true;
581 		pba = E1000_PBA_30K;
582 		break;
583 	case e1000_undefined:
584 	case e1000_num_macs:
585 		break;
586 	}
587 
588 	if (legacy_pba_adjust) {
589 		if (hw->max_frame_size > E1000_RXBUFFER_8192)
590 			pba -= 8; /* allocate more FIFO for Tx */
591 
592 		if (hw->mac_type == e1000_82547) {
593 			adapter->tx_fifo_head = 0;
594 			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
595 			adapter->tx_fifo_size =
596 				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
597 			atomic_set(&adapter->tx_fifo_stall, 0);
598 		}
599 	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
600 		/* adjust PBA for jumbo frames */
601 		ew32(PBA, pba);
602 
603 		/* To maintain wire speed transmits, the Tx FIFO should be
604 		 * large enough to accommodate two full transmit packets,
605 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
606 		 * the Rx FIFO should be large enough to accommodate at least
607 		 * one full receive packet and is similarly rounded up and
608 		 * expressed in KB.
609 		 */
610 		pba = er32(PBA);
611 		/* upper 16 bits has Tx packet buffer allocation size in KB */
612 		tx_space = pba >> 16;
613 		/* lower 16 bits has Rx packet buffer allocation size in KB */
614 		pba &= 0xffff;
615 		/* the Tx fifo also stores 16 bytes of information about the Tx
616 		 * but don't include ethernet FCS because hardware appends it
617 		 */
618 		min_tx_space = (hw->max_frame_size +
619 				sizeof(struct e1000_tx_desc) -
620 				ETH_FCS_LEN) * 2;
621 		min_tx_space = ALIGN(min_tx_space, 1024);
622 		min_tx_space >>= 10;
623 		/* software strips receive CRC, so leave room for it */
624 		min_rx_space = hw->max_frame_size;
625 		min_rx_space = ALIGN(min_rx_space, 1024);
626 		min_rx_space >>= 10;
627 
628 		/* If current Tx allocation is less than the min Tx FIFO size,
629 		 * and the min Tx FIFO size is less than the current Rx FIFO
630 		 * allocation, take space away from current Rx allocation
631 		 */
632 		if (tx_space < min_tx_space &&
633 		    ((min_tx_space - tx_space) < pba)) {
634 			pba = pba - (min_tx_space - tx_space);
635 
636 			/* PCI/PCIx hardware has PBA alignment constraints */
637 			switch (hw->mac_type) {
638 			case e1000_82545 ... e1000_82546_rev_3:
639 				pba &= ~(E1000_PBA_8K - 1);
640 				break;
641 			default:
642 				break;
643 			}
644 
645 			/* if short on Rx space, Rx wins and must trump Tx
646 			 * adjustment or use Early Receive if available
647 			 */
648 			if (pba < min_rx_space)
649 				pba = min_rx_space;
650 		}
651 	}
652 
653 	ew32(PBA, pba);
654 
655 	/* flow control settings:
656 	 * The high water mark must be low enough to fit one full frame
657 	 * (or the size used for early receive) above it in the Rx FIFO.
658 	 * Set it to the lower of:
659 	 * - 90% of the Rx FIFO size, and
660 	 * - the full Rx FIFO size minus the early receive size (for parts
661 	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
662 	 * - the full Rx FIFO size minus one full frame
663 	 */
664 	hwm = min(((pba << 10) * 9 / 10),
665 		  ((pba << 10) - hw->max_frame_size));
666 
667 	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
668 	hw->fc_low_water = hw->fc_high_water - 8;
669 	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
670 	hw->fc_send_xon = 1;
671 	hw->fc = hw->original_fc;
672 
673 	/* Allow time for pending master requests to run */
674 	e1000_reset_hw(hw);
675 	if (hw->mac_type >= e1000_82544)
676 		ew32(WUC, 0);
677 
678 	if (e1000_init_hw(hw))
679 		e_dev_err("Hardware Error\n");
680 	e1000_update_mng_vlan(adapter);
681 
682 	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
683 	if (hw->mac_type >= e1000_82544 &&
684 	    hw->autoneg == 1 &&
685 	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
686 		u32 ctrl = er32(CTRL);
687 		/* clear phy power management bit if we are in gig only mode,
688 		 * which if enabled will attempt negotiation to 100Mb, which
689 		 * can cause a loss of link at power off or driver unload
690 		 */
691 		ctrl &= ~E1000_CTRL_SWDPIN3;
692 		ew32(CTRL, ctrl);
693 	}
694 
695 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
696 	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
697 
698 	e1000_reset_adaptive(hw);
699 	e1000_phy_get_info(hw, &adapter->phy_info);
700 
701 	e1000_release_manageability(adapter);
702 }
703 
704 /* Dump the eeprom for users having checksum issues */
705 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
706 {
707 	struct net_device *netdev = adapter->netdev;
708 	struct ethtool_eeprom eeprom;
709 	const struct ethtool_ops *ops = netdev->ethtool_ops;
710 	u8 *data;
711 	int i;
712 	u16 csum_old, csum_new = 0;
713 
714 	eeprom.len = ops->get_eeprom_len(netdev);
715 	eeprom.offset = 0;
716 
717 	data = kmalloc(eeprom.len, GFP_KERNEL);
718 	if (!data)
719 		return;
720 
721 	ops->get_eeprom(netdev, &eeprom, data);
722 
723 	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
724 		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
725 	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
726 		csum_new += data[i] + (data[i + 1] << 8);
727 	csum_new = EEPROM_SUM - csum_new;
728 
729 	pr_err("/*********************/\n");
730 	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
731 	pr_err("Calculated              : 0x%04x\n", csum_new);
732 
733 	pr_err("Offset    Values\n");
734 	pr_err("========  ======\n");
735 	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
736 
737 	pr_err("Include this output when contacting your support provider.\n");
738 	pr_err("This is not a software error! Something bad happened to\n");
739 	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
740 	pr_err("result in further problems, possibly loss of data,\n");
741 	pr_err("corruption or system hangs!\n");
742 	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
743 	pr_err("which is invalid and requires you to set the proper MAC\n");
744 	pr_err("address manually before continuing to enable this network\n");
745 	pr_err("device. Please inspect the EEPROM dump and report the\n");
746 	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
747 	pr_err("/*********************/\n");
748 
749 	kfree(data);
750 }
751 
752 /**
753  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
754  * @pdev: PCI device information struct
755  *
756  * Return true if an adapter needs ioport resources
757  **/
758 static int e1000_is_need_ioport(struct pci_dev *pdev)
759 {
760 	switch (pdev->device) {
761 	case E1000_DEV_ID_82540EM:
762 	case E1000_DEV_ID_82540EM_LOM:
763 	case E1000_DEV_ID_82540EP:
764 	case E1000_DEV_ID_82540EP_LOM:
765 	case E1000_DEV_ID_82540EP_LP:
766 	case E1000_DEV_ID_82541EI:
767 	case E1000_DEV_ID_82541EI_MOBILE:
768 	case E1000_DEV_ID_82541ER:
769 	case E1000_DEV_ID_82541ER_LOM:
770 	case E1000_DEV_ID_82541GI:
771 	case E1000_DEV_ID_82541GI_LF:
772 	case E1000_DEV_ID_82541GI_MOBILE:
773 	case E1000_DEV_ID_82544EI_COPPER:
774 	case E1000_DEV_ID_82544EI_FIBER:
775 	case E1000_DEV_ID_82544GC_COPPER:
776 	case E1000_DEV_ID_82544GC_LOM:
777 	case E1000_DEV_ID_82545EM_COPPER:
778 	case E1000_DEV_ID_82545EM_FIBER:
779 	case E1000_DEV_ID_82546EB_COPPER:
780 	case E1000_DEV_ID_82546EB_FIBER:
781 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
782 		return true;
783 	default:
784 		return false;
785 	}
786 }
787 
788 static netdev_features_t e1000_fix_features(struct net_device *netdev,
789 	netdev_features_t features)
790 {
791 	/* Since there is no support for separate Rx/Tx vlan accel
792 	 * enable/disable make sure Tx flag is always in same state as Rx.
793 	 */
794 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
795 		features |= NETIF_F_HW_VLAN_CTAG_TX;
796 	else
797 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
798 
799 	return features;
800 }
801 
802 static int e1000_set_features(struct net_device *netdev,
803 	netdev_features_t features)
804 {
805 	struct e1000_adapter *adapter = netdev_priv(netdev);
806 	netdev_features_t changed = features ^ netdev->features;
807 
808 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
809 		e1000_vlan_mode(netdev, features);
810 
811 	if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
812 		return 0;
813 
814 	netdev->features = features;
815 	adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
816 
817 	if (netif_running(netdev))
818 		e1000_reinit_locked(adapter);
819 	else
820 		e1000_reset(adapter);
821 
822 	return 1;
823 }
824 
825 static const struct net_device_ops e1000_netdev_ops = {
826 	.ndo_open		= e1000_open,
827 	.ndo_stop		= e1000_close,
828 	.ndo_start_xmit		= e1000_xmit_frame,
829 	.ndo_set_rx_mode	= e1000_set_rx_mode,
830 	.ndo_set_mac_address	= e1000_set_mac,
831 	.ndo_tx_timeout		= e1000_tx_timeout,
832 	.ndo_change_mtu		= e1000_change_mtu,
833 	.ndo_eth_ioctl		= e1000_ioctl,
834 	.ndo_validate_addr	= eth_validate_addr,
835 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
836 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
837 #ifdef CONFIG_NET_POLL_CONTROLLER
838 	.ndo_poll_controller	= e1000_netpoll,
839 #endif
840 	.ndo_fix_features	= e1000_fix_features,
841 	.ndo_set_features	= e1000_set_features,
842 };
843 
844 /**
845  * e1000_init_hw_struct - initialize members of hw struct
846  * @adapter: board private struct
847  * @hw: structure used by e1000_hw.c
848  *
849  * Factors out initialization of the e1000_hw struct to its own function
850  * that can be called very early at init (just after struct allocation).
851  * Fields are initialized based on PCI device information and
852  * OS network device settings (MTU size).
853  * Returns negative error codes if MAC type setup fails.
854  */
855 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
856 				struct e1000_hw *hw)
857 {
858 	struct pci_dev *pdev = adapter->pdev;
859 
860 	/* PCI config space info */
861 	hw->vendor_id = pdev->vendor;
862 	hw->device_id = pdev->device;
863 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
864 	hw->subsystem_id = pdev->subsystem_device;
865 	hw->revision_id = pdev->revision;
866 
867 	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
868 
869 	hw->max_frame_size = adapter->netdev->mtu +
870 			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
871 	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
872 
873 	/* identify the MAC */
874 	if (e1000_set_mac_type(hw)) {
875 		e_err(probe, "Unknown MAC Type\n");
876 		return -EIO;
877 	}
878 
879 	switch (hw->mac_type) {
880 	default:
881 		break;
882 	case e1000_82541:
883 	case e1000_82547:
884 	case e1000_82541_rev_2:
885 	case e1000_82547_rev_2:
886 		hw->phy_init_script = 1;
887 		break;
888 	}
889 
890 	e1000_set_media_type(hw);
891 	e1000_get_bus_info(hw);
892 
893 	hw->wait_autoneg_complete = false;
894 	hw->tbi_compatibility_en = true;
895 	hw->adaptive_ifs = true;
896 
897 	/* Copper options */
898 
899 	if (hw->media_type == e1000_media_type_copper) {
900 		hw->mdix = AUTO_ALL_MODES;
901 		hw->disable_polarity_correction = false;
902 		hw->master_slave = E1000_MASTER_SLAVE;
903 	}
904 
905 	return 0;
906 }
907 
908 /**
909  * e1000_probe - Device Initialization Routine
910  * @pdev: PCI device information struct
911  * @ent: entry in e1000_pci_tbl
912  *
913  * Returns 0 on success, negative on failure
914  *
915  * e1000_probe initializes an adapter identified by a pci_dev structure.
916  * The OS initialization, configuring of the adapter private structure,
917  * and a hardware reset occur.
918  **/
919 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
920 {
921 	struct net_device *netdev;
922 	struct e1000_adapter *adapter = NULL;
923 	struct e1000_hw *hw;
924 
925 	static int cards_found;
926 	static int global_quad_port_a; /* global ksp3 port a indication */
927 	int i, err, pci_using_dac;
928 	u16 eeprom_data = 0;
929 	u16 tmp = 0;
930 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
931 	int bars, need_ioport;
932 	bool disable_dev = false;
933 
934 	/* do not allocate ioport bars when not needed */
935 	need_ioport = e1000_is_need_ioport(pdev);
936 	if (need_ioport) {
937 		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
938 		err = pci_enable_device(pdev);
939 	} else {
940 		bars = pci_select_bars(pdev, IORESOURCE_MEM);
941 		err = pci_enable_device_mem(pdev);
942 	}
943 	if (err)
944 		return err;
945 
946 	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
947 	if (err)
948 		goto err_pci_reg;
949 
950 	pci_set_master(pdev);
951 	err = pci_save_state(pdev);
952 	if (err)
953 		goto err_alloc_etherdev;
954 
955 	err = -ENOMEM;
956 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
957 	if (!netdev)
958 		goto err_alloc_etherdev;
959 
960 	SET_NETDEV_DEV(netdev, &pdev->dev);
961 
962 	pci_set_drvdata(pdev, netdev);
963 	adapter = netdev_priv(netdev);
964 	adapter->netdev = netdev;
965 	adapter->pdev = pdev;
966 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
967 	adapter->bars = bars;
968 	adapter->need_ioport = need_ioport;
969 
970 	hw = &adapter->hw;
971 	hw->back = adapter;
972 
973 	err = -EIO;
974 	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
975 	if (!hw->hw_addr)
976 		goto err_ioremap;
977 
978 	if (adapter->need_ioport) {
979 		for (i = BAR_1; i < PCI_STD_NUM_BARS; i++) {
980 			if (pci_resource_len(pdev, i) == 0)
981 				continue;
982 			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
983 				hw->io_base = pci_resource_start(pdev, i);
984 				break;
985 			}
986 		}
987 	}
988 
989 	/* make ready for any if (hw->...) below */
990 	err = e1000_init_hw_struct(adapter, hw);
991 	if (err)
992 		goto err_sw_init;
993 
994 	/* there is a workaround being applied below that limits
995 	 * 64-bit DMA addresses to 64-bit hardware.  There are some
996 	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
997 	 */
998 	pci_using_dac = 0;
999 	if ((hw->bus_type == e1000_bus_type_pcix) &&
1000 	    !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1001 		pci_using_dac = 1;
1002 	} else {
1003 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1004 		if (err) {
1005 			pr_err("No usable DMA config, aborting\n");
1006 			goto err_dma;
1007 		}
1008 	}
1009 
1010 	netdev->netdev_ops = &e1000_netdev_ops;
1011 	e1000_set_ethtool_ops(netdev);
1012 	netdev->watchdog_timeo = 5 * HZ;
1013 	netif_napi_add(netdev, &adapter->napi, e1000_clean);
1014 
1015 	strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
1016 
1017 	adapter->bd_number = cards_found;
1018 
1019 	/* setup the private structure */
1020 
1021 	err = e1000_sw_init(adapter);
1022 	if (err)
1023 		goto err_sw_init;
1024 
1025 	err = -EIO;
1026 	if (hw->mac_type == e1000_ce4100) {
1027 		hw->ce4100_gbe_mdio_base_virt =
1028 					ioremap(pci_resource_start(pdev, BAR_1),
1029 						pci_resource_len(pdev, BAR_1));
1030 
1031 		if (!hw->ce4100_gbe_mdio_base_virt)
1032 			goto err_mdio_ioremap;
1033 	}
1034 
1035 	if (hw->mac_type >= e1000_82543) {
1036 		netdev->hw_features = NETIF_F_SG |
1037 				   NETIF_F_HW_CSUM |
1038 				   NETIF_F_HW_VLAN_CTAG_RX;
1039 		netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1040 				   NETIF_F_HW_VLAN_CTAG_FILTER;
1041 	}
1042 
1043 	if ((hw->mac_type >= e1000_82544) &&
1044 	   (hw->mac_type != e1000_82547))
1045 		netdev->hw_features |= NETIF_F_TSO;
1046 
1047 	netdev->priv_flags |= IFF_SUPP_NOFCS;
1048 
1049 	netdev->features |= netdev->hw_features;
1050 	netdev->hw_features |= (NETIF_F_RXCSUM |
1051 				NETIF_F_RXALL |
1052 				NETIF_F_RXFCS);
1053 
1054 	if (pci_using_dac) {
1055 		netdev->features |= NETIF_F_HIGHDMA;
1056 		netdev->vlan_features |= NETIF_F_HIGHDMA;
1057 	}
1058 
1059 	netdev->vlan_features |= (NETIF_F_TSO |
1060 				  NETIF_F_HW_CSUM |
1061 				  NETIF_F_SG);
1062 
1063 	/* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1064 	if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1065 	    hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1066 		netdev->priv_flags |= IFF_UNICAST_FLT;
1067 
1068 	/* MTU range: 46 - 16110 */
1069 	netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1070 	netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1071 
1072 	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1073 
1074 	/* initialize eeprom parameters */
1075 	if (e1000_init_eeprom_params(hw)) {
1076 		e_err(probe, "EEPROM initialization failed\n");
1077 		goto err_eeprom;
1078 	}
1079 
1080 	/* before reading the EEPROM, reset the controller to
1081 	 * put the device in a known good starting state
1082 	 */
1083 
1084 	e1000_reset_hw(hw);
1085 
1086 	/* make sure the EEPROM is good */
1087 	if (e1000_validate_eeprom_checksum(hw) < 0) {
1088 		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1089 		e1000_dump_eeprom(adapter);
1090 		/* set MAC address to all zeroes to invalidate and temporary
1091 		 * disable this device for the user. This blocks regular
1092 		 * traffic while still permitting ethtool ioctls from reaching
1093 		 * the hardware as well as allowing the user to run the
1094 		 * interface after manually setting a hw addr using
1095 		 * `ip set address`
1096 		 */
1097 		memset(hw->mac_addr, 0, netdev->addr_len);
1098 	} else {
1099 		/* copy the MAC address out of the EEPROM */
1100 		if (e1000_read_mac_addr(hw))
1101 			e_err(probe, "EEPROM Read Error\n");
1102 	}
1103 	/* don't block initialization here due to bad MAC address */
1104 	eth_hw_addr_set(netdev, hw->mac_addr);
1105 
1106 	if (!is_valid_ether_addr(netdev->dev_addr))
1107 		e_err(probe, "Invalid MAC Address\n");
1108 
1109 
1110 	INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1111 	INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1112 			  e1000_82547_tx_fifo_stall_task);
1113 	INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1114 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
1115 
1116 	e1000_check_options(adapter);
1117 
1118 	/* Initial Wake on LAN setting
1119 	 * If APM wake is enabled in the EEPROM,
1120 	 * enable the ACPI Magic Packet filter
1121 	 */
1122 
1123 	switch (hw->mac_type) {
1124 	case e1000_82542_rev2_0:
1125 	case e1000_82542_rev2_1:
1126 	case e1000_82543:
1127 		break;
1128 	case e1000_82544:
1129 		e1000_read_eeprom(hw,
1130 			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1131 		eeprom_apme_mask = E1000_EEPROM_82544_APM;
1132 		break;
1133 	case e1000_82546:
1134 	case e1000_82546_rev_3:
1135 		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1136 			e1000_read_eeprom(hw,
1137 				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1138 			break;
1139 		}
1140 		fallthrough;
1141 	default:
1142 		e1000_read_eeprom(hw,
1143 			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1144 		break;
1145 	}
1146 	if (eeprom_data & eeprom_apme_mask)
1147 		adapter->eeprom_wol |= E1000_WUFC_MAG;
1148 
1149 	/* now that we have the eeprom settings, apply the special cases
1150 	 * where the eeprom may be wrong or the board simply won't support
1151 	 * wake on lan on a particular port
1152 	 */
1153 	switch (pdev->device) {
1154 	case E1000_DEV_ID_82546GB_PCIE:
1155 		adapter->eeprom_wol = 0;
1156 		break;
1157 	case E1000_DEV_ID_82546EB_FIBER:
1158 	case E1000_DEV_ID_82546GB_FIBER:
1159 		/* Wake events only supported on port A for dual fiber
1160 		 * regardless of eeprom setting
1161 		 */
1162 		if (er32(STATUS) & E1000_STATUS_FUNC_1)
1163 			adapter->eeprom_wol = 0;
1164 		break;
1165 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1166 		/* if quad port adapter, disable WoL on all but port A */
1167 		if (global_quad_port_a != 0)
1168 			adapter->eeprom_wol = 0;
1169 		else
1170 			adapter->quad_port_a = true;
1171 		/* Reset for multiple quad port adapters */
1172 		if (++global_quad_port_a == 4)
1173 			global_quad_port_a = 0;
1174 		break;
1175 	}
1176 
1177 	/* initialize the wol settings based on the eeprom settings */
1178 	adapter->wol = adapter->eeprom_wol;
1179 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1180 
1181 	/* Auto detect PHY address */
1182 	if (hw->mac_type == e1000_ce4100) {
1183 		for (i = 0; i < 32; i++) {
1184 			hw->phy_addr = i;
1185 			e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1186 
1187 			if (tmp != 0 && tmp != 0xFF)
1188 				break;
1189 		}
1190 
1191 		if (i >= 32)
1192 			goto err_eeprom;
1193 	}
1194 
1195 	/* reset the hardware with the new settings */
1196 	e1000_reset(adapter);
1197 
1198 	strcpy(netdev->name, "eth%d");
1199 	err = register_netdev(netdev);
1200 	if (err)
1201 		goto err_register;
1202 
1203 	e1000_vlan_filter_on_off(adapter, false);
1204 
1205 	/* print bus type/speed/width info */
1206 	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1207 	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1208 	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1209 		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
1210 		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
1211 		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1212 	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1213 	       netdev->dev_addr);
1214 
1215 	/* carrier off reporting is important to ethtool even BEFORE open */
1216 	netif_carrier_off(netdev);
1217 
1218 	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1219 
1220 	cards_found++;
1221 	return 0;
1222 
1223 err_register:
1224 err_eeprom:
1225 	e1000_phy_hw_reset(hw);
1226 
1227 	if (hw->flash_address)
1228 		iounmap(hw->flash_address);
1229 	kfree(adapter->tx_ring);
1230 	kfree(adapter->rx_ring);
1231 err_dma:
1232 err_sw_init:
1233 err_mdio_ioremap:
1234 	iounmap(hw->ce4100_gbe_mdio_base_virt);
1235 	iounmap(hw->hw_addr);
1236 err_ioremap:
1237 	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1238 	free_netdev(netdev);
1239 err_alloc_etherdev:
1240 	pci_release_selected_regions(pdev, bars);
1241 err_pci_reg:
1242 	if (!adapter || disable_dev)
1243 		pci_disable_device(pdev);
1244 	return err;
1245 }
1246 
1247 /**
1248  * e1000_remove - Device Removal Routine
1249  * @pdev: PCI device information struct
1250  *
1251  * e1000_remove is called by the PCI subsystem to alert the driver
1252  * that it should release a PCI device. That could be caused by a
1253  * Hot-Plug event, or because the driver is going to be removed from
1254  * memory.
1255  **/
1256 static void e1000_remove(struct pci_dev *pdev)
1257 {
1258 	struct net_device *netdev = pci_get_drvdata(pdev);
1259 	struct e1000_adapter *adapter = netdev_priv(netdev);
1260 	struct e1000_hw *hw = &adapter->hw;
1261 	bool disable_dev;
1262 
1263 	e1000_down_and_stop(adapter);
1264 	e1000_release_manageability(adapter);
1265 
1266 	unregister_netdev(netdev);
1267 
1268 	e1000_phy_hw_reset(hw);
1269 
1270 	kfree(adapter->tx_ring);
1271 	kfree(adapter->rx_ring);
1272 
1273 	if (hw->mac_type == e1000_ce4100)
1274 		iounmap(hw->ce4100_gbe_mdio_base_virt);
1275 	iounmap(hw->hw_addr);
1276 	if (hw->flash_address)
1277 		iounmap(hw->flash_address);
1278 	pci_release_selected_regions(pdev, adapter->bars);
1279 
1280 	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1281 	free_netdev(netdev);
1282 
1283 	if (disable_dev)
1284 		pci_disable_device(pdev);
1285 }
1286 
1287 /**
1288  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1289  * @adapter: board private structure to initialize
1290  *
1291  * e1000_sw_init initializes the Adapter private data structure.
1292  * e1000_init_hw_struct MUST be called before this function
1293  **/
1294 static int e1000_sw_init(struct e1000_adapter *adapter)
1295 {
1296 	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1297 
1298 	adapter->num_tx_queues = 1;
1299 	adapter->num_rx_queues = 1;
1300 
1301 	if (e1000_alloc_queues(adapter)) {
1302 		e_err(probe, "Unable to allocate memory for queues\n");
1303 		return -ENOMEM;
1304 	}
1305 
1306 	/* Explicitly disable IRQ since the NIC can be in any state. */
1307 	e1000_irq_disable(adapter);
1308 
1309 	spin_lock_init(&adapter->stats_lock);
1310 
1311 	set_bit(__E1000_DOWN, &adapter->flags);
1312 
1313 	return 0;
1314 }
1315 
1316 /**
1317  * e1000_alloc_queues - Allocate memory for all rings
1318  * @adapter: board private structure to initialize
1319  *
1320  * We allocate one ring per queue at run-time since we don't know the
1321  * number of queues at compile-time.
1322  **/
1323 static int e1000_alloc_queues(struct e1000_adapter *adapter)
1324 {
1325 	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1326 				   sizeof(struct e1000_tx_ring), GFP_KERNEL);
1327 	if (!adapter->tx_ring)
1328 		return -ENOMEM;
1329 
1330 	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1331 				   sizeof(struct e1000_rx_ring), GFP_KERNEL);
1332 	if (!adapter->rx_ring) {
1333 		kfree(adapter->tx_ring);
1334 		return -ENOMEM;
1335 	}
1336 
1337 	return E1000_SUCCESS;
1338 }
1339 
1340 /**
1341  * e1000_open - Called when a network interface is made active
1342  * @netdev: network interface device structure
1343  *
1344  * Returns 0 on success, negative value on failure
1345  *
1346  * The open entry point is called when a network interface is made
1347  * active by the system (IFF_UP).  At this point all resources needed
1348  * for transmit and receive operations are allocated, the interrupt
1349  * handler is registered with the OS, the watchdog task is started,
1350  * and the stack is notified that the interface is ready.
1351  **/
1352 int e1000_open(struct net_device *netdev)
1353 {
1354 	struct e1000_adapter *adapter = netdev_priv(netdev);
1355 	struct e1000_hw *hw = &adapter->hw;
1356 	int err;
1357 
1358 	/* disallow open during test */
1359 	if (test_bit(__E1000_TESTING, &adapter->flags))
1360 		return -EBUSY;
1361 
1362 	netif_carrier_off(netdev);
1363 
1364 	/* allocate transmit descriptors */
1365 	err = e1000_setup_all_tx_resources(adapter);
1366 	if (err)
1367 		goto err_setup_tx;
1368 
1369 	/* allocate receive descriptors */
1370 	err = e1000_setup_all_rx_resources(adapter);
1371 	if (err)
1372 		goto err_setup_rx;
1373 
1374 	e1000_power_up_phy(adapter);
1375 
1376 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1377 	if ((hw->mng_cookie.status &
1378 			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1379 		e1000_update_mng_vlan(adapter);
1380 	}
1381 
1382 	/* before we allocate an interrupt, we must be ready to handle it.
1383 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1384 	 * as soon as we call pci_request_irq, so we have to setup our
1385 	 * clean_rx handler before we do so.
1386 	 */
1387 	e1000_configure(adapter);
1388 
1389 	err = e1000_request_irq(adapter);
1390 	if (err)
1391 		goto err_req_irq;
1392 
1393 	/* From here on the code is the same as e1000_up() */
1394 	clear_bit(__E1000_DOWN, &adapter->flags);
1395 
1396 	napi_enable(&adapter->napi);
1397 
1398 	e1000_irq_enable(adapter);
1399 
1400 	netif_start_queue(netdev);
1401 
1402 	/* fire a link status change interrupt to start the watchdog */
1403 	ew32(ICS, E1000_ICS_LSC);
1404 
1405 	return E1000_SUCCESS;
1406 
1407 err_req_irq:
1408 	e1000_power_down_phy(adapter);
1409 	e1000_free_all_rx_resources(adapter);
1410 err_setup_rx:
1411 	e1000_free_all_tx_resources(adapter);
1412 err_setup_tx:
1413 	e1000_reset(adapter);
1414 
1415 	return err;
1416 }
1417 
1418 /**
1419  * e1000_close - Disables a network interface
1420  * @netdev: network interface device structure
1421  *
1422  * Returns 0, this is not allowed to fail
1423  *
1424  * The close entry point is called when an interface is de-activated
1425  * by the OS.  The hardware is still under the drivers control, but
1426  * needs to be disabled.  A global MAC reset is issued to stop the
1427  * hardware, and all transmit and receive resources are freed.
1428  **/
1429 int e1000_close(struct net_device *netdev)
1430 {
1431 	struct e1000_adapter *adapter = netdev_priv(netdev);
1432 	struct e1000_hw *hw = &adapter->hw;
1433 	int count = E1000_CHECK_RESET_COUNT;
1434 
1435 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags) && count--)
1436 		usleep_range(10000, 20000);
1437 
1438 	WARN_ON(count < 0);
1439 
1440 	/* signal that we're down so that the reset task will no longer run */
1441 	set_bit(__E1000_DOWN, &adapter->flags);
1442 	clear_bit(__E1000_RESETTING, &adapter->flags);
1443 
1444 	e1000_down(adapter);
1445 	e1000_power_down_phy(adapter);
1446 	e1000_free_irq(adapter);
1447 
1448 	e1000_free_all_tx_resources(adapter);
1449 	e1000_free_all_rx_resources(adapter);
1450 
1451 	/* kill manageability vlan ID if supported, but not if a vlan with
1452 	 * the same ID is registered on the host OS (let 8021q kill it)
1453 	 */
1454 	if ((hw->mng_cookie.status &
1455 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1456 	    !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1457 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1458 				       adapter->mng_vlan_id);
1459 	}
1460 
1461 	return 0;
1462 }
1463 
1464 /**
1465  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1466  * @adapter: address of board private structure
1467  * @start: address of beginning of memory
1468  * @len: length of memory
1469  **/
1470 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1471 				  unsigned long len)
1472 {
1473 	struct e1000_hw *hw = &adapter->hw;
1474 	unsigned long begin = (unsigned long)start;
1475 	unsigned long end = begin + len;
1476 
1477 	/* First rev 82545 and 82546 need to not allow any memory
1478 	 * write location to cross 64k boundary due to errata 23
1479 	 */
1480 	if (hw->mac_type == e1000_82545 ||
1481 	    hw->mac_type == e1000_ce4100 ||
1482 	    hw->mac_type == e1000_82546) {
1483 		return ((begin ^ (end - 1)) >> 16) == 0;
1484 	}
1485 
1486 	return true;
1487 }
1488 
1489 /**
1490  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1491  * @adapter: board private structure
1492  * @txdr:    tx descriptor ring (for a specific queue) to setup
1493  *
1494  * Return 0 on success, negative on failure
1495  **/
1496 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1497 				    struct e1000_tx_ring *txdr)
1498 {
1499 	struct pci_dev *pdev = adapter->pdev;
1500 	int size;
1501 
1502 	size = sizeof(struct e1000_tx_buffer) * txdr->count;
1503 	txdr->buffer_info = vzalloc(size);
1504 	if (!txdr->buffer_info)
1505 		return -ENOMEM;
1506 
1507 	/* round up to nearest 4K */
1508 
1509 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1510 	txdr->size = ALIGN(txdr->size, 4096);
1511 
1512 	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1513 					GFP_KERNEL);
1514 	if (!txdr->desc) {
1515 setup_tx_desc_die:
1516 		vfree(txdr->buffer_info);
1517 		return -ENOMEM;
1518 	}
1519 
1520 	/* Fix for errata 23, can't cross 64kB boundary */
1521 	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1522 		void *olddesc = txdr->desc;
1523 		dma_addr_t olddma = txdr->dma;
1524 		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1525 		      txdr->size, txdr->desc);
1526 		/* Try again, without freeing the previous */
1527 		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1528 						&txdr->dma, GFP_KERNEL);
1529 		/* Failed allocation, critical failure */
1530 		if (!txdr->desc) {
1531 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1532 					  olddma);
1533 			goto setup_tx_desc_die;
1534 		}
1535 
1536 		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1537 			/* give up */
1538 			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1539 					  txdr->dma);
1540 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1541 					  olddma);
1542 			e_err(probe, "Unable to allocate aligned memory "
1543 			      "for the transmit descriptor ring\n");
1544 			vfree(txdr->buffer_info);
1545 			return -ENOMEM;
1546 		} else {
1547 			/* Free old allocation, new allocation was successful */
1548 			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1549 					  olddma);
1550 		}
1551 	}
1552 	memset(txdr->desc, 0, txdr->size);
1553 
1554 	txdr->next_to_use = 0;
1555 	txdr->next_to_clean = 0;
1556 
1557 	return 0;
1558 }
1559 
1560 /**
1561  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1562  * 				  (Descriptors) for all queues
1563  * @adapter: board private structure
1564  *
1565  * Return 0 on success, negative on failure
1566  **/
1567 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1568 {
1569 	int i, err = 0;
1570 
1571 	for (i = 0; i < adapter->num_tx_queues; i++) {
1572 		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1573 		if (err) {
1574 			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1575 			for (i-- ; i >= 0; i--)
1576 				e1000_free_tx_resources(adapter,
1577 							&adapter->tx_ring[i]);
1578 			break;
1579 		}
1580 	}
1581 
1582 	return err;
1583 }
1584 
1585 /**
1586  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1587  * @adapter: board private structure
1588  *
1589  * Configure the Tx unit of the MAC after a reset.
1590  **/
1591 static void e1000_configure_tx(struct e1000_adapter *adapter)
1592 {
1593 	u64 tdba;
1594 	struct e1000_hw *hw = &adapter->hw;
1595 	u32 tdlen, tctl, tipg;
1596 	u32 ipgr1, ipgr2;
1597 
1598 	/* Setup the HW Tx Head and Tail descriptor pointers */
1599 
1600 	switch (adapter->num_tx_queues) {
1601 	case 1:
1602 	default:
1603 		tdba = adapter->tx_ring[0].dma;
1604 		tdlen = adapter->tx_ring[0].count *
1605 			sizeof(struct e1000_tx_desc);
1606 		ew32(TDLEN, tdlen);
1607 		ew32(TDBAH, (tdba >> 32));
1608 		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1609 		ew32(TDT, 0);
1610 		ew32(TDH, 0);
1611 		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1612 					   E1000_TDH : E1000_82542_TDH);
1613 		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1614 					   E1000_TDT : E1000_82542_TDT);
1615 		break;
1616 	}
1617 
1618 	/* Set the default values for the Tx Inter Packet Gap timer */
1619 	if ((hw->media_type == e1000_media_type_fiber ||
1620 	     hw->media_type == e1000_media_type_internal_serdes))
1621 		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1622 	else
1623 		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1624 
1625 	switch (hw->mac_type) {
1626 	case e1000_82542_rev2_0:
1627 	case e1000_82542_rev2_1:
1628 		tipg = DEFAULT_82542_TIPG_IPGT;
1629 		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1630 		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1631 		break;
1632 	default:
1633 		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1634 		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1635 		break;
1636 	}
1637 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1638 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1639 	ew32(TIPG, tipg);
1640 
1641 	/* Set the Tx Interrupt Delay register */
1642 
1643 	ew32(TIDV, adapter->tx_int_delay);
1644 	if (hw->mac_type >= e1000_82540)
1645 		ew32(TADV, adapter->tx_abs_int_delay);
1646 
1647 	/* Program the Transmit Control Register */
1648 
1649 	tctl = er32(TCTL);
1650 	tctl &= ~E1000_TCTL_CT;
1651 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1652 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1653 
1654 	e1000_config_collision_dist(hw);
1655 
1656 	/* Setup Transmit Descriptor Settings for eop descriptor */
1657 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1658 
1659 	/* only set IDE if we are delaying interrupts using the timers */
1660 	if (adapter->tx_int_delay)
1661 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1662 
1663 	if (hw->mac_type < e1000_82543)
1664 		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1665 	else
1666 		adapter->txd_cmd |= E1000_TXD_CMD_RS;
1667 
1668 	/* Cache if we're 82544 running in PCI-X because we'll
1669 	 * need this to apply a workaround later in the send path.
1670 	 */
1671 	if (hw->mac_type == e1000_82544 &&
1672 	    hw->bus_type == e1000_bus_type_pcix)
1673 		adapter->pcix_82544 = true;
1674 
1675 	ew32(TCTL, tctl);
1676 
1677 }
1678 
1679 /**
1680  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1681  * @adapter: board private structure
1682  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1683  *
1684  * Returns 0 on success, negative on failure
1685  **/
1686 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1687 				    struct e1000_rx_ring *rxdr)
1688 {
1689 	struct pci_dev *pdev = adapter->pdev;
1690 	int size, desc_len;
1691 
1692 	size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1693 	rxdr->buffer_info = vzalloc(size);
1694 	if (!rxdr->buffer_info)
1695 		return -ENOMEM;
1696 
1697 	desc_len = sizeof(struct e1000_rx_desc);
1698 
1699 	/* Round up to nearest 4K */
1700 
1701 	rxdr->size = rxdr->count * desc_len;
1702 	rxdr->size = ALIGN(rxdr->size, 4096);
1703 
1704 	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1705 					GFP_KERNEL);
1706 	if (!rxdr->desc) {
1707 setup_rx_desc_die:
1708 		vfree(rxdr->buffer_info);
1709 		return -ENOMEM;
1710 	}
1711 
1712 	/* Fix for errata 23, can't cross 64kB boundary */
1713 	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1714 		void *olddesc = rxdr->desc;
1715 		dma_addr_t olddma = rxdr->dma;
1716 		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1717 		      rxdr->size, rxdr->desc);
1718 		/* Try again, without freeing the previous */
1719 		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1720 						&rxdr->dma, GFP_KERNEL);
1721 		/* Failed allocation, critical failure */
1722 		if (!rxdr->desc) {
1723 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1724 					  olddma);
1725 			goto setup_rx_desc_die;
1726 		}
1727 
1728 		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1729 			/* give up */
1730 			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1731 					  rxdr->dma);
1732 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1733 					  olddma);
1734 			e_err(probe, "Unable to allocate aligned memory for "
1735 			      "the Rx descriptor ring\n");
1736 			goto setup_rx_desc_die;
1737 		} else {
1738 			/* Free old allocation, new allocation was successful */
1739 			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1740 					  olddma);
1741 		}
1742 	}
1743 	memset(rxdr->desc, 0, rxdr->size);
1744 
1745 	rxdr->next_to_clean = 0;
1746 	rxdr->next_to_use = 0;
1747 	rxdr->rx_skb_top = NULL;
1748 
1749 	return 0;
1750 }
1751 
1752 /**
1753  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1754  * 				  (Descriptors) for all queues
1755  * @adapter: board private structure
1756  *
1757  * Return 0 on success, negative on failure
1758  **/
1759 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1760 {
1761 	int i, err = 0;
1762 
1763 	for (i = 0; i < adapter->num_rx_queues; i++) {
1764 		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1765 		if (err) {
1766 			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1767 			for (i-- ; i >= 0; i--)
1768 				e1000_free_rx_resources(adapter,
1769 							&adapter->rx_ring[i]);
1770 			break;
1771 		}
1772 	}
1773 
1774 	return err;
1775 }
1776 
1777 /**
1778  * e1000_setup_rctl - configure the receive control registers
1779  * @adapter: Board private structure
1780  **/
1781 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1782 {
1783 	struct e1000_hw *hw = &adapter->hw;
1784 	u32 rctl;
1785 
1786 	rctl = er32(RCTL);
1787 
1788 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1789 
1790 	rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1791 		E1000_RCTL_RDMTS_HALF |
1792 		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1793 
1794 	if (hw->tbi_compatibility_on == 1)
1795 		rctl |= E1000_RCTL_SBP;
1796 	else
1797 		rctl &= ~E1000_RCTL_SBP;
1798 
1799 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
1800 		rctl &= ~E1000_RCTL_LPE;
1801 	else
1802 		rctl |= E1000_RCTL_LPE;
1803 
1804 	/* Setup buffer sizes */
1805 	rctl &= ~E1000_RCTL_SZ_4096;
1806 	rctl |= E1000_RCTL_BSEX;
1807 	switch (adapter->rx_buffer_len) {
1808 	case E1000_RXBUFFER_2048:
1809 	default:
1810 		rctl |= E1000_RCTL_SZ_2048;
1811 		rctl &= ~E1000_RCTL_BSEX;
1812 		break;
1813 	case E1000_RXBUFFER_4096:
1814 		rctl |= E1000_RCTL_SZ_4096;
1815 		break;
1816 	case E1000_RXBUFFER_8192:
1817 		rctl |= E1000_RCTL_SZ_8192;
1818 		break;
1819 	case E1000_RXBUFFER_16384:
1820 		rctl |= E1000_RCTL_SZ_16384;
1821 		break;
1822 	}
1823 
1824 	/* This is useful for sniffing bad packets. */
1825 	if (adapter->netdev->features & NETIF_F_RXALL) {
1826 		/* UPE and MPE will be handled by normal PROMISC logic
1827 		 * in e1000e_set_rx_mode
1828 		 */
1829 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1830 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1831 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1832 
1833 		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1834 			  E1000_RCTL_DPF | /* Allow filtered pause */
1835 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1836 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1837 		 * and that breaks VLANs.
1838 		 */
1839 	}
1840 
1841 	ew32(RCTL, rctl);
1842 }
1843 
1844 /**
1845  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1846  * @adapter: board private structure
1847  *
1848  * Configure the Rx unit of the MAC after a reset.
1849  **/
1850 static void e1000_configure_rx(struct e1000_adapter *adapter)
1851 {
1852 	u64 rdba;
1853 	struct e1000_hw *hw = &adapter->hw;
1854 	u32 rdlen, rctl, rxcsum;
1855 
1856 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
1857 		rdlen = adapter->rx_ring[0].count *
1858 			sizeof(struct e1000_rx_desc);
1859 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1860 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1861 	} else {
1862 		rdlen = adapter->rx_ring[0].count *
1863 			sizeof(struct e1000_rx_desc);
1864 		adapter->clean_rx = e1000_clean_rx_irq;
1865 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1866 	}
1867 
1868 	/* disable receives while setting up the descriptors */
1869 	rctl = er32(RCTL);
1870 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1871 
1872 	/* set the Receive Delay Timer Register */
1873 	ew32(RDTR, adapter->rx_int_delay);
1874 
1875 	if (hw->mac_type >= e1000_82540) {
1876 		ew32(RADV, adapter->rx_abs_int_delay);
1877 		if (adapter->itr_setting != 0)
1878 			ew32(ITR, 1000000000 / (adapter->itr * 256));
1879 	}
1880 
1881 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1882 	 * the Base and Length of the Rx Descriptor Ring
1883 	 */
1884 	switch (adapter->num_rx_queues) {
1885 	case 1:
1886 	default:
1887 		rdba = adapter->rx_ring[0].dma;
1888 		ew32(RDLEN, rdlen);
1889 		ew32(RDBAH, (rdba >> 32));
1890 		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1891 		ew32(RDT, 0);
1892 		ew32(RDH, 0);
1893 		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1894 					   E1000_RDH : E1000_82542_RDH);
1895 		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1896 					   E1000_RDT : E1000_82542_RDT);
1897 		break;
1898 	}
1899 
1900 	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
1901 	if (hw->mac_type >= e1000_82543) {
1902 		rxcsum = er32(RXCSUM);
1903 		if (adapter->rx_csum)
1904 			rxcsum |= E1000_RXCSUM_TUOFL;
1905 		else
1906 			/* don't need to clear IPPCSE as it defaults to 0 */
1907 			rxcsum &= ~E1000_RXCSUM_TUOFL;
1908 		ew32(RXCSUM, rxcsum);
1909 	}
1910 
1911 	/* Enable Receives */
1912 	ew32(RCTL, rctl | E1000_RCTL_EN);
1913 }
1914 
1915 /**
1916  * e1000_free_tx_resources - Free Tx Resources per Queue
1917  * @adapter: board private structure
1918  * @tx_ring: Tx descriptor ring for a specific queue
1919  *
1920  * Free all transmit software resources
1921  **/
1922 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1923 				    struct e1000_tx_ring *tx_ring)
1924 {
1925 	struct pci_dev *pdev = adapter->pdev;
1926 
1927 	e1000_clean_tx_ring(adapter, tx_ring);
1928 
1929 	vfree(tx_ring->buffer_info);
1930 	tx_ring->buffer_info = NULL;
1931 
1932 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1933 			  tx_ring->dma);
1934 
1935 	tx_ring->desc = NULL;
1936 }
1937 
1938 /**
1939  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1940  * @adapter: board private structure
1941  *
1942  * Free all transmit software resources
1943  **/
1944 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1945 {
1946 	int i;
1947 
1948 	for (i = 0; i < adapter->num_tx_queues; i++)
1949 		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1950 }
1951 
1952 static void
1953 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1954 				 struct e1000_tx_buffer *buffer_info,
1955 				 int budget)
1956 {
1957 	if (buffer_info->dma) {
1958 		if (buffer_info->mapped_as_page)
1959 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1960 				       buffer_info->length, DMA_TO_DEVICE);
1961 		else
1962 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1963 					 buffer_info->length,
1964 					 DMA_TO_DEVICE);
1965 		buffer_info->dma = 0;
1966 	}
1967 	if (buffer_info->skb) {
1968 		napi_consume_skb(buffer_info->skb, budget);
1969 		buffer_info->skb = NULL;
1970 	}
1971 	buffer_info->time_stamp = 0;
1972 	/* buffer_info must be completely set up in the transmit path */
1973 }
1974 
1975 /**
1976  * e1000_clean_tx_ring - Free Tx Buffers
1977  * @adapter: board private structure
1978  * @tx_ring: ring to be cleaned
1979  **/
1980 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1981 				struct e1000_tx_ring *tx_ring)
1982 {
1983 	struct e1000_hw *hw = &adapter->hw;
1984 	struct e1000_tx_buffer *buffer_info;
1985 	unsigned long size;
1986 	unsigned int i;
1987 
1988 	/* Free all the Tx ring sk_buffs */
1989 
1990 	for (i = 0; i < tx_ring->count; i++) {
1991 		buffer_info = &tx_ring->buffer_info[i];
1992 		e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0);
1993 	}
1994 
1995 	netdev_reset_queue(adapter->netdev);
1996 	size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
1997 	memset(tx_ring->buffer_info, 0, size);
1998 
1999 	/* Zero out the descriptor ring */
2000 
2001 	memset(tx_ring->desc, 0, tx_ring->size);
2002 
2003 	tx_ring->next_to_use = 0;
2004 	tx_ring->next_to_clean = 0;
2005 	tx_ring->last_tx_tso = false;
2006 
2007 	writel(0, hw->hw_addr + tx_ring->tdh);
2008 	writel(0, hw->hw_addr + tx_ring->tdt);
2009 }
2010 
2011 /**
2012  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2013  * @adapter: board private structure
2014  **/
2015 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2016 {
2017 	int i;
2018 
2019 	for (i = 0; i < adapter->num_tx_queues; i++)
2020 		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2021 }
2022 
2023 /**
2024  * e1000_free_rx_resources - Free Rx Resources
2025  * @adapter: board private structure
2026  * @rx_ring: ring to clean the resources from
2027  *
2028  * Free all receive software resources
2029  **/
2030 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2031 				    struct e1000_rx_ring *rx_ring)
2032 {
2033 	struct pci_dev *pdev = adapter->pdev;
2034 
2035 	e1000_clean_rx_ring(adapter, rx_ring);
2036 
2037 	vfree(rx_ring->buffer_info);
2038 	rx_ring->buffer_info = NULL;
2039 
2040 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2041 			  rx_ring->dma);
2042 
2043 	rx_ring->desc = NULL;
2044 }
2045 
2046 /**
2047  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2048  * @adapter: board private structure
2049  *
2050  * Free all receive software resources
2051  **/
2052 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2053 {
2054 	int i;
2055 
2056 	for (i = 0; i < adapter->num_rx_queues; i++)
2057 		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2058 }
2059 
2060 #define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2061 static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2062 {
2063 	return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2064 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2065 }
2066 
2067 static void *e1000_alloc_frag(const struct e1000_adapter *a)
2068 {
2069 	unsigned int len = e1000_frag_len(a);
2070 	u8 *data = netdev_alloc_frag(len);
2071 
2072 	if (likely(data))
2073 		data += E1000_HEADROOM;
2074 	return data;
2075 }
2076 
2077 /**
2078  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2079  * @adapter: board private structure
2080  * @rx_ring: ring to free buffers from
2081  **/
2082 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2083 				struct e1000_rx_ring *rx_ring)
2084 {
2085 	struct e1000_hw *hw = &adapter->hw;
2086 	struct e1000_rx_buffer *buffer_info;
2087 	struct pci_dev *pdev = adapter->pdev;
2088 	unsigned long size;
2089 	unsigned int i;
2090 
2091 	/* Free all the Rx netfrags */
2092 	for (i = 0; i < rx_ring->count; i++) {
2093 		buffer_info = &rx_ring->buffer_info[i];
2094 		if (adapter->clean_rx == e1000_clean_rx_irq) {
2095 			if (buffer_info->dma)
2096 				dma_unmap_single(&pdev->dev, buffer_info->dma,
2097 						 adapter->rx_buffer_len,
2098 						 DMA_FROM_DEVICE);
2099 			if (buffer_info->rxbuf.data) {
2100 				skb_free_frag(buffer_info->rxbuf.data);
2101 				buffer_info->rxbuf.data = NULL;
2102 			}
2103 		} else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2104 			if (buffer_info->dma)
2105 				dma_unmap_page(&pdev->dev, buffer_info->dma,
2106 					       adapter->rx_buffer_len,
2107 					       DMA_FROM_DEVICE);
2108 			if (buffer_info->rxbuf.page) {
2109 				put_page(buffer_info->rxbuf.page);
2110 				buffer_info->rxbuf.page = NULL;
2111 			}
2112 		}
2113 
2114 		buffer_info->dma = 0;
2115 	}
2116 
2117 	/* there also may be some cached data from a chained receive */
2118 	napi_free_frags(&adapter->napi);
2119 	rx_ring->rx_skb_top = NULL;
2120 
2121 	size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2122 	memset(rx_ring->buffer_info, 0, size);
2123 
2124 	/* Zero out the descriptor ring */
2125 	memset(rx_ring->desc, 0, rx_ring->size);
2126 
2127 	rx_ring->next_to_clean = 0;
2128 	rx_ring->next_to_use = 0;
2129 
2130 	writel(0, hw->hw_addr + rx_ring->rdh);
2131 	writel(0, hw->hw_addr + rx_ring->rdt);
2132 }
2133 
2134 /**
2135  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2136  * @adapter: board private structure
2137  **/
2138 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2139 {
2140 	int i;
2141 
2142 	for (i = 0; i < adapter->num_rx_queues; i++)
2143 		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2144 }
2145 
2146 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2147  * and memory write and invalidate disabled for certain operations
2148  */
2149 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2150 {
2151 	struct e1000_hw *hw = &adapter->hw;
2152 	struct net_device *netdev = adapter->netdev;
2153 	u32 rctl;
2154 
2155 	e1000_pci_clear_mwi(hw);
2156 
2157 	rctl = er32(RCTL);
2158 	rctl |= E1000_RCTL_RST;
2159 	ew32(RCTL, rctl);
2160 	E1000_WRITE_FLUSH();
2161 	mdelay(5);
2162 
2163 	if (netif_running(netdev))
2164 		e1000_clean_all_rx_rings(adapter);
2165 }
2166 
2167 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2168 {
2169 	struct e1000_hw *hw = &adapter->hw;
2170 	struct net_device *netdev = adapter->netdev;
2171 	u32 rctl;
2172 
2173 	rctl = er32(RCTL);
2174 	rctl &= ~E1000_RCTL_RST;
2175 	ew32(RCTL, rctl);
2176 	E1000_WRITE_FLUSH();
2177 	mdelay(5);
2178 
2179 	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2180 		e1000_pci_set_mwi(hw);
2181 
2182 	if (netif_running(netdev)) {
2183 		/* No need to loop, because 82542 supports only 1 queue */
2184 		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2185 		e1000_configure_rx(adapter);
2186 		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2187 	}
2188 }
2189 
2190 /**
2191  * e1000_set_mac - Change the Ethernet Address of the NIC
2192  * @netdev: network interface device structure
2193  * @p: pointer to an address structure
2194  *
2195  * Returns 0 on success, negative on failure
2196  **/
2197 static int e1000_set_mac(struct net_device *netdev, void *p)
2198 {
2199 	struct e1000_adapter *adapter = netdev_priv(netdev);
2200 	struct e1000_hw *hw = &adapter->hw;
2201 	struct sockaddr *addr = p;
2202 
2203 	if (!is_valid_ether_addr(addr->sa_data))
2204 		return -EADDRNOTAVAIL;
2205 
2206 	/* 82542 2.0 needs to be in reset to write receive address registers */
2207 
2208 	if (hw->mac_type == e1000_82542_rev2_0)
2209 		e1000_enter_82542_rst(adapter);
2210 
2211 	eth_hw_addr_set(netdev, addr->sa_data);
2212 	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2213 
2214 	e1000_rar_set(hw, hw->mac_addr, 0);
2215 
2216 	if (hw->mac_type == e1000_82542_rev2_0)
2217 		e1000_leave_82542_rst(adapter);
2218 
2219 	return 0;
2220 }
2221 
2222 /**
2223  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2224  * @netdev: network interface device structure
2225  *
2226  * The set_rx_mode entry point is called whenever the unicast or multicast
2227  * address lists or the network interface flags are updated. This routine is
2228  * responsible for configuring the hardware for proper unicast, multicast,
2229  * promiscuous mode, and all-multi behavior.
2230  **/
2231 static void e1000_set_rx_mode(struct net_device *netdev)
2232 {
2233 	struct e1000_adapter *adapter = netdev_priv(netdev);
2234 	struct e1000_hw *hw = &adapter->hw;
2235 	struct netdev_hw_addr *ha;
2236 	bool use_uc = false;
2237 	u32 rctl;
2238 	u32 hash_value;
2239 	int i, rar_entries = E1000_RAR_ENTRIES;
2240 	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2241 	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2242 
2243 	if (!mcarray)
2244 		return;
2245 
2246 	/* Check for Promiscuous and All Multicast modes */
2247 
2248 	rctl = er32(RCTL);
2249 
2250 	if (netdev->flags & IFF_PROMISC) {
2251 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2252 		rctl &= ~E1000_RCTL_VFE;
2253 	} else {
2254 		if (netdev->flags & IFF_ALLMULTI)
2255 			rctl |= E1000_RCTL_MPE;
2256 		else
2257 			rctl &= ~E1000_RCTL_MPE;
2258 		/* Enable VLAN filter if there is a VLAN */
2259 		if (e1000_vlan_used(adapter))
2260 			rctl |= E1000_RCTL_VFE;
2261 	}
2262 
2263 	if (netdev_uc_count(netdev) > rar_entries - 1) {
2264 		rctl |= E1000_RCTL_UPE;
2265 	} else if (!(netdev->flags & IFF_PROMISC)) {
2266 		rctl &= ~E1000_RCTL_UPE;
2267 		use_uc = true;
2268 	}
2269 
2270 	ew32(RCTL, rctl);
2271 
2272 	/* 82542 2.0 needs to be in reset to write receive address registers */
2273 
2274 	if (hw->mac_type == e1000_82542_rev2_0)
2275 		e1000_enter_82542_rst(adapter);
2276 
2277 	/* load the first 14 addresses into the exact filters 1-14. Unicast
2278 	 * addresses take precedence to avoid disabling unicast filtering
2279 	 * when possible.
2280 	 *
2281 	 * RAR 0 is used for the station MAC address
2282 	 * if there are not 14 addresses, go ahead and clear the filters
2283 	 */
2284 	i = 1;
2285 	if (use_uc)
2286 		netdev_for_each_uc_addr(ha, netdev) {
2287 			if (i == rar_entries)
2288 				break;
2289 			e1000_rar_set(hw, ha->addr, i++);
2290 		}
2291 
2292 	netdev_for_each_mc_addr(ha, netdev) {
2293 		if (i == rar_entries) {
2294 			/* load any remaining addresses into the hash table */
2295 			u32 hash_reg, hash_bit, mta;
2296 			hash_value = e1000_hash_mc_addr(hw, ha->addr);
2297 			hash_reg = (hash_value >> 5) & 0x7F;
2298 			hash_bit = hash_value & 0x1F;
2299 			mta = (1 << hash_bit);
2300 			mcarray[hash_reg] |= mta;
2301 		} else {
2302 			e1000_rar_set(hw, ha->addr, i++);
2303 		}
2304 	}
2305 
2306 	for (; i < rar_entries; i++) {
2307 		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2308 		E1000_WRITE_FLUSH();
2309 		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2310 		E1000_WRITE_FLUSH();
2311 	}
2312 
2313 	/* write the hash table completely, write from bottom to avoid
2314 	 * both stupid write combining chipsets, and flushing each write
2315 	 */
2316 	for (i = mta_reg_count - 1; i >= 0 ; i--) {
2317 		/* If we are on an 82544 has an errata where writing odd
2318 		 * offsets overwrites the previous even offset, but writing
2319 		 * backwards over the range solves the issue by always
2320 		 * writing the odd offset first
2321 		 */
2322 		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2323 	}
2324 	E1000_WRITE_FLUSH();
2325 
2326 	if (hw->mac_type == e1000_82542_rev2_0)
2327 		e1000_leave_82542_rst(adapter);
2328 
2329 	kfree(mcarray);
2330 }
2331 
2332 /**
2333  * e1000_update_phy_info_task - get phy info
2334  * @work: work struct contained inside adapter struct
2335  *
2336  * Need to wait a few seconds after link up to get diagnostic information from
2337  * the phy
2338  */
2339 static void e1000_update_phy_info_task(struct work_struct *work)
2340 {
2341 	struct e1000_adapter *adapter = container_of(work,
2342 						     struct e1000_adapter,
2343 						     phy_info_task.work);
2344 
2345 	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2346 }
2347 
2348 /**
2349  * e1000_82547_tx_fifo_stall_task - task to complete work
2350  * @work: work struct contained inside adapter struct
2351  **/
2352 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2353 {
2354 	struct e1000_adapter *adapter = container_of(work,
2355 						     struct e1000_adapter,
2356 						     fifo_stall_task.work);
2357 	struct e1000_hw *hw = &adapter->hw;
2358 	struct net_device *netdev = adapter->netdev;
2359 	u32 tctl;
2360 
2361 	if (atomic_read(&adapter->tx_fifo_stall)) {
2362 		if ((er32(TDT) == er32(TDH)) &&
2363 		   (er32(TDFT) == er32(TDFH)) &&
2364 		   (er32(TDFTS) == er32(TDFHS))) {
2365 			tctl = er32(TCTL);
2366 			ew32(TCTL, tctl & ~E1000_TCTL_EN);
2367 			ew32(TDFT, adapter->tx_head_addr);
2368 			ew32(TDFH, adapter->tx_head_addr);
2369 			ew32(TDFTS, adapter->tx_head_addr);
2370 			ew32(TDFHS, adapter->tx_head_addr);
2371 			ew32(TCTL, tctl);
2372 			E1000_WRITE_FLUSH();
2373 
2374 			adapter->tx_fifo_head = 0;
2375 			atomic_set(&adapter->tx_fifo_stall, 0);
2376 			netif_wake_queue(netdev);
2377 		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2378 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
2379 		}
2380 	}
2381 }
2382 
2383 bool e1000_has_link(struct e1000_adapter *adapter)
2384 {
2385 	struct e1000_hw *hw = &adapter->hw;
2386 	bool link_active = false;
2387 
2388 	/* get_link_status is set on LSC (link status) interrupt or rx
2389 	 * sequence error interrupt (except on intel ce4100).
2390 	 * get_link_status will stay false until the
2391 	 * e1000_check_for_link establishes link for copper adapters
2392 	 * ONLY
2393 	 */
2394 	switch (hw->media_type) {
2395 	case e1000_media_type_copper:
2396 		if (hw->mac_type == e1000_ce4100)
2397 			hw->get_link_status = 1;
2398 		if (hw->get_link_status) {
2399 			e1000_check_for_link(hw);
2400 			link_active = !hw->get_link_status;
2401 		} else {
2402 			link_active = true;
2403 		}
2404 		break;
2405 	case e1000_media_type_fiber:
2406 		e1000_check_for_link(hw);
2407 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2408 		break;
2409 	case e1000_media_type_internal_serdes:
2410 		e1000_check_for_link(hw);
2411 		link_active = hw->serdes_has_link;
2412 		break;
2413 	default:
2414 		break;
2415 	}
2416 
2417 	return link_active;
2418 }
2419 
2420 /**
2421  * e1000_watchdog - work function
2422  * @work: work struct contained inside adapter struct
2423  **/
2424 static void e1000_watchdog(struct work_struct *work)
2425 {
2426 	struct e1000_adapter *adapter = container_of(work,
2427 						     struct e1000_adapter,
2428 						     watchdog_task.work);
2429 	struct e1000_hw *hw = &adapter->hw;
2430 	struct net_device *netdev = adapter->netdev;
2431 	struct e1000_tx_ring *txdr = adapter->tx_ring;
2432 	u32 link, tctl;
2433 
2434 	link = e1000_has_link(adapter);
2435 	if ((netif_carrier_ok(netdev)) && link)
2436 		goto link_up;
2437 
2438 	if (link) {
2439 		if (!netif_carrier_ok(netdev)) {
2440 			u32 ctrl;
2441 			/* update snapshot of PHY registers on LSC */
2442 			e1000_get_speed_and_duplex(hw,
2443 						   &adapter->link_speed,
2444 						   &adapter->link_duplex);
2445 
2446 			ctrl = er32(CTRL);
2447 			pr_info("%s NIC Link is Up %d Mbps %s, "
2448 				"Flow Control: %s\n",
2449 				netdev->name,
2450 				adapter->link_speed,
2451 				adapter->link_duplex == FULL_DUPLEX ?
2452 				"Full Duplex" : "Half Duplex",
2453 				((ctrl & E1000_CTRL_TFCE) && (ctrl &
2454 				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2455 				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2456 				E1000_CTRL_TFCE) ? "TX" : "None")));
2457 
2458 			/* adjust timeout factor according to speed/duplex */
2459 			adapter->tx_timeout_factor = 1;
2460 			switch (adapter->link_speed) {
2461 			case SPEED_10:
2462 				adapter->tx_timeout_factor = 16;
2463 				break;
2464 			case SPEED_100:
2465 				/* maybe add some timeout factor ? */
2466 				break;
2467 			}
2468 
2469 			/* enable transmits in the hardware */
2470 			tctl = er32(TCTL);
2471 			tctl |= E1000_TCTL_EN;
2472 			ew32(TCTL, tctl);
2473 
2474 			netif_carrier_on(netdev);
2475 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2476 				schedule_delayed_work(&adapter->phy_info_task,
2477 						      2 * HZ);
2478 			adapter->smartspeed = 0;
2479 		}
2480 	} else {
2481 		if (netif_carrier_ok(netdev)) {
2482 			adapter->link_speed = 0;
2483 			adapter->link_duplex = 0;
2484 			pr_info("%s NIC Link is Down\n",
2485 				netdev->name);
2486 			netif_carrier_off(netdev);
2487 
2488 			if (!test_bit(__E1000_DOWN, &adapter->flags))
2489 				schedule_delayed_work(&adapter->phy_info_task,
2490 						      2 * HZ);
2491 		}
2492 
2493 		e1000_smartspeed(adapter);
2494 	}
2495 
2496 link_up:
2497 	e1000_update_stats(adapter);
2498 
2499 	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2500 	adapter->tpt_old = adapter->stats.tpt;
2501 	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2502 	adapter->colc_old = adapter->stats.colc;
2503 
2504 	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2505 	adapter->gorcl_old = adapter->stats.gorcl;
2506 	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2507 	adapter->gotcl_old = adapter->stats.gotcl;
2508 
2509 	e1000_update_adaptive(hw);
2510 
2511 	if (!netif_carrier_ok(netdev)) {
2512 		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2513 			/* We've lost link, so the controller stops DMA,
2514 			 * but we've got queued Tx work that's never going
2515 			 * to get done, so reset controller to flush Tx.
2516 			 * (Do the reset outside of interrupt context).
2517 			 */
2518 			adapter->tx_timeout_count++;
2519 			schedule_work(&adapter->reset_task);
2520 			/* exit immediately since reset is imminent */
2521 			return;
2522 		}
2523 	}
2524 
2525 	/* Simple mode for Interrupt Throttle Rate (ITR) */
2526 	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2527 		/* Symmetric Tx/Rx gets a reduced ITR=2000;
2528 		 * Total asymmetrical Tx or Rx gets ITR=8000;
2529 		 * everyone else is between 2000-8000.
2530 		 */
2531 		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2532 		u32 dif = (adapter->gotcl > adapter->gorcl ?
2533 			    adapter->gotcl - adapter->gorcl :
2534 			    adapter->gorcl - adapter->gotcl) / 10000;
2535 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2536 
2537 		ew32(ITR, 1000000000 / (itr * 256));
2538 	}
2539 
2540 	/* Cause software interrupt to ensure rx ring is cleaned */
2541 	ew32(ICS, E1000_ICS_RXDMT0);
2542 
2543 	/* Force detection of hung controller every watchdog period */
2544 	adapter->detect_tx_hung = true;
2545 
2546 	/* Reschedule the task */
2547 	if (!test_bit(__E1000_DOWN, &adapter->flags))
2548 		schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2549 }
2550 
2551 enum latency_range {
2552 	lowest_latency = 0,
2553 	low_latency = 1,
2554 	bulk_latency = 2,
2555 	latency_invalid = 255
2556 };
2557 
2558 /**
2559  * e1000_update_itr - update the dynamic ITR value based on statistics
2560  * @adapter: pointer to adapter
2561  * @itr_setting: current adapter->itr
2562  * @packets: the number of packets during this measurement interval
2563  * @bytes: the number of bytes during this measurement interval
2564  *
2565  *      Stores a new ITR value based on packets and byte
2566  *      counts during the last interrupt.  The advantage of per interrupt
2567  *      computation is faster updates and more accurate ITR for the current
2568  *      traffic pattern.  Constants in this function were computed
2569  *      based on theoretical maximum wire speed and thresholds were set based
2570  *      on testing data as well as attempting to minimize response time
2571  *      while increasing bulk throughput.
2572  *      this functionality is controlled by the InterruptThrottleRate module
2573  *      parameter (see e1000_param.c)
2574  **/
2575 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2576 				     u16 itr_setting, int packets, int bytes)
2577 {
2578 	unsigned int retval = itr_setting;
2579 	struct e1000_hw *hw = &adapter->hw;
2580 
2581 	if (unlikely(hw->mac_type < e1000_82540))
2582 		goto update_itr_done;
2583 
2584 	if (packets == 0)
2585 		goto update_itr_done;
2586 
2587 	switch (itr_setting) {
2588 	case lowest_latency:
2589 		/* jumbo frames get bulk treatment*/
2590 		if (bytes/packets > 8000)
2591 			retval = bulk_latency;
2592 		else if ((packets < 5) && (bytes > 512))
2593 			retval = low_latency;
2594 		break;
2595 	case low_latency:  /* 50 usec aka 20000 ints/s */
2596 		if (bytes > 10000) {
2597 			/* jumbo frames need bulk latency setting */
2598 			if (bytes/packets > 8000)
2599 				retval = bulk_latency;
2600 			else if ((packets < 10) || ((bytes/packets) > 1200))
2601 				retval = bulk_latency;
2602 			else if ((packets > 35))
2603 				retval = lowest_latency;
2604 		} else if (bytes/packets > 2000)
2605 			retval = bulk_latency;
2606 		else if (packets <= 2 && bytes < 512)
2607 			retval = lowest_latency;
2608 		break;
2609 	case bulk_latency: /* 250 usec aka 4000 ints/s */
2610 		if (bytes > 25000) {
2611 			if (packets > 35)
2612 				retval = low_latency;
2613 		} else if (bytes < 6000) {
2614 			retval = low_latency;
2615 		}
2616 		break;
2617 	}
2618 
2619 update_itr_done:
2620 	return retval;
2621 }
2622 
2623 static void e1000_set_itr(struct e1000_adapter *adapter)
2624 {
2625 	struct e1000_hw *hw = &adapter->hw;
2626 	u16 current_itr;
2627 	u32 new_itr = adapter->itr;
2628 
2629 	if (unlikely(hw->mac_type < e1000_82540))
2630 		return;
2631 
2632 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2633 	if (unlikely(adapter->link_speed != SPEED_1000)) {
2634 		new_itr = 4000;
2635 		goto set_itr_now;
2636 	}
2637 
2638 	adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2639 					   adapter->total_tx_packets,
2640 					   adapter->total_tx_bytes);
2641 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2642 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2643 		adapter->tx_itr = low_latency;
2644 
2645 	adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2646 					   adapter->total_rx_packets,
2647 					   adapter->total_rx_bytes);
2648 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2649 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2650 		adapter->rx_itr = low_latency;
2651 
2652 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2653 
2654 	switch (current_itr) {
2655 	/* counts and packets in update_itr are dependent on these numbers */
2656 	case lowest_latency:
2657 		new_itr = 70000;
2658 		break;
2659 	case low_latency:
2660 		new_itr = 20000; /* aka hwitr = ~200 */
2661 		break;
2662 	case bulk_latency:
2663 		new_itr = 4000;
2664 		break;
2665 	default:
2666 		break;
2667 	}
2668 
2669 set_itr_now:
2670 	if (new_itr != adapter->itr) {
2671 		/* this attempts to bias the interrupt rate towards Bulk
2672 		 * by adding intermediate steps when interrupt rate is
2673 		 * increasing
2674 		 */
2675 		new_itr = new_itr > adapter->itr ?
2676 			  min(adapter->itr + (new_itr >> 2), new_itr) :
2677 			  new_itr;
2678 		adapter->itr = new_itr;
2679 		ew32(ITR, 1000000000 / (new_itr * 256));
2680 	}
2681 }
2682 
2683 #define E1000_TX_FLAGS_CSUM		0x00000001
2684 #define E1000_TX_FLAGS_VLAN		0x00000002
2685 #define E1000_TX_FLAGS_TSO		0x00000004
2686 #define E1000_TX_FLAGS_IPV4		0x00000008
2687 #define E1000_TX_FLAGS_NO_FCS		0x00000010
2688 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
2689 #define E1000_TX_FLAGS_VLAN_SHIFT	16
2690 
2691 static int e1000_tso(struct e1000_adapter *adapter,
2692 		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2693 		     __be16 protocol)
2694 {
2695 	struct e1000_context_desc *context_desc;
2696 	struct e1000_tx_buffer *buffer_info;
2697 	unsigned int i;
2698 	u32 cmd_length = 0;
2699 	u16 ipcse = 0, tucse, mss;
2700 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
2701 
2702 	if (skb_is_gso(skb)) {
2703 		int err;
2704 
2705 		err = skb_cow_head(skb, 0);
2706 		if (err < 0)
2707 			return err;
2708 
2709 		hdr_len = skb_tcp_all_headers(skb);
2710 		mss = skb_shinfo(skb)->gso_size;
2711 		if (protocol == htons(ETH_P_IP)) {
2712 			struct iphdr *iph = ip_hdr(skb);
2713 			iph->tot_len = 0;
2714 			iph->check = 0;
2715 			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2716 								 iph->daddr, 0,
2717 								 IPPROTO_TCP,
2718 								 0);
2719 			cmd_length = E1000_TXD_CMD_IP;
2720 			ipcse = skb_transport_offset(skb) - 1;
2721 		} else if (skb_is_gso_v6(skb)) {
2722 			tcp_v6_gso_csum_prep(skb);
2723 			ipcse = 0;
2724 		}
2725 		ipcss = skb_network_offset(skb);
2726 		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2727 		tucss = skb_transport_offset(skb);
2728 		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2729 		tucse = 0;
2730 
2731 		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2732 			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2733 
2734 		i = tx_ring->next_to_use;
2735 		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2736 		buffer_info = &tx_ring->buffer_info[i];
2737 
2738 		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2739 		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2740 		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2741 		context_desc->upper_setup.tcp_fields.tucss = tucss;
2742 		context_desc->upper_setup.tcp_fields.tucso = tucso;
2743 		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2744 		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2745 		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2746 		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2747 
2748 		buffer_info->time_stamp = jiffies;
2749 		buffer_info->next_to_watch = i;
2750 
2751 		if (++i == tx_ring->count)
2752 			i = 0;
2753 
2754 		tx_ring->next_to_use = i;
2755 
2756 		return true;
2757 	}
2758 	return false;
2759 }
2760 
2761 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2762 			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2763 			  __be16 protocol)
2764 {
2765 	struct e1000_context_desc *context_desc;
2766 	struct e1000_tx_buffer *buffer_info;
2767 	unsigned int i;
2768 	u8 css;
2769 	u32 cmd_len = E1000_TXD_CMD_DEXT;
2770 
2771 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2772 		return false;
2773 
2774 	switch (protocol) {
2775 	case cpu_to_be16(ETH_P_IP):
2776 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2777 			cmd_len |= E1000_TXD_CMD_TCP;
2778 		break;
2779 	case cpu_to_be16(ETH_P_IPV6):
2780 		/* XXX not handling all IPV6 headers */
2781 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2782 			cmd_len |= E1000_TXD_CMD_TCP;
2783 		break;
2784 	default:
2785 		if (unlikely(net_ratelimit()))
2786 			e_warn(drv, "checksum_partial proto=%x!\n",
2787 			       skb->protocol);
2788 		break;
2789 	}
2790 
2791 	css = skb_checksum_start_offset(skb);
2792 
2793 	i = tx_ring->next_to_use;
2794 	buffer_info = &tx_ring->buffer_info[i];
2795 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2796 
2797 	context_desc->lower_setup.ip_config = 0;
2798 	context_desc->upper_setup.tcp_fields.tucss = css;
2799 	context_desc->upper_setup.tcp_fields.tucso =
2800 		css + skb->csum_offset;
2801 	context_desc->upper_setup.tcp_fields.tucse = 0;
2802 	context_desc->tcp_seg_setup.data = 0;
2803 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2804 
2805 	buffer_info->time_stamp = jiffies;
2806 	buffer_info->next_to_watch = i;
2807 
2808 	if (unlikely(++i == tx_ring->count))
2809 		i = 0;
2810 
2811 	tx_ring->next_to_use = i;
2812 
2813 	return true;
2814 }
2815 
2816 #define E1000_MAX_TXD_PWR	12
2817 #define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
2818 
2819 static int e1000_tx_map(struct e1000_adapter *adapter,
2820 			struct e1000_tx_ring *tx_ring,
2821 			struct sk_buff *skb, unsigned int first,
2822 			unsigned int max_per_txd, unsigned int nr_frags,
2823 			unsigned int mss)
2824 {
2825 	struct e1000_hw *hw = &adapter->hw;
2826 	struct pci_dev *pdev = adapter->pdev;
2827 	struct e1000_tx_buffer *buffer_info;
2828 	unsigned int len = skb_headlen(skb);
2829 	unsigned int offset = 0, size, count = 0, i;
2830 	unsigned int f, bytecount, segs;
2831 
2832 	i = tx_ring->next_to_use;
2833 
2834 	while (len) {
2835 		buffer_info = &tx_ring->buffer_info[i];
2836 		size = min(len, max_per_txd);
2837 		/* Workaround for Controller erratum --
2838 		 * descriptor for non-tso packet in a linear SKB that follows a
2839 		 * tso gets written back prematurely before the data is fully
2840 		 * DMA'd to the controller
2841 		 */
2842 		if (!skb->data_len && tx_ring->last_tx_tso &&
2843 		    !skb_is_gso(skb)) {
2844 			tx_ring->last_tx_tso = false;
2845 			size -= 4;
2846 		}
2847 
2848 		/* Workaround for premature desc write-backs
2849 		 * in TSO mode.  Append 4-byte sentinel desc
2850 		 */
2851 		if (unlikely(mss && !nr_frags && size == len && size > 8))
2852 			size -= 4;
2853 		/* work-around for errata 10 and it applies
2854 		 * to all controllers in PCI-X mode
2855 		 * The fix is to make sure that the first descriptor of a
2856 		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2857 		 */
2858 		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2859 			     (size > 2015) && count == 0))
2860 			size = 2015;
2861 
2862 		/* Workaround for potential 82544 hang in PCI-X.  Avoid
2863 		 * terminating buffers within evenly-aligned dwords.
2864 		 */
2865 		if (unlikely(adapter->pcix_82544 &&
2866 		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2867 		   size > 4))
2868 			size -= 4;
2869 
2870 		buffer_info->length = size;
2871 		/* set time_stamp *before* dma to help avoid a possible race */
2872 		buffer_info->time_stamp = jiffies;
2873 		buffer_info->mapped_as_page = false;
2874 		buffer_info->dma = dma_map_single(&pdev->dev,
2875 						  skb->data + offset,
2876 						  size, DMA_TO_DEVICE);
2877 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2878 			goto dma_error;
2879 		buffer_info->next_to_watch = i;
2880 
2881 		len -= size;
2882 		offset += size;
2883 		count++;
2884 		if (len) {
2885 			i++;
2886 			if (unlikely(i == tx_ring->count))
2887 				i = 0;
2888 		}
2889 	}
2890 
2891 	for (f = 0; f < nr_frags; f++) {
2892 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2893 
2894 		len = skb_frag_size(frag);
2895 		offset = 0;
2896 
2897 		while (len) {
2898 			unsigned long bufend;
2899 			i++;
2900 			if (unlikely(i == tx_ring->count))
2901 				i = 0;
2902 
2903 			buffer_info = &tx_ring->buffer_info[i];
2904 			size = min(len, max_per_txd);
2905 			/* Workaround for premature desc write-backs
2906 			 * in TSO mode.  Append 4-byte sentinel desc
2907 			 */
2908 			if (unlikely(mss && f == (nr_frags-1) &&
2909 			    size == len && size > 8))
2910 				size -= 4;
2911 			/* Workaround for potential 82544 hang in PCI-X.
2912 			 * Avoid terminating buffers within evenly-aligned
2913 			 * dwords.
2914 			 */
2915 			bufend = (unsigned long)
2916 				page_to_phys(skb_frag_page(frag));
2917 			bufend += offset + size - 1;
2918 			if (unlikely(adapter->pcix_82544 &&
2919 				     !(bufend & 4) &&
2920 				     size > 4))
2921 				size -= 4;
2922 
2923 			buffer_info->length = size;
2924 			buffer_info->time_stamp = jiffies;
2925 			buffer_info->mapped_as_page = true;
2926 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2927 						offset, size, DMA_TO_DEVICE);
2928 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2929 				goto dma_error;
2930 			buffer_info->next_to_watch = i;
2931 
2932 			len -= size;
2933 			offset += size;
2934 			count++;
2935 		}
2936 	}
2937 
2938 	segs = skb_shinfo(skb)->gso_segs ?: 1;
2939 	/* multiply data chunks by size of headers */
2940 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2941 
2942 	tx_ring->buffer_info[i].skb = skb;
2943 	tx_ring->buffer_info[i].segs = segs;
2944 	tx_ring->buffer_info[i].bytecount = bytecount;
2945 	tx_ring->buffer_info[first].next_to_watch = i;
2946 
2947 	return count;
2948 
2949 dma_error:
2950 	dev_err(&pdev->dev, "TX DMA map failed\n");
2951 	buffer_info->dma = 0;
2952 	if (count)
2953 		count--;
2954 
2955 	while (count--) {
2956 		if (i == 0)
2957 			i += tx_ring->count;
2958 		i--;
2959 		buffer_info = &tx_ring->buffer_info[i];
2960 		e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0);
2961 	}
2962 
2963 	return 0;
2964 }
2965 
2966 static void e1000_tx_queue(struct e1000_adapter *adapter,
2967 			   struct e1000_tx_ring *tx_ring, int tx_flags,
2968 			   int count)
2969 {
2970 	struct e1000_tx_desc *tx_desc = NULL;
2971 	struct e1000_tx_buffer *buffer_info;
2972 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2973 	unsigned int i;
2974 
2975 	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2976 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2977 			     E1000_TXD_CMD_TSE;
2978 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2979 
2980 		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2981 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2982 	}
2983 
2984 	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2985 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2986 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2987 	}
2988 
2989 	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2990 		txd_lower |= E1000_TXD_CMD_VLE;
2991 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2992 	}
2993 
2994 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2995 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
2996 
2997 	i = tx_ring->next_to_use;
2998 
2999 	while (count--) {
3000 		buffer_info = &tx_ring->buffer_info[i];
3001 		tx_desc = E1000_TX_DESC(*tx_ring, i);
3002 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3003 		tx_desc->lower.data =
3004 			cpu_to_le32(txd_lower | buffer_info->length);
3005 		tx_desc->upper.data = cpu_to_le32(txd_upper);
3006 		if (unlikely(++i == tx_ring->count))
3007 			i = 0;
3008 	}
3009 
3010 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3011 
3012 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3013 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3014 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3015 
3016 	/* Force memory writes to complete before letting h/w
3017 	 * know there are new descriptors to fetch.  (Only
3018 	 * applicable for weak-ordered memory model archs,
3019 	 * such as IA-64).
3020 	 */
3021 	dma_wmb();
3022 
3023 	tx_ring->next_to_use = i;
3024 }
3025 
3026 /* 82547 workaround to avoid controller hang in half-duplex environment.
3027  * The workaround is to avoid queuing a large packet that would span
3028  * the internal Tx FIFO ring boundary by notifying the stack to resend
3029  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3030  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3031  * to the beginning of the Tx FIFO.
3032  */
3033 
3034 #define E1000_FIFO_HDR			0x10
3035 #define E1000_82547_PAD_LEN		0x3E0
3036 
3037 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3038 				       struct sk_buff *skb)
3039 {
3040 	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3041 	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3042 
3043 	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3044 
3045 	if (adapter->link_duplex != HALF_DUPLEX)
3046 		goto no_fifo_stall_required;
3047 
3048 	if (atomic_read(&adapter->tx_fifo_stall))
3049 		return 1;
3050 
3051 	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3052 		atomic_set(&adapter->tx_fifo_stall, 1);
3053 		return 1;
3054 	}
3055 
3056 no_fifo_stall_required:
3057 	adapter->tx_fifo_head += skb_fifo_len;
3058 	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3059 		adapter->tx_fifo_head -= adapter->tx_fifo_size;
3060 	return 0;
3061 }
3062 
3063 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3064 {
3065 	struct e1000_adapter *adapter = netdev_priv(netdev);
3066 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3067 
3068 	netif_stop_queue(netdev);
3069 	/* Herbert's original patch had:
3070 	 *  smp_mb__after_netif_stop_queue();
3071 	 * but since that doesn't exist yet, just open code it.
3072 	 */
3073 	smp_mb();
3074 
3075 	/* We need to check again in a case another CPU has just
3076 	 * made room available.
3077 	 */
3078 	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3079 		return -EBUSY;
3080 
3081 	/* A reprieve! */
3082 	netif_start_queue(netdev);
3083 	++adapter->restart_queue;
3084 	return 0;
3085 }
3086 
3087 static int e1000_maybe_stop_tx(struct net_device *netdev,
3088 			       struct e1000_tx_ring *tx_ring, int size)
3089 {
3090 	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3091 		return 0;
3092 	return __e1000_maybe_stop_tx(netdev, size);
3093 }
3094 
3095 #define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3096 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3097 				    struct net_device *netdev)
3098 {
3099 	struct e1000_adapter *adapter = netdev_priv(netdev);
3100 	struct e1000_hw *hw = &adapter->hw;
3101 	struct e1000_tx_ring *tx_ring;
3102 	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3103 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3104 	unsigned int tx_flags = 0;
3105 	unsigned int len = skb_headlen(skb);
3106 	unsigned int nr_frags;
3107 	unsigned int mss;
3108 	int count = 0;
3109 	int tso;
3110 	unsigned int f;
3111 	__be16 protocol = vlan_get_protocol(skb);
3112 
3113 	/* This goes back to the question of how to logically map a Tx queue
3114 	 * to a flow.  Right now, performance is impacted slightly negatively
3115 	 * if using multiple Tx queues.  If the stack breaks away from a
3116 	 * single qdisc implementation, we can look at this again.
3117 	 */
3118 	tx_ring = adapter->tx_ring;
3119 
3120 	/* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3121 	 * packets may get corrupted during padding by HW.
3122 	 * To WA this issue, pad all small packets manually.
3123 	 */
3124 	if (eth_skb_pad(skb))
3125 		return NETDEV_TX_OK;
3126 
3127 	mss = skb_shinfo(skb)->gso_size;
3128 	/* The controller does a simple calculation to
3129 	 * make sure there is enough room in the FIFO before
3130 	 * initiating the DMA for each buffer.  The calc is:
3131 	 * 4 = ceil(buffer len/mss).  To make sure we don't
3132 	 * overrun the FIFO, adjust the max buffer len if mss
3133 	 * drops.
3134 	 */
3135 	if (mss) {
3136 		u8 hdr_len;
3137 		max_per_txd = min(mss << 2, max_per_txd);
3138 		max_txd_pwr = fls(max_per_txd) - 1;
3139 
3140 		hdr_len = skb_tcp_all_headers(skb);
3141 		if (skb->data_len && hdr_len == len) {
3142 			switch (hw->mac_type) {
3143 			case e1000_82544: {
3144 				unsigned int pull_size;
3145 
3146 				/* Make sure we have room to chop off 4 bytes,
3147 				 * and that the end alignment will work out to
3148 				 * this hardware's requirements
3149 				 * NOTE: this is a TSO only workaround
3150 				 * if end byte alignment not correct move us
3151 				 * into the next dword
3152 				 */
3153 				if ((unsigned long)(skb_tail_pointer(skb) - 1)
3154 				    & 4)
3155 					break;
3156 				pull_size = min((unsigned int)4, skb->data_len);
3157 				if (!__pskb_pull_tail(skb, pull_size)) {
3158 					e_err(drv, "__pskb_pull_tail "
3159 					      "failed.\n");
3160 					dev_kfree_skb_any(skb);
3161 					return NETDEV_TX_OK;
3162 				}
3163 				len = skb_headlen(skb);
3164 				break;
3165 			}
3166 			default:
3167 				/* do nothing */
3168 				break;
3169 			}
3170 		}
3171 	}
3172 
3173 	/* reserve a descriptor for the offload context */
3174 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3175 		count++;
3176 	count++;
3177 
3178 	/* Controller Erratum workaround */
3179 	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3180 		count++;
3181 
3182 	count += TXD_USE_COUNT(len, max_txd_pwr);
3183 
3184 	if (adapter->pcix_82544)
3185 		count++;
3186 
3187 	/* work-around for errata 10 and it applies to all controllers
3188 	 * in PCI-X mode, so add one more descriptor to the count
3189 	 */
3190 	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3191 			(len > 2015)))
3192 		count++;
3193 
3194 	nr_frags = skb_shinfo(skb)->nr_frags;
3195 	for (f = 0; f < nr_frags; f++)
3196 		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3197 				       max_txd_pwr);
3198 	if (adapter->pcix_82544)
3199 		count += nr_frags;
3200 
3201 	/* need: count + 2 desc gap to keep tail from touching
3202 	 * head, otherwise try next time
3203 	 */
3204 	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3205 		return NETDEV_TX_BUSY;
3206 
3207 	if (unlikely((hw->mac_type == e1000_82547) &&
3208 		     (e1000_82547_fifo_workaround(adapter, skb)))) {
3209 		netif_stop_queue(netdev);
3210 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3211 			schedule_delayed_work(&adapter->fifo_stall_task, 1);
3212 		return NETDEV_TX_BUSY;
3213 	}
3214 
3215 	if (skb_vlan_tag_present(skb)) {
3216 		tx_flags |= E1000_TX_FLAGS_VLAN;
3217 		tx_flags |= (skb_vlan_tag_get(skb) <<
3218 			     E1000_TX_FLAGS_VLAN_SHIFT);
3219 	}
3220 
3221 	first = tx_ring->next_to_use;
3222 
3223 	tso = e1000_tso(adapter, tx_ring, skb, protocol);
3224 	if (tso < 0) {
3225 		dev_kfree_skb_any(skb);
3226 		return NETDEV_TX_OK;
3227 	}
3228 
3229 	if (likely(tso)) {
3230 		if (likely(hw->mac_type != e1000_82544))
3231 			tx_ring->last_tx_tso = true;
3232 		tx_flags |= E1000_TX_FLAGS_TSO;
3233 	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3234 		tx_flags |= E1000_TX_FLAGS_CSUM;
3235 
3236 	if (protocol == htons(ETH_P_IP))
3237 		tx_flags |= E1000_TX_FLAGS_IPV4;
3238 
3239 	if (unlikely(skb->no_fcs))
3240 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
3241 
3242 	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3243 			     nr_frags, mss);
3244 
3245 	if (count) {
3246 		/* The descriptors needed is higher than other Intel drivers
3247 		 * due to a number of workarounds.  The breakdown is below:
3248 		 * Data descriptors: MAX_SKB_FRAGS + 1
3249 		 * Context Descriptor: 1
3250 		 * Keep head from touching tail: 2
3251 		 * Workarounds: 3
3252 		 */
3253 		int desc_needed = MAX_SKB_FRAGS + 7;
3254 
3255 		netdev_sent_queue(netdev, skb->len);
3256 		skb_tx_timestamp(skb);
3257 
3258 		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3259 
3260 		/* 82544 potentially requires twice as many data descriptors
3261 		 * in order to guarantee buffers don't end on evenly-aligned
3262 		 * dwords
3263 		 */
3264 		if (adapter->pcix_82544)
3265 			desc_needed += MAX_SKB_FRAGS + 1;
3266 
3267 		/* Make sure there is space in the ring for the next send. */
3268 		e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3269 
3270 		if (!netdev_xmit_more() ||
3271 		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3272 			writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3273 		}
3274 	} else {
3275 		dev_kfree_skb_any(skb);
3276 		tx_ring->buffer_info[first].time_stamp = 0;
3277 		tx_ring->next_to_use = first;
3278 	}
3279 
3280 	return NETDEV_TX_OK;
3281 }
3282 
3283 #define NUM_REGS 38 /* 1 based count */
3284 static void e1000_regdump(struct e1000_adapter *adapter)
3285 {
3286 	struct e1000_hw *hw = &adapter->hw;
3287 	u32 regs[NUM_REGS];
3288 	u32 *regs_buff = regs;
3289 	int i = 0;
3290 
3291 	static const char * const reg_name[] = {
3292 		"CTRL",  "STATUS",
3293 		"RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3294 		"TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3295 		"TIDV", "TXDCTL", "TADV", "TARC0",
3296 		"TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3297 		"TXDCTL1", "TARC1",
3298 		"CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3299 		"TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3300 		"RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3301 	};
3302 
3303 	regs_buff[0]  = er32(CTRL);
3304 	regs_buff[1]  = er32(STATUS);
3305 
3306 	regs_buff[2]  = er32(RCTL);
3307 	regs_buff[3]  = er32(RDLEN);
3308 	regs_buff[4]  = er32(RDH);
3309 	regs_buff[5]  = er32(RDT);
3310 	regs_buff[6]  = er32(RDTR);
3311 
3312 	regs_buff[7]  = er32(TCTL);
3313 	regs_buff[8]  = er32(TDBAL);
3314 	regs_buff[9]  = er32(TDBAH);
3315 	regs_buff[10] = er32(TDLEN);
3316 	regs_buff[11] = er32(TDH);
3317 	regs_buff[12] = er32(TDT);
3318 	regs_buff[13] = er32(TIDV);
3319 	regs_buff[14] = er32(TXDCTL);
3320 	regs_buff[15] = er32(TADV);
3321 	regs_buff[16] = er32(TARC0);
3322 
3323 	regs_buff[17] = er32(TDBAL1);
3324 	regs_buff[18] = er32(TDBAH1);
3325 	regs_buff[19] = er32(TDLEN1);
3326 	regs_buff[20] = er32(TDH1);
3327 	regs_buff[21] = er32(TDT1);
3328 	regs_buff[22] = er32(TXDCTL1);
3329 	regs_buff[23] = er32(TARC1);
3330 	regs_buff[24] = er32(CTRL_EXT);
3331 	regs_buff[25] = er32(ERT);
3332 	regs_buff[26] = er32(RDBAL0);
3333 	regs_buff[27] = er32(RDBAH0);
3334 	regs_buff[28] = er32(TDFH);
3335 	regs_buff[29] = er32(TDFT);
3336 	regs_buff[30] = er32(TDFHS);
3337 	regs_buff[31] = er32(TDFTS);
3338 	regs_buff[32] = er32(TDFPC);
3339 	regs_buff[33] = er32(RDFH);
3340 	regs_buff[34] = er32(RDFT);
3341 	regs_buff[35] = er32(RDFHS);
3342 	regs_buff[36] = er32(RDFTS);
3343 	regs_buff[37] = er32(RDFPC);
3344 
3345 	pr_info("Register dump\n");
3346 	for (i = 0; i < NUM_REGS; i++)
3347 		pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3348 }
3349 
3350 /*
3351  * e1000_dump: Print registers, tx ring and rx ring
3352  */
3353 static void e1000_dump(struct e1000_adapter *adapter)
3354 {
3355 	/* this code doesn't handle multiple rings */
3356 	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3357 	struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3358 	int i;
3359 
3360 	if (!netif_msg_hw(adapter))
3361 		return;
3362 
3363 	/* Print Registers */
3364 	e1000_regdump(adapter);
3365 
3366 	/* transmit dump */
3367 	pr_info("TX Desc ring0 dump\n");
3368 
3369 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3370 	 *
3371 	 * Legacy Transmit Descriptor
3372 	 *   +--------------------------------------------------------------+
3373 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3374 	 *   +--------------------------------------------------------------+
3375 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3376 	 *   +--------------------------------------------------------------+
3377 	 *   63       48 47        36 35    32 31     24 23    16 15        0
3378 	 *
3379 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3380 	 *   63      48 47    40 39       32 31             16 15    8 7      0
3381 	 *   +----------------------------------------------------------------+
3382 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3383 	 *   +----------------------------------------------------------------+
3384 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3385 	 *   +----------------------------------------------------------------+
3386 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3387 	 *
3388 	 * Extended Data Descriptor (DTYP=0x1)
3389 	 *   +----------------------------------------------------------------+
3390 	 * 0 |                     Buffer Address [63:0]                      |
3391 	 *   +----------------------------------------------------------------+
3392 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3393 	 *   +----------------------------------------------------------------+
3394 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3395 	 */
3396 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3397 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3398 
3399 	if (!netif_msg_tx_done(adapter))
3400 		goto rx_ring_summary;
3401 
3402 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3403 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3404 		struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3405 		struct my_u { __le64 a; __le64 b; };
3406 		struct my_u *u = (struct my_u *)tx_desc;
3407 		const char *type;
3408 
3409 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3410 			type = "NTC/U";
3411 		else if (i == tx_ring->next_to_use)
3412 			type = "NTU";
3413 		else if (i == tx_ring->next_to_clean)
3414 			type = "NTC";
3415 		else
3416 			type = "";
3417 
3418 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3419 			((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3420 			le64_to_cpu(u->a), le64_to_cpu(u->b),
3421 			(u64)buffer_info->dma, buffer_info->length,
3422 			buffer_info->next_to_watch,
3423 			(u64)buffer_info->time_stamp, buffer_info->skb, type);
3424 	}
3425 
3426 rx_ring_summary:
3427 	/* receive dump */
3428 	pr_info("\nRX Desc ring dump\n");
3429 
3430 	/* Legacy Receive Descriptor Format
3431 	 *
3432 	 * +-----------------------------------------------------+
3433 	 * |                Buffer Address [63:0]                |
3434 	 * +-----------------------------------------------------+
3435 	 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3436 	 * +-----------------------------------------------------+
3437 	 * 63       48 47    40 39      32 31         16 15      0
3438 	 */
3439 	pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3440 
3441 	if (!netif_msg_rx_status(adapter))
3442 		goto exit;
3443 
3444 	for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3445 		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3446 		struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3447 		struct my_u { __le64 a; __le64 b; };
3448 		struct my_u *u = (struct my_u *)rx_desc;
3449 		const char *type;
3450 
3451 		if (i == rx_ring->next_to_use)
3452 			type = "NTU";
3453 		else if (i == rx_ring->next_to_clean)
3454 			type = "NTC";
3455 		else
3456 			type = "";
3457 
3458 		pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3459 			i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3460 			(u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3461 	} /* for */
3462 
3463 	/* dump the descriptor caches */
3464 	/* rx */
3465 	pr_info("Rx descriptor cache in 64bit format\n");
3466 	for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3467 		pr_info("R%04X: %08X|%08X %08X|%08X\n",
3468 			i,
3469 			readl(adapter->hw.hw_addr + i+4),
3470 			readl(adapter->hw.hw_addr + i),
3471 			readl(adapter->hw.hw_addr + i+12),
3472 			readl(adapter->hw.hw_addr + i+8));
3473 	}
3474 	/* tx */
3475 	pr_info("Tx descriptor cache in 64bit format\n");
3476 	for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3477 		pr_info("T%04X: %08X|%08X %08X|%08X\n",
3478 			i,
3479 			readl(adapter->hw.hw_addr + i+4),
3480 			readl(adapter->hw.hw_addr + i),
3481 			readl(adapter->hw.hw_addr + i+12),
3482 			readl(adapter->hw.hw_addr + i+8));
3483 	}
3484 exit:
3485 	return;
3486 }
3487 
3488 /**
3489  * e1000_tx_timeout - Respond to a Tx Hang
3490  * @netdev: network interface device structure
3491  * @txqueue: number of the Tx queue that hung (unused)
3492  **/
3493 static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
3494 {
3495 	struct e1000_adapter *adapter = netdev_priv(netdev);
3496 
3497 	/* Do the reset outside of interrupt context */
3498 	adapter->tx_timeout_count++;
3499 	schedule_work(&adapter->reset_task);
3500 }
3501 
3502 static void e1000_reset_task(struct work_struct *work)
3503 {
3504 	struct e1000_adapter *adapter =
3505 		container_of(work, struct e1000_adapter, reset_task);
3506 
3507 	e_err(drv, "Reset adapter\n");
3508 	e1000_reinit_locked(adapter);
3509 }
3510 
3511 /**
3512  * e1000_change_mtu - Change the Maximum Transfer Unit
3513  * @netdev: network interface device structure
3514  * @new_mtu: new value for maximum frame size
3515  *
3516  * Returns 0 on success, negative on failure
3517  **/
3518 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3519 {
3520 	struct e1000_adapter *adapter = netdev_priv(netdev);
3521 	struct e1000_hw *hw = &adapter->hw;
3522 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3523 
3524 	/* Adapter-specific max frame size limits. */
3525 	switch (hw->mac_type) {
3526 	case e1000_undefined ... e1000_82542_rev2_1:
3527 		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3528 			e_err(probe, "Jumbo Frames not supported.\n");
3529 			return -EINVAL;
3530 		}
3531 		break;
3532 	default:
3533 		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3534 		break;
3535 	}
3536 
3537 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3538 		msleep(1);
3539 	/* e1000_down has a dependency on max_frame_size */
3540 	hw->max_frame_size = max_frame;
3541 	if (netif_running(netdev)) {
3542 		/* prevent buffers from being reallocated */
3543 		adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3544 		e1000_down(adapter);
3545 	}
3546 
3547 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3548 	 * means we reserve 2 more, this pushes us to allocate from the next
3549 	 * larger slab size.
3550 	 * i.e. RXBUFFER_2048 --> size-4096 slab
3551 	 * however with the new *_jumbo_rx* routines, jumbo receives will use
3552 	 * fragmented skbs
3553 	 */
3554 
3555 	if (max_frame <= E1000_RXBUFFER_2048)
3556 		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3557 	else
3558 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3559 		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3560 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3561 		adapter->rx_buffer_len = PAGE_SIZE;
3562 #endif
3563 
3564 	/* adjust allocation if LPE protects us, and we aren't using SBP */
3565 	if (!hw->tbi_compatibility_on &&
3566 	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3567 	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3568 		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3569 
3570 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
3571 		   netdev->mtu, new_mtu);
3572 	WRITE_ONCE(netdev->mtu, new_mtu);
3573 
3574 	if (netif_running(netdev))
3575 		e1000_up(adapter);
3576 	else
3577 		e1000_reset(adapter);
3578 
3579 	clear_bit(__E1000_RESETTING, &adapter->flags);
3580 
3581 	return 0;
3582 }
3583 
3584 /**
3585  * e1000_update_stats - Update the board statistics counters
3586  * @adapter: board private structure
3587  **/
3588 void e1000_update_stats(struct e1000_adapter *adapter)
3589 {
3590 	struct net_device *netdev = adapter->netdev;
3591 	struct e1000_hw *hw = &adapter->hw;
3592 	struct pci_dev *pdev = adapter->pdev;
3593 	unsigned long flags;
3594 	u16 phy_tmp;
3595 
3596 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3597 
3598 	/* Prevent stats update while adapter is being reset, or if the pci
3599 	 * connection is down.
3600 	 */
3601 	if (adapter->link_speed == 0)
3602 		return;
3603 	if (pci_channel_offline(pdev))
3604 		return;
3605 
3606 	spin_lock_irqsave(&adapter->stats_lock, flags);
3607 
3608 	/* these counters are modified from e1000_tbi_adjust_stats,
3609 	 * called from the interrupt context, so they must only
3610 	 * be written while holding adapter->stats_lock
3611 	 */
3612 
3613 	adapter->stats.crcerrs += er32(CRCERRS);
3614 	adapter->stats.gprc += er32(GPRC);
3615 	adapter->stats.gorcl += er32(GORCL);
3616 	adapter->stats.gorch += er32(GORCH);
3617 	adapter->stats.bprc += er32(BPRC);
3618 	adapter->stats.mprc += er32(MPRC);
3619 	adapter->stats.roc += er32(ROC);
3620 
3621 	adapter->stats.prc64 += er32(PRC64);
3622 	adapter->stats.prc127 += er32(PRC127);
3623 	adapter->stats.prc255 += er32(PRC255);
3624 	adapter->stats.prc511 += er32(PRC511);
3625 	adapter->stats.prc1023 += er32(PRC1023);
3626 	adapter->stats.prc1522 += er32(PRC1522);
3627 
3628 	adapter->stats.symerrs += er32(SYMERRS);
3629 	adapter->stats.mpc += er32(MPC);
3630 	adapter->stats.scc += er32(SCC);
3631 	adapter->stats.ecol += er32(ECOL);
3632 	adapter->stats.mcc += er32(MCC);
3633 	adapter->stats.latecol += er32(LATECOL);
3634 	adapter->stats.dc += er32(DC);
3635 	adapter->stats.sec += er32(SEC);
3636 	adapter->stats.rlec += er32(RLEC);
3637 	adapter->stats.xonrxc += er32(XONRXC);
3638 	adapter->stats.xontxc += er32(XONTXC);
3639 	adapter->stats.xoffrxc += er32(XOFFRXC);
3640 	adapter->stats.xofftxc += er32(XOFFTXC);
3641 	adapter->stats.fcruc += er32(FCRUC);
3642 	adapter->stats.gptc += er32(GPTC);
3643 	adapter->stats.gotcl += er32(GOTCL);
3644 	adapter->stats.gotch += er32(GOTCH);
3645 	adapter->stats.rnbc += er32(RNBC);
3646 	adapter->stats.ruc += er32(RUC);
3647 	adapter->stats.rfc += er32(RFC);
3648 	adapter->stats.rjc += er32(RJC);
3649 	adapter->stats.torl += er32(TORL);
3650 	adapter->stats.torh += er32(TORH);
3651 	adapter->stats.totl += er32(TOTL);
3652 	adapter->stats.toth += er32(TOTH);
3653 	adapter->stats.tpr += er32(TPR);
3654 
3655 	adapter->stats.ptc64 += er32(PTC64);
3656 	adapter->stats.ptc127 += er32(PTC127);
3657 	adapter->stats.ptc255 += er32(PTC255);
3658 	adapter->stats.ptc511 += er32(PTC511);
3659 	adapter->stats.ptc1023 += er32(PTC1023);
3660 	adapter->stats.ptc1522 += er32(PTC1522);
3661 
3662 	adapter->stats.mptc += er32(MPTC);
3663 	adapter->stats.bptc += er32(BPTC);
3664 
3665 	/* used for adaptive IFS */
3666 
3667 	hw->tx_packet_delta = er32(TPT);
3668 	adapter->stats.tpt += hw->tx_packet_delta;
3669 	hw->collision_delta = er32(COLC);
3670 	adapter->stats.colc += hw->collision_delta;
3671 
3672 	if (hw->mac_type >= e1000_82543) {
3673 		adapter->stats.algnerrc += er32(ALGNERRC);
3674 		adapter->stats.rxerrc += er32(RXERRC);
3675 		adapter->stats.tncrs += er32(TNCRS);
3676 		adapter->stats.cexterr += er32(CEXTERR);
3677 		adapter->stats.tsctc += er32(TSCTC);
3678 		adapter->stats.tsctfc += er32(TSCTFC);
3679 	}
3680 
3681 	/* Fill out the OS statistics structure */
3682 	netdev->stats.multicast = adapter->stats.mprc;
3683 	netdev->stats.collisions = adapter->stats.colc;
3684 
3685 	/* Rx Errors */
3686 
3687 	/* RLEC on some newer hardware can be incorrect so build
3688 	 * our own version based on RUC and ROC
3689 	 */
3690 	netdev->stats.rx_errors = adapter->stats.rxerrc +
3691 		adapter->stats.crcerrs + adapter->stats.algnerrc +
3692 		adapter->stats.ruc + adapter->stats.roc +
3693 		adapter->stats.cexterr;
3694 	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3695 	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3696 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3697 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3698 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3699 
3700 	/* Tx Errors */
3701 	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3702 	netdev->stats.tx_errors = adapter->stats.txerrc;
3703 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3704 	netdev->stats.tx_window_errors = adapter->stats.latecol;
3705 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3706 	if (hw->bad_tx_carr_stats_fd &&
3707 	    adapter->link_duplex == FULL_DUPLEX) {
3708 		netdev->stats.tx_carrier_errors = 0;
3709 		adapter->stats.tncrs = 0;
3710 	}
3711 
3712 	/* Tx Dropped needs to be maintained elsewhere */
3713 
3714 	/* Phy Stats */
3715 	if (hw->media_type == e1000_media_type_copper) {
3716 		if ((adapter->link_speed == SPEED_1000) &&
3717 		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3718 			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3719 			adapter->phy_stats.idle_errors += phy_tmp;
3720 		}
3721 
3722 		if ((hw->mac_type <= e1000_82546) &&
3723 		   (hw->phy_type == e1000_phy_m88) &&
3724 		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3725 			adapter->phy_stats.receive_errors += phy_tmp;
3726 	}
3727 
3728 	/* Management Stats */
3729 	if (hw->has_smbus) {
3730 		adapter->stats.mgptc += er32(MGTPTC);
3731 		adapter->stats.mgprc += er32(MGTPRC);
3732 		adapter->stats.mgpdc += er32(MGTPDC);
3733 	}
3734 
3735 	spin_unlock_irqrestore(&adapter->stats_lock, flags);
3736 }
3737 
3738 /**
3739  * e1000_intr - Interrupt Handler
3740  * @irq: interrupt number
3741  * @data: pointer to a network interface device structure
3742  **/
3743 static irqreturn_t e1000_intr(int irq, void *data)
3744 {
3745 	struct net_device *netdev = data;
3746 	struct e1000_adapter *adapter = netdev_priv(netdev);
3747 	struct e1000_hw *hw = &adapter->hw;
3748 	u32 icr = er32(ICR);
3749 
3750 	if (unlikely((!icr)))
3751 		return IRQ_NONE;  /* Not our interrupt */
3752 
3753 	/* we might have caused the interrupt, but the above
3754 	 * read cleared it, and just in case the driver is
3755 	 * down there is nothing to do so return handled
3756 	 */
3757 	if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3758 		return IRQ_HANDLED;
3759 
3760 	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3761 		hw->get_link_status = 1;
3762 		/* guard against interrupt when we're going down */
3763 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3764 			schedule_delayed_work(&adapter->watchdog_task, 1);
3765 	}
3766 
3767 	/* disable interrupts, without the synchronize_irq bit */
3768 	ew32(IMC, ~0);
3769 	E1000_WRITE_FLUSH();
3770 
3771 	if (likely(napi_schedule_prep(&adapter->napi))) {
3772 		adapter->total_tx_bytes = 0;
3773 		adapter->total_tx_packets = 0;
3774 		adapter->total_rx_bytes = 0;
3775 		adapter->total_rx_packets = 0;
3776 		__napi_schedule(&adapter->napi);
3777 	} else {
3778 		/* this really should not happen! if it does it is basically a
3779 		 * bug, but not a hard error, so enable ints and continue
3780 		 */
3781 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3782 			e1000_irq_enable(adapter);
3783 	}
3784 
3785 	return IRQ_HANDLED;
3786 }
3787 
3788 /**
3789  * e1000_clean - NAPI Rx polling callback
3790  * @napi: napi struct containing references to driver info
3791  * @budget: budget given to driver for receive packets
3792  **/
3793 static int e1000_clean(struct napi_struct *napi, int budget)
3794 {
3795 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3796 						     napi);
3797 	int tx_clean_complete = 0, work_done = 0;
3798 
3799 	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3800 
3801 	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3802 
3803 	if (!tx_clean_complete || work_done == budget)
3804 		return budget;
3805 
3806 	/* Exit the polling mode, but don't re-enable interrupts if stack might
3807 	 * poll us due to busy-polling
3808 	 */
3809 	if (likely(napi_complete_done(napi, work_done))) {
3810 		if (likely(adapter->itr_setting & 3))
3811 			e1000_set_itr(adapter);
3812 		if (!test_bit(__E1000_DOWN, &adapter->flags))
3813 			e1000_irq_enable(adapter);
3814 	}
3815 
3816 	return work_done;
3817 }
3818 
3819 /**
3820  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3821  * @adapter: board private structure
3822  * @tx_ring: ring to clean
3823  **/
3824 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3825 			       struct e1000_tx_ring *tx_ring)
3826 {
3827 	struct e1000_hw *hw = &adapter->hw;
3828 	struct net_device *netdev = adapter->netdev;
3829 	struct e1000_tx_desc *tx_desc, *eop_desc;
3830 	struct e1000_tx_buffer *buffer_info;
3831 	unsigned int i, eop;
3832 	unsigned int count = 0;
3833 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3834 	unsigned int bytes_compl = 0, pkts_compl = 0;
3835 
3836 	i = tx_ring->next_to_clean;
3837 	eop = tx_ring->buffer_info[i].next_to_watch;
3838 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
3839 
3840 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3841 	       (count < tx_ring->count)) {
3842 		bool cleaned = false;
3843 		dma_rmb();	/* read buffer_info after eop_desc */
3844 		for ( ; !cleaned; count++) {
3845 			tx_desc = E1000_TX_DESC(*tx_ring, i);
3846 			buffer_info = &tx_ring->buffer_info[i];
3847 			cleaned = (i == eop);
3848 
3849 			if (cleaned) {
3850 				total_tx_packets += buffer_info->segs;
3851 				total_tx_bytes += buffer_info->bytecount;
3852 				if (buffer_info->skb) {
3853 					bytes_compl += buffer_info->skb->len;
3854 					pkts_compl++;
3855 				}
3856 
3857 			}
3858 			e1000_unmap_and_free_tx_resource(adapter, buffer_info,
3859 							 64);
3860 			tx_desc->upper.data = 0;
3861 
3862 			if (unlikely(++i == tx_ring->count))
3863 				i = 0;
3864 		}
3865 
3866 		eop = tx_ring->buffer_info[i].next_to_watch;
3867 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
3868 	}
3869 
3870 	/* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3871 	 * which will reuse the cleaned buffers.
3872 	 */
3873 	smp_store_release(&tx_ring->next_to_clean, i);
3874 
3875 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3876 
3877 #define TX_WAKE_THRESHOLD 32
3878 	if (unlikely(count && netif_carrier_ok(netdev) &&
3879 		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3880 		/* Make sure that anybody stopping the queue after this
3881 		 * sees the new next_to_clean.
3882 		 */
3883 		smp_mb();
3884 
3885 		if (netif_queue_stopped(netdev) &&
3886 		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3887 			netif_wake_queue(netdev);
3888 			++adapter->restart_queue;
3889 		}
3890 	}
3891 
3892 	if (adapter->detect_tx_hung) {
3893 		/* Detect a transmit hang in hardware, this serializes the
3894 		 * check with the clearing of time_stamp and movement of i
3895 		 */
3896 		adapter->detect_tx_hung = false;
3897 		if (tx_ring->buffer_info[eop].time_stamp &&
3898 		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3899 			       (adapter->tx_timeout_factor * HZ)) &&
3900 		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3901 
3902 			/* detected Tx unit hang */
3903 			e_err(drv, "Detected Tx Unit Hang\n"
3904 			      "  Tx Queue             <%lu>\n"
3905 			      "  TDH                  <%x>\n"
3906 			      "  TDT                  <%x>\n"
3907 			      "  next_to_use          <%x>\n"
3908 			      "  next_to_clean        <%x>\n"
3909 			      "buffer_info[next_to_clean]\n"
3910 			      "  time_stamp           <%lx>\n"
3911 			      "  next_to_watch        <%x>\n"
3912 			      "  jiffies              <%lx>\n"
3913 			      "  next_to_watch.status <%x>\n",
3914 				(unsigned long)(tx_ring - adapter->tx_ring),
3915 				readl(hw->hw_addr + tx_ring->tdh),
3916 				readl(hw->hw_addr + tx_ring->tdt),
3917 				tx_ring->next_to_use,
3918 				tx_ring->next_to_clean,
3919 				tx_ring->buffer_info[eop].time_stamp,
3920 				eop,
3921 				jiffies,
3922 				eop_desc->upper.fields.status);
3923 			e1000_dump(adapter);
3924 			netif_stop_queue(netdev);
3925 		}
3926 	}
3927 	adapter->total_tx_bytes += total_tx_bytes;
3928 	adapter->total_tx_packets += total_tx_packets;
3929 	netdev->stats.tx_bytes += total_tx_bytes;
3930 	netdev->stats.tx_packets += total_tx_packets;
3931 	return count < tx_ring->count;
3932 }
3933 
3934 /**
3935  * e1000_rx_checksum - Receive Checksum Offload for 82543
3936  * @adapter:     board private structure
3937  * @status_err:  receive descriptor status and error fields
3938  * @csum:        receive descriptor csum field
3939  * @skb:         socket buffer with received data
3940  **/
3941 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3942 			      u32 csum, struct sk_buff *skb)
3943 {
3944 	struct e1000_hw *hw = &adapter->hw;
3945 	u16 status = (u16)status_err;
3946 	u8 errors = (u8)(status_err >> 24);
3947 
3948 	skb_checksum_none_assert(skb);
3949 
3950 	/* 82543 or newer only */
3951 	if (unlikely(hw->mac_type < e1000_82543))
3952 		return;
3953 	/* Ignore Checksum bit is set */
3954 	if (unlikely(status & E1000_RXD_STAT_IXSM))
3955 		return;
3956 	/* TCP/UDP checksum error bit is set */
3957 	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3958 		/* let the stack verify checksum errors */
3959 		adapter->hw_csum_err++;
3960 		return;
3961 	}
3962 	/* TCP/UDP Checksum has not been calculated */
3963 	if (!(status & E1000_RXD_STAT_TCPCS))
3964 		return;
3965 
3966 	/* It must be a TCP or UDP packet with a valid checksum */
3967 	if (likely(status & E1000_RXD_STAT_TCPCS)) {
3968 		/* TCP checksum is good */
3969 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3970 	}
3971 	adapter->hw_csum_good++;
3972 }
3973 
3974 /**
3975  * e1000_consume_page - helper function for jumbo Rx path
3976  * @bi: software descriptor shadow data
3977  * @skb: skb being modified
3978  * @length: length of data being added
3979  **/
3980 static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
3981 			       u16 length)
3982 {
3983 	bi->rxbuf.page = NULL;
3984 	skb->len += length;
3985 	skb->data_len += length;
3986 	skb->truesize += PAGE_SIZE;
3987 }
3988 
3989 /**
3990  * e1000_receive_skb - helper function to handle rx indications
3991  * @adapter: board private structure
3992  * @status: descriptor status field as written by hardware
3993  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3994  * @skb: pointer to sk_buff to be indicated to stack
3995  */
3996 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3997 			      __le16 vlan, struct sk_buff *skb)
3998 {
3999 	skb->protocol = eth_type_trans(skb, adapter->netdev);
4000 
4001 	if (status & E1000_RXD_STAT_VP) {
4002 		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4003 
4004 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4005 	}
4006 	napi_gro_receive(&adapter->napi, skb);
4007 }
4008 
4009 /**
4010  * e1000_tbi_adjust_stats
4011  * @hw: Struct containing variables accessed by shared code
4012  * @stats: point to stats struct
4013  * @frame_len: The length of the frame in question
4014  * @mac_addr: The Ethernet destination address of the frame in question
4015  *
4016  * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4017  */
4018 static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4019 				   struct e1000_hw_stats *stats,
4020 				   u32 frame_len, const u8 *mac_addr)
4021 {
4022 	u64 carry_bit;
4023 
4024 	/* First adjust the frame length. */
4025 	frame_len--;
4026 	/* We need to adjust the statistics counters, since the hardware
4027 	 * counters overcount this packet as a CRC error and undercount
4028 	 * the packet as a good packet
4029 	 */
4030 	/* This packet should not be counted as a CRC error. */
4031 	stats->crcerrs--;
4032 	/* This packet does count as a Good Packet Received. */
4033 	stats->gprc++;
4034 
4035 	/* Adjust the Good Octets received counters */
4036 	carry_bit = 0x80000000 & stats->gorcl;
4037 	stats->gorcl += frame_len;
4038 	/* If the high bit of Gorcl (the low 32 bits of the Good Octets
4039 	 * Received Count) was one before the addition,
4040 	 * AND it is zero after, then we lost the carry out,
4041 	 * need to add one to Gorch (Good Octets Received Count High).
4042 	 * This could be simplified if all environments supported
4043 	 * 64-bit integers.
4044 	 */
4045 	if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4046 		stats->gorch++;
4047 	/* Is this a broadcast or multicast?  Check broadcast first,
4048 	 * since the test for a multicast frame will test positive on
4049 	 * a broadcast frame.
4050 	 */
4051 	if (is_broadcast_ether_addr(mac_addr))
4052 		stats->bprc++;
4053 	else if (is_multicast_ether_addr(mac_addr))
4054 		stats->mprc++;
4055 
4056 	if (frame_len == hw->max_frame_size) {
4057 		/* In this case, the hardware has overcounted the number of
4058 		 * oversize frames.
4059 		 */
4060 		if (stats->roc > 0)
4061 			stats->roc--;
4062 	}
4063 
4064 	/* Adjust the bin counters when the extra byte put the frame in the
4065 	 * wrong bin. Remember that the frame_len was adjusted above.
4066 	 */
4067 	if (frame_len == 64) {
4068 		stats->prc64++;
4069 		stats->prc127--;
4070 	} else if (frame_len == 127) {
4071 		stats->prc127++;
4072 		stats->prc255--;
4073 	} else if (frame_len == 255) {
4074 		stats->prc255++;
4075 		stats->prc511--;
4076 	} else if (frame_len == 511) {
4077 		stats->prc511++;
4078 		stats->prc1023--;
4079 	} else if (frame_len == 1023) {
4080 		stats->prc1023++;
4081 		stats->prc1522--;
4082 	} else if (frame_len == 1522) {
4083 		stats->prc1522++;
4084 	}
4085 }
4086 
4087 static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4088 				    u8 status, u8 errors,
4089 				    u32 length, const u8 *data)
4090 {
4091 	struct e1000_hw *hw = &adapter->hw;
4092 	u8 last_byte = *(data + length - 1);
4093 
4094 	if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4095 		unsigned long irq_flags;
4096 
4097 		spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4098 		e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4099 		spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4100 
4101 		return true;
4102 	}
4103 
4104 	return false;
4105 }
4106 
4107 static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4108 					  unsigned int bufsz)
4109 {
4110 	struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4111 
4112 	if (unlikely(!skb))
4113 		adapter->alloc_rx_buff_failed++;
4114 	return skb;
4115 }
4116 
4117 /**
4118  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4119  * @adapter: board private structure
4120  * @rx_ring: ring to clean
4121  * @work_done: amount of napi work completed this call
4122  * @work_to_do: max amount of work allowed for this call to do
4123  *
4124  * the return value indicates whether actual cleaning was done, there
4125  * is no guarantee that everything was cleaned
4126  */
4127 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4128 				     struct e1000_rx_ring *rx_ring,
4129 				     int *work_done, int work_to_do)
4130 {
4131 	struct net_device *netdev = adapter->netdev;
4132 	struct pci_dev *pdev = adapter->pdev;
4133 	struct e1000_rx_desc *rx_desc, *next_rxd;
4134 	struct e1000_rx_buffer *buffer_info, *next_buffer;
4135 	u32 length;
4136 	unsigned int i;
4137 	int cleaned_count = 0;
4138 	bool cleaned = false;
4139 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4140 
4141 	i = rx_ring->next_to_clean;
4142 	rx_desc = E1000_RX_DESC(*rx_ring, i);
4143 	buffer_info = &rx_ring->buffer_info[i];
4144 
4145 	while (rx_desc->status & E1000_RXD_STAT_DD) {
4146 		struct sk_buff *skb;
4147 		u8 status;
4148 
4149 		if (*work_done >= work_to_do)
4150 			break;
4151 		(*work_done)++;
4152 		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4153 
4154 		status = rx_desc->status;
4155 
4156 		if (++i == rx_ring->count)
4157 			i = 0;
4158 
4159 		next_rxd = E1000_RX_DESC(*rx_ring, i);
4160 		prefetch(next_rxd);
4161 
4162 		next_buffer = &rx_ring->buffer_info[i];
4163 
4164 		cleaned = true;
4165 		cleaned_count++;
4166 		dma_unmap_page(&pdev->dev, buffer_info->dma,
4167 			       adapter->rx_buffer_len, DMA_FROM_DEVICE);
4168 		buffer_info->dma = 0;
4169 
4170 		length = le16_to_cpu(rx_desc->length);
4171 
4172 		/* errors is only valid for DD + EOP descriptors */
4173 		if (unlikely((status & E1000_RXD_STAT_EOP) &&
4174 		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4175 			u8 *mapped = page_address(buffer_info->rxbuf.page);
4176 
4177 			if (e1000_tbi_should_accept(adapter, status,
4178 						    rx_desc->errors,
4179 						    length, mapped)) {
4180 				length--;
4181 			} else if (netdev->features & NETIF_F_RXALL) {
4182 				goto process_skb;
4183 			} else {
4184 				/* an error means any chain goes out the window
4185 				 * too
4186 				 */
4187 				dev_kfree_skb(rx_ring->rx_skb_top);
4188 				rx_ring->rx_skb_top = NULL;
4189 				goto next_desc;
4190 			}
4191 		}
4192 
4193 #define rxtop rx_ring->rx_skb_top
4194 process_skb:
4195 		if (!(status & E1000_RXD_STAT_EOP)) {
4196 			/* this descriptor is only the beginning (or middle) */
4197 			if (!rxtop) {
4198 				/* this is the beginning of a chain */
4199 				rxtop = napi_get_frags(&adapter->napi);
4200 				if (!rxtop)
4201 					break;
4202 
4203 				skb_fill_page_desc(rxtop, 0,
4204 						   buffer_info->rxbuf.page,
4205 						   0, length);
4206 			} else {
4207 				/* this is the middle of a chain */
4208 				skb_fill_page_desc(rxtop,
4209 				    skb_shinfo(rxtop)->nr_frags,
4210 				    buffer_info->rxbuf.page, 0, length);
4211 			}
4212 			e1000_consume_page(buffer_info, rxtop, length);
4213 			goto next_desc;
4214 		} else {
4215 			if (rxtop) {
4216 				/* end of the chain */
4217 				skb_fill_page_desc(rxtop,
4218 				    skb_shinfo(rxtop)->nr_frags,
4219 				    buffer_info->rxbuf.page, 0, length);
4220 				skb = rxtop;
4221 				rxtop = NULL;
4222 				e1000_consume_page(buffer_info, skb, length);
4223 			} else {
4224 				struct page *p;
4225 				/* no chain, got EOP, this buf is the packet
4226 				 * copybreak to save the put_page/alloc_page
4227 				 */
4228 				p = buffer_info->rxbuf.page;
4229 				if (length <= copybreak) {
4230 					if (likely(!(netdev->features & NETIF_F_RXFCS)))
4231 						length -= 4;
4232 					skb = e1000_alloc_rx_skb(adapter,
4233 								 length);
4234 					if (!skb)
4235 						break;
4236 
4237 					memcpy(skb_tail_pointer(skb),
4238 					       page_address(p), length);
4239 
4240 					/* re-use the page, so don't erase
4241 					 * buffer_info->rxbuf.page
4242 					 */
4243 					skb_put(skb, length);
4244 					e1000_rx_checksum(adapter,
4245 							  status | rx_desc->errors << 24,
4246 							  le16_to_cpu(rx_desc->csum), skb);
4247 
4248 					total_rx_bytes += skb->len;
4249 					total_rx_packets++;
4250 
4251 					e1000_receive_skb(adapter, status,
4252 							  rx_desc->special, skb);
4253 					goto next_desc;
4254 				} else {
4255 					skb = napi_get_frags(&adapter->napi);
4256 					if (!skb) {
4257 						adapter->alloc_rx_buff_failed++;
4258 						break;
4259 					}
4260 					skb_fill_page_desc(skb, 0, p, 0,
4261 							   length);
4262 					e1000_consume_page(buffer_info, skb,
4263 							   length);
4264 				}
4265 			}
4266 		}
4267 
4268 		/* Receive Checksum Offload XXX recompute due to CRC strip? */
4269 		e1000_rx_checksum(adapter,
4270 				  (u32)(status) |
4271 				  ((u32)(rx_desc->errors) << 24),
4272 				  le16_to_cpu(rx_desc->csum), skb);
4273 
4274 		total_rx_bytes += (skb->len - 4); /* don't count FCS */
4275 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4276 			pskb_trim(skb, skb->len - 4);
4277 		total_rx_packets++;
4278 
4279 		if (status & E1000_RXD_STAT_VP) {
4280 			__le16 vlan = rx_desc->special;
4281 			u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4282 
4283 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4284 		}
4285 
4286 		napi_gro_frags(&adapter->napi);
4287 
4288 next_desc:
4289 		rx_desc->status = 0;
4290 
4291 		/* return some buffers to hardware, one at a time is too slow */
4292 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4293 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4294 			cleaned_count = 0;
4295 		}
4296 
4297 		/* use prefetched values */
4298 		rx_desc = next_rxd;
4299 		buffer_info = next_buffer;
4300 	}
4301 	rx_ring->next_to_clean = i;
4302 
4303 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4304 	if (cleaned_count)
4305 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4306 
4307 	adapter->total_rx_packets += total_rx_packets;
4308 	adapter->total_rx_bytes += total_rx_bytes;
4309 	netdev->stats.rx_bytes += total_rx_bytes;
4310 	netdev->stats.rx_packets += total_rx_packets;
4311 	return cleaned;
4312 }
4313 
4314 /* this should improve performance for small packets with large amounts
4315  * of reassembly being done in the stack
4316  */
4317 static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4318 				       struct e1000_rx_buffer *buffer_info,
4319 				       u32 length, const void *data)
4320 {
4321 	struct sk_buff *skb;
4322 
4323 	if (length > copybreak)
4324 		return NULL;
4325 
4326 	skb = e1000_alloc_rx_skb(adapter, length);
4327 	if (!skb)
4328 		return NULL;
4329 
4330 	dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4331 				length, DMA_FROM_DEVICE);
4332 
4333 	skb_put_data(skb, data, length);
4334 
4335 	return skb;
4336 }
4337 
4338 /**
4339  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4340  * @adapter: board private structure
4341  * @rx_ring: ring to clean
4342  * @work_done: amount of napi work completed this call
4343  * @work_to_do: max amount of work allowed for this call to do
4344  */
4345 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4346 			       struct e1000_rx_ring *rx_ring,
4347 			       int *work_done, int work_to_do)
4348 {
4349 	struct net_device *netdev = adapter->netdev;
4350 	struct pci_dev *pdev = adapter->pdev;
4351 	struct e1000_rx_desc *rx_desc, *next_rxd;
4352 	struct e1000_rx_buffer *buffer_info, *next_buffer;
4353 	u32 length;
4354 	unsigned int i;
4355 	int cleaned_count = 0;
4356 	bool cleaned = false;
4357 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4358 
4359 	i = rx_ring->next_to_clean;
4360 	rx_desc = E1000_RX_DESC(*rx_ring, i);
4361 	buffer_info = &rx_ring->buffer_info[i];
4362 
4363 	while (rx_desc->status & E1000_RXD_STAT_DD) {
4364 		struct sk_buff *skb;
4365 		u8 *data;
4366 		u8 status;
4367 
4368 		if (*work_done >= work_to_do)
4369 			break;
4370 		(*work_done)++;
4371 		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4372 
4373 		status = rx_desc->status;
4374 		length = le16_to_cpu(rx_desc->length);
4375 
4376 		data = buffer_info->rxbuf.data;
4377 		prefetch(data);
4378 		skb = e1000_copybreak(adapter, buffer_info, length, data);
4379 		if (!skb) {
4380 			unsigned int frag_len = e1000_frag_len(adapter);
4381 
4382 			skb = napi_build_skb(data - E1000_HEADROOM, frag_len);
4383 			if (!skb) {
4384 				adapter->alloc_rx_buff_failed++;
4385 				break;
4386 			}
4387 
4388 			skb_reserve(skb, E1000_HEADROOM);
4389 			dma_unmap_single(&pdev->dev, buffer_info->dma,
4390 					 adapter->rx_buffer_len,
4391 					 DMA_FROM_DEVICE);
4392 			buffer_info->dma = 0;
4393 			buffer_info->rxbuf.data = NULL;
4394 		}
4395 
4396 		if (++i == rx_ring->count)
4397 			i = 0;
4398 
4399 		next_rxd = E1000_RX_DESC(*rx_ring, i);
4400 		prefetch(next_rxd);
4401 
4402 		next_buffer = &rx_ring->buffer_info[i];
4403 
4404 		cleaned = true;
4405 		cleaned_count++;
4406 
4407 		/* !EOP means multiple descriptors were used to store a single
4408 		 * packet, if thats the case we need to toss it.  In fact, we
4409 		 * to toss every packet with the EOP bit clear and the next
4410 		 * frame that _does_ have the EOP bit set, as it is by
4411 		 * definition only a frame fragment
4412 		 */
4413 		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4414 			adapter->discarding = true;
4415 
4416 		if (adapter->discarding) {
4417 			/* All receives must fit into a single buffer */
4418 			netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4419 			dev_kfree_skb(skb);
4420 			if (status & E1000_RXD_STAT_EOP)
4421 				adapter->discarding = false;
4422 			goto next_desc;
4423 		}
4424 
4425 		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4426 			if (e1000_tbi_should_accept(adapter, status,
4427 						    rx_desc->errors,
4428 						    length, data)) {
4429 				length--;
4430 			} else if (netdev->features & NETIF_F_RXALL) {
4431 				goto process_skb;
4432 			} else {
4433 				dev_kfree_skb(skb);
4434 				goto next_desc;
4435 			}
4436 		}
4437 
4438 process_skb:
4439 		total_rx_bytes += (length - 4); /* don't count FCS */
4440 		total_rx_packets++;
4441 
4442 		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4443 			/* adjust length to remove Ethernet CRC, this must be
4444 			 * done after the TBI_ACCEPT workaround above
4445 			 */
4446 			length -= 4;
4447 
4448 		if (buffer_info->rxbuf.data == NULL)
4449 			skb_put(skb, length);
4450 		else /* copybreak skb */
4451 			skb_trim(skb, length);
4452 
4453 		/* Receive Checksum Offload */
4454 		e1000_rx_checksum(adapter,
4455 				  (u32)(status) |
4456 				  ((u32)(rx_desc->errors) << 24),
4457 				  le16_to_cpu(rx_desc->csum), skb);
4458 
4459 		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4460 
4461 next_desc:
4462 		rx_desc->status = 0;
4463 
4464 		/* return some buffers to hardware, one at a time is too slow */
4465 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4466 			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4467 			cleaned_count = 0;
4468 		}
4469 
4470 		/* use prefetched values */
4471 		rx_desc = next_rxd;
4472 		buffer_info = next_buffer;
4473 	}
4474 	rx_ring->next_to_clean = i;
4475 
4476 	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4477 	if (cleaned_count)
4478 		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4479 
4480 	adapter->total_rx_packets += total_rx_packets;
4481 	adapter->total_rx_bytes += total_rx_bytes;
4482 	netdev->stats.rx_bytes += total_rx_bytes;
4483 	netdev->stats.rx_packets += total_rx_packets;
4484 	return cleaned;
4485 }
4486 
4487 /**
4488  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4489  * @adapter: address of board private structure
4490  * @rx_ring: pointer to receive ring structure
4491  * @cleaned_count: number of buffers to allocate this pass
4492  **/
4493 static void
4494 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4495 			     struct e1000_rx_ring *rx_ring, int cleaned_count)
4496 {
4497 	struct pci_dev *pdev = adapter->pdev;
4498 	struct e1000_rx_desc *rx_desc;
4499 	struct e1000_rx_buffer *buffer_info;
4500 	unsigned int i;
4501 
4502 	i = rx_ring->next_to_use;
4503 	buffer_info = &rx_ring->buffer_info[i];
4504 
4505 	while (cleaned_count--) {
4506 		/* allocate a new page if necessary */
4507 		if (!buffer_info->rxbuf.page) {
4508 			buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4509 			if (unlikely(!buffer_info->rxbuf.page)) {
4510 				adapter->alloc_rx_buff_failed++;
4511 				break;
4512 			}
4513 		}
4514 
4515 		if (!buffer_info->dma) {
4516 			buffer_info->dma = dma_map_page(&pdev->dev,
4517 							buffer_info->rxbuf.page, 0,
4518 							adapter->rx_buffer_len,
4519 							DMA_FROM_DEVICE);
4520 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4521 				put_page(buffer_info->rxbuf.page);
4522 				buffer_info->rxbuf.page = NULL;
4523 				buffer_info->dma = 0;
4524 				adapter->alloc_rx_buff_failed++;
4525 				break;
4526 			}
4527 		}
4528 
4529 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4530 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4531 
4532 		if (unlikely(++i == rx_ring->count))
4533 			i = 0;
4534 		buffer_info = &rx_ring->buffer_info[i];
4535 	}
4536 
4537 	if (likely(rx_ring->next_to_use != i)) {
4538 		rx_ring->next_to_use = i;
4539 		if (unlikely(i-- == 0))
4540 			i = (rx_ring->count - 1);
4541 
4542 		/* Force memory writes to complete before letting h/w
4543 		 * know there are new descriptors to fetch.  (Only
4544 		 * applicable for weak-ordered memory model archs,
4545 		 * such as IA-64).
4546 		 */
4547 		dma_wmb();
4548 		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4549 	}
4550 }
4551 
4552 /**
4553  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4554  * @adapter: address of board private structure
4555  * @rx_ring: pointer to ring struct
4556  * @cleaned_count: number of new Rx buffers to try to allocate
4557  **/
4558 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4559 				   struct e1000_rx_ring *rx_ring,
4560 				   int cleaned_count)
4561 {
4562 	struct e1000_hw *hw = &adapter->hw;
4563 	struct pci_dev *pdev = adapter->pdev;
4564 	struct e1000_rx_desc *rx_desc;
4565 	struct e1000_rx_buffer *buffer_info;
4566 	unsigned int i;
4567 	unsigned int bufsz = adapter->rx_buffer_len;
4568 
4569 	i = rx_ring->next_to_use;
4570 	buffer_info = &rx_ring->buffer_info[i];
4571 
4572 	while (cleaned_count--) {
4573 		void *data;
4574 
4575 		if (buffer_info->rxbuf.data)
4576 			goto skip;
4577 
4578 		data = e1000_alloc_frag(adapter);
4579 		if (!data) {
4580 			/* Better luck next round */
4581 			adapter->alloc_rx_buff_failed++;
4582 			break;
4583 		}
4584 
4585 		/* Fix for errata 23, can't cross 64kB boundary */
4586 		if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4587 			void *olddata = data;
4588 			e_err(rx_err, "skb align check failed: %u bytes at "
4589 			      "%p\n", bufsz, data);
4590 			/* Try again, without freeing the previous */
4591 			data = e1000_alloc_frag(adapter);
4592 			/* Failed allocation, critical failure */
4593 			if (!data) {
4594 				skb_free_frag(olddata);
4595 				adapter->alloc_rx_buff_failed++;
4596 				break;
4597 			}
4598 
4599 			if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4600 				/* give up */
4601 				skb_free_frag(data);
4602 				skb_free_frag(olddata);
4603 				adapter->alloc_rx_buff_failed++;
4604 				break;
4605 			}
4606 
4607 			/* Use new allocation */
4608 			skb_free_frag(olddata);
4609 		}
4610 		buffer_info->dma = dma_map_single(&pdev->dev,
4611 						  data,
4612 						  adapter->rx_buffer_len,
4613 						  DMA_FROM_DEVICE);
4614 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4615 			skb_free_frag(data);
4616 			buffer_info->dma = 0;
4617 			adapter->alloc_rx_buff_failed++;
4618 			break;
4619 		}
4620 
4621 		/* XXX if it was allocated cleanly it will never map to a
4622 		 * boundary crossing
4623 		 */
4624 
4625 		/* Fix for errata 23, can't cross 64kB boundary */
4626 		if (!e1000_check_64k_bound(adapter,
4627 					(void *)(unsigned long)buffer_info->dma,
4628 					adapter->rx_buffer_len)) {
4629 			e_err(rx_err, "dma align check failed: %u bytes at "
4630 			      "%p\n", adapter->rx_buffer_len,
4631 			      (void *)(unsigned long)buffer_info->dma);
4632 
4633 			dma_unmap_single(&pdev->dev, buffer_info->dma,
4634 					 adapter->rx_buffer_len,
4635 					 DMA_FROM_DEVICE);
4636 
4637 			skb_free_frag(data);
4638 			buffer_info->rxbuf.data = NULL;
4639 			buffer_info->dma = 0;
4640 
4641 			adapter->alloc_rx_buff_failed++;
4642 			break;
4643 		}
4644 		buffer_info->rxbuf.data = data;
4645  skip:
4646 		rx_desc = E1000_RX_DESC(*rx_ring, i);
4647 		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4648 
4649 		if (unlikely(++i == rx_ring->count))
4650 			i = 0;
4651 		buffer_info = &rx_ring->buffer_info[i];
4652 	}
4653 
4654 	if (likely(rx_ring->next_to_use != i)) {
4655 		rx_ring->next_to_use = i;
4656 		if (unlikely(i-- == 0))
4657 			i = (rx_ring->count - 1);
4658 
4659 		/* Force memory writes to complete before letting h/w
4660 		 * know there are new descriptors to fetch.  (Only
4661 		 * applicable for weak-ordered memory model archs,
4662 		 * such as IA-64).
4663 		 */
4664 		dma_wmb();
4665 		writel(i, hw->hw_addr + rx_ring->rdt);
4666 	}
4667 }
4668 
4669 /**
4670  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4671  * @adapter: address of board private structure
4672  **/
4673 static void e1000_smartspeed(struct e1000_adapter *adapter)
4674 {
4675 	struct e1000_hw *hw = &adapter->hw;
4676 	u16 phy_status;
4677 	u16 phy_ctrl;
4678 
4679 	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4680 	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4681 		return;
4682 
4683 	if (adapter->smartspeed == 0) {
4684 		/* If Master/Slave config fault is asserted twice,
4685 		 * we assume back-to-back
4686 		 */
4687 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4688 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4689 			return;
4690 		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4691 		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4692 			return;
4693 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4694 		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4695 			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4696 			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4697 					    phy_ctrl);
4698 			adapter->smartspeed++;
4699 			if (!e1000_phy_setup_autoneg(hw) &&
4700 			   !e1000_read_phy_reg(hw, PHY_CTRL,
4701 					       &phy_ctrl)) {
4702 				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4703 					     MII_CR_RESTART_AUTO_NEG);
4704 				e1000_write_phy_reg(hw, PHY_CTRL,
4705 						    phy_ctrl);
4706 			}
4707 		}
4708 		return;
4709 	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4710 		/* If still no link, perhaps using 2/3 pair cable */
4711 		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4712 		phy_ctrl |= CR_1000T_MS_ENABLE;
4713 		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4714 		if (!e1000_phy_setup_autoneg(hw) &&
4715 		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4716 			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4717 				     MII_CR_RESTART_AUTO_NEG);
4718 			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4719 		}
4720 	}
4721 	/* Restart process after E1000_SMARTSPEED_MAX iterations */
4722 	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4723 		adapter->smartspeed = 0;
4724 }
4725 
4726 /**
4727  * e1000_ioctl - handle ioctl calls
4728  * @netdev: pointer to our netdev
4729  * @ifr: pointer to interface request structure
4730  * @cmd: ioctl data
4731  **/
4732 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4733 {
4734 	switch (cmd) {
4735 	case SIOCGMIIPHY:
4736 	case SIOCGMIIREG:
4737 	case SIOCSMIIREG:
4738 		return e1000_mii_ioctl(netdev, ifr, cmd);
4739 	default:
4740 		return -EOPNOTSUPP;
4741 	}
4742 }
4743 
4744 /**
4745  * e1000_mii_ioctl -
4746  * @netdev: pointer to our netdev
4747  * @ifr: pointer to interface request structure
4748  * @cmd: ioctl data
4749  **/
4750 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4751 			   int cmd)
4752 {
4753 	struct e1000_adapter *adapter = netdev_priv(netdev);
4754 	struct e1000_hw *hw = &adapter->hw;
4755 	struct mii_ioctl_data *data = if_mii(ifr);
4756 	int retval;
4757 	u16 mii_reg;
4758 	unsigned long flags;
4759 
4760 	if (hw->media_type != e1000_media_type_copper)
4761 		return -EOPNOTSUPP;
4762 
4763 	switch (cmd) {
4764 	case SIOCGMIIPHY:
4765 		data->phy_id = hw->phy_addr;
4766 		break;
4767 	case SIOCGMIIREG:
4768 		spin_lock_irqsave(&adapter->stats_lock, flags);
4769 		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4770 				   &data->val_out)) {
4771 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4772 			return -EIO;
4773 		}
4774 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4775 		break;
4776 	case SIOCSMIIREG:
4777 		if (data->reg_num & ~(0x1F))
4778 			return -EFAULT;
4779 		mii_reg = data->val_in;
4780 		spin_lock_irqsave(&adapter->stats_lock, flags);
4781 		if (e1000_write_phy_reg(hw, data->reg_num,
4782 					mii_reg)) {
4783 			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4784 			return -EIO;
4785 		}
4786 		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4787 		if (hw->media_type == e1000_media_type_copper) {
4788 			switch (data->reg_num) {
4789 			case PHY_CTRL:
4790 				if (mii_reg & MII_CR_POWER_DOWN)
4791 					break;
4792 				if (mii_reg & MII_CR_AUTO_NEG_EN) {
4793 					hw->autoneg = 1;
4794 					hw->autoneg_advertised = 0x2F;
4795 				} else {
4796 					u32 speed;
4797 					if (mii_reg & 0x40)
4798 						speed = SPEED_1000;
4799 					else if (mii_reg & 0x2000)
4800 						speed = SPEED_100;
4801 					else
4802 						speed = SPEED_10;
4803 					retval = e1000_set_spd_dplx(
4804 						adapter, speed,
4805 						((mii_reg & 0x100)
4806 						 ? DUPLEX_FULL :
4807 						 DUPLEX_HALF));
4808 					if (retval)
4809 						return retval;
4810 				}
4811 				if (netif_running(adapter->netdev))
4812 					e1000_reinit_locked(adapter);
4813 				else
4814 					e1000_reset(adapter);
4815 				break;
4816 			case M88E1000_PHY_SPEC_CTRL:
4817 			case M88E1000_EXT_PHY_SPEC_CTRL:
4818 				if (e1000_phy_reset(hw))
4819 					return -EIO;
4820 				break;
4821 			}
4822 		} else {
4823 			switch (data->reg_num) {
4824 			case PHY_CTRL:
4825 				if (mii_reg & MII_CR_POWER_DOWN)
4826 					break;
4827 				if (netif_running(adapter->netdev))
4828 					e1000_reinit_locked(adapter);
4829 				else
4830 					e1000_reset(adapter);
4831 				break;
4832 			}
4833 		}
4834 		break;
4835 	default:
4836 		return -EOPNOTSUPP;
4837 	}
4838 	return E1000_SUCCESS;
4839 }
4840 
4841 void e1000_pci_set_mwi(struct e1000_hw *hw)
4842 {
4843 	struct e1000_adapter *adapter = hw->back;
4844 	int ret_val = pci_set_mwi(adapter->pdev);
4845 
4846 	if (ret_val)
4847 		e_err(probe, "Error in setting MWI\n");
4848 }
4849 
4850 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4851 {
4852 	struct e1000_adapter *adapter = hw->back;
4853 
4854 	pci_clear_mwi(adapter->pdev);
4855 }
4856 
4857 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4858 {
4859 	struct e1000_adapter *adapter = hw->back;
4860 	return pcix_get_mmrbc(adapter->pdev);
4861 }
4862 
4863 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4864 {
4865 	struct e1000_adapter *adapter = hw->back;
4866 	pcix_set_mmrbc(adapter->pdev, mmrbc);
4867 }
4868 
4869 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4870 {
4871 	outl(value, port);
4872 }
4873 
4874 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4875 {
4876 	u16 vid;
4877 
4878 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4879 		return true;
4880 	return false;
4881 }
4882 
4883 static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4884 			      netdev_features_t features)
4885 {
4886 	struct e1000_hw *hw = &adapter->hw;
4887 	u32 ctrl;
4888 
4889 	ctrl = er32(CTRL);
4890 	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4891 		/* enable VLAN tag insert/strip */
4892 		ctrl |= E1000_CTRL_VME;
4893 	} else {
4894 		/* disable VLAN tag insert/strip */
4895 		ctrl &= ~E1000_CTRL_VME;
4896 	}
4897 	ew32(CTRL, ctrl);
4898 }
4899 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4900 				     bool filter_on)
4901 {
4902 	struct e1000_hw *hw = &adapter->hw;
4903 	u32 rctl;
4904 
4905 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4906 		e1000_irq_disable(adapter);
4907 
4908 	__e1000_vlan_mode(adapter, adapter->netdev->features);
4909 	if (filter_on) {
4910 		/* enable VLAN receive filtering */
4911 		rctl = er32(RCTL);
4912 		rctl &= ~E1000_RCTL_CFIEN;
4913 		if (!(adapter->netdev->flags & IFF_PROMISC))
4914 			rctl |= E1000_RCTL_VFE;
4915 		ew32(RCTL, rctl);
4916 		e1000_update_mng_vlan(adapter);
4917 	} else {
4918 		/* disable VLAN receive filtering */
4919 		rctl = er32(RCTL);
4920 		rctl &= ~E1000_RCTL_VFE;
4921 		ew32(RCTL, rctl);
4922 	}
4923 
4924 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4925 		e1000_irq_enable(adapter);
4926 }
4927 
4928 static void e1000_vlan_mode(struct net_device *netdev,
4929 			    netdev_features_t features)
4930 {
4931 	struct e1000_adapter *adapter = netdev_priv(netdev);
4932 
4933 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4934 		e1000_irq_disable(adapter);
4935 
4936 	__e1000_vlan_mode(adapter, features);
4937 
4938 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4939 		e1000_irq_enable(adapter);
4940 }
4941 
4942 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4943 				 __be16 proto, u16 vid)
4944 {
4945 	struct e1000_adapter *adapter = netdev_priv(netdev);
4946 	struct e1000_hw *hw = &adapter->hw;
4947 	u32 vfta, index;
4948 
4949 	if ((hw->mng_cookie.status &
4950 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4951 	    (vid == adapter->mng_vlan_id))
4952 		return 0;
4953 
4954 	if (!e1000_vlan_used(adapter))
4955 		e1000_vlan_filter_on_off(adapter, true);
4956 
4957 	/* add VID to filter table */
4958 	index = (vid >> 5) & 0x7F;
4959 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4960 	vfta |= (1 << (vid & 0x1F));
4961 	e1000_write_vfta(hw, index, vfta);
4962 
4963 	set_bit(vid, adapter->active_vlans);
4964 
4965 	return 0;
4966 }
4967 
4968 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4969 				  __be16 proto, u16 vid)
4970 {
4971 	struct e1000_adapter *adapter = netdev_priv(netdev);
4972 	struct e1000_hw *hw = &adapter->hw;
4973 	u32 vfta, index;
4974 
4975 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4976 		e1000_irq_disable(adapter);
4977 	if (!test_bit(__E1000_DOWN, &adapter->flags))
4978 		e1000_irq_enable(adapter);
4979 
4980 	/* remove VID from filter table */
4981 	index = (vid >> 5) & 0x7F;
4982 	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4983 	vfta &= ~(1 << (vid & 0x1F));
4984 	e1000_write_vfta(hw, index, vfta);
4985 
4986 	clear_bit(vid, adapter->active_vlans);
4987 
4988 	if (!e1000_vlan_used(adapter))
4989 		e1000_vlan_filter_on_off(adapter, false);
4990 
4991 	return 0;
4992 }
4993 
4994 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4995 {
4996 	u16 vid;
4997 
4998 	if (!e1000_vlan_used(adapter))
4999 		return;
5000 
5001 	e1000_vlan_filter_on_off(adapter, true);
5002 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5003 		e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5004 }
5005 
5006 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5007 {
5008 	struct e1000_hw *hw = &adapter->hw;
5009 
5010 	hw->autoneg = 0;
5011 
5012 	/* Make sure dplx is at most 1 bit and lsb of speed is not set
5013 	 * for the switch() below to work
5014 	 */
5015 	if ((spd & 1) || (dplx & ~1))
5016 		goto err_inval;
5017 
5018 	/* Fiber NICs only allow 1000 gbps Full duplex */
5019 	if ((hw->media_type == e1000_media_type_fiber) &&
5020 	    spd != SPEED_1000 &&
5021 	    dplx != DUPLEX_FULL)
5022 		goto err_inval;
5023 
5024 	switch (spd + dplx) {
5025 	case SPEED_10 + DUPLEX_HALF:
5026 		hw->forced_speed_duplex = e1000_10_half;
5027 		break;
5028 	case SPEED_10 + DUPLEX_FULL:
5029 		hw->forced_speed_duplex = e1000_10_full;
5030 		break;
5031 	case SPEED_100 + DUPLEX_HALF:
5032 		hw->forced_speed_duplex = e1000_100_half;
5033 		break;
5034 	case SPEED_100 + DUPLEX_FULL:
5035 		hw->forced_speed_duplex = e1000_100_full;
5036 		break;
5037 	case SPEED_1000 + DUPLEX_FULL:
5038 		hw->autoneg = 1;
5039 		hw->autoneg_advertised = ADVERTISE_1000_FULL;
5040 		break;
5041 	case SPEED_1000 + DUPLEX_HALF: /* not supported */
5042 	default:
5043 		goto err_inval;
5044 	}
5045 
5046 	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5047 	hw->mdix = AUTO_ALL_MODES;
5048 
5049 	return 0;
5050 
5051 err_inval:
5052 	e_err(probe, "Unsupported Speed/Duplex configuration\n");
5053 	return -EINVAL;
5054 }
5055 
5056 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5057 {
5058 	struct net_device *netdev = pci_get_drvdata(pdev);
5059 	struct e1000_adapter *adapter = netdev_priv(netdev);
5060 	struct e1000_hw *hw = &adapter->hw;
5061 	u32 ctrl, ctrl_ext, rctl, status;
5062 	u32 wufc = adapter->wol;
5063 
5064 	netif_device_detach(netdev);
5065 
5066 	if (netif_running(netdev)) {
5067 		int count = E1000_CHECK_RESET_COUNT;
5068 
5069 		while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5070 			usleep_range(10000, 20000);
5071 
5072 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5073 		e1000_down(adapter);
5074 	}
5075 
5076 	status = er32(STATUS);
5077 	if (status & E1000_STATUS_LU)
5078 		wufc &= ~E1000_WUFC_LNKC;
5079 
5080 	if (wufc) {
5081 		e1000_setup_rctl(adapter);
5082 		e1000_set_rx_mode(netdev);
5083 
5084 		rctl = er32(RCTL);
5085 
5086 		/* turn on all-multi mode if wake on multicast is enabled */
5087 		if (wufc & E1000_WUFC_MC)
5088 			rctl |= E1000_RCTL_MPE;
5089 
5090 		/* enable receives in the hardware */
5091 		ew32(RCTL, rctl | E1000_RCTL_EN);
5092 
5093 		if (hw->mac_type >= e1000_82540) {
5094 			ctrl = er32(CTRL);
5095 			/* advertise wake from D3Cold */
5096 			#define E1000_CTRL_ADVD3WUC 0x00100000
5097 			/* phy power management enable */
5098 			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5099 			ctrl |= E1000_CTRL_ADVD3WUC |
5100 				E1000_CTRL_EN_PHY_PWR_MGMT;
5101 			ew32(CTRL, ctrl);
5102 		}
5103 
5104 		if (hw->media_type == e1000_media_type_fiber ||
5105 		    hw->media_type == e1000_media_type_internal_serdes) {
5106 			/* keep the laser running in D3 */
5107 			ctrl_ext = er32(CTRL_EXT);
5108 			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5109 			ew32(CTRL_EXT, ctrl_ext);
5110 		}
5111 
5112 		ew32(WUC, E1000_WUC_PME_EN);
5113 		ew32(WUFC, wufc);
5114 	} else {
5115 		ew32(WUC, 0);
5116 		ew32(WUFC, 0);
5117 	}
5118 
5119 	e1000_release_manageability(adapter);
5120 
5121 	*enable_wake = !!wufc;
5122 
5123 	/* make sure adapter isn't asleep if manageability is enabled */
5124 	if (adapter->en_mng_pt)
5125 		*enable_wake = true;
5126 
5127 	if (netif_running(netdev))
5128 		e1000_free_irq(adapter);
5129 
5130 	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5131 		pci_disable_device(pdev);
5132 
5133 	return 0;
5134 }
5135 
5136 static int e1000_suspend(struct device *dev)
5137 {
5138 	int retval;
5139 	struct pci_dev *pdev = to_pci_dev(dev);
5140 	bool wake;
5141 
5142 	retval = __e1000_shutdown(pdev, &wake);
5143 	device_set_wakeup_enable(dev, wake);
5144 
5145 	return retval;
5146 }
5147 
5148 static int e1000_resume(struct device *dev)
5149 {
5150 	struct pci_dev *pdev = to_pci_dev(dev);
5151 	struct net_device *netdev = pci_get_drvdata(pdev);
5152 	struct e1000_adapter *adapter = netdev_priv(netdev);
5153 	struct e1000_hw *hw = &adapter->hw;
5154 	u32 err;
5155 
5156 	if (adapter->need_ioport)
5157 		err = pci_enable_device(pdev);
5158 	else
5159 		err = pci_enable_device_mem(pdev);
5160 	if (err) {
5161 		pr_err("Cannot enable PCI device from suspend\n");
5162 		return err;
5163 	}
5164 
5165 	/* flush memory to make sure state is correct */
5166 	smp_mb__before_atomic();
5167 	clear_bit(__E1000_DISABLED, &adapter->flags);
5168 	pci_set_master(pdev);
5169 
5170 	pci_enable_wake(pdev, PCI_D3hot, 0);
5171 	pci_enable_wake(pdev, PCI_D3cold, 0);
5172 
5173 	if (netif_running(netdev)) {
5174 		err = e1000_request_irq(adapter);
5175 		if (err)
5176 			return err;
5177 	}
5178 
5179 	e1000_power_up_phy(adapter);
5180 	e1000_reset(adapter);
5181 	ew32(WUS, ~0);
5182 
5183 	e1000_init_manageability(adapter);
5184 
5185 	if (netif_running(netdev))
5186 		e1000_up(adapter);
5187 
5188 	netif_device_attach(netdev);
5189 
5190 	return 0;
5191 }
5192 
5193 static void e1000_shutdown(struct pci_dev *pdev)
5194 {
5195 	bool wake;
5196 
5197 	__e1000_shutdown(pdev, &wake);
5198 
5199 	if (system_state == SYSTEM_POWER_OFF) {
5200 		pci_wake_from_d3(pdev, wake);
5201 		pci_set_power_state(pdev, PCI_D3hot);
5202 	}
5203 }
5204 
5205 #ifdef CONFIG_NET_POLL_CONTROLLER
5206 /* Polling 'interrupt' - used by things like netconsole to send skbs
5207  * without having to re-enable interrupts. It's not called while
5208  * the interrupt routine is executing.
5209  */
5210 static void e1000_netpoll(struct net_device *netdev)
5211 {
5212 	struct e1000_adapter *adapter = netdev_priv(netdev);
5213 
5214 	if (disable_hardirq(adapter->pdev->irq))
5215 		e1000_intr(adapter->pdev->irq, netdev);
5216 	enable_irq(adapter->pdev->irq);
5217 }
5218 #endif
5219 
5220 /**
5221  * e1000_io_error_detected - called when PCI error is detected
5222  * @pdev: Pointer to PCI device
5223  * @state: The current pci connection state
5224  *
5225  * This function is called after a PCI bus error affecting
5226  * this device has been detected.
5227  */
5228 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5229 						pci_channel_state_t state)
5230 {
5231 	struct net_device *netdev = pci_get_drvdata(pdev);
5232 	struct e1000_adapter *adapter = netdev_priv(netdev);
5233 
5234 	netif_device_detach(netdev);
5235 
5236 	if (state == pci_channel_io_perm_failure)
5237 		return PCI_ERS_RESULT_DISCONNECT;
5238 
5239 	if (netif_running(netdev))
5240 		e1000_down(adapter);
5241 
5242 	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5243 		pci_disable_device(pdev);
5244 
5245 	/* Request a slot reset. */
5246 	return PCI_ERS_RESULT_NEED_RESET;
5247 }
5248 
5249 /**
5250  * e1000_io_slot_reset - called after the pci bus has been reset.
5251  * @pdev: Pointer to PCI device
5252  *
5253  * Restart the card from scratch, as if from a cold-boot. Implementation
5254  * resembles the first-half of the e1000_resume routine.
5255  */
5256 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5257 {
5258 	struct net_device *netdev = pci_get_drvdata(pdev);
5259 	struct e1000_adapter *adapter = netdev_priv(netdev);
5260 	struct e1000_hw *hw = &adapter->hw;
5261 	int err;
5262 
5263 	if (adapter->need_ioport)
5264 		err = pci_enable_device(pdev);
5265 	else
5266 		err = pci_enable_device_mem(pdev);
5267 	if (err) {
5268 		pr_err("Cannot re-enable PCI device after reset.\n");
5269 		return PCI_ERS_RESULT_DISCONNECT;
5270 	}
5271 
5272 	/* flush memory to make sure state is correct */
5273 	smp_mb__before_atomic();
5274 	clear_bit(__E1000_DISABLED, &adapter->flags);
5275 	pci_set_master(pdev);
5276 
5277 	pci_enable_wake(pdev, PCI_D3hot, 0);
5278 	pci_enable_wake(pdev, PCI_D3cold, 0);
5279 
5280 	e1000_reset(adapter);
5281 	ew32(WUS, ~0);
5282 
5283 	return PCI_ERS_RESULT_RECOVERED;
5284 }
5285 
5286 /**
5287  * e1000_io_resume - called when traffic can start flowing again.
5288  * @pdev: Pointer to PCI device
5289  *
5290  * This callback is called when the error recovery driver tells us that
5291  * its OK to resume normal operation. Implementation resembles the
5292  * second-half of the e1000_resume routine.
5293  */
5294 static void e1000_io_resume(struct pci_dev *pdev)
5295 {
5296 	struct net_device *netdev = pci_get_drvdata(pdev);
5297 	struct e1000_adapter *adapter = netdev_priv(netdev);
5298 
5299 	e1000_init_manageability(adapter);
5300 
5301 	if (netif_running(netdev)) {
5302 		if (e1000_up(adapter)) {
5303 			pr_info("can't bring device back up after reset\n");
5304 			return;
5305 		}
5306 	}
5307 
5308 	netif_device_attach(netdev);
5309 }
5310 
5311 /* e1000_main.c */
5312