xref: /linux/drivers/net/ethernet/intel/e1000/e1000_ethtool.c (revision e0bf6c5ca2d3281f231c5f0c9bf145e9513644de)
1 /*******************************************************************************
2  * Intel PRO/1000 Linux driver
3  * Copyright(c) 1999 - 2006 Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * The full GNU General Public License is included in this distribution in
15  * the file called "COPYING".
16  *
17  * Contact Information:
18  * Linux NICS <linux.nics@intel.com>
19  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
20  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
21  *
22  ******************************************************************************/
23 
24 /* ethtool support for e1000 */
25 
26 #include "e1000.h"
27 #include <linux/jiffies.h>
28 #include <linux/uaccess.h>
29 
30 enum {NETDEV_STATS, E1000_STATS};
31 
32 struct e1000_stats {
33 	char stat_string[ETH_GSTRING_LEN];
34 	int type;
35 	int sizeof_stat;
36 	int stat_offset;
37 };
38 
39 #define E1000_STAT(m)		E1000_STATS, \
40 				sizeof(((struct e1000_adapter *)0)->m), \
41 				offsetof(struct e1000_adapter, m)
42 #define E1000_NETDEV_STAT(m)	NETDEV_STATS, \
43 				sizeof(((struct net_device *)0)->m), \
44 				offsetof(struct net_device, m)
45 
46 static const struct e1000_stats e1000_gstrings_stats[] = {
47 	{ "rx_packets", E1000_STAT(stats.gprc) },
48 	{ "tx_packets", E1000_STAT(stats.gptc) },
49 	{ "rx_bytes", E1000_STAT(stats.gorcl) },
50 	{ "tx_bytes", E1000_STAT(stats.gotcl) },
51 	{ "rx_broadcast", E1000_STAT(stats.bprc) },
52 	{ "tx_broadcast", E1000_STAT(stats.bptc) },
53 	{ "rx_multicast", E1000_STAT(stats.mprc) },
54 	{ "tx_multicast", E1000_STAT(stats.mptc) },
55 	{ "rx_errors", E1000_STAT(stats.rxerrc) },
56 	{ "tx_errors", E1000_STAT(stats.txerrc) },
57 	{ "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
58 	{ "multicast", E1000_STAT(stats.mprc) },
59 	{ "collisions", E1000_STAT(stats.colc) },
60 	{ "rx_length_errors", E1000_STAT(stats.rlerrc) },
61 	{ "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
62 	{ "rx_crc_errors", E1000_STAT(stats.crcerrs) },
63 	{ "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
64 	{ "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
65 	{ "rx_missed_errors", E1000_STAT(stats.mpc) },
66 	{ "tx_aborted_errors", E1000_STAT(stats.ecol) },
67 	{ "tx_carrier_errors", E1000_STAT(stats.tncrs) },
68 	{ "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
69 	{ "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
70 	{ "tx_window_errors", E1000_STAT(stats.latecol) },
71 	{ "tx_abort_late_coll", E1000_STAT(stats.latecol) },
72 	{ "tx_deferred_ok", E1000_STAT(stats.dc) },
73 	{ "tx_single_coll_ok", E1000_STAT(stats.scc) },
74 	{ "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
75 	{ "tx_timeout_count", E1000_STAT(tx_timeout_count) },
76 	{ "tx_restart_queue", E1000_STAT(restart_queue) },
77 	{ "rx_long_length_errors", E1000_STAT(stats.roc) },
78 	{ "rx_short_length_errors", E1000_STAT(stats.ruc) },
79 	{ "rx_align_errors", E1000_STAT(stats.algnerrc) },
80 	{ "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
81 	{ "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
82 	{ "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
83 	{ "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
84 	{ "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
85 	{ "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
86 	{ "rx_long_byte_count", E1000_STAT(stats.gorcl) },
87 	{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
88 	{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
89 	{ "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
90 	{ "tx_smbus", E1000_STAT(stats.mgptc) },
91 	{ "rx_smbus", E1000_STAT(stats.mgprc) },
92 	{ "dropped_smbus", E1000_STAT(stats.mgpdc) },
93 };
94 
95 #define E1000_QUEUE_STATS_LEN 0
96 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
97 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
98 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
99 	"Register test  (offline)", "Eeprom test    (offline)",
100 	"Interrupt test (offline)", "Loopback test  (offline)",
101 	"Link test   (on/offline)"
102 };
103 
104 #define E1000_TEST_LEN	ARRAY_SIZE(e1000_gstrings_test)
105 
106 static int e1000_get_settings(struct net_device *netdev,
107 			      struct ethtool_cmd *ecmd)
108 {
109 	struct e1000_adapter *adapter = netdev_priv(netdev);
110 	struct e1000_hw *hw = &adapter->hw;
111 
112 	if (hw->media_type == e1000_media_type_copper) {
113 		ecmd->supported = (SUPPORTED_10baseT_Half |
114 				   SUPPORTED_10baseT_Full |
115 				   SUPPORTED_100baseT_Half |
116 				   SUPPORTED_100baseT_Full |
117 				   SUPPORTED_1000baseT_Full|
118 				   SUPPORTED_Autoneg |
119 				   SUPPORTED_TP);
120 		ecmd->advertising = ADVERTISED_TP;
121 
122 		if (hw->autoneg == 1) {
123 			ecmd->advertising |= ADVERTISED_Autoneg;
124 			/* the e1000 autoneg seems to match ethtool nicely */
125 			ecmd->advertising |= hw->autoneg_advertised;
126 		}
127 
128 		ecmd->port = PORT_TP;
129 		ecmd->phy_address = hw->phy_addr;
130 
131 		if (hw->mac_type == e1000_82543)
132 			ecmd->transceiver = XCVR_EXTERNAL;
133 		else
134 			ecmd->transceiver = XCVR_INTERNAL;
135 
136 	} else {
137 		ecmd->supported   = (SUPPORTED_1000baseT_Full |
138 				     SUPPORTED_FIBRE |
139 				     SUPPORTED_Autoneg);
140 
141 		ecmd->advertising = (ADVERTISED_1000baseT_Full |
142 				     ADVERTISED_FIBRE |
143 				     ADVERTISED_Autoneg);
144 
145 		ecmd->port = PORT_FIBRE;
146 
147 		if (hw->mac_type >= e1000_82545)
148 			ecmd->transceiver = XCVR_INTERNAL;
149 		else
150 			ecmd->transceiver = XCVR_EXTERNAL;
151 	}
152 
153 	if (er32(STATUS) & E1000_STATUS_LU) {
154 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
155 					   &adapter->link_duplex);
156 		ethtool_cmd_speed_set(ecmd, adapter->link_speed);
157 
158 		/* unfortunately FULL_DUPLEX != DUPLEX_FULL
159 		 * and HALF_DUPLEX != DUPLEX_HALF
160 		 */
161 		if (adapter->link_duplex == FULL_DUPLEX)
162 			ecmd->duplex = DUPLEX_FULL;
163 		else
164 			ecmd->duplex = DUPLEX_HALF;
165 	} else {
166 		ethtool_cmd_speed_set(ecmd, SPEED_UNKNOWN);
167 		ecmd->duplex = DUPLEX_UNKNOWN;
168 	}
169 
170 	ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
171 			 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
172 
173 	/* MDI-X => 1; MDI => 0 */
174 	if ((hw->media_type == e1000_media_type_copper) &&
175 	    netif_carrier_ok(netdev))
176 		ecmd->eth_tp_mdix = (!!adapter->phy_info.mdix_mode ?
177 				     ETH_TP_MDI_X : ETH_TP_MDI);
178 	else
179 		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
180 
181 	if (hw->mdix == AUTO_ALL_MODES)
182 		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
183 	else
184 		ecmd->eth_tp_mdix_ctrl = hw->mdix;
185 	return 0;
186 }
187 
188 static int e1000_set_settings(struct net_device *netdev,
189 			      struct ethtool_cmd *ecmd)
190 {
191 	struct e1000_adapter *adapter = netdev_priv(netdev);
192 	struct e1000_hw *hw = &adapter->hw;
193 
194 	/* MDI setting is only allowed when autoneg enabled because
195 	 * some hardware doesn't allow MDI setting when speed or
196 	 * duplex is forced.
197 	 */
198 	if (ecmd->eth_tp_mdix_ctrl) {
199 		if (hw->media_type != e1000_media_type_copper)
200 			return -EOPNOTSUPP;
201 
202 		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
203 		    (ecmd->autoneg != AUTONEG_ENABLE)) {
204 			e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
205 			return -EINVAL;
206 		}
207 	}
208 
209 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
210 		msleep(1);
211 
212 	if (ecmd->autoneg == AUTONEG_ENABLE) {
213 		hw->autoneg = 1;
214 		if (hw->media_type == e1000_media_type_fiber)
215 			hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
216 				     ADVERTISED_FIBRE |
217 				     ADVERTISED_Autoneg;
218 		else
219 			hw->autoneg_advertised = ecmd->advertising |
220 						 ADVERTISED_TP |
221 						 ADVERTISED_Autoneg;
222 		ecmd->advertising = hw->autoneg_advertised;
223 	} else {
224 		u32 speed = ethtool_cmd_speed(ecmd);
225 		/* calling this overrides forced MDI setting */
226 		if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
227 			clear_bit(__E1000_RESETTING, &adapter->flags);
228 			return -EINVAL;
229 		}
230 	}
231 
232 	/* MDI-X => 2; MDI => 1; Auto => 3 */
233 	if (ecmd->eth_tp_mdix_ctrl) {
234 		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
235 			hw->mdix = AUTO_ALL_MODES;
236 		else
237 			hw->mdix = ecmd->eth_tp_mdix_ctrl;
238 	}
239 
240 	/* reset the link */
241 
242 	if (netif_running(adapter->netdev)) {
243 		e1000_down(adapter);
244 		e1000_up(adapter);
245 	} else {
246 		e1000_reset(adapter);
247 	}
248 	clear_bit(__E1000_RESETTING, &adapter->flags);
249 	return 0;
250 }
251 
252 static u32 e1000_get_link(struct net_device *netdev)
253 {
254 	struct e1000_adapter *adapter = netdev_priv(netdev);
255 
256 	/* If the link is not reported up to netdev, interrupts are disabled,
257 	 * and so the physical link state may have changed since we last
258 	 * looked. Set get_link_status to make sure that the true link
259 	 * state is interrogated, rather than pulling a cached and possibly
260 	 * stale link state from the driver.
261 	 */
262 	if (!netif_carrier_ok(netdev))
263 		adapter->hw.get_link_status = 1;
264 
265 	return e1000_has_link(adapter);
266 }
267 
268 static void e1000_get_pauseparam(struct net_device *netdev,
269 				 struct ethtool_pauseparam *pause)
270 {
271 	struct e1000_adapter *adapter = netdev_priv(netdev);
272 	struct e1000_hw *hw = &adapter->hw;
273 
274 	pause->autoneg =
275 		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
276 
277 	if (hw->fc == E1000_FC_RX_PAUSE) {
278 		pause->rx_pause = 1;
279 	} else if (hw->fc == E1000_FC_TX_PAUSE) {
280 		pause->tx_pause = 1;
281 	} else if (hw->fc == E1000_FC_FULL) {
282 		pause->rx_pause = 1;
283 		pause->tx_pause = 1;
284 	}
285 }
286 
287 static int e1000_set_pauseparam(struct net_device *netdev,
288 				struct ethtool_pauseparam *pause)
289 {
290 	struct e1000_adapter *adapter = netdev_priv(netdev);
291 	struct e1000_hw *hw = &adapter->hw;
292 	int retval = 0;
293 
294 	adapter->fc_autoneg = pause->autoneg;
295 
296 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
297 		msleep(1);
298 
299 	if (pause->rx_pause && pause->tx_pause)
300 		hw->fc = E1000_FC_FULL;
301 	else if (pause->rx_pause && !pause->tx_pause)
302 		hw->fc = E1000_FC_RX_PAUSE;
303 	else if (!pause->rx_pause && pause->tx_pause)
304 		hw->fc = E1000_FC_TX_PAUSE;
305 	else if (!pause->rx_pause && !pause->tx_pause)
306 		hw->fc = E1000_FC_NONE;
307 
308 	hw->original_fc = hw->fc;
309 
310 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
311 		if (netif_running(adapter->netdev)) {
312 			e1000_down(adapter);
313 			e1000_up(adapter);
314 		} else {
315 			e1000_reset(adapter);
316 		}
317 	} else
318 		retval = ((hw->media_type == e1000_media_type_fiber) ?
319 			  e1000_setup_link(hw) : e1000_force_mac_fc(hw));
320 
321 	clear_bit(__E1000_RESETTING, &adapter->flags);
322 	return retval;
323 }
324 
325 static u32 e1000_get_msglevel(struct net_device *netdev)
326 {
327 	struct e1000_adapter *adapter = netdev_priv(netdev);
328 
329 	return adapter->msg_enable;
330 }
331 
332 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
333 {
334 	struct e1000_adapter *adapter = netdev_priv(netdev);
335 
336 	adapter->msg_enable = data;
337 }
338 
339 static int e1000_get_regs_len(struct net_device *netdev)
340 {
341 #define E1000_REGS_LEN 32
342 	return E1000_REGS_LEN * sizeof(u32);
343 }
344 
345 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
346 			   void *p)
347 {
348 	struct e1000_adapter *adapter = netdev_priv(netdev);
349 	struct e1000_hw *hw = &adapter->hw;
350 	u32 *regs_buff = p;
351 	u16 phy_data;
352 
353 	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
354 
355 	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
356 
357 	regs_buff[0]  = er32(CTRL);
358 	regs_buff[1]  = er32(STATUS);
359 
360 	regs_buff[2]  = er32(RCTL);
361 	regs_buff[3]  = er32(RDLEN);
362 	regs_buff[4]  = er32(RDH);
363 	regs_buff[5]  = er32(RDT);
364 	regs_buff[6]  = er32(RDTR);
365 
366 	regs_buff[7]  = er32(TCTL);
367 	regs_buff[8]  = er32(TDLEN);
368 	regs_buff[9]  = er32(TDH);
369 	regs_buff[10] = er32(TDT);
370 	regs_buff[11] = er32(TIDV);
371 
372 	regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
373 	if (hw->phy_type == e1000_phy_igp) {
374 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
375 				    IGP01E1000_PHY_AGC_A);
376 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
377 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
378 		regs_buff[13] = (u32)phy_data; /* cable length */
379 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
380 				    IGP01E1000_PHY_AGC_B);
381 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
382 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
383 		regs_buff[14] = (u32)phy_data; /* cable length */
384 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
385 				    IGP01E1000_PHY_AGC_C);
386 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
387 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
388 		regs_buff[15] = (u32)phy_data; /* cable length */
389 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
390 				    IGP01E1000_PHY_AGC_D);
391 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
392 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
393 		regs_buff[16] = (u32)phy_data; /* cable length */
394 		regs_buff[17] = 0; /* extended 10bt distance (not needed) */
395 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
396 		e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
397 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
398 		regs_buff[18] = (u32)phy_data; /* cable polarity */
399 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
400 				    IGP01E1000_PHY_PCS_INIT_REG);
401 		e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
402 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
403 		regs_buff[19] = (u32)phy_data; /* cable polarity */
404 		regs_buff[20] = 0; /* polarity correction enabled (always) */
405 		regs_buff[22] = 0; /* phy receive errors (unavailable) */
406 		regs_buff[23] = regs_buff[18]; /* mdix mode */
407 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
408 	} else {
409 		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
410 		regs_buff[13] = (u32)phy_data; /* cable length */
411 		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
412 		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
413 		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
414 		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
415 		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
416 		regs_buff[18] = regs_buff[13]; /* cable polarity */
417 		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
418 		regs_buff[20] = regs_buff[17]; /* polarity correction */
419 		/* phy receive errors */
420 		regs_buff[22] = adapter->phy_stats.receive_errors;
421 		regs_buff[23] = regs_buff[13]; /* mdix mode */
422 	}
423 	regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
424 	e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
425 	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
426 	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
427 	if (hw->mac_type >= e1000_82540 &&
428 	    hw->media_type == e1000_media_type_copper) {
429 		regs_buff[26] = er32(MANC);
430 	}
431 }
432 
433 static int e1000_get_eeprom_len(struct net_device *netdev)
434 {
435 	struct e1000_adapter *adapter = netdev_priv(netdev);
436 	struct e1000_hw *hw = &adapter->hw;
437 
438 	return hw->eeprom.word_size * 2;
439 }
440 
441 static int e1000_get_eeprom(struct net_device *netdev,
442 			    struct ethtool_eeprom *eeprom, u8 *bytes)
443 {
444 	struct e1000_adapter *adapter = netdev_priv(netdev);
445 	struct e1000_hw *hw = &adapter->hw;
446 	u16 *eeprom_buff;
447 	int first_word, last_word;
448 	int ret_val = 0;
449 	u16 i;
450 
451 	if (eeprom->len == 0)
452 		return -EINVAL;
453 
454 	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
455 
456 	first_word = eeprom->offset >> 1;
457 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
458 
459 	eeprom_buff = kmalloc(sizeof(u16) *
460 			(last_word - first_word + 1), GFP_KERNEL);
461 	if (!eeprom_buff)
462 		return -ENOMEM;
463 
464 	if (hw->eeprom.type == e1000_eeprom_spi)
465 		ret_val = e1000_read_eeprom(hw, first_word,
466 					    last_word - first_word + 1,
467 					    eeprom_buff);
468 	else {
469 		for (i = 0; i < last_word - first_word + 1; i++) {
470 			ret_val = e1000_read_eeprom(hw, first_word + i, 1,
471 						    &eeprom_buff[i]);
472 			if (ret_val)
473 				break;
474 		}
475 	}
476 
477 	/* Device's eeprom is always little-endian, word addressable */
478 	for (i = 0; i < last_word - first_word + 1; i++)
479 		le16_to_cpus(&eeprom_buff[i]);
480 
481 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
482 	       eeprom->len);
483 	kfree(eeprom_buff);
484 
485 	return ret_val;
486 }
487 
488 static int e1000_set_eeprom(struct net_device *netdev,
489 			    struct ethtool_eeprom *eeprom, u8 *bytes)
490 {
491 	struct e1000_adapter *adapter = netdev_priv(netdev);
492 	struct e1000_hw *hw = &adapter->hw;
493 	u16 *eeprom_buff;
494 	void *ptr;
495 	int max_len, first_word, last_word, ret_val = 0;
496 	u16 i;
497 
498 	if (eeprom->len == 0)
499 		return -EOPNOTSUPP;
500 
501 	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
502 		return -EFAULT;
503 
504 	max_len = hw->eeprom.word_size * 2;
505 
506 	first_word = eeprom->offset >> 1;
507 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
508 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
509 	if (!eeprom_buff)
510 		return -ENOMEM;
511 
512 	ptr = (void *)eeprom_buff;
513 
514 	if (eeprom->offset & 1) {
515 		/* need read/modify/write of first changed EEPROM word
516 		 * only the second byte of the word is being modified
517 		 */
518 		ret_val = e1000_read_eeprom(hw, first_word, 1,
519 					    &eeprom_buff[0]);
520 		ptr++;
521 	}
522 	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
523 		/* need read/modify/write of last changed EEPROM word
524 		 * only the first byte of the word is being modified
525 		 */
526 		ret_val = e1000_read_eeprom(hw, last_word, 1,
527 					    &eeprom_buff[last_word - first_word]);
528 	}
529 
530 	/* Device's eeprom is always little-endian, word addressable */
531 	for (i = 0; i < last_word - first_word + 1; i++)
532 		le16_to_cpus(&eeprom_buff[i]);
533 
534 	memcpy(ptr, bytes, eeprom->len);
535 
536 	for (i = 0; i < last_word - first_word + 1; i++)
537 		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
538 
539 	ret_val = e1000_write_eeprom(hw, first_word,
540 				     last_word - first_word + 1, eeprom_buff);
541 
542 	/* Update the checksum over the first part of the EEPROM if needed */
543 	if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
544 		e1000_update_eeprom_checksum(hw);
545 
546 	kfree(eeprom_buff);
547 	return ret_val;
548 }
549 
550 static void e1000_get_drvinfo(struct net_device *netdev,
551 			      struct ethtool_drvinfo *drvinfo)
552 {
553 	struct e1000_adapter *adapter = netdev_priv(netdev);
554 
555 	strlcpy(drvinfo->driver,  e1000_driver_name,
556 		sizeof(drvinfo->driver));
557 	strlcpy(drvinfo->version, e1000_driver_version,
558 		sizeof(drvinfo->version));
559 
560 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
561 		sizeof(drvinfo->bus_info));
562 	drvinfo->regdump_len = e1000_get_regs_len(netdev);
563 	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
564 }
565 
566 static void e1000_get_ringparam(struct net_device *netdev,
567 				struct ethtool_ringparam *ring)
568 {
569 	struct e1000_adapter *adapter = netdev_priv(netdev);
570 	struct e1000_hw *hw = &adapter->hw;
571 	e1000_mac_type mac_type = hw->mac_type;
572 	struct e1000_tx_ring *txdr = adapter->tx_ring;
573 	struct e1000_rx_ring *rxdr = adapter->rx_ring;
574 
575 	ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
576 		E1000_MAX_82544_RXD;
577 	ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
578 		E1000_MAX_82544_TXD;
579 	ring->rx_pending = rxdr->count;
580 	ring->tx_pending = txdr->count;
581 }
582 
583 static int e1000_set_ringparam(struct net_device *netdev,
584 			       struct ethtool_ringparam *ring)
585 {
586 	struct e1000_adapter *adapter = netdev_priv(netdev);
587 	struct e1000_hw *hw = &adapter->hw;
588 	e1000_mac_type mac_type = hw->mac_type;
589 	struct e1000_tx_ring *txdr, *tx_old;
590 	struct e1000_rx_ring *rxdr, *rx_old;
591 	int i, err;
592 
593 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
594 		return -EINVAL;
595 
596 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
597 		msleep(1);
598 
599 	if (netif_running(adapter->netdev))
600 		e1000_down(adapter);
601 
602 	tx_old = adapter->tx_ring;
603 	rx_old = adapter->rx_ring;
604 
605 	err = -ENOMEM;
606 	txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring),
607 		       GFP_KERNEL);
608 	if (!txdr)
609 		goto err_alloc_tx;
610 
611 	rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring),
612 		       GFP_KERNEL);
613 	if (!rxdr)
614 		goto err_alloc_rx;
615 
616 	adapter->tx_ring = txdr;
617 	adapter->rx_ring = rxdr;
618 
619 	rxdr->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
620 	rxdr->count = min(rxdr->count, (u32)(mac_type < e1000_82544 ?
621 			  E1000_MAX_RXD : E1000_MAX_82544_RXD));
622 	rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
623 	txdr->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
624 	txdr->count = min(txdr->count, (u32)(mac_type < e1000_82544 ?
625 			  E1000_MAX_TXD : E1000_MAX_82544_TXD));
626 	txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
627 
628 	for (i = 0; i < adapter->num_tx_queues; i++)
629 		txdr[i].count = txdr->count;
630 	for (i = 0; i < adapter->num_rx_queues; i++)
631 		rxdr[i].count = rxdr->count;
632 
633 	if (netif_running(adapter->netdev)) {
634 		/* Try to get new resources before deleting old */
635 		err = e1000_setup_all_rx_resources(adapter);
636 		if (err)
637 			goto err_setup_rx;
638 		err = e1000_setup_all_tx_resources(adapter);
639 		if (err)
640 			goto err_setup_tx;
641 
642 		/* save the new, restore the old in order to free it,
643 		 * then restore the new back again
644 		 */
645 
646 		adapter->rx_ring = rx_old;
647 		adapter->tx_ring = tx_old;
648 		e1000_free_all_rx_resources(adapter);
649 		e1000_free_all_tx_resources(adapter);
650 		kfree(tx_old);
651 		kfree(rx_old);
652 		adapter->rx_ring = rxdr;
653 		adapter->tx_ring = txdr;
654 		err = e1000_up(adapter);
655 		if (err)
656 			goto err_setup;
657 	}
658 
659 	clear_bit(__E1000_RESETTING, &adapter->flags);
660 	return 0;
661 err_setup_tx:
662 	e1000_free_all_rx_resources(adapter);
663 err_setup_rx:
664 	adapter->rx_ring = rx_old;
665 	adapter->tx_ring = tx_old;
666 	kfree(rxdr);
667 err_alloc_rx:
668 	kfree(txdr);
669 err_alloc_tx:
670 	e1000_up(adapter);
671 err_setup:
672 	clear_bit(__E1000_RESETTING, &adapter->flags);
673 	return err;
674 }
675 
676 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
677 			     u32 mask, u32 write)
678 {
679 	struct e1000_hw *hw = &adapter->hw;
680 	static const u32 test[] = {
681 		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
682 	};
683 	u8 __iomem *address = hw->hw_addr + reg;
684 	u32 read;
685 	int i;
686 
687 	for (i = 0; i < ARRAY_SIZE(test); i++) {
688 		writel(write & test[i], address);
689 		read = readl(address);
690 		if (read != (write & test[i] & mask)) {
691 			e_err(drv, "pattern test reg %04X failed: "
692 			      "got 0x%08X expected 0x%08X\n",
693 			      reg, read, (write & test[i] & mask));
694 			*data = reg;
695 			return true;
696 		}
697 	}
698 	return false;
699 }
700 
701 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
702 			      u32 mask, u32 write)
703 {
704 	struct e1000_hw *hw = &adapter->hw;
705 	u8 __iomem *address = hw->hw_addr + reg;
706 	u32 read;
707 
708 	writel(write & mask, address);
709 	read = readl(address);
710 	if ((read & mask) != (write & mask)) {
711 		e_err(drv, "set/check reg %04X test failed: "
712 		      "got 0x%08X expected 0x%08X\n",
713 		      reg, (read & mask), (write & mask));
714 		*data = reg;
715 		return true;
716 	}
717 	return false;
718 }
719 
720 #define REG_PATTERN_TEST(reg, mask, write)			     \
721 	do {							     \
722 		if (reg_pattern_test(adapter, data,		     \
723 			     (hw->mac_type >= e1000_82543)   \
724 			     ? E1000_##reg : E1000_82542_##reg,	     \
725 			     mask, write))			     \
726 			return 1;				     \
727 	} while (0)
728 
729 #define REG_SET_AND_CHECK(reg, mask, write)			     \
730 	do {							     \
731 		if (reg_set_and_check(adapter, data,		     \
732 			      (hw->mac_type >= e1000_82543)  \
733 			      ? E1000_##reg : E1000_82542_##reg,     \
734 			      mask, write))			     \
735 			return 1;				     \
736 	} while (0)
737 
738 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
739 {
740 	u32 value, before, after;
741 	u32 i, toggle;
742 	struct e1000_hw *hw = &adapter->hw;
743 
744 	/* The status register is Read Only, so a write should fail.
745 	 * Some bits that get toggled are ignored.
746 	 */
747 
748 	/* there are several bits on newer hardware that are r/w */
749 	toggle = 0xFFFFF833;
750 
751 	before = er32(STATUS);
752 	value = (er32(STATUS) & toggle);
753 	ew32(STATUS, toggle);
754 	after = er32(STATUS) & toggle;
755 	if (value != after) {
756 		e_err(drv, "failed STATUS register test got: "
757 		      "0x%08X expected: 0x%08X\n", after, value);
758 		*data = 1;
759 		return 1;
760 	}
761 	/* restore previous status */
762 	ew32(STATUS, before);
763 
764 	REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
765 	REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
766 	REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
767 	REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
768 
769 	REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
770 	REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
771 	REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
772 	REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
773 	REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
774 	REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
775 	REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
776 	REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
777 	REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
778 	REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
779 
780 	REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
781 
782 	before = 0x06DFB3FE;
783 	REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
784 	REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
785 
786 	if (hw->mac_type >= e1000_82543) {
787 		REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
788 		REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
789 		REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
790 		REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
791 		REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
792 		value = E1000_RAR_ENTRIES;
793 		for (i = 0; i < value; i++) {
794 			REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2),
795 					 0x8003FFFF, 0xFFFFFFFF);
796 		}
797 	} else {
798 		REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
799 		REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
800 		REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
801 		REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
802 	}
803 
804 	value = E1000_MC_TBL_SIZE;
805 	for (i = 0; i < value; i++)
806 		REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
807 
808 	*data = 0;
809 	return 0;
810 }
811 
812 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
813 {
814 	struct e1000_hw *hw = &adapter->hw;
815 	u16 temp;
816 	u16 checksum = 0;
817 	u16 i;
818 
819 	*data = 0;
820 	/* Read and add up the contents of the EEPROM */
821 	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
822 		if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
823 			*data = 1;
824 			break;
825 		}
826 		checksum += temp;
827 	}
828 
829 	/* If Checksum is not Correct return error else test passed */
830 	if ((checksum != (u16)EEPROM_SUM) && !(*data))
831 		*data = 2;
832 
833 	return *data;
834 }
835 
836 static irqreturn_t e1000_test_intr(int irq, void *data)
837 {
838 	struct net_device *netdev = (struct net_device *)data;
839 	struct e1000_adapter *adapter = netdev_priv(netdev);
840 	struct e1000_hw *hw = &adapter->hw;
841 
842 	adapter->test_icr |= er32(ICR);
843 
844 	return IRQ_HANDLED;
845 }
846 
847 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
848 {
849 	struct net_device *netdev = adapter->netdev;
850 	u32 mask, i = 0;
851 	bool shared_int = true;
852 	u32 irq = adapter->pdev->irq;
853 	struct e1000_hw *hw = &adapter->hw;
854 
855 	*data = 0;
856 
857 	/* NOTE: we don't test MSI interrupts here, yet
858 	 * Hook up test interrupt handler just for this test
859 	 */
860 	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
861 			 netdev))
862 		shared_int = false;
863 	else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
864 			     netdev->name, netdev)) {
865 		*data = 1;
866 		return -1;
867 	}
868 	e_info(hw, "testing %s interrupt\n", (shared_int ?
869 	       "shared" : "unshared"));
870 
871 	/* Disable all the interrupts */
872 	ew32(IMC, 0xFFFFFFFF);
873 	E1000_WRITE_FLUSH();
874 	msleep(10);
875 
876 	/* Test each interrupt */
877 	for (; i < 10; i++) {
878 		/* Interrupt to test */
879 		mask = 1 << i;
880 
881 		if (!shared_int) {
882 			/* Disable the interrupt to be reported in
883 			 * the cause register and then force the same
884 			 * interrupt and see if one gets posted.  If
885 			 * an interrupt was posted to the bus, the
886 			 * test failed.
887 			 */
888 			adapter->test_icr = 0;
889 			ew32(IMC, mask);
890 			ew32(ICS, mask);
891 			E1000_WRITE_FLUSH();
892 			msleep(10);
893 
894 			if (adapter->test_icr & mask) {
895 				*data = 3;
896 				break;
897 			}
898 		}
899 
900 		/* Enable the interrupt to be reported in
901 		 * the cause register and then force the same
902 		 * interrupt and see if one gets posted.  If
903 		 * an interrupt was not posted to the bus, the
904 		 * test failed.
905 		 */
906 		adapter->test_icr = 0;
907 		ew32(IMS, mask);
908 		ew32(ICS, mask);
909 		E1000_WRITE_FLUSH();
910 		msleep(10);
911 
912 		if (!(adapter->test_icr & mask)) {
913 			*data = 4;
914 			break;
915 		}
916 
917 		if (!shared_int) {
918 			/* Disable the other interrupts to be reported in
919 			 * the cause register and then force the other
920 			 * interrupts and see if any get posted.  If
921 			 * an interrupt was posted to the bus, the
922 			 * test failed.
923 			 */
924 			adapter->test_icr = 0;
925 			ew32(IMC, ~mask & 0x00007FFF);
926 			ew32(ICS, ~mask & 0x00007FFF);
927 			E1000_WRITE_FLUSH();
928 			msleep(10);
929 
930 			if (adapter->test_icr) {
931 				*data = 5;
932 				break;
933 			}
934 		}
935 	}
936 
937 	/* Disable all the interrupts */
938 	ew32(IMC, 0xFFFFFFFF);
939 	E1000_WRITE_FLUSH();
940 	msleep(10);
941 
942 	/* Unhook test interrupt handler */
943 	free_irq(irq, netdev);
944 
945 	return *data;
946 }
947 
948 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
949 {
950 	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
951 	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
952 	struct pci_dev *pdev = adapter->pdev;
953 	int i;
954 
955 	if (txdr->desc && txdr->buffer_info) {
956 		for (i = 0; i < txdr->count; i++) {
957 			if (txdr->buffer_info[i].dma)
958 				dma_unmap_single(&pdev->dev,
959 						 txdr->buffer_info[i].dma,
960 						 txdr->buffer_info[i].length,
961 						 DMA_TO_DEVICE);
962 			if (txdr->buffer_info[i].skb)
963 				dev_kfree_skb(txdr->buffer_info[i].skb);
964 		}
965 	}
966 
967 	if (rxdr->desc && rxdr->buffer_info) {
968 		for (i = 0; i < rxdr->count; i++) {
969 			if (rxdr->buffer_info[i].dma)
970 				dma_unmap_single(&pdev->dev,
971 						 rxdr->buffer_info[i].dma,
972 						 E1000_RXBUFFER_2048,
973 						 DMA_FROM_DEVICE);
974 			kfree(rxdr->buffer_info[i].rxbuf.data);
975 		}
976 	}
977 
978 	if (txdr->desc) {
979 		dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
980 				  txdr->dma);
981 		txdr->desc = NULL;
982 	}
983 	if (rxdr->desc) {
984 		dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
985 				  rxdr->dma);
986 		rxdr->desc = NULL;
987 	}
988 
989 	kfree(txdr->buffer_info);
990 	txdr->buffer_info = NULL;
991 	kfree(rxdr->buffer_info);
992 	rxdr->buffer_info = NULL;
993 }
994 
995 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
996 {
997 	struct e1000_hw *hw = &adapter->hw;
998 	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
999 	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1000 	struct pci_dev *pdev = adapter->pdev;
1001 	u32 rctl;
1002 	int i, ret_val;
1003 
1004 	/* Setup Tx descriptor ring and Tx buffers */
1005 
1006 	if (!txdr->count)
1007 		txdr->count = E1000_DEFAULT_TXD;
1008 
1009 	txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_tx_buffer),
1010 				    GFP_KERNEL);
1011 	if (!txdr->buffer_info) {
1012 		ret_val = 1;
1013 		goto err_nomem;
1014 	}
1015 
1016 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1017 	txdr->size = ALIGN(txdr->size, 4096);
1018 	txdr->desc = dma_zalloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1019 					 GFP_KERNEL);
1020 	if (!txdr->desc) {
1021 		ret_val = 2;
1022 		goto err_nomem;
1023 	}
1024 	txdr->next_to_use = txdr->next_to_clean = 0;
1025 
1026 	ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1027 	ew32(TDBAH, ((u64)txdr->dma >> 32));
1028 	ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1029 	ew32(TDH, 0);
1030 	ew32(TDT, 0);
1031 	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1032 	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1033 	     E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1034 
1035 	for (i = 0; i < txdr->count; i++) {
1036 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1037 		struct sk_buff *skb;
1038 		unsigned int size = 1024;
1039 
1040 		skb = alloc_skb(size, GFP_KERNEL);
1041 		if (!skb) {
1042 			ret_val = 3;
1043 			goto err_nomem;
1044 		}
1045 		skb_put(skb, size);
1046 		txdr->buffer_info[i].skb = skb;
1047 		txdr->buffer_info[i].length = skb->len;
1048 		txdr->buffer_info[i].dma =
1049 			dma_map_single(&pdev->dev, skb->data, skb->len,
1050 				       DMA_TO_DEVICE);
1051 		if (dma_mapping_error(&pdev->dev, txdr->buffer_info[i].dma)) {
1052 			ret_val = 4;
1053 			goto err_nomem;
1054 		}
1055 		tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1056 		tx_desc->lower.data = cpu_to_le32(skb->len);
1057 		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1058 						   E1000_TXD_CMD_IFCS |
1059 						   E1000_TXD_CMD_RPS);
1060 		tx_desc->upper.data = 0;
1061 	}
1062 
1063 	/* Setup Rx descriptor ring and Rx buffers */
1064 
1065 	if (!rxdr->count)
1066 		rxdr->count = E1000_DEFAULT_RXD;
1067 
1068 	rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_rx_buffer),
1069 				    GFP_KERNEL);
1070 	if (!rxdr->buffer_info) {
1071 		ret_val = 5;
1072 		goto err_nomem;
1073 	}
1074 
1075 	rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1076 	rxdr->desc = dma_zalloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1077 					 GFP_KERNEL);
1078 	if (!rxdr->desc) {
1079 		ret_val = 6;
1080 		goto err_nomem;
1081 	}
1082 	rxdr->next_to_use = rxdr->next_to_clean = 0;
1083 
1084 	rctl = er32(RCTL);
1085 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1086 	ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1087 	ew32(RDBAH, ((u64)rxdr->dma >> 32));
1088 	ew32(RDLEN, rxdr->size);
1089 	ew32(RDH, 0);
1090 	ew32(RDT, 0);
1091 	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1092 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1093 		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1094 	ew32(RCTL, rctl);
1095 
1096 	for (i = 0; i < rxdr->count; i++) {
1097 		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1098 		u8 *buf;
1099 
1100 		buf = kzalloc(E1000_RXBUFFER_2048 + NET_SKB_PAD + NET_IP_ALIGN,
1101 			      GFP_KERNEL);
1102 		if (!buf) {
1103 			ret_val = 7;
1104 			goto err_nomem;
1105 		}
1106 		rxdr->buffer_info[i].rxbuf.data = buf;
1107 
1108 		rxdr->buffer_info[i].dma =
1109 			dma_map_single(&pdev->dev,
1110 				       buf + NET_SKB_PAD + NET_IP_ALIGN,
1111 				       E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1112 		if (dma_mapping_error(&pdev->dev, rxdr->buffer_info[i].dma)) {
1113 			ret_val = 8;
1114 			goto err_nomem;
1115 		}
1116 		rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1117 	}
1118 
1119 	return 0;
1120 
1121 err_nomem:
1122 	e1000_free_desc_rings(adapter);
1123 	return ret_val;
1124 }
1125 
1126 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1127 {
1128 	struct e1000_hw *hw = &adapter->hw;
1129 
1130 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1131 	e1000_write_phy_reg(hw, 29, 0x001F);
1132 	e1000_write_phy_reg(hw, 30, 0x8FFC);
1133 	e1000_write_phy_reg(hw, 29, 0x001A);
1134 	e1000_write_phy_reg(hw, 30, 0x8FF0);
1135 }
1136 
1137 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1138 {
1139 	struct e1000_hw *hw = &adapter->hw;
1140 	u16 phy_reg;
1141 
1142 	/* Because we reset the PHY above, we need to re-force TX_CLK in the
1143 	 * Extended PHY Specific Control Register to 25MHz clock.  This
1144 	 * value defaults back to a 2.5MHz clock when the PHY is reset.
1145 	 */
1146 	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1147 	phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1148 	e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1149 
1150 	/* In addition, because of the s/w reset above, we need to enable
1151 	 * CRS on TX.  This must be set for both full and half duplex
1152 	 * operation.
1153 	 */
1154 	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1155 	phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1156 	e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1157 }
1158 
1159 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1160 {
1161 	struct e1000_hw *hw = &adapter->hw;
1162 	u32 ctrl_reg;
1163 	u16 phy_reg;
1164 
1165 	/* Setup the Device Control Register for PHY loopback test. */
1166 
1167 	ctrl_reg = er32(CTRL);
1168 	ctrl_reg |= (E1000_CTRL_ILOS |		/* Invert Loss-Of-Signal */
1169 		     E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
1170 		     E1000_CTRL_FRCDPX |	/* Set the Force Duplex Bit */
1171 		     E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
1172 		     E1000_CTRL_FD);		/* Force Duplex to FULL */
1173 
1174 	ew32(CTRL, ctrl_reg);
1175 
1176 	/* Read the PHY Specific Control Register (0x10) */
1177 	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1178 
1179 	/* Clear Auto-Crossover bits in PHY Specific Control Register
1180 	 * (bits 6:5).
1181 	 */
1182 	phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1183 	e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1184 
1185 	/* Perform software reset on the PHY */
1186 	e1000_phy_reset(hw);
1187 
1188 	/* Have to setup TX_CLK and TX_CRS after software reset */
1189 	e1000_phy_reset_clk_and_crs(adapter);
1190 
1191 	e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1192 
1193 	/* Wait for reset to complete. */
1194 	udelay(500);
1195 
1196 	/* Have to setup TX_CLK and TX_CRS after software reset */
1197 	e1000_phy_reset_clk_and_crs(adapter);
1198 
1199 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1200 	e1000_phy_disable_receiver(adapter);
1201 
1202 	/* Set the loopback bit in the PHY control register. */
1203 	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1204 	phy_reg |= MII_CR_LOOPBACK;
1205 	e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1206 
1207 	/* Setup TX_CLK and TX_CRS one more time. */
1208 	e1000_phy_reset_clk_and_crs(adapter);
1209 
1210 	/* Check Phy Configuration */
1211 	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1212 	if (phy_reg != 0x4100)
1213 		return 9;
1214 
1215 	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1216 	if (phy_reg != 0x0070)
1217 		return 10;
1218 
1219 	e1000_read_phy_reg(hw, 29, &phy_reg);
1220 	if (phy_reg != 0x001A)
1221 		return 11;
1222 
1223 	return 0;
1224 }
1225 
1226 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1227 {
1228 	struct e1000_hw *hw = &adapter->hw;
1229 	u32 ctrl_reg = 0;
1230 	u32 stat_reg = 0;
1231 
1232 	hw->autoneg = false;
1233 
1234 	if (hw->phy_type == e1000_phy_m88) {
1235 		/* Auto-MDI/MDIX Off */
1236 		e1000_write_phy_reg(hw,
1237 				    M88E1000_PHY_SPEC_CTRL, 0x0808);
1238 		/* reset to update Auto-MDI/MDIX */
1239 		e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1240 		/* autoneg off */
1241 		e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1242 	}
1243 
1244 	ctrl_reg = er32(CTRL);
1245 
1246 	/* force 1000, set loopback */
1247 	e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1248 
1249 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1250 	ctrl_reg = er32(CTRL);
1251 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1252 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1253 			E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1254 			E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1255 			E1000_CTRL_FD); /* Force Duplex to FULL */
1256 
1257 	if (hw->media_type == e1000_media_type_copper &&
1258 	    hw->phy_type == e1000_phy_m88)
1259 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1260 	else {
1261 		/* Set the ILOS bit on the fiber Nic is half
1262 		 * duplex link is detected.
1263 		 */
1264 		stat_reg = er32(STATUS);
1265 		if ((stat_reg & E1000_STATUS_FD) == 0)
1266 			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1267 	}
1268 
1269 	ew32(CTRL, ctrl_reg);
1270 
1271 	/* Disable the receiver on the PHY so when a cable is plugged in, the
1272 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1273 	 */
1274 	if (hw->phy_type == e1000_phy_m88)
1275 		e1000_phy_disable_receiver(adapter);
1276 
1277 	udelay(500);
1278 
1279 	return 0;
1280 }
1281 
1282 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1283 {
1284 	struct e1000_hw *hw = &adapter->hw;
1285 	u16 phy_reg = 0;
1286 	u16 count = 0;
1287 
1288 	switch (hw->mac_type) {
1289 	case e1000_82543:
1290 		if (hw->media_type == e1000_media_type_copper) {
1291 			/* Attempt to setup Loopback mode on Non-integrated PHY.
1292 			 * Some PHY registers get corrupted at random, so
1293 			 * attempt this 10 times.
1294 			 */
1295 			while (e1000_nonintegrated_phy_loopback(adapter) &&
1296 			       count++ < 10);
1297 			if (count < 11)
1298 				return 0;
1299 		}
1300 		break;
1301 
1302 	case e1000_82544:
1303 	case e1000_82540:
1304 	case e1000_82545:
1305 	case e1000_82545_rev_3:
1306 	case e1000_82546:
1307 	case e1000_82546_rev_3:
1308 	case e1000_82541:
1309 	case e1000_82541_rev_2:
1310 	case e1000_82547:
1311 	case e1000_82547_rev_2:
1312 		return e1000_integrated_phy_loopback(adapter);
1313 	default:
1314 		/* Default PHY loopback work is to read the MII
1315 		 * control register and assert bit 14 (loopback mode).
1316 		 */
1317 		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1318 		phy_reg |= MII_CR_LOOPBACK;
1319 		e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1320 		return 0;
1321 	}
1322 
1323 	return 8;
1324 }
1325 
1326 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1327 {
1328 	struct e1000_hw *hw = &adapter->hw;
1329 	u32 rctl;
1330 
1331 	if (hw->media_type == e1000_media_type_fiber ||
1332 	    hw->media_type == e1000_media_type_internal_serdes) {
1333 		switch (hw->mac_type) {
1334 		case e1000_82545:
1335 		case e1000_82546:
1336 		case e1000_82545_rev_3:
1337 		case e1000_82546_rev_3:
1338 			return e1000_set_phy_loopback(adapter);
1339 		default:
1340 			rctl = er32(RCTL);
1341 			rctl |= E1000_RCTL_LBM_TCVR;
1342 			ew32(RCTL, rctl);
1343 			return 0;
1344 		}
1345 	} else if (hw->media_type == e1000_media_type_copper) {
1346 		return e1000_set_phy_loopback(adapter);
1347 	}
1348 
1349 	return 7;
1350 }
1351 
1352 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1353 {
1354 	struct e1000_hw *hw = &adapter->hw;
1355 	u32 rctl;
1356 	u16 phy_reg;
1357 
1358 	rctl = er32(RCTL);
1359 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1360 	ew32(RCTL, rctl);
1361 
1362 	switch (hw->mac_type) {
1363 	case e1000_82545:
1364 	case e1000_82546:
1365 	case e1000_82545_rev_3:
1366 	case e1000_82546_rev_3:
1367 	default:
1368 		hw->autoneg = true;
1369 		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1370 		if (phy_reg & MII_CR_LOOPBACK) {
1371 			phy_reg &= ~MII_CR_LOOPBACK;
1372 			e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1373 			e1000_phy_reset(hw);
1374 		}
1375 		break;
1376 	}
1377 }
1378 
1379 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1380 				      unsigned int frame_size)
1381 {
1382 	memset(skb->data, 0xFF, frame_size);
1383 	frame_size &= ~1;
1384 	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1385 	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1386 	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1387 }
1388 
1389 static int e1000_check_lbtest_frame(const unsigned char *data,
1390 				    unsigned int frame_size)
1391 {
1392 	frame_size &= ~1;
1393 	if (*(data + 3) == 0xFF) {
1394 		if ((*(data + frame_size / 2 + 10) == 0xBE) &&
1395 		    (*(data + frame_size / 2 + 12) == 0xAF)) {
1396 			return 0;
1397 		}
1398 	}
1399 	return 13;
1400 }
1401 
1402 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1403 {
1404 	struct e1000_hw *hw = &adapter->hw;
1405 	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1406 	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1407 	struct pci_dev *pdev = adapter->pdev;
1408 	int i, j, k, l, lc, good_cnt, ret_val = 0;
1409 	unsigned long time;
1410 
1411 	ew32(RDT, rxdr->count - 1);
1412 
1413 	/* Calculate the loop count based on the largest descriptor ring
1414 	 * The idea is to wrap the largest ring a number of times using 64
1415 	 * send/receive pairs during each loop
1416 	 */
1417 
1418 	if (rxdr->count <= txdr->count)
1419 		lc = ((txdr->count / 64) * 2) + 1;
1420 	else
1421 		lc = ((rxdr->count / 64) * 2) + 1;
1422 
1423 	k = l = 0;
1424 	for (j = 0; j <= lc; j++) { /* loop count loop */
1425 		for (i = 0; i < 64; i++) { /* send the packets */
1426 			e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1427 						  1024);
1428 			dma_sync_single_for_device(&pdev->dev,
1429 						   txdr->buffer_info[k].dma,
1430 						   txdr->buffer_info[k].length,
1431 						   DMA_TO_DEVICE);
1432 			if (unlikely(++k == txdr->count))
1433 				k = 0;
1434 		}
1435 		ew32(TDT, k);
1436 		E1000_WRITE_FLUSH();
1437 		msleep(200);
1438 		time = jiffies; /* set the start time for the receive */
1439 		good_cnt = 0;
1440 		do { /* receive the sent packets */
1441 			dma_sync_single_for_cpu(&pdev->dev,
1442 						rxdr->buffer_info[l].dma,
1443 						E1000_RXBUFFER_2048,
1444 						DMA_FROM_DEVICE);
1445 
1446 			ret_val = e1000_check_lbtest_frame(
1447 					rxdr->buffer_info[l].rxbuf.data +
1448 					NET_SKB_PAD + NET_IP_ALIGN,
1449 					1024);
1450 			if (!ret_val)
1451 				good_cnt++;
1452 			if (unlikely(++l == rxdr->count))
1453 				l = 0;
1454 			/* time + 20 msecs (200 msecs on 2.4) is more than
1455 			 * enough time to complete the receives, if it's
1456 			 * exceeded, break and error off
1457 			 */
1458 		} while (good_cnt < 64 && time_after(time + 20, jiffies));
1459 
1460 		if (good_cnt != 64) {
1461 			ret_val = 13; /* ret_val is the same as mis-compare */
1462 			break;
1463 		}
1464 		if (time_after_eq(jiffies, time + 2)) {
1465 			ret_val = 14; /* error code for time out error */
1466 			break;
1467 		}
1468 	} /* end loop count loop */
1469 	return ret_val;
1470 }
1471 
1472 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1473 {
1474 	*data = e1000_setup_desc_rings(adapter);
1475 	if (*data)
1476 		goto out;
1477 	*data = e1000_setup_loopback_test(adapter);
1478 	if (*data)
1479 		goto err_loopback;
1480 	*data = e1000_run_loopback_test(adapter);
1481 	e1000_loopback_cleanup(adapter);
1482 
1483 err_loopback:
1484 	e1000_free_desc_rings(adapter);
1485 out:
1486 	return *data;
1487 }
1488 
1489 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1490 {
1491 	struct e1000_hw *hw = &adapter->hw;
1492 	*data = 0;
1493 	if (hw->media_type == e1000_media_type_internal_serdes) {
1494 		int i = 0;
1495 
1496 		hw->serdes_has_link = false;
1497 
1498 		/* On some blade server designs, link establishment
1499 		 * could take as long as 2-3 minutes
1500 		 */
1501 		do {
1502 			e1000_check_for_link(hw);
1503 			if (hw->serdes_has_link)
1504 				return *data;
1505 			msleep(20);
1506 		} while (i++ < 3750);
1507 
1508 		*data = 1;
1509 	} else {
1510 		e1000_check_for_link(hw);
1511 		if (hw->autoneg)  /* if auto_neg is set wait for it */
1512 			msleep(4000);
1513 
1514 		if (!(er32(STATUS) & E1000_STATUS_LU))
1515 			*data = 1;
1516 	}
1517 	return *data;
1518 }
1519 
1520 static int e1000_get_sset_count(struct net_device *netdev, int sset)
1521 {
1522 	switch (sset) {
1523 	case ETH_SS_TEST:
1524 		return E1000_TEST_LEN;
1525 	case ETH_SS_STATS:
1526 		return E1000_STATS_LEN;
1527 	default:
1528 		return -EOPNOTSUPP;
1529 	}
1530 }
1531 
1532 static void e1000_diag_test(struct net_device *netdev,
1533 			    struct ethtool_test *eth_test, u64 *data)
1534 {
1535 	struct e1000_adapter *adapter = netdev_priv(netdev);
1536 	struct e1000_hw *hw = &adapter->hw;
1537 	bool if_running = netif_running(netdev);
1538 
1539 	set_bit(__E1000_TESTING, &adapter->flags);
1540 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1541 		/* Offline tests */
1542 
1543 		/* save speed, duplex, autoneg settings */
1544 		u16 autoneg_advertised = hw->autoneg_advertised;
1545 		u8 forced_speed_duplex = hw->forced_speed_duplex;
1546 		u8 autoneg = hw->autoneg;
1547 
1548 		e_info(hw, "offline testing starting\n");
1549 
1550 		/* Link test performed before hardware reset so autoneg doesn't
1551 		 * interfere with test result
1552 		 */
1553 		if (e1000_link_test(adapter, &data[4]))
1554 			eth_test->flags |= ETH_TEST_FL_FAILED;
1555 
1556 		if (if_running)
1557 			/* indicate we're in test mode */
1558 			dev_close(netdev);
1559 		else
1560 			e1000_reset(adapter);
1561 
1562 		if (e1000_reg_test(adapter, &data[0]))
1563 			eth_test->flags |= ETH_TEST_FL_FAILED;
1564 
1565 		e1000_reset(adapter);
1566 		if (e1000_eeprom_test(adapter, &data[1]))
1567 			eth_test->flags |= ETH_TEST_FL_FAILED;
1568 
1569 		e1000_reset(adapter);
1570 		if (e1000_intr_test(adapter, &data[2]))
1571 			eth_test->flags |= ETH_TEST_FL_FAILED;
1572 
1573 		e1000_reset(adapter);
1574 		/* make sure the phy is powered up */
1575 		e1000_power_up_phy(adapter);
1576 		if (e1000_loopback_test(adapter, &data[3]))
1577 			eth_test->flags |= ETH_TEST_FL_FAILED;
1578 
1579 		/* restore speed, duplex, autoneg settings */
1580 		hw->autoneg_advertised = autoneg_advertised;
1581 		hw->forced_speed_duplex = forced_speed_duplex;
1582 		hw->autoneg = autoneg;
1583 
1584 		e1000_reset(adapter);
1585 		clear_bit(__E1000_TESTING, &adapter->flags);
1586 		if (if_running)
1587 			dev_open(netdev);
1588 	} else {
1589 		e_info(hw, "online testing starting\n");
1590 		/* Online tests */
1591 		if (e1000_link_test(adapter, &data[4]))
1592 			eth_test->flags |= ETH_TEST_FL_FAILED;
1593 
1594 		/* Online tests aren't run; pass by default */
1595 		data[0] = 0;
1596 		data[1] = 0;
1597 		data[2] = 0;
1598 		data[3] = 0;
1599 
1600 		clear_bit(__E1000_TESTING, &adapter->flags);
1601 	}
1602 	msleep_interruptible(4 * 1000);
1603 }
1604 
1605 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1606 			       struct ethtool_wolinfo *wol)
1607 {
1608 	struct e1000_hw *hw = &adapter->hw;
1609 	int retval = 1; /* fail by default */
1610 
1611 	switch (hw->device_id) {
1612 	case E1000_DEV_ID_82542:
1613 	case E1000_DEV_ID_82543GC_FIBER:
1614 	case E1000_DEV_ID_82543GC_COPPER:
1615 	case E1000_DEV_ID_82544EI_FIBER:
1616 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
1617 	case E1000_DEV_ID_82545EM_FIBER:
1618 	case E1000_DEV_ID_82545EM_COPPER:
1619 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
1620 	case E1000_DEV_ID_82546GB_PCIE:
1621 		/* these don't support WoL at all */
1622 		wol->supported = 0;
1623 		break;
1624 	case E1000_DEV_ID_82546EB_FIBER:
1625 	case E1000_DEV_ID_82546GB_FIBER:
1626 		/* Wake events not supported on port B */
1627 		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1628 			wol->supported = 0;
1629 			break;
1630 		}
1631 		/* return success for non excluded adapter ports */
1632 		retval = 0;
1633 		break;
1634 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1635 		/* quad port adapters only support WoL on port A */
1636 		if (!adapter->quad_port_a) {
1637 			wol->supported = 0;
1638 			break;
1639 		}
1640 		/* return success for non excluded adapter ports */
1641 		retval = 0;
1642 		break;
1643 	default:
1644 		/* dual port cards only support WoL on port A from now on
1645 		 * unless it was enabled in the eeprom for port B
1646 		 * so exclude FUNC_1 ports from having WoL enabled
1647 		 */
1648 		if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1649 		    !adapter->eeprom_wol) {
1650 			wol->supported = 0;
1651 			break;
1652 		}
1653 
1654 		retval = 0;
1655 	}
1656 
1657 	return retval;
1658 }
1659 
1660 static void e1000_get_wol(struct net_device *netdev,
1661 			  struct ethtool_wolinfo *wol)
1662 {
1663 	struct e1000_adapter *adapter = netdev_priv(netdev);
1664 	struct e1000_hw *hw = &adapter->hw;
1665 
1666 	wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
1667 	wol->wolopts = 0;
1668 
1669 	/* this function will set ->supported = 0 and return 1 if wol is not
1670 	 * supported by this hardware
1671 	 */
1672 	if (e1000_wol_exclusion(adapter, wol) ||
1673 	    !device_can_wakeup(&adapter->pdev->dev))
1674 		return;
1675 
1676 	/* apply any specific unsupported masks here */
1677 	switch (hw->device_id) {
1678 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1679 		/* KSP3 does not support UCAST wake-ups */
1680 		wol->supported &= ~WAKE_UCAST;
1681 
1682 		if (adapter->wol & E1000_WUFC_EX)
1683 			e_err(drv, "Interface does not support directed "
1684 			      "(unicast) frame wake-up packets\n");
1685 		break;
1686 	default:
1687 		break;
1688 	}
1689 
1690 	if (adapter->wol & E1000_WUFC_EX)
1691 		wol->wolopts |= WAKE_UCAST;
1692 	if (adapter->wol & E1000_WUFC_MC)
1693 		wol->wolopts |= WAKE_MCAST;
1694 	if (adapter->wol & E1000_WUFC_BC)
1695 		wol->wolopts |= WAKE_BCAST;
1696 	if (adapter->wol & E1000_WUFC_MAG)
1697 		wol->wolopts |= WAKE_MAGIC;
1698 }
1699 
1700 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1701 {
1702 	struct e1000_adapter *adapter = netdev_priv(netdev);
1703 	struct e1000_hw *hw = &adapter->hw;
1704 
1705 	if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1706 		return -EOPNOTSUPP;
1707 
1708 	if (e1000_wol_exclusion(adapter, wol) ||
1709 	    !device_can_wakeup(&adapter->pdev->dev))
1710 		return wol->wolopts ? -EOPNOTSUPP : 0;
1711 
1712 	switch (hw->device_id) {
1713 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1714 		if (wol->wolopts & WAKE_UCAST) {
1715 			e_err(drv, "Interface does not support directed "
1716 			      "(unicast) frame wake-up packets\n");
1717 			return -EOPNOTSUPP;
1718 		}
1719 		break;
1720 	default:
1721 		break;
1722 	}
1723 
1724 	/* these settings will always override what we currently have */
1725 	adapter->wol = 0;
1726 
1727 	if (wol->wolopts & WAKE_UCAST)
1728 		adapter->wol |= E1000_WUFC_EX;
1729 	if (wol->wolopts & WAKE_MCAST)
1730 		adapter->wol |= E1000_WUFC_MC;
1731 	if (wol->wolopts & WAKE_BCAST)
1732 		adapter->wol |= E1000_WUFC_BC;
1733 	if (wol->wolopts & WAKE_MAGIC)
1734 		adapter->wol |= E1000_WUFC_MAG;
1735 
1736 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1737 
1738 	return 0;
1739 }
1740 
1741 static int e1000_set_phys_id(struct net_device *netdev,
1742 			     enum ethtool_phys_id_state state)
1743 {
1744 	struct e1000_adapter *adapter = netdev_priv(netdev);
1745 	struct e1000_hw *hw = &adapter->hw;
1746 
1747 	switch (state) {
1748 	case ETHTOOL_ID_ACTIVE:
1749 		e1000_setup_led(hw);
1750 		return 2;
1751 
1752 	case ETHTOOL_ID_ON:
1753 		e1000_led_on(hw);
1754 		break;
1755 
1756 	case ETHTOOL_ID_OFF:
1757 		e1000_led_off(hw);
1758 		break;
1759 
1760 	case ETHTOOL_ID_INACTIVE:
1761 		e1000_cleanup_led(hw);
1762 	}
1763 
1764 	return 0;
1765 }
1766 
1767 static int e1000_get_coalesce(struct net_device *netdev,
1768 			      struct ethtool_coalesce *ec)
1769 {
1770 	struct e1000_adapter *adapter = netdev_priv(netdev);
1771 
1772 	if (adapter->hw.mac_type < e1000_82545)
1773 		return -EOPNOTSUPP;
1774 
1775 	if (adapter->itr_setting <= 4)
1776 		ec->rx_coalesce_usecs = adapter->itr_setting;
1777 	else
1778 		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1779 
1780 	return 0;
1781 }
1782 
1783 static int e1000_set_coalesce(struct net_device *netdev,
1784 			      struct ethtool_coalesce *ec)
1785 {
1786 	struct e1000_adapter *adapter = netdev_priv(netdev);
1787 	struct e1000_hw *hw = &adapter->hw;
1788 
1789 	if (hw->mac_type < e1000_82545)
1790 		return -EOPNOTSUPP;
1791 
1792 	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1793 	    ((ec->rx_coalesce_usecs > 4) &&
1794 	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1795 	    (ec->rx_coalesce_usecs == 2))
1796 		return -EINVAL;
1797 
1798 	if (ec->rx_coalesce_usecs == 4) {
1799 		adapter->itr = adapter->itr_setting = 4;
1800 	} else if (ec->rx_coalesce_usecs <= 3) {
1801 		adapter->itr = 20000;
1802 		adapter->itr_setting = ec->rx_coalesce_usecs;
1803 	} else {
1804 		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1805 		adapter->itr_setting = adapter->itr & ~3;
1806 	}
1807 
1808 	if (adapter->itr_setting != 0)
1809 		ew32(ITR, 1000000000 / (adapter->itr * 256));
1810 	else
1811 		ew32(ITR, 0);
1812 
1813 	return 0;
1814 }
1815 
1816 static int e1000_nway_reset(struct net_device *netdev)
1817 {
1818 	struct e1000_adapter *adapter = netdev_priv(netdev);
1819 
1820 	if (netif_running(netdev))
1821 		e1000_reinit_locked(adapter);
1822 	return 0;
1823 }
1824 
1825 static void e1000_get_ethtool_stats(struct net_device *netdev,
1826 				    struct ethtool_stats *stats, u64 *data)
1827 {
1828 	struct e1000_adapter *adapter = netdev_priv(netdev);
1829 	int i;
1830 	char *p = NULL;
1831 	const struct e1000_stats *stat = e1000_gstrings_stats;
1832 
1833 	e1000_update_stats(adapter);
1834 	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1835 		switch (stat->type) {
1836 		case NETDEV_STATS:
1837 			p = (char *)netdev + stat->stat_offset;
1838 			break;
1839 		case E1000_STATS:
1840 			p = (char *)adapter + stat->stat_offset;
1841 			break;
1842 		default:
1843 			WARN_ONCE(1, "Invalid E1000 stat type: %u index %d\n",
1844 				  stat->type, i);
1845 			break;
1846 		}
1847 
1848 		if (stat->sizeof_stat == sizeof(u64))
1849 			data[i] = *(u64 *)p;
1850 		else
1851 			data[i] = *(u32 *)p;
1852 
1853 		stat++;
1854 	}
1855 /* BUG_ON(i != E1000_STATS_LEN); */
1856 }
1857 
1858 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1859 			      u8 *data)
1860 {
1861 	u8 *p = data;
1862 	int i;
1863 
1864 	switch (stringset) {
1865 	case ETH_SS_TEST:
1866 		memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
1867 		break;
1868 	case ETH_SS_STATS:
1869 		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1870 			memcpy(p, e1000_gstrings_stats[i].stat_string,
1871 			       ETH_GSTRING_LEN);
1872 			p += ETH_GSTRING_LEN;
1873 		}
1874 		/* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1875 		break;
1876 	}
1877 }
1878 
1879 static const struct ethtool_ops e1000_ethtool_ops = {
1880 	.get_settings		= e1000_get_settings,
1881 	.set_settings		= e1000_set_settings,
1882 	.get_drvinfo		= e1000_get_drvinfo,
1883 	.get_regs_len		= e1000_get_regs_len,
1884 	.get_regs		= e1000_get_regs,
1885 	.get_wol		= e1000_get_wol,
1886 	.set_wol		= e1000_set_wol,
1887 	.get_msglevel		= e1000_get_msglevel,
1888 	.set_msglevel		= e1000_set_msglevel,
1889 	.nway_reset		= e1000_nway_reset,
1890 	.get_link		= e1000_get_link,
1891 	.get_eeprom_len		= e1000_get_eeprom_len,
1892 	.get_eeprom		= e1000_get_eeprom,
1893 	.set_eeprom		= e1000_set_eeprom,
1894 	.get_ringparam		= e1000_get_ringparam,
1895 	.set_ringparam		= e1000_set_ringparam,
1896 	.get_pauseparam		= e1000_get_pauseparam,
1897 	.set_pauseparam		= e1000_set_pauseparam,
1898 	.self_test		= e1000_diag_test,
1899 	.get_strings		= e1000_get_strings,
1900 	.set_phys_id		= e1000_set_phys_id,
1901 	.get_ethtool_stats	= e1000_get_ethtool_stats,
1902 	.get_sset_count		= e1000_get_sset_count,
1903 	.get_coalesce		= e1000_get_coalesce,
1904 	.set_coalesce		= e1000_set_coalesce,
1905 	.get_ts_info		= ethtool_op_get_ts_info,
1906 };
1907 
1908 void e1000_set_ethtool_ops(struct net_device *netdev)
1909 {
1910 	netdev->ethtool_ops = &e1000_ethtool_ops;
1911 }
1912