1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2006 Intel Corporation. */ 3 4 /* ethtool support for e1000 */ 5 6 #include "e1000.h" 7 #include <linux/jiffies.h> 8 #include <linux/uaccess.h> 9 10 enum {NETDEV_STATS, E1000_STATS}; 11 12 struct e1000_stats { 13 char stat_string[ETH_GSTRING_LEN]; 14 int type; 15 int sizeof_stat; 16 int stat_offset; 17 }; 18 19 #define E1000_STAT(m) E1000_STATS, \ 20 sizeof(((struct e1000_adapter *)0)->m), \ 21 offsetof(struct e1000_adapter, m) 22 #define E1000_NETDEV_STAT(m) NETDEV_STATS, \ 23 sizeof(((struct net_device *)0)->m), \ 24 offsetof(struct net_device, m) 25 26 static const struct e1000_stats e1000_gstrings_stats[] = { 27 { "rx_packets", E1000_STAT(stats.gprc) }, 28 { "tx_packets", E1000_STAT(stats.gptc) }, 29 { "rx_bytes", E1000_STAT(stats.gorcl) }, 30 { "tx_bytes", E1000_STAT(stats.gotcl) }, 31 { "rx_broadcast", E1000_STAT(stats.bprc) }, 32 { "tx_broadcast", E1000_STAT(stats.bptc) }, 33 { "rx_multicast", E1000_STAT(stats.mprc) }, 34 { "tx_multicast", E1000_STAT(stats.mptc) }, 35 { "rx_errors", E1000_STAT(stats.rxerrc) }, 36 { "tx_errors", E1000_STAT(stats.txerrc) }, 37 { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) }, 38 { "multicast", E1000_STAT(stats.mprc) }, 39 { "collisions", E1000_STAT(stats.colc) }, 40 { "rx_length_errors", E1000_STAT(stats.rlerrc) }, 41 { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) }, 42 { "rx_crc_errors", E1000_STAT(stats.crcerrs) }, 43 { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) }, 44 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) }, 45 { "rx_missed_errors", E1000_STAT(stats.mpc) }, 46 { "tx_aborted_errors", E1000_STAT(stats.ecol) }, 47 { "tx_carrier_errors", E1000_STAT(stats.tncrs) }, 48 { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) }, 49 { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) }, 50 { "tx_window_errors", E1000_STAT(stats.latecol) }, 51 { "tx_abort_late_coll", E1000_STAT(stats.latecol) }, 52 { "tx_deferred_ok", E1000_STAT(stats.dc) }, 53 { "tx_single_coll_ok", E1000_STAT(stats.scc) }, 54 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) }, 55 { "tx_timeout_count", E1000_STAT(tx_timeout_count) }, 56 { "tx_restart_queue", E1000_STAT(restart_queue) }, 57 { "rx_long_length_errors", E1000_STAT(stats.roc) }, 58 { "rx_short_length_errors", E1000_STAT(stats.ruc) }, 59 { "rx_align_errors", E1000_STAT(stats.algnerrc) }, 60 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) }, 61 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) }, 62 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) }, 63 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) }, 64 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) }, 65 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) }, 66 { "rx_long_byte_count", E1000_STAT(stats.gorcl) }, 67 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) }, 68 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) }, 69 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) }, 70 { "tx_smbus", E1000_STAT(stats.mgptc) }, 71 { "rx_smbus", E1000_STAT(stats.mgprc) }, 72 { "dropped_smbus", E1000_STAT(stats.mgpdc) }, 73 }; 74 75 #define E1000_QUEUE_STATS_LEN 0 76 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) 77 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN) 78 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { 79 "Register test (offline)", "Eeprom test (offline)", 80 "Interrupt test (offline)", "Loopback test (offline)", 81 "Link test (on/offline)" 82 }; 83 84 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) 85 86 static int e1000_get_link_ksettings(struct net_device *netdev, 87 struct ethtool_link_ksettings *cmd) 88 { 89 struct e1000_adapter *adapter = netdev_priv(netdev); 90 struct e1000_hw *hw = &adapter->hw; 91 u32 supported, advertising; 92 93 if (hw->media_type == e1000_media_type_copper) { 94 supported = (SUPPORTED_10baseT_Half | 95 SUPPORTED_10baseT_Full | 96 SUPPORTED_100baseT_Half | 97 SUPPORTED_100baseT_Full | 98 SUPPORTED_1000baseT_Full| 99 SUPPORTED_Autoneg | 100 SUPPORTED_TP); 101 advertising = ADVERTISED_TP; 102 103 if (hw->autoneg == 1) { 104 advertising |= ADVERTISED_Autoneg; 105 /* the e1000 autoneg seems to match ethtool nicely */ 106 advertising |= hw->autoneg_advertised; 107 } 108 109 cmd->base.port = PORT_TP; 110 cmd->base.phy_address = hw->phy_addr; 111 } else { 112 supported = (SUPPORTED_1000baseT_Full | 113 SUPPORTED_FIBRE | 114 SUPPORTED_Autoneg); 115 116 advertising = (ADVERTISED_1000baseT_Full | 117 ADVERTISED_FIBRE | 118 ADVERTISED_Autoneg); 119 120 cmd->base.port = PORT_FIBRE; 121 } 122 123 if (er32(STATUS) & E1000_STATUS_LU) { 124 e1000_get_speed_and_duplex(hw, &adapter->link_speed, 125 &adapter->link_duplex); 126 cmd->base.speed = adapter->link_speed; 127 128 /* unfortunately FULL_DUPLEX != DUPLEX_FULL 129 * and HALF_DUPLEX != DUPLEX_HALF 130 */ 131 if (adapter->link_duplex == FULL_DUPLEX) 132 cmd->base.duplex = DUPLEX_FULL; 133 else 134 cmd->base.duplex = DUPLEX_HALF; 135 } else { 136 cmd->base.speed = SPEED_UNKNOWN; 137 cmd->base.duplex = DUPLEX_UNKNOWN; 138 } 139 140 cmd->base.autoneg = ((hw->media_type == e1000_media_type_fiber) || 141 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; 142 143 /* MDI-X => 1; MDI => 0 */ 144 if ((hw->media_type == e1000_media_type_copper) && 145 netif_carrier_ok(netdev)) 146 cmd->base.eth_tp_mdix = (!!adapter->phy_info.mdix_mode ? 147 ETH_TP_MDI_X : ETH_TP_MDI); 148 else 149 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID; 150 151 if (hw->mdix == AUTO_ALL_MODES) 152 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; 153 else 154 cmd->base.eth_tp_mdix_ctrl = hw->mdix; 155 156 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 157 supported); 158 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 159 advertising); 160 161 return 0; 162 } 163 164 static int e1000_set_link_ksettings(struct net_device *netdev, 165 const struct ethtool_link_ksettings *cmd) 166 { 167 struct e1000_adapter *adapter = netdev_priv(netdev); 168 struct e1000_hw *hw = &adapter->hw; 169 u32 advertising; 170 171 ethtool_convert_link_mode_to_legacy_u32(&advertising, 172 cmd->link_modes.advertising); 173 174 /* MDI setting is only allowed when autoneg enabled because 175 * some hardware doesn't allow MDI setting when speed or 176 * duplex is forced. 177 */ 178 if (cmd->base.eth_tp_mdix_ctrl) { 179 if (hw->media_type != e1000_media_type_copper) 180 return -EOPNOTSUPP; 181 182 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && 183 (cmd->base.autoneg != AUTONEG_ENABLE)) { 184 e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); 185 return -EINVAL; 186 } 187 } 188 189 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 190 msleep(1); 191 192 if (cmd->base.autoneg == AUTONEG_ENABLE) { 193 hw->autoneg = 1; 194 if (hw->media_type == e1000_media_type_fiber) 195 hw->autoneg_advertised = ADVERTISED_1000baseT_Full | 196 ADVERTISED_FIBRE | 197 ADVERTISED_Autoneg; 198 else 199 hw->autoneg_advertised = advertising | 200 ADVERTISED_TP | 201 ADVERTISED_Autoneg; 202 } else { 203 u32 speed = cmd->base.speed; 204 /* calling this overrides forced MDI setting */ 205 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) { 206 clear_bit(__E1000_RESETTING, &adapter->flags); 207 return -EINVAL; 208 } 209 } 210 211 /* MDI-X => 2; MDI => 1; Auto => 3 */ 212 if (cmd->base.eth_tp_mdix_ctrl) { 213 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) 214 hw->mdix = AUTO_ALL_MODES; 215 else 216 hw->mdix = cmd->base.eth_tp_mdix_ctrl; 217 } 218 219 /* reset the link */ 220 221 if (netif_running(adapter->netdev)) { 222 e1000_down(adapter); 223 e1000_up(adapter); 224 } else { 225 e1000_reset(adapter); 226 } 227 clear_bit(__E1000_RESETTING, &adapter->flags); 228 return 0; 229 } 230 231 static u32 e1000_get_link(struct net_device *netdev) 232 { 233 struct e1000_adapter *adapter = netdev_priv(netdev); 234 235 /* If the link is not reported up to netdev, interrupts are disabled, 236 * and so the physical link state may have changed since we last 237 * looked. Set get_link_status to make sure that the true link 238 * state is interrogated, rather than pulling a cached and possibly 239 * stale link state from the driver. 240 */ 241 if (!netif_carrier_ok(netdev)) 242 adapter->hw.get_link_status = 1; 243 244 return e1000_has_link(adapter); 245 } 246 247 static void e1000_get_pauseparam(struct net_device *netdev, 248 struct ethtool_pauseparam *pause) 249 { 250 struct e1000_adapter *adapter = netdev_priv(netdev); 251 struct e1000_hw *hw = &adapter->hw; 252 253 pause->autoneg = 254 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 255 256 if (hw->fc == E1000_FC_RX_PAUSE) { 257 pause->rx_pause = 1; 258 } else if (hw->fc == E1000_FC_TX_PAUSE) { 259 pause->tx_pause = 1; 260 } else if (hw->fc == E1000_FC_FULL) { 261 pause->rx_pause = 1; 262 pause->tx_pause = 1; 263 } 264 } 265 266 static int e1000_set_pauseparam(struct net_device *netdev, 267 struct ethtool_pauseparam *pause) 268 { 269 struct e1000_adapter *adapter = netdev_priv(netdev); 270 struct e1000_hw *hw = &adapter->hw; 271 int retval = 0; 272 273 adapter->fc_autoneg = pause->autoneg; 274 275 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 276 msleep(1); 277 278 if (pause->rx_pause && pause->tx_pause) 279 hw->fc = E1000_FC_FULL; 280 else if (pause->rx_pause && !pause->tx_pause) 281 hw->fc = E1000_FC_RX_PAUSE; 282 else if (!pause->rx_pause && pause->tx_pause) 283 hw->fc = E1000_FC_TX_PAUSE; 284 else if (!pause->rx_pause && !pause->tx_pause) 285 hw->fc = E1000_FC_NONE; 286 287 hw->original_fc = hw->fc; 288 289 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 290 if (netif_running(adapter->netdev)) { 291 e1000_down(adapter); 292 e1000_up(adapter); 293 } else { 294 e1000_reset(adapter); 295 } 296 } else 297 retval = ((hw->media_type == e1000_media_type_fiber) ? 298 e1000_setup_link(hw) : e1000_force_mac_fc(hw)); 299 300 clear_bit(__E1000_RESETTING, &adapter->flags); 301 return retval; 302 } 303 304 static u32 e1000_get_msglevel(struct net_device *netdev) 305 { 306 struct e1000_adapter *adapter = netdev_priv(netdev); 307 308 return adapter->msg_enable; 309 } 310 311 static void e1000_set_msglevel(struct net_device *netdev, u32 data) 312 { 313 struct e1000_adapter *adapter = netdev_priv(netdev); 314 315 adapter->msg_enable = data; 316 } 317 318 static int e1000_get_regs_len(struct net_device *netdev) 319 { 320 #define E1000_REGS_LEN 32 321 return E1000_REGS_LEN * sizeof(u32); 322 } 323 324 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs, 325 void *p) 326 { 327 struct e1000_adapter *adapter = netdev_priv(netdev); 328 struct e1000_hw *hw = &adapter->hw; 329 u32 *regs_buff = p; 330 u16 phy_data; 331 332 memset(p, 0, E1000_REGS_LEN * sizeof(u32)); 333 334 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id; 335 336 regs_buff[0] = er32(CTRL); 337 regs_buff[1] = er32(STATUS); 338 339 regs_buff[2] = er32(RCTL); 340 regs_buff[3] = er32(RDLEN); 341 regs_buff[4] = er32(RDH); 342 regs_buff[5] = er32(RDT); 343 regs_buff[6] = er32(RDTR); 344 345 regs_buff[7] = er32(TCTL); 346 regs_buff[8] = er32(TDLEN); 347 regs_buff[9] = er32(TDH); 348 regs_buff[10] = er32(TDT); 349 regs_buff[11] = er32(TIDV); 350 351 regs_buff[12] = hw->phy_type; /* PHY type (IGP=1, M88=0) */ 352 if (hw->phy_type == e1000_phy_igp) { 353 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 354 IGP01E1000_PHY_AGC_A); 355 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A & 356 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 357 regs_buff[13] = (u32)phy_data; /* cable length */ 358 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 359 IGP01E1000_PHY_AGC_B); 360 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B & 361 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 362 regs_buff[14] = (u32)phy_data; /* cable length */ 363 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 364 IGP01E1000_PHY_AGC_C); 365 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C & 366 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 367 regs_buff[15] = (u32)phy_data; /* cable length */ 368 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 369 IGP01E1000_PHY_AGC_D); 370 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D & 371 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 372 regs_buff[16] = (u32)phy_data; /* cable length */ 373 regs_buff[17] = 0; /* extended 10bt distance (not needed) */ 374 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); 375 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS & 376 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 377 regs_buff[18] = (u32)phy_data; /* cable polarity */ 378 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 379 IGP01E1000_PHY_PCS_INIT_REG); 380 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG & 381 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 382 regs_buff[19] = (u32)phy_data; /* cable polarity */ 383 regs_buff[20] = 0; /* polarity correction enabled (always) */ 384 regs_buff[22] = 0; /* phy receive errors (unavailable) */ 385 regs_buff[23] = regs_buff[18]; /* mdix mode */ 386 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); 387 } else { 388 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 389 regs_buff[13] = (u32)phy_data; /* cable length */ 390 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 391 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 392 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 393 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 394 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ 395 regs_buff[18] = regs_buff[13]; /* cable polarity */ 396 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 397 regs_buff[20] = regs_buff[17]; /* polarity correction */ 398 /* phy receive errors */ 399 regs_buff[22] = adapter->phy_stats.receive_errors; 400 regs_buff[23] = regs_buff[13]; /* mdix mode */ 401 } 402 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */ 403 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); 404 regs_buff[24] = (u32)phy_data; /* phy local receiver status */ 405 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ 406 if (hw->mac_type >= e1000_82540 && 407 hw->media_type == e1000_media_type_copper) { 408 regs_buff[26] = er32(MANC); 409 } 410 } 411 412 static int e1000_get_eeprom_len(struct net_device *netdev) 413 { 414 struct e1000_adapter *adapter = netdev_priv(netdev); 415 struct e1000_hw *hw = &adapter->hw; 416 417 return hw->eeprom.word_size * 2; 418 } 419 420 static int e1000_get_eeprom(struct net_device *netdev, 421 struct ethtool_eeprom *eeprom, u8 *bytes) 422 { 423 struct e1000_adapter *adapter = netdev_priv(netdev); 424 struct e1000_hw *hw = &adapter->hw; 425 u16 *eeprom_buff; 426 int first_word, last_word; 427 int ret_val = 0; 428 u16 i; 429 430 if (eeprom->len == 0) 431 return -EINVAL; 432 433 eeprom->magic = hw->vendor_id | (hw->device_id << 16); 434 435 first_word = eeprom->offset >> 1; 436 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 437 438 eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16), 439 GFP_KERNEL); 440 if (!eeprom_buff) 441 return -ENOMEM; 442 443 if (hw->eeprom.type == e1000_eeprom_spi) 444 ret_val = e1000_read_eeprom(hw, first_word, 445 last_word - first_word + 1, 446 eeprom_buff); 447 else { 448 for (i = 0; i < last_word - first_word + 1; i++) { 449 ret_val = e1000_read_eeprom(hw, first_word + i, 1, 450 &eeprom_buff[i]); 451 if (ret_val) 452 break; 453 } 454 } 455 456 /* Device's eeprom is always little-endian, word addressable */ 457 for (i = 0; i < last_word - first_word + 1; i++) 458 le16_to_cpus(&eeprom_buff[i]); 459 460 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), 461 eeprom->len); 462 kfree(eeprom_buff); 463 464 return ret_val; 465 } 466 467 static int e1000_set_eeprom(struct net_device *netdev, 468 struct ethtool_eeprom *eeprom, u8 *bytes) 469 { 470 struct e1000_adapter *adapter = netdev_priv(netdev); 471 struct e1000_hw *hw = &adapter->hw; 472 u16 *eeprom_buff; 473 void *ptr; 474 int max_len, first_word, last_word, ret_val = 0; 475 u16 i; 476 477 if (eeprom->len == 0) 478 return -EOPNOTSUPP; 479 480 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) 481 return -EFAULT; 482 483 max_len = hw->eeprom.word_size * 2; 484 485 first_word = eeprom->offset >> 1; 486 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 487 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 488 if (!eeprom_buff) 489 return -ENOMEM; 490 491 ptr = (void *)eeprom_buff; 492 493 if (eeprom->offset & 1) { 494 /* need read/modify/write of first changed EEPROM word 495 * only the second byte of the word is being modified 496 */ 497 ret_val = e1000_read_eeprom(hw, first_word, 1, 498 &eeprom_buff[0]); 499 ptr++; 500 } 501 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) { 502 /* need read/modify/write of last changed EEPROM word 503 * only the first byte of the word is being modified 504 */ 505 ret_val = e1000_read_eeprom(hw, last_word, 1, 506 &eeprom_buff[last_word - first_word]); 507 } 508 509 /* Device's eeprom is always little-endian, word addressable */ 510 for (i = 0; i < last_word - first_word + 1; i++) 511 le16_to_cpus(&eeprom_buff[i]); 512 513 memcpy(ptr, bytes, eeprom->len); 514 515 for (i = 0; i < last_word - first_word + 1; i++) 516 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); 517 518 ret_val = e1000_write_eeprom(hw, first_word, 519 last_word - first_word + 1, eeprom_buff); 520 521 /* Update the checksum over the first part of the EEPROM if needed */ 522 if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG)) 523 e1000_update_eeprom_checksum(hw); 524 525 kfree(eeprom_buff); 526 return ret_val; 527 } 528 529 static void e1000_get_drvinfo(struct net_device *netdev, 530 struct ethtool_drvinfo *drvinfo) 531 { 532 struct e1000_adapter *adapter = netdev_priv(netdev); 533 534 strlcpy(drvinfo->driver, e1000_driver_name, 535 sizeof(drvinfo->driver)); 536 strlcpy(drvinfo->version, e1000_driver_version, 537 sizeof(drvinfo->version)); 538 539 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 540 sizeof(drvinfo->bus_info)); 541 } 542 543 static void e1000_get_ringparam(struct net_device *netdev, 544 struct ethtool_ringparam *ring) 545 { 546 struct e1000_adapter *adapter = netdev_priv(netdev); 547 struct e1000_hw *hw = &adapter->hw; 548 e1000_mac_type mac_type = hw->mac_type; 549 struct e1000_tx_ring *txdr = adapter->tx_ring; 550 struct e1000_rx_ring *rxdr = adapter->rx_ring; 551 552 ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD : 553 E1000_MAX_82544_RXD; 554 ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD : 555 E1000_MAX_82544_TXD; 556 ring->rx_pending = rxdr->count; 557 ring->tx_pending = txdr->count; 558 } 559 560 static int e1000_set_ringparam(struct net_device *netdev, 561 struct ethtool_ringparam *ring) 562 { 563 struct e1000_adapter *adapter = netdev_priv(netdev); 564 struct e1000_hw *hw = &adapter->hw; 565 e1000_mac_type mac_type = hw->mac_type; 566 struct e1000_tx_ring *txdr, *tx_old; 567 struct e1000_rx_ring *rxdr, *rx_old; 568 int i, err; 569 570 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 571 return -EINVAL; 572 573 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 574 msleep(1); 575 576 if (netif_running(adapter->netdev)) 577 e1000_down(adapter); 578 579 tx_old = adapter->tx_ring; 580 rx_old = adapter->rx_ring; 581 582 err = -ENOMEM; 583 txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), 584 GFP_KERNEL); 585 if (!txdr) 586 goto err_alloc_tx; 587 588 rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), 589 GFP_KERNEL); 590 if (!rxdr) 591 goto err_alloc_rx; 592 593 adapter->tx_ring = txdr; 594 adapter->rx_ring = rxdr; 595 596 rxdr->count = max(ring->rx_pending, (u32)E1000_MIN_RXD); 597 rxdr->count = min(rxdr->count, (u32)(mac_type < e1000_82544 ? 598 E1000_MAX_RXD : E1000_MAX_82544_RXD)); 599 rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE); 600 txdr->count = max(ring->tx_pending, (u32)E1000_MIN_TXD); 601 txdr->count = min(txdr->count, (u32)(mac_type < e1000_82544 ? 602 E1000_MAX_TXD : E1000_MAX_82544_TXD)); 603 txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE); 604 605 for (i = 0; i < adapter->num_tx_queues; i++) 606 txdr[i].count = txdr->count; 607 for (i = 0; i < adapter->num_rx_queues; i++) 608 rxdr[i].count = rxdr->count; 609 610 if (netif_running(adapter->netdev)) { 611 /* Try to get new resources before deleting old */ 612 err = e1000_setup_all_rx_resources(adapter); 613 if (err) 614 goto err_setup_rx; 615 err = e1000_setup_all_tx_resources(adapter); 616 if (err) 617 goto err_setup_tx; 618 619 /* save the new, restore the old in order to free it, 620 * then restore the new back again 621 */ 622 623 adapter->rx_ring = rx_old; 624 adapter->tx_ring = tx_old; 625 e1000_free_all_rx_resources(adapter); 626 e1000_free_all_tx_resources(adapter); 627 kfree(tx_old); 628 kfree(rx_old); 629 adapter->rx_ring = rxdr; 630 adapter->tx_ring = txdr; 631 err = e1000_up(adapter); 632 if (err) 633 goto err_setup; 634 } 635 636 clear_bit(__E1000_RESETTING, &adapter->flags); 637 return 0; 638 err_setup_tx: 639 e1000_free_all_rx_resources(adapter); 640 err_setup_rx: 641 adapter->rx_ring = rx_old; 642 adapter->tx_ring = tx_old; 643 kfree(rxdr); 644 err_alloc_rx: 645 kfree(txdr); 646 err_alloc_tx: 647 e1000_up(adapter); 648 err_setup: 649 clear_bit(__E1000_RESETTING, &adapter->flags); 650 return err; 651 } 652 653 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg, 654 u32 mask, u32 write) 655 { 656 struct e1000_hw *hw = &adapter->hw; 657 static const u32 test[] = { 658 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF 659 }; 660 u8 __iomem *address = hw->hw_addr + reg; 661 u32 read; 662 int i; 663 664 for (i = 0; i < ARRAY_SIZE(test); i++) { 665 writel(write & test[i], address); 666 read = readl(address); 667 if (read != (write & test[i] & mask)) { 668 e_err(drv, "pattern test reg %04X failed: " 669 "got 0x%08X expected 0x%08X\n", 670 reg, read, (write & test[i] & mask)); 671 *data = reg; 672 return true; 673 } 674 } 675 return false; 676 } 677 678 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg, 679 u32 mask, u32 write) 680 { 681 struct e1000_hw *hw = &adapter->hw; 682 u8 __iomem *address = hw->hw_addr + reg; 683 u32 read; 684 685 writel(write & mask, address); 686 read = readl(address); 687 if ((read & mask) != (write & mask)) { 688 e_err(drv, "set/check reg %04X test failed: " 689 "got 0x%08X expected 0x%08X\n", 690 reg, (read & mask), (write & mask)); 691 *data = reg; 692 return true; 693 } 694 return false; 695 } 696 697 #define REG_PATTERN_TEST(reg, mask, write) \ 698 do { \ 699 if (reg_pattern_test(adapter, data, \ 700 (hw->mac_type >= e1000_82543) \ 701 ? E1000_##reg : E1000_82542_##reg, \ 702 mask, write)) \ 703 return 1; \ 704 } while (0) 705 706 #define REG_SET_AND_CHECK(reg, mask, write) \ 707 do { \ 708 if (reg_set_and_check(adapter, data, \ 709 (hw->mac_type >= e1000_82543) \ 710 ? E1000_##reg : E1000_82542_##reg, \ 711 mask, write)) \ 712 return 1; \ 713 } while (0) 714 715 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) 716 { 717 u32 value, before, after; 718 u32 i, toggle; 719 struct e1000_hw *hw = &adapter->hw; 720 721 /* The status register is Read Only, so a write should fail. 722 * Some bits that get toggled are ignored. 723 */ 724 725 /* there are several bits on newer hardware that are r/w */ 726 toggle = 0xFFFFF833; 727 728 before = er32(STATUS); 729 value = (er32(STATUS) & toggle); 730 ew32(STATUS, toggle); 731 after = er32(STATUS) & toggle; 732 if (value != after) { 733 e_err(drv, "failed STATUS register test got: " 734 "0x%08X expected: 0x%08X\n", after, value); 735 *data = 1; 736 return 1; 737 } 738 /* restore previous status */ 739 ew32(STATUS, before); 740 741 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF); 742 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF); 743 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF); 744 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF); 745 746 REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF); 747 REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF); 748 REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF); 749 REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF); 750 REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF); 751 REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8); 752 REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF); 753 REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF); 754 REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF); 755 REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF); 756 757 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000); 758 759 before = 0x06DFB3FE; 760 REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB); 761 REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000); 762 763 if (hw->mac_type >= e1000_82543) { 764 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF); 765 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF); 766 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF); 767 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF); 768 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF); 769 value = E1000_RAR_ENTRIES; 770 for (i = 0; i < value; i++) { 771 REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 772 0x8003FFFF, 0xFFFFFFFF); 773 } 774 } else { 775 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF); 776 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF); 777 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF); 778 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF); 779 } 780 781 value = E1000_MC_TBL_SIZE; 782 for (i = 0; i < value; i++) 783 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF); 784 785 *data = 0; 786 return 0; 787 } 788 789 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) 790 { 791 struct e1000_hw *hw = &adapter->hw; 792 u16 temp; 793 u16 checksum = 0; 794 u16 i; 795 796 *data = 0; 797 /* Read and add up the contents of the EEPROM */ 798 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { 799 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) { 800 *data = 1; 801 break; 802 } 803 checksum += temp; 804 } 805 806 /* If Checksum is not Correct return error else test passed */ 807 if ((checksum != (u16)EEPROM_SUM) && !(*data)) 808 *data = 2; 809 810 return *data; 811 } 812 813 static irqreturn_t e1000_test_intr(int irq, void *data) 814 { 815 struct net_device *netdev = (struct net_device *)data; 816 struct e1000_adapter *adapter = netdev_priv(netdev); 817 struct e1000_hw *hw = &adapter->hw; 818 819 adapter->test_icr |= er32(ICR); 820 821 return IRQ_HANDLED; 822 } 823 824 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) 825 { 826 struct net_device *netdev = adapter->netdev; 827 u32 mask, i = 0; 828 bool shared_int = true; 829 u32 irq = adapter->pdev->irq; 830 struct e1000_hw *hw = &adapter->hw; 831 832 *data = 0; 833 834 /* NOTE: we don't test MSI interrupts here, yet 835 * Hook up test interrupt handler just for this test 836 */ 837 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, 838 netdev)) 839 shared_int = false; 840 else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, 841 netdev->name, netdev)) { 842 *data = 1; 843 return -1; 844 } 845 e_info(hw, "testing %s interrupt\n", (shared_int ? 846 "shared" : "unshared")); 847 848 /* Disable all the interrupts */ 849 ew32(IMC, 0xFFFFFFFF); 850 E1000_WRITE_FLUSH(); 851 msleep(10); 852 853 /* Test each interrupt */ 854 for (; i < 10; i++) { 855 /* Interrupt to test */ 856 mask = 1 << i; 857 858 if (!shared_int) { 859 /* Disable the interrupt to be reported in 860 * the cause register and then force the same 861 * interrupt and see if one gets posted. If 862 * an interrupt was posted to the bus, the 863 * test failed. 864 */ 865 adapter->test_icr = 0; 866 ew32(IMC, mask); 867 ew32(ICS, mask); 868 E1000_WRITE_FLUSH(); 869 msleep(10); 870 871 if (adapter->test_icr & mask) { 872 *data = 3; 873 break; 874 } 875 } 876 877 /* Enable the interrupt to be reported in 878 * the cause register and then force the same 879 * interrupt and see if one gets posted. If 880 * an interrupt was not posted to the bus, the 881 * test failed. 882 */ 883 adapter->test_icr = 0; 884 ew32(IMS, mask); 885 ew32(ICS, mask); 886 E1000_WRITE_FLUSH(); 887 msleep(10); 888 889 if (!(adapter->test_icr & mask)) { 890 *data = 4; 891 break; 892 } 893 894 if (!shared_int) { 895 /* Disable the other interrupts to be reported in 896 * the cause register and then force the other 897 * interrupts and see if any get posted. If 898 * an interrupt was posted to the bus, the 899 * test failed. 900 */ 901 adapter->test_icr = 0; 902 ew32(IMC, ~mask & 0x00007FFF); 903 ew32(ICS, ~mask & 0x00007FFF); 904 E1000_WRITE_FLUSH(); 905 msleep(10); 906 907 if (adapter->test_icr) { 908 *data = 5; 909 break; 910 } 911 } 912 } 913 914 /* Disable all the interrupts */ 915 ew32(IMC, 0xFFFFFFFF); 916 E1000_WRITE_FLUSH(); 917 msleep(10); 918 919 /* Unhook test interrupt handler */ 920 free_irq(irq, netdev); 921 922 return *data; 923 } 924 925 static void e1000_free_desc_rings(struct e1000_adapter *adapter) 926 { 927 struct e1000_tx_ring *txdr = &adapter->test_tx_ring; 928 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; 929 struct pci_dev *pdev = adapter->pdev; 930 int i; 931 932 if (txdr->desc && txdr->buffer_info) { 933 for (i = 0; i < txdr->count; i++) { 934 if (txdr->buffer_info[i].dma) 935 dma_unmap_single(&pdev->dev, 936 txdr->buffer_info[i].dma, 937 txdr->buffer_info[i].length, 938 DMA_TO_DEVICE); 939 if (txdr->buffer_info[i].skb) 940 dev_kfree_skb(txdr->buffer_info[i].skb); 941 } 942 } 943 944 if (rxdr->desc && rxdr->buffer_info) { 945 for (i = 0; i < rxdr->count; i++) { 946 if (rxdr->buffer_info[i].dma) 947 dma_unmap_single(&pdev->dev, 948 rxdr->buffer_info[i].dma, 949 E1000_RXBUFFER_2048, 950 DMA_FROM_DEVICE); 951 kfree(rxdr->buffer_info[i].rxbuf.data); 952 } 953 } 954 955 if (txdr->desc) { 956 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc, 957 txdr->dma); 958 txdr->desc = NULL; 959 } 960 if (rxdr->desc) { 961 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc, 962 rxdr->dma); 963 rxdr->desc = NULL; 964 } 965 966 kfree(txdr->buffer_info); 967 txdr->buffer_info = NULL; 968 kfree(rxdr->buffer_info); 969 rxdr->buffer_info = NULL; 970 } 971 972 static int e1000_setup_desc_rings(struct e1000_adapter *adapter) 973 { 974 struct e1000_hw *hw = &adapter->hw; 975 struct e1000_tx_ring *txdr = &adapter->test_tx_ring; 976 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; 977 struct pci_dev *pdev = adapter->pdev; 978 u32 rctl; 979 int i, ret_val; 980 981 /* Setup Tx descriptor ring and Tx buffers */ 982 983 if (!txdr->count) 984 txdr->count = E1000_DEFAULT_TXD; 985 986 txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_tx_buffer), 987 GFP_KERNEL); 988 if (!txdr->buffer_info) { 989 ret_val = 1; 990 goto err_nomem; 991 } 992 993 txdr->size = txdr->count * sizeof(struct e1000_tx_desc); 994 txdr->size = ALIGN(txdr->size, 4096); 995 txdr->desc = dma_zalloc_coherent(&pdev->dev, txdr->size, &txdr->dma, 996 GFP_KERNEL); 997 if (!txdr->desc) { 998 ret_val = 2; 999 goto err_nomem; 1000 } 1001 txdr->next_to_use = txdr->next_to_clean = 0; 1002 1003 ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF)); 1004 ew32(TDBAH, ((u64)txdr->dma >> 32)); 1005 ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc)); 1006 ew32(TDH, 0); 1007 ew32(TDT, 0); 1008 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | 1009 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | 1010 E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT); 1011 1012 for (i = 0; i < txdr->count; i++) { 1013 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i); 1014 struct sk_buff *skb; 1015 unsigned int size = 1024; 1016 1017 skb = alloc_skb(size, GFP_KERNEL); 1018 if (!skb) { 1019 ret_val = 3; 1020 goto err_nomem; 1021 } 1022 skb_put(skb, size); 1023 txdr->buffer_info[i].skb = skb; 1024 txdr->buffer_info[i].length = skb->len; 1025 txdr->buffer_info[i].dma = 1026 dma_map_single(&pdev->dev, skb->data, skb->len, 1027 DMA_TO_DEVICE); 1028 if (dma_mapping_error(&pdev->dev, txdr->buffer_info[i].dma)) { 1029 ret_val = 4; 1030 goto err_nomem; 1031 } 1032 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma); 1033 tx_desc->lower.data = cpu_to_le32(skb->len); 1034 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | 1035 E1000_TXD_CMD_IFCS | 1036 E1000_TXD_CMD_RPS); 1037 tx_desc->upper.data = 0; 1038 } 1039 1040 /* Setup Rx descriptor ring and Rx buffers */ 1041 1042 if (!rxdr->count) 1043 rxdr->count = E1000_DEFAULT_RXD; 1044 1045 rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_rx_buffer), 1046 GFP_KERNEL); 1047 if (!rxdr->buffer_info) { 1048 ret_val = 5; 1049 goto err_nomem; 1050 } 1051 1052 rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc); 1053 rxdr->desc = dma_zalloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma, 1054 GFP_KERNEL); 1055 if (!rxdr->desc) { 1056 ret_val = 6; 1057 goto err_nomem; 1058 } 1059 rxdr->next_to_use = rxdr->next_to_clean = 0; 1060 1061 rctl = er32(RCTL); 1062 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1063 ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF)); 1064 ew32(RDBAH, ((u64)rxdr->dma >> 32)); 1065 ew32(RDLEN, rxdr->size); 1066 ew32(RDH, 0); 1067 ew32(RDT, 0); 1068 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | 1069 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 1070 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); 1071 ew32(RCTL, rctl); 1072 1073 for (i = 0; i < rxdr->count; i++) { 1074 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i); 1075 u8 *buf; 1076 1077 buf = kzalloc(E1000_RXBUFFER_2048 + NET_SKB_PAD + NET_IP_ALIGN, 1078 GFP_KERNEL); 1079 if (!buf) { 1080 ret_val = 7; 1081 goto err_nomem; 1082 } 1083 rxdr->buffer_info[i].rxbuf.data = buf; 1084 1085 rxdr->buffer_info[i].dma = 1086 dma_map_single(&pdev->dev, 1087 buf + NET_SKB_PAD + NET_IP_ALIGN, 1088 E1000_RXBUFFER_2048, DMA_FROM_DEVICE); 1089 if (dma_mapping_error(&pdev->dev, rxdr->buffer_info[i].dma)) { 1090 ret_val = 8; 1091 goto err_nomem; 1092 } 1093 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma); 1094 } 1095 1096 return 0; 1097 1098 err_nomem: 1099 e1000_free_desc_rings(adapter); 1100 return ret_val; 1101 } 1102 1103 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) 1104 { 1105 struct e1000_hw *hw = &adapter->hw; 1106 1107 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1108 e1000_write_phy_reg(hw, 29, 0x001F); 1109 e1000_write_phy_reg(hw, 30, 0x8FFC); 1110 e1000_write_phy_reg(hw, 29, 0x001A); 1111 e1000_write_phy_reg(hw, 30, 0x8FF0); 1112 } 1113 1114 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter) 1115 { 1116 struct e1000_hw *hw = &adapter->hw; 1117 u16 phy_reg; 1118 1119 /* Because we reset the PHY above, we need to re-force TX_CLK in the 1120 * Extended PHY Specific Control Register to 25MHz clock. This 1121 * value defaults back to a 2.5MHz clock when the PHY is reset. 1122 */ 1123 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); 1124 phy_reg |= M88E1000_EPSCR_TX_CLK_25; 1125 e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_reg); 1126 1127 /* In addition, because of the s/w reset above, we need to enable 1128 * CRS on TX. This must be set for both full and half duplex 1129 * operation. 1130 */ 1131 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); 1132 phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX; 1133 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg); 1134 } 1135 1136 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter) 1137 { 1138 struct e1000_hw *hw = &adapter->hw; 1139 u32 ctrl_reg; 1140 u16 phy_reg; 1141 1142 /* Setup the Device Control Register for PHY loopback test. */ 1143 1144 ctrl_reg = er32(CTRL); 1145 ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */ 1146 E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1147 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1148 E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */ 1149 E1000_CTRL_FD); /* Force Duplex to FULL */ 1150 1151 ew32(CTRL, ctrl_reg); 1152 1153 /* Read the PHY Specific Control Register (0x10) */ 1154 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); 1155 1156 /* Clear Auto-Crossover bits in PHY Specific Control Register 1157 * (bits 6:5). 1158 */ 1159 phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE; 1160 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg); 1161 1162 /* Perform software reset on the PHY */ 1163 e1000_phy_reset(hw); 1164 1165 /* Have to setup TX_CLK and TX_CRS after software reset */ 1166 e1000_phy_reset_clk_and_crs(adapter); 1167 1168 e1000_write_phy_reg(hw, PHY_CTRL, 0x8100); 1169 1170 /* Wait for reset to complete. */ 1171 udelay(500); 1172 1173 /* Have to setup TX_CLK and TX_CRS after software reset */ 1174 e1000_phy_reset_clk_and_crs(adapter); 1175 1176 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1177 e1000_phy_disable_receiver(adapter); 1178 1179 /* Set the loopback bit in the PHY control register. */ 1180 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); 1181 phy_reg |= MII_CR_LOOPBACK; 1182 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); 1183 1184 /* Setup TX_CLK and TX_CRS one more time. */ 1185 e1000_phy_reset_clk_and_crs(adapter); 1186 1187 /* Check Phy Configuration */ 1188 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); 1189 if (phy_reg != 0x4100) 1190 return 9; 1191 1192 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); 1193 if (phy_reg != 0x0070) 1194 return 10; 1195 1196 e1000_read_phy_reg(hw, 29, &phy_reg); 1197 if (phy_reg != 0x001A) 1198 return 11; 1199 1200 return 0; 1201 } 1202 1203 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) 1204 { 1205 struct e1000_hw *hw = &adapter->hw; 1206 u32 ctrl_reg = 0; 1207 u32 stat_reg = 0; 1208 1209 hw->autoneg = false; 1210 1211 if (hw->phy_type == e1000_phy_m88) { 1212 /* Auto-MDI/MDIX Off */ 1213 e1000_write_phy_reg(hw, 1214 M88E1000_PHY_SPEC_CTRL, 0x0808); 1215 /* reset to update Auto-MDI/MDIX */ 1216 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140); 1217 /* autoneg off */ 1218 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140); 1219 } 1220 1221 ctrl_reg = er32(CTRL); 1222 1223 /* force 1000, set loopback */ 1224 e1000_write_phy_reg(hw, PHY_CTRL, 0x4140); 1225 1226 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1227 ctrl_reg = er32(CTRL); 1228 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1229 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1230 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1231 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1232 E1000_CTRL_FD); /* Force Duplex to FULL */ 1233 1234 if (hw->media_type == e1000_media_type_copper && 1235 hw->phy_type == e1000_phy_m88) 1236 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1237 else { 1238 /* Set the ILOS bit on the fiber Nic is half 1239 * duplex link is detected. 1240 */ 1241 stat_reg = er32(STATUS); 1242 if ((stat_reg & E1000_STATUS_FD) == 0) 1243 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); 1244 } 1245 1246 ew32(CTRL, ctrl_reg); 1247 1248 /* Disable the receiver on the PHY so when a cable is plugged in, the 1249 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1250 */ 1251 if (hw->phy_type == e1000_phy_m88) 1252 e1000_phy_disable_receiver(adapter); 1253 1254 udelay(500); 1255 1256 return 0; 1257 } 1258 1259 static int e1000_set_phy_loopback(struct e1000_adapter *adapter) 1260 { 1261 struct e1000_hw *hw = &adapter->hw; 1262 u16 phy_reg = 0; 1263 u16 count = 0; 1264 1265 switch (hw->mac_type) { 1266 case e1000_82543: 1267 if (hw->media_type == e1000_media_type_copper) { 1268 /* Attempt to setup Loopback mode on Non-integrated PHY. 1269 * Some PHY registers get corrupted at random, so 1270 * attempt this 10 times. 1271 */ 1272 while (e1000_nonintegrated_phy_loopback(adapter) && 1273 count++ < 10); 1274 if (count < 11) 1275 return 0; 1276 } 1277 break; 1278 1279 case e1000_82544: 1280 case e1000_82540: 1281 case e1000_82545: 1282 case e1000_82545_rev_3: 1283 case e1000_82546: 1284 case e1000_82546_rev_3: 1285 case e1000_82541: 1286 case e1000_82541_rev_2: 1287 case e1000_82547: 1288 case e1000_82547_rev_2: 1289 return e1000_integrated_phy_loopback(adapter); 1290 default: 1291 /* Default PHY loopback work is to read the MII 1292 * control register and assert bit 14 (loopback mode). 1293 */ 1294 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); 1295 phy_reg |= MII_CR_LOOPBACK; 1296 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); 1297 return 0; 1298 } 1299 1300 return 8; 1301 } 1302 1303 static int e1000_setup_loopback_test(struct e1000_adapter *adapter) 1304 { 1305 struct e1000_hw *hw = &adapter->hw; 1306 u32 rctl; 1307 1308 if (hw->media_type == e1000_media_type_fiber || 1309 hw->media_type == e1000_media_type_internal_serdes) { 1310 switch (hw->mac_type) { 1311 case e1000_82545: 1312 case e1000_82546: 1313 case e1000_82545_rev_3: 1314 case e1000_82546_rev_3: 1315 return e1000_set_phy_loopback(adapter); 1316 default: 1317 rctl = er32(RCTL); 1318 rctl |= E1000_RCTL_LBM_TCVR; 1319 ew32(RCTL, rctl); 1320 return 0; 1321 } 1322 } else if (hw->media_type == e1000_media_type_copper) { 1323 return e1000_set_phy_loopback(adapter); 1324 } 1325 1326 return 7; 1327 } 1328 1329 static void e1000_loopback_cleanup(struct e1000_adapter *adapter) 1330 { 1331 struct e1000_hw *hw = &adapter->hw; 1332 u32 rctl; 1333 u16 phy_reg; 1334 1335 rctl = er32(RCTL); 1336 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1337 ew32(RCTL, rctl); 1338 1339 switch (hw->mac_type) { 1340 case e1000_82545: 1341 case e1000_82546: 1342 case e1000_82545_rev_3: 1343 case e1000_82546_rev_3: 1344 default: 1345 hw->autoneg = true; 1346 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); 1347 if (phy_reg & MII_CR_LOOPBACK) { 1348 phy_reg &= ~MII_CR_LOOPBACK; 1349 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); 1350 e1000_phy_reset(hw); 1351 } 1352 break; 1353 } 1354 } 1355 1356 static void e1000_create_lbtest_frame(struct sk_buff *skb, 1357 unsigned int frame_size) 1358 { 1359 memset(skb->data, 0xFF, frame_size); 1360 frame_size &= ~1; 1361 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); 1362 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); 1363 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); 1364 } 1365 1366 static int e1000_check_lbtest_frame(const unsigned char *data, 1367 unsigned int frame_size) 1368 { 1369 frame_size &= ~1; 1370 if (*(data + 3) == 0xFF) { 1371 if ((*(data + frame_size / 2 + 10) == 0xBE) && 1372 (*(data + frame_size / 2 + 12) == 0xAF)) { 1373 return 0; 1374 } 1375 } 1376 return 13; 1377 } 1378 1379 static int e1000_run_loopback_test(struct e1000_adapter *adapter) 1380 { 1381 struct e1000_hw *hw = &adapter->hw; 1382 struct e1000_tx_ring *txdr = &adapter->test_tx_ring; 1383 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; 1384 struct pci_dev *pdev = adapter->pdev; 1385 int i, j, k, l, lc, good_cnt, ret_val = 0; 1386 unsigned long time; 1387 1388 ew32(RDT, rxdr->count - 1); 1389 1390 /* Calculate the loop count based on the largest descriptor ring 1391 * The idea is to wrap the largest ring a number of times using 64 1392 * send/receive pairs during each loop 1393 */ 1394 1395 if (rxdr->count <= txdr->count) 1396 lc = ((txdr->count / 64) * 2) + 1; 1397 else 1398 lc = ((rxdr->count / 64) * 2) + 1; 1399 1400 k = l = 0; 1401 for (j = 0; j <= lc; j++) { /* loop count loop */ 1402 for (i = 0; i < 64; i++) { /* send the packets */ 1403 e1000_create_lbtest_frame(txdr->buffer_info[i].skb, 1404 1024); 1405 dma_sync_single_for_device(&pdev->dev, 1406 txdr->buffer_info[k].dma, 1407 txdr->buffer_info[k].length, 1408 DMA_TO_DEVICE); 1409 if (unlikely(++k == txdr->count)) 1410 k = 0; 1411 } 1412 ew32(TDT, k); 1413 E1000_WRITE_FLUSH(); 1414 msleep(200); 1415 time = jiffies; /* set the start time for the receive */ 1416 good_cnt = 0; 1417 do { /* receive the sent packets */ 1418 dma_sync_single_for_cpu(&pdev->dev, 1419 rxdr->buffer_info[l].dma, 1420 E1000_RXBUFFER_2048, 1421 DMA_FROM_DEVICE); 1422 1423 ret_val = e1000_check_lbtest_frame( 1424 rxdr->buffer_info[l].rxbuf.data + 1425 NET_SKB_PAD + NET_IP_ALIGN, 1426 1024); 1427 if (!ret_val) 1428 good_cnt++; 1429 if (unlikely(++l == rxdr->count)) 1430 l = 0; 1431 /* time + 20 msecs (200 msecs on 2.4) is more than 1432 * enough time to complete the receives, if it's 1433 * exceeded, break and error off 1434 */ 1435 } while (good_cnt < 64 && time_after(time + 20, jiffies)); 1436 1437 if (good_cnt != 64) { 1438 ret_val = 13; /* ret_val is the same as mis-compare */ 1439 break; 1440 } 1441 if (time_after_eq(jiffies, time + 2)) { 1442 ret_val = 14; /* error code for time out error */ 1443 break; 1444 } 1445 } /* end loop count loop */ 1446 return ret_val; 1447 } 1448 1449 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) 1450 { 1451 *data = e1000_setup_desc_rings(adapter); 1452 if (*data) 1453 goto out; 1454 *data = e1000_setup_loopback_test(adapter); 1455 if (*data) 1456 goto err_loopback; 1457 *data = e1000_run_loopback_test(adapter); 1458 e1000_loopback_cleanup(adapter); 1459 1460 err_loopback: 1461 e1000_free_desc_rings(adapter); 1462 out: 1463 return *data; 1464 } 1465 1466 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) 1467 { 1468 struct e1000_hw *hw = &adapter->hw; 1469 *data = 0; 1470 if (hw->media_type == e1000_media_type_internal_serdes) { 1471 int i = 0; 1472 1473 hw->serdes_has_link = false; 1474 1475 /* On some blade server designs, link establishment 1476 * could take as long as 2-3 minutes 1477 */ 1478 do { 1479 e1000_check_for_link(hw); 1480 if (hw->serdes_has_link) 1481 return *data; 1482 msleep(20); 1483 } while (i++ < 3750); 1484 1485 *data = 1; 1486 } else { 1487 e1000_check_for_link(hw); 1488 if (hw->autoneg) /* if auto_neg is set wait for it */ 1489 msleep(4000); 1490 1491 if (!(er32(STATUS) & E1000_STATUS_LU)) 1492 *data = 1; 1493 } 1494 return *data; 1495 } 1496 1497 static int e1000_get_sset_count(struct net_device *netdev, int sset) 1498 { 1499 switch (sset) { 1500 case ETH_SS_TEST: 1501 return E1000_TEST_LEN; 1502 case ETH_SS_STATS: 1503 return E1000_STATS_LEN; 1504 default: 1505 return -EOPNOTSUPP; 1506 } 1507 } 1508 1509 static void e1000_diag_test(struct net_device *netdev, 1510 struct ethtool_test *eth_test, u64 *data) 1511 { 1512 struct e1000_adapter *adapter = netdev_priv(netdev); 1513 struct e1000_hw *hw = &adapter->hw; 1514 bool if_running = netif_running(netdev); 1515 1516 set_bit(__E1000_TESTING, &adapter->flags); 1517 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1518 /* Offline tests */ 1519 1520 /* save speed, duplex, autoneg settings */ 1521 u16 autoneg_advertised = hw->autoneg_advertised; 1522 u8 forced_speed_duplex = hw->forced_speed_duplex; 1523 u8 autoneg = hw->autoneg; 1524 1525 e_info(hw, "offline testing starting\n"); 1526 1527 /* Link test performed before hardware reset so autoneg doesn't 1528 * interfere with test result 1529 */ 1530 if (e1000_link_test(adapter, &data[4])) 1531 eth_test->flags |= ETH_TEST_FL_FAILED; 1532 1533 if (if_running) 1534 /* indicate we're in test mode */ 1535 e1000_close(netdev); 1536 else 1537 e1000_reset(adapter); 1538 1539 if (e1000_reg_test(adapter, &data[0])) 1540 eth_test->flags |= ETH_TEST_FL_FAILED; 1541 1542 e1000_reset(adapter); 1543 if (e1000_eeprom_test(adapter, &data[1])) 1544 eth_test->flags |= ETH_TEST_FL_FAILED; 1545 1546 e1000_reset(adapter); 1547 if (e1000_intr_test(adapter, &data[2])) 1548 eth_test->flags |= ETH_TEST_FL_FAILED; 1549 1550 e1000_reset(adapter); 1551 /* make sure the phy is powered up */ 1552 e1000_power_up_phy(adapter); 1553 if (e1000_loopback_test(adapter, &data[3])) 1554 eth_test->flags |= ETH_TEST_FL_FAILED; 1555 1556 /* restore speed, duplex, autoneg settings */ 1557 hw->autoneg_advertised = autoneg_advertised; 1558 hw->forced_speed_duplex = forced_speed_duplex; 1559 hw->autoneg = autoneg; 1560 1561 e1000_reset(adapter); 1562 clear_bit(__E1000_TESTING, &adapter->flags); 1563 if (if_running) 1564 e1000_open(netdev); 1565 } else { 1566 e_info(hw, "online testing starting\n"); 1567 /* Online tests */ 1568 if (e1000_link_test(adapter, &data[4])) 1569 eth_test->flags |= ETH_TEST_FL_FAILED; 1570 1571 /* Online tests aren't run; pass by default */ 1572 data[0] = 0; 1573 data[1] = 0; 1574 data[2] = 0; 1575 data[3] = 0; 1576 1577 clear_bit(__E1000_TESTING, &adapter->flags); 1578 } 1579 msleep_interruptible(4 * 1000); 1580 } 1581 1582 static int e1000_wol_exclusion(struct e1000_adapter *adapter, 1583 struct ethtool_wolinfo *wol) 1584 { 1585 struct e1000_hw *hw = &adapter->hw; 1586 int retval = 1; /* fail by default */ 1587 1588 switch (hw->device_id) { 1589 case E1000_DEV_ID_82542: 1590 case E1000_DEV_ID_82543GC_FIBER: 1591 case E1000_DEV_ID_82543GC_COPPER: 1592 case E1000_DEV_ID_82544EI_FIBER: 1593 case E1000_DEV_ID_82546EB_QUAD_COPPER: 1594 case E1000_DEV_ID_82545EM_FIBER: 1595 case E1000_DEV_ID_82545EM_COPPER: 1596 case E1000_DEV_ID_82546GB_QUAD_COPPER: 1597 case E1000_DEV_ID_82546GB_PCIE: 1598 /* these don't support WoL at all */ 1599 wol->supported = 0; 1600 break; 1601 case E1000_DEV_ID_82546EB_FIBER: 1602 case E1000_DEV_ID_82546GB_FIBER: 1603 /* Wake events not supported on port B */ 1604 if (er32(STATUS) & E1000_STATUS_FUNC_1) { 1605 wol->supported = 0; 1606 break; 1607 } 1608 /* return success for non excluded adapter ports */ 1609 retval = 0; 1610 break; 1611 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 1612 /* quad port adapters only support WoL on port A */ 1613 if (!adapter->quad_port_a) { 1614 wol->supported = 0; 1615 break; 1616 } 1617 /* return success for non excluded adapter ports */ 1618 retval = 0; 1619 break; 1620 default: 1621 /* dual port cards only support WoL on port A from now on 1622 * unless it was enabled in the eeprom for port B 1623 * so exclude FUNC_1 ports from having WoL enabled 1624 */ 1625 if (er32(STATUS) & E1000_STATUS_FUNC_1 && 1626 !adapter->eeprom_wol) { 1627 wol->supported = 0; 1628 break; 1629 } 1630 1631 retval = 0; 1632 } 1633 1634 return retval; 1635 } 1636 1637 static void e1000_get_wol(struct net_device *netdev, 1638 struct ethtool_wolinfo *wol) 1639 { 1640 struct e1000_adapter *adapter = netdev_priv(netdev); 1641 struct e1000_hw *hw = &adapter->hw; 1642 1643 wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC; 1644 wol->wolopts = 0; 1645 1646 /* this function will set ->supported = 0 and return 1 if wol is not 1647 * supported by this hardware 1648 */ 1649 if (e1000_wol_exclusion(adapter, wol) || 1650 !device_can_wakeup(&adapter->pdev->dev)) 1651 return; 1652 1653 /* apply any specific unsupported masks here */ 1654 switch (hw->device_id) { 1655 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 1656 /* KSP3 does not support UCAST wake-ups */ 1657 wol->supported &= ~WAKE_UCAST; 1658 1659 if (adapter->wol & E1000_WUFC_EX) 1660 e_err(drv, "Interface does not support directed " 1661 "(unicast) frame wake-up packets\n"); 1662 break; 1663 default: 1664 break; 1665 } 1666 1667 if (adapter->wol & E1000_WUFC_EX) 1668 wol->wolopts |= WAKE_UCAST; 1669 if (adapter->wol & E1000_WUFC_MC) 1670 wol->wolopts |= WAKE_MCAST; 1671 if (adapter->wol & E1000_WUFC_BC) 1672 wol->wolopts |= WAKE_BCAST; 1673 if (adapter->wol & E1000_WUFC_MAG) 1674 wol->wolopts |= WAKE_MAGIC; 1675 } 1676 1677 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 1678 { 1679 struct e1000_adapter *adapter = netdev_priv(netdev); 1680 struct e1000_hw *hw = &adapter->hw; 1681 1682 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE)) 1683 return -EOPNOTSUPP; 1684 1685 if (e1000_wol_exclusion(adapter, wol) || 1686 !device_can_wakeup(&adapter->pdev->dev)) 1687 return wol->wolopts ? -EOPNOTSUPP : 0; 1688 1689 switch (hw->device_id) { 1690 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 1691 if (wol->wolopts & WAKE_UCAST) { 1692 e_err(drv, "Interface does not support directed " 1693 "(unicast) frame wake-up packets\n"); 1694 return -EOPNOTSUPP; 1695 } 1696 break; 1697 default: 1698 break; 1699 } 1700 1701 /* these settings will always override what we currently have */ 1702 adapter->wol = 0; 1703 1704 if (wol->wolopts & WAKE_UCAST) 1705 adapter->wol |= E1000_WUFC_EX; 1706 if (wol->wolopts & WAKE_MCAST) 1707 adapter->wol |= E1000_WUFC_MC; 1708 if (wol->wolopts & WAKE_BCAST) 1709 adapter->wol |= E1000_WUFC_BC; 1710 if (wol->wolopts & WAKE_MAGIC) 1711 adapter->wol |= E1000_WUFC_MAG; 1712 1713 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1714 1715 return 0; 1716 } 1717 1718 static int e1000_set_phys_id(struct net_device *netdev, 1719 enum ethtool_phys_id_state state) 1720 { 1721 struct e1000_adapter *adapter = netdev_priv(netdev); 1722 struct e1000_hw *hw = &adapter->hw; 1723 1724 switch (state) { 1725 case ETHTOOL_ID_ACTIVE: 1726 e1000_setup_led(hw); 1727 return 2; 1728 1729 case ETHTOOL_ID_ON: 1730 e1000_led_on(hw); 1731 break; 1732 1733 case ETHTOOL_ID_OFF: 1734 e1000_led_off(hw); 1735 break; 1736 1737 case ETHTOOL_ID_INACTIVE: 1738 e1000_cleanup_led(hw); 1739 } 1740 1741 return 0; 1742 } 1743 1744 static int e1000_get_coalesce(struct net_device *netdev, 1745 struct ethtool_coalesce *ec) 1746 { 1747 struct e1000_adapter *adapter = netdev_priv(netdev); 1748 1749 if (adapter->hw.mac_type < e1000_82545) 1750 return -EOPNOTSUPP; 1751 1752 if (adapter->itr_setting <= 4) 1753 ec->rx_coalesce_usecs = adapter->itr_setting; 1754 else 1755 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; 1756 1757 return 0; 1758 } 1759 1760 static int e1000_set_coalesce(struct net_device *netdev, 1761 struct ethtool_coalesce *ec) 1762 { 1763 struct e1000_adapter *adapter = netdev_priv(netdev); 1764 struct e1000_hw *hw = &adapter->hw; 1765 1766 if (hw->mac_type < e1000_82545) 1767 return -EOPNOTSUPP; 1768 1769 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || 1770 ((ec->rx_coalesce_usecs > 4) && 1771 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || 1772 (ec->rx_coalesce_usecs == 2)) 1773 return -EINVAL; 1774 1775 if (ec->rx_coalesce_usecs == 4) { 1776 adapter->itr = adapter->itr_setting = 4; 1777 } else if (ec->rx_coalesce_usecs <= 3) { 1778 adapter->itr = 20000; 1779 adapter->itr_setting = ec->rx_coalesce_usecs; 1780 } else { 1781 adapter->itr = (1000000 / ec->rx_coalesce_usecs); 1782 adapter->itr_setting = adapter->itr & ~3; 1783 } 1784 1785 if (adapter->itr_setting != 0) 1786 ew32(ITR, 1000000000 / (adapter->itr * 256)); 1787 else 1788 ew32(ITR, 0); 1789 1790 return 0; 1791 } 1792 1793 static int e1000_nway_reset(struct net_device *netdev) 1794 { 1795 struct e1000_adapter *adapter = netdev_priv(netdev); 1796 1797 if (netif_running(netdev)) 1798 e1000_reinit_locked(adapter); 1799 return 0; 1800 } 1801 1802 static void e1000_get_ethtool_stats(struct net_device *netdev, 1803 struct ethtool_stats *stats, u64 *data) 1804 { 1805 struct e1000_adapter *adapter = netdev_priv(netdev); 1806 int i; 1807 const struct e1000_stats *stat = e1000_gstrings_stats; 1808 1809 e1000_update_stats(adapter); 1810 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++, stat++) { 1811 char *p; 1812 1813 switch (stat->type) { 1814 case NETDEV_STATS: 1815 p = (char *)netdev + stat->stat_offset; 1816 break; 1817 case E1000_STATS: 1818 p = (char *)adapter + stat->stat_offset; 1819 break; 1820 default: 1821 netdev_WARN_ONCE(netdev, "Invalid E1000 stat type: %u index %d\n", 1822 stat->type, i); 1823 continue; 1824 } 1825 1826 if (stat->sizeof_stat == sizeof(u64)) 1827 data[i] = *(u64 *)p; 1828 else 1829 data[i] = *(u32 *)p; 1830 } 1831 /* BUG_ON(i != E1000_STATS_LEN); */ 1832 } 1833 1834 static void e1000_get_strings(struct net_device *netdev, u32 stringset, 1835 u8 *data) 1836 { 1837 u8 *p = data; 1838 int i; 1839 1840 switch (stringset) { 1841 case ETH_SS_TEST: 1842 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test)); 1843 break; 1844 case ETH_SS_STATS: 1845 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 1846 memcpy(p, e1000_gstrings_stats[i].stat_string, 1847 ETH_GSTRING_LEN); 1848 p += ETH_GSTRING_LEN; 1849 } 1850 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */ 1851 break; 1852 } 1853 } 1854 1855 static const struct ethtool_ops e1000_ethtool_ops = { 1856 .get_drvinfo = e1000_get_drvinfo, 1857 .get_regs_len = e1000_get_regs_len, 1858 .get_regs = e1000_get_regs, 1859 .get_wol = e1000_get_wol, 1860 .set_wol = e1000_set_wol, 1861 .get_msglevel = e1000_get_msglevel, 1862 .set_msglevel = e1000_set_msglevel, 1863 .nway_reset = e1000_nway_reset, 1864 .get_link = e1000_get_link, 1865 .get_eeprom_len = e1000_get_eeprom_len, 1866 .get_eeprom = e1000_get_eeprom, 1867 .set_eeprom = e1000_set_eeprom, 1868 .get_ringparam = e1000_get_ringparam, 1869 .set_ringparam = e1000_set_ringparam, 1870 .get_pauseparam = e1000_get_pauseparam, 1871 .set_pauseparam = e1000_set_pauseparam, 1872 .self_test = e1000_diag_test, 1873 .get_strings = e1000_get_strings, 1874 .set_phys_id = e1000_set_phys_id, 1875 .get_ethtool_stats = e1000_get_ethtool_stats, 1876 .get_sset_count = e1000_get_sset_count, 1877 .get_coalesce = e1000_get_coalesce, 1878 .set_coalesce = e1000_set_coalesce, 1879 .get_ts_info = ethtool_op_get_ts_info, 1880 .get_link_ksettings = e1000_get_link_ksettings, 1881 .set_link_ksettings = e1000_set_link_ksettings, 1882 }; 1883 1884 void e1000_set_ethtool_ops(struct net_device *netdev) 1885 { 1886 netdev->ethtool_ops = &e1000_ethtool_ops; 1887 } 1888