1 /******************************************************************************* 2 3 Intel PRO/1000 Linux driver 4 Copyright(c) 1999 - 2006 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27 *******************************************************************************/ 28 29 /* ethtool support for e1000 */ 30 31 #include "e1000.h" 32 #include <asm/uaccess.h> 33 34 enum {NETDEV_STATS, E1000_STATS}; 35 36 struct e1000_stats { 37 char stat_string[ETH_GSTRING_LEN]; 38 int type; 39 int sizeof_stat; 40 int stat_offset; 41 }; 42 43 #define E1000_STAT(m) E1000_STATS, \ 44 sizeof(((struct e1000_adapter *)0)->m), \ 45 offsetof(struct e1000_adapter, m) 46 #define E1000_NETDEV_STAT(m) NETDEV_STATS, \ 47 sizeof(((struct net_device *)0)->m), \ 48 offsetof(struct net_device, m) 49 50 static const struct e1000_stats e1000_gstrings_stats[] = { 51 { "rx_packets", E1000_STAT(stats.gprc) }, 52 { "tx_packets", E1000_STAT(stats.gptc) }, 53 { "rx_bytes", E1000_STAT(stats.gorcl) }, 54 { "tx_bytes", E1000_STAT(stats.gotcl) }, 55 { "rx_broadcast", E1000_STAT(stats.bprc) }, 56 { "tx_broadcast", E1000_STAT(stats.bptc) }, 57 { "rx_multicast", E1000_STAT(stats.mprc) }, 58 { "tx_multicast", E1000_STAT(stats.mptc) }, 59 { "rx_errors", E1000_STAT(stats.rxerrc) }, 60 { "tx_errors", E1000_STAT(stats.txerrc) }, 61 { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) }, 62 { "multicast", E1000_STAT(stats.mprc) }, 63 { "collisions", E1000_STAT(stats.colc) }, 64 { "rx_length_errors", E1000_STAT(stats.rlerrc) }, 65 { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) }, 66 { "rx_crc_errors", E1000_STAT(stats.crcerrs) }, 67 { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) }, 68 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) }, 69 { "rx_missed_errors", E1000_STAT(stats.mpc) }, 70 { "tx_aborted_errors", E1000_STAT(stats.ecol) }, 71 { "tx_carrier_errors", E1000_STAT(stats.tncrs) }, 72 { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) }, 73 { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) }, 74 { "tx_window_errors", E1000_STAT(stats.latecol) }, 75 { "tx_abort_late_coll", E1000_STAT(stats.latecol) }, 76 { "tx_deferred_ok", E1000_STAT(stats.dc) }, 77 { "tx_single_coll_ok", E1000_STAT(stats.scc) }, 78 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) }, 79 { "tx_timeout_count", E1000_STAT(tx_timeout_count) }, 80 { "tx_restart_queue", E1000_STAT(restart_queue) }, 81 { "rx_long_length_errors", E1000_STAT(stats.roc) }, 82 { "rx_short_length_errors", E1000_STAT(stats.ruc) }, 83 { "rx_align_errors", E1000_STAT(stats.algnerrc) }, 84 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) }, 85 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) }, 86 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) }, 87 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) }, 88 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) }, 89 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) }, 90 { "rx_long_byte_count", E1000_STAT(stats.gorcl) }, 91 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) }, 92 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) }, 93 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) }, 94 { "tx_smbus", E1000_STAT(stats.mgptc) }, 95 { "rx_smbus", E1000_STAT(stats.mgprc) }, 96 { "dropped_smbus", E1000_STAT(stats.mgpdc) }, 97 }; 98 99 #define E1000_QUEUE_STATS_LEN 0 100 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) 101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN) 102 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { 103 "Register test (offline)", "Eeprom test (offline)", 104 "Interrupt test (offline)", "Loopback test (offline)", 105 "Link test (on/offline)" 106 }; 107 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) 108 109 static int e1000_get_settings(struct net_device *netdev, 110 struct ethtool_cmd *ecmd) 111 { 112 struct e1000_adapter *adapter = netdev_priv(netdev); 113 struct e1000_hw *hw = &adapter->hw; 114 115 if (hw->media_type == e1000_media_type_copper) { 116 117 ecmd->supported = (SUPPORTED_10baseT_Half | 118 SUPPORTED_10baseT_Full | 119 SUPPORTED_100baseT_Half | 120 SUPPORTED_100baseT_Full | 121 SUPPORTED_1000baseT_Full| 122 SUPPORTED_Autoneg | 123 SUPPORTED_TP); 124 ecmd->advertising = ADVERTISED_TP; 125 126 if (hw->autoneg == 1) { 127 ecmd->advertising |= ADVERTISED_Autoneg; 128 /* the e1000 autoneg seems to match ethtool nicely */ 129 ecmd->advertising |= hw->autoneg_advertised; 130 } 131 132 ecmd->port = PORT_TP; 133 ecmd->phy_address = hw->phy_addr; 134 135 if (hw->mac_type == e1000_82543) 136 ecmd->transceiver = XCVR_EXTERNAL; 137 else 138 ecmd->transceiver = XCVR_INTERNAL; 139 140 } else { 141 ecmd->supported = (SUPPORTED_1000baseT_Full | 142 SUPPORTED_FIBRE | 143 SUPPORTED_Autoneg); 144 145 ecmd->advertising = (ADVERTISED_1000baseT_Full | 146 ADVERTISED_FIBRE | 147 ADVERTISED_Autoneg); 148 149 ecmd->port = PORT_FIBRE; 150 151 if (hw->mac_type >= e1000_82545) 152 ecmd->transceiver = XCVR_INTERNAL; 153 else 154 ecmd->transceiver = XCVR_EXTERNAL; 155 } 156 157 if (er32(STATUS) & E1000_STATUS_LU) { 158 159 e1000_get_speed_and_duplex(hw, &adapter->link_speed, 160 &adapter->link_duplex); 161 ethtool_cmd_speed_set(ecmd, adapter->link_speed); 162 163 /* unfortunately FULL_DUPLEX != DUPLEX_FULL 164 * and HALF_DUPLEX != DUPLEX_HALF */ 165 166 if (adapter->link_duplex == FULL_DUPLEX) 167 ecmd->duplex = DUPLEX_FULL; 168 else 169 ecmd->duplex = DUPLEX_HALF; 170 } else { 171 ethtool_cmd_speed_set(ecmd, -1); 172 ecmd->duplex = -1; 173 } 174 175 ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) || 176 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; 177 178 /* MDI-X => 1; MDI => 0 */ 179 if ((hw->media_type == e1000_media_type_copper) && 180 netif_carrier_ok(netdev)) 181 ecmd->eth_tp_mdix = (!!adapter->phy_info.mdix_mode ? 182 ETH_TP_MDI_X : 183 ETH_TP_MDI); 184 else 185 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID; 186 187 if (hw->mdix == AUTO_ALL_MODES) 188 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; 189 else 190 ecmd->eth_tp_mdix_ctrl = hw->mdix; 191 return 0; 192 } 193 194 static int e1000_set_settings(struct net_device *netdev, 195 struct ethtool_cmd *ecmd) 196 { 197 struct e1000_adapter *adapter = netdev_priv(netdev); 198 struct e1000_hw *hw = &adapter->hw; 199 200 /* 201 * MDI setting is only allowed when autoneg enabled because 202 * some hardware doesn't allow MDI setting when speed or 203 * duplex is forced. 204 */ 205 if (ecmd->eth_tp_mdix_ctrl) { 206 if (hw->media_type != e1000_media_type_copper) 207 return -EOPNOTSUPP; 208 209 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && 210 (ecmd->autoneg != AUTONEG_ENABLE)) { 211 e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); 212 return -EINVAL; 213 } 214 } 215 216 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 217 msleep(1); 218 219 if (ecmd->autoneg == AUTONEG_ENABLE) { 220 hw->autoneg = 1; 221 if (hw->media_type == e1000_media_type_fiber) 222 hw->autoneg_advertised = ADVERTISED_1000baseT_Full | 223 ADVERTISED_FIBRE | 224 ADVERTISED_Autoneg; 225 else 226 hw->autoneg_advertised = ecmd->advertising | 227 ADVERTISED_TP | 228 ADVERTISED_Autoneg; 229 ecmd->advertising = hw->autoneg_advertised; 230 } else { 231 u32 speed = ethtool_cmd_speed(ecmd); 232 /* calling this overrides forced MDI setting */ 233 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) { 234 clear_bit(__E1000_RESETTING, &adapter->flags); 235 return -EINVAL; 236 } 237 } 238 239 /* MDI-X => 2; MDI => 1; Auto => 3 */ 240 if (ecmd->eth_tp_mdix_ctrl) { 241 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) 242 hw->mdix = AUTO_ALL_MODES; 243 else 244 hw->mdix = ecmd->eth_tp_mdix_ctrl; 245 } 246 247 /* reset the link */ 248 249 if (netif_running(adapter->netdev)) { 250 e1000_down(adapter); 251 e1000_up(adapter); 252 } else 253 e1000_reset(adapter); 254 255 clear_bit(__E1000_RESETTING, &adapter->flags); 256 return 0; 257 } 258 259 static u32 e1000_get_link(struct net_device *netdev) 260 { 261 struct e1000_adapter *adapter = netdev_priv(netdev); 262 263 /* 264 * If the link is not reported up to netdev, interrupts are disabled, 265 * and so the physical link state may have changed since we last 266 * looked. Set get_link_status to make sure that the true link 267 * state is interrogated, rather than pulling a cached and possibly 268 * stale link state from the driver. 269 */ 270 if (!netif_carrier_ok(netdev)) 271 adapter->hw.get_link_status = 1; 272 273 return e1000_has_link(adapter); 274 } 275 276 static void e1000_get_pauseparam(struct net_device *netdev, 277 struct ethtool_pauseparam *pause) 278 { 279 struct e1000_adapter *adapter = netdev_priv(netdev); 280 struct e1000_hw *hw = &adapter->hw; 281 282 pause->autoneg = 283 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 284 285 if (hw->fc == E1000_FC_RX_PAUSE) 286 pause->rx_pause = 1; 287 else if (hw->fc == E1000_FC_TX_PAUSE) 288 pause->tx_pause = 1; 289 else if (hw->fc == E1000_FC_FULL) { 290 pause->rx_pause = 1; 291 pause->tx_pause = 1; 292 } 293 } 294 295 static int e1000_set_pauseparam(struct net_device *netdev, 296 struct ethtool_pauseparam *pause) 297 { 298 struct e1000_adapter *adapter = netdev_priv(netdev); 299 struct e1000_hw *hw = &adapter->hw; 300 int retval = 0; 301 302 adapter->fc_autoneg = pause->autoneg; 303 304 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 305 msleep(1); 306 307 if (pause->rx_pause && pause->tx_pause) 308 hw->fc = E1000_FC_FULL; 309 else if (pause->rx_pause && !pause->tx_pause) 310 hw->fc = E1000_FC_RX_PAUSE; 311 else if (!pause->rx_pause && pause->tx_pause) 312 hw->fc = E1000_FC_TX_PAUSE; 313 else if (!pause->rx_pause && !pause->tx_pause) 314 hw->fc = E1000_FC_NONE; 315 316 hw->original_fc = hw->fc; 317 318 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 319 if (netif_running(adapter->netdev)) { 320 e1000_down(adapter); 321 e1000_up(adapter); 322 } else 323 e1000_reset(adapter); 324 } else 325 retval = ((hw->media_type == e1000_media_type_fiber) ? 326 e1000_setup_link(hw) : e1000_force_mac_fc(hw)); 327 328 clear_bit(__E1000_RESETTING, &adapter->flags); 329 return retval; 330 } 331 332 static u32 e1000_get_msglevel(struct net_device *netdev) 333 { 334 struct e1000_adapter *adapter = netdev_priv(netdev); 335 return adapter->msg_enable; 336 } 337 338 static void e1000_set_msglevel(struct net_device *netdev, u32 data) 339 { 340 struct e1000_adapter *adapter = netdev_priv(netdev); 341 adapter->msg_enable = data; 342 } 343 344 static int e1000_get_regs_len(struct net_device *netdev) 345 { 346 #define E1000_REGS_LEN 32 347 return E1000_REGS_LEN * sizeof(u32); 348 } 349 350 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs, 351 void *p) 352 { 353 struct e1000_adapter *adapter = netdev_priv(netdev); 354 struct e1000_hw *hw = &adapter->hw; 355 u32 *regs_buff = p; 356 u16 phy_data; 357 358 memset(p, 0, E1000_REGS_LEN * sizeof(u32)); 359 360 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id; 361 362 regs_buff[0] = er32(CTRL); 363 regs_buff[1] = er32(STATUS); 364 365 regs_buff[2] = er32(RCTL); 366 regs_buff[3] = er32(RDLEN); 367 regs_buff[4] = er32(RDH); 368 regs_buff[5] = er32(RDT); 369 regs_buff[6] = er32(RDTR); 370 371 regs_buff[7] = er32(TCTL); 372 regs_buff[8] = er32(TDLEN); 373 regs_buff[9] = er32(TDH); 374 regs_buff[10] = er32(TDT); 375 regs_buff[11] = er32(TIDV); 376 377 regs_buff[12] = hw->phy_type; /* PHY type (IGP=1, M88=0) */ 378 if (hw->phy_type == e1000_phy_igp) { 379 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 380 IGP01E1000_PHY_AGC_A); 381 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A & 382 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 383 regs_buff[13] = (u32)phy_data; /* cable length */ 384 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 385 IGP01E1000_PHY_AGC_B); 386 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B & 387 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 388 regs_buff[14] = (u32)phy_data; /* cable length */ 389 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 390 IGP01E1000_PHY_AGC_C); 391 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C & 392 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 393 regs_buff[15] = (u32)phy_data; /* cable length */ 394 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 395 IGP01E1000_PHY_AGC_D); 396 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D & 397 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 398 regs_buff[16] = (u32)phy_data; /* cable length */ 399 regs_buff[17] = 0; /* extended 10bt distance (not needed) */ 400 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); 401 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS & 402 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 403 regs_buff[18] = (u32)phy_data; /* cable polarity */ 404 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 405 IGP01E1000_PHY_PCS_INIT_REG); 406 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG & 407 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 408 regs_buff[19] = (u32)phy_data; /* cable polarity */ 409 regs_buff[20] = 0; /* polarity correction enabled (always) */ 410 regs_buff[22] = 0; /* phy receive errors (unavailable) */ 411 regs_buff[23] = regs_buff[18]; /* mdix mode */ 412 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); 413 } else { 414 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 415 regs_buff[13] = (u32)phy_data; /* cable length */ 416 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 417 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 418 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 419 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 420 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ 421 regs_buff[18] = regs_buff[13]; /* cable polarity */ 422 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 423 regs_buff[20] = regs_buff[17]; /* polarity correction */ 424 /* phy receive errors */ 425 regs_buff[22] = adapter->phy_stats.receive_errors; 426 regs_buff[23] = regs_buff[13]; /* mdix mode */ 427 } 428 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */ 429 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); 430 regs_buff[24] = (u32)phy_data; /* phy local receiver status */ 431 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ 432 if (hw->mac_type >= e1000_82540 && 433 hw->media_type == e1000_media_type_copper) { 434 regs_buff[26] = er32(MANC); 435 } 436 } 437 438 static int e1000_get_eeprom_len(struct net_device *netdev) 439 { 440 struct e1000_adapter *adapter = netdev_priv(netdev); 441 struct e1000_hw *hw = &adapter->hw; 442 443 return hw->eeprom.word_size * 2; 444 } 445 446 static int e1000_get_eeprom(struct net_device *netdev, 447 struct ethtool_eeprom *eeprom, u8 *bytes) 448 { 449 struct e1000_adapter *adapter = netdev_priv(netdev); 450 struct e1000_hw *hw = &adapter->hw; 451 u16 *eeprom_buff; 452 int first_word, last_word; 453 int ret_val = 0; 454 u16 i; 455 456 if (eeprom->len == 0) 457 return -EINVAL; 458 459 eeprom->magic = hw->vendor_id | (hw->device_id << 16); 460 461 first_word = eeprom->offset >> 1; 462 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 463 464 eeprom_buff = kmalloc(sizeof(u16) * 465 (last_word - first_word + 1), GFP_KERNEL); 466 if (!eeprom_buff) 467 return -ENOMEM; 468 469 if (hw->eeprom.type == e1000_eeprom_spi) 470 ret_val = e1000_read_eeprom(hw, first_word, 471 last_word - first_word + 1, 472 eeprom_buff); 473 else { 474 for (i = 0; i < last_word - first_word + 1; i++) { 475 ret_val = e1000_read_eeprom(hw, first_word + i, 1, 476 &eeprom_buff[i]); 477 if (ret_val) 478 break; 479 } 480 } 481 482 /* Device's eeprom is always little-endian, word addressable */ 483 for (i = 0; i < last_word - first_word + 1; i++) 484 le16_to_cpus(&eeprom_buff[i]); 485 486 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), 487 eeprom->len); 488 kfree(eeprom_buff); 489 490 return ret_val; 491 } 492 493 static int e1000_set_eeprom(struct net_device *netdev, 494 struct ethtool_eeprom *eeprom, u8 *bytes) 495 { 496 struct e1000_adapter *adapter = netdev_priv(netdev); 497 struct e1000_hw *hw = &adapter->hw; 498 u16 *eeprom_buff; 499 void *ptr; 500 int max_len, first_word, last_word, ret_val = 0; 501 u16 i; 502 503 if (eeprom->len == 0) 504 return -EOPNOTSUPP; 505 506 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) 507 return -EFAULT; 508 509 max_len = hw->eeprom.word_size * 2; 510 511 first_word = eeprom->offset >> 1; 512 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 513 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 514 if (!eeprom_buff) 515 return -ENOMEM; 516 517 ptr = (void *)eeprom_buff; 518 519 if (eeprom->offset & 1) { 520 /* need read/modify/write of first changed EEPROM word */ 521 /* only the second byte of the word is being modified */ 522 ret_val = e1000_read_eeprom(hw, first_word, 1, 523 &eeprom_buff[0]); 524 ptr++; 525 } 526 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) { 527 /* need read/modify/write of last changed EEPROM word */ 528 /* only the first byte of the word is being modified */ 529 ret_val = e1000_read_eeprom(hw, last_word, 1, 530 &eeprom_buff[last_word - first_word]); 531 } 532 533 /* Device's eeprom is always little-endian, word addressable */ 534 for (i = 0; i < last_word - first_word + 1; i++) 535 le16_to_cpus(&eeprom_buff[i]); 536 537 memcpy(ptr, bytes, eeprom->len); 538 539 for (i = 0; i < last_word - first_word + 1; i++) 540 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); 541 542 ret_val = e1000_write_eeprom(hw, first_word, 543 last_word - first_word + 1, eeprom_buff); 544 545 /* Update the checksum over the first part of the EEPROM if needed */ 546 if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG)) 547 e1000_update_eeprom_checksum(hw); 548 549 kfree(eeprom_buff); 550 return ret_val; 551 } 552 553 static void e1000_get_drvinfo(struct net_device *netdev, 554 struct ethtool_drvinfo *drvinfo) 555 { 556 struct e1000_adapter *adapter = netdev_priv(netdev); 557 558 strlcpy(drvinfo->driver, e1000_driver_name, 559 sizeof(drvinfo->driver)); 560 strlcpy(drvinfo->version, e1000_driver_version, 561 sizeof(drvinfo->version)); 562 563 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 564 sizeof(drvinfo->bus_info)); 565 drvinfo->regdump_len = e1000_get_regs_len(netdev); 566 drvinfo->eedump_len = e1000_get_eeprom_len(netdev); 567 } 568 569 static void e1000_get_ringparam(struct net_device *netdev, 570 struct ethtool_ringparam *ring) 571 { 572 struct e1000_adapter *adapter = netdev_priv(netdev); 573 struct e1000_hw *hw = &adapter->hw; 574 e1000_mac_type mac_type = hw->mac_type; 575 struct e1000_tx_ring *txdr = adapter->tx_ring; 576 struct e1000_rx_ring *rxdr = adapter->rx_ring; 577 578 ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD : 579 E1000_MAX_82544_RXD; 580 ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD : 581 E1000_MAX_82544_TXD; 582 ring->rx_pending = rxdr->count; 583 ring->tx_pending = txdr->count; 584 } 585 586 static int e1000_set_ringparam(struct net_device *netdev, 587 struct ethtool_ringparam *ring) 588 { 589 struct e1000_adapter *adapter = netdev_priv(netdev); 590 struct e1000_hw *hw = &adapter->hw; 591 e1000_mac_type mac_type = hw->mac_type; 592 struct e1000_tx_ring *txdr, *tx_old; 593 struct e1000_rx_ring *rxdr, *rx_old; 594 int i, err; 595 596 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 597 return -EINVAL; 598 599 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 600 msleep(1); 601 602 if (netif_running(adapter->netdev)) 603 e1000_down(adapter); 604 605 tx_old = adapter->tx_ring; 606 rx_old = adapter->rx_ring; 607 608 err = -ENOMEM; 609 txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL); 610 if (!txdr) 611 goto err_alloc_tx; 612 613 rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL); 614 if (!rxdr) 615 goto err_alloc_rx; 616 617 adapter->tx_ring = txdr; 618 adapter->rx_ring = rxdr; 619 620 rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD); 621 rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ? 622 E1000_MAX_RXD : E1000_MAX_82544_RXD)); 623 rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE); 624 625 txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD); 626 txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ? 627 E1000_MAX_TXD : E1000_MAX_82544_TXD)); 628 txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE); 629 630 for (i = 0; i < adapter->num_tx_queues; i++) 631 txdr[i].count = txdr->count; 632 for (i = 0; i < adapter->num_rx_queues; i++) 633 rxdr[i].count = rxdr->count; 634 635 if (netif_running(adapter->netdev)) { 636 /* Try to get new resources before deleting old */ 637 err = e1000_setup_all_rx_resources(adapter); 638 if (err) 639 goto err_setup_rx; 640 err = e1000_setup_all_tx_resources(adapter); 641 if (err) 642 goto err_setup_tx; 643 644 /* save the new, restore the old in order to free it, 645 * then restore the new back again */ 646 647 adapter->rx_ring = rx_old; 648 adapter->tx_ring = tx_old; 649 e1000_free_all_rx_resources(adapter); 650 e1000_free_all_tx_resources(adapter); 651 kfree(tx_old); 652 kfree(rx_old); 653 adapter->rx_ring = rxdr; 654 adapter->tx_ring = txdr; 655 err = e1000_up(adapter); 656 if (err) 657 goto err_setup; 658 } 659 660 clear_bit(__E1000_RESETTING, &adapter->flags); 661 return 0; 662 err_setup_tx: 663 e1000_free_all_rx_resources(adapter); 664 err_setup_rx: 665 adapter->rx_ring = rx_old; 666 adapter->tx_ring = tx_old; 667 kfree(rxdr); 668 err_alloc_rx: 669 kfree(txdr); 670 err_alloc_tx: 671 e1000_up(adapter); 672 err_setup: 673 clear_bit(__E1000_RESETTING, &adapter->flags); 674 return err; 675 } 676 677 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg, 678 u32 mask, u32 write) 679 { 680 struct e1000_hw *hw = &adapter->hw; 681 static const u32 test[] = 682 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; 683 u8 __iomem *address = hw->hw_addr + reg; 684 u32 read; 685 int i; 686 687 for (i = 0; i < ARRAY_SIZE(test); i++) { 688 writel(write & test[i], address); 689 read = readl(address); 690 if (read != (write & test[i] & mask)) { 691 e_err(drv, "pattern test reg %04X failed: " 692 "got 0x%08X expected 0x%08X\n", 693 reg, read, (write & test[i] & mask)); 694 *data = reg; 695 return true; 696 } 697 } 698 return false; 699 } 700 701 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg, 702 u32 mask, u32 write) 703 { 704 struct e1000_hw *hw = &adapter->hw; 705 u8 __iomem *address = hw->hw_addr + reg; 706 u32 read; 707 708 writel(write & mask, address); 709 read = readl(address); 710 if ((read & mask) != (write & mask)) { 711 e_err(drv, "set/check reg %04X test failed: " 712 "got 0x%08X expected 0x%08X\n", 713 reg, (read & mask), (write & mask)); 714 *data = reg; 715 return true; 716 } 717 return false; 718 } 719 720 #define REG_PATTERN_TEST(reg, mask, write) \ 721 do { \ 722 if (reg_pattern_test(adapter, data, \ 723 (hw->mac_type >= e1000_82543) \ 724 ? E1000_##reg : E1000_82542_##reg, \ 725 mask, write)) \ 726 return 1; \ 727 } while (0) 728 729 #define REG_SET_AND_CHECK(reg, mask, write) \ 730 do { \ 731 if (reg_set_and_check(adapter, data, \ 732 (hw->mac_type >= e1000_82543) \ 733 ? E1000_##reg : E1000_82542_##reg, \ 734 mask, write)) \ 735 return 1; \ 736 } while (0) 737 738 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) 739 { 740 u32 value, before, after; 741 u32 i, toggle; 742 struct e1000_hw *hw = &adapter->hw; 743 744 /* The status register is Read Only, so a write should fail. 745 * Some bits that get toggled are ignored. 746 */ 747 748 /* there are several bits on newer hardware that are r/w */ 749 toggle = 0xFFFFF833; 750 751 before = er32(STATUS); 752 value = (er32(STATUS) & toggle); 753 ew32(STATUS, toggle); 754 after = er32(STATUS) & toggle; 755 if (value != after) { 756 e_err(drv, "failed STATUS register test got: " 757 "0x%08X expected: 0x%08X\n", after, value); 758 *data = 1; 759 return 1; 760 } 761 /* restore previous status */ 762 ew32(STATUS, before); 763 764 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF); 765 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF); 766 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF); 767 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF); 768 769 REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF); 770 REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF); 771 REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF); 772 REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF); 773 REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF); 774 REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8); 775 REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF); 776 REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF); 777 REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF); 778 REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF); 779 780 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000); 781 782 before = 0x06DFB3FE; 783 REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB); 784 REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000); 785 786 if (hw->mac_type >= e1000_82543) { 787 788 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF); 789 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF); 790 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF); 791 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF); 792 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF); 793 value = E1000_RAR_ENTRIES; 794 for (i = 0; i < value; i++) { 795 REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF, 796 0xFFFFFFFF); 797 } 798 799 } else { 800 801 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF); 802 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF); 803 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF); 804 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF); 805 806 } 807 808 value = E1000_MC_TBL_SIZE; 809 for (i = 0; i < value; i++) 810 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF); 811 812 *data = 0; 813 return 0; 814 } 815 816 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) 817 { 818 struct e1000_hw *hw = &adapter->hw; 819 u16 temp; 820 u16 checksum = 0; 821 u16 i; 822 823 *data = 0; 824 /* Read and add up the contents of the EEPROM */ 825 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { 826 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) { 827 *data = 1; 828 break; 829 } 830 checksum += temp; 831 } 832 833 /* If Checksum is not Correct return error else test passed */ 834 if ((checksum != (u16)EEPROM_SUM) && !(*data)) 835 *data = 2; 836 837 return *data; 838 } 839 840 static irqreturn_t e1000_test_intr(int irq, void *data) 841 { 842 struct net_device *netdev = (struct net_device *)data; 843 struct e1000_adapter *adapter = netdev_priv(netdev); 844 struct e1000_hw *hw = &adapter->hw; 845 846 adapter->test_icr |= er32(ICR); 847 848 return IRQ_HANDLED; 849 } 850 851 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) 852 { 853 struct net_device *netdev = adapter->netdev; 854 u32 mask, i = 0; 855 bool shared_int = true; 856 u32 irq = adapter->pdev->irq; 857 struct e1000_hw *hw = &adapter->hw; 858 859 *data = 0; 860 861 /* NOTE: we don't test MSI interrupts here, yet */ 862 /* Hook up test interrupt handler just for this test */ 863 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, 864 netdev)) 865 shared_int = false; 866 else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, 867 netdev->name, netdev)) { 868 *data = 1; 869 return -1; 870 } 871 e_info(hw, "testing %s interrupt\n", (shared_int ? 872 "shared" : "unshared")); 873 874 /* Disable all the interrupts */ 875 ew32(IMC, 0xFFFFFFFF); 876 E1000_WRITE_FLUSH(); 877 msleep(10); 878 879 /* Test each interrupt */ 880 for (; i < 10; i++) { 881 882 /* Interrupt to test */ 883 mask = 1 << i; 884 885 if (!shared_int) { 886 /* Disable the interrupt to be reported in 887 * the cause register and then force the same 888 * interrupt and see if one gets posted. If 889 * an interrupt was posted to the bus, the 890 * test failed. 891 */ 892 adapter->test_icr = 0; 893 ew32(IMC, mask); 894 ew32(ICS, mask); 895 E1000_WRITE_FLUSH(); 896 msleep(10); 897 898 if (adapter->test_icr & mask) { 899 *data = 3; 900 break; 901 } 902 } 903 904 /* Enable the interrupt to be reported in 905 * the cause register and then force the same 906 * interrupt and see if one gets posted. If 907 * an interrupt was not posted to the bus, the 908 * test failed. 909 */ 910 adapter->test_icr = 0; 911 ew32(IMS, mask); 912 ew32(ICS, mask); 913 E1000_WRITE_FLUSH(); 914 msleep(10); 915 916 if (!(adapter->test_icr & mask)) { 917 *data = 4; 918 break; 919 } 920 921 if (!shared_int) { 922 /* Disable the other interrupts to be reported in 923 * the cause register and then force the other 924 * interrupts and see if any get posted. If 925 * an interrupt was posted to the bus, the 926 * test failed. 927 */ 928 adapter->test_icr = 0; 929 ew32(IMC, ~mask & 0x00007FFF); 930 ew32(ICS, ~mask & 0x00007FFF); 931 E1000_WRITE_FLUSH(); 932 msleep(10); 933 934 if (adapter->test_icr) { 935 *data = 5; 936 break; 937 } 938 } 939 } 940 941 /* Disable all the interrupts */ 942 ew32(IMC, 0xFFFFFFFF); 943 E1000_WRITE_FLUSH(); 944 msleep(10); 945 946 /* Unhook test interrupt handler */ 947 free_irq(irq, netdev); 948 949 return *data; 950 } 951 952 static void e1000_free_desc_rings(struct e1000_adapter *adapter) 953 { 954 struct e1000_tx_ring *txdr = &adapter->test_tx_ring; 955 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; 956 struct pci_dev *pdev = adapter->pdev; 957 int i; 958 959 if (txdr->desc && txdr->buffer_info) { 960 for (i = 0; i < txdr->count; i++) { 961 if (txdr->buffer_info[i].dma) 962 dma_unmap_single(&pdev->dev, 963 txdr->buffer_info[i].dma, 964 txdr->buffer_info[i].length, 965 DMA_TO_DEVICE); 966 if (txdr->buffer_info[i].skb) 967 dev_kfree_skb(txdr->buffer_info[i].skb); 968 } 969 } 970 971 if (rxdr->desc && rxdr->buffer_info) { 972 for (i = 0; i < rxdr->count; i++) { 973 if (rxdr->buffer_info[i].dma) 974 dma_unmap_single(&pdev->dev, 975 rxdr->buffer_info[i].dma, 976 rxdr->buffer_info[i].length, 977 DMA_FROM_DEVICE); 978 if (rxdr->buffer_info[i].skb) 979 dev_kfree_skb(rxdr->buffer_info[i].skb); 980 } 981 } 982 983 if (txdr->desc) { 984 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc, 985 txdr->dma); 986 txdr->desc = NULL; 987 } 988 if (rxdr->desc) { 989 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc, 990 rxdr->dma); 991 rxdr->desc = NULL; 992 } 993 994 kfree(txdr->buffer_info); 995 txdr->buffer_info = NULL; 996 kfree(rxdr->buffer_info); 997 rxdr->buffer_info = NULL; 998 } 999 1000 static int e1000_setup_desc_rings(struct e1000_adapter *adapter) 1001 { 1002 struct e1000_hw *hw = &adapter->hw; 1003 struct e1000_tx_ring *txdr = &adapter->test_tx_ring; 1004 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; 1005 struct pci_dev *pdev = adapter->pdev; 1006 u32 rctl; 1007 int i, ret_val; 1008 1009 /* Setup Tx descriptor ring and Tx buffers */ 1010 1011 if (!txdr->count) 1012 txdr->count = E1000_DEFAULT_TXD; 1013 1014 txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer), 1015 GFP_KERNEL); 1016 if (!txdr->buffer_info) { 1017 ret_val = 1; 1018 goto err_nomem; 1019 } 1020 1021 txdr->size = txdr->count * sizeof(struct e1000_tx_desc); 1022 txdr->size = ALIGN(txdr->size, 4096); 1023 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma, 1024 GFP_KERNEL); 1025 if (!txdr->desc) { 1026 ret_val = 2; 1027 goto err_nomem; 1028 } 1029 memset(txdr->desc, 0, txdr->size); 1030 txdr->next_to_use = txdr->next_to_clean = 0; 1031 1032 ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF)); 1033 ew32(TDBAH, ((u64)txdr->dma >> 32)); 1034 ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc)); 1035 ew32(TDH, 0); 1036 ew32(TDT, 0); 1037 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | 1038 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | 1039 E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT); 1040 1041 for (i = 0; i < txdr->count; i++) { 1042 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i); 1043 struct sk_buff *skb; 1044 unsigned int size = 1024; 1045 1046 skb = alloc_skb(size, GFP_KERNEL); 1047 if (!skb) { 1048 ret_val = 3; 1049 goto err_nomem; 1050 } 1051 skb_put(skb, size); 1052 txdr->buffer_info[i].skb = skb; 1053 txdr->buffer_info[i].length = skb->len; 1054 txdr->buffer_info[i].dma = 1055 dma_map_single(&pdev->dev, skb->data, skb->len, 1056 DMA_TO_DEVICE); 1057 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma); 1058 tx_desc->lower.data = cpu_to_le32(skb->len); 1059 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | 1060 E1000_TXD_CMD_IFCS | 1061 E1000_TXD_CMD_RPS); 1062 tx_desc->upper.data = 0; 1063 } 1064 1065 /* Setup Rx descriptor ring and Rx buffers */ 1066 1067 if (!rxdr->count) 1068 rxdr->count = E1000_DEFAULT_RXD; 1069 1070 rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer), 1071 GFP_KERNEL); 1072 if (!rxdr->buffer_info) { 1073 ret_val = 4; 1074 goto err_nomem; 1075 } 1076 1077 rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc); 1078 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma, 1079 GFP_KERNEL); 1080 if (!rxdr->desc) { 1081 ret_val = 5; 1082 goto err_nomem; 1083 } 1084 memset(rxdr->desc, 0, rxdr->size); 1085 rxdr->next_to_use = rxdr->next_to_clean = 0; 1086 1087 rctl = er32(RCTL); 1088 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1089 ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF)); 1090 ew32(RDBAH, ((u64)rxdr->dma >> 32)); 1091 ew32(RDLEN, rxdr->size); 1092 ew32(RDH, 0); 1093 ew32(RDT, 0); 1094 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | 1095 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 1096 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); 1097 ew32(RCTL, rctl); 1098 1099 for (i = 0; i < rxdr->count; i++) { 1100 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i); 1101 struct sk_buff *skb; 1102 1103 skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL); 1104 if (!skb) { 1105 ret_val = 6; 1106 goto err_nomem; 1107 } 1108 skb_reserve(skb, NET_IP_ALIGN); 1109 rxdr->buffer_info[i].skb = skb; 1110 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048; 1111 rxdr->buffer_info[i].dma = 1112 dma_map_single(&pdev->dev, skb->data, 1113 E1000_RXBUFFER_2048, DMA_FROM_DEVICE); 1114 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma); 1115 memset(skb->data, 0x00, skb->len); 1116 } 1117 1118 return 0; 1119 1120 err_nomem: 1121 e1000_free_desc_rings(adapter); 1122 return ret_val; 1123 } 1124 1125 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) 1126 { 1127 struct e1000_hw *hw = &adapter->hw; 1128 1129 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1130 e1000_write_phy_reg(hw, 29, 0x001F); 1131 e1000_write_phy_reg(hw, 30, 0x8FFC); 1132 e1000_write_phy_reg(hw, 29, 0x001A); 1133 e1000_write_phy_reg(hw, 30, 0x8FF0); 1134 } 1135 1136 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter) 1137 { 1138 struct e1000_hw *hw = &adapter->hw; 1139 u16 phy_reg; 1140 1141 /* Because we reset the PHY above, we need to re-force TX_CLK in the 1142 * Extended PHY Specific Control Register to 25MHz clock. This 1143 * value defaults back to a 2.5MHz clock when the PHY is reset. 1144 */ 1145 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); 1146 phy_reg |= M88E1000_EPSCR_TX_CLK_25; 1147 e1000_write_phy_reg(hw, 1148 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg); 1149 1150 /* In addition, because of the s/w reset above, we need to enable 1151 * CRS on TX. This must be set for both full and half duplex 1152 * operation. 1153 */ 1154 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); 1155 phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX; 1156 e1000_write_phy_reg(hw, 1157 M88E1000_PHY_SPEC_CTRL, phy_reg); 1158 } 1159 1160 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter) 1161 { 1162 struct e1000_hw *hw = &adapter->hw; 1163 u32 ctrl_reg; 1164 u16 phy_reg; 1165 1166 /* Setup the Device Control Register for PHY loopback test. */ 1167 1168 ctrl_reg = er32(CTRL); 1169 ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */ 1170 E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1171 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1172 E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */ 1173 E1000_CTRL_FD); /* Force Duplex to FULL */ 1174 1175 ew32(CTRL, ctrl_reg); 1176 1177 /* Read the PHY Specific Control Register (0x10) */ 1178 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); 1179 1180 /* Clear Auto-Crossover bits in PHY Specific Control Register 1181 * (bits 6:5). 1182 */ 1183 phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE; 1184 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg); 1185 1186 /* Perform software reset on the PHY */ 1187 e1000_phy_reset(hw); 1188 1189 /* Have to setup TX_CLK and TX_CRS after software reset */ 1190 e1000_phy_reset_clk_and_crs(adapter); 1191 1192 e1000_write_phy_reg(hw, PHY_CTRL, 0x8100); 1193 1194 /* Wait for reset to complete. */ 1195 udelay(500); 1196 1197 /* Have to setup TX_CLK and TX_CRS after software reset */ 1198 e1000_phy_reset_clk_and_crs(adapter); 1199 1200 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1201 e1000_phy_disable_receiver(adapter); 1202 1203 /* Set the loopback bit in the PHY control register. */ 1204 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); 1205 phy_reg |= MII_CR_LOOPBACK; 1206 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); 1207 1208 /* Setup TX_CLK and TX_CRS one more time. */ 1209 e1000_phy_reset_clk_and_crs(adapter); 1210 1211 /* Check Phy Configuration */ 1212 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); 1213 if (phy_reg != 0x4100) 1214 return 9; 1215 1216 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); 1217 if (phy_reg != 0x0070) 1218 return 10; 1219 1220 e1000_read_phy_reg(hw, 29, &phy_reg); 1221 if (phy_reg != 0x001A) 1222 return 11; 1223 1224 return 0; 1225 } 1226 1227 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) 1228 { 1229 struct e1000_hw *hw = &adapter->hw; 1230 u32 ctrl_reg = 0; 1231 u32 stat_reg = 0; 1232 1233 hw->autoneg = false; 1234 1235 if (hw->phy_type == e1000_phy_m88) { 1236 /* Auto-MDI/MDIX Off */ 1237 e1000_write_phy_reg(hw, 1238 M88E1000_PHY_SPEC_CTRL, 0x0808); 1239 /* reset to update Auto-MDI/MDIX */ 1240 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140); 1241 /* autoneg off */ 1242 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140); 1243 } 1244 1245 ctrl_reg = er32(CTRL); 1246 1247 /* force 1000, set loopback */ 1248 e1000_write_phy_reg(hw, PHY_CTRL, 0x4140); 1249 1250 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1251 ctrl_reg = er32(CTRL); 1252 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1253 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1254 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1255 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1256 E1000_CTRL_FD); /* Force Duplex to FULL */ 1257 1258 if (hw->media_type == e1000_media_type_copper && 1259 hw->phy_type == e1000_phy_m88) 1260 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1261 else { 1262 /* Set the ILOS bit on the fiber Nic is half 1263 * duplex link is detected. */ 1264 stat_reg = er32(STATUS); 1265 if ((stat_reg & E1000_STATUS_FD) == 0) 1266 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); 1267 } 1268 1269 ew32(CTRL, ctrl_reg); 1270 1271 /* Disable the receiver on the PHY so when a cable is plugged in, the 1272 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1273 */ 1274 if (hw->phy_type == e1000_phy_m88) 1275 e1000_phy_disable_receiver(adapter); 1276 1277 udelay(500); 1278 1279 return 0; 1280 } 1281 1282 static int e1000_set_phy_loopback(struct e1000_adapter *adapter) 1283 { 1284 struct e1000_hw *hw = &adapter->hw; 1285 u16 phy_reg = 0; 1286 u16 count = 0; 1287 1288 switch (hw->mac_type) { 1289 case e1000_82543: 1290 if (hw->media_type == e1000_media_type_copper) { 1291 /* Attempt to setup Loopback mode on Non-integrated PHY. 1292 * Some PHY registers get corrupted at random, so 1293 * attempt this 10 times. 1294 */ 1295 while (e1000_nonintegrated_phy_loopback(adapter) && 1296 count++ < 10); 1297 if (count < 11) 1298 return 0; 1299 } 1300 break; 1301 1302 case e1000_82544: 1303 case e1000_82540: 1304 case e1000_82545: 1305 case e1000_82545_rev_3: 1306 case e1000_82546: 1307 case e1000_82546_rev_3: 1308 case e1000_82541: 1309 case e1000_82541_rev_2: 1310 case e1000_82547: 1311 case e1000_82547_rev_2: 1312 return e1000_integrated_phy_loopback(adapter); 1313 break; 1314 default: 1315 /* Default PHY loopback work is to read the MII 1316 * control register and assert bit 14 (loopback mode). 1317 */ 1318 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); 1319 phy_reg |= MII_CR_LOOPBACK; 1320 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); 1321 return 0; 1322 break; 1323 } 1324 1325 return 8; 1326 } 1327 1328 static int e1000_setup_loopback_test(struct e1000_adapter *adapter) 1329 { 1330 struct e1000_hw *hw = &adapter->hw; 1331 u32 rctl; 1332 1333 if (hw->media_type == e1000_media_type_fiber || 1334 hw->media_type == e1000_media_type_internal_serdes) { 1335 switch (hw->mac_type) { 1336 case e1000_82545: 1337 case e1000_82546: 1338 case e1000_82545_rev_3: 1339 case e1000_82546_rev_3: 1340 return e1000_set_phy_loopback(adapter); 1341 break; 1342 default: 1343 rctl = er32(RCTL); 1344 rctl |= E1000_RCTL_LBM_TCVR; 1345 ew32(RCTL, rctl); 1346 return 0; 1347 } 1348 } else if (hw->media_type == e1000_media_type_copper) 1349 return e1000_set_phy_loopback(adapter); 1350 1351 return 7; 1352 } 1353 1354 static void e1000_loopback_cleanup(struct e1000_adapter *adapter) 1355 { 1356 struct e1000_hw *hw = &adapter->hw; 1357 u32 rctl; 1358 u16 phy_reg; 1359 1360 rctl = er32(RCTL); 1361 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1362 ew32(RCTL, rctl); 1363 1364 switch (hw->mac_type) { 1365 case e1000_82545: 1366 case e1000_82546: 1367 case e1000_82545_rev_3: 1368 case e1000_82546_rev_3: 1369 default: 1370 hw->autoneg = true; 1371 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); 1372 if (phy_reg & MII_CR_LOOPBACK) { 1373 phy_reg &= ~MII_CR_LOOPBACK; 1374 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); 1375 e1000_phy_reset(hw); 1376 } 1377 break; 1378 } 1379 } 1380 1381 static void e1000_create_lbtest_frame(struct sk_buff *skb, 1382 unsigned int frame_size) 1383 { 1384 memset(skb->data, 0xFF, frame_size); 1385 frame_size &= ~1; 1386 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); 1387 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); 1388 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); 1389 } 1390 1391 static int e1000_check_lbtest_frame(struct sk_buff *skb, 1392 unsigned int frame_size) 1393 { 1394 frame_size &= ~1; 1395 if (*(skb->data + 3) == 0xFF) { 1396 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && 1397 (*(skb->data + frame_size / 2 + 12) == 0xAF)) { 1398 return 0; 1399 } 1400 } 1401 return 13; 1402 } 1403 1404 static int e1000_run_loopback_test(struct e1000_adapter *adapter) 1405 { 1406 struct e1000_hw *hw = &adapter->hw; 1407 struct e1000_tx_ring *txdr = &adapter->test_tx_ring; 1408 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; 1409 struct pci_dev *pdev = adapter->pdev; 1410 int i, j, k, l, lc, good_cnt, ret_val=0; 1411 unsigned long time; 1412 1413 ew32(RDT, rxdr->count - 1); 1414 1415 /* Calculate the loop count based on the largest descriptor ring 1416 * The idea is to wrap the largest ring a number of times using 64 1417 * send/receive pairs during each loop 1418 */ 1419 1420 if (rxdr->count <= txdr->count) 1421 lc = ((txdr->count / 64) * 2) + 1; 1422 else 1423 lc = ((rxdr->count / 64) * 2) + 1; 1424 1425 k = l = 0; 1426 for (j = 0; j <= lc; j++) { /* loop count loop */ 1427 for (i = 0; i < 64; i++) { /* send the packets */ 1428 e1000_create_lbtest_frame(txdr->buffer_info[i].skb, 1429 1024); 1430 dma_sync_single_for_device(&pdev->dev, 1431 txdr->buffer_info[k].dma, 1432 txdr->buffer_info[k].length, 1433 DMA_TO_DEVICE); 1434 if (unlikely(++k == txdr->count)) k = 0; 1435 } 1436 ew32(TDT, k); 1437 E1000_WRITE_FLUSH(); 1438 msleep(200); 1439 time = jiffies; /* set the start time for the receive */ 1440 good_cnt = 0; 1441 do { /* receive the sent packets */ 1442 dma_sync_single_for_cpu(&pdev->dev, 1443 rxdr->buffer_info[l].dma, 1444 rxdr->buffer_info[l].length, 1445 DMA_FROM_DEVICE); 1446 1447 ret_val = e1000_check_lbtest_frame( 1448 rxdr->buffer_info[l].skb, 1449 1024); 1450 if (!ret_val) 1451 good_cnt++; 1452 if (unlikely(++l == rxdr->count)) l = 0; 1453 /* time + 20 msecs (200 msecs on 2.4) is more than 1454 * enough time to complete the receives, if it's 1455 * exceeded, break and error off 1456 */ 1457 } while (good_cnt < 64 && jiffies < (time + 20)); 1458 if (good_cnt != 64) { 1459 ret_val = 13; /* ret_val is the same as mis-compare */ 1460 break; 1461 } 1462 if (jiffies >= (time + 2)) { 1463 ret_val = 14; /* error code for time out error */ 1464 break; 1465 } 1466 } /* end loop count loop */ 1467 return ret_val; 1468 } 1469 1470 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) 1471 { 1472 *data = e1000_setup_desc_rings(adapter); 1473 if (*data) 1474 goto out; 1475 *data = e1000_setup_loopback_test(adapter); 1476 if (*data) 1477 goto err_loopback; 1478 *data = e1000_run_loopback_test(adapter); 1479 e1000_loopback_cleanup(adapter); 1480 1481 err_loopback: 1482 e1000_free_desc_rings(adapter); 1483 out: 1484 return *data; 1485 } 1486 1487 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) 1488 { 1489 struct e1000_hw *hw = &adapter->hw; 1490 *data = 0; 1491 if (hw->media_type == e1000_media_type_internal_serdes) { 1492 int i = 0; 1493 hw->serdes_has_link = false; 1494 1495 /* On some blade server designs, link establishment 1496 * could take as long as 2-3 minutes */ 1497 do { 1498 e1000_check_for_link(hw); 1499 if (hw->serdes_has_link) 1500 return *data; 1501 msleep(20); 1502 } while (i++ < 3750); 1503 1504 *data = 1; 1505 } else { 1506 e1000_check_for_link(hw); 1507 if (hw->autoneg) /* if auto_neg is set wait for it */ 1508 msleep(4000); 1509 1510 if (!(er32(STATUS) & E1000_STATUS_LU)) { 1511 *data = 1; 1512 } 1513 } 1514 return *data; 1515 } 1516 1517 static int e1000_get_sset_count(struct net_device *netdev, int sset) 1518 { 1519 switch (sset) { 1520 case ETH_SS_TEST: 1521 return E1000_TEST_LEN; 1522 case ETH_SS_STATS: 1523 return E1000_STATS_LEN; 1524 default: 1525 return -EOPNOTSUPP; 1526 } 1527 } 1528 1529 static void e1000_diag_test(struct net_device *netdev, 1530 struct ethtool_test *eth_test, u64 *data) 1531 { 1532 struct e1000_adapter *adapter = netdev_priv(netdev); 1533 struct e1000_hw *hw = &adapter->hw; 1534 bool if_running = netif_running(netdev); 1535 1536 set_bit(__E1000_TESTING, &adapter->flags); 1537 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1538 /* Offline tests */ 1539 1540 /* save speed, duplex, autoneg settings */ 1541 u16 autoneg_advertised = hw->autoneg_advertised; 1542 u8 forced_speed_duplex = hw->forced_speed_duplex; 1543 u8 autoneg = hw->autoneg; 1544 1545 e_info(hw, "offline testing starting\n"); 1546 1547 /* Link test performed before hardware reset so autoneg doesn't 1548 * interfere with test result */ 1549 if (e1000_link_test(adapter, &data[4])) 1550 eth_test->flags |= ETH_TEST_FL_FAILED; 1551 1552 if (if_running) 1553 /* indicate we're in test mode */ 1554 dev_close(netdev); 1555 else 1556 e1000_reset(adapter); 1557 1558 if (e1000_reg_test(adapter, &data[0])) 1559 eth_test->flags |= ETH_TEST_FL_FAILED; 1560 1561 e1000_reset(adapter); 1562 if (e1000_eeprom_test(adapter, &data[1])) 1563 eth_test->flags |= ETH_TEST_FL_FAILED; 1564 1565 e1000_reset(adapter); 1566 if (e1000_intr_test(adapter, &data[2])) 1567 eth_test->flags |= ETH_TEST_FL_FAILED; 1568 1569 e1000_reset(adapter); 1570 /* make sure the phy is powered up */ 1571 e1000_power_up_phy(adapter); 1572 if (e1000_loopback_test(adapter, &data[3])) 1573 eth_test->flags |= ETH_TEST_FL_FAILED; 1574 1575 /* restore speed, duplex, autoneg settings */ 1576 hw->autoneg_advertised = autoneg_advertised; 1577 hw->forced_speed_duplex = forced_speed_duplex; 1578 hw->autoneg = autoneg; 1579 1580 e1000_reset(adapter); 1581 clear_bit(__E1000_TESTING, &adapter->flags); 1582 if (if_running) 1583 dev_open(netdev); 1584 } else { 1585 e_info(hw, "online testing starting\n"); 1586 /* Online tests */ 1587 if (e1000_link_test(adapter, &data[4])) 1588 eth_test->flags |= ETH_TEST_FL_FAILED; 1589 1590 /* Online tests aren't run; pass by default */ 1591 data[0] = 0; 1592 data[1] = 0; 1593 data[2] = 0; 1594 data[3] = 0; 1595 1596 clear_bit(__E1000_TESTING, &adapter->flags); 1597 } 1598 msleep_interruptible(4 * 1000); 1599 } 1600 1601 static int e1000_wol_exclusion(struct e1000_adapter *adapter, 1602 struct ethtool_wolinfo *wol) 1603 { 1604 struct e1000_hw *hw = &adapter->hw; 1605 int retval = 1; /* fail by default */ 1606 1607 switch (hw->device_id) { 1608 case E1000_DEV_ID_82542: 1609 case E1000_DEV_ID_82543GC_FIBER: 1610 case E1000_DEV_ID_82543GC_COPPER: 1611 case E1000_DEV_ID_82544EI_FIBER: 1612 case E1000_DEV_ID_82546EB_QUAD_COPPER: 1613 case E1000_DEV_ID_82545EM_FIBER: 1614 case E1000_DEV_ID_82545EM_COPPER: 1615 case E1000_DEV_ID_82546GB_QUAD_COPPER: 1616 case E1000_DEV_ID_82546GB_PCIE: 1617 /* these don't support WoL at all */ 1618 wol->supported = 0; 1619 break; 1620 case E1000_DEV_ID_82546EB_FIBER: 1621 case E1000_DEV_ID_82546GB_FIBER: 1622 /* Wake events not supported on port B */ 1623 if (er32(STATUS) & E1000_STATUS_FUNC_1) { 1624 wol->supported = 0; 1625 break; 1626 } 1627 /* return success for non excluded adapter ports */ 1628 retval = 0; 1629 break; 1630 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 1631 /* quad port adapters only support WoL on port A */ 1632 if (!adapter->quad_port_a) { 1633 wol->supported = 0; 1634 break; 1635 } 1636 /* return success for non excluded adapter ports */ 1637 retval = 0; 1638 break; 1639 default: 1640 /* dual port cards only support WoL on port A from now on 1641 * unless it was enabled in the eeprom for port B 1642 * so exclude FUNC_1 ports from having WoL enabled */ 1643 if (er32(STATUS) & E1000_STATUS_FUNC_1 && 1644 !adapter->eeprom_wol) { 1645 wol->supported = 0; 1646 break; 1647 } 1648 1649 retval = 0; 1650 } 1651 1652 return retval; 1653 } 1654 1655 static void e1000_get_wol(struct net_device *netdev, 1656 struct ethtool_wolinfo *wol) 1657 { 1658 struct e1000_adapter *adapter = netdev_priv(netdev); 1659 struct e1000_hw *hw = &adapter->hw; 1660 1661 wol->supported = WAKE_UCAST | WAKE_MCAST | 1662 WAKE_BCAST | WAKE_MAGIC; 1663 wol->wolopts = 0; 1664 1665 /* this function will set ->supported = 0 and return 1 if wol is not 1666 * supported by this hardware */ 1667 if (e1000_wol_exclusion(adapter, wol) || 1668 !device_can_wakeup(&adapter->pdev->dev)) 1669 return; 1670 1671 /* apply any specific unsupported masks here */ 1672 switch (hw->device_id) { 1673 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 1674 /* KSP3 does not support UCAST wake-ups */ 1675 wol->supported &= ~WAKE_UCAST; 1676 1677 if (adapter->wol & E1000_WUFC_EX) 1678 e_err(drv, "Interface does not support directed " 1679 "(unicast) frame wake-up packets\n"); 1680 break; 1681 default: 1682 break; 1683 } 1684 1685 if (adapter->wol & E1000_WUFC_EX) 1686 wol->wolopts |= WAKE_UCAST; 1687 if (adapter->wol & E1000_WUFC_MC) 1688 wol->wolopts |= WAKE_MCAST; 1689 if (adapter->wol & E1000_WUFC_BC) 1690 wol->wolopts |= WAKE_BCAST; 1691 if (adapter->wol & E1000_WUFC_MAG) 1692 wol->wolopts |= WAKE_MAGIC; 1693 } 1694 1695 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 1696 { 1697 struct e1000_adapter *adapter = netdev_priv(netdev); 1698 struct e1000_hw *hw = &adapter->hw; 1699 1700 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE)) 1701 return -EOPNOTSUPP; 1702 1703 if (e1000_wol_exclusion(adapter, wol) || 1704 !device_can_wakeup(&adapter->pdev->dev)) 1705 return wol->wolopts ? -EOPNOTSUPP : 0; 1706 1707 switch (hw->device_id) { 1708 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 1709 if (wol->wolopts & WAKE_UCAST) { 1710 e_err(drv, "Interface does not support directed " 1711 "(unicast) frame wake-up packets\n"); 1712 return -EOPNOTSUPP; 1713 } 1714 break; 1715 default: 1716 break; 1717 } 1718 1719 /* these settings will always override what we currently have */ 1720 adapter->wol = 0; 1721 1722 if (wol->wolopts & WAKE_UCAST) 1723 adapter->wol |= E1000_WUFC_EX; 1724 if (wol->wolopts & WAKE_MCAST) 1725 adapter->wol |= E1000_WUFC_MC; 1726 if (wol->wolopts & WAKE_BCAST) 1727 adapter->wol |= E1000_WUFC_BC; 1728 if (wol->wolopts & WAKE_MAGIC) 1729 adapter->wol |= E1000_WUFC_MAG; 1730 1731 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1732 1733 return 0; 1734 } 1735 1736 static int e1000_set_phys_id(struct net_device *netdev, 1737 enum ethtool_phys_id_state state) 1738 { 1739 struct e1000_adapter *adapter = netdev_priv(netdev); 1740 struct e1000_hw *hw = &adapter->hw; 1741 1742 switch (state) { 1743 case ETHTOOL_ID_ACTIVE: 1744 e1000_setup_led(hw); 1745 return 2; 1746 1747 case ETHTOOL_ID_ON: 1748 e1000_led_on(hw); 1749 break; 1750 1751 case ETHTOOL_ID_OFF: 1752 e1000_led_off(hw); 1753 break; 1754 1755 case ETHTOOL_ID_INACTIVE: 1756 e1000_cleanup_led(hw); 1757 } 1758 1759 return 0; 1760 } 1761 1762 static int e1000_get_coalesce(struct net_device *netdev, 1763 struct ethtool_coalesce *ec) 1764 { 1765 struct e1000_adapter *adapter = netdev_priv(netdev); 1766 1767 if (adapter->hw.mac_type < e1000_82545) 1768 return -EOPNOTSUPP; 1769 1770 if (adapter->itr_setting <= 4) 1771 ec->rx_coalesce_usecs = adapter->itr_setting; 1772 else 1773 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; 1774 1775 return 0; 1776 } 1777 1778 static int e1000_set_coalesce(struct net_device *netdev, 1779 struct ethtool_coalesce *ec) 1780 { 1781 struct e1000_adapter *adapter = netdev_priv(netdev); 1782 struct e1000_hw *hw = &adapter->hw; 1783 1784 if (hw->mac_type < e1000_82545) 1785 return -EOPNOTSUPP; 1786 1787 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || 1788 ((ec->rx_coalesce_usecs > 4) && 1789 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || 1790 (ec->rx_coalesce_usecs == 2)) 1791 return -EINVAL; 1792 1793 if (ec->rx_coalesce_usecs == 4) { 1794 adapter->itr = adapter->itr_setting = 4; 1795 } else if (ec->rx_coalesce_usecs <= 3) { 1796 adapter->itr = 20000; 1797 adapter->itr_setting = ec->rx_coalesce_usecs; 1798 } else { 1799 adapter->itr = (1000000 / ec->rx_coalesce_usecs); 1800 adapter->itr_setting = adapter->itr & ~3; 1801 } 1802 1803 if (adapter->itr_setting != 0) 1804 ew32(ITR, 1000000000 / (adapter->itr * 256)); 1805 else 1806 ew32(ITR, 0); 1807 1808 return 0; 1809 } 1810 1811 static int e1000_nway_reset(struct net_device *netdev) 1812 { 1813 struct e1000_adapter *adapter = netdev_priv(netdev); 1814 if (netif_running(netdev)) 1815 e1000_reinit_locked(adapter); 1816 return 0; 1817 } 1818 1819 static void e1000_get_ethtool_stats(struct net_device *netdev, 1820 struct ethtool_stats *stats, u64 *data) 1821 { 1822 struct e1000_adapter *adapter = netdev_priv(netdev); 1823 int i; 1824 char *p = NULL; 1825 1826 e1000_update_stats(adapter); 1827 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 1828 switch (e1000_gstrings_stats[i].type) { 1829 case NETDEV_STATS: 1830 p = (char *) netdev + 1831 e1000_gstrings_stats[i].stat_offset; 1832 break; 1833 case E1000_STATS: 1834 p = (char *) adapter + 1835 e1000_gstrings_stats[i].stat_offset; 1836 break; 1837 } 1838 1839 data[i] = (e1000_gstrings_stats[i].sizeof_stat == 1840 sizeof(u64)) ? *(u64 *)p : *(u32 *)p; 1841 } 1842 /* BUG_ON(i != E1000_STATS_LEN); */ 1843 } 1844 1845 static void e1000_get_strings(struct net_device *netdev, u32 stringset, 1846 u8 *data) 1847 { 1848 u8 *p = data; 1849 int i; 1850 1851 switch (stringset) { 1852 case ETH_SS_TEST: 1853 memcpy(data, *e1000_gstrings_test, 1854 sizeof(e1000_gstrings_test)); 1855 break; 1856 case ETH_SS_STATS: 1857 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 1858 memcpy(p, e1000_gstrings_stats[i].stat_string, 1859 ETH_GSTRING_LEN); 1860 p += ETH_GSTRING_LEN; 1861 } 1862 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */ 1863 break; 1864 } 1865 } 1866 1867 static const struct ethtool_ops e1000_ethtool_ops = { 1868 .get_settings = e1000_get_settings, 1869 .set_settings = e1000_set_settings, 1870 .get_drvinfo = e1000_get_drvinfo, 1871 .get_regs_len = e1000_get_regs_len, 1872 .get_regs = e1000_get_regs, 1873 .get_wol = e1000_get_wol, 1874 .set_wol = e1000_set_wol, 1875 .get_msglevel = e1000_get_msglevel, 1876 .set_msglevel = e1000_set_msglevel, 1877 .nway_reset = e1000_nway_reset, 1878 .get_link = e1000_get_link, 1879 .get_eeprom_len = e1000_get_eeprom_len, 1880 .get_eeprom = e1000_get_eeprom, 1881 .set_eeprom = e1000_set_eeprom, 1882 .get_ringparam = e1000_get_ringparam, 1883 .set_ringparam = e1000_set_ringparam, 1884 .get_pauseparam = e1000_get_pauseparam, 1885 .set_pauseparam = e1000_set_pauseparam, 1886 .self_test = e1000_diag_test, 1887 .get_strings = e1000_get_strings, 1888 .set_phys_id = e1000_set_phys_id, 1889 .get_ethtool_stats = e1000_get_ethtool_stats, 1890 .get_sset_count = e1000_get_sset_count, 1891 .get_coalesce = e1000_get_coalesce, 1892 .set_coalesce = e1000_set_coalesce, 1893 .get_ts_info = ethtool_op_get_ts_info, 1894 }; 1895 1896 void e1000_set_ethtool_ops(struct net_device *netdev) 1897 { 1898 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops); 1899 } 1900