xref: /linux/drivers/net/ethernet/intel/e1000/e1000_ethtool.c (revision 0d456bad36d42d16022be045c8a53ddbb59ee478)
1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 /* ethtool support for e1000 */
30 
31 #include "e1000.h"
32 #include <asm/uaccess.h>
33 
34 enum {NETDEV_STATS, E1000_STATS};
35 
36 struct e1000_stats {
37 	char stat_string[ETH_GSTRING_LEN];
38 	int type;
39 	int sizeof_stat;
40 	int stat_offset;
41 };
42 
43 #define E1000_STAT(m)		E1000_STATS, \
44 				sizeof(((struct e1000_adapter *)0)->m), \
45 		      		offsetof(struct e1000_adapter, m)
46 #define E1000_NETDEV_STAT(m)	NETDEV_STATS, \
47 				sizeof(((struct net_device *)0)->m), \
48 				offsetof(struct net_device, m)
49 
50 static const struct e1000_stats e1000_gstrings_stats[] = {
51 	{ "rx_packets", E1000_STAT(stats.gprc) },
52 	{ "tx_packets", E1000_STAT(stats.gptc) },
53 	{ "rx_bytes", E1000_STAT(stats.gorcl) },
54 	{ "tx_bytes", E1000_STAT(stats.gotcl) },
55 	{ "rx_broadcast", E1000_STAT(stats.bprc) },
56 	{ "tx_broadcast", E1000_STAT(stats.bptc) },
57 	{ "rx_multicast", E1000_STAT(stats.mprc) },
58 	{ "tx_multicast", E1000_STAT(stats.mptc) },
59 	{ "rx_errors", E1000_STAT(stats.rxerrc) },
60 	{ "tx_errors", E1000_STAT(stats.txerrc) },
61 	{ "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
62 	{ "multicast", E1000_STAT(stats.mprc) },
63 	{ "collisions", E1000_STAT(stats.colc) },
64 	{ "rx_length_errors", E1000_STAT(stats.rlerrc) },
65 	{ "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
66 	{ "rx_crc_errors", E1000_STAT(stats.crcerrs) },
67 	{ "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
68 	{ "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
69 	{ "rx_missed_errors", E1000_STAT(stats.mpc) },
70 	{ "tx_aborted_errors", E1000_STAT(stats.ecol) },
71 	{ "tx_carrier_errors", E1000_STAT(stats.tncrs) },
72 	{ "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
73 	{ "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
74 	{ "tx_window_errors", E1000_STAT(stats.latecol) },
75 	{ "tx_abort_late_coll", E1000_STAT(stats.latecol) },
76 	{ "tx_deferred_ok", E1000_STAT(stats.dc) },
77 	{ "tx_single_coll_ok", E1000_STAT(stats.scc) },
78 	{ "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
79 	{ "tx_timeout_count", E1000_STAT(tx_timeout_count) },
80 	{ "tx_restart_queue", E1000_STAT(restart_queue) },
81 	{ "rx_long_length_errors", E1000_STAT(stats.roc) },
82 	{ "rx_short_length_errors", E1000_STAT(stats.ruc) },
83 	{ "rx_align_errors", E1000_STAT(stats.algnerrc) },
84 	{ "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
85 	{ "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
86 	{ "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
87 	{ "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
88 	{ "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
89 	{ "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
90 	{ "rx_long_byte_count", E1000_STAT(stats.gorcl) },
91 	{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
92 	{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
93 	{ "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
94 	{ "tx_smbus", E1000_STAT(stats.mgptc) },
95 	{ "rx_smbus", E1000_STAT(stats.mgprc) },
96 	{ "dropped_smbus", E1000_STAT(stats.mgpdc) },
97 };
98 
99 #define E1000_QUEUE_STATS_LEN 0
100 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
102 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
103 	"Register test  (offline)", "Eeprom test    (offline)",
104 	"Interrupt test (offline)", "Loopback test  (offline)",
105 	"Link test   (on/offline)"
106 };
107 #define E1000_TEST_LEN	ARRAY_SIZE(e1000_gstrings_test)
108 
109 static int e1000_get_settings(struct net_device *netdev,
110 			      struct ethtool_cmd *ecmd)
111 {
112 	struct e1000_adapter *adapter = netdev_priv(netdev);
113 	struct e1000_hw *hw = &adapter->hw;
114 
115 	if (hw->media_type == e1000_media_type_copper) {
116 
117 		ecmd->supported = (SUPPORTED_10baseT_Half |
118 		                   SUPPORTED_10baseT_Full |
119 		                   SUPPORTED_100baseT_Half |
120 		                   SUPPORTED_100baseT_Full |
121 		                   SUPPORTED_1000baseT_Full|
122 		                   SUPPORTED_Autoneg |
123 		                   SUPPORTED_TP);
124 		ecmd->advertising = ADVERTISED_TP;
125 
126 		if (hw->autoneg == 1) {
127 			ecmd->advertising |= ADVERTISED_Autoneg;
128 			/* the e1000 autoneg seems to match ethtool nicely */
129 			ecmd->advertising |= hw->autoneg_advertised;
130 		}
131 
132 		ecmd->port = PORT_TP;
133 		ecmd->phy_address = hw->phy_addr;
134 
135 		if (hw->mac_type == e1000_82543)
136 			ecmd->transceiver = XCVR_EXTERNAL;
137 		else
138 			ecmd->transceiver = XCVR_INTERNAL;
139 
140 	} else {
141 		ecmd->supported   = (SUPPORTED_1000baseT_Full |
142 				     SUPPORTED_FIBRE |
143 				     SUPPORTED_Autoneg);
144 
145 		ecmd->advertising = (ADVERTISED_1000baseT_Full |
146 				     ADVERTISED_FIBRE |
147 				     ADVERTISED_Autoneg);
148 
149 		ecmd->port = PORT_FIBRE;
150 
151 		if (hw->mac_type >= e1000_82545)
152 			ecmd->transceiver = XCVR_INTERNAL;
153 		else
154 			ecmd->transceiver = XCVR_EXTERNAL;
155 	}
156 
157 	if (er32(STATUS) & E1000_STATUS_LU) {
158 
159 		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
160 		                                   &adapter->link_duplex);
161 		ethtool_cmd_speed_set(ecmd, adapter->link_speed);
162 
163 		/* unfortunately FULL_DUPLEX != DUPLEX_FULL
164 		 *          and HALF_DUPLEX != DUPLEX_HALF */
165 
166 		if (adapter->link_duplex == FULL_DUPLEX)
167 			ecmd->duplex = DUPLEX_FULL;
168 		else
169 			ecmd->duplex = DUPLEX_HALF;
170 	} else {
171 		ethtool_cmd_speed_set(ecmd, -1);
172 		ecmd->duplex = -1;
173 	}
174 
175 	ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
176 			 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
177 
178 	/* MDI-X => 1; MDI => 0 */
179 	if ((hw->media_type == e1000_media_type_copper) &&
180 	    netif_carrier_ok(netdev))
181 		ecmd->eth_tp_mdix = (!!adapter->phy_info.mdix_mode ?
182 							ETH_TP_MDI_X :
183 							ETH_TP_MDI);
184 	else
185 		ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
186 
187 	if (hw->mdix == AUTO_ALL_MODES)
188 		ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
189 	else
190 		ecmd->eth_tp_mdix_ctrl = hw->mdix;
191 	return 0;
192 }
193 
194 static int e1000_set_settings(struct net_device *netdev,
195 			      struct ethtool_cmd *ecmd)
196 {
197 	struct e1000_adapter *adapter = netdev_priv(netdev);
198 	struct e1000_hw *hw = &adapter->hw;
199 
200 	/*
201 	 * MDI setting is only allowed when autoneg enabled because
202 	 * some hardware doesn't allow MDI setting when speed or
203 	 * duplex is forced.
204 	 */
205 	if (ecmd->eth_tp_mdix_ctrl) {
206 		if (hw->media_type != e1000_media_type_copper)
207 			return -EOPNOTSUPP;
208 
209 		if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
210 		    (ecmd->autoneg != AUTONEG_ENABLE)) {
211 			e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
212 			return -EINVAL;
213 		}
214 	}
215 
216 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
217 		msleep(1);
218 
219 	if (ecmd->autoneg == AUTONEG_ENABLE) {
220 		hw->autoneg = 1;
221 		if (hw->media_type == e1000_media_type_fiber)
222 			hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
223 				     ADVERTISED_FIBRE |
224 				     ADVERTISED_Autoneg;
225 		else
226 			hw->autoneg_advertised = ecmd->advertising |
227 			                         ADVERTISED_TP |
228 			                         ADVERTISED_Autoneg;
229 		ecmd->advertising = hw->autoneg_advertised;
230 	} else {
231 		u32 speed = ethtool_cmd_speed(ecmd);
232 		/* calling this overrides forced MDI setting */
233 		if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
234 			clear_bit(__E1000_RESETTING, &adapter->flags);
235 			return -EINVAL;
236 		}
237 	}
238 
239 	/* MDI-X => 2; MDI => 1; Auto => 3 */
240 	if (ecmd->eth_tp_mdix_ctrl) {
241 		if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
242 			hw->mdix = AUTO_ALL_MODES;
243 		else
244 			hw->mdix = ecmd->eth_tp_mdix_ctrl;
245 	}
246 
247 	/* reset the link */
248 
249 	if (netif_running(adapter->netdev)) {
250 		e1000_down(adapter);
251 		e1000_up(adapter);
252 	} else
253 		e1000_reset(adapter);
254 
255 	clear_bit(__E1000_RESETTING, &adapter->flags);
256 	return 0;
257 }
258 
259 static u32 e1000_get_link(struct net_device *netdev)
260 {
261 	struct e1000_adapter *adapter = netdev_priv(netdev);
262 
263 	/*
264 	 * If the link is not reported up to netdev, interrupts are disabled,
265 	 * and so the physical link state may have changed since we last
266 	 * looked. Set get_link_status to make sure that the true link
267 	 * state is interrogated, rather than pulling a cached and possibly
268 	 * stale link state from the driver.
269 	 */
270 	if (!netif_carrier_ok(netdev))
271 		adapter->hw.get_link_status = 1;
272 
273 	return e1000_has_link(adapter);
274 }
275 
276 static void e1000_get_pauseparam(struct net_device *netdev,
277 				 struct ethtool_pauseparam *pause)
278 {
279 	struct e1000_adapter *adapter = netdev_priv(netdev);
280 	struct e1000_hw *hw = &adapter->hw;
281 
282 	pause->autoneg =
283 		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
284 
285 	if (hw->fc == E1000_FC_RX_PAUSE)
286 		pause->rx_pause = 1;
287 	else if (hw->fc == E1000_FC_TX_PAUSE)
288 		pause->tx_pause = 1;
289 	else if (hw->fc == E1000_FC_FULL) {
290 		pause->rx_pause = 1;
291 		pause->tx_pause = 1;
292 	}
293 }
294 
295 static int e1000_set_pauseparam(struct net_device *netdev,
296 				struct ethtool_pauseparam *pause)
297 {
298 	struct e1000_adapter *adapter = netdev_priv(netdev);
299 	struct e1000_hw *hw = &adapter->hw;
300 	int retval = 0;
301 
302 	adapter->fc_autoneg = pause->autoneg;
303 
304 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
305 		msleep(1);
306 
307 	if (pause->rx_pause && pause->tx_pause)
308 		hw->fc = E1000_FC_FULL;
309 	else if (pause->rx_pause && !pause->tx_pause)
310 		hw->fc = E1000_FC_RX_PAUSE;
311 	else if (!pause->rx_pause && pause->tx_pause)
312 		hw->fc = E1000_FC_TX_PAUSE;
313 	else if (!pause->rx_pause && !pause->tx_pause)
314 		hw->fc = E1000_FC_NONE;
315 
316 	hw->original_fc = hw->fc;
317 
318 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
319 		if (netif_running(adapter->netdev)) {
320 			e1000_down(adapter);
321 			e1000_up(adapter);
322 		} else
323 			e1000_reset(adapter);
324 	} else
325 		retval = ((hw->media_type == e1000_media_type_fiber) ?
326 			  e1000_setup_link(hw) : e1000_force_mac_fc(hw));
327 
328 	clear_bit(__E1000_RESETTING, &adapter->flags);
329 	return retval;
330 }
331 
332 static u32 e1000_get_msglevel(struct net_device *netdev)
333 {
334 	struct e1000_adapter *adapter = netdev_priv(netdev);
335 	return adapter->msg_enable;
336 }
337 
338 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
339 {
340 	struct e1000_adapter *adapter = netdev_priv(netdev);
341 	adapter->msg_enable = data;
342 }
343 
344 static int e1000_get_regs_len(struct net_device *netdev)
345 {
346 #define E1000_REGS_LEN 32
347 	return E1000_REGS_LEN * sizeof(u32);
348 }
349 
350 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
351 			   void *p)
352 {
353 	struct e1000_adapter *adapter = netdev_priv(netdev);
354 	struct e1000_hw *hw = &adapter->hw;
355 	u32 *regs_buff = p;
356 	u16 phy_data;
357 
358 	memset(p, 0, E1000_REGS_LEN * sizeof(u32));
359 
360 	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
361 
362 	regs_buff[0]  = er32(CTRL);
363 	regs_buff[1]  = er32(STATUS);
364 
365 	regs_buff[2]  = er32(RCTL);
366 	regs_buff[3]  = er32(RDLEN);
367 	regs_buff[4]  = er32(RDH);
368 	regs_buff[5]  = er32(RDT);
369 	regs_buff[6]  = er32(RDTR);
370 
371 	regs_buff[7]  = er32(TCTL);
372 	regs_buff[8]  = er32(TDLEN);
373 	regs_buff[9]  = er32(TDH);
374 	regs_buff[10] = er32(TDT);
375 	regs_buff[11] = er32(TIDV);
376 
377 	regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
378 	if (hw->phy_type == e1000_phy_igp) {
379 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
380 				    IGP01E1000_PHY_AGC_A);
381 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
382 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
383 		regs_buff[13] = (u32)phy_data; /* cable length */
384 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
385 				    IGP01E1000_PHY_AGC_B);
386 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
387 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
388 		regs_buff[14] = (u32)phy_data; /* cable length */
389 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
390 				    IGP01E1000_PHY_AGC_C);
391 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
392 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
393 		regs_buff[15] = (u32)phy_data; /* cable length */
394 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
395 				    IGP01E1000_PHY_AGC_D);
396 		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
397 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
398 		regs_buff[16] = (u32)phy_data; /* cable length */
399 		regs_buff[17] = 0; /* extended 10bt distance (not needed) */
400 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
401 		e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
402 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
403 		regs_buff[18] = (u32)phy_data; /* cable polarity */
404 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
405 				    IGP01E1000_PHY_PCS_INIT_REG);
406 		e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
407 				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
408 		regs_buff[19] = (u32)phy_data; /* cable polarity */
409 		regs_buff[20] = 0; /* polarity correction enabled (always) */
410 		regs_buff[22] = 0; /* phy receive errors (unavailable) */
411 		regs_buff[23] = regs_buff[18]; /* mdix mode */
412 		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
413 	} else {
414 		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
415 		regs_buff[13] = (u32)phy_data; /* cable length */
416 		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
417 		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
418 		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
419 		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
420 		regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
421 		regs_buff[18] = regs_buff[13]; /* cable polarity */
422 		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
423 		regs_buff[20] = regs_buff[17]; /* polarity correction */
424 		/* phy receive errors */
425 		regs_buff[22] = adapter->phy_stats.receive_errors;
426 		regs_buff[23] = regs_buff[13]; /* mdix mode */
427 	}
428 	regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
429 	e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
430 	regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
431 	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
432 	if (hw->mac_type >= e1000_82540 &&
433 	    hw->media_type == e1000_media_type_copper) {
434 		regs_buff[26] = er32(MANC);
435 	}
436 }
437 
438 static int e1000_get_eeprom_len(struct net_device *netdev)
439 {
440 	struct e1000_adapter *adapter = netdev_priv(netdev);
441 	struct e1000_hw *hw = &adapter->hw;
442 
443 	return hw->eeprom.word_size * 2;
444 }
445 
446 static int e1000_get_eeprom(struct net_device *netdev,
447 			    struct ethtool_eeprom *eeprom, u8 *bytes)
448 {
449 	struct e1000_adapter *adapter = netdev_priv(netdev);
450 	struct e1000_hw *hw = &adapter->hw;
451 	u16 *eeprom_buff;
452 	int first_word, last_word;
453 	int ret_val = 0;
454 	u16 i;
455 
456 	if (eeprom->len == 0)
457 		return -EINVAL;
458 
459 	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
460 
461 	first_word = eeprom->offset >> 1;
462 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
463 
464 	eeprom_buff = kmalloc(sizeof(u16) *
465 			(last_word - first_word + 1), GFP_KERNEL);
466 	if (!eeprom_buff)
467 		return -ENOMEM;
468 
469 	if (hw->eeprom.type == e1000_eeprom_spi)
470 		ret_val = e1000_read_eeprom(hw, first_word,
471 					    last_word - first_word + 1,
472 					    eeprom_buff);
473 	else {
474 		for (i = 0; i < last_word - first_word + 1; i++) {
475 			ret_val = e1000_read_eeprom(hw, first_word + i, 1,
476 						    &eeprom_buff[i]);
477 			if (ret_val)
478 				break;
479 		}
480 	}
481 
482 	/* Device's eeprom is always little-endian, word addressable */
483 	for (i = 0; i < last_word - first_word + 1; i++)
484 		le16_to_cpus(&eeprom_buff[i]);
485 
486 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
487 			eeprom->len);
488 	kfree(eeprom_buff);
489 
490 	return ret_val;
491 }
492 
493 static int e1000_set_eeprom(struct net_device *netdev,
494 			    struct ethtool_eeprom *eeprom, u8 *bytes)
495 {
496 	struct e1000_adapter *adapter = netdev_priv(netdev);
497 	struct e1000_hw *hw = &adapter->hw;
498 	u16 *eeprom_buff;
499 	void *ptr;
500 	int max_len, first_word, last_word, ret_val = 0;
501 	u16 i;
502 
503 	if (eeprom->len == 0)
504 		return -EOPNOTSUPP;
505 
506 	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
507 		return -EFAULT;
508 
509 	max_len = hw->eeprom.word_size * 2;
510 
511 	first_word = eeprom->offset >> 1;
512 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
513 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
514 	if (!eeprom_buff)
515 		return -ENOMEM;
516 
517 	ptr = (void *)eeprom_buff;
518 
519 	if (eeprom->offset & 1) {
520 		/* need read/modify/write of first changed EEPROM word */
521 		/* only the second byte of the word is being modified */
522 		ret_val = e1000_read_eeprom(hw, first_word, 1,
523 					    &eeprom_buff[0]);
524 		ptr++;
525 	}
526 	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
527 		/* need read/modify/write of last changed EEPROM word */
528 		/* only the first byte of the word is being modified */
529 		ret_val = e1000_read_eeprom(hw, last_word, 1,
530 		                  &eeprom_buff[last_word - first_word]);
531 	}
532 
533 	/* Device's eeprom is always little-endian, word addressable */
534 	for (i = 0; i < last_word - first_word + 1; i++)
535 		le16_to_cpus(&eeprom_buff[i]);
536 
537 	memcpy(ptr, bytes, eeprom->len);
538 
539 	for (i = 0; i < last_word - first_word + 1; i++)
540 		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
541 
542 	ret_val = e1000_write_eeprom(hw, first_word,
543 				     last_word - first_word + 1, eeprom_buff);
544 
545 	/* Update the checksum over the first part of the EEPROM if needed */
546 	if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
547 		e1000_update_eeprom_checksum(hw);
548 
549 	kfree(eeprom_buff);
550 	return ret_val;
551 }
552 
553 static void e1000_get_drvinfo(struct net_device *netdev,
554 			      struct ethtool_drvinfo *drvinfo)
555 {
556 	struct e1000_adapter *adapter = netdev_priv(netdev);
557 
558 	strlcpy(drvinfo->driver,  e1000_driver_name,
559 		sizeof(drvinfo->driver));
560 	strlcpy(drvinfo->version, e1000_driver_version,
561 		sizeof(drvinfo->version));
562 
563 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
564 		sizeof(drvinfo->bus_info));
565 	drvinfo->regdump_len = e1000_get_regs_len(netdev);
566 	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
567 }
568 
569 static void e1000_get_ringparam(struct net_device *netdev,
570 				struct ethtool_ringparam *ring)
571 {
572 	struct e1000_adapter *adapter = netdev_priv(netdev);
573 	struct e1000_hw *hw = &adapter->hw;
574 	e1000_mac_type mac_type = hw->mac_type;
575 	struct e1000_tx_ring *txdr = adapter->tx_ring;
576 	struct e1000_rx_ring *rxdr = adapter->rx_ring;
577 
578 	ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
579 		E1000_MAX_82544_RXD;
580 	ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
581 		E1000_MAX_82544_TXD;
582 	ring->rx_pending = rxdr->count;
583 	ring->tx_pending = txdr->count;
584 }
585 
586 static int e1000_set_ringparam(struct net_device *netdev,
587 			       struct ethtool_ringparam *ring)
588 {
589 	struct e1000_adapter *adapter = netdev_priv(netdev);
590 	struct e1000_hw *hw = &adapter->hw;
591 	e1000_mac_type mac_type = hw->mac_type;
592 	struct e1000_tx_ring *txdr, *tx_old;
593 	struct e1000_rx_ring *rxdr, *rx_old;
594 	int i, err;
595 
596 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
597 		return -EINVAL;
598 
599 	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
600 		msleep(1);
601 
602 	if (netif_running(adapter->netdev))
603 		e1000_down(adapter);
604 
605 	tx_old = adapter->tx_ring;
606 	rx_old = adapter->rx_ring;
607 
608 	err = -ENOMEM;
609 	txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL);
610 	if (!txdr)
611 		goto err_alloc_tx;
612 
613 	rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL);
614 	if (!rxdr)
615 		goto err_alloc_rx;
616 
617 	adapter->tx_ring = txdr;
618 	adapter->rx_ring = rxdr;
619 
620 	rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD);
621 	rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ?
622 		E1000_MAX_RXD : E1000_MAX_82544_RXD));
623 	rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
624 
625 	txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD);
626 	txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ?
627 		E1000_MAX_TXD : E1000_MAX_82544_TXD));
628 	txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
629 
630 	for (i = 0; i < adapter->num_tx_queues; i++)
631 		txdr[i].count = txdr->count;
632 	for (i = 0; i < adapter->num_rx_queues; i++)
633 		rxdr[i].count = rxdr->count;
634 
635 	if (netif_running(adapter->netdev)) {
636 		/* Try to get new resources before deleting old */
637 		err = e1000_setup_all_rx_resources(adapter);
638 		if (err)
639 			goto err_setup_rx;
640 		err = e1000_setup_all_tx_resources(adapter);
641 		if (err)
642 			goto err_setup_tx;
643 
644 		/* save the new, restore the old in order to free it,
645 		 * then restore the new back again */
646 
647 		adapter->rx_ring = rx_old;
648 		adapter->tx_ring = tx_old;
649 		e1000_free_all_rx_resources(adapter);
650 		e1000_free_all_tx_resources(adapter);
651 		kfree(tx_old);
652 		kfree(rx_old);
653 		adapter->rx_ring = rxdr;
654 		adapter->tx_ring = txdr;
655 		err = e1000_up(adapter);
656 		if (err)
657 			goto err_setup;
658 	}
659 
660 	clear_bit(__E1000_RESETTING, &adapter->flags);
661 	return 0;
662 err_setup_tx:
663 	e1000_free_all_rx_resources(adapter);
664 err_setup_rx:
665 	adapter->rx_ring = rx_old;
666 	adapter->tx_ring = tx_old;
667 	kfree(rxdr);
668 err_alloc_rx:
669 	kfree(txdr);
670 err_alloc_tx:
671 	e1000_up(adapter);
672 err_setup:
673 	clear_bit(__E1000_RESETTING, &adapter->flags);
674 	return err;
675 }
676 
677 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
678 			     u32 mask, u32 write)
679 {
680 	struct e1000_hw *hw = &adapter->hw;
681 	static const u32 test[] =
682 		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
683 	u8 __iomem *address = hw->hw_addr + reg;
684 	u32 read;
685 	int i;
686 
687 	for (i = 0; i < ARRAY_SIZE(test); i++) {
688 		writel(write & test[i], address);
689 		read = readl(address);
690 		if (read != (write & test[i] & mask)) {
691 			e_err(drv, "pattern test reg %04X failed: "
692 			      "got 0x%08X expected 0x%08X\n",
693 			      reg, read, (write & test[i] & mask));
694 			*data = reg;
695 			return true;
696 		}
697 	}
698 	return false;
699 }
700 
701 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
702 			      u32 mask, u32 write)
703 {
704 	struct e1000_hw *hw = &adapter->hw;
705 	u8 __iomem *address = hw->hw_addr + reg;
706 	u32 read;
707 
708 	writel(write & mask, address);
709 	read = readl(address);
710 	if ((read & mask) != (write & mask)) {
711 		e_err(drv, "set/check reg %04X test failed: "
712 		      "got 0x%08X expected 0x%08X\n",
713 		      reg, (read & mask), (write & mask));
714 		*data = reg;
715 		return true;
716 	}
717 	return false;
718 }
719 
720 #define REG_PATTERN_TEST(reg, mask, write)			     \
721 	do {							     \
722 		if (reg_pattern_test(adapter, data,		     \
723 			     (hw->mac_type >= e1000_82543)   \
724 			     ? E1000_##reg : E1000_82542_##reg,	     \
725 			     mask, write))			     \
726 			return 1;				     \
727 	} while (0)
728 
729 #define REG_SET_AND_CHECK(reg, mask, write)			     \
730 	do {							     \
731 		if (reg_set_and_check(adapter, data,		     \
732 			      (hw->mac_type >= e1000_82543)  \
733 			      ? E1000_##reg : E1000_82542_##reg,     \
734 			      mask, write))			     \
735 			return 1;				     \
736 	} while (0)
737 
738 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
739 {
740 	u32 value, before, after;
741 	u32 i, toggle;
742 	struct e1000_hw *hw = &adapter->hw;
743 
744 	/* The status register is Read Only, so a write should fail.
745 	 * Some bits that get toggled are ignored.
746 	 */
747 
748 	/* there are several bits on newer hardware that are r/w */
749 	toggle = 0xFFFFF833;
750 
751 	before = er32(STATUS);
752 	value = (er32(STATUS) & toggle);
753 	ew32(STATUS, toggle);
754 	after = er32(STATUS) & toggle;
755 	if (value != after) {
756 		e_err(drv, "failed STATUS register test got: "
757 		      "0x%08X expected: 0x%08X\n", after, value);
758 		*data = 1;
759 		return 1;
760 	}
761 	/* restore previous status */
762 	ew32(STATUS, before);
763 
764 	REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
765 	REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
766 	REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
767 	REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
768 
769 	REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
770 	REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
771 	REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
772 	REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
773 	REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
774 	REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
775 	REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
776 	REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
777 	REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
778 	REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
779 
780 	REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
781 
782 	before = 0x06DFB3FE;
783 	REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
784 	REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
785 
786 	if (hw->mac_type >= e1000_82543) {
787 
788 		REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
789 		REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
790 		REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
791 		REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
792 		REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
793 		value = E1000_RAR_ENTRIES;
794 		for (i = 0; i < value; i++) {
795 			REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
796 			                 0xFFFFFFFF);
797 		}
798 
799 	} else {
800 
801 		REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
802 		REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
803 		REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
804 		REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
805 
806 	}
807 
808 	value = E1000_MC_TBL_SIZE;
809 	for (i = 0; i < value; i++)
810 		REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
811 
812 	*data = 0;
813 	return 0;
814 }
815 
816 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
817 {
818 	struct e1000_hw *hw = &adapter->hw;
819 	u16 temp;
820 	u16 checksum = 0;
821 	u16 i;
822 
823 	*data = 0;
824 	/* Read and add up the contents of the EEPROM */
825 	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
826 		if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
827 			*data = 1;
828 			break;
829 		}
830 		checksum += temp;
831 	}
832 
833 	/* If Checksum is not Correct return error else test passed */
834 	if ((checksum != (u16)EEPROM_SUM) && !(*data))
835 		*data = 2;
836 
837 	return *data;
838 }
839 
840 static irqreturn_t e1000_test_intr(int irq, void *data)
841 {
842 	struct net_device *netdev = (struct net_device *)data;
843 	struct e1000_adapter *adapter = netdev_priv(netdev);
844 	struct e1000_hw *hw = &adapter->hw;
845 
846 	adapter->test_icr |= er32(ICR);
847 
848 	return IRQ_HANDLED;
849 }
850 
851 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
852 {
853 	struct net_device *netdev = adapter->netdev;
854 	u32 mask, i = 0;
855 	bool shared_int = true;
856 	u32 irq = adapter->pdev->irq;
857 	struct e1000_hw *hw = &adapter->hw;
858 
859 	*data = 0;
860 
861 	/* NOTE: we don't test MSI interrupts here, yet */
862 	/* Hook up test interrupt handler just for this test */
863 	if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
864 	                 netdev))
865 		shared_int = false;
866 	else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
867 	         netdev->name, netdev)) {
868 		*data = 1;
869 		return -1;
870 	}
871 	e_info(hw, "testing %s interrupt\n", (shared_int ?
872 	       "shared" : "unshared"));
873 
874 	/* Disable all the interrupts */
875 	ew32(IMC, 0xFFFFFFFF);
876 	E1000_WRITE_FLUSH();
877 	msleep(10);
878 
879 	/* Test each interrupt */
880 	for (; i < 10; i++) {
881 
882 		/* Interrupt to test */
883 		mask = 1 << i;
884 
885 		if (!shared_int) {
886 			/* Disable the interrupt to be reported in
887 			 * the cause register and then force the same
888 			 * interrupt and see if one gets posted.  If
889 			 * an interrupt was posted to the bus, the
890 			 * test failed.
891 			 */
892 			adapter->test_icr = 0;
893 			ew32(IMC, mask);
894 			ew32(ICS, mask);
895 			E1000_WRITE_FLUSH();
896 			msleep(10);
897 
898 			if (adapter->test_icr & mask) {
899 				*data = 3;
900 				break;
901 			}
902 		}
903 
904 		/* Enable the interrupt to be reported in
905 		 * the cause register and then force the same
906 		 * interrupt and see if one gets posted.  If
907 		 * an interrupt was not posted to the bus, the
908 		 * test failed.
909 		 */
910 		adapter->test_icr = 0;
911 		ew32(IMS, mask);
912 		ew32(ICS, mask);
913 		E1000_WRITE_FLUSH();
914 		msleep(10);
915 
916 		if (!(adapter->test_icr & mask)) {
917 			*data = 4;
918 			break;
919 		}
920 
921 		if (!shared_int) {
922 			/* Disable the other interrupts to be reported in
923 			 * the cause register and then force the other
924 			 * interrupts and see if any get posted.  If
925 			 * an interrupt was posted to the bus, the
926 			 * test failed.
927 			 */
928 			adapter->test_icr = 0;
929 			ew32(IMC, ~mask & 0x00007FFF);
930 			ew32(ICS, ~mask & 0x00007FFF);
931 			E1000_WRITE_FLUSH();
932 			msleep(10);
933 
934 			if (adapter->test_icr) {
935 				*data = 5;
936 				break;
937 			}
938 		}
939 	}
940 
941 	/* Disable all the interrupts */
942 	ew32(IMC, 0xFFFFFFFF);
943 	E1000_WRITE_FLUSH();
944 	msleep(10);
945 
946 	/* Unhook test interrupt handler */
947 	free_irq(irq, netdev);
948 
949 	return *data;
950 }
951 
952 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
953 {
954 	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
955 	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
956 	struct pci_dev *pdev = adapter->pdev;
957 	int i;
958 
959 	if (txdr->desc && txdr->buffer_info) {
960 		for (i = 0; i < txdr->count; i++) {
961 			if (txdr->buffer_info[i].dma)
962 				dma_unmap_single(&pdev->dev,
963 						 txdr->buffer_info[i].dma,
964 						 txdr->buffer_info[i].length,
965 						 DMA_TO_DEVICE);
966 			if (txdr->buffer_info[i].skb)
967 				dev_kfree_skb(txdr->buffer_info[i].skb);
968 		}
969 	}
970 
971 	if (rxdr->desc && rxdr->buffer_info) {
972 		for (i = 0; i < rxdr->count; i++) {
973 			if (rxdr->buffer_info[i].dma)
974 				dma_unmap_single(&pdev->dev,
975 						 rxdr->buffer_info[i].dma,
976 						 rxdr->buffer_info[i].length,
977 						 DMA_FROM_DEVICE);
978 			if (rxdr->buffer_info[i].skb)
979 				dev_kfree_skb(rxdr->buffer_info[i].skb);
980 		}
981 	}
982 
983 	if (txdr->desc) {
984 		dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
985 				  txdr->dma);
986 		txdr->desc = NULL;
987 	}
988 	if (rxdr->desc) {
989 		dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
990 				  rxdr->dma);
991 		rxdr->desc = NULL;
992 	}
993 
994 	kfree(txdr->buffer_info);
995 	txdr->buffer_info = NULL;
996 	kfree(rxdr->buffer_info);
997 	rxdr->buffer_info = NULL;
998 }
999 
1000 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1001 {
1002 	struct e1000_hw *hw = &adapter->hw;
1003 	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1004 	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1005 	struct pci_dev *pdev = adapter->pdev;
1006 	u32 rctl;
1007 	int i, ret_val;
1008 
1009 	/* Setup Tx descriptor ring and Tx buffers */
1010 
1011 	if (!txdr->count)
1012 		txdr->count = E1000_DEFAULT_TXD;
1013 
1014 	txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer),
1015 				    GFP_KERNEL);
1016 	if (!txdr->buffer_info) {
1017 		ret_val = 1;
1018 		goto err_nomem;
1019 	}
1020 
1021 	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1022 	txdr->size = ALIGN(txdr->size, 4096);
1023 	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1024 					GFP_KERNEL);
1025 	if (!txdr->desc) {
1026 		ret_val = 2;
1027 		goto err_nomem;
1028 	}
1029 	memset(txdr->desc, 0, txdr->size);
1030 	txdr->next_to_use = txdr->next_to_clean = 0;
1031 
1032 	ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1033 	ew32(TDBAH, ((u64)txdr->dma >> 32));
1034 	ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1035 	ew32(TDH, 0);
1036 	ew32(TDT, 0);
1037 	ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1038 	     E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1039 	     E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1040 
1041 	for (i = 0; i < txdr->count; i++) {
1042 		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1043 		struct sk_buff *skb;
1044 		unsigned int size = 1024;
1045 
1046 		skb = alloc_skb(size, GFP_KERNEL);
1047 		if (!skb) {
1048 			ret_val = 3;
1049 			goto err_nomem;
1050 		}
1051 		skb_put(skb, size);
1052 		txdr->buffer_info[i].skb = skb;
1053 		txdr->buffer_info[i].length = skb->len;
1054 		txdr->buffer_info[i].dma =
1055 			dma_map_single(&pdev->dev, skb->data, skb->len,
1056 				       DMA_TO_DEVICE);
1057 		tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1058 		tx_desc->lower.data = cpu_to_le32(skb->len);
1059 		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1060 						   E1000_TXD_CMD_IFCS |
1061 						   E1000_TXD_CMD_RPS);
1062 		tx_desc->upper.data = 0;
1063 	}
1064 
1065 	/* Setup Rx descriptor ring and Rx buffers */
1066 
1067 	if (!rxdr->count)
1068 		rxdr->count = E1000_DEFAULT_RXD;
1069 
1070 	rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer),
1071 				    GFP_KERNEL);
1072 	if (!rxdr->buffer_info) {
1073 		ret_val = 4;
1074 		goto err_nomem;
1075 	}
1076 
1077 	rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1078 	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1079 					GFP_KERNEL);
1080 	if (!rxdr->desc) {
1081 		ret_val = 5;
1082 		goto err_nomem;
1083 	}
1084 	memset(rxdr->desc, 0, rxdr->size);
1085 	rxdr->next_to_use = rxdr->next_to_clean = 0;
1086 
1087 	rctl = er32(RCTL);
1088 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1089 	ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1090 	ew32(RDBAH, ((u64)rxdr->dma >> 32));
1091 	ew32(RDLEN, rxdr->size);
1092 	ew32(RDH, 0);
1093 	ew32(RDT, 0);
1094 	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1095 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1096 		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1097 	ew32(RCTL, rctl);
1098 
1099 	for (i = 0; i < rxdr->count; i++) {
1100 		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1101 		struct sk_buff *skb;
1102 
1103 		skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL);
1104 		if (!skb) {
1105 			ret_val = 6;
1106 			goto err_nomem;
1107 		}
1108 		skb_reserve(skb, NET_IP_ALIGN);
1109 		rxdr->buffer_info[i].skb = skb;
1110 		rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1111 		rxdr->buffer_info[i].dma =
1112 			dma_map_single(&pdev->dev, skb->data,
1113 				       E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1114 		rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1115 		memset(skb->data, 0x00, skb->len);
1116 	}
1117 
1118 	return 0;
1119 
1120 err_nomem:
1121 	e1000_free_desc_rings(adapter);
1122 	return ret_val;
1123 }
1124 
1125 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1126 {
1127 	struct e1000_hw *hw = &adapter->hw;
1128 
1129 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1130 	e1000_write_phy_reg(hw, 29, 0x001F);
1131 	e1000_write_phy_reg(hw, 30, 0x8FFC);
1132 	e1000_write_phy_reg(hw, 29, 0x001A);
1133 	e1000_write_phy_reg(hw, 30, 0x8FF0);
1134 }
1135 
1136 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1137 {
1138 	struct e1000_hw *hw = &adapter->hw;
1139 	u16 phy_reg;
1140 
1141 	/* Because we reset the PHY above, we need to re-force TX_CLK in the
1142 	 * Extended PHY Specific Control Register to 25MHz clock.  This
1143 	 * value defaults back to a 2.5MHz clock when the PHY is reset.
1144 	 */
1145 	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1146 	phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1147 	e1000_write_phy_reg(hw,
1148 		M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1149 
1150 	/* In addition, because of the s/w reset above, we need to enable
1151 	 * CRS on TX.  This must be set for both full and half duplex
1152 	 * operation.
1153 	 */
1154 	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1155 	phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1156 	e1000_write_phy_reg(hw,
1157 		M88E1000_PHY_SPEC_CTRL, phy_reg);
1158 }
1159 
1160 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1161 {
1162 	struct e1000_hw *hw = &adapter->hw;
1163 	u32 ctrl_reg;
1164 	u16 phy_reg;
1165 
1166 	/* Setup the Device Control Register for PHY loopback test. */
1167 
1168 	ctrl_reg = er32(CTRL);
1169 	ctrl_reg |= (E1000_CTRL_ILOS |		/* Invert Loss-Of-Signal */
1170 		     E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
1171 		     E1000_CTRL_FRCDPX |	/* Set the Force Duplex Bit */
1172 		     E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
1173 		     E1000_CTRL_FD);		/* Force Duplex to FULL */
1174 
1175 	ew32(CTRL, ctrl_reg);
1176 
1177 	/* Read the PHY Specific Control Register (0x10) */
1178 	e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1179 
1180 	/* Clear Auto-Crossover bits in PHY Specific Control Register
1181 	 * (bits 6:5).
1182 	 */
1183 	phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1184 	e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1185 
1186 	/* Perform software reset on the PHY */
1187 	e1000_phy_reset(hw);
1188 
1189 	/* Have to setup TX_CLK and TX_CRS after software reset */
1190 	e1000_phy_reset_clk_and_crs(adapter);
1191 
1192 	e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1193 
1194 	/* Wait for reset to complete. */
1195 	udelay(500);
1196 
1197 	/* Have to setup TX_CLK and TX_CRS after software reset */
1198 	e1000_phy_reset_clk_and_crs(adapter);
1199 
1200 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1201 	e1000_phy_disable_receiver(adapter);
1202 
1203 	/* Set the loopback bit in the PHY control register. */
1204 	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1205 	phy_reg |= MII_CR_LOOPBACK;
1206 	e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1207 
1208 	/* Setup TX_CLK and TX_CRS one more time. */
1209 	e1000_phy_reset_clk_and_crs(adapter);
1210 
1211 	/* Check Phy Configuration */
1212 	e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1213 	if (phy_reg != 0x4100)
1214 		 return 9;
1215 
1216 	e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1217 	if (phy_reg != 0x0070)
1218 		return 10;
1219 
1220 	e1000_read_phy_reg(hw, 29, &phy_reg);
1221 	if (phy_reg != 0x001A)
1222 		return 11;
1223 
1224 	return 0;
1225 }
1226 
1227 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1228 {
1229 	struct e1000_hw *hw = &adapter->hw;
1230 	u32 ctrl_reg = 0;
1231 	u32 stat_reg = 0;
1232 
1233 	hw->autoneg = false;
1234 
1235 	if (hw->phy_type == e1000_phy_m88) {
1236 		/* Auto-MDI/MDIX Off */
1237 		e1000_write_phy_reg(hw,
1238 				    M88E1000_PHY_SPEC_CTRL, 0x0808);
1239 		/* reset to update Auto-MDI/MDIX */
1240 		e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1241 		/* autoneg off */
1242 		e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1243 	}
1244 
1245 	ctrl_reg = er32(CTRL);
1246 
1247 	/* force 1000, set loopback */
1248 	e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1249 
1250 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1251 	ctrl_reg = er32(CTRL);
1252 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1253 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1254 			E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1255 			E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1256 			E1000_CTRL_FD);	 /* Force Duplex to FULL */
1257 
1258 	if (hw->media_type == e1000_media_type_copper &&
1259 	   hw->phy_type == e1000_phy_m88)
1260 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1261 	else {
1262 		/* Set the ILOS bit on the fiber Nic is half
1263 		 * duplex link is detected. */
1264 		stat_reg = er32(STATUS);
1265 		if ((stat_reg & E1000_STATUS_FD) == 0)
1266 			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1267 	}
1268 
1269 	ew32(CTRL, ctrl_reg);
1270 
1271 	/* Disable the receiver on the PHY so when a cable is plugged in, the
1272 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1273 	 */
1274 	if (hw->phy_type == e1000_phy_m88)
1275 		e1000_phy_disable_receiver(adapter);
1276 
1277 	udelay(500);
1278 
1279 	return 0;
1280 }
1281 
1282 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1283 {
1284 	struct e1000_hw *hw = &adapter->hw;
1285 	u16 phy_reg = 0;
1286 	u16 count = 0;
1287 
1288 	switch (hw->mac_type) {
1289 	case e1000_82543:
1290 		if (hw->media_type == e1000_media_type_copper) {
1291 			/* Attempt to setup Loopback mode on Non-integrated PHY.
1292 			 * Some PHY registers get corrupted at random, so
1293 			 * attempt this 10 times.
1294 			 */
1295 			while (e1000_nonintegrated_phy_loopback(adapter) &&
1296 			      count++ < 10);
1297 			if (count < 11)
1298 				return 0;
1299 		}
1300 		break;
1301 
1302 	case e1000_82544:
1303 	case e1000_82540:
1304 	case e1000_82545:
1305 	case e1000_82545_rev_3:
1306 	case e1000_82546:
1307 	case e1000_82546_rev_3:
1308 	case e1000_82541:
1309 	case e1000_82541_rev_2:
1310 	case e1000_82547:
1311 	case e1000_82547_rev_2:
1312 		return e1000_integrated_phy_loopback(adapter);
1313 		break;
1314 	default:
1315 		/* Default PHY loopback work is to read the MII
1316 		 * control register and assert bit 14 (loopback mode).
1317 		 */
1318 		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1319 		phy_reg |= MII_CR_LOOPBACK;
1320 		e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1321 		return 0;
1322 		break;
1323 	}
1324 
1325 	return 8;
1326 }
1327 
1328 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1329 {
1330 	struct e1000_hw *hw = &adapter->hw;
1331 	u32 rctl;
1332 
1333 	if (hw->media_type == e1000_media_type_fiber ||
1334 	    hw->media_type == e1000_media_type_internal_serdes) {
1335 		switch (hw->mac_type) {
1336 		case e1000_82545:
1337 		case e1000_82546:
1338 		case e1000_82545_rev_3:
1339 		case e1000_82546_rev_3:
1340 			return e1000_set_phy_loopback(adapter);
1341 			break;
1342 		default:
1343 			rctl = er32(RCTL);
1344 			rctl |= E1000_RCTL_LBM_TCVR;
1345 			ew32(RCTL, rctl);
1346 			return 0;
1347 		}
1348 	} else if (hw->media_type == e1000_media_type_copper)
1349 		return e1000_set_phy_loopback(adapter);
1350 
1351 	return 7;
1352 }
1353 
1354 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1355 {
1356 	struct e1000_hw *hw = &adapter->hw;
1357 	u32 rctl;
1358 	u16 phy_reg;
1359 
1360 	rctl = er32(RCTL);
1361 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1362 	ew32(RCTL, rctl);
1363 
1364 	switch (hw->mac_type) {
1365 	case e1000_82545:
1366 	case e1000_82546:
1367 	case e1000_82545_rev_3:
1368 	case e1000_82546_rev_3:
1369 	default:
1370 		hw->autoneg = true;
1371 		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1372 		if (phy_reg & MII_CR_LOOPBACK) {
1373 			phy_reg &= ~MII_CR_LOOPBACK;
1374 			e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1375 			e1000_phy_reset(hw);
1376 		}
1377 		break;
1378 	}
1379 }
1380 
1381 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1382 				      unsigned int frame_size)
1383 {
1384 	memset(skb->data, 0xFF, frame_size);
1385 	frame_size &= ~1;
1386 	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1387 	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1388 	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1389 }
1390 
1391 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1392 				    unsigned int frame_size)
1393 {
1394 	frame_size &= ~1;
1395 	if (*(skb->data + 3) == 0xFF) {
1396 		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1397 		   (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1398 			return 0;
1399 		}
1400 	}
1401 	return 13;
1402 }
1403 
1404 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1405 {
1406 	struct e1000_hw *hw = &adapter->hw;
1407 	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1408 	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1409 	struct pci_dev *pdev = adapter->pdev;
1410 	int i, j, k, l, lc, good_cnt, ret_val=0;
1411 	unsigned long time;
1412 
1413 	ew32(RDT, rxdr->count - 1);
1414 
1415 	/* Calculate the loop count based on the largest descriptor ring
1416 	 * The idea is to wrap the largest ring a number of times using 64
1417 	 * send/receive pairs during each loop
1418 	 */
1419 
1420 	if (rxdr->count <= txdr->count)
1421 		lc = ((txdr->count / 64) * 2) + 1;
1422 	else
1423 		lc = ((rxdr->count / 64) * 2) + 1;
1424 
1425 	k = l = 0;
1426 	for (j = 0; j <= lc; j++) { /* loop count loop */
1427 		for (i = 0; i < 64; i++) { /* send the packets */
1428 			e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1429 					1024);
1430 			dma_sync_single_for_device(&pdev->dev,
1431 						   txdr->buffer_info[k].dma,
1432 						   txdr->buffer_info[k].length,
1433 						   DMA_TO_DEVICE);
1434 			if (unlikely(++k == txdr->count)) k = 0;
1435 		}
1436 		ew32(TDT, k);
1437 		E1000_WRITE_FLUSH();
1438 		msleep(200);
1439 		time = jiffies; /* set the start time for the receive */
1440 		good_cnt = 0;
1441 		do { /* receive the sent packets */
1442 			dma_sync_single_for_cpu(&pdev->dev,
1443 						rxdr->buffer_info[l].dma,
1444 						rxdr->buffer_info[l].length,
1445 						DMA_FROM_DEVICE);
1446 
1447 			ret_val = e1000_check_lbtest_frame(
1448 					rxdr->buffer_info[l].skb,
1449 				   	1024);
1450 			if (!ret_val)
1451 				good_cnt++;
1452 			if (unlikely(++l == rxdr->count)) l = 0;
1453 			/* time + 20 msecs (200 msecs on 2.4) is more than
1454 			 * enough time to complete the receives, if it's
1455 			 * exceeded, break and error off
1456 			 */
1457 		} while (good_cnt < 64 && jiffies < (time + 20));
1458 		if (good_cnt != 64) {
1459 			ret_val = 13; /* ret_val is the same as mis-compare */
1460 			break;
1461 		}
1462 		if (jiffies >= (time + 2)) {
1463 			ret_val = 14; /* error code for time out error */
1464 			break;
1465 		}
1466 	} /* end loop count loop */
1467 	return ret_val;
1468 }
1469 
1470 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1471 {
1472 	*data = e1000_setup_desc_rings(adapter);
1473 	if (*data)
1474 		goto out;
1475 	*data = e1000_setup_loopback_test(adapter);
1476 	if (*data)
1477 		goto err_loopback;
1478 	*data = e1000_run_loopback_test(adapter);
1479 	e1000_loopback_cleanup(adapter);
1480 
1481 err_loopback:
1482 	e1000_free_desc_rings(adapter);
1483 out:
1484 	return *data;
1485 }
1486 
1487 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1488 {
1489 	struct e1000_hw *hw = &adapter->hw;
1490 	*data = 0;
1491 	if (hw->media_type == e1000_media_type_internal_serdes) {
1492 		int i = 0;
1493 		hw->serdes_has_link = false;
1494 
1495 		/* On some blade server designs, link establishment
1496 		 * could take as long as 2-3 minutes */
1497 		do {
1498 			e1000_check_for_link(hw);
1499 			if (hw->serdes_has_link)
1500 				return *data;
1501 			msleep(20);
1502 		} while (i++ < 3750);
1503 
1504 		*data = 1;
1505 	} else {
1506 		e1000_check_for_link(hw);
1507 		if (hw->autoneg)  /* if auto_neg is set wait for it */
1508 			msleep(4000);
1509 
1510 		if (!(er32(STATUS) & E1000_STATUS_LU)) {
1511 			*data = 1;
1512 		}
1513 	}
1514 	return *data;
1515 }
1516 
1517 static int e1000_get_sset_count(struct net_device *netdev, int sset)
1518 {
1519 	switch (sset) {
1520 	case ETH_SS_TEST:
1521 		return E1000_TEST_LEN;
1522 	case ETH_SS_STATS:
1523 		return E1000_STATS_LEN;
1524 	default:
1525 		return -EOPNOTSUPP;
1526 	}
1527 }
1528 
1529 static void e1000_diag_test(struct net_device *netdev,
1530 			    struct ethtool_test *eth_test, u64 *data)
1531 {
1532 	struct e1000_adapter *adapter = netdev_priv(netdev);
1533 	struct e1000_hw *hw = &adapter->hw;
1534 	bool if_running = netif_running(netdev);
1535 
1536 	set_bit(__E1000_TESTING, &adapter->flags);
1537 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1538 		/* Offline tests */
1539 
1540 		/* save speed, duplex, autoneg settings */
1541 		u16 autoneg_advertised = hw->autoneg_advertised;
1542 		u8 forced_speed_duplex = hw->forced_speed_duplex;
1543 		u8 autoneg = hw->autoneg;
1544 
1545 		e_info(hw, "offline testing starting\n");
1546 
1547 		/* Link test performed before hardware reset so autoneg doesn't
1548 		 * interfere with test result */
1549 		if (e1000_link_test(adapter, &data[4]))
1550 			eth_test->flags |= ETH_TEST_FL_FAILED;
1551 
1552 		if (if_running)
1553 			/* indicate we're in test mode */
1554 			dev_close(netdev);
1555 		else
1556 			e1000_reset(adapter);
1557 
1558 		if (e1000_reg_test(adapter, &data[0]))
1559 			eth_test->flags |= ETH_TEST_FL_FAILED;
1560 
1561 		e1000_reset(adapter);
1562 		if (e1000_eeprom_test(adapter, &data[1]))
1563 			eth_test->flags |= ETH_TEST_FL_FAILED;
1564 
1565 		e1000_reset(adapter);
1566 		if (e1000_intr_test(adapter, &data[2]))
1567 			eth_test->flags |= ETH_TEST_FL_FAILED;
1568 
1569 		e1000_reset(adapter);
1570 		/* make sure the phy is powered up */
1571 		e1000_power_up_phy(adapter);
1572 		if (e1000_loopback_test(adapter, &data[3]))
1573 			eth_test->flags |= ETH_TEST_FL_FAILED;
1574 
1575 		/* restore speed, duplex, autoneg settings */
1576 		hw->autoneg_advertised = autoneg_advertised;
1577 		hw->forced_speed_duplex = forced_speed_duplex;
1578 		hw->autoneg = autoneg;
1579 
1580 		e1000_reset(adapter);
1581 		clear_bit(__E1000_TESTING, &adapter->flags);
1582 		if (if_running)
1583 			dev_open(netdev);
1584 	} else {
1585 		e_info(hw, "online testing starting\n");
1586 		/* Online tests */
1587 		if (e1000_link_test(adapter, &data[4]))
1588 			eth_test->flags |= ETH_TEST_FL_FAILED;
1589 
1590 		/* Online tests aren't run; pass by default */
1591 		data[0] = 0;
1592 		data[1] = 0;
1593 		data[2] = 0;
1594 		data[3] = 0;
1595 
1596 		clear_bit(__E1000_TESTING, &adapter->flags);
1597 	}
1598 	msleep_interruptible(4 * 1000);
1599 }
1600 
1601 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1602 			       struct ethtool_wolinfo *wol)
1603 {
1604 	struct e1000_hw *hw = &adapter->hw;
1605 	int retval = 1; /* fail by default */
1606 
1607 	switch (hw->device_id) {
1608 	case E1000_DEV_ID_82542:
1609 	case E1000_DEV_ID_82543GC_FIBER:
1610 	case E1000_DEV_ID_82543GC_COPPER:
1611 	case E1000_DEV_ID_82544EI_FIBER:
1612 	case E1000_DEV_ID_82546EB_QUAD_COPPER:
1613 	case E1000_DEV_ID_82545EM_FIBER:
1614 	case E1000_DEV_ID_82545EM_COPPER:
1615 	case E1000_DEV_ID_82546GB_QUAD_COPPER:
1616 	case E1000_DEV_ID_82546GB_PCIE:
1617 		/* these don't support WoL at all */
1618 		wol->supported = 0;
1619 		break;
1620 	case E1000_DEV_ID_82546EB_FIBER:
1621 	case E1000_DEV_ID_82546GB_FIBER:
1622 		/* Wake events not supported on port B */
1623 		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1624 			wol->supported = 0;
1625 			break;
1626 		}
1627 		/* return success for non excluded adapter ports */
1628 		retval = 0;
1629 		break;
1630 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1631 		/* quad port adapters only support WoL on port A */
1632 		if (!adapter->quad_port_a) {
1633 			wol->supported = 0;
1634 			break;
1635 		}
1636 		/* return success for non excluded adapter ports */
1637 		retval = 0;
1638 		break;
1639 	default:
1640 		/* dual port cards only support WoL on port A from now on
1641 		 * unless it was enabled in the eeprom for port B
1642 		 * so exclude FUNC_1 ports from having WoL enabled */
1643 		if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1644 		    !adapter->eeprom_wol) {
1645 			wol->supported = 0;
1646 			break;
1647 		}
1648 
1649 		retval = 0;
1650 	}
1651 
1652 	return retval;
1653 }
1654 
1655 static void e1000_get_wol(struct net_device *netdev,
1656 			  struct ethtool_wolinfo *wol)
1657 {
1658 	struct e1000_adapter *adapter = netdev_priv(netdev);
1659 	struct e1000_hw *hw = &adapter->hw;
1660 
1661 	wol->supported = WAKE_UCAST | WAKE_MCAST |
1662 	                 WAKE_BCAST | WAKE_MAGIC;
1663 	wol->wolopts = 0;
1664 
1665 	/* this function will set ->supported = 0 and return 1 if wol is not
1666 	 * supported by this hardware */
1667 	if (e1000_wol_exclusion(adapter, wol) ||
1668 	    !device_can_wakeup(&adapter->pdev->dev))
1669 		return;
1670 
1671 	/* apply any specific unsupported masks here */
1672 	switch (hw->device_id) {
1673 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1674 		/* KSP3 does not support UCAST wake-ups */
1675 		wol->supported &= ~WAKE_UCAST;
1676 
1677 		if (adapter->wol & E1000_WUFC_EX)
1678 			e_err(drv, "Interface does not support directed "
1679 			      "(unicast) frame wake-up packets\n");
1680 		break;
1681 	default:
1682 		break;
1683 	}
1684 
1685 	if (adapter->wol & E1000_WUFC_EX)
1686 		wol->wolopts |= WAKE_UCAST;
1687 	if (adapter->wol & E1000_WUFC_MC)
1688 		wol->wolopts |= WAKE_MCAST;
1689 	if (adapter->wol & E1000_WUFC_BC)
1690 		wol->wolopts |= WAKE_BCAST;
1691 	if (adapter->wol & E1000_WUFC_MAG)
1692 		wol->wolopts |= WAKE_MAGIC;
1693 }
1694 
1695 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1696 {
1697 	struct e1000_adapter *adapter = netdev_priv(netdev);
1698 	struct e1000_hw *hw = &adapter->hw;
1699 
1700 	if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1701 		return -EOPNOTSUPP;
1702 
1703 	if (e1000_wol_exclusion(adapter, wol) ||
1704 	    !device_can_wakeup(&adapter->pdev->dev))
1705 		return wol->wolopts ? -EOPNOTSUPP : 0;
1706 
1707 	switch (hw->device_id) {
1708 	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1709 		if (wol->wolopts & WAKE_UCAST) {
1710 			e_err(drv, "Interface does not support directed "
1711 			      "(unicast) frame wake-up packets\n");
1712 			return -EOPNOTSUPP;
1713 		}
1714 		break;
1715 	default:
1716 		break;
1717 	}
1718 
1719 	/* these settings will always override what we currently have */
1720 	adapter->wol = 0;
1721 
1722 	if (wol->wolopts & WAKE_UCAST)
1723 		adapter->wol |= E1000_WUFC_EX;
1724 	if (wol->wolopts & WAKE_MCAST)
1725 		adapter->wol |= E1000_WUFC_MC;
1726 	if (wol->wolopts & WAKE_BCAST)
1727 		adapter->wol |= E1000_WUFC_BC;
1728 	if (wol->wolopts & WAKE_MAGIC)
1729 		adapter->wol |= E1000_WUFC_MAG;
1730 
1731 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1732 
1733 	return 0;
1734 }
1735 
1736 static int e1000_set_phys_id(struct net_device *netdev,
1737 			     enum ethtool_phys_id_state state)
1738 {
1739 	struct e1000_adapter *adapter = netdev_priv(netdev);
1740 	struct e1000_hw *hw = &adapter->hw;
1741 
1742 	switch (state) {
1743 	case ETHTOOL_ID_ACTIVE:
1744 		e1000_setup_led(hw);
1745 		return 2;
1746 
1747 	case ETHTOOL_ID_ON:
1748 		e1000_led_on(hw);
1749 		break;
1750 
1751 	case ETHTOOL_ID_OFF:
1752 		e1000_led_off(hw);
1753 		break;
1754 
1755 	case ETHTOOL_ID_INACTIVE:
1756 		e1000_cleanup_led(hw);
1757 	}
1758 
1759 	return 0;
1760 }
1761 
1762 static int e1000_get_coalesce(struct net_device *netdev,
1763 			      struct ethtool_coalesce *ec)
1764 {
1765 	struct e1000_adapter *adapter = netdev_priv(netdev);
1766 
1767 	if (adapter->hw.mac_type < e1000_82545)
1768 		return -EOPNOTSUPP;
1769 
1770 	if (adapter->itr_setting <= 4)
1771 		ec->rx_coalesce_usecs = adapter->itr_setting;
1772 	else
1773 		ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1774 
1775 	return 0;
1776 }
1777 
1778 static int e1000_set_coalesce(struct net_device *netdev,
1779 			      struct ethtool_coalesce *ec)
1780 {
1781 	struct e1000_adapter *adapter = netdev_priv(netdev);
1782 	struct e1000_hw *hw = &adapter->hw;
1783 
1784 	if (hw->mac_type < e1000_82545)
1785 		return -EOPNOTSUPP;
1786 
1787 	if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1788 	    ((ec->rx_coalesce_usecs > 4) &&
1789 	     (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1790 	    (ec->rx_coalesce_usecs == 2))
1791 		return -EINVAL;
1792 
1793 	if (ec->rx_coalesce_usecs == 4) {
1794 		adapter->itr = adapter->itr_setting = 4;
1795 	} else if (ec->rx_coalesce_usecs <= 3) {
1796 		adapter->itr = 20000;
1797 		adapter->itr_setting = ec->rx_coalesce_usecs;
1798 	} else {
1799 		adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1800 		adapter->itr_setting = adapter->itr & ~3;
1801 	}
1802 
1803 	if (adapter->itr_setting != 0)
1804 		ew32(ITR, 1000000000 / (adapter->itr * 256));
1805 	else
1806 		ew32(ITR, 0);
1807 
1808 	return 0;
1809 }
1810 
1811 static int e1000_nway_reset(struct net_device *netdev)
1812 {
1813 	struct e1000_adapter *adapter = netdev_priv(netdev);
1814 	if (netif_running(netdev))
1815 		e1000_reinit_locked(adapter);
1816 	return 0;
1817 }
1818 
1819 static void e1000_get_ethtool_stats(struct net_device *netdev,
1820 				    struct ethtool_stats *stats, u64 *data)
1821 {
1822 	struct e1000_adapter *adapter = netdev_priv(netdev);
1823 	int i;
1824 	char *p = NULL;
1825 
1826 	e1000_update_stats(adapter);
1827 	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1828 		switch (e1000_gstrings_stats[i].type) {
1829 		case NETDEV_STATS:
1830 			p = (char *) netdev +
1831 					e1000_gstrings_stats[i].stat_offset;
1832 			break;
1833 		case E1000_STATS:
1834 			p = (char *) adapter +
1835 					e1000_gstrings_stats[i].stat_offset;
1836 			break;
1837 		}
1838 
1839 		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1840 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1841 	}
1842 /*	BUG_ON(i != E1000_STATS_LEN); */
1843 }
1844 
1845 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1846 			      u8 *data)
1847 {
1848 	u8 *p = data;
1849 	int i;
1850 
1851 	switch (stringset) {
1852 	case ETH_SS_TEST:
1853 		memcpy(data, *e1000_gstrings_test,
1854 			sizeof(e1000_gstrings_test));
1855 		break;
1856 	case ETH_SS_STATS:
1857 		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1858 			memcpy(p, e1000_gstrings_stats[i].stat_string,
1859 			       ETH_GSTRING_LEN);
1860 			p += ETH_GSTRING_LEN;
1861 		}
1862 /*		BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1863 		break;
1864 	}
1865 }
1866 
1867 static const struct ethtool_ops e1000_ethtool_ops = {
1868 	.get_settings           = e1000_get_settings,
1869 	.set_settings           = e1000_set_settings,
1870 	.get_drvinfo            = e1000_get_drvinfo,
1871 	.get_regs_len           = e1000_get_regs_len,
1872 	.get_regs               = e1000_get_regs,
1873 	.get_wol                = e1000_get_wol,
1874 	.set_wol                = e1000_set_wol,
1875 	.get_msglevel           = e1000_get_msglevel,
1876 	.set_msglevel           = e1000_set_msglevel,
1877 	.nway_reset             = e1000_nway_reset,
1878 	.get_link               = e1000_get_link,
1879 	.get_eeprom_len         = e1000_get_eeprom_len,
1880 	.get_eeprom             = e1000_get_eeprom,
1881 	.set_eeprom             = e1000_set_eeprom,
1882 	.get_ringparam          = e1000_get_ringparam,
1883 	.set_ringparam          = e1000_set_ringparam,
1884 	.get_pauseparam         = e1000_get_pauseparam,
1885 	.set_pauseparam         = e1000_set_pauseparam,
1886 	.self_test              = e1000_diag_test,
1887 	.get_strings            = e1000_get_strings,
1888 	.set_phys_id            = e1000_set_phys_id,
1889 	.get_ethtool_stats      = e1000_get_ethtool_stats,
1890 	.get_sset_count         = e1000_get_sset_count,
1891 	.get_coalesce           = e1000_get_coalesce,
1892 	.set_coalesce           = e1000_set_coalesce,
1893 	.get_ts_info		= ethtool_op_get_ts_info,
1894 };
1895 
1896 void e1000_set_ethtool_ops(struct net_device *netdev)
1897 {
1898 	SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1899 }
1900