1 /******************************************************************************* 2 * Intel PRO/1000 Linux driver 3 * Copyright(c) 1999 - 2006 Intel Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * The full GNU General Public License is included in this distribution in 15 * the file called "COPYING". 16 * 17 * Contact Information: 18 * Linux NICS <linux.nics@intel.com> 19 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 20 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 21 * 22 ******************************************************************************/ 23 24 /* ethtool support for e1000 */ 25 26 #include "e1000.h" 27 #include <linux/jiffies.h> 28 #include <linux/uaccess.h> 29 30 enum {NETDEV_STATS, E1000_STATS}; 31 32 struct e1000_stats { 33 char stat_string[ETH_GSTRING_LEN]; 34 int type; 35 int sizeof_stat; 36 int stat_offset; 37 }; 38 39 #define E1000_STAT(m) E1000_STATS, \ 40 sizeof(((struct e1000_adapter *)0)->m), \ 41 offsetof(struct e1000_adapter, m) 42 #define E1000_NETDEV_STAT(m) NETDEV_STATS, \ 43 sizeof(((struct net_device *)0)->m), \ 44 offsetof(struct net_device, m) 45 46 static const struct e1000_stats e1000_gstrings_stats[] = { 47 { "rx_packets", E1000_STAT(stats.gprc) }, 48 { "tx_packets", E1000_STAT(stats.gptc) }, 49 { "rx_bytes", E1000_STAT(stats.gorcl) }, 50 { "tx_bytes", E1000_STAT(stats.gotcl) }, 51 { "rx_broadcast", E1000_STAT(stats.bprc) }, 52 { "tx_broadcast", E1000_STAT(stats.bptc) }, 53 { "rx_multicast", E1000_STAT(stats.mprc) }, 54 { "tx_multicast", E1000_STAT(stats.mptc) }, 55 { "rx_errors", E1000_STAT(stats.rxerrc) }, 56 { "tx_errors", E1000_STAT(stats.txerrc) }, 57 { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) }, 58 { "multicast", E1000_STAT(stats.mprc) }, 59 { "collisions", E1000_STAT(stats.colc) }, 60 { "rx_length_errors", E1000_STAT(stats.rlerrc) }, 61 { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) }, 62 { "rx_crc_errors", E1000_STAT(stats.crcerrs) }, 63 { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) }, 64 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) }, 65 { "rx_missed_errors", E1000_STAT(stats.mpc) }, 66 { "tx_aborted_errors", E1000_STAT(stats.ecol) }, 67 { "tx_carrier_errors", E1000_STAT(stats.tncrs) }, 68 { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) }, 69 { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) }, 70 { "tx_window_errors", E1000_STAT(stats.latecol) }, 71 { "tx_abort_late_coll", E1000_STAT(stats.latecol) }, 72 { "tx_deferred_ok", E1000_STAT(stats.dc) }, 73 { "tx_single_coll_ok", E1000_STAT(stats.scc) }, 74 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) }, 75 { "tx_timeout_count", E1000_STAT(tx_timeout_count) }, 76 { "tx_restart_queue", E1000_STAT(restart_queue) }, 77 { "rx_long_length_errors", E1000_STAT(stats.roc) }, 78 { "rx_short_length_errors", E1000_STAT(stats.ruc) }, 79 { "rx_align_errors", E1000_STAT(stats.algnerrc) }, 80 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) }, 81 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) }, 82 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) }, 83 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) }, 84 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) }, 85 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) }, 86 { "rx_long_byte_count", E1000_STAT(stats.gorcl) }, 87 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) }, 88 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) }, 89 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) }, 90 { "tx_smbus", E1000_STAT(stats.mgptc) }, 91 { "rx_smbus", E1000_STAT(stats.mgprc) }, 92 { "dropped_smbus", E1000_STAT(stats.mgpdc) }, 93 }; 94 95 #define E1000_QUEUE_STATS_LEN 0 96 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats) 97 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN) 98 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { 99 "Register test (offline)", "Eeprom test (offline)", 100 "Interrupt test (offline)", "Loopback test (offline)", 101 "Link test (on/offline)" 102 }; 103 104 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test) 105 106 static int e1000_get_settings(struct net_device *netdev, 107 struct ethtool_cmd *ecmd) 108 { 109 struct e1000_adapter *adapter = netdev_priv(netdev); 110 struct e1000_hw *hw = &adapter->hw; 111 112 if (hw->media_type == e1000_media_type_copper) { 113 ecmd->supported = (SUPPORTED_10baseT_Half | 114 SUPPORTED_10baseT_Full | 115 SUPPORTED_100baseT_Half | 116 SUPPORTED_100baseT_Full | 117 SUPPORTED_1000baseT_Full| 118 SUPPORTED_Autoneg | 119 SUPPORTED_TP); 120 ecmd->advertising = ADVERTISED_TP; 121 122 if (hw->autoneg == 1) { 123 ecmd->advertising |= ADVERTISED_Autoneg; 124 /* the e1000 autoneg seems to match ethtool nicely */ 125 ecmd->advertising |= hw->autoneg_advertised; 126 } 127 128 ecmd->port = PORT_TP; 129 ecmd->phy_address = hw->phy_addr; 130 131 if (hw->mac_type == e1000_82543) 132 ecmd->transceiver = XCVR_EXTERNAL; 133 else 134 ecmd->transceiver = XCVR_INTERNAL; 135 136 } else { 137 ecmd->supported = (SUPPORTED_1000baseT_Full | 138 SUPPORTED_FIBRE | 139 SUPPORTED_Autoneg); 140 141 ecmd->advertising = (ADVERTISED_1000baseT_Full | 142 ADVERTISED_FIBRE | 143 ADVERTISED_Autoneg); 144 145 ecmd->port = PORT_FIBRE; 146 147 if (hw->mac_type >= e1000_82545) 148 ecmd->transceiver = XCVR_INTERNAL; 149 else 150 ecmd->transceiver = XCVR_EXTERNAL; 151 } 152 153 if (er32(STATUS) & E1000_STATUS_LU) { 154 e1000_get_speed_and_duplex(hw, &adapter->link_speed, 155 &adapter->link_duplex); 156 ethtool_cmd_speed_set(ecmd, adapter->link_speed); 157 158 /* unfortunately FULL_DUPLEX != DUPLEX_FULL 159 * and HALF_DUPLEX != DUPLEX_HALF 160 */ 161 if (adapter->link_duplex == FULL_DUPLEX) 162 ecmd->duplex = DUPLEX_FULL; 163 else 164 ecmd->duplex = DUPLEX_HALF; 165 } else { 166 ethtool_cmd_speed_set(ecmd, SPEED_UNKNOWN); 167 ecmd->duplex = DUPLEX_UNKNOWN; 168 } 169 170 ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) || 171 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; 172 173 /* MDI-X => 1; MDI => 0 */ 174 if ((hw->media_type == e1000_media_type_copper) && 175 netif_carrier_ok(netdev)) 176 ecmd->eth_tp_mdix = (!!adapter->phy_info.mdix_mode ? 177 ETH_TP_MDI_X : ETH_TP_MDI); 178 else 179 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID; 180 181 if (hw->mdix == AUTO_ALL_MODES) 182 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO; 183 else 184 ecmd->eth_tp_mdix_ctrl = hw->mdix; 185 return 0; 186 } 187 188 static int e1000_set_settings(struct net_device *netdev, 189 struct ethtool_cmd *ecmd) 190 { 191 struct e1000_adapter *adapter = netdev_priv(netdev); 192 struct e1000_hw *hw = &adapter->hw; 193 194 /* MDI setting is only allowed when autoneg enabled because 195 * some hardware doesn't allow MDI setting when speed or 196 * duplex is forced. 197 */ 198 if (ecmd->eth_tp_mdix_ctrl) { 199 if (hw->media_type != e1000_media_type_copper) 200 return -EOPNOTSUPP; 201 202 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) && 203 (ecmd->autoneg != AUTONEG_ENABLE)) { 204 e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n"); 205 return -EINVAL; 206 } 207 } 208 209 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 210 msleep(1); 211 212 if (ecmd->autoneg == AUTONEG_ENABLE) { 213 hw->autoneg = 1; 214 if (hw->media_type == e1000_media_type_fiber) 215 hw->autoneg_advertised = ADVERTISED_1000baseT_Full | 216 ADVERTISED_FIBRE | 217 ADVERTISED_Autoneg; 218 else 219 hw->autoneg_advertised = ecmd->advertising | 220 ADVERTISED_TP | 221 ADVERTISED_Autoneg; 222 ecmd->advertising = hw->autoneg_advertised; 223 } else { 224 u32 speed = ethtool_cmd_speed(ecmd); 225 /* calling this overrides forced MDI setting */ 226 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) { 227 clear_bit(__E1000_RESETTING, &adapter->flags); 228 return -EINVAL; 229 } 230 } 231 232 /* MDI-X => 2; MDI => 1; Auto => 3 */ 233 if (ecmd->eth_tp_mdix_ctrl) { 234 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO) 235 hw->mdix = AUTO_ALL_MODES; 236 else 237 hw->mdix = ecmd->eth_tp_mdix_ctrl; 238 } 239 240 /* reset the link */ 241 242 if (netif_running(adapter->netdev)) { 243 e1000_down(adapter); 244 e1000_up(adapter); 245 } else { 246 e1000_reset(adapter); 247 } 248 clear_bit(__E1000_RESETTING, &adapter->flags); 249 return 0; 250 } 251 252 static u32 e1000_get_link(struct net_device *netdev) 253 { 254 struct e1000_adapter *adapter = netdev_priv(netdev); 255 256 /* If the link is not reported up to netdev, interrupts are disabled, 257 * and so the physical link state may have changed since we last 258 * looked. Set get_link_status to make sure that the true link 259 * state is interrogated, rather than pulling a cached and possibly 260 * stale link state from the driver. 261 */ 262 if (!netif_carrier_ok(netdev)) 263 adapter->hw.get_link_status = 1; 264 265 return e1000_has_link(adapter); 266 } 267 268 static void e1000_get_pauseparam(struct net_device *netdev, 269 struct ethtool_pauseparam *pause) 270 { 271 struct e1000_adapter *adapter = netdev_priv(netdev); 272 struct e1000_hw *hw = &adapter->hw; 273 274 pause->autoneg = 275 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 276 277 if (hw->fc == E1000_FC_RX_PAUSE) { 278 pause->rx_pause = 1; 279 } else if (hw->fc == E1000_FC_TX_PAUSE) { 280 pause->tx_pause = 1; 281 } else if (hw->fc == E1000_FC_FULL) { 282 pause->rx_pause = 1; 283 pause->tx_pause = 1; 284 } 285 } 286 287 static int e1000_set_pauseparam(struct net_device *netdev, 288 struct ethtool_pauseparam *pause) 289 { 290 struct e1000_adapter *adapter = netdev_priv(netdev); 291 struct e1000_hw *hw = &adapter->hw; 292 int retval = 0; 293 294 adapter->fc_autoneg = pause->autoneg; 295 296 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 297 msleep(1); 298 299 if (pause->rx_pause && pause->tx_pause) 300 hw->fc = E1000_FC_FULL; 301 else if (pause->rx_pause && !pause->tx_pause) 302 hw->fc = E1000_FC_RX_PAUSE; 303 else if (!pause->rx_pause && pause->tx_pause) 304 hw->fc = E1000_FC_TX_PAUSE; 305 else if (!pause->rx_pause && !pause->tx_pause) 306 hw->fc = E1000_FC_NONE; 307 308 hw->original_fc = hw->fc; 309 310 if (adapter->fc_autoneg == AUTONEG_ENABLE) { 311 if (netif_running(adapter->netdev)) { 312 e1000_down(adapter); 313 e1000_up(adapter); 314 } else { 315 e1000_reset(adapter); 316 } 317 } else 318 retval = ((hw->media_type == e1000_media_type_fiber) ? 319 e1000_setup_link(hw) : e1000_force_mac_fc(hw)); 320 321 clear_bit(__E1000_RESETTING, &adapter->flags); 322 return retval; 323 } 324 325 static u32 e1000_get_msglevel(struct net_device *netdev) 326 { 327 struct e1000_adapter *adapter = netdev_priv(netdev); 328 329 return adapter->msg_enable; 330 } 331 332 static void e1000_set_msglevel(struct net_device *netdev, u32 data) 333 { 334 struct e1000_adapter *adapter = netdev_priv(netdev); 335 336 adapter->msg_enable = data; 337 } 338 339 static int e1000_get_regs_len(struct net_device *netdev) 340 { 341 #define E1000_REGS_LEN 32 342 return E1000_REGS_LEN * sizeof(u32); 343 } 344 345 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs, 346 void *p) 347 { 348 struct e1000_adapter *adapter = netdev_priv(netdev); 349 struct e1000_hw *hw = &adapter->hw; 350 u32 *regs_buff = p; 351 u16 phy_data; 352 353 memset(p, 0, E1000_REGS_LEN * sizeof(u32)); 354 355 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id; 356 357 regs_buff[0] = er32(CTRL); 358 regs_buff[1] = er32(STATUS); 359 360 regs_buff[2] = er32(RCTL); 361 regs_buff[3] = er32(RDLEN); 362 regs_buff[4] = er32(RDH); 363 regs_buff[5] = er32(RDT); 364 regs_buff[6] = er32(RDTR); 365 366 regs_buff[7] = er32(TCTL); 367 regs_buff[8] = er32(TDLEN); 368 regs_buff[9] = er32(TDH); 369 regs_buff[10] = er32(TDT); 370 regs_buff[11] = er32(TIDV); 371 372 regs_buff[12] = hw->phy_type; /* PHY type (IGP=1, M88=0) */ 373 if (hw->phy_type == e1000_phy_igp) { 374 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 375 IGP01E1000_PHY_AGC_A); 376 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A & 377 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 378 regs_buff[13] = (u32)phy_data; /* cable length */ 379 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 380 IGP01E1000_PHY_AGC_B); 381 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B & 382 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 383 regs_buff[14] = (u32)phy_data; /* cable length */ 384 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 385 IGP01E1000_PHY_AGC_C); 386 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C & 387 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 388 regs_buff[15] = (u32)phy_data; /* cable length */ 389 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 390 IGP01E1000_PHY_AGC_D); 391 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D & 392 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 393 regs_buff[16] = (u32)phy_data; /* cable length */ 394 regs_buff[17] = 0; /* extended 10bt distance (not needed) */ 395 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); 396 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS & 397 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 398 regs_buff[18] = (u32)phy_data; /* cable polarity */ 399 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 400 IGP01E1000_PHY_PCS_INIT_REG); 401 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG & 402 IGP01E1000_PHY_PAGE_SELECT, &phy_data); 403 regs_buff[19] = (u32)phy_data; /* cable polarity */ 404 regs_buff[20] = 0; /* polarity correction enabled (always) */ 405 regs_buff[22] = 0; /* phy receive errors (unavailable) */ 406 regs_buff[23] = regs_buff[18]; /* mdix mode */ 407 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); 408 } else { 409 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); 410 regs_buff[13] = (u32)phy_data; /* cable length */ 411 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 412 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 413 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 414 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); 415 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */ 416 regs_buff[18] = regs_buff[13]; /* cable polarity */ 417 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */ 418 regs_buff[20] = regs_buff[17]; /* polarity correction */ 419 /* phy receive errors */ 420 regs_buff[22] = adapter->phy_stats.receive_errors; 421 regs_buff[23] = regs_buff[13]; /* mdix mode */ 422 } 423 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */ 424 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); 425 regs_buff[24] = (u32)phy_data; /* phy local receiver status */ 426 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ 427 if (hw->mac_type >= e1000_82540 && 428 hw->media_type == e1000_media_type_copper) { 429 regs_buff[26] = er32(MANC); 430 } 431 } 432 433 static int e1000_get_eeprom_len(struct net_device *netdev) 434 { 435 struct e1000_adapter *adapter = netdev_priv(netdev); 436 struct e1000_hw *hw = &adapter->hw; 437 438 return hw->eeprom.word_size * 2; 439 } 440 441 static int e1000_get_eeprom(struct net_device *netdev, 442 struct ethtool_eeprom *eeprom, u8 *bytes) 443 { 444 struct e1000_adapter *adapter = netdev_priv(netdev); 445 struct e1000_hw *hw = &adapter->hw; 446 u16 *eeprom_buff; 447 int first_word, last_word; 448 int ret_val = 0; 449 u16 i; 450 451 if (eeprom->len == 0) 452 return -EINVAL; 453 454 eeprom->magic = hw->vendor_id | (hw->device_id << 16); 455 456 first_word = eeprom->offset >> 1; 457 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 458 459 eeprom_buff = kmalloc(sizeof(u16) * 460 (last_word - first_word + 1), GFP_KERNEL); 461 if (!eeprom_buff) 462 return -ENOMEM; 463 464 if (hw->eeprom.type == e1000_eeprom_spi) 465 ret_val = e1000_read_eeprom(hw, first_word, 466 last_word - first_word + 1, 467 eeprom_buff); 468 else { 469 for (i = 0; i < last_word - first_word + 1; i++) { 470 ret_val = e1000_read_eeprom(hw, first_word + i, 1, 471 &eeprom_buff[i]); 472 if (ret_val) 473 break; 474 } 475 } 476 477 /* Device's eeprom is always little-endian, word addressable */ 478 for (i = 0; i < last_word - first_word + 1; i++) 479 le16_to_cpus(&eeprom_buff[i]); 480 481 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), 482 eeprom->len); 483 kfree(eeprom_buff); 484 485 return ret_val; 486 } 487 488 static int e1000_set_eeprom(struct net_device *netdev, 489 struct ethtool_eeprom *eeprom, u8 *bytes) 490 { 491 struct e1000_adapter *adapter = netdev_priv(netdev); 492 struct e1000_hw *hw = &adapter->hw; 493 u16 *eeprom_buff; 494 void *ptr; 495 int max_len, first_word, last_word, ret_val = 0; 496 u16 i; 497 498 if (eeprom->len == 0) 499 return -EOPNOTSUPP; 500 501 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) 502 return -EFAULT; 503 504 max_len = hw->eeprom.word_size * 2; 505 506 first_word = eeprom->offset >> 1; 507 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 508 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 509 if (!eeprom_buff) 510 return -ENOMEM; 511 512 ptr = (void *)eeprom_buff; 513 514 if (eeprom->offset & 1) { 515 /* need read/modify/write of first changed EEPROM word 516 * only the second byte of the word is being modified 517 */ 518 ret_val = e1000_read_eeprom(hw, first_word, 1, 519 &eeprom_buff[0]); 520 ptr++; 521 } 522 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) { 523 /* need read/modify/write of last changed EEPROM word 524 * only the first byte of the word is being modified 525 */ 526 ret_val = e1000_read_eeprom(hw, last_word, 1, 527 &eeprom_buff[last_word - first_word]); 528 } 529 530 /* Device's eeprom is always little-endian, word addressable */ 531 for (i = 0; i < last_word - first_word + 1; i++) 532 le16_to_cpus(&eeprom_buff[i]); 533 534 memcpy(ptr, bytes, eeprom->len); 535 536 for (i = 0; i < last_word - first_word + 1; i++) 537 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); 538 539 ret_val = e1000_write_eeprom(hw, first_word, 540 last_word - first_word + 1, eeprom_buff); 541 542 /* Update the checksum over the first part of the EEPROM if needed */ 543 if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG)) 544 e1000_update_eeprom_checksum(hw); 545 546 kfree(eeprom_buff); 547 return ret_val; 548 } 549 550 static void e1000_get_drvinfo(struct net_device *netdev, 551 struct ethtool_drvinfo *drvinfo) 552 { 553 struct e1000_adapter *adapter = netdev_priv(netdev); 554 555 strlcpy(drvinfo->driver, e1000_driver_name, 556 sizeof(drvinfo->driver)); 557 strlcpy(drvinfo->version, e1000_driver_version, 558 sizeof(drvinfo->version)); 559 560 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), 561 sizeof(drvinfo->bus_info)); 562 } 563 564 static void e1000_get_ringparam(struct net_device *netdev, 565 struct ethtool_ringparam *ring) 566 { 567 struct e1000_adapter *adapter = netdev_priv(netdev); 568 struct e1000_hw *hw = &adapter->hw; 569 e1000_mac_type mac_type = hw->mac_type; 570 struct e1000_tx_ring *txdr = adapter->tx_ring; 571 struct e1000_rx_ring *rxdr = adapter->rx_ring; 572 573 ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD : 574 E1000_MAX_82544_RXD; 575 ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD : 576 E1000_MAX_82544_TXD; 577 ring->rx_pending = rxdr->count; 578 ring->tx_pending = txdr->count; 579 } 580 581 static int e1000_set_ringparam(struct net_device *netdev, 582 struct ethtool_ringparam *ring) 583 { 584 struct e1000_adapter *adapter = netdev_priv(netdev); 585 struct e1000_hw *hw = &adapter->hw; 586 e1000_mac_type mac_type = hw->mac_type; 587 struct e1000_tx_ring *txdr, *tx_old; 588 struct e1000_rx_ring *rxdr, *rx_old; 589 int i, err; 590 591 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 592 return -EINVAL; 593 594 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) 595 msleep(1); 596 597 if (netif_running(adapter->netdev)) 598 e1000_down(adapter); 599 600 tx_old = adapter->tx_ring; 601 rx_old = adapter->rx_ring; 602 603 err = -ENOMEM; 604 txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), 605 GFP_KERNEL); 606 if (!txdr) 607 goto err_alloc_tx; 608 609 rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), 610 GFP_KERNEL); 611 if (!rxdr) 612 goto err_alloc_rx; 613 614 adapter->tx_ring = txdr; 615 adapter->rx_ring = rxdr; 616 617 rxdr->count = max(ring->rx_pending, (u32)E1000_MIN_RXD); 618 rxdr->count = min(rxdr->count, (u32)(mac_type < e1000_82544 ? 619 E1000_MAX_RXD : E1000_MAX_82544_RXD)); 620 rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE); 621 txdr->count = max(ring->tx_pending, (u32)E1000_MIN_TXD); 622 txdr->count = min(txdr->count, (u32)(mac_type < e1000_82544 ? 623 E1000_MAX_TXD : E1000_MAX_82544_TXD)); 624 txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE); 625 626 for (i = 0; i < adapter->num_tx_queues; i++) 627 txdr[i].count = txdr->count; 628 for (i = 0; i < adapter->num_rx_queues; i++) 629 rxdr[i].count = rxdr->count; 630 631 if (netif_running(adapter->netdev)) { 632 /* Try to get new resources before deleting old */ 633 err = e1000_setup_all_rx_resources(adapter); 634 if (err) 635 goto err_setup_rx; 636 err = e1000_setup_all_tx_resources(adapter); 637 if (err) 638 goto err_setup_tx; 639 640 /* save the new, restore the old in order to free it, 641 * then restore the new back again 642 */ 643 644 adapter->rx_ring = rx_old; 645 adapter->tx_ring = tx_old; 646 e1000_free_all_rx_resources(adapter); 647 e1000_free_all_tx_resources(adapter); 648 kfree(tx_old); 649 kfree(rx_old); 650 adapter->rx_ring = rxdr; 651 adapter->tx_ring = txdr; 652 err = e1000_up(adapter); 653 if (err) 654 goto err_setup; 655 } 656 657 clear_bit(__E1000_RESETTING, &adapter->flags); 658 return 0; 659 err_setup_tx: 660 e1000_free_all_rx_resources(adapter); 661 err_setup_rx: 662 adapter->rx_ring = rx_old; 663 adapter->tx_ring = tx_old; 664 kfree(rxdr); 665 err_alloc_rx: 666 kfree(txdr); 667 err_alloc_tx: 668 e1000_up(adapter); 669 err_setup: 670 clear_bit(__E1000_RESETTING, &adapter->flags); 671 return err; 672 } 673 674 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg, 675 u32 mask, u32 write) 676 { 677 struct e1000_hw *hw = &adapter->hw; 678 static const u32 test[] = { 679 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF 680 }; 681 u8 __iomem *address = hw->hw_addr + reg; 682 u32 read; 683 int i; 684 685 for (i = 0; i < ARRAY_SIZE(test); i++) { 686 writel(write & test[i], address); 687 read = readl(address); 688 if (read != (write & test[i] & mask)) { 689 e_err(drv, "pattern test reg %04X failed: " 690 "got 0x%08X expected 0x%08X\n", 691 reg, read, (write & test[i] & mask)); 692 *data = reg; 693 return true; 694 } 695 } 696 return false; 697 } 698 699 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg, 700 u32 mask, u32 write) 701 { 702 struct e1000_hw *hw = &adapter->hw; 703 u8 __iomem *address = hw->hw_addr + reg; 704 u32 read; 705 706 writel(write & mask, address); 707 read = readl(address); 708 if ((read & mask) != (write & mask)) { 709 e_err(drv, "set/check reg %04X test failed: " 710 "got 0x%08X expected 0x%08X\n", 711 reg, (read & mask), (write & mask)); 712 *data = reg; 713 return true; 714 } 715 return false; 716 } 717 718 #define REG_PATTERN_TEST(reg, mask, write) \ 719 do { \ 720 if (reg_pattern_test(adapter, data, \ 721 (hw->mac_type >= e1000_82543) \ 722 ? E1000_##reg : E1000_82542_##reg, \ 723 mask, write)) \ 724 return 1; \ 725 } while (0) 726 727 #define REG_SET_AND_CHECK(reg, mask, write) \ 728 do { \ 729 if (reg_set_and_check(adapter, data, \ 730 (hw->mac_type >= e1000_82543) \ 731 ? E1000_##reg : E1000_82542_##reg, \ 732 mask, write)) \ 733 return 1; \ 734 } while (0) 735 736 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data) 737 { 738 u32 value, before, after; 739 u32 i, toggle; 740 struct e1000_hw *hw = &adapter->hw; 741 742 /* The status register is Read Only, so a write should fail. 743 * Some bits that get toggled are ignored. 744 */ 745 746 /* there are several bits on newer hardware that are r/w */ 747 toggle = 0xFFFFF833; 748 749 before = er32(STATUS); 750 value = (er32(STATUS) & toggle); 751 ew32(STATUS, toggle); 752 after = er32(STATUS) & toggle; 753 if (value != after) { 754 e_err(drv, "failed STATUS register test got: " 755 "0x%08X expected: 0x%08X\n", after, value); 756 *data = 1; 757 return 1; 758 } 759 /* restore previous status */ 760 ew32(STATUS, before); 761 762 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF); 763 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF); 764 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF); 765 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF); 766 767 REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF); 768 REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF); 769 REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF); 770 REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF); 771 REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF); 772 REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8); 773 REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF); 774 REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF); 775 REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF); 776 REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF); 777 778 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000); 779 780 before = 0x06DFB3FE; 781 REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB); 782 REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000); 783 784 if (hw->mac_type >= e1000_82543) { 785 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF); 786 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF); 787 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF); 788 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF); 789 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF); 790 value = E1000_RAR_ENTRIES; 791 for (i = 0; i < value; i++) { 792 REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 793 0x8003FFFF, 0xFFFFFFFF); 794 } 795 } else { 796 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF); 797 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF); 798 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF); 799 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF); 800 } 801 802 value = E1000_MC_TBL_SIZE; 803 for (i = 0; i < value; i++) 804 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF); 805 806 *data = 0; 807 return 0; 808 } 809 810 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data) 811 { 812 struct e1000_hw *hw = &adapter->hw; 813 u16 temp; 814 u16 checksum = 0; 815 u16 i; 816 817 *data = 0; 818 /* Read and add up the contents of the EEPROM */ 819 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { 820 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) { 821 *data = 1; 822 break; 823 } 824 checksum += temp; 825 } 826 827 /* If Checksum is not Correct return error else test passed */ 828 if ((checksum != (u16)EEPROM_SUM) && !(*data)) 829 *data = 2; 830 831 return *data; 832 } 833 834 static irqreturn_t e1000_test_intr(int irq, void *data) 835 { 836 struct net_device *netdev = (struct net_device *)data; 837 struct e1000_adapter *adapter = netdev_priv(netdev); 838 struct e1000_hw *hw = &adapter->hw; 839 840 adapter->test_icr |= er32(ICR); 841 842 return IRQ_HANDLED; 843 } 844 845 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data) 846 { 847 struct net_device *netdev = adapter->netdev; 848 u32 mask, i = 0; 849 bool shared_int = true; 850 u32 irq = adapter->pdev->irq; 851 struct e1000_hw *hw = &adapter->hw; 852 853 *data = 0; 854 855 /* NOTE: we don't test MSI interrupts here, yet 856 * Hook up test interrupt handler just for this test 857 */ 858 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name, 859 netdev)) 860 shared_int = false; 861 else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, 862 netdev->name, netdev)) { 863 *data = 1; 864 return -1; 865 } 866 e_info(hw, "testing %s interrupt\n", (shared_int ? 867 "shared" : "unshared")); 868 869 /* Disable all the interrupts */ 870 ew32(IMC, 0xFFFFFFFF); 871 E1000_WRITE_FLUSH(); 872 msleep(10); 873 874 /* Test each interrupt */ 875 for (; i < 10; i++) { 876 /* Interrupt to test */ 877 mask = 1 << i; 878 879 if (!shared_int) { 880 /* Disable the interrupt to be reported in 881 * the cause register and then force the same 882 * interrupt and see if one gets posted. If 883 * an interrupt was posted to the bus, the 884 * test failed. 885 */ 886 adapter->test_icr = 0; 887 ew32(IMC, mask); 888 ew32(ICS, mask); 889 E1000_WRITE_FLUSH(); 890 msleep(10); 891 892 if (adapter->test_icr & mask) { 893 *data = 3; 894 break; 895 } 896 } 897 898 /* Enable the interrupt to be reported in 899 * the cause register and then force the same 900 * interrupt and see if one gets posted. If 901 * an interrupt was not posted to the bus, the 902 * test failed. 903 */ 904 adapter->test_icr = 0; 905 ew32(IMS, mask); 906 ew32(ICS, mask); 907 E1000_WRITE_FLUSH(); 908 msleep(10); 909 910 if (!(adapter->test_icr & mask)) { 911 *data = 4; 912 break; 913 } 914 915 if (!shared_int) { 916 /* Disable the other interrupts to be reported in 917 * the cause register and then force the other 918 * interrupts and see if any get posted. If 919 * an interrupt was posted to the bus, the 920 * test failed. 921 */ 922 adapter->test_icr = 0; 923 ew32(IMC, ~mask & 0x00007FFF); 924 ew32(ICS, ~mask & 0x00007FFF); 925 E1000_WRITE_FLUSH(); 926 msleep(10); 927 928 if (adapter->test_icr) { 929 *data = 5; 930 break; 931 } 932 } 933 } 934 935 /* Disable all the interrupts */ 936 ew32(IMC, 0xFFFFFFFF); 937 E1000_WRITE_FLUSH(); 938 msleep(10); 939 940 /* Unhook test interrupt handler */ 941 free_irq(irq, netdev); 942 943 return *data; 944 } 945 946 static void e1000_free_desc_rings(struct e1000_adapter *adapter) 947 { 948 struct e1000_tx_ring *txdr = &adapter->test_tx_ring; 949 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; 950 struct pci_dev *pdev = adapter->pdev; 951 int i; 952 953 if (txdr->desc && txdr->buffer_info) { 954 for (i = 0; i < txdr->count; i++) { 955 if (txdr->buffer_info[i].dma) 956 dma_unmap_single(&pdev->dev, 957 txdr->buffer_info[i].dma, 958 txdr->buffer_info[i].length, 959 DMA_TO_DEVICE); 960 if (txdr->buffer_info[i].skb) 961 dev_kfree_skb(txdr->buffer_info[i].skb); 962 } 963 } 964 965 if (rxdr->desc && rxdr->buffer_info) { 966 for (i = 0; i < rxdr->count; i++) { 967 if (rxdr->buffer_info[i].dma) 968 dma_unmap_single(&pdev->dev, 969 rxdr->buffer_info[i].dma, 970 E1000_RXBUFFER_2048, 971 DMA_FROM_DEVICE); 972 kfree(rxdr->buffer_info[i].rxbuf.data); 973 } 974 } 975 976 if (txdr->desc) { 977 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc, 978 txdr->dma); 979 txdr->desc = NULL; 980 } 981 if (rxdr->desc) { 982 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc, 983 rxdr->dma); 984 rxdr->desc = NULL; 985 } 986 987 kfree(txdr->buffer_info); 988 txdr->buffer_info = NULL; 989 kfree(rxdr->buffer_info); 990 rxdr->buffer_info = NULL; 991 } 992 993 static int e1000_setup_desc_rings(struct e1000_adapter *adapter) 994 { 995 struct e1000_hw *hw = &adapter->hw; 996 struct e1000_tx_ring *txdr = &adapter->test_tx_ring; 997 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; 998 struct pci_dev *pdev = adapter->pdev; 999 u32 rctl; 1000 int i, ret_val; 1001 1002 /* Setup Tx descriptor ring and Tx buffers */ 1003 1004 if (!txdr->count) 1005 txdr->count = E1000_DEFAULT_TXD; 1006 1007 txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_tx_buffer), 1008 GFP_KERNEL); 1009 if (!txdr->buffer_info) { 1010 ret_val = 1; 1011 goto err_nomem; 1012 } 1013 1014 txdr->size = txdr->count * sizeof(struct e1000_tx_desc); 1015 txdr->size = ALIGN(txdr->size, 4096); 1016 txdr->desc = dma_zalloc_coherent(&pdev->dev, txdr->size, &txdr->dma, 1017 GFP_KERNEL); 1018 if (!txdr->desc) { 1019 ret_val = 2; 1020 goto err_nomem; 1021 } 1022 txdr->next_to_use = txdr->next_to_clean = 0; 1023 1024 ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF)); 1025 ew32(TDBAH, ((u64)txdr->dma >> 32)); 1026 ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc)); 1027 ew32(TDH, 0); 1028 ew32(TDT, 0); 1029 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | 1030 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | 1031 E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT); 1032 1033 for (i = 0; i < txdr->count; i++) { 1034 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i); 1035 struct sk_buff *skb; 1036 unsigned int size = 1024; 1037 1038 skb = alloc_skb(size, GFP_KERNEL); 1039 if (!skb) { 1040 ret_val = 3; 1041 goto err_nomem; 1042 } 1043 skb_put(skb, size); 1044 txdr->buffer_info[i].skb = skb; 1045 txdr->buffer_info[i].length = skb->len; 1046 txdr->buffer_info[i].dma = 1047 dma_map_single(&pdev->dev, skb->data, skb->len, 1048 DMA_TO_DEVICE); 1049 if (dma_mapping_error(&pdev->dev, txdr->buffer_info[i].dma)) { 1050 ret_val = 4; 1051 goto err_nomem; 1052 } 1053 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma); 1054 tx_desc->lower.data = cpu_to_le32(skb->len); 1055 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | 1056 E1000_TXD_CMD_IFCS | 1057 E1000_TXD_CMD_RPS); 1058 tx_desc->upper.data = 0; 1059 } 1060 1061 /* Setup Rx descriptor ring and Rx buffers */ 1062 1063 if (!rxdr->count) 1064 rxdr->count = E1000_DEFAULT_RXD; 1065 1066 rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_rx_buffer), 1067 GFP_KERNEL); 1068 if (!rxdr->buffer_info) { 1069 ret_val = 5; 1070 goto err_nomem; 1071 } 1072 1073 rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc); 1074 rxdr->desc = dma_zalloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma, 1075 GFP_KERNEL); 1076 if (!rxdr->desc) { 1077 ret_val = 6; 1078 goto err_nomem; 1079 } 1080 rxdr->next_to_use = rxdr->next_to_clean = 0; 1081 1082 rctl = er32(RCTL); 1083 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1084 ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF)); 1085 ew32(RDBAH, ((u64)rxdr->dma >> 32)); 1086 ew32(RDLEN, rxdr->size); 1087 ew32(RDH, 0); 1088 ew32(RDT, 0); 1089 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | 1090 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 1091 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); 1092 ew32(RCTL, rctl); 1093 1094 for (i = 0; i < rxdr->count; i++) { 1095 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i); 1096 u8 *buf; 1097 1098 buf = kzalloc(E1000_RXBUFFER_2048 + NET_SKB_PAD + NET_IP_ALIGN, 1099 GFP_KERNEL); 1100 if (!buf) { 1101 ret_val = 7; 1102 goto err_nomem; 1103 } 1104 rxdr->buffer_info[i].rxbuf.data = buf; 1105 1106 rxdr->buffer_info[i].dma = 1107 dma_map_single(&pdev->dev, 1108 buf + NET_SKB_PAD + NET_IP_ALIGN, 1109 E1000_RXBUFFER_2048, DMA_FROM_DEVICE); 1110 if (dma_mapping_error(&pdev->dev, rxdr->buffer_info[i].dma)) { 1111 ret_val = 8; 1112 goto err_nomem; 1113 } 1114 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma); 1115 } 1116 1117 return 0; 1118 1119 err_nomem: 1120 e1000_free_desc_rings(adapter); 1121 return ret_val; 1122 } 1123 1124 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter) 1125 { 1126 struct e1000_hw *hw = &adapter->hw; 1127 1128 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1129 e1000_write_phy_reg(hw, 29, 0x001F); 1130 e1000_write_phy_reg(hw, 30, 0x8FFC); 1131 e1000_write_phy_reg(hw, 29, 0x001A); 1132 e1000_write_phy_reg(hw, 30, 0x8FF0); 1133 } 1134 1135 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter) 1136 { 1137 struct e1000_hw *hw = &adapter->hw; 1138 u16 phy_reg; 1139 1140 /* Because we reset the PHY above, we need to re-force TX_CLK in the 1141 * Extended PHY Specific Control Register to 25MHz clock. This 1142 * value defaults back to a 2.5MHz clock when the PHY is reset. 1143 */ 1144 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); 1145 phy_reg |= M88E1000_EPSCR_TX_CLK_25; 1146 e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_reg); 1147 1148 /* In addition, because of the s/w reset above, we need to enable 1149 * CRS on TX. This must be set for both full and half duplex 1150 * operation. 1151 */ 1152 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); 1153 phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX; 1154 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg); 1155 } 1156 1157 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter) 1158 { 1159 struct e1000_hw *hw = &adapter->hw; 1160 u32 ctrl_reg; 1161 u16 phy_reg; 1162 1163 /* Setup the Device Control Register for PHY loopback test. */ 1164 1165 ctrl_reg = er32(CTRL); 1166 ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */ 1167 E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1168 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1169 E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */ 1170 E1000_CTRL_FD); /* Force Duplex to FULL */ 1171 1172 ew32(CTRL, ctrl_reg); 1173 1174 /* Read the PHY Specific Control Register (0x10) */ 1175 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); 1176 1177 /* Clear Auto-Crossover bits in PHY Specific Control Register 1178 * (bits 6:5). 1179 */ 1180 phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE; 1181 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg); 1182 1183 /* Perform software reset on the PHY */ 1184 e1000_phy_reset(hw); 1185 1186 /* Have to setup TX_CLK and TX_CRS after software reset */ 1187 e1000_phy_reset_clk_and_crs(adapter); 1188 1189 e1000_write_phy_reg(hw, PHY_CTRL, 0x8100); 1190 1191 /* Wait for reset to complete. */ 1192 udelay(500); 1193 1194 /* Have to setup TX_CLK and TX_CRS after software reset */ 1195 e1000_phy_reset_clk_and_crs(adapter); 1196 1197 /* Write out to PHY registers 29 and 30 to disable the Receiver. */ 1198 e1000_phy_disable_receiver(adapter); 1199 1200 /* Set the loopback bit in the PHY control register. */ 1201 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); 1202 phy_reg |= MII_CR_LOOPBACK; 1203 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); 1204 1205 /* Setup TX_CLK and TX_CRS one more time. */ 1206 e1000_phy_reset_clk_and_crs(adapter); 1207 1208 /* Check Phy Configuration */ 1209 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); 1210 if (phy_reg != 0x4100) 1211 return 9; 1212 1213 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); 1214 if (phy_reg != 0x0070) 1215 return 10; 1216 1217 e1000_read_phy_reg(hw, 29, &phy_reg); 1218 if (phy_reg != 0x001A) 1219 return 11; 1220 1221 return 0; 1222 } 1223 1224 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter) 1225 { 1226 struct e1000_hw *hw = &adapter->hw; 1227 u32 ctrl_reg = 0; 1228 u32 stat_reg = 0; 1229 1230 hw->autoneg = false; 1231 1232 if (hw->phy_type == e1000_phy_m88) { 1233 /* Auto-MDI/MDIX Off */ 1234 e1000_write_phy_reg(hw, 1235 M88E1000_PHY_SPEC_CTRL, 0x0808); 1236 /* reset to update Auto-MDI/MDIX */ 1237 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140); 1238 /* autoneg off */ 1239 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140); 1240 } 1241 1242 ctrl_reg = er32(CTRL); 1243 1244 /* force 1000, set loopback */ 1245 e1000_write_phy_reg(hw, PHY_CTRL, 0x4140); 1246 1247 /* Now set up the MAC to the same speed/duplex as the PHY. */ 1248 ctrl_reg = er32(CTRL); 1249 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ 1250 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ 1251 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ 1252 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1253 E1000_CTRL_FD); /* Force Duplex to FULL */ 1254 1255 if (hw->media_type == e1000_media_type_copper && 1256 hw->phy_type == e1000_phy_m88) 1257 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1258 else { 1259 /* Set the ILOS bit on the fiber Nic is half 1260 * duplex link is detected. 1261 */ 1262 stat_reg = er32(STATUS); 1263 if ((stat_reg & E1000_STATUS_FD) == 0) 1264 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); 1265 } 1266 1267 ew32(CTRL, ctrl_reg); 1268 1269 /* Disable the receiver on the PHY so when a cable is plugged in, the 1270 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1271 */ 1272 if (hw->phy_type == e1000_phy_m88) 1273 e1000_phy_disable_receiver(adapter); 1274 1275 udelay(500); 1276 1277 return 0; 1278 } 1279 1280 static int e1000_set_phy_loopback(struct e1000_adapter *adapter) 1281 { 1282 struct e1000_hw *hw = &adapter->hw; 1283 u16 phy_reg = 0; 1284 u16 count = 0; 1285 1286 switch (hw->mac_type) { 1287 case e1000_82543: 1288 if (hw->media_type == e1000_media_type_copper) { 1289 /* Attempt to setup Loopback mode on Non-integrated PHY. 1290 * Some PHY registers get corrupted at random, so 1291 * attempt this 10 times. 1292 */ 1293 while (e1000_nonintegrated_phy_loopback(adapter) && 1294 count++ < 10); 1295 if (count < 11) 1296 return 0; 1297 } 1298 break; 1299 1300 case e1000_82544: 1301 case e1000_82540: 1302 case e1000_82545: 1303 case e1000_82545_rev_3: 1304 case e1000_82546: 1305 case e1000_82546_rev_3: 1306 case e1000_82541: 1307 case e1000_82541_rev_2: 1308 case e1000_82547: 1309 case e1000_82547_rev_2: 1310 return e1000_integrated_phy_loopback(adapter); 1311 default: 1312 /* Default PHY loopback work is to read the MII 1313 * control register and assert bit 14 (loopback mode). 1314 */ 1315 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); 1316 phy_reg |= MII_CR_LOOPBACK; 1317 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); 1318 return 0; 1319 } 1320 1321 return 8; 1322 } 1323 1324 static int e1000_setup_loopback_test(struct e1000_adapter *adapter) 1325 { 1326 struct e1000_hw *hw = &adapter->hw; 1327 u32 rctl; 1328 1329 if (hw->media_type == e1000_media_type_fiber || 1330 hw->media_type == e1000_media_type_internal_serdes) { 1331 switch (hw->mac_type) { 1332 case e1000_82545: 1333 case e1000_82546: 1334 case e1000_82545_rev_3: 1335 case e1000_82546_rev_3: 1336 return e1000_set_phy_loopback(adapter); 1337 default: 1338 rctl = er32(RCTL); 1339 rctl |= E1000_RCTL_LBM_TCVR; 1340 ew32(RCTL, rctl); 1341 return 0; 1342 } 1343 } else if (hw->media_type == e1000_media_type_copper) { 1344 return e1000_set_phy_loopback(adapter); 1345 } 1346 1347 return 7; 1348 } 1349 1350 static void e1000_loopback_cleanup(struct e1000_adapter *adapter) 1351 { 1352 struct e1000_hw *hw = &adapter->hw; 1353 u32 rctl; 1354 u16 phy_reg; 1355 1356 rctl = er32(RCTL); 1357 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 1358 ew32(RCTL, rctl); 1359 1360 switch (hw->mac_type) { 1361 case e1000_82545: 1362 case e1000_82546: 1363 case e1000_82545_rev_3: 1364 case e1000_82546_rev_3: 1365 default: 1366 hw->autoneg = true; 1367 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); 1368 if (phy_reg & MII_CR_LOOPBACK) { 1369 phy_reg &= ~MII_CR_LOOPBACK; 1370 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); 1371 e1000_phy_reset(hw); 1372 } 1373 break; 1374 } 1375 } 1376 1377 static void e1000_create_lbtest_frame(struct sk_buff *skb, 1378 unsigned int frame_size) 1379 { 1380 memset(skb->data, 0xFF, frame_size); 1381 frame_size &= ~1; 1382 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); 1383 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); 1384 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); 1385 } 1386 1387 static int e1000_check_lbtest_frame(const unsigned char *data, 1388 unsigned int frame_size) 1389 { 1390 frame_size &= ~1; 1391 if (*(data + 3) == 0xFF) { 1392 if ((*(data + frame_size / 2 + 10) == 0xBE) && 1393 (*(data + frame_size / 2 + 12) == 0xAF)) { 1394 return 0; 1395 } 1396 } 1397 return 13; 1398 } 1399 1400 static int e1000_run_loopback_test(struct e1000_adapter *adapter) 1401 { 1402 struct e1000_hw *hw = &adapter->hw; 1403 struct e1000_tx_ring *txdr = &adapter->test_tx_ring; 1404 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; 1405 struct pci_dev *pdev = adapter->pdev; 1406 int i, j, k, l, lc, good_cnt, ret_val = 0; 1407 unsigned long time; 1408 1409 ew32(RDT, rxdr->count - 1); 1410 1411 /* Calculate the loop count based on the largest descriptor ring 1412 * The idea is to wrap the largest ring a number of times using 64 1413 * send/receive pairs during each loop 1414 */ 1415 1416 if (rxdr->count <= txdr->count) 1417 lc = ((txdr->count / 64) * 2) + 1; 1418 else 1419 lc = ((rxdr->count / 64) * 2) + 1; 1420 1421 k = l = 0; 1422 for (j = 0; j <= lc; j++) { /* loop count loop */ 1423 for (i = 0; i < 64; i++) { /* send the packets */ 1424 e1000_create_lbtest_frame(txdr->buffer_info[i].skb, 1425 1024); 1426 dma_sync_single_for_device(&pdev->dev, 1427 txdr->buffer_info[k].dma, 1428 txdr->buffer_info[k].length, 1429 DMA_TO_DEVICE); 1430 if (unlikely(++k == txdr->count)) 1431 k = 0; 1432 } 1433 ew32(TDT, k); 1434 E1000_WRITE_FLUSH(); 1435 msleep(200); 1436 time = jiffies; /* set the start time for the receive */ 1437 good_cnt = 0; 1438 do { /* receive the sent packets */ 1439 dma_sync_single_for_cpu(&pdev->dev, 1440 rxdr->buffer_info[l].dma, 1441 E1000_RXBUFFER_2048, 1442 DMA_FROM_DEVICE); 1443 1444 ret_val = e1000_check_lbtest_frame( 1445 rxdr->buffer_info[l].rxbuf.data + 1446 NET_SKB_PAD + NET_IP_ALIGN, 1447 1024); 1448 if (!ret_val) 1449 good_cnt++; 1450 if (unlikely(++l == rxdr->count)) 1451 l = 0; 1452 /* time + 20 msecs (200 msecs on 2.4) is more than 1453 * enough time to complete the receives, if it's 1454 * exceeded, break and error off 1455 */ 1456 } while (good_cnt < 64 && time_after(time + 20, jiffies)); 1457 1458 if (good_cnt != 64) { 1459 ret_val = 13; /* ret_val is the same as mis-compare */ 1460 break; 1461 } 1462 if (time_after_eq(jiffies, time + 2)) { 1463 ret_val = 14; /* error code for time out error */ 1464 break; 1465 } 1466 } /* end loop count loop */ 1467 return ret_val; 1468 } 1469 1470 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data) 1471 { 1472 *data = e1000_setup_desc_rings(adapter); 1473 if (*data) 1474 goto out; 1475 *data = e1000_setup_loopback_test(adapter); 1476 if (*data) 1477 goto err_loopback; 1478 *data = e1000_run_loopback_test(adapter); 1479 e1000_loopback_cleanup(adapter); 1480 1481 err_loopback: 1482 e1000_free_desc_rings(adapter); 1483 out: 1484 return *data; 1485 } 1486 1487 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data) 1488 { 1489 struct e1000_hw *hw = &adapter->hw; 1490 *data = 0; 1491 if (hw->media_type == e1000_media_type_internal_serdes) { 1492 int i = 0; 1493 1494 hw->serdes_has_link = false; 1495 1496 /* On some blade server designs, link establishment 1497 * could take as long as 2-3 minutes 1498 */ 1499 do { 1500 e1000_check_for_link(hw); 1501 if (hw->serdes_has_link) 1502 return *data; 1503 msleep(20); 1504 } while (i++ < 3750); 1505 1506 *data = 1; 1507 } else { 1508 e1000_check_for_link(hw); 1509 if (hw->autoneg) /* if auto_neg is set wait for it */ 1510 msleep(4000); 1511 1512 if (!(er32(STATUS) & E1000_STATUS_LU)) 1513 *data = 1; 1514 } 1515 return *data; 1516 } 1517 1518 static int e1000_get_sset_count(struct net_device *netdev, int sset) 1519 { 1520 switch (sset) { 1521 case ETH_SS_TEST: 1522 return E1000_TEST_LEN; 1523 case ETH_SS_STATS: 1524 return E1000_STATS_LEN; 1525 default: 1526 return -EOPNOTSUPP; 1527 } 1528 } 1529 1530 static void e1000_diag_test(struct net_device *netdev, 1531 struct ethtool_test *eth_test, u64 *data) 1532 { 1533 struct e1000_adapter *adapter = netdev_priv(netdev); 1534 struct e1000_hw *hw = &adapter->hw; 1535 bool if_running = netif_running(netdev); 1536 1537 set_bit(__E1000_TESTING, &adapter->flags); 1538 if (eth_test->flags == ETH_TEST_FL_OFFLINE) { 1539 /* Offline tests */ 1540 1541 /* save speed, duplex, autoneg settings */ 1542 u16 autoneg_advertised = hw->autoneg_advertised; 1543 u8 forced_speed_duplex = hw->forced_speed_duplex; 1544 u8 autoneg = hw->autoneg; 1545 1546 e_info(hw, "offline testing starting\n"); 1547 1548 /* Link test performed before hardware reset so autoneg doesn't 1549 * interfere with test result 1550 */ 1551 if (e1000_link_test(adapter, &data[4])) 1552 eth_test->flags |= ETH_TEST_FL_FAILED; 1553 1554 if (if_running) 1555 /* indicate we're in test mode */ 1556 e1000_close(netdev); 1557 else 1558 e1000_reset(adapter); 1559 1560 if (e1000_reg_test(adapter, &data[0])) 1561 eth_test->flags |= ETH_TEST_FL_FAILED; 1562 1563 e1000_reset(adapter); 1564 if (e1000_eeprom_test(adapter, &data[1])) 1565 eth_test->flags |= ETH_TEST_FL_FAILED; 1566 1567 e1000_reset(adapter); 1568 if (e1000_intr_test(adapter, &data[2])) 1569 eth_test->flags |= ETH_TEST_FL_FAILED; 1570 1571 e1000_reset(adapter); 1572 /* make sure the phy is powered up */ 1573 e1000_power_up_phy(adapter); 1574 if (e1000_loopback_test(adapter, &data[3])) 1575 eth_test->flags |= ETH_TEST_FL_FAILED; 1576 1577 /* restore speed, duplex, autoneg settings */ 1578 hw->autoneg_advertised = autoneg_advertised; 1579 hw->forced_speed_duplex = forced_speed_duplex; 1580 hw->autoneg = autoneg; 1581 1582 e1000_reset(adapter); 1583 clear_bit(__E1000_TESTING, &adapter->flags); 1584 if (if_running) 1585 e1000_open(netdev); 1586 } else { 1587 e_info(hw, "online testing starting\n"); 1588 /* Online tests */ 1589 if (e1000_link_test(adapter, &data[4])) 1590 eth_test->flags |= ETH_TEST_FL_FAILED; 1591 1592 /* Online tests aren't run; pass by default */ 1593 data[0] = 0; 1594 data[1] = 0; 1595 data[2] = 0; 1596 data[3] = 0; 1597 1598 clear_bit(__E1000_TESTING, &adapter->flags); 1599 } 1600 msleep_interruptible(4 * 1000); 1601 } 1602 1603 static int e1000_wol_exclusion(struct e1000_adapter *adapter, 1604 struct ethtool_wolinfo *wol) 1605 { 1606 struct e1000_hw *hw = &adapter->hw; 1607 int retval = 1; /* fail by default */ 1608 1609 switch (hw->device_id) { 1610 case E1000_DEV_ID_82542: 1611 case E1000_DEV_ID_82543GC_FIBER: 1612 case E1000_DEV_ID_82543GC_COPPER: 1613 case E1000_DEV_ID_82544EI_FIBER: 1614 case E1000_DEV_ID_82546EB_QUAD_COPPER: 1615 case E1000_DEV_ID_82545EM_FIBER: 1616 case E1000_DEV_ID_82545EM_COPPER: 1617 case E1000_DEV_ID_82546GB_QUAD_COPPER: 1618 case E1000_DEV_ID_82546GB_PCIE: 1619 /* these don't support WoL at all */ 1620 wol->supported = 0; 1621 break; 1622 case E1000_DEV_ID_82546EB_FIBER: 1623 case E1000_DEV_ID_82546GB_FIBER: 1624 /* Wake events not supported on port B */ 1625 if (er32(STATUS) & E1000_STATUS_FUNC_1) { 1626 wol->supported = 0; 1627 break; 1628 } 1629 /* return success for non excluded adapter ports */ 1630 retval = 0; 1631 break; 1632 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 1633 /* quad port adapters only support WoL on port A */ 1634 if (!adapter->quad_port_a) { 1635 wol->supported = 0; 1636 break; 1637 } 1638 /* return success for non excluded adapter ports */ 1639 retval = 0; 1640 break; 1641 default: 1642 /* dual port cards only support WoL on port A from now on 1643 * unless it was enabled in the eeprom for port B 1644 * so exclude FUNC_1 ports from having WoL enabled 1645 */ 1646 if (er32(STATUS) & E1000_STATUS_FUNC_1 && 1647 !adapter->eeprom_wol) { 1648 wol->supported = 0; 1649 break; 1650 } 1651 1652 retval = 0; 1653 } 1654 1655 return retval; 1656 } 1657 1658 static void e1000_get_wol(struct net_device *netdev, 1659 struct ethtool_wolinfo *wol) 1660 { 1661 struct e1000_adapter *adapter = netdev_priv(netdev); 1662 struct e1000_hw *hw = &adapter->hw; 1663 1664 wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC; 1665 wol->wolopts = 0; 1666 1667 /* this function will set ->supported = 0 and return 1 if wol is not 1668 * supported by this hardware 1669 */ 1670 if (e1000_wol_exclusion(adapter, wol) || 1671 !device_can_wakeup(&adapter->pdev->dev)) 1672 return; 1673 1674 /* apply any specific unsupported masks here */ 1675 switch (hw->device_id) { 1676 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 1677 /* KSP3 does not support UCAST wake-ups */ 1678 wol->supported &= ~WAKE_UCAST; 1679 1680 if (adapter->wol & E1000_WUFC_EX) 1681 e_err(drv, "Interface does not support directed " 1682 "(unicast) frame wake-up packets\n"); 1683 break; 1684 default: 1685 break; 1686 } 1687 1688 if (adapter->wol & E1000_WUFC_EX) 1689 wol->wolopts |= WAKE_UCAST; 1690 if (adapter->wol & E1000_WUFC_MC) 1691 wol->wolopts |= WAKE_MCAST; 1692 if (adapter->wol & E1000_WUFC_BC) 1693 wol->wolopts |= WAKE_BCAST; 1694 if (adapter->wol & E1000_WUFC_MAG) 1695 wol->wolopts |= WAKE_MAGIC; 1696 } 1697 1698 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 1699 { 1700 struct e1000_adapter *adapter = netdev_priv(netdev); 1701 struct e1000_hw *hw = &adapter->hw; 1702 1703 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE)) 1704 return -EOPNOTSUPP; 1705 1706 if (e1000_wol_exclusion(adapter, wol) || 1707 !device_can_wakeup(&adapter->pdev->dev)) 1708 return wol->wolopts ? -EOPNOTSUPP : 0; 1709 1710 switch (hw->device_id) { 1711 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: 1712 if (wol->wolopts & WAKE_UCAST) { 1713 e_err(drv, "Interface does not support directed " 1714 "(unicast) frame wake-up packets\n"); 1715 return -EOPNOTSUPP; 1716 } 1717 break; 1718 default: 1719 break; 1720 } 1721 1722 /* these settings will always override what we currently have */ 1723 adapter->wol = 0; 1724 1725 if (wol->wolopts & WAKE_UCAST) 1726 adapter->wol |= E1000_WUFC_EX; 1727 if (wol->wolopts & WAKE_MCAST) 1728 adapter->wol |= E1000_WUFC_MC; 1729 if (wol->wolopts & WAKE_BCAST) 1730 adapter->wol |= E1000_WUFC_BC; 1731 if (wol->wolopts & WAKE_MAGIC) 1732 adapter->wol |= E1000_WUFC_MAG; 1733 1734 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); 1735 1736 return 0; 1737 } 1738 1739 static int e1000_set_phys_id(struct net_device *netdev, 1740 enum ethtool_phys_id_state state) 1741 { 1742 struct e1000_adapter *adapter = netdev_priv(netdev); 1743 struct e1000_hw *hw = &adapter->hw; 1744 1745 switch (state) { 1746 case ETHTOOL_ID_ACTIVE: 1747 e1000_setup_led(hw); 1748 return 2; 1749 1750 case ETHTOOL_ID_ON: 1751 e1000_led_on(hw); 1752 break; 1753 1754 case ETHTOOL_ID_OFF: 1755 e1000_led_off(hw); 1756 break; 1757 1758 case ETHTOOL_ID_INACTIVE: 1759 e1000_cleanup_led(hw); 1760 } 1761 1762 return 0; 1763 } 1764 1765 static int e1000_get_coalesce(struct net_device *netdev, 1766 struct ethtool_coalesce *ec) 1767 { 1768 struct e1000_adapter *adapter = netdev_priv(netdev); 1769 1770 if (adapter->hw.mac_type < e1000_82545) 1771 return -EOPNOTSUPP; 1772 1773 if (adapter->itr_setting <= 4) 1774 ec->rx_coalesce_usecs = adapter->itr_setting; 1775 else 1776 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting; 1777 1778 return 0; 1779 } 1780 1781 static int e1000_set_coalesce(struct net_device *netdev, 1782 struct ethtool_coalesce *ec) 1783 { 1784 struct e1000_adapter *adapter = netdev_priv(netdev); 1785 struct e1000_hw *hw = &adapter->hw; 1786 1787 if (hw->mac_type < e1000_82545) 1788 return -EOPNOTSUPP; 1789 1790 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) || 1791 ((ec->rx_coalesce_usecs > 4) && 1792 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) || 1793 (ec->rx_coalesce_usecs == 2)) 1794 return -EINVAL; 1795 1796 if (ec->rx_coalesce_usecs == 4) { 1797 adapter->itr = adapter->itr_setting = 4; 1798 } else if (ec->rx_coalesce_usecs <= 3) { 1799 adapter->itr = 20000; 1800 adapter->itr_setting = ec->rx_coalesce_usecs; 1801 } else { 1802 adapter->itr = (1000000 / ec->rx_coalesce_usecs); 1803 adapter->itr_setting = adapter->itr & ~3; 1804 } 1805 1806 if (adapter->itr_setting != 0) 1807 ew32(ITR, 1000000000 / (adapter->itr * 256)); 1808 else 1809 ew32(ITR, 0); 1810 1811 return 0; 1812 } 1813 1814 static int e1000_nway_reset(struct net_device *netdev) 1815 { 1816 struct e1000_adapter *adapter = netdev_priv(netdev); 1817 1818 if (netif_running(netdev)) 1819 e1000_reinit_locked(adapter); 1820 return 0; 1821 } 1822 1823 static void e1000_get_ethtool_stats(struct net_device *netdev, 1824 struct ethtool_stats *stats, u64 *data) 1825 { 1826 struct e1000_adapter *adapter = netdev_priv(netdev); 1827 int i; 1828 char *p = NULL; 1829 const struct e1000_stats *stat = e1000_gstrings_stats; 1830 1831 e1000_update_stats(adapter); 1832 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 1833 switch (stat->type) { 1834 case NETDEV_STATS: 1835 p = (char *)netdev + stat->stat_offset; 1836 break; 1837 case E1000_STATS: 1838 p = (char *)adapter + stat->stat_offset; 1839 break; 1840 default: 1841 WARN_ONCE(1, "Invalid E1000 stat type: %u index %d\n", 1842 stat->type, i); 1843 break; 1844 } 1845 1846 if (stat->sizeof_stat == sizeof(u64)) 1847 data[i] = *(u64 *)p; 1848 else 1849 data[i] = *(u32 *)p; 1850 1851 stat++; 1852 } 1853 /* BUG_ON(i != E1000_STATS_LEN); */ 1854 } 1855 1856 static void e1000_get_strings(struct net_device *netdev, u32 stringset, 1857 u8 *data) 1858 { 1859 u8 *p = data; 1860 int i; 1861 1862 switch (stringset) { 1863 case ETH_SS_TEST: 1864 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test)); 1865 break; 1866 case ETH_SS_STATS: 1867 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { 1868 memcpy(p, e1000_gstrings_stats[i].stat_string, 1869 ETH_GSTRING_LEN); 1870 p += ETH_GSTRING_LEN; 1871 } 1872 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */ 1873 break; 1874 } 1875 } 1876 1877 static const struct ethtool_ops e1000_ethtool_ops = { 1878 .get_settings = e1000_get_settings, 1879 .set_settings = e1000_set_settings, 1880 .get_drvinfo = e1000_get_drvinfo, 1881 .get_regs_len = e1000_get_regs_len, 1882 .get_regs = e1000_get_regs, 1883 .get_wol = e1000_get_wol, 1884 .set_wol = e1000_set_wol, 1885 .get_msglevel = e1000_get_msglevel, 1886 .set_msglevel = e1000_set_msglevel, 1887 .nway_reset = e1000_nway_reset, 1888 .get_link = e1000_get_link, 1889 .get_eeprom_len = e1000_get_eeprom_len, 1890 .get_eeprom = e1000_get_eeprom, 1891 .set_eeprom = e1000_set_eeprom, 1892 .get_ringparam = e1000_get_ringparam, 1893 .set_ringparam = e1000_set_ringparam, 1894 .get_pauseparam = e1000_get_pauseparam, 1895 .set_pauseparam = e1000_set_pauseparam, 1896 .self_test = e1000_diag_test, 1897 .get_strings = e1000_get_strings, 1898 .set_phys_id = e1000_set_phys_id, 1899 .get_ethtool_stats = e1000_get_ethtool_stats, 1900 .get_sset_count = e1000_get_sset_count, 1901 .get_coalesce = e1000_get_coalesce, 1902 .set_coalesce = e1000_set_coalesce, 1903 .get_ts_info = ethtool_op_get_ts_info, 1904 }; 1905 1906 void e1000_set_ethtool_ops(struct net_device *netdev) 1907 { 1908 netdev->ethtool_ops = &e1000_ethtool_ops; 1909 } 1910