1 /******************************************************************************* 2 3 Intel PRO/100 Linux driver 4 Copyright(c) 1999 - 2006 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27 *******************************************************************************/ 28 29 /* 30 * e100.c: Intel(R) PRO/100 ethernet driver 31 * 32 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on 33 * original e100 driver, but better described as a munging of 34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers. 35 * 36 * References: 37 * Intel 8255x 10/100 Mbps Ethernet Controller Family, 38 * Open Source Software Developers Manual, 39 * http://sourceforge.net/projects/e1000 40 * 41 * 42 * Theory of Operation 43 * 44 * I. General 45 * 46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet 47 * controller family, which includes the 82557, 82558, 82559, 82550, 48 * 82551, and 82562 devices. 82558 and greater controllers 49 * integrate the Intel 82555 PHY. The controllers are used in 50 * server and client network interface cards, as well as in 51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx 52 * configurations. 8255x supports a 32-bit linear addressing 53 * mode and operates at 33Mhz PCI clock rate. 54 * 55 * II. Driver Operation 56 * 57 * Memory-mapped mode is used exclusively to access the device's 58 * shared-memory structure, the Control/Status Registers (CSR). All 59 * setup, configuration, and control of the device, including queuing 60 * of Tx, Rx, and configuration commands is through the CSR. 61 * cmd_lock serializes accesses to the CSR command register. cb_lock 62 * protects the shared Command Block List (CBL). 63 * 64 * 8255x is highly MII-compliant and all access to the PHY go 65 * through the Management Data Interface (MDI). Consequently, the 66 * driver leverages the mii.c library shared with other MII-compliant 67 * devices. 68 * 69 * Big- and Little-Endian byte order as well as 32- and 64-bit 70 * archs are supported. Weak-ordered memory and non-cache-coherent 71 * archs are supported. 72 * 73 * III. Transmit 74 * 75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked 76 * together in a fixed-size ring (CBL) thus forming the flexible mode 77 * memory structure. A TCB marked with the suspend-bit indicates 78 * the end of the ring. The last TCB processed suspends the 79 * controller, and the controller can be restarted by issue a CU 80 * resume command to continue from the suspend point, or a CU start 81 * command to start at a given position in the ring. 82 * 83 * Non-Tx commands (config, multicast setup, etc) are linked 84 * into the CBL ring along with Tx commands. The common structure 85 * used for both Tx and non-Tx commands is the Command Block (CB). 86 * 87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean 88 * is the next CB to check for completion; cb_to_send is the first 89 * CB to start on in case of a previous failure to resume. CB clean 90 * up happens in interrupt context in response to a CU interrupt. 91 * cbs_avail keeps track of number of free CB resources available. 92 * 93 * Hardware padding of short packets to minimum packet size is 94 * enabled. 82557 pads with 7Eh, while the later controllers pad 95 * with 00h. 96 * 97 * IV. Receive 98 * 99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame 100 * Descriptors (RFD) + data buffer, thus forming the simplified mode 101 * memory structure. Rx skbs are allocated to contain both the RFD 102 * and the data buffer, but the RFD is pulled off before the skb is 103 * indicated. The data buffer is aligned such that encapsulated 104 * protocol headers are u32-aligned. Since the RFD is part of the 105 * mapped shared memory, and completion status is contained within 106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent 107 * view from software and hardware. 108 * 109 * In order to keep updates to the RFD link field from colliding with 110 * hardware writes to mark packets complete, we use the feature that 111 * hardware will not write to a size 0 descriptor and mark the previous 112 * packet as end-of-list (EL). After updating the link, we remove EL 113 * and only then restore the size such that hardware may use the 114 * previous-to-end RFD. 115 * 116 * Under typical operation, the receive unit (RU) is start once, 117 * and the controller happily fills RFDs as frames arrive. If 118 * replacement RFDs cannot be allocated, or the RU goes non-active, 119 * the RU must be restarted. Frame arrival generates an interrupt, 120 * and Rx indication and re-allocation happen in the same context, 121 * therefore no locking is required. A software-generated interrupt 122 * is generated from the watchdog to recover from a failed allocation 123 * scenario where all Rx resources have been indicated and none re- 124 * placed. 125 * 126 * V. Miscellaneous 127 * 128 * VLAN offloading of tagging, stripping and filtering is not 129 * supported, but driver will accommodate the extra 4-byte VLAN tag 130 * for processing by upper layers. Tx/Rx Checksum offloading is not 131 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is 132 * not supported (hardware limitation). 133 * 134 * MagicPacket(tm) WoL support is enabled/disabled via ethtool. 135 * 136 * Thanks to JC (jchapman@katalix.com) for helping with 137 * testing/troubleshooting the development driver. 138 * 139 * TODO: 140 * o several entry points race with dev->close 141 * o check for tx-no-resources/stop Q races with tx clean/wake Q 142 * 143 * FIXES: 144 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com> 145 * - Stratus87247: protect MDI control register manipulations 146 * 2009/06/01 - Andreas Mohr <andi at lisas dot de> 147 * - add clean lowlevel I/O emulation for cards with MII-lacking PHYs 148 */ 149 150 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 151 152 #include <linux/hardirq.h> 153 #include <linux/interrupt.h> 154 #include <linux/module.h> 155 #include <linux/moduleparam.h> 156 #include <linux/kernel.h> 157 #include <linux/types.h> 158 #include <linux/sched.h> 159 #include <linux/slab.h> 160 #include <linux/delay.h> 161 #include <linux/init.h> 162 #include <linux/pci.h> 163 #include <linux/dma-mapping.h> 164 #include <linux/dmapool.h> 165 #include <linux/netdevice.h> 166 #include <linux/etherdevice.h> 167 #include <linux/mii.h> 168 #include <linux/if_vlan.h> 169 #include <linux/skbuff.h> 170 #include <linux/ethtool.h> 171 #include <linux/string.h> 172 #include <linux/firmware.h> 173 #include <linux/rtnetlink.h> 174 #include <asm/unaligned.h> 175 176 177 #define DRV_NAME "e100" 178 #define DRV_EXT "-NAPI" 179 #define DRV_VERSION "3.5.24-k2"DRV_EXT 180 #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver" 181 #define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation" 182 183 #define E100_WATCHDOG_PERIOD (2 * HZ) 184 #define E100_NAPI_WEIGHT 16 185 186 #define FIRMWARE_D101M "e100/d101m_ucode.bin" 187 #define FIRMWARE_D101S "e100/d101s_ucode.bin" 188 #define FIRMWARE_D102E "e100/d102e_ucode.bin" 189 190 MODULE_DESCRIPTION(DRV_DESCRIPTION); 191 MODULE_AUTHOR(DRV_COPYRIGHT); 192 MODULE_LICENSE("GPL"); 193 MODULE_VERSION(DRV_VERSION); 194 MODULE_FIRMWARE(FIRMWARE_D101M); 195 MODULE_FIRMWARE(FIRMWARE_D101S); 196 MODULE_FIRMWARE(FIRMWARE_D102E); 197 198 static int debug = 3; 199 static int eeprom_bad_csum_allow = 0; 200 static int use_io = 0; 201 module_param(debug, int, 0); 202 module_param(eeprom_bad_csum_allow, int, 0); 203 module_param(use_io, int, 0); 204 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 205 MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums"); 206 MODULE_PARM_DESC(use_io, "Force use of i/o access mode"); 207 208 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\ 209 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \ 210 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich } 211 static const struct pci_device_id e100_id_table[] = { 212 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0), 213 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0), 214 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3), 215 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3), 216 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3), 217 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3), 218 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3), 219 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4), 220 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4), 221 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4), 222 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4), 223 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4), 224 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4), 225 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5), 226 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5), 227 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5), 228 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5), 229 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5), 230 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5), 231 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5), 232 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5), 233 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0), 234 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6), 235 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6), 236 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6), 237 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6), 238 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6), 239 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6), 240 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6), 241 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6), 242 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7), 243 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7), 244 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7), 245 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7), 246 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7), 247 INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7), 248 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0), 249 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0), 250 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2), 251 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2), 252 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2), 253 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7), 254 { 0, } 255 }; 256 MODULE_DEVICE_TABLE(pci, e100_id_table); 257 258 enum mac { 259 mac_82557_D100_A = 0, 260 mac_82557_D100_B = 1, 261 mac_82557_D100_C = 2, 262 mac_82558_D101_A4 = 4, 263 mac_82558_D101_B0 = 5, 264 mac_82559_D101M = 8, 265 mac_82559_D101S = 9, 266 mac_82550_D102 = 12, 267 mac_82550_D102_C = 13, 268 mac_82551_E = 14, 269 mac_82551_F = 15, 270 mac_82551_10 = 16, 271 mac_unknown = 0xFF, 272 }; 273 274 enum phy { 275 phy_100a = 0x000003E0, 276 phy_100c = 0x035002A8, 277 phy_82555_tx = 0x015002A8, 278 phy_nsc_tx = 0x5C002000, 279 phy_82562_et = 0x033002A8, 280 phy_82562_em = 0x032002A8, 281 phy_82562_ek = 0x031002A8, 282 phy_82562_eh = 0x017002A8, 283 phy_82552_v = 0xd061004d, 284 phy_unknown = 0xFFFFFFFF, 285 }; 286 287 /* CSR (Control/Status Registers) */ 288 struct csr { 289 struct { 290 u8 status; 291 u8 stat_ack; 292 u8 cmd_lo; 293 u8 cmd_hi; 294 u32 gen_ptr; 295 } scb; 296 u32 port; 297 u16 flash_ctrl; 298 u8 eeprom_ctrl_lo; 299 u8 eeprom_ctrl_hi; 300 u32 mdi_ctrl; 301 u32 rx_dma_count; 302 }; 303 304 enum scb_status { 305 rus_no_res = 0x08, 306 rus_ready = 0x10, 307 rus_mask = 0x3C, 308 }; 309 310 enum ru_state { 311 RU_SUSPENDED = 0, 312 RU_RUNNING = 1, 313 RU_UNINITIALIZED = -1, 314 }; 315 316 enum scb_stat_ack { 317 stat_ack_not_ours = 0x00, 318 stat_ack_sw_gen = 0x04, 319 stat_ack_rnr = 0x10, 320 stat_ack_cu_idle = 0x20, 321 stat_ack_frame_rx = 0x40, 322 stat_ack_cu_cmd_done = 0x80, 323 stat_ack_not_present = 0xFF, 324 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx), 325 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done), 326 }; 327 328 enum scb_cmd_hi { 329 irq_mask_none = 0x00, 330 irq_mask_all = 0x01, 331 irq_sw_gen = 0x02, 332 }; 333 334 enum scb_cmd_lo { 335 cuc_nop = 0x00, 336 ruc_start = 0x01, 337 ruc_load_base = 0x06, 338 cuc_start = 0x10, 339 cuc_resume = 0x20, 340 cuc_dump_addr = 0x40, 341 cuc_dump_stats = 0x50, 342 cuc_load_base = 0x60, 343 cuc_dump_reset = 0x70, 344 }; 345 346 enum cuc_dump { 347 cuc_dump_complete = 0x0000A005, 348 cuc_dump_reset_complete = 0x0000A007, 349 }; 350 351 enum port { 352 software_reset = 0x0000, 353 selftest = 0x0001, 354 selective_reset = 0x0002, 355 }; 356 357 enum eeprom_ctrl_lo { 358 eesk = 0x01, 359 eecs = 0x02, 360 eedi = 0x04, 361 eedo = 0x08, 362 }; 363 364 enum mdi_ctrl { 365 mdi_write = 0x04000000, 366 mdi_read = 0x08000000, 367 mdi_ready = 0x10000000, 368 }; 369 370 enum eeprom_op { 371 op_write = 0x05, 372 op_read = 0x06, 373 op_ewds = 0x10, 374 op_ewen = 0x13, 375 }; 376 377 enum eeprom_offsets { 378 eeprom_cnfg_mdix = 0x03, 379 eeprom_phy_iface = 0x06, 380 eeprom_id = 0x0A, 381 eeprom_config_asf = 0x0D, 382 eeprom_smbus_addr = 0x90, 383 }; 384 385 enum eeprom_cnfg_mdix { 386 eeprom_mdix_enabled = 0x0080, 387 }; 388 389 enum eeprom_phy_iface { 390 NoSuchPhy = 0, 391 I82553AB, 392 I82553C, 393 I82503, 394 DP83840, 395 S80C240, 396 S80C24, 397 I82555, 398 DP83840A = 10, 399 }; 400 401 enum eeprom_id { 402 eeprom_id_wol = 0x0020, 403 }; 404 405 enum eeprom_config_asf { 406 eeprom_asf = 0x8000, 407 eeprom_gcl = 0x4000, 408 }; 409 410 enum cb_status { 411 cb_complete = 0x8000, 412 cb_ok = 0x2000, 413 }; 414 415 /** 416 * cb_command - Command Block flags 417 * @cb_tx_nc: 0: controler does CRC (normal), 1: CRC from skb memory 418 */ 419 enum cb_command { 420 cb_nop = 0x0000, 421 cb_iaaddr = 0x0001, 422 cb_config = 0x0002, 423 cb_multi = 0x0003, 424 cb_tx = 0x0004, 425 cb_ucode = 0x0005, 426 cb_dump = 0x0006, 427 cb_tx_sf = 0x0008, 428 cb_tx_nc = 0x0010, 429 cb_cid = 0x1f00, 430 cb_i = 0x2000, 431 cb_s = 0x4000, 432 cb_el = 0x8000, 433 }; 434 435 struct rfd { 436 __le16 status; 437 __le16 command; 438 __le32 link; 439 __le32 rbd; 440 __le16 actual_size; 441 __le16 size; 442 }; 443 444 struct rx { 445 struct rx *next, *prev; 446 struct sk_buff *skb; 447 dma_addr_t dma_addr; 448 }; 449 450 #if defined(__BIG_ENDIAN_BITFIELD) 451 #define X(a,b) b,a 452 #else 453 #define X(a,b) a,b 454 #endif 455 struct config { 456 /*0*/ u8 X(byte_count:6, pad0:2); 457 /*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1); 458 /*2*/ u8 adaptive_ifs; 459 /*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1), 460 term_write_cache_line:1), pad3:4); 461 /*4*/ u8 X(rx_dma_max_count:7, pad4:1); 462 /*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1); 463 /*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1), 464 tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1), 465 rx_save_overruns : 1), rx_save_bad_frames : 1); 466 /*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2), 467 pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1), 468 tx_dynamic_tbd:1); 469 /*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1); 470 /*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1), 471 link_status_wake:1), arp_wake:1), mcmatch_wake:1); 472 /*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2), 473 loopback:2); 474 /*11*/ u8 X(linear_priority:3, pad11:5); 475 /*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4); 476 /*13*/ u8 ip_addr_lo; 477 /*14*/ u8 ip_addr_hi; 478 /*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1), 479 wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1), 480 pad15_2:1), crs_or_cdt:1); 481 /*16*/ u8 fc_delay_lo; 482 /*17*/ u8 fc_delay_hi; 483 /*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1), 484 rx_long_ok:1), fc_priority_threshold:3), pad18:1); 485 /*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1), 486 fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1), 487 full_duplex_force:1), full_duplex_pin:1); 488 /*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1); 489 /*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4); 490 /*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6); 491 u8 pad_d102[9]; 492 }; 493 494 #define E100_MAX_MULTICAST_ADDRS 64 495 struct multi { 496 __le16 count; 497 u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/]; 498 }; 499 500 /* Important: keep total struct u32-aligned */ 501 #define UCODE_SIZE 134 502 struct cb { 503 __le16 status; 504 __le16 command; 505 __le32 link; 506 union { 507 u8 iaaddr[ETH_ALEN]; 508 __le32 ucode[UCODE_SIZE]; 509 struct config config; 510 struct multi multi; 511 struct { 512 u32 tbd_array; 513 u16 tcb_byte_count; 514 u8 threshold; 515 u8 tbd_count; 516 struct { 517 __le32 buf_addr; 518 __le16 size; 519 u16 eol; 520 } tbd; 521 } tcb; 522 __le32 dump_buffer_addr; 523 } u; 524 struct cb *next, *prev; 525 dma_addr_t dma_addr; 526 struct sk_buff *skb; 527 }; 528 529 enum loopback { 530 lb_none = 0, lb_mac = 1, lb_phy = 3, 531 }; 532 533 struct stats { 534 __le32 tx_good_frames, tx_max_collisions, tx_late_collisions, 535 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions, 536 tx_multiple_collisions, tx_total_collisions; 537 __le32 rx_good_frames, rx_crc_errors, rx_alignment_errors, 538 rx_resource_errors, rx_overrun_errors, rx_cdt_errors, 539 rx_short_frame_errors; 540 __le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported; 541 __le16 xmt_tco_frames, rcv_tco_frames; 542 __le32 complete; 543 }; 544 545 struct mem { 546 struct { 547 u32 signature; 548 u32 result; 549 } selftest; 550 struct stats stats; 551 u8 dump_buf[596]; 552 }; 553 554 struct param_range { 555 u32 min; 556 u32 max; 557 u32 count; 558 }; 559 560 struct params { 561 struct param_range rfds; 562 struct param_range cbs; 563 }; 564 565 struct nic { 566 /* Begin: frequently used values: keep adjacent for cache effect */ 567 u32 msg_enable ____cacheline_aligned; 568 struct net_device *netdev; 569 struct pci_dev *pdev; 570 u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data); 571 572 struct rx *rxs ____cacheline_aligned; 573 struct rx *rx_to_use; 574 struct rx *rx_to_clean; 575 struct rfd blank_rfd; 576 enum ru_state ru_running; 577 578 spinlock_t cb_lock ____cacheline_aligned; 579 spinlock_t cmd_lock; 580 struct csr __iomem *csr; 581 enum scb_cmd_lo cuc_cmd; 582 unsigned int cbs_avail; 583 struct napi_struct napi; 584 struct cb *cbs; 585 struct cb *cb_to_use; 586 struct cb *cb_to_send; 587 struct cb *cb_to_clean; 588 __le16 tx_command; 589 /* End: frequently used values: keep adjacent for cache effect */ 590 591 enum { 592 ich = (1 << 0), 593 promiscuous = (1 << 1), 594 multicast_all = (1 << 2), 595 wol_magic = (1 << 3), 596 ich_10h_workaround = (1 << 4), 597 } flags ____cacheline_aligned; 598 599 enum mac mac; 600 enum phy phy; 601 struct params params; 602 struct timer_list watchdog; 603 struct mii_if_info mii; 604 struct work_struct tx_timeout_task; 605 enum loopback loopback; 606 607 struct mem *mem; 608 dma_addr_t dma_addr; 609 610 struct pci_pool *cbs_pool; 611 dma_addr_t cbs_dma_addr; 612 u8 adaptive_ifs; 613 u8 tx_threshold; 614 u32 tx_frames; 615 u32 tx_collisions; 616 u32 tx_deferred; 617 u32 tx_single_collisions; 618 u32 tx_multiple_collisions; 619 u32 tx_fc_pause; 620 u32 tx_tco_frames; 621 622 u32 rx_fc_pause; 623 u32 rx_fc_unsupported; 624 u32 rx_tco_frames; 625 u32 rx_short_frame_errors; 626 u32 rx_over_length_errors; 627 628 u16 eeprom_wc; 629 __le16 eeprom[256]; 630 spinlock_t mdio_lock; 631 const struct firmware *fw; 632 }; 633 634 static inline void e100_write_flush(struct nic *nic) 635 { 636 /* Flush previous PCI writes through intermediate bridges 637 * by doing a benign read */ 638 (void)ioread8(&nic->csr->scb.status); 639 } 640 641 static void e100_enable_irq(struct nic *nic) 642 { 643 unsigned long flags; 644 645 spin_lock_irqsave(&nic->cmd_lock, flags); 646 iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi); 647 e100_write_flush(nic); 648 spin_unlock_irqrestore(&nic->cmd_lock, flags); 649 } 650 651 static void e100_disable_irq(struct nic *nic) 652 { 653 unsigned long flags; 654 655 spin_lock_irqsave(&nic->cmd_lock, flags); 656 iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi); 657 e100_write_flush(nic); 658 spin_unlock_irqrestore(&nic->cmd_lock, flags); 659 } 660 661 static void e100_hw_reset(struct nic *nic) 662 { 663 /* Put CU and RU into idle with a selective reset to get 664 * device off of PCI bus */ 665 iowrite32(selective_reset, &nic->csr->port); 666 e100_write_flush(nic); udelay(20); 667 668 /* Now fully reset device */ 669 iowrite32(software_reset, &nic->csr->port); 670 e100_write_flush(nic); udelay(20); 671 672 /* Mask off our interrupt line - it's unmasked after reset */ 673 e100_disable_irq(nic); 674 } 675 676 static int e100_self_test(struct nic *nic) 677 { 678 u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest); 679 680 /* Passing the self-test is a pretty good indication 681 * that the device can DMA to/from host memory */ 682 683 nic->mem->selftest.signature = 0; 684 nic->mem->selftest.result = 0xFFFFFFFF; 685 686 iowrite32(selftest | dma_addr, &nic->csr->port); 687 e100_write_flush(nic); 688 /* Wait 10 msec for self-test to complete */ 689 msleep(10); 690 691 /* Interrupts are enabled after self-test */ 692 e100_disable_irq(nic); 693 694 /* Check results of self-test */ 695 if (nic->mem->selftest.result != 0) { 696 netif_err(nic, hw, nic->netdev, 697 "Self-test failed: result=0x%08X\n", 698 nic->mem->selftest.result); 699 return -ETIMEDOUT; 700 } 701 if (nic->mem->selftest.signature == 0) { 702 netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n"); 703 return -ETIMEDOUT; 704 } 705 706 return 0; 707 } 708 709 static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data) 710 { 711 u32 cmd_addr_data[3]; 712 u8 ctrl; 713 int i, j; 714 715 /* Three cmds: write/erase enable, write data, write/erase disable */ 716 cmd_addr_data[0] = op_ewen << (addr_len - 2); 717 cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) | 718 le16_to_cpu(data); 719 cmd_addr_data[2] = op_ewds << (addr_len - 2); 720 721 /* Bit-bang cmds to write word to eeprom */ 722 for (j = 0; j < 3; j++) { 723 724 /* Chip select */ 725 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo); 726 e100_write_flush(nic); udelay(4); 727 728 for (i = 31; i >= 0; i--) { 729 ctrl = (cmd_addr_data[j] & (1 << i)) ? 730 eecs | eedi : eecs; 731 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo); 732 e100_write_flush(nic); udelay(4); 733 734 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); 735 e100_write_flush(nic); udelay(4); 736 } 737 /* Wait 10 msec for cmd to complete */ 738 msleep(10); 739 740 /* Chip deselect */ 741 iowrite8(0, &nic->csr->eeprom_ctrl_lo); 742 e100_write_flush(nic); udelay(4); 743 } 744 }; 745 746 /* General technique stolen from the eepro100 driver - very clever */ 747 static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr) 748 { 749 u32 cmd_addr_data; 750 u16 data = 0; 751 u8 ctrl; 752 int i; 753 754 cmd_addr_data = ((op_read << *addr_len) | addr) << 16; 755 756 /* Chip select */ 757 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo); 758 e100_write_flush(nic); udelay(4); 759 760 /* Bit-bang to read word from eeprom */ 761 for (i = 31; i >= 0; i--) { 762 ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs; 763 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo); 764 e100_write_flush(nic); udelay(4); 765 766 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); 767 e100_write_flush(nic); udelay(4); 768 769 /* Eeprom drives a dummy zero to EEDO after receiving 770 * complete address. Use this to adjust addr_len. */ 771 ctrl = ioread8(&nic->csr->eeprom_ctrl_lo); 772 if (!(ctrl & eedo) && i > 16) { 773 *addr_len -= (i - 16); 774 i = 17; 775 } 776 777 data = (data << 1) | (ctrl & eedo ? 1 : 0); 778 } 779 780 /* Chip deselect */ 781 iowrite8(0, &nic->csr->eeprom_ctrl_lo); 782 e100_write_flush(nic); udelay(4); 783 784 return cpu_to_le16(data); 785 }; 786 787 /* Load entire EEPROM image into driver cache and validate checksum */ 788 static int e100_eeprom_load(struct nic *nic) 789 { 790 u16 addr, addr_len = 8, checksum = 0; 791 792 /* Try reading with an 8-bit addr len to discover actual addr len */ 793 e100_eeprom_read(nic, &addr_len, 0); 794 nic->eeprom_wc = 1 << addr_len; 795 796 for (addr = 0; addr < nic->eeprom_wc; addr++) { 797 nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr); 798 if (addr < nic->eeprom_wc - 1) 799 checksum += le16_to_cpu(nic->eeprom[addr]); 800 } 801 802 /* The checksum, stored in the last word, is calculated such that 803 * the sum of words should be 0xBABA */ 804 if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) { 805 netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n"); 806 if (!eeprom_bad_csum_allow) 807 return -EAGAIN; 808 } 809 810 return 0; 811 } 812 813 /* Save (portion of) driver EEPROM cache to device and update checksum */ 814 static int e100_eeprom_save(struct nic *nic, u16 start, u16 count) 815 { 816 u16 addr, addr_len = 8, checksum = 0; 817 818 /* Try reading with an 8-bit addr len to discover actual addr len */ 819 e100_eeprom_read(nic, &addr_len, 0); 820 nic->eeprom_wc = 1 << addr_len; 821 822 if (start + count >= nic->eeprom_wc) 823 return -EINVAL; 824 825 for (addr = start; addr < start + count; addr++) 826 e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]); 827 828 /* The checksum, stored in the last word, is calculated such that 829 * the sum of words should be 0xBABA */ 830 for (addr = 0; addr < nic->eeprom_wc - 1; addr++) 831 checksum += le16_to_cpu(nic->eeprom[addr]); 832 nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum); 833 e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1, 834 nic->eeprom[nic->eeprom_wc - 1]); 835 836 return 0; 837 } 838 839 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */ 840 #define E100_WAIT_SCB_FAST 20 /* delay like the old code */ 841 static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr) 842 { 843 unsigned long flags; 844 unsigned int i; 845 int err = 0; 846 847 spin_lock_irqsave(&nic->cmd_lock, flags); 848 849 /* Previous command is accepted when SCB clears */ 850 for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) { 851 if (likely(!ioread8(&nic->csr->scb.cmd_lo))) 852 break; 853 cpu_relax(); 854 if (unlikely(i > E100_WAIT_SCB_FAST)) 855 udelay(5); 856 } 857 if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) { 858 err = -EAGAIN; 859 goto err_unlock; 860 } 861 862 if (unlikely(cmd != cuc_resume)) 863 iowrite32(dma_addr, &nic->csr->scb.gen_ptr); 864 iowrite8(cmd, &nic->csr->scb.cmd_lo); 865 866 err_unlock: 867 spin_unlock_irqrestore(&nic->cmd_lock, flags); 868 869 return err; 870 } 871 872 static int e100_exec_cb(struct nic *nic, struct sk_buff *skb, 873 int (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *)) 874 { 875 struct cb *cb; 876 unsigned long flags; 877 int err = 0; 878 879 spin_lock_irqsave(&nic->cb_lock, flags); 880 881 if (unlikely(!nic->cbs_avail)) { 882 err = -ENOMEM; 883 goto err_unlock; 884 } 885 886 cb = nic->cb_to_use; 887 nic->cb_to_use = cb->next; 888 nic->cbs_avail--; 889 cb->skb = skb; 890 891 err = cb_prepare(nic, cb, skb); 892 if (err) 893 goto err_unlock; 894 895 if (unlikely(!nic->cbs_avail)) 896 err = -ENOSPC; 897 898 899 /* Order is important otherwise we'll be in a race with h/w: 900 * set S-bit in current first, then clear S-bit in previous. */ 901 cb->command |= cpu_to_le16(cb_s); 902 wmb(); 903 cb->prev->command &= cpu_to_le16(~cb_s); 904 905 while (nic->cb_to_send != nic->cb_to_use) { 906 if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd, 907 nic->cb_to_send->dma_addr))) { 908 /* Ok, here's where things get sticky. It's 909 * possible that we can't schedule the command 910 * because the controller is too busy, so 911 * let's just queue the command and try again 912 * when another command is scheduled. */ 913 if (err == -ENOSPC) { 914 //request a reset 915 schedule_work(&nic->tx_timeout_task); 916 } 917 break; 918 } else { 919 nic->cuc_cmd = cuc_resume; 920 nic->cb_to_send = nic->cb_to_send->next; 921 } 922 } 923 924 err_unlock: 925 spin_unlock_irqrestore(&nic->cb_lock, flags); 926 927 return err; 928 } 929 930 static int mdio_read(struct net_device *netdev, int addr, int reg) 931 { 932 struct nic *nic = netdev_priv(netdev); 933 return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0); 934 } 935 936 static void mdio_write(struct net_device *netdev, int addr, int reg, int data) 937 { 938 struct nic *nic = netdev_priv(netdev); 939 940 nic->mdio_ctrl(nic, addr, mdi_write, reg, data); 941 } 942 943 /* the standard mdio_ctrl() function for usual MII-compliant hardware */ 944 static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data) 945 { 946 u32 data_out = 0; 947 unsigned int i; 948 unsigned long flags; 949 950 951 /* 952 * Stratus87247: we shouldn't be writing the MDI control 953 * register until the Ready bit shows True. Also, since 954 * manipulation of the MDI control registers is a multi-step 955 * procedure it should be done under lock. 956 */ 957 spin_lock_irqsave(&nic->mdio_lock, flags); 958 for (i = 100; i; --i) { 959 if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready) 960 break; 961 udelay(20); 962 } 963 if (unlikely(!i)) { 964 netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n"); 965 spin_unlock_irqrestore(&nic->mdio_lock, flags); 966 return 0; /* No way to indicate timeout error */ 967 } 968 iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl); 969 970 for (i = 0; i < 100; i++) { 971 udelay(20); 972 if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready) 973 break; 974 } 975 spin_unlock_irqrestore(&nic->mdio_lock, flags); 976 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, 977 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n", 978 dir == mdi_read ? "READ" : "WRITE", 979 addr, reg, data, data_out); 980 return (u16)data_out; 981 } 982 983 /* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */ 984 static u16 mdio_ctrl_phy_82552_v(struct nic *nic, 985 u32 addr, 986 u32 dir, 987 u32 reg, 988 u16 data) 989 { 990 if ((reg == MII_BMCR) && (dir == mdi_write)) { 991 if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) { 992 u16 advert = mdio_read(nic->netdev, nic->mii.phy_id, 993 MII_ADVERTISE); 994 995 /* 996 * Workaround Si issue where sometimes the part will not 997 * autoneg to 100Mbps even when advertised. 998 */ 999 if (advert & ADVERTISE_100FULL) 1000 data |= BMCR_SPEED100 | BMCR_FULLDPLX; 1001 else if (advert & ADVERTISE_100HALF) 1002 data |= BMCR_SPEED100; 1003 } 1004 } 1005 return mdio_ctrl_hw(nic, addr, dir, reg, data); 1006 } 1007 1008 /* Fully software-emulated mdio_ctrl() function for cards without 1009 * MII-compliant PHYs. 1010 * For now, this is mainly geared towards 80c24 support; in case of further 1011 * requirements for other types (i82503, ...?) either extend this mechanism 1012 * or split it, whichever is cleaner. 1013 */ 1014 static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic, 1015 u32 addr, 1016 u32 dir, 1017 u32 reg, 1018 u16 data) 1019 { 1020 /* might need to allocate a netdev_priv'ed register array eventually 1021 * to be able to record state changes, but for now 1022 * some fully hardcoded register handling ought to be ok I guess. */ 1023 1024 if (dir == mdi_read) { 1025 switch (reg) { 1026 case MII_BMCR: 1027 /* Auto-negotiation, right? */ 1028 return BMCR_ANENABLE | 1029 BMCR_FULLDPLX; 1030 case MII_BMSR: 1031 return BMSR_LSTATUS /* for mii_link_ok() */ | 1032 BMSR_ANEGCAPABLE | 1033 BMSR_10FULL; 1034 case MII_ADVERTISE: 1035 /* 80c24 is a "combo card" PHY, right? */ 1036 return ADVERTISE_10HALF | 1037 ADVERTISE_10FULL; 1038 default: 1039 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, 1040 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n", 1041 dir == mdi_read ? "READ" : "WRITE", 1042 addr, reg, data); 1043 return 0xFFFF; 1044 } 1045 } else { 1046 switch (reg) { 1047 default: 1048 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, 1049 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n", 1050 dir == mdi_read ? "READ" : "WRITE", 1051 addr, reg, data); 1052 return 0xFFFF; 1053 } 1054 } 1055 } 1056 static inline int e100_phy_supports_mii(struct nic *nic) 1057 { 1058 /* for now, just check it by comparing whether we 1059 are using MII software emulation. 1060 */ 1061 return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated); 1062 } 1063 1064 static void e100_get_defaults(struct nic *nic) 1065 { 1066 struct param_range rfds = { .min = 16, .max = 256, .count = 256 }; 1067 struct param_range cbs = { .min = 64, .max = 256, .count = 128 }; 1068 1069 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */ 1070 nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision; 1071 if (nic->mac == mac_unknown) 1072 nic->mac = mac_82557_D100_A; 1073 1074 nic->params.rfds = rfds; 1075 nic->params.cbs = cbs; 1076 1077 /* Quadwords to DMA into FIFO before starting frame transmit */ 1078 nic->tx_threshold = 0xE0; 1079 1080 /* no interrupt for every tx completion, delay = 256us if not 557 */ 1081 nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf | 1082 ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i)); 1083 1084 /* Template for a freshly allocated RFD */ 1085 nic->blank_rfd.command = 0; 1086 nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF); 1087 nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN); 1088 1089 /* MII setup */ 1090 nic->mii.phy_id_mask = 0x1F; 1091 nic->mii.reg_num_mask = 0x1F; 1092 nic->mii.dev = nic->netdev; 1093 nic->mii.mdio_read = mdio_read; 1094 nic->mii.mdio_write = mdio_write; 1095 } 1096 1097 static int e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb) 1098 { 1099 struct config *config = &cb->u.config; 1100 u8 *c = (u8 *)config; 1101 struct net_device *netdev = nic->netdev; 1102 1103 cb->command = cpu_to_le16(cb_config); 1104 1105 memset(config, 0, sizeof(struct config)); 1106 1107 config->byte_count = 0x16; /* bytes in this struct */ 1108 config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */ 1109 config->direct_rx_dma = 0x1; /* reserved */ 1110 config->standard_tcb = 0x1; /* 1=standard, 0=extended */ 1111 config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */ 1112 config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */ 1113 config->tx_underrun_retry = 0x3; /* # of underrun retries */ 1114 if (e100_phy_supports_mii(nic)) 1115 config->mii_mode = 1; /* 1=MII mode, 0=i82503 mode */ 1116 config->pad10 = 0x6; 1117 config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */ 1118 config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */ 1119 config->ifs = 0x6; /* x16 = inter frame spacing */ 1120 config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */ 1121 config->pad15_1 = 0x1; 1122 config->pad15_2 = 0x1; 1123 config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */ 1124 config->fc_delay_hi = 0x40; /* time delay for fc frame */ 1125 config->tx_padding = 0x1; /* 1=pad short frames */ 1126 config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */ 1127 config->pad18 = 0x1; 1128 config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */ 1129 config->pad20_1 = 0x1F; 1130 config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */ 1131 config->pad21_1 = 0x5; 1132 1133 config->adaptive_ifs = nic->adaptive_ifs; 1134 config->loopback = nic->loopback; 1135 1136 if (nic->mii.force_media && nic->mii.full_duplex) 1137 config->full_duplex_force = 0x1; /* 1=force, 0=auto */ 1138 1139 if (nic->flags & promiscuous || nic->loopback) { 1140 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */ 1141 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */ 1142 config->promiscuous_mode = 0x1; /* 1=on, 0=off */ 1143 } 1144 1145 if (unlikely(netdev->features & NETIF_F_RXFCS)) 1146 config->rx_crc_transfer = 0x1; /* 1=save, 0=discard */ 1147 1148 if (nic->flags & multicast_all) 1149 config->multicast_all = 0x1; /* 1=accept, 0=no */ 1150 1151 /* disable WoL when up */ 1152 if (netif_running(nic->netdev) || !(nic->flags & wol_magic)) 1153 config->magic_packet_disable = 0x1; /* 1=off, 0=on */ 1154 1155 if (nic->mac >= mac_82558_D101_A4) { 1156 config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */ 1157 config->mwi_enable = 0x1; /* 1=enable, 0=disable */ 1158 config->standard_tcb = 0x0; /* 1=standard, 0=extended */ 1159 config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */ 1160 if (nic->mac >= mac_82559_D101M) { 1161 config->tno_intr = 0x1; /* TCO stats enable */ 1162 /* Enable TCO in extended config */ 1163 if (nic->mac >= mac_82551_10) { 1164 config->byte_count = 0x20; /* extended bytes */ 1165 config->rx_d102_mode = 0x1; /* GMRC for TCO */ 1166 } 1167 } else { 1168 config->standard_stat_counter = 0x0; 1169 } 1170 } 1171 1172 if (netdev->features & NETIF_F_RXALL) { 1173 config->rx_save_overruns = 0x1; /* 1=save, 0=discard */ 1174 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */ 1175 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */ 1176 } 1177 1178 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[00-07]=%8ph\n", 1179 c + 0); 1180 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[08-15]=%8ph\n", 1181 c + 8); 1182 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[16-23]=%8ph\n", 1183 c + 16); 1184 return 0; 1185 } 1186 1187 /************************************************************************* 1188 * CPUSaver parameters 1189 * 1190 * All CPUSaver parameters are 16-bit literals that are part of a 1191 * "move immediate value" instruction. By changing the value of 1192 * the literal in the instruction before the code is loaded, the 1193 * driver can change the algorithm. 1194 * 1195 * INTDELAY - This loads the dead-man timer with its initial value. 1196 * When this timer expires the interrupt is asserted, and the 1197 * timer is reset each time a new packet is received. (see 1198 * BUNDLEMAX below to set the limit on number of chained packets) 1199 * The current default is 0x600 or 1536. Experiments show that 1200 * the value should probably stay within the 0x200 - 0x1000. 1201 * 1202 * BUNDLEMAX - 1203 * This sets the maximum number of frames that will be bundled. In 1204 * some situations, such as the TCP windowing algorithm, it may be 1205 * better to limit the growth of the bundle size than let it go as 1206 * high as it can, because that could cause too much added latency. 1207 * The default is six, because this is the number of packets in the 1208 * default TCP window size. A value of 1 would make CPUSaver indicate 1209 * an interrupt for every frame received. If you do not want to put 1210 * a limit on the bundle size, set this value to xFFFF. 1211 * 1212 * BUNDLESMALL - 1213 * This contains a bit-mask describing the minimum size frame that 1214 * will be bundled. The default masks the lower 7 bits, which means 1215 * that any frame less than 128 bytes in length will not be bundled, 1216 * but will instead immediately generate an interrupt. This does 1217 * not affect the current bundle in any way. Any frame that is 128 1218 * bytes or large will be bundled normally. This feature is meant 1219 * to provide immediate indication of ACK frames in a TCP environment. 1220 * Customers were seeing poor performance when a machine with CPUSaver 1221 * enabled was sending but not receiving. The delay introduced when 1222 * the ACKs were received was enough to reduce total throughput, because 1223 * the sender would sit idle until the ACK was finally seen. 1224 * 1225 * The current default is 0xFF80, which masks out the lower 7 bits. 1226 * This means that any frame which is x7F (127) bytes or smaller 1227 * will cause an immediate interrupt. Because this value must be a 1228 * bit mask, there are only a few valid values that can be used. To 1229 * turn this feature off, the driver can write the value xFFFF to the 1230 * lower word of this instruction (in the same way that the other 1231 * parameters are used). Likewise, a value of 0xF800 (2047) would 1232 * cause an interrupt to be generated for every frame, because all 1233 * standard Ethernet frames are <= 2047 bytes in length. 1234 *************************************************************************/ 1235 1236 /* if you wish to disable the ucode functionality, while maintaining the 1237 * workarounds it provides, set the following defines to: 1238 * BUNDLESMALL 0 1239 * BUNDLEMAX 1 1240 * INTDELAY 1 1241 */ 1242 #define BUNDLESMALL 1 1243 #define BUNDLEMAX (u16)6 1244 #define INTDELAY (u16)1536 /* 0x600 */ 1245 1246 /* Initialize firmware */ 1247 static const struct firmware *e100_request_firmware(struct nic *nic) 1248 { 1249 const char *fw_name; 1250 const struct firmware *fw = nic->fw; 1251 u8 timer, bundle, min_size; 1252 int err = 0; 1253 bool required = false; 1254 1255 /* do not load u-code for ICH devices */ 1256 if (nic->flags & ich) 1257 return NULL; 1258 1259 /* Search for ucode match against h/w revision 1260 * 1261 * Based on comments in the source code for the FreeBSD fxp 1262 * driver, the FIRMWARE_D102E ucode includes both CPUSaver and 1263 * 1264 * "fixes for bugs in the B-step hardware (specifically, bugs 1265 * with Inline Receive)." 1266 * 1267 * So we must fail if it cannot be loaded. 1268 * 1269 * The other microcode files are only required for the optional 1270 * CPUSaver feature. Nice to have, but no reason to fail. 1271 */ 1272 if (nic->mac == mac_82559_D101M) { 1273 fw_name = FIRMWARE_D101M; 1274 } else if (nic->mac == mac_82559_D101S) { 1275 fw_name = FIRMWARE_D101S; 1276 } else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) { 1277 fw_name = FIRMWARE_D102E; 1278 required = true; 1279 } else { /* No ucode on other devices */ 1280 return NULL; 1281 } 1282 1283 /* If the firmware has not previously been loaded, request a pointer 1284 * to it. If it was previously loaded, we are reinitializing the 1285 * adapter, possibly in a resume from hibernate, in which case 1286 * request_firmware() cannot be used. 1287 */ 1288 if (!fw) 1289 err = request_firmware(&fw, fw_name, &nic->pdev->dev); 1290 1291 if (err) { 1292 if (required) { 1293 netif_err(nic, probe, nic->netdev, 1294 "Failed to load firmware \"%s\": %d\n", 1295 fw_name, err); 1296 return ERR_PTR(err); 1297 } else { 1298 netif_info(nic, probe, nic->netdev, 1299 "CPUSaver disabled. Needs \"%s\": %d\n", 1300 fw_name, err); 1301 return NULL; 1302 } 1303 } 1304 1305 /* Firmware should be precisely UCODE_SIZE (words) plus three bytes 1306 indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */ 1307 if (fw->size != UCODE_SIZE * 4 + 3) { 1308 netif_err(nic, probe, nic->netdev, 1309 "Firmware \"%s\" has wrong size %zu\n", 1310 fw_name, fw->size); 1311 release_firmware(fw); 1312 return ERR_PTR(-EINVAL); 1313 } 1314 1315 /* Read timer, bundle and min_size from end of firmware blob */ 1316 timer = fw->data[UCODE_SIZE * 4]; 1317 bundle = fw->data[UCODE_SIZE * 4 + 1]; 1318 min_size = fw->data[UCODE_SIZE * 4 + 2]; 1319 1320 if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE || 1321 min_size >= UCODE_SIZE) { 1322 netif_err(nic, probe, nic->netdev, 1323 "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n", 1324 fw_name, timer, bundle, min_size); 1325 release_firmware(fw); 1326 return ERR_PTR(-EINVAL); 1327 } 1328 1329 /* OK, firmware is validated and ready to use. Save a pointer 1330 * to it in the nic */ 1331 nic->fw = fw; 1332 return fw; 1333 } 1334 1335 static int e100_setup_ucode(struct nic *nic, struct cb *cb, 1336 struct sk_buff *skb) 1337 { 1338 const struct firmware *fw = (void *)skb; 1339 u8 timer, bundle, min_size; 1340 1341 /* It's not a real skb; we just abused the fact that e100_exec_cb 1342 will pass it through to here... */ 1343 cb->skb = NULL; 1344 1345 /* firmware is stored as little endian already */ 1346 memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4); 1347 1348 /* Read timer, bundle and min_size from end of firmware blob */ 1349 timer = fw->data[UCODE_SIZE * 4]; 1350 bundle = fw->data[UCODE_SIZE * 4 + 1]; 1351 min_size = fw->data[UCODE_SIZE * 4 + 2]; 1352 1353 /* Insert user-tunable settings in cb->u.ucode */ 1354 cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000); 1355 cb->u.ucode[timer] |= cpu_to_le32(INTDELAY); 1356 cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000); 1357 cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX); 1358 cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000); 1359 cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80); 1360 1361 cb->command = cpu_to_le16(cb_ucode | cb_el); 1362 return 0; 1363 } 1364 1365 static inline int e100_load_ucode_wait(struct nic *nic) 1366 { 1367 const struct firmware *fw; 1368 int err = 0, counter = 50; 1369 struct cb *cb = nic->cb_to_clean; 1370 1371 fw = e100_request_firmware(nic); 1372 /* If it's NULL, then no ucode is required */ 1373 if (!fw || IS_ERR(fw)) 1374 return PTR_ERR(fw); 1375 1376 if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode))) 1377 netif_err(nic, probe, nic->netdev, 1378 "ucode cmd failed with error %d\n", err); 1379 1380 /* must restart cuc */ 1381 nic->cuc_cmd = cuc_start; 1382 1383 /* wait for completion */ 1384 e100_write_flush(nic); 1385 udelay(10); 1386 1387 /* wait for possibly (ouch) 500ms */ 1388 while (!(cb->status & cpu_to_le16(cb_complete))) { 1389 msleep(10); 1390 if (!--counter) break; 1391 } 1392 1393 /* ack any interrupts, something could have been set */ 1394 iowrite8(~0, &nic->csr->scb.stat_ack); 1395 1396 /* if the command failed, or is not OK, notify and return */ 1397 if (!counter || !(cb->status & cpu_to_le16(cb_ok))) { 1398 netif_err(nic, probe, nic->netdev, "ucode load failed\n"); 1399 err = -EPERM; 1400 } 1401 1402 return err; 1403 } 1404 1405 static int e100_setup_iaaddr(struct nic *nic, struct cb *cb, 1406 struct sk_buff *skb) 1407 { 1408 cb->command = cpu_to_le16(cb_iaaddr); 1409 memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN); 1410 return 0; 1411 } 1412 1413 static int e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb) 1414 { 1415 cb->command = cpu_to_le16(cb_dump); 1416 cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr + 1417 offsetof(struct mem, dump_buf)); 1418 return 0; 1419 } 1420 1421 static int e100_phy_check_without_mii(struct nic *nic) 1422 { 1423 u8 phy_type; 1424 int without_mii; 1425 1426 phy_type = (nic->eeprom[eeprom_phy_iface] >> 8) & 0x0f; 1427 1428 switch (phy_type) { 1429 case NoSuchPhy: /* Non-MII PHY; UNTESTED! */ 1430 case I82503: /* Non-MII PHY; UNTESTED! */ 1431 case S80C24: /* Non-MII PHY; tested and working */ 1432 /* paragraph from the FreeBSD driver, "FXP_PHY_80C24": 1433 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter 1434 * doesn't have a programming interface of any sort. The 1435 * media is sensed automatically based on how the link partner 1436 * is configured. This is, in essence, manual configuration. 1437 */ 1438 netif_info(nic, probe, nic->netdev, 1439 "found MII-less i82503 or 80c24 or other PHY\n"); 1440 1441 nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated; 1442 nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */ 1443 1444 /* these might be needed for certain MII-less cards... 1445 * nic->flags |= ich; 1446 * nic->flags |= ich_10h_workaround; */ 1447 1448 without_mii = 1; 1449 break; 1450 default: 1451 without_mii = 0; 1452 break; 1453 } 1454 return without_mii; 1455 } 1456 1457 #define NCONFIG_AUTO_SWITCH 0x0080 1458 #define MII_NSC_CONG MII_RESV1 1459 #define NSC_CONG_ENABLE 0x0100 1460 #define NSC_CONG_TXREADY 0x0400 1461 #define ADVERTISE_FC_SUPPORTED 0x0400 1462 static int e100_phy_init(struct nic *nic) 1463 { 1464 struct net_device *netdev = nic->netdev; 1465 u32 addr; 1466 u16 bmcr, stat, id_lo, id_hi, cong; 1467 1468 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */ 1469 for (addr = 0; addr < 32; addr++) { 1470 nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr; 1471 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR); 1472 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); 1473 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); 1474 if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0)))) 1475 break; 1476 } 1477 if (addr == 32) { 1478 /* uhoh, no PHY detected: check whether we seem to be some 1479 * weird, rare variant which is *known* to not have any MII. 1480 * But do this AFTER MII checking only, since this does 1481 * lookup of EEPROM values which may easily be unreliable. */ 1482 if (e100_phy_check_without_mii(nic)) 1483 return 0; /* simply return and hope for the best */ 1484 else { 1485 /* for unknown cases log a fatal error */ 1486 netif_err(nic, hw, nic->netdev, 1487 "Failed to locate any known PHY, aborting\n"); 1488 return -EAGAIN; 1489 } 1490 } else 1491 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, 1492 "phy_addr = %d\n", nic->mii.phy_id); 1493 1494 /* Get phy ID */ 1495 id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1); 1496 id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2); 1497 nic->phy = (u32)id_hi << 16 | (u32)id_lo; 1498 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, 1499 "phy ID = 0x%08X\n", nic->phy); 1500 1501 /* Select the phy and isolate the rest */ 1502 for (addr = 0; addr < 32; addr++) { 1503 if (addr != nic->mii.phy_id) { 1504 mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE); 1505 } else if (nic->phy != phy_82552_v) { 1506 bmcr = mdio_read(netdev, addr, MII_BMCR); 1507 mdio_write(netdev, addr, MII_BMCR, 1508 bmcr & ~BMCR_ISOLATE); 1509 } 1510 } 1511 /* 1512 * Workaround for 82552: 1513 * Clear the ISOLATE bit on selected phy_id last (mirrored on all 1514 * other phy_id's) using bmcr value from addr discovery loop above. 1515 */ 1516 if (nic->phy == phy_82552_v) 1517 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, 1518 bmcr & ~BMCR_ISOLATE); 1519 1520 /* Handle National tx phys */ 1521 #define NCS_PHY_MODEL_MASK 0xFFF0FFFF 1522 if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) { 1523 /* Disable congestion control */ 1524 cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG); 1525 cong |= NSC_CONG_TXREADY; 1526 cong &= ~NSC_CONG_ENABLE; 1527 mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong); 1528 } 1529 1530 if (nic->phy == phy_82552_v) { 1531 u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE); 1532 1533 /* assign special tweaked mdio_ctrl() function */ 1534 nic->mdio_ctrl = mdio_ctrl_phy_82552_v; 1535 1536 /* Workaround Si not advertising flow-control during autoneg */ 1537 advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; 1538 mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert); 1539 1540 /* Reset for the above changes to take effect */ 1541 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR); 1542 bmcr |= BMCR_RESET; 1543 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr); 1544 } else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) && 1545 (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) && 1546 (nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) { 1547 /* enable/disable MDI/MDI-X auto-switching. */ 1548 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG, 1549 nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH); 1550 } 1551 1552 return 0; 1553 } 1554 1555 static int e100_hw_init(struct nic *nic) 1556 { 1557 int err = 0; 1558 1559 e100_hw_reset(nic); 1560 1561 netif_err(nic, hw, nic->netdev, "e100_hw_init\n"); 1562 if (!in_interrupt() && (err = e100_self_test(nic))) 1563 return err; 1564 1565 if ((err = e100_phy_init(nic))) 1566 return err; 1567 if ((err = e100_exec_cmd(nic, cuc_load_base, 0))) 1568 return err; 1569 if ((err = e100_exec_cmd(nic, ruc_load_base, 0))) 1570 return err; 1571 if ((err = e100_load_ucode_wait(nic))) 1572 return err; 1573 if ((err = e100_exec_cb(nic, NULL, e100_configure))) 1574 return err; 1575 if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr))) 1576 return err; 1577 if ((err = e100_exec_cmd(nic, cuc_dump_addr, 1578 nic->dma_addr + offsetof(struct mem, stats)))) 1579 return err; 1580 if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0))) 1581 return err; 1582 1583 e100_disable_irq(nic); 1584 1585 return 0; 1586 } 1587 1588 static int e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb) 1589 { 1590 struct net_device *netdev = nic->netdev; 1591 struct netdev_hw_addr *ha; 1592 u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS); 1593 1594 cb->command = cpu_to_le16(cb_multi); 1595 cb->u.multi.count = cpu_to_le16(count * ETH_ALEN); 1596 i = 0; 1597 netdev_for_each_mc_addr(ha, netdev) { 1598 if (i == count) 1599 break; 1600 memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr, 1601 ETH_ALEN); 1602 } 1603 return 0; 1604 } 1605 1606 static void e100_set_multicast_list(struct net_device *netdev) 1607 { 1608 struct nic *nic = netdev_priv(netdev); 1609 1610 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, 1611 "mc_count=%d, flags=0x%04X\n", 1612 netdev_mc_count(netdev), netdev->flags); 1613 1614 if (netdev->flags & IFF_PROMISC) 1615 nic->flags |= promiscuous; 1616 else 1617 nic->flags &= ~promiscuous; 1618 1619 if (netdev->flags & IFF_ALLMULTI || 1620 netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS) 1621 nic->flags |= multicast_all; 1622 else 1623 nic->flags &= ~multicast_all; 1624 1625 e100_exec_cb(nic, NULL, e100_configure); 1626 e100_exec_cb(nic, NULL, e100_multi); 1627 } 1628 1629 static void e100_update_stats(struct nic *nic) 1630 { 1631 struct net_device *dev = nic->netdev; 1632 struct net_device_stats *ns = &dev->stats; 1633 struct stats *s = &nic->mem->stats; 1634 __le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause : 1635 (nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames : 1636 &s->complete; 1637 1638 /* Device's stats reporting may take several microseconds to 1639 * complete, so we're always waiting for results of the 1640 * previous command. */ 1641 1642 if (*complete == cpu_to_le32(cuc_dump_reset_complete)) { 1643 *complete = 0; 1644 nic->tx_frames = le32_to_cpu(s->tx_good_frames); 1645 nic->tx_collisions = le32_to_cpu(s->tx_total_collisions); 1646 ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions); 1647 ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions); 1648 ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs); 1649 ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns); 1650 ns->collisions += nic->tx_collisions; 1651 ns->tx_errors += le32_to_cpu(s->tx_max_collisions) + 1652 le32_to_cpu(s->tx_lost_crs); 1653 nic->rx_short_frame_errors += 1654 le32_to_cpu(s->rx_short_frame_errors); 1655 ns->rx_length_errors = nic->rx_short_frame_errors + 1656 nic->rx_over_length_errors; 1657 ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors); 1658 ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors); 1659 ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors); 1660 ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors); 1661 ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors); 1662 ns->rx_errors += le32_to_cpu(s->rx_crc_errors) + 1663 le32_to_cpu(s->rx_alignment_errors) + 1664 le32_to_cpu(s->rx_short_frame_errors) + 1665 le32_to_cpu(s->rx_cdt_errors); 1666 nic->tx_deferred += le32_to_cpu(s->tx_deferred); 1667 nic->tx_single_collisions += 1668 le32_to_cpu(s->tx_single_collisions); 1669 nic->tx_multiple_collisions += 1670 le32_to_cpu(s->tx_multiple_collisions); 1671 if (nic->mac >= mac_82558_D101_A4) { 1672 nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause); 1673 nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause); 1674 nic->rx_fc_unsupported += 1675 le32_to_cpu(s->fc_rcv_unsupported); 1676 if (nic->mac >= mac_82559_D101M) { 1677 nic->tx_tco_frames += 1678 le16_to_cpu(s->xmt_tco_frames); 1679 nic->rx_tco_frames += 1680 le16_to_cpu(s->rcv_tco_frames); 1681 } 1682 } 1683 } 1684 1685 1686 if (e100_exec_cmd(nic, cuc_dump_reset, 0)) 1687 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, 1688 "exec cuc_dump_reset failed\n"); 1689 } 1690 1691 static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex) 1692 { 1693 /* Adjust inter-frame-spacing (IFS) between two transmits if 1694 * we're getting collisions on a half-duplex connection. */ 1695 1696 if (duplex == DUPLEX_HALF) { 1697 u32 prev = nic->adaptive_ifs; 1698 u32 min_frames = (speed == SPEED_100) ? 1000 : 100; 1699 1700 if ((nic->tx_frames / 32 < nic->tx_collisions) && 1701 (nic->tx_frames > min_frames)) { 1702 if (nic->adaptive_ifs < 60) 1703 nic->adaptive_ifs += 5; 1704 } else if (nic->tx_frames < min_frames) { 1705 if (nic->adaptive_ifs >= 5) 1706 nic->adaptive_ifs -= 5; 1707 } 1708 if (nic->adaptive_ifs != prev) 1709 e100_exec_cb(nic, NULL, e100_configure); 1710 } 1711 } 1712 1713 static void e100_watchdog(unsigned long data) 1714 { 1715 struct nic *nic = (struct nic *)data; 1716 struct ethtool_cmd cmd = { .cmd = ETHTOOL_GSET }; 1717 u32 speed; 1718 1719 netif_printk(nic, timer, KERN_DEBUG, nic->netdev, 1720 "right now = %ld\n", jiffies); 1721 1722 /* mii library handles link maintenance tasks */ 1723 1724 mii_ethtool_gset(&nic->mii, &cmd); 1725 speed = ethtool_cmd_speed(&cmd); 1726 1727 if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) { 1728 netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n", 1729 speed == SPEED_100 ? 100 : 10, 1730 cmd.duplex == DUPLEX_FULL ? "Full" : "Half"); 1731 } else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) { 1732 netdev_info(nic->netdev, "NIC Link is Down\n"); 1733 } 1734 1735 mii_check_link(&nic->mii); 1736 1737 /* Software generated interrupt to recover from (rare) Rx 1738 * allocation failure. 1739 * Unfortunately have to use a spinlock to not re-enable interrupts 1740 * accidentally, due to hardware that shares a register between the 1741 * interrupt mask bit and the SW Interrupt generation bit */ 1742 spin_lock_irq(&nic->cmd_lock); 1743 iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi); 1744 e100_write_flush(nic); 1745 spin_unlock_irq(&nic->cmd_lock); 1746 1747 e100_update_stats(nic); 1748 e100_adjust_adaptive_ifs(nic, speed, cmd.duplex); 1749 1750 if (nic->mac <= mac_82557_D100_C) 1751 /* Issue a multicast command to workaround a 557 lock up */ 1752 e100_set_multicast_list(nic->netdev); 1753 1754 if (nic->flags & ich && speed == SPEED_10 && cmd.duplex == DUPLEX_HALF) 1755 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */ 1756 nic->flags |= ich_10h_workaround; 1757 else 1758 nic->flags &= ~ich_10h_workaround; 1759 1760 mod_timer(&nic->watchdog, 1761 round_jiffies(jiffies + E100_WATCHDOG_PERIOD)); 1762 } 1763 1764 static int e100_xmit_prepare(struct nic *nic, struct cb *cb, 1765 struct sk_buff *skb) 1766 { 1767 dma_addr_t dma_addr; 1768 cb->command = nic->tx_command; 1769 1770 dma_addr = pci_map_single(nic->pdev, 1771 skb->data, skb->len, PCI_DMA_TODEVICE); 1772 /* If we can't map the skb, have the upper layer try later */ 1773 if (pci_dma_mapping_error(nic->pdev, dma_addr)) 1774 return -ENOMEM; 1775 1776 /* 1777 * Use the last 4 bytes of the SKB payload packet as the CRC, used for 1778 * testing, ie sending frames with bad CRC. 1779 */ 1780 if (unlikely(skb->no_fcs)) 1781 cb->command |= cpu_to_le16(cb_tx_nc); 1782 else 1783 cb->command &= ~cpu_to_le16(cb_tx_nc); 1784 1785 /* interrupt every 16 packets regardless of delay */ 1786 if ((nic->cbs_avail & ~15) == nic->cbs_avail) 1787 cb->command |= cpu_to_le16(cb_i); 1788 cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd); 1789 cb->u.tcb.tcb_byte_count = 0; 1790 cb->u.tcb.threshold = nic->tx_threshold; 1791 cb->u.tcb.tbd_count = 1; 1792 cb->u.tcb.tbd.buf_addr = cpu_to_le32(dma_addr); 1793 cb->u.tcb.tbd.size = cpu_to_le16(skb->len); 1794 skb_tx_timestamp(skb); 1795 return 0; 1796 } 1797 1798 static netdev_tx_t e100_xmit_frame(struct sk_buff *skb, 1799 struct net_device *netdev) 1800 { 1801 struct nic *nic = netdev_priv(netdev); 1802 int err; 1803 1804 if (nic->flags & ich_10h_workaround) { 1805 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang. 1806 Issue a NOP command followed by a 1us delay before 1807 issuing the Tx command. */ 1808 if (e100_exec_cmd(nic, cuc_nop, 0)) 1809 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, 1810 "exec cuc_nop failed\n"); 1811 udelay(1); 1812 } 1813 1814 err = e100_exec_cb(nic, skb, e100_xmit_prepare); 1815 1816 switch (err) { 1817 case -ENOSPC: 1818 /* We queued the skb, but now we're out of space. */ 1819 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, 1820 "No space for CB\n"); 1821 netif_stop_queue(netdev); 1822 break; 1823 case -ENOMEM: 1824 /* This is a hard error - log it. */ 1825 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, 1826 "Out of Tx resources, returning skb\n"); 1827 netif_stop_queue(netdev); 1828 return NETDEV_TX_BUSY; 1829 } 1830 1831 return NETDEV_TX_OK; 1832 } 1833 1834 static int e100_tx_clean(struct nic *nic) 1835 { 1836 struct net_device *dev = nic->netdev; 1837 struct cb *cb; 1838 int tx_cleaned = 0; 1839 1840 spin_lock(&nic->cb_lock); 1841 1842 /* Clean CBs marked complete */ 1843 for (cb = nic->cb_to_clean; 1844 cb->status & cpu_to_le16(cb_complete); 1845 cb = nic->cb_to_clean = cb->next) { 1846 rmb(); /* read skb after status */ 1847 netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev, 1848 "cb[%d]->status = 0x%04X\n", 1849 (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)), 1850 cb->status); 1851 1852 if (likely(cb->skb != NULL)) { 1853 dev->stats.tx_packets++; 1854 dev->stats.tx_bytes += cb->skb->len; 1855 1856 pci_unmap_single(nic->pdev, 1857 le32_to_cpu(cb->u.tcb.tbd.buf_addr), 1858 le16_to_cpu(cb->u.tcb.tbd.size), 1859 PCI_DMA_TODEVICE); 1860 dev_kfree_skb_any(cb->skb); 1861 cb->skb = NULL; 1862 tx_cleaned = 1; 1863 } 1864 cb->status = 0; 1865 nic->cbs_avail++; 1866 } 1867 1868 spin_unlock(&nic->cb_lock); 1869 1870 /* Recover from running out of Tx resources in xmit_frame */ 1871 if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev))) 1872 netif_wake_queue(nic->netdev); 1873 1874 return tx_cleaned; 1875 } 1876 1877 static void e100_clean_cbs(struct nic *nic) 1878 { 1879 if (nic->cbs) { 1880 while (nic->cbs_avail != nic->params.cbs.count) { 1881 struct cb *cb = nic->cb_to_clean; 1882 if (cb->skb) { 1883 pci_unmap_single(nic->pdev, 1884 le32_to_cpu(cb->u.tcb.tbd.buf_addr), 1885 le16_to_cpu(cb->u.tcb.tbd.size), 1886 PCI_DMA_TODEVICE); 1887 dev_kfree_skb(cb->skb); 1888 } 1889 nic->cb_to_clean = nic->cb_to_clean->next; 1890 nic->cbs_avail++; 1891 } 1892 pci_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr); 1893 nic->cbs = NULL; 1894 nic->cbs_avail = 0; 1895 } 1896 nic->cuc_cmd = cuc_start; 1897 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = 1898 nic->cbs; 1899 } 1900 1901 static int e100_alloc_cbs(struct nic *nic) 1902 { 1903 struct cb *cb; 1904 unsigned int i, count = nic->params.cbs.count; 1905 1906 nic->cuc_cmd = cuc_start; 1907 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL; 1908 nic->cbs_avail = 0; 1909 1910 nic->cbs = pci_pool_alloc(nic->cbs_pool, GFP_KERNEL, 1911 &nic->cbs_dma_addr); 1912 if (!nic->cbs) 1913 return -ENOMEM; 1914 memset(nic->cbs, 0, count * sizeof(struct cb)); 1915 1916 for (cb = nic->cbs, i = 0; i < count; cb++, i++) { 1917 cb->next = (i + 1 < count) ? cb + 1 : nic->cbs; 1918 cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1; 1919 1920 cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb); 1921 cb->link = cpu_to_le32(nic->cbs_dma_addr + 1922 ((i+1) % count) * sizeof(struct cb)); 1923 } 1924 1925 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs; 1926 nic->cbs_avail = count; 1927 1928 return 0; 1929 } 1930 1931 static inline void e100_start_receiver(struct nic *nic, struct rx *rx) 1932 { 1933 if (!nic->rxs) return; 1934 if (RU_SUSPENDED != nic->ru_running) return; 1935 1936 /* handle init time starts */ 1937 if (!rx) rx = nic->rxs; 1938 1939 /* (Re)start RU if suspended or idle and RFA is non-NULL */ 1940 if (rx->skb) { 1941 e100_exec_cmd(nic, ruc_start, rx->dma_addr); 1942 nic->ru_running = RU_RUNNING; 1943 } 1944 } 1945 1946 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN + ETH_FCS_LEN) 1947 static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx) 1948 { 1949 if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN))) 1950 return -ENOMEM; 1951 1952 /* Init, and map the RFD. */ 1953 skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd)); 1954 rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data, 1955 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); 1956 1957 if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) { 1958 dev_kfree_skb_any(rx->skb); 1959 rx->skb = NULL; 1960 rx->dma_addr = 0; 1961 return -ENOMEM; 1962 } 1963 1964 /* Link the RFD to end of RFA by linking previous RFD to 1965 * this one. We are safe to touch the previous RFD because 1966 * it is protected by the before last buffer's el bit being set */ 1967 if (rx->prev->skb) { 1968 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data; 1969 put_unaligned_le32(rx->dma_addr, &prev_rfd->link); 1970 pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr, 1971 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL); 1972 } 1973 1974 return 0; 1975 } 1976 1977 static int e100_rx_indicate(struct nic *nic, struct rx *rx, 1978 unsigned int *work_done, unsigned int work_to_do) 1979 { 1980 struct net_device *dev = nic->netdev; 1981 struct sk_buff *skb = rx->skb; 1982 struct rfd *rfd = (struct rfd *)skb->data; 1983 u16 rfd_status, actual_size; 1984 u16 fcs_pad = 0; 1985 1986 if (unlikely(work_done && *work_done >= work_to_do)) 1987 return -EAGAIN; 1988 1989 /* Need to sync before taking a peek at cb_complete bit */ 1990 pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr, 1991 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL); 1992 rfd_status = le16_to_cpu(rfd->status); 1993 1994 netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev, 1995 "status=0x%04X\n", rfd_status); 1996 rmb(); /* read size after status bit */ 1997 1998 /* If data isn't ready, nothing to indicate */ 1999 if (unlikely(!(rfd_status & cb_complete))) { 2000 /* If the next buffer has the el bit, but we think the receiver 2001 * is still running, check to see if it really stopped while 2002 * we had interrupts off. 2003 * This allows for a fast restart without re-enabling 2004 * interrupts */ 2005 if ((le16_to_cpu(rfd->command) & cb_el) && 2006 (RU_RUNNING == nic->ru_running)) 2007 2008 if (ioread8(&nic->csr->scb.status) & rus_no_res) 2009 nic->ru_running = RU_SUSPENDED; 2010 pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr, 2011 sizeof(struct rfd), 2012 PCI_DMA_FROMDEVICE); 2013 return -ENODATA; 2014 } 2015 2016 /* Get actual data size */ 2017 if (unlikely(dev->features & NETIF_F_RXFCS)) 2018 fcs_pad = 4; 2019 actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF; 2020 if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd))) 2021 actual_size = RFD_BUF_LEN - sizeof(struct rfd); 2022 2023 /* Get data */ 2024 pci_unmap_single(nic->pdev, rx->dma_addr, 2025 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); 2026 2027 /* If this buffer has the el bit, but we think the receiver 2028 * is still running, check to see if it really stopped while 2029 * we had interrupts off. 2030 * This allows for a fast restart without re-enabling interrupts. 2031 * This can happen when the RU sees the size change but also sees 2032 * the el bit set. */ 2033 if ((le16_to_cpu(rfd->command) & cb_el) && 2034 (RU_RUNNING == nic->ru_running)) { 2035 2036 if (ioread8(&nic->csr->scb.status) & rus_no_res) 2037 nic->ru_running = RU_SUSPENDED; 2038 } 2039 2040 /* Pull off the RFD and put the actual data (minus eth hdr) */ 2041 skb_reserve(skb, sizeof(struct rfd)); 2042 skb_put(skb, actual_size); 2043 skb->protocol = eth_type_trans(skb, nic->netdev); 2044 2045 /* If we are receiving all frames, then don't bother 2046 * checking for errors. 2047 */ 2048 if (unlikely(dev->features & NETIF_F_RXALL)) { 2049 if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) 2050 /* Received oversized frame, but keep it. */ 2051 nic->rx_over_length_errors++; 2052 goto process_skb; 2053 } 2054 2055 if (unlikely(!(rfd_status & cb_ok))) { 2056 /* Don't indicate if hardware indicates errors */ 2057 dev_kfree_skb_any(skb); 2058 } else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) { 2059 /* Don't indicate oversized frames */ 2060 nic->rx_over_length_errors++; 2061 dev_kfree_skb_any(skb); 2062 } else { 2063 process_skb: 2064 dev->stats.rx_packets++; 2065 dev->stats.rx_bytes += (actual_size - fcs_pad); 2066 netif_receive_skb(skb); 2067 if (work_done) 2068 (*work_done)++; 2069 } 2070 2071 rx->skb = NULL; 2072 2073 return 0; 2074 } 2075 2076 static void e100_rx_clean(struct nic *nic, unsigned int *work_done, 2077 unsigned int work_to_do) 2078 { 2079 struct rx *rx; 2080 int restart_required = 0, err = 0; 2081 struct rx *old_before_last_rx, *new_before_last_rx; 2082 struct rfd *old_before_last_rfd, *new_before_last_rfd; 2083 2084 /* Indicate newly arrived packets */ 2085 for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) { 2086 err = e100_rx_indicate(nic, rx, work_done, work_to_do); 2087 /* Hit quota or no more to clean */ 2088 if (-EAGAIN == err || -ENODATA == err) 2089 break; 2090 } 2091 2092 2093 /* On EAGAIN, hit quota so have more work to do, restart once 2094 * cleanup is complete. 2095 * Else, are we already rnr? then pay attention!!! this ensures that 2096 * the state machine progression never allows a start with a 2097 * partially cleaned list, avoiding a race between hardware 2098 * and rx_to_clean when in NAPI mode */ 2099 if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running) 2100 restart_required = 1; 2101 2102 old_before_last_rx = nic->rx_to_use->prev->prev; 2103 old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data; 2104 2105 /* Alloc new skbs to refill list */ 2106 for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) { 2107 if (unlikely(e100_rx_alloc_skb(nic, rx))) 2108 break; /* Better luck next time (see watchdog) */ 2109 } 2110 2111 new_before_last_rx = nic->rx_to_use->prev->prev; 2112 if (new_before_last_rx != old_before_last_rx) { 2113 /* Set the el-bit on the buffer that is before the last buffer. 2114 * This lets us update the next pointer on the last buffer 2115 * without worrying about hardware touching it. 2116 * We set the size to 0 to prevent hardware from touching this 2117 * buffer. 2118 * When the hardware hits the before last buffer with el-bit 2119 * and size of 0, it will RNR interrupt, the RUS will go into 2120 * the No Resources state. It will not complete nor write to 2121 * this buffer. */ 2122 new_before_last_rfd = 2123 (struct rfd *)new_before_last_rx->skb->data; 2124 new_before_last_rfd->size = 0; 2125 new_before_last_rfd->command |= cpu_to_le16(cb_el); 2126 pci_dma_sync_single_for_device(nic->pdev, 2127 new_before_last_rx->dma_addr, sizeof(struct rfd), 2128 PCI_DMA_BIDIRECTIONAL); 2129 2130 /* Now that we have a new stopping point, we can clear the old 2131 * stopping point. We must sync twice to get the proper 2132 * ordering on the hardware side of things. */ 2133 old_before_last_rfd->command &= ~cpu_to_le16(cb_el); 2134 pci_dma_sync_single_for_device(nic->pdev, 2135 old_before_last_rx->dma_addr, sizeof(struct rfd), 2136 PCI_DMA_BIDIRECTIONAL); 2137 old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN 2138 + ETH_FCS_LEN); 2139 pci_dma_sync_single_for_device(nic->pdev, 2140 old_before_last_rx->dma_addr, sizeof(struct rfd), 2141 PCI_DMA_BIDIRECTIONAL); 2142 } 2143 2144 if (restart_required) { 2145 // ack the rnr? 2146 iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack); 2147 e100_start_receiver(nic, nic->rx_to_clean); 2148 if (work_done) 2149 (*work_done)++; 2150 } 2151 } 2152 2153 static void e100_rx_clean_list(struct nic *nic) 2154 { 2155 struct rx *rx; 2156 unsigned int i, count = nic->params.rfds.count; 2157 2158 nic->ru_running = RU_UNINITIALIZED; 2159 2160 if (nic->rxs) { 2161 for (rx = nic->rxs, i = 0; i < count; rx++, i++) { 2162 if (rx->skb) { 2163 pci_unmap_single(nic->pdev, rx->dma_addr, 2164 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); 2165 dev_kfree_skb(rx->skb); 2166 } 2167 } 2168 kfree(nic->rxs); 2169 nic->rxs = NULL; 2170 } 2171 2172 nic->rx_to_use = nic->rx_to_clean = NULL; 2173 } 2174 2175 static int e100_rx_alloc_list(struct nic *nic) 2176 { 2177 struct rx *rx; 2178 unsigned int i, count = nic->params.rfds.count; 2179 struct rfd *before_last; 2180 2181 nic->rx_to_use = nic->rx_to_clean = NULL; 2182 nic->ru_running = RU_UNINITIALIZED; 2183 2184 if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC))) 2185 return -ENOMEM; 2186 2187 for (rx = nic->rxs, i = 0; i < count; rx++, i++) { 2188 rx->next = (i + 1 < count) ? rx + 1 : nic->rxs; 2189 rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1; 2190 if (e100_rx_alloc_skb(nic, rx)) { 2191 e100_rx_clean_list(nic); 2192 return -ENOMEM; 2193 } 2194 } 2195 /* Set the el-bit on the buffer that is before the last buffer. 2196 * This lets us update the next pointer on the last buffer without 2197 * worrying about hardware touching it. 2198 * We set the size to 0 to prevent hardware from touching this buffer. 2199 * When the hardware hits the before last buffer with el-bit and size 2200 * of 0, it will RNR interrupt, the RU will go into the No Resources 2201 * state. It will not complete nor write to this buffer. */ 2202 rx = nic->rxs->prev->prev; 2203 before_last = (struct rfd *)rx->skb->data; 2204 before_last->command |= cpu_to_le16(cb_el); 2205 before_last->size = 0; 2206 pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr, 2207 sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL); 2208 2209 nic->rx_to_use = nic->rx_to_clean = nic->rxs; 2210 nic->ru_running = RU_SUSPENDED; 2211 2212 return 0; 2213 } 2214 2215 static irqreturn_t e100_intr(int irq, void *dev_id) 2216 { 2217 struct net_device *netdev = dev_id; 2218 struct nic *nic = netdev_priv(netdev); 2219 u8 stat_ack = ioread8(&nic->csr->scb.stat_ack); 2220 2221 netif_printk(nic, intr, KERN_DEBUG, nic->netdev, 2222 "stat_ack = 0x%02X\n", stat_ack); 2223 2224 if (stat_ack == stat_ack_not_ours || /* Not our interrupt */ 2225 stat_ack == stat_ack_not_present) /* Hardware is ejected */ 2226 return IRQ_NONE; 2227 2228 /* Ack interrupt(s) */ 2229 iowrite8(stat_ack, &nic->csr->scb.stat_ack); 2230 2231 /* We hit Receive No Resource (RNR); restart RU after cleaning */ 2232 if (stat_ack & stat_ack_rnr) 2233 nic->ru_running = RU_SUSPENDED; 2234 2235 if (likely(napi_schedule_prep(&nic->napi))) { 2236 e100_disable_irq(nic); 2237 __napi_schedule(&nic->napi); 2238 } 2239 2240 return IRQ_HANDLED; 2241 } 2242 2243 static int e100_poll(struct napi_struct *napi, int budget) 2244 { 2245 struct nic *nic = container_of(napi, struct nic, napi); 2246 unsigned int work_done = 0; 2247 2248 e100_rx_clean(nic, &work_done, budget); 2249 e100_tx_clean(nic); 2250 2251 /* If budget not fully consumed, exit the polling mode */ 2252 if (work_done < budget) { 2253 napi_complete(napi); 2254 e100_enable_irq(nic); 2255 } 2256 2257 return work_done; 2258 } 2259 2260 #ifdef CONFIG_NET_POLL_CONTROLLER 2261 static void e100_netpoll(struct net_device *netdev) 2262 { 2263 struct nic *nic = netdev_priv(netdev); 2264 2265 e100_disable_irq(nic); 2266 e100_intr(nic->pdev->irq, netdev); 2267 e100_tx_clean(nic); 2268 e100_enable_irq(nic); 2269 } 2270 #endif 2271 2272 static int e100_set_mac_address(struct net_device *netdev, void *p) 2273 { 2274 struct nic *nic = netdev_priv(netdev); 2275 struct sockaddr *addr = p; 2276 2277 if (!is_valid_ether_addr(addr->sa_data)) 2278 return -EADDRNOTAVAIL; 2279 2280 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 2281 e100_exec_cb(nic, NULL, e100_setup_iaaddr); 2282 2283 return 0; 2284 } 2285 2286 static int e100_change_mtu(struct net_device *netdev, int new_mtu) 2287 { 2288 if (new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN) 2289 return -EINVAL; 2290 netdev->mtu = new_mtu; 2291 return 0; 2292 } 2293 2294 static int e100_asf(struct nic *nic) 2295 { 2296 /* ASF can be enabled from eeprom */ 2297 return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) && 2298 (nic->eeprom[eeprom_config_asf] & eeprom_asf) && 2299 !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) && 2300 ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE); 2301 } 2302 2303 static int e100_up(struct nic *nic) 2304 { 2305 int err; 2306 2307 if ((err = e100_rx_alloc_list(nic))) 2308 return err; 2309 if ((err = e100_alloc_cbs(nic))) 2310 goto err_rx_clean_list; 2311 if ((err = e100_hw_init(nic))) 2312 goto err_clean_cbs; 2313 e100_set_multicast_list(nic->netdev); 2314 e100_start_receiver(nic, NULL); 2315 mod_timer(&nic->watchdog, jiffies); 2316 if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED, 2317 nic->netdev->name, nic->netdev))) 2318 goto err_no_irq; 2319 netif_wake_queue(nic->netdev); 2320 napi_enable(&nic->napi); 2321 /* enable ints _after_ enabling poll, preventing a race between 2322 * disable ints+schedule */ 2323 e100_enable_irq(nic); 2324 return 0; 2325 2326 err_no_irq: 2327 del_timer_sync(&nic->watchdog); 2328 err_clean_cbs: 2329 e100_clean_cbs(nic); 2330 err_rx_clean_list: 2331 e100_rx_clean_list(nic); 2332 return err; 2333 } 2334 2335 static void e100_down(struct nic *nic) 2336 { 2337 /* wait here for poll to complete */ 2338 napi_disable(&nic->napi); 2339 netif_stop_queue(nic->netdev); 2340 e100_hw_reset(nic); 2341 free_irq(nic->pdev->irq, nic->netdev); 2342 del_timer_sync(&nic->watchdog); 2343 netif_carrier_off(nic->netdev); 2344 e100_clean_cbs(nic); 2345 e100_rx_clean_list(nic); 2346 } 2347 2348 static void e100_tx_timeout(struct net_device *netdev) 2349 { 2350 struct nic *nic = netdev_priv(netdev); 2351 2352 /* Reset outside of interrupt context, to avoid request_irq 2353 * in interrupt context */ 2354 schedule_work(&nic->tx_timeout_task); 2355 } 2356 2357 static void e100_tx_timeout_task(struct work_struct *work) 2358 { 2359 struct nic *nic = container_of(work, struct nic, tx_timeout_task); 2360 struct net_device *netdev = nic->netdev; 2361 2362 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, 2363 "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status)); 2364 2365 rtnl_lock(); 2366 if (netif_running(netdev)) { 2367 e100_down(netdev_priv(netdev)); 2368 e100_up(netdev_priv(netdev)); 2369 } 2370 rtnl_unlock(); 2371 } 2372 2373 static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode) 2374 { 2375 int err; 2376 struct sk_buff *skb; 2377 2378 /* Use driver resources to perform internal MAC or PHY 2379 * loopback test. A single packet is prepared and transmitted 2380 * in loopback mode, and the test passes if the received 2381 * packet compares byte-for-byte to the transmitted packet. */ 2382 2383 if ((err = e100_rx_alloc_list(nic))) 2384 return err; 2385 if ((err = e100_alloc_cbs(nic))) 2386 goto err_clean_rx; 2387 2388 /* ICH PHY loopback is broken so do MAC loopback instead */ 2389 if (nic->flags & ich && loopback_mode == lb_phy) 2390 loopback_mode = lb_mac; 2391 2392 nic->loopback = loopback_mode; 2393 if ((err = e100_hw_init(nic))) 2394 goto err_loopback_none; 2395 2396 if (loopback_mode == lb_phy) 2397 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 2398 BMCR_LOOPBACK); 2399 2400 e100_start_receiver(nic, NULL); 2401 2402 if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) { 2403 err = -ENOMEM; 2404 goto err_loopback_none; 2405 } 2406 skb_put(skb, ETH_DATA_LEN); 2407 memset(skb->data, 0xFF, ETH_DATA_LEN); 2408 e100_xmit_frame(skb, nic->netdev); 2409 2410 msleep(10); 2411 2412 pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr, 2413 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); 2414 2415 if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd), 2416 skb->data, ETH_DATA_LEN)) 2417 err = -EAGAIN; 2418 2419 err_loopback_none: 2420 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0); 2421 nic->loopback = lb_none; 2422 e100_clean_cbs(nic); 2423 e100_hw_reset(nic); 2424 err_clean_rx: 2425 e100_rx_clean_list(nic); 2426 return err; 2427 } 2428 2429 #define MII_LED_CONTROL 0x1B 2430 #define E100_82552_LED_OVERRIDE 0x19 2431 #define E100_82552_LED_ON 0x000F /* LEDTX and LED_RX both on */ 2432 #define E100_82552_LED_OFF 0x000A /* LEDTX and LED_RX both off */ 2433 2434 static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd) 2435 { 2436 struct nic *nic = netdev_priv(netdev); 2437 return mii_ethtool_gset(&nic->mii, cmd); 2438 } 2439 2440 static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd) 2441 { 2442 struct nic *nic = netdev_priv(netdev); 2443 int err; 2444 2445 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET); 2446 err = mii_ethtool_sset(&nic->mii, cmd); 2447 e100_exec_cb(nic, NULL, e100_configure); 2448 2449 return err; 2450 } 2451 2452 static void e100_get_drvinfo(struct net_device *netdev, 2453 struct ethtool_drvinfo *info) 2454 { 2455 struct nic *nic = netdev_priv(netdev); 2456 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 2457 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 2458 strlcpy(info->bus_info, pci_name(nic->pdev), 2459 sizeof(info->bus_info)); 2460 } 2461 2462 #define E100_PHY_REGS 0x1C 2463 static int e100_get_regs_len(struct net_device *netdev) 2464 { 2465 struct nic *nic = netdev_priv(netdev); 2466 return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf); 2467 } 2468 2469 static void e100_get_regs(struct net_device *netdev, 2470 struct ethtool_regs *regs, void *p) 2471 { 2472 struct nic *nic = netdev_priv(netdev); 2473 u32 *buff = p; 2474 int i; 2475 2476 regs->version = (1 << 24) | nic->pdev->revision; 2477 buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 | 2478 ioread8(&nic->csr->scb.cmd_lo) << 16 | 2479 ioread16(&nic->csr->scb.status); 2480 for (i = E100_PHY_REGS; i >= 0; i--) 2481 buff[1 + E100_PHY_REGS - i] = 2482 mdio_read(netdev, nic->mii.phy_id, i); 2483 memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf)); 2484 e100_exec_cb(nic, NULL, e100_dump); 2485 msleep(10); 2486 memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf, 2487 sizeof(nic->mem->dump_buf)); 2488 } 2489 2490 static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2491 { 2492 struct nic *nic = netdev_priv(netdev); 2493 wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0; 2494 wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0; 2495 } 2496 2497 static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2498 { 2499 struct nic *nic = netdev_priv(netdev); 2500 2501 if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) || 2502 !device_can_wakeup(&nic->pdev->dev)) 2503 return -EOPNOTSUPP; 2504 2505 if (wol->wolopts) 2506 nic->flags |= wol_magic; 2507 else 2508 nic->flags &= ~wol_magic; 2509 2510 device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts); 2511 2512 e100_exec_cb(nic, NULL, e100_configure); 2513 2514 return 0; 2515 } 2516 2517 static u32 e100_get_msglevel(struct net_device *netdev) 2518 { 2519 struct nic *nic = netdev_priv(netdev); 2520 return nic->msg_enable; 2521 } 2522 2523 static void e100_set_msglevel(struct net_device *netdev, u32 value) 2524 { 2525 struct nic *nic = netdev_priv(netdev); 2526 nic->msg_enable = value; 2527 } 2528 2529 static int e100_nway_reset(struct net_device *netdev) 2530 { 2531 struct nic *nic = netdev_priv(netdev); 2532 return mii_nway_restart(&nic->mii); 2533 } 2534 2535 static u32 e100_get_link(struct net_device *netdev) 2536 { 2537 struct nic *nic = netdev_priv(netdev); 2538 return mii_link_ok(&nic->mii); 2539 } 2540 2541 static int e100_get_eeprom_len(struct net_device *netdev) 2542 { 2543 struct nic *nic = netdev_priv(netdev); 2544 return nic->eeprom_wc << 1; 2545 } 2546 2547 #define E100_EEPROM_MAGIC 0x1234 2548 static int e100_get_eeprom(struct net_device *netdev, 2549 struct ethtool_eeprom *eeprom, u8 *bytes) 2550 { 2551 struct nic *nic = netdev_priv(netdev); 2552 2553 eeprom->magic = E100_EEPROM_MAGIC; 2554 memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len); 2555 2556 return 0; 2557 } 2558 2559 static int e100_set_eeprom(struct net_device *netdev, 2560 struct ethtool_eeprom *eeprom, u8 *bytes) 2561 { 2562 struct nic *nic = netdev_priv(netdev); 2563 2564 if (eeprom->magic != E100_EEPROM_MAGIC) 2565 return -EINVAL; 2566 2567 memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len); 2568 2569 return e100_eeprom_save(nic, eeprom->offset >> 1, 2570 (eeprom->len >> 1) + 1); 2571 } 2572 2573 static void e100_get_ringparam(struct net_device *netdev, 2574 struct ethtool_ringparam *ring) 2575 { 2576 struct nic *nic = netdev_priv(netdev); 2577 struct param_range *rfds = &nic->params.rfds; 2578 struct param_range *cbs = &nic->params.cbs; 2579 2580 ring->rx_max_pending = rfds->max; 2581 ring->tx_max_pending = cbs->max; 2582 ring->rx_pending = rfds->count; 2583 ring->tx_pending = cbs->count; 2584 } 2585 2586 static int e100_set_ringparam(struct net_device *netdev, 2587 struct ethtool_ringparam *ring) 2588 { 2589 struct nic *nic = netdev_priv(netdev); 2590 struct param_range *rfds = &nic->params.rfds; 2591 struct param_range *cbs = &nic->params.cbs; 2592 2593 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 2594 return -EINVAL; 2595 2596 if (netif_running(netdev)) 2597 e100_down(nic); 2598 rfds->count = max(ring->rx_pending, rfds->min); 2599 rfds->count = min(rfds->count, rfds->max); 2600 cbs->count = max(ring->tx_pending, cbs->min); 2601 cbs->count = min(cbs->count, cbs->max); 2602 netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n", 2603 rfds->count, cbs->count); 2604 if (netif_running(netdev)) 2605 e100_up(nic); 2606 2607 return 0; 2608 } 2609 2610 static const char e100_gstrings_test[][ETH_GSTRING_LEN] = { 2611 "Link test (on/offline)", 2612 "Eeprom test (on/offline)", 2613 "Self test (offline)", 2614 "Mac loopback (offline)", 2615 "Phy loopback (offline)", 2616 }; 2617 #define E100_TEST_LEN ARRAY_SIZE(e100_gstrings_test) 2618 2619 static void e100_diag_test(struct net_device *netdev, 2620 struct ethtool_test *test, u64 *data) 2621 { 2622 struct ethtool_cmd cmd; 2623 struct nic *nic = netdev_priv(netdev); 2624 int i, err; 2625 2626 memset(data, 0, E100_TEST_LEN * sizeof(u64)); 2627 data[0] = !mii_link_ok(&nic->mii); 2628 data[1] = e100_eeprom_load(nic); 2629 if (test->flags & ETH_TEST_FL_OFFLINE) { 2630 2631 /* save speed, duplex & autoneg settings */ 2632 err = mii_ethtool_gset(&nic->mii, &cmd); 2633 2634 if (netif_running(netdev)) 2635 e100_down(nic); 2636 data[2] = e100_self_test(nic); 2637 data[3] = e100_loopback_test(nic, lb_mac); 2638 data[4] = e100_loopback_test(nic, lb_phy); 2639 2640 /* restore speed, duplex & autoneg settings */ 2641 err = mii_ethtool_sset(&nic->mii, &cmd); 2642 2643 if (netif_running(netdev)) 2644 e100_up(nic); 2645 } 2646 for (i = 0; i < E100_TEST_LEN; i++) 2647 test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0; 2648 2649 msleep_interruptible(4 * 1000); 2650 } 2651 2652 static int e100_set_phys_id(struct net_device *netdev, 2653 enum ethtool_phys_id_state state) 2654 { 2655 struct nic *nic = netdev_priv(netdev); 2656 enum led_state { 2657 led_on = 0x01, 2658 led_off = 0x04, 2659 led_on_559 = 0x05, 2660 led_on_557 = 0x07, 2661 }; 2662 u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE : 2663 MII_LED_CONTROL; 2664 u16 leds = 0; 2665 2666 switch (state) { 2667 case ETHTOOL_ID_ACTIVE: 2668 return 2; 2669 2670 case ETHTOOL_ID_ON: 2671 leds = (nic->phy == phy_82552_v) ? E100_82552_LED_ON : 2672 (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559; 2673 break; 2674 2675 case ETHTOOL_ID_OFF: 2676 leds = (nic->phy == phy_82552_v) ? E100_82552_LED_OFF : led_off; 2677 break; 2678 2679 case ETHTOOL_ID_INACTIVE: 2680 break; 2681 } 2682 2683 mdio_write(netdev, nic->mii.phy_id, led_reg, leds); 2684 return 0; 2685 } 2686 2687 static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = { 2688 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors", 2689 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions", 2690 "rx_length_errors", "rx_over_errors", "rx_crc_errors", 2691 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors", 2692 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors", 2693 "tx_heartbeat_errors", "tx_window_errors", 2694 /* device-specific stats */ 2695 "tx_deferred", "tx_single_collisions", "tx_multi_collisions", 2696 "tx_flow_control_pause", "rx_flow_control_pause", 2697 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets", 2698 "rx_short_frame_errors", "rx_over_length_errors", 2699 }; 2700 #define E100_NET_STATS_LEN 21 2701 #define E100_STATS_LEN ARRAY_SIZE(e100_gstrings_stats) 2702 2703 static int e100_get_sset_count(struct net_device *netdev, int sset) 2704 { 2705 switch (sset) { 2706 case ETH_SS_TEST: 2707 return E100_TEST_LEN; 2708 case ETH_SS_STATS: 2709 return E100_STATS_LEN; 2710 default: 2711 return -EOPNOTSUPP; 2712 } 2713 } 2714 2715 static void e100_get_ethtool_stats(struct net_device *netdev, 2716 struct ethtool_stats *stats, u64 *data) 2717 { 2718 struct nic *nic = netdev_priv(netdev); 2719 int i; 2720 2721 for (i = 0; i < E100_NET_STATS_LEN; i++) 2722 data[i] = ((unsigned long *)&netdev->stats)[i]; 2723 2724 data[i++] = nic->tx_deferred; 2725 data[i++] = nic->tx_single_collisions; 2726 data[i++] = nic->tx_multiple_collisions; 2727 data[i++] = nic->tx_fc_pause; 2728 data[i++] = nic->rx_fc_pause; 2729 data[i++] = nic->rx_fc_unsupported; 2730 data[i++] = nic->tx_tco_frames; 2731 data[i++] = nic->rx_tco_frames; 2732 data[i++] = nic->rx_short_frame_errors; 2733 data[i++] = nic->rx_over_length_errors; 2734 } 2735 2736 static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data) 2737 { 2738 switch (stringset) { 2739 case ETH_SS_TEST: 2740 memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test)); 2741 break; 2742 case ETH_SS_STATS: 2743 memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats)); 2744 break; 2745 } 2746 } 2747 2748 static const struct ethtool_ops e100_ethtool_ops = { 2749 .get_settings = e100_get_settings, 2750 .set_settings = e100_set_settings, 2751 .get_drvinfo = e100_get_drvinfo, 2752 .get_regs_len = e100_get_regs_len, 2753 .get_regs = e100_get_regs, 2754 .get_wol = e100_get_wol, 2755 .set_wol = e100_set_wol, 2756 .get_msglevel = e100_get_msglevel, 2757 .set_msglevel = e100_set_msglevel, 2758 .nway_reset = e100_nway_reset, 2759 .get_link = e100_get_link, 2760 .get_eeprom_len = e100_get_eeprom_len, 2761 .get_eeprom = e100_get_eeprom, 2762 .set_eeprom = e100_set_eeprom, 2763 .get_ringparam = e100_get_ringparam, 2764 .set_ringparam = e100_set_ringparam, 2765 .self_test = e100_diag_test, 2766 .get_strings = e100_get_strings, 2767 .set_phys_id = e100_set_phys_id, 2768 .get_ethtool_stats = e100_get_ethtool_stats, 2769 .get_sset_count = e100_get_sset_count, 2770 .get_ts_info = ethtool_op_get_ts_info, 2771 }; 2772 2773 static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2774 { 2775 struct nic *nic = netdev_priv(netdev); 2776 2777 return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL); 2778 } 2779 2780 static int e100_alloc(struct nic *nic) 2781 { 2782 nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem), 2783 &nic->dma_addr); 2784 return nic->mem ? 0 : -ENOMEM; 2785 } 2786 2787 static void e100_free(struct nic *nic) 2788 { 2789 if (nic->mem) { 2790 pci_free_consistent(nic->pdev, sizeof(struct mem), 2791 nic->mem, nic->dma_addr); 2792 nic->mem = NULL; 2793 } 2794 } 2795 2796 static int e100_open(struct net_device *netdev) 2797 { 2798 struct nic *nic = netdev_priv(netdev); 2799 int err = 0; 2800 2801 netif_carrier_off(netdev); 2802 if ((err = e100_up(nic))) 2803 netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n"); 2804 return err; 2805 } 2806 2807 static int e100_close(struct net_device *netdev) 2808 { 2809 e100_down(netdev_priv(netdev)); 2810 return 0; 2811 } 2812 2813 static int e100_set_features(struct net_device *netdev, 2814 netdev_features_t features) 2815 { 2816 struct nic *nic = netdev_priv(netdev); 2817 netdev_features_t changed = features ^ netdev->features; 2818 2819 if (!(changed & (NETIF_F_RXFCS | NETIF_F_RXALL))) 2820 return 0; 2821 2822 netdev->features = features; 2823 e100_exec_cb(nic, NULL, e100_configure); 2824 return 0; 2825 } 2826 2827 static const struct net_device_ops e100_netdev_ops = { 2828 .ndo_open = e100_open, 2829 .ndo_stop = e100_close, 2830 .ndo_start_xmit = e100_xmit_frame, 2831 .ndo_validate_addr = eth_validate_addr, 2832 .ndo_set_rx_mode = e100_set_multicast_list, 2833 .ndo_set_mac_address = e100_set_mac_address, 2834 .ndo_change_mtu = e100_change_mtu, 2835 .ndo_do_ioctl = e100_do_ioctl, 2836 .ndo_tx_timeout = e100_tx_timeout, 2837 #ifdef CONFIG_NET_POLL_CONTROLLER 2838 .ndo_poll_controller = e100_netpoll, 2839 #endif 2840 .ndo_set_features = e100_set_features, 2841 }; 2842 2843 static int e100_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 2844 { 2845 struct net_device *netdev; 2846 struct nic *nic; 2847 int err; 2848 2849 if (!(netdev = alloc_etherdev(sizeof(struct nic)))) 2850 return -ENOMEM; 2851 2852 netdev->hw_features |= NETIF_F_RXFCS; 2853 netdev->priv_flags |= IFF_SUPP_NOFCS; 2854 netdev->hw_features |= NETIF_F_RXALL; 2855 2856 netdev->netdev_ops = &e100_netdev_ops; 2857 netdev->ethtool_ops = &e100_ethtool_ops; 2858 netdev->watchdog_timeo = E100_WATCHDOG_PERIOD; 2859 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 2860 2861 nic = netdev_priv(netdev); 2862 netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT); 2863 nic->netdev = netdev; 2864 nic->pdev = pdev; 2865 nic->msg_enable = (1 << debug) - 1; 2866 nic->mdio_ctrl = mdio_ctrl_hw; 2867 pci_set_drvdata(pdev, netdev); 2868 2869 if ((err = pci_enable_device(pdev))) { 2870 netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n"); 2871 goto err_out_free_dev; 2872 } 2873 2874 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 2875 netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n"); 2876 err = -ENODEV; 2877 goto err_out_disable_pdev; 2878 } 2879 2880 if ((err = pci_request_regions(pdev, DRV_NAME))) { 2881 netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n"); 2882 goto err_out_disable_pdev; 2883 } 2884 2885 if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) { 2886 netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n"); 2887 goto err_out_free_res; 2888 } 2889 2890 SET_NETDEV_DEV(netdev, &pdev->dev); 2891 2892 if (use_io) 2893 netif_info(nic, probe, nic->netdev, "using i/o access mode\n"); 2894 2895 nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr)); 2896 if (!nic->csr) { 2897 netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n"); 2898 err = -ENOMEM; 2899 goto err_out_free_res; 2900 } 2901 2902 if (ent->driver_data) 2903 nic->flags |= ich; 2904 else 2905 nic->flags &= ~ich; 2906 2907 e100_get_defaults(nic); 2908 2909 /* D100 MAC doesn't allow rx of vlan packets with normal MTU */ 2910 if (nic->mac < mac_82558_D101_A4) 2911 netdev->features |= NETIF_F_VLAN_CHALLENGED; 2912 2913 /* locks must be initialized before calling hw_reset */ 2914 spin_lock_init(&nic->cb_lock); 2915 spin_lock_init(&nic->cmd_lock); 2916 spin_lock_init(&nic->mdio_lock); 2917 2918 /* Reset the device before pci_set_master() in case device is in some 2919 * funky state and has an interrupt pending - hint: we don't have the 2920 * interrupt handler registered yet. */ 2921 e100_hw_reset(nic); 2922 2923 pci_set_master(pdev); 2924 2925 init_timer(&nic->watchdog); 2926 nic->watchdog.function = e100_watchdog; 2927 nic->watchdog.data = (unsigned long)nic; 2928 2929 INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task); 2930 2931 if ((err = e100_alloc(nic))) { 2932 netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n"); 2933 goto err_out_iounmap; 2934 } 2935 2936 if ((err = e100_eeprom_load(nic))) 2937 goto err_out_free; 2938 2939 e100_phy_init(nic); 2940 2941 memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN); 2942 if (!is_valid_ether_addr(netdev->dev_addr)) { 2943 if (!eeprom_bad_csum_allow) { 2944 netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n"); 2945 err = -EAGAIN; 2946 goto err_out_free; 2947 } else { 2948 netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n"); 2949 } 2950 } 2951 2952 /* Wol magic packet can be enabled from eeprom */ 2953 if ((nic->mac >= mac_82558_D101_A4) && 2954 (nic->eeprom[eeprom_id] & eeprom_id_wol)) { 2955 nic->flags |= wol_magic; 2956 device_set_wakeup_enable(&pdev->dev, true); 2957 } 2958 2959 /* ack any pending wake events, disable PME */ 2960 pci_pme_active(pdev, false); 2961 2962 strcpy(netdev->name, "eth%d"); 2963 if ((err = register_netdev(netdev))) { 2964 netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n"); 2965 goto err_out_free; 2966 } 2967 nic->cbs_pool = pci_pool_create(netdev->name, 2968 nic->pdev, 2969 nic->params.cbs.max * sizeof(struct cb), 2970 sizeof(u32), 2971 0); 2972 netif_info(nic, probe, nic->netdev, 2973 "addr 0x%llx, irq %d, MAC addr %pM\n", 2974 (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0), 2975 pdev->irq, netdev->dev_addr); 2976 2977 return 0; 2978 2979 err_out_free: 2980 e100_free(nic); 2981 err_out_iounmap: 2982 pci_iounmap(pdev, nic->csr); 2983 err_out_free_res: 2984 pci_release_regions(pdev); 2985 err_out_disable_pdev: 2986 pci_disable_device(pdev); 2987 err_out_free_dev: 2988 free_netdev(netdev); 2989 return err; 2990 } 2991 2992 static void e100_remove(struct pci_dev *pdev) 2993 { 2994 struct net_device *netdev = pci_get_drvdata(pdev); 2995 2996 if (netdev) { 2997 struct nic *nic = netdev_priv(netdev); 2998 unregister_netdev(netdev); 2999 e100_free(nic); 3000 pci_iounmap(pdev, nic->csr); 3001 pci_pool_destroy(nic->cbs_pool); 3002 free_netdev(netdev); 3003 pci_release_regions(pdev); 3004 pci_disable_device(pdev); 3005 } 3006 } 3007 3008 #define E100_82552_SMARTSPEED 0x14 /* SmartSpeed Ctrl register */ 3009 #define E100_82552_REV_ANEG 0x0200 /* Reverse auto-negotiation */ 3010 #define E100_82552_ANEG_NOW 0x0400 /* Auto-negotiate now */ 3011 static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake) 3012 { 3013 struct net_device *netdev = pci_get_drvdata(pdev); 3014 struct nic *nic = netdev_priv(netdev); 3015 3016 if (netif_running(netdev)) 3017 e100_down(nic); 3018 netif_device_detach(netdev); 3019 3020 pci_save_state(pdev); 3021 3022 if ((nic->flags & wol_magic) | e100_asf(nic)) { 3023 /* enable reverse auto-negotiation */ 3024 if (nic->phy == phy_82552_v) { 3025 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id, 3026 E100_82552_SMARTSPEED); 3027 3028 mdio_write(netdev, nic->mii.phy_id, 3029 E100_82552_SMARTSPEED, smartspeed | 3030 E100_82552_REV_ANEG | E100_82552_ANEG_NOW); 3031 } 3032 *enable_wake = true; 3033 } else { 3034 *enable_wake = false; 3035 } 3036 3037 pci_clear_master(pdev); 3038 } 3039 3040 static int __e100_power_off(struct pci_dev *pdev, bool wake) 3041 { 3042 if (wake) 3043 return pci_prepare_to_sleep(pdev); 3044 3045 pci_wake_from_d3(pdev, false); 3046 pci_set_power_state(pdev, PCI_D3hot); 3047 3048 return 0; 3049 } 3050 3051 #ifdef CONFIG_PM 3052 static int e100_suspend(struct pci_dev *pdev, pm_message_t state) 3053 { 3054 bool wake; 3055 __e100_shutdown(pdev, &wake); 3056 return __e100_power_off(pdev, wake); 3057 } 3058 3059 static int e100_resume(struct pci_dev *pdev) 3060 { 3061 struct net_device *netdev = pci_get_drvdata(pdev); 3062 struct nic *nic = netdev_priv(netdev); 3063 3064 pci_set_power_state(pdev, PCI_D0); 3065 pci_restore_state(pdev); 3066 /* ack any pending wake events, disable PME */ 3067 pci_enable_wake(pdev, PCI_D0, 0); 3068 3069 /* disable reverse auto-negotiation */ 3070 if (nic->phy == phy_82552_v) { 3071 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id, 3072 E100_82552_SMARTSPEED); 3073 3074 mdio_write(netdev, nic->mii.phy_id, 3075 E100_82552_SMARTSPEED, 3076 smartspeed & ~(E100_82552_REV_ANEG)); 3077 } 3078 3079 netif_device_attach(netdev); 3080 if (netif_running(netdev)) 3081 e100_up(nic); 3082 3083 return 0; 3084 } 3085 #endif /* CONFIG_PM */ 3086 3087 static void e100_shutdown(struct pci_dev *pdev) 3088 { 3089 bool wake; 3090 __e100_shutdown(pdev, &wake); 3091 if (system_state == SYSTEM_POWER_OFF) 3092 __e100_power_off(pdev, wake); 3093 } 3094 3095 /* ------------------ PCI Error Recovery infrastructure -------------- */ 3096 /** 3097 * e100_io_error_detected - called when PCI error is detected. 3098 * @pdev: Pointer to PCI device 3099 * @state: The current pci connection state 3100 */ 3101 static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) 3102 { 3103 struct net_device *netdev = pci_get_drvdata(pdev); 3104 struct nic *nic = netdev_priv(netdev); 3105 3106 netif_device_detach(netdev); 3107 3108 if (state == pci_channel_io_perm_failure) 3109 return PCI_ERS_RESULT_DISCONNECT; 3110 3111 if (netif_running(netdev)) 3112 e100_down(nic); 3113 pci_disable_device(pdev); 3114 3115 /* Request a slot reset. */ 3116 return PCI_ERS_RESULT_NEED_RESET; 3117 } 3118 3119 /** 3120 * e100_io_slot_reset - called after the pci bus has been reset. 3121 * @pdev: Pointer to PCI device 3122 * 3123 * Restart the card from scratch. 3124 */ 3125 static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev) 3126 { 3127 struct net_device *netdev = pci_get_drvdata(pdev); 3128 struct nic *nic = netdev_priv(netdev); 3129 3130 if (pci_enable_device(pdev)) { 3131 pr_err("Cannot re-enable PCI device after reset\n"); 3132 return PCI_ERS_RESULT_DISCONNECT; 3133 } 3134 pci_set_master(pdev); 3135 3136 /* Only one device per card can do a reset */ 3137 if (0 != PCI_FUNC(pdev->devfn)) 3138 return PCI_ERS_RESULT_RECOVERED; 3139 e100_hw_reset(nic); 3140 e100_phy_init(nic); 3141 3142 return PCI_ERS_RESULT_RECOVERED; 3143 } 3144 3145 /** 3146 * e100_io_resume - resume normal operations 3147 * @pdev: Pointer to PCI device 3148 * 3149 * Resume normal operations after an error recovery 3150 * sequence has been completed. 3151 */ 3152 static void e100_io_resume(struct pci_dev *pdev) 3153 { 3154 struct net_device *netdev = pci_get_drvdata(pdev); 3155 struct nic *nic = netdev_priv(netdev); 3156 3157 /* ack any pending wake events, disable PME */ 3158 pci_enable_wake(pdev, PCI_D0, 0); 3159 3160 netif_device_attach(netdev); 3161 if (netif_running(netdev)) { 3162 e100_open(netdev); 3163 mod_timer(&nic->watchdog, jiffies); 3164 } 3165 } 3166 3167 static const struct pci_error_handlers e100_err_handler = { 3168 .error_detected = e100_io_error_detected, 3169 .slot_reset = e100_io_slot_reset, 3170 .resume = e100_io_resume, 3171 }; 3172 3173 static struct pci_driver e100_driver = { 3174 .name = DRV_NAME, 3175 .id_table = e100_id_table, 3176 .probe = e100_probe, 3177 .remove = e100_remove, 3178 #ifdef CONFIG_PM 3179 /* Power Management hooks */ 3180 .suspend = e100_suspend, 3181 .resume = e100_resume, 3182 #endif 3183 .shutdown = e100_shutdown, 3184 .err_handler = &e100_err_handler, 3185 }; 3186 3187 static int __init e100_init_module(void) 3188 { 3189 if (((1 << debug) - 1) & NETIF_MSG_DRV) { 3190 pr_info("%s, %s\n", DRV_DESCRIPTION, DRV_VERSION); 3191 pr_info("%s\n", DRV_COPYRIGHT); 3192 } 3193 return pci_register_driver(&e100_driver); 3194 } 3195 3196 static void __exit e100_cleanup_module(void) 3197 { 3198 pci_unregister_driver(&e100_driver); 3199 } 3200 3201 module_init(e100_init_module); 3202 module_exit(e100_cleanup_module); 3203