1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2006 Intel Corporation. */ 3 4 /* 5 * e100.c: Intel(R) PRO/100 ethernet driver 6 * 7 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on 8 * original e100 driver, but better described as a munging of 9 * e100, e1000, eepro100, tg3, 8139cp, and other drivers. 10 * 11 * References: 12 * Intel 8255x 10/100 Mbps Ethernet Controller Family, 13 * Open Source Software Developers Manual, 14 * http://sourceforge.net/projects/e1000 15 * 16 * 17 * Theory of Operation 18 * 19 * I. General 20 * 21 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet 22 * controller family, which includes the 82557, 82558, 82559, 82550, 23 * 82551, and 82562 devices. 82558 and greater controllers 24 * integrate the Intel 82555 PHY. The controllers are used in 25 * server and client network interface cards, as well as in 26 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx 27 * configurations. 8255x supports a 32-bit linear addressing 28 * mode and operates at 33Mhz PCI clock rate. 29 * 30 * II. Driver Operation 31 * 32 * Memory-mapped mode is used exclusively to access the device's 33 * shared-memory structure, the Control/Status Registers (CSR). All 34 * setup, configuration, and control of the device, including queuing 35 * of Tx, Rx, and configuration commands is through the CSR. 36 * cmd_lock serializes accesses to the CSR command register. cb_lock 37 * protects the shared Command Block List (CBL). 38 * 39 * 8255x is highly MII-compliant and all access to the PHY go 40 * through the Management Data Interface (MDI). Consequently, the 41 * driver leverages the mii.c library shared with other MII-compliant 42 * devices. 43 * 44 * Big- and Little-Endian byte order as well as 32- and 64-bit 45 * archs are supported. Weak-ordered memory and non-cache-coherent 46 * archs are supported. 47 * 48 * III. Transmit 49 * 50 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked 51 * together in a fixed-size ring (CBL) thus forming the flexible mode 52 * memory structure. A TCB marked with the suspend-bit indicates 53 * the end of the ring. The last TCB processed suspends the 54 * controller, and the controller can be restarted by issue a CU 55 * resume command to continue from the suspend point, or a CU start 56 * command to start at a given position in the ring. 57 * 58 * Non-Tx commands (config, multicast setup, etc) are linked 59 * into the CBL ring along with Tx commands. The common structure 60 * used for both Tx and non-Tx commands is the Command Block (CB). 61 * 62 * cb_to_use is the next CB to use for queuing a command; cb_to_clean 63 * is the next CB to check for completion; cb_to_send is the first 64 * CB to start on in case of a previous failure to resume. CB clean 65 * up happens in interrupt context in response to a CU interrupt. 66 * cbs_avail keeps track of number of free CB resources available. 67 * 68 * Hardware padding of short packets to minimum packet size is 69 * enabled. 82557 pads with 7Eh, while the later controllers pad 70 * with 00h. 71 * 72 * IV. Receive 73 * 74 * The Receive Frame Area (RFA) comprises a ring of Receive Frame 75 * Descriptors (RFD) + data buffer, thus forming the simplified mode 76 * memory structure. Rx skbs are allocated to contain both the RFD 77 * and the data buffer, but the RFD is pulled off before the skb is 78 * indicated. The data buffer is aligned such that encapsulated 79 * protocol headers are u32-aligned. Since the RFD is part of the 80 * mapped shared memory, and completion status is contained within 81 * the RFD, the RFD must be dma_sync'ed to maintain a consistent 82 * view from software and hardware. 83 * 84 * In order to keep updates to the RFD link field from colliding with 85 * hardware writes to mark packets complete, we use the feature that 86 * hardware will not write to a size 0 descriptor and mark the previous 87 * packet as end-of-list (EL). After updating the link, we remove EL 88 * and only then restore the size such that hardware may use the 89 * previous-to-end RFD. 90 * 91 * Under typical operation, the receive unit (RU) is start once, 92 * and the controller happily fills RFDs as frames arrive. If 93 * replacement RFDs cannot be allocated, or the RU goes non-active, 94 * the RU must be restarted. Frame arrival generates an interrupt, 95 * and Rx indication and re-allocation happen in the same context, 96 * therefore no locking is required. A software-generated interrupt 97 * is generated from the watchdog to recover from a failed allocation 98 * scenario where all Rx resources have been indicated and none re- 99 * placed. 100 * 101 * V. Miscellaneous 102 * 103 * VLAN offloading of tagging, stripping and filtering is not 104 * supported, but driver will accommodate the extra 4-byte VLAN tag 105 * for processing by upper layers. Tx/Rx Checksum offloading is not 106 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is 107 * not supported (hardware limitation). 108 * 109 * MagicPacket(tm) WoL support is enabled/disabled via ethtool. 110 * 111 * Thanks to JC (jchapman@katalix.com) for helping with 112 * testing/troubleshooting the development driver. 113 * 114 * TODO: 115 * o several entry points race with dev->close 116 * o check for tx-no-resources/stop Q races with tx clean/wake Q 117 * 118 * FIXES: 119 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com> 120 * - Stratus87247: protect MDI control register manipulations 121 * 2009/06/01 - Andreas Mohr <andi at lisas dot de> 122 * - add clean lowlevel I/O emulation for cards with MII-lacking PHYs 123 */ 124 125 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 126 127 #include <linux/hardirq.h> 128 #include <linux/interrupt.h> 129 #include <linux/module.h> 130 #include <linux/moduleparam.h> 131 #include <linux/kernel.h> 132 #include <linux/types.h> 133 #include <linux/sched.h> 134 #include <linux/slab.h> 135 #include <linux/delay.h> 136 #include <linux/init.h> 137 #include <linux/pci.h> 138 #include <linux/dma-mapping.h> 139 #include <linux/dmapool.h> 140 #include <linux/netdevice.h> 141 #include <linux/etherdevice.h> 142 #include <linux/mii.h> 143 #include <linux/if_vlan.h> 144 #include <linux/skbuff.h> 145 #include <linux/ethtool.h> 146 #include <linux/string.h> 147 #include <linux/firmware.h> 148 #include <linux/rtnetlink.h> 149 #include <asm/unaligned.h> 150 151 152 #define DRV_NAME "e100" 153 #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver" 154 #define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation" 155 156 #define E100_WATCHDOG_PERIOD (2 * HZ) 157 #define E100_NAPI_WEIGHT 16 158 159 #define FIRMWARE_D101M "e100/d101m_ucode.bin" 160 #define FIRMWARE_D101S "e100/d101s_ucode.bin" 161 #define FIRMWARE_D102E "e100/d102e_ucode.bin" 162 163 MODULE_DESCRIPTION(DRV_DESCRIPTION); 164 MODULE_AUTHOR(DRV_COPYRIGHT); 165 MODULE_LICENSE("GPL v2"); 166 MODULE_FIRMWARE(FIRMWARE_D101M); 167 MODULE_FIRMWARE(FIRMWARE_D101S); 168 MODULE_FIRMWARE(FIRMWARE_D102E); 169 170 static int debug = 3; 171 static int eeprom_bad_csum_allow = 0; 172 static int use_io = 0; 173 module_param(debug, int, 0); 174 module_param(eeprom_bad_csum_allow, int, 0); 175 module_param(use_io, int, 0); 176 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 177 MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums"); 178 MODULE_PARM_DESC(use_io, "Force use of i/o access mode"); 179 180 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\ 181 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \ 182 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich } 183 static const struct pci_device_id e100_id_table[] = { 184 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0), 185 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0), 186 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3), 187 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3), 188 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3), 189 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3), 190 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3), 191 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4), 192 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4), 193 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4), 194 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4), 195 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4), 196 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4), 197 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5), 198 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5), 199 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5), 200 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5), 201 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5), 202 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5), 203 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5), 204 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5), 205 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0), 206 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6), 207 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6), 208 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6), 209 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6), 210 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6), 211 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6), 212 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6), 213 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6), 214 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7), 215 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7), 216 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7), 217 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7), 218 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7), 219 INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7), 220 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0), 221 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0), 222 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2), 223 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2), 224 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2), 225 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7), 226 { 0, } 227 }; 228 MODULE_DEVICE_TABLE(pci, e100_id_table); 229 230 enum mac { 231 mac_82557_D100_A = 0, 232 mac_82557_D100_B = 1, 233 mac_82557_D100_C = 2, 234 mac_82558_D101_A4 = 4, 235 mac_82558_D101_B0 = 5, 236 mac_82559_D101M = 8, 237 mac_82559_D101S = 9, 238 mac_82550_D102 = 12, 239 mac_82550_D102_C = 13, 240 mac_82551_E = 14, 241 mac_82551_F = 15, 242 mac_82551_10 = 16, 243 mac_unknown = 0xFF, 244 }; 245 246 enum phy { 247 phy_100a = 0x000003E0, 248 phy_100c = 0x035002A8, 249 phy_82555_tx = 0x015002A8, 250 phy_nsc_tx = 0x5C002000, 251 phy_82562_et = 0x033002A8, 252 phy_82562_em = 0x032002A8, 253 phy_82562_ek = 0x031002A8, 254 phy_82562_eh = 0x017002A8, 255 phy_82552_v = 0xd061004d, 256 phy_unknown = 0xFFFFFFFF, 257 }; 258 259 /* CSR (Control/Status Registers) */ 260 struct csr { 261 struct { 262 u8 status; 263 u8 stat_ack; 264 u8 cmd_lo; 265 u8 cmd_hi; 266 u32 gen_ptr; 267 } scb; 268 u32 port; 269 u16 flash_ctrl; 270 u8 eeprom_ctrl_lo; 271 u8 eeprom_ctrl_hi; 272 u32 mdi_ctrl; 273 u32 rx_dma_count; 274 }; 275 276 enum scb_status { 277 rus_no_res = 0x08, 278 rus_ready = 0x10, 279 rus_mask = 0x3C, 280 }; 281 282 enum ru_state { 283 RU_SUSPENDED = 0, 284 RU_RUNNING = 1, 285 RU_UNINITIALIZED = -1, 286 }; 287 288 enum scb_stat_ack { 289 stat_ack_not_ours = 0x00, 290 stat_ack_sw_gen = 0x04, 291 stat_ack_rnr = 0x10, 292 stat_ack_cu_idle = 0x20, 293 stat_ack_frame_rx = 0x40, 294 stat_ack_cu_cmd_done = 0x80, 295 stat_ack_not_present = 0xFF, 296 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx), 297 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done), 298 }; 299 300 enum scb_cmd_hi { 301 irq_mask_none = 0x00, 302 irq_mask_all = 0x01, 303 irq_sw_gen = 0x02, 304 }; 305 306 enum scb_cmd_lo { 307 cuc_nop = 0x00, 308 ruc_start = 0x01, 309 ruc_load_base = 0x06, 310 cuc_start = 0x10, 311 cuc_resume = 0x20, 312 cuc_dump_addr = 0x40, 313 cuc_dump_stats = 0x50, 314 cuc_load_base = 0x60, 315 cuc_dump_reset = 0x70, 316 }; 317 318 enum cuc_dump { 319 cuc_dump_complete = 0x0000A005, 320 cuc_dump_reset_complete = 0x0000A007, 321 }; 322 323 enum port { 324 software_reset = 0x0000, 325 selftest = 0x0001, 326 selective_reset = 0x0002, 327 }; 328 329 enum eeprom_ctrl_lo { 330 eesk = 0x01, 331 eecs = 0x02, 332 eedi = 0x04, 333 eedo = 0x08, 334 }; 335 336 enum mdi_ctrl { 337 mdi_write = 0x04000000, 338 mdi_read = 0x08000000, 339 mdi_ready = 0x10000000, 340 }; 341 342 enum eeprom_op { 343 op_write = 0x05, 344 op_read = 0x06, 345 op_ewds = 0x10, 346 op_ewen = 0x13, 347 }; 348 349 enum eeprom_offsets { 350 eeprom_cnfg_mdix = 0x03, 351 eeprom_phy_iface = 0x06, 352 eeprom_id = 0x0A, 353 eeprom_config_asf = 0x0D, 354 eeprom_smbus_addr = 0x90, 355 }; 356 357 enum eeprom_cnfg_mdix { 358 eeprom_mdix_enabled = 0x0080, 359 }; 360 361 enum eeprom_phy_iface { 362 NoSuchPhy = 0, 363 I82553AB, 364 I82553C, 365 I82503, 366 DP83840, 367 S80C240, 368 S80C24, 369 I82555, 370 DP83840A = 10, 371 }; 372 373 enum eeprom_id { 374 eeprom_id_wol = 0x0020, 375 }; 376 377 enum eeprom_config_asf { 378 eeprom_asf = 0x8000, 379 eeprom_gcl = 0x4000, 380 }; 381 382 enum cb_status { 383 cb_complete = 0x8000, 384 cb_ok = 0x2000, 385 }; 386 387 /* 388 * cb_command - Command Block flags 389 * @cb_tx_nc: 0: controller does CRC (normal), 1: CRC from skb memory 390 */ 391 enum cb_command { 392 cb_nop = 0x0000, 393 cb_iaaddr = 0x0001, 394 cb_config = 0x0002, 395 cb_multi = 0x0003, 396 cb_tx = 0x0004, 397 cb_ucode = 0x0005, 398 cb_dump = 0x0006, 399 cb_tx_sf = 0x0008, 400 cb_tx_nc = 0x0010, 401 cb_cid = 0x1f00, 402 cb_i = 0x2000, 403 cb_s = 0x4000, 404 cb_el = 0x8000, 405 }; 406 407 struct rfd { 408 __le16 status; 409 __le16 command; 410 __le32 link; 411 __le32 rbd; 412 __le16 actual_size; 413 __le16 size; 414 }; 415 416 struct rx { 417 struct rx *next, *prev; 418 struct sk_buff *skb; 419 dma_addr_t dma_addr; 420 }; 421 422 #if defined(__BIG_ENDIAN_BITFIELD) 423 #define X(a,b) b,a 424 #else 425 #define X(a,b) a,b 426 #endif 427 struct config { 428 /*0*/ u8 X(byte_count:6, pad0:2); 429 /*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1); 430 /*2*/ u8 adaptive_ifs; 431 /*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1), 432 term_write_cache_line:1), pad3:4); 433 /*4*/ u8 X(rx_dma_max_count:7, pad4:1); 434 /*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1); 435 /*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1), 436 tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1), 437 rx_save_overruns : 1), rx_save_bad_frames : 1); 438 /*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2), 439 pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1), 440 tx_dynamic_tbd:1); 441 /*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1); 442 /*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1), 443 link_status_wake:1), arp_wake:1), mcmatch_wake:1); 444 /*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2), 445 loopback:2); 446 /*11*/ u8 X(linear_priority:3, pad11:5); 447 /*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4); 448 /*13*/ u8 ip_addr_lo; 449 /*14*/ u8 ip_addr_hi; 450 /*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1), 451 wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1), 452 pad15_2:1), crs_or_cdt:1); 453 /*16*/ u8 fc_delay_lo; 454 /*17*/ u8 fc_delay_hi; 455 /*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1), 456 rx_long_ok:1), fc_priority_threshold:3), pad18:1); 457 /*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1), 458 fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1), 459 full_duplex_force:1), full_duplex_pin:1); 460 /*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1); 461 /*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4); 462 /*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6); 463 u8 pad_d102[9]; 464 }; 465 466 #define E100_MAX_MULTICAST_ADDRS 64 467 struct multi { 468 __le16 count; 469 u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/]; 470 }; 471 472 /* Important: keep total struct u32-aligned */ 473 #define UCODE_SIZE 134 474 struct cb { 475 __le16 status; 476 __le16 command; 477 __le32 link; 478 union { 479 u8 iaaddr[ETH_ALEN]; 480 __le32 ucode[UCODE_SIZE]; 481 struct config config; 482 struct multi multi; 483 struct { 484 u32 tbd_array; 485 u16 tcb_byte_count; 486 u8 threshold; 487 u8 tbd_count; 488 struct { 489 __le32 buf_addr; 490 __le16 size; 491 u16 eol; 492 } tbd; 493 } tcb; 494 __le32 dump_buffer_addr; 495 } u; 496 struct cb *next, *prev; 497 dma_addr_t dma_addr; 498 struct sk_buff *skb; 499 }; 500 501 enum loopback { 502 lb_none = 0, lb_mac = 1, lb_phy = 3, 503 }; 504 505 struct stats { 506 __le32 tx_good_frames, tx_max_collisions, tx_late_collisions, 507 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions, 508 tx_multiple_collisions, tx_total_collisions; 509 __le32 rx_good_frames, rx_crc_errors, rx_alignment_errors, 510 rx_resource_errors, rx_overrun_errors, rx_cdt_errors, 511 rx_short_frame_errors; 512 __le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported; 513 __le16 xmt_tco_frames, rcv_tco_frames; 514 __le32 complete; 515 }; 516 517 struct mem { 518 struct { 519 u32 signature; 520 u32 result; 521 } selftest; 522 struct stats stats; 523 u8 dump_buf[596]; 524 }; 525 526 struct param_range { 527 u32 min; 528 u32 max; 529 u32 count; 530 }; 531 532 struct params { 533 struct param_range rfds; 534 struct param_range cbs; 535 }; 536 537 struct nic { 538 /* Begin: frequently used values: keep adjacent for cache effect */ 539 u32 msg_enable ____cacheline_aligned; 540 struct net_device *netdev; 541 struct pci_dev *pdev; 542 u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data); 543 544 struct rx *rxs ____cacheline_aligned; 545 struct rx *rx_to_use; 546 struct rx *rx_to_clean; 547 struct rfd blank_rfd; 548 enum ru_state ru_running; 549 550 spinlock_t cb_lock ____cacheline_aligned; 551 spinlock_t cmd_lock; 552 struct csr __iomem *csr; 553 enum scb_cmd_lo cuc_cmd; 554 unsigned int cbs_avail; 555 struct napi_struct napi; 556 struct cb *cbs; 557 struct cb *cb_to_use; 558 struct cb *cb_to_send; 559 struct cb *cb_to_clean; 560 __le16 tx_command; 561 /* End: frequently used values: keep adjacent for cache effect */ 562 563 enum { 564 ich = (1 << 0), 565 promiscuous = (1 << 1), 566 multicast_all = (1 << 2), 567 wol_magic = (1 << 3), 568 ich_10h_workaround = (1 << 4), 569 } flags ____cacheline_aligned; 570 571 enum mac mac; 572 enum phy phy; 573 struct params params; 574 struct timer_list watchdog; 575 struct mii_if_info mii; 576 struct work_struct tx_timeout_task; 577 enum loopback loopback; 578 579 struct mem *mem; 580 dma_addr_t dma_addr; 581 582 struct dma_pool *cbs_pool; 583 dma_addr_t cbs_dma_addr; 584 u8 adaptive_ifs; 585 u8 tx_threshold; 586 u32 tx_frames; 587 u32 tx_collisions; 588 u32 tx_deferred; 589 u32 tx_single_collisions; 590 u32 tx_multiple_collisions; 591 u32 tx_fc_pause; 592 u32 tx_tco_frames; 593 594 u32 rx_fc_pause; 595 u32 rx_fc_unsupported; 596 u32 rx_tco_frames; 597 u32 rx_short_frame_errors; 598 u32 rx_over_length_errors; 599 600 u16 eeprom_wc; 601 __le16 eeprom[256]; 602 spinlock_t mdio_lock; 603 const struct firmware *fw; 604 }; 605 606 static inline void e100_write_flush(struct nic *nic) 607 { 608 /* Flush previous PCI writes through intermediate bridges 609 * by doing a benign read */ 610 (void)ioread8(&nic->csr->scb.status); 611 } 612 613 static void e100_enable_irq(struct nic *nic) 614 { 615 unsigned long flags; 616 617 spin_lock_irqsave(&nic->cmd_lock, flags); 618 iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi); 619 e100_write_flush(nic); 620 spin_unlock_irqrestore(&nic->cmd_lock, flags); 621 } 622 623 static void e100_disable_irq(struct nic *nic) 624 { 625 unsigned long flags; 626 627 spin_lock_irqsave(&nic->cmd_lock, flags); 628 iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi); 629 e100_write_flush(nic); 630 spin_unlock_irqrestore(&nic->cmd_lock, flags); 631 } 632 633 static void e100_hw_reset(struct nic *nic) 634 { 635 /* Put CU and RU into idle with a selective reset to get 636 * device off of PCI bus */ 637 iowrite32(selective_reset, &nic->csr->port); 638 e100_write_flush(nic); udelay(20); 639 640 /* Now fully reset device */ 641 iowrite32(software_reset, &nic->csr->port); 642 e100_write_flush(nic); udelay(20); 643 644 /* Mask off our interrupt line - it's unmasked after reset */ 645 e100_disable_irq(nic); 646 } 647 648 static int e100_self_test(struct nic *nic) 649 { 650 u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest); 651 652 /* Passing the self-test is a pretty good indication 653 * that the device can DMA to/from host memory */ 654 655 nic->mem->selftest.signature = 0; 656 nic->mem->selftest.result = 0xFFFFFFFF; 657 658 iowrite32(selftest | dma_addr, &nic->csr->port); 659 e100_write_flush(nic); 660 /* Wait 10 msec for self-test to complete */ 661 msleep(10); 662 663 /* Interrupts are enabled after self-test */ 664 e100_disable_irq(nic); 665 666 /* Check results of self-test */ 667 if (nic->mem->selftest.result != 0) { 668 netif_err(nic, hw, nic->netdev, 669 "Self-test failed: result=0x%08X\n", 670 nic->mem->selftest.result); 671 return -ETIMEDOUT; 672 } 673 if (nic->mem->selftest.signature == 0) { 674 netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n"); 675 return -ETIMEDOUT; 676 } 677 678 return 0; 679 } 680 681 static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data) 682 { 683 u32 cmd_addr_data[3]; 684 u8 ctrl; 685 int i, j; 686 687 /* Three cmds: write/erase enable, write data, write/erase disable */ 688 cmd_addr_data[0] = op_ewen << (addr_len - 2); 689 cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) | 690 le16_to_cpu(data); 691 cmd_addr_data[2] = op_ewds << (addr_len - 2); 692 693 /* Bit-bang cmds to write word to eeprom */ 694 for (j = 0; j < 3; j++) { 695 696 /* Chip select */ 697 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo); 698 e100_write_flush(nic); udelay(4); 699 700 for (i = 31; i >= 0; i--) { 701 ctrl = (cmd_addr_data[j] & (1 << i)) ? 702 eecs | eedi : eecs; 703 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo); 704 e100_write_flush(nic); udelay(4); 705 706 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); 707 e100_write_flush(nic); udelay(4); 708 } 709 /* Wait 10 msec for cmd to complete */ 710 msleep(10); 711 712 /* Chip deselect */ 713 iowrite8(0, &nic->csr->eeprom_ctrl_lo); 714 e100_write_flush(nic); udelay(4); 715 } 716 }; 717 718 /* General technique stolen from the eepro100 driver - very clever */ 719 static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr) 720 { 721 u32 cmd_addr_data; 722 u16 data = 0; 723 u8 ctrl; 724 int i; 725 726 cmd_addr_data = ((op_read << *addr_len) | addr) << 16; 727 728 /* Chip select */ 729 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo); 730 e100_write_flush(nic); udelay(4); 731 732 /* Bit-bang to read word from eeprom */ 733 for (i = 31; i >= 0; i--) { 734 ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs; 735 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo); 736 e100_write_flush(nic); udelay(4); 737 738 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); 739 e100_write_flush(nic); udelay(4); 740 741 /* Eeprom drives a dummy zero to EEDO after receiving 742 * complete address. Use this to adjust addr_len. */ 743 ctrl = ioread8(&nic->csr->eeprom_ctrl_lo); 744 if (!(ctrl & eedo) && i > 16) { 745 *addr_len -= (i - 16); 746 i = 17; 747 } 748 749 data = (data << 1) | (ctrl & eedo ? 1 : 0); 750 } 751 752 /* Chip deselect */ 753 iowrite8(0, &nic->csr->eeprom_ctrl_lo); 754 e100_write_flush(nic); udelay(4); 755 756 return cpu_to_le16(data); 757 }; 758 759 /* Load entire EEPROM image into driver cache and validate checksum */ 760 static int e100_eeprom_load(struct nic *nic) 761 { 762 u16 addr, addr_len = 8, checksum = 0; 763 764 /* Try reading with an 8-bit addr len to discover actual addr len */ 765 e100_eeprom_read(nic, &addr_len, 0); 766 nic->eeprom_wc = 1 << addr_len; 767 768 for (addr = 0; addr < nic->eeprom_wc; addr++) { 769 nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr); 770 if (addr < nic->eeprom_wc - 1) 771 checksum += le16_to_cpu(nic->eeprom[addr]); 772 } 773 774 /* The checksum, stored in the last word, is calculated such that 775 * the sum of words should be 0xBABA */ 776 if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) { 777 netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n"); 778 if (!eeprom_bad_csum_allow) 779 return -EAGAIN; 780 } 781 782 return 0; 783 } 784 785 /* Save (portion of) driver EEPROM cache to device and update checksum */ 786 static int e100_eeprom_save(struct nic *nic, u16 start, u16 count) 787 { 788 u16 addr, addr_len = 8, checksum = 0; 789 790 /* Try reading with an 8-bit addr len to discover actual addr len */ 791 e100_eeprom_read(nic, &addr_len, 0); 792 nic->eeprom_wc = 1 << addr_len; 793 794 if (start + count >= nic->eeprom_wc) 795 return -EINVAL; 796 797 for (addr = start; addr < start + count; addr++) 798 e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]); 799 800 /* The checksum, stored in the last word, is calculated such that 801 * the sum of words should be 0xBABA */ 802 for (addr = 0; addr < nic->eeprom_wc - 1; addr++) 803 checksum += le16_to_cpu(nic->eeprom[addr]); 804 nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum); 805 e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1, 806 nic->eeprom[nic->eeprom_wc - 1]); 807 808 return 0; 809 } 810 811 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */ 812 #define E100_WAIT_SCB_FAST 20 /* delay like the old code */ 813 static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr) 814 { 815 unsigned long flags; 816 unsigned int i; 817 int err = 0; 818 819 spin_lock_irqsave(&nic->cmd_lock, flags); 820 821 /* Previous command is accepted when SCB clears */ 822 for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) { 823 if (likely(!ioread8(&nic->csr->scb.cmd_lo))) 824 break; 825 cpu_relax(); 826 if (unlikely(i > E100_WAIT_SCB_FAST)) 827 udelay(5); 828 } 829 if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) { 830 err = -EAGAIN; 831 goto err_unlock; 832 } 833 834 if (unlikely(cmd != cuc_resume)) 835 iowrite32(dma_addr, &nic->csr->scb.gen_ptr); 836 iowrite8(cmd, &nic->csr->scb.cmd_lo); 837 838 err_unlock: 839 spin_unlock_irqrestore(&nic->cmd_lock, flags); 840 841 return err; 842 } 843 844 static int e100_exec_cb(struct nic *nic, struct sk_buff *skb, 845 int (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *)) 846 { 847 struct cb *cb; 848 unsigned long flags; 849 int err; 850 851 spin_lock_irqsave(&nic->cb_lock, flags); 852 853 if (unlikely(!nic->cbs_avail)) { 854 err = -ENOMEM; 855 goto err_unlock; 856 } 857 858 cb = nic->cb_to_use; 859 nic->cb_to_use = cb->next; 860 nic->cbs_avail--; 861 cb->skb = skb; 862 863 err = cb_prepare(nic, cb, skb); 864 if (err) 865 goto err_unlock; 866 867 if (unlikely(!nic->cbs_avail)) 868 err = -ENOSPC; 869 870 871 /* Order is important otherwise we'll be in a race with h/w: 872 * set S-bit in current first, then clear S-bit in previous. */ 873 cb->command |= cpu_to_le16(cb_s); 874 dma_wmb(); 875 cb->prev->command &= cpu_to_le16(~cb_s); 876 877 while (nic->cb_to_send != nic->cb_to_use) { 878 if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd, 879 nic->cb_to_send->dma_addr))) { 880 /* Ok, here's where things get sticky. It's 881 * possible that we can't schedule the command 882 * because the controller is too busy, so 883 * let's just queue the command and try again 884 * when another command is scheduled. */ 885 if (err == -ENOSPC) { 886 //request a reset 887 schedule_work(&nic->tx_timeout_task); 888 } 889 break; 890 } else { 891 nic->cuc_cmd = cuc_resume; 892 nic->cb_to_send = nic->cb_to_send->next; 893 } 894 } 895 896 err_unlock: 897 spin_unlock_irqrestore(&nic->cb_lock, flags); 898 899 return err; 900 } 901 902 static int mdio_read(struct net_device *netdev, int addr, int reg) 903 { 904 struct nic *nic = netdev_priv(netdev); 905 return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0); 906 } 907 908 static void mdio_write(struct net_device *netdev, int addr, int reg, int data) 909 { 910 struct nic *nic = netdev_priv(netdev); 911 912 nic->mdio_ctrl(nic, addr, mdi_write, reg, data); 913 } 914 915 /* the standard mdio_ctrl() function for usual MII-compliant hardware */ 916 static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data) 917 { 918 u32 data_out = 0; 919 unsigned int i; 920 unsigned long flags; 921 922 923 /* 924 * Stratus87247: we shouldn't be writing the MDI control 925 * register until the Ready bit shows True. Also, since 926 * manipulation of the MDI control registers is a multi-step 927 * procedure it should be done under lock. 928 */ 929 spin_lock_irqsave(&nic->mdio_lock, flags); 930 for (i = 100; i; --i) { 931 if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready) 932 break; 933 udelay(20); 934 } 935 if (unlikely(!i)) { 936 netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n"); 937 spin_unlock_irqrestore(&nic->mdio_lock, flags); 938 return 0; /* No way to indicate timeout error */ 939 } 940 iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl); 941 942 for (i = 0; i < 100; i++) { 943 udelay(20); 944 if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready) 945 break; 946 } 947 spin_unlock_irqrestore(&nic->mdio_lock, flags); 948 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, 949 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n", 950 dir == mdi_read ? "READ" : "WRITE", 951 addr, reg, data, data_out); 952 return (u16)data_out; 953 } 954 955 /* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */ 956 static u16 mdio_ctrl_phy_82552_v(struct nic *nic, 957 u32 addr, 958 u32 dir, 959 u32 reg, 960 u16 data) 961 { 962 if ((reg == MII_BMCR) && (dir == mdi_write)) { 963 if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) { 964 u16 advert = mdio_read(nic->netdev, nic->mii.phy_id, 965 MII_ADVERTISE); 966 967 /* 968 * Workaround Si issue where sometimes the part will not 969 * autoneg to 100Mbps even when advertised. 970 */ 971 if (advert & ADVERTISE_100FULL) 972 data |= BMCR_SPEED100 | BMCR_FULLDPLX; 973 else if (advert & ADVERTISE_100HALF) 974 data |= BMCR_SPEED100; 975 } 976 } 977 return mdio_ctrl_hw(nic, addr, dir, reg, data); 978 } 979 980 /* Fully software-emulated mdio_ctrl() function for cards without 981 * MII-compliant PHYs. 982 * For now, this is mainly geared towards 80c24 support; in case of further 983 * requirements for other types (i82503, ...?) either extend this mechanism 984 * or split it, whichever is cleaner. 985 */ 986 static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic, 987 u32 addr, 988 u32 dir, 989 u32 reg, 990 u16 data) 991 { 992 /* might need to allocate a netdev_priv'ed register array eventually 993 * to be able to record state changes, but for now 994 * some fully hardcoded register handling ought to be ok I guess. */ 995 996 if (dir == mdi_read) { 997 switch (reg) { 998 case MII_BMCR: 999 /* Auto-negotiation, right? */ 1000 return BMCR_ANENABLE | 1001 BMCR_FULLDPLX; 1002 case MII_BMSR: 1003 return BMSR_LSTATUS /* for mii_link_ok() */ | 1004 BMSR_ANEGCAPABLE | 1005 BMSR_10FULL; 1006 case MII_ADVERTISE: 1007 /* 80c24 is a "combo card" PHY, right? */ 1008 return ADVERTISE_10HALF | 1009 ADVERTISE_10FULL; 1010 default: 1011 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, 1012 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n", 1013 dir == mdi_read ? "READ" : "WRITE", 1014 addr, reg, data); 1015 return 0xFFFF; 1016 } 1017 } else { 1018 switch (reg) { 1019 default: 1020 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, 1021 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n", 1022 dir == mdi_read ? "READ" : "WRITE", 1023 addr, reg, data); 1024 return 0xFFFF; 1025 } 1026 } 1027 } 1028 static inline int e100_phy_supports_mii(struct nic *nic) 1029 { 1030 /* for now, just check it by comparing whether we 1031 are using MII software emulation. 1032 */ 1033 return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated); 1034 } 1035 1036 static void e100_get_defaults(struct nic *nic) 1037 { 1038 struct param_range rfds = { .min = 16, .max = 256, .count = 256 }; 1039 struct param_range cbs = { .min = 64, .max = 256, .count = 128 }; 1040 1041 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */ 1042 nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision; 1043 if (nic->mac == mac_unknown) 1044 nic->mac = mac_82557_D100_A; 1045 1046 nic->params.rfds = rfds; 1047 nic->params.cbs = cbs; 1048 1049 /* Quadwords to DMA into FIFO before starting frame transmit */ 1050 nic->tx_threshold = 0xE0; 1051 1052 /* no interrupt for every tx completion, delay = 256us if not 557 */ 1053 nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf | 1054 ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i)); 1055 1056 /* Template for a freshly allocated RFD */ 1057 nic->blank_rfd.command = 0; 1058 nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF); 1059 nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN); 1060 1061 /* MII setup */ 1062 nic->mii.phy_id_mask = 0x1F; 1063 nic->mii.reg_num_mask = 0x1F; 1064 nic->mii.dev = nic->netdev; 1065 nic->mii.mdio_read = mdio_read; 1066 nic->mii.mdio_write = mdio_write; 1067 } 1068 1069 static int e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb) 1070 { 1071 struct config *config = &cb->u.config; 1072 u8 *c = (u8 *)config; 1073 struct net_device *netdev = nic->netdev; 1074 1075 cb->command = cpu_to_le16(cb_config); 1076 1077 memset(config, 0, sizeof(struct config)); 1078 1079 config->byte_count = 0x16; /* bytes in this struct */ 1080 config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */ 1081 config->direct_rx_dma = 0x1; /* reserved */ 1082 config->standard_tcb = 0x1; /* 1=standard, 0=extended */ 1083 config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */ 1084 config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */ 1085 config->tx_underrun_retry = 0x3; /* # of underrun retries */ 1086 if (e100_phy_supports_mii(nic)) 1087 config->mii_mode = 1; /* 1=MII mode, 0=i82503 mode */ 1088 config->pad10 = 0x6; 1089 config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */ 1090 config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */ 1091 config->ifs = 0x6; /* x16 = inter frame spacing */ 1092 config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */ 1093 config->pad15_1 = 0x1; 1094 config->pad15_2 = 0x1; 1095 config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */ 1096 config->fc_delay_hi = 0x40; /* time delay for fc frame */ 1097 config->tx_padding = 0x1; /* 1=pad short frames */ 1098 config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */ 1099 config->pad18 = 0x1; 1100 config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */ 1101 config->pad20_1 = 0x1F; 1102 config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */ 1103 config->pad21_1 = 0x5; 1104 1105 config->adaptive_ifs = nic->adaptive_ifs; 1106 config->loopback = nic->loopback; 1107 1108 if (nic->mii.force_media && nic->mii.full_duplex) 1109 config->full_duplex_force = 0x1; /* 1=force, 0=auto */ 1110 1111 if (nic->flags & promiscuous || nic->loopback) { 1112 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */ 1113 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */ 1114 config->promiscuous_mode = 0x1; /* 1=on, 0=off */ 1115 } 1116 1117 if (unlikely(netdev->features & NETIF_F_RXFCS)) 1118 config->rx_crc_transfer = 0x1; /* 1=save, 0=discard */ 1119 1120 if (nic->flags & multicast_all) 1121 config->multicast_all = 0x1; /* 1=accept, 0=no */ 1122 1123 /* disable WoL when up */ 1124 if (netif_running(nic->netdev) || !(nic->flags & wol_magic)) 1125 config->magic_packet_disable = 0x1; /* 1=off, 0=on */ 1126 1127 if (nic->mac >= mac_82558_D101_A4) { 1128 config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */ 1129 config->mwi_enable = 0x1; /* 1=enable, 0=disable */ 1130 config->standard_tcb = 0x0; /* 1=standard, 0=extended */ 1131 config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */ 1132 if (nic->mac >= mac_82559_D101M) { 1133 config->tno_intr = 0x1; /* TCO stats enable */ 1134 /* Enable TCO in extended config */ 1135 if (nic->mac >= mac_82551_10) { 1136 config->byte_count = 0x20; /* extended bytes */ 1137 config->rx_d102_mode = 0x1; /* GMRC for TCO */ 1138 } 1139 } else { 1140 config->standard_stat_counter = 0x0; 1141 } 1142 } 1143 1144 if (netdev->features & NETIF_F_RXALL) { 1145 config->rx_save_overruns = 0x1; /* 1=save, 0=discard */ 1146 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */ 1147 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */ 1148 } 1149 1150 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[00-07]=%8ph\n", 1151 c + 0); 1152 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[08-15]=%8ph\n", 1153 c + 8); 1154 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[16-23]=%8ph\n", 1155 c + 16); 1156 return 0; 1157 } 1158 1159 /************************************************************************* 1160 * CPUSaver parameters 1161 * 1162 * All CPUSaver parameters are 16-bit literals that are part of a 1163 * "move immediate value" instruction. By changing the value of 1164 * the literal in the instruction before the code is loaded, the 1165 * driver can change the algorithm. 1166 * 1167 * INTDELAY - This loads the dead-man timer with its initial value. 1168 * When this timer expires the interrupt is asserted, and the 1169 * timer is reset each time a new packet is received. (see 1170 * BUNDLEMAX below to set the limit on number of chained packets) 1171 * The current default is 0x600 or 1536. Experiments show that 1172 * the value should probably stay within the 0x200 - 0x1000. 1173 * 1174 * BUNDLEMAX - 1175 * This sets the maximum number of frames that will be bundled. In 1176 * some situations, such as the TCP windowing algorithm, it may be 1177 * better to limit the growth of the bundle size than let it go as 1178 * high as it can, because that could cause too much added latency. 1179 * The default is six, because this is the number of packets in the 1180 * default TCP window size. A value of 1 would make CPUSaver indicate 1181 * an interrupt for every frame received. If you do not want to put 1182 * a limit on the bundle size, set this value to xFFFF. 1183 * 1184 * BUNDLESMALL - 1185 * This contains a bit-mask describing the minimum size frame that 1186 * will be bundled. The default masks the lower 7 bits, which means 1187 * that any frame less than 128 bytes in length will not be bundled, 1188 * but will instead immediately generate an interrupt. This does 1189 * not affect the current bundle in any way. Any frame that is 128 1190 * bytes or large will be bundled normally. This feature is meant 1191 * to provide immediate indication of ACK frames in a TCP environment. 1192 * Customers were seeing poor performance when a machine with CPUSaver 1193 * enabled was sending but not receiving. The delay introduced when 1194 * the ACKs were received was enough to reduce total throughput, because 1195 * the sender would sit idle until the ACK was finally seen. 1196 * 1197 * The current default is 0xFF80, which masks out the lower 7 bits. 1198 * This means that any frame which is x7F (127) bytes or smaller 1199 * will cause an immediate interrupt. Because this value must be a 1200 * bit mask, there are only a few valid values that can be used. To 1201 * turn this feature off, the driver can write the value xFFFF to the 1202 * lower word of this instruction (in the same way that the other 1203 * parameters are used). Likewise, a value of 0xF800 (2047) would 1204 * cause an interrupt to be generated for every frame, because all 1205 * standard Ethernet frames are <= 2047 bytes in length. 1206 *************************************************************************/ 1207 1208 /* if you wish to disable the ucode functionality, while maintaining the 1209 * workarounds it provides, set the following defines to: 1210 * BUNDLESMALL 0 1211 * BUNDLEMAX 1 1212 * INTDELAY 1 1213 */ 1214 #define BUNDLESMALL 1 1215 #define BUNDLEMAX (u16)6 1216 #define INTDELAY (u16)1536 /* 0x600 */ 1217 1218 /* Initialize firmware */ 1219 static const struct firmware *e100_request_firmware(struct nic *nic) 1220 { 1221 const char *fw_name; 1222 const struct firmware *fw = nic->fw; 1223 u8 timer, bundle, min_size; 1224 int err = 0; 1225 bool required = false; 1226 1227 /* do not load u-code for ICH devices */ 1228 if (nic->flags & ich) 1229 return NULL; 1230 1231 /* Search for ucode match against h/w revision 1232 * 1233 * Based on comments in the source code for the FreeBSD fxp 1234 * driver, the FIRMWARE_D102E ucode includes both CPUSaver and 1235 * 1236 * "fixes for bugs in the B-step hardware (specifically, bugs 1237 * with Inline Receive)." 1238 * 1239 * So we must fail if it cannot be loaded. 1240 * 1241 * The other microcode files are only required for the optional 1242 * CPUSaver feature. Nice to have, but no reason to fail. 1243 */ 1244 if (nic->mac == mac_82559_D101M) { 1245 fw_name = FIRMWARE_D101M; 1246 } else if (nic->mac == mac_82559_D101S) { 1247 fw_name = FIRMWARE_D101S; 1248 } else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) { 1249 fw_name = FIRMWARE_D102E; 1250 required = true; 1251 } else { /* No ucode on other devices */ 1252 return NULL; 1253 } 1254 1255 /* If the firmware has not previously been loaded, request a pointer 1256 * to it. If it was previously loaded, we are reinitializing the 1257 * adapter, possibly in a resume from hibernate, in which case 1258 * request_firmware() cannot be used. 1259 */ 1260 if (!fw) 1261 err = request_firmware(&fw, fw_name, &nic->pdev->dev); 1262 1263 if (err) { 1264 if (required) { 1265 netif_err(nic, probe, nic->netdev, 1266 "Failed to load firmware \"%s\": %d\n", 1267 fw_name, err); 1268 return ERR_PTR(err); 1269 } else { 1270 netif_info(nic, probe, nic->netdev, 1271 "CPUSaver disabled. Needs \"%s\": %d\n", 1272 fw_name, err); 1273 return NULL; 1274 } 1275 } 1276 1277 /* Firmware should be precisely UCODE_SIZE (words) plus three bytes 1278 indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */ 1279 if (fw->size != UCODE_SIZE * 4 + 3) { 1280 netif_err(nic, probe, nic->netdev, 1281 "Firmware \"%s\" has wrong size %zu\n", 1282 fw_name, fw->size); 1283 release_firmware(fw); 1284 return ERR_PTR(-EINVAL); 1285 } 1286 1287 /* Read timer, bundle and min_size from end of firmware blob */ 1288 timer = fw->data[UCODE_SIZE * 4]; 1289 bundle = fw->data[UCODE_SIZE * 4 + 1]; 1290 min_size = fw->data[UCODE_SIZE * 4 + 2]; 1291 1292 if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE || 1293 min_size >= UCODE_SIZE) { 1294 netif_err(nic, probe, nic->netdev, 1295 "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n", 1296 fw_name, timer, bundle, min_size); 1297 release_firmware(fw); 1298 return ERR_PTR(-EINVAL); 1299 } 1300 1301 /* OK, firmware is validated and ready to use. Save a pointer 1302 * to it in the nic */ 1303 nic->fw = fw; 1304 return fw; 1305 } 1306 1307 static int e100_setup_ucode(struct nic *nic, struct cb *cb, 1308 struct sk_buff *skb) 1309 { 1310 const struct firmware *fw = (void *)skb; 1311 u8 timer, bundle, min_size; 1312 1313 /* It's not a real skb; we just abused the fact that e100_exec_cb 1314 will pass it through to here... */ 1315 cb->skb = NULL; 1316 1317 /* firmware is stored as little endian already */ 1318 memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4); 1319 1320 /* Read timer, bundle and min_size from end of firmware blob */ 1321 timer = fw->data[UCODE_SIZE * 4]; 1322 bundle = fw->data[UCODE_SIZE * 4 + 1]; 1323 min_size = fw->data[UCODE_SIZE * 4 + 2]; 1324 1325 /* Insert user-tunable settings in cb->u.ucode */ 1326 cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000); 1327 cb->u.ucode[timer] |= cpu_to_le32(INTDELAY); 1328 cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000); 1329 cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX); 1330 cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000); 1331 cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80); 1332 1333 cb->command = cpu_to_le16(cb_ucode | cb_el); 1334 return 0; 1335 } 1336 1337 static inline int e100_load_ucode_wait(struct nic *nic) 1338 { 1339 const struct firmware *fw; 1340 int err = 0, counter = 50; 1341 struct cb *cb = nic->cb_to_clean; 1342 1343 fw = e100_request_firmware(nic); 1344 /* If it's NULL, then no ucode is required */ 1345 if (IS_ERR_OR_NULL(fw)) 1346 return PTR_ERR_OR_ZERO(fw); 1347 1348 if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode))) 1349 netif_err(nic, probe, nic->netdev, 1350 "ucode cmd failed with error %d\n", err); 1351 1352 /* must restart cuc */ 1353 nic->cuc_cmd = cuc_start; 1354 1355 /* wait for completion */ 1356 e100_write_flush(nic); 1357 udelay(10); 1358 1359 /* wait for possibly (ouch) 500ms */ 1360 while (!(cb->status & cpu_to_le16(cb_complete))) { 1361 msleep(10); 1362 if (!--counter) break; 1363 } 1364 1365 /* ack any interrupts, something could have been set */ 1366 iowrite8(~0, &nic->csr->scb.stat_ack); 1367 1368 /* if the command failed, or is not OK, notify and return */ 1369 if (!counter || !(cb->status & cpu_to_le16(cb_ok))) { 1370 netif_err(nic, probe, nic->netdev, "ucode load failed\n"); 1371 err = -EPERM; 1372 } 1373 1374 return err; 1375 } 1376 1377 static int e100_setup_iaaddr(struct nic *nic, struct cb *cb, 1378 struct sk_buff *skb) 1379 { 1380 cb->command = cpu_to_le16(cb_iaaddr); 1381 memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN); 1382 return 0; 1383 } 1384 1385 static int e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb) 1386 { 1387 cb->command = cpu_to_le16(cb_dump); 1388 cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr + 1389 offsetof(struct mem, dump_buf)); 1390 return 0; 1391 } 1392 1393 static int e100_phy_check_without_mii(struct nic *nic) 1394 { 1395 u8 phy_type; 1396 int without_mii; 1397 1398 phy_type = (le16_to_cpu(nic->eeprom[eeprom_phy_iface]) >> 8) & 0x0f; 1399 1400 switch (phy_type) { 1401 case NoSuchPhy: /* Non-MII PHY; UNTESTED! */ 1402 case I82503: /* Non-MII PHY; UNTESTED! */ 1403 case S80C24: /* Non-MII PHY; tested and working */ 1404 /* paragraph from the FreeBSD driver, "FXP_PHY_80C24": 1405 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter 1406 * doesn't have a programming interface of any sort. The 1407 * media is sensed automatically based on how the link partner 1408 * is configured. This is, in essence, manual configuration. 1409 */ 1410 netif_info(nic, probe, nic->netdev, 1411 "found MII-less i82503 or 80c24 or other PHY\n"); 1412 1413 nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated; 1414 nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */ 1415 1416 /* these might be needed for certain MII-less cards... 1417 * nic->flags |= ich; 1418 * nic->flags |= ich_10h_workaround; */ 1419 1420 without_mii = 1; 1421 break; 1422 default: 1423 without_mii = 0; 1424 break; 1425 } 1426 return without_mii; 1427 } 1428 1429 #define NCONFIG_AUTO_SWITCH 0x0080 1430 #define MII_NSC_CONG MII_RESV1 1431 #define NSC_CONG_ENABLE 0x0100 1432 #define NSC_CONG_TXREADY 0x0400 1433 static int e100_phy_init(struct nic *nic) 1434 { 1435 struct net_device *netdev = nic->netdev; 1436 u32 addr; 1437 u16 bmcr, stat, id_lo, id_hi, cong; 1438 1439 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */ 1440 for (addr = 0; addr < 32; addr++) { 1441 nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr; 1442 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR); 1443 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); 1444 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); 1445 if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0)))) 1446 break; 1447 } 1448 if (addr == 32) { 1449 /* uhoh, no PHY detected: check whether we seem to be some 1450 * weird, rare variant which is *known* to not have any MII. 1451 * But do this AFTER MII checking only, since this does 1452 * lookup of EEPROM values which may easily be unreliable. */ 1453 if (e100_phy_check_without_mii(nic)) 1454 return 0; /* simply return and hope for the best */ 1455 else { 1456 /* for unknown cases log a fatal error */ 1457 netif_err(nic, hw, nic->netdev, 1458 "Failed to locate any known PHY, aborting\n"); 1459 return -EAGAIN; 1460 } 1461 } else 1462 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, 1463 "phy_addr = %d\n", nic->mii.phy_id); 1464 1465 /* Get phy ID */ 1466 id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1); 1467 id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2); 1468 nic->phy = (u32)id_hi << 16 | (u32)id_lo; 1469 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, 1470 "phy ID = 0x%08X\n", nic->phy); 1471 1472 /* Select the phy and isolate the rest */ 1473 for (addr = 0; addr < 32; addr++) { 1474 if (addr != nic->mii.phy_id) { 1475 mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE); 1476 } else if (nic->phy != phy_82552_v) { 1477 bmcr = mdio_read(netdev, addr, MII_BMCR); 1478 mdio_write(netdev, addr, MII_BMCR, 1479 bmcr & ~BMCR_ISOLATE); 1480 } 1481 } 1482 /* 1483 * Workaround for 82552: 1484 * Clear the ISOLATE bit on selected phy_id last (mirrored on all 1485 * other phy_id's) using bmcr value from addr discovery loop above. 1486 */ 1487 if (nic->phy == phy_82552_v) 1488 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, 1489 bmcr & ~BMCR_ISOLATE); 1490 1491 /* Handle National tx phys */ 1492 #define NCS_PHY_MODEL_MASK 0xFFF0FFFF 1493 if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) { 1494 /* Disable congestion control */ 1495 cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG); 1496 cong |= NSC_CONG_TXREADY; 1497 cong &= ~NSC_CONG_ENABLE; 1498 mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong); 1499 } 1500 1501 if (nic->phy == phy_82552_v) { 1502 u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE); 1503 1504 /* assign special tweaked mdio_ctrl() function */ 1505 nic->mdio_ctrl = mdio_ctrl_phy_82552_v; 1506 1507 /* Workaround Si not advertising flow-control during autoneg */ 1508 advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; 1509 mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert); 1510 1511 /* Reset for the above changes to take effect */ 1512 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR); 1513 bmcr |= BMCR_RESET; 1514 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr); 1515 } else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) && 1516 (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) && 1517 (le16_to_cpu(nic->eeprom[eeprom_cnfg_mdix]) & eeprom_mdix_enabled))) { 1518 /* enable/disable MDI/MDI-X auto-switching. */ 1519 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG, 1520 nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH); 1521 } 1522 1523 return 0; 1524 } 1525 1526 static int e100_hw_init(struct nic *nic) 1527 { 1528 int err = 0; 1529 1530 e100_hw_reset(nic); 1531 1532 netif_err(nic, hw, nic->netdev, "e100_hw_init\n"); 1533 if ((err = e100_self_test(nic))) 1534 return err; 1535 1536 if ((err = e100_phy_init(nic))) 1537 return err; 1538 if ((err = e100_exec_cmd(nic, cuc_load_base, 0))) 1539 return err; 1540 if ((err = e100_exec_cmd(nic, ruc_load_base, 0))) 1541 return err; 1542 if ((err = e100_load_ucode_wait(nic))) 1543 return err; 1544 if ((err = e100_exec_cb(nic, NULL, e100_configure))) 1545 return err; 1546 if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr))) 1547 return err; 1548 if ((err = e100_exec_cmd(nic, cuc_dump_addr, 1549 nic->dma_addr + offsetof(struct mem, stats)))) 1550 return err; 1551 if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0))) 1552 return err; 1553 1554 e100_disable_irq(nic); 1555 1556 return 0; 1557 } 1558 1559 static int e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb) 1560 { 1561 struct net_device *netdev = nic->netdev; 1562 struct netdev_hw_addr *ha; 1563 u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS); 1564 1565 cb->command = cpu_to_le16(cb_multi); 1566 cb->u.multi.count = cpu_to_le16(count * ETH_ALEN); 1567 i = 0; 1568 netdev_for_each_mc_addr(ha, netdev) { 1569 if (i == count) 1570 break; 1571 memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr, 1572 ETH_ALEN); 1573 } 1574 return 0; 1575 } 1576 1577 static void e100_set_multicast_list(struct net_device *netdev) 1578 { 1579 struct nic *nic = netdev_priv(netdev); 1580 1581 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, 1582 "mc_count=%d, flags=0x%04X\n", 1583 netdev_mc_count(netdev), netdev->flags); 1584 1585 if (netdev->flags & IFF_PROMISC) 1586 nic->flags |= promiscuous; 1587 else 1588 nic->flags &= ~promiscuous; 1589 1590 if (netdev->flags & IFF_ALLMULTI || 1591 netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS) 1592 nic->flags |= multicast_all; 1593 else 1594 nic->flags &= ~multicast_all; 1595 1596 e100_exec_cb(nic, NULL, e100_configure); 1597 e100_exec_cb(nic, NULL, e100_multi); 1598 } 1599 1600 static void e100_update_stats(struct nic *nic) 1601 { 1602 struct net_device *dev = nic->netdev; 1603 struct net_device_stats *ns = &dev->stats; 1604 struct stats *s = &nic->mem->stats; 1605 __le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause : 1606 (nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames : 1607 &s->complete; 1608 1609 /* Device's stats reporting may take several microseconds to 1610 * complete, so we're always waiting for results of the 1611 * previous command. */ 1612 1613 if (*complete == cpu_to_le32(cuc_dump_reset_complete)) { 1614 *complete = 0; 1615 nic->tx_frames = le32_to_cpu(s->tx_good_frames); 1616 nic->tx_collisions = le32_to_cpu(s->tx_total_collisions); 1617 ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions); 1618 ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions); 1619 ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs); 1620 ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns); 1621 ns->collisions += nic->tx_collisions; 1622 ns->tx_errors += le32_to_cpu(s->tx_max_collisions) + 1623 le32_to_cpu(s->tx_lost_crs); 1624 nic->rx_short_frame_errors += 1625 le32_to_cpu(s->rx_short_frame_errors); 1626 ns->rx_length_errors = nic->rx_short_frame_errors + 1627 nic->rx_over_length_errors; 1628 ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors); 1629 ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors); 1630 ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors); 1631 ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors); 1632 ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors); 1633 ns->rx_errors += le32_to_cpu(s->rx_crc_errors) + 1634 le32_to_cpu(s->rx_alignment_errors) + 1635 le32_to_cpu(s->rx_short_frame_errors) + 1636 le32_to_cpu(s->rx_cdt_errors); 1637 nic->tx_deferred += le32_to_cpu(s->tx_deferred); 1638 nic->tx_single_collisions += 1639 le32_to_cpu(s->tx_single_collisions); 1640 nic->tx_multiple_collisions += 1641 le32_to_cpu(s->tx_multiple_collisions); 1642 if (nic->mac >= mac_82558_D101_A4) { 1643 nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause); 1644 nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause); 1645 nic->rx_fc_unsupported += 1646 le32_to_cpu(s->fc_rcv_unsupported); 1647 if (nic->mac >= mac_82559_D101M) { 1648 nic->tx_tco_frames += 1649 le16_to_cpu(s->xmt_tco_frames); 1650 nic->rx_tco_frames += 1651 le16_to_cpu(s->rcv_tco_frames); 1652 } 1653 } 1654 } 1655 1656 1657 if (e100_exec_cmd(nic, cuc_dump_reset, 0)) 1658 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, 1659 "exec cuc_dump_reset failed\n"); 1660 } 1661 1662 static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex) 1663 { 1664 /* Adjust inter-frame-spacing (IFS) between two transmits if 1665 * we're getting collisions on a half-duplex connection. */ 1666 1667 if (duplex == DUPLEX_HALF) { 1668 u32 prev = nic->adaptive_ifs; 1669 u32 min_frames = (speed == SPEED_100) ? 1000 : 100; 1670 1671 if ((nic->tx_frames / 32 < nic->tx_collisions) && 1672 (nic->tx_frames > min_frames)) { 1673 if (nic->adaptive_ifs < 60) 1674 nic->adaptive_ifs += 5; 1675 } else if (nic->tx_frames < min_frames) { 1676 if (nic->adaptive_ifs >= 5) 1677 nic->adaptive_ifs -= 5; 1678 } 1679 if (nic->adaptive_ifs != prev) 1680 e100_exec_cb(nic, NULL, e100_configure); 1681 } 1682 } 1683 1684 static void e100_watchdog(struct timer_list *t) 1685 { 1686 struct nic *nic = from_timer(nic, t, watchdog); 1687 struct ethtool_cmd cmd = { .cmd = ETHTOOL_GSET }; 1688 u32 speed; 1689 1690 netif_printk(nic, timer, KERN_DEBUG, nic->netdev, 1691 "right now = %ld\n", jiffies); 1692 1693 /* mii library handles link maintenance tasks */ 1694 1695 mii_ethtool_gset(&nic->mii, &cmd); 1696 speed = ethtool_cmd_speed(&cmd); 1697 1698 if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) { 1699 netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n", 1700 speed == SPEED_100 ? 100 : 10, 1701 cmd.duplex == DUPLEX_FULL ? "Full" : "Half"); 1702 } else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) { 1703 netdev_info(nic->netdev, "NIC Link is Down\n"); 1704 } 1705 1706 mii_check_link(&nic->mii); 1707 1708 /* Software generated interrupt to recover from (rare) Rx 1709 * allocation failure. 1710 * Unfortunately have to use a spinlock to not re-enable interrupts 1711 * accidentally, due to hardware that shares a register between the 1712 * interrupt mask bit and the SW Interrupt generation bit */ 1713 spin_lock_irq(&nic->cmd_lock); 1714 iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi); 1715 e100_write_flush(nic); 1716 spin_unlock_irq(&nic->cmd_lock); 1717 1718 e100_update_stats(nic); 1719 e100_adjust_adaptive_ifs(nic, speed, cmd.duplex); 1720 1721 if (nic->mac <= mac_82557_D100_C) 1722 /* Issue a multicast command to workaround a 557 lock up */ 1723 e100_set_multicast_list(nic->netdev); 1724 1725 if (nic->flags & ich && speed == SPEED_10 && cmd.duplex == DUPLEX_HALF) 1726 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */ 1727 nic->flags |= ich_10h_workaround; 1728 else 1729 nic->flags &= ~ich_10h_workaround; 1730 1731 mod_timer(&nic->watchdog, 1732 round_jiffies(jiffies + E100_WATCHDOG_PERIOD)); 1733 } 1734 1735 static int e100_xmit_prepare(struct nic *nic, struct cb *cb, 1736 struct sk_buff *skb) 1737 { 1738 dma_addr_t dma_addr; 1739 cb->command = nic->tx_command; 1740 1741 dma_addr = dma_map_single(&nic->pdev->dev, skb->data, skb->len, 1742 DMA_TO_DEVICE); 1743 /* If we can't map the skb, have the upper layer try later */ 1744 if (dma_mapping_error(&nic->pdev->dev, dma_addr)) 1745 return -ENOMEM; 1746 1747 /* 1748 * Use the last 4 bytes of the SKB payload packet as the CRC, used for 1749 * testing, ie sending frames with bad CRC. 1750 */ 1751 if (unlikely(skb->no_fcs)) 1752 cb->command |= cpu_to_le16(cb_tx_nc); 1753 else 1754 cb->command &= ~cpu_to_le16(cb_tx_nc); 1755 1756 /* interrupt every 16 packets regardless of delay */ 1757 if ((nic->cbs_avail & ~15) == nic->cbs_avail) 1758 cb->command |= cpu_to_le16(cb_i); 1759 cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd); 1760 cb->u.tcb.tcb_byte_count = 0; 1761 cb->u.tcb.threshold = nic->tx_threshold; 1762 cb->u.tcb.tbd_count = 1; 1763 cb->u.tcb.tbd.buf_addr = cpu_to_le32(dma_addr); 1764 cb->u.tcb.tbd.size = cpu_to_le16(skb->len); 1765 skb_tx_timestamp(skb); 1766 return 0; 1767 } 1768 1769 static netdev_tx_t e100_xmit_frame(struct sk_buff *skb, 1770 struct net_device *netdev) 1771 { 1772 struct nic *nic = netdev_priv(netdev); 1773 int err; 1774 1775 if (nic->flags & ich_10h_workaround) { 1776 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang. 1777 Issue a NOP command followed by a 1us delay before 1778 issuing the Tx command. */ 1779 if (e100_exec_cmd(nic, cuc_nop, 0)) 1780 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, 1781 "exec cuc_nop failed\n"); 1782 udelay(1); 1783 } 1784 1785 err = e100_exec_cb(nic, skb, e100_xmit_prepare); 1786 1787 switch (err) { 1788 case -ENOSPC: 1789 /* We queued the skb, but now we're out of space. */ 1790 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, 1791 "No space for CB\n"); 1792 netif_stop_queue(netdev); 1793 break; 1794 case -ENOMEM: 1795 /* This is a hard error - log it. */ 1796 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, 1797 "Out of Tx resources, returning skb\n"); 1798 netif_stop_queue(netdev); 1799 return NETDEV_TX_BUSY; 1800 } 1801 1802 return NETDEV_TX_OK; 1803 } 1804 1805 static int e100_tx_clean(struct nic *nic) 1806 { 1807 struct net_device *dev = nic->netdev; 1808 struct cb *cb; 1809 int tx_cleaned = 0; 1810 1811 spin_lock(&nic->cb_lock); 1812 1813 /* Clean CBs marked complete */ 1814 for (cb = nic->cb_to_clean; 1815 cb->status & cpu_to_le16(cb_complete); 1816 cb = nic->cb_to_clean = cb->next) { 1817 dma_rmb(); /* read skb after status */ 1818 netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev, 1819 "cb[%d]->status = 0x%04X\n", 1820 (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)), 1821 cb->status); 1822 1823 if (likely(cb->skb != NULL)) { 1824 dev->stats.tx_packets++; 1825 dev->stats.tx_bytes += cb->skb->len; 1826 1827 dma_unmap_single(&nic->pdev->dev, 1828 le32_to_cpu(cb->u.tcb.tbd.buf_addr), 1829 le16_to_cpu(cb->u.tcb.tbd.size), 1830 DMA_TO_DEVICE); 1831 dev_kfree_skb_any(cb->skb); 1832 cb->skb = NULL; 1833 tx_cleaned = 1; 1834 } 1835 cb->status = 0; 1836 nic->cbs_avail++; 1837 } 1838 1839 spin_unlock(&nic->cb_lock); 1840 1841 /* Recover from running out of Tx resources in xmit_frame */ 1842 if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev))) 1843 netif_wake_queue(nic->netdev); 1844 1845 return tx_cleaned; 1846 } 1847 1848 static void e100_clean_cbs(struct nic *nic) 1849 { 1850 if (nic->cbs) { 1851 while (nic->cbs_avail != nic->params.cbs.count) { 1852 struct cb *cb = nic->cb_to_clean; 1853 if (cb->skb) { 1854 dma_unmap_single(&nic->pdev->dev, 1855 le32_to_cpu(cb->u.tcb.tbd.buf_addr), 1856 le16_to_cpu(cb->u.tcb.tbd.size), 1857 DMA_TO_DEVICE); 1858 dev_kfree_skb(cb->skb); 1859 } 1860 nic->cb_to_clean = nic->cb_to_clean->next; 1861 nic->cbs_avail++; 1862 } 1863 dma_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr); 1864 nic->cbs = NULL; 1865 nic->cbs_avail = 0; 1866 } 1867 nic->cuc_cmd = cuc_start; 1868 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = 1869 nic->cbs; 1870 } 1871 1872 static int e100_alloc_cbs(struct nic *nic) 1873 { 1874 struct cb *cb; 1875 unsigned int i, count = nic->params.cbs.count; 1876 1877 nic->cuc_cmd = cuc_start; 1878 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL; 1879 nic->cbs_avail = 0; 1880 1881 nic->cbs = dma_pool_zalloc(nic->cbs_pool, GFP_KERNEL, 1882 &nic->cbs_dma_addr); 1883 if (!nic->cbs) 1884 return -ENOMEM; 1885 1886 for (cb = nic->cbs, i = 0; i < count; cb++, i++) { 1887 cb->next = (i + 1 < count) ? cb + 1 : nic->cbs; 1888 cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1; 1889 1890 cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb); 1891 cb->link = cpu_to_le32(nic->cbs_dma_addr + 1892 ((i+1) % count) * sizeof(struct cb)); 1893 } 1894 1895 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs; 1896 nic->cbs_avail = count; 1897 1898 return 0; 1899 } 1900 1901 static inline void e100_start_receiver(struct nic *nic, struct rx *rx) 1902 { 1903 if (!nic->rxs) return; 1904 if (RU_SUSPENDED != nic->ru_running) return; 1905 1906 /* handle init time starts */ 1907 if (!rx) rx = nic->rxs; 1908 1909 /* (Re)start RU if suspended or idle and RFA is non-NULL */ 1910 if (rx->skb) { 1911 e100_exec_cmd(nic, ruc_start, rx->dma_addr); 1912 nic->ru_running = RU_RUNNING; 1913 } 1914 } 1915 1916 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN + ETH_FCS_LEN) 1917 static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx) 1918 { 1919 if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN))) 1920 return -ENOMEM; 1921 1922 /* Init, and map the RFD. */ 1923 skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd)); 1924 rx->dma_addr = dma_map_single(&nic->pdev->dev, rx->skb->data, 1925 RFD_BUF_LEN, DMA_BIDIRECTIONAL); 1926 1927 if (dma_mapping_error(&nic->pdev->dev, rx->dma_addr)) { 1928 dev_kfree_skb_any(rx->skb); 1929 rx->skb = NULL; 1930 rx->dma_addr = 0; 1931 return -ENOMEM; 1932 } 1933 1934 /* Link the RFD to end of RFA by linking previous RFD to 1935 * this one. We are safe to touch the previous RFD because 1936 * it is protected by the before last buffer's el bit being set */ 1937 if (rx->prev->skb) { 1938 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data; 1939 put_unaligned_le32(rx->dma_addr, &prev_rfd->link); 1940 dma_sync_single_for_device(&nic->pdev->dev, 1941 rx->prev->dma_addr, 1942 sizeof(struct rfd), 1943 DMA_BIDIRECTIONAL); 1944 } 1945 1946 return 0; 1947 } 1948 1949 static int e100_rx_indicate(struct nic *nic, struct rx *rx, 1950 unsigned int *work_done, unsigned int work_to_do) 1951 { 1952 struct net_device *dev = nic->netdev; 1953 struct sk_buff *skb = rx->skb; 1954 struct rfd *rfd = (struct rfd *)skb->data; 1955 u16 rfd_status, actual_size; 1956 u16 fcs_pad = 0; 1957 1958 if (unlikely(work_done && *work_done >= work_to_do)) 1959 return -EAGAIN; 1960 1961 /* Need to sync before taking a peek at cb_complete bit */ 1962 dma_sync_single_for_cpu(&nic->pdev->dev, rx->dma_addr, 1963 sizeof(struct rfd), DMA_BIDIRECTIONAL); 1964 rfd_status = le16_to_cpu(rfd->status); 1965 1966 netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev, 1967 "status=0x%04X\n", rfd_status); 1968 dma_rmb(); /* read size after status bit */ 1969 1970 /* If data isn't ready, nothing to indicate */ 1971 if (unlikely(!(rfd_status & cb_complete))) { 1972 /* If the next buffer has the el bit, but we think the receiver 1973 * is still running, check to see if it really stopped while 1974 * we had interrupts off. 1975 * This allows for a fast restart without re-enabling 1976 * interrupts */ 1977 if ((le16_to_cpu(rfd->command) & cb_el) && 1978 (RU_RUNNING == nic->ru_running)) 1979 1980 if (ioread8(&nic->csr->scb.status) & rus_no_res) 1981 nic->ru_running = RU_SUSPENDED; 1982 dma_sync_single_for_device(&nic->pdev->dev, rx->dma_addr, 1983 sizeof(struct rfd), 1984 DMA_FROM_DEVICE); 1985 return -ENODATA; 1986 } 1987 1988 /* Get actual data size */ 1989 if (unlikely(dev->features & NETIF_F_RXFCS)) 1990 fcs_pad = 4; 1991 actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF; 1992 if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd))) 1993 actual_size = RFD_BUF_LEN - sizeof(struct rfd); 1994 1995 /* Get data */ 1996 dma_unmap_single(&nic->pdev->dev, rx->dma_addr, RFD_BUF_LEN, 1997 DMA_BIDIRECTIONAL); 1998 1999 /* If this buffer has the el bit, but we think the receiver 2000 * is still running, check to see if it really stopped while 2001 * we had interrupts off. 2002 * This allows for a fast restart without re-enabling interrupts. 2003 * This can happen when the RU sees the size change but also sees 2004 * the el bit set. */ 2005 if ((le16_to_cpu(rfd->command) & cb_el) && 2006 (RU_RUNNING == nic->ru_running)) { 2007 2008 if (ioread8(&nic->csr->scb.status) & rus_no_res) 2009 nic->ru_running = RU_SUSPENDED; 2010 } 2011 2012 /* Pull off the RFD and put the actual data (minus eth hdr) */ 2013 skb_reserve(skb, sizeof(struct rfd)); 2014 skb_put(skb, actual_size); 2015 skb->protocol = eth_type_trans(skb, nic->netdev); 2016 2017 /* If we are receiving all frames, then don't bother 2018 * checking for errors. 2019 */ 2020 if (unlikely(dev->features & NETIF_F_RXALL)) { 2021 if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) 2022 /* Received oversized frame, but keep it. */ 2023 nic->rx_over_length_errors++; 2024 goto process_skb; 2025 } 2026 2027 if (unlikely(!(rfd_status & cb_ok))) { 2028 /* Don't indicate if hardware indicates errors */ 2029 dev_kfree_skb_any(skb); 2030 } else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) { 2031 /* Don't indicate oversized frames */ 2032 nic->rx_over_length_errors++; 2033 dev_kfree_skb_any(skb); 2034 } else { 2035 process_skb: 2036 dev->stats.rx_packets++; 2037 dev->stats.rx_bytes += (actual_size - fcs_pad); 2038 netif_receive_skb(skb); 2039 if (work_done) 2040 (*work_done)++; 2041 } 2042 2043 rx->skb = NULL; 2044 2045 return 0; 2046 } 2047 2048 static void e100_rx_clean(struct nic *nic, unsigned int *work_done, 2049 unsigned int work_to_do) 2050 { 2051 struct rx *rx; 2052 int restart_required = 0, err = 0; 2053 struct rx *old_before_last_rx, *new_before_last_rx; 2054 struct rfd *old_before_last_rfd, *new_before_last_rfd; 2055 2056 /* Indicate newly arrived packets */ 2057 for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) { 2058 err = e100_rx_indicate(nic, rx, work_done, work_to_do); 2059 /* Hit quota or no more to clean */ 2060 if (-EAGAIN == err || -ENODATA == err) 2061 break; 2062 } 2063 2064 2065 /* On EAGAIN, hit quota so have more work to do, restart once 2066 * cleanup is complete. 2067 * Else, are we already rnr? then pay attention!!! this ensures that 2068 * the state machine progression never allows a start with a 2069 * partially cleaned list, avoiding a race between hardware 2070 * and rx_to_clean when in NAPI mode */ 2071 if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running) 2072 restart_required = 1; 2073 2074 old_before_last_rx = nic->rx_to_use->prev->prev; 2075 old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data; 2076 2077 /* Alloc new skbs to refill list */ 2078 for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) { 2079 if (unlikely(e100_rx_alloc_skb(nic, rx))) 2080 break; /* Better luck next time (see watchdog) */ 2081 } 2082 2083 new_before_last_rx = nic->rx_to_use->prev->prev; 2084 if (new_before_last_rx != old_before_last_rx) { 2085 /* Set the el-bit on the buffer that is before the last buffer. 2086 * This lets us update the next pointer on the last buffer 2087 * without worrying about hardware touching it. 2088 * We set the size to 0 to prevent hardware from touching this 2089 * buffer. 2090 * When the hardware hits the before last buffer with el-bit 2091 * and size of 0, it will RNR interrupt, the RUS will go into 2092 * the No Resources state. It will not complete nor write to 2093 * this buffer. */ 2094 new_before_last_rfd = 2095 (struct rfd *)new_before_last_rx->skb->data; 2096 new_before_last_rfd->size = 0; 2097 new_before_last_rfd->command |= cpu_to_le16(cb_el); 2098 dma_sync_single_for_device(&nic->pdev->dev, 2099 new_before_last_rx->dma_addr, 2100 sizeof(struct rfd), 2101 DMA_BIDIRECTIONAL); 2102 2103 /* Now that we have a new stopping point, we can clear the old 2104 * stopping point. We must sync twice to get the proper 2105 * ordering on the hardware side of things. */ 2106 old_before_last_rfd->command &= ~cpu_to_le16(cb_el); 2107 dma_sync_single_for_device(&nic->pdev->dev, 2108 old_before_last_rx->dma_addr, 2109 sizeof(struct rfd), 2110 DMA_BIDIRECTIONAL); 2111 old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN 2112 + ETH_FCS_LEN); 2113 dma_sync_single_for_device(&nic->pdev->dev, 2114 old_before_last_rx->dma_addr, 2115 sizeof(struct rfd), 2116 DMA_BIDIRECTIONAL); 2117 } 2118 2119 if (restart_required) { 2120 // ack the rnr? 2121 iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack); 2122 e100_start_receiver(nic, nic->rx_to_clean); 2123 if (work_done) 2124 (*work_done)++; 2125 } 2126 } 2127 2128 static void e100_rx_clean_list(struct nic *nic) 2129 { 2130 struct rx *rx; 2131 unsigned int i, count = nic->params.rfds.count; 2132 2133 nic->ru_running = RU_UNINITIALIZED; 2134 2135 if (nic->rxs) { 2136 for (rx = nic->rxs, i = 0; i < count; rx++, i++) { 2137 if (rx->skb) { 2138 dma_unmap_single(&nic->pdev->dev, 2139 rx->dma_addr, RFD_BUF_LEN, 2140 DMA_BIDIRECTIONAL); 2141 dev_kfree_skb(rx->skb); 2142 } 2143 } 2144 kfree(nic->rxs); 2145 nic->rxs = NULL; 2146 } 2147 2148 nic->rx_to_use = nic->rx_to_clean = NULL; 2149 } 2150 2151 static int e100_rx_alloc_list(struct nic *nic) 2152 { 2153 struct rx *rx; 2154 unsigned int i, count = nic->params.rfds.count; 2155 struct rfd *before_last; 2156 2157 nic->rx_to_use = nic->rx_to_clean = NULL; 2158 nic->ru_running = RU_UNINITIALIZED; 2159 2160 if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_KERNEL))) 2161 return -ENOMEM; 2162 2163 for (rx = nic->rxs, i = 0; i < count; rx++, i++) { 2164 rx->next = (i + 1 < count) ? rx + 1 : nic->rxs; 2165 rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1; 2166 if (e100_rx_alloc_skb(nic, rx)) { 2167 e100_rx_clean_list(nic); 2168 return -ENOMEM; 2169 } 2170 } 2171 /* Set the el-bit on the buffer that is before the last buffer. 2172 * This lets us update the next pointer on the last buffer without 2173 * worrying about hardware touching it. 2174 * We set the size to 0 to prevent hardware from touching this buffer. 2175 * When the hardware hits the before last buffer with el-bit and size 2176 * of 0, it will RNR interrupt, the RU will go into the No Resources 2177 * state. It will not complete nor write to this buffer. */ 2178 rx = nic->rxs->prev->prev; 2179 before_last = (struct rfd *)rx->skb->data; 2180 before_last->command |= cpu_to_le16(cb_el); 2181 before_last->size = 0; 2182 dma_sync_single_for_device(&nic->pdev->dev, rx->dma_addr, 2183 sizeof(struct rfd), DMA_BIDIRECTIONAL); 2184 2185 nic->rx_to_use = nic->rx_to_clean = nic->rxs; 2186 nic->ru_running = RU_SUSPENDED; 2187 2188 return 0; 2189 } 2190 2191 static irqreturn_t e100_intr(int irq, void *dev_id) 2192 { 2193 struct net_device *netdev = dev_id; 2194 struct nic *nic = netdev_priv(netdev); 2195 u8 stat_ack = ioread8(&nic->csr->scb.stat_ack); 2196 2197 netif_printk(nic, intr, KERN_DEBUG, nic->netdev, 2198 "stat_ack = 0x%02X\n", stat_ack); 2199 2200 if (stat_ack == stat_ack_not_ours || /* Not our interrupt */ 2201 stat_ack == stat_ack_not_present) /* Hardware is ejected */ 2202 return IRQ_NONE; 2203 2204 /* Ack interrupt(s) */ 2205 iowrite8(stat_ack, &nic->csr->scb.stat_ack); 2206 2207 /* We hit Receive No Resource (RNR); restart RU after cleaning */ 2208 if (stat_ack & stat_ack_rnr) 2209 nic->ru_running = RU_SUSPENDED; 2210 2211 if (likely(napi_schedule_prep(&nic->napi))) { 2212 e100_disable_irq(nic); 2213 __napi_schedule(&nic->napi); 2214 } 2215 2216 return IRQ_HANDLED; 2217 } 2218 2219 static int e100_poll(struct napi_struct *napi, int budget) 2220 { 2221 struct nic *nic = container_of(napi, struct nic, napi); 2222 unsigned int work_done = 0; 2223 2224 e100_rx_clean(nic, &work_done, budget); 2225 e100_tx_clean(nic); 2226 2227 /* If budget fully consumed, continue polling */ 2228 if (work_done == budget) 2229 return budget; 2230 2231 /* only re-enable interrupt if stack agrees polling is really done */ 2232 if (likely(napi_complete_done(napi, work_done))) 2233 e100_enable_irq(nic); 2234 2235 return work_done; 2236 } 2237 2238 #ifdef CONFIG_NET_POLL_CONTROLLER 2239 static void e100_netpoll(struct net_device *netdev) 2240 { 2241 struct nic *nic = netdev_priv(netdev); 2242 2243 e100_disable_irq(nic); 2244 e100_intr(nic->pdev->irq, netdev); 2245 e100_tx_clean(nic); 2246 e100_enable_irq(nic); 2247 } 2248 #endif 2249 2250 static int e100_set_mac_address(struct net_device *netdev, void *p) 2251 { 2252 struct nic *nic = netdev_priv(netdev); 2253 struct sockaddr *addr = p; 2254 2255 if (!is_valid_ether_addr(addr->sa_data)) 2256 return -EADDRNOTAVAIL; 2257 2258 eth_hw_addr_set(netdev, addr->sa_data); 2259 e100_exec_cb(nic, NULL, e100_setup_iaaddr); 2260 2261 return 0; 2262 } 2263 2264 static int e100_asf(struct nic *nic) 2265 { 2266 /* ASF can be enabled from eeprom */ 2267 return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) && 2268 (le16_to_cpu(nic->eeprom[eeprom_config_asf]) & eeprom_asf) && 2269 !(le16_to_cpu(nic->eeprom[eeprom_config_asf]) & eeprom_gcl) && 2270 ((le16_to_cpu(nic->eeprom[eeprom_smbus_addr]) & 0xFF) != 0xFE); 2271 } 2272 2273 static int e100_up(struct nic *nic) 2274 { 2275 int err; 2276 2277 if ((err = e100_rx_alloc_list(nic))) 2278 return err; 2279 if ((err = e100_alloc_cbs(nic))) 2280 goto err_rx_clean_list; 2281 if ((err = e100_hw_init(nic))) 2282 goto err_clean_cbs; 2283 e100_set_multicast_list(nic->netdev); 2284 e100_start_receiver(nic, NULL); 2285 mod_timer(&nic->watchdog, jiffies); 2286 if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED, 2287 nic->netdev->name, nic->netdev))) 2288 goto err_no_irq; 2289 netif_wake_queue(nic->netdev); 2290 napi_enable(&nic->napi); 2291 /* enable ints _after_ enabling poll, preventing a race between 2292 * disable ints+schedule */ 2293 e100_enable_irq(nic); 2294 return 0; 2295 2296 err_no_irq: 2297 del_timer_sync(&nic->watchdog); 2298 err_clean_cbs: 2299 e100_clean_cbs(nic); 2300 err_rx_clean_list: 2301 e100_rx_clean_list(nic); 2302 return err; 2303 } 2304 2305 static void e100_down(struct nic *nic) 2306 { 2307 /* wait here for poll to complete */ 2308 napi_disable(&nic->napi); 2309 netif_stop_queue(nic->netdev); 2310 e100_hw_reset(nic); 2311 free_irq(nic->pdev->irq, nic->netdev); 2312 del_timer_sync(&nic->watchdog); 2313 netif_carrier_off(nic->netdev); 2314 e100_clean_cbs(nic); 2315 e100_rx_clean_list(nic); 2316 } 2317 2318 static void e100_tx_timeout(struct net_device *netdev, unsigned int txqueue) 2319 { 2320 struct nic *nic = netdev_priv(netdev); 2321 2322 /* Reset outside of interrupt context, to avoid request_irq 2323 * in interrupt context */ 2324 schedule_work(&nic->tx_timeout_task); 2325 } 2326 2327 static void e100_tx_timeout_task(struct work_struct *work) 2328 { 2329 struct nic *nic = container_of(work, struct nic, tx_timeout_task); 2330 struct net_device *netdev = nic->netdev; 2331 2332 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, 2333 "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status)); 2334 2335 rtnl_lock(); 2336 if (netif_running(netdev)) { 2337 e100_down(netdev_priv(netdev)); 2338 e100_up(netdev_priv(netdev)); 2339 } 2340 rtnl_unlock(); 2341 } 2342 2343 static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode) 2344 { 2345 int err; 2346 struct sk_buff *skb; 2347 2348 /* Use driver resources to perform internal MAC or PHY 2349 * loopback test. A single packet is prepared and transmitted 2350 * in loopback mode, and the test passes if the received 2351 * packet compares byte-for-byte to the transmitted packet. */ 2352 2353 if ((err = e100_rx_alloc_list(nic))) 2354 return err; 2355 if ((err = e100_alloc_cbs(nic))) 2356 goto err_clean_rx; 2357 2358 /* ICH PHY loopback is broken so do MAC loopback instead */ 2359 if (nic->flags & ich && loopback_mode == lb_phy) 2360 loopback_mode = lb_mac; 2361 2362 nic->loopback = loopback_mode; 2363 if ((err = e100_hw_init(nic))) 2364 goto err_loopback_none; 2365 2366 if (loopback_mode == lb_phy) 2367 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 2368 BMCR_LOOPBACK); 2369 2370 e100_start_receiver(nic, NULL); 2371 2372 if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) { 2373 err = -ENOMEM; 2374 goto err_loopback_none; 2375 } 2376 skb_put(skb, ETH_DATA_LEN); 2377 memset(skb->data, 0xFF, ETH_DATA_LEN); 2378 e100_xmit_frame(skb, nic->netdev); 2379 2380 msleep(10); 2381 2382 dma_sync_single_for_cpu(&nic->pdev->dev, nic->rx_to_clean->dma_addr, 2383 RFD_BUF_LEN, DMA_BIDIRECTIONAL); 2384 2385 if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd), 2386 skb->data, ETH_DATA_LEN)) 2387 err = -EAGAIN; 2388 2389 err_loopback_none: 2390 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0); 2391 nic->loopback = lb_none; 2392 e100_clean_cbs(nic); 2393 e100_hw_reset(nic); 2394 err_clean_rx: 2395 e100_rx_clean_list(nic); 2396 return err; 2397 } 2398 2399 #define MII_LED_CONTROL 0x1B 2400 #define E100_82552_LED_OVERRIDE 0x19 2401 #define E100_82552_LED_ON 0x000F /* LEDTX and LED_RX both on */ 2402 #define E100_82552_LED_OFF 0x000A /* LEDTX and LED_RX both off */ 2403 2404 static int e100_get_link_ksettings(struct net_device *netdev, 2405 struct ethtool_link_ksettings *cmd) 2406 { 2407 struct nic *nic = netdev_priv(netdev); 2408 2409 mii_ethtool_get_link_ksettings(&nic->mii, cmd); 2410 2411 return 0; 2412 } 2413 2414 static int e100_set_link_ksettings(struct net_device *netdev, 2415 const struct ethtool_link_ksettings *cmd) 2416 { 2417 struct nic *nic = netdev_priv(netdev); 2418 int err; 2419 2420 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET); 2421 err = mii_ethtool_set_link_ksettings(&nic->mii, cmd); 2422 e100_exec_cb(nic, NULL, e100_configure); 2423 2424 return err; 2425 } 2426 2427 static void e100_get_drvinfo(struct net_device *netdev, 2428 struct ethtool_drvinfo *info) 2429 { 2430 struct nic *nic = netdev_priv(netdev); 2431 strscpy(info->driver, DRV_NAME, sizeof(info->driver)); 2432 strscpy(info->bus_info, pci_name(nic->pdev), 2433 sizeof(info->bus_info)); 2434 } 2435 2436 #define E100_PHY_REGS 0x1D 2437 static int e100_get_regs_len(struct net_device *netdev) 2438 { 2439 struct nic *nic = netdev_priv(netdev); 2440 2441 /* We know the number of registers, and the size of the dump buffer. 2442 * Calculate the total size in bytes. 2443 */ 2444 return (1 + E100_PHY_REGS) * sizeof(u32) + sizeof(nic->mem->dump_buf); 2445 } 2446 2447 static void e100_get_regs(struct net_device *netdev, 2448 struct ethtool_regs *regs, void *p) 2449 { 2450 struct nic *nic = netdev_priv(netdev); 2451 u32 *buff = p; 2452 int i; 2453 2454 regs->version = (1 << 24) | nic->pdev->revision; 2455 buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 | 2456 ioread8(&nic->csr->scb.cmd_lo) << 16 | 2457 ioread16(&nic->csr->scb.status); 2458 for (i = 0; i < E100_PHY_REGS; i++) 2459 /* Note that we read the registers in reverse order. This 2460 * ordering is the ABI apparently used by ethtool and other 2461 * applications. 2462 */ 2463 buff[1 + i] = mdio_read(netdev, nic->mii.phy_id, 2464 E100_PHY_REGS - 1 - i); 2465 memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf)); 2466 e100_exec_cb(nic, NULL, e100_dump); 2467 msleep(10); 2468 memcpy(&buff[1 + E100_PHY_REGS], nic->mem->dump_buf, 2469 sizeof(nic->mem->dump_buf)); 2470 } 2471 2472 static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2473 { 2474 struct nic *nic = netdev_priv(netdev); 2475 wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0; 2476 wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0; 2477 } 2478 2479 static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2480 { 2481 struct nic *nic = netdev_priv(netdev); 2482 2483 if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) || 2484 !device_can_wakeup(&nic->pdev->dev)) 2485 return -EOPNOTSUPP; 2486 2487 if (wol->wolopts) 2488 nic->flags |= wol_magic; 2489 else 2490 nic->flags &= ~wol_magic; 2491 2492 device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts); 2493 2494 e100_exec_cb(nic, NULL, e100_configure); 2495 2496 return 0; 2497 } 2498 2499 static u32 e100_get_msglevel(struct net_device *netdev) 2500 { 2501 struct nic *nic = netdev_priv(netdev); 2502 return nic->msg_enable; 2503 } 2504 2505 static void e100_set_msglevel(struct net_device *netdev, u32 value) 2506 { 2507 struct nic *nic = netdev_priv(netdev); 2508 nic->msg_enable = value; 2509 } 2510 2511 static int e100_nway_reset(struct net_device *netdev) 2512 { 2513 struct nic *nic = netdev_priv(netdev); 2514 return mii_nway_restart(&nic->mii); 2515 } 2516 2517 static u32 e100_get_link(struct net_device *netdev) 2518 { 2519 struct nic *nic = netdev_priv(netdev); 2520 return mii_link_ok(&nic->mii); 2521 } 2522 2523 static int e100_get_eeprom_len(struct net_device *netdev) 2524 { 2525 struct nic *nic = netdev_priv(netdev); 2526 return nic->eeprom_wc << 1; 2527 } 2528 2529 #define E100_EEPROM_MAGIC 0x1234 2530 static int e100_get_eeprom(struct net_device *netdev, 2531 struct ethtool_eeprom *eeprom, u8 *bytes) 2532 { 2533 struct nic *nic = netdev_priv(netdev); 2534 2535 eeprom->magic = E100_EEPROM_MAGIC; 2536 memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len); 2537 2538 return 0; 2539 } 2540 2541 static int e100_set_eeprom(struct net_device *netdev, 2542 struct ethtool_eeprom *eeprom, u8 *bytes) 2543 { 2544 struct nic *nic = netdev_priv(netdev); 2545 2546 if (eeprom->magic != E100_EEPROM_MAGIC) 2547 return -EINVAL; 2548 2549 memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len); 2550 2551 return e100_eeprom_save(nic, eeprom->offset >> 1, 2552 (eeprom->len >> 1) + 1); 2553 } 2554 2555 static void e100_get_ringparam(struct net_device *netdev, 2556 struct ethtool_ringparam *ring, 2557 struct kernel_ethtool_ringparam *kernel_ring, 2558 struct netlink_ext_ack *extack) 2559 { 2560 struct nic *nic = netdev_priv(netdev); 2561 struct param_range *rfds = &nic->params.rfds; 2562 struct param_range *cbs = &nic->params.cbs; 2563 2564 ring->rx_max_pending = rfds->max; 2565 ring->tx_max_pending = cbs->max; 2566 ring->rx_pending = rfds->count; 2567 ring->tx_pending = cbs->count; 2568 } 2569 2570 static int e100_set_ringparam(struct net_device *netdev, 2571 struct ethtool_ringparam *ring, 2572 struct kernel_ethtool_ringparam *kernel_ring, 2573 struct netlink_ext_ack *extack) 2574 { 2575 struct nic *nic = netdev_priv(netdev); 2576 struct param_range *rfds = &nic->params.rfds; 2577 struct param_range *cbs = &nic->params.cbs; 2578 2579 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 2580 return -EINVAL; 2581 2582 if (netif_running(netdev)) 2583 e100_down(nic); 2584 rfds->count = max(ring->rx_pending, rfds->min); 2585 rfds->count = min(rfds->count, rfds->max); 2586 cbs->count = max(ring->tx_pending, cbs->min); 2587 cbs->count = min(cbs->count, cbs->max); 2588 netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n", 2589 rfds->count, cbs->count); 2590 if (netif_running(netdev)) 2591 e100_up(nic); 2592 2593 return 0; 2594 } 2595 2596 static const char e100_gstrings_test[][ETH_GSTRING_LEN] = { 2597 "Link test (on/offline)", 2598 "Eeprom test (on/offline)", 2599 "Self test (offline)", 2600 "Mac loopback (offline)", 2601 "Phy loopback (offline)", 2602 }; 2603 #define E100_TEST_LEN ARRAY_SIZE(e100_gstrings_test) 2604 2605 static void e100_diag_test(struct net_device *netdev, 2606 struct ethtool_test *test, u64 *data) 2607 { 2608 struct ethtool_cmd cmd; 2609 struct nic *nic = netdev_priv(netdev); 2610 int i; 2611 2612 memset(data, 0, E100_TEST_LEN * sizeof(u64)); 2613 data[0] = !mii_link_ok(&nic->mii); 2614 data[1] = e100_eeprom_load(nic); 2615 if (test->flags & ETH_TEST_FL_OFFLINE) { 2616 2617 /* save speed, duplex & autoneg settings */ 2618 mii_ethtool_gset(&nic->mii, &cmd); 2619 2620 if (netif_running(netdev)) 2621 e100_down(nic); 2622 data[2] = e100_self_test(nic); 2623 data[3] = e100_loopback_test(nic, lb_mac); 2624 data[4] = e100_loopback_test(nic, lb_phy); 2625 2626 /* restore speed, duplex & autoneg settings */ 2627 mii_ethtool_sset(&nic->mii, &cmd); 2628 2629 if (netif_running(netdev)) 2630 e100_up(nic); 2631 } 2632 for (i = 0; i < E100_TEST_LEN; i++) 2633 test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0; 2634 2635 msleep_interruptible(4 * 1000); 2636 } 2637 2638 static int e100_set_phys_id(struct net_device *netdev, 2639 enum ethtool_phys_id_state state) 2640 { 2641 struct nic *nic = netdev_priv(netdev); 2642 enum led_state { 2643 led_on = 0x01, 2644 led_off = 0x04, 2645 led_on_559 = 0x05, 2646 led_on_557 = 0x07, 2647 }; 2648 u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE : 2649 MII_LED_CONTROL; 2650 u16 leds = 0; 2651 2652 switch (state) { 2653 case ETHTOOL_ID_ACTIVE: 2654 return 2; 2655 2656 case ETHTOOL_ID_ON: 2657 leds = (nic->phy == phy_82552_v) ? E100_82552_LED_ON : 2658 (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559; 2659 break; 2660 2661 case ETHTOOL_ID_OFF: 2662 leds = (nic->phy == phy_82552_v) ? E100_82552_LED_OFF : led_off; 2663 break; 2664 2665 case ETHTOOL_ID_INACTIVE: 2666 break; 2667 } 2668 2669 mdio_write(netdev, nic->mii.phy_id, led_reg, leds); 2670 return 0; 2671 } 2672 2673 static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = { 2674 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors", 2675 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions", 2676 "rx_length_errors", "rx_over_errors", "rx_crc_errors", 2677 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors", 2678 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors", 2679 "tx_heartbeat_errors", "tx_window_errors", 2680 /* device-specific stats */ 2681 "tx_deferred", "tx_single_collisions", "tx_multi_collisions", 2682 "tx_flow_control_pause", "rx_flow_control_pause", 2683 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets", 2684 "rx_short_frame_errors", "rx_over_length_errors", 2685 }; 2686 #define E100_NET_STATS_LEN 21 2687 #define E100_STATS_LEN ARRAY_SIZE(e100_gstrings_stats) 2688 2689 static int e100_get_sset_count(struct net_device *netdev, int sset) 2690 { 2691 switch (sset) { 2692 case ETH_SS_TEST: 2693 return E100_TEST_LEN; 2694 case ETH_SS_STATS: 2695 return E100_STATS_LEN; 2696 default: 2697 return -EOPNOTSUPP; 2698 } 2699 } 2700 2701 static void e100_get_ethtool_stats(struct net_device *netdev, 2702 struct ethtool_stats *stats, u64 *data) 2703 { 2704 struct nic *nic = netdev_priv(netdev); 2705 int i; 2706 2707 for (i = 0; i < E100_NET_STATS_LEN; i++) 2708 data[i] = ((unsigned long *)&netdev->stats)[i]; 2709 2710 data[i++] = nic->tx_deferred; 2711 data[i++] = nic->tx_single_collisions; 2712 data[i++] = nic->tx_multiple_collisions; 2713 data[i++] = nic->tx_fc_pause; 2714 data[i++] = nic->rx_fc_pause; 2715 data[i++] = nic->rx_fc_unsupported; 2716 data[i++] = nic->tx_tco_frames; 2717 data[i++] = nic->rx_tco_frames; 2718 data[i++] = nic->rx_short_frame_errors; 2719 data[i++] = nic->rx_over_length_errors; 2720 } 2721 2722 static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data) 2723 { 2724 switch (stringset) { 2725 case ETH_SS_TEST: 2726 memcpy(data, e100_gstrings_test, sizeof(e100_gstrings_test)); 2727 break; 2728 case ETH_SS_STATS: 2729 memcpy(data, e100_gstrings_stats, sizeof(e100_gstrings_stats)); 2730 break; 2731 } 2732 } 2733 2734 static const struct ethtool_ops e100_ethtool_ops = { 2735 .get_drvinfo = e100_get_drvinfo, 2736 .get_regs_len = e100_get_regs_len, 2737 .get_regs = e100_get_regs, 2738 .get_wol = e100_get_wol, 2739 .set_wol = e100_set_wol, 2740 .get_msglevel = e100_get_msglevel, 2741 .set_msglevel = e100_set_msglevel, 2742 .nway_reset = e100_nway_reset, 2743 .get_link = e100_get_link, 2744 .get_eeprom_len = e100_get_eeprom_len, 2745 .get_eeprom = e100_get_eeprom, 2746 .set_eeprom = e100_set_eeprom, 2747 .get_ringparam = e100_get_ringparam, 2748 .set_ringparam = e100_set_ringparam, 2749 .self_test = e100_diag_test, 2750 .get_strings = e100_get_strings, 2751 .set_phys_id = e100_set_phys_id, 2752 .get_ethtool_stats = e100_get_ethtool_stats, 2753 .get_sset_count = e100_get_sset_count, 2754 .get_ts_info = ethtool_op_get_ts_info, 2755 .get_link_ksettings = e100_get_link_ksettings, 2756 .set_link_ksettings = e100_set_link_ksettings, 2757 }; 2758 2759 static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2760 { 2761 struct nic *nic = netdev_priv(netdev); 2762 2763 return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL); 2764 } 2765 2766 static int e100_alloc(struct nic *nic) 2767 { 2768 nic->mem = dma_alloc_coherent(&nic->pdev->dev, sizeof(struct mem), 2769 &nic->dma_addr, GFP_KERNEL); 2770 return nic->mem ? 0 : -ENOMEM; 2771 } 2772 2773 static void e100_free(struct nic *nic) 2774 { 2775 if (nic->mem) { 2776 dma_free_coherent(&nic->pdev->dev, sizeof(struct mem), 2777 nic->mem, nic->dma_addr); 2778 nic->mem = NULL; 2779 } 2780 } 2781 2782 static int e100_open(struct net_device *netdev) 2783 { 2784 struct nic *nic = netdev_priv(netdev); 2785 int err = 0; 2786 2787 netif_carrier_off(netdev); 2788 if ((err = e100_up(nic))) 2789 netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n"); 2790 return err; 2791 } 2792 2793 static int e100_close(struct net_device *netdev) 2794 { 2795 e100_down(netdev_priv(netdev)); 2796 return 0; 2797 } 2798 2799 static int e100_set_features(struct net_device *netdev, 2800 netdev_features_t features) 2801 { 2802 struct nic *nic = netdev_priv(netdev); 2803 netdev_features_t changed = features ^ netdev->features; 2804 2805 if (!(changed & (NETIF_F_RXFCS | NETIF_F_RXALL))) 2806 return 0; 2807 2808 netdev->features = features; 2809 e100_exec_cb(nic, NULL, e100_configure); 2810 return 1; 2811 } 2812 2813 static const struct net_device_ops e100_netdev_ops = { 2814 .ndo_open = e100_open, 2815 .ndo_stop = e100_close, 2816 .ndo_start_xmit = e100_xmit_frame, 2817 .ndo_validate_addr = eth_validate_addr, 2818 .ndo_set_rx_mode = e100_set_multicast_list, 2819 .ndo_set_mac_address = e100_set_mac_address, 2820 .ndo_eth_ioctl = e100_do_ioctl, 2821 .ndo_tx_timeout = e100_tx_timeout, 2822 #ifdef CONFIG_NET_POLL_CONTROLLER 2823 .ndo_poll_controller = e100_netpoll, 2824 #endif 2825 .ndo_set_features = e100_set_features, 2826 }; 2827 2828 static int e100_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 2829 { 2830 struct net_device *netdev; 2831 struct nic *nic; 2832 int err; 2833 2834 if (!(netdev = alloc_etherdev(sizeof(struct nic)))) 2835 return -ENOMEM; 2836 2837 netdev->hw_features |= NETIF_F_RXFCS; 2838 netdev->priv_flags |= IFF_SUPP_NOFCS; 2839 netdev->hw_features |= NETIF_F_RXALL; 2840 2841 netdev->netdev_ops = &e100_netdev_ops; 2842 netdev->ethtool_ops = &e100_ethtool_ops; 2843 netdev->watchdog_timeo = E100_WATCHDOG_PERIOD; 2844 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 2845 2846 nic = netdev_priv(netdev); 2847 netif_napi_add_weight(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT); 2848 nic->netdev = netdev; 2849 nic->pdev = pdev; 2850 nic->msg_enable = (1 << debug) - 1; 2851 nic->mdio_ctrl = mdio_ctrl_hw; 2852 pci_set_drvdata(pdev, netdev); 2853 2854 if ((err = pci_enable_device(pdev))) { 2855 netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n"); 2856 goto err_out_free_dev; 2857 } 2858 2859 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 2860 netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n"); 2861 err = -ENODEV; 2862 goto err_out_disable_pdev; 2863 } 2864 2865 if ((err = pci_request_regions(pdev, DRV_NAME))) { 2866 netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n"); 2867 goto err_out_disable_pdev; 2868 } 2869 2870 if ((err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))) { 2871 netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n"); 2872 goto err_out_free_res; 2873 } 2874 2875 SET_NETDEV_DEV(netdev, &pdev->dev); 2876 2877 if (use_io) 2878 netif_info(nic, probe, nic->netdev, "using i/o access mode\n"); 2879 2880 nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr)); 2881 if (!nic->csr) { 2882 netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n"); 2883 err = -ENOMEM; 2884 goto err_out_free_res; 2885 } 2886 2887 if (ent->driver_data) 2888 nic->flags |= ich; 2889 else 2890 nic->flags &= ~ich; 2891 2892 e100_get_defaults(nic); 2893 2894 /* D100 MAC doesn't allow rx of vlan packets with normal MTU */ 2895 if (nic->mac < mac_82558_D101_A4) 2896 netdev->features |= NETIF_F_VLAN_CHALLENGED; 2897 2898 /* locks must be initialized before calling hw_reset */ 2899 spin_lock_init(&nic->cb_lock); 2900 spin_lock_init(&nic->cmd_lock); 2901 spin_lock_init(&nic->mdio_lock); 2902 2903 /* Reset the device before pci_set_master() in case device is in some 2904 * funky state and has an interrupt pending - hint: we don't have the 2905 * interrupt handler registered yet. */ 2906 e100_hw_reset(nic); 2907 2908 pci_set_master(pdev); 2909 2910 timer_setup(&nic->watchdog, e100_watchdog, 0); 2911 2912 INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task); 2913 2914 if ((err = e100_alloc(nic))) { 2915 netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n"); 2916 goto err_out_iounmap; 2917 } 2918 2919 if ((err = e100_eeprom_load(nic))) 2920 goto err_out_free; 2921 2922 e100_phy_init(nic); 2923 2924 eth_hw_addr_set(netdev, (u8 *)nic->eeprom); 2925 if (!is_valid_ether_addr(netdev->dev_addr)) { 2926 if (!eeprom_bad_csum_allow) { 2927 netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n"); 2928 err = -EAGAIN; 2929 goto err_out_free; 2930 } else { 2931 netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n"); 2932 } 2933 } 2934 2935 /* Wol magic packet can be enabled from eeprom */ 2936 if ((nic->mac >= mac_82558_D101_A4) && 2937 (le16_to_cpu(nic->eeprom[eeprom_id]) & eeprom_id_wol)) { 2938 nic->flags |= wol_magic; 2939 device_set_wakeup_enable(&pdev->dev, true); 2940 } 2941 2942 /* ack any pending wake events, disable PME */ 2943 pci_pme_active(pdev, false); 2944 2945 strcpy(netdev->name, "eth%d"); 2946 if ((err = register_netdev(netdev))) { 2947 netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n"); 2948 goto err_out_free; 2949 } 2950 nic->cbs_pool = dma_pool_create(netdev->name, 2951 &nic->pdev->dev, 2952 nic->params.cbs.max * sizeof(struct cb), 2953 sizeof(u32), 2954 0); 2955 if (!nic->cbs_pool) { 2956 netif_err(nic, probe, nic->netdev, "Cannot create DMA pool, aborting\n"); 2957 err = -ENOMEM; 2958 goto err_out_pool; 2959 } 2960 netif_info(nic, probe, nic->netdev, 2961 "addr 0x%llx, irq %d, MAC addr %pM\n", 2962 (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0), 2963 pdev->irq, netdev->dev_addr); 2964 2965 return 0; 2966 2967 err_out_pool: 2968 unregister_netdev(netdev); 2969 err_out_free: 2970 e100_free(nic); 2971 err_out_iounmap: 2972 pci_iounmap(pdev, nic->csr); 2973 err_out_free_res: 2974 pci_release_regions(pdev); 2975 err_out_disable_pdev: 2976 pci_disable_device(pdev); 2977 err_out_free_dev: 2978 free_netdev(netdev); 2979 return err; 2980 } 2981 2982 static void e100_remove(struct pci_dev *pdev) 2983 { 2984 struct net_device *netdev = pci_get_drvdata(pdev); 2985 2986 if (netdev) { 2987 struct nic *nic = netdev_priv(netdev); 2988 unregister_netdev(netdev); 2989 e100_free(nic); 2990 pci_iounmap(pdev, nic->csr); 2991 dma_pool_destroy(nic->cbs_pool); 2992 free_netdev(netdev); 2993 pci_release_regions(pdev); 2994 pci_disable_device(pdev); 2995 } 2996 } 2997 2998 #define E100_82552_SMARTSPEED 0x14 /* SmartSpeed Ctrl register */ 2999 #define E100_82552_REV_ANEG 0x0200 /* Reverse auto-negotiation */ 3000 #define E100_82552_ANEG_NOW 0x0400 /* Auto-negotiate now */ 3001 static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake) 3002 { 3003 struct net_device *netdev = pci_get_drvdata(pdev); 3004 struct nic *nic = netdev_priv(netdev); 3005 3006 netif_device_detach(netdev); 3007 3008 if (netif_running(netdev)) 3009 e100_down(nic); 3010 3011 if ((nic->flags & wol_magic) | e100_asf(nic)) { 3012 /* enable reverse auto-negotiation */ 3013 if (nic->phy == phy_82552_v) { 3014 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id, 3015 E100_82552_SMARTSPEED); 3016 3017 mdio_write(netdev, nic->mii.phy_id, 3018 E100_82552_SMARTSPEED, smartspeed | 3019 E100_82552_REV_ANEG | E100_82552_ANEG_NOW); 3020 } 3021 *enable_wake = true; 3022 } else { 3023 *enable_wake = false; 3024 } 3025 3026 pci_disable_device(pdev); 3027 } 3028 3029 static int __e100_power_off(struct pci_dev *pdev, bool wake) 3030 { 3031 if (wake) 3032 return pci_prepare_to_sleep(pdev); 3033 3034 pci_wake_from_d3(pdev, false); 3035 pci_set_power_state(pdev, PCI_D3hot); 3036 3037 return 0; 3038 } 3039 3040 static int __maybe_unused e100_suspend(struct device *dev_d) 3041 { 3042 bool wake; 3043 3044 __e100_shutdown(to_pci_dev(dev_d), &wake); 3045 3046 return 0; 3047 } 3048 3049 static int __maybe_unused e100_resume(struct device *dev_d) 3050 { 3051 struct net_device *netdev = dev_get_drvdata(dev_d); 3052 struct nic *nic = netdev_priv(netdev); 3053 int err; 3054 3055 err = pci_enable_device(to_pci_dev(dev_d)); 3056 if (err) { 3057 netdev_err(netdev, "Resume cannot enable PCI device, aborting\n"); 3058 return err; 3059 } 3060 pci_set_master(to_pci_dev(dev_d)); 3061 3062 /* disable reverse auto-negotiation */ 3063 if (nic->phy == phy_82552_v) { 3064 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id, 3065 E100_82552_SMARTSPEED); 3066 3067 mdio_write(netdev, nic->mii.phy_id, 3068 E100_82552_SMARTSPEED, 3069 smartspeed & ~(E100_82552_REV_ANEG)); 3070 } 3071 3072 if (netif_running(netdev)) 3073 e100_up(nic); 3074 3075 netif_device_attach(netdev); 3076 3077 return 0; 3078 } 3079 3080 static void e100_shutdown(struct pci_dev *pdev) 3081 { 3082 bool wake; 3083 __e100_shutdown(pdev, &wake); 3084 if (system_state == SYSTEM_POWER_OFF) 3085 __e100_power_off(pdev, wake); 3086 } 3087 3088 /* ------------------ PCI Error Recovery infrastructure -------------- */ 3089 /** 3090 * e100_io_error_detected - called when PCI error is detected. 3091 * @pdev: Pointer to PCI device 3092 * @state: The current pci connection state 3093 */ 3094 static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) 3095 { 3096 struct net_device *netdev = pci_get_drvdata(pdev); 3097 struct nic *nic = netdev_priv(netdev); 3098 3099 netif_device_detach(netdev); 3100 3101 if (state == pci_channel_io_perm_failure) 3102 return PCI_ERS_RESULT_DISCONNECT; 3103 3104 if (netif_running(netdev)) 3105 e100_down(nic); 3106 pci_disable_device(pdev); 3107 3108 /* Request a slot reset. */ 3109 return PCI_ERS_RESULT_NEED_RESET; 3110 } 3111 3112 /** 3113 * e100_io_slot_reset - called after the pci bus has been reset. 3114 * @pdev: Pointer to PCI device 3115 * 3116 * Restart the card from scratch. 3117 */ 3118 static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev) 3119 { 3120 struct net_device *netdev = pci_get_drvdata(pdev); 3121 struct nic *nic = netdev_priv(netdev); 3122 3123 if (pci_enable_device(pdev)) { 3124 pr_err("Cannot re-enable PCI device after reset\n"); 3125 return PCI_ERS_RESULT_DISCONNECT; 3126 } 3127 pci_set_master(pdev); 3128 3129 /* Only one device per card can do a reset */ 3130 if (0 != PCI_FUNC(pdev->devfn)) 3131 return PCI_ERS_RESULT_RECOVERED; 3132 e100_hw_reset(nic); 3133 e100_phy_init(nic); 3134 3135 return PCI_ERS_RESULT_RECOVERED; 3136 } 3137 3138 /** 3139 * e100_io_resume - resume normal operations 3140 * @pdev: Pointer to PCI device 3141 * 3142 * Resume normal operations after an error recovery 3143 * sequence has been completed. 3144 */ 3145 static void e100_io_resume(struct pci_dev *pdev) 3146 { 3147 struct net_device *netdev = pci_get_drvdata(pdev); 3148 struct nic *nic = netdev_priv(netdev); 3149 3150 /* ack any pending wake events, disable PME */ 3151 pci_enable_wake(pdev, PCI_D0, 0); 3152 3153 netif_device_attach(netdev); 3154 if (netif_running(netdev)) { 3155 e100_open(netdev); 3156 mod_timer(&nic->watchdog, jiffies); 3157 } 3158 } 3159 3160 static const struct pci_error_handlers e100_err_handler = { 3161 .error_detected = e100_io_error_detected, 3162 .slot_reset = e100_io_slot_reset, 3163 .resume = e100_io_resume, 3164 }; 3165 3166 static SIMPLE_DEV_PM_OPS(e100_pm_ops, e100_suspend, e100_resume); 3167 3168 static struct pci_driver e100_driver = { 3169 .name = DRV_NAME, 3170 .id_table = e100_id_table, 3171 .probe = e100_probe, 3172 .remove = e100_remove, 3173 3174 /* Power Management hooks */ 3175 .driver.pm = &e100_pm_ops, 3176 3177 .shutdown = e100_shutdown, 3178 .err_handler = &e100_err_handler, 3179 }; 3180 3181 static int __init e100_init_module(void) 3182 { 3183 if (((1 << debug) - 1) & NETIF_MSG_DRV) { 3184 pr_info("%s\n", DRV_DESCRIPTION); 3185 pr_info("%s\n", DRV_COPYRIGHT); 3186 } 3187 return pci_register_driver(&e100_driver); 3188 } 3189 3190 static void __exit e100_cleanup_module(void) 3191 { 3192 pci_unregister_driver(&e100_driver); 3193 } 3194 3195 module_init(e100_init_module); 3196 module_exit(e100_cleanup_module); 3197