xref: /linux/drivers/net/ethernet/intel/e100.c (revision 4be5e8648b0c287aefc6ac3f3a0b12c696054f43)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2006 Intel Corporation. */
3 
4 /*
5  *	e100.c: Intel(R) PRO/100 ethernet driver
6  *
7  *	(Re)written 2003 by scott.feldman@intel.com.  Based loosely on
8  *	original e100 driver, but better described as a munging of
9  *	e100, e1000, eepro100, tg3, 8139cp, and other drivers.
10  *
11  *	References:
12  *		Intel 8255x 10/100 Mbps Ethernet Controller Family,
13  *		Open Source Software Developers Manual,
14  *		http://sourceforge.net/projects/e1000
15  *
16  *
17  *	                      Theory of Operation
18  *
19  *	I.   General
20  *
21  *	The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
22  *	controller family, which includes the 82557, 82558, 82559, 82550,
23  *	82551, and 82562 devices.  82558 and greater controllers
24  *	integrate the Intel 82555 PHY.  The controllers are used in
25  *	server and client network interface cards, as well as in
26  *	LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
27  *	configurations.  8255x supports a 32-bit linear addressing
28  *	mode and operates at 33Mhz PCI clock rate.
29  *
30  *	II.  Driver Operation
31  *
32  *	Memory-mapped mode is used exclusively to access the device's
33  *	shared-memory structure, the Control/Status Registers (CSR). All
34  *	setup, configuration, and control of the device, including queuing
35  *	of Tx, Rx, and configuration commands is through the CSR.
36  *	cmd_lock serializes accesses to the CSR command register.  cb_lock
37  *	protects the shared Command Block List (CBL).
38  *
39  *	8255x is highly MII-compliant and all access to the PHY go
40  *	through the Management Data Interface (MDI).  Consequently, the
41  *	driver leverages the mii.c library shared with other MII-compliant
42  *	devices.
43  *
44  *	Big- and Little-Endian byte order as well as 32- and 64-bit
45  *	archs are supported.  Weak-ordered memory and non-cache-coherent
46  *	archs are supported.
47  *
48  *	III. Transmit
49  *
50  *	A Tx skb is mapped and hangs off of a TCB.  TCBs are linked
51  *	together in a fixed-size ring (CBL) thus forming the flexible mode
52  *	memory structure.  A TCB marked with the suspend-bit indicates
53  *	the end of the ring.  The last TCB processed suspends the
54  *	controller, and the controller can be restarted by issue a CU
55  *	resume command to continue from the suspend point, or a CU start
56  *	command to start at a given position in the ring.
57  *
58  *	Non-Tx commands (config, multicast setup, etc) are linked
59  *	into the CBL ring along with Tx commands.  The common structure
60  *	used for both Tx and non-Tx commands is the Command Block (CB).
61  *
62  *	cb_to_use is the next CB to use for queuing a command; cb_to_clean
63  *	is the next CB to check for completion; cb_to_send is the first
64  *	CB to start on in case of a previous failure to resume.  CB clean
65  *	up happens in interrupt context in response to a CU interrupt.
66  *	cbs_avail keeps track of number of free CB resources available.
67  *
68  * 	Hardware padding of short packets to minimum packet size is
69  * 	enabled.  82557 pads with 7Eh, while the later controllers pad
70  * 	with 00h.
71  *
72  *	IV.  Receive
73  *
74  *	The Receive Frame Area (RFA) comprises a ring of Receive Frame
75  *	Descriptors (RFD) + data buffer, thus forming the simplified mode
76  *	memory structure.  Rx skbs are allocated to contain both the RFD
77  *	and the data buffer, but the RFD is pulled off before the skb is
78  *	indicated.  The data buffer is aligned such that encapsulated
79  *	protocol headers are u32-aligned.  Since the RFD is part of the
80  *	mapped shared memory, and completion status is contained within
81  *	the RFD, the RFD must be dma_sync'ed to maintain a consistent
82  *	view from software and hardware.
83  *
84  *	In order to keep updates to the RFD link field from colliding with
85  *	hardware writes to mark packets complete, we use the feature that
86  *	hardware will not write to a size 0 descriptor and mark the previous
87  *	packet as end-of-list (EL).   After updating the link, we remove EL
88  *	and only then restore the size such that hardware may use the
89  *	previous-to-end RFD.
90  *
91  *	Under typical operation, the  receive unit (RU) is start once,
92  *	and the controller happily fills RFDs as frames arrive.  If
93  *	replacement RFDs cannot be allocated, or the RU goes non-active,
94  *	the RU must be restarted.  Frame arrival generates an interrupt,
95  *	and Rx indication and re-allocation happen in the same context,
96  *	therefore no locking is required.  A software-generated interrupt
97  *	is generated from the watchdog to recover from a failed allocation
98  *	scenario where all Rx resources have been indicated and none re-
99  *	placed.
100  *
101  *	V.   Miscellaneous
102  *
103  * 	VLAN offloading of tagging, stripping and filtering is not
104  * 	supported, but driver will accommodate the extra 4-byte VLAN tag
105  * 	for processing by upper layers.  Tx/Rx Checksum offloading is not
106  * 	supported.  Tx Scatter/Gather is not supported.  Jumbo Frames is
107  * 	not supported (hardware limitation).
108  *
109  * 	MagicPacket(tm) WoL support is enabled/disabled via ethtool.
110  *
111  * 	Thanks to JC (jchapman@katalix.com) for helping with
112  * 	testing/troubleshooting the development driver.
113  *
114  * 	TODO:
115  * 	o several entry points race with dev->close
116  * 	o check for tx-no-resources/stop Q races with tx clean/wake Q
117  *
118  *	FIXES:
119  * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
120  *	- Stratus87247: protect MDI control register manipulations
121  * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
122  *      - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
123  */
124 
125 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
126 
127 #include <linux/hardirq.h>
128 #include <linux/interrupt.h>
129 #include <linux/module.h>
130 #include <linux/moduleparam.h>
131 #include <linux/kernel.h>
132 #include <linux/types.h>
133 #include <linux/sched.h>
134 #include <linux/slab.h>
135 #include <linux/delay.h>
136 #include <linux/init.h>
137 #include <linux/pci.h>
138 #include <linux/dma-mapping.h>
139 #include <linux/dmapool.h>
140 #include <linux/netdevice.h>
141 #include <linux/etherdevice.h>
142 #include <linux/mii.h>
143 #include <linux/if_vlan.h>
144 #include <linux/skbuff.h>
145 #include <linux/ethtool.h>
146 #include <linux/string.h>
147 #include <linux/firmware.h>
148 #include <linux/rtnetlink.h>
149 #include <asm/unaligned.h>
150 
151 
152 #define DRV_NAME		"e100"
153 #define DRV_EXT			"-NAPI"
154 #define DRV_VERSION		"3.5.24-k2"DRV_EXT
155 #define DRV_DESCRIPTION		"Intel(R) PRO/100 Network Driver"
156 #define DRV_COPYRIGHT		"Copyright(c) 1999-2006 Intel Corporation"
157 
158 #define E100_WATCHDOG_PERIOD	(2 * HZ)
159 #define E100_NAPI_WEIGHT	16
160 
161 #define FIRMWARE_D101M		"e100/d101m_ucode.bin"
162 #define FIRMWARE_D101S		"e100/d101s_ucode.bin"
163 #define FIRMWARE_D102E		"e100/d102e_ucode.bin"
164 
165 MODULE_DESCRIPTION(DRV_DESCRIPTION);
166 MODULE_AUTHOR(DRV_COPYRIGHT);
167 MODULE_LICENSE("GPL v2");
168 MODULE_VERSION(DRV_VERSION);
169 MODULE_FIRMWARE(FIRMWARE_D101M);
170 MODULE_FIRMWARE(FIRMWARE_D101S);
171 MODULE_FIRMWARE(FIRMWARE_D102E);
172 
173 static int debug = 3;
174 static int eeprom_bad_csum_allow = 0;
175 static int use_io = 0;
176 module_param(debug, int, 0);
177 module_param(eeprom_bad_csum_allow, int, 0);
178 module_param(use_io, int, 0);
179 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
180 MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
181 MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
182 
183 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
184 	PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
185 	PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
186 static const struct pci_device_id e100_id_table[] = {
187 	INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
188 	INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
189 	INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
190 	INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
191 	INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
192 	INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
193 	INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
194 	INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
195 	INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
196 	INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
197 	INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
198 	INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
199 	INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
200 	INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
201 	INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
202 	INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
203 	INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
204 	INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
205 	INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
206 	INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
207 	INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
208 	INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
209 	INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
210 	INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
211 	INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
212 	INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
213 	INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
214 	INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
215 	INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
216 	INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
217 	INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
218 	INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
219 	INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
220 	INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
221 	INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
222 	INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
223 	INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
224 	INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
225 	INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
226 	INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
227 	INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
228 	INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
229 	{ 0, }
230 };
231 MODULE_DEVICE_TABLE(pci, e100_id_table);
232 
233 enum mac {
234 	mac_82557_D100_A  = 0,
235 	mac_82557_D100_B  = 1,
236 	mac_82557_D100_C  = 2,
237 	mac_82558_D101_A4 = 4,
238 	mac_82558_D101_B0 = 5,
239 	mac_82559_D101M   = 8,
240 	mac_82559_D101S   = 9,
241 	mac_82550_D102    = 12,
242 	mac_82550_D102_C  = 13,
243 	mac_82551_E       = 14,
244 	mac_82551_F       = 15,
245 	mac_82551_10      = 16,
246 	mac_unknown       = 0xFF,
247 };
248 
249 enum phy {
250 	phy_100a     = 0x000003E0,
251 	phy_100c     = 0x035002A8,
252 	phy_82555_tx = 0x015002A8,
253 	phy_nsc_tx   = 0x5C002000,
254 	phy_82562_et = 0x033002A8,
255 	phy_82562_em = 0x032002A8,
256 	phy_82562_ek = 0x031002A8,
257 	phy_82562_eh = 0x017002A8,
258 	phy_82552_v  = 0xd061004d,
259 	phy_unknown  = 0xFFFFFFFF,
260 };
261 
262 /* CSR (Control/Status Registers) */
263 struct csr {
264 	struct {
265 		u8 status;
266 		u8 stat_ack;
267 		u8 cmd_lo;
268 		u8 cmd_hi;
269 		u32 gen_ptr;
270 	} scb;
271 	u32 port;
272 	u16 flash_ctrl;
273 	u8 eeprom_ctrl_lo;
274 	u8 eeprom_ctrl_hi;
275 	u32 mdi_ctrl;
276 	u32 rx_dma_count;
277 };
278 
279 enum scb_status {
280 	rus_no_res       = 0x08,
281 	rus_ready        = 0x10,
282 	rus_mask         = 0x3C,
283 };
284 
285 enum ru_state  {
286 	RU_SUSPENDED = 0,
287 	RU_RUNNING	 = 1,
288 	RU_UNINITIALIZED = -1,
289 };
290 
291 enum scb_stat_ack {
292 	stat_ack_not_ours    = 0x00,
293 	stat_ack_sw_gen      = 0x04,
294 	stat_ack_rnr         = 0x10,
295 	stat_ack_cu_idle     = 0x20,
296 	stat_ack_frame_rx    = 0x40,
297 	stat_ack_cu_cmd_done = 0x80,
298 	stat_ack_not_present = 0xFF,
299 	stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
300 	stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
301 };
302 
303 enum scb_cmd_hi {
304 	irq_mask_none = 0x00,
305 	irq_mask_all  = 0x01,
306 	irq_sw_gen    = 0x02,
307 };
308 
309 enum scb_cmd_lo {
310 	cuc_nop        = 0x00,
311 	ruc_start      = 0x01,
312 	ruc_load_base  = 0x06,
313 	cuc_start      = 0x10,
314 	cuc_resume     = 0x20,
315 	cuc_dump_addr  = 0x40,
316 	cuc_dump_stats = 0x50,
317 	cuc_load_base  = 0x60,
318 	cuc_dump_reset = 0x70,
319 };
320 
321 enum cuc_dump {
322 	cuc_dump_complete       = 0x0000A005,
323 	cuc_dump_reset_complete = 0x0000A007,
324 };
325 
326 enum port {
327 	software_reset  = 0x0000,
328 	selftest        = 0x0001,
329 	selective_reset = 0x0002,
330 };
331 
332 enum eeprom_ctrl_lo {
333 	eesk = 0x01,
334 	eecs = 0x02,
335 	eedi = 0x04,
336 	eedo = 0x08,
337 };
338 
339 enum mdi_ctrl {
340 	mdi_write = 0x04000000,
341 	mdi_read  = 0x08000000,
342 	mdi_ready = 0x10000000,
343 };
344 
345 enum eeprom_op {
346 	op_write = 0x05,
347 	op_read  = 0x06,
348 	op_ewds  = 0x10,
349 	op_ewen  = 0x13,
350 };
351 
352 enum eeprom_offsets {
353 	eeprom_cnfg_mdix  = 0x03,
354 	eeprom_phy_iface  = 0x06,
355 	eeprom_id         = 0x0A,
356 	eeprom_config_asf = 0x0D,
357 	eeprom_smbus_addr = 0x90,
358 };
359 
360 enum eeprom_cnfg_mdix {
361 	eeprom_mdix_enabled = 0x0080,
362 };
363 
364 enum eeprom_phy_iface {
365 	NoSuchPhy = 0,
366 	I82553AB,
367 	I82553C,
368 	I82503,
369 	DP83840,
370 	S80C240,
371 	S80C24,
372 	I82555,
373 	DP83840A = 10,
374 };
375 
376 enum eeprom_id {
377 	eeprom_id_wol = 0x0020,
378 };
379 
380 enum eeprom_config_asf {
381 	eeprom_asf = 0x8000,
382 	eeprom_gcl = 0x4000,
383 };
384 
385 enum cb_status {
386 	cb_complete = 0x8000,
387 	cb_ok       = 0x2000,
388 };
389 
390 /**
391  * cb_command - Command Block flags
392  * @cb_tx_nc:  0: controller does CRC (normal),  1: CRC from skb memory
393  */
394 enum cb_command {
395 	cb_nop    = 0x0000,
396 	cb_iaaddr = 0x0001,
397 	cb_config = 0x0002,
398 	cb_multi  = 0x0003,
399 	cb_tx     = 0x0004,
400 	cb_ucode  = 0x0005,
401 	cb_dump   = 0x0006,
402 	cb_tx_sf  = 0x0008,
403 	cb_tx_nc  = 0x0010,
404 	cb_cid    = 0x1f00,
405 	cb_i      = 0x2000,
406 	cb_s      = 0x4000,
407 	cb_el     = 0x8000,
408 };
409 
410 struct rfd {
411 	__le16 status;
412 	__le16 command;
413 	__le32 link;
414 	__le32 rbd;
415 	__le16 actual_size;
416 	__le16 size;
417 };
418 
419 struct rx {
420 	struct rx *next, *prev;
421 	struct sk_buff *skb;
422 	dma_addr_t dma_addr;
423 };
424 
425 #if defined(__BIG_ENDIAN_BITFIELD)
426 #define X(a,b)	b,a
427 #else
428 #define X(a,b)	a,b
429 #endif
430 struct config {
431 /*0*/	u8 X(byte_count:6, pad0:2);
432 /*1*/	u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
433 /*2*/	u8 adaptive_ifs;
434 /*3*/	u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
435 	   term_write_cache_line:1), pad3:4);
436 /*4*/	u8 X(rx_dma_max_count:7, pad4:1);
437 /*5*/	u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
438 /*6*/	u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
439 	   tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
440 	   rx_save_overruns : 1), rx_save_bad_frames : 1);
441 /*7*/	u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
442 	   pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
443 	   tx_dynamic_tbd:1);
444 /*8*/	u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
445 /*9*/	u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
446 	   link_status_wake:1), arp_wake:1), mcmatch_wake:1);
447 /*10*/	u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
448 	   loopback:2);
449 /*11*/	u8 X(linear_priority:3, pad11:5);
450 /*12*/	u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
451 /*13*/	u8 ip_addr_lo;
452 /*14*/	u8 ip_addr_hi;
453 /*15*/	u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
454 	   wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
455 	   pad15_2:1), crs_or_cdt:1);
456 /*16*/	u8 fc_delay_lo;
457 /*17*/	u8 fc_delay_hi;
458 /*18*/	u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
459 	   rx_long_ok:1), fc_priority_threshold:3), pad18:1);
460 /*19*/	u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
461 	   fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
462 	   full_duplex_force:1), full_duplex_pin:1);
463 /*20*/	u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
464 /*21*/	u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
465 /*22*/	u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
466 	u8 pad_d102[9];
467 };
468 
469 #define E100_MAX_MULTICAST_ADDRS	64
470 struct multi {
471 	__le16 count;
472 	u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
473 };
474 
475 /* Important: keep total struct u32-aligned */
476 #define UCODE_SIZE			134
477 struct cb {
478 	__le16 status;
479 	__le16 command;
480 	__le32 link;
481 	union {
482 		u8 iaaddr[ETH_ALEN];
483 		__le32 ucode[UCODE_SIZE];
484 		struct config config;
485 		struct multi multi;
486 		struct {
487 			u32 tbd_array;
488 			u16 tcb_byte_count;
489 			u8 threshold;
490 			u8 tbd_count;
491 			struct {
492 				__le32 buf_addr;
493 				__le16 size;
494 				u16 eol;
495 			} tbd;
496 		} tcb;
497 		__le32 dump_buffer_addr;
498 	} u;
499 	struct cb *next, *prev;
500 	dma_addr_t dma_addr;
501 	struct sk_buff *skb;
502 };
503 
504 enum loopback {
505 	lb_none = 0, lb_mac = 1, lb_phy = 3,
506 };
507 
508 struct stats {
509 	__le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
510 		tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
511 		tx_multiple_collisions, tx_total_collisions;
512 	__le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
513 		rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
514 		rx_short_frame_errors;
515 	__le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
516 	__le16 xmt_tco_frames, rcv_tco_frames;
517 	__le32 complete;
518 };
519 
520 struct mem {
521 	struct {
522 		u32 signature;
523 		u32 result;
524 	} selftest;
525 	struct stats stats;
526 	u8 dump_buf[596];
527 };
528 
529 struct param_range {
530 	u32 min;
531 	u32 max;
532 	u32 count;
533 };
534 
535 struct params {
536 	struct param_range rfds;
537 	struct param_range cbs;
538 };
539 
540 struct nic {
541 	/* Begin: frequently used values: keep adjacent for cache effect */
542 	u32 msg_enable				____cacheline_aligned;
543 	struct net_device *netdev;
544 	struct pci_dev *pdev;
545 	u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data);
546 
547 	struct rx *rxs				____cacheline_aligned;
548 	struct rx *rx_to_use;
549 	struct rx *rx_to_clean;
550 	struct rfd blank_rfd;
551 	enum ru_state ru_running;
552 
553 	spinlock_t cb_lock			____cacheline_aligned;
554 	spinlock_t cmd_lock;
555 	struct csr __iomem *csr;
556 	enum scb_cmd_lo cuc_cmd;
557 	unsigned int cbs_avail;
558 	struct napi_struct napi;
559 	struct cb *cbs;
560 	struct cb *cb_to_use;
561 	struct cb *cb_to_send;
562 	struct cb *cb_to_clean;
563 	__le16 tx_command;
564 	/* End: frequently used values: keep adjacent for cache effect */
565 
566 	enum {
567 		ich                = (1 << 0),
568 		promiscuous        = (1 << 1),
569 		multicast_all      = (1 << 2),
570 		wol_magic          = (1 << 3),
571 		ich_10h_workaround = (1 << 4),
572 	} flags					____cacheline_aligned;
573 
574 	enum mac mac;
575 	enum phy phy;
576 	struct params params;
577 	struct timer_list watchdog;
578 	struct mii_if_info mii;
579 	struct work_struct tx_timeout_task;
580 	enum loopback loopback;
581 
582 	struct mem *mem;
583 	dma_addr_t dma_addr;
584 
585 	struct dma_pool *cbs_pool;
586 	dma_addr_t cbs_dma_addr;
587 	u8 adaptive_ifs;
588 	u8 tx_threshold;
589 	u32 tx_frames;
590 	u32 tx_collisions;
591 	u32 tx_deferred;
592 	u32 tx_single_collisions;
593 	u32 tx_multiple_collisions;
594 	u32 tx_fc_pause;
595 	u32 tx_tco_frames;
596 
597 	u32 rx_fc_pause;
598 	u32 rx_fc_unsupported;
599 	u32 rx_tco_frames;
600 	u32 rx_short_frame_errors;
601 	u32 rx_over_length_errors;
602 
603 	u16 eeprom_wc;
604 	__le16 eeprom[256];
605 	spinlock_t mdio_lock;
606 	const struct firmware *fw;
607 };
608 
609 static inline void e100_write_flush(struct nic *nic)
610 {
611 	/* Flush previous PCI writes through intermediate bridges
612 	 * by doing a benign read */
613 	(void)ioread8(&nic->csr->scb.status);
614 }
615 
616 static void e100_enable_irq(struct nic *nic)
617 {
618 	unsigned long flags;
619 
620 	spin_lock_irqsave(&nic->cmd_lock, flags);
621 	iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
622 	e100_write_flush(nic);
623 	spin_unlock_irqrestore(&nic->cmd_lock, flags);
624 }
625 
626 static void e100_disable_irq(struct nic *nic)
627 {
628 	unsigned long flags;
629 
630 	spin_lock_irqsave(&nic->cmd_lock, flags);
631 	iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
632 	e100_write_flush(nic);
633 	spin_unlock_irqrestore(&nic->cmd_lock, flags);
634 }
635 
636 static void e100_hw_reset(struct nic *nic)
637 {
638 	/* Put CU and RU into idle with a selective reset to get
639 	 * device off of PCI bus */
640 	iowrite32(selective_reset, &nic->csr->port);
641 	e100_write_flush(nic); udelay(20);
642 
643 	/* Now fully reset device */
644 	iowrite32(software_reset, &nic->csr->port);
645 	e100_write_flush(nic); udelay(20);
646 
647 	/* Mask off our interrupt line - it's unmasked after reset */
648 	e100_disable_irq(nic);
649 }
650 
651 static int e100_self_test(struct nic *nic)
652 {
653 	u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
654 
655 	/* Passing the self-test is a pretty good indication
656 	 * that the device can DMA to/from host memory */
657 
658 	nic->mem->selftest.signature = 0;
659 	nic->mem->selftest.result = 0xFFFFFFFF;
660 
661 	iowrite32(selftest | dma_addr, &nic->csr->port);
662 	e100_write_flush(nic);
663 	/* Wait 10 msec for self-test to complete */
664 	msleep(10);
665 
666 	/* Interrupts are enabled after self-test */
667 	e100_disable_irq(nic);
668 
669 	/* Check results of self-test */
670 	if (nic->mem->selftest.result != 0) {
671 		netif_err(nic, hw, nic->netdev,
672 			  "Self-test failed: result=0x%08X\n",
673 			  nic->mem->selftest.result);
674 		return -ETIMEDOUT;
675 	}
676 	if (nic->mem->selftest.signature == 0) {
677 		netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n");
678 		return -ETIMEDOUT;
679 	}
680 
681 	return 0;
682 }
683 
684 static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
685 {
686 	u32 cmd_addr_data[3];
687 	u8 ctrl;
688 	int i, j;
689 
690 	/* Three cmds: write/erase enable, write data, write/erase disable */
691 	cmd_addr_data[0] = op_ewen << (addr_len - 2);
692 	cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
693 		le16_to_cpu(data);
694 	cmd_addr_data[2] = op_ewds << (addr_len - 2);
695 
696 	/* Bit-bang cmds to write word to eeprom */
697 	for (j = 0; j < 3; j++) {
698 
699 		/* Chip select */
700 		iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
701 		e100_write_flush(nic); udelay(4);
702 
703 		for (i = 31; i >= 0; i--) {
704 			ctrl = (cmd_addr_data[j] & (1 << i)) ?
705 				eecs | eedi : eecs;
706 			iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
707 			e100_write_flush(nic); udelay(4);
708 
709 			iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
710 			e100_write_flush(nic); udelay(4);
711 		}
712 		/* Wait 10 msec for cmd to complete */
713 		msleep(10);
714 
715 		/* Chip deselect */
716 		iowrite8(0, &nic->csr->eeprom_ctrl_lo);
717 		e100_write_flush(nic); udelay(4);
718 	}
719 };
720 
721 /* General technique stolen from the eepro100 driver - very clever */
722 static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
723 {
724 	u32 cmd_addr_data;
725 	u16 data = 0;
726 	u8 ctrl;
727 	int i;
728 
729 	cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
730 
731 	/* Chip select */
732 	iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
733 	e100_write_flush(nic); udelay(4);
734 
735 	/* Bit-bang to read word from eeprom */
736 	for (i = 31; i >= 0; i--) {
737 		ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
738 		iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
739 		e100_write_flush(nic); udelay(4);
740 
741 		iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
742 		e100_write_flush(nic); udelay(4);
743 
744 		/* Eeprom drives a dummy zero to EEDO after receiving
745 		 * complete address.  Use this to adjust addr_len. */
746 		ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
747 		if (!(ctrl & eedo) && i > 16) {
748 			*addr_len -= (i - 16);
749 			i = 17;
750 		}
751 
752 		data = (data << 1) | (ctrl & eedo ? 1 : 0);
753 	}
754 
755 	/* Chip deselect */
756 	iowrite8(0, &nic->csr->eeprom_ctrl_lo);
757 	e100_write_flush(nic); udelay(4);
758 
759 	return cpu_to_le16(data);
760 };
761 
762 /* Load entire EEPROM image into driver cache and validate checksum */
763 static int e100_eeprom_load(struct nic *nic)
764 {
765 	u16 addr, addr_len = 8, checksum = 0;
766 
767 	/* Try reading with an 8-bit addr len to discover actual addr len */
768 	e100_eeprom_read(nic, &addr_len, 0);
769 	nic->eeprom_wc = 1 << addr_len;
770 
771 	for (addr = 0; addr < nic->eeprom_wc; addr++) {
772 		nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
773 		if (addr < nic->eeprom_wc - 1)
774 			checksum += le16_to_cpu(nic->eeprom[addr]);
775 	}
776 
777 	/* The checksum, stored in the last word, is calculated such that
778 	 * the sum of words should be 0xBABA */
779 	if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
780 		netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n");
781 		if (!eeprom_bad_csum_allow)
782 			return -EAGAIN;
783 	}
784 
785 	return 0;
786 }
787 
788 /* Save (portion of) driver EEPROM cache to device and update checksum */
789 static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
790 {
791 	u16 addr, addr_len = 8, checksum = 0;
792 
793 	/* Try reading with an 8-bit addr len to discover actual addr len */
794 	e100_eeprom_read(nic, &addr_len, 0);
795 	nic->eeprom_wc = 1 << addr_len;
796 
797 	if (start + count >= nic->eeprom_wc)
798 		return -EINVAL;
799 
800 	for (addr = start; addr < start + count; addr++)
801 		e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
802 
803 	/* The checksum, stored in the last word, is calculated such that
804 	 * the sum of words should be 0xBABA */
805 	for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
806 		checksum += le16_to_cpu(nic->eeprom[addr]);
807 	nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
808 	e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
809 		nic->eeprom[nic->eeprom_wc - 1]);
810 
811 	return 0;
812 }
813 
814 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
815 #define E100_WAIT_SCB_FAST 20       /* delay like the old code */
816 static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
817 {
818 	unsigned long flags;
819 	unsigned int i;
820 	int err = 0;
821 
822 	spin_lock_irqsave(&nic->cmd_lock, flags);
823 
824 	/* Previous command is accepted when SCB clears */
825 	for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
826 		if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
827 			break;
828 		cpu_relax();
829 		if (unlikely(i > E100_WAIT_SCB_FAST))
830 			udelay(5);
831 	}
832 	if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
833 		err = -EAGAIN;
834 		goto err_unlock;
835 	}
836 
837 	if (unlikely(cmd != cuc_resume))
838 		iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
839 	iowrite8(cmd, &nic->csr->scb.cmd_lo);
840 
841 err_unlock:
842 	spin_unlock_irqrestore(&nic->cmd_lock, flags);
843 
844 	return err;
845 }
846 
847 static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
848 	int (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
849 {
850 	struct cb *cb;
851 	unsigned long flags;
852 	int err;
853 
854 	spin_lock_irqsave(&nic->cb_lock, flags);
855 
856 	if (unlikely(!nic->cbs_avail)) {
857 		err = -ENOMEM;
858 		goto err_unlock;
859 	}
860 
861 	cb = nic->cb_to_use;
862 	nic->cb_to_use = cb->next;
863 	nic->cbs_avail--;
864 	cb->skb = skb;
865 
866 	err = cb_prepare(nic, cb, skb);
867 	if (err)
868 		goto err_unlock;
869 
870 	if (unlikely(!nic->cbs_avail))
871 		err = -ENOSPC;
872 
873 
874 	/* Order is important otherwise we'll be in a race with h/w:
875 	 * set S-bit in current first, then clear S-bit in previous. */
876 	cb->command |= cpu_to_le16(cb_s);
877 	dma_wmb();
878 	cb->prev->command &= cpu_to_le16(~cb_s);
879 
880 	while (nic->cb_to_send != nic->cb_to_use) {
881 		if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
882 			nic->cb_to_send->dma_addr))) {
883 			/* Ok, here's where things get sticky.  It's
884 			 * possible that we can't schedule the command
885 			 * because the controller is too busy, so
886 			 * let's just queue the command and try again
887 			 * when another command is scheduled. */
888 			if (err == -ENOSPC) {
889 				//request a reset
890 				schedule_work(&nic->tx_timeout_task);
891 			}
892 			break;
893 		} else {
894 			nic->cuc_cmd = cuc_resume;
895 			nic->cb_to_send = nic->cb_to_send->next;
896 		}
897 	}
898 
899 err_unlock:
900 	spin_unlock_irqrestore(&nic->cb_lock, flags);
901 
902 	return err;
903 }
904 
905 static int mdio_read(struct net_device *netdev, int addr, int reg)
906 {
907 	struct nic *nic = netdev_priv(netdev);
908 	return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0);
909 }
910 
911 static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
912 {
913 	struct nic *nic = netdev_priv(netdev);
914 
915 	nic->mdio_ctrl(nic, addr, mdi_write, reg, data);
916 }
917 
918 /* the standard mdio_ctrl() function for usual MII-compliant hardware */
919 static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
920 {
921 	u32 data_out = 0;
922 	unsigned int i;
923 	unsigned long flags;
924 
925 
926 	/*
927 	 * Stratus87247: we shouldn't be writing the MDI control
928 	 * register until the Ready bit shows True.  Also, since
929 	 * manipulation of the MDI control registers is a multi-step
930 	 * procedure it should be done under lock.
931 	 */
932 	spin_lock_irqsave(&nic->mdio_lock, flags);
933 	for (i = 100; i; --i) {
934 		if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
935 			break;
936 		udelay(20);
937 	}
938 	if (unlikely(!i)) {
939 		netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n");
940 		spin_unlock_irqrestore(&nic->mdio_lock, flags);
941 		return 0;		/* No way to indicate timeout error */
942 	}
943 	iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
944 
945 	for (i = 0; i < 100; i++) {
946 		udelay(20);
947 		if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
948 			break;
949 	}
950 	spin_unlock_irqrestore(&nic->mdio_lock, flags);
951 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
952 		     "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
953 		     dir == mdi_read ? "READ" : "WRITE",
954 		     addr, reg, data, data_out);
955 	return (u16)data_out;
956 }
957 
958 /* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
959 static u16 mdio_ctrl_phy_82552_v(struct nic *nic,
960 				 u32 addr,
961 				 u32 dir,
962 				 u32 reg,
963 				 u16 data)
964 {
965 	if ((reg == MII_BMCR) && (dir == mdi_write)) {
966 		if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) {
967 			u16 advert = mdio_read(nic->netdev, nic->mii.phy_id,
968 							MII_ADVERTISE);
969 
970 			/*
971 			 * Workaround Si issue where sometimes the part will not
972 			 * autoneg to 100Mbps even when advertised.
973 			 */
974 			if (advert & ADVERTISE_100FULL)
975 				data |= BMCR_SPEED100 | BMCR_FULLDPLX;
976 			else if (advert & ADVERTISE_100HALF)
977 				data |= BMCR_SPEED100;
978 		}
979 	}
980 	return mdio_ctrl_hw(nic, addr, dir, reg, data);
981 }
982 
983 /* Fully software-emulated mdio_ctrl() function for cards without
984  * MII-compliant PHYs.
985  * For now, this is mainly geared towards 80c24 support; in case of further
986  * requirements for other types (i82503, ...?) either extend this mechanism
987  * or split it, whichever is cleaner.
988  */
989 static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic,
990 				      u32 addr,
991 				      u32 dir,
992 				      u32 reg,
993 				      u16 data)
994 {
995 	/* might need to allocate a netdev_priv'ed register array eventually
996 	 * to be able to record state changes, but for now
997 	 * some fully hardcoded register handling ought to be ok I guess. */
998 
999 	if (dir == mdi_read) {
1000 		switch (reg) {
1001 		case MII_BMCR:
1002 			/* Auto-negotiation, right? */
1003 			return  BMCR_ANENABLE |
1004 				BMCR_FULLDPLX;
1005 		case MII_BMSR:
1006 			return	BMSR_LSTATUS /* for mii_link_ok() */ |
1007 				BMSR_ANEGCAPABLE |
1008 				BMSR_10FULL;
1009 		case MII_ADVERTISE:
1010 			/* 80c24 is a "combo card" PHY, right? */
1011 			return	ADVERTISE_10HALF |
1012 				ADVERTISE_10FULL;
1013 		default:
1014 			netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1015 				     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1016 				     dir == mdi_read ? "READ" : "WRITE",
1017 				     addr, reg, data);
1018 			return 0xFFFF;
1019 		}
1020 	} else {
1021 		switch (reg) {
1022 		default:
1023 			netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1024 				     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1025 				     dir == mdi_read ? "READ" : "WRITE",
1026 				     addr, reg, data);
1027 			return 0xFFFF;
1028 		}
1029 	}
1030 }
1031 static inline int e100_phy_supports_mii(struct nic *nic)
1032 {
1033 	/* for now, just check it by comparing whether we
1034 	   are using MII software emulation.
1035 	*/
1036 	return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated);
1037 }
1038 
1039 static void e100_get_defaults(struct nic *nic)
1040 {
1041 	struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
1042 	struct param_range cbs  = { .min = 64, .max = 256, .count = 128 };
1043 
1044 	/* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
1045 	nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
1046 	if (nic->mac == mac_unknown)
1047 		nic->mac = mac_82557_D100_A;
1048 
1049 	nic->params.rfds = rfds;
1050 	nic->params.cbs = cbs;
1051 
1052 	/* Quadwords to DMA into FIFO before starting frame transmit */
1053 	nic->tx_threshold = 0xE0;
1054 
1055 	/* no interrupt for every tx completion, delay = 256us if not 557 */
1056 	nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
1057 		((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
1058 
1059 	/* Template for a freshly allocated RFD */
1060 	nic->blank_rfd.command = 0;
1061 	nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
1062 	nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
1063 
1064 	/* MII setup */
1065 	nic->mii.phy_id_mask = 0x1F;
1066 	nic->mii.reg_num_mask = 0x1F;
1067 	nic->mii.dev = nic->netdev;
1068 	nic->mii.mdio_read = mdio_read;
1069 	nic->mii.mdio_write = mdio_write;
1070 }
1071 
1072 static int e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1073 {
1074 	struct config *config = &cb->u.config;
1075 	u8 *c = (u8 *)config;
1076 	struct net_device *netdev = nic->netdev;
1077 
1078 	cb->command = cpu_to_le16(cb_config);
1079 
1080 	memset(config, 0, sizeof(struct config));
1081 
1082 	config->byte_count = 0x16;		/* bytes in this struct */
1083 	config->rx_fifo_limit = 0x8;		/* bytes in FIFO before DMA */
1084 	config->direct_rx_dma = 0x1;		/* reserved */
1085 	config->standard_tcb = 0x1;		/* 1=standard, 0=extended */
1086 	config->standard_stat_counter = 0x1;	/* 1=standard, 0=extended */
1087 	config->rx_discard_short_frames = 0x1;	/* 1=discard, 0=pass */
1088 	config->tx_underrun_retry = 0x3;	/* # of underrun retries */
1089 	if (e100_phy_supports_mii(nic))
1090 		config->mii_mode = 1;           /* 1=MII mode, 0=i82503 mode */
1091 	config->pad10 = 0x6;
1092 	config->no_source_addr_insertion = 0x1;	/* 1=no, 0=yes */
1093 	config->preamble_length = 0x2;		/* 0=1, 1=3, 2=7, 3=15 bytes */
1094 	config->ifs = 0x6;			/* x16 = inter frame spacing */
1095 	config->ip_addr_hi = 0xF2;		/* ARP IP filter - not used */
1096 	config->pad15_1 = 0x1;
1097 	config->pad15_2 = 0x1;
1098 	config->crs_or_cdt = 0x0;		/* 0=CRS only, 1=CRS or CDT */
1099 	config->fc_delay_hi = 0x40;		/* time delay for fc frame */
1100 	config->tx_padding = 0x1;		/* 1=pad short frames */
1101 	config->fc_priority_threshold = 0x7;	/* 7=priority fc disabled */
1102 	config->pad18 = 0x1;
1103 	config->full_duplex_pin = 0x1;		/* 1=examine FDX# pin */
1104 	config->pad20_1 = 0x1F;
1105 	config->fc_priority_location = 0x1;	/* 1=byte#31, 0=byte#19 */
1106 	config->pad21_1 = 0x5;
1107 
1108 	config->adaptive_ifs = nic->adaptive_ifs;
1109 	config->loopback = nic->loopback;
1110 
1111 	if (nic->mii.force_media && nic->mii.full_duplex)
1112 		config->full_duplex_force = 0x1;	/* 1=force, 0=auto */
1113 
1114 	if (nic->flags & promiscuous || nic->loopback) {
1115 		config->rx_save_bad_frames = 0x1;	/* 1=save, 0=discard */
1116 		config->rx_discard_short_frames = 0x0;	/* 1=discard, 0=save */
1117 		config->promiscuous_mode = 0x1;		/* 1=on, 0=off */
1118 	}
1119 
1120 	if (unlikely(netdev->features & NETIF_F_RXFCS))
1121 		config->rx_crc_transfer = 0x1;	/* 1=save, 0=discard */
1122 
1123 	if (nic->flags & multicast_all)
1124 		config->multicast_all = 0x1;		/* 1=accept, 0=no */
1125 
1126 	/* disable WoL when up */
1127 	if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
1128 		config->magic_packet_disable = 0x1;	/* 1=off, 0=on */
1129 
1130 	if (nic->mac >= mac_82558_D101_A4) {
1131 		config->fc_disable = 0x1;	/* 1=Tx fc off, 0=Tx fc on */
1132 		config->mwi_enable = 0x1;	/* 1=enable, 0=disable */
1133 		config->standard_tcb = 0x0;	/* 1=standard, 0=extended */
1134 		config->rx_long_ok = 0x1;	/* 1=VLANs ok, 0=standard */
1135 		if (nic->mac >= mac_82559_D101M) {
1136 			config->tno_intr = 0x1;		/* TCO stats enable */
1137 			/* Enable TCO in extended config */
1138 			if (nic->mac >= mac_82551_10) {
1139 				config->byte_count = 0x20; /* extended bytes */
1140 				config->rx_d102_mode = 0x1; /* GMRC for TCO */
1141 			}
1142 		} else {
1143 			config->standard_stat_counter = 0x0;
1144 		}
1145 	}
1146 
1147 	if (netdev->features & NETIF_F_RXALL) {
1148 		config->rx_save_overruns = 0x1; /* 1=save, 0=discard */
1149 		config->rx_save_bad_frames = 0x1;       /* 1=save, 0=discard */
1150 		config->rx_discard_short_frames = 0x0;  /* 1=discard, 0=save */
1151 	}
1152 
1153 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[00-07]=%8ph\n",
1154 		     c + 0);
1155 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[08-15]=%8ph\n",
1156 		     c + 8);
1157 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[16-23]=%8ph\n",
1158 		     c + 16);
1159 	return 0;
1160 }
1161 
1162 /*************************************************************************
1163 *  CPUSaver parameters
1164 *
1165 *  All CPUSaver parameters are 16-bit literals that are part of a
1166 *  "move immediate value" instruction.  By changing the value of
1167 *  the literal in the instruction before the code is loaded, the
1168 *  driver can change the algorithm.
1169 *
1170 *  INTDELAY - This loads the dead-man timer with its initial value.
1171 *    When this timer expires the interrupt is asserted, and the
1172 *    timer is reset each time a new packet is received.  (see
1173 *    BUNDLEMAX below to set the limit on number of chained packets)
1174 *    The current default is 0x600 or 1536.  Experiments show that
1175 *    the value should probably stay within the 0x200 - 0x1000.
1176 *
1177 *  BUNDLEMAX -
1178 *    This sets the maximum number of frames that will be bundled.  In
1179 *    some situations, such as the TCP windowing algorithm, it may be
1180 *    better to limit the growth of the bundle size than let it go as
1181 *    high as it can, because that could cause too much added latency.
1182 *    The default is six, because this is the number of packets in the
1183 *    default TCP window size.  A value of 1 would make CPUSaver indicate
1184 *    an interrupt for every frame received.  If you do not want to put
1185 *    a limit on the bundle size, set this value to xFFFF.
1186 *
1187 *  BUNDLESMALL -
1188 *    This contains a bit-mask describing the minimum size frame that
1189 *    will be bundled.  The default masks the lower 7 bits, which means
1190 *    that any frame less than 128 bytes in length will not be bundled,
1191 *    but will instead immediately generate an interrupt.  This does
1192 *    not affect the current bundle in any way.  Any frame that is 128
1193 *    bytes or large will be bundled normally.  This feature is meant
1194 *    to provide immediate indication of ACK frames in a TCP environment.
1195 *    Customers were seeing poor performance when a machine with CPUSaver
1196 *    enabled was sending but not receiving.  The delay introduced when
1197 *    the ACKs were received was enough to reduce total throughput, because
1198 *    the sender would sit idle until the ACK was finally seen.
1199 *
1200 *    The current default is 0xFF80, which masks out the lower 7 bits.
1201 *    This means that any frame which is x7F (127) bytes or smaller
1202 *    will cause an immediate interrupt.  Because this value must be a
1203 *    bit mask, there are only a few valid values that can be used.  To
1204 *    turn this feature off, the driver can write the value xFFFF to the
1205 *    lower word of this instruction (in the same way that the other
1206 *    parameters are used).  Likewise, a value of 0xF800 (2047) would
1207 *    cause an interrupt to be generated for every frame, because all
1208 *    standard Ethernet frames are <= 2047 bytes in length.
1209 *************************************************************************/
1210 
1211 /* if you wish to disable the ucode functionality, while maintaining the
1212  * workarounds it provides, set the following defines to:
1213  * BUNDLESMALL 0
1214  * BUNDLEMAX 1
1215  * INTDELAY 1
1216  */
1217 #define BUNDLESMALL 1
1218 #define BUNDLEMAX (u16)6
1219 #define INTDELAY (u16)1536 /* 0x600 */
1220 
1221 /* Initialize firmware */
1222 static const struct firmware *e100_request_firmware(struct nic *nic)
1223 {
1224 	const char *fw_name;
1225 	const struct firmware *fw = nic->fw;
1226 	u8 timer, bundle, min_size;
1227 	int err = 0;
1228 	bool required = false;
1229 
1230 	/* do not load u-code for ICH devices */
1231 	if (nic->flags & ich)
1232 		return NULL;
1233 
1234 	/* Search for ucode match against h/w revision
1235 	 *
1236 	 * Based on comments in the source code for the FreeBSD fxp
1237 	 * driver, the FIRMWARE_D102E ucode includes both CPUSaver and
1238 	 *
1239 	 *    "fixes for bugs in the B-step hardware (specifically, bugs
1240 	 *     with Inline Receive)."
1241 	 *
1242 	 * So we must fail if it cannot be loaded.
1243 	 *
1244 	 * The other microcode files are only required for the optional
1245 	 * CPUSaver feature.  Nice to have, but no reason to fail.
1246 	 */
1247 	if (nic->mac == mac_82559_D101M) {
1248 		fw_name = FIRMWARE_D101M;
1249 	} else if (nic->mac == mac_82559_D101S) {
1250 		fw_name = FIRMWARE_D101S;
1251 	} else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) {
1252 		fw_name = FIRMWARE_D102E;
1253 		required = true;
1254 	} else { /* No ucode on other devices */
1255 		return NULL;
1256 	}
1257 
1258 	/* If the firmware has not previously been loaded, request a pointer
1259 	 * to it. If it was previously loaded, we are reinitializing the
1260 	 * adapter, possibly in a resume from hibernate, in which case
1261 	 * request_firmware() cannot be used.
1262 	 */
1263 	if (!fw)
1264 		err = request_firmware(&fw, fw_name, &nic->pdev->dev);
1265 
1266 	if (err) {
1267 		if (required) {
1268 			netif_err(nic, probe, nic->netdev,
1269 				  "Failed to load firmware \"%s\": %d\n",
1270 				  fw_name, err);
1271 			return ERR_PTR(err);
1272 		} else {
1273 			netif_info(nic, probe, nic->netdev,
1274 				   "CPUSaver disabled. Needs \"%s\": %d\n",
1275 				   fw_name, err);
1276 			return NULL;
1277 		}
1278 	}
1279 
1280 	/* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1281 	   indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1282 	if (fw->size != UCODE_SIZE * 4 + 3) {
1283 		netif_err(nic, probe, nic->netdev,
1284 			  "Firmware \"%s\" has wrong size %zu\n",
1285 			  fw_name, fw->size);
1286 		release_firmware(fw);
1287 		return ERR_PTR(-EINVAL);
1288 	}
1289 
1290 	/* Read timer, bundle and min_size from end of firmware blob */
1291 	timer = fw->data[UCODE_SIZE * 4];
1292 	bundle = fw->data[UCODE_SIZE * 4 + 1];
1293 	min_size = fw->data[UCODE_SIZE * 4 + 2];
1294 
1295 	if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
1296 	    min_size >= UCODE_SIZE) {
1297 		netif_err(nic, probe, nic->netdev,
1298 			  "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1299 			  fw_name, timer, bundle, min_size);
1300 		release_firmware(fw);
1301 		return ERR_PTR(-EINVAL);
1302 	}
1303 
1304 	/* OK, firmware is validated and ready to use. Save a pointer
1305 	 * to it in the nic */
1306 	nic->fw = fw;
1307 	return fw;
1308 }
1309 
1310 static int e100_setup_ucode(struct nic *nic, struct cb *cb,
1311 			     struct sk_buff *skb)
1312 {
1313 	const struct firmware *fw = (void *)skb;
1314 	u8 timer, bundle, min_size;
1315 
1316 	/* It's not a real skb; we just abused the fact that e100_exec_cb
1317 	   will pass it through to here... */
1318 	cb->skb = NULL;
1319 
1320 	/* firmware is stored as little endian already */
1321 	memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
1322 
1323 	/* Read timer, bundle and min_size from end of firmware blob */
1324 	timer = fw->data[UCODE_SIZE * 4];
1325 	bundle = fw->data[UCODE_SIZE * 4 + 1];
1326 	min_size = fw->data[UCODE_SIZE * 4 + 2];
1327 
1328 	/* Insert user-tunable settings in cb->u.ucode */
1329 	cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
1330 	cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
1331 	cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
1332 	cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
1333 	cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
1334 	cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
1335 
1336 	cb->command = cpu_to_le16(cb_ucode | cb_el);
1337 	return 0;
1338 }
1339 
1340 static inline int e100_load_ucode_wait(struct nic *nic)
1341 {
1342 	const struct firmware *fw;
1343 	int err = 0, counter = 50;
1344 	struct cb *cb = nic->cb_to_clean;
1345 
1346 	fw = e100_request_firmware(nic);
1347 	/* If it's NULL, then no ucode is required */
1348 	if (IS_ERR_OR_NULL(fw))
1349 		return PTR_ERR_OR_ZERO(fw);
1350 
1351 	if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
1352 		netif_err(nic, probe, nic->netdev,
1353 			  "ucode cmd failed with error %d\n", err);
1354 
1355 	/* must restart cuc */
1356 	nic->cuc_cmd = cuc_start;
1357 
1358 	/* wait for completion */
1359 	e100_write_flush(nic);
1360 	udelay(10);
1361 
1362 	/* wait for possibly (ouch) 500ms */
1363 	while (!(cb->status & cpu_to_le16(cb_complete))) {
1364 		msleep(10);
1365 		if (!--counter) break;
1366 	}
1367 
1368 	/* ack any interrupts, something could have been set */
1369 	iowrite8(~0, &nic->csr->scb.stat_ack);
1370 
1371 	/* if the command failed, or is not OK, notify and return */
1372 	if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1373 		netif_err(nic, probe, nic->netdev, "ucode load failed\n");
1374 		err = -EPERM;
1375 	}
1376 
1377 	return err;
1378 }
1379 
1380 static int e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1381 	struct sk_buff *skb)
1382 {
1383 	cb->command = cpu_to_le16(cb_iaaddr);
1384 	memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1385 	return 0;
1386 }
1387 
1388 static int e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1389 {
1390 	cb->command = cpu_to_le16(cb_dump);
1391 	cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1392 		offsetof(struct mem, dump_buf));
1393 	return 0;
1394 }
1395 
1396 static int e100_phy_check_without_mii(struct nic *nic)
1397 {
1398 	u8 phy_type;
1399 	int without_mii;
1400 
1401 	phy_type = (nic->eeprom[eeprom_phy_iface] >> 8) & 0x0f;
1402 
1403 	switch (phy_type) {
1404 	case NoSuchPhy: /* Non-MII PHY; UNTESTED! */
1405 	case I82503: /* Non-MII PHY; UNTESTED! */
1406 	case S80C24: /* Non-MII PHY; tested and working */
1407 		/* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
1408 		 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
1409 		 * doesn't have a programming interface of any sort.  The
1410 		 * media is sensed automatically based on how the link partner
1411 		 * is configured.  This is, in essence, manual configuration.
1412 		 */
1413 		netif_info(nic, probe, nic->netdev,
1414 			   "found MII-less i82503 or 80c24 or other PHY\n");
1415 
1416 		nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated;
1417 		nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */
1418 
1419 		/* these might be needed for certain MII-less cards...
1420 		 * nic->flags |= ich;
1421 		 * nic->flags |= ich_10h_workaround; */
1422 
1423 		without_mii = 1;
1424 		break;
1425 	default:
1426 		without_mii = 0;
1427 		break;
1428 	}
1429 	return without_mii;
1430 }
1431 
1432 #define NCONFIG_AUTO_SWITCH	0x0080
1433 #define MII_NSC_CONG		MII_RESV1
1434 #define NSC_CONG_ENABLE		0x0100
1435 #define NSC_CONG_TXREADY	0x0400
1436 #define ADVERTISE_FC_SUPPORTED	0x0400
1437 static int e100_phy_init(struct nic *nic)
1438 {
1439 	struct net_device *netdev = nic->netdev;
1440 	u32 addr;
1441 	u16 bmcr, stat, id_lo, id_hi, cong;
1442 
1443 	/* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1444 	for (addr = 0; addr < 32; addr++) {
1445 		nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1446 		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1447 		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1448 		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1449 		if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1450 			break;
1451 	}
1452 	if (addr == 32) {
1453 		/* uhoh, no PHY detected: check whether we seem to be some
1454 		 * weird, rare variant which is *known* to not have any MII.
1455 		 * But do this AFTER MII checking only, since this does
1456 		 * lookup of EEPROM values which may easily be unreliable. */
1457 		if (e100_phy_check_without_mii(nic))
1458 			return 0; /* simply return and hope for the best */
1459 		else {
1460 			/* for unknown cases log a fatal error */
1461 			netif_err(nic, hw, nic->netdev,
1462 				  "Failed to locate any known PHY, aborting\n");
1463 			return -EAGAIN;
1464 		}
1465 	} else
1466 		netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1467 			     "phy_addr = %d\n", nic->mii.phy_id);
1468 
1469 	/* Get phy ID */
1470 	id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1471 	id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1472 	nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1473 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1474 		     "phy ID = 0x%08X\n", nic->phy);
1475 
1476 	/* Select the phy and isolate the rest */
1477 	for (addr = 0; addr < 32; addr++) {
1478 		if (addr != nic->mii.phy_id) {
1479 			mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1480 		} else if (nic->phy != phy_82552_v) {
1481 			bmcr = mdio_read(netdev, addr, MII_BMCR);
1482 			mdio_write(netdev, addr, MII_BMCR,
1483 				bmcr & ~BMCR_ISOLATE);
1484 		}
1485 	}
1486 	/*
1487 	 * Workaround for 82552:
1488 	 * Clear the ISOLATE bit on selected phy_id last (mirrored on all
1489 	 * other phy_id's) using bmcr value from addr discovery loop above.
1490 	 */
1491 	if (nic->phy == phy_82552_v)
1492 		mdio_write(netdev, nic->mii.phy_id, MII_BMCR,
1493 			bmcr & ~BMCR_ISOLATE);
1494 
1495 	/* Handle National tx phys */
1496 #define NCS_PHY_MODEL_MASK	0xFFF0FFFF
1497 	if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1498 		/* Disable congestion control */
1499 		cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1500 		cong |= NSC_CONG_TXREADY;
1501 		cong &= ~NSC_CONG_ENABLE;
1502 		mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1503 	}
1504 
1505 	if (nic->phy == phy_82552_v) {
1506 		u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
1507 
1508 		/* assign special tweaked mdio_ctrl() function */
1509 		nic->mdio_ctrl = mdio_ctrl_phy_82552_v;
1510 
1511 		/* Workaround Si not advertising flow-control during autoneg */
1512 		advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1513 		mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);
1514 
1515 		/* Reset for the above changes to take effect */
1516 		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1517 		bmcr |= BMCR_RESET;
1518 		mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
1519 	} else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1520 	   (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1521 		(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) {
1522 		/* enable/disable MDI/MDI-X auto-switching. */
1523 		mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1524 				nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1525 	}
1526 
1527 	return 0;
1528 }
1529 
1530 static int e100_hw_init(struct nic *nic)
1531 {
1532 	int err = 0;
1533 
1534 	e100_hw_reset(nic);
1535 
1536 	netif_err(nic, hw, nic->netdev, "e100_hw_init\n");
1537 	if (!in_interrupt() && (err = e100_self_test(nic)))
1538 		return err;
1539 
1540 	if ((err = e100_phy_init(nic)))
1541 		return err;
1542 	if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1543 		return err;
1544 	if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1545 		return err;
1546 	if ((err = e100_load_ucode_wait(nic)))
1547 		return err;
1548 	if ((err = e100_exec_cb(nic, NULL, e100_configure)))
1549 		return err;
1550 	if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1551 		return err;
1552 	if ((err = e100_exec_cmd(nic, cuc_dump_addr,
1553 		nic->dma_addr + offsetof(struct mem, stats))))
1554 		return err;
1555 	if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1556 		return err;
1557 
1558 	e100_disable_irq(nic);
1559 
1560 	return 0;
1561 }
1562 
1563 static int e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1564 {
1565 	struct net_device *netdev = nic->netdev;
1566 	struct netdev_hw_addr *ha;
1567 	u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS);
1568 
1569 	cb->command = cpu_to_le16(cb_multi);
1570 	cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1571 	i = 0;
1572 	netdev_for_each_mc_addr(ha, netdev) {
1573 		if (i == count)
1574 			break;
1575 		memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr,
1576 			ETH_ALEN);
1577 	}
1578 	return 0;
1579 }
1580 
1581 static void e100_set_multicast_list(struct net_device *netdev)
1582 {
1583 	struct nic *nic = netdev_priv(netdev);
1584 
1585 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1586 		     "mc_count=%d, flags=0x%04X\n",
1587 		     netdev_mc_count(netdev), netdev->flags);
1588 
1589 	if (netdev->flags & IFF_PROMISC)
1590 		nic->flags |= promiscuous;
1591 	else
1592 		nic->flags &= ~promiscuous;
1593 
1594 	if (netdev->flags & IFF_ALLMULTI ||
1595 		netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS)
1596 		nic->flags |= multicast_all;
1597 	else
1598 		nic->flags &= ~multicast_all;
1599 
1600 	e100_exec_cb(nic, NULL, e100_configure);
1601 	e100_exec_cb(nic, NULL, e100_multi);
1602 }
1603 
1604 static void e100_update_stats(struct nic *nic)
1605 {
1606 	struct net_device *dev = nic->netdev;
1607 	struct net_device_stats *ns = &dev->stats;
1608 	struct stats *s = &nic->mem->stats;
1609 	__le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1610 		(nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
1611 		&s->complete;
1612 
1613 	/* Device's stats reporting may take several microseconds to
1614 	 * complete, so we're always waiting for results of the
1615 	 * previous command. */
1616 
1617 	if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
1618 		*complete = 0;
1619 		nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1620 		nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1621 		ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1622 		ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1623 		ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1624 		ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1625 		ns->collisions += nic->tx_collisions;
1626 		ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1627 			le32_to_cpu(s->tx_lost_crs);
1628 		nic->rx_short_frame_errors +=
1629 			le32_to_cpu(s->rx_short_frame_errors);
1630 		ns->rx_length_errors = nic->rx_short_frame_errors +
1631 			nic->rx_over_length_errors;
1632 		ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1633 		ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1634 		ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1635 		ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1636 		ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1637 		ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1638 			le32_to_cpu(s->rx_alignment_errors) +
1639 			le32_to_cpu(s->rx_short_frame_errors) +
1640 			le32_to_cpu(s->rx_cdt_errors);
1641 		nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1642 		nic->tx_single_collisions +=
1643 			le32_to_cpu(s->tx_single_collisions);
1644 		nic->tx_multiple_collisions +=
1645 			le32_to_cpu(s->tx_multiple_collisions);
1646 		if (nic->mac >= mac_82558_D101_A4) {
1647 			nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1648 			nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1649 			nic->rx_fc_unsupported +=
1650 				le32_to_cpu(s->fc_rcv_unsupported);
1651 			if (nic->mac >= mac_82559_D101M) {
1652 				nic->tx_tco_frames +=
1653 					le16_to_cpu(s->xmt_tco_frames);
1654 				nic->rx_tco_frames +=
1655 					le16_to_cpu(s->rcv_tco_frames);
1656 			}
1657 		}
1658 	}
1659 
1660 
1661 	if (e100_exec_cmd(nic, cuc_dump_reset, 0))
1662 		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1663 			     "exec cuc_dump_reset failed\n");
1664 }
1665 
1666 static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1667 {
1668 	/* Adjust inter-frame-spacing (IFS) between two transmits if
1669 	 * we're getting collisions on a half-duplex connection. */
1670 
1671 	if (duplex == DUPLEX_HALF) {
1672 		u32 prev = nic->adaptive_ifs;
1673 		u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1674 
1675 		if ((nic->tx_frames / 32 < nic->tx_collisions) &&
1676 		   (nic->tx_frames > min_frames)) {
1677 			if (nic->adaptive_ifs < 60)
1678 				nic->adaptive_ifs += 5;
1679 		} else if (nic->tx_frames < min_frames) {
1680 			if (nic->adaptive_ifs >= 5)
1681 				nic->adaptive_ifs -= 5;
1682 		}
1683 		if (nic->adaptive_ifs != prev)
1684 			e100_exec_cb(nic, NULL, e100_configure);
1685 	}
1686 }
1687 
1688 static void e100_watchdog(struct timer_list *t)
1689 {
1690 	struct nic *nic = from_timer(nic, t, watchdog);
1691 	struct ethtool_cmd cmd = { .cmd = ETHTOOL_GSET };
1692 	u32 speed;
1693 
1694 	netif_printk(nic, timer, KERN_DEBUG, nic->netdev,
1695 		     "right now = %ld\n", jiffies);
1696 
1697 	/* mii library handles link maintenance tasks */
1698 
1699 	mii_ethtool_gset(&nic->mii, &cmd);
1700 	speed = ethtool_cmd_speed(&cmd);
1701 
1702 	if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1703 		netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n",
1704 			    speed == SPEED_100 ? 100 : 10,
1705 			    cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
1706 	} else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1707 		netdev_info(nic->netdev, "NIC Link is Down\n");
1708 	}
1709 
1710 	mii_check_link(&nic->mii);
1711 
1712 	/* Software generated interrupt to recover from (rare) Rx
1713 	 * allocation failure.
1714 	 * Unfortunately have to use a spinlock to not re-enable interrupts
1715 	 * accidentally, due to hardware that shares a register between the
1716 	 * interrupt mask bit and the SW Interrupt generation bit */
1717 	spin_lock_irq(&nic->cmd_lock);
1718 	iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1719 	e100_write_flush(nic);
1720 	spin_unlock_irq(&nic->cmd_lock);
1721 
1722 	e100_update_stats(nic);
1723 	e100_adjust_adaptive_ifs(nic, speed, cmd.duplex);
1724 
1725 	if (nic->mac <= mac_82557_D100_C)
1726 		/* Issue a multicast command to workaround a 557 lock up */
1727 		e100_set_multicast_list(nic->netdev);
1728 
1729 	if (nic->flags & ich && speed == SPEED_10 && cmd.duplex == DUPLEX_HALF)
1730 		/* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1731 		nic->flags |= ich_10h_workaround;
1732 	else
1733 		nic->flags &= ~ich_10h_workaround;
1734 
1735 	mod_timer(&nic->watchdog,
1736 		  round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
1737 }
1738 
1739 static int e100_xmit_prepare(struct nic *nic, struct cb *cb,
1740 	struct sk_buff *skb)
1741 {
1742 	dma_addr_t dma_addr;
1743 	cb->command = nic->tx_command;
1744 
1745 	dma_addr = pci_map_single(nic->pdev,
1746 				  skb->data, skb->len, PCI_DMA_TODEVICE);
1747 	/* If we can't map the skb, have the upper layer try later */
1748 	if (pci_dma_mapping_error(nic->pdev, dma_addr)) {
1749 		dev_kfree_skb_any(skb);
1750 		skb = NULL;
1751 		return -ENOMEM;
1752 	}
1753 
1754 	/*
1755 	 * Use the last 4 bytes of the SKB payload packet as the CRC, used for
1756 	 * testing, ie sending frames with bad CRC.
1757 	 */
1758 	if (unlikely(skb->no_fcs))
1759 		cb->command |= cpu_to_le16(cb_tx_nc);
1760 	else
1761 		cb->command &= ~cpu_to_le16(cb_tx_nc);
1762 
1763 	/* interrupt every 16 packets regardless of delay */
1764 	if ((nic->cbs_avail & ~15) == nic->cbs_avail)
1765 		cb->command |= cpu_to_le16(cb_i);
1766 	cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1767 	cb->u.tcb.tcb_byte_count = 0;
1768 	cb->u.tcb.threshold = nic->tx_threshold;
1769 	cb->u.tcb.tbd_count = 1;
1770 	cb->u.tcb.tbd.buf_addr = cpu_to_le32(dma_addr);
1771 	cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1772 	skb_tx_timestamp(skb);
1773 	return 0;
1774 }
1775 
1776 static netdev_tx_t e100_xmit_frame(struct sk_buff *skb,
1777 				   struct net_device *netdev)
1778 {
1779 	struct nic *nic = netdev_priv(netdev);
1780 	int err;
1781 
1782 	if (nic->flags & ich_10h_workaround) {
1783 		/* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1784 		   Issue a NOP command followed by a 1us delay before
1785 		   issuing the Tx command. */
1786 		if (e100_exec_cmd(nic, cuc_nop, 0))
1787 			netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1788 				     "exec cuc_nop failed\n");
1789 		udelay(1);
1790 	}
1791 
1792 	err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1793 
1794 	switch (err) {
1795 	case -ENOSPC:
1796 		/* We queued the skb, but now we're out of space. */
1797 		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1798 			     "No space for CB\n");
1799 		netif_stop_queue(netdev);
1800 		break;
1801 	case -ENOMEM:
1802 		/* This is a hard error - log it. */
1803 		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1804 			     "Out of Tx resources, returning skb\n");
1805 		netif_stop_queue(netdev);
1806 		return NETDEV_TX_BUSY;
1807 	}
1808 
1809 	return NETDEV_TX_OK;
1810 }
1811 
1812 static int e100_tx_clean(struct nic *nic)
1813 {
1814 	struct net_device *dev = nic->netdev;
1815 	struct cb *cb;
1816 	int tx_cleaned = 0;
1817 
1818 	spin_lock(&nic->cb_lock);
1819 
1820 	/* Clean CBs marked complete */
1821 	for (cb = nic->cb_to_clean;
1822 	    cb->status & cpu_to_le16(cb_complete);
1823 	    cb = nic->cb_to_clean = cb->next) {
1824 		dma_rmb(); /* read skb after status */
1825 		netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev,
1826 			     "cb[%d]->status = 0x%04X\n",
1827 			     (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1828 			     cb->status);
1829 
1830 		if (likely(cb->skb != NULL)) {
1831 			dev->stats.tx_packets++;
1832 			dev->stats.tx_bytes += cb->skb->len;
1833 
1834 			pci_unmap_single(nic->pdev,
1835 				le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1836 				le16_to_cpu(cb->u.tcb.tbd.size),
1837 				PCI_DMA_TODEVICE);
1838 			dev_kfree_skb_any(cb->skb);
1839 			cb->skb = NULL;
1840 			tx_cleaned = 1;
1841 		}
1842 		cb->status = 0;
1843 		nic->cbs_avail++;
1844 	}
1845 
1846 	spin_unlock(&nic->cb_lock);
1847 
1848 	/* Recover from running out of Tx resources in xmit_frame */
1849 	if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1850 		netif_wake_queue(nic->netdev);
1851 
1852 	return tx_cleaned;
1853 }
1854 
1855 static void e100_clean_cbs(struct nic *nic)
1856 {
1857 	if (nic->cbs) {
1858 		while (nic->cbs_avail != nic->params.cbs.count) {
1859 			struct cb *cb = nic->cb_to_clean;
1860 			if (cb->skb) {
1861 				pci_unmap_single(nic->pdev,
1862 					le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1863 					le16_to_cpu(cb->u.tcb.tbd.size),
1864 					PCI_DMA_TODEVICE);
1865 				dev_kfree_skb(cb->skb);
1866 			}
1867 			nic->cb_to_clean = nic->cb_to_clean->next;
1868 			nic->cbs_avail++;
1869 		}
1870 		dma_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr);
1871 		nic->cbs = NULL;
1872 		nic->cbs_avail = 0;
1873 	}
1874 	nic->cuc_cmd = cuc_start;
1875 	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1876 		nic->cbs;
1877 }
1878 
1879 static int e100_alloc_cbs(struct nic *nic)
1880 {
1881 	struct cb *cb;
1882 	unsigned int i, count = nic->params.cbs.count;
1883 
1884 	nic->cuc_cmd = cuc_start;
1885 	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1886 	nic->cbs_avail = 0;
1887 
1888 	nic->cbs = dma_pool_zalloc(nic->cbs_pool, GFP_KERNEL,
1889 				   &nic->cbs_dma_addr);
1890 	if (!nic->cbs)
1891 		return -ENOMEM;
1892 
1893 	for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
1894 		cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1895 		cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1896 
1897 		cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1898 		cb->link = cpu_to_le32(nic->cbs_dma_addr +
1899 			((i+1) % count) * sizeof(struct cb));
1900 	}
1901 
1902 	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1903 	nic->cbs_avail = count;
1904 
1905 	return 0;
1906 }
1907 
1908 static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1909 {
1910 	if (!nic->rxs) return;
1911 	if (RU_SUSPENDED != nic->ru_running) return;
1912 
1913 	/* handle init time starts */
1914 	if (!rx) rx = nic->rxs;
1915 
1916 	/* (Re)start RU if suspended or idle and RFA is non-NULL */
1917 	if (rx->skb) {
1918 		e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1919 		nic->ru_running = RU_RUNNING;
1920 	}
1921 }
1922 
1923 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
1924 static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1925 {
1926 	if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN)))
1927 		return -ENOMEM;
1928 
1929 	/* Init, and map the RFD. */
1930 	skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1931 	rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
1932 		RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1933 
1934 	if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) {
1935 		dev_kfree_skb_any(rx->skb);
1936 		rx->skb = NULL;
1937 		rx->dma_addr = 0;
1938 		return -ENOMEM;
1939 	}
1940 
1941 	/* Link the RFD to end of RFA by linking previous RFD to
1942 	 * this one.  We are safe to touch the previous RFD because
1943 	 * it is protected by the before last buffer's el bit being set */
1944 	if (rx->prev->skb) {
1945 		struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1946 		put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
1947 		pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
1948 			sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1949 	}
1950 
1951 	return 0;
1952 }
1953 
1954 static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1955 	unsigned int *work_done, unsigned int work_to_do)
1956 {
1957 	struct net_device *dev = nic->netdev;
1958 	struct sk_buff *skb = rx->skb;
1959 	struct rfd *rfd = (struct rfd *)skb->data;
1960 	u16 rfd_status, actual_size;
1961 	u16 fcs_pad = 0;
1962 
1963 	if (unlikely(work_done && *work_done >= work_to_do))
1964 		return -EAGAIN;
1965 
1966 	/* Need to sync before taking a peek at cb_complete bit */
1967 	pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
1968 		sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1969 	rfd_status = le16_to_cpu(rfd->status);
1970 
1971 	netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev,
1972 		     "status=0x%04X\n", rfd_status);
1973 	dma_rmb(); /* read size after status bit */
1974 
1975 	/* If data isn't ready, nothing to indicate */
1976 	if (unlikely(!(rfd_status & cb_complete))) {
1977 		/* If the next buffer has the el bit, but we think the receiver
1978 		 * is still running, check to see if it really stopped while
1979 		 * we had interrupts off.
1980 		 * This allows for a fast restart without re-enabling
1981 		 * interrupts */
1982 		if ((le16_to_cpu(rfd->command) & cb_el) &&
1983 		    (RU_RUNNING == nic->ru_running))
1984 
1985 			if (ioread8(&nic->csr->scb.status) & rus_no_res)
1986 				nic->ru_running = RU_SUSPENDED;
1987 		pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
1988 					       sizeof(struct rfd),
1989 					       PCI_DMA_FROMDEVICE);
1990 		return -ENODATA;
1991 	}
1992 
1993 	/* Get actual data size */
1994 	if (unlikely(dev->features & NETIF_F_RXFCS))
1995 		fcs_pad = 4;
1996 	actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
1997 	if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1998 		actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1999 
2000 	/* Get data */
2001 	pci_unmap_single(nic->pdev, rx->dma_addr,
2002 		RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2003 
2004 	/* If this buffer has the el bit, but we think the receiver
2005 	 * is still running, check to see if it really stopped while
2006 	 * we had interrupts off.
2007 	 * This allows for a fast restart without re-enabling interrupts.
2008 	 * This can happen when the RU sees the size change but also sees
2009 	 * the el bit set. */
2010 	if ((le16_to_cpu(rfd->command) & cb_el) &&
2011 	    (RU_RUNNING == nic->ru_running)) {
2012 
2013 	    if (ioread8(&nic->csr->scb.status) & rus_no_res)
2014 		nic->ru_running = RU_SUSPENDED;
2015 	}
2016 
2017 	/* Pull off the RFD and put the actual data (minus eth hdr) */
2018 	skb_reserve(skb, sizeof(struct rfd));
2019 	skb_put(skb, actual_size);
2020 	skb->protocol = eth_type_trans(skb, nic->netdev);
2021 
2022 	/* If we are receiving all frames, then don't bother
2023 	 * checking for errors.
2024 	 */
2025 	if (unlikely(dev->features & NETIF_F_RXALL)) {
2026 		if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad)
2027 			/* Received oversized frame, but keep it. */
2028 			nic->rx_over_length_errors++;
2029 		goto process_skb;
2030 	}
2031 
2032 	if (unlikely(!(rfd_status & cb_ok))) {
2033 		/* Don't indicate if hardware indicates errors */
2034 		dev_kfree_skb_any(skb);
2035 	} else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) {
2036 		/* Don't indicate oversized frames */
2037 		nic->rx_over_length_errors++;
2038 		dev_kfree_skb_any(skb);
2039 	} else {
2040 process_skb:
2041 		dev->stats.rx_packets++;
2042 		dev->stats.rx_bytes += (actual_size - fcs_pad);
2043 		netif_receive_skb(skb);
2044 		if (work_done)
2045 			(*work_done)++;
2046 	}
2047 
2048 	rx->skb = NULL;
2049 
2050 	return 0;
2051 }
2052 
2053 static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
2054 	unsigned int work_to_do)
2055 {
2056 	struct rx *rx;
2057 	int restart_required = 0, err = 0;
2058 	struct rx *old_before_last_rx, *new_before_last_rx;
2059 	struct rfd *old_before_last_rfd, *new_before_last_rfd;
2060 
2061 	/* Indicate newly arrived packets */
2062 	for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
2063 		err = e100_rx_indicate(nic, rx, work_done, work_to_do);
2064 		/* Hit quota or no more to clean */
2065 		if (-EAGAIN == err || -ENODATA == err)
2066 			break;
2067 	}
2068 
2069 
2070 	/* On EAGAIN, hit quota so have more work to do, restart once
2071 	 * cleanup is complete.
2072 	 * Else, are we already rnr? then pay attention!!! this ensures that
2073 	 * the state machine progression never allows a start with a
2074 	 * partially cleaned list, avoiding a race between hardware
2075 	 * and rx_to_clean when in NAPI mode */
2076 	if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
2077 		restart_required = 1;
2078 
2079 	old_before_last_rx = nic->rx_to_use->prev->prev;
2080 	old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
2081 
2082 	/* Alloc new skbs to refill list */
2083 	for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
2084 		if (unlikely(e100_rx_alloc_skb(nic, rx)))
2085 			break; /* Better luck next time (see watchdog) */
2086 	}
2087 
2088 	new_before_last_rx = nic->rx_to_use->prev->prev;
2089 	if (new_before_last_rx != old_before_last_rx) {
2090 		/* Set the el-bit on the buffer that is before the last buffer.
2091 		 * This lets us update the next pointer on the last buffer
2092 		 * without worrying about hardware touching it.
2093 		 * We set the size to 0 to prevent hardware from touching this
2094 		 * buffer.
2095 		 * When the hardware hits the before last buffer with el-bit
2096 		 * and size of 0, it will RNR interrupt, the RUS will go into
2097 		 * the No Resources state.  It will not complete nor write to
2098 		 * this buffer. */
2099 		new_before_last_rfd =
2100 			(struct rfd *)new_before_last_rx->skb->data;
2101 		new_before_last_rfd->size = 0;
2102 		new_before_last_rfd->command |= cpu_to_le16(cb_el);
2103 		pci_dma_sync_single_for_device(nic->pdev,
2104 			new_before_last_rx->dma_addr, sizeof(struct rfd),
2105 			PCI_DMA_BIDIRECTIONAL);
2106 
2107 		/* Now that we have a new stopping point, we can clear the old
2108 		 * stopping point.  We must sync twice to get the proper
2109 		 * ordering on the hardware side of things. */
2110 		old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
2111 		pci_dma_sync_single_for_device(nic->pdev,
2112 			old_before_last_rx->dma_addr, sizeof(struct rfd),
2113 			PCI_DMA_BIDIRECTIONAL);
2114 		old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN
2115 							+ ETH_FCS_LEN);
2116 		pci_dma_sync_single_for_device(nic->pdev,
2117 			old_before_last_rx->dma_addr, sizeof(struct rfd),
2118 			PCI_DMA_BIDIRECTIONAL);
2119 	}
2120 
2121 	if (restart_required) {
2122 		// ack the rnr?
2123 		iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
2124 		e100_start_receiver(nic, nic->rx_to_clean);
2125 		if (work_done)
2126 			(*work_done)++;
2127 	}
2128 }
2129 
2130 static void e100_rx_clean_list(struct nic *nic)
2131 {
2132 	struct rx *rx;
2133 	unsigned int i, count = nic->params.rfds.count;
2134 
2135 	nic->ru_running = RU_UNINITIALIZED;
2136 
2137 	if (nic->rxs) {
2138 		for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2139 			if (rx->skb) {
2140 				pci_unmap_single(nic->pdev, rx->dma_addr,
2141 					RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2142 				dev_kfree_skb(rx->skb);
2143 			}
2144 		}
2145 		kfree(nic->rxs);
2146 		nic->rxs = NULL;
2147 	}
2148 
2149 	nic->rx_to_use = nic->rx_to_clean = NULL;
2150 }
2151 
2152 static int e100_rx_alloc_list(struct nic *nic)
2153 {
2154 	struct rx *rx;
2155 	unsigned int i, count = nic->params.rfds.count;
2156 	struct rfd *before_last;
2157 
2158 	nic->rx_to_use = nic->rx_to_clean = NULL;
2159 	nic->ru_running = RU_UNINITIALIZED;
2160 
2161 	if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC)))
2162 		return -ENOMEM;
2163 
2164 	for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2165 		rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
2166 		rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
2167 		if (e100_rx_alloc_skb(nic, rx)) {
2168 			e100_rx_clean_list(nic);
2169 			return -ENOMEM;
2170 		}
2171 	}
2172 	/* Set the el-bit on the buffer that is before the last buffer.
2173 	 * This lets us update the next pointer on the last buffer without
2174 	 * worrying about hardware touching it.
2175 	 * We set the size to 0 to prevent hardware from touching this buffer.
2176 	 * When the hardware hits the before last buffer with el-bit and size
2177 	 * of 0, it will RNR interrupt, the RU will go into the No Resources
2178 	 * state.  It will not complete nor write to this buffer. */
2179 	rx = nic->rxs->prev->prev;
2180 	before_last = (struct rfd *)rx->skb->data;
2181 	before_last->command |= cpu_to_le16(cb_el);
2182 	before_last->size = 0;
2183 	pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
2184 		sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
2185 
2186 	nic->rx_to_use = nic->rx_to_clean = nic->rxs;
2187 	nic->ru_running = RU_SUSPENDED;
2188 
2189 	return 0;
2190 }
2191 
2192 static irqreturn_t e100_intr(int irq, void *dev_id)
2193 {
2194 	struct net_device *netdev = dev_id;
2195 	struct nic *nic = netdev_priv(netdev);
2196 	u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
2197 
2198 	netif_printk(nic, intr, KERN_DEBUG, nic->netdev,
2199 		     "stat_ack = 0x%02X\n", stat_ack);
2200 
2201 	if (stat_ack == stat_ack_not_ours ||	/* Not our interrupt */
2202 	   stat_ack == stat_ack_not_present)	/* Hardware is ejected */
2203 		return IRQ_NONE;
2204 
2205 	/* Ack interrupt(s) */
2206 	iowrite8(stat_ack, &nic->csr->scb.stat_ack);
2207 
2208 	/* We hit Receive No Resource (RNR); restart RU after cleaning */
2209 	if (stat_ack & stat_ack_rnr)
2210 		nic->ru_running = RU_SUSPENDED;
2211 
2212 	if (likely(napi_schedule_prep(&nic->napi))) {
2213 		e100_disable_irq(nic);
2214 		__napi_schedule(&nic->napi);
2215 	}
2216 
2217 	return IRQ_HANDLED;
2218 }
2219 
2220 static int e100_poll(struct napi_struct *napi, int budget)
2221 {
2222 	struct nic *nic = container_of(napi, struct nic, napi);
2223 	unsigned int work_done = 0;
2224 
2225 	e100_rx_clean(nic, &work_done, budget);
2226 	e100_tx_clean(nic);
2227 
2228 	/* If budget fully consumed, continue polling */
2229 	if (work_done == budget)
2230 		return budget;
2231 
2232 	/* only re-enable interrupt if stack agrees polling is really done */
2233 	if (likely(napi_complete_done(napi, work_done)))
2234 		e100_enable_irq(nic);
2235 
2236 	return work_done;
2237 }
2238 
2239 #ifdef CONFIG_NET_POLL_CONTROLLER
2240 static void e100_netpoll(struct net_device *netdev)
2241 {
2242 	struct nic *nic = netdev_priv(netdev);
2243 
2244 	e100_disable_irq(nic);
2245 	e100_intr(nic->pdev->irq, netdev);
2246 	e100_tx_clean(nic);
2247 	e100_enable_irq(nic);
2248 }
2249 #endif
2250 
2251 static int e100_set_mac_address(struct net_device *netdev, void *p)
2252 {
2253 	struct nic *nic = netdev_priv(netdev);
2254 	struct sockaddr *addr = p;
2255 
2256 	if (!is_valid_ether_addr(addr->sa_data))
2257 		return -EADDRNOTAVAIL;
2258 
2259 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2260 	e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2261 
2262 	return 0;
2263 }
2264 
2265 static int e100_asf(struct nic *nic)
2266 {
2267 	/* ASF can be enabled from eeprom */
2268 	return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2269 	   (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
2270 	   !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
2271 	   ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE);
2272 }
2273 
2274 static int e100_up(struct nic *nic)
2275 {
2276 	int err;
2277 
2278 	if ((err = e100_rx_alloc_list(nic)))
2279 		return err;
2280 	if ((err = e100_alloc_cbs(nic)))
2281 		goto err_rx_clean_list;
2282 	if ((err = e100_hw_init(nic)))
2283 		goto err_clean_cbs;
2284 	e100_set_multicast_list(nic->netdev);
2285 	e100_start_receiver(nic, NULL);
2286 	mod_timer(&nic->watchdog, jiffies);
2287 	if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
2288 		nic->netdev->name, nic->netdev)))
2289 		goto err_no_irq;
2290 	netif_wake_queue(nic->netdev);
2291 	napi_enable(&nic->napi);
2292 	/* enable ints _after_ enabling poll, preventing a race between
2293 	 * disable ints+schedule */
2294 	e100_enable_irq(nic);
2295 	return 0;
2296 
2297 err_no_irq:
2298 	del_timer_sync(&nic->watchdog);
2299 err_clean_cbs:
2300 	e100_clean_cbs(nic);
2301 err_rx_clean_list:
2302 	e100_rx_clean_list(nic);
2303 	return err;
2304 }
2305 
2306 static void e100_down(struct nic *nic)
2307 {
2308 	/* wait here for poll to complete */
2309 	napi_disable(&nic->napi);
2310 	netif_stop_queue(nic->netdev);
2311 	e100_hw_reset(nic);
2312 	free_irq(nic->pdev->irq, nic->netdev);
2313 	del_timer_sync(&nic->watchdog);
2314 	netif_carrier_off(nic->netdev);
2315 	e100_clean_cbs(nic);
2316 	e100_rx_clean_list(nic);
2317 }
2318 
2319 static void e100_tx_timeout(struct net_device *netdev, unsigned int txqueue)
2320 {
2321 	struct nic *nic = netdev_priv(netdev);
2322 
2323 	/* Reset outside of interrupt context, to avoid request_irq
2324 	 * in interrupt context */
2325 	schedule_work(&nic->tx_timeout_task);
2326 }
2327 
2328 static void e100_tx_timeout_task(struct work_struct *work)
2329 {
2330 	struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2331 	struct net_device *netdev = nic->netdev;
2332 
2333 	netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
2334 		     "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status));
2335 
2336 	rtnl_lock();
2337 	if (netif_running(netdev)) {
2338 		e100_down(netdev_priv(netdev));
2339 		e100_up(netdev_priv(netdev));
2340 	}
2341 	rtnl_unlock();
2342 }
2343 
2344 static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2345 {
2346 	int err;
2347 	struct sk_buff *skb;
2348 
2349 	/* Use driver resources to perform internal MAC or PHY
2350 	 * loopback test.  A single packet is prepared and transmitted
2351 	 * in loopback mode, and the test passes if the received
2352 	 * packet compares byte-for-byte to the transmitted packet. */
2353 
2354 	if ((err = e100_rx_alloc_list(nic)))
2355 		return err;
2356 	if ((err = e100_alloc_cbs(nic)))
2357 		goto err_clean_rx;
2358 
2359 	/* ICH PHY loopback is broken so do MAC loopback instead */
2360 	if (nic->flags & ich && loopback_mode == lb_phy)
2361 		loopback_mode = lb_mac;
2362 
2363 	nic->loopback = loopback_mode;
2364 	if ((err = e100_hw_init(nic)))
2365 		goto err_loopback_none;
2366 
2367 	if (loopback_mode == lb_phy)
2368 		mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2369 			BMCR_LOOPBACK);
2370 
2371 	e100_start_receiver(nic, NULL);
2372 
2373 	if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
2374 		err = -ENOMEM;
2375 		goto err_loopback_none;
2376 	}
2377 	skb_put(skb, ETH_DATA_LEN);
2378 	memset(skb->data, 0xFF, ETH_DATA_LEN);
2379 	e100_xmit_frame(skb, nic->netdev);
2380 
2381 	msleep(10);
2382 
2383 	pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr,
2384 			RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2385 
2386 	if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2387 	   skb->data, ETH_DATA_LEN))
2388 		err = -EAGAIN;
2389 
2390 err_loopback_none:
2391 	mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2392 	nic->loopback = lb_none;
2393 	e100_clean_cbs(nic);
2394 	e100_hw_reset(nic);
2395 err_clean_rx:
2396 	e100_rx_clean_list(nic);
2397 	return err;
2398 }
2399 
2400 #define MII_LED_CONTROL	0x1B
2401 #define E100_82552_LED_OVERRIDE 0x19
2402 #define E100_82552_LED_ON       0x000F /* LEDTX and LED_RX both on */
2403 #define E100_82552_LED_OFF      0x000A /* LEDTX and LED_RX both off */
2404 
2405 static int e100_get_link_ksettings(struct net_device *netdev,
2406 				   struct ethtool_link_ksettings *cmd)
2407 {
2408 	struct nic *nic = netdev_priv(netdev);
2409 
2410 	mii_ethtool_get_link_ksettings(&nic->mii, cmd);
2411 
2412 	return 0;
2413 }
2414 
2415 static int e100_set_link_ksettings(struct net_device *netdev,
2416 				   const struct ethtool_link_ksettings *cmd)
2417 {
2418 	struct nic *nic = netdev_priv(netdev);
2419 	int err;
2420 
2421 	mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2422 	err = mii_ethtool_set_link_ksettings(&nic->mii, cmd);
2423 	e100_exec_cb(nic, NULL, e100_configure);
2424 
2425 	return err;
2426 }
2427 
2428 static void e100_get_drvinfo(struct net_device *netdev,
2429 	struct ethtool_drvinfo *info)
2430 {
2431 	struct nic *nic = netdev_priv(netdev);
2432 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2433 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2434 	strlcpy(info->bus_info, pci_name(nic->pdev),
2435 		sizeof(info->bus_info));
2436 }
2437 
2438 #define E100_PHY_REGS 0x1C
2439 static int e100_get_regs_len(struct net_device *netdev)
2440 {
2441 	struct nic *nic = netdev_priv(netdev);
2442 	return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf);
2443 }
2444 
2445 static void e100_get_regs(struct net_device *netdev,
2446 	struct ethtool_regs *regs, void *p)
2447 {
2448 	struct nic *nic = netdev_priv(netdev);
2449 	u32 *buff = p;
2450 	int i;
2451 
2452 	regs->version = (1 << 24) | nic->pdev->revision;
2453 	buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2454 		ioread8(&nic->csr->scb.cmd_lo) << 16 |
2455 		ioread16(&nic->csr->scb.status);
2456 	for (i = E100_PHY_REGS; i >= 0; i--)
2457 		buff[1 + E100_PHY_REGS - i] =
2458 			mdio_read(netdev, nic->mii.phy_id, i);
2459 	memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2460 	e100_exec_cb(nic, NULL, e100_dump);
2461 	msleep(10);
2462 	memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
2463 		sizeof(nic->mem->dump_buf));
2464 }
2465 
2466 static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2467 {
2468 	struct nic *nic = netdev_priv(netdev);
2469 	wol->supported = (nic->mac >= mac_82558_D101_A4) ?  WAKE_MAGIC : 0;
2470 	wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2471 }
2472 
2473 static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2474 {
2475 	struct nic *nic = netdev_priv(netdev);
2476 
2477 	if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
2478 	    !device_can_wakeup(&nic->pdev->dev))
2479 		return -EOPNOTSUPP;
2480 
2481 	if (wol->wolopts)
2482 		nic->flags |= wol_magic;
2483 	else
2484 		nic->flags &= ~wol_magic;
2485 
2486 	device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
2487 
2488 	e100_exec_cb(nic, NULL, e100_configure);
2489 
2490 	return 0;
2491 }
2492 
2493 static u32 e100_get_msglevel(struct net_device *netdev)
2494 {
2495 	struct nic *nic = netdev_priv(netdev);
2496 	return nic->msg_enable;
2497 }
2498 
2499 static void e100_set_msglevel(struct net_device *netdev, u32 value)
2500 {
2501 	struct nic *nic = netdev_priv(netdev);
2502 	nic->msg_enable = value;
2503 }
2504 
2505 static int e100_nway_reset(struct net_device *netdev)
2506 {
2507 	struct nic *nic = netdev_priv(netdev);
2508 	return mii_nway_restart(&nic->mii);
2509 }
2510 
2511 static u32 e100_get_link(struct net_device *netdev)
2512 {
2513 	struct nic *nic = netdev_priv(netdev);
2514 	return mii_link_ok(&nic->mii);
2515 }
2516 
2517 static int e100_get_eeprom_len(struct net_device *netdev)
2518 {
2519 	struct nic *nic = netdev_priv(netdev);
2520 	return nic->eeprom_wc << 1;
2521 }
2522 
2523 #define E100_EEPROM_MAGIC	0x1234
2524 static int e100_get_eeprom(struct net_device *netdev,
2525 	struct ethtool_eeprom *eeprom, u8 *bytes)
2526 {
2527 	struct nic *nic = netdev_priv(netdev);
2528 
2529 	eeprom->magic = E100_EEPROM_MAGIC;
2530 	memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2531 
2532 	return 0;
2533 }
2534 
2535 static int e100_set_eeprom(struct net_device *netdev,
2536 	struct ethtool_eeprom *eeprom, u8 *bytes)
2537 {
2538 	struct nic *nic = netdev_priv(netdev);
2539 
2540 	if (eeprom->magic != E100_EEPROM_MAGIC)
2541 		return -EINVAL;
2542 
2543 	memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2544 
2545 	return e100_eeprom_save(nic, eeprom->offset >> 1,
2546 		(eeprom->len >> 1) + 1);
2547 }
2548 
2549 static void e100_get_ringparam(struct net_device *netdev,
2550 	struct ethtool_ringparam *ring)
2551 {
2552 	struct nic *nic = netdev_priv(netdev);
2553 	struct param_range *rfds = &nic->params.rfds;
2554 	struct param_range *cbs = &nic->params.cbs;
2555 
2556 	ring->rx_max_pending = rfds->max;
2557 	ring->tx_max_pending = cbs->max;
2558 	ring->rx_pending = rfds->count;
2559 	ring->tx_pending = cbs->count;
2560 }
2561 
2562 static int e100_set_ringparam(struct net_device *netdev,
2563 	struct ethtool_ringparam *ring)
2564 {
2565 	struct nic *nic = netdev_priv(netdev);
2566 	struct param_range *rfds = &nic->params.rfds;
2567 	struct param_range *cbs = &nic->params.cbs;
2568 
2569 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2570 		return -EINVAL;
2571 
2572 	if (netif_running(netdev))
2573 		e100_down(nic);
2574 	rfds->count = max(ring->rx_pending, rfds->min);
2575 	rfds->count = min(rfds->count, rfds->max);
2576 	cbs->count = max(ring->tx_pending, cbs->min);
2577 	cbs->count = min(cbs->count, cbs->max);
2578 	netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n",
2579 		   rfds->count, cbs->count);
2580 	if (netif_running(netdev))
2581 		e100_up(nic);
2582 
2583 	return 0;
2584 }
2585 
2586 static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2587 	"Link test     (on/offline)",
2588 	"Eeprom test   (on/offline)",
2589 	"Self test        (offline)",
2590 	"Mac loopback     (offline)",
2591 	"Phy loopback     (offline)",
2592 };
2593 #define E100_TEST_LEN	ARRAY_SIZE(e100_gstrings_test)
2594 
2595 static void e100_diag_test(struct net_device *netdev,
2596 	struct ethtool_test *test, u64 *data)
2597 {
2598 	struct ethtool_cmd cmd;
2599 	struct nic *nic = netdev_priv(netdev);
2600 	int i, err;
2601 
2602 	memset(data, 0, E100_TEST_LEN * sizeof(u64));
2603 	data[0] = !mii_link_ok(&nic->mii);
2604 	data[1] = e100_eeprom_load(nic);
2605 	if (test->flags & ETH_TEST_FL_OFFLINE) {
2606 
2607 		/* save speed, duplex & autoneg settings */
2608 		err = mii_ethtool_gset(&nic->mii, &cmd);
2609 
2610 		if (netif_running(netdev))
2611 			e100_down(nic);
2612 		data[2] = e100_self_test(nic);
2613 		data[3] = e100_loopback_test(nic, lb_mac);
2614 		data[4] = e100_loopback_test(nic, lb_phy);
2615 
2616 		/* restore speed, duplex & autoneg settings */
2617 		err = mii_ethtool_sset(&nic->mii, &cmd);
2618 
2619 		if (netif_running(netdev))
2620 			e100_up(nic);
2621 	}
2622 	for (i = 0; i < E100_TEST_LEN; i++)
2623 		test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2624 
2625 	msleep_interruptible(4 * 1000);
2626 }
2627 
2628 static int e100_set_phys_id(struct net_device *netdev,
2629 			    enum ethtool_phys_id_state state)
2630 {
2631 	struct nic *nic = netdev_priv(netdev);
2632 	enum led_state {
2633 		led_on     = 0x01,
2634 		led_off    = 0x04,
2635 		led_on_559 = 0x05,
2636 		led_on_557 = 0x07,
2637 	};
2638 	u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
2639 		MII_LED_CONTROL;
2640 	u16 leds = 0;
2641 
2642 	switch (state) {
2643 	case ETHTOOL_ID_ACTIVE:
2644 		return 2;
2645 
2646 	case ETHTOOL_ID_ON:
2647 		leds = (nic->phy == phy_82552_v) ? E100_82552_LED_ON :
2648 		       (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
2649 		break;
2650 
2651 	case ETHTOOL_ID_OFF:
2652 		leds = (nic->phy == phy_82552_v) ? E100_82552_LED_OFF : led_off;
2653 		break;
2654 
2655 	case ETHTOOL_ID_INACTIVE:
2656 		break;
2657 	}
2658 
2659 	mdio_write(netdev, nic->mii.phy_id, led_reg, leds);
2660 	return 0;
2661 }
2662 
2663 static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2664 	"rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2665 	"tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2666 	"rx_length_errors", "rx_over_errors", "rx_crc_errors",
2667 	"rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2668 	"tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2669 	"tx_heartbeat_errors", "tx_window_errors",
2670 	/* device-specific stats */
2671 	"tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2672 	"tx_flow_control_pause", "rx_flow_control_pause",
2673 	"rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2674 	"rx_short_frame_errors", "rx_over_length_errors",
2675 };
2676 #define E100_NET_STATS_LEN	21
2677 #define E100_STATS_LEN	ARRAY_SIZE(e100_gstrings_stats)
2678 
2679 static int e100_get_sset_count(struct net_device *netdev, int sset)
2680 {
2681 	switch (sset) {
2682 	case ETH_SS_TEST:
2683 		return E100_TEST_LEN;
2684 	case ETH_SS_STATS:
2685 		return E100_STATS_LEN;
2686 	default:
2687 		return -EOPNOTSUPP;
2688 	}
2689 }
2690 
2691 static void e100_get_ethtool_stats(struct net_device *netdev,
2692 	struct ethtool_stats *stats, u64 *data)
2693 {
2694 	struct nic *nic = netdev_priv(netdev);
2695 	int i;
2696 
2697 	for (i = 0; i < E100_NET_STATS_LEN; i++)
2698 		data[i] = ((unsigned long *)&netdev->stats)[i];
2699 
2700 	data[i++] = nic->tx_deferred;
2701 	data[i++] = nic->tx_single_collisions;
2702 	data[i++] = nic->tx_multiple_collisions;
2703 	data[i++] = nic->tx_fc_pause;
2704 	data[i++] = nic->rx_fc_pause;
2705 	data[i++] = nic->rx_fc_unsupported;
2706 	data[i++] = nic->tx_tco_frames;
2707 	data[i++] = nic->rx_tco_frames;
2708 	data[i++] = nic->rx_short_frame_errors;
2709 	data[i++] = nic->rx_over_length_errors;
2710 }
2711 
2712 static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2713 {
2714 	switch (stringset) {
2715 	case ETH_SS_TEST:
2716 		memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
2717 		break;
2718 	case ETH_SS_STATS:
2719 		memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
2720 		break;
2721 	}
2722 }
2723 
2724 static const struct ethtool_ops e100_ethtool_ops = {
2725 	.get_drvinfo		= e100_get_drvinfo,
2726 	.get_regs_len		= e100_get_regs_len,
2727 	.get_regs		= e100_get_regs,
2728 	.get_wol		= e100_get_wol,
2729 	.set_wol		= e100_set_wol,
2730 	.get_msglevel		= e100_get_msglevel,
2731 	.set_msglevel		= e100_set_msglevel,
2732 	.nway_reset		= e100_nway_reset,
2733 	.get_link		= e100_get_link,
2734 	.get_eeprom_len		= e100_get_eeprom_len,
2735 	.get_eeprom		= e100_get_eeprom,
2736 	.set_eeprom		= e100_set_eeprom,
2737 	.get_ringparam		= e100_get_ringparam,
2738 	.set_ringparam		= e100_set_ringparam,
2739 	.self_test		= e100_diag_test,
2740 	.get_strings		= e100_get_strings,
2741 	.set_phys_id		= e100_set_phys_id,
2742 	.get_ethtool_stats	= e100_get_ethtool_stats,
2743 	.get_sset_count		= e100_get_sset_count,
2744 	.get_ts_info		= ethtool_op_get_ts_info,
2745 	.get_link_ksettings	= e100_get_link_ksettings,
2746 	.set_link_ksettings	= e100_set_link_ksettings,
2747 };
2748 
2749 static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2750 {
2751 	struct nic *nic = netdev_priv(netdev);
2752 
2753 	return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2754 }
2755 
2756 static int e100_alloc(struct nic *nic)
2757 {
2758 	nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
2759 		&nic->dma_addr);
2760 	return nic->mem ? 0 : -ENOMEM;
2761 }
2762 
2763 static void e100_free(struct nic *nic)
2764 {
2765 	if (nic->mem) {
2766 		pci_free_consistent(nic->pdev, sizeof(struct mem),
2767 			nic->mem, nic->dma_addr);
2768 		nic->mem = NULL;
2769 	}
2770 }
2771 
2772 static int e100_open(struct net_device *netdev)
2773 {
2774 	struct nic *nic = netdev_priv(netdev);
2775 	int err = 0;
2776 
2777 	netif_carrier_off(netdev);
2778 	if ((err = e100_up(nic)))
2779 		netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n");
2780 	return err;
2781 }
2782 
2783 static int e100_close(struct net_device *netdev)
2784 {
2785 	e100_down(netdev_priv(netdev));
2786 	return 0;
2787 }
2788 
2789 static int e100_set_features(struct net_device *netdev,
2790 			     netdev_features_t features)
2791 {
2792 	struct nic *nic = netdev_priv(netdev);
2793 	netdev_features_t changed = features ^ netdev->features;
2794 
2795 	if (!(changed & (NETIF_F_RXFCS | NETIF_F_RXALL)))
2796 		return 0;
2797 
2798 	netdev->features = features;
2799 	e100_exec_cb(nic, NULL, e100_configure);
2800 	return 1;
2801 }
2802 
2803 static const struct net_device_ops e100_netdev_ops = {
2804 	.ndo_open		= e100_open,
2805 	.ndo_stop		= e100_close,
2806 	.ndo_start_xmit		= e100_xmit_frame,
2807 	.ndo_validate_addr	= eth_validate_addr,
2808 	.ndo_set_rx_mode	= e100_set_multicast_list,
2809 	.ndo_set_mac_address	= e100_set_mac_address,
2810 	.ndo_do_ioctl		= e100_do_ioctl,
2811 	.ndo_tx_timeout		= e100_tx_timeout,
2812 #ifdef CONFIG_NET_POLL_CONTROLLER
2813 	.ndo_poll_controller	= e100_netpoll,
2814 #endif
2815 	.ndo_set_features	= e100_set_features,
2816 };
2817 
2818 static int e100_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2819 {
2820 	struct net_device *netdev;
2821 	struct nic *nic;
2822 	int err;
2823 
2824 	if (!(netdev = alloc_etherdev(sizeof(struct nic))))
2825 		return -ENOMEM;
2826 
2827 	netdev->hw_features |= NETIF_F_RXFCS;
2828 	netdev->priv_flags |= IFF_SUPP_NOFCS;
2829 	netdev->hw_features |= NETIF_F_RXALL;
2830 
2831 	netdev->netdev_ops = &e100_netdev_ops;
2832 	netdev->ethtool_ops = &e100_ethtool_ops;
2833 	netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2834 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2835 
2836 	nic = netdev_priv(netdev);
2837 	netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
2838 	nic->netdev = netdev;
2839 	nic->pdev = pdev;
2840 	nic->msg_enable = (1 << debug) - 1;
2841 	nic->mdio_ctrl = mdio_ctrl_hw;
2842 	pci_set_drvdata(pdev, netdev);
2843 
2844 	if ((err = pci_enable_device(pdev))) {
2845 		netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n");
2846 		goto err_out_free_dev;
2847 	}
2848 
2849 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2850 		netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n");
2851 		err = -ENODEV;
2852 		goto err_out_disable_pdev;
2853 	}
2854 
2855 	if ((err = pci_request_regions(pdev, DRV_NAME))) {
2856 		netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n");
2857 		goto err_out_disable_pdev;
2858 	}
2859 
2860 	if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
2861 		netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n");
2862 		goto err_out_free_res;
2863 	}
2864 
2865 	SET_NETDEV_DEV(netdev, &pdev->dev);
2866 
2867 	if (use_io)
2868 		netif_info(nic, probe, nic->netdev, "using i/o access mode\n");
2869 
2870 	nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
2871 	if (!nic->csr) {
2872 		netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n");
2873 		err = -ENOMEM;
2874 		goto err_out_free_res;
2875 	}
2876 
2877 	if (ent->driver_data)
2878 		nic->flags |= ich;
2879 	else
2880 		nic->flags &= ~ich;
2881 
2882 	e100_get_defaults(nic);
2883 
2884 	/* D100 MAC doesn't allow rx of vlan packets with normal MTU */
2885 	if (nic->mac < mac_82558_D101_A4)
2886 		netdev->features |= NETIF_F_VLAN_CHALLENGED;
2887 
2888 	/* locks must be initialized before calling hw_reset */
2889 	spin_lock_init(&nic->cb_lock);
2890 	spin_lock_init(&nic->cmd_lock);
2891 	spin_lock_init(&nic->mdio_lock);
2892 
2893 	/* Reset the device before pci_set_master() in case device is in some
2894 	 * funky state and has an interrupt pending - hint: we don't have the
2895 	 * interrupt handler registered yet. */
2896 	e100_hw_reset(nic);
2897 
2898 	pci_set_master(pdev);
2899 
2900 	timer_setup(&nic->watchdog, e100_watchdog, 0);
2901 
2902 	INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2903 
2904 	if ((err = e100_alloc(nic))) {
2905 		netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n");
2906 		goto err_out_iounmap;
2907 	}
2908 
2909 	if ((err = e100_eeprom_load(nic)))
2910 		goto err_out_free;
2911 
2912 	e100_phy_init(nic);
2913 
2914 	memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
2915 	if (!is_valid_ether_addr(netdev->dev_addr)) {
2916 		if (!eeprom_bad_csum_allow) {
2917 			netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n");
2918 			err = -EAGAIN;
2919 			goto err_out_free;
2920 		} else {
2921 			netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n");
2922 		}
2923 	}
2924 
2925 	/* Wol magic packet can be enabled from eeprom */
2926 	if ((nic->mac >= mac_82558_D101_A4) &&
2927 	   (nic->eeprom[eeprom_id] & eeprom_id_wol)) {
2928 		nic->flags |= wol_magic;
2929 		device_set_wakeup_enable(&pdev->dev, true);
2930 	}
2931 
2932 	/* ack any pending wake events, disable PME */
2933 	pci_pme_active(pdev, false);
2934 
2935 	strcpy(netdev->name, "eth%d");
2936 	if ((err = register_netdev(netdev))) {
2937 		netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n");
2938 		goto err_out_free;
2939 	}
2940 	nic->cbs_pool = dma_pool_create(netdev->name,
2941 			   &nic->pdev->dev,
2942 			   nic->params.cbs.max * sizeof(struct cb),
2943 			   sizeof(u32),
2944 			   0);
2945 	if (!nic->cbs_pool) {
2946 		netif_err(nic, probe, nic->netdev, "Cannot create DMA pool, aborting\n");
2947 		err = -ENOMEM;
2948 		goto err_out_pool;
2949 	}
2950 	netif_info(nic, probe, nic->netdev,
2951 		   "addr 0x%llx, irq %d, MAC addr %pM\n",
2952 		   (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
2953 		   pdev->irq, netdev->dev_addr);
2954 
2955 	return 0;
2956 
2957 err_out_pool:
2958 	unregister_netdev(netdev);
2959 err_out_free:
2960 	e100_free(nic);
2961 err_out_iounmap:
2962 	pci_iounmap(pdev, nic->csr);
2963 err_out_free_res:
2964 	pci_release_regions(pdev);
2965 err_out_disable_pdev:
2966 	pci_disable_device(pdev);
2967 err_out_free_dev:
2968 	free_netdev(netdev);
2969 	return err;
2970 }
2971 
2972 static void e100_remove(struct pci_dev *pdev)
2973 {
2974 	struct net_device *netdev = pci_get_drvdata(pdev);
2975 
2976 	if (netdev) {
2977 		struct nic *nic = netdev_priv(netdev);
2978 		unregister_netdev(netdev);
2979 		e100_free(nic);
2980 		pci_iounmap(pdev, nic->csr);
2981 		dma_pool_destroy(nic->cbs_pool);
2982 		free_netdev(netdev);
2983 		pci_release_regions(pdev);
2984 		pci_disable_device(pdev);
2985 	}
2986 }
2987 
2988 #define E100_82552_SMARTSPEED   0x14   /* SmartSpeed Ctrl register */
2989 #define E100_82552_REV_ANEG     0x0200 /* Reverse auto-negotiation */
2990 #define E100_82552_ANEG_NOW     0x0400 /* Auto-negotiate now */
2991 static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake)
2992 {
2993 	struct net_device *netdev = pci_get_drvdata(pdev);
2994 	struct nic *nic = netdev_priv(netdev);
2995 
2996 	if (netif_running(netdev))
2997 		e100_down(nic);
2998 	netif_device_detach(netdev);
2999 
3000 	pci_save_state(pdev);
3001 
3002 	if ((nic->flags & wol_magic) | e100_asf(nic)) {
3003 		/* enable reverse auto-negotiation */
3004 		if (nic->phy == phy_82552_v) {
3005 			u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3006 			                           E100_82552_SMARTSPEED);
3007 
3008 			mdio_write(netdev, nic->mii.phy_id,
3009 			           E100_82552_SMARTSPEED, smartspeed |
3010 			           E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
3011 		}
3012 		*enable_wake = true;
3013 	} else {
3014 		*enable_wake = false;
3015 	}
3016 
3017 	pci_clear_master(pdev);
3018 }
3019 
3020 static int __e100_power_off(struct pci_dev *pdev, bool wake)
3021 {
3022 	if (wake)
3023 		return pci_prepare_to_sleep(pdev);
3024 
3025 	pci_wake_from_d3(pdev, false);
3026 	pci_set_power_state(pdev, PCI_D3hot);
3027 
3028 	return 0;
3029 }
3030 
3031 #ifdef CONFIG_PM
3032 static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
3033 {
3034 	bool wake;
3035 	__e100_shutdown(pdev, &wake);
3036 	return __e100_power_off(pdev, wake);
3037 }
3038 
3039 static int e100_resume(struct pci_dev *pdev)
3040 {
3041 	struct net_device *netdev = pci_get_drvdata(pdev);
3042 	struct nic *nic = netdev_priv(netdev);
3043 
3044 	pci_set_power_state(pdev, PCI_D0);
3045 	pci_restore_state(pdev);
3046 	/* ack any pending wake events, disable PME */
3047 	pci_enable_wake(pdev, PCI_D0, 0);
3048 
3049 	/* disable reverse auto-negotiation */
3050 	if (nic->phy == phy_82552_v) {
3051 		u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3052 		                           E100_82552_SMARTSPEED);
3053 
3054 		mdio_write(netdev, nic->mii.phy_id,
3055 		           E100_82552_SMARTSPEED,
3056 		           smartspeed & ~(E100_82552_REV_ANEG));
3057 	}
3058 
3059 	netif_device_attach(netdev);
3060 	if (netif_running(netdev))
3061 		e100_up(nic);
3062 
3063 	return 0;
3064 }
3065 #endif /* CONFIG_PM */
3066 
3067 static void e100_shutdown(struct pci_dev *pdev)
3068 {
3069 	bool wake;
3070 	__e100_shutdown(pdev, &wake);
3071 	if (system_state == SYSTEM_POWER_OFF)
3072 		__e100_power_off(pdev, wake);
3073 }
3074 
3075 /* ------------------ PCI Error Recovery infrastructure  -------------- */
3076 /**
3077  * e100_io_error_detected - called when PCI error is detected.
3078  * @pdev: Pointer to PCI device
3079  * @state: The current pci connection state
3080  */
3081 static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
3082 {
3083 	struct net_device *netdev = pci_get_drvdata(pdev);
3084 	struct nic *nic = netdev_priv(netdev);
3085 
3086 	netif_device_detach(netdev);
3087 
3088 	if (state == pci_channel_io_perm_failure)
3089 		return PCI_ERS_RESULT_DISCONNECT;
3090 
3091 	if (netif_running(netdev))
3092 		e100_down(nic);
3093 	pci_disable_device(pdev);
3094 
3095 	/* Request a slot reset. */
3096 	return PCI_ERS_RESULT_NEED_RESET;
3097 }
3098 
3099 /**
3100  * e100_io_slot_reset - called after the pci bus has been reset.
3101  * @pdev: Pointer to PCI device
3102  *
3103  * Restart the card from scratch.
3104  */
3105 static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
3106 {
3107 	struct net_device *netdev = pci_get_drvdata(pdev);
3108 	struct nic *nic = netdev_priv(netdev);
3109 
3110 	if (pci_enable_device(pdev)) {
3111 		pr_err("Cannot re-enable PCI device after reset\n");
3112 		return PCI_ERS_RESULT_DISCONNECT;
3113 	}
3114 	pci_set_master(pdev);
3115 
3116 	/* Only one device per card can do a reset */
3117 	if (0 != PCI_FUNC(pdev->devfn))
3118 		return PCI_ERS_RESULT_RECOVERED;
3119 	e100_hw_reset(nic);
3120 	e100_phy_init(nic);
3121 
3122 	return PCI_ERS_RESULT_RECOVERED;
3123 }
3124 
3125 /**
3126  * e100_io_resume - resume normal operations
3127  * @pdev: Pointer to PCI device
3128  *
3129  * Resume normal operations after an error recovery
3130  * sequence has been completed.
3131  */
3132 static void e100_io_resume(struct pci_dev *pdev)
3133 {
3134 	struct net_device *netdev = pci_get_drvdata(pdev);
3135 	struct nic *nic = netdev_priv(netdev);
3136 
3137 	/* ack any pending wake events, disable PME */
3138 	pci_enable_wake(pdev, PCI_D0, 0);
3139 
3140 	netif_device_attach(netdev);
3141 	if (netif_running(netdev)) {
3142 		e100_open(netdev);
3143 		mod_timer(&nic->watchdog, jiffies);
3144 	}
3145 }
3146 
3147 static const struct pci_error_handlers e100_err_handler = {
3148 	.error_detected = e100_io_error_detected,
3149 	.slot_reset = e100_io_slot_reset,
3150 	.resume = e100_io_resume,
3151 };
3152 
3153 static struct pci_driver e100_driver = {
3154 	.name =         DRV_NAME,
3155 	.id_table =     e100_id_table,
3156 	.probe =        e100_probe,
3157 	.remove =       e100_remove,
3158 #ifdef CONFIG_PM
3159 	/* Power Management hooks */
3160 	.suspend =      e100_suspend,
3161 	.resume =       e100_resume,
3162 #endif
3163 	.shutdown =     e100_shutdown,
3164 	.err_handler = &e100_err_handler,
3165 };
3166 
3167 static int __init e100_init_module(void)
3168 {
3169 	if (((1 << debug) - 1) & NETIF_MSG_DRV) {
3170 		pr_info("%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
3171 		pr_info("%s\n", DRV_COPYRIGHT);
3172 	}
3173 	return pci_register_driver(&e100_driver);
3174 }
3175 
3176 static void __exit e100_cleanup_module(void)
3177 {
3178 	pci_unregister_driver(&e100_driver);
3179 }
3180 
3181 module_init(e100_init_module);
3182 module_exit(e100_cleanup_module);
3183