xref: /linux/drivers/net/ethernet/intel/e100.c (revision 4b132aacb0768ac1e652cf517097ea6f237214b9)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2006 Intel Corporation. */
3 
4 /*
5  *	e100.c: Intel(R) PRO/100 ethernet driver
6  *
7  *	(Re)written 2003 by scott.feldman@intel.com.  Based loosely on
8  *	original e100 driver, but better described as a munging of
9  *	e100, e1000, eepro100, tg3, 8139cp, and other drivers.
10  *
11  *	References:
12  *		Intel 8255x 10/100 Mbps Ethernet Controller Family,
13  *		Open Source Software Developers Manual,
14  *		http://sourceforge.net/projects/e1000
15  *
16  *
17  *	                      Theory of Operation
18  *
19  *	I.   General
20  *
21  *	The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
22  *	controller family, which includes the 82557, 82558, 82559, 82550,
23  *	82551, and 82562 devices.  82558 and greater controllers
24  *	integrate the Intel 82555 PHY.  The controllers are used in
25  *	server and client network interface cards, as well as in
26  *	LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
27  *	configurations.  8255x supports a 32-bit linear addressing
28  *	mode and operates at 33Mhz PCI clock rate.
29  *
30  *	II.  Driver Operation
31  *
32  *	Memory-mapped mode is used exclusively to access the device's
33  *	shared-memory structure, the Control/Status Registers (CSR). All
34  *	setup, configuration, and control of the device, including queuing
35  *	of Tx, Rx, and configuration commands is through the CSR.
36  *	cmd_lock serializes accesses to the CSR command register.  cb_lock
37  *	protects the shared Command Block List (CBL).
38  *
39  *	8255x is highly MII-compliant and all access to the PHY go
40  *	through the Management Data Interface (MDI).  Consequently, the
41  *	driver leverages the mii.c library shared with other MII-compliant
42  *	devices.
43  *
44  *	Big- and Little-Endian byte order as well as 32- and 64-bit
45  *	archs are supported.  Weak-ordered memory and non-cache-coherent
46  *	archs are supported.
47  *
48  *	III. Transmit
49  *
50  *	A Tx skb is mapped and hangs off of a TCB.  TCBs are linked
51  *	together in a fixed-size ring (CBL) thus forming the flexible mode
52  *	memory structure.  A TCB marked with the suspend-bit indicates
53  *	the end of the ring.  The last TCB processed suspends the
54  *	controller, and the controller can be restarted by issue a CU
55  *	resume command to continue from the suspend point, or a CU start
56  *	command to start at a given position in the ring.
57  *
58  *	Non-Tx commands (config, multicast setup, etc) are linked
59  *	into the CBL ring along with Tx commands.  The common structure
60  *	used for both Tx and non-Tx commands is the Command Block (CB).
61  *
62  *	cb_to_use is the next CB to use for queuing a command; cb_to_clean
63  *	is the next CB to check for completion; cb_to_send is the first
64  *	CB to start on in case of a previous failure to resume.  CB clean
65  *	up happens in interrupt context in response to a CU interrupt.
66  *	cbs_avail keeps track of number of free CB resources available.
67  *
68  * 	Hardware padding of short packets to minimum packet size is
69  * 	enabled.  82557 pads with 7Eh, while the later controllers pad
70  * 	with 00h.
71  *
72  *	IV.  Receive
73  *
74  *	The Receive Frame Area (RFA) comprises a ring of Receive Frame
75  *	Descriptors (RFD) + data buffer, thus forming the simplified mode
76  *	memory structure.  Rx skbs are allocated to contain both the RFD
77  *	and the data buffer, but the RFD is pulled off before the skb is
78  *	indicated.  The data buffer is aligned such that encapsulated
79  *	protocol headers are u32-aligned.  Since the RFD is part of the
80  *	mapped shared memory, and completion status is contained within
81  *	the RFD, the RFD must be dma_sync'ed to maintain a consistent
82  *	view from software and hardware.
83  *
84  *	In order to keep updates to the RFD link field from colliding with
85  *	hardware writes to mark packets complete, we use the feature that
86  *	hardware will not write to a size 0 descriptor and mark the previous
87  *	packet as end-of-list (EL).   After updating the link, we remove EL
88  *	and only then restore the size such that hardware may use the
89  *	previous-to-end RFD.
90  *
91  *	Under typical operation, the  receive unit (RU) is start once,
92  *	and the controller happily fills RFDs as frames arrive.  If
93  *	replacement RFDs cannot be allocated, or the RU goes non-active,
94  *	the RU must be restarted.  Frame arrival generates an interrupt,
95  *	and Rx indication and re-allocation happen in the same context,
96  *	therefore no locking is required.  A software-generated interrupt
97  *	is generated from the watchdog to recover from a failed allocation
98  *	scenario where all Rx resources have been indicated and none re-
99  *	placed.
100  *
101  *	V.   Miscellaneous
102  *
103  * 	VLAN offloading of tagging, stripping and filtering is not
104  * 	supported, but driver will accommodate the extra 4-byte VLAN tag
105  * 	for processing by upper layers.  Tx/Rx Checksum offloading is not
106  * 	supported.  Tx Scatter/Gather is not supported.  Jumbo Frames is
107  * 	not supported (hardware limitation).
108  *
109  * 	MagicPacket(tm) WoL support is enabled/disabled via ethtool.
110  *
111  * 	Thanks to JC (jchapman@katalix.com) for helping with
112  * 	testing/troubleshooting the development driver.
113  *
114  * 	TODO:
115  * 	o several entry points race with dev->close
116  * 	o check for tx-no-resources/stop Q races with tx clean/wake Q
117  *
118  *	FIXES:
119  * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
120  *	- Stratus87247: protect MDI control register manipulations
121  * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
122  *      - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
123  */
124 
125 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
126 
127 #include <linux/hardirq.h>
128 #include <linux/interrupt.h>
129 #include <linux/module.h>
130 #include <linux/moduleparam.h>
131 #include <linux/kernel.h>
132 #include <linux/types.h>
133 #include <linux/sched.h>
134 #include <linux/slab.h>
135 #include <linux/delay.h>
136 #include <linux/init.h>
137 #include <linux/pci.h>
138 #include <linux/dma-mapping.h>
139 #include <linux/dmapool.h>
140 #include <linux/netdevice.h>
141 #include <linux/etherdevice.h>
142 #include <linux/mii.h>
143 #include <linux/if_vlan.h>
144 #include <linux/skbuff.h>
145 #include <linux/ethtool.h>
146 #include <linux/string.h>
147 #include <linux/firmware.h>
148 #include <linux/rtnetlink.h>
149 #include <asm/unaligned.h>
150 
151 
152 #define DRV_NAME		"e100"
153 #define DRV_DESCRIPTION		"Intel(R) PRO/100 Network Driver"
154 #define DRV_COPYRIGHT		"Copyright(c) 1999-2006 Intel Corporation"
155 
156 #define E100_WATCHDOG_PERIOD	(2 * HZ)
157 #define E100_NAPI_WEIGHT	16
158 
159 #define FIRMWARE_D101M		"e100/d101m_ucode.bin"
160 #define FIRMWARE_D101S		"e100/d101s_ucode.bin"
161 #define FIRMWARE_D102E		"e100/d102e_ucode.bin"
162 
163 MODULE_DESCRIPTION(DRV_DESCRIPTION);
164 MODULE_LICENSE("GPL v2");
165 MODULE_FIRMWARE(FIRMWARE_D101M);
166 MODULE_FIRMWARE(FIRMWARE_D101S);
167 MODULE_FIRMWARE(FIRMWARE_D102E);
168 
169 static int debug = 3;
170 static int eeprom_bad_csum_allow = 0;
171 static int use_io = 0;
172 module_param(debug, int, 0);
173 module_param(eeprom_bad_csum_allow, int, 0444);
174 module_param(use_io, int, 0444);
175 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
176 MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
177 MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
178 
179 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
180 	PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
181 	PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
182 static const struct pci_device_id e100_id_table[] = {
183 	INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
184 	INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
185 	INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
186 	INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
187 	INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
188 	INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
189 	INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
190 	INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
191 	INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
192 	INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
193 	INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
194 	INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
195 	INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
196 	INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
197 	INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
198 	INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
199 	INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
200 	INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
201 	INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
202 	INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
203 	INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
204 	INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
205 	INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
206 	INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
207 	INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
208 	INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
209 	INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
210 	INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
211 	INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
212 	INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
213 	INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
214 	INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
215 	INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
216 	INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
217 	INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
218 	INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
219 	INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
220 	INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
221 	INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
222 	INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
223 	INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
224 	INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
225 	{ 0, }
226 };
227 MODULE_DEVICE_TABLE(pci, e100_id_table);
228 
229 enum mac {
230 	mac_82557_D100_A  = 0,
231 	mac_82557_D100_B  = 1,
232 	mac_82557_D100_C  = 2,
233 	mac_82558_D101_A4 = 4,
234 	mac_82558_D101_B0 = 5,
235 	mac_82559_D101M   = 8,
236 	mac_82559_D101S   = 9,
237 	mac_82550_D102    = 12,
238 	mac_82550_D102_C  = 13,
239 	mac_82551_E       = 14,
240 	mac_82551_F       = 15,
241 	mac_82551_10      = 16,
242 	mac_unknown       = 0xFF,
243 };
244 
245 enum phy {
246 	phy_100a     = 0x000003E0,
247 	phy_100c     = 0x035002A8,
248 	phy_82555_tx = 0x015002A8,
249 	phy_nsc_tx   = 0x5C002000,
250 	phy_82562_et = 0x033002A8,
251 	phy_82562_em = 0x032002A8,
252 	phy_82562_ek = 0x031002A8,
253 	phy_82562_eh = 0x017002A8,
254 	phy_82552_v  = 0xd061004d,
255 	phy_unknown  = 0xFFFFFFFF,
256 };
257 
258 /* CSR (Control/Status Registers) */
259 struct csr {
260 	struct {
261 		u8 status;
262 		u8 stat_ack;
263 		u8 cmd_lo;
264 		u8 cmd_hi;
265 		u32 gen_ptr;
266 	} scb;
267 	u32 port;
268 	u16 flash_ctrl;
269 	u8 eeprom_ctrl_lo;
270 	u8 eeprom_ctrl_hi;
271 	u32 mdi_ctrl;
272 	u32 rx_dma_count;
273 };
274 
275 enum scb_status {
276 	rus_no_res       = 0x08,
277 	rus_ready        = 0x10,
278 	rus_mask         = 0x3C,
279 };
280 
281 enum ru_state  {
282 	RU_SUSPENDED = 0,
283 	RU_RUNNING	 = 1,
284 	RU_UNINITIALIZED = -1,
285 };
286 
287 enum scb_stat_ack {
288 	stat_ack_not_ours    = 0x00,
289 	stat_ack_sw_gen      = 0x04,
290 	stat_ack_rnr         = 0x10,
291 	stat_ack_cu_idle     = 0x20,
292 	stat_ack_frame_rx    = 0x40,
293 	stat_ack_cu_cmd_done = 0x80,
294 	stat_ack_not_present = 0xFF,
295 	stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
296 	stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
297 };
298 
299 enum scb_cmd_hi {
300 	irq_mask_none = 0x00,
301 	irq_mask_all  = 0x01,
302 	irq_sw_gen    = 0x02,
303 };
304 
305 enum scb_cmd_lo {
306 	cuc_nop        = 0x00,
307 	ruc_start      = 0x01,
308 	ruc_load_base  = 0x06,
309 	cuc_start      = 0x10,
310 	cuc_resume     = 0x20,
311 	cuc_dump_addr  = 0x40,
312 	cuc_dump_stats = 0x50,
313 	cuc_load_base  = 0x60,
314 	cuc_dump_reset = 0x70,
315 };
316 
317 enum cuc_dump {
318 	cuc_dump_complete       = 0x0000A005,
319 	cuc_dump_reset_complete = 0x0000A007,
320 };
321 
322 enum port {
323 	software_reset  = 0x0000,
324 	selftest        = 0x0001,
325 	selective_reset = 0x0002,
326 };
327 
328 enum eeprom_ctrl_lo {
329 	eesk = 0x01,
330 	eecs = 0x02,
331 	eedi = 0x04,
332 	eedo = 0x08,
333 };
334 
335 enum mdi_ctrl {
336 	mdi_write = 0x04000000,
337 	mdi_read  = 0x08000000,
338 	mdi_ready = 0x10000000,
339 };
340 
341 enum eeprom_op {
342 	op_write = 0x05,
343 	op_read  = 0x06,
344 	op_ewds  = 0x10,
345 	op_ewen  = 0x13,
346 };
347 
348 enum eeprom_offsets {
349 	eeprom_cnfg_mdix  = 0x03,
350 	eeprom_phy_iface  = 0x06,
351 	eeprom_id         = 0x0A,
352 	eeprom_config_asf = 0x0D,
353 	eeprom_smbus_addr = 0x90,
354 };
355 
356 enum eeprom_cnfg_mdix {
357 	eeprom_mdix_enabled = 0x0080,
358 };
359 
360 enum eeprom_phy_iface {
361 	NoSuchPhy = 0,
362 	I82553AB,
363 	I82553C,
364 	I82503,
365 	DP83840,
366 	S80C240,
367 	S80C24,
368 	I82555,
369 	DP83840A = 10,
370 };
371 
372 enum eeprom_id {
373 	eeprom_id_wol = 0x0020,
374 };
375 
376 enum eeprom_config_asf {
377 	eeprom_asf = 0x8000,
378 	eeprom_gcl = 0x4000,
379 };
380 
381 enum cb_status {
382 	cb_complete = 0x8000,
383 	cb_ok       = 0x2000,
384 };
385 
386 /*
387  * cb_command - Command Block flags
388  * @cb_tx_nc:  0: controller does CRC (normal),  1: CRC from skb memory
389  */
390 enum cb_command {
391 	cb_nop    = 0x0000,
392 	cb_iaaddr = 0x0001,
393 	cb_config = 0x0002,
394 	cb_multi  = 0x0003,
395 	cb_tx     = 0x0004,
396 	cb_ucode  = 0x0005,
397 	cb_dump   = 0x0006,
398 	cb_tx_sf  = 0x0008,
399 	cb_tx_nc  = 0x0010,
400 	cb_cid    = 0x1f00,
401 	cb_i      = 0x2000,
402 	cb_s      = 0x4000,
403 	cb_el     = 0x8000,
404 };
405 
406 struct rfd {
407 	__le16 status;
408 	__le16 command;
409 	__le32 link;
410 	__le32 rbd;
411 	__le16 actual_size;
412 	__le16 size;
413 };
414 
415 struct rx {
416 	struct rx *next, *prev;
417 	struct sk_buff *skb;
418 	dma_addr_t dma_addr;
419 };
420 
421 #if defined(__BIG_ENDIAN_BITFIELD)
422 #define X(a,b)	b,a
423 #else
424 #define X(a,b)	a,b
425 #endif
426 struct config {
427 /*0*/	u8 X(byte_count:6, pad0:2);
428 /*1*/	u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
429 /*2*/	u8 adaptive_ifs;
430 /*3*/	u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
431 	   term_write_cache_line:1), pad3:4);
432 /*4*/	u8 X(rx_dma_max_count:7, pad4:1);
433 /*5*/	u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
434 /*6*/	u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
435 	   tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
436 	   rx_save_overruns : 1), rx_save_bad_frames : 1);
437 /*7*/	u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
438 	   pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
439 	   tx_dynamic_tbd:1);
440 /*8*/	u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
441 /*9*/	u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
442 	   link_status_wake:1), arp_wake:1), mcmatch_wake:1);
443 /*10*/	u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
444 	   loopback:2);
445 /*11*/	u8 X(linear_priority:3, pad11:5);
446 /*12*/	u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
447 /*13*/	u8 ip_addr_lo;
448 /*14*/	u8 ip_addr_hi;
449 /*15*/	u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
450 	   wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
451 	   pad15_2:1), crs_or_cdt:1);
452 /*16*/	u8 fc_delay_lo;
453 /*17*/	u8 fc_delay_hi;
454 /*18*/	u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
455 	   rx_long_ok:1), fc_priority_threshold:3), pad18:1);
456 /*19*/	u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
457 	   fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
458 	   full_duplex_force:1), full_duplex_pin:1);
459 /*20*/	u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
460 /*21*/	u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
461 /*22*/	u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
462 	u8 pad_d102[9];
463 };
464 
465 #define E100_MAX_MULTICAST_ADDRS	64
466 struct multi {
467 	__le16 count;
468 	u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
469 };
470 
471 /* Important: keep total struct u32-aligned */
472 #define UCODE_SIZE			134
473 struct cb {
474 	__le16 status;
475 	__le16 command;
476 	__le32 link;
477 	union {
478 		u8 iaaddr[ETH_ALEN];
479 		__le32 ucode[UCODE_SIZE];
480 		struct config config;
481 		struct multi multi;
482 		struct {
483 			u32 tbd_array;
484 			u16 tcb_byte_count;
485 			u8 threshold;
486 			u8 tbd_count;
487 			struct {
488 				__le32 buf_addr;
489 				__le16 size;
490 				u16 eol;
491 			} tbd;
492 		} tcb;
493 		__le32 dump_buffer_addr;
494 	} u;
495 	struct cb *next, *prev;
496 	dma_addr_t dma_addr;
497 	struct sk_buff *skb;
498 };
499 
500 enum loopback {
501 	lb_none = 0, lb_mac = 1, lb_phy = 3,
502 };
503 
504 struct stats {
505 	__le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
506 		tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
507 		tx_multiple_collisions, tx_total_collisions;
508 	__le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
509 		rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
510 		rx_short_frame_errors;
511 	__le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
512 	__le16 xmt_tco_frames, rcv_tco_frames;
513 	__le32 complete;
514 };
515 
516 struct mem {
517 	struct {
518 		u32 signature;
519 		u32 result;
520 	} selftest;
521 	struct stats stats;
522 	u8 dump_buf[596];
523 };
524 
525 struct param_range {
526 	u32 min;
527 	u32 max;
528 	u32 count;
529 };
530 
531 struct params {
532 	struct param_range rfds;
533 	struct param_range cbs;
534 };
535 
536 struct nic {
537 	/* Begin: frequently used values: keep adjacent for cache effect */
538 	u32 msg_enable				____cacheline_aligned;
539 	struct net_device *netdev;
540 	struct pci_dev *pdev;
541 	u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data);
542 
543 	struct rx *rxs				____cacheline_aligned;
544 	struct rx *rx_to_use;
545 	struct rx *rx_to_clean;
546 	struct rfd blank_rfd;
547 	enum ru_state ru_running;
548 
549 	spinlock_t cb_lock			____cacheline_aligned;
550 	spinlock_t cmd_lock;
551 	struct csr __iomem *csr;
552 	enum scb_cmd_lo cuc_cmd;
553 	unsigned int cbs_avail;
554 	struct napi_struct napi;
555 	struct cb *cbs;
556 	struct cb *cb_to_use;
557 	struct cb *cb_to_send;
558 	struct cb *cb_to_clean;
559 	__le16 tx_command;
560 	/* End: frequently used values: keep adjacent for cache effect */
561 
562 	enum {
563 		ich                = (1 << 0),
564 		promiscuous        = (1 << 1),
565 		multicast_all      = (1 << 2),
566 		wol_magic          = (1 << 3),
567 		ich_10h_workaround = (1 << 4),
568 	} flags					____cacheline_aligned;
569 
570 	enum mac mac;
571 	enum phy phy;
572 	struct params params;
573 	struct timer_list watchdog;
574 	struct mii_if_info mii;
575 	struct work_struct tx_timeout_task;
576 	enum loopback loopback;
577 
578 	struct mem *mem;
579 	dma_addr_t dma_addr;
580 
581 	struct dma_pool *cbs_pool;
582 	dma_addr_t cbs_dma_addr;
583 	u8 adaptive_ifs;
584 	u8 tx_threshold;
585 	u32 tx_frames;
586 	u32 tx_collisions;
587 	u32 tx_deferred;
588 	u32 tx_single_collisions;
589 	u32 tx_multiple_collisions;
590 	u32 tx_fc_pause;
591 	u32 tx_tco_frames;
592 
593 	u32 rx_fc_pause;
594 	u32 rx_fc_unsupported;
595 	u32 rx_tco_frames;
596 	u32 rx_short_frame_errors;
597 	u32 rx_over_length_errors;
598 
599 	u16 eeprom_wc;
600 	__le16 eeprom[256];
601 	spinlock_t mdio_lock;
602 	const struct firmware *fw;
603 };
604 
605 static inline void e100_write_flush(struct nic *nic)
606 {
607 	/* Flush previous PCI writes through intermediate bridges
608 	 * by doing a benign read */
609 	(void)ioread8(&nic->csr->scb.status);
610 }
611 
612 static void e100_enable_irq(struct nic *nic)
613 {
614 	unsigned long flags;
615 
616 	spin_lock_irqsave(&nic->cmd_lock, flags);
617 	iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
618 	e100_write_flush(nic);
619 	spin_unlock_irqrestore(&nic->cmd_lock, flags);
620 }
621 
622 static void e100_disable_irq(struct nic *nic)
623 {
624 	unsigned long flags;
625 
626 	spin_lock_irqsave(&nic->cmd_lock, flags);
627 	iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
628 	e100_write_flush(nic);
629 	spin_unlock_irqrestore(&nic->cmd_lock, flags);
630 }
631 
632 static void e100_hw_reset(struct nic *nic)
633 {
634 	/* Put CU and RU into idle with a selective reset to get
635 	 * device off of PCI bus */
636 	iowrite32(selective_reset, &nic->csr->port);
637 	e100_write_flush(nic); udelay(20);
638 
639 	/* Now fully reset device */
640 	iowrite32(software_reset, &nic->csr->port);
641 	e100_write_flush(nic); udelay(20);
642 
643 	/* Mask off our interrupt line - it's unmasked after reset */
644 	e100_disable_irq(nic);
645 }
646 
647 static int e100_self_test(struct nic *nic)
648 {
649 	u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
650 
651 	/* Passing the self-test is a pretty good indication
652 	 * that the device can DMA to/from host memory */
653 
654 	nic->mem->selftest.signature = 0;
655 	nic->mem->selftest.result = 0xFFFFFFFF;
656 
657 	iowrite32(selftest | dma_addr, &nic->csr->port);
658 	e100_write_flush(nic);
659 	/* Wait 10 msec for self-test to complete */
660 	msleep(10);
661 
662 	/* Interrupts are enabled after self-test */
663 	e100_disable_irq(nic);
664 
665 	/* Check results of self-test */
666 	if (nic->mem->selftest.result != 0) {
667 		netif_err(nic, hw, nic->netdev,
668 			  "Self-test failed: result=0x%08X\n",
669 			  nic->mem->selftest.result);
670 		return -ETIMEDOUT;
671 	}
672 	if (nic->mem->selftest.signature == 0) {
673 		netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n");
674 		return -ETIMEDOUT;
675 	}
676 
677 	return 0;
678 }
679 
680 static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
681 {
682 	u32 cmd_addr_data[3];
683 	u8 ctrl;
684 	int i, j;
685 
686 	/* Three cmds: write/erase enable, write data, write/erase disable */
687 	cmd_addr_data[0] = op_ewen << (addr_len - 2);
688 	cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
689 		le16_to_cpu(data);
690 	cmd_addr_data[2] = op_ewds << (addr_len - 2);
691 
692 	/* Bit-bang cmds to write word to eeprom */
693 	for (j = 0; j < 3; j++) {
694 
695 		/* Chip select */
696 		iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
697 		e100_write_flush(nic); udelay(4);
698 
699 		for (i = 31; i >= 0; i--) {
700 			ctrl = (cmd_addr_data[j] & (1 << i)) ?
701 				eecs | eedi : eecs;
702 			iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
703 			e100_write_flush(nic); udelay(4);
704 
705 			iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
706 			e100_write_flush(nic); udelay(4);
707 		}
708 		/* Wait 10 msec for cmd to complete */
709 		msleep(10);
710 
711 		/* Chip deselect */
712 		iowrite8(0, &nic->csr->eeprom_ctrl_lo);
713 		e100_write_flush(nic); udelay(4);
714 	}
715 };
716 
717 /* General technique stolen from the eepro100 driver - very clever */
718 static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
719 {
720 	u32 cmd_addr_data;
721 	u16 data = 0;
722 	u8 ctrl;
723 	int i;
724 
725 	cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
726 
727 	/* Chip select */
728 	iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
729 	e100_write_flush(nic); udelay(4);
730 
731 	/* Bit-bang to read word from eeprom */
732 	for (i = 31; i >= 0; i--) {
733 		ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
734 		iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
735 		e100_write_flush(nic); udelay(4);
736 
737 		iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
738 		e100_write_flush(nic); udelay(4);
739 
740 		/* Eeprom drives a dummy zero to EEDO after receiving
741 		 * complete address.  Use this to adjust addr_len. */
742 		ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
743 		if (!(ctrl & eedo) && i > 16) {
744 			*addr_len -= (i - 16);
745 			i = 17;
746 		}
747 
748 		data = (data << 1) | (ctrl & eedo ? 1 : 0);
749 	}
750 
751 	/* Chip deselect */
752 	iowrite8(0, &nic->csr->eeprom_ctrl_lo);
753 	e100_write_flush(nic); udelay(4);
754 
755 	return cpu_to_le16(data);
756 };
757 
758 /* Load entire EEPROM image into driver cache and validate checksum */
759 static int e100_eeprom_load(struct nic *nic)
760 {
761 	u16 addr, addr_len = 8, checksum = 0;
762 
763 	/* Try reading with an 8-bit addr len to discover actual addr len */
764 	e100_eeprom_read(nic, &addr_len, 0);
765 	nic->eeprom_wc = 1 << addr_len;
766 
767 	for (addr = 0; addr < nic->eeprom_wc; addr++) {
768 		nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
769 		if (addr < nic->eeprom_wc - 1)
770 			checksum += le16_to_cpu(nic->eeprom[addr]);
771 	}
772 
773 	/* The checksum, stored in the last word, is calculated such that
774 	 * the sum of words should be 0xBABA */
775 	if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
776 		netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n");
777 		if (!eeprom_bad_csum_allow)
778 			return -EAGAIN;
779 	}
780 
781 	return 0;
782 }
783 
784 /* Save (portion of) driver EEPROM cache to device and update checksum */
785 static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
786 {
787 	u16 addr, addr_len = 8, checksum = 0;
788 
789 	/* Try reading with an 8-bit addr len to discover actual addr len */
790 	e100_eeprom_read(nic, &addr_len, 0);
791 	nic->eeprom_wc = 1 << addr_len;
792 
793 	if (start + count >= nic->eeprom_wc)
794 		return -EINVAL;
795 
796 	for (addr = start; addr < start + count; addr++)
797 		e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
798 
799 	/* The checksum, stored in the last word, is calculated such that
800 	 * the sum of words should be 0xBABA */
801 	for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
802 		checksum += le16_to_cpu(nic->eeprom[addr]);
803 	nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
804 	e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
805 		nic->eeprom[nic->eeprom_wc - 1]);
806 
807 	return 0;
808 }
809 
810 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
811 #define E100_WAIT_SCB_FAST 20       /* delay like the old code */
812 static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
813 {
814 	unsigned long flags;
815 	unsigned int i;
816 	int err = 0;
817 
818 	spin_lock_irqsave(&nic->cmd_lock, flags);
819 
820 	/* Previous command is accepted when SCB clears */
821 	for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
822 		if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
823 			break;
824 		cpu_relax();
825 		if (unlikely(i > E100_WAIT_SCB_FAST))
826 			udelay(5);
827 	}
828 	if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
829 		err = -EAGAIN;
830 		goto err_unlock;
831 	}
832 
833 	if (unlikely(cmd != cuc_resume))
834 		iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
835 	iowrite8(cmd, &nic->csr->scb.cmd_lo);
836 
837 err_unlock:
838 	spin_unlock_irqrestore(&nic->cmd_lock, flags);
839 
840 	return err;
841 }
842 
843 static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
844 	int (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
845 {
846 	struct cb *cb;
847 	unsigned long flags;
848 	int err;
849 
850 	spin_lock_irqsave(&nic->cb_lock, flags);
851 
852 	if (unlikely(!nic->cbs_avail)) {
853 		err = -ENOMEM;
854 		goto err_unlock;
855 	}
856 
857 	cb = nic->cb_to_use;
858 	nic->cb_to_use = cb->next;
859 	nic->cbs_avail--;
860 	cb->skb = skb;
861 
862 	err = cb_prepare(nic, cb, skb);
863 	if (err)
864 		goto err_unlock;
865 
866 	if (unlikely(!nic->cbs_avail))
867 		err = -ENOSPC;
868 
869 
870 	/* Order is important otherwise we'll be in a race with h/w:
871 	 * set S-bit in current first, then clear S-bit in previous. */
872 	cb->command |= cpu_to_le16(cb_s);
873 	dma_wmb();
874 	cb->prev->command &= cpu_to_le16(~cb_s);
875 
876 	while (nic->cb_to_send != nic->cb_to_use) {
877 		if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
878 			nic->cb_to_send->dma_addr))) {
879 			/* Ok, here's where things get sticky.  It's
880 			 * possible that we can't schedule the command
881 			 * because the controller is too busy, so
882 			 * let's just queue the command and try again
883 			 * when another command is scheduled. */
884 			if (err == -ENOSPC) {
885 				//request a reset
886 				schedule_work(&nic->tx_timeout_task);
887 			}
888 			break;
889 		} else {
890 			nic->cuc_cmd = cuc_resume;
891 			nic->cb_to_send = nic->cb_to_send->next;
892 		}
893 	}
894 
895 err_unlock:
896 	spin_unlock_irqrestore(&nic->cb_lock, flags);
897 
898 	return err;
899 }
900 
901 static int mdio_read(struct net_device *netdev, int addr, int reg)
902 {
903 	struct nic *nic = netdev_priv(netdev);
904 	return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0);
905 }
906 
907 static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
908 {
909 	struct nic *nic = netdev_priv(netdev);
910 
911 	nic->mdio_ctrl(nic, addr, mdi_write, reg, data);
912 }
913 
914 /* the standard mdio_ctrl() function for usual MII-compliant hardware */
915 static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
916 {
917 	u32 data_out = 0;
918 	unsigned int i;
919 	unsigned long flags;
920 
921 
922 	/*
923 	 * Stratus87247: we shouldn't be writing the MDI control
924 	 * register until the Ready bit shows True.  Also, since
925 	 * manipulation of the MDI control registers is a multi-step
926 	 * procedure it should be done under lock.
927 	 */
928 	spin_lock_irqsave(&nic->mdio_lock, flags);
929 	for (i = 100; i; --i) {
930 		if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
931 			break;
932 		udelay(20);
933 	}
934 	if (unlikely(!i)) {
935 		netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n");
936 		spin_unlock_irqrestore(&nic->mdio_lock, flags);
937 		return 0;		/* No way to indicate timeout error */
938 	}
939 	iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
940 
941 	for (i = 0; i < 100; i++) {
942 		udelay(20);
943 		if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
944 			break;
945 	}
946 	spin_unlock_irqrestore(&nic->mdio_lock, flags);
947 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
948 		     "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
949 		     dir == mdi_read ? "READ" : "WRITE",
950 		     addr, reg, data, data_out);
951 	return (u16)data_out;
952 }
953 
954 /* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
955 static u16 mdio_ctrl_phy_82552_v(struct nic *nic,
956 				 u32 addr,
957 				 u32 dir,
958 				 u32 reg,
959 				 u16 data)
960 {
961 	if ((reg == MII_BMCR) && (dir == mdi_write)) {
962 		if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) {
963 			u16 advert = mdio_read(nic->netdev, nic->mii.phy_id,
964 							MII_ADVERTISE);
965 
966 			/*
967 			 * Workaround Si issue where sometimes the part will not
968 			 * autoneg to 100Mbps even when advertised.
969 			 */
970 			if (advert & ADVERTISE_100FULL)
971 				data |= BMCR_SPEED100 | BMCR_FULLDPLX;
972 			else if (advert & ADVERTISE_100HALF)
973 				data |= BMCR_SPEED100;
974 		}
975 	}
976 	return mdio_ctrl_hw(nic, addr, dir, reg, data);
977 }
978 
979 /* Fully software-emulated mdio_ctrl() function for cards without
980  * MII-compliant PHYs.
981  * For now, this is mainly geared towards 80c24 support; in case of further
982  * requirements for other types (i82503, ...?) either extend this mechanism
983  * or split it, whichever is cleaner.
984  */
985 static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic,
986 				      u32 addr,
987 				      u32 dir,
988 				      u32 reg,
989 				      u16 data)
990 {
991 	/* might need to allocate a netdev_priv'ed register array eventually
992 	 * to be able to record state changes, but for now
993 	 * some fully hardcoded register handling ought to be ok I guess. */
994 
995 	if (dir == mdi_read) {
996 		switch (reg) {
997 		case MII_BMCR:
998 			/* Auto-negotiation, right? */
999 			return  BMCR_ANENABLE |
1000 				BMCR_FULLDPLX;
1001 		case MII_BMSR:
1002 			return	BMSR_LSTATUS /* for mii_link_ok() */ |
1003 				BMSR_ANEGCAPABLE |
1004 				BMSR_10FULL;
1005 		case MII_ADVERTISE:
1006 			/* 80c24 is a "combo card" PHY, right? */
1007 			return	ADVERTISE_10HALF |
1008 				ADVERTISE_10FULL;
1009 		default:
1010 			netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1011 				     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1012 				     dir == mdi_read ? "READ" : "WRITE",
1013 				     addr, reg, data);
1014 			return 0xFFFF;
1015 		}
1016 	} else {
1017 		switch (reg) {
1018 		default:
1019 			netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1020 				     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1021 				     dir == mdi_read ? "READ" : "WRITE",
1022 				     addr, reg, data);
1023 			return 0xFFFF;
1024 		}
1025 	}
1026 }
1027 static inline int e100_phy_supports_mii(struct nic *nic)
1028 {
1029 	/* for now, just check it by comparing whether we
1030 	   are using MII software emulation.
1031 	*/
1032 	return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated);
1033 }
1034 
1035 static void e100_get_defaults(struct nic *nic)
1036 {
1037 	struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
1038 	struct param_range cbs  = { .min = 64, .max = 256, .count = 128 };
1039 
1040 	/* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
1041 	nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
1042 	if (nic->mac == mac_unknown)
1043 		nic->mac = mac_82557_D100_A;
1044 
1045 	nic->params.rfds = rfds;
1046 	nic->params.cbs = cbs;
1047 
1048 	/* Quadwords to DMA into FIFO before starting frame transmit */
1049 	nic->tx_threshold = 0xE0;
1050 
1051 	/* no interrupt for every tx completion, delay = 256us if not 557 */
1052 	nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
1053 		((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
1054 
1055 	/* Template for a freshly allocated RFD */
1056 	nic->blank_rfd.command = 0;
1057 	nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
1058 	nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
1059 
1060 	/* MII setup */
1061 	nic->mii.phy_id_mask = 0x1F;
1062 	nic->mii.reg_num_mask = 0x1F;
1063 	nic->mii.dev = nic->netdev;
1064 	nic->mii.mdio_read = mdio_read;
1065 	nic->mii.mdio_write = mdio_write;
1066 }
1067 
1068 static int e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1069 {
1070 	struct config *config = &cb->u.config;
1071 	u8 *c = (u8 *)config;
1072 	struct net_device *netdev = nic->netdev;
1073 
1074 	cb->command = cpu_to_le16(cb_config);
1075 
1076 	memset(config, 0, sizeof(struct config));
1077 
1078 	config->byte_count = 0x16;		/* bytes in this struct */
1079 	config->rx_fifo_limit = 0x8;		/* bytes in FIFO before DMA */
1080 	config->direct_rx_dma = 0x1;		/* reserved */
1081 	config->standard_tcb = 0x1;		/* 1=standard, 0=extended */
1082 	config->standard_stat_counter = 0x1;	/* 1=standard, 0=extended */
1083 	config->rx_discard_short_frames = 0x1;	/* 1=discard, 0=pass */
1084 	config->tx_underrun_retry = 0x3;	/* # of underrun retries */
1085 	if (e100_phy_supports_mii(nic))
1086 		config->mii_mode = 1;           /* 1=MII mode, 0=i82503 mode */
1087 	config->pad10 = 0x6;
1088 	config->no_source_addr_insertion = 0x1;	/* 1=no, 0=yes */
1089 	config->preamble_length = 0x2;		/* 0=1, 1=3, 2=7, 3=15 bytes */
1090 	config->ifs = 0x6;			/* x16 = inter frame spacing */
1091 	config->ip_addr_hi = 0xF2;		/* ARP IP filter - not used */
1092 	config->pad15_1 = 0x1;
1093 	config->pad15_2 = 0x1;
1094 	config->crs_or_cdt = 0x0;		/* 0=CRS only, 1=CRS or CDT */
1095 	config->fc_delay_hi = 0x40;		/* time delay for fc frame */
1096 	config->tx_padding = 0x1;		/* 1=pad short frames */
1097 	config->fc_priority_threshold = 0x7;	/* 7=priority fc disabled */
1098 	config->pad18 = 0x1;
1099 	config->full_duplex_pin = 0x1;		/* 1=examine FDX# pin */
1100 	config->pad20_1 = 0x1F;
1101 	config->fc_priority_location = 0x1;	/* 1=byte#31, 0=byte#19 */
1102 	config->pad21_1 = 0x5;
1103 
1104 	config->adaptive_ifs = nic->adaptive_ifs;
1105 	config->loopback = nic->loopback;
1106 
1107 	if (nic->mii.force_media && nic->mii.full_duplex)
1108 		config->full_duplex_force = 0x1;	/* 1=force, 0=auto */
1109 
1110 	if (nic->flags & promiscuous || nic->loopback) {
1111 		config->rx_save_bad_frames = 0x1;	/* 1=save, 0=discard */
1112 		config->rx_discard_short_frames = 0x0;	/* 1=discard, 0=save */
1113 		config->promiscuous_mode = 0x1;		/* 1=on, 0=off */
1114 	}
1115 
1116 	if (unlikely(netdev->features & NETIF_F_RXFCS))
1117 		config->rx_crc_transfer = 0x1;	/* 1=save, 0=discard */
1118 
1119 	if (nic->flags & multicast_all)
1120 		config->multicast_all = 0x1;		/* 1=accept, 0=no */
1121 
1122 	/* disable WoL when up */
1123 	if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
1124 		config->magic_packet_disable = 0x1;	/* 1=off, 0=on */
1125 
1126 	if (nic->mac >= mac_82558_D101_A4) {
1127 		config->fc_disable = 0x1;	/* 1=Tx fc off, 0=Tx fc on */
1128 		config->mwi_enable = 0x1;	/* 1=enable, 0=disable */
1129 		config->standard_tcb = 0x0;	/* 1=standard, 0=extended */
1130 		config->rx_long_ok = 0x1;	/* 1=VLANs ok, 0=standard */
1131 		if (nic->mac >= mac_82559_D101M) {
1132 			config->tno_intr = 0x1;		/* TCO stats enable */
1133 			/* Enable TCO in extended config */
1134 			if (nic->mac >= mac_82551_10) {
1135 				config->byte_count = 0x20; /* extended bytes */
1136 				config->rx_d102_mode = 0x1; /* GMRC for TCO */
1137 			}
1138 		} else {
1139 			config->standard_stat_counter = 0x0;
1140 		}
1141 	}
1142 
1143 	if (netdev->features & NETIF_F_RXALL) {
1144 		config->rx_save_overruns = 0x1; /* 1=save, 0=discard */
1145 		config->rx_save_bad_frames = 0x1;       /* 1=save, 0=discard */
1146 		config->rx_discard_short_frames = 0x0;  /* 1=discard, 0=save */
1147 	}
1148 
1149 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[00-07]=%8ph\n",
1150 		     c + 0);
1151 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[08-15]=%8ph\n",
1152 		     c + 8);
1153 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[16-23]=%8ph\n",
1154 		     c + 16);
1155 	return 0;
1156 }
1157 
1158 /*************************************************************************
1159 *  CPUSaver parameters
1160 *
1161 *  All CPUSaver parameters are 16-bit literals that are part of a
1162 *  "move immediate value" instruction.  By changing the value of
1163 *  the literal in the instruction before the code is loaded, the
1164 *  driver can change the algorithm.
1165 *
1166 *  INTDELAY - This loads the dead-man timer with its initial value.
1167 *    When this timer expires the interrupt is asserted, and the
1168 *    timer is reset each time a new packet is received.  (see
1169 *    BUNDLEMAX below to set the limit on number of chained packets)
1170 *    The current default is 0x600 or 1536.  Experiments show that
1171 *    the value should probably stay within the 0x200 - 0x1000.
1172 *
1173 *  BUNDLEMAX -
1174 *    This sets the maximum number of frames that will be bundled.  In
1175 *    some situations, such as the TCP windowing algorithm, it may be
1176 *    better to limit the growth of the bundle size than let it go as
1177 *    high as it can, because that could cause too much added latency.
1178 *    The default is six, because this is the number of packets in the
1179 *    default TCP window size.  A value of 1 would make CPUSaver indicate
1180 *    an interrupt for every frame received.  If you do not want to put
1181 *    a limit on the bundle size, set this value to xFFFF.
1182 *
1183 *  BUNDLESMALL -
1184 *    This contains a bit-mask describing the minimum size frame that
1185 *    will be bundled.  The default masks the lower 7 bits, which means
1186 *    that any frame less than 128 bytes in length will not be bundled,
1187 *    but will instead immediately generate an interrupt.  This does
1188 *    not affect the current bundle in any way.  Any frame that is 128
1189 *    bytes or large will be bundled normally.  This feature is meant
1190 *    to provide immediate indication of ACK frames in a TCP environment.
1191 *    Customers were seeing poor performance when a machine with CPUSaver
1192 *    enabled was sending but not receiving.  The delay introduced when
1193 *    the ACKs were received was enough to reduce total throughput, because
1194 *    the sender would sit idle until the ACK was finally seen.
1195 *
1196 *    The current default is 0xFF80, which masks out the lower 7 bits.
1197 *    This means that any frame which is x7F (127) bytes or smaller
1198 *    will cause an immediate interrupt.  Because this value must be a
1199 *    bit mask, there are only a few valid values that can be used.  To
1200 *    turn this feature off, the driver can write the value xFFFF to the
1201 *    lower word of this instruction (in the same way that the other
1202 *    parameters are used).  Likewise, a value of 0xF800 (2047) would
1203 *    cause an interrupt to be generated for every frame, because all
1204 *    standard Ethernet frames are <= 2047 bytes in length.
1205 *************************************************************************/
1206 
1207 /* if you wish to disable the ucode functionality, while maintaining the
1208  * workarounds it provides, set the following defines to:
1209  * BUNDLESMALL 0
1210  * BUNDLEMAX 1
1211  * INTDELAY 1
1212  */
1213 #define BUNDLESMALL 1
1214 #define BUNDLEMAX (u16)6
1215 #define INTDELAY (u16)1536 /* 0x600 */
1216 
1217 /* Initialize firmware */
1218 static const struct firmware *e100_request_firmware(struct nic *nic)
1219 {
1220 	const char *fw_name;
1221 	const struct firmware *fw = nic->fw;
1222 	u8 timer, bundle, min_size;
1223 	int err = 0;
1224 	bool required = false;
1225 
1226 	/* do not load u-code for ICH devices */
1227 	if (nic->flags & ich)
1228 		return NULL;
1229 
1230 	/* Search for ucode match against h/w revision
1231 	 *
1232 	 * Based on comments in the source code for the FreeBSD fxp
1233 	 * driver, the FIRMWARE_D102E ucode includes both CPUSaver and
1234 	 *
1235 	 *    "fixes for bugs in the B-step hardware (specifically, bugs
1236 	 *     with Inline Receive)."
1237 	 *
1238 	 * So we must fail if it cannot be loaded.
1239 	 *
1240 	 * The other microcode files are only required for the optional
1241 	 * CPUSaver feature.  Nice to have, but no reason to fail.
1242 	 */
1243 	if (nic->mac == mac_82559_D101M) {
1244 		fw_name = FIRMWARE_D101M;
1245 	} else if (nic->mac == mac_82559_D101S) {
1246 		fw_name = FIRMWARE_D101S;
1247 	} else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) {
1248 		fw_name = FIRMWARE_D102E;
1249 		required = true;
1250 	} else { /* No ucode on other devices */
1251 		return NULL;
1252 	}
1253 
1254 	/* If the firmware has not previously been loaded, request a pointer
1255 	 * to it. If it was previously loaded, we are reinitializing the
1256 	 * adapter, possibly in a resume from hibernate, in which case
1257 	 * request_firmware() cannot be used.
1258 	 */
1259 	if (!fw)
1260 		err = request_firmware(&fw, fw_name, &nic->pdev->dev);
1261 
1262 	if (err) {
1263 		if (required) {
1264 			netif_err(nic, probe, nic->netdev,
1265 				  "Failed to load firmware \"%s\": %d\n",
1266 				  fw_name, err);
1267 			return ERR_PTR(err);
1268 		} else {
1269 			netif_info(nic, probe, nic->netdev,
1270 				   "CPUSaver disabled. Needs \"%s\": %d\n",
1271 				   fw_name, err);
1272 			return NULL;
1273 		}
1274 	}
1275 
1276 	/* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1277 	   indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1278 	if (fw->size != UCODE_SIZE * 4 + 3) {
1279 		netif_err(nic, probe, nic->netdev,
1280 			  "Firmware \"%s\" has wrong size %zu\n",
1281 			  fw_name, fw->size);
1282 		release_firmware(fw);
1283 		return ERR_PTR(-EINVAL);
1284 	}
1285 
1286 	/* Read timer, bundle and min_size from end of firmware blob */
1287 	timer = fw->data[UCODE_SIZE * 4];
1288 	bundle = fw->data[UCODE_SIZE * 4 + 1];
1289 	min_size = fw->data[UCODE_SIZE * 4 + 2];
1290 
1291 	if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
1292 	    min_size >= UCODE_SIZE) {
1293 		netif_err(nic, probe, nic->netdev,
1294 			  "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1295 			  fw_name, timer, bundle, min_size);
1296 		release_firmware(fw);
1297 		return ERR_PTR(-EINVAL);
1298 	}
1299 
1300 	/* OK, firmware is validated and ready to use. Save a pointer
1301 	 * to it in the nic */
1302 	nic->fw = fw;
1303 	return fw;
1304 }
1305 
1306 static int e100_setup_ucode(struct nic *nic, struct cb *cb,
1307 			     struct sk_buff *skb)
1308 {
1309 	const struct firmware *fw = (void *)skb;
1310 	u8 timer, bundle, min_size;
1311 
1312 	/* It's not a real skb; we just abused the fact that e100_exec_cb
1313 	   will pass it through to here... */
1314 	cb->skb = NULL;
1315 
1316 	/* firmware is stored as little endian already */
1317 	memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
1318 
1319 	/* Read timer, bundle and min_size from end of firmware blob */
1320 	timer = fw->data[UCODE_SIZE * 4];
1321 	bundle = fw->data[UCODE_SIZE * 4 + 1];
1322 	min_size = fw->data[UCODE_SIZE * 4 + 2];
1323 
1324 	/* Insert user-tunable settings in cb->u.ucode */
1325 	cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
1326 	cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
1327 	cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
1328 	cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
1329 	cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
1330 	cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
1331 
1332 	cb->command = cpu_to_le16(cb_ucode | cb_el);
1333 	return 0;
1334 }
1335 
1336 static inline int e100_load_ucode_wait(struct nic *nic)
1337 {
1338 	const struct firmware *fw;
1339 	int err = 0, counter = 50;
1340 	struct cb *cb = nic->cb_to_clean;
1341 
1342 	fw = e100_request_firmware(nic);
1343 	/* If it's NULL, then no ucode is required */
1344 	if (IS_ERR_OR_NULL(fw))
1345 		return PTR_ERR_OR_ZERO(fw);
1346 
1347 	if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
1348 		netif_err(nic, probe, nic->netdev,
1349 			  "ucode cmd failed with error %d\n", err);
1350 
1351 	/* must restart cuc */
1352 	nic->cuc_cmd = cuc_start;
1353 
1354 	/* wait for completion */
1355 	e100_write_flush(nic);
1356 	udelay(10);
1357 
1358 	/* wait for possibly (ouch) 500ms */
1359 	while (!(cb->status & cpu_to_le16(cb_complete))) {
1360 		msleep(10);
1361 		if (!--counter) break;
1362 	}
1363 
1364 	/* ack any interrupts, something could have been set */
1365 	iowrite8(~0, &nic->csr->scb.stat_ack);
1366 
1367 	/* if the command failed, or is not OK, notify and return */
1368 	if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1369 		netif_err(nic, probe, nic->netdev, "ucode load failed\n");
1370 		err = -EPERM;
1371 	}
1372 
1373 	return err;
1374 }
1375 
1376 static int e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1377 	struct sk_buff *skb)
1378 {
1379 	cb->command = cpu_to_le16(cb_iaaddr);
1380 	memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1381 	return 0;
1382 }
1383 
1384 static int e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1385 {
1386 	cb->command = cpu_to_le16(cb_dump);
1387 	cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1388 		offsetof(struct mem, dump_buf));
1389 	return 0;
1390 }
1391 
1392 static int e100_phy_check_without_mii(struct nic *nic)
1393 {
1394 	u8 phy_type;
1395 	int without_mii;
1396 
1397 	phy_type = (le16_to_cpu(nic->eeprom[eeprom_phy_iface]) >> 8) & 0x0f;
1398 
1399 	switch (phy_type) {
1400 	case NoSuchPhy: /* Non-MII PHY; UNTESTED! */
1401 	case I82503: /* Non-MII PHY; UNTESTED! */
1402 	case S80C24: /* Non-MII PHY; tested and working */
1403 		/* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
1404 		 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
1405 		 * doesn't have a programming interface of any sort.  The
1406 		 * media is sensed automatically based on how the link partner
1407 		 * is configured.  This is, in essence, manual configuration.
1408 		 */
1409 		netif_info(nic, probe, nic->netdev,
1410 			   "found MII-less i82503 or 80c24 or other PHY\n");
1411 
1412 		nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated;
1413 		nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */
1414 
1415 		/* these might be needed for certain MII-less cards...
1416 		 * nic->flags |= ich;
1417 		 * nic->flags |= ich_10h_workaround; */
1418 
1419 		without_mii = 1;
1420 		break;
1421 	default:
1422 		without_mii = 0;
1423 		break;
1424 	}
1425 	return without_mii;
1426 }
1427 
1428 #define NCONFIG_AUTO_SWITCH	0x0080
1429 #define MII_NSC_CONG		MII_RESV1
1430 #define NSC_CONG_ENABLE		0x0100
1431 #define NSC_CONG_TXREADY	0x0400
1432 static int e100_phy_init(struct nic *nic)
1433 {
1434 	struct net_device *netdev = nic->netdev;
1435 	u32 addr;
1436 	u16 bmcr, stat, id_lo, id_hi, cong;
1437 
1438 	/* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1439 	for (addr = 0; addr < 32; addr++) {
1440 		nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1441 		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1442 		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1443 		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1444 		if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1445 			break;
1446 	}
1447 	if (addr == 32) {
1448 		/* uhoh, no PHY detected: check whether we seem to be some
1449 		 * weird, rare variant which is *known* to not have any MII.
1450 		 * But do this AFTER MII checking only, since this does
1451 		 * lookup of EEPROM values which may easily be unreliable. */
1452 		if (e100_phy_check_without_mii(nic))
1453 			return 0; /* simply return and hope for the best */
1454 		else {
1455 			/* for unknown cases log a fatal error */
1456 			netif_err(nic, hw, nic->netdev,
1457 				  "Failed to locate any known PHY, aborting\n");
1458 			return -EAGAIN;
1459 		}
1460 	} else
1461 		netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1462 			     "phy_addr = %d\n", nic->mii.phy_id);
1463 
1464 	/* Get phy ID */
1465 	id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1466 	id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1467 	nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1468 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1469 		     "phy ID = 0x%08X\n", nic->phy);
1470 
1471 	/* Select the phy and isolate the rest */
1472 	for (addr = 0; addr < 32; addr++) {
1473 		if (addr != nic->mii.phy_id) {
1474 			mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1475 		} else if (nic->phy != phy_82552_v) {
1476 			bmcr = mdio_read(netdev, addr, MII_BMCR);
1477 			mdio_write(netdev, addr, MII_BMCR,
1478 				bmcr & ~BMCR_ISOLATE);
1479 		}
1480 	}
1481 	/*
1482 	 * Workaround for 82552:
1483 	 * Clear the ISOLATE bit on selected phy_id last (mirrored on all
1484 	 * other phy_id's) using bmcr value from addr discovery loop above.
1485 	 */
1486 	if (nic->phy == phy_82552_v)
1487 		mdio_write(netdev, nic->mii.phy_id, MII_BMCR,
1488 			bmcr & ~BMCR_ISOLATE);
1489 
1490 	/* Handle National tx phys */
1491 #define NCS_PHY_MODEL_MASK	0xFFF0FFFF
1492 	if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1493 		/* Disable congestion control */
1494 		cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1495 		cong |= NSC_CONG_TXREADY;
1496 		cong &= ~NSC_CONG_ENABLE;
1497 		mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1498 	}
1499 
1500 	if (nic->phy == phy_82552_v) {
1501 		u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
1502 
1503 		/* assign special tweaked mdio_ctrl() function */
1504 		nic->mdio_ctrl = mdio_ctrl_phy_82552_v;
1505 
1506 		/* Workaround Si not advertising flow-control during autoneg */
1507 		advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1508 		mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);
1509 
1510 		/* Reset for the above changes to take effect */
1511 		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1512 		bmcr |= BMCR_RESET;
1513 		mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
1514 	} else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1515 	   (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1516 	   (le16_to_cpu(nic->eeprom[eeprom_cnfg_mdix]) & eeprom_mdix_enabled))) {
1517 		/* enable/disable MDI/MDI-X auto-switching. */
1518 		mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1519 				nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1520 	}
1521 
1522 	return 0;
1523 }
1524 
1525 static int e100_hw_init(struct nic *nic)
1526 {
1527 	int err = 0;
1528 
1529 	e100_hw_reset(nic);
1530 
1531 	netif_err(nic, hw, nic->netdev, "e100_hw_init\n");
1532 	if ((err = e100_self_test(nic)))
1533 		return err;
1534 
1535 	if ((err = e100_phy_init(nic)))
1536 		return err;
1537 	if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1538 		return err;
1539 	if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1540 		return err;
1541 	if ((err = e100_load_ucode_wait(nic)))
1542 		return err;
1543 	if ((err = e100_exec_cb(nic, NULL, e100_configure)))
1544 		return err;
1545 	if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1546 		return err;
1547 	if ((err = e100_exec_cmd(nic, cuc_dump_addr,
1548 		nic->dma_addr + offsetof(struct mem, stats))))
1549 		return err;
1550 	if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1551 		return err;
1552 
1553 	e100_disable_irq(nic);
1554 
1555 	return 0;
1556 }
1557 
1558 static int e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1559 {
1560 	struct net_device *netdev = nic->netdev;
1561 	struct netdev_hw_addr *ha;
1562 	u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS);
1563 
1564 	cb->command = cpu_to_le16(cb_multi);
1565 	cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1566 	i = 0;
1567 	netdev_for_each_mc_addr(ha, netdev) {
1568 		if (i == count)
1569 			break;
1570 		memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr,
1571 			ETH_ALEN);
1572 	}
1573 	return 0;
1574 }
1575 
1576 static void e100_set_multicast_list(struct net_device *netdev)
1577 {
1578 	struct nic *nic = netdev_priv(netdev);
1579 
1580 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1581 		     "mc_count=%d, flags=0x%04X\n",
1582 		     netdev_mc_count(netdev), netdev->flags);
1583 
1584 	if (netdev->flags & IFF_PROMISC)
1585 		nic->flags |= promiscuous;
1586 	else
1587 		nic->flags &= ~promiscuous;
1588 
1589 	if (netdev->flags & IFF_ALLMULTI ||
1590 		netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS)
1591 		nic->flags |= multicast_all;
1592 	else
1593 		nic->flags &= ~multicast_all;
1594 
1595 	e100_exec_cb(nic, NULL, e100_configure);
1596 	e100_exec_cb(nic, NULL, e100_multi);
1597 }
1598 
1599 static void e100_update_stats(struct nic *nic)
1600 {
1601 	struct net_device *dev = nic->netdev;
1602 	struct net_device_stats *ns = &dev->stats;
1603 	struct stats *s = &nic->mem->stats;
1604 	__le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1605 		(nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
1606 		&s->complete;
1607 
1608 	/* Device's stats reporting may take several microseconds to
1609 	 * complete, so we're always waiting for results of the
1610 	 * previous command. */
1611 
1612 	if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
1613 		*complete = 0;
1614 		nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1615 		nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1616 		ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1617 		ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1618 		ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1619 		ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1620 		ns->collisions += nic->tx_collisions;
1621 		ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1622 			le32_to_cpu(s->tx_lost_crs);
1623 		nic->rx_short_frame_errors +=
1624 			le32_to_cpu(s->rx_short_frame_errors);
1625 		ns->rx_length_errors = nic->rx_short_frame_errors +
1626 			nic->rx_over_length_errors;
1627 		ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1628 		ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1629 		ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1630 		ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1631 		ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1632 		ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1633 			le32_to_cpu(s->rx_alignment_errors) +
1634 			le32_to_cpu(s->rx_short_frame_errors) +
1635 			le32_to_cpu(s->rx_cdt_errors);
1636 		nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1637 		nic->tx_single_collisions +=
1638 			le32_to_cpu(s->tx_single_collisions);
1639 		nic->tx_multiple_collisions +=
1640 			le32_to_cpu(s->tx_multiple_collisions);
1641 		if (nic->mac >= mac_82558_D101_A4) {
1642 			nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1643 			nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1644 			nic->rx_fc_unsupported +=
1645 				le32_to_cpu(s->fc_rcv_unsupported);
1646 			if (nic->mac >= mac_82559_D101M) {
1647 				nic->tx_tco_frames +=
1648 					le16_to_cpu(s->xmt_tco_frames);
1649 				nic->rx_tco_frames +=
1650 					le16_to_cpu(s->rcv_tco_frames);
1651 			}
1652 		}
1653 	}
1654 
1655 
1656 	if (e100_exec_cmd(nic, cuc_dump_reset, 0))
1657 		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1658 			     "exec cuc_dump_reset failed\n");
1659 }
1660 
1661 static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1662 {
1663 	/* Adjust inter-frame-spacing (IFS) between two transmits if
1664 	 * we're getting collisions on a half-duplex connection. */
1665 
1666 	if (duplex == DUPLEX_HALF) {
1667 		u32 prev = nic->adaptive_ifs;
1668 		u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1669 
1670 		if ((nic->tx_frames / 32 < nic->tx_collisions) &&
1671 		   (nic->tx_frames > min_frames)) {
1672 			if (nic->adaptive_ifs < 60)
1673 				nic->adaptive_ifs += 5;
1674 		} else if (nic->tx_frames < min_frames) {
1675 			if (nic->adaptive_ifs >= 5)
1676 				nic->adaptive_ifs -= 5;
1677 		}
1678 		if (nic->adaptive_ifs != prev)
1679 			e100_exec_cb(nic, NULL, e100_configure);
1680 	}
1681 }
1682 
1683 static void e100_watchdog(struct timer_list *t)
1684 {
1685 	struct nic *nic = from_timer(nic, t, watchdog);
1686 	struct ethtool_cmd cmd = { .cmd = ETHTOOL_GSET };
1687 	u32 speed;
1688 
1689 	netif_printk(nic, timer, KERN_DEBUG, nic->netdev,
1690 		     "right now = %ld\n", jiffies);
1691 
1692 	/* mii library handles link maintenance tasks */
1693 
1694 	mii_ethtool_gset(&nic->mii, &cmd);
1695 	speed = ethtool_cmd_speed(&cmd);
1696 
1697 	if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1698 		netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n",
1699 			    speed == SPEED_100 ? 100 : 10,
1700 			    cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
1701 	} else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1702 		netdev_info(nic->netdev, "NIC Link is Down\n");
1703 	}
1704 
1705 	mii_check_link(&nic->mii);
1706 
1707 	/* Software generated interrupt to recover from (rare) Rx
1708 	 * allocation failure.
1709 	 * Unfortunately have to use a spinlock to not re-enable interrupts
1710 	 * accidentally, due to hardware that shares a register between the
1711 	 * interrupt mask bit and the SW Interrupt generation bit */
1712 	spin_lock_irq(&nic->cmd_lock);
1713 	iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1714 	e100_write_flush(nic);
1715 	spin_unlock_irq(&nic->cmd_lock);
1716 
1717 	e100_update_stats(nic);
1718 	e100_adjust_adaptive_ifs(nic, speed, cmd.duplex);
1719 
1720 	if (nic->mac <= mac_82557_D100_C)
1721 		/* Issue a multicast command to workaround a 557 lock up */
1722 		e100_set_multicast_list(nic->netdev);
1723 
1724 	if (nic->flags & ich && speed == SPEED_10 && cmd.duplex == DUPLEX_HALF)
1725 		/* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1726 		nic->flags |= ich_10h_workaround;
1727 	else
1728 		nic->flags &= ~ich_10h_workaround;
1729 
1730 	mod_timer(&nic->watchdog,
1731 		  round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
1732 }
1733 
1734 static int e100_xmit_prepare(struct nic *nic, struct cb *cb,
1735 	struct sk_buff *skb)
1736 {
1737 	dma_addr_t dma_addr;
1738 	cb->command = nic->tx_command;
1739 
1740 	dma_addr = dma_map_single(&nic->pdev->dev, skb->data, skb->len,
1741 				  DMA_TO_DEVICE);
1742 	/* If we can't map the skb, have the upper layer try later */
1743 	if (dma_mapping_error(&nic->pdev->dev, dma_addr))
1744 		return -ENOMEM;
1745 
1746 	/*
1747 	 * Use the last 4 bytes of the SKB payload packet as the CRC, used for
1748 	 * testing, ie sending frames with bad CRC.
1749 	 */
1750 	if (unlikely(skb->no_fcs))
1751 		cb->command |= cpu_to_le16(cb_tx_nc);
1752 	else
1753 		cb->command &= ~cpu_to_le16(cb_tx_nc);
1754 
1755 	/* interrupt every 16 packets regardless of delay */
1756 	if ((nic->cbs_avail & ~15) == nic->cbs_avail)
1757 		cb->command |= cpu_to_le16(cb_i);
1758 	cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1759 	cb->u.tcb.tcb_byte_count = 0;
1760 	cb->u.tcb.threshold = nic->tx_threshold;
1761 	cb->u.tcb.tbd_count = 1;
1762 	cb->u.tcb.tbd.buf_addr = cpu_to_le32(dma_addr);
1763 	cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1764 	skb_tx_timestamp(skb);
1765 	return 0;
1766 }
1767 
1768 static netdev_tx_t e100_xmit_frame(struct sk_buff *skb,
1769 				   struct net_device *netdev)
1770 {
1771 	struct nic *nic = netdev_priv(netdev);
1772 	int err;
1773 
1774 	if (nic->flags & ich_10h_workaround) {
1775 		/* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1776 		   Issue a NOP command followed by a 1us delay before
1777 		   issuing the Tx command. */
1778 		if (e100_exec_cmd(nic, cuc_nop, 0))
1779 			netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1780 				     "exec cuc_nop failed\n");
1781 		udelay(1);
1782 	}
1783 
1784 	err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1785 
1786 	switch (err) {
1787 	case -ENOSPC:
1788 		/* We queued the skb, but now we're out of space. */
1789 		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1790 			     "No space for CB\n");
1791 		netif_stop_queue(netdev);
1792 		break;
1793 	case -ENOMEM:
1794 		/* This is a hard error - log it. */
1795 		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1796 			     "Out of Tx resources, returning skb\n");
1797 		netif_stop_queue(netdev);
1798 		return NETDEV_TX_BUSY;
1799 	}
1800 
1801 	return NETDEV_TX_OK;
1802 }
1803 
1804 static int e100_tx_clean(struct nic *nic)
1805 {
1806 	struct net_device *dev = nic->netdev;
1807 	struct cb *cb;
1808 	int tx_cleaned = 0;
1809 
1810 	spin_lock(&nic->cb_lock);
1811 
1812 	/* Clean CBs marked complete */
1813 	for (cb = nic->cb_to_clean;
1814 	    cb->status & cpu_to_le16(cb_complete);
1815 	    cb = nic->cb_to_clean = cb->next) {
1816 		dma_rmb(); /* read skb after status */
1817 		netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev,
1818 			     "cb[%d]->status = 0x%04X\n",
1819 			     (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1820 			     cb->status);
1821 
1822 		if (likely(cb->skb != NULL)) {
1823 			dev->stats.tx_packets++;
1824 			dev->stats.tx_bytes += cb->skb->len;
1825 
1826 			dma_unmap_single(&nic->pdev->dev,
1827 					 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1828 					 le16_to_cpu(cb->u.tcb.tbd.size),
1829 					 DMA_TO_DEVICE);
1830 			dev_kfree_skb_any(cb->skb);
1831 			cb->skb = NULL;
1832 			tx_cleaned = 1;
1833 		}
1834 		cb->status = 0;
1835 		nic->cbs_avail++;
1836 	}
1837 
1838 	spin_unlock(&nic->cb_lock);
1839 
1840 	/* Recover from running out of Tx resources in xmit_frame */
1841 	if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1842 		netif_wake_queue(nic->netdev);
1843 
1844 	return tx_cleaned;
1845 }
1846 
1847 static void e100_clean_cbs(struct nic *nic)
1848 {
1849 	if (nic->cbs) {
1850 		while (nic->cbs_avail != nic->params.cbs.count) {
1851 			struct cb *cb = nic->cb_to_clean;
1852 			if (cb->skb) {
1853 				dma_unmap_single(&nic->pdev->dev,
1854 						 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1855 						 le16_to_cpu(cb->u.tcb.tbd.size),
1856 						 DMA_TO_DEVICE);
1857 				dev_kfree_skb(cb->skb);
1858 			}
1859 			nic->cb_to_clean = nic->cb_to_clean->next;
1860 			nic->cbs_avail++;
1861 		}
1862 		dma_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr);
1863 		nic->cbs = NULL;
1864 		nic->cbs_avail = 0;
1865 	}
1866 	nic->cuc_cmd = cuc_start;
1867 	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1868 		nic->cbs;
1869 }
1870 
1871 static int e100_alloc_cbs(struct nic *nic)
1872 {
1873 	struct cb *cb;
1874 	unsigned int i, count = nic->params.cbs.count;
1875 
1876 	nic->cuc_cmd = cuc_start;
1877 	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1878 	nic->cbs_avail = 0;
1879 
1880 	nic->cbs = dma_pool_zalloc(nic->cbs_pool, GFP_KERNEL,
1881 				   &nic->cbs_dma_addr);
1882 	if (!nic->cbs)
1883 		return -ENOMEM;
1884 
1885 	for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
1886 		cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1887 		cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1888 
1889 		cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1890 		cb->link = cpu_to_le32(nic->cbs_dma_addr +
1891 			((i+1) % count) * sizeof(struct cb));
1892 	}
1893 
1894 	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1895 	nic->cbs_avail = count;
1896 
1897 	return 0;
1898 }
1899 
1900 static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1901 {
1902 	if (!nic->rxs) return;
1903 	if (RU_SUSPENDED != nic->ru_running) return;
1904 
1905 	/* handle init time starts */
1906 	if (!rx) rx = nic->rxs;
1907 
1908 	/* (Re)start RU if suspended or idle and RFA is non-NULL */
1909 	if (rx->skb) {
1910 		e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1911 		nic->ru_running = RU_RUNNING;
1912 	}
1913 }
1914 
1915 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
1916 static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1917 {
1918 	if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN)))
1919 		return -ENOMEM;
1920 
1921 	/* Init, and map the RFD. */
1922 	skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1923 	rx->dma_addr = dma_map_single(&nic->pdev->dev, rx->skb->data,
1924 				      RFD_BUF_LEN, DMA_BIDIRECTIONAL);
1925 
1926 	if (dma_mapping_error(&nic->pdev->dev, rx->dma_addr)) {
1927 		dev_kfree_skb_any(rx->skb);
1928 		rx->skb = NULL;
1929 		rx->dma_addr = 0;
1930 		return -ENOMEM;
1931 	}
1932 
1933 	/* Link the RFD to end of RFA by linking previous RFD to
1934 	 * this one.  We are safe to touch the previous RFD because
1935 	 * it is protected by the before last buffer's el bit being set */
1936 	if (rx->prev->skb) {
1937 		struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1938 		put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
1939 		dma_sync_single_for_device(&nic->pdev->dev,
1940 					   rx->prev->dma_addr,
1941 					   sizeof(struct rfd),
1942 					   DMA_BIDIRECTIONAL);
1943 	}
1944 
1945 	return 0;
1946 }
1947 
1948 static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1949 	unsigned int *work_done, unsigned int work_to_do)
1950 {
1951 	struct net_device *dev = nic->netdev;
1952 	struct sk_buff *skb = rx->skb;
1953 	struct rfd *rfd = (struct rfd *)skb->data;
1954 	u16 rfd_status, actual_size;
1955 	u16 fcs_pad = 0;
1956 
1957 	if (unlikely(work_done && *work_done >= work_to_do))
1958 		return -EAGAIN;
1959 
1960 	/* Need to sync before taking a peek at cb_complete bit */
1961 	dma_sync_single_for_cpu(&nic->pdev->dev, rx->dma_addr,
1962 				sizeof(struct rfd), DMA_BIDIRECTIONAL);
1963 	rfd_status = le16_to_cpu(rfd->status);
1964 
1965 	netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev,
1966 		     "status=0x%04X\n", rfd_status);
1967 	dma_rmb(); /* read size after status bit */
1968 
1969 	/* If data isn't ready, nothing to indicate */
1970 	if (unlikely(!(rfd_status & cb_complete))) {
1971 		/* If the next buffer has the el bit, but we think the receiver
1972 		 * is still running, check to see if it really stopped while
1973 		 * we had interrupts off.
1974 		 * This allows for a fast restart without re-enabling
1975 		 * interrupts */
1976 		if ((le16_to_cpu(rfd->command) & cb_el) &&
1977 		    (RU_RUNNING == nic->ru_running))
1978 
1979 			if (ioread8(&nic->csr->scb.status) & rus_no_res)
1980 				nic->ru_running = RU_SUSPENDED;
1981 		dma_sync_single_for_device(&nic->pdev->dev, rx->dma_addr,
1982 					   sizeof(struct rfd),
1983 					   DMA_FROM_DEVICE);
1984 		return -ENODATA;
1985 	}
1986 
1987 	/* Get actual data size */
1988 	if (unlikely(dev->features & NETIF_F_RXFCS))
1989 		fcs_pad = 4;
1990 	actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
1991 	if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1992 		actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1993 
1994 	/* Get data */
1995 	dma_unmap_single(&nic->pdev->dev, rx->dma_addr, RFD_BUF_LEN,
1996 			 DMA_BIDIRECTIONAL);
1997 
1998 	/* If this buffer has the el bit, but we think the receiver
1999 	 * is still running, check to see if it really stopped while
2000 	 * we had interrupts off.
2001 	 * This allows for a fast restart without re-enabling interrupts.
2002 	 * This can happen when the RU sees the size change but also sees
2003 	 * the el bit set. */
2004 	if ((le16_to_cpu(rfd->command) & cb_el) &&
2005 	    (RU_RUNNING == nic->ru_running)) {
2006 
2007 	    if (ioread8(&nic->csr->scb.status) & rus_no_res)
2008 		nic->ru_running = RU_SUSPENDED;
2009 	}
2010 
2011 	/* Pull off the RFD and put the actual data (minus eth hdr) */
2012 	skb_reserve(skb, sizeof(struct rfd));
2013 	skb_put(skb, actual_size);
2014 	skb->protocol = eth_type_trans(skb, nic->netdev);
2015 
2016 	/* If we are receiving all frames, then don't bother
2017 	 * checking for errors.
2018 	 */
2019 	if (unlikely(dev->features & NETIF_F_RXALL)) {
2020 		if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad)
2021 			/* Received oversized frame, but keep it. */
2022 			nic->rx_over_length_errors++;
2023 		goto process_skb;
2024 	}
2025 
2026 	if (unlikely(!(rfd_status & cb_ok))) {
2027 		/* Don't indicate if hardware indicates errors */
2028 		dev_kfree_skb_any(skb);
2029 	} else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) {
2030 		/* Don't indicate oversized frames */
2031 		nic->rx_over_length_errors++;
2032 		dev_kfree_skb_any(skb);
2033 	} else {
2034 process_skb:
2035 		dev->stats.rx_packets++;
2036 		dev->stats.rx_bytes += (actual_size - fcs_pad);
2037 		netif_receive_skb(skb);
2038 		if (work_done)
2039 			(*work_done)++;
2040 	}
2041 
2042 	rx->skb = NULL;
2043 
2044 	return 0;
2045 }
2046 
2047 static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
2048 	unsigned int work_to_do)
2049 {
2050 	struct rx *rx;
2051 	int restart_required = 0, err = 0;
2052 	struct rx *old_before_last_rx, *new_before_last_rx;
2053 	struct rfd *old_before_last_rfd, *new_before_last_rfd;
2054 
2055 	/* Indicate newly arrived packets */
2056 	for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
2057 		err = e100_rx_indicate(nic, rx, work_done, work_to_do);
2058 		/* Hit quota or no more to clean */
2059 		if (-EAGAIN == err || -ENODATA == err)
2060 			break;
2061 	}
2062 
2063 
2064 	/* On EAGAIN, hit quota so have more work to do, restart once
2065 	 * cleanup is complete.
2066 	 * Else, are we already rnr? then pay attention!!! this ensures that
2067 	 * the state machine progression never allows a start with a
2068 	 * partially cleaned list, avoiding a race between hardware
2069 	 * and rx_to_clean when in NAPI mode */
2070 	if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
2071 		restart_required = 1;
2072 
2073 	old_before_last_rx = nic->rx_to_use->prev->prev;
2074 	old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
2075 
2076 	/* Alloc new skbs to refill list */
2077 	for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
2078 		if (unlikely(e100_rx_alloc_skb(nic, rx)))
2079 			break; /* Better luck next time (see watchdog) */
2080 	}
2081 
2082 	new_before_last_rx = nic->rx_to_use->prev->prev;
2083 	if (new_before_last_rx != old_before_last_rx) {
2084 		/* Set the el-bit on the buffer that is before the last buffer.
2085 		 * This lets us update the next pointer on the last buffer
2086 		 * without worrying about hardware touching it.
2087 		 * We set the size to 0 to prevent hardware from touching this
2088 		 * buffer.
2089 		 * When the hardware hits the before last buffer with el-bit
2090 		 * and size of 0, it will RNR interrupt, the RUS will go into
2091 		 * the No Resources state.  It will not complete nor write to
2092 		 * this buffer. */
2093 		new_before_last_rfd =
2094 			(struct rfd *)new_before_last_rx->skb->data;
2095 		new_before_last_rfd->size = 0;
2096 		new_before_last_rfd->command |= cpu_to_le16(cb_el);
2097 		dma_sync_single_for_device(&nic->pdev->dev,
2098 					   new_before_last_rx->dma_addr,
2099 					   sizeof(struct rfd),
2100 					   DMA_BIDIRECTIONAL);
2101 
2102 		/* Now that we have a new stopping point, we can clear the old
2103 		 * stopping point.  We must sync twice to get the proper
2104 		 * ordering on the hardware side of things. */
2105 		old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
2106 		dma_sync_single_for_device(&nic->pdev->dev,
2107 					   old_before_last_rx->dma_addr,
2108 					   sizeof(struct rfd),
2109 					   DMA_BIDIRECTIONAL);
2110 		old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN
2111 							+ ETH_FCS_LEN);
2112 		dma_sync_single_for_device(&nic->pdev->dev,
2113 					   old_before_last_rx->dma_addr,
2114 					   sizeof(struct rfd),
2115 					   DMA_BIDIRECTIONAL);
2116 	}
2117 
2118 	if (restart_required) {
2119 		// ack the rnr?
2120 		iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
2121 		e100_start_receiver(nic, nic->rx_to_clean);
2122 		if (work_done)
2123 			(*work_done)++;
2124 	}
2125 }
2126 
2127 static void e100_rx_clean_list(struct nic *nic)
2128 {
2129 	struct rx *rx;
2130 	unsigned int i, count = nic->params.rfds.count;
2131 
2132 	nic->ru_running = RU_UNINITIALIZED;
2133 
2134 	if (nic->rxs) {
2135 		for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2136 			if (rx->skb) {
2137 				dma_unmap_single(&nic->pdev->dev,
2138 						 rx->dma_addr, RFD_BUF_LEN,
2139 						 DMA_BIDIRECTIONAL);
2140 				dev_kfree_skb(rx->skb);
2141 			}
2142 		}
2143 		kfree(nic->rxs);
2144 		nic->rxs = NULL;
2145 	}
2146 
2147 	nic->rx_to_use = nic->rx_to_clean = NULL;
2148 }
2149 
2150 static int e100_rx_alloc_list(struct nic *nic)
2151 {
2152 	struct rx *rx;
2153 	unsigned int i, count = nic->params.rfds.count;
2154 	struct rfd *before_last;
2155 
2156 	nic->rx_to_use = nic->rx_to_clean = NULL;
2157 	nic->ru_running = RU_UNINITIALIZED;
2158 
2159 	if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_KERNEL)))
2160 		return -ENOMEM;
2161 
2162 	for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2163 		rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
2164 		rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
2165 		if (e100_rx_alloc_skb(nic, rx)) {
2166 			e100_rx_clean_list(nic);
2167 			return -ENOMEM;
2168 		}
2169 	}
2170 	/* Set the el-bit on the buffer that is before the last buffer.
2171 	 * This lets us update the next pointer on the last buffer without
2172 	 * worrying about hardware touching it.
2173 	 * We set the size to 0 to prevent hardware from touching this buffer.
2174 	 * When the hardware hits the before last buffer with el-bit and size
2175 	 * of 0, it will RNR interrupt, the RU will go into the No Resources
2176 	 * state.  It will not complete nor write to this buffer. */
2177 	rx = nic->rxs->prev->prev;
2178 	before_last = (struct rfd *)rx->skb->data;
2179 	before_last->command |= cpu_to_le16(cb_el);
2180 	before_last->size = 0;
2181 	dma_sync_single_for_device(&nic->pdev->dev, rx->dma_addr,
2182 				   sizeof(struct rfd), DMA_BIDIRECTIONAL);
2183 
2184 	nic->rx_to_use = nic->rx_to_clean = nic->rxs;
2185 	nic->ru_running = RU_SUSPENDED;
2186 
2187 	return 0;
2188 }
2189 
2190 static irqreturn_t e100_intr(int irq, void *dev_id)
2191 {
2192 	struct net_device *netdev = dev_id;
2193 	struct nic *nic = netdev_priv(netdev);
2194 	u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
2195 
2196 	netif_printk(nic, intr, KERN_DEBUG, nic->netdev,
2197 		     "stat_ack = 0x%02X\n", stat_ack);
2198 
2199 	if (stat_ack == stat_ack_not_ours ||	/* Not our interrupt */
2200 	   stat_ack == stat_ack_not_present)	/* Hardware is ejected */
2201 		return IRQ_NONE;
2202 
2203 	/* Ack interrupt(s) */
2204 	iowrite8(stat_ack, &nic->csr->scb.stat_ack);
2205 
2206 	/* We hit Receive No Resource (RNR); restart RU after cleaning */
2207 	if (stat_ack & stat_ack_rnr)
2208 		nic->ru_running = RU_SUSPENDED;
2209 
2210 	if (likely(napi_schedule_prep(&nic->napi))) {
2211 		e100_disable_irq(nic);
2212 		__napi_schedule(&nic->napi);
2213 	}
2214 
2215 	return IRQ_HANDLED;
2216 }
2217 
2218 static int e100_poll(struct napi_struct *napi, int budget)
2219 {
2220 	struct nic *nic = container_of(napi, struct nic, napi);
2221 	unsigned int work_done = 0;
2222 
2223 	e100_rx_clean(nic, &work_done, budget);
2224 	e100_tx_clean(nic);
2225 
2226 	/* If budget fully consumed, continue polling */
2227 	if (work_done == budget)
2228 		return budget;
2229 
2230 	/* only re-enable interrupt if stack agrees polling is really done */
2231 	if (likely(napi_complete_done(napi, work_done)))
2232 		e100_enable_irq(nic);
2233 
2234 	return work_done;
2235 }
2236 
2237 #ifdef CONFIG_NET_POLL_CONTROLLER
2238 static void e100_netpoll(struct net_device *netdev)
2239 {
2240 	struct nic *nic = netdev_priv(netdev);
2241 
2242 	e100_disable_irq(nic);
2243 	e100_intr(nic->pdev->irq, netdev);
2244 	e100_tx_clean(nic);
2245 	e100_enable_irq(nic);
2246 }
2247 #endif
2248 
2249 static int e100_set_mac_address(struct net_device *netdev, void *p)
2250 {
2251 	struct nic *nic = netdev_priv(netdev);
2252 	struct sockaddr *addr = p;
2253 
2254 	if (!is_valid_ether_addr(addr->sa_data))
2255 		return -EADDRNOTAVAIL;
2256 
2257 	eth_hw_addr_set(netdev, addr->sa_data);
2258 	e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2259 
2260 	return 0;
2261 }
2262 
2263 static int e100_asf(struct nic *nic)
2264 {
2265 	/* ASF can be enabled from eeprom */
2266 	return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2267 	   (le16_to_cpu(nic->eeprom[eeprom_config_asf]) & eeprom_asf) &&
2268 	   !(le16_to_cpu(nic->eeprom[eeprom_config_asf]) & eeprom_gcl) &&
2269 	   ((le16_to_cpu(nic->eeprom[eeprom_smbus_addr]) & 0xFF) != 0xFE);
2270 }
2271 
2272 static int e100_up(struct nic *nic)
2273 {
2274 	int err;
2275 
2276 	if ((err = e100_rx_alloc_list(nic)))
2277 		return err;
2278 	if ((err = e100_alloc_cbs(nic)))
2279 		goto err_rx_clean_list;
2280 	if ((err = e100_hw_init(nic)))
2281 		goto err_clean_cbs;
2282 	e100_set_multicast_list(nic->netdev);
2283 	e100_start_receiver(nic, NULL);
2284 	mod_timer(&nic->watchdog, jiffies);
2285 	if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
2286 		nic->netdev->name, nic->netdev)))
2287 		goto err_no_irq;
2288 	netif_wake_queue(nic->netdev);
2289 	napi_enable(&nic->napi);
2290 	/* enable ints _after_ enabling poll, preventing a race between
2291 	 * disable ints+schedule */
2292 	e100_enable_irq(nic);
2293 	return 0;
2294 
2295 err_no_irq:
2296 	del_timer_sync(&nic->watchdog);
2297 err_clean_cbs:
2298 	e100_clean_cbs(nic);
2299 err_rx_clean_list:
2300 	e100_rx_clean_list(nic);
2301 	return err;
2302 }
2303 
2304 static void e100_down(struct nic *nic)
2305 {
2306 	/* wait here for poll to complete */
2307 	napi_disable(&nic->napi);
2308 	netif_stop_queue(nic->netdev);
2309 	e100_hw_reset(nic);
2310 	free_irq(nic->pdev->irq, nic->netdev);
2311 	del_timer_sync(&nic->watchdog);
2312 	netif_carrier_off(nic->netdev);
2313 	e100_clean_cbs(nic);
2314 	e100_rx_clean_list(nic);
2315 }
2316 
2317 static void e100_tx_timeout(struct net_device *netdev, unsigned int txqueue)
2318 {
2319 	struct nic *nic = netdev_priv(netdev);
2320 
2321 	/* Reset outside of interrupt context, to avoid request_irq
2322 	 * in interrupt context */
2323 	schedule_work(&nic->tx_timeout_task);
2324 }
2325 
2326 static void e100_tx_timeout_task(struct work_struct *work)
2327 {
2328 	struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2329 	struct net_device *netdev = nic->netdev;
2330 
2331 	netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
2332 		     "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status));
2333 
2334 	rtnl_lock();
2335 	if (netif_running(netdev)) {
2336 		e100_down(netdev_priv(netdev));
2337 		e100_up(netdev_priv(netdev));
2338 	}
2339 	rtnl_unlock();
2340 }
2341 
2342 static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2343 {
2344 	int err;
2345 	struct sk_buff *skb;
2346 
2347 	/* Use driver resources to perform internal MAC or PHY
2348 	 * loopback test.  A single packet is prepared and transmitted
2349 	 * in loopback mode, and the test passes if the received
2350 	 * packet compares byte-for-byte to the transmitted packet. */
2351 
2352 	if ((err = e100_rx_alloc_list(nic)))
2353 		return err;
2354 	if ((err = e100_alloc_cbs(nic)))
2355 		goto err_clean_rx;
2356 
2357 	/* ICH PHY loopback is broken so do MAC loopback instead */
2358 	if (nic->flags & ich && loopback_mode == lb_phy)
2359 		loopback_mode = lb_mac;
2360 
2361 	nic->loopback = loopback_mode;
2362 	if ((err = e100_hw_init(nic)))
2363 		goto err_loopback_none;
2364 
2365 	if (loopback_mode == lb_phy)
2366 		mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2367 			BMCR_LOOPBACK);
2368 
2369 	e100_start_receiver(nic, NULL);
2370 
2371 	if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
2372 		err = -ENOMEM;
2373 		goto err_loopback_none;
2374 	}
2375 	skb_put(skb, ETH_DATA_LEN);
2376 	memset(skb->data, 0xFF, ETH_DATA_LEN);
2377 	e100_xmit_frame(skb, nic->netdev);
2378 
2379 	msleep(10);
2380 
2381 	dma_sync_single_for_cpu(&nic->pdev->dev, nic->rx_to_clean->dma_addr,
2382 				RFD_BUF_LEN, DMA_BIDIRECTIONAL);
2383 
2384 	if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2385 	   skb->data, ETH_DATA_LEN))
2386 		err = -EAGAIN;
2387 
2388 err_loopback_none:
2389 	mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2390 	nic->loopback = lb_none;
2391 	e100_clean_cbs(nic);
2392 	e100_hw_reset(nic);
2393 err_clean_rx:
2394 	e100_rx_clean_list(nic);
2395 	return err;
2396 }
2397 
2398 #define MII_LED_CONTROL	0x1B
2399 #define E100_82552_LED_OVERRIDE 0x19
2400 #define E100_82552_LED_ON       0x000F /* LEDTX and LED_RX both on */
2401 #define E100_82552_LED_OFF      0x000A /* LEDTX and LED_RX both off */
2402 
2403 static int e100_get_link_ksettings(struct net_device *netdev,
2404 				   struct ethtool_link_ksettings *cmd)
2405 {
2406 	struct nic *nic = netdev_priv(netdev);
2407 
2408 	mii_ethtool_get_link_ksettings(&nic->mii, cmd);
2409 
2410 	return 0;
2411 }
2412 
2413 static int e100_set_link_ksettings(struct net_device *netdev,
2414 				   const struct ethtool_link_ksettings *cmd)
2415 {
2416 	struct nic *nic = netdev_priv(netdev);
2417 	int err;
2418 
2419 	mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2420 	err = mii_ethtool_set_link_ksettings(&nic->mii, cmd);
2421 	e100_exec_cb(nic, NULL, e100_configure);
2422 
2423 	return err;
2424 }
2425 
2426 static void e100_get_drvinfo(struct net_device *netdev,
2427 	struct ethtool_drvinfo *info)
2428 {
2429 	struct nic *nic = netdev_priv(netdev);
2430 	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
2431 	strscpy(info->bus_info, pci_name(nic->pdev),
2432 		sizeof(info->bus_info));
2433 }
2434 
2435 #define E100_PHY_REGS 0x1D
2436 static int e100_get_regs_len(struct net_device *netdev)
2437 {
2438 	struct nic *nic = netdev_priv(netdev);
2439 
2440 	/* We know the number of registers, and the size of the dump buffer.
2441 	 * Calculate the total size in bytes.
2442 	 */
2443 	return (1 + E100_PHY_REGS) * sizeof(u32) + sizeof(nic->mem->dump_buf);
2444 }
2445 
2446 static void e100_get_regs(struct net_device *netdev,
2447 	struct ethtool_regs *regs, void *p)
2448 {
2449 	struct nic *nic = netdev_priv(netdev);
2450 	u32 *buff = p;
2451 	int i;
2452 
2453 	regs->version = (1 << 24) | nic->pdev->revision;
2454 	buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2455 		ioread8(&nic->csr->scb.cmd_lo) << 16 |
2456 		ioread16(&nic->csr->scb.status);
2457 	for (i = 0; i < E100_PHY_REGS; i++)
2458 		/* Note that we read the registers in reverse order. This
2459 		 * ordering is the ABI apparently used by ethtool and other
2460 		 * applications.
2461 		 */
2462 		buff[1 + i] = mdio_read(netdev, nic->mii.phy_id,
2463 					E100_PHY_REGS - 1 - i);
2464 	memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2465 	e100_exec_cb(nic, NULL, e100_dump);
2466 	msleep(10);
2467 	memcpy(&buff[1 + E100_PHY_REGS], nic->mem->dump_buf,
2468 	       sizeof(nic->mem->dump_buf));
2469 }
2470 
2471 static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2472 {
2473 	struct nic *nic = netdev_priv(netdev);
2474 	wol->supported = (nic->mac >= mac_82558_D101_A4) ?  WAKE_MAGIC : 0;
2475 	wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2476 }
2477 
2478 static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2479 {
2480 	struct nic *nic = netdev_priv(netdev);
2481 
2482 	if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
2483 	    !device_can_wakeup(&nic->pdev->dev))
2484 		return -EOPNOTSUPP;
2485 
2486 	if (wol->wolopts)
2487 		nic->flags |= wol_magic;
2488 	else
2489 		nic->flags &= ~wol_magic;
2490 
2491 	device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
2492 
2493 	e100_exec_cb(nic, NULL, e100_configure);
2494 
2495 	return 0;
2496 }
2497 
2498 static u32 e100_get_msglevel(struct net_device *netdev)
2499 {
2500 	struct nic *nic = netdev_priv(netdev);
2501 	return nic->msg_enable;
2502 }
2503 
2504 static void e100_set_msglevel(struct net_device *netdev, u32 value)
2505 {
2506 	struct nic *nic = netdev_priv(netdev);
2507 	nic->msg_enable = value;
2508 }
2509 
2510 static int e100_nway_reset(struct net_device *netdev)
2511 {
2512 	struct nic *nic = netdev_priv(netdev);
2513 	return mii_nway_restart(&nic->mii);
2514 }
2515 
2516 static u32 e100_get_link(struct net_device *netdev)
2517 {
2518 	struct nic *nic = netdev_priv(netdev);
2519 	return mii_link_ok(&nic->mii);
2520 }
2521 
2522 static int e100_get_eeprom_len(struct net_device *netdev)
2523 {
2524 	struct nic *nic = netdev_priv(netdev);
2525 	return nic->eeprom_wc << 1;
2526 }
2527 
2528 #define E100_EEPROM_MAGIC	0x1234
2529 static int e100_get_eeprom(struct net_device *netdev,
2530 	struct ethtool_eeprom *eeprom, u8 *bytes)
2531 {
2532 	struct nic *nic = netdev_priv(netdev);
2533 
2534 	eeprom->magic = E100_EEPROM_MAGIC;
2535 	memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2536 
2537 	return 0;
2538 }
2539 
2540 static int e100_set_eeprom(struct net_device *netdev,
2541 	struct ethtool_eeprom *eeprom, u8 *bytes)
2542 {
2543 	struct nic *nic = netdev_priv(netdev);
2544 
2545 	if (eeprom->magic != E100_EEPROM_MAGIC)
2546 		return -EINVAL;
2547 
2548 	memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2549 
2550 	return e100_eeprom_save(nic, eeprom->offset >> 1,
2551 		(eeprom->len >> 1) + 1);
2552 }
2553 
2554 static void e100_get_ringparam(struct net_device *netdev,
2555 			       struct ethtool_ringparam *ring,
2556 			       struct kernel_ethtool_ringparam *kernel_ring,
2557 			       struct netlink_ext_ack *extack)
2558 {
2559 	struct nic *nic = netdev_priv(netdev);
2560 	struct param_range *rfds = &nic->params.rfds;
2561 	struct param_range *cbs = &nic->params.cbs;
2562 
2563 	ring->rx_max_pending = rfds->max;
2564 	ring->tx_max_pending = cbs->max;
2565 	ring->rx_pending = rfds->count;
2566 	ring->tx_pending = cbs->count;
2567 }
2568 
2569 static int e100_set_ringparam(struct net_device *netdev,
2570 			      struct ethtool_ringparam *ring,
2571 			      struct kernel_ethtool_ringparam *kernel_ring,
2572 			      struct netlink_ext_ack *extack)
2573 {
2574 	struct nic *nic = netdev_priv(netdev);
2575 	struct param_range *rfds = &nic->params.rfds;
2576 	struct param_range *cbs = &nic->params.cbs;
2577 
2578 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2579 		return -EINVAL;
2580 
2581 	if (netif_running(netdev))
2582 		e100_down(nic);
2583 	rfds->count = max(ring->rx_pending, rfds->min);
2584 	rfds->count = min(rfds->count, rfds->max);
2585 	cbs->count = max(ring->tx_pending, cbs->min);
2586 	cbs->count = min(cbs->count, cbs->max);
2587 	netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n",
2588 		   rfds->count, cbs->count);
2589 	if (netif_running(netdev))
2590 		e100_up(nic);
2591 
2592 	return 0;
2593 }
2594 
2595 static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2596 	"Link test     (on/offline)",
2597 	"Eeprom test   (on/offline)",
2598 	"Self test        (offline)",
2599 	"Mac loopback     (offline)",
2600 	"Phy loopback     (offline)",
2601 };
2602 #define E100_TEST_LEN	ARRAY_SIZE(e100_gstrings_test)
2603 
2604 static void e100_diag_test(struct net_device *netdev,
2605 	struct ethtool_test *test, u64 *data)
2606 {
2607 	struct ethtool_cmd cmd;
2608 	struct nic *nic = netdev_priv(netdev);
2609 	int i;
2610 
2611 	memset(data, 0, E100_TEST_LEN * sizeof(u64));
2612 	data[0] = !mii_link_ok(&nic->mii);
2613 	data[1] = e100_eeprom_load(nic);
2614 	if (test->flags & ETH_TEST_FL_OFFLINE) {
2615 
2616 		/* save speed, duplex & autoneg settings */
2617 		mii_ethtool_gset(&nic->mii, &cmd);
2618 
2619 		if (netif_running(netdev))
2620 			e100_down(nic);
2621 		data[2] = e100_self_test(nic);
2622 		data[3] = e100_loopback_test(nic, lb_mac);
2623 		data[4] = e100_loopback_test(nic, lb_phy);
2624 
2625 		/* restore speed, duplex & autoneg settings */
2626 		mii_ethtool_sset(&nic->mii, &cmd);
2627 
2628 		if (netif_running(netdev))
2629 			e100_up(nic);
2630 	}
2631 	for (i = 0; i < E100_TEST_LEN; i++)
2632 		test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2633 
2634 	msleep_interruptible(4 * 1000);
2635 }
2636 
2637 static int e100_set_phys_id(struct net_device *netdev,
2638 			    enum ethtool_phys_id_state state)
2639 {
2640 	struct nic *nic = netdev_priv(netdev);
2641 	enum led_state {
2642 		led_on     = 0x01,
2643 		led_off    = 0x04,
2644 		led_on_559 = 0x05,
2645 		led_on_557 = 0x07,
2646 	};
2647 	u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
2648 		MII_LED_CONTROL;
2649 	u16 leds = 0;
2650 
2651 	switch (state) {
2652 	case ETHTOOL_ID_ACTIVE:
2653 		return 2;
2654 
2655 	case ETHTOOL_ID_ON:
2656 		leds = (nic->phy == phy_82552_v) ? E100_82552_LED_ON :
2657 		       (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
2658 		break;
2659 
2660 	case ETHTOOL_ID_OFF:
2661 		leds = (nic->phy == phy_82552_v) ? E100_82552_LED_OFF : led_off;
2662 		break;
2663 
2664 	case ETHTOOL_ID_INACTIVE:
2665 		break;
2666 	}
2667 
2668 	mdio_write(netdev, nic->mii.phy_id, led_reg, leds);
2669 	return 0;
2670 }
2671 
2672 static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2673 	"rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2674 	"tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2675 	"rx_length_errors", "rx_over_errors", "rx_crc_errors",
2676 	"rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2677 	"tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2678 	"tx_heartbeat_errors", "tx_window_errors",
2679 	/* device-specific stats */
2680 	"tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2681 	"tx_flow_control_pause", "rx_flow_control_pause",
2682 	"rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2683 	"rx_short_frame_errors", "rx_over_length_errors",
2684 };
2685 #define E100_NET_STATS_LEN	21
2686 #define E100_STATS_LEN	ARRAY_SIZE(e100_gstrings_stats)
2687 
2688 static int e100_get_sset_count(struct net_device *netdev, int sset)
2689 {
2690 	switch (sset) {
2691 	case ETH_SS_TEST:
2692 		return E100_TEST_LEN;
2693 	case ETH_SS_STATS:
2694 		return E100_STATS_LEN;
2695 	default:
2696 		return -EOPNOTSUPP;
2697 	}
2698 }
2699 
2700 static void e100_get_ethtool_stats(struct net_device *netdev,
2701 	struct ethtool_stats *stats, u64 *data)
2702 {
2703 	struct nic *nic = netdev_priv(netdev);
2704 	int i;
2705 
2706 	for (i = 0; i < E100_NET_STATS_LEN; i++)
2707 		data[i] = ((unsigned long *)&netdev->stats)[i];
2708 
2709 	data[i++] = nic->tx_deferred;
2710 	data[i++] = nic->tx_single_collisions;
2711 	data[i++] = nic->tx_multiple_collisions;
2712 	data[i++] = nic->tx_fc_pause;
2713 	data[i++] = nic->rx_fc_pause;
2714 	data[i++] = nic->rx_fc_unsupported;
2715 	data[i++] = nic->tx_tco_frames;
2716 	data[i++] = nic->rx_tco_frames;
2717 	data[i++] = nic->rx_short_frame_errors;
2718 	data[i++] = nic->rx_over_length_errors;
2719 }
2720 
2721 static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2722 {
2723 	switch (stringset) {
2724 	case ETH_SS_TEST:
2725 		memcpy(data, e100_gstrings_test, sizeof(e100_gstrings_test));
2726 		break;
2727 	case ETH_SS_STATS:
2728 		memcpy(data, e100_gstrings_stats, sizeof(e100_gstrings_stats));
2729 		break;
2730 	}
2731 }
2732 
2733 static const struct ethtool_ops e100_ethtool_ops = {
2734 	.get_drvinfo		= e100_get_drvinfo,
2735 	.get_regs_len		= e100_get_regs_len,
2736 	.get_regs		= e100_get_regs,
2737 	.get_wol		= e100_get_wol,
2738 	.set_wol		= e100_set_wol,
2739 	.get_msglevel		= e100_get_msglevel,
2740 	.set_msglevel		= e100_set_msglevel,
2741 	.nway_reset		= e100_nway_reset,
2742 	.get_link		= e100_get_link,
2743 	.get_eeprom_len		= e100_get_eeprom_len,
2744 	.get_eeprom		= e100_get_eeprom,
2745 	.set_eeprom		= e100_set_eeprom,
2746 	.get_ringparam		= e100_get_ringparam,
2747 	.set_ringparam		= e100_set_ringparam,
2748 	.self_test		= e100_diag_test,
2749 	.get_strings		= e100_get_strings,
2750 	.set_phys_id		= e100_set_phys_id,
2751 	.get_ethtool_stats	= e100_get_ethtool_stats,
2752 	.get_sset_count		= e100_get_sset_count,
2753 	.get_ts_info		= ethtool_op_get_ts_info,
2754 	.get_link_ksettings	= e100_get_link_ksettings,
2755 	.set_link_ksettings	= e100_set_link_ksettings,
2756 };
2757 
2758 static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2759 {
2760 	struct nic *nic = netdev_priv(netdev);
2761 
2762 	return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2763 }
2764 
2765 static int e100_alloc(struct nic *nic)
2766 {
2767 	nic->mem = dma_alloc_coherent(&nic->pdev->dev, sizeof(struct mem),
2768 				      &nic->dma_addr, GFP_KERNEL);
2769 	return nic->mem ? 0 : -ENOMEM;
2770 }
2771 
2772 static void e100_free(struct nic *nic)
2773 {
2774 	if (nic->mem) {
2775 		dma_free_coherent(&nic->pdev->dev, sizeof(struct mem),
2776 				  nic->mem, nic->dma_addr);
2777 		nic->mem = NULL;
2778 	}
2779 }
2780 
2781 static int e100_open(struct net_device *netdev)
2782 {
2783 	struct nic *nic = netdev_priv(netdev);
2784 	int err = 0;
2785 
2786 	netif_carrier_off(netdev);
2787 	if ((err = e100_up(nic)))
2788 		netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n");
2789 	return err;
2790 }
2791 
2792 static int e100_close(struct net_device *netdev)
2793 {
2794 	e100_down(netdev_priv(netdev));
2795 	return 0;
2796 }
2797 
2798 static int e100_set_features(struct net_device *netdev,
2799 			     netdev_features_t features)
2800 {
2801 	struct nic *nic = netdev_priv(netdev);
2802 	netdev_features_t changed = features ^ netdev->features;
2803 
2804 	if (!(changed & (NETIF_F_RXFCS | NETIF_F_RXALL)))
2805 		return 0;
2806 
2807 	netdev->features = features;
2808 	e100_exec_cb(nic, NULL, e100_configure);
2809 	return 1;
2810 }
2811 
2812 static const struct net_device_ops e100_netdev_ops = {
2813 	.ndo_open		= e100_open,
2814 	.ndo_stop		= e100_close,
2815 	.ndo_start_xmit		= e100_xmit_frame,
2816 	.ndo_validate_addr	= eth_validate_addr,
2817 	.ndo_set_rx_mode	= e100_set_multicast_list,
2818 	.ndo_set_mac_address	= e100_set_mac_address,
2819 	.ndo_eth_ioctl		= e100_do_ioctl,
2820 	.ndo_tx_timeout		= e100_tx_timeout,
2821 #ifdef CONFIG_NET_POLL_CONTROLLER
2822 	.ndo_poll_controller	= e100_netpoll,
2823 #endif
2824 	.ndo_set_features	= e100_set_features,
2825 };
2826 
2827 static int e100_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2828 {
2829 	struct net_device *netdev;
2830 	struct nic *nic;
2831 	int err;
2832 
2833 	if (!(netdev = alloc_etherdev(sizeof(struct nic))))
2834 		return -ENOMEM;
2835 
2836 	netdev->hw_features |= NETIF_F_RXFCS;
2837 	netdev->priv_flags |= IFF_SUPP_NOFCS;
2838 	netdev->hw_features |= NETIF_F_RXALL;
2839 
2840 	netdev->netdev_ops = &e100_netdev_ops;
2841 	netdev->ethtool_ops = &e100_ethtool_ops;
2842 	netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2843 	strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
2844 
2845 	nic = netdev_priv(netdev);
2846 	netif_napi_add_weight(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
2847 	nic->netdev = netdev;
2848 	nic->pdev = pdev;
2849 	nic->msg_enable = (1 << debug) - 1;
2850 	nic->mdio_ctrl = mdio_ctrl_hw;
2851 	pci_set_drvdata(pdev, netdev);
2852 
2853 	if ((err = pci_enable_device(pdev))) {
2854 		netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n");
2855 		goto err_out_free_dev;
2856 	}
2857 
2858 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2859 		netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n");
2860 		err = -ENODEV;
2861 		goto err_out_disable_pdev;
2862 	}
2863 
2864 	if ((err = pci_request_regions(pdev, DRV_NAME))) {
2865 		netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n");
2866 		goto err_out_disable_pdev;
2867 	}
2868 
2869 	if ((err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))) {
2870 		netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n");
2871 		goto err_out_free_res;
2872 	}
2873 
2874 	SET_NETDEV_DEV(netdev, &pdev->dev);
2875 
2876 	if (use_io)
2877 		netif_info(nic, probe, nic->netdev, "using i/o access mode\n");
2878 
2879 	nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
2880 	if (!nic->csr) {
2881 		netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n");
2882 		err = -ENOMEM;
2883 		goto err_out_free_res;
2884 	}
2885 
2886 	if (ent->driver_data)
2887 		nic->flags |= ich;
2888 	else
2889 		nic->flags &= ~ich;
2890 
2891 	e100_get_defaults(nic);
2892 
2893 	/* D100 MAC doesn't allow rx of vlan packets with normal MTU */
2894 	if (nic->mac < mac_82558_D101_A4)
2895 		netdev->features |= NETIF_F_VLAN_CHALLENGED;
2896 
2897 	/* locks must be initialized before calling hw_reset */
2898 	spin_lock_init(&nic->cb_lock);
2899 	spin_lock_init(&nic->cmd_lock);
2900 	spin_lock_init(&nic->mdio_lock);
2901 
2902 	/* Reset the device before pci_set_master() in case device is in some
2903 	 * funky state and has an interrupt pending - hint: we don't have the
2904 	 * interrupt handler registered yet. */
2905 	e100_hw_reset(nic);
2906 
2907 	pci_set_master(pdev);
2908 
2909 	timer_setup(&nic->watchdog, e100_watchdog, 0);
2910 
2911 	INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2912 
2913 	if ((err = e100_alloc(nic))) {
2914 		netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n");
2915 		goto err_out_iounmap;
2916 	}
2917 
2918 	if ((err = e100_eeprom_load(nic)))
2919 		goto err_out_free;
2920 
2921 	e100_phy_init(nic);
2922 
2923 	eth_hw_addr_set(netdev, (u8 *)nic->eeprom);
2924 	if (!is_valid_ether_addr(netdev->dev_addr)) {
2925 		if (!eeprom_bad_csum_allow) {
2926 			netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n");
2927 			err = -EAGAIN;
2928 			goto err_out_free;
2929 		} else {
2930 			netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n");
2931 		}
2932 	}
2933 
2934 	/* Wol magic packet can be enabled from eeprom */
2935 	if ((nic->mac >= mac_82558_D101_A4) &&
2936 	   (le16_to_cpu(nic->eeprom[eeprom_id]) & eeprom_id_wol)) {
2937 		nic->flags |= wol_magic;
2938 		device_set_wakeup_enable(&pdev->dev, true);
2939 	}
2940 
2941 	/* ack any pending wake events, disable PME */
2942 	pci_pme_active(pdev, false);
2943 
2944 	strcpy(netdev->name, "eth%d");
2945 	if ((err = register_netdev(netdev))) {
2946 		netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n");
2947 		goto err_out_free;
2948 	}
2949 	nic->cbs_pool = dma_pool_create(netdev->name,
2950 			   &nic->pdev->dev,
2951 			   nic->params.cbs.max * sizeof(struct cb),
2952 			   sizeof(u32),
2953 			   0);
2954 	if (!nic->cbs_pool) {
2955 		netif_err(nic, probe, nic->netdev, "Cannot create DMA pool, aborting\n");
2956 		err = -ENOMEM;
2957 		goto err_out_pool;
2958 	}
2959 	netif_info(nic, probe, nic->netdev,
2960 		   "addr 0x%llx, irq %d, MAC addr %pM\n",
2961 		   (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
2962 		   pdev->irq, netdev->dev_addr);
2963 
2964 	return 0;
2965 
2966 err_out_pool:
2967 	unregister_netdev(netdev);
2968 err_out_free:
2969 	e100_free(nic);
2970 err_out_iounmap:
2971 	pci_iounmap(pdev, nic->csr);
2972 err_out_free_res:
2973 	pci_release_regions(pdev);
2974 err_out_disable_pdev:
2975 	pci_disable_device(pdev);
2976 err_out_free_dev:
2977 	free_netdev(netdev);
2978 	return err;
2979 }
2980 
2981 static void e100_remove(struct pci_dev *pdev)
2982 {
2983 	struct net_device *netdev = pci_get_drvdata(pdev);
2984 
2985 	if (netdev) {
2986 		struct nic *nic = netdev_priv(netdev);
2987 		unregister_netdev(netdev);
2988 		e100_free(nic);
2989 		pci_iounmap(pdev, nic->csr);
2990 		dma_pool_destroy(nic->cbs_pool);
2991 		free_netdev(netdev);
2992 		pci_release_regions(pdev);
2993 		pci_disable_device(pdev);
2994 	}
2995 }
2996 
2997 #define E100_82552_SMARTSPEED   0x14   /* SmartSpeed Ctrl register */
2998 #define E100_82552_REV_ANEG     0x0200 /* Reverse auto-negotiation */
2999 #define E100_82552_ANEG_NOW     0x0400 /* Auto-negotiate now */
3000 static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake)
3001 {
3002 	struct net_device *netdev = pci_get_drvdata(pdev);
3003 	struct nic *nic = netdev_priv(netdev);
3004 
3005 	netif_device_detach(netdev);
3006 
3007 	if (netif_running(netdev))
3008 		e100_down(nic);
3009 
3010 	if ((nic->flags & wol_magic) | e100_asf(nic)) {
3011 		/* enable reverse auto-negotiation */
3012 		if (nic->phy == phy_82552_v) {
3013 			u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3014 			                           E100_82552_SMARTSPEED);
3015 
3016 			mdio_write(netdev, nic->mii.phy_id,
3017 			           E100_82552_SMARTSPEED, smartspeed |
3018 			           E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
3019 		}
3020 		*enable_wake = true;
3021 	} else {
3022 		*enable_wake = false;
3023 	}
3024 
3025 	pci_disable_device(pdev);
3026 }
3027 
3028 static int __e100_power_off(struct pci_dev *pdev, bool wake)
3029 {
3030 	if (wake)
3031 		return pci_prepare_to_sleep(pdev);
3032 
3033 	pci_wake_from_d3(pdev, false);
3034 	pci_set_power_state(pdev, PCI_D3hot);
3035 
3036 	return 0;
3037 }
3038 
3039 static int e100_suspend(struct device *dev_d)
3040 {
3041 	bool wake;
3042 
3043 	__e100_shutdown(to_pci_dev(dev_d), &wake);
3044 
3045 	return 0;
3046 }
3047 
3048 static int e100_resume(struct device *dev_d)
3049 {
3050 	struct net_device *netdev = dev_get_drvdata(dev_d);
3051 	struct nic *nic = netdev_priv(netdev);
3052 	int err;
3053 
3054 	err = pci_enable_device(to_pci_dev(dev_d));
3055 	if (err) {
3056 		netdev_err(netdev, "Resume cannot enable PCI device, aborting\n");
3057 		return err;
3058 	}
3059 	pci_set_master(to_pci_dev(dev_d));
3060 
3061 	/* disable reverse auto-negotiation */
3062 	if (nic->phy == phy_82552_v) {
3063 		u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3064 		                           E100_82552_SMARTSPEED);
3065 
3066 		mdio_write(netdev, nic->mii.phy_id,
3067 		           E100_82552_SMARTSPEED,
3068 		           smartspeed & ~(E100_82552_REV_ANEG));
3069 	}
3070 
3071 	if (netif_running(netdev))
3072 		e100_up(nic);
3073 
3074 	netif_device_attach(netdev);
3075 
3076 	return 0;
3077 }
3078 
3079 static void e100_shutdown(struct pci_dev *pdev)
3080 {
3081 	bool wake;
3082 	__e100_shutdown(pdev, &wake);
3083 	if (system_state == SYSTEM_POWER_OFF)
3084 		__e100_power_off(pdev, wake);
3085 }
3086 
3087 /* ------------------ PCI Error Recovery infrastructure  -------------- */
3088 /**
3089  * e100_io_error_detected - called when PCI error is detected.
3090  * @pdev: Pointer to PCI device
3091  * @state: The current pci connection state
3092  */
3093 static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
3094 {
3095 	struct net_device *netdev = pci_get_drvdata(pdev);
3096 	struct nic *nic = netdev_priv(netdev);
3097 
3098 	netif_device_detach(netdev);
3099 
3100 	if (state == pci_channel_io_perm_failure)
3101 		return PCI_ERS_RESULT_DISCONNECT;
3102 
3103 	if (netif_running(netdev))
3104 		e100_down(nic);
3105 	pci_disable_device(pdev);
3106 
3107 	/* Request a slot reset. */
3108 	return PCI_ERS_RESULT_NEED_RESET;
3109 }
3110 
3111 /**
3112  * e100_io_slot_reset - called after the pci bus has been reset.
3113  * @pdev: Pointer to PCI device
3114  *
3115  * Restart the card from scratch.
3116  */
3117 static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
3118 {
3119 	struct net_device *netdev = pci_get_drvdata(pdev);
3120 	struct nic *nic = netdev_priv(netdev);
3121 
3122 	if (pci_enable_device(pdev)) {
3123 		pr_err("Cannot re-enable PCI device after reset\n");
3124 		return PCI_ERS_RESULT_DISCONNECT;
3125 	}
3126 	pci_set_master(pdev);
3127 
3128 	/* Only one device per card can do a reset */
3129 	if (0 != PCI_FUNC(pdev->devfn))
3130 		return PCI_ERS_RESULT_RECOVERED;
3131 	e100_hw_reset(nic);
3132 	e100_phy_init(nic);
3133 
3134 	return PCI_ERS_RESULT_RECOVERED;
3135 }
3136 
3137 /**
3138  * e100_io_resume - resume normal operations
3139  * @pdev: Pointer to PCI device
3140  *
3141  * Resume normal operations after an error recovery
3142  * sequence has been completed.
3143  */
3144 static void e100_io_resume(struct pci_dev *pdev)
3145 {
3146 	struct net_device *netdev = pci_get_drvdata(pdev);
3147 	struct nic *nic = netdev_priv(netdev);
3148 
3149 	/* ack any pending wake events, disable PME */
3150 	pci_enable_wake(pdev, PCI_D0, 0);
3151 
3152 	netif_device_attach(netdev);
3153 	if (netif_running(netdev)) {
3154 		e100_open(netdev);
3155 		mod_timer(&nic->watchdog, jiffies);
3156 	}
3157 }
3158 
3159 static const struct pci_error_handlers e100_err_handler = {
3160 	.error_detected = e100_io_error_detected,
3161 	.slot_reset = e100_io_slot_reset,
3162 	.resume = e100_io_resume,
3163 };
3164 
3165 static DEFINE_SIMPLE_DEV_PM_OPS(e100_pm_ops, e100_suspend, e100_resume);
3166 
3167 static struct pci_driver e100_driver = {
3168 	.name =         DRV_NAME,
3169 	.id_table =     e100_id_table,
3170 	.probe =        e100_probe,
3171 	.remove =       e100_remove,
3172 
3173 	/* Power Management hooks */
3174 	.driver.pm =	pm_sleep_ptr(&e100_pm_ops),
3175 
3176 	.shutdown =     e100_shutdown,
3177 	.err_handler = &e100_err_handler,
3178 };
3179 
3180 static int __init e100_init_module(void)
3181 {
3182 	if (((1 << debug) - 1) & NETIF_MSG_DRV) {
3183 		pr_info("%s\n", DRV_DESCRIPTION);
3184 		pr_info("%s\n", DRV_COPYRIGHT);
3185 	}
3186 	return pci_register_driver(&e100_driver);
3187 }
3188 
3189 static void __exit e100_cleanup_module(void)
3190 {
3191 	pci_unregister_driver(&e100_driver);
3192 }
3193 
3194 module_init(e100_init_module);
3195 module_exit(e100_cleanup_module);
3196