xref: /linux/drivers/net/ethernet/intel/e100.c (revision 24bce201d79807b668bf9d9e0aca801c5c0d5f78)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2006 Intel Corporation. */
3 
4 /*
5  *	e100.c: Intel(R) PRO/100 ethernet driver
6  *
7  *	(Re)written 2003 by scott.feldman@intel.com.  Based loosely on
8  *	original e100 driver, but better described as a munging of
9  *	e100, e1000, eepro100, tg3, 8139cp, and other drivers.
10  *
11  *	References:
12  *		Intel 8255x 10/100 Mbps Ethernet Controller Family,
13  *		Open Source Software Developers Manual,
14  *		http://sourceforge.net/projects/e1000
15  *
16  *
17  *	                      Theory of Operation
18  *
19  *	I.   General
20  *
21  *	The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
22  *	controller family, which includes the 82557, 82558, 82559, 82550,
23  *	82551, and 82562 devices.  82558 and greater controllers
24  *	integrate the Intel 82555 PHY.  The controllers are used in
25  *	server and client network interface cards, as well as in
26  *	LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
27  *	configurations.  8255x supports a 32-bit linear addressing
28  *	mode and operates at 33Mhz PCI clock rate.
29  *
30  *	II.  Driver Operation
31  *
32  *	Memory-mapped mode is used exclusively to access the device's
33  *	shared-memory structure, the Control/Status Registers (CSR). All
34  *	setup, configuration, and control of the device, including queuing
35  *	of Tx, Rx, and configuration commands is through the CSR.
36  *	cmd_lock serializes accesses to the CSR command register.  cb_lock
37  *	protects the shared Command Block List (CBL).
38  *
39  *	8255x is highly MII-compliant and all access to the PHY go
40  *	through the Management Data Interface (MDI).  Consequently, the
41  *	driver leverages the mii.c library shared with other MII-compliant
42  *	devices.
43  *
44  *	Big- and Little-Endian byte order as well as 32- and 64-bit
45  *	archs are supported.  Weak-ordered memory and non-cache-coherent
46  *	archs are supported.
47  *
48  *	III. Transmit
49  *
50  *	A Tx skb is mapped and hangs off of a TCB.  TCBs are linked
51  *	together in a fixed-size ring (CBL) thus forming the flexible mode
52  *	memory structure.  A TCB marked with the suspend-bit indicates
53  *	the end of the ring.  The last TCB processed suspends the
54  *	controller, and the controller can be restarted by issue a CU
55  *	resume command to continue from the suspend point, or a CU start
56  *	command to start at a given position in the ring.
57  *
58  *	Non-Tx commands (config, multicast setup, etc) are linked
59  *	into the CBL ring along with Tx commands.  The common structure
60  *	used for both Tx and non-Tx commands is the Command Block (CB).
61  *
62  *	cb_to_use is the next CB to use for queuing a command; cb_to_clean
63  *	is the next CB to check for completion; cb_to_send is the first
64  *	CB to start on in case of a previous failure to resume.  CB clean
65  *	up happens in interrupt context in response to a CU interrupt.
66  *	cbs_avail keeps track of number of free CB resources available.
67  *
68  * 	Hardware padding of short packets to minimum packet size is
69  * 	enabled.  82557 pads with 7Eh, while the later controllers pad
70  * 	with 00h.
71  *
72  *	IV.  Receive
73  *
74  *	The Receive Frame Area (RFA) comprises a ring of Receive Frame
75  *	Descriptors (RFD) + data buffer, thus forming the simplified mode
76  *	memory structure.  Rx skbs are allocated to contain both the RFD
77  *	and the data buffer, but the RFD is pulled off before the skb is
78  *	indicated.  The data buffer is aligned such that encapsulated
79  *	protocol headers are u32-aligned.  Since the RFD is part of the
80  *	mapped shared memory, and completion status is contained within
81  *	the RFD, the RFD must be dma_sync'ed to maintain a consistent
82  *	view from software and hardware.
83  *
84  *	In order to keep updates to the RFD link field from colliding with
85  *	hardware writes to mark packets complete, we use the feature that
86  *	hardware will not write to a size 0 descriptor and mark the previous
87  *	packet as end-of-list (EL).   After updating the link, we remove EL
88  *	and only then restore the size such that hardware may use the
89  *	previous-to-end RFD.
90  *
91  *	Under typical operation, the  receive unit (RU) is start once,
92  *	and the controller happily fills RFDs as frames arrive.  If
93  *	replacement RFDs cannot be allocated, or the RU goes non-active,
94  *	the RU must be restarted.  Frame arrival generates an interrupt,
95  *	and Rx indication and re-allocation happen in the same context,
96  *	therefore no locking is required.  A software-generated interrupt
97  *	is generated from the watchdog to recover from a failed allocation
98  *	scenario where all Rx resources have been indicated and none re-
99  *	placed.
100  *
101  *	V.   Miscellaneous
102  *
103  * 	VLAN offloading of tagging, stripping and filtering is not
104  * 	supported, but driver will accommodate the extra 4-byte VLAN tag
105  * 	for processing by upper layers.  Tx/Rx Checksum offloading is not
106  * 	supported.  Tx Scatter/Gather is not supported.  Jumbo Frames is
107  * 	not supported (hardware limitation).
108  *
109  * 	MagicPacket(tm) WoL support is enabled/disabled via ethtool.
110  *
111  * 	Thanks to JC (jchapman@katalix.com) for helping with
112  * 	testing/troubleshooting the development driver.
113  *
114  * 	TODO:
115  * 	o several entry points race with dev->close
116  * 	o check for tx-no-resources/stop Q races with tx clean/wake Q
117  *
118  *	FIXES:
119  * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
120  *	- Stratus87247: protect MDI control register manipulations
121  * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
122  *      - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
123  */
124 
125 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
126 
127 #include <linux/hardirq.h>
128 #include <linux/interrupt.h>
129 #include <linux/module.h>
130 #include <linux/moduleparam.h>
131 #include <linux/kernel.h>
132 #include <linux/types.h>
133 #include <linux/sched.h>
134 #include <linux/slab.h>
135 #include <linux/delay.h>
136 #include <linux/init.h>
137 #include <linux/pci.h>
138 #include <linux/dma-mapping.h>
139 #include <linux/dmapool.h>
140 #include <linux/netdevice.h>
141 #include <linux/etherdevice.h>
142 #include <linux/mii.h>
143 #include <linux/if_vlan.h>
144 #include <linux/skbuff.h>
145 #include <linux/ethtool.h>
146 #include <linux/string.h>
147 #include <linux/firmware.h>
148 #include <linux/rtnetlink.h>
149 #include <asm/unaligned.h>
150 
151 
152 #define DRV_NAME		"e100"
153 #define DRV_DESCRIPTION		"Intel(R) PRO/100 Network Driver"
154 #define DRV_COPYRIGHT		"Copyright(c) 1999-2006 Intel Corporation"
155 
156 #define E100_WATCHDOG_PERIOD	(2 * HZ)
157 #define E100_NAPI_WEIGHT	16
158 
159 #define FIRMWARE_D101M		"e100/d101m_ucode.bin"
160 #define FIRMWARE_D101S		"e100/d101s_ucode.bin"
161 #define FIRMWARE_D102E		"e100/d102e_ucode.bin"
162 
163 MODULE_DESCRIPTION(DRV_DESCRIPTION);
164 MODULE_AUTHOR(DRV_COPYRIGHT);
165 MODULE_LICENSE("GPL v2");
166 MODULE_FIRMWARE(FIRMWARE_D101M);
167 MODULE_FIRMWARE(FIRMWARE_D101S);
168 MODULE_FIRMWARE(FIRMWARE_D102E);
169 
170 static int debug = 3;
171 static int eeprom_bad_csum_allow = 0;
172 static int use_io = 0;
173 module_param(debug, int, 0);
174 module_param(eeprom_bad_csum_allow, int, 0);
175 module_param(use_io, int, 0);
176 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
177 MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
178 MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
179 
180 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
181 	PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
182 	PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
183 static const struct pci_device_id e100_id_table[] = {
184 	INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
185 	INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
186 	INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
187 	INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
188 	INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
189 	INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
190 	INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
191 	INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
192 	INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
193 	INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
194 	INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
195 	INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
196 	INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
197 	INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
198 	INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
199 	INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
200 	INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
201 	INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
202 	INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
203 	INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
204 	INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
205 	INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
206 	INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
207 	INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
208 	INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
209 	INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
210 	INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
211 	INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
212 	INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
213 	INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
214 	INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
215 	INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
216 	INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
217 	INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
218 	INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
219 	INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
220 	INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
221 	INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
222 	INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
223 	INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
224 	INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
225 	INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
226 	{ 0, }
227 };
228 MODULE_DEVICE_TABLE(pci, e100_id_table);
229 
230 enum mac {
231 	mac_82557_D100_A  = 0,
232 	mac_82557_D100_B  = 1,
233 	mac_82557_D100_C  = 2,
234 	mac_82558_D101_A4 = 4,
235 	mac_82558_D101_B0 = 5,
236 	mac_82559_D101M   = 8,
237 	mac_82559_D101S   = 9,
238 	mac_82550_D102    = 12,
239 	mac_82550_D102_C  = 13,
240 	mac_82551_E       = 14,
241 	mac_82551_F       = 15,
242 	mac_82551_10      = 16,
243 	mac_unknown       = 0xFF,
244 };
245 
246 enum phy {
247 	phy_100a     = 0x000003E0,
248 	phy_100c     = 0x035002A8,
249 	phy_82555_tx = 0x015002A8,
250 	phy_nsc_tx   = 0x5C002000,
251 	phy_82562_et = 0x033002A8,
252 	phy_82562_em = 0x032002A8,
253 	phy_82562_ek = 0x031002A8,
254 	phy_82562_eh = 0x017002A8,
255 	phy_82552_v  = 0xd061004d,
256 	phy_unknown  = 0xFFFFFFFF,
257 };
258 
259 /* CSR (Control/Status Registers) */
260 struct csr {
261 	struct {
262 		u8 status;
263 		u8 stat_ack;
264 		u8 cmd_lo;
265 		u8 cmd_hi;
266 		u32 gen_ptr;
267 	} scb;
268 	u32 port;
269 	u16 flash_ctrl;
270 	u8 eeprom_ctrl_lo;
271 	u8 eeprom_ctrl_hi;
272 	u32 mdi_ctrl;
273 	u32 rx_dma_count;
274 };
275 
276 enum scb_status {
277 	rus_no_res       = 0x08,
278 	rus_ready        = 0x10,
279 	rus_mask         = 0x3C,
280 };
281 
282 enum ru_state  {
283 	RU_SUSPENDED = 0,
284 	RU_RUNNING	 = 1,
285 	RU_UNINITIALIZED = -1,
286 };
287 
288 enum scb_stat_ack {
289 	stat_ack_not_ours    = 0x00,
290 	stat_ack_sw_gen      = 0x04,
291 	stat_ack_rnr         = 0x10,
292 	stat_ack_cu_idle     = 0x20,
293 	stat_ack_frame_rx    = 0x40,
294 	stat_ack_cu_cmd_done = 0x80,
295 	stat_ack_not_present = 0xFF,
296 	stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
297 	stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
298 };
299 
300 enum scb_cmd_hi {
301 	irq_mask_none = 0x00,
302 	irq_mask_all  = 0x01,
303 	irq_sw_gen    = 0x02,
304 };
305 
306 enum scb_cmd_lo {
307 	cuc_nop        = 0x00,
308 	ruc_start      = 0x01,
309 	ruc_load_base  = 0x06,
310 	cuc_start      = 0x10,
311 	cuc_resume     = 0x20,
312 	cuc_dump_addr  = 0x40,
313 	cuc_dump_stats = 0x50,
314 	cuc_load_base  = 0x60,
315 	cuc_dump_reset = 0x70,
316 };
317 
318 enum cuc_dump {
319 	cuc_dump_complete       = 0x0000A005,
320 	cuc_dump_reset_complete = 0x0000A007,
321 };
322 
323 enum port {
324 	software_reset  = 0x0000,
325 	selftest        = 0x0001,
326 	selective_reset = 0x0002,
327 };
328 
329 enum eeprom_ctrl_lo {
330 	eesk = 0x01,
331 	eecs = 0x02,
332 	eedi = 0x04,
333 	eedo = 0x08,
334 };
335 
336 enum mdi_ctrl {
337 	mdi_write = 0x04000000,
338 	mdi_read  = 0x08000000,
339 	mdi_ready = 0x10000000,
340 };
341 
342 enum eeprom_op {
343 	op_write = 0x05,
344 	op_read  = 0x06,
345 	op_ewds  = 0x10,
346 	op_ewen  = 0x13,
347 };
348 
349 enum eeprom_offsets {
350 	eeprom_cnfg_mdix  = 0x03,
351 	eeprom_phy_iface  = 0x06,
352 	eeprom_id         = 0x0A,
353 	eeprom_config_asf = 0x0D,
354 	eeprom_smbus_addr = 0x90,
355 };
356 
357 enum eeprom_cnfg_mdix {
358 	eeprom_mdix_enabled = 0x0080,
359 };
360 
361 enum eeprom_phy_iface {
362 	NoSuchPhy = 0,
363 	I82553AB,
364 	I82553C,
365 	I82503,
366 	DP83840,
367 	S80C240,
368 	S80C24,
369 	I82555,
370 	DP83840A = 10,
371 };
372 
373 enum eeprom_id {
374 	eeprom_id_wol = 0x0020,
375 };
376 
377 enum eeprom_config_asf {
378 	eeprom_asf = 0x8000,
379 	eeprom_gcl = 0x4000,
380 };
381 
382 enum cb_status {
383 	cb_complete = 0x8000,
384 	cb_ok       = 0x2000,
385 };
386 
387 /*
388  * cb_command - Command Block flags
389  * @cb_tx_nc:  0: controller does CRC (normal),  1: CRC from skb memory
390  */
391 enum cb_command {
392 	cb_nop    = 0x0000,
393 	cb_iaaddr = 0x0001,
394 	cb_config = 0x0002,
395 	cb_multi  = 0x0003,
396 	cb_tx     = 0x0004,
397 	cb_ucode  = 0x0005,
398 	cb_dump   = 0x0006,
399 	cb_tx_sf  = 0x0008,
400 	cb_tx_nc  = 0x0010,
401 	cb_cid    = 0x1f00,
402 	cb_i      = 0x2000,
403 	cb_s      = 0x4000,
404 	cb_el     = 0x8000,
405 };
406 
407 struct rfd {
408 	__le16 status;
409 	__le16 command;
410 	__le32 link;
411 	__le32 rbd;
412 	__le16 actual_size;
413 	__le16 size;
414 };
415 
416 struct rx {
417 	struct rx *next, *prev;
418 	struct sk_buff *skb;
419 	dma_addr_t dma_addr;
420 };
421 
422 #if defined(__BIG_ENDIAN_BITFIELD)
423 #define X(a,b)	b,a
424 #else
425 #define X(a,b)	a,b
426 #endif
427 struct config {
428 /*0*/	u8 X(byte_count:6, pad0:2);
429 /*1*/	u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
430 /*2*/	u8 adaptive_ifs;
431 /*3*/	u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
432 	   term_write_cache_line:1), pad3:4);
433 /*4*/	u8 X(rx_dma_max_count:7, pad4:1);
434 /*5*/	u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
435 /*6*/	u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
436 	   tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
437 	   rx_save_overruns : 1), rx_save_bad_frames : 1);
438 /*7*/	u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
439 	   pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
440 	   tx_dynamic_tbd:1);
441 /*8*/	u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
442 /*9*/	u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
443 	   link_status_wake:1), arp_wake:1), mcmatch_wake:1);
444 /*10*/	u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
445 	   loopback:2);
446 /*11*/	u8 X(linear_priority:3, pad11:5);
447 /*12*/	u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
448 /*13*/	u8 ip_addr_lo;
449 /*14*/	u8 ip_addr_hi;
450 /*15*/	u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
451 	   wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
452 	   pad15_2:1), crs_or_cdt:1);
453 /*16*/	u8 fc_delay_lo;
454 /*17*/	u8 fc_delay_hi;
455 /*18*/	u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
456 	   rx_long_ok:1), fc_priority_threshold:3), pad18:1);
457 /*19*/	u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
458 	   fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
459 	   full_duplex_force:1), full_duplex_pin:1);
460 /*20*/	u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
461 /*21*/	u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
462 /*22*/	u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
463 	u8 pad_d102[9];
464 };
465 
466 #define E100_MAX_MULTICAST_ADDRS	64
467 struct multi {
468 	__le16 count;
469 	u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
470 };
471 
472 /* Important: keep total struct u32-aligned */
473 #define UCODE_SIZE			134
474 struct cb {
475 	__le16 status;
476 	__le16 command;
477 	__le32 link;
478 	union {
479 		u8 iaaddr[ETH_ALEN];
480 		__le32 ucode[UCODE_SIZE];
481 		struct config config;
482 		struct multi multi;
483 		struct {
484 			u32 tbd_array;
485 			u16 tcb_byte_count;
486 			u8 threshold;
487 			u8 tbd_count;
488 			struct {
489 				__le32 buf_addr;
490 				__le16 size;
491 				u16 eol;
492 			} tbd;
493 		} tcb;
494 		__le32 dump_buffer_addr;
495 	} u;
496 	struct cb *next, *prev;
497 	dma_addr_t dma_addr;
498 	struct sk_buff *skb;
499 };
500 
501 enum loopback {
502 	lb_none = 0, lb_mac = 1, lb_phy = 3,
503 };
504 
505 struct stats {
506 	__le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
507 		tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
508 		tx_multiple_collisions, tx_total_collisions;
509 	__le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
510 		rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
511 		rx_short_frame_errors;
512 	__le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
513 	__le16 xmt_tco_frames, rcv_tco_frames;
514 	__le32 complete;
515 };
516 
517 struct mem {
518 	struct {
519 		u32 signature;
520 		u32 result;
521 	} selftest;
522 	struct stats stats;
523 	u8 dump_buf[596];
524 };
525 
526 struct param_range {
527 	u32 min;
528 	u32 max;
529 	u32 count;
530 };
531 
532 struct params {
533 	struct param_range rfds;
534 	struct param_range cbs;
535 };
536 
537 struct nic {
538 	/* Begin: frequently used values: keep adjacent for cache effect */
539 	u32 msg_enable				____cacheline_aligned;
540 	struct net_device *netdev;
541 	struct pci_dev *pdev;
542 	u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data);
543 
544 	struct rx *rxs				____cacheline_aligned;
545 	struct rx *rx_to_use;
546 	struct rx *rx_to_clean;
547 	struct rfd blank_rfd;
548 	enum ru_state ru_running;
549 
550 	spinlock_t cb_lock			____cacheline_aligned;
551 	spinlock_t cmd_lock;
552 	struct csr __iomem *csr;
553 	enum scb_cmd_lo cuc_cmd;
554 	unsigned int cbs_avail;
555 	struct napi_struct napi;
556 	struct cb *cbs;
557 	struct cb *cb_to_use;
558 	struct cb *cb_to_send;
559 	struct cb *cb_to_clean;
560 	__le16 tx_command;
561 	/* End: frequently used values: keep adjacent for cache effect */
562 
563 	enum {
564 		ich                = (1 << 0),
565 		promiscuous        = (1 << 1),
566 		multicast_all      = (1 << 2),
567 		wol_magic          = (1 << 3),
568 		ich_10h_workaround = (1 << 4),
569 	} flags					____cacheline_aligned;
570 
571 	enum mac mac;
572 	enum phy phy;
573 	struct params params;
574 	struct timer_list watchdog;
575 	struct mii_if_info mii;
576 	struct work_struct tx_timeout_task;
577 	enum loopback loopback;
578 
579 	struct mem *mem;
580 	dma_addr_t dma_addr;
581 
582 	struct dma_pool *cbs_pool;
583 	dma_addr_t cbs_dma_addr;
584 	u8 adaptive_ifs;
585 	u8 tx_threshold;
586 	u32 tx_frames;
587 	u32 tx_collisions;
588 	u32 tx_deferred;
589 	u32 tx_single_collisions;
590 	u32 tx_multiple_collisions;
591 	u32 tx_fc_pause;
592 	u32 tx_tco_frames;
593 
594 	u32 rx_fc_pause;
595 	u32 rx_fc_unsupported;
596 	u32 rx_tco_frames;
597 	u32 rx_short_frame_errors;
598 	u32 rx_over_length_errors;
599 
600 	u16 eeprom_wc;
601 	__le16 eeprom[256];
602 	spinlock_t mdio_lock;
603 	const struct firmware *fw;
604 };
605 
606 static inline void e100_write_flush(struct nic *nic)
607 {
608 	/* Flush previous PCI writes through intermediate bridges
609 	 * by doing a benign read */
610 	(void)ioread8(&nic->csr->scb.status);
611 }
612 
613 static void e100_enable_irq(struct nic *nic)
614 {
615 	unsigned long flags;
616 
617 	spin_lock_irqsave(&nic->cmd_lock, flags);
618 	iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
619 	e100_write_flush(nic);
620 	spin_unlock_irqrestore(&nic->cmd_lock, flags);
621 }
622 
623 static void e100_disable_irq(struct nic *nic)
624 {
625 	unsigned long flags;
626 
627 	spin_lock_irqsave(&nic->cmd_lock, flags);
628 	iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
629 	e100_write_flush(nic);
630 	spin_unlock_irqrestore(&nic->cmd_lock, flags);
631 }
632 
633 static void e100_hw_reset(struct nic *nic)
634 {
635 	/* Put CU and RU into idle with a selective reset to get
636 	 * device off of PCI bus */
637 	iowrite32(selective_reset, &nic->csr->port);
638 	e100_write_flush(nic); udelay(20);
639 
640 	/* Now fully reset device */
641 	iowrite32(software_reset, &nic->csr->port);
642 	e100_write_flush(nic); udelay(20);
643 
644 	/* Mask off our interrupt line - it's unmasked after reset */
645 	e100_disable_irq(nic);
646 }
647 
648 static int e100_self_test(struct nic *nic)
649 {
650 	u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
651 
652 	/* Passing the self-test is a pretty good indication
653 	 * that the device can DMA to/from host memory */
654 
655 	nic->mem->selftest.signature = 0;
656 	nic->mem->selftest.result = 0xFFFFFFFF;
657 
658 	iowrite32(selftest | dma_addr, &nic->csr->port);
659 	e100_write_flush(nic);
660 	/* Wait 10 msec for self-test to complete */
661 	msleep(10);
662 
663 	/* Interrupts are enabled after self-test */
664 	e100_disable_irq(nic);
665 
666 	/* Check results of self-test */
667 	if (nic->mem->selftest.result != 0) {
668 		netif_err(nic, hw, nic->netdev,
669 			  "Self-test failed: result=0x%08X\n",
670 			  nic->mem->selftest.result);
671 		return -ETIMEDOUT;
672 	}
673 	if (nic->mem->selftest.signature == 0) {
674 		netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n");
675 		return -ETIMEDOUT;
676 	}
677 
678 	return 0;
679 }
680 
681 static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
682 {
683 	u32 cmd_addr_data[3];
684 	u8 ctrl;
685 	int i, j;
686 
687 	/* Three cmds: write/erase enable, write data, write/erase disable */
688 	cmd_addr_data[0] = op_ewen << (addr_len - 2);
689 	cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
690 		le16_to_cpu(data);
691 	cmd_addr_data[2] = op_ewds << (addr_len - 2);
692 
693 	/* Bit-bang cmds to write word to eeprom */
694 	for (j = 0; j < 3; j++) {
695 
696 		/* Chip select */
697 		iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
698 		e100_write_flush(nic); udelay(4);
699 
700 		for (i = 31; i >= 0; i--) {
701 			ctrl = (cmd_addr_data[j] & (1 << i)) ?
702 				eecs | eedi : eecs;
703 			iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
704 			e100_write_flush(nic); udelay(4);
705 
706 			iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
707 			e100_write_flush(nic); udelay(4);
708 		}
709 		/* Wait 10 msec for cmd to complete */
710 		msleep(10);
711 
712 		/* Chip deselect */
713 		iowrite8(0, &nic->csr->eeprom_ctrl_lo);
714 		e100_write_flush(nic); udelay(4);
715 	}
716 };
717 
718 /* General technique stolen from the eepro100 driver - very clever */
719 static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
720 {
721 	u32 cmd_addr_data;
722 	u16 data = 0;
723 	u8 ctrl;
724 	int i;
725 
726 	cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
727 
728 	/* Chip select */
729 	iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
730 	e100_write_flush(nic); udelay(4);
731 
732 	/* Bit-bang to read word from eeprom */
733 	for (i = 31; i >= 0; i--) {
734 		ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
735 		iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
736 		e100_write_flush(nic); udelay(4);
737 
738 		iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
739 		e100_write_flush(nic); udelay(4);
740 
741 		/* Eeprom drives a dummy zero to EEDO after receiving
742 		 * complete address.  Use this to adjust addr_len. */
743 		ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
744 		if (!(ctrl & eedo) && i > 16) {
745 			*addr_len -= (i - 16);
746 			i = 17;
747 		}
748 
749 		data = (data << 1) | (ctrl & eedo ? 1 : 0);
750 	}
751 
752 	/* Chip deselect */
753 	iowrite8(0, &nic->csr->eeprom_ctrl_lo);
754 	e100_write_flush(nic); udelay(4);
755 
756 	return cpu_to_le16(data);
757 };
758 
759 /* Load entire EEPROM image into driver cache and validate checksum */
760 static int e100_eeprom_load(struct nic *nic)
761 {
762 	u16 addr, addr_len = 8, checksum = 0;
763 
764 	/* Try reading with an 8-bit addr len to discover actual addr len */
765 	e100_eeprom_read(nic, &addr_len, 0);
766 	nic->eeprom_wc = 1 << addr_len;
767 
768 	for (addr = 0; addr < nic->eeprom_wc; addr++) {
769 		nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
770 		if (addr < nic->eeprom_wc - 1)
771 			checksum += le16_to_cpu(nic->eeprom[addr]);
772 	}
773 
774 	/* The checksum, stored in the last word, is calculated such that
775 	 * the sum of words should be 0xBABA */
776 	if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
777 		netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n");
778 		if (!eeprom_bad_csum_allow)
779 			return -EAGAIN;
780 	}
781 
782 	return 0;
783 }
784 
785 /* Save (portion of) driver EEPROM cache to device and update checksum */
786 static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
787 {
788 	u16 addr, addr_len = 8, checksum = 0;
789 
790 	/* Try reading with an 8-bit addr len to discover actual addr len */
791 	e100_eeprom_read(nic, &addr_len, 0);
792 	nic->eeprom_wc = 1 << addr_len;
793 
794 	if (start + count >= nic->eeprom_wc)
795 		return -EINVAL;
796 
797 	for (addr = start; addr < start + count; addr++)
798 		e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
799 
800 	/* The checksum, stored in the last word, is calculated such that
801 	 * the sum of words should be 0xBABA */
802 	for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
803 		checksum += le16_to_cpu(nic->eeprom[addr]);
804 	nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
805 	e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
806 		nic->eeprom[nic->eeprom_wc - 1]);
807 
808 	return 0;
809 }
810 
811 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
812 #define E100_WAIT_SCB_FAST 20       /* delay like the old code */
813 static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
814 {
815 	unsigned long flags;
816 	unsigned int i;
817 	int err = 0;
818 
819 	spin_lock_irqsave(&nic->cmd_lock, flags);
820 
821 	/* Previous command is accepted when SCB clears */
822 	for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
823 		if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
824 			break;
825 		cpu_relax();
826 		if (unlikely(i > E100_WAIT_SCB_FAST))
827 			udelay(5);
828 	}
829 	if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
830 		err = -EAGAIN;
831 		goto err_unlock;
832 	}
833 
834 	if (unlikely(cmd != cuc_resume))
835 		iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
836 	iowrite8(cmd, &nic->csr->scb.cmd_lo);
837 
838 err_unlock:
839 	spin_unlock_irqrestore(&nic->cmd_lock, flags);
840 
841 	return err;
842 }
843 
844 static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
845 	int (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
846 {
847 	struct cb *cb;
848 	unsigned long flags;
849 	int err;
850 
851 	spin_lock_irqsave(&nic->cb_lock, flags);
852 
853 	if (unlikely(!nic->cbs_avail)) {
854 		err = -ENOMEM;
855 		goto err_unlock;
856 	}
857 
858 	cb = nic->cb_to_use;
859 	nic->cb_to_use = cb->next;
860 	nic->cbs_avail--;
861 	cb->skb = skb;
862 
863 	err = cb_prepare(nic, cb, skb);
864 	if (err)
865 		goto err_unlock;
866 
867 	if (unlikely(!nic->cbs_avail))
868 		err = -ENOSPC;
869 
870 
871 	/* Order is important otherwise we'll be in a race with h/w:
872 	 * set S-bit in current first, then clear S-bit in previous. */
873 	cb->command |= cpu_to_le16(cb_s);
874 	dma_wmb();
875 	cb->prev->command &= cpu_to_le16(~cb_s);
876 
877 	while (nic->cb_to_send != nic->cb_to_use) {
878 		if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
879 			nic->cb_to_send->dma_addr))) {
880 			/* Ok, here's where things get sticky.  It's
881 			 * possible that we can't schedule the command
882 			 * because the controller is too busy, so
883 			 * let's just queue the command and try again
884 			 * when another command is scheduled. */
885 			if (err == -ENOSPC) {
886 				//request a reset
887 				schedule_work(&nic->tx_timeout_task);
888 			}
889 			break;
890 		} else {
891 			nic->cuc_cmd = cuc_resume;
892 			nic->cb_to_send = nic->cb_to_send->next;
893 		}
894 	}
895 
896 err_unlock:
897 	spin_unlock_irqrestore(&nic->cb_lock, flags);
898 
899 	return err;
900 }
901 
902 static int mdio_read(struct net_device *netdev, int addr, int reg)
903 {
904 	struct nic *nic = netdev_priv(netdev);
905 	return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0);
906 }
907 
908 static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
909 {
910 	struct nic *nic = netdev_priv(netdev);
911 
912 	nic->mdio_ctrl(nic, addr, mdi_write, reg, data);
913 }
914 
915 /* the standard mdio_ctrl() function for usual MII-compliant hardware */
916 static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
917 {
918 	u32 data_out = 0;
919 	unsigned int i;
920 	unsigned long flags;
921 
922 
923 	/*
924 	 * Stratus87247: we shouldn't be writing the MDI control
925 	 * register until the Ready bit shows True.  Also, since
926 	 * manipulation of the MDI control registers is a multi-step
927 	 * procedure it should be done under lock.
928 	 */
929 	spin_lock_irqsave(&nic->mdio_lock, flags);
930 	for (i = 100; i; --i) {
931 		if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
932 			break;
933 		udelay(20);
934 	}
935 	if (unlikely(!i)) {
936 		netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n");
937 		spin_unlock_irqrestore(&nic->mdio_lock, flags);
938 		return 0;		/* No way to indicate timeout error */
939 	}
940 	iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
941 
942 	for (i = 0; i < 100; i++) {
943 		udelay(20);
944 		if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
945 			break;
946 	}
947 	spin_unlock_irqrestore(&nic->mdio_lock, flags);
948 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
949 		     "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
950 		     dir == mdi_read ? "READ" : "WRITE",
951 		     addr, reg, data, data_out);
952 	return (u16)data_out;
953 }
954 
955 /* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
956 static u16 mdio_ctrl_phy_82552_v(struct nic *nic,
957 				 u32 addr,
958 				 u32 dir,
959 				 u32 reg,
960 				 u16 data)
961 {
962 	if ((reg == MII_BMCR) && (dir == mdi_write)) {
963 		if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) {
964 			u16 advert = mdio_read(nic->netdev, nic->mii.phy_id,
965 							MII_ADVERTISE);
966 
967 			/*
968 			 * Workaround Si issue where sometimes the part will not
969 			 * autoneg to 100Mbps even when advertised.
970 			 */
971 			if (advert & ADVERTISE_100FULL)
972 				data |= BMCR_SPEED100 | BMCR_FULLDPLX;
973 			else if (advert & ADVERTISE_100HALF)
974 				data |= BMCR_SPEED100;
975 		}
976 	}
977 	return mdio_ctrl_hw(nic, addr, dir, reg, data);
978 }
979 
980 /* Fully software-emulated mdio_ctrl() function for cards without
981  * MII-compliant PHYs.
982  * For now, this is mainly geared towards 80c24 support; in case of further
983  * requirements for other types (i82503, ...?) either extend this mechanism
984  * or split it, whichever is cleaner.
985  */
986 static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic,
987 				      u32 addr,
988 				      u32 dir,
989 				      u32 reg,
990 				      u16 data)
991 {
992 	/* might need to allocate a netdev_priv'ed register array eventually
993 	 * to be able to record state changes, but for now
994 	 * some fully hardcoded register handling ought to be ok I guess. */
995 
996 	if (dir == mdi_read) {
997 		switch (reg) {
998 		case MII_BMCR:
999 			/* Auto-negotiation, right? */
1000 			return  BMCR_ANENABLE |
1001 				BMCR_FULLDPLX;
1002 		case MII_BMSR:
1003 			return	BMSR_LSTATUS /* for mii_link_ok() */ |
1004 				BMSR_ANEGCAPABLE |
1005 				BMSR_10FULL;
1006 		case MII_ADVERTISE:
1007 			/* 80c24 is a "combo card" PHY, right? */
1008 			return	ADVERTISE_10HALF |
1009 				ADVERTISE_10FULL;
1010 		default:
1011 			netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1012 				     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1013 				     dir == mdi_read ? "READ" : "WRITE",
1014 				     addr, reg, data);
1015 			return 0xFFFF;
1016 		}
1017 	} else {
1018 		switch (reg) {
1019 		default:
1020 			netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1021 				     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1022 				     dir == mdi_read ? "READ" : "WRITE",
1023 				     addr, reg, data);
1024 			return 0xFFFF;
1025 		}
1026 	}
1027 }
1028 static inline int e100_phy_supports_mii(struct nic *nic)
1029 {
1030 	/* for now, just check it by comparing whether we
1031 	   are using MII software emulation.
1032 	*/
1033 	return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated);
1034 }
1035 
1036 static void e100_get_defaults(struct nic *nic)
1037 {
1038 	struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
1039 	struct param_range cbs  = { .min = 64, .max = 256, .count = 128 };
1040 
1041 	/* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
1042 	nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
1043 	if (nic->mac == mac_unknown)
1044 		nic->mac = mac_82557_D100_A;
1045 
1046 	nic->params.rfds = rfds;
1047 	nic->params.cbs = cbs;
1048 
1049 	/* Quadwords to DMA into FIFO before starting frame transmit */
1050 	nic->tx_threshold = 0xE0;
1051 
1052 	/* no interrupt for every tx completion, delay = 256us if not 557 */
1053 	nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
1054 		((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
1055 
1056 	/* Template for a freshly allocated RFD */
1057 	nic->blank_rfd.command = 0;
1058 	nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
1059 	nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
1060 
1061 	/* MII setup */
1062 	nic->mii.phy_id_mask = 0x1F;
1063 	nic->mii.reg_num_mask = 0x1F;
1064 	nic->mii.dev = nic->netdev;
1065 	nic->mii.mdio_read = mdio_read;
1066 	nic->mii.mdio_write = mdio_write;
1067 }
1068 
1069 static int e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1070 {
1071 	struct config *config = &cb->u.config;
1072 	u8 *c = (u8 *)config;
1073 	struct net_device *netdev = nic->netdev;
1074 
1075 	cb->command = cpu_to_le16(cb_config);
1076 
1077 	memset(config, 0, sizeof(struct config));
1078 
1079 	config->byte_count = 0x16;		/* bytes in this struct */
1080 	config->rx_fifo_limit = 0x8;		/* bytes in FIFO before DMA */
1081 	config->direct_rx_dma = 0x1;		/* reserved */
1082 	config->standard_tcb = 0x1;		/* 1=standard, 0=extended */
1083 	config->standard_stat_counter = 0x1;	/* 1=standard, 0=extended */
1084 	config->rx_discard_short_frames = 0x1;	/* 1=discard, 0=pass */
1085 	config->tx_underrun_retry = 0x3;	/* # of underrun retries */
1086 	if (e100_phy_supports_mii(nic))
1087 		config->mii_mode = 1;           /* 1=MII mode, 0=i82503 mode */
1088 	config->pad10 = 0x6;
1089 	config->no_source_addr_insertion = 0x1;	/* 1=no, 0=yes */
1090 	config->preamble_length = 0x2;		/* 0=1, 1=3, 2=7, 3=15 bytes */
1091 	config->ifs = 0x6;			/* x16 = inter frame spacing */
1092 	config->ip_addr_hi = 0xF2;		/* ARP IP filter - not used */
1093 	config->pad15_1 = 0x1;
1094 	config->pad15_2 = 0x1;
1095 	config->crs_or_cdt = 0x0;		/* 0=CRS only, 1=CRS or CDT */
1096 	config->fc_delay_hi = 0x40;		/* time delay for fc frame */
1097 	config->tx_padding = 0x1;		/* 1=pad short frames */
1098 	config->fc_priority_threshold = 0x7;	/* 7=priority fc disabled */
1099 	config->pad18 = 0x1;
1100 	config->full_duplex_pin = 0x1;		/* 1=examine FDX# pin */
1101 	config->pad20_1 = 0x1F;
1102 	config->fc_priority_location = 0x1;	/* 1=byte#31, 0=byte#19 */
1103 	config->pad21_1 = 0x5;
1104 
1105 	config->adaptive_ifs = nic->adaptive_ifs;
1106 	config->loopback = nic->loopback;
1107 
1108 	if (nic->mii.force_media && nic->mii.full_duplex)
1109 		config->full_duplex_force = 0x1;	/* 1=force, 0=auto */
1110 
1111 	if (nic->flags & promiscuous || nic->loopback) {
1112 		config->rx_save_bad_frames = 0x1;	/* 1=save, 0=discard */
1113 		config->rx_discard_short_frames = 0x0;	/* 1=discard, 0=save */
1114 		config->promiscuous_mode = 0x1;		/* 1=on, 0=off */
1115 	}
1116 
1117 	if (unlikely(netdev->features & NETIF_F_RXFCS))
1118 		config->rx_crc_transfer = 0x1;	/* 1=save, 0=discard */
1119 
1120 	if (nic->flags & multicast_all)
1121 		config->multicast_all = 0x1;		/* 1=accept, 0=no */
1122 
1123 	/* disable WoL when up */
1124 	if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
1125 		config->magic_packet_disable = 0x1;	/* 1=off, 0=on */
1126 
1127 	if (nic->mac >= mac_82558_D101_A4) {
1128 		config->fc_disable = 0x1;	/* 1=Tx fc off, 0=Tx fc on */
1129 		config->mwi_enable = 0x1;	/* 1=enable, 0=disable */
1130 		config->standard_tcb = 0x0;	/* 1=standard, 0=extended */
1131 		config->rx_long_ok = 0x1;	/* 1=VLANs ok, 0=standard */
1132 		if (nic->mac >= mac_82559_D101M) {
1133 			config->tno_intr = 0x1;		/* TCO stats enable */
1134 			/* Enable TCO in extended config */
1135 			if (nic->mac >= mac_82551_10) {
1136 				config->byte_count = 0x20; /* extended bytes */
1137 				config->rx_d102_mode = 0x1; /* GMRC for TCO */
1138 			}
1139 		} else {
1140 			config->standard_stat_counter = 0x0;
1141 		}
1142 	}
1143 
1144 	if (netdev->features & NETIF_F_RXALL) {
1145 		config->rx_save_overruns = 0x1; /* 1=save, 0=discard */
1146 		config->rx_save_bad_frames = 0x1;       /* 1=save, 0=discard */
1147 		config->rx_discard_short_frames = 0x0;  /* 1=discard, 0=save */
1148 	}
1149 
1150 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[00-07]=%8ph\n",
1151 		     c + 0);
1152 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[08-15]=%8ph\n",
1153 		     c + 8);
1154 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[16-23]=%8ph\n",
1155 		     c + 16);
1156 	return 0;
1157 }
1158 
1159 /*************************************************************************
1160 *  CPUSaver parameters
1161 *
1162 *  All CPUSaver parameters are 16-bit literals that are part of a
1163 *  "move immediate value" instruction.  By changing the value of
1164 *  the literal in the instruction before the code is loaded, the
1165 *  driver can change the algorithm.
1166 *
1167 *  INTDELAY - This loads the dead-man timer with its initial value.
1168 *    When this timer expires the interrupt is asserted, and the
1169 *    timer is reset each time a new packet is received.  (see
1170 *    BUNDLEMAX below to set the limit on number of chained packets)
1171 *    The current default is 0x600 or 1536.  Experiments show that
1172 *    the value should probably stay within the 0x200 - 0x1000.
1173 *
1174 *  BUNDLEMAX -
1175 *    This sets the maximum number of frames that will be bundled.  In
1176 *    some situations, such as the TCP windowing algorithm, it may be
1177 *    better to limit the growth of the bundle size than let it go as
1178 *    high as it can, because that could cause too much added latency.
1179 *    The default is six, because this is the number of packets in the
1180 *    default TCP window size.  A value of 1 would make CPUSaver indicate
1181 *    an interrupt for every frame received.  If you do not want to put
1182 *    a limit on the bundle size, set this value to xFFFF.
1183 *
1184 *  BUNDLESMALL -
1185 *    This contains a bit-mask describing the minimum size frame that
1186 *    will be bundled.  The default masks the lower 7 bits, which means
1187 *    that any frame less than 128 bytes in length will not be bundled,
1188 *    but will instead immediately generate an interrupt.  This does
1189 *    not affect the current bundle in any way.  Any frame that is 128
1190 *    bytes or large will be bundled normally.  This feature is meant
1191 *    to provide immediate indication of ACK frames in a TCP environment.
1192 *    Customers were seeing poor performance when a machine with CPUSaver
1193 *    enabled was sending but not receiving.  The delay introduced when
1194 *    the ACKs were received was enough to reduce total throughput, because
1195 *    the sender would sit idle until the ACK was finally seen.
1196 *
1197 *    The current default is 0xFF80, which masks out the lower 7 bits.
1198 *    This means that any frame which is x7F (127) bytes or smaller
1199 *    will cause an immediate interrupt.  Because this value must be a
1200 *    bit mask, there are only a few valid values that can be used.  To
1201 *    turn this feature off, the driver can write the value xFFFF to the
1202 *    lower word of this instruction (in the same way that the other
1203 *    parameters are used).  Likewise, a value of 0xF800 (2047) would
1204 *    cause an interrupt to be generated for every frame, because all
1205 *    standard Ethernet frames are <= 2047 bytes in length.
1206 *************************************************************************/
1207 
1208 /* if you wish to disable the ucode functionality, while maintaining the
1209  * workarounds it provides, set the following defines to:
1210  * BUNDLESMALL 0
1211  * BUNDLEMAX 1
1212  * INTDELAY 1
1213  */
1214 #define BUNDLESMALL 1
1215 #define BUNDLEMAX (u16)6
1216 #define INTDELAY (u16)1536 /* 0x600 */
1217 
1218 /* Initialize firmware */
1219 static const struct firmware *e100_request_firmware(struct nic *nic)
1220 {
1221 	const char *fw_name;
1222 	const struct firmware *fw = nic->fw;
1223 	u8 timer, bundle, min_size;
1224 	int err = 0;
1225 	bool required = false;
1226 
1227 	/* do not load u-code for ICH devices */
1228 	if (nic->flags & ich)
1229 		return NULL;
1230 
1231 	/* Search for ucode match against h/w revision
1232 	 *
1233 	 * Based on comments in the source code for the FreeBSD fxp
1234 	 * driver, the FIRMWARE_D102E ucode includes both CPUSaver and
1235 	 *
1236 	 *    "fixes for bugs in the B-step hardware (specifically, bugs
1237 	 *     with Inline Receive)."
1238 	 *
1239 	 * So we must fail if it cannot be loaded.
1240 	 *
1241 	 * The other microcode files are only required for the optional
1242 	 * CPUSaver feature.  Nice to have, but no reason to fail.
1243 	 */
1244 	if (nic->mac == mac_82559_D101M) {
1245 		fw_name = FIRMWARE_D101M;
1246 	} else if (nic->mac == mac_82559_D101S) {
1247 		fw_name = FIRMWARE_D101S;
1248 	} else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) {
1249 		fw_name = FIRMWARE_D102E;
1250 		required = true;
1251 	} else { /* No ucode on other devices */
1252 		return NULL;
1253 	}
1254 
1255 	/* If the firmware has not previously been loaded, request a pointer
1256 	 * to it. If it was previously loaded, we are reinitializing the
1257 	 * adapter, possibly in a resume from hibernate, in which case
1258 	 * request_firmware() cannot be used.
1259 	 */
1260 	if (!fw)
1261 		err = request_firmware(&fw, fw_name, &nic->pdev->dev);
1262 
1263 	if (err) {
1264 		if (required) {
1265 			netif_err(nic, probe, nic->netdev,
1266 				  "Failed to load firmware \"%s\": %d\n",
1267 				  fw_name, err);
1268 			return ERR_PTR(err);
1269 		} else {
1270 			netif_info(nic, probe, nic->netdev,
1271 				   "CPUSaver disabled. Needs \"%s\": %d\n",
1272 				   fw_name, err);
1273 			return NULL;
1274 		}
1275 	}
1276 
1277 	/* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1278 	   indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1279 	if (fw->size != UCODE_SIZE * 4 + 3) {
1280 		netif_err(nic, probe, nic->netdev,
1281 			  "Firmware \"%s\" has wrong size %zu\n",
1282 			  fw_name, fw->size);
1283 		release_firmware(fw);
1284 		return ERR_PTR(-EINVAL);
1285 	}
1286 
1287 	/* Read timer, bundle and min_size from end of firmware blob */
1288 	timer = fw->data[UCODE_SIZE * 4];
1289 	bundle = fw->data[UCODE_SIZE * 4 + 1];
1290 	min_size = fw->data[UCODE_SIZE * 4 + 2];
1291 
1292 	if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
1293 	    min_size >= UCODE_SIZE) {
1294 		netif_err(nic, probe, nic->netdev,
1295 			  "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1296 			  fw_name, timer, bundle, min_size);
1297 		release_firmware(fw);
1298 		return ERR_PTR(-EINVAL);
1299 	}
1300 
1301 	/* OK, firmware is validated and ready to use. Save a pointer
1302 	 * to it in the nic */
1303 	nic->fw = fw;
1304 	return fw;
1305 }
1306 
1307 static int e100_setup_ucode(struct nic *nic, struct cb *cb,
1308 			     struct sk_buff *skb)
1309 {
1310 	const struct firmware *fw = (void *)skb;
1311 	u8 timer, bundle, min_size;
1312 
1313 	/* It's not a real skb; we just abused the fact that e100_exec_cb
1314 	   will pass it through to here... */
1315 	cb->skb = NULL;
1316 
1317 	/* firmware is stored as little endian already */
1318 	memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
1319 
1320 	/* Read timer, bundle and min_size from end of firmware blob */
1321 	timer = fw->data[UCODE_SIZE * 4];
1322 	bundle = fw->data[UCODE_SIZE * 4 + 1];
1323 	min_size = fw->data[UCODE_SIZE * 4 + 2];
1324 
1325 	/* Insert user-tunable settings in cb->u.ucode */
1326 	cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
1327 	cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
1328 	cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
1329 	cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
1330 	cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
1331 	cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
1332 
1333 	cb->command = cpu_to_le16(cb_ucode | cb_el);
1334 	return 0;
1335 }
1336 
1337 static inline int e100_load_ucode_wait(struct nic *nic)
1338 {
1339 	const struct firmware *fw;
1340 	int err = 0, counter = 50;
1341 	struct cb *cb = nic->cb_to_clean;
1342 
1343 	fw = e100_request_firmware(nic);
1344 	/* If it's NULL, then no ucode is required */
1345 	if (IS_ERR_OR_NULL(fw))
1346 		return PTR_ERR_OR_ZERO(fw);
1347 
1348 	if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
1349 		netif_err(nic, probe, nic->netdev,
1350 			  "ucode cmd failed with error %d\n", err);
1351 
1352 	/* must restart cuc */
1353 	nic->cuc_cmd = cuc_start;
1354 
1355 	/* wait for completion */
1356 	e100_write_flush(nic);
1357 	udelay(10);
1358 
1359 	/* wait for possibly (ouch) 500ms */
1360 	while (!(cb->status & cpu_to_le16(cb_complete))) {
1361 		msleep(10);
1362 		if (!--counter) break;
1363 	}
1364 
1365 	/* ack any interrupts, something could have been set */
1366 	iowrite8(~0, &nic->csr->scb.stat_ack);
1367 
1368 	/* if the command failed, or is not OK, notify and return */
1369 	if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1370 		netif_err(nic, probe, nic->netdev, "ucode load failed\n");
1371 		err = -EPERM;
1372 	}
1373 
1374 	return err;
1375 }
1376 
1377 static int e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1378 	struct sk_buff *skb)
1379 {
1380 	cb->command = cpu_to_le16(cb_iaaddr);
1381 	memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1382 	return 0;
1383 }
1384 
1385 static int e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1386 {
1387 	cb->command = cpu_to_le16(cb_dump);
1388 	cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1389 		offsetof(struct mem, dump_buf));
1390 	return 0;
1391 }
1392 
1393 static int e100_phy_check_without_mii(struct nic *nic)
1394 {
1395 	u8 phy_type;
1396 	int without_mii;
1397 
1398 	phy_type = (le16_to_cpu(nic->eeprom[eeprom_phy_iface]) >> 8) & 0x0f;
1399 
1400 	switch (phy_type) {
1401 	case NoSuchPhy: /* Non-MII PHY; UNTESTED! */
1402 	case I82503: /* Non-MII PHY; UNTESTED! */
1403 	case S80C24: /* Non-MII PHY; tested and working */
1404 		/* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
1405 		 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
1406 		 * doesn't have a programming interface of any sort.  The
1407 		 * media is sensed automatically based on how the link partner
1408 		 * is configured.  This is, in essence, manual configuration.
1409 		 */
1410 		netif_info(nic, probe, nic->netdev,
1411 			   "found MII-less i82503 or 80c24 or other PHY\n");
1412 
1413 		nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated;
1414 		nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */
1415 
1416 		/* these might be needed for certain MII-less cards...
1417 		 * nic->flags |= ich;
1418 		 * nic->flags |= ich_10h_workaround; */
1419 
1420 		without_mii = 1;
1421 		break;
1422 	default:
1423 		without_mii = 0;
1424 		break;
1425 	}
1426 	return without_mii;
1427 }
1428 
1429 #define NCONFIG_AUTO_SWITCH	0x0080
1430 #define MII_NSC_CONG		MII_RESV1
1431 #define NSC_CONG_ENABLE		0x0100
1432 #define NSC_CONG_TXREADY	0x0400
1433 #define ADVERTISE_FC_SUPPORTED	0x0400
1434 static int e100_phy_init(struct nic *nic)
1435 {
1436 	struct net_device *netdev = nic->netdev;
1437 	u32 addr;
1438 	u16 bmcr, stat, id_lo, id_hi, cong;
1439 
1440 	/* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1441 	for (addr = 0; addr < 32; addr++) {
1442 		nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1443 		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1444 		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1445 		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1446 		if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1447 			break;
1448 	}
1449 	if (addr == 32) {
1450 		/* uhoh, no PHY detected: check whether we seem to be some
1451 		 * weird, rare variant which is *known* to not have any MII.
1452 		 * But do this AFTER MII checking only, since this does
1453 		 * lookup of EEPROM values which may easily be unreliable. */
1454 		if (e100_phy_check_without_mii(nic))
1455 			return 0; /* simply return and hope for the best */
1456 		else {
1457 			/* for unknown cases log a fatal error */
1458 			netif_err(nic, hw, nic->netdev,
1459 				  "Failed to locate any known PHY, aborting\n");
1460 			return -EAGAIN;
1461 		}
1462 	} else
1463 		netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1464 			     "phy_addr = %d\n", nic->mii.phy_id);
1465 
1466 	/* Get phy ID */
1467 	id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1468 	id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1469 	nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1470 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1471 		     "phy ID = 0x%08X\n", nic->phy);
1472 
1473 	/* Select the phy and isolate the rest */
1474 	for (addr = 0; addr < 32; addr++) {
1475 		if (addr != nic->mii.phy_id) {
1476 			mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1477 		} else if (nic->phy != phy_82552_v) {
1478 			bmcr = mdio_read(netdev, addr, MII_BMCR);
1479 			mdio_write(netdev, addr, MII_BMCR,
1480 				bmcr & ~BMCR_ISOLATE);
1481 		}
1482 	}
1483 	/*
1484 	 * Workaround for 82552:
1485 	 * Clear the ISOLATE bit on selected phy_id last (mirrored on all
1486 	 * other phy_id's) using bmcr value from addr discovery loop above.
1487 	 */
1488 	if (nic->phy == phy_82552_v)
1489 		mdio_write(netdev, nic->mii.phy_id, MII_BMCR,
1490 			bmcr & ~BMCR_ISOLATE);
1491 
1492 	/* Handle National tx phys */
1493 #define NCS_PHY_MODEL_MASK	0xFFF0FFFF
1494 	if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1495 		/* Disable congestion control */
1496 		cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1497 		cong |= NSC_CONG_TXREADY;
1498 		cong &= ~NSC_CONG_ENABLE;
1499 		mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1500 	}
1501 
1502 	if (nic->phy == phy_82552_v) {
1503 		u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
1504 
1505 		/* assign special tweaked mdio_ctrl() function */
1506 		nic->mdio_ctrl = mdio_ctrl_phy_82552_v;
1507 
1508 		/* Workaround Si not advertising flow-control during autoneg */
1509 		advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1510 		mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);
1511 
1512 		/* Reset for the above changes to take effect */
1513 		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1514 		bmcr |= BMCR_RESET;
1515 		mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
1516 	} else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1517 	   (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1518 	   (le16_to_cpu(nic->eeprom[eeprom_cnfg_mdix]) & eeprom_mdix_enabled))) {
1519 		/* enable/disable MDI/MDI-X auto-switching. */
1520 		mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1521 				nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1522 	}
1523 
1524 	return 0;
1525 }
1526 
1527 static int e100_hw_init(struct nic *nic)
1528 {
1529 	int err = 0;
1530 
1531 	e100_hw_reset(nic);
1532 
1533 	netif_err(nic, hw, nic->netdev, "e100_hw_init\n");
1534 	if ((err = e100_self_test(nic)))
1535 		return err;
1536 
1537 	if ((err = e100_phy_init(nic)))
1538 		return err;
1539 	if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1540 		return err;
1541 	if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1542 		return err;
1543 	if ((err = e100_load_ucode_wait(nic)))
1544 		return err;
1545 	if ((err = e100_exec_cb(nic, NULL, e100_configure)))
1546 		return err;
1547 	if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1548 		return err;
1549 	if ((err = e100_exec_cmd(nic, cuc_dump_addr,
1550 		nic->dma_addr + offsetof(struct mem, stats))))
1551 		return err;
1552 	if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1553 		return err;
1554 
1555 	e100_disable_irq(nic);
1556 
1557 	return 0;
1558 }
1559 
1560 static int e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1561 {
1562 	struct net_device *netdev = nic->netdev;
1563 	struct netdev_hw_addr *ha;
1564 	u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS);
1565 
1566 	cb->command = cpu_to_le16(cb_multi);
1567 	cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1568 	i = 0;
1569 	netdev_for_each_mc_addr(ha, netdev) {
1570 		if (i == count)
1571 			break;
1572 		memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr,
1573 			ETH_ALEN);
1574 	}
1575 	return 0;
1576 }
1577 
1578 static void e100_set_multicast_list(struct net_device *netdev)
1579 {
1580 	struct nic *nic = netdev_priv(netdev);
1581 
1582 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1583 		     "mc_count=%d, flags=0x%04X\n",
1584 		     netdev_mc_count(netdev), netdev->flags);
1585 
1586 	if (netdev->flags & IFF_PROMISC)
1587 		nic->flags |= promiscuous;
1588 	else
1589 		nic->flags &= ~promiscuous;
1590 
1591 	if (netdev->flags & IFF_ALLMULTI ||
1592 		netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS)
1593 		nic->flags |= multicast_all;
1594 	else
1595 		nic->flags &= ~multicast_all;
1596 
1597 	e100_exec_cb(nic, NULL, e100_configure);
1598 	e100_exec_cb(nic, NULL, e100_multi);
1599 }
1600 
1601 static void e100_update_stats(struct nic *nic)
1602 {
1603 	struct net_device *dev = nic->netdev;
1604 	struct net_device_stats *ns = &dev->stats;
1605 	struct stats *s = &nic->mem->stats;
1606 	__le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1607 		(nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
1608 		&s->complete;
1609 
1610 	/* Device's stats reporting may take several microseconds to
1611 	 * complete, so we're always waiting for results of the
1612 	 * previous command. */
1613 
1614 	if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
1615 		*complete = 0;
1616 		nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1617 		nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1618 		ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1619 		ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1620 		ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1621 		ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1622 		ns->collisions += nic->tx_collisions;
1623 		ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1624 			le32_to_cpu(s->tx_lost_crs);
1625 		nic->rx_short_frame_errors +=
1626 			le32_to_cpu(s->rx_short_frame_errors);
1627 		ns->rx_length_errors = nic->rx_short_frame_errors +
1628 			nic->rx_over_length_errors;
1629 		ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1630 		ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1631 		ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1632 		ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1633 		ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1634 		ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1635 			le32_to_cpu(s->rx_alignment_errors) +
1636 			le32_to_cpu(s->rx_short_frame_errors) +
1637 			le32_to_cpu(s->rx_cdt_errors);
1638 		nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1639 		nic->tx_single_collisions +=
1640 			le32_to_cpu(s->tx_single_collisions);
1641 		nic->tx_multiple_collisions +=
1642 			le32_to_cpu(s->tx_multiple_collisions);
1643 		if (nic->mac >= mac_82558_D101_A4) {
1644 			nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1645 			nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1646 			nic->rx_fc_unsupported +=
1647 				le32_to_cpu(s->fc_rcv_unsupported);
1648 			if (nic->mac >= mac_82559_D101M) {
1649 				nic->tx_tco_frames +=
1650 					le16_to_cpu(s->xmt_tco_frames);
1651 				nic->rx_tco_frames +=
1652 					le16_to_cpu(s->rcv_tco_frames);
1653 			}
1654 		}
1655 	}
1656 
1657 
1658 	if (e100_exec_cmd(nic, cuc_dump_reset, 0))
1659 		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1660 			     "exec cuc_dump_reset failed\n");
1661 }
1662 
1663 static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1664 {
1665 	/* Adjust inter-frame-spacing (IFS) between two transmits if
1666 	 * we're getting collisions on a half-duplex connection. */
1667 
1668 	if (duplex == DUPLEX_HALF) {
1669 		u32 prev = nic->adaptive_ifs;
1670 		u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1671 
1672 		if ((nic->tx_frames / 32 < nic->tx_collisions) &&
1673 		   (nic->tx_frames > min_frames)) {
1674 			if (nic->adaptive_ifs < 60)
1675 				nic->adaptive_ifs += 5;
1676 		} else if (nic->tx_frames < min_frames) {
1677 			if (nic->adaptive_ifs >= 5)
1678 				nic->adaptive_ifs -= 5;
1679 		}
1680 		if (nic->adaptive_ifs != prev)
1681 			e100_exec_cb(nic, NULL, e100_configure);
1682 	}
1683 }
1684 
1685 static void e100_watchdog(struct timer_list *t)
1686 {
1687 	struct nic *nic = from_timer(nic, t, watchdog);
1688 	struct ethtool_cmd cmd = { .cmd = ETHTOOL_GSET };
1689 	u32 speed;
1690 
1691 	netif_printk(nic, timer, KERN_DEBUG, nic->netdev,
1692 		     "right now = %ld\n", jiffies);
1693 
1694 	/* mii library handles link maintenance tasks */
1695 
1696 	mii_ethtool_gset(&nic->mii, &cmd);
1697 	speed = ethtool_cmd_speed(&cmd);
1698 
1699 	if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1700 		netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n",
1701 			    speed == SPEED_100 ? 100 : 10,
1702 			    cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
1703 	} else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1704 		netdev_info(nic->netdev, "NIC Link is Down\n");
1705 	}
1706 
1707 	mii_check_link(&nic->mii);
1708 
1709 	/* Software generated interrupt to recover from (rare) Rx
1710 	 * allocation failure.
1711 	 * Unfortunately have to use a spinlock to not re-enable interrupts
1712 	 * accidentally, due to hardware that shares a register between the
1713 	 * interrupt mask bit and the SW Interrupt generation bit */
1714 	spin_lock_irq(&nic->cmd_lock);
1715 	iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1716 	e100_write_flush(nic);
1717 	spin_unlock_irq(&nic->cmd_lock);
1718 
1719 	e100_update_stats(nic);
1720 	e100_adjust_adaptive_ifs(nic, speed, cmd.duplex);
1721 
1722 	if (nic->mac <= mac_82557_D100_C)
1723 		/* Issue a multicast command to workaround a 557 lock up */
1724 		e100_set_multicast_list(nic->netdev);
1725 
1726 	if (nic->flags & ich && speed == SPEED_10 && cmd.duplex == DUPLEX_HALF)
1727 		/* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1728 		nic->flags |= ich_10h_workaround;
1729 	else
1730 		nic->flags &= ~ich_10h_workaround;
1731 
1732 	mod_timer(&nic->watchdog,
1733 		  round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
1734 }
1735 
1736 static int e100_xmit_prepare(struct nic *nic, struct cb *cb,
1737 	struct sk_buff *skb)
1738 {
1739 	dma_addr_t dma_addr;
1740 	cb->command = nic->tx_command;
1741 
1742 	dma_addr = dma_map_single(&nic->pdev->dev, skb->data, skb->len,
1743 				  DMA_TO_DEVICE);
1744 	/* If we can't map the skb, have the upper layer try later */
1745 	if (dma_mapping_error(&nic->pdev->dev, dma_addr)) {
1746 		dev_kfree_skb_any(skb);
1747 		skb = NULL;
1748 		return -ENOMEM;
1749 	}
1750 
1751 	/*
1752 	 * Use the last 4 bytes of the SKB payload packet as the CRC, used for
1753 	 * testing, ie sending frames with bad CRC.
1754 	 */
1755 	if (unlikely(skb->no_fcs))
1756 		cb->command |= cpu_to_le16(cb_tx_nc);
1757 	else
1758 		cb->command &= ~cpu_to_le16(cb_tx_nc);
1759 
1760 	/* interrupt every 16 packets regardless of delay */
1761 	if ((nic->cbs_avail & ~15) == nic->cbs_avail)
1762 		cb->command |= cpu_to_le16(cb_i);
1763 	cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1764 	cb->u.tcb.tcb_byte_count = 0;
1765 	cb->u.tcb.threshold = nic->tx_threshold;
1766 	cb->u.tcb.tbd_count = 1;
1767 	cb->u.tcb.tbd.buf_addr = cpu_to_le32(dma_addr);
1768 	cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1769 	skb_tx_timestamp(skb);
1770 	return 0;
1771 }
1772 
1773 static netdev_tx_t e100_xmit_frame(struct sk_buff *skb,
1774 				   struct net_device *netdev)
1775 {
1776 	struct nic *nic = netdev_priv(netdev);
1777 	int err;
1778 
1779 	if (nic->flags & ich_10h_workaround) {
1780 		/* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1781 		   Issue a NOP command followed by a 1us delay before
1782 		   issuing the Tx command. */
1783 		if (e100_exec_cmd(nic, cuc_nop, 0))
1784 			netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1785 				     "exec cuc_nop failed\n");
1786 		udelay(1);
1787 	}
1788 
1789 	err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1790 
1791 	switch (err) {
1792 	case -ENOSPC:
1793 		/* We queued the skb, but now we're out of space. */
1794 		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1795 			     "No space for CB\n");
1796 		netif_stop_queue(netdev);
1797 		break;
1798 	case -ENOMEM:
1799 		/* This is a hard error - log it. */
1800 		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1801 			     "Out of Tx resources, returning skb\n");
1802 		netif_stop_queue(netdev);
1803 		return NETDEV_TX_BUSY;
1804 	}
1805 
1806 	return NETDEV_TX_OK;
1807 }
1808 
1809 static int e100_tx_clean(struct nic *nic)
1810 {
1811 	struct net_device *dev = nic->netdev;
1812 	struct cb *cb;
1813 	int tx_cleaned = 0;
1814 
1815 	spin_lock(&nic->cb_lock);
1816 
1817 	/* Clean CBs marked complete */
1818 	for (cb = nic->cb_to_clean;
1819 	    cb->status & cpu_to_le16(cb_complete);
1820 	    cb = nic->cb_to_clean = cb->next) {
1821 		dma_rmb(); /* read skb after status */
1822 		netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev,
1823 			     "cb[%d]->status = 0x%04X\n",
1824 			     (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1825 			     cb->status);
1826 
1827 		if (likely(cb->skb != NULL)) {
1828 			dev->stats.tx_packets++;
1829 			dev->stats.tx_bytes += cb->skb->len;
1830 
1831 			dma_unmap_single(&nic->pdev->dev,
1832 					 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1833 					 le16_to_cpu(cb->u.tcb.tbd.size),
1834 					 DMA_TO_DEVICE);
1835 			dev_kfree_skb_any(cb->skb);
1836 			cb->skb = NULL;
1837 			tx_cleaned = 1;
1838 		}
1839 		cb->status = 0;
1840 		nic->cbs_avail++;
1841 	}
1842 
1843 	spin_unlock(&nic->cb_lock);
1844 
1845 	/* Recover from running out of Tx resources in xmit_frame */
1846 	if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1847 		netif_wake_queue(nic->netdev);
1848 
1849 	return tx_cleaned;
1850 }
1851 
1852 static void e100_clean_cbs(struct nic *nic)
1853 {
1854 	if (nic->cbs) {
1855 		while (nic->cbs_avail != nic->params.cbs.count) {
1856 			struct cb *cb = nic->cb_to_clean;
1857 			if (cb->skb) {
1858 				dma_unmap_single(&nic->pdev->dev,
1859 						 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1860 						 le16_to_cpu(cb->u.tcb.tbd.size),
1861 						 DMA_TO_DEVICE);
1862 				dev_kfree_skb(cb->skb);
1863 			}
1864 			nic->cb_to_clean = nic->cb_to_clean->next;
1865 			nic->cbs_avail++;
1866 		}
1867 		dma_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr);
1868 		nic->cbs = NULL;
1869 		nic->cbs_avail = 0;
1870 	}
1871 	nic->cuc_cmd = cuc_start;
1872 	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1873 		nic->cbs;
1874 }
1875 
1876 static int e100_alloc_cbs(struct nic *nic)
1877 {
1878 	struct cb *cb;
1879 	unsigned int i, count = nic->params.cbs.count;
1880 
1881 	nic->cuc_cmd = cuc_start;
1882 	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1883 	nic->cbs_avail = 0;
1884 
1885 	nic->cbs = dma_pool_zalloc(nic->cbs_pool, GFP_KERNEL,
1886 				   &nic->cbs_dma_addr);
1887 	if (!nic->cbs)
1888 		return -ENOMEM;
1889 
1890 	for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
1891 		cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1892 		cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1893 
1894 		cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1895 		cb->link = cpu_to_le32(nic->cbs_dma_addr +
1896 			((i+1) % count) * sizeof(struct cb));
1897 	}
1898 
1899 	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1900 	nic->cbs_avail = count;
1901 
1902 	return 0;
1903 }
1904 
1905 static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1906 {
1907 	if (!nic->rxs) return;
1908 	if (RU_SUSPENDED != nic->ru_running) return;
1909 
1910 	/* handle init time starts */
1911 	if (!rx) rx = nic->rxs;
1912 
1913 	/* (Re)start RU if suspended or idle and RFA is non-NULL */
1914 	if (rx->skb) {
1915 		e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1916 		nic->ru_running = RU_RUNNING;
1917 	}
1918 }
1919 
1920 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
1921 static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1922 {
1923 	if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN)))
1924 		return -ENOMEM;
1925 
1926 	/* Init, and map the RFD. */
1927 	skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1928 	rx->dma_addr = dma_map_single(&nic->pdev->dev, rx->skb->data,
1929 				      RFD_BUF_LEN, DMA_BIDIRECTIONAL);
1930 
1931 	if (dma_mapping_error(&nic->pdev->dev, rx->dma_addr)) {
1932 		dev_kfree_skb_any(rx->skb);
1933 		rx->skb = NULL;
1934 		rx->dma_addr = 0;
1935 		return -ENOMEM;
1936 	}
1937 
1938 	/* Link the RFD to end of RFA by linking previous RFD to
1939 	 * this one.  We are safe to touch the previous RFD because
1940 	 * it is protected by the before last buffer's el bit being set */
1941 	if (rx->prev->skb) {
1942 		struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1943 		put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
1944 		dma_sync_single_for_device(&nic->pdev->dev,
1945 					   rx->prev->dma_addr,
1946 					   sizeof(struct rfd),
1947 					   DMA_BIDIRECTIONAL);
1948 	}
1949 
1950 	return 0;
1951 }
1952 
1953 static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1954 	unsigned int *work_done, unsigned int work_to_do)
1955 {
1956 	struct net_device *dev = nic->netdev;
1957 	struct sk_buff *skb = rx->skb;
1958 	struct rfd *rfd = (struct rfd *)skb->data;
1959 	u16 rfd_status, actual_size;
1960 	u16 fcs_pad = 0;
1961 
1962 	if (unlikely(work_done && *work_done >= work_to_do))
1963 		return -EAGAIN;
1964 
1965 	/* Need to sync before taking a peek at cb_complete bit */
1966 	dma_sync_single_for_cpu(&nic->pdev->dev, rx->dma_addr,
1967 				sizeof(struct rfd), DMA_BIDIRECTIONAL);
1968 	rfd_status = le16_to_cpu(rfd->status);
1969 
1970 	netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev,
1971 		     "status=0x%04X\n", rfd_status);
1972 	dma_rmb(); /* read size after status bit */
1973 
1974 	/* If data isn't ready, nothing to indicate */
1975 	if (unlikely(!(rfd_status & cb_complete))) {
1976 		/* If the next buffer has the el bit, but we think the receiver
1977 		 * is still running, check to see if it really stopped while
1978 		 * we had interrupts off.
1979 		 * This allows for a fast restart without re-enabling
1980 		 * interrupts */
1981 		if ((le16_to_cpu(rfd->command) & cb_el) &&
1982 		    (RU_RUNNING == nic->ru_running))
1983 
1984 			if (ioread8(&nic->csr->scb.status) & rus_no_res)
1985 				nic->ru_running = RU_SUSPENDED;
1986 		dma_sync_single_for_device(&nic->pdev->dev, rx->dma_addr,
1987 					   sizeof(struct rfd),
1988 					   DMA_FROM_DEVICE);
1989 		return -ENODATA;
1990 	}
1991 
1992 	/* Get actual data size */
1993 	if (unlikely(dev->features & NETIF_F_RXFCS))
1994 		fcs_pad = 4;
1995 	actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
1996 	if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1997 		actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1998 
1999 	/* Get data */
2000 	dma_unmap_single(&nic->pdev->dev, rx->dma_addr, RFD_BUF_LEN,
2001 			 DMA_BIDIRECTIONAL);
2002 
2003 	/* If this buffer has the el bit, but we think the receiver
2004 	 * is still running, check to see if it really stopped while
2005 	 * we had interrupts off.
2006 	 * This allows for a fast restart without re-enabling interrupts.
2007 	 * This can happen when the RU sees the size change but also sees
2008 	 * the el bit set. */
2009 	if ((le16_to_cpu(rfd->command) & cb_el) &&
2010 	    (RU_RUNNING == nic->ru_running)) {
2011 
2012 	    if (ioread8(&nic->csr->scb.status) & rus_no_res)
2013 		nic->ru_running = RU_SUSPENDED;
2014 	}
2015 
2016 	/* Pull off the RFD and put the actual data (minus eth hdr) */
2017 	skb_reserve(skb, sizeof(struct rfd));
2018 	skb_put(skb, actual_size);
2019 	skb->protocol = eth_type_trans(skb, nic->netdev);
2020 
2021 	/* If we are receiving all frames, then don't bother
2022 	 * checking for errors.
2023 	 */
2024 	if (unlikely(dev->features & NETIF_F_RXALL)) {
2025 		if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad)
2026 			/* Received oversized frame, but keep it. */
2027 			nic->rx_over_length_errors++;
2028 		goto process_skb;
2029 	}
2030 
2031 	if (unlikely(!(rfd_status & cb_ok))) {
2032 		/* Don't indicate if hardware indicates errors */
2033 		dev_kfree_skb_any(skb);
2034 	} else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) {
2035 		/* Don't indicate oversized frames */
2036 		nic->rx_over_length_errors++;
2037 		dev_kfree_skb_any(skb);
2038 	} else {
2039 process_skb:
2040 		dev->stats.rx_packets++;
2041 		dev->stats.rx_bytes += (actual_size - fcs_pad);
2042 		netif_receive_skb(skb);
2043 		if (work_done)
2044 			(*work_done)++;
2045 	}
2046 
2047 	rx->skb = NULL;
2048 
2049 	return 0;
2050 }
2051 
2052 static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
2053 	unsigned int work_to_do)
2054 {
2055 	struct rx *rx;
2056 	int restart_required = 0, err = 0;
2057 	struct rx *old_before_last_rx, *new_before_last_rx;
2058 	struct rfd *old_before_last_rfd, *new_before_last_rfd;
2059 
2060 	/* Indicate newly arrived packets */
2061 	for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
2062 		err = e100_rx_indicate(nic, rx, work_done, work_to_do);
2063 		/* Hit quota or no more to clean */
2064 		if (-EAGAIN == err || -ENODATA == err)
2065 			break;
2066 	}
2067 
2068 
2069 	/* On EAGAIN, hit quota so have more work to do, restart once
2070 	 * cleanup is complete.
2071 	 * Else, are we already rnr? then pay attention!!! this ensures that
2072 	 * the state machine progression never allows a start with a
2073 	 * partially cleaned list, avoiding a race between hardware
2074 	 * and rx_to_clean when in NAPI mode */
2075 	if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
2076 		restart_required = 1;
2077 
2078 	old_before_last_rx = nic->rx_to_use->prev->prev;
2079 	old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
2080 
2081 	/* Alloc new skbs to refill list */
2082 	for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
2083 		if (unlikely(e100_rx_alloc_skb(nic, rx)))
2084 			break; /* Better luck next time (see watchdog) */
2085 	}
2086 
2087 	new_before_last_rx = nic->rx_to_use->prev->prev;
2088 	if (new_before_last_rx != old_before_last_rx) {
2089 		/* Set the el-bit on the buffer that is before the last buffer.
2090 		 * This lets us update the next pointer on the last buffer
2091 		 * without worrying about hardware touching it.
2092 		 * We set the size to 0 to prevent hardware from touching this
2093 		 * buffer.
2094 		 * When the hardware hits the before last buffer with el-bit
2095 		 * and size of 0, it will RNR interrupt, the RUS will go into
2096 		 * the No Resources state.  It will not complete nor write to
2097 		 * this buffer. */
2098 		new_before_last_rfd =
2099 			(struct rfd *)new_before_last_rx->skb->data;
2100 		new_before_last_rfd->size = 0;
2101 		new_before_last_rfd->command |= cpu_to_le16(cb_el);
2102 		dma_sync_single_for_device(&nic->pdev->dev,
2103 					   new_before_last_rx->dma_addr,
2104 					   sizeof(struct rfd),
2105 					   DMA_BIDIRECTIONAL);
2106 
2107 		/* Now that we have a new stopping point, we can clear the old
2108 		 * stopping point.  We must sync twice to get the proper
2109 		 * ordering on the hardware side of things. */
2110 		old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
2111 		dma_sync_single_for_device(&nic->pdev->dev,
2112 					   old_before_last_rx->dma_addr,
2113 					   sizeof(struct rfd),
2114 					   DMA_BIDIRECTIONAL);
2115 		old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN
2116 							+ ETH_FCS_LEN);
2117 		dma_sync_single_for_device(&nic->pdev->dev,
2118 					   old_before_last_rx->dma_addr,
2119 					   sizeof(struct rfd),
2120 					   DMA_BIDIRECTIONAL);
2121 	}
2122 
2123 	if (restart_required) {
2124 		// ack the rnr?
2125 		iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
2126 		e100_start_receiver(nic, nic->rx_to_clean);
2127 		if (work_done)
2128 			(*work_done)++;
2129 	}
2130 }
2131 
2132 static void e100_rx_clean_list(struct nic *nic)
2133 {
2134 	struct rx *rx;
2135 	unsigned int i, count = nic->params.rfds.count;
2136 
2137 	nic->ru_running = RU_UNINITIALIZED;
2138 
2139 	if (nic->rxs) {
2140 		for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2141 			if (rx->skb) {
2142 				dma_unmap_single(&nic->pdev->dev,
2143 						 rx->dma_addr, RFD_BUF_LEN,
2144 						 DMA_BIDIRECTIONAL);
2145 				dev_kfree_skb(rx->skb);
2146 			}
2147 		}
2148 		kfree(nic->rxs);
2149 		nic->rxs = NULL;
2150 	}
2151 
2152 	nic->rx_to_use = nic->rx_to_clean = NULL;
2153 }
2154 
2155 static int e100_rx_alloc_list(struct nic *nic)
2156 {
2157 	struct rx *rx;
2158 	unsigned int i, count = nic->params.rfds.count;
2159 	struct rfd *before_last;
2160 
2161 	nic->rx_to_use = nic->rx_to_clean = NULL;
2162 	nic->ru_running = RU_UNINITIALIZED;
2163 
2164 	if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_KERNEL)))
2165 		return -ENOMEM;
2166 
2167 	for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2168 		rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
2169 		rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
2170 		if (e100_rx_alloc_skb(nic, rx)) {
2171 			e100_rx_clean_list(nic);
2172 			return -ENOMEM;
2173 		}
2174 	}
2175 	/* Set the el-bit on the buffer that is before the last buffer.
2176 	 * This lets us update the next pointer on the last buffer without
2177 	 * worrying about hardware touching it.
2178 	 * We set the size to 0 to prevent hardware from touching this buffer.
2179 	 * When the hardware hits the before last buffer with el-bit and size
2180 	 * of 0, it will RNR interrupt, the RU will go into the No Resources
2181 	 * state.  It will not complete nor write to this buffer. */
2182 	rx = nic->rxs->prev->prev;
2183 	before_last = (struct rfd *)rx->skb->data;
2184 	before_last->command |= cpu_to_le16(cb_el);
2185 	before_last->size = 0;
2186 	dma_sync_single_for_device(&nic->pdev->dev, rx->dma_addr,
2187 				   sizeof(struct rfd), DMA_BIDIRECTIONAL);
2188 
2189 	nic->rx_to_use = nic->rx_to_clean = nic->rxs;
2190 	nic->ru_running = RU_SUSPENDED;
2191 
2192 	return 0;
2193 }
2194 
2195 static irqreturn_t e100_intr(int irq, void *dev_id)
2196 {
2197 	struct net_device *netdev = dev_id;
2198 	struct nic *nic = netdev_priv(netdev);
2199 	u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
2200 
2201 	netif_printk(nic, intr, KERN_DEBUG, nic->netdev,
2202 		     "stat_ack = 0x%02X\n", stat_ack);
2203 
2204 	if (stat_ack == stat_ack_not_ours ||	/* Not our interrupt */
2205 	   stat_ack == stat_ack_not_present)	/* Hardware is ejected */
2206 		return IRQ_NONE;
2207 
2208 	/* Ack interrupt(s) */
2209 	iowrite8(stat_ack, &nic->csr->scb.stat_ack);
2210 
2211 	/* We hit Receive No Resource (RNR); restart RU after cleaning */
2212 	if (stat_ack & stat_ack_rnr)
2213 		nic->ru_running = RU_SUSPENDED;
2214 
2215 	if (likely(napi_schedule_prep(&nic->napi))) {
2216 		e100_disable_irq(nic);
2217 		__napi_schedule(&nic->napi);
2218 	}
2219 
2220 	return IRQ_HANDLED;
2221 }
2222 
2223 static int e100_poll(struct napi_struct *napi, int budget)
2224 {
2225 	struct nic *nic = container_of(napi, struct nic, napi);
2226 	unsigned int work_done = 0;
2227 
2228 	e100_rx_clean(nic, &work_done, budget);
2229 	e100_tx_clean(nic);
2230 
2231 	/* If budget fully consumed, continue polling */
2232 	if (work_done == budget)
2233 		return budget;
2234 
2235 	/* only re-enable interrupt if stack agrees polling is really done */
2236 	if (likely(napi_complete_done(napi, work_done)))
2237 		e100_enable_irq(nic);
2238 
2239 	return work_done;
2240 }
2241 
2242 #ifdef CONFIG_NET_POLL_CONTROLLER
2243 static void e100_netpoll(struct net_device *netdev)
2244 {
2245 	struct nic *nic = netdev_priv(netdev);
2246 
2247 	e100_disable_irq(nic);
2248 	e100_intr(nic->pdev->irq, netdev);
2249 	e100_tx_clean(nic);
2250 	e100_enable_irq(nic);
2251 }
2252 #endif
2253 
2254 static int e100_set_mac_address(struct net_device *netdev, void *p)
2255 {
2256 	struct nic *nic = netdev_priv(netdev);
2257 	struct sockaddr *addr = p;
2258 
2259 	if (!is_valid_ether_addr(addr->sa_data))
2260 		return -EADDRNOTAVAIL;
2261 
2262 	eth_hw_addr_set(netdev, addr->sa_data);
2263 	e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2264 
2265 	return 0;
2266 }
2267 
2268 static int e100_asf(struct nic *nic)
2269 {
2270 	/* ASF can be enabled from eeprom */
2271 	return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2272 	   (le16_to_cpu(nic->eeprom[eeprom_config_asf]) & eeprom_asf) &&
2273 	   !(le16_to_cpu(nic->eeprom[eeprom_config_asf]) & eeprom_gcl) &&
2274 	   ((le16_to_cpu(nic->eeprom[eeprom_smbus_addr]) & 0xFF) != 0xFE);
2275 }
2276 
2277 static int e100_up(struct nic *nic)
2278 {
2279 	int err;
2280 
2281 	if ((err = e100_rx_alloc_list(nic)))
2282 		return err;
2283 	if ((err = e100_alloc_cbs(nic)))
2284 		goto err_rx_clean_list;
2285 	if ((err = e100_hw_init(nic)))
2286 		goto err_clean_cbs;
2287 	e100_set_multicast_list(nic->netdev);
2288 	e100_start_receiver(nic, NULL);
2289 	mod_timer(&nic->watchdog, jiffies);
2290 	if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
2291 		nic->netdev->name, nic->netdev)))
2292 		goto err_no_irq;
2293 	netif_wake_queue(nic->netdev);
2294 	napi_enable(&nic->napi);
2295 	/* enable ints _after_ enabling poll, preventing a race between
2296 	 * disable ints+schedule */
2297 	e100_enable_irq(nic);
2298 	return 0;
2299 
2300 err_no_irq:
2301 	del_timer_sync(&nic->watchdog);
2302 err_clean_cbs:
2303 	e100_clean_cbs(nic);
2304 err_rx_clean_list:
2305 	e100_rx_clean_list(nic);
2306 	return err;
2307 }
2308 
2309 static void e100_down(struct nic *nic)
2310 {
2311 	/* wait here for poll to complete */
2312 	napi_disable(&nic->napi);
2313 	netif_stop_queue(nic->netdev);
2314 	e100_hw_reset(nic);
2315 	free_irq(nic->pdev->irq, nic->netdev);
2316 	del_timer_sync(&nic->watchdog);
2317 	netif_carrier_off(nic->netdev);
2318 	e100_clean_cbs(nic);
2319 	e100_rx_clean_list(nic);
2320 }
2321 
2322 static void e100_tx_timeout(struct net_device *netdev, unsigned int txqueue)
2323 {
2324 	struct nic *nic = netdev_priv(netdev);
2325 
2326 	/* Reset outside of interrupt context, to avoid request_irq
2327 	 * in interrupt context */
2328 	schedule_work(&nic->tx_timeout_task);
2329 }
2330 
2331 static void e100_tx_timeout_task(struct work_struct *work)
2332 {
2333 	struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2334 	struct net_device *netdev = nic->netdev;
2335 
2336 	netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
2337 		     "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status));
2338 
2339 	rtnl_lock();
2340 	if (netif_running(netdev)) {
2341 		e100_down(netdev_priv(netdev));
2342 		e100_up(netdev_priv(netdev));
2343 	}
2344 	rtnl_unlock();
2345 }
2346 
2347 static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2348 {
2349 	int err;
2350 	struct sk_buff *skb;
2351 
2352 	/* Use driver resources to perform internal MAC or PHY
2353 	 * loopback test.  A single packet is prepared and transmitted
2354 	 * in loopback mode, and the test passes if the received
2355 	 * packet compares byte-for-byte to the transmitted packet. */
2356 
2357 	if ((err = e100_rx_alloc_list(nic)))
2358 		return err;
2359 	if ((err = e100_alloc_cbs(nic)))
2360 		goto err_clean_rx;
2361 
2362 	/* ICH PHY loopback is broken so do MAC loopback instead */
2363 	if (nic->flags & ich && loopback_mode == lb_phy)
2364 		loopback_mode = lb_mac;
2365 
2366 	nic->loopback = loopback_mode;
2367 	if ((err = e100_hw_init(nic)))
2368 		goto err_loopback_none;
2369 
2370 	if (loopback_mode == lb_phy)
2371 		mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2372 			BMCR_LOOPBACK);
2373 
2374 	e100_start_receiver(nic, NULL);
2375 
2376 	if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
2377 		err = -ENOMEM;
2378 		goto err_loopback_none;
2379 	}
2380 	skb_put(skb, ETH_DATA_LEN);
2381 	memset(skb->data, 0xFF, ETH_DATA_LEN);
2382 	e100_xmit_frame(skb, nic->netdev);
2383 
2384 	msleep(10);
2385 
2386 	dma_sync_single_for_cpu(&nic->pdev->dev, nic->rx_to_clean->dma_addr,
2387 				RFD_BUF_LEN, DMA_BIDIRECTIONAL);
2388 
2389 	if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2390 	   skb->data, ETH_DATA_LEN))
2391 		err = -EAGAIN;
2392 
2393 err_loopback_none:
2394 	mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2395 	nic->loopback = lb_none;
2396 	e100_clean_cbs(nic);
2397 	e100_hw_reset(nic);
2398 err_clean_rx:
2399 	e100_rx_clean_list(nic);
2400 	return err;
2401 }
2402 
2403 #define MII_LED_CONTROL	0x1B
2404 #define E100_82552_LED_OVERRIDE 0x19
2405 #define E100_82552_LED_ON       0x000F /* LEDTX and LED_RX both on */
2406 #define E100_82552_LED_OFF      0x000A /* LEDTX and LED_RX both off */
2407 
2408 static int e100_get_link_ksettings(struct net_device *netdev,
2409 				   struct ethtool_link_ksettings *cmd)
2410 {
2411 	struct nic *nic = netdev_priv(netdev);
2412 
2413 	mii_ethtool_get_link_ksettings(&nic->mii, cmd);
2414 
2415 	return 0;
2416 }
2417 
2418 static int e100_set_link_ksettings(struct net_device *netdev,
2419 				   const struct ethtool_link_ksettings *cmd)
2420 {
2421 	struct nic *nic = netdev_priv(netdev);
2422 	int err;
2423 
2424 	mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2425 	err = mii_ethtool_set_link_ksettings(&nic->mii, cmd);
2426 	e100_exec_cb(nic, NULL, e100_configure);
2427 
2428 	return err;
2429 }
2430 
2431 static void e100_get_drvinfo(struct net_device *netdev,
2432 	struct ethtool_drvinfo *info)
2433 {
2434 	struct nic *nic = netdev_priv(netdev);
2435 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2436 	strlcpy(info->bus_info, pci_name(nic->pdev),
2437 		sizeof(info->bus_info));
2438 }
2439 
2440 #define E100_PHY_REGS 0x1D
2441 static int e100_get_regs_len(struct net_device *netdev)
2442 {
2443 	struct nic *nic = netdev_priv(netdev);
2444 
2445 	/* We know the number of registers, and the size of the dump buffer.
2446 	 * Calculate the total size in bytes.
2447 	 */
2448 	return (1 + E100_PHY_REGS) * sizeof(u32) + sizeof(nic->mem->dump_buf);
2449 }
2450 
2451 static void e100_get_regs(struct net_device *netdev,
2452 	struct ethtool_regs *regs, void *p)
2453 {
2454 	struct nic *nic = netdev_priv(netdev);
2455 	u32 *buff = p;
2456 	int i;
2457 
2458 	regs->version = (1 << 24) | nic->pdev->revision;
2459 	buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2460 		ioread8(&nic->csr->scb.cmd_lo) << 16 |
2461 		ioread16(&nic->csr->scb.status);
2462 	for (i = 0; i < E100_PHY_REGS; i++)
2463 		/* Note that we read the registers in reverse order. This
2464 		 * ordering is the ABI apparently used by ethtool and other
2465 		 * applications.
2466 		 */
2467 		buff[1 + i] = mdio_read(netdev, nic->mii.phy_id,
2468 					E100_PHY_REGS - 1 - i);
2469 	memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2470 	e100_exec_cb(nic, NULL, e100_dump);
2471 	msleep(10);
2472 	memcpy(&buff[1 + E100_PHY_REGS], nic->mem->dump_buf,
2473 	       sizeof(nic->mem->dump_buf));
2474 }
2475 
2476 static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2477 {
2478 	struct nic *nic = netdev_priv(netdev);
2479 	wol->supported = (nic->mac >= mac_82558_D101_A4) ?  WAKE_MAGIC : 0;
2480 	wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2481 }
2482 
2483 static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2484 {
2485 	struct nic *nic = netdev_priv(netdev);
2486 
2487 	if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
2488 	    !device_can_wakeup(&nic->pdev->dev))
2489 		return -EOPNOTSUPP;
2490 
2491 	if (wol->wolopts)
2492 		nic->flags |= wol_magic;
2493 	else
2494 		nic->flags &= ~wol_magic;
2495 
2496 	device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
2497 
2498 	e100_exec_cb(nic, NULL, e100_configure);
2499 
2500 	return 0;
2501 }
2502 
2503 static u32 e100_get_msglevel(struct net_device *netdev)
2504 {
2505 	struct nic *nic = netdev_priv(netdev);
2506 	return nic->msg_enable;
2507 }
2508 
2509 static void e100_set_msglevel(struct net_device *netdev, u32 value)
2510 {
2511 	struct nic *nic = netdev_priv(netdev);
2512 	nic->msg_enable = value;
2513 }
2514 
2515 static int e100_nway_reset(struct net_device *netdev)
2516 {
2517 	struct nic *nic = netdev_priv(netdev);
2518 	return mii_nway_restart(&nic->mii);
2519 }
2520 
2521 static u32 e100_get_link(struct net_device *netdev)
2522 {
2523 	struct nic *nic = netdev_priv(netdev);
2524 	return mii_link_ok(&nic->mii);
2525 }
2526 
2527 static int e100_get_eeprom_len(struct net_device *netdev)
2528 {
2529 	struct nic *nic = netdev_priv(netdev);
2530 	return nic->eeprom_wc << 1;
2531 }
2532 
2533 #define E100_EEPROM_MAGIC	0x1234
2534 static int e100_get_eeprom(struct net_device *netdev,
2535 	struct ethtool_eeprom *eeprom, u8 *bytes)
2536 {
2537 	struct nic *nic = netdev_priv(netdev);
2538 
2539 	eeprom->magic = E100_EEPROM_MAGIC;
2540 	memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2541 
2542 	return 0;
2543 }
2544 
2545 static int e100_set_eeprom(struct net_device *netdev,
2546 	struct ethtool_eeprom *eeprom, u8 *bytes)
2547 {
2548 	struct nic *nic = netdev_priv(netdev);
2549 
2550 	if (eeprom->magic != E100_EEPROM_MAGIC)
2551 		return -EINVAL;
2552 
2553 	memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2554 
2555 	return e100_eeprom_save(nic, eeprom->offset >> 1,
2556 		(eeprom->len >> 1) + 1);
2557 }
2558 
2559 static void e100_get_ringparam(struct net_device *netdev,
2560 			       struct ethtool_ringparam *ring,
2561 			       struct kernel_ethtool_ringparam *kernel_ring,
2562 			       struct netlink_ext_ack *extack)
2563 {
2564 	struct nic *nic = netdev_priv(netdev);
2565 	struct param_range *rfds = &nic->params.rfds;
2566 	struct param_range *cbs = &nic->params.cbs;
2567 
2568 	ring->rx_max_pending = rfds->max;
2569 	ring->tx_max_pending = cbs->max;
2570 	ring->rx_pending = rfds->count;
2571 	ring->tx_pending = cbs->count;
2572 }
2573 
2574 static int e100_set_ringparam(struct net_device *netdev,
2575 			      struct ethtool_ringparam *ring,
2576 			      struct kernel_ethtool_ringparam *kernel_ring,
2577 			      struct netlink_ext_ack *extack)
2578 {
2579 	struct nic *nic = netdev_priv(netdev);
2580 	struct param_range *rfds = &nic->params.rfds;
2581 	struct param_range *cbs = &nic->params.cbs;
2582 
2583 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2584 		return -EINVAL;
2585 
2586 	if (netif_running(netdev))
2587 		e100_down(nic);
2588 	rfds->count = max(ring->rx_pending, rfds->min);
2589 	rfds->count = min(rfds->count, rfds->max);
2590 	cbs->count = max(ring->tx_pending, cbs->min);
2591 	cbs->count = min(cbs->count, cbs->max);
2592 	netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n",
2593 		   rfds->count, cbs->count);
2594 	if (netif_running(netdev))
2595 		e100_up(nic);
2596 
2597 	return 0;
2598 }
2599 
2600 static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2601 	"Link test     (on/offline)",
2602 	"Eeprom test   (on/offline)",
2603 	"Self test        (offline)",
2604 	"Mac loopback     (offline)",
2605 	"Phy loopback     (offline)",
2606 };
2607 #define E100_TEST_LEN	ARRAY_SIZE(e100_gstrings_test)
2608 
2609 static void e100_diag_test(struct net_device *netdev,
2610 	struct ethtool_test *test, u64 *data)
2611 {
2612 	struct ethtool_cmd cmd;
2613 	struct nic *nic = netdev_priv(netdev);
2614 	int i;
2615 
2616 	memset(data, 0, E100_TEST_LEN * sizeof(u64));
2617 	data[0] = !mii_link_ok(&nic->mii);
2618 	data[1] = e100_eeprom_load(nic);
2619 	if (test->flags & ETH_TEST_FL_OFFLINE) {
2620 
2621 		/* save speed, duplex & autoneg settings */
2622 		mii_ethtool_gset(&nic->mii, &cmd);
2623 
2624 		if (netif_running(netdev))
2625 			e100_down(nic);
2626 		data[2] = e100_self_test(nic);
2627 		data[3] = e100_loopback_test(nic, lb_mac);
2628 		data[4] = e100_loopback_test(nic, lb_phy);
2629 
2630 		/* restore speed, duplex & autoneg settings */
2631 		mii_ethtool_sset(&nic->mii, &cmd);
2632 
2633 		if (netif_running(netdev))
2634 			e100_up(nic);
2635 	}
2636 	for (i = 0; i < E100_TEST_LEN; i++)
2637 		test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2638 
2639 	msleep_interruptible(4 * 1000);
2640 }
2641 
2642 static int e100_set_phys_id(struct net_device *netdev,
2643 			    enum ethtool_phys_id_state state)
2644 {
2645 	struct nic *nic = netdev_priv(netdev);
2646 	enum led_state {
2647 		led_on     = 0x01,
2648 		led_off    = 0x04,
2649 		led_on_559 = 0x05,
2650 		led_on_557 = 0x07,
2651 	};
2652 	u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
2653 		MII_LED_CONTROL;
2654 	u16 leds = 0;
2655 
2656 	switch (state) {
2657 	case ETHTOOL_ID_ACTIVE:
2658 		return 2;
2659 
2660 	case ETHTOOL_ID_ON:
2661 		leds = (nic->phy == phy_82552_v) ? E100_82552_LED_ON :
2662 		       (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
2663 		break;
2664 
2665 	case ETHTOOL_ID_OFF:
2666 		leds = (nic->phy == phy_82552_v) ? E100_82552_LED_OFF : led_off;
2667 		break;
2668 
2669 	case ETHTOOL_ID_INACTIVE:
2670 		break;
2671 	}
2672 
2673 	mdio_write(netdev, nic->mii.phy_id, led_reg, leds);
2674 	return 0;
2675 }
2676 
2677 static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2678 	"rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2679 	"tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2680 	"rx_length_errors", "rx_over_errors", "rx_crc_errors",
2681 	"rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2682 	"tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2683 	"tx_heartbeat_errors", "tx_window_errors",
2684 	/* device-specific stats */
2685 	"tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2686 	"tx_flow_control_pause", "rx_flow_control_pause",
2687 	"rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2688 	"rx_short_frame_errors", "rx_over_length_errors",
2689 };
2690 #define E100_NET_STATS_LEN	21
2691 #define E100_STATS_LEN	ARRAY_SIZE(e100_gstrings_stats)
2692 
2693 static int e100_get_sset_count(struct net_device *netdev, int sset)
2694 {
2695 	switch (sset) {
2696 	case ETH_SS_TEST:
2697 		return E100_TEST_LEN;
2698 	case ETH_SS_STATS:
2699 		return E100_STATS_LEN;
2700 	default:
2701 		return -EOPNOTSUPP;
2702 	}
2703 }
2704 
2705 static void e100_get_ethtool_stats(struct net_device *netdev,
2706 	struct ethtool_stats *stats, u64 *data)
2707 {
2708 	struct nic *nic = netdev_priv(netdev);
2709 	int i;
2710 
2711 	for (i = 0; i < E100_NET_STATS_LEN; i++)
2712 		data[i] = ((unsigned long *)&netdev->stats)[i];
2713 
2714 	data[i++] = nic->tx_deferred;
2715 	data[i++] = nic->tx_single_collisions;
2716 	data[i++] = nic->tx_multiple_collisions;
2717 	data[i++] = nic->tx_fc_pause;
2718 	data[i++] = nic->rx_fc_pause;
2719 	data[i++] = nic->rx_fc_unsupported;
2720 	data[i++] = nic->tx_tco_frames;
2721 	data[i++] = nic->rx_tco_frames;
2722 	data[i++] = nic->rx_short_frame_errors;
2723 	data[i++] = nic->rx_over_length_errors;
2724 }
2725 
2726 static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2727 {
2728 	switch (stringset) {
2729 	case ETH_SS_TEST:
2730 		memcpy(data, e100_gstrings_test, sizeof(e100_gstrings_test));
2731 		break;
2732 	case ETH_SS_STATS:
2733 		memcpy(data, e100_gstrings_stats, sizeof(e100_gstrings_stats));
2734 		break;
2735 	}
2736 }
2737 
2738 static const struct ethtool_ops e100_ethtool_ops = {
2739 	.get_drvinfo		= e100_get_drvinfo,
2740 	.get_regs_len		= e100_get_regs_len,
2741 	.get_regs		= e100_get_regs,
2742 	.get_wol		= e100_get_wol,
2743 	.set_wol		= e100_set_wol,
2744 	.get_msglevel		= e100_get_msglevel,
2745 	.set_msglevel		= e100_set_msglevel,
2746 	.nway_reset		= e100_nway_reset,
2747 	.get_link		= e100_get_link,
2748 	.get_eeprom_len		= e100_get_eeprom_len,
2749 	.get_eeprom		= e100_get_eeprom,
2750 	.set_eeprom		= e100_set_eeprom,
2751 	.get_ringparam		= e100_get_ringparam,
2752 	.set_ringparam		= e100_set_ringparam,
2753 	.self_test		= e100_diag_test,
2754 	.get_strings		= e100_get_strings,
2755 	.set_phys_id		= e100_set_phys_id,
2756 	.get_ethtool_stats	= e100_get_ethtool_stats,
2757 	.get_sset_count		= e100_get_sset_count,
2758 	.get_ts_info		= ethtool_op_get_ts_info,
2759 	.get_link_ksettings	= e100_get_link_ksettings,
2760 	.set_link_ksettings	= e100_set_link_ksettings,
2761 };
2762 
2763 static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2764 {
2765 	struct nic *nic = netdev_priv(netdev);
2766 
2767 	return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2768 }
2769 
2770 static int e100_alloc(struct nic *nic)
2771 {
2772 	nic->mem = dma_alloc_coherent(&nic->pdev->dev, sizeof(struct mem),
2773 				      &nic->dma_addr, GFP_KERNEL);
2774 	return nic->mem ? 0 : -ENOMEM;
2775 }
2776 
2777 static void e100_free(struct nic *nic)
2778 {
2779 	if (nic->mem) {
2780 		dma_free_coherent(&nic->pdev->dev, sizeof(struct mem),
2781 				  nic->mem, nic->dma_addr);
2782 		nic->mem = NULL;
2783 	}
2784 }
2785 
2786 static int e100_open(struct net_device *netdev)
2787 {
2788 	struct nic *nic = netdev_priv(netdev);
2789 	int err = 0;
2790 
2791 	netif_carrier_off(netdev);
2792 	if ((err = e100_up(nic)))
2793 		netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n");
2794 	return err;
2795 }
2796 
2797 static int e100_close(struct net_device *netdev)
2798 {
2799 	e100_down(netdev_priv(netdev));
2800 	return 0;
2801 }
2802 
2803 static int e100_set_features(struct net_device *netdev,
2804 			     netdev_features_t features)
2805 {
2806 	struct nic *nic = netdev_priv(netdev);
2807 	netdev_features_t changed = features ^ netdev->features;
2808 
2809 	if (!(changed & (NETIF_F_RXFCS | NETIF_F_RXALL)))
2810 		return 0;
2811 
2812 	netdev->features = features;
2813 	e100_exec_cb(nic, NULL, e100_configure);
2814 	return 1;
2815 }
2816 
2817 static const struct net_device_ops e100_netdev_ops = {
2818 	.ndo_open		= e100_open,
2819 	.ndo_stop		= e100_close,
2820 	.ndo_start_xmit		= e100_xmit_frame,
2821 	.ndo_validate_addr	= eth_validate_addr,
2822 	.ndo_set_rx_mode	= e100_set_multicast_list,
2823 	.ndo_set_mac_address	= e100_set_mac_address,
2824 	.ndo_eth_ioctl		= e100_do_ioctl,
2825 	.ndo_tx_timeout		= e100_tx_timeout,
2826 #ifdef CONFIG_NET_POLL_CONTROLLER
2827 	.ndo_poll_controller	= e100_netpoll,
2828 #endif
2829 	.ndo_set_features	= e100_set_features,
2830 };
2831 
2832 static int e100_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2833 {
2834 	struct net_device *netdev;
2835 	struct nic *nic;
2836 	int err;
2837 
2838 	if (!(netdev = alloc_etherdev(sizeof(struct nic))))
2839 		return -ENOMEM;
2840 
2841 	netdev->hw_features |= NETIF_F_RXFCS;
2842 	netdev->priv_flags |= IFF_SUPP_NOFCS;
2843 	netdev->hw_features |= NETIF_F_RXALL;
2844 
2845 	netdev->netdev_ops = &e100_netdev_ops;
2846 	netdev->ethtool_ops = &e100_ethtool_ops;
2847 	netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2848 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2849 
2850 	nic = netdev_priv(netdev);
2851 	netif_napi_add_weight(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
2852 	nic->netdev = netdev;
2853 	nic->pdev = pdev;
2854 	nic->msg_enable = (1 << debug) - 1;
2855 	nic->mdio_ctrl = mdio_ctrl_hw;
2856 	pci_set_drvdata(pdev, netdev);
2857 
2858 	if ((err = pci_enable_device(pdev))) {
2859 		netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n");
2860 		goto err_out_free_dev;
2861 	}
2862 
2863 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2864 		netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n");
2865 		err = -ENODEV;
2866 		goto err_out_disable_pdev;
2867 	}
2868 
2869 	if ((err = pci_request_regions(pdev, DRV_NAME))) {
2870 		netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n");
2871 		goto err_out_disable_pdev;
2872 	}
2873 
2874 	if ((err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))) {
2875 		netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n");
2876 		goto err_out_free_res;
2877 	}
2878 
2879 	SET_NETDEV_DEV(netdev, &pdev->dev);
2880 
2881 	if (use_io)
2882 		netif_info(nic, probe, nic->netdev, "using i/o access mode\n");
2883 
2884 	nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
2885 	if (!nic->csr) {
2886 		netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n");
2887 		err = -ENOMEM;
2888 		goto err_out_free_res;
2889 	}
2890 
2891 	if (ent->driver_data)
2892 		nic->flags |= ich;
2893 	else
2894 		nic->flags &= ~ich;
2895 
2896 	e100_get_defaults(nic);
2897 
2898 	/* D100 MAC doesn't allow rx of vlan packets with normal MTU */
2899 	if (nic->mac < mac_82558_D101_A4)
2900 		netdev->features |= NETIF_F_VLAN_CHALLENGED;
2901 
2902 	/* locks must be initialized before calling hw_reset */
2903 	spin_lock_init(&nic->cb_lock);
2904 	spin_lock_init(&nic->cmd_lock);
2905 	spin_lock_init(&nic->mdio_lock);
2906 
2907 	/* Reset the device before pci_set_master() in case device is in some
2908 	 * funky state and has an interrupt pending - hint: we don't have the
2909 	 * interrupt handler registered yet. */
2910 	e100_hw_reset(nic);
2911 
2912 	pci_set_master(pdev);
2913 
2914 	timer_setup(&nic->watchdog, e100_watchdog, 0);
2915 
2916 	INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2917 
2918 	if ((err = e100_alloc(nic))) {
2919 		netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n");
2920 		goto err_out_iounmap;
2921 	}
2922 
2923 	if ((err = e100_eeprom_load(nic)))
2924 		goto err_out_free;
2925 
2926 	e100_phy_init(nic);
2927 
2928 	eth_hw_addr_set(netdev, (u8 *)nic->eeprom);
2929 	if (!is_valid_ether_addr(netdev->dev_addr)) {
2930 		if (!eeprom_bad_csum_allow) {
2931 			netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n");
2932 			err = -EAGAIN;
2933 			goto err_out_free;
2934 		} else {
2935 			netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n");
2936 		}
2937 	}
2938 
2939 	/* Wol magic packet can be enabled from eeprom */
2940 	if ((nic->mac >= mac_82558_D101_A4) &&
2941 	   (le16_to_cpu(nic->eeprom[eeprom_id]) & eeprom_id_wol)) {
2942 		nic->flags |= wol_magic;
2943 		device_set_wakeup_enable(&pdev->dev, true);
2944 	}
2945 
2946 	/* ack any pending wake events, disable PME */
2947 	pci_pme_active(pdev, false);
2948 
2949 	strcpy(netdev->name, "eth%d");
2950 	if ((err = register_netdev(netdev))) {
2951 		netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n");
2952 		goto err_out_free;
2953 	}
2954 	nic->cbs_pool = dma_pool_create(netdev->name,
2955 			   &nic->pdev->dev,
2956 			   nic->params.cbs.max * sizeof(struct cb),
2957 			   sizeof(u32),
2958 			   0);
2959 	if (!nic->cbs_pool) {
2960 		netif_err(nic, probe, nic->netdev, "Cannot create DMA pool, aborting\n");
2961 		err = -ENOMEM;
2962 		goto err_out_pool;
2963 	}
2964 	netif_info(nic, probe, nic->netdev,
2965 		   "addr 0x%llx, irq %d, MAC addr %pM\n",
2966 		   (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
2967 		   pdev->irq, netdev->dev_addr);
2968 
2969 	return 0;
2970 
2971 err_out_pool:
2972 	unregister_netdev(netdev);
2973 err_out_free:
2974 	e100_free(nic);
2975 err_out_iounmap:
2976 	pci_iounmap(pdev, nic->csr);
2977 err_out_free_res:
2978 	pci_release_regions(pdev);
2979 err_out_disable_pdev:
2980 	pci_disable_device(pdev);
2981 err_out_free_dev:
2982 	free_netdev(netdev);
2983 	return err;
2984 }
2985 
2986 static void e100_remove(struct pci_dev *pdev)
2987 {
2988 	struct net_device *netdev = pci_get_drvdata(pdev);
2989 
2990 	if (netdev) {
2991 		struct nic *nic = netdev_priv(netdev);
2992 		unregister_netdev(netdev);
2993 		e100_free(nic);
2994 		pci_iounmap(pdev, nic->csr);
2995 		dma_pool_destroy(nic->cbs_pool);
2996 		free_netdev(netdev);
2997 		pci_release_regions(pdev);
2998 		pci_disable_device(pdev);
2999 	}
3000 }
3001 
3002 #define E100_82552_SMARTSPEED   0x14   /* SmartSpeed Ctrl register */
3003 #define E100_82552_REV_ANEG     0x0200 /* Reverse auto-negotiation */
3004 #define E100_82552_ANEG_NOW     0x0400 /* Auto-negotiate now */
3005 static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake)
3006 {
3007 	struct net_device *netdev = pci_get_drvdata(pdev);
3008 	struct nic *nic = netdev_priv(netdev);
3009 
3010 	netif_device_detach(netdev);
3011 
3012 	if (netif_running(netdev))
3013 		e100_down(nic);
3014 
3015 	if ((nic->flags & wol_magic) | e100_asf(nic)) {
3016 		/* enable reverse auto-negotiation */
3017 		if (nic->phy == phy_82552_v) {
3018 			u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3019 			                           E100_82552_SMARTSPEED);
3020 
3021 			mdio_write(netdev, nic->mii.phy_id,
3022 			           E100_82552_SMARTSPEED, smartspeed |
3023 			           E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
3024 		}
3025 		*enable_wake = true;
3026 	} else {
3027 		*enable_wake = false;
3028 	}
3029 
3030 	pci_disable_device(pdev);
3031 }
3032 
3033 static int __e100_power_off(struct pci_dev *pdev, bool wake)
3034 {
3035 	if (wake)
3036 		return pci_prepare_to_sleep(pdev);
3037 
3038 	pci_wake_from_d3(pdev, false);
3039 	pci_set_power_state(pdev, PCI_D3hot);
3040 
3041 	return 0;
3042 }
3043 
3044 static int __maybe_unused e100_suspend(struct device *dev_d)
3045 {
3046 	bool wake;
3047 
3048 	__e100_shutdown(to_pci_dev(dev_d), &wake);
3049 
3050 	return 0;
3051 }
3052 
3053 static int __maybe_unused e100_resume(struct device *dev_d)
3054 {
3055 	struct net_device *netdev = dev_get_drvdata(dev_d);
3056 	struct nic *nic = netdev_priv(netdev);
3057 	int err;
3058 
3059 	err = pci_enable_device(to_pci_dev(dev_d));
3060 	if (err) {
3061 		netdev_err(netdev, "Resume cannot enable PCI device, aborting\n");
3062 		return err;
3063 	}
3064 	pci_set_master(to_pci_dev(dev_d));
3065 
3066 	/* disable reverse auto-negotiation */
3067 	if (nic->phy == phy_82552_v) {
3068 		u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3069 		                           E100_82552_SMARTSPEED);
3070 
3071 		mdio_write(netdev, nic->mii.phy_id,
3072 		           E100_82552_SMARTSPEED,
3073 		           smartspeed & ~(E100_82552_REV_ANEG));
3074 	}
3075 
3076 	if (netif_running(netdev))
3077 		e100_up(nic);
3078 
3079 	netif_device_attach(netdev);
3080 
3081 	return 0;
3082 }
3083 
3084 static void e100_shutdown(struct pci_dev *pdev)
3085 {
3086 	bool wake;
3087 	__e100_shutdown(pdev, &wake);
3088 	if (system_state == SYSTEM_POWER_OFF)
3089 		__e100_power_off(pdev, wake);
3090 }
3091 
3092 /* ------------------ PCI Error Recovery infrastructure  -------------- */
3093 /**
3094  * e100_io_error_detected - called when PCI error is detected.
3095  * @pdev: Pointer to PCI device
3096  * @state: The current pci connection state
3097  */
3098 static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
3099 {
3100 	struct net_device *netdev = pci_get_drvdata(pdev);
3101 	struct nic *nic = netdev_priv(netdev);
3102 
3103 	netif_device_detach(netdev);
3104 
3105 	if (state == pci_channel_io_perm_failure)
3106 		return PCI_ERS_RESULT_DISCONNECT;
3107 
3108 	if (netif_running(netdev))
3109 		e100_down(nic);
3110 	pci_disable_device(pdev);
3111 
3112 	/* Request a slot reset. */
3113 	return PCI_ERS_RESULT_NEED_RESET;
3114 }
3115 
3116 /**
3117  * e100_io_slot_reset - called after the pci bus has been reset.
3118  * @pdev: Pointer to PCI device
3119  *
3120  * Restart the card from scratch.
3121  */
3122 static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
3123 {
3124 	struct net_device *netdev = pci_get_drvdata(pdev);
3125 	struct nic *nic = netdev_priv(netdev);
3126 
3127 	if (pci_enable_device(pdev)) {
3128 		pr_err("Cannot re-enable PCI device after reset\n");
3129 		return PCI_ERS_RESULT_DISCONNECT;
3130 	}
3131 	pci_set_master(pdev);
3132 
3133 	/* Only one device per card can do a reset */
3134 	if (0 != PCI_FUNC(pdev->devfn))
3135 		return PCI_ERS_RESULT_RECOVERED;
3136 	e100_hw_reset(nic);
3137 	e100_phy_init(nic);
3138 
3139 	return PCI_ERS_RESULT_RECOVERED;
3140 }
3141 
3142 /**
3143  * e100_io_resume - resume normal operations
3144  * @pdev: Pointer to PCI device
3145  *
3146  * Resume normal operations after an error recovery
3147  * sequence has been completed.
3148  */
3149 static void e100_io_resume(struct pci_dev *pdev)
3150 {
3151 	struct net_device *netdev = pci_get_drvdata(pdev);
3152 	struct nic *nic = netdev_priv(netdev);
3153 
3154 	/* ack any pending wake events, disable PME */
3155 	pci_enable_wake(pdev, PCI_D0, 0);
3156 
3157 	netif_device_attach(netdev);
3158 	if (netif_running(netdev)) {
3159 		e100_open(netdev);
3160 		mod_timer(&nic->watchdog, jiffies);
3161 	}
3162 }
3163 
3164 static const struct pci_error_handlers e100_err_handler = {
3165 	.error_detected = e100_io_error_detected,
3166 	.slot_reset = e100_io_slot_reset,
3167 	.resume = e100_io_resume,
3168 };
3169 
3170 static SIMPLE_DEV_PM_OPS(e100_pm_ops, e100_suspend, e100_resume);
3171 
3172 static struct pci_driver e100_driver = {
3173 	.name =         DRV_NAME,
3174 	.id_table =     e100_id_table,
3175 	.probe =        e100_probe,
3176 	.remove =       e100_remove,
3177 
3178 	/* Power Management hooks */
3179 	.driver.pm =	&e100_pm_ops,
3180 
3181 	.shutdown =     e100_shutdown,
3182 	.err_handler = &e100_err_handler,
3183 };
3184 
3185 static int __init e100_init_module(void)
3186 {
3187 	if (((1 << debug) - 1) & NETIF_MSG_DRV) {
3188 		pr_info("%s\n", DRV_DESCRIPTION);
3189 		pr_info("%s\n", DRV_COPYRIGHT);
3190 	}
3191 	return pci_register_driver(&e100_driver);
3192 }
3193 
3194 static void __exit e100_cleanup_module(void)
3195 {
3196 	pci_unregister_driver(&e100_driver);
3197 }
3198 
3199 module_init(e100_init_module);
3200 module_exit(e100_cleanup_module);
3201