xref: /linux/drivers/net/ethernet/intel/e100.c (revision 00a6d7b6762c27d441e9ac8faff36384bc0fc180)
1 /*******************************************************************************
2 
3   Intel PRO/100 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 /*
30  *	e100.c: Intel(R) PRO/100 ethernet driver
31  *
32  *	(Re)written 2003 by scott.feldman@intel.com.  Based loosely on
33  *	original e100 driver, but better described as a munging of
34  *	e100, e1000, eepro100, tg3, 8139cp, and other drivers.
35  *
36  *	References:
37  *		Intel 8255x 10/100 Mbps Ethernet Controller Family,
38  *		Open Source Software Developers Manual,
39  *		http://sourceforge.net/projects/e1000
40  *
41  *
42  *	                      Theory of Operation
43  *
44  *	I.   General
45  *
46  *	The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
47  *	controller family, which includes the 82557, 82558, 82559, 82550,
48  *	82551, and 82562 devices.  82558 and greater controllers
49  *	integrate the Intel 82555 PHY.  The controllers are used in
50  *	server and client network interface cards, as well as in
51  *	LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
52  *	configurations.  8255x supports a 32-bit linear addressing
53  *	mode and operates at 33Mhz PCI clock rate.
54  *
55  *	II.  Driver Operation
56  *
57  *	Memory-mapped mode is used exclusively to access the device's
58  *	shared-memory structure, the Control/Status Registers (CSR). All
59  *	setup, configuration, and control of the device, including queuing
60  *	of Tx, Rx, and configuration commands is through the CSR.
61  *	cmd_lock serializes accesses to the CSR command register.  cb_lock
62  *	protects the shared Command Block List (CBL).
63  *
64  *	8255x is highly MII-compliant and all access to the PHY go
65  *	through the Management Data Interface (MDI).  Consequently, the
66  *	driver leverages the mii.c library shared with other MII-compliant
67  *	devices.
68  *
69  *	Big- and Little-Endian byte order as well as 32- and 64-bit
70  *	archs are supported.  Weak-ordered memory and non-cache-coherent
71  *	archs are supported.
72  *
73  *	III. Transmit
74  *
75  *	A Tx skb is mapped and hangs off of a TCB.  TCBs are linked
76  *	together in a fixed-size ring (CBL) thus forming the flexible mode
77  *	memory structure.  A TCB marked with the suspend-bit indicates
78  *	the end of the ring.  The last TCB processed suspends the
79  *	controller, and the controller can be restarted by issue a CU
80  *	resume command to continue from the suspend point, or a CU start
81  *	command to start at a given position in the ring.
82  *
83  *	Non-Tx commands (config, multicast setup, etc) are linked
84  *	into the CBL ring along with Tx commands.  The common structure
85  *	used for both Tx and non-Tx commands is the Command Block (CB).
86  *
87  *	cb_to_use is the next CB to use for queuing a command; cb_to_clean
88  *	is the next CB to check for completion; cb_to_send is the first
89  *	CB to start on in case of a previous failure to resume.  CB clean
90  *	up happens in interrupt context in response to a CU interrupt.
91  *	cbs_avail keeps track of number of free CB resources available.
92  *
93  * 	Hardware padding of short packets to minimum packet size is
94  * 	enabled.  82557 pads with 7Eh, while the later controllers pad
95  * 	with 00h.
96  *
97  *	IV.  Receive
98  *
99  *	The Receive Frame Area (RFA) comprises a ring of Receive Frame
100  *	Descriptors (RFD) + data buffer, thus forming the simplified mode
101  *	memory structure.  Rx skbs are allocated to contain both the RFD
102  *	and the data buffer, but the RFD is pulled off before the skb is
103  *	indicated.  The data buffer is aligned such that encapsulated
104  *	protocol headers are u32-aligned.  Since the RFD is part of the
105  *	mapped shared memory, and completion status is contained within
106  *	the RFD, the RFD must be dma_sync'ed to maintain a consistent
107  *	view from software and hardware.
108  *
109  *	In order to keep updates to the RFD link field from colliding with
110  *	hardware writes to mark packets complete, we use the feature that
111  *	hardware will not write to a size 0 descriptor and mark the previous
112  *	packet as end-of-list (EL).   After updating the link, we remove EL
113  *	and only then restore the size such that hardware may use the
114  *	previous-to-end RFD.
115  *
116  *	Under typical operation, the  receive unit (RU) is start once,
117  *	and the controller happily fills RFDs as frames arrive.  If
118  *	replacement RFDs cannot be allocated, or the RU goes non-active,
119  *	the RU must be restarted.  Frame arrival generates an interrupt,
120  *	and Rx indication and re-allocation happen in the same context,
121  *	therefore no locking is required.  A software-generated interrupt
122  *	is generated from the watchdog to recover from a failed allocation
123  *	scenario where all Rx resources have been indicated and none re-
124  *	placed.
125  *
126  *	V.   Miscellaneous
127  *
128  * 	VLAN offloading of tagging, stripping and filtering is not
129  * 	supported, but driver will accommodate the extra 4-byte VLAN tag
130  * 	for processing by upper layers.  Tx/Rx Checksum offloading is not
131  * 	supported.  Tx Scatter/Gather is not supported.  Jumbo Frames is
132  * 	not supported (hardware limitation).
133  *
134  * 	MagicPacket(tm) WoL support is enabled/disabled via ethtool.
135  *
136  * 	Thanks to JC (jchapman@katalix.com) for helping with
137  * 	testing/troubleshooting the development driver.
138  *
139  * 	TODO:
140  * 	o several entry points race with dev->close
141  * 	o check for tx-no-resources/stop Q races with tx clean/wake Q
142  *
143  *	FIXES:
144  * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
145  *	- Stratus87247: protect MDI control register manipulations
146  * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
147  *      - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
148  */
149 
150 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
151 
152 #include <linux/hardirq.h>
153 #include <linux/interrupt.h>
154 #include <linux/module.h>
155 #include <linux/moduleparam.h>
156 #include <linux/kernel.h>
157 #include <linux/types.h>
158 #include <linux/sched.h>
159 #include <linux/slab.h>
160 #include <linux/delay.h>
161 #include <linux/init.h>
162 #include <linux/pci.h>
163 #include <linux/dma-mapping.h>
164 #include <linux/dmapool.h>
165 #include <linux/netdevice.h>
166 #include <linux/etherdevice.h>
167 #include <linux/mii.h>
168 #include <linux/if_vlan.h>
169 #include <linux/skbuff.h>
170 #include <linux/ethtool.h>
171 #include <linux/string.h>
172 #include <linux/firmware.h>
173 #include <linux/rtnetlink.h>
174 #include <asm/unaligned.h>
175 
176 
177 #define DRV_NAME		"e100"
178 #define DRV_EXT			"-NAPI"
179 #define DRV_VERSION		"3.5.24-k2"DRV_EXT
180 #define DRV_DESCRIPTION		"Intel(R) PRO/100 Network Driver"
181 #define DRV_COPYRIGHT		"Copyright(c) 1999-2006 Intel Corporation"
182 
183 #define E100_WATCHDOG_PERIOD	(2 * HZ)
184 #define E100_NAPI_WEIGHT	16
185 
186 #define FIRMWARE_D101M		"e100/d101m_ucode.bin"
187 #define FIRMWARE_D101S		"e100/d101s_ucode.bin"
188 #define FIRMWARE_D102E		"e100/d102e_ucode.bin"
189 
190 MODULE_DESCRIPTION(DRV_DESCRIPTION);
191 MODULE_AUTHOR(DRV_COPYRIGHT);
192 MODULE_LICENSE("GPL");
193 MODULE_VERSION(DRV_VERSION);
194 MODULE_FIRMWARE(FIRMWARE_D101M);
195 MODULE_FIRMWARE(FIRMWARE_D101S);
196 MODULE_FIRMWARE(FIRMWARE_D102E);
197 
198 static int debug = 3;
199 static int eeprom_bad_csum_allow = 0;
200 static int use_io = 0;
201 module_param(debug, int, 0);
202 module_param(eeprom_bad_csum_allow, int, 0);
203 module_param(use_io, int, 0);
204 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
205 MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
206 MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
207 
208 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
209 	PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
210 	PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
211 static DEFINE_PCI_DEVICE_TABLE(e100_id_table) = {
212 	INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
213 	INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
214 	INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
215 	INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
216 	INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
217 	INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
218 	INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
219 	INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
220 	INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
221 	INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
222 	INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
223 	INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
224 	INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
225 	INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
226 	INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
227 	INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
228 	INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
229 	INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
230 	INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
231 	INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
232 	INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
233 	INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
234 	INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
235 	INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
236 	INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
237 	INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
238 	INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
239 	INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
240 	INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
241 	INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
242 	INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
243 	INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
244 	INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
245 	INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
246 	INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
247 	INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
248 	INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
249 	INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
250 	INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
251 	INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
252 	INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
253 	INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
254 	{ 0, }
255 };
256 MODULE_DEVICE_TABLE(pci, e100_id_table);
257 
258 enum mac {
259 	mac_82557_D100_A  = 0,
260 	mac_82557_D100_B  = 1,
261 	mac_82557_D100_C  = 2,
262 	mac_82558_D101_A4 = 4,
263 	mac_82558_D101_B0 = 5,
264 	mac_82559_D101M   = 8,
265 	mac_82559_D101S   = 9,
266 	mac_82550_D102    = 12,
267 	mac_82550_D102_C  = 13,
268 	mac_82551_E       = 14,
269 	mac_82551_F       = 15,
270 	mac_82551_10      = 16,
271 	mac_unknown       = 0xFF,
272 };
273 
274 enum phy {
275 	phy_100a     = 0x000003E0,
276 	phy_100c     = 0x035002A8,
277 	phy_82555_tx = 0x015002A8,
278 	phy_nsc_tx   = 0x5C002000,
279 	phy_82562_et = 0x033002A8,
280 	phy_82562_em = 0x032002A8,
281 	phy_82562_ek = 0x031002A8,
282 	phy_82562_eh = 0x017002A8,
283 	phy_82552_v  = 0xd061004d,
284 	phy_unknown  = 0xFFFFFFFF,
285 };
286 
287 /* CSR (Control/Status Registers) */
288 struct csr {
289 	struct {
290 		u8 status;
291 		u8 stat_ack;
292 		u8 cmd_lo;
293 		u8 cmd_hi;
294 		u32 gen_ptr;
295 	} scb;
296 	u32 port;
297 	u16 flash_ctrl;
298 	u8 eeprom_ctrl_lo;
299 	u8 eeprom_ctrl_hi;
300 	u32 mdi_ctrl;
301 	u32 rx_dma_count;
302 };
303 
304 enum scb_status {
305 	rus_no_res       = 0x08,
306 	rus_ready        = 0x10,
307 	rus_mask         = 0x3C,
308 };
309 
310 enum ru_state  {
311 	RU_SUSPENDED = 0,
312 	RU_RUNNING	 = 1,
313 	RU_UNINITIALIZED = -1,
314 };
315 
316 enum scb_stat_ack {
317 	stat_ack_not_ours    = 0x00,
318 	stat_ack_sw_gen      = 0x04,
319 	stat_ack_rnr         = 0x10,
320 	stat_ack_cu_idle     = 0x20,
321 	stat_ack_frame_rx    = 0x40,
322 	stat_ack_cu_cmd_done = 0x80,
323 	stat_ack_not_present = 0xFF,
324 	stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
325 	stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
326 };
327 
328 enum scb_cmd_hi {
329 	irq_mask_none = 0x00,
330 	irq_mask_all  = 0x01,
331 	irq_sw_gen    = 0x02,
332 };
333 
334 enum scb_cmd_lo {
335 	cuc_nop        = 0x00,
336 	ruc_start      = 0x01,
337 	ruc_load_base  = 0x06,
338 	cuc_start      = 0x10,
339 	cuc_resume     = 0x20,
340 	cuc_dump_addr  = 0x40,
341 	cuc_dump_stats = 0x50,
342 	cuc_load_base  = 0x60,
343 	cuc_dump_reset = 0x70,
344 };
345 
346 enum cuc_dump {
347 	cuc_dump_complete       = 0x0000A005,
348 	cuc_dump_reset_complete = 0x0000A007,
349 };
350 
351 enum port {
352 	software_reset  = 0x0000,
353 	selftest        = 0x0001,
354 	selective_reset = 0x0002,
355 };
356 
357 enum eeprom_ctrl_lo {
358 	eesk = 0x01,
359 	eecs = 0x02,
360 	eedi = 0x04,
361 	eedo = 0x08,
362 };
363 
364 enum mdi_ctrl {
365 	mdi_write = 0x04000000,
366 	mdi_read  = 0x08000000,
367 	mdi_ready = 0x10000000,
368 };
369 
370 enum eeprom_op {
371 	op_write = 0x05,
372 	op_read  = 0x06,
373 	op_ewds  = 0x10,
374 	op_ewen  = 0x13,
375 };
376 
377 enum eeprom_offsets {
378 	eeprom_cnfg_mdix  = 0x03,
379 	eeprom_phy_iface  = 0x06,
380 	eeprom_id         = 0x0A,
381 	eeprom_config_asf = 0x0D,
382 	eeprom_smbus_addr = 0x90,
383 };
384 
385 enum eeprom_cnfg_mdix {
386 	eeprom_mdix_enabled = 0x0080,
387 };
388 
389 enum eeprom_phy_iface {
390 	NoSuchPhy = 0,
391 	I82553AB,
392 	I82553C,
393 	I82503,
394 	DP83840,
395 	S80C240,
396 	S80C24,
397 	I82555,
398 	DP83840A = 10,
399 };
400 
401 enum eeprom_id {
402 	eeprom_id_wol = 0x0020,
403 };
404 
405 enum eeprom_config_asf {
406 	eeprom_asf = 0x8000,
407 	eeprom_gcl = 0x4000,
408 };
409 
410 enum cb_status {
411 	cb_complete = 0x8000,
412 	cb_ok       = 0x2000,
413 };
414 
415 /**
416  * cb_command - Command Block flags
417  * @cb_tx_nc:  0: controler does CRC (normal),  1: CRC from skb memory
418  */
419 enum cb_command {
420 	cb_nop    = 0x0000,
421 	cb_iaaddr = 0x0001,
422 	cb_config = 0x0002,
423 	cb_multi  = 0x0003,
424 	cb_tx     = 0x0004,
425 	cb_ucode  = 0x0005,
426 	cb_dump   = 0x0006,
427 	cb_tx_sf  = 0x0008,
428 	cb_tx_nc  = 0x0010,
429 	cb_cid    = 0x1f00,
430 	cb_i      = 0x2000,
431 	cb_s      = 0x4000,
432 	cb_el     = 0x8000,
433 };
434 
435 struct rfd {
436 	__le16 status;
437 	__le16 command;
438 	__le32 link;
439 	__le32 rbd;
440 	__le16 actual_size;
441 	__le16 size;
442 };
443 
444 struct rx {
445 	struct rx *next, *prev;
446 	struct sk_buff *skb;
447 	dma_addr_t dma_addr;
448 };
449 
450 #if defined(__BIG_ENDIAN_BITFIELD)
451 #define X(a,b)	b,a
452 #else
453 #define X(a,b)	a,b
454 #endif
455 struct config {
456 /*0*/	u8 X(byte_count:6, pad0:2);
457 /*1*/	u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
458 /*2*/	u8 adaptive_ifs;
459 /*3*/	u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
460 	   term_write_cache_line:1), pad3:4);
461 /*4*/	u8 X(rx_dma_max_count:7, pad4:1);
462 /*5*/	u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
463 /*6*/	u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
464 	   tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
465 	   rx_save_overruns : 1), rx_save_bad_frames : 1);
466 /*7*/	u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
467 	   pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
468 	   tx_dynamic_tbd:1);
469 /*8*/	u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
470 /*9*/	u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
471 	   link_status_wake:1), arp_wake:1), mcmatch_wake:1);
472 /*10*/	u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
473 	   loopback:2);
474 /*11*/	u8 X(linear_priority:3, pad11:5);
475 /*12*/	u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
476 /*13*/	u8 ip_addr_lo;
477 /*14*/	u8 ip_addr_hi;
478 /*15*/	u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
479 	   wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
480 	   pad15_2:1), crs_or_cdt:1);
481 /*16*/	u8 fc_delay_lo;
482 /*17*/	u8 fc_delay_hi;
483 /*18*/	u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
484 	   rx_long_ok:1), fc_priority_threshold:3), pad18:1);
485 /*19*/	u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
486 	   fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
487 	   full_duplex_force:1), full_duplex_pin:1);
488 /*20*/	u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
489 /*21*/	u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
490 /*22*/	u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
491 	u8 pad_d102[9];
492 };
493 
494 #define E100_MAX_MULTICAST_ADDRS	64
495 struct multi {
496 	__le16 count;
497 	u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
498 };
499 
500 /* Important: keep total struct u32-aligned */
501 #define UCODE_SIZE			134
502 struct cb {
503 	__le16 status;
504 	__le16 command;
505 	__le32 link;
506 	union {
507 		u8 iaaddr[ETH_ALEN];
508 		__le32 ucode[UCODE_SIZE];
509 		struct config config;
510 		struct multi multi;
511 		struct {
512 			u32 tbd_array;
513 			u16 tcb_byte_count;
514 			u8 threshold;
515 			u8 tbd_count;
516 			struct {
517 				__le32 buf_addr;
518 				__le16 size;
519 				u16 eol;
520 			} tbd;
521 		} tcb;
522 		__le32 dump_buffer_addr;
523 	} u;
524 	struct cb *next, *prev;
525 	dma_addr_t dma_addr;
526 	struct sk_buff *skb;
527 };
528 
529 enum loopback {
530 	lb_none = 0, lb_mac = 1, lb_phy = 3,
531 };
532 
533 struct stats {
534 	__le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
535 		tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
536 		tx_multiple_collisions, tx_total_collisions;
537 	__le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
538 		rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
539 		rx_short_frame_errors;
540 	__le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
541 	__le16 xmt_tco_frames, rcv_tco_frames;
542 	__le32 complete;
543 };
544 
545 struct mem {
546 	struct {
547 		u32 signature;
548 		u32 result;
549 	} selftest;
550 	struct stats stats;
551 	u8 dump_buf[596];
552 };
553 
554 struct param_range {
555 	u32 min;
556 	u32 max;
557 	u32 count;
558 };
559 
560 struct params {
561 	struct param_range rfds;
562 	struct param_range cbs;
563 };
564 
565 struct nic {
566 	/* Begin: frequently used values: keep adjacent for cache effect */
567 	u32 msg_enable				____cacheline_aligned;
568 	struct net_device *netdev;
569 	struct pci_dev *pdev;
570 	u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data);
571 
572 	struct rx *rxs				____cacheline_aligned;
573 	struct rx *rx_to_use;
574 	struct rx *rx_to_clean;
575 	struct rfd blank_rfd;
576 	enum ru_state ru_running;
577 
578 	spinlock_t cb_lock			____cacheline_aligned;
579 	spinlock_t cmd_lock;
580 	struct csr __iomem *csr;
581 	enum scb_cmd_lo cuc_cmd;
582 	unsigned int cbs_avail;
583 	struct napi_struct napi;
584 	struct cb *cbs;
585 	struct cb *cb_to_use;
586 	struct cb *cb_to_send;
587 	struct cb *cb_to_clean;
588 	__le16 tx_command;
589 	/* End: frequently used values: keep adjacent for cache effect */
590 
591 	enum {
592 		ich                = (1 << 0),
593 		promiscuous        = (1 << 1),
594 		multicast_all      = (1 << 2),
595 		wol_magic          = (1 << 3),
596 		ich_10h_workaround = (1 << 4),
597 	} flags					____cacheline_aligned;
598 
599 	enum mac mac;
600 	enum phy phy;
601 	struct params params;
602 	struct timer_list watchdog;
603 	struct mii_if_info mii;
604 	struct work_struct tx_timeout_task;
605 	enum loopback loopback;
606 
607 	struct mem *mem;
608 	dma_addr_t dma_addr;
609 
610 	struct pci_pool *cbs_pool;
611 	dma_addr_t cbs_dma_addr;
612 	u8 adaptive_ifs;
613 	u8 tx_threshold;
614 	u32 tx_frames;
615 	u32 tx_collisions;
616 	u32 tx_deferred;
617 	u32 tx_single_collisions;
618 	u32 tx_multiple_collisions;
619 	u32 tx_fc_pause;
620 	u32 tx_tco_frames;
621 
622 	u32 rx_fc_pause;
623 	u32 rx_fc_unsupported;
624 	u32 rx_tco_frames;
625 	u32 rx_short_frame_errors;
626 	u32 rx_over_length_errors;
627 
628 	u16 eeprom_wc;
629 	__le16 eeprom[256];
630 	spinlock_t mdio_lock;
631 	const struct firmware *fw;
632 };
633 
634 static inline void e100_write_flush(struct nic *nic)
635 {
636 	/* Flush previous PCI writes through intermediate bridges
637 	 * by doing a benign read */
638 	(void)ioread8(&nic->csr->scb.status);
639 }
640 
641 static void e100_enable_irq(struct nic *nic)
642 {
643 	unsigned long flags;
644 
645 	spin_lock_irqsave(&nic->cmd_lock, flags);
646 	iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
647 	e100_write_flush(nic);
648 	spin_unlock_irqrestore(&nic->cmd_lock, flags);
649 }
650 
651 static void e100_disable_irq(struct nic *nic)
652 {
653 	unsigned long flags;
654 
655 	spin_lock_irqsave(&nic->cmd_lock, flags);
656 	iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
657 	e100_write_flush(nic);
658 	spin_unlock_irqrestore(&nic->cmd_lock, flags);
659 }
660 
661 static void e100_hw_reset(struct nic *nic)
662 {
663 	/* Put CU and RU into idle with a selective reset to get
664 	 * device off of PCI bus */
665 	iowrite32(selective_reset, &nic->csr->port);
666 	e100_write_flush(nic); udelay(20);
667 
668 	/* Now fully reset device */
669 	iowrite32(software_reset, &nic->csr->port);
670 	e100_write_flush(nic); udelay(20);
671 
672 	/* Mask off our interrupt line - it's unmasked after reset */
673 	e100_disable_irq(nic);
674 }
675 
676 static int e100_self_test(struct nic *nic)
677 {
678 	u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
679 
680 	/* Passing the self-test is a pretty good indication
681 	 * that the device can DMA to/from host memory */
682 
683 	nic->mem->selftest.signature = 0;
684 	nic->mem->selftest.result = 0xFFFFFFFF;
685 
686 	iowrite32(selftest | dma_addr, &nic->csr->port);
687 	e100_write_flush(nic);
688 	/* Wait 10 msec for self-test to complete */
689 	msleep(10);
690 
691 	/* Interrupts are enabled after self-test */
692 	e100_disable_irq(nic);
693 
694 	/* Check results of self-test */
695 	if (nic->mem->selftest.result != 0) {
696 		netif_err(nic, hw, nic->netdev,
697 			  "Self-test failed: result=0x%08X\n",
698 			  nic->mem->selftest.result);
699 		return -ETIMEDOUT;
700 	}
701 	if (nic->mem->selftest.signature == 0) {
702 		netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n");
703 		return -ETIMEDOUT;
704 	}
705 
706 	return 0;
707 }
708 
709 static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
710 {
711 	u32 cmd_addr_data[3];
712 	u8 ctrl;
713 	int i, j;
714 
715 	/* Three cmds: write/erase enable, write data, write/erase disable */
716 	cmd_addr_data[0] = op_ewen << (addr_len - 2);
717 	cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
718 		le16_to_cpu(data);
719 	cmd_addr_data[2] = op_ewds << (addr_len - 2);
720 
721 	/* Bit-bang cmds to write word to eeprom */
722 	for (j = 0; j < 3; j++) {
723 
724 		/* Chip select */
725 		iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
726 		e100_write_flush(nic); udelay(4);
727 
728 		for (i = 31; i >= 0; i--) {
729 			ctrl = (cmd_addr_data[j] & (1 << i)) ?
730 				eecs | eedi : eecs;
731 			iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
732 			e100_write_flush(nic); udelay(4);
733 
734 			iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
735 			e100_write_flush(nic); udelay(4);
736 		}
737 		/* Wait 10 msec for cmd to complete */
738 		msleep(10);
739 
740 		/* Chip deselect */
741 		iowrite8(0, &nic->csr->eeprom_ctrl_lo);
742 		e100_write_flush(nic); udelay(4);
743 	}
744 };
745 
746 /* General technique stolen from the eepro100 driver - very clever */
747 static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
748 {
749 	u32 cmd_addr_data;
750 	u16 data = 0;
751 	u8 ctrl;
752 	int i;
753 
754 	cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
755 
756 	/* Chip select */
757 	iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
758 	e100_write_flush(nic); udelay(4);
759 
760 	/* Bit-bang to read word from eeprom */
761 	for (i = 31; i >= 0; i--) {
762 		ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
763 		iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
764 		e100_write_flush(nic); udelay(4);
765 
766 		iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
767 		e100_write_flush(nic); udelay(4);
768 
769 		/* Eeprom drives a dummy zero to EEDO after receiving
770 		 * complete address.  Use this to adjust addr_len. */
771 		ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
772 		if (!(ctrl & eedo) && i > 16) {
773 			*addr_len -= (i - 16);
774 			i = 17;
775 		}
776 
777 		data = (data << 1) | (ctrl & eedo ? 1 : 0);
778 	}
779 
780 	/* Chip deselect */
781 	iowrite8(0, &nic->csr->eeprom_ctrl_lo);
782 	e100_write_flush(nic); udelay(4);
783 
784 	return cpu_to_le16(data);
785 };
786 
787 /* Load entire EEPROM image into driver cache and validate checksum */
788 static int e100_eeprom_load(struct nic *nic)
789 {
790 	u16 addr, addr_len = 8, checksum = 0;
791 
792 	/* Try reading with an 8-bit addr len to discover actual addr len */
793 	e100_eeprom_read(nic, &addr_len, 0);
794 	nic->eeprom_wc = 1 << addr_len;
795 
796 	for (addr = 0; addr < nic->eeprom_wc; addr++) {
797 		nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
798 		if (addr < nic->eeprom_wc - 1)
799 			checksum += le16_to_cpu(nic->eeprom[addr]);
800 	}
801 
802 	/* The checksum, stored in the last word, is calculated such that
803 	 * the sum of words should be 0xBABA */
804 	if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
805 		netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n");
806 		if (!eeprom_bad_csum_allow)
807 			return -EAGAIN;
808 	}
809 
810 	return 0;
811 }
812 
813 /* Save (portion of) driver EEPROM cache to device and update checksum */
814 static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
815 {
816 	u16 addr, addr_len = 8, checksum = 0;
817 
818 	/* Try reading with an 8-bit addr len to discover actual addr len */
819 	e100_eeprom_read(nic, &addr_len, 0);
820 	nic->eeprom_wc = 1 << addr_len;
821 
822 	if (start + count >= nic->eeprom_wc)
823 		return -EINVAL;
824 
825 	for (addr = start; addr < start + count; addr++)
826 		e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
827 
828 	/* The checksum, stored in the last word, is calculated such that
829 	 * the sum of words should be 0xBABA */
830 	for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
831 		checksum += le16_to_cpu(nic->eeprom[addr]);
832 	nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
833 	e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
834 		nic->eeprom[nic->eeprom_wc - 1]);
835 
836 	return 0;
837 }
838 
839 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
840 #define E100_WAIT_SCB_FAST 20       /* delay like the old code */
841 static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
842 {
843 	unsigned long flags;
844 	unsigned int i;
845 	int err = 0;
846 
847 	spin_lock_irqsave(&nic->cmd_lock, flags);
848 
849 	/* Previous command is accepted when SCB clears */
850 	for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
851 		if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
852 			break;
853 		cpu_relax();
854 		if (unlikely(i > E100_WAIT_SCB_FAST))
855 			udelay(5);
856 	}
857 	if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
858 		err = -EAGAIN;
859 		goto err_unlock;
860 	}
861 
862 	if (unlikely(cmd != cuc_resume))
863 		iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
864 	iowrite8(cmd, &nic->csr->scb.cmd_lo);
865 
866 err_unlock:
867 	spin_unlock_irqrestore(&nic->cmd_lock, flags);
868 
869 	return err;
870 }
871 
872 static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
873 	int (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
874 {
875 	struct cb *cb;
876 	unsigned long flags;
877 	int err = 0;
878 
879 	spin_lock_irqsave(&nic->cb_lock, flags);
880 
881 	if (unlikely(!nic->cbs_avail)) {
882 		err = -ENOMEM;
883 		goto err_unlock;
884 	}
885 
886 	cb = nic->cb_to_use;
887 	nic->cb_to_use = cb->next;
888 	nic->cbs_avail--;
889 	cb->skb = skb;
890 
891 	err = cb_prepare(nic, cb, skb);
892 	if (err)
893 		goto err_unlock;
894 
895 	if (unlikely(!nic->cbs_avail))
896 		err = -ENOSPC;
897 
898 
899 	/* Order is important otherwise we'll be in a race with h/w:
900 	 * set S-bit in current first, then clear S-bit in previous. */
901 	cb->command |= cpu_to_le16(cb_s);
902 	wmb();
903 	cb->prev->command &= cpu_to_le16(~cb_s);
904 
905 	while (nic->cb_to_send != nic->cb_to_use) {
906 		if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
907 			nic->cb_to_send->dma_addr))) {
908 			/* Ok, here's where things get sticky.  It's
909 			 * possible that we can't schedule the command
910 			 * because the controller is too busy, so
911 			 * let's just queue the command and try again
912 			 * when another command is scheduled. */
913 			if (err == -ENOSPC) {
914 				//request a reset
915 				schedule_work(&nic->tx_timeout_task);
916 			}
917 			break;
918 		} else {
919 			nic->cuc_cmd = cuc_resume;
920 			nic->cb_to_send = nic->cb_to_send->next;
921 		}
922 	}
923 
924 err_unlock:
925 	spin_unlock_irqrestore(&nic->cb_lock, flags);
926 
927 	return err;
928 }
929 
930 static int mdio_read(struct net_device *netdev, int addr, int reg)
931 {
932 	struct nic *nic = netdev_priv(netdev);
933 	return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0);
934 }
935 
936 static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
937 {
938 	struct nic *nic = netdev_priv(netdev);
939 
940 	nic->mdio_ctrl(nic, addr, mdi_write, reg, data);
941 }
942 
943 /* the standard mdio_ctrl() function for usual MII-compliant hardware */
944 static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
945 {
946 	u32 data_out = 0;
947 	unsigned int i;
948 	unsigned long flags;
949 
950 
951 	/*
952 	 * Stratus87247: we shouldn't be writing the MDI control
953 	 * register until the Ready bit shows True.  Also, since
954 	 * manipulation of the MDI control registers is a multi-step
955 	 * procedure it should be done under lock.
956 	 */
957 	spin_lock_irqsave(&nic->mdio_lock, flags);
958 	for (i = 100; i; --i) {
959 		if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
960 			break;
961 		udelay(20);
962 	}
963 	if (unlikely(!i)) {
964 		netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n");
965 		spin_unlock_irqrestore(&nic->mdio_lock, flags);
966 		return 0;		/* No way to indicate timeout error */
967 	}
968 	iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
969 
970 	for (i = 0; i < 100; i++) {
971 		udelay(20);
972 		if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
973 			break;
974 	}
975 	spin_unlock_irqrestore(&nic->mdio_lock, flags);
976 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
977 		     "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
978 		     dir == mdi_read ? "READ" : "WRITE",
979 		     addr, reg, data, data_out);
980 	return (u16)data_out;
981 }
982 
983 /* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
984 static u16 mdio_ctrl_phy_82552_v(struct nic *nic,
985 				 u32 addr,
986 				 u32 dir,
987 				 u32 reg,
988 				 u16 data)
989 {
990 	if ((reg == MII_BMCR) && (dir == mdi_write)) {
991 		if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) {
992 			u16 advert = mdio_read(nic->netdev, nic->mii.phy_id,
993 							MII_ADVERTISE);
994 
995 			/*
996 			 * Workaround Si issue where sometimes the part will not
997 			 * autoneg to 100Mbps even when advertised.
998 			 */
999 			if (advert & ADVERTISE_100FULL)
1000 				data |= BMCR_SPEED100 | BMCR_FULLDPLX;
1001 			else if (advert & ADVERTISE_100HALF)
1002 				data |= BMCR_SPEED100;
1003 		}
1004 	}
1005 	return mdio_ctrl_hw(nic, addr, dir, reg, data);
1006 }
1007 
1008 /* Fully software-emulated mdio_ctrl() function for cards without
1009  * MII-compliant PHYs.
1010  * For now, this is mainly geared towards 80c24 support; in case of further
1011  * requirements for other types (i82503, ...?) either extend this mechanism
1012  * or split it, whichever is cleaner.
1013  */
1014 static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic,
1015 				      u32 addr,
1016 				      u32 dir,
1017 				      u32 reg,
1018 				      u16 data)
1019 {
1020 	/* might need to allocate a netdev_priv'ed register array eventually
1021 	 * to be able to record state changes, but for now
1022 	 * some fully hardcoded register handling ought to be ok I guess. */
1023 
1024 	if (dir == mdi_read) {
1025 		switch (reg) {
1026 		case MII_BMCR:
1027 			/* Auto-negotiation, right? */
1028 			return  BMCR_ANENABLE |
1029 				BMCR_FULLDPLX;
1030 		case MII_BMSR:
1031 			return	BMSR_LSTATUS /* for mii_link_ok() */ |
1032 				BMSR_ANEGCAPABLE |
1033 				BMSR_10FULL;
1034 		case MII_ADVERTISE:
1035 			/* 80c24 is a "combo card" PHY, right? */
1036 			return	ADVERTISE_10HALF |
1037 				ADVERTISE_10FULL;
1038 		default:
1039 			netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1040 				     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1041 				     dir == mdi_read ? "READ" : "WRITE",
1042 				     addr, reg, data);
1043 			return 0xFFFF;
1044 		}
1045 	} else {
1046 		switch (reg) {
1047 		default:
1048 			netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1049 				     "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1050 				     dir == mdi_read ? "READ" : "WRITE",
1051 				     addr, reg, data);
1052 			return 0xFFFF;
1053 		}
1054 	}
1055 }
1056 static inline int e100_phy_supports_mii(struct nic *nic)
1057 {
1058 	/* for now, just check it by comparing whether we
1059 	   are using MII software emulation.
1060 	*/
1061 	return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated);
1062 }
1063 
1064 static void e100_get_defaults(struct nic *nic)
1065 {
1066 	struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
1067 	struct param_range cbs  = { .min = 64, .max = 256, .count = 128 };
1068 
1069 	/* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
1070 	nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
1071 	if (nic->mac == mac_unknown)
1072 		nic->mac = mac_82557_D100_A;
1073 
1074 	nic->params.rfds = rfds;
1075 	nic->params.cbs = cbs;
1076 
1077 	/* Quadwords to DMA into FIFO before starting frame transmit */
1078 	nic->tx_threshold = 0xE0;
1079 
1080 	/* no interrupt for every tx completion, delay = 256us if not 557 */
1081 	nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
1082 		((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
1083 
1084 	/* Template for a freshly allocated RFD */
1085 	nic->blank_rfd.command = 0;
1086 	nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
1087 	nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
1088 
1089 	/* MII setup */
1090 	nic->mii.phy_id_mask = 0x1F;
1091 	nic->mii.reg_num_mask = 0x1F;
1092 	nic->mii.dev = nic->netdev;
1093 	nic->mii.mdio_read = mdio_read;
1094 	nic->mii.mdio_write = mdio_write;
1095 }
1096 
1097 static int e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1098 {
1099 	struct config *config = &cb->u.config;
1100 	u8 *c = (u8 *)config;
1101 	struct net_device *netdev = nic->netdev;
1102 
1103 	cb->command = cpu_to_le16(cb_config);
1104 
1105 	memset(config, 0, sizeof(struct config));
1106 
1107 	config->byte_count = 0x16;		/* bytes in this struct */
1108 	config->rx_fifo_limit = 0x8;		/* bytes in FIFO before DMA */
1109 	config->direct_rx_dma = 0x1;		/* reserved */
1110 	config->standard_tcb = 0x1;		/* 1=standard, 0=extended */
1111 	config->standard_stat_counter = 0x1;	/* 1=standard, 0=extended */
1112 	config->rx_discard_short_frames = 0x1;	/* 1=discard, 0=pass */
1113 	config->tx_underrun_retry = 0x3;	/* # of underrun retries */
1114 	if (e100_phy_supports_mii(nic))
1115 		config->mii_mode = 1;           /* 1=MII mode, 0=i82503 mode */
1116 	config->pad10 = 0x6;
1117 	config->no_source_addr_insertion = 0x1;	/* 1=no, 0=yes */
1118 	config->preamble_length = 0x2;		/* 0=1, 1=3, 2=7, 3=15 bytes */
1119 	config->ifs = 0x6;			/* x16 = inter frame spacing */
1120 	config->ip_addr_hi = 0xF2;		/* ARP IP filter - not used */
1121 	config->pad15_1 = 0x1;
1122 	config->pad15_2 = 0x1;
1123 	config->crs_or_cdt = 0x0;		/* 0=CRS only, 1=CRS or CDT */
1124 	config->fc_delay_hi = 0x40;		/* time delay for fc frame */
1125 	config->tx_padding = 0x1;		/* 1=pad short frames */
1126 	config->fc_priority_threshold = 0x7;	/* 7=priority fc disabled */
1127 	config->pad18 = 0x1;
1128 	config->full_duplex_pin = 0x1;		/* 1=examine FDX# pin */
1129 	config->pad20_1 = 0x1F;
1130 	config->fc_priority_location = 0x1;	/* 1=byte#31, 0=byte#19 */
1131 	config->pad21_1 = 0x5;
1132 
1133 	config->adaptive_ifs = nic->adaptive_ifs;
1134 	config->loopback = nic->loopback;
1135 
1136 	if (nic->mii.force_media && nic->mii.full_duplex)
1137 		config->full_duplex_force = 0x1;	/* 1=force, 0=auto */
1138 
1139 	if (nic->flags & promiscuous || nic->loopback) {
1140 		config->rx_save_bad_frames = 0x1;	/* 1=save, 0=discard */
1141 		config->rx_discard_short_frames = 0x0;	/* 1=discard, 0=save */
1142 		config->promiscuous_mode = 0x1;		/* 1=on, 0=off */
1143 	}
1144 
1145 	if (unlikely(netdev->features & NETIF_F_RXFCS))
1146 		config->rx_crc_transfer = 0x1;	/* 1=save, 0=discard */
1147 
1148 	if (nic->flags & multicast_all)
1149 		config->multicast_all = 0x1;		/* 1=accept, 0=no */
1150 
1151 	/* disable WoL when up */
1152 	if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
1153 		config->magic_packet_disable = 0x1;	/* 1=off, 0=on */
1154 
1155 	if (nic->mac >= mac_82558_D101_A4) {
1156 		config->fc_disable = 0x1;	/* 1=Tx fc off, 0=Tx fc on */
1157 		config->mwi_enable = 0x1;	/* 1=enable, 0=disable */
1158 		config->standard_tcb = 0x0;	/* 1=standard, 0=extended */
1159 		config->rx_long_ok = 0x1;	/* 1=VLANs ok, 0=standard */
1160 		if (nic->mac >= mac_82559_D101M) {
1161 			config->tno_intr = 0x1;		/* TCO stats enable */
1162 			/* Enable TCO in extended config */
1163 			if (nic->mac >= mac_82551_10) {
1164 				config->byte_count = 0x20; /* extended bytes */
1165 				config->rx_d102_mode = 0x1; /* GMRC for TCO */
1166 			}
1167 		} else {
1168 			config->standard_stat_counter = 0x0;
1169 		}
1170 	}
1171 
1172 	if (netdev->features & NETIF_F_RXALL) {
1173 		config->rx_save_overruns = 0x1; /* 1=save, 0=discard */
1174 		config->rx_save_bad_frames = 0x1;       /* 1=save, 0=discard */
1175 		config->rx_discard_short_frames = 0x0;  /* 1=discard, 0=save */
1176 	}
1177 
1178 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[00-07]=%8ph\n",
1179 		     c + 0);
1180 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[08-15]=%8ph\n",
1181 		     c + 8);
1182 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[16-23]=%8ph\n",
1183 		     c + 16);
1184 	return 0;
1185 }
1186 
1187 /*************************************************************************
1188 *  CPUSaver parameters
1189 *
1190 *  All CPUSaver parameters are 16-bit literals that are part of a
1191 *  "move immediate value" instruction.  By changing the value of
1192 *  the literal in the instruction before the code is loaded, the
1193 *  driver can change the algorithm.
1194 *
1195 *  INTDELAY - This loads the dead-man timer with its initial value.
1196 *    When this timer expires the interrupt is asserted, and the
1197 *    timer is reset each time a new packet is received.  (see
1198 *    BUNDLEMAX below to set the limit on number of chained packets)
1199 *    The current default is 0x600 or 1536.  Experiments show that
1200 *    the value should probably stay within the 0x200 - 0x1000.
1201 *
1202 *  BUNDLEMAX -
1203 *    This sets the maximum number of frames that will be bundled.  In
1204 *    some situations, such as the TCP windowing algorithm, it may be
1205 *    better to limit the growth of the bundle size than let it go as
1206 *    high as it can, because that could cause too much added latency.
1207 *    The default is six, because this is the number of packets in the
1208 *    default TCP window size.  A value of 1 would make CPUSaver indicate
1209 *    an interrupt for every frame received.  If you do not want to put
1210 *    a limit on the bundle size, set this value to xFFFF.
1211 *
1212 *  BUNDLESMALL -
1213 *    This contains a bit-mask describing the minimum size frame that
1214 *    will be bundled.  The default masks the lower 7 bits, which means
1215 *    that any frame less than 128 bytes in length will not be bundled,
1216 *    but will instead immediately generate an interrupt.  This does
1217 *    not affect the current bundle in any way.  Any frame that is 128
1218 *    bytes or large will be bundled normally.  This feature is meant
1219 *    to provide immediate indication of ACK frames in a TCP environment.
1220 *    Customers were seeing poor performance when a machine with CPUSaver
1221 *    enabled was sending but not receiving.  The delay introduced when
1222 *    the ACKs were received was enough to reduce total throughput, because
1223 *    the sender would sit idle until the ACK was finally seen.
1224 *
1225 *    The current default is 0xFF80, which masks out the lower 7 bits.
1226 *    This means that any frame which is x7F (127) bytes or smaller
1227 *    will cause an immediate interrupt.  Because this value must be a
1228 *    bit mask, there are only a few valid values that can be used.  To
1229 *    turn this feature off, the driver can write the value xFFFF to the
1230 *    lower word of this instruction (in the same way that the other
1231 *    parameters are used).  Likewise, a value of 0xF800 (2047) would
1232 *    cause an interrupt to be generated for every frame, because all
1233 *    standard Ethernet frames are <= 2047 bytes in length.
1234 *************************************************************************/
1235 
1236 /* if you wish to disable the ucode functionality, while maintaining the
1237  * workarounds it provides, set the following defines to:
1238  * BUNDLESMALL 0
1239  * BUNDLEMAX 1
1240  * INTDELAY 1
1241  */
1242 #define BUNDLESMALL 1
1243 #define BUNDLEMAX (u16)6
1244 #define INTDELAY (u16)1536 /* 0x600 */
1245 
1246 /* Initialize firmware */
1247 static const struct firmware *e100_request_firmware(struct nic *nic)
1248 {
1249 	const char *fw_name;
1250 	const struct firmware *fw = nic->fw;
1251 	u8 timer, bundle, min_size;
1252 	int err = 0;
1253 	bool required = false;
1254 
1255 	/* do not load u-code for ICH devices */
1256 	if (nic->flags & ich)
1257 		return NULL;
1258 
1259 	/* Search for ucode match against h/w revision
1260 	 *
1261 	 * Based on comments in the source code for the FreeBSD fxp
1262 	 * driver, the FIRMWARE_D102E ucode includes both CPUSaver and
1263 	 *
1264 	 *    "fixes for bugs in the B-step hardware (specifically, bugs
1265 	 *     with Inline Receive)."
1266 	 *
1267 	 * So we must fail if it cannot be loaded.
1268 	 *
1269 	 * The other microcode files are only required for the optional
1270 	 * CPUSaver feature.  Nice to have, but no reason to fail.
1271 	 */
1272 	if (nic->mac == mac_82559_D101M) {
1273 		fw_name = FIRMWARE_D101M;
1274 	} else if (nic->mac == mac_82559_D101S) {
1275 		fw_name = FIRMWARE_D101S;
1276 	} else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) {
1277 		fw_name = FIRMWARE_D102E;
1278 		required = true;
1279 	} else { /* No ucode on other devices */
1280 		return NULL;
1281 	}
1282 
1283 	/* If the firmware has not previously been loaded, request a pointer
1284 	 * to it. If it was previously loaded, we are reinitializing the
1285 	 * adapter, possibly in a resume from hibernate, in which case
1286 	 * request_firmware() cannot be used.
1287 	 */
1288 	if (!fw)
1289 		err = request_firmware(&fw, fw_name, &nic->pdev->dev);
1290 
1291 	if (err) {
1292 		if (required) {
1293 			netif_err(nic, probe, nic->netdev,
1294 				  "Failed to load firmware \"%s\": %d\n",
1295 				  fw_name, err);
1296 			return ERR_PTR(err);
1297 		} else {
1298 			netif_info(nic, probe, nic->netdev,
1299 				   "CPUSaver disabled. Needs \"%s\": %d\n",
1300 				   fw_name, err);
1301 			return NULL;
1302 		}
1303 	}
1304 
1305 	/* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1306 	   indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1307 	if (fw->size != UCODE_SIZE * 4 + 3) {
1308 		netif_err(nic, probe, nic->netdev,
1309 			  "Firmware \"%s\" has wrong size %zu\n",
1310 			  fw_name, fw->size);
1311 		release_firmware(fw);
1312 		return ERR_PTR(-EINVAL);
1313 	}
1314 
1315 	/* Read timer, bundle and min_size from end of firmware blob */
1316 	timer = fw->data[UCODE_SIZE * 4];
1317 	bundle = fw->data[UCODE_SIZE * 4 + 1];
1318 	min_size = fw->data[UCODE_SIZE * 4 + 2];
1319 
1320 	if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
1321 	    min_size >= UCODE_SIZE) {
1322 		netif_err(nic, probe, nic->netdev,
1323 			  "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1324 			  fw_name, timer, bundle, min_size);
1325 		release_firmware(fw);
1326 		return ERR_PTR(-EINVAL);
1327 	}
1328 
1329 	/* OK, firmware is validated and ready to use. Save a pointer
1330 	 * to it in the nic */
1331 	nic->fw = fw;
1332 	return fw;
1333 }
1334 
1335 static int e100_setup_ucode(struct nic *nic, struct cb *cb,
1336 			     struct sk_buff *skb)
1337 {
1338 	const struct firmware *fw = (void *)skb;
1339 	u8 timer, bundle, min_size;
1340 
1341 	/* It's not a real skb; we just abused the fact that e100_exec_cb
1342 	   will pass it through to here... */
1343 	cb->skb = NULL;
1344 
1345 	/* firmware is stored as little endian already */
1346 	memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
1347 
1348 	/* Read timer, bundle and min_size from end of firmware blob */
1349 	timer = fw->data[UCODE_SIZE * 4];
1350 	bundle = fw->data[UCODE_SIZE * 4 + 1];
1351 	min_size = fw->data[UCODE_SIZE * 4 + 2];
1352 
1353 	/* Insert user-tunable settings in cb->u.ucode */
1354 	cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
1355 	cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
1356 	cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
1357 	cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
1358 	cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
1359 	cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
1360 
1361 	cb->command = cpu_to_le16(cb_ucode | cb_el);
1362 	return 0;
1363 }
1364 
1365 static inline int e100_load_ucode_wait(struct nic *nic)
1366 {
1367 	const struct firmware *fw;
1368 	int err = 0, counter = 50;
1369 	struct cb *cb = nic->cb_to_clean;
1370 
1371 	fw = e100_request_firmware(nic);
1372 	/* If it's NULL, then no ucode is required */
1373 	if (!fw || IS_ERR(fw))
1374 		return PTR_ERR(fw);
1375 
1376 	if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
1377 		netif_err(nic, probe, nic->netdev,
1378 			  "ucode cmd failed with error %d\n", err);
1379 
1380 	/* must restart cuc */
1381 	nic->cuc_cmd = cuc_start;
1382 
1383 	/* wait for completion */
1384 	e100_write_flush(nic);
1385 	udelay(10);
1386 
1387 	/* wait for possibly (ouch) 500ms */
1388 	while (!(cb->status & cpu_to_le16(cb_complete))) {
1389 		msleep(10);
1390 		if (!--counter) break;
1391 	}
1392 
1393 	/* ack any interrupts, something could have been set */
1394 	iowrite8(~0, &nic->csr->scb.stat_ack);
1395 
1396 	/* if the command failed, or is not OK, notify and return */
1397 	if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1398 		netif_err(nic, probe, nic->netdev, "ucode load failed\n");
1399 		err = -EPERM;
1400 	}
1401 
1402 	return err;
1403 }
1404 
1405 static int e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1406 	struct sk_buff *skb)
1407 {
1408 	cb->command = cpu_to_le16(cb_iaaddr);
1409 	memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1410 	return 0;
1411 }
1412 
1413 static int e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1414 {
1415 	cb->command = cpu_to_le16(cb_dump);
1416 	cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1417 		offsetof(struct mem, dump_buf));
1418 	return 0;
1419 }
1420 
1421 static int e100_phy_check_without_mii(struct nic *nic)
1422 {
1423 	u8 phy_type;
1424 	int without_mii;
1425 
1426 	phy_type = (nic->eeprom[eeprom_phy_iface] >> 8) & 0x0f;
1427 
1428 	switch (phy_type) {
1429 	case NoSuchPhy: /* Non-MII PHY; UNTESTED! */
1430 	case I82503: /* Non-MII PHY; UNTESTED! */
1431 	case S80C24: /* Non-MII PHY; tested and working */
1432 		/* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
1433 		 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
1434 		 * doesn't have a programming interface of any sort.  The
1435 		 * media is sensed automatically based on how the link partner
1436 		 * is configured.  This is, in essence, manual configuration.
1437 		 */
1438 		netif_info(nic, probe, nic->netdev,
1439 			   "found MII-less i82503 or 80c24 or other PHY\n");
1440 
1441 		nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated;
1442 		nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */
1443 
1444 		/* these might be needed for certain MII-less cards...
1445 		 * nic->flags |= ich;
1446 		 * nic->flags |= ich_10h_workaround; */
1447 
1448 		without_mii = 1;
1449 		break;
1450 	default:
1451 		without_mii = 0;
1452 		break;
1453 	}
1454 	return without_mii;
1455 }
1456 
1457 #define NCONFIG_AUTO_SWITCH	0x0080
1458 #define MII_NSC_CONG		MII_RESV1
1459 #define NSC_CONG_ENABLE		0x0100
1460 #define NSC_CONG_TXREADY	0x0400
1461 #define ADVERTISE_FC_SUPPORTED	0x0400
1462 static int e100_phy_init(struct nic *nic)
1463 {
1464 	struct net_device *netdev = nic->netdev;
1465 	u32 addr;
1466 	u16 bmcr, stat, id_lo, id_hi, cong;
1467 
1468 	/* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1469 	for (addr = 0; addr < 32; addr++) {
1470 		nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1471 		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1472 		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1473 		stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1474 		if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1475 			break;
1476 	}
1477 	if (addr == 32) {
1478 		/* uhoh, no PHY detected: check whether we seem to be some
1479 		 * weird, rare variant which is *known* to not have any MII.
1480 		 * But do this AFTER MII checking only, since this does
1481 		 * lookup of EEPROM values which may easily be unreliable. */
1482 		if (e100_phy_check_without_mii(nic))
1483 			return 0; /* simply return and hope for the best */
1484 		else {
1485 			/* for unknown cases log a fatal error */
1486 			netif_err(nic, hw, nic->netdev,
1487 				  "Failed to locate any known PHY, aborting\n");
1488 			return -EAGAIN;
1489 		}
1490 	} else
1491 		netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1492 			     "phy_addr = %d\n", nic->mii.phy_id);
1493 
1494 	/* Get phy ID */
1495 	id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1496 	id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1497 	nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1498 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1499 		     "phy ID = 0x%08X\n", nic->phy);
1500 
1501 	/* Select the phy and isolate the rest */
1502 	for (addr = 0; addr < 32; addr++) {
1503 		if (addr != nic->mii.phy_id) {
1504 			mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1505 		} else if (nic->phy != phy_82552_v) {
1506 			bmcr = mdio_read(netdev, addr, MII_BMCR);
1507 			mdio_write(netdev, addr, MII_BMCR,
1508 				bmcr & ~BMCR_ISOLATE);
1509 		}
1510 	}
1511 	/*
1512 	 * Workaround for 82552:
1513 	 * Clear the ISOLATE bit on selected phy_id last (mirrored on all
1514 	 * other phy_id's) using bmcr value from addr discovery loop above.
1515 	 */
1516 	if (nic->phy == phy_82552_v)
1517 		mdio_write(netdev, nic->mii.phy_id, MII_BMCR,
1518 			bmcr & ~BMCR_ISOLATE);
1519 
1520 	/* Handle National tx phys */
1521 #define NCS_PHY_MODEL_MASK	0xFFF0FFFF
1522 	if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1523 		/* Disable congestion control */
1524 		cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1525 		cong |= NSC_CONG_TXREADY;
1526 		cong &= ~NSC_CONG_ENABLE;
1527 		mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1528 	}
1529 
1530 	if (nic->phy == phy_82552_v) {
1531 		u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
1532 
1533 		/* assign special tweaked mdio_ctrl() function */
1534 		nic->mdio_ctrl = mdio_ctrl_phy_82552_v;
1535 
1536 		/* Workaround Si not advertising flow-control during autoneg */
1537 		advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1538 		mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);
1539 
1540 		/* Reset for the above changes to take effect */
1541 		bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1542 		bmcr |= BMCR_RESET;
1543 		mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
1544 	} else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1545 	   (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1546 		!(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled))) {
1547 		/* enable/disable MDI/MDI-X auto-switching. */
1548 		mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1549 				nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1550 	}
1551 
1552 	return 0;
1553 }
1554 
1555 static int e100_hw_init(struct nic *nic)
1556 {
1557 	int err = 0;
1558 
1559 	e100_hw_reset(nic);
1560 
1561 	netif_err(nic, hw, nic->netdev, "e100_hw_init\n");
1562 	if (!in_interrupt() && (err = e100_self_test(nic)))
1563 		return err;
1564 
1565 	if ((err = e100_phy_init(nic)))
1566 		return err;
1567 	if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1568 		return err;
1569 	if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1570 		return err;
1571 	if ((err = e100_load_ucode_wait(nic)))
1572 		return err;
1573 	if ((err = e100_exec_cb(nic, NULL, e100_configure)))
1574 		return err;
1575 	if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1576 		return err;
1577 	if ((err = e100_exec_cmd(nic, cuc_dump_addr,
1578 		nic->dma_addr + offsetof(struct mem, stats))))
1579 		return err;
1580 	if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1581 		return err;
1582 
1583 	e100_disable_irq(nic);
1584 
1585 	return 0;
1586 }
1587 
1588 static int e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1589 {
1590 	struct net_device *netdev = nic->netdev;
1591 	struct netdev_hw_addr *ha;
1592 	u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS);
1593 
1594 	cb->command = cpu_to_le16(cb_multi);
1595 	cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1596 	i = 0;
1597 	netdev_for_each_mc_addr(ha, netdev) {
1598 		if (i == count)
1599 			break;
1600 		memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr,
1601 			ETH_ALEN);
1602 	}
1603 	return 0;
1604 }
1605 
1606 static void e100_set_multicast_list(struct net_device *netdev)
1607 {
1608 	struct nic *nic = netdev_priv(netdev);
1609 
1610 	netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1611 		     "mc_count=%d, flags=0x%04X\n",
1612 		     netdev_mc_count(netdev), netdev->flags);
1613 
1614 	if (netdev->flags & IFF_PROMISC)
1615 		nic->flags |= promiscuous;
1616 	else
1617 		nic->flags &= ~promiscuous;
1618 
1619 	if (netdev->flags & IFF_ALLMULTI ||
1620 		netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS)
1621 		nic->flags |= multicast_all;
1622 	else
1623 		nic->flags &= ~multicast_all;
1624 
1625 	e100_exec_cb(nic, NULL, e100_configure);
1626 	e100_exec_cb(nic, NULL, e100_multi);
1627 }
1628 
1629 static void e100_update_stats(struct nic *nic)
1630 {
1631 	struct net_device *dev = nic->netdev;
1632 	struct net_device_stats *ns = &dev->stats;
1633 	struct stats *s = &nic->mem->stats;
1634 	__le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1635 		(nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
1636 		&s->complete;
1637 
1638 	/* Device's stats reporting may take several microseconds to
1639 	 * complete, so we're always waiting for results of the
1640 	 * previous command. */
1641 
1642 	if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
1643 		*complete = 0;
1644 		nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1645 		nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1646 		ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1647 		ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1648 		ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1649 		ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1650 		ns->collisions += nic->tx_collisions;
1651 		ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1652 			le32_to_cpu(s->tx_lost_crs);
1653 		nic->rx_short_frame_errors +=
1654 			le32_to_cpu(s->rx_short_frame_errors);
1655 		ns->rx_length_errors = nic->rx_short_frame_errors +
1656 			nic->rx_over_length_errors;
1657 		ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1658 		ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1659 		ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1660 		ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1661 		ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1662 		ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1663 			le32_to_cpu(s->rx_alignment_errors) +
1664 			le32_to_cpu(s->rx_short_frame_errors) +
1665 			le32_to_cpu(s->rx_cdt_errors);
1666 		nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1667 		nic->tx_single_collisions +=
1668 			le32_to_cpu(s->tx_single_collisions);
1669 		nic->tx_multiple_collisions +=
1670 			le32_to_cpu(s->tx_multiple_collisions);
1671 		if (nic->mac >= mac_82558_D101_A4) {
1672 			nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1673 			nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1674 			nic->rx_fc_unsupported +=
1675 				le32_to_cpu(s->fc_rcv_unsupported);
1676 			if (nic->mac >= mac_82559_D101M) {
1677 				nic->tx_tco_frames +=
1678 					le16_to_cpu(s->xmt_tco_frames);
1679 				nic->rx_tco_frames +=
1680 					le16_to_cpu(s->rcv_tco_frames);
1681 			}
1682 		}
1683 	}
1684 
1685 
1686 	if (e100_exec_cmd(nic, cuc_dump_reset, 0))
1687 		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1688 			     "exec cuc_dump_reset failed\n");
1689 }
1690 
1691 static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1692 {
1693 	/* Adjust inter-frame-spacing (IFS) between two transmits if
1694 	 * we're getting collisions on a half-duplex connection. */
1695 
1696 	if (duplex == DUPLEX_HALF) {
1697 		u32 prev = nic->adaptive_ifs;
1698 		u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1699 
1700 		if ((nic->tx_frames / 32 < nic->tx_collisions) &&
1701 		   (nic->tx_frames > min_frames)) {
1702 			if (nic->adaptive_ifs < 60)
1703 				nic->adaptive_ifs += 5;
1704 		} else if (nic->tx_frames < min_frames) {
1705 			if (nic->adaptive_ifs >= 5)
1706 				nic->adaptive_ifs -= 5;
1707 		}
1708 		if (nic->adaptive_ifs != prev)
1709 			e100_exec_cb(nic, NULL, e100_configure);
1710 	}
1711 }
1712 
1713 static void e100_watchdog(unsigned long data)
1714 {
1715 	struct nic *nic = (struct nic *)data;
1716 	struct ethtool_cmd cmd = { .cmd = ETHTOOL_GSET };
1717 	u32 speed;
1718 
1719 	netif_printk(nic, timer, KERN_DEBUG, nic->netdev,
1720 		     "right now = %ld\n", jiffies);
1721 
1722 	/* mii library handles link maintenance tasks */
1723 
1724 	mii_ethtool_gset(&nic->mii, &cmd);
1725 	speed = ethtool_cmd_speed(&cmd);
1726 
1727 	if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1728 		netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n",
1729 			    speed == SPEED_100 ? 100 : 10,
1730 			    cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
1731 	} else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1732 		netdev_info(nic->netdev, "NIC Link is Down\n");
1733 	}
1734 
1735 	mii_check_link(&nic->mii);
1736 
1737 	/* Software generated interrupt to recover from (rare) Rx
1738 	 * allocation failure.
1739 	 * Unfortunately have to use a spinlock to not re-enable interrupts
1740 	 * accidentally, due to hardware that shares a register between the
1741 	 * interrupt mask bit and the SW Interrupt generation bit */
1742 	spin_lock_irq(&nic->cmd_lock);
1743 	iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1744 	e100_write_flush(nic);
1745 	spin_unlock_irq(&nic->cmd_lock);
1746 
1747 	e100_update_stats(nic);
1748 	e100_adjust_adaptive_ifs(nic, speed, cmd.duplex);
1749 
1750 	if (nic->mac <= mac_82557_D100_C)
1751 		/* Issue a multicast command to workaround a 557 lock up */
1752 		e100_set_multicast_list(nic->netdev);
1753 
1754 	if (nic->flags & ich && speed == SPEED_10 && cmd.duplex == DUPLEX_HALF)
1755 		/* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1756 		nic->flags |= ich_10h_workaround;
1757 	else
1758 		nic->flags &= ~ich_10h_workaround;
1759 
1760 	mod_timer(&nic->watchdog,
1761 		  round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
1762 }
1763 
1764 static int e100_xmit_prepare(struct nic *nic, struct cb *cb,
1765 	struct sk_buff *skb)
1766 {
1767 	dma_addr_t dma_addr;
1768 	cb->command = nic->tx_command;
1769 
1770 	dma_addr = pci_map_single(nic->pdev,
1771 				  skb->data, skb->len, PCI_DMA_TODEVICE);
1772 	/* If we can't map the skb, have the upper layer try later */
1773 	if (pci_dma_mapping_error(nic->pdev, dma_addr))
1774 		return -ENOMEM;
1775 
1776 	/*
1777 	 * Use the last 4 bytes of the SKB payload packet as the CRC, used for
1778 	 * testing, ie sending frames with bad CRC.
1779 	 */
1780 	if (unlikely(skb->no_fcs))
1781 		cb->command |= cpu_to_le16(cb_tx_nc);
1782 	else
1783 		cb->command &= ~cpu_to_le16(cb_tx_nc);
1784 
1785 	/* interrupt every 16 packets regardless of delay */
1786 	if ((nic->cbs_avail & ~15) == nic->cbs_avail)
1787 		cb->command |= cpu_to_le16(cb_i);
1788 	cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1789 	cb->u.tcb.tcb_byte_count = 0;
1790 	cb->u.tcb.threshold = nic->tx_threshold;
1791 	cb->u.tcb.tbd_count = 1;
1792 	cb->u.tcb.tbd.buf_addr = cpu_to_le32(dma_addr);
1793 	cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1794 	skb_tx_timestamp(skb);
1795 	return 0;
1796 }
1797 
1798 static netdev_tx_t e100_xmit_frame(struct sk_buff *skb,
1799 				   struct net_device *netdev)
1800 {
1801 	struct nic *nic = netdev_priv(netdev);
1802 	int err;
1803 
1804 	if (nic->flags & ich_10h_workaround) {
1805 		/* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1806 		   Issue a NOP command followed by a 1us delay before
1807 		   issuing the Tx command. */
1808 		if (e100_exec_cmd(nic, cuc_nop, 0))
1809 			netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1810 				     "exec cuc_nop failed\n");
1811 		udelay(1);
1812 	}
1813 
1814 	err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1815 
1816 	switch (err) {
1817 	case -ENOSPC:
1818 		/* We queued the skb, but now we're out of space. */
1819 		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1820 			     "No space for CB\n");
1821 		netif_stop_queue(netdev);
1822 		break;
1823 	case -ENOMEM:
1824 		/* This is a hard error - log it. */
1825 		netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1826 			     "Out of Tx resources, returning skb\n");
1827 		netif_stop_queue(netdev);
1828 		return NETDEV_TX_BUSY;
1829 	}
1830 
1831 	return NETDEV_TX_OK;
1832 }
1833 
1834 static int e100_tx_clean(struct nic *nic)
1835 {
1836 	struct net_device *dev = nic->netdev;
1837 	struct cb *cb;
1838 	int tx_cleaned = 0;
1839 
1840 	spin_lock(&nic->cb_lock);
1841 
1842 	/* Clean CBs marked complete */
1843 	for (cb = nic->cb_to_clean;
1844 	    cb->status & cpu_to_le16(cb_complete);
1845 	    cb = nic->cb_to_clean = cb->next) {
1846 		rmb(); /* read skb after status */
1847 		netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev,
1848 			     "cb[%d]->status = 0x%04X\n",
1849 			     (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1850 			     cb->status);
1851 
1852 		if (likely(cb->skb != NULL)) {
1853 			dev->stats.tx_packets++;
1854 			dev->stats.tx_bytes += cb->skb->len;
1855 
1856 			pci_unmap_single(nic->pdev,
1857 				le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1858 				le16_to_cpu(cb->u.tcb.tbd.size),
1859 				PCI_DMA_TODEVICE);
1860 			dev_kfree_skb_any(cb->skb);
1861 			cb->skb = NULL;
1862 			tx_cleaned = 1;
1863 		}
1864 		cb->status = 0;
1865 		nic->cbs_avail++;
1866 	}
1867 
1868 	spin_unlock(&nic->cb_lock);
1869 
1870 	/* Recover from running out of Tx resources in xmit_frame */
1871 	if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1872 		netif_wake_queue(nic->netdev);
1873 
1874 	return tx_cleaned;
1875 }
1876 
1877 static void e100_clean_cbs(struct nic *nic)
1878 {
1879 	if (nic->cbs) {
1880 		while (nic->cbs_avail != nic->params.cbs.count) {
1881 			struct cb *cb = nic->cb_to_clean;
1882 			if (cb->skb) {
1883 				pci_unmap_single(nic->pdev,
1884 					le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1885 					le16_to_cpu(cb->u.tcb.tbd.size),
1886 					PCI_DMA_TODEVICE);
1887 				dev_kfree_skb(cb->skb);
1888 			}
1889 			nic->cb_to_clean = nic->cb_to_clean->next;
1890 			nic->cbs_avail++;
1891 		}
1892 		pci_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr);
1893 		nic->cbs = NULL;
1894 		nic->cbs_avail = 0;
1895 	}
1896 	nic->cuc_cmd = cuc_start;
1897 	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1898 		nic->cbs;
1899 }
1900 
1901 static int e100_alloc_cbs(struct nic *nic)
1902 {
1903 	struct cb *cb;
1904 	unsigned int i, count = nic->params.cbs.count;
1905 
1906 	nic->cuc_cmd = cuc_start;
1907 	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1908 	nic->cbs_avail = 0;
1909 
1910 	nic->cbs = pci_pool_alloc(nic->cbs_pool, GFP_KERNEL,
1911 				  &nic->cbs_dma_addr);
1912 	if (!nic->cbs)
1913 		return -ENOMEM;
1914 	memset(nic->cbs, 0, count * sizeof(struct cb));
1915 
1916 	for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
1917 		cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1918 		cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1919 
1920 		cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1921 		cb->link = cpu_to_le32(nic->cbs_dma_addr +
1922 			((i+1) % count) * sizeof(struct cb));
1923 	}
1924 
1925 	nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1926 	nic->cbs_avail = count;
1927 
1928 	return 0;
1929 }
1930 
1931 static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1932 {
1933 	if (!nic->rxs) return;
1934 	if (RU_SUSPENDED != nic->ru_running) return;
1935 
1936 	/* handle init time starts */
1937 	if (!rx) rx = nic->rxs;
1938 
1939 	/* (Re)start RU if suspended or idle and RFA is non-NULL */
1940 	if (rx->skb) {
1941 		e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1942 		nic->ru_running = RU_RUNNING;
1943 	}
1944 }
1945 
1946 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
1947 static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1948 {
1949 	if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN)))
1950 		return -ENOMEM;
1951 
1952 	/* Init, and map the RFD. */
1953 	skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1954 	rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data,
1955 		RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
1956 
1957 	if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) {
1958 		dev_kfree_skb_any(rx->skb);
1959 		rx->skb = NULL;
1960 		rx->dma_addr = 0;
1961 		return -ENOMEM;
1962 	}
1963 
1964 	/* Link the RFD to end of RFA by linking previous RFD to
1965 	 * this one.  We are safe to touch the previous RFD because
1966 	 * it is protected by the before last buffer's el bit being set */
1967 	if (rx->prev->skb) {
1968 		struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1969 		put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
1970 		pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr,
1971 			sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1972 	}
1973 
1974 	return 0;
1975 }
1976 
1977 static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1978 	unsigned int *work_done, unsigned int work_to_do)
1979 {
1980 	struct net_device *dev = nic->netdev;
1981 	struct sk_buff *skb = rx->skb;
1982 	struct rfd *rfd = (struct rfd *)skb->data;
1983 	u16 rfd_status, actual_size;
1984 	u16 fcs_pad = 0;
1985 
1986 	if (unlikely(work_done && *work_done >= work_to_do))
1987 		return -EAGAIN;
1988 
1989 	/* Need to sync before taking a peek at cb_complete bit */
1990 	pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr,
1991 		sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
1992 	rfd_status = le16_to_cpu(rfd->status);
1993 
1994 	netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev,
1995 		     "status=0x%04X\n", rfd_status);
1996 	rmb(); /* read size after status bit */
1997 
1998 	/* If data isn't ready, nothing to indicate */
1999 	if (unlikely(!(rfd_status & cb_complete))) {
2000 		/* If the next buffer has the el bit, but we think the receiver
2001 		 * is still running, check to see if it really stopped while
2002 		 * we had interrupts off.
2003 		 * This allows for a fast restart without re-enabling
2004 		 * interrupts */
2005 		if ((le16_to_cpu(rfd->command) & cb_el) &&
2006 		    (RU_RUNNING == nic->ru_running))
2007 
2008 			if (ioread8(&nic->csr->scb.status) & rus_no_res)
2009 				nic->ru_running = RU_SUSPENDED;
2010 		pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
2011 					       sizeof(struct rfd),
2012 					       PCI_DMA_FROMDEVICE);
2013 		return -ENODATA;
2014 	}
2015 
2016 	/* Get actual data size */
2017 	if (unlikely(dev->features & NETIF_F_RXFCS))
2018 		fcs_pad = 4;
2019 	actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
2020 	if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
2021 		actual_size = RFD_BUF_LEN - sizeof(struct rfd);
2022 
2023 	/* Get data */
2024 	pci_unmap_single(nic->pdev, rx->dma_addr,
2025 		RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2026 
2027 	/* If this buffer has the el bit, but we think the receiver
2028 	 * is still running, check to see if it really stopped while
2029 	 * we had interrupts off.
2030 	 * This allows for a fast restart without re-enabling interrupts.
2031 	 * This can happen when the RU sees the size change but also sees
2032 	 * the el bit set. */
2033 	if ((le16_to_cpu(rfd->command) & cb_el) &&
2034 	    (RU_RUNNING == nic->ru_running)) {
2035 
2036 	    if (ioread8(&nic->csr->scb.status) & rus_no_res)
2037 		nic->ru_running = RU_SUSPENDED;
2038 	}
2039 
2040 	/* Pull off the RFD and put the actual data (minus eth hdr) */
2041 	skb_reserve(skb, sizeof(struct rfd));
2042 	skb_put(skb, actual_size);
2043 	skb->protocol = eth_type_trans(skb, nic->netdev);
2044 
2045 	/* If we are receiving all frames, then don't bother
2046 	 * checking for errors.
2047 	 */
2048 	if (unlikely(dev->features & NETIF_F_RXALL)) {
2049 		if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad)
2050 			/* Received oversized frame, but keep it. */
2051 			nic->rx_over_length_errors++;
2052 		goto process_skb;
2053 	}
2054 
2055 	if (unlikely(!(rfd_status & cb_ok))) {
2056 		/* Don't indicate if hardware indicates errors */
2057 		dev_kfree_skb_any(skb);
2058 	} else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) {
2059 		/* Don't indicate oversized frames */
2060 		nic->rx_over_length_errors++;
2061 		dev_kfree_skb_any(skb);
2062 	} else {
2063 process_skb:
2064 		dev->stats.rx_packets++;
2065 		dev->stats.rx_bytes += (actual_size - fcs_pad);
2066 		netif_receive_skb(skb);
2067 		if (work_done)
2068 			(*work_done)++;
2069 	}
2070 
2071 	rx->skb = NULL;
2072 
2073 	return 0;
2074 }
2075 
2076 static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
2077 	unsigned int work_to_do)
2078 {
2079 	struct rx *rx;
2080 	int restart_required = 0, err = 0;
2081 	struct rx *old_before_last_rx, *new_before_last_rx;
2082 	struct rfd *old_before_last_rfd, *new_before_last_rfd;
2083 
2084 	/* Indicate newly arrived packets */
2085 	for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
2086 		err = e100_rx_indicate(nic, rx, work_done, work_to_do);
2087 		/* Hit quota or no more to clean */
2088 		if (-EAGAIN == err || -ENODATA == err)
2089 			break;
2090 	}
2091 
2092 
2093 	/* On EAGAIN, hit quota so have more work to do, restart once
2094 	 * cleanup is complete.
2095 	 * Else, are we already rnr? then pay attention!!! this ensures that
2096 	 * the state machine progression never allows a start with a
2097 	 * partially cleaned list, avoiding a race between hardware
2098 	 * and rx_to_clean when in NAPI mode */
2099 	if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
2100 		restart_required = 1;
2101 
2102 	old_before_last_rx = nic->rx_to_use->prev->prev;
2103 	old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
2104 
2105 	/* Alloc new skbs to refill list */
2106 	for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
2107 		if (unlikely(e100_rx_alloc_skb(nic, rx)))
2108 			break; /* Better luck next time (see watchdog) */
2109 	}
2110 
2111 	new_before_last_rx = nic->rx_to_use->prev->prev;
2112 	if (new_before_last_rx != old_before_last_rx) {
2113 		/* Set the el-bit on the buffer that is before the last buffer.
2114 		 * This lets us update the next pointer on the last buffer
2115 		 * without worrying about hardware touching it.
2116 		 * We set the size to 0 to prevent hardware from touching this
2117 		 * buffer.
2118 		 * When the hardware hits the before last buffer with el-bit
2119 		 * and size of 0, it will RNR interrupt, the RUS will go into
2120 		 * the No Resources state.  It will not complete nor write to
2121 		 * this buffer. */
2122 		new_before_last_rfd =
2123 			(struct rfd *)new_before_last_rx->skb->data;
2124 		new_before_last_rfd->size = 0;
2125 		new_before_last_rfd->command |= cpu_to_le16(cb_el);
2126 		pci_dma_sync_single_for_device(nic->pdev,
2127 			new_before_last_rx->dma_addr, sizeof(struct rfd),
2128 			PCI_DMA_BIDIRECTIONAL);
2129 
2130 		/* Now that we have a new stopping point, we can clear the old
2131 		 * stopping point.  We must sync twice to get the proper
2132 		 * ordering on the hardware side of things. */
2133 		old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
2134 		pci_dma_sync_single_for_device(nic->pdev,
2135 			old_before_last_rx->dma_addr, sizeof(struct rfd),
2136 			PCI_DMA_BIDIRECTIONAL);
2137 		old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN
2138 							+ ETH_FCS_LEN);
2139 		pci_dma_sync_single_for_device(nic->pdev,
2140 			old_before_last_rx->dma_addr, sizeof(struct rfd),
2141 			PCI_DMA_BIDIRECTIONAL);
2142 	}
2143 
2144 	if (restart_required) {
2145 		// ack the rnr?
2146 		iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
2147 		e100_start_receiver(nic, nic->rx_to_clean);
2148 		if (work_done)
2149 			(*work_done)++;
2150 	}
2151 }
2152 
2153 static void e100_rx_clean_list(struct nic *nic)
2154 {
2155 	struct rx *rx;
2156 	unsigned int i, count = nic->params.rfds.count;
2157 
2158 	nic->ru_running = RU_UNINITIALIZED;
2159 
2160 	if (nic->rxs) {
2161 		for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2162 			if (rx->skb) {
2163 				pci_unmap_single(nic->pdev, rx->dma_addr,
2164 					RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2165 				dev_kfree_skb(rx->skb);
2166 			}
2167 		}
2168 		kfree(nic->rxs);
2169 		nic->rxs = NULL;
2170 	}
2171 
2172 	nic->rx_to_use = nic->rx_to_clean = NULL;
2173 }
2174 
2175 static int e100_rx_alloc_list(struct nic *nic)
2176 {
2177 	struct rx *rx;
2178 	unsigned int i, count = nic->params.rfds.count;
2179 	struct rfd *before_last;
2180 
2181 	nic->rx_to_use = nic->rx_to_clean = NULL;
2182 	nic->ru_running = RU_UNINITIALIZED;
2183 
2184 	if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC)))
2185 		return -ENOMEM;
2186 
2187 	for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2188 		rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
2189 		rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
2190 		if (e100_rx_alloc_skb(nic, rx)) {
2191 			e100_rx_clean_list(nic);
2192 			return -ENOMEM;
2193 		}
2194 	}
2195 	/* Set the el-bit on the buffer that is before the last buffer.
2196 	 * This lets us update the next pointer on the last buffer without
2197 	 * worrying about hardware touching it.
2198 	 * We set the size to 0 to prevent hardware from touching this buffer.
2199 	 * When the hardware hits the before last buffer with el-bit and size
2200 	 * of 0, it will RNR interrupt, the RU will go into the No Resources
2201 	 * state.  It will not complete nor write to this buffer. */
2202 	rx = nic->rxs->prev->prev;
2203 	before_last = (struct rfd *)rx->skb->data;
2204 	before_last->command |= cpu_to_le16(cb_el);
2205 	before_last->size = 0;
2206 	pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr,
2207 		sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL);
2208 
2209 	nic->rx_to_use = nic->rx_to_clean = nic->rxs;
2210 	nic->ru_running = RU_SUSPENDED;
2211 
2212 	return 0;
2213 }
2214 
2215 static irqreturn_t e100_intr(int irq, void *dev_id)
2216 {
2217 	struct net_device *netdev = dev_id;
2218 	struct nic *nic = netdev_priv(netdev);
2219 	u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
2220 
2221 	netif_printk(nic, intr, KERN_DEBUG, nic->netdev,
2222 		     "stat_ack = 0x%02X\n", stat_ack);
2223 
2224 	if (stat_ack == stat_ack_not_ours ||	/* Not our interrupt */
2225 	   stat_ack == stat_ack_not_present)	/* Hardware is ejected */
2226 		return IRQ_NONE;
2227 
2228 	/* Ack interrupt(s) */
2229 	iowrite8(stat_ack, &nic->csr->scb.stat_ack);
2230 
2231 	/* We hit Receive No Resource (RNR); restart RU after cleaning */
2232 	if (stat_ack & stat_ack_rnr)
2233 		nic->ru_running = RU_SUSPENDED;
2234 
2235 	if (likely(napi_schedule_prep(&nic->napi))) {
2236 		e100_disable_irq(nic);
2237 		__napi_schedule(&nic->napi);
2238 	}
2239 
2240 	return IRQ_HANDLED;
2241 }
2242 
2243 static int e100_poll(struct napi_struct *napi, int budget)
2244 {
2245 	struct nic *nic = container_of(napi, struct nic, napi);
2246 	unsigned int work_done = 0;
2247 
2248 	e100_rx_clean(nic, &work_done, budget);
2249 	e100_tx_clean(nic);
2250 
2251 	/* If budget not fully consumed, exit the polling mode */
2252 	if (work_done < budget) {
2253 		napi_complete(napi);
2254 		e100_enable_irq(nic);
2255 	}
2256 
2257 	return work_done;
2258 }
2259 
2260 #ifdef CONFIG_NET_POLL_CONTROLLER
2261 static void e100_netpoll(struct net_device *netdev)
2262 {
2263 	struct nic *nic = netdev_priv(netdev);
2264 
2265 	e100_disable_irq(nic);
2266 	e100_intr(nic->pdev->irq, netdev);
2267 	e100_tx_clean(nic);
2268 	e100_enable_irq(nic);
2269 }
2270 #endif
2271 
2272 static int e100_set_mac_address(struct net_device *netdev, void *p)
2273 {
2274 	struct nic *nic = netdev_priv(netdev);
2275 	struct sockaddr *addr = p;
2276 
2277 	if (!is_valid_ether_addr(addr->sa_data))
2278 		return -EADDRNOTAVAIL;
2279 
2280 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2281 	e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2282 
2283 	return 0;
2284 }
2285 
2286 static int e100_change_mtu(struct net_device *netdev, int new_mtu)
2287 {
2288 	if (new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN)
2289 		return -EINVAL;
2290 	netdev->mtu = new_mtu;
2291 	return 0;
2292 }
2293 
2294 static int e100_asf(struct nic *nic)
2295 {
2296 	/* ASF can be enabled from eeprom */
2297 	return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2298 	   (nic->eeprom[eeprom_config_asf] & eeprom_asf) &&
2299 	   !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) &&
2300 	   ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE);
2301 }
2302 
2303 static int e100_up(struct nic *nic)
2304 {
2305 	int err;
2306 
2307 	if ((err = e100_rx_alloc_list(nic)))
2308 		return err;
2309 	if ((err = e100_alloc_cbs(nic)))
2310 		goto err_rx_clean_list;
2311 	if ((err = e100_hw_init(nic)))
2312 		goto err_clean_cbs;
2313 	e100_set_multicast_list(nic->netdev);
2314 	e100_start_receiver(nic, NULL);
2315 	mod_timer(&nic->watchdog, jiffies);
2316 	if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
2317 		nic->netdev->name, nic->netdev)))
2318 		goto err_no_irq;
2319 	netif_wake_queue(nic->netdev);
2320 	napi_enable(&nic->napi);
2321 	/* enable ints _after_ enabling poll, preventing a race between
2322 	 * disable ints+schedule */
2323 	e100_enable_irq(nic);
2324 	return 0;
2325 
2326 err_no_irq:
2327 	del_timer_sync(&nic->watchdog);
2328 err_clean_cbs:
2329 	e100_clean_cbs(nic);
2330 err_rx_clean_list:
2331 	e100_rx_clean_list(nic);
2332 	return err;
2333 }
2334 
2335 static void e100_down(struct nic *nic)
2336 {
2337 	/* wait here for poll to complete */
2338 	napi_disable(&nic->napi);
2339 	netif_stop_queue(nic->netdev);
2340 	e100_hw_reset(nic);
2341 	free_irq(nic->pdev->irq, nic->netdev);
2342 	del_timer_sync(&nic->watchdog);
2343 	netif_carrier_off(nic->netdev);
2344 	e100_clean_cbs(nic);
2345 	e100_rx_clean_list(nic);
2346 }
2347 
2348 static void e100_tx_timeout(struct net_device *netdev)
2349 {
2350 	struct nic *nic = netdev_priv(netdev);
2351 
2352 	/* Reset outside of interrupt context, to avoid request_irq
2353 	 * in interrupt context */
2354 	schedule_work(&nic->tx_timeout_task);
2355 }
2356 
2357 static void e100_tx_timeout_task(struct work_struct *work)
2358 {
2359 	struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2360 	struct net_device *netdev = nic->netdev;
2361 
2362 	netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
2363 		     "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status));
2364 
2365 	rtnl_lock();
2366 	if (netif_running(netdev)) {
2367 		e100_down(netdev_priv(netdev));
2368 		e100_up(netdev_priv(netdev));
2369 	}
2370 	rtnl_unlock();
2371 }
2372 
2373 static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2374 {
2375 	int err;
2376 	struct sk_buff *skb;
2377 
2378 	/* Use driver resources to perform internal MAC or PHY
2379 	 * loopback test.  A single packet is prepared and transmitted
2380 	 * in loopback mode, and the test passes if the received
2381 	 * packet compares byte-for-byte to the transmitted packet. */
2382 
2383 	if ((err = e100_rx_alloc_list(nic)))
2384 		return err;
2385 	if ((err = e100_alloc_cbs(nic)))
2386 		goto err_clean_rx;
2387 
2388 	/* ICH PHY loopback is broken so do MAC loopback instead */
2389 	if (nic->flags & ich && loopback_mode == lb_phy)
2390 		loopback_mode = lb_mac;
2391 
2392 	nic->loopback = loopback_mode;
2393 	if ((err = e100_hw_init(nic)))
2394 		goto err_loopback_none;
2395 
2396 	if (loopback_mode == lb_phy)
2397 		mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2398 			BMCR_LOOPBACK);
2399 
2400 	e100_start_receiver(nic, NULL);
2401 
2402 	if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
2403 		err = -ENOMEM;
2404 		goto err_loopback_none;
2405 	}
2406 	skb_put(skb, ETH_DATA_LEN);
2407 	memset(skb->data, 0xFF, ETH_DATA_LEN);
2408 	e100_xmit_frame(skb, nic->netdev);
2409 
2410 	msleep(10);
2411 
2412 	pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr,
2413 			RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL);
2414 
2415 	if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2416 	   skb->data, ETH_DATA_LEN))
2417 		err = -EAGAIN;
2418 
2419 err_loopback_none:
2420 	mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2421 	nic->loopback = lb_none;
2422 	e100_clean_cbs(nic);
2423 	e100_hw_reset(nic);
2424 err_clean_rx:
2425 	e100_rx_clean_list(nic);
2426 	return err;
2427 }
2428 
2429 #define MII_LED_CONTROL	0x1B
2430 #define E100_82552_LED_OVERRIDE 0x19
2431 #define E100_82552_LED_ON       0x000F /* LEDTX and LED_RX both on */
2432 #define E100_82552_LED_OFF      0x000A /* LEDTX and LED_RX both off */
2433 
2434 static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2435 {
2436 	struct nic *nic = netdev_priv(netdev);
2437 	return mii_ethtool_gset(&nic->mii, cmd);
2438 }
2439 
2440 static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd)
2441 {
2442 	struct nic *nic = netdev_priv(netdev);
2443 	int err;
2444 
2445 	mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2446 	err = mii_ethtool_sset(&nic->mii, cmd);
2447 	e100_exec_cb(nic, NULL, e100_configure);
2448 
2449 	return err;
2450 }
2451 
2452 static void e100_get_drvinfo(struct net_device *netdev,
2453 	struct ethtool_drvinfo *info)
2454 {
2455 	struct nic *nic = netdev_priv(netdev);
2456 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2457 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
2458 	strlcpy(info->bus_info, pci_name(nic->pdev),
2459 		sizeof(info->bus_info));
2460 }
2461 
2462 #define E100_PHY_REGS 0x1C
2463 static int e100_get_regs_len(struct net_device *netdev)
2464 {
2465 	struct nic *nic = netdev_priv(netdev);
2466 	return 1 + E100_PHY_REGS + sizeof(nic->mem->dump_buf);
2467 }
2468 
2469 static void e100_get_regs(struct net_device *netdev,
2470 	struct ethtool_regs *regs, void *p)
2471 {
2472 	struct nic *nic = netdev_priv(netdev);
2473 	u32 *buff = p;
2474 	int i;
2475 
2476 	regs->version = (1 << 24) | nic->pdev->revision;
2477 	buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2478 		ioread8(&nic->csr->scb.cmd_lo) << 16 |
2479 		ioread16(&nic->csr->scb.status);
2480 	for (i = E100_PHY_REGS; i >= 0; i--)
2481 		buff[1 + E100_PHY_REGS - i] =
2482 			mdio_read(netdev, nic->mii.phy_id, i);
2483 	memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2484 	e100_exec_cb(nic, NULL, e100_dump);
2485 	msleep(10);
2486 	memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf,
2487 		sizeof(nic->mem->dump_buf));
2488 }
2489 
2490 static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2491 {
2492 	struct nic *nic = netdev_priv(netdev);
2493 	wol->supported = (nic->mac >= mac_82558_D101_A4) ?  WAKE_MAGIC : 0;
2494 	wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2495 }
2496 
2497 static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2498 {
2499 	struct nic *nic = netdev_priv(netdev);
2500 
2501 	if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
2502 	    !device_can_wakeup(&nic->pdev->dev))
2503 		return -EOPNOTSUPP;
2504 
2505 	if (wol->wolopts)
2506 		nic->flags |= wol_magic;
2507 	else
2508 		nic->flags &= ~wol_magic;
2509 
2510 	device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
2511 
2512 	e100_exec_cb(nic, NULL, e100_configure);
2513 
2514 	return 0;
2515 }
2516 
2517 static u32 e100_get_msglevel(struct net_device *netdev)
2518 {
2519 	struct nic *nic = netdev_priv(netdev);
2520 	return nic->msg_enable;
2521 }
2522 
2523 static void e100_set_msglevel(struct net_device *netdev, u32 value)
2524 {
2525 	struct nic *nic = netdev_priv(netdev);
2526 	nic->msg_enable = value;
2527 }
2528 
2529 static int e100_nway_reset(struct net_device *netdev)
2530 {
2531 	struct nic *nic = netdev_priv(netdev);
2532 	return mii_nway_restart(&nic->mii);
2533 }
2534 
2535 static u32 e100_get_link(struct net_device *netdev)
2536 {
2537 	struct nic *nic = netdev_priv(netdev);
2538 	return mii_link_ok(&nic->mii);
2539 }
2540 
2541 static int e100_get_eeprom_len(struct net_device *netdev)
2542 {
2543 	struct nic *nic = netdev_priv(netdev);
2544 	return nic->eeprom_wc << 1;
2545 }
2546 
2547 #define E100_EEPROM_MAGIC	0x1234
2548 static int e100_get_eeprom(struct net_device *netdev,
2549 	struct ethtool_eeprom *eeprom, u8 *bytes)
2550 {
2551 	struct nic *nic = netdev_priv(netdev);
2552 
2553 	eeprom->magic = E100_EEPROM_MAGIC;
2554 	memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2555 
2556 	return 0;
2557 }
2558 
2559 static int e100_set_eeprom(struct net_device *netdev,
2560 	struct ethtool_eeprom *eeprom, u8 *bytes)
2561 {
2562 	struct nic *nic = netdev_priv(netdev);
2563 
2564 	if (eeprom->magic != E100_EEPROM_MAGIC)
2565 		return -EINVAL;
2566 
2567 	memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2568 
2569 	return e100_eeprom_save(nic, eeprom->offset >> 1,
2570 		(eeprom->len >> 1) + 1);
2571 }
2572 
2573 static void e100_get_ringparam(struct net_device *netdev,
2574 	struct ethtool_ringparam *ring)
2575 {
2576 	struct nic *nic = netdev_priv(netdev);
2577 	struct param_range *rfds = &nic->params.rfds;
2578 	struct param_range *cbs = &nic->params.cbs;
2579 
2580 	ring->rx_max_pending = rfds->max;
2581 	ring->tx_max_pending = cbs->max;
2582 	ring->rx_pending = rfds->count;
2583 	ring->tx_pending = cbs->count;
2584 }
2585 
2586 static int e100_set_ringparam(struct net_device *netdev,
2587 	struct ethtool_ringparam *ring)
2588 {
2589 	struct nic *nic = netdev_priv(netdev);
2590 	struct param_range *rfds = &nic->params.rfds;
2591 	struct param_range *cbs = &nic->params.cbs;
2592 
2593 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2594 		return -EINVAL;
2595 
2596 	if (netif_running(netdev))
2597 		e100_down(nic);
2598 	rfds->count = max(ring->rx_pending, rfds->min);
2599 	rfds->count = min(rfds->count, rfds->max);
2600 	cbs->count = max(ring->tx_pending, cbs->min);
2601 	cbs->count = min(cbs->count, cbs->max);
2602 	netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n",
2603 		   rfds->count, cbs->count);
2604 	if (netif_running(netdev))
2605 		e100_up(nic);
2606 
2607 	return 0;
2608 }
2609 
2610 static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2611 	"Link test     (on/offline)",
2612 	"Eeprom test   (on/offline)",
2613 	"Self test        (offline)",
2614 	"Mac loopback     (offline)",
2615 	"Phy loopback     (offline)",
2616 };
2617 #define E100_TEST_LEN	ARRAY_SIZE(e100_gstrings_test)
2618 
2619 static void e100_diag_test(struct net_device *netdev,
2620 	struct ethtool_test *test, u64 *data)
2621 {
2622 	struct ethtool_cmd cmd;
2623 	struct nic *nic = netdev_priv(netdev);
2624 	int i, err;
2625 
2626 	memset(data, 0, E100_TEST_LEN * sizeof(u64));
2627 	data[0] = !mii_link_ok(&nic->mii);
2628 	data[1] = e100_eeprom_load(nic);
2629 	if (test->flags & ETH_TEST_FL_OFFLINE) {
2630 
2631 		/* save speed, duplex & autoneg settings */
2632 		err = mii_ethtool_gset(&nic->mii, &cmd);
2633 
2634 		if (netif_running(netdev))
2635 			e100_down(nic);
2636 		data[2] = e100_self_test(nic);
2637 		data[3] = e100_loopback_test(nic, lb_mac);
2638 		data[4] = e100_loopback_test(nic, lb_phy);
2639 
2640 		/* restore speed, duplex & autoneg settings */
2641 		err = mii_ethtool_sset(&nic->mii, &cmd);
2642 
2643 		if (netif_running(netdev))
2644 			e100_up(nic);
2645 	}
2646 	for (i = 0; i < E100_TEST_LEN; i++)
2647 		test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2648 
2649 	msleep_interruptible(4 * 1000);
2650 }
2651 
2652 static int e100_set_phys_id(struct net_device *netdev,
2653 			    enum ethtool_phys_id_state state)
2654 {
2655 	struct nic *nic = netdev_priv(netdev);
2656 	enum led_state {
2657 		led_on     = 0x01,
2658 		led_off    = 0x04,
2659 		led_on_559 = 0x05,
2660 		led_on_557 = 0x07,
2661 	};
2662 	u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
2663 		MII_LED_CONTROL;
2664 	u16 leds = 0;
2665 
2666 	switch (state) {
2667 	case ETHTOOL_ID_ACTIVE:
2668 		return 2;
2669 
2670 	case ETHTOOL_ID_ON:
2671 		leds = (nic->phy == phy_82552_v) ? E100_82552_LED_ON :
2672 		       (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
2673 		break;
2674 
2675 	case ETHTOOL_ID_OFF:
2676 		leds = (nic->phy == phy_82552_v) ? E100_82552_LED_OFF : led_off;
2677 		break;
2678 
2679 	case ETHTOOL_ID_INACTIVE:
2680 		break;
2681 	}
2682 
2683 	mdio_write(netdev, nic->mii.phy_id, led_reg, leds);
2684 	return 0;
2685 }
2686 
2687 static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2688 	"rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2689 	"tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2690 	"rx_length_errors", "rx_over_errors", "rx_crc_errors",
2691 	"rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2692 	"tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2693 	"tx_heartbeat_errors", "tx_window_errors",
2694 	/* device-specific stats */
2695 	"tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2696 	"tx_flow_control_pause", "rx_flow_control_pause",
2697 	"rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2698 	"rx_short_frame_errors", "rx_over_length_errors",
2699 };
2700 #define E100_NET_STATS_LEN	21
2701 #define E100_STATS_LEN	ARRAY_SIZE(e100_gstrings_stats)
2702 
2703 static int e100_get_sset_count(struct net_device *netdev, int sset)
2704 {
2705 	switch (sset) {
2706 	case ETH_SS_TEST:
2707 		return E100_TEST_LEN;
2708 	case ETH_SS_STATS:
2709 		return E100_STATS_LEN;
2710 	default:
2711 		return -EOPNOTSUPP;
2712 	}
2713 }
2714 
2715 static void e100_get_ethtool_stats(struct net_device *netdev,
2716 	struct ethtool_stats *stats, u64 *data)
2717 {
2718 	struct nic *nic = netdev_priv(netdev);
2719 	int i;
2720 
2721 	for (i = 0; i < E100_NET_STATS_LEN; i++)
2722 		data[i] = ((unsigned long *)&netdev->stats)[i];
2723 
2724 	data[i++] = nic->tx_deferred;
2725 	data[i++] = nic->tx_single_collisions;
2726 	data[i++] = nic->tx_multiple_collisions;
2727 	data[i++] = nic->tx_fc_pause;
2728 	data[i++] = nic->rx_fc_pause;
2729 	data[i++] = nic->rx_fc_unsupported;
2730 	data[i++] = nic->tx_tco_frames;
2731 	data[i++] = nic->rx_tco_frames;
2732 	data[i++] = nic->rx_short_frame_errors;
2733 	data[i++] = nic->rx_over_length_errors;
2734 }
2735 
2736 static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2737 {
2738 	switch (stringset) {
2739 	case ETH_SS_TEST:
2740 		memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test));
2741 		break;
2742 	case ETH_SS_STATS:
2743 		memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats));
2744 		break;
2745 	}
2746 }
2747 
2748 static const struct ethtool_ops e100_ethtool_ops = {
2749 	.get_settings		= e100_get_settings,
2750 	.set_settings		= e100_set_settings,
2751 	.get_drvinfo		= e100_get_drvinfo,
2752 	.get_regs_len		= e100_get_regs_len,
2753 	.get_regs		= e100_get_regs,
2754 	.get_wol		= e100_get_wol,
2755 	.set_wol		= e100_set_wol,
2756 	.get_msglevel		= e100_get_msglevel,
2757 	.set_msglevel		= e100_set_msglevel,
2758 	.nway_reset		= e100_nway_reset,
2759 	.get_link		= e100_get_link,
2760 	.get_eeprom_len		= e100_get_eeprom_len,
2761 	.get_eeprom		= e100_get_eeprom,
2762 	.set_eeprom		= e100_set_eeprom,
2763 	.get_ringparam		= e100_get_ringparam,
2764 	.set_ringparam		= e100_set_ringparam,
2765 	.self_test		= e100_diag_test,
2766 	.get_strings		= e100_get_strings,
2767 	.set_phys_id		= e100_set_phys_id,
2768 	.get_ethtool_stats	= e100_get_ethtool_stats,
2769 	.get_sset_count		= e100_get_sset_count,
2770 	.get_ts_info		= ethtool_op_get_ts_info,
2771 };
2772 
2773 static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2774 {
2775 	struct nic *nic = netdev_priv(netdev);
2776 
2777 	return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2778 }
2779 
2780 static int e100_alloc(struct nic *nic)
2781 {
2782 	nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem),
2783 		&nic->dma_addr);
2784 	return nic->mem ? 0 : -ENOMEM;
2785 }
2786 
2787 static void e100_free(struct nic *nic)
2788 {
2789 	if (nic->mem) {
2790 		pci_free_consistent(nic->pdev, sizeof(struct mem),
2791 			nic->mem, nic->dma_addr);
2792 		nic->mem = NULL;
2793 	}
2794 }
2795 
2796 static int e100_open(struct net_device *netdev)
2797 {
2798 	struct nic *nic = netdev_priv(netdev);
2799 	int err = 0;
2800 
2801 	netif_carrier_off(netdev);
2802 	if ((err = e100_up(nic)))
2803 		netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n");
2804 	return err;
2805 }
2806 
2807 static int e100_close(struct net_device *netdev)
2808 {
2809 	e100_down(netdev_priv(netdev));
2810 	return 0;
2811 }
2812 
2813 static int e100_set_features(struct net_device *netdev,
2814 			     netdev_features_t features)
2815 {
2816 	struct nic *nic = netdev_priv(netdev);
2817 	netdev_features_t changed = features ^ netdev->features;
2818 
2819 	if (!(changed & (NETIF_F_RXFCS | NETIF_F_RXALL)))
2820 		return 0;
2821 
2822 	netdev->features = features;
2823 	e100_exec_cb(nic, NULL, e100_configure);
2824 	return 0;
2825 }
2826 
2827 static const struct net_device_ops e100_netdev_ops = {
2828 	.ndo_open		= e100_open,
2829 	.ndo_stop		= e100_close,
2830 	.ndo_start_xmit		= e100_xmit_frame,
2831 	.ndo_validate_addr	= eth_validate_addr,
2832 	.ndo_set_rx_mode	= e100_set_multicast_list,
2833 	.ndo_set_mac_address	= e100_set_mac_address,
2834 	.ndo_change_mtu		= e100_change_mtu,
2835 	.ndo_do_ioctl		= e100_do_ioctl,
2836 	.ndo_tx_timeout		= e100_tx_timeout,
2837 #ifdef CONFIG_NET_POLL_CONTROLLER
2838 	.ndo_poll_controller	= e100_netpoll,
2839 #endif
2840 	.ndo_set_features	= e100_set_features,
2841 };
2842 
2843 static int e100_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2844 {
2845 	struct net_device *netdev;
2846 	struct nic *nic;
2847 	int err;
2848 
2849 	if (!(netdev = alloc_etherdev(sizeof(struct nic))))
2850 		return -ENOMEM;
2851 
2852 	netdev->hw_features |= NETIF_F_RXFCS;
2853 	netdev->priv_flags |= IFF_SUPP_NOFCS;
2854 	netdev->hw_features |= NETIF_F_RXALL;
2855 
2856 	netdev->netdev_ops = &e100_netdev_ops;
2857 	SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops);
2858 	netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2859 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2860 
2861 	nic = netdev_priv(netdev);
2862 	netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
2863 	nic->netdev = netdev;
2864 	nic->pdev = pdev;
2865 	nic->msg_enable = (1 << debug) - 1;
2866 	nic->mdio_ctrl = mdio_ctrl_hw;
2867 	pci_set_drvdata(pdev, netdev);
2868 
2869 	if ((err = pci_enable_device(pdev))) {
2870 		netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n");
2871 		goto err_out_free_dev;
2872 	}
2873 
2874 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2875 		netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n");
2876 		err = -ENODEV;
2877 		goto err_out_disable_pdev;
2878 	}
2879 
2880 	if ((err = pci_request_regions(pdev, DRV_NAME))) {
2881 		netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n");
2882 		goto err_out_disable_pdev;
2883 	}
2884 
2885 	if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
2886 		netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n");
2887 		goto err_out_free_res;
2888 	}
2889 
2890 	SET_NETDEV_DEV(netdev, &pdev->dev);
2891 
2892 	if (use_io)
2893 		netif_info(nic, probe, nic->netdev, "using i/o access mode\n");
2894 
2895 	nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
2896 	if (!nic->csr) {
2897 		netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n");
2898 		err = -ENOMEM;
2899 		goto err_out_free_res;
2900 	}
2901 
2902 	if (ent->driver_data)
2903 		nic->flags |= ich;
2904 	else
2905 		nic->flags &= ~ich;
2906 
2907 	e100_get_defaults(nic);
2908 
2909 	/* D100 MAC doesn't allow rx of vlan packets with normal MTU */
2910 	if (nic->mac < mac_82558_D101_A4)
2911 		netdev->features |= NETIF_F_VLAN_CHALLENGED;
2912 
2913 	/* locks must be initialized before calling hw_reset */
2914 	spin_lock_init(&nic->cb_lock);
2915 	spin_lock_init(&nic->cmd_lock);
2916 	spin_lock_init(&nic->mdio_lock);
2917 
2918 	/* Reset the device before pci_set_master() in case device is in some
2919 	 * funky state and has an interrupt pending - hint: we don't have the
2920 	 * interrupt handler registered yet. */
2921 	e100_hw_reset(nic);
2922 
2923 	pci_set_master(pdev);
2924 
2925 	init_timer(&nic->watchdog);
2926 	nic->watchdog.function = e100_watchdog;
2927 	nic->watchdog.data = (unsigned long)nic;
2928 
2929 	INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2930 
2931 	if ((err = e100_alloc(nic))) {
2932 		netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n");
2933 		goto err_out_iounmap;
2934 	}
2935 
2936 	if ((err = e100_eeprom_load(nic)))
2937 		goto err_out_free;
2938 
2939 	e100_phy_init(nic);
2940 
2941 	memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN);
2942 	if (!is_valid_ether_addr(netdev->dev_addr)) {
2943 		if (!eeprom_bad_csum_allow) {
2944 			netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n");
2945 			err = -EAGAIN;
2946 			goto err_out_free;
2947 		} else {
2948 			netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n");
2949 		}
2950 	}
2951 
2952 	/* Wol magic packet can be enabled from eeprom */
2953 	if ((nic->mac >= mac_82558_D101_A4) &&
2954 	   (nic->eeprom[eeprom_id] & eeprom_id_wol)) {
2955 		nic->flags |= wol_magic;
2956 		device_set_wakeup_enable(&pdev->dev, true);
2957 	}
2958 
2959 	/* ack any pending wake events, disable PME */
2960 	pci_pme_active(pdev, false);
2961 
2962 	strcpy(netdev->name, "eth%d");
2963 	if ((err = register_netdev(netdev))) {
2964 		netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n");
2965 		goto err_out_free;
2966 	}
2967 	nic->cbs_pool = pci_pool_create(netdev->name,
2968 			   nic->pdev,
2969 			   nic->params.cbs.max * sizeof(struct cb),
2970 			   sizeof(u32),
2971 			   0);
2972 	netif_info(nic, probe, nic->netdev,
2973 		   "addr 0x%llx, irq %d, MAC addr %pM\n",
2974 		   (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
2975 		   pdev->irq, netdev->dev_addr);
2976 
2977 	return 0;
2978 
2979 err_out_free:
2980 	e100_free(nic);
2981 err_out_iounmap:
2982 	pci_iounmap(pdev, nic->csr);
2983 err_out_free_res:
2984 	pci_release_regions(pdev);
2985 err_out_disable_pdev:
2986 	pci_disable_device(pdev);
2987 err_out_free_dev:
2988 	free_netdev(netdev);
2989 	return err;
2990 }
2991 
2992 static void e100_remove(struct pci_dev *pdev)
2993 {
2994 	struct net_device *netdev = pci_get_drvdata(pdev);
2995 
2996 	if (netdev) {
2997 		struct nic *nic = netdev_priv(netdev);
2998 		unregister_netdev(netdev);
2999 		e100_free(nic);
3000 		pci_iounmap(pdev, nic->csr);
3001 		pci_pool_destroy(nic->cbs_pool);
3002 		free_netdev(netdev);
3003 		pci_release_regions(pdev);
3004 		pci_disable_device(pdev);
3005 	}
3006 }
3007 
3008 #define E100_82552_SMARTSPEED   0x14   /* SmartSpeed Ctrl register */
3009 #define E100_82552_REV_ANEG     0x0200 /* Reverse auto-negotiation */
3010 #define E100_82552_ANEG_NOW     0x0400 /* Auto-negotiate now */
3011 static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake)
3012 {
3013 	struct net_device *netdev = pci_get_drvdata(pdev);
3014 	struct nic *nic = netdev_priv(netdev);
3015 
3016 	if (netif_running(netdev))
3017 		e100_down(nic);
3018 	netif_device_detach(netdev);
3019 
3020 	pci_save_state(pdev);
3021 
3022 	if ((nic->flags & wol_magic) | e100_asf(nic)) {
3023 		/* enable reverse auto-negotiation */
3024 		if (nic->phy == phy_82552_v) {
3025 			u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3026 			                           E100_82552_SMARTSPEED);
3027 
3028 			mdio_write(netdev, nic->mii.phy_id,
3029 			           E100_82552_SMARTSPEED, smartspeed |
3030 			           E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
3031 		}
3032 		*enable_wake = true;
3033 	} else {
3034 		*enable_wake = false;
3035 	}
3036 
3037 	pci_clear_master(pdev);
3038 }
3039 
3040 static int __e100_power_off(struct pci_dev *pdev, bool wake)
3041 {
3042 	if (wake)
3043 		return pci_prepare_to_sleep(pdev);
3044 
3045 	pci_wake_from_d3(pdev, false);
3046 	pci_set_power_state(pdev, PCI_D3hot);
3047 
3048 	return 0;
3049 }
3050 
3051 #ifdef CONFIG_PM
3052 static int e100_suspend(struct pci_dev *pdev, pm_message_t state)
3053 {
3054 	bool wake;
3055 	__e100_shutdown(pdev, &wake);
3056 	return __e100_power_off(pdev, wake);
3057 }
3058 
3059 static int e100_resume(struct pci_dev *pdev)
3060 {
3061 	struct net_device *netdev = pci_get_drvdata(pdev);
3062 	struct nic *nic = netdev_priv(netdev);
3063 
3064 	pci_set_power_state(pdev, PCI_D0);
3065 	pci_restore_state(pdev);
3066 	/* ack any pending wake events, disable PME */
3067 	pci_enable_wake(pdev, PCI_D0, 0);
3068 
3069 	/* disable reverse auto-negotiation */
3070 	if (nic->phy == phy_82552_v) {
3071 		u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3072 		                           E100_82552_SMARTSPEED);
3073 
3074 		mdio_write(netdev, nic->mii.phy_id,
3075 		           E100_82552_SMARTSPEED,
3076 		           smartspeed & ~(E100_82552_REV_ANEG));
3077 	}
3078 
3079 	netif_device_attach(netdev);
3080 	if (netif_running(netdev))
3081 		e100_up(nic);
3082 
3083 	return 0;
3084 }
3085 #endif /* CONFIG_PM */
3086 
3087 static void e100_shutdown(struct pci_dev *pdev)
3088 {
3089 	bool wake;
3090 	__e100_shutdown(pdev, &wake);
3091 	if (system_state == SYSTEM_POWER_OFF)
3092 		__e100_power_off(pdev, wake);
3093 }
3094 
3095 /* ------------------ PCI Error Recovery infrastructure  -------------- */
3096 /**
3097  * e100_io_error_detected - called when PCI error is detected.
3098  * @pdev: Pointer to PCI device
3099  * @state: The current pci connection state
3100  */
3101 static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
3102 {
3103 	struct net_device *netdev = pci_get_drvdata(pdev);
3104 	struct nic *nic = netdev_priv(netdev);
3105 
3106 	netif_device_detach(netdev);
3107 
3108 	if (state == pci_channel_io_perm_failure)
3109 		return PCI_ERS_RESULT_DISCONNECT;
3110 
3111 	if (netif_running(netdev))
3112 		e100_down(nic);
3113 	pci_disable_device(pdev);
3114 
3115 	/* Request a slot reset. */
3116 	return PCI_ERS_RESULT_NEED_RESET;
3117 }
3118 
3119 /**
3120  * e100_io_slot_reset - called after the pci bus has been reset.
3121  * @pdev: Pointer to PCI device
3122  *
3123  * Restart the card from scratch.
3124  */
3125 static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
3126 {
3127 	struct net_device *netdev = pci_get_drvdata(pdev);
3128 	struct nic *nic = netdev_priv(netdev);
3129 
3130 	if (pci_enable_device(pdev)) {
3131 		pr_err("Cannot re-enable PCI device after reset\n");
3132 		return PCI_ERS_RESULT_DISCONNECT;
3133 	}
3134 	pci_set_master(pdev);
3135 
3136 	/* Only one device per card can do a reset */
3137 	if (0 != PCI_FUNC(pdev->devfn))
3138 		return PCI_ERS_RESULT_RECOVERED;
3139 	e100_hw_reset(nic);
3140 	e100_phy_init(nic);
3141 
3142 	return PCI_ERS_RESULT_RECOVERED;
3143 }
3144 
3145 /**
3146  * e100_io_resume - resume normal operations
3147  * @pdev: Pointer to PCI device
3148  *
3149  * Resume normal operations after an error recovery
3150  * sequence has been completed.
3151  */
3152 static void e100_io_resume(struct pci_dev *pdev)
3153 {
3154 	struct net_device *netdev = pci_get_drvdata(pdev);
3155 	struct nic *nic = netdev_priv(netdev);
3156 
3157 	/* ack any pending wake events, disable PME */
3158 	pci_enable_wake(pdev, PCI_D0, 0);
3159 
3160 	netif_device_attach(netdev);
3161 	if (netif_running(netdev)) {
3162 		e100_open(netdev);
3163 		mod_timer(&nic->watchdog, jiffies);
3164 	}
3165 }
3166 
3167 static const struct pci_error_handlers e100_err_handler = {
3168 	.error_detected = e100_io_error_detected,
3169 	.slot_reset = e100_io_slot_reset,
3170 	.resume = e100_io_resume,
3171 };
3172 
3173 static struct pci_driver e100_driver = {
3174 	.name =         DRV_NAME,
3175 	.id_table =     e100_id_table,
3176 	.probe =        e100_probe,
3177 	.remove =       e100_remove,
3178 #ifdef CONFIG_PM
3179 	/* Power Management hooks */
3180 	.suspend =      e100_suspend,
3181 	.resume =       e100_resume,
3182 #endif
3183 	.shutdown =     e100_shutdown,
3184 	.err_handler = &e100_err_handler,
3185 };
3186 
3187 static int __init e100_init_module(void)
3188 {
3189 	if (((1 << debug) - 1) & NETIF_MSG_DRV) {
3190 		pr_info("%s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
3191 		pr_info("%s\n", DRV_COPYRIGHT);
3192 	}
3193 	return pci_register_driver(&e100_driver);
3194 }
3195 
3196 static void __exit e100_cleanup_module(void)
3197 {
3198 	pci_unregister_driver(&e100_driver);
3199 }
3200 
3201 module_init(e100_init_module);
3202 module_exit(e100_cleanup_module);
3203