1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2006 Intel Corporation. */
3
4 /*
5 * e100.c: Intel(R) PRO/100 ethernet driver
6 *
7 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on
8 * original e100 driver, but better described as a munging of
9 * e100, e1000, eepro100, tg3, 8139cp, and other drivers.
10 *
11 * References:
12 * Intel 8255x 10/100 Mbps Ethernet Controller Family,
13 * Open Source Software Developers Manual,
14 * http://sourceforge.net/projects/e1000
15 *
16 *
17 * Theory of Operation
18 *
19 * I. General
20 *
21 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
22 * controller family, which includes the 82557, 82558, 82559, 82550,
23 * 82551, and 82562 devices. 82558 and greater controllers
24 * integrate the Intel 82555 PHY. The controllers are used in
25 * server and client network interface cards, as well as in
26 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
27 * configurations. 8255x supports a 32-bit linear addressing
28 * mode and operates at 33Mhz PCI clock rate.
29 *
30 * II. Driver Operation
31 *
32 * Memory-mapped mode is used exclusively to access the device's
33 * shared-memory structure, the Control/Status Registers (CSR). All
34 * setup, configuration, and control of the device, including queuing
35 * of Tx, Rx, and configuration commands is through the CSR.
36 * cmd_lock serializes accesses to the CSR command register. cb_lock
37 * protects the shared Command Block List (CBL).
38 *
39 * 8255x is highly MII-compliant and all access to the PHY go
40 * through the Management Data Interface (MDI). Consequently, the
41 * driver leverages the mii.c library shared with other MII-compliant
42 * devices.
43 *
44 * Big- and Little-Endian byte order as well as 32- and 64-bit
45 * archs are supported. Weak-ordered memory and non-cache-coherent
46 * archs are supported.
47 *
48 * III. Transmit
49 *
50 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked
51 * together in a fixed-size ring (CBL) thus forming the flexible mode
52 * memory structure. A TCB marked with the suspend-bit indicates
53 * the end of the ring. The last TCB processed suspends the
54 * controller, and the controller can be restarted by issue a CU
55 * resume command to continue from the suspend point, or a CU start
56 * command to start at a given position in the ring.
57 *
58 * Non-Tx commands (config, multicast setup, etc) are linked
59 * into the CBL ring along with Tx commands. The common structure
60 * used for both Tx and non-Tx commands is the Command Block (CB).
61 *
62 * cb_to_use is the next CB to use for queuing a command; cb_to_clean
63 * is the next CB to check for completion; cb_to_send is the first
64 * CB to start on in case of a previous failure to resume. CB clean
65 * up happens in interrupt context in response to a CU interrupt.
66 * cbs_avail keeps track of number of free CB resources available.
67 *
68 * Hardware padding of short packets to minimum packet size is
69 * enabled. 82557 pads with 7Eh, while the later controllers pad
70 * with 00h.
71 *
72 * IV. Receive
73 *
74 * The Receive Frame Area (RFA) comprises a ring of Receive Frame
75 * Descriptors (RFD) + data buffer, thus forming the simplified mode
76 * memory structure. Rx skbs are allocated to contain both the RFD
77 * and the data buffer, but the RFD is pulled off before the skb is
78 * indicated. The data buffer is aligned such that encapsulated
79 * protocol headers are u32-aligned. Since the RFD is part of the
80 * mapped shared memory, and completion status is contained within
81 * the RFD, the RFD must be dma_sync'ed to maintain a consistent
82 * view from software and hardware.
83 *
84 * In order to keep updates to the RFD link field from colliding with
85 * hardware writes to mark packets complete, we use the feature that
86 * hardware will not write to a size 0 descriptor and mark the previous
87 * packet as end-of-list (EL). After updating the link, we remove EL
88 * and only then restore the size such that hardware may use the
89 * previous-to-end RFD.
90 *
91 * Under typical operation, the receive unit (RU) is start once,
92 * and the controller happily fills RFDs as frames arrive. If
93 * replacement RFDs cannot be allocated, or the RU goes non-active,
94 * the RU must be restarted. Frame arrival generates an interrupt,
95 * and Rx indication and re-allocation happen in the same context,
96 * therefore no locking is required. A software-generated interrupt
97 * is generated from the watchdog to recover from a failed allocation
98 * scenario where all Rx resources have been indicated and none re-
99 * placed.
100 *
101 * V. Miscellaneous
102 *
103 * VLAN offloading of tagging, stripping and filtering is not
104 * supported, but driver will accommodate the extra 4-byte VLAN tag
105 * for processing by upper layers. Tx/Rx Checksum offloading is not
106 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is
107 * not supported (hardware limitation).
108 *
109 * MagicPacket(tm) WoL support is enabled/disabled via ethtool.
110 *
111 * Thanks to JC (jchapman@katalix.com) for helping with
112 * testing/troubleshooting the development driver.
113 *
114 * TODO:
115 * o several entry points race with dev->close
116 * o check for tx-no-resources/stop Q races with tx clean/wake Q
117 *
118 * FIXES:
119 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
120 * - Stratus87247: protect MDI control register manipulations
121 * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
122 * - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
123 */
124
125 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
126
127 #include <linux/hardirq.h>
128 #include <linux/interrupt.h>
129 #include <linux/module.h>
130 #include <linux/moduleparam.h>
131 #include <linux/kernel.h>
132 #include <linux/types.h>
133 #include <linux/sched.h>
134 #include <linux/slab.h>
135 #include <linux/delay.h>
136 #include <linux/init.h>
137 #include <linux/pci.h>
138 #include <linux/dma-mapping.h>
139 #include <linux/dmapool.h>
140 #include <linux/netdevice.h>
141 #include <linux/etherdevice.h>
142 #include <linux/mii.h>
143 #include <linux/if_vlan.h>
144 #include <linux/skbuff.h>
145 #include <linux/ethtool.h>
146 #include <linux/string.h>
147 #include <linux/firmware.h>
148 #include <linux/rtnetlink.h>
149 #include <linux/unaligned.h>
150
151
152 #define DRV_NAME "e100"
153 #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver"
154 #define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation"
155
156 #define E100_WATCHDOG_PERIOD (2 * HZ)
157 #define E100_NAPI_WEIGHT 16
158
159 #define FIRMWARE_D101M "e100/d101m_ucode.bin"
160 #define FIRMWARE_D101S "e100/d101s_ucode.bin"
161 #define FIRMWARE_D102E "e100/d102e_ucode.bin"
162
163 MODULE_DESCRIPTION(DRV_DESCRIPTION);
164 MODULE_LICENSE("GPL v2");
165 MODULE_FIRMWARE(FIRMWARE_D101M);
166 MODULE_FIRMWARE(FIRMWARE_D101S);
167 MODULE_FIRMWARE(FIRMWARE_D102E);
168
169 static int debug = 3;
170 static int eeprom_bad_csum_allow = 0;
171 static int use_io = 0;
172 module_param(debug, int, 0);
173 module_param(eeprom_bad_csum_allow, int, 0444);
174 module_param(use_io, int, 0444);
175 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
176 MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums");
177 MODULE_PARM_DESC(use_io, "Force use of i/o access mode");
178
179 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
180 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
181 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
182 static const struct pci_device_id e100_id_table[] = {
183 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
184 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
185 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
186 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
187 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
188 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
189 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
190 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
191 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
192 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
193 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
194 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
195 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
196 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
197 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
198 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
199 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
200 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
201 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
202 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
203 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
204 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
205 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
206 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
207 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
208 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
209 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
210 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
211 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
212 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
213 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
214 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
215 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
216 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
217 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
218 INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
219 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
220 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
221 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
222 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
223 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
224 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
225 { 0, }
226 };
227 MODULE_DEVICE_TABLE(pci, e100_id_table);
228
229 enum mac {
230 mac_82557_D100_A = 0,
231 mac_82557_D100_B = 1,
232 mac_82557_D100_C = 2,
233 mac_82558_D101_A4 = 4,
234 mac_82558_D101_B0 = 5,
235 mac_82559_D101M = 8,
236 mac_82559_D101S = 9,
237 mac_82550_D102 = 12,
238 mac_82550_D102_C = 13,
239 mac_82551_E = 14,
240 mac_82551_F = 15,
241 mac_82551_10 = 16,
242 mac_unknown = 0xFF,
243 };
244
245 enum phy {
246 phy_100a = 0x000003E0,
247 phy_100c = 0x035002A8,
248 phy_82555_tx = 0x015002A8,
249 phy_nsc_tx = 0x5C002000,
250 phy_82562_et = 0x033002A8,
251 phy_82562_em = 0x032002A8,
252 phy_82562_ek = 0x031002A8,
253 phy_82562_eh = 0x017002A8,
254 phy_82552_v = 0xd061004d,
255 phy_unknown = 0xFFFFFFFF,
256 };
257
258 /* CSR (Control/Status Registers) */
259 struct csr {
260 struct {
261 u8 status;
262 u8 stat_ack;
263 u8 cmd_lo;
264 u8 cmd_hi;
265 u32 gen_ptr;
266 } scb;
267 u32 port;
268 u16 flash_ctrl;
269 u8 eeprom_ctrl_lo;
270 u8 eeprom_ctrl_hi;
271 u32 mdi_ctrl;
272 u32 rx_dma_count;
273 };
274
275 enum scb_status {
276 rus_no_res = 0x08,
277 rus_ready = 0x10,
278 rus_mask = 0x3C,
279 };
280
281 enum ru_state {
282 RU_SUSPENDED = 0,
283 RU_RUNNING = 1,
284 RU_UNINITIALIZED = -1,
285 };
286
287 enum scb_stat_ack {
288 stat_ack_not_ours = 0x00,
289 stat_ack_sw_gen = 0x04,
290 stat_ack_rnr = 0x10,
291 stat_ack_cu_idle = 0x20,
292 stat_ack_frame_rx = 0x40,
293 stat_ack_cu_cmd_done = 0x80,
294 stat_ack_not_present = 0xFF,
295 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
296 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
297 };
298
299 enum scb_cmd_hi {
300 irq_mask_none = 0x00,
301 irq_mask_all = 0x01,
302 irq_sw_gen = 0x02,
303 };
304
305 enum scb_cmd_lo {
306 cuc_nop = 0x00,
307 ruc_start = 0x01,
308 ruc_load_base = 0x06,
309 cuc_start = 0x10,
310 cuc_resume = 0x20,
311 cuc_dump_addr = 0x40,
312 cuc_dump_stats = 0x50,
313 cuc_load_base = 0x60,
314 cuc_dump_reset = 0x70,
315 };
316
317 enum cuc_dump {
318 cuc_dump_complete = 0x0000A005,
319 cuc_dump_reset_complete = 0x0000A007,
320 };
321
322 enum port {
323 software_reset = 0x0000,
324 selftest = 0x0001,
325 selective_reset = 0x0002,
326 };
327
328 enum eeprom_ctrl_lo {
329 eesk = 0x01,
330 eecs = 0x02,
331 eedi = 0x04,
332 eedo = 0x08,
333 };
334
335 enum mdi_ctrl {
336 mdi_write = 0x04000000,
337 mdi_read = 0x08000000,
338 mdi_ready = 0x10000000,
339 };
340
341 enum eeprom_op {
342 op_write = 0x05,
343 op_read = 0x06,
344 op_ewds = 0x10,
345 op_ewen = 0x13,
346 };
347
348 enum eeprom_offsets {
349 eeprom_cnfg_mdix = 0x03,
350 eeprom_phy_iface = 0x06,
351 eeprom_id = 0x0A,
352 eeprom_config_asf = 0x0D,
353 eeprom_smbus_addr = 0x90,
354 };
355
356 enum eeprom_cnfg_mdix {
357 eeprom_mdix_enabled = 0x0080,
358 };
359
360 enum eeprom_phy_iface {
361 NoSuchPhy = 0,
362 I82553AB,
363 I82553C,
364 I82503,
365 DP83840,
366 S80C240,
367 S80C24,
368 I82555,
369 DP83840A = 10,
370 };
371
372 enum eeprom_id {
373 eeprom_id_wol = 0x0020,
374 };
375
376 enum eeprom_config_asf {
377 eeprom_asf = 0x8000,
378 eeprom_gcl = 0x4000,
379 };
380
381 enum cb_status {
382 cb_complete = 0x8000,
383 cb_ok = 0x2000,
384 };
385
386 /*
387 * cb_command - Command Block flags
388 * @cb_tx_nc: 0: controller does CRC (normal), 1: CRC from skb memory
389 */
390 enum cb_command {
391 cb_nop = 0x0000,
392 cb_iaaddr = 0x0001,
393 cb_config = 0x0002,
394 cb_multi = 0x0003,
395 cb_tx = 0x0004,
396 cb_ucode = 0x0005,
397 cb_dump = 0x0006,
398 cb_tx_sf = 0x0008,
399 cb_tx_nc = 0x0010,
400 cb_cid = 0x1f00,
401 cb_i = 0x2000,
402 cb_s = 0x4000,
403 cb_el = 0x8000,
404 };
405
406 struct rfd {
407 __le16 status;
408 __le16 command;
409 __le32 link;
410 __le32 rbd;
411 __le16 actual_size;
412 __le16 size;
413 };
414
415 struct rx {
416 struct rx *next, *prev;
417 struct sk_buff *skb;
418 dma_addr_t dma_addr;
419 };
420
421 #if defined(__BIG_ENDIAN_BITFIELD)
422 #define X(a,b) b,a
423 #else
424 #define X(a,b) a,b
425 #endif
426 struct config {
427 /*0*/ u8 X(byte_count:6, pad0:2);
428 /*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1);
429 /*2*/ u8 adaptive_ifs;
430 /*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1),
431 term_write_cache_line:1), pad3:4);
432 /*4*/ u8 X(rx_dma_max_count:7, pad4:1);
433 /*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1);
434 /*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1),
435 tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1),
436 rx_save_overruns : 1), rx_save_bad_frames : 1);
437 /*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2),
438 pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1),
439 tx_dynamic_tbd:1);
440 /*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1);
441 /*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1),
442 link_status_wake:1), arp_wake:1), mcmatch_wake:1);
443 /*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2),
444 loopback:2);
445 /*11*/ u8 X(linear_priority:3, pad11:5);
446 /*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4);
447 /*13*/ u8 ip_addr_lo;
448 /*14*/ u8 ip_addr_hi;
449 /*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1),
450 wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1),
451 pad15_2:1), crs_or_cdt:1);
452 /*16*/ u8 fc_delay_lo;
453 /*17*/ u8 fc_delay_hi;
454 /*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1),
455 rx_long_ok:1), fc_priority_threshold:3), pad18:1);
456 /*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1),
457 fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1),
458 full_duplex_force:1), full_duplex_pin:1);
459 /*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1);
460 /*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4);
461 /*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6);
462 u8 pad_d102[9];
463 };
464
465 #define E100_MAX_MULTICAST_ADDRS 64
466 struct multi {
467 __le16 count;
468 u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/];
469 };
470
471 /* Important: keep total struct u32-aligned */
472 #define UCODE_SIZE 134
473 struct cb {
474 __le16 status;
475 __le16 command;
476 __le32 link;
477 union {
478 u8 iaaddr[ETH_ALEN];
479 __le32 ucode[UCODE_SIZE];
480 struct config config;
481 struct multi multi;
482 struct {
483 u32 tbd_array;
484 u16 tcb_byte_count;
485 u8 threshold;
486 u8 tbd_count;
487 struct {
488 __le32 buf_addr;
489 __le16 size;
490 u16 eol;
491 } tbd;
492 } tcb;
493 __le32 dump_buffer_addr;
494 } u;
495 struct cb *next, *prev;
496 dma_addr_t dma_addr;
497 struct sk_buff *skb;
498 };
499
500 enum loopback {
501 lb_none = 0, lb_mac = 1, lb_phy = 3,
502 };
503
504 struct stats {
505 __le32 tx_good_frames, tx_max_collisions, tx_late_collisions,
506 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
507 tx_multiple_collisions, tx_total_collisions;
508 __le32 rx_good_frames, rx_crc_errors, rx_alignment_errors,
509 rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
510 rx_short_frame_errors;
511 __le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
512 __le16 xmt_tco_frames, rcv_tco_frames;
513 __le32 complete;
514 };
515
516 struct mem {
517 struct {
518 u32 signature;
519 u32 result;
520 } selftest;
521 struct stats stats;
522 u8 dump_buf[596];
523 };
524
525 struct param_range {
526 u32 min;
527 u32 max;
528 u32 count;
529 };
530
531 struct params {
532 struct param_range rfds;
533 struct param_range cbs;
534 };
535
536 struct nic {
537 /* Begin: frequently used values: keep adjacent for cache effect */
538 u32 msg_enable ____cacheline_aligned;
539 struct net_device *netdev;
540 struct pci_dev *pdev;
541 u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data);
542
543 struct rx *rxs ____cacheline_aligned;
544 struct rx *rx_to_use;
545 struct rx *rx_to_clean;
546 struct rfd blank_rfd;
547 enum ru_state ru_running;
548
549 spinlock_t cb_lock ____cacheline_aligned;
550 spinlock_t cmd_lock;
551 struct csr __iomem *csr;
552 enum scb_cmd_lo cuc_cmd;
553 unsigned int cbs_avail;
554 struct napi_struct napi;
555 struct cb *cbs;
556 struct cb *cb_to_use;
557 struct cb *cb_to_send;
558 struct cb *cb_to_clean;
559 __le16 tx_command;
560 /* End: frequently used values: keep adjacent for cache effect */
561
562 enum {
563 ich = (1 << 0),
564 promiscuous = (1 << 1),
565 multicast_all = (1 << 2),
566 wol_magic = (1 << 3),
567 ich_10h_workaround = (1 << 4),
568 } flags ____cacheline_aligned;
569
570 enum mac mac;
571 enum phy phy;
572 struct params params;
573 struct timer_list watchdog;
574 struct mii_if_info mii;
575 struct work_struct tx_timeout_task;
576 enum loopback loopback;
577
578 struct mem *mem;
579 dma_addr_t dma_addr;
580
581 struct dma_pool *cbs_pool;
582 dma_addr_t cbs_dma_addr;
583 u8 adaptive_ifs;
584 u8 tx_threshold;
585 u32 tx_frames;
586 u32 tx_collisions;
587 u32 tx_deferred;
588 u32 tx_single_collisions;
589 u32 tx_multiple_collisions;
590 u32 tx_fc_pause;
591 u32 tx_tco_frames;
592
593 u32 rx_fc_pause;
594 u32 rx_fc_unsupported;
595 u32 rx_tco_frames;
596 u32 rx_short_frame_errors;
597 u32 rx_over_length_errors;
598
599 u16 eeprom_wc;
600 __le16 eeprom[256];
601 spinlock_t mdio_lock;
602 const struct firmware *fw;
603 };
604
e100_write_flush(struct nic * nic)605 static inline void e100_write_flush(struct nic *nic)
606 {
607 /* Flush previous PCI writes through intermediate bridges
608 * by doing a benign read */
609 (void)ioread8(&nic->csr->scb.status);
610 }
611
e100_enable_irq(struct nic * nic)612 static void e100_enable_irq(struct nic *nic)
613 {
614 unsigned long flags;
615
616 spin_lock_irqsave(&nic->cmd_lock, flags);
617 iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi);
618 e100_write_flush(nic);
619 spin_unlock_irqrestore(&nic->cmd_lock, flags);
620 }
621
e100_disable_irq(struct nic * nic)622 static void e100_disable_irq(struct nic *nic)
623 {
624 unsigned long flags;
625
626 spin_lock_irqsave(&nic->cmd_lock, flags);
627 iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi);
628 e100_write_flush(nic);
629 spin_unlock_irqrestore(&nic->cmd_lock, flags);
630 }
631
e100_hw_reset(struct nic * nic)632 static void e100_hw_reset(struct nic *nic)
633 {
634 /* Put CU and RU into idle with a selective reset to get
635 * device off of PCI bus */
636 iowrite32(selective_reset, &nic->csr->port);
637 e100_write_flush(nic); udelay(20);
638
639 /* Now fully reset device */
640 iowrite32(software_reset, &nic->csr->port);
641 e100_write_flush(nic); udelay(20);
642
643 /* Mask off our interrupt line - it's unmasked after reset */
644 e100_disable_irq(nic);
645 }
646
e100_self_test(struct nic * nic)647 static int e100_self_test(struct nic *nic)
648 {
649 u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest);
650
651 /* Passing the self-test is a pretty good indication
652 * that the device can DMA to/from host memory */
653
654 nic->mem->selftest.signature = 0;
655 nic->mem->selftest.result = 0xFFFFFFFF;
656
657 iowrite32(selftest | dma_addr, &nic->csr->port);
658 e100_write_flush(nic);
659 /* Wait 10 msec for self-test to complete */
660 msleep(10);
661
662 /* Interrupts are enabled after self-test */
663 e100_disable_irq(nic);
664
665 /* Check results of self-test */
666 if (nic->mem->selftest.result != 0) {
667 netif_err(nic, hw, nic->netdev,
668 "Self-test failed: result=0x%08X\n",
669 nic->mem->selftest.result);
670 return -ETIMEDOUT;
671 }
672 if (nic->mem->selftest.signature == 0) {
673 netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n");
674 return -ETIMEDOUT;
675 }
676
677 return 0;
678 }
679
e100_eeprom_write(struct nic * nic,u16 addr_len,u16 addr,__le16 data)680 static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data)
681 {
682 u32 cmd_addr_data[3];
683 u8 ctrl;
684 int i, j;
685
686 /* Three cmds: write/erase enable, write data, write/erase disable */
687 cmd_addr_data[0] = op_ewen << (addr_len - 2);
688 cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) |
689 le16_to_cpu(data);
690 cmd_addr_data[2] = op_ewds << (addr_len - 2);
691
692 /* Bit-bang cmds to write word to eeprom */
693 for (j = 0; j < 3; j++) {
694
695 /* Chip select */
696 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
697 e100_write_flush(nic); udelay(4);
698
699 for (i = 31; i >= 0; i--) {
700 ctrl = (cmd_addr_data[j] & (1 << i)) ?
701 eecs | eedi : eecs;
702 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
703 e100_write_flush(nic); udelay(4);
704
705 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
706 e100_write_flush(nic); udelay(4);
707 }
708 /* Wait 10 msec for cmd to complete */
709 msleep(10);
710
711 /* Chip deselect */
712 iowrite8(0, &nic->csr->eeprom_ctrl_lo);
713 e100_write_flush(nic); udelay(4);
714 }
715 };
716
717 /* General technique stolen from the eepro100 driver - very clever */
e100_eeprom_read(struct nic * nic,u16 * addr_len,u16 addr)718 static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr)
719 {
720 u32 cmd_addr_data;
721 u16 data = 0;
722 u8 ctrl;
723 int i;
724
725 cmd_addr_data = ((op_read << *addr_len) | addr) << 16;
726
727 /* Chip select */
728 iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo);
729 e100_write_flush(nic); udelay(4);
730
731 /* Bit-bang to read word from eeprom */
732 for (i = 31; i >= 0; i--) {
733 ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs;
734 iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo);
735 e100_write_flush(nic); udelay(4);
736
737 iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo);
738 e100_write_flush(nic); udelay(4);
739
740 /* Eeprom drives a dummy zero to EEDO after receiving
741 * complete address. Use this to adjust addr_len. */
742 ctrl = ioread8(&nic->csr->eeprom_ctrl_lo);
743 if (!(ctrl & eedo) && i > 16) {
744 *addr_len -= (i - 16);
745 i = 17;
746 }
747
748 data = (data << 1) | (ctrl & eedo ? 1 : 0);
749 }
750
751 /* Chip deselect */
752 iowrite8(0, &nic->csr->eeprom_ctrl_lo);
753 e100_write_flush(nic); udelay(4);
754
755 return cpu_to_le16(data);
756 };
757
758 /* Load entire EEPROM image into driver cache and validate checksum */
e100_eeprom_load(struct nic * nic)759 static int e100_eeprom_load(struct nic *nic)
760 {
761 u16 addr, addr_len = 8, checksum = 0;
762
763 /* Try reading with an 8-bit addr len to discover actual addr len */
764 e100_eeprom_read(nic, &addr_len, 0);
765 nic->eeprom_wc = 1 << addr_len;
766
767 for (addr = 0; addr < nic->eeprom_wc; addr++) {
768 nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr);
769 if (addr < nic->eeprom_wc - 1)
770 checksum += le16_to_cpu(nic->eeprom[addr]);
771 }
772
773 /* The checksum, stored in the last word, is calculated such that
774 * the sum of words should be 0xBABA */
775 if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) {
776 netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n");
777 if (!eeprom_bad_csum_allow)
778 return -EAGAIN;
779 }
780
781 return 0;
782 }
783
784 /* Save (portion of) driver EEPROM cache to device and update checksum */
e100_eeprom_save(struct nic * nic,u16 start,u16 count)785 static int e100_eeprom_save(struct nic *nic, u16 start, u16 count)
786 {
787 u16 addr, addr_len = 8, checksum = 0;
788
789 /* Try reading with an 8-bit addr len to discover actual addr len */
790 e100_eeprom_read(nic, &addr_len, 0);
791 nic->eeprom_wc = 1 << addr_len;
792
793 if (start + count >= nic->eeprom_wc)
794 return -EINVAL;
795
796 for (addr = start; addr < start + count; addr++)
797 e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]);
798
799 /* The checksum, stored in the last word, is calculated such that
800 * the sum of words should be 0xBABA */
801 for (addr = 0; addr < nic->eeprom_wc - 1; addr++)
802 checksum += le16_to_cpu(nic->eeprom[addr]);
803 nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum);
804 e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1,
805 nic->eeprom[nic->eeprom_wc - 1]);
806
807 return 0;
808 }
809
810 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
811 #define E100_WAIT_SCB_FAST 20 /* delay like the old code */
e100_exec_cmd(struct nic * nic,u8 cmd,dma_addr_t dma_addr)812 static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr)
813 {
814 unsigned long flags;
815 unsigned int i;
816 int err = 0;
817
818 spin_lock_irqsave(&nic->cmd_lock, flags);
819
820 /* Previous command is accepted when SCB clears */
821 for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) {
822 if (likely(!ioread8(&nic->csr->scb.cmd_lo)))
823 break;
824 cpu_relax();
825 if (unlikely(i > E100_WAIT_SCB_FAST))
826 udelay(5);
827 }
828 if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) {
829 err = -EAGAIN;
830 goto err_unlock;
831 }
832
833 if (unlikely(cmd != cuc_resume))
834 iowrite32(dma_addr, &nic->csr->scb.gen_ptr);
835 iowrite8(cmd, &nic->csr->scb.cmd_lo);
836
837 err_unlock:
838 spin_unlock_irqrestore(&nic->cmd_lock, flags);
839
840 return err;
841 }
842
e100_exec_cb(struct nic * nic,struct sk_buff * skb,int (* cb_prepare)(struct nic *,struct cb *,struct sk_buff *))843 static int e100_exec_cb(struct nic *nic, struct sk_buff *skb,
844 int (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *))
845 {
846 struct cb *cb;
847 unsigned long flags;
848 int err;
849
850 spin_lock_irqsave(&nic->cb_lock, flags);
851
852 if (unlikely(!nic->cbs_avail)) {
853 err = -ENOMEM;
854 goto err_unlock;
855 }
856
857 cb = nic->cb_to_use;
858 nic->cb_to_use = cb->next;
859 nic->cbs_avail--;
860 cb->skb = skb;
861
862 err = cb_prepare(nic, cb, skb);
863 if (err)
864 goto err_unlock;
865
866 if (unlikely(!nic->cbs_avail))
867 err = -ENOSPC;
868
869
870 /* Order is important otherwise we'll be in a race with h/w:
871 * set S-bit in current first, then clear S-bit in previous. */
872 cb->command |= cpu_to_le16(cb_s);
873 dma_wmb();
874 cb->prev->command &= cpu_to_le16(~cb_s);
875
876 while (nic->cb_to_send != nic->cb_to_use) {
877 if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd,
878 nic->cb_to_send->dma_addr))) {
879 /* Ok, here's where things get sticky. It's
880 * possible that we can't schedule the command
881 * because the controller is too busy, so
882 * let's just queue the command and try again
883 * when another command is scheduled. */
884 if (err == -ENOSPC) {
885 //request a reset
886 schedule_work(&nic->tx_timeout_task);
887 }
888 break;
889 } else {
890 nic->cuc_cmd = cuc_resume;
891 nic->cb_to_send = nic->cb_to_send->next;
892 }
893 }
894
895 err_unlock:
896 spin_unlock_irqrestore(&nic->cb_lock, flags);
897
898 return err;
899 }
900
mdio_read(struct net_device * netdev,int addr,int reg)901 static int mdio_read(struct net_device *netdev, int addr, int reg)
902 {
903 struct nic *nic = netdev_priv(netdev);
904 return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0);
905 }
906
mdio_write(struct net_device * netdev,int addr,int reg,int data)907 static void mdio_write(struct net_device *netdev, int addr, int reg, int data)
908 {
909 struct nic *nic = netdev_priv(netdev);
910
911 nic->mdio_ctrl(nic, addr, mdi_write, reg, data);
912 }
913
914 /* the standard mdio_ctrl() function for usual MII-compliant hardware */
mdio_ctrl_hw(struct nic * nic,u32 addr,u32 dir,u32 reg,u16 data)915 static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data)
916 {
917 u32 data_out = 0;
918 unsigned int i;
919 unsigned long flags;
920
921
922 /*
923 * Stratus87247: we shouldn't be writing the MDI control
924 * register until the Ready bit shows True. Also, since
925 * manipulation of the MDI control registers is a multi-step
926 * procedure it should be done under lock.
927 */
928 spin_lock_irqsave(&nic->mdio_lock, flags);
929 for (i = 100; i; --i) {
930 if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready)
931 break;
932 udelay(20);
933 }
934 if (unlikely(!i)) {
935 netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n");
936 spin_unlock_irqrestore(&nic->mdio_lock, flags);
937 return 0; /* No way to indicate timeout error */
938 }
939 iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl);
940
941 for (i = 0; i < 100; i++) {
942 udelay(20);
943 if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready)
944 break;
945 }
946 spin_unlock_irqrestore(&nic->mdio_lock, flags);
947 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
948 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
949 dir == mdi_read ? "READ" : "WRITE",
950 addr, reg, data, data_out);
951 return (u16)data_out;
952 }
953
954 /* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
mdio_ctrl_phy_82552_v(struct nic * nic,u32 addr,u32 dir,u32 reg,u16 data)955 static u16 mdio_ctrl_phy_82552_v(struct nic *nic,
956 u32 addr,
957 u32 dir,
958 u32 reg,
959 u16 data)
960 {
961 if ((reg == MII_BMCR) && (dir == mdi_write)) {
962 if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) {
963 u16 advert = mdio_read(nic->netdev, nic->mii.phy_id,
964 MII_ADVERTISE);
965
966 /*
967 * Workaround Si issue where sometimes the part will not
968 * autoneg to 100Mbps even when advertised.
969 */
970 if (advert & ADVERTISE_100FULL)
971 data |= BMCR_SPEED100 | BMCR_FULLDPLX;
972 else if (advert & ADVERTISE_100HALF)
973 data |= BMCR_SPEED100;
974 }
975 }
976 return mdio_ctrl_hw(nic, addr, dir, reg, data);
977 }
978
979 /* Fully software-emulated mdio_ctrl() function for cards without
980 * MII-compliant PHYs.
981 * For now, this is mainly geared towards 80c24 support; in case of further
982 * requirements for other types (i82503, ...?) either extend this mechanism
983 * or split it, whichever is cleaner.
984 */
mdio_ctrl_phy_mii_emulated(struct nic * nic,u32 addr,u32 dir,u32 reg,u16 data)985 static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic,
986 u32 addr,
987 u32 dir,
988 u32 reg,
989 u16 data)
990 {
991 /* might need to allocate a netdev_priv'ed register array eventually
992 * to be able to record state changes, but for now
993 * some fully hardcoded register handling ought to be ok I guess. */
994
995 if (dir == mdi_read) {
996 switch (reg) {
997 case MII_BMCR:
998 /* Auto-negotiation, right? */
999 return BMCR_ANENABLE |
1000 BMCR_FULLDPLX;
1001 case MII_BMSR:
1002 return BMSR_LSTATUS /* for mii_link_ok() */ |
1003 BMSR_ANEGCAPABLE |
1004 BMSR_10FULL;
1005 case MII_ADVERTISE:
1006 /* 80c24 is a "combo card" PHY, right? */
1007 return ADVERTISE_10HALF |
1008 ADVERTISE_10FULL;
1009 default:
1010 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1011 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1012 dir == mdi_read ? "READ" : "WRITE",
1013 addr, reg, data);
1014 return 0xFFFF;
1015 }
1016 } else {
1017 switch (reg) {
1018 default:
1019 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1020 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1021 dir == mdi_read ? "READ" : "WRITE",
1022 addr, reg, data);
1023 return 0xFFFF;
1024 }
1025 }
1026 }
e100_phy_supports_mii(struct nic * nic)1027 static inline int e100_phy_supports_mii(struct nic *nic)
1028 {
1029 /* for now, just check it by comparing whether we
1030 are using MII software emulation.
1031 */
1032 return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated);
1033 }
1034
e100_get_defaults(struct nic * nic)1035 static void e100_get_defaults(struct nic *nic)
1036 {
1037 struct param_range rfds = { .min = 16, .max = 256, .count = 256 };
1038 struct param_range cbs = { .min = 64, .max = 256, .count = 128 };
1039
1040 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
1041 nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision;
1042 if (nic->mac == mac_unknown)
1043 nic->mac = mac_82557_D100_A;
1044
1045 nic->params.rfds = rfds;
1046 nic->params.cbs = cbs;
1047
1048 /* Quadwords to DMA into FIFO before starting frame transmit */
1049 nic->tx_threshold = 0xE0;
1050
1051 /* no interrupt for every tx completion, delay = 256us if not 557 */
1052 nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf |
1053 ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i));
1054
1055 /* Template for a freshly allocated RFD */
1056 nic->blank_rfd.command = 0;
1057 nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF);
1058 nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN);
1059
1060 /* MII setup */
1061 nic->mii.phy_id_mask = 0x1F;
1062 nic->mii.reg_num_mask = 0x1F;
1063 nic->mii.dev = nic->netdev;
1064 nic->mii.mdio_read = mdio_read;
1065 nic->mii.mdio_write = mdio_write;
1066 }
1067
e100_configure(struct nic * nic,struct cb * cb,struct sk_buff * skb)1068 static int e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1069 {
1070 struct config *config = &cb->u.config;
1071 u8 *c = (u8 *)config;
1072 struct net_device *netdev = nic->netdev;
1073
1074 cb->command = cpu_to_le16(cb_config);
1075
1076 memset(config, 0, sizeof(struct config));
1077
1078 config->byte_count = 0x16; /* bytes in this struct */
1079 config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */
1080 config->direct_rx_dma = 0x1; /* reserved */
1081 config->standard_tcb = 0x1; /* 1=standard, 0=extended */
1082 config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */
1083 config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */
1084 config->tx_underrun_retry = 0x3; /* # of underrun retries */
1085 if (e100_phy_supports_mii(nic))
1086 config->mii_mode = 1; /* 1=MII mode, 0=i82503 mode */
1087 config->pad10 = 0x6;
1088 config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */
1089 config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */
1090 config->ifs = 0x6; /* x16 = inter frame spacing */
1091 config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */
1092 config->pad15_1 = 0x1;
1093 config->pad15_2 = 0x1;
1094 config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */
1095 config->fc_delay_hi = 0x40; /* time delay for fc frame */
1096 config->tx_padding = 0x1; /* 1=pad short frames */
1097 config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */
1098 config->pad18 = 0x1;
1099 config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */
1100 config->pad20_1 = 0x1F;
1101 config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */
1102 config->pad21_1 = 0x5;
1103
1104 config->adaptive_ifs = nic->adaptive_ifs;
1105 config->loopback = nic->loopback;
1106
1107 if (nic->mii.force_media && nic->mii.full_duplex)
1108 config->full_duplex_force = 0x1; /* 1=force, 0=auto */
1109
1110 if (nic->flags & promiscuous || nic->loopback) {
1111 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */
1112 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */
1113 config->promiscuous_mode = 0x1; /* 1=on, 0=off */
1114 }
1115
1116 if (unlikely(netdev->features & NETIF_F_RXFCS))
1117 config->rx_crc_transfer = 0x1; /* 1=save, 0=discard */
1118
1119 if (nic->flags & multicast_all)
1120 config->multicast_all = 0x1; /* 1=accept, 0=no */
1121
1122 /* disable WoL when up */
1123 if (netif_running(nic->netdev) || !(nic->flags & wol_magic))
1124 config->magic_packet_disable = 0x1; /* 1=off, 0=on */
1125
1126 if (nic->mac >= mac_82558_D101_A4) {
1127 config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */
1128 config->mwi_enable = 0x1; /* 1=enable, 0=disable */
1129 config->standard_tcb = 0x0; /* 1=standard, 0=extended */
1130 config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */
1131 if (nic->mac >= mac_82559_D101M) {
1132 config->tno_intr = 0x1; /* TCO stats enable */
1133 /* Enable TCO in extended config */
1134 if (nic->mac >= mac_82551_10) {
1135 config->byte_count = 0x20; /* extended bytes */
1136 config->rx_d102_mode = 0x1; /* GMRC for TCO */
1137 }
1138 } else {
1139 config->standard_stat_counter = 0x0;
1140 }
1141 }
1142
1143 if (netdev->features & NETIF_F_RXALL) {
1144 config->rx_save_overruns = 0x1; /* 1=save, 0=discard */
1145 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */
1146 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */
1147 }
1148
1149 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[00-07]=%8ph\n",
1150 c + 0);
1151 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[08-15]=%8ph\n",
1152 c + 8);
1153 netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[16-23]=%8ph\n",
1154 c + 16);
1155 return 0;
1156 }
1157
1158 /*************************************************************************
1159 * CPUSaver parameters
1160 *
1161 * All CPUSaver parameters are 16-bit literals that are part of a
1162 * "move immediate value" instruction. By changing the value of
1163 * the literal in the instruction before the code is loaded, the
1164 * driver can change the algorithm.
1165 *
1166 * INTDELAY - This loads the dead-man timer with its initial value.
1167 * When this timer expires the interrupt is asserted, and the
1168 * timer is reset each time a new packet is received. (see
1169 * BUNDLEMAX below to set the limit on number of chained packets)
1170 * The current default is 0x600 or 1536. Experiments show that
1171 * the value should probably stay within the 0x200 - 0x1000.
1172 *
1173 * BUNDLEMAX -
1174 * This sets the maximum number of frames that will be bundled. In
1175 * some situations, such as the TCP windowing algorithm, it may be
1176 * better to limit the growth of the bundle size than let it go as
1177 * high as it can, because that could cause too much added latency.
1178 * The default is six, because this is the number of packets in the
1179 * default TCP window size. A value of 1 would make CPUSaver indicate
1180 * an interrupt for every frame received. If you do not want to put
1181 * a limit on the bundle size, set this value to xFFFF.
1182 *
1183 * BUNDLESMALL -
1184 * This contains a bit-mask describing the minimum size frame that
1185 * will be bundled. The default masks the lower 7 bits, which means
1186 * that any frame less than 128 bytes in length will not be bundled,
1187 * but will instead immediately generate an interrupt. This does
1188 * not affect the current bundle in any way. Any frame that is 128
1189 * bytes or large will be bundled normally. This feature is meant
1190 * to provide immediate indication of ACK frames in a TCP environment.
1191 * Customers were seeing poor performance when a machine with CPUSaver
1192 * enabled was sending but not receiving. The delay introduced when
1193 * the ACKs were received was enough to reduce total throughput, because
1194 * the sender would sit idle until the ACK was finally seen.
1195 *
1196 * The current default is 0xFF80, which masks out the lower 7 bits.
1197 * This means that any frame which is x7F (127) bytes or smaller
1198 * will cause an immediate interrupt. Because this value must be a
1199 * bit mask, there are only a few valid values that can be used. To
1200 * turn this feature off, the driver can write the value xFFFF to the
1201 * lower word of this instruction (in the same way that the other
1202 * parameters are used). Likewise, a value of 0xF800 (2047) would
1203 * cause an interrupt to be generated for every frame, because all
1204 * standard Ethernet frames are <= 2047 bytes in length.
1205 *************************************************************************/
1206
1207 /* if you wish to disable the ucode functionality, while maintaining the
1208 * workarounds it provides, set the following defines to:
1209 * BUNDLESMALL 0
1210 * BUNDLEMAX 1
1211 * INTDELAY 1
1212 */
1213 #define BUNDLESMALL 1
1214 #define BUNDLEMAX (u16)6
1215 #define INTDELAY (u16)1536 /* 0x600 */
1216
1217 /* Initialize firmware */
e100_request_firmware(struct nic * nic)1218 static const struct firmware *e100_request_firmware(struct nic *nic)
1219 {
1220 const char *fw_name;
1221 const struct firmware *fw = nic->fw;
1222 u8 timer, bundle, min_size;
1223 int err = 0;
1224 bool required = false;
1225
1226 /* do not load u-code for ICH devices */
1227 if (nic->flags & ich)
1228 return NULL;
1229
1230 /* Search for ucode match against h/w revision
1231 *
1232 * Based on comments in the source code for the FreeBSD fxp
1233 * driver, the FIRMWARE_D102E ucode includes both CPUSaver and
1234 *
1235 * "fixes for bugs in the B-step hardware (specifically, bugs
1236 * with Inline Receive)."
1237 *
1238 * So we must fail if it cannot be loaded.
1239 *
1240 * The other microcode files are only required for the optional
1241 * CPUSaver feature. Nice to have, but no reason to fail.
1242 */
1243 if (nic->mac == mac_82559_D101M) {
1244 fw_name = FIRMWARE_D101M;
1245 } else if (nic->mac == mac_82559_D101S) {
1246 fw_name = FIRMWARE_D101S;
1247 } else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) {
1248 fw_name = FIRMWARE_D102E;
1249 required = true;
1250 } else { /* No ucode on other devices */
1251 return NULL;
1252 }
1253
1254 /* If the firmware has not previously been loaded, request a pointer
1255 * to it. If it was previously loaded, we are reinitializing the
1256 * adapter, possibly in a resume from hibernate, in which case
1257 * request_firmware() cannot be used.
1258 */
1259 if (!fw)
1260 err = request_firmware(&fw, fw_name, &nic->pdev->dev);
1261
1262 if (err) {
1263 if (required) {
1264 netif_err(nic, probe, nic->netdev,
1265 "Failed to load firmware \"%s\": %d\n",
1266 fw_name, err);
1267 return ERR_PTR(err);
1268 } else {
1269 netif_info(nic, probe, nic->netdev,
1270 "CPUSaver disabled. Needs \"%s\": %d\n",
1271 fw_name, err);
1272 return NULL;
1273 }
1274 }
1275
1276 /* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1277 indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1278 if (fw->size != UCODE_SIZE * 4 + 3) {
1279 netif_err(nic, probe, nic->netdev,
1280 "Firmware \"%s\" has wrong size %zu\n",
1281 fw_name, fw->size);
1282 release_firmware(fw);
1283 return ERR_PTR(-EINVAL);
1284 }
1285
1286 /* Read timer, bundle and min_size from end of firmware blob */
1287 timer = fw->data[UCODE_SIZE * 4];
1288 bundle = fw->data[UCODE_SIZE * 4 + 1];
1289 min_size = fw->data[UCODE_SIZE * 4 + 2];
1290
1291 if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE ||
1292 min_size >= UCODE_SIZE) {
1293 netif_err(nic, probe, nic->netdev,
1294 "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1295 fw_name, timer, bundle, min_size);
1296 release_firmware(fw);
1297 return ERR_PTR(-EINVAL);
1298 }
1299
1300 /* OK, firmware is validated and ready to use. Save a pointer
1301 * to it in the nic */
1302 nic->fw = fw;
1303 return fw;
1304 }
1305
e100_setup_ucode(struct nic * nic,struct cb * cb,struct sk_buff * skb)1306 static int e100_setup_ucode(struct nic *nic, struct cb *cb,
1307 struct sk_buff *skb)
1308 {
1309 const struct firmware *fw = (void *)skb;
1310 u8 timer, bundle, min_size;
1311
1312 /* It's not a real skb; we just abused the fact that e100_exec_cb
1313 will pass it through to here... */
1314 cb->skb = NULL;
1315
1316 /* firmware is stored as little endian already */
1317 memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4);
1318
1319 /* Read timer, bundle and min_size from end of firmware blob */
1320 timer = fw->data[UCODE_SIZE * 4];
1321 bundle = fw->data[UCODE_SIZE * 4 + 1];
1322 min_size = fw->data[UCODE_SIZE * 4 + 2];
1323
1324 /* Insert user-tunable settings in cb->u.ucode */
1325 cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000);
1326 cb->u.ucode[timer] |= cpu_to_le32(INTDELAY);
1327 cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000);
1328 cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX);
1329 cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000);
1330 cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80);
1331
1332 cb->command = cpu_to_le16(cb_ucode | cb_el);
1333 return 0;
1334 }
1335
e100_load_ucode_wait(struct nic * nic)1336 static inline int e100_load_ucode_wait(struct nic *nic)
1337 {
1338 const struct firmware *fw;
1339 int err = 0, counter = 50;
1340 struct cb *cb = nic->cb_to_clean;
1341
1342 fw = e100_request_firmware(nic);
1343 /* If it's NULL, then no ucode is required */
1344 if (IS_ERR_OR_NULL(fw))
1345 return PTR_ERR_OR_ZERO(fw);
1346
1347 if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode)))
1348 netif_err(nic, probe, nic->netdev,
1349 "ucode cmd failed with error %d\n", err);
1350
1351 /* must restart cuc */
1352 nic->cuc_cmd = cuc_start;
1353
1354 /* wait for completion */
1355 e100_write_flush(nic);
1356 udelay(10);
1357
1358 /* wait for possibly (ouch) 500ms */
1359 while (!(cb->status & cpu_to_le16(cb_complete))) {
1360 msleep(10);
1361 if (!--counter) break;
1362 }
1363
1364 /* ack any interrupts, something could have been set */
1365 iowrite8(~0, &nic->csr->scb.stat_ack);
1366
1367 /* if the command failed, or is not OK, notify and return */
1368 if (!counter || !(cb->status & cpu_to_le16(cb_ok))) {
1369 netif_err(nic, probe, nic->netdev, "ucode load failed\n");
1370 err = -EPERM;
1371 }
1372
1373 return err;
1374 }
1375
e100_setup_iaaddr(struct nic * nic,struct cb * cb,struct sk_buff * skb)1376 static int e100_setup_iaaddr(struct nic *nic, struct cb *cb,
1377 struct sk_buff *skb)
1378 {
1379 cb->command = cpu_to_le16(cb_iaaddr);
1380 memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN);
1381 return 0;
1382 }
1383
e100_dump(struct nic * nic,struct cb * cb,struct sk_buff * skb)1384 static int e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1385 {
1386 cb->command = cpu_to_le16(cb_dump);
1387 cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr +
1388 offsetof(struct mem, dump_buf));
1389 return 0;
1390 }
1391
e100_phy_check_without_mii(struct nic * nic)1392 static int e100_phy_check_without_mii(struct nic *nic)
1393 {
1394 u8 phy_type;
1395 int without_mii;
1396
1397 phy_type = (le16_to_cpu(nic->eeprom[eeprom_phy_iface]) >> 8) & 0x0f;
1398
1399 switch (phy_type) {
1400 case NoSuchPhy: /* Non-MII PHY; UNTESTED! */
1401 case I82503: /* Non-MII PHY; UNTESTED! */
1402 case S80C24: /* Non-MII PHY; tested and working */
1403 /* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
1404 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
1405 * doesn't have a programming interface of any sort. The
1406 * media is sensed automatically based on how the link partner
1407 * is configured. This is, in essence, manual configuration.
1408 */
1409 netif_info(nic, probe, nic->netdev,
1410 "found MII-less i82503 or 80c24 or other PHY\n");
1411
1412 nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated;
1413 nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */
1414
1415 /* these might be needed for certain MII-less cards...
1416 * nic->flags |= ich;
1417 * nic->flags |= ich_10h_workaround; */
1418
1419 without_mii = 1;
1420 break;
1421 default:
1422 without_mii = 0;
1423 break;
1424 }
1425 return without_mii;
1426 }
1427
1428 #define NCONFIG_AUTO_SWITCH 0x0080
1429 #define MII_NSC_CONG MII_RESV1
1430 #define NSC_CONG_ENABLE 0x0100
1431 #define NSC_CONG_TXREADY 0x0400
e100_phy_init(struct nic * nic)1432 static int e100_phy_init(struct nic *nic)
1433 {
1434 struct net_device *netdev = nic->netdev;
1435 u32 addr;
1436 u16 bmcr, stat, id_lo, id_hi, cong;
1437
1438 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1439 for (addr = 0; addr < 32; addr++) {
1440 nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr;
1441 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1442 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1443 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR);
1444 if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0))))
1445 break;
1446 }
1447 if (addr == 32) {
1448 /* uhoh, no PHY detected: check whether we seem to be some
1449 * weird, rare variant which is *known* to not have any MII.
1450 * But do this AFTER MII checking only, since this does
1451 * lookup of EEPROM values which may easily be unreliable. */
1452 if (e100_phy_check_without_mii(nic))
1453 return 0; /* simply return and hope for the best */
1454 else {
1455 /* for unknown cases log a fatal error */
1456 netif_err(nic, hw, nic->netdev,
1457 "Failed to locate any known PHY, aborting\n");
1458 return -EAGAIN;
1459 }
1460 } else
1461 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1462 "phy_addr = %d\n", nic->mii.phy_id);
1463
1464 /* Get phy ID */
1465 id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1);
1466 id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2);
1467 nic->phy = (u32)id_hi << 16 | (u32)id_lo;
1468 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1469 "phy ID = 0x%08X\n", nic->phy);
1470
1471 /* Select the phy and isolate the rest */
1472 for (addr = 0; addr < 32; addr++) {
1473 if (addr != nic->mii.phy_id) {
1474 mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE);
1475 } else if (nic->phy != phy_82552_v) {
1476 bmcr = mdio_read(netdev, addr, MII_BMCR);
1477 mdio_write(netdev, addr, MII_BMCR,
1478 bmcr & ~BMCR_ISOLATE);
1479 }
1480 }
1481 /*
1482 * Workaround for 82552:
1483 * Clear the ISOLATE bit on selected phy_id last (mirrored on all
1484 * other phy_id's) using bmcr value from addr discovery loop above.
1485 */
1486 if (nic->phy == phy_82552_v)
1487 mdio_write(netdev, nic->mii.phy_id, MII_BMCR,
1488 bmcr & ~BMCR_ISOLATE);
1489
1490 /* Handle National tx phys */
1491 #define NCS_PHY_MODEL_MASK 0xFFF0FFFF
1492 if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) {
1493 /* Disable congestion control */
1494 cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG);
1495 cong |= NSC_CONG_TXREADY;
1496 cong &= ~NSC_CONG_ENABLE;
1497 mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong);
1498 }
1499
1500 if (nic->phy == phy_82552_v) {
1501 u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE);
1502
1503 /* assign special tweaked mdio_ctrl() function */
1504 nic->mdio_ctrl = mdio_ctrl_phy_82552_v;
1505
1506 /* Workaround Si not advertising flow-control during autoneg */
1507 advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1508 mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert);
1509
1510 /* Reset for the above changes to take effect */
1511 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR);
1512 bmcr |= BMCR_RESET;
1513 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr);
1514 } else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) &&
1515 (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) &&
1516 (le16_to_cpu(nic->eeprom[eeprom_cnfg_mdix]) & eeprom_mdix_enabled))) {
1517 /* enable/disable MDI/MDI-X auto-switching. */
1518 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG,
1519 nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH);
1520 }
1521
1522 return 0;
1523 }
1524
e100_hw_init(struct nic * nic)1525 static int e100_hw_init(struct nic *nic)
1526 {
1527 int err = 0;
1528
1529 e100_hw_reset(nic);
1530
1531 netif_err(nic, hw, nic->netdev, "e100_hw_init\n");
1532 if ((err = e100_self_test(nic)))
1533 return err;
1534
1535 if ((err = e100_phy_init(nic)))
1536 return err;
1537 if ((err = e100_exec_cmd(nic, cuc_load_base, 0)))
1538 return err;
1539 if ((err = e100_exec_cmd(nic, ruc_load_base, 0)))
1540 return err;
1541 if ((err = e100_load_ucode_wait(nic)))
1542 return err;
1543 if ((err = e100_exec_cb(nic, NULL, e100_configure)))
1544 return err;
1545 if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr)))
1546 return err;
1547 if ((err = e100_exec_cmd(nic, cuc_dump_addr,
1548 nic->dma_addr + offsetof(struct mem, stats))))
1549 return err;
1550 if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0)))
1551 return err;
1552
1553 e100_disable_irq(nic);
1554
1555 return 0;
1556 }
1557
e100_multi(struct nic * nic,struct cb * cb,struct sk_buff * skb)1558 static int e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb)
1559 {
1560 struct net_device *netdev = nic->netdev;
1561 struct netdev_hw_addr *ha;
1562 u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS);
1563
1564 cb->command = cpu_to_le16(cb_multi);
1565 cb->u.multi.count = cpu_to_le16(count * ETH_ALEN);
1566 i = 0;
1567 netdev_for_each_mc_addr(ha, netdev) {
1568 if (i == count)
1569 break;
1570 memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr,
1571 ETH_ALEN);
1572 }
1573 return 0;
1574 }
1575
e100_set_multicast_list(struct net_device * netdev)1576 static void e100_set_multicast_list(struct net_device *netdev)
1577 {
1578 struct nic *nic = netdev_priv(netdev);
1579
1580 netif_printk(nic, hw, KERN_DEBUG, nic->netdev,
1581 "mc_count=%d, flags=0x%04X\n",
1582 netdev_mc_count(netdev), netdev->flags);
1583
1584 if (netdev->flags & IFF_PROMISC)
1585 nic->flags |= promiscuous;
1586 else
1587 nic->flags &= ~promiscuous;
1588
1589 if (netdev->flags & IFF_ALLMULTI ||
1590 netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS)
1591 nic->flags |= multicast_all;
1592 else
1593 nic->flags &= ~multicast_all;
1594
1595 e100_exec_cb(nic, NULL, e100_configure);
1596 e100_exec_cb(nic, NULL, e100_multi);
1597 }
1598
e100_update_stats(struct nic * nic)1599 static void e100_update_stats(struct nic *nic)
1600 {
1601 struct net_device *dev = nic->netdev;
1602 struct net_device_stats *ns = &dev->stats;
1603 struct stats *s = &nic->mem->stats;
1604 __le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause :
1605 (nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames :
1606 &s->complete;
1607
1608 /* Device's stats reporting may take several microseconds to
1609 * complete, so we're always waiting for results of the
1610 * previous command. */
1611
1612 if (*complete == cpu_to_le32(cuc_dump_reset_complete)) {
1613 *complete = 0;
1614 nic->tx_frames = le32_to_cpu(s->tx_good_frames);
1615 nic->tx_collisions = le32_to_cpu(s->tx_total_collisions);
1616 ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions);
1617 ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions);
1618 ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs);
1619 ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns);
1620 ns->collisions += nic->tx_collisions;
1621 ns->tx_errors += le32_to_cpu(s->tx_max_collisions) +
1622 le32_to_cpu(s->tx_lost_crs);
1623 nic->rx_short_frame_errors +=
1624 le32_to_cpu(s->rx_short_frame_errors);
1625 ns->rx_length_errors = nic->rx_short_frame_errors +
1626 nic->rx_over_length_errors;
1627 ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors);
1628 ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors);
1629 ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors);
1630 ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors);
1631 ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors);
1632 ns->rx_errors += le32_to_cpu(s->rx_crc_errors) +
1633 le32_to_cpu(s->rx_alignment_errors) +
1634 le32_to_cpu(s->rx_short_frame_errors) +
1635 le32_to_cpu(s->rx_cdt_errors);
1636 nic->tx_deferred += le32_to_cpu(s->tx_deferred);
1637 nic->tx_single_collisions +=
1638 le32_to_cpu(s->tx_single_collisions);
1639 nic->tx_multiple_collisions +=
1640 le32_to_cpu(s->tx_multiple_collisions);
1641 if (nic->mac >= mac_82558_D101_A4) {
1642 nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause);
1643 nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause);
1644 nic->rx_fc_unsupported +=
1645 le32_to_cpu(s->fc_rcv_unsupported);
1646 if (nic->mac >= mac_82559_D101M) {
1647 nic->tx_tco_frames +=
1648 le16_to_cpu(s->xmt_tco_frames);
1649 nic->rx_tco_frames +=
1650 le16_to_cpu(s->rcv_tco_frames);
1651 }
1652 }
1653 }
1654
1655
1656 if (e100_exec_cmd(nic, cuc_dump_reset, 0))
1657 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1658 "exec cuc_dump_reset failed\n");
1659 }
1660
e100_adjust_adaptive_ifs(struct nic * nic,int speed,int duplex)1661 static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex)
1662 {
1663 /* Adjust inter-frame-spacing (IFS) between two transmits if
1664 * we're getting collisions on a half-duplex connection. */
1665
1666 if (duplex == DUPLEX_HALF) {
1667 u32 prev = nic->adaptive_ifs;
1668 u32 min_frames = (speed == SPEED_100) ? 1000 : 100;
1669
1670 if ((nic->tx_frames / 32 < nic->tx_collisions) &&
1671 (nic->tx_frames > min_frames)) {
1672 if (nic->adaptive_ifs < 60)
1673 nic->adaptive_ifs += 5;
1674 } else if (nic->tx_frames < min_frames) {
1675 if (nic->adaptive_ifs >= 5)
1676 nic->adaptive_ifs -= 5;
1677 }
1678 if (nic->adaptive_ifs != prev)
1679 e100_exec_cb(nic, NULL, e100_configure);
1680 }
1681 }
1682
e100_watchdog(struct timer_list * t)1683 static void e100_watchdog(struct timer_list *t)
1684 {
1685 struct nic *nic = from_timer(nic, t, watchdog);
1686 struct ethtool_cmd cmd = { .cmd = ETHTOOL_GSET };
1687 u32 speed;
1688
1689 netif_printk(nic, timer, KERN_DEBUG, nic->netdev,
1690 "right now = %ld\n", jiffies);
1691
1692 /* mii library handles link maintenance tasks */
1693
1694 mii_ethtool_gset(&nic->mii, &cmd);
1695 speed = ethtool_cmd_speed(&cmd);
1696
1697 if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) {
1698 netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n",
1699 speed == SPEED_100 ? 100 : 10,
1700 cmd.duplex == DUPLEX_FULL ? "Full" : "Half");
1701 } else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) {
1702 netdev_info(nic->netdev, "NIC Link is Down\n");
1703 }
1704
1705 mii_check_link(&nic->mii);
1706
1707 /* Software generated interrupt to recover from (rare) Rx
1708 * allocation failure.
1709 * Unfortunately have to use a spinlock to not re-enable interrupts
1710 * accidentally, due to hardware that shares a register between the
1711 * interrupt mask bit and the SW Interrupt generation bit */
1712 spin_lock_irq(&nic->cmd_lock);
1713 iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi);
1714 e100_write_flush(nic);
1715 spin_unlock_irq(&nic->cmd_lock);
1716
1717 e100_update_stats(nic);
1718 e100_adjust_adaptive_ifs(nic, speed, cmd.duplex);
1719
1720 if (nic->mac <= mac_82557_D100_C)
1721 /* Issue a multicast command to workaround a 557 lock up */
1722 e100_set_multicast_list(nic->netdev);
1723
1724 if (nic->flags & ich && speed == SPEED_10 && cmd.duplex == DUPLEX_HALF)
1725 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1726 nic->flags |= ich_10h_workaround;
1727 else
1728 nic->flags &= ~ich_10h_workaround;
1729
1730 mod_timer(&nic->watchdog,
1731 round_jiffies(jiffies + E100_WATCHDOG_PERIOD));
1732 }
1733
e100_xmit_prepare(struct nic * nic,struct cb * cb,struct sk_buff * skb)1734 static int e100_xmit_prepare(struct nic *nic, struct cb *cb,
1735 struct sk_buff *skb)
1736 {
1737 dma_addr_t dma_addr;
1738 cb->command = nic->tx_command;
1739
1740 dma_addr = dma_map_single(&nic->pdev->dev, skb->data, skb->len,
1741 DMA_TO_DEVICE);
1742 /* If we can't map the skb, have the upper layer try later */
1743 if (dma_mapping_error(&nic->pdev->dev, dma_addr))
1744 return -ENOMEM;
1745
1746 /*
1747 * Use the last 4 bytes of the SKB payload packet as the CRC, used for
1748 * testing, ie sending frames with bad CRC.
1749 */
1750 if (unlikely(skb->no_fcs))
1751 cb->command |= cpu_to_le16(cb_tx_nc);
1752 else
1753 cb->command &= ~cpu_to_le16(cb_tx_nc);
1754
1755 /* interrupt every 16 packets regardless of delay */
1756 if ((nic->cbs_avail & ~15) == nic->cbs_avail)
1757 cb->command |= cpu_to_le16(cb_i);
1758 cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd);
1759 cb->u.tcb.tcb_byte_count = 0;
1760 cb->u.tcb.threshold = nic->tx_threshold;
1761 cb->u.tcb.tbd_count = 1;
1762 cb->u.tcb.tbd.buf_addr = cpu_to_le32(dma_addr);
1763 cb->u.tcb.tbd.size = cpu_to_le16(skb->len);
1764 skb_tx_timestamp(skb);
1765 return 0;
1766 }
1767
e100_xmit_frame(struct sk_buff * skb,struct net_device * netdev)1768 static netdev_tx_t e100_xmit_frame(struct sk_buff *skb,
1769 struct net_device *netdev)
1770 {
1771 struct nic *nic = netdev_priv(netdev);
1772 int err;
1773
1774 if (nic->flags & ich_10h_workaround) {
1775 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1776 Issue a NOP command followed by a 1us delay before
1777 issuing the Tx command. */
1778 if (e100_exec_cmd(nic, cuc_nop, 0))
1779 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1780 "exec cuc_nop failed\n");
1781 udelay(1);
1782 }
1783
1784 err = e100_exec_cb(nic, skb, e100_xmit_prepare);
1785
1786 switch (err) {
1787 case -ENOSPC:
1788 /* We queued the skb, but now we're out of space. */
1789 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1790 "No space for CB\n");
1791 netif_stop_queue(netdev);
1792 break;
1793 case -ENOMEM:
1794 /* This is a hard error - log it. */
1795 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
1796 "Out of Tx resources, returning skb\n");
1797 netif_stop_queue(netdev);
1798 return NETDEV_TX_BUSY;
1799 }
1800
1801 return NETDEV_TX_OK;
1802 }
1803
e100_tx_clean(struct nic * nic)1804 static int e100_tx_clean(struct nic *nic)
1805 {
1806 struct net_device *dev = nic->netdev;
1807 struct cb *cb;
1808 int tx_cleaned = 0;
1809
1810 spin_lock(&nic->cb_lock);
1811
1812 /* Clean CBs marked complete */
1813 for (cb = nic->cb_to_clean;
1814 cb->status & cpu_to_le16(cb_complete);
1815 cb = nic->cb_to_clean = cb->next) {
1816 dma_rmb(); /* read skb after status */
1817 netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev,
1818 "cb[%d]->status = 0x%04X\n",
1819 (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)),
1820 cb->status);
1821
1822 if (likely(cb->skb != NULL)) {
1823 dev->stats.tx_packets++;
1824 dev->stats.tx_bytes += cb->skb->len;
1825
1826 dma_unmap_single(&nic->pdev->dev,
1827 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1828 le16_to_cpu(cb->u.tcb.tbd.size),
1829 DMA_TO_DEVICE);
1830 dev_kfree_skb_any(cb->skb);
1831 cb->skb = NULL;
1832 tx_cleaned = 1;
1833 }
1834 cb->status = 0;
1835 nic->cbs_avail++;
1836 }
1837
1838 spin_unlock(&nic->cb_lock);
1839
1840 /* Recover from running out of Tx resources in xmit_frame */
1841 if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev)))
1842 netif_wake_queue(nic->netdev);
1843
1844 return tx_cleaned;
1845 }
1846
e100_clean_cbs(struct nic * nic)1847 static void e100_clean_cbs(struct nic *nic)
1848 {
1849 if (nic->cbs) {
1850 while (nic->cbs_avail != nic->params.cbs.count) {
1851 struct cb *cb = nic->cb_to_clean;
1852 if (cb->skb) {
1853 dma_unmap_single(&nic->pdev->dev,
1854 le32_to_cpu(cb->u.tcb.tbd.buf_addr),
1855 le16_to_cpu(cb->u.tcb.tbd.size),
1856 DMA_TO_DEVICE);
1857 dev_kfree_skb(cb->skb);
1858 }
1859 nic->cb_to_clean = nic->cb_to_clean->next;
1860 nic->cbs_avail++;
1861 }
1862 dma_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr);
1863 nic->cbs = NULL;
1864 nic->cbs_avail = 0;
1865 }
1866 nic->cuc_cmd = cuc_start;
1867 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean =
1868 nic->cbs;
1869 }
1870
e100_alloc_cbs(struct nic * nic)1871 static int e100_alloc_cbs(struct nic *nic)
1872 {
1873 struct cb *cb;
1874 unsigned int i, count = nic->params.cbs.count;
1875
1876 nic->cuc_cmd = cuc_start;
1877 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL;
1878 nic->cbs_avail = 0;
1879
1880 nic->cbs = dma_pool_zalloc(nic->cbs_pool, GFP_KERNEL,
1881 &nic->cbs_dma_addr);
1882 if (!nic->cbs)
1883 return -ENOMEM;
1884
1885 for (cb = nic->cbs, i = 0; i < count; cb++, i++) {
1886 cb->next = (i + 1 < count) ? cb + 1 : nic->cbs;
1887 cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1;
1888
1889 cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb);
1890 cb->link = cpu_to_le32(nic->cbs_dma_addr +
1891 ((i+1) % count) * sizeof(struct cb));
1892 }
1893
1894 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs;
1895 nic->cbs_avail = count;
1896
1897 return 0;
1898 }
1899
e100_start_receiver(struct nic * nic,struct rx * rx)1900 static inline void e100_start_receiver(struct nic *nic, struct rx *rx)
1901 {
1902 if (!nic->rxs) return;
1903 if (RU_SUSPENDED != nic->ru_running) return;
1904
1905 /* handle init time starts */
1906 if (!rx) rx = nic->rxs;
1907
1908 /* (Re)start RU if suspended or idle and RFA is non-NULL */
1909 if (rx->skb) {
1910 e100_exec_cmd(nic, ruc_start, rx->dma_addr);
1911 nic->ru_running = RU_RUNNING;
1912 }
1913 }
1914
1915 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
e100_rx_alloc_skb(struct nic * nic,struct rx * rx)1916 static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx)
1917 {
1918 if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN)))
1919 return -ENOMEM;
1920
1921 /* Init, and map the RFD. */
1922 skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd));
1923 rx->dma_addr = dma_map_single(&nic->pdev->dev, rx->skb->data,
1924 RFD_BUF_LEN, DMA_BIDIRECTIONAL);
1925
1926 if (dma_mapping_error(&nic->pdev->dev, rx->dma_addr)) {
1927 dev_kfree_skb_any(rx->skb);
1928 rx->skb = NULL;
1929 rx->dma_addr = 0;
1930 return -ENOMEM;
1931 }
1932
1933 /* Link the RFD to end of RFA by linking previous RFD to
1934 * this one. We are safe to touch the previous RFD because
1935 * it is protected by the before last buffer's el bit being set */
1936 if (rx->prev->skb) {
1937 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data;
1938 put_unaligned_le32(rx->dma_addr, &prev_rfd->link);
1939 dma_sync_single_for_device(&nic->pdev->dev,
1940 rx->prev->dma_addr,
1941 sizeof(struct rfd),
1942 DMA_BIDIRECTIONAL);
1943 }
1944
1945 return 0;
1946 }
1947
e100_rx_indicate(struct nic * nic,struct rx * rx,unsigned int * work_done,unsigned int work_to_do)1948 static int e100_rx_indicate(struct nic *nic, struct rx *rx,
1949 unsigned int *work_done, unsigned int work_to_do)
1950 {
1951 struct net_device *dev = nic->netdev;
1952 struct sk_buff *skb = rx->skb;
1953 struct rfd *rfd = (struct rfd *)skb->data;
1954 u16 rfd_status, actual_size;
1955 u16 fcs_pad = 0;
1956
1957 if (unlikely(work_done && *work_done >= work_to_do))
1958 return -EAGAIN;
1959
1960 /* Need to sync before taking a peek at cb_complete bit */
1961 dma_sync_single_for_cpu(&nic->pdev->dev, rx->dma_addr,
1962 sizeof(struct rfd), DMA_BIDIRECTIONAL);
1963 rfd_status = le16_to_cpu(rfd->status);
1964
1965 netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev,
1966 "status=0x%04X\n", rfd_status);
1967 dma_rmb(); /* read size after status bit */
1968
1969 /* If data isn't ready, nothing to indicate */
1970 if (unlikely(!(rfd_status & cb_complete))) {
1971 /* If the next buffer has the el bit, but we think the receiver
1972 * is still running, check to see if it really stopped while
1973 * we had interrupts off.
1974 * This allows for a fast restart without re-enabling
1975 * interrupts */
1976 if ((le16_to_cpu(rfd->command) & cb_el) &&
1977 (RU_RUNNING == nic->ru_running))
1978
1979 if (ioread8(&nic->csr->scb.status) & rus_no_res)
1980 nic->ru_running = RU_SUSPENDED;
1981 dma_sync_single_for_device(&nic->pdev->dev, rx->dma_addr,
1982 sizeof(struct rfd),
1983 DMA_FROM_DEVICE);
1984 return -ENODATA;
1985 }
1986
1987 /* Get actual data size */
1988 if (unlikely(dev->features & NETIF_F_RXFCS))
1989 fcs_pad = 4;
1990 actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF;
1991 if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd)))
1992 actual_size = RFD_BUF_LEN - sizeof(struct rfd);
1993
1994 /* Get data */
1995 dma_unmap_single(&nic->pdev->dev, rx->dma_addr, RFD_BUF_LEN,
1996 DMA_BIDIRECTIONAL);
1997
1998 /* If this buffer has the el bit, but we think the receiver
1999 * is still running, check to see if it really stopped while
2000 * we had interrupts off.
2001 * This allows for a fast restart without re-enabling interrupts.
2002 * This can happen when the RU sees the size change but also sees
2003 * the el bit set. */
2004 if ((le16_to_cpu(rfd->command) & cb_el) &&
2005 (RU_RUNNING == nic->ru_running)) {
2006
2007 if (ioread8(&nic->csr->scb.status) & rus_no_res)
2008 nic->ru_running = RU_SUSPENDED;
2009 }
2010
2011 /* Pull off the RFD and put the actual data (minus eth hdr) */
2012 skb_reserve(skb, sizeof(struct rfd));
2013 skb_put(skb, actual_size);
2014 skb->protocol = eth_type_trans(skb, nic->netdev);
2015
2016 /* If we are receiving all frames, then don't bother
2017 * checking for errors.
2018 */
2019 if (unlikely(dev->features & NETIF_F_RXALL)) {
2020 if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad)
2021 /* Received oversized frame, but keep it. */
2022 nic->rx_over_length_errors++;
2023 goto process_skb;
2024 }
2025
2026 if (unlikely(!(rfd_status & cb_ok))) {
2027 /* Don't indicate if hardware indicates errors */
2028 dev_kfree_skb_any(skb);
2029 } else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) {
2030 /* Don't indicate oversized frames */
2031 nic->rx_over_length_errors++;
2032 dev_kfree_skb_any(skb);
2033 } else {
2034 process_skb:
2035 dev->stats.rx_packets++;
2036 dev->stats.rx_bytes += (actual_size - fcs_pad);
2037 netif_receive_skb(skb);
2038 if (work_done)
2039 (*work_done)++;
2040 }
2041
2042 rx->skb = NULL;
2043
2044 return 0;
2045 }
2046
e100_rx_clean(struct nic * nic,unsigned int * work_done,unsigned int work_to_do)2047 static void e100_rx_clean(struct nic *nic, unsigned int *work_done,
2048 unsigned int work_to_do)
2049 {
2050 struct rx *rx;
2051 int restart_required = 0, err = 0;
2052 struct rx *old_before_last_rx, *new_before_last_rx;
2053 struct rfd *old_before_last_rfd, *new_before_last_rfd;
2054
2055 /* Indicate newly arrived packets */
2056 for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) {
2057 err = e100_rx_indicate(nic, rx, work_done, work_to_do);
2058 /* Hit quota or no more to clean */
2059 if (-EAGAIN == err || -ENODATA == err)
2060 break;
2061 }
2062
2063
2064 /* On EAGAIN, hit quota so have more work to do, restart once
2065 * cleanup is complete.
2066 * Else, are we already rnr? then pay attention!!! this ensures that
2067 * the state machine progression never allows a start with a
2068 * partially cleaned list, avoiding a race between hardware
2069 * and rx_to_clean when in NAPI mode */
2070 if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running)
2071 restart_required = 1;
2072
2073 old_before_last_rx = nic->rx_to_use->prev->prev;
2074 old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data;
2075
2076 /* Alloc new skbs to refill list */
2077 for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) {
2078 if (unlikely(e100_rx_alloc_skb(nic, rx)))
2079 break; /* Better luck next time (see watchdog) */
2080 }
2081
2082 new_before_last_rx = nic->rx_to_use->prev->prev;
2083 if (new_before_last_rx != old_before_last_rx) {
2084 /* Set the el-bit on the buffer that is before the last buffer.
2085 * This lets us update the next pointer on the last buffer
2086 * without worrying about hardware touching it.
2087 * We set the size to 0 to prevent hardware from touching this
2088 * buffer.
2089 * When the hardware hits the before last buffer with el-bit
2090 * and size of 0, it will RNR interrupt, the RUS will go into
2091 * the No Resources state. It will not complete nor write to
2092 * this buffer. */
2093 new_before_last_rfd =
2094 (struct rfd *)new_before_last_rx->skb->data;
2095 new_before_last_rfd->size = 0;
2096 new_before_last_rfd->command |= cpu_to_le16(cb_el);
2097 dma_sync_single_for_device(&nic->pdev->dev,
2098 new_before_last_rx->dma_addr,
2099 sizeof(struct rfd),
2100 DMA_BIDIRECTIONAL);
2101
2102 /* Now that we have a new stopping point, we can clear the old
2103 * stopping point. We must sync twice to get the proper
2104 * ordering on the hardware side of things. */
2105 old_before_last_rfd->command &= ~cpu_to_le16(cb_el);
2106 dma_sync_single_for_device(&nic->pdev->dev,
2107 old_before_last_rx->dma_addr,
2108 sizeof(struct rfd),
2109 DMA_BIDIRECTIONAL);
2110 old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN
2111 + ETH_FCS_LEN);
2112 dma_sync_single_for_device(&nic->pdev->dev,
2113 old_before_last_rx->dma_addr,
2114 sizeof(struct rfd),
2115 DMA_BIDIRECTIONAL);
2116 }
2117
2118 if (restart_required) {
2119 // ack the rnr?
2120 iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack);
2121 e100_start_receiver(nic, nic->rx_to_clean);
2122 if (work_done)
2123 (*work_done)++;
2124 }
2125 }
2126
e100_rx_clean_list(struct nic * nic)2127 static void e100_rx_clean_list(struct nic *nic)
2128 {
2129 struct rx *rx;
2130 unsigned int i, count = nic->params.rfds.count;
2131
2132 nic->ru_running = RU_UNINITIALIZED;
2133
2134 if (nic->rxs) {
2135 for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2136 if (rx->skb) {
2137 dma_unmap_single(&nic->pdev->dev,
2138 rx->dma_addr, RFD_BUF_LEN,
2139 DMA_BIDIRECTIONAL);
2140 dev_kfree_skb(rx->skb);
2141 }
2142 }
2143 kfree(nic->rxs);
2144 nic->rxs = NULL;
2145 }
2146
2147 nic->rx_to_use = nic->rx_to_clean = NULL;
2148 }
2149
e100_rx_alloc_list(struct nic * nic)2150 static int e100_rx_alloc_list(struct nic *nic)
2151 {
2152 struct rx *rx;
2153 unsigned int i, count = nic->params.rfds.count;
2154 struct rfd *before_last;
2155
2156 nic->rx_to_use = nic->rx_to_clean = NULL;
2157 nic->ru_running = RU_UNINITIALIZED;
2158
2159 if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_KERNEL)))
2160 return -ENOMEM;
2161
2162 for (rx = nic->rxs, i = 0; i < count; rx++, i++) {
2163 rx->next = (i + 1 < count) ? rx + 1 : nic->rxs;
2164 rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1;
2165 if (e100_rx_alloc_skb(nic, rx)) {
2166 e100_rx_clean_list(nic);
2167 return -ENOMEM;
2168 }
2169 }
2170 /* Set the el-bit on the buffer that is before the last buffer.
2171 * This lets us update the next pointer on the last buffer without
2172 * worrying about hardware touching it.
2173 * We set the size to 0 to prevent hardware from touching this buffer.
2174 * When the hardware hits the before last buffer with el-bit and size
2175 * of 0, it will RNR interrupt, the RU will go into the No Resources
2176 * state. It will not complete nor write to this buffer. */
2177 rx = nic->rxs->prev->prev;
2178 before_last = (struct rfd *)rx->skb->data;
2179 before_last->command |= cpu_to_le16(cb_el);
2180 before_last->size = 0;
2181 dma_sync_single_for_device(&nic->pdev->dev, rx->dma_addr,
2182 sizeof(struct rfd), DMA_BIDIRECTIONAL);
2183
2184 nic->rx_to_use = nic->rx_to_clean = nic->rxs;
2185 nic->ru_running = RU_SUSPENDED;
2186
2187 return 0;
2188 }
2189
e100_intr(int irq,void * dev_id)2190 static irqreturn_t e100_intr(int irq, void *dev_id)
2191 {
2192 struct net_device *netdev = dev_id;
2193 struct nic *nic = netdev_priv(netdev);
2194 u8 stat_ack = ioread8(&nic->csr->scb.stat_ack);
2195
2196 netif_printk(nic, intr, KERN_DEBUG, nic->netdev,
2197 "stat_ack = 0x%02X\n", stat_ack);
2198
2199 if (stat_ack == stat_ack_not_ours || /* Not our interrupt */
2200 stat_ack == stat_ack_not_present) /* Hardware is ejected */
2201 return IRQ_NONE;
2202
2203 /* Ack interrupt(s) */
2204 iowrite8(stat_ack, &nic->csr->scb.stat_ack);
2205
2206 /* We hit Receive No Resource (RNR); restart RU after cleaning */
2207 if (stat_ack & stat_ack_rnr)
2208 nic->ru_running = RU_SUSPENDED;
2209
2210 if (likely(napi_schedule_prep(&nic->napi))) {
2211 e100_disable_irq(nic);
2212 __napi_schedule(&nic->napi);
2213 }
2214
2215 return IRQ_HANDLED;
2216 }
2217
e100_poll(struct napi_struct * napi,int budget)2218 static int e100_poll(struct napi_struct *napi, int budget)
2219 {
2220 struct nic *nic = container_of(napi, struct nic, napi);
2221 unsigned int work_done = 0;
2222
2223 e100_rx_clean(nic, &work_done, budget);
2224 e100_tx_clean(nic);
2225
2226 /* If budget fully consumed, continue polling */
2227 if (work_done == budget)
2228 return budget;
2229
2230 /* only re-enable interrupt if stack agrees polling is really done */
2231 if (likely(napi_complete_done(napi, work_done)))
2232 e100_enable_irq(nic);
2233
2234 return work_done;
2235 }
2236
2237 #ifdef CONFIG_NET_POLL_CONTROLLER
e100_netpoll(struct net_device * netdev)2238 static void e100_netpoll(struct net_device *netdev)
2239 {
2240 struct nic *nic = netdev_priv(netdev);
2241
2242 e100_disable_irq(nic);
2243 e100_intr(nic->pdev->irq, netdev);
2244 e100_tx_clean(nic);
2245 e100_enable_irq(nic);
2246 }
2247 #endif
2248
e100_set_mac_address(struct net_device * netdev,void * p)2249 static int e100_set_mac_address(struct net_device *netdev, void *p)
2250 {
2251 struct nic *nic = netdev_priv(netdev);
2252 struct sockaddr *addr = p;
2253
2254 if (!is_valid_ether_addr(addr->sa_data))
2255 return -EADDRNOTAVAIL;
2256
2257 eth_hw_addr_set(netdev, addr->sa_data);
2258 e100_exec_cb(nic, NULL, e100_setup_iaaddr);
2259
2260 return 0;
2261 }
2262
e100_asf(struct nic * nic)2263 static int e100_asf(struct nic *nic)
2264 {
2265 /* ASF can be enabled from eeprom */
2266 return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) &&
2267 (le16_to_cpu(nic->eeprom[eeprom_config_asf]) & eeprom_asf) &&
2268 !(le16_to_cpu(nic->eeprom[eeprom_config_asf]) & eeprom_gcl) &&
2269 ((le16_to_cpu(nic->eeprom[eeprom_smbus_addr]) & 0xFF) != 0xFE);
2270 }
2271
e100_up(struct nic * nic)2272 static int e100_up(struct nic *nic)
2273 {
2274 int err;
2275
2276 if ((err = e100_rx_alloc_list(nic)))
2277 return err;
2278 if ((err = e100_alloc_cbs(nic)))
2279 goto err_rx_clean_list;
2280 if ((err = e100_hw_init(nic)))
2281 goto err_clean_cbs;
2282 e100_set_multicast_list(nic->netdev);
2283 e100_start_receiver(nic, NULL);
2284 mod_timer(&nic->watchdog, jiffies);
2285 if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED,
2286 nic->netdev->name, nic->netdev)))
2287 goto err_no_irq;
2288 netif_wake_queue(nic->netdev);
2289 napi_enable(&nic->napi);
2290 /* enable ints _after_ enabling poll, preventing a race between
2291 * disable ints+schedule */
2292 e100_enable_irq(nic);
2293 return 0;
2294
2295 err_no_irq:
2296 del_timer_sync(&nic->watchdog);
2297 err_clean_cbs:
2298 e100_clean_cbs(nic);
2299 err_rx_clean_list:
2300 e100_rx_clean_list(nic);
2301 return err;
2302 }
2303
e100_down(struct nic * nic)2304 static void e100_down(struct nic *nic)
2305 {
2306 /* wait here for poll to complete */
2307 napi_disable(&nic->napi);
2308 netif_stop_queue(nic->netdev);
2309 e100_hw_reset(nic);
2310 free_irq(nic->pdev->irq, nic->netdev);
2311 del_timer_sync(&nic->watchdog);
2312 netif_carrier_off(nic->netdev);
2313 e100_clean_cbs(nic);
2314 e100_rx_clean_list(nic);
2315 }
2316
e100_tx_timeout(struct net_device * netdev,unsigned int txqueue)2317 static void e100_tx_timeout(struct net_device *netdev, unsigned int txqueue)
2318 {
2319 struct nic *nic = netdev_priv(netdev);
2320
2321 /* Reset outside of interrupt context, to avoid request_irq
2322 * in interrupt context */
2323 schedule_work(&nic->tx_timeout_task);
2324 }
2325
e100_tx_timeout_task(struct work_struct * work)2326 static void e100_tx_timeout_task(struct work_struct *work)
2327 {
2328 struct nic *nic = container_of(work, struct nic, tx_timeout_task);
2329 struct net_device *netdev = nic->netdev;
2330
2331 netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev,
2332 "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status));
2333
2334 rtnl_lock();
2335 if (netif_running(netdev)) {
2336 e100_down(netdev_priv(netdev));
2337 e100_up(netdev_priv(netdev));
2338 }
2339 rtnl_unlock();
2340 }
2341
e100_loopback_test(struct nic * nic,enum loopback loopback_mode)2342 static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode)
2343 {
2344 int err;
2345 struct sk_buff *skb;
2346
2347 /* Use driver resources to perform internal MAC or PHY
2348 * loopback test. A single packet is prepared and transmitted
2349 * in loopback mode, and the test passes if the received
2350 * packet compares byte-for-byte to the transmitted packet. */
2351
2352 if ((err = e100_rx_alloc_list(nic)))
2353 return err;
2354 if ((err = e100_alloc_cbs(nic)))
2355 goto err_clean_rx;
2356
2357 /* ICH PHY loopback is broken so do MAC loopback instead */
2358 if (nic->flags & ich && loopback_mode == lb_phy)
2359 loopback_mode = lb_mac;
2360
2361 nic->loopback = loopback_mode;
2362 if ((err = e100_hw_init(nic)))
2363 goto err_loopback_none;
2364
2365 if (loopback_mode == lb_phy)
2366 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR,
2367 BMCR_LOOPBACK);
2368
2369 e100_start_receiver(nic, NULL);
2370
2371 if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) {
2372 err = -ENOMEM;
2373 goto err_loopback_none;
2374 }
2375 skb_put(skb, ETH_DATA_LEN);
2376 memset(skb->data, 0xFF, ETH_DATA_LEN);
2377 e100_xmit_frame(skb, nic->netdev);
2378
2379 msleep(10);
2380
2381 dma_sync_single_for_cpu(&nic->pdev->dev, nic->rx_to_clean->dma_addr,
2382 RFD_BUF_LEN, DMA_BIDIRECTIONAL);
2383
2384 if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd),
2385 skb->data, ETH_DATA_LEN))
2386 err = -EAGAIN;
2387
2388 err_loopback_none:
2389 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0);
2390 nic->loopback = lb_none;
2391 e100_clean_cbs(nic);
2392 e100_hw_reset(nic);
2393 err_clean_rx:
2394 e100_rx_clean_list(nic);
2395 return err;
2396 }
2397
2398 #define MII_LED_CONTROL 0x1B
2399 #define E100_82552_LED_OVERRIDE 0x19
2400 #define E100_82552_LED_ON 0x000F /* LEDTX and LED_RX both on */
2401 #define E100_82552_LED_OFF 0x000A /* LEDTX and LED_RX both off */
2402
e100_get_link_ksettings(struct net_device * netdev,struct ethtool_link_ksettings * cmd)2403 static int e100_get_link_ksettings(struct net_device *netdev,
2404 struct ethtool_link_ksettings *cmd)
2405 {
2406 struct nic *nic = netdev_priv(netdev);
2407
2408 mii_ethtool_get_link_ksettings(&nic->mii, cmd);
2409
2410 return 0;
2411 }
2412
e100_set_link_ksettings(struct net_device * netdev,const struct ethtool_link_ksettings * cmd)2413 static int e100_set_link_ksettings(struct net_device *netdev,
2414 const struct ethtool_link_ksettings *cmd)
2415 {
2416 struct nic *nic = netdev_priv(netdev);
2417 int err;
2418
2419 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET);
2420 err = mii_ethtool_set_link_ksettings(&nic->mii, cmd);
2421 e100_exec_cb(nic, NULL, e100_configure);
2422
2423 return err;
2424 }
2425
e100_get_drvinfo(struct net_device * netdev,struct ethtool_drvinfo * info)2426 static void e100_get_drvinfo(struct net_device *netdev,
2427 struct ethtool_drvinfo *info)
2428 {
2429 struct nic *nic = netdev_priv(netdev);
2430 strscpy(info->driver, DRV_NAME, sizeof(info->driver));
2431 strscpy(info->bus_info, pci_name(nic->pdev),
2432 sizeof(info->bus_info));
2433 }
2434
2435 #define E100_PHY_REGS 0x1D
e100_get_regs_len(struct net_device * netdev)2436 static int e100_get_regs_len(struct net_device *netdev)
2437 {
2438 struct nic *nic = netdev_priv(netdev);
2439
2440 /* We know the number of registers, and the size of the dump buffer.
2441 * Calculate the total size in bytes.
2442 */
2443 return (1 + E100_PHY_REGS) * sizeof(u32) + sizeof(nic->mem->dump_buf);
2444 }
2445
e100_get_regs(struct net_device * netdev,struct ethtool_regs * regs,void * p)2446 static void e100_get_regs(struct net_device *netdev,
2447 struct ethtool_regs *regs, void *p)
2448 {
2449 struct nic *nic = netdev_priv(netdev);
2450 u32 *buff = p;
2451 int i;
2452
2453 regs->version = (1 << 24) | nic->pdev->revision;
2454 buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 |
2455 ioread8(&nic->csr->scb.cmd_lo) << 16 |
2456 ioread16(&nic->csr->scb.status);
2457 for (i = 0; i < E100_PHY_REGS; i++)
2458 /* Note that we read the registers in reverse order. This
2459 * ordering is the ABI apparently used by ethtool and other
2460 * applications.
2461 */
2462 buff[1 + i] = mdio_read(netdev, nic->mii.phy_id,
2463 E100_PHY_REGS - 1 - i);
2464 memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf));
2465 e100_exec_cb(nic, NULL, e100_dump);
2466 msleep(10);
2467 memcpy(&buff[1 + E100_PHY_REGS], nic->mem->dump_buf,
2468 sizeof(nic->mem->dump_buf));
2469 }
2470
e100_get_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)2471 static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2472 {
2473 struct nic *nic = netdev_priv(netdev);
2474 wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0;
2475 wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0;
2476 }
2477
e100_set_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)2478 static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2479 {
2480 struct nic *nic = netdev_priv(netdev);
2481
2482 if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) ||
2483 !device_can_wakeup(&nic->pdev->dev))
2484 return -EOPNOTSUPP;
2485
2486 if (wol->wolopts)
2487 nic->flags |= wol_magic;
2488 else
2489 nic->flags &= ~wol_magic;
2490
2491 device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts);
2492
2493 e100_exec_cb(nic, NULL, e100_configure);
2494
2495 return 0;
2496 }
2497
e100_get_msglevel(struct net_device * netdev)2498 static u32 e100_get_msglevel(struct net_device *netdev)
2499 {
2500 struct nic *nic = netdev_priv(netdev);
2501 return nic->msg_enable;
2502 }
2503
e100_set_msglevel(struct net_device * netdev,u32 value)2504 static void e100_set_msglevel(struct net_device *netdev, u32 value)
2505 {
2506 struct nic *nic = netdev_priv(netdev);
2507 nic->msg_enable = value;
2508 }
2509
e100_nway_reset(struct net_device * netdev)2510 static int e100_nway_reset(struct net_device *netdev)
2511 {
2512 struct nic *nic = netdev_priv(netdev);
2513 return mii_nway_restart(&nic->mii);
2514 }
2515
e100_get_link(struct net_device * netdev)2516 static u32 e100_get_link(struct net_device *netdev)
2517 {
2518 struct nic *nic = netdev_priv(netdev);
2519 return mii_link_ok(&nic->mii);
2520 }
2521
e100_get_eeprom_len(struct net_device * netdev)2522 static int e100_get_eeprom_len(struct net_device *netdev)
2523 {
2524 struct nic *nic = netdev_priv(netdev);
2525 return nic->eeprom_wc << 1;
2526 }
2527
2528 #define E100_EEPROM_MAGIC 0x1234
e100_get_eeprom(struct net_device * netdev,struct ethtool_eeprom * eeprom,u8 * bytes)2529 static int e100_get_eeprom(struct net_device *netdev,
2530 struct ethtool_eeprom *eeprom, u8 *bytes)
2531 {
2532 struct nic *nic = netdev_priv(netdev);
2533
2534 eeprom->magic = E100_EEPROM_MAGIC;
2535 memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len);
2536
2537 return 0;
2538 }
2539
e100_set_eeprom(struct net_device * netdev,struct ethtool_eeprom * eeprom,u8 * bytes)2540 static int e100_set_eeprom(struct net_device *netdev,
2541 struct ethtool_eeprom *eeprom, u8 *bytes)
2542 {
2543 struct nic *nic = netdev_priv(netdev);
2544
2545 if (eeprom->magic != E100_EEPROM_MAGIC)
2546 return -EINVAL;
2547
2548 memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len);
2549
2550 return e100_eeprom_save(nic, eeprom->offset >> 1,
2551 (eeprom->len >> 1) + 1);
2552 }
2553
e100_get_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)2554 static void e100_get_ringparam(struct net_device *netdev,
2555 struct ethtool_ringparam *ring,
2556 struct kernel_ethtool_ringparam *kernel_ring,
2557 struct netlink_ext_ack *extack)
2558 {
2559 struct nic *nic = netdev_priv(netdev);
2560 struct param_range *rfds = &nic->params.rfds;
2561 struct param_range *cbs = &nic->params.cbs;
2562
2563 ring->rx_max_pending = rfds->max;
2564 ring->tx_max_pending = cbs->max;
2565 ring->rx_pending = rfds->count;
2566 ring->tx_pending = cbs->count;
2567 }
2568
e100_set_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)2569 static int e100_set_ringparam(struct net_device *netdev,
2570 struct ethtool_ringparam *ring,
2571 struct kernel_ethtool_ringparam *kernel_ring,
2572 struct netlink_ext_ack *extack)
2573 {
2574 struct nic *nic = netdev_priv(netdev);
2575 struct param_range *rfds = &nic->params.rfds;
2576 struct param_range *cbs = &nic->params.cbs;
2577
2578 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
2579 return -EINVAL;
2580
2581 if (netif_running(netdev))
2582 e100_down(nic);
2583 rfds->count = max(ring->rx_pending, rfds->min);
2584 rfds->count = min(rfds->count, rfds->max);
2585 cbs->count = max(ring->tx_pending, cbs->min);
2586 cbs->count = min(cbs->count, cbs->max);
2587 netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n",
2588 rfds->count, cbs->count);
2589 if (netif_running(netdev))
2590 e100_up(nic);
2591
2592 return 0;
2593 }
2594
2595 static const char e100_gstrings_test[][ETH_GSTRING_LEN] = {
2596 "Link test (on/offline)",
2597 "Eeprom test (on/offline)",
2598 "Self test (offline)",
2599 "Mac loopback (offline)",
2600 "Phy loopback (offline)",
2601 };
2602 #define E100_TEST_LEN ARRAY_SIZE(e100_gstrings_test)
2603
e100_diag_test(struct net_device * netdev,struct ethtool_test * test,u64 * data)2604 static void e100_diag_test(struct net_device *netdev,
2605 struct ethtool_test *test, u64 *data)
2606 {
2607 struct ethtool_cmd cmd;
2608 struct nic *nic = netdev_priv(netdev);
2609 int i;
2610
2611 memset(data, 0, E100_TEST_LEN * sizeof(u64));
2612 data[0] = !mii_link_ok(&nic->mii);
2613 data[1] = e100_eeprom_load(nic);
2614 if (test->flags & ETH_TEST_FL_OFFLINE) {
2615
2616 /* save speed, duplex & autoneg settings */
2617 mii_ethtool_gset(&nic->mii, &cmd);
2618
2619 if (netif_running(netdev))
2620 e100_down(nic);
2621 data[2] = e100_self_test(nic);
2622 data[3] = e100_loopback_test(nic, lb_mac);
2623 data[4] = e100_loopback_test(nic, lb_phy);
2624
2625 /* restore speed, duplex & autoneg settings */
2626 mii_ethtool_sset(&nic->mii, &cmd);
2627
2628 if (netif_running(netdev))
2629 e100_up(nic);
2630 }
2631 for (i = 0; i < E100_TEST_LEN; i++)
2632 test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0;
2633
2634 msleep_interruptible(4 * 1000);
2635 }
2636
e100_set_phys_id(struct net_device * netdev,enum ethtool_phys_id_state state)2637 static int e100_set_phys_id(struct net_device *netdev,
2638 enum ethtool_phys_id_state state)
2639 {
2640 struct nic *nic = netdev_priv(netdev);
2641 enum led_state {
2642 led_on = 0x01,
2643 led_off = 0x04,
2644 led_on_559 = 0x05,
2645 led_on_557 = 0x07,
2646 };
2647 u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE :
2648 MII_LED_CONTROL;
2649 u16 leds = 0;
2650
2651 switch (state) {
2652 case ETHTOOL_ID_ACTIVE:
2653 return 2;
2654
2655 case ETHTOOL_ID_ON:
2656 leds = (nic->phy == phy_82552_v) ? E100_82552_LED_ON :
2657 (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559;
2658 break;
2659
2660 case ETHTOOL_ID_OFF:
2661 leds = (nic->phy == phy_82552_v) ? E100_82552_LED_OFF : led_off;
2662 break;
2663
2664 case ETHTOOL_ID_INACTIVE:
2665 break;
2666 }
2667
2668 mdio_write(netdev, nic->mii.phy_id, led_reg, leds);
2669 return 0;
2670 }
2671
2672 static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = {
2673 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2674 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2675 "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2676 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2677 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2678 "tx_heartbeat_errors", "tx_window_errors",
2679 /* device-specific stats */
2680 "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2681 "tx_flow_control_pause", "rx_flow_control_pause",
2682 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2683 "rx_short_frame_errors", "rx_over_length_errors",
2684 };
2685 #define E100_NET_STATS_LEN 21
2686 #define E100_STATS_LEN ARRAY_SIZE(e100_gstrings_stats)
2687
e100_get_sset_count(struct net_device * netdev,int sset)2688 static int e100_get_sset_count(struct net_device *netdev, int sset)
2689 {
2690 switch (sset) {
2691 case ETH_SS_TEST:
2692 return E100_TEST_LEN;
2693 case ETH_SS_STATS:
2694 return E100_STATS_LEN;
2695 default:
2696 return -EOPNOTSUPP;
2697 }
2698 }
2699
e100_get_ethtool_stats(struct net_device * netdev,struct ethtool_stats * stats,u64 * data)2700 static void e100_get_ethtool_stats(struct net_device *netdev,
2701 struct ethtool_stats *stats, u64 *data)
2702 {
2703 struct nic *nic = netdev_priv(netdev);
2704 int i;
2705
2706 for (i = 0; i < E100_NET_STATS_LEN; i++)
2707 data[i] = ((unsigned long *)&netdev->stats)[i];
2708
2709 data[i++] = nic->tx_deferred;
2710 data[i++] = nic->tx_single_collisions;
2711 data[i++] = nic->tx_multiple_collisions;
2712 data[i++] = nic->tx_fc_pause;
2713 data[i++] = nic->rx_fc_pause;
2714 data[i++] = nic->rx_fc_unsupported;
2715 data[i++] = nic->tx_tco_frames;
2716 data[i++] = nic->rx_tco_frames;
2717 data[i++] = nic->rx_short_frame_errors;
2718 data[i++] = nic->rx_over_length_errors;
2719 }
2720
e100_get_strings(struct net_device * netdev,u32 stringset,u8 * data)2721 static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2722 {
2723 switch (stringset) {
2724 case ETH_SS_TEST:
2725 memcpy(data, e100_gstrings_test, sizeof(e100_gstrings_test));
2726 break;
2727 case ETH_SS_STATS:
2728 memcpy(data, e100_gstrings_stats, sizeof(e100_gstrings_stats));
2729 break;
2730 }
2731 }
2732
2733 static const struct ethtool_ops e100_ethtool_ops = {
2734 .get_drvinfo = e100_get_drvinfo,
2735 .get_regs_len = e100_get_regs_len,
2736 .get_regs = e100_get_regs,
2737 .get_wol = e100_get_wol,
2738 .set_wol = e100_set_wol,
2739 .get_msglevel = e100_get_msglevel,
2740 .set_msglevel = e100_set_msglevel,
2741 .nway_reset = e100_nway_reset,
2742 .get_link = e100_get_link,
2743 .get_eeprom_len = e100_get_eeprom_len,
2744 .get_eeprom = e100_get_eeprom,
2745 .set_eeprom = e100_set_eeprom,
2746 .get_ringparam = e100_get_ringparam,
2747 .set_ringparam = e100_set_ringparam,
2748 .self_test = e100_diag_test,
2749 .get_strings = e100_get_strings,
2750 .set_phys_id = e100_set_phys_id,
2751 .get_ethtool_stats = e100_get_ethtool_stats,
2752 .get_sset_count = e100_get_sset_count,
2753 .get_ts_info = ethtool_op_get_ts_info,
2754 .get_link_ksettings = e100_get_link_ksettings,
2755 .set_link_ksettings = e100_set_link_ksettings,
2756 };
2757
e100_do_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)2758 static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2759 {
2760 struct nic *nic = netdev_priv(netdev);
2761
2762 return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL);
2763 }
2764
e100_alloc(struct nic * nic)2765 static int e100_alloc(struct nic *nic)
2766 {
2767 nic->mem = dma_alloc_coherent(&nic->pdev->dev, sizeof(struct mem),
2768 &nic->dma_addr, GFP_KERNEL);
2769 return nic->mem ? 0 : -ENOMEM;
2770 }
2771
e100_free(struct nic * nic)2772 static void e100_free(struct nic *nic)
2773 {
2774 if (nic->mem) {
2775 dma_free_coherent(&nic->pdev->dev, sizeof(struct mem),
2776 nic->mem, nic->dma_addr);
2777 nic->mem = NULL;
2778 }
2779 }
2780
e100_open(struct net_device * netdev)2781 static int e100_open(struct net_device *netdev)
2782 {
2783 struct nic *nic = netdev_priv(netdev);
2784 int err = 0;
2785
2786 netif_carrier_off(netdev);
2787 if ((err = e100_up(nic)))
2788 netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n");
2789 return err;
2790 }
2791
e100_close(struct net_device * netdev)2792 static int e100_close(struct net_device *netdev)
2793 {
2794 e100_down(netdev_priv(netdev));
2795 return 0;
2796 }
2797
e100_set_features(struct net_device * netdev,netdev_features_t features)2798 static int e100_set_features(struct net_device *netdev,
2799 netdev_features_t features)
2800 {
2801 struct nic *nic = netdev_priv(netdev);
2802 netdev_features_t changed = features ^ netdev->features;
2803
2804 if (!(changed & (NETIF_F_RXFCS | NETIF_F_RXALL)))
2805 return 0;
2806
2807 netdev->features = features;
2808 e100_exec_cb(nic, NULL, e100_configure);
2809 return 1;
2810 }
2811
2812 static const struct net_device_ops e100_netdev_ops = {
2813 .ndo_open = e100_open,
2814 .ndo_stop = e100_close,
2815 .ndo_start_xmit = e100_xmit_frame,
2816 .ndo_validate_addr = eth_validate_addr,
2817 .ndo_set_rx_mode = e100_set_multicast_list,
2818 .ndo_set_mac_address = e100_set_mac_address,
2819 .ndo_eth_ioctl = e100_do_ioctl,
2820 .ndo_tx_timeout = e100_tx_timeout,
2821 #ifdef CONFIG_NET_POLL_CONTROLLER
2822 .ndo_poll_controller = e100_netpoll,
2823 #endif
2824 .ndo_set_features = e100_set_features,
2825 };
2826
e100_probe(struct pci_dev * pdev,const struct pci_device_id * ent)2827 static int e100_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2828 {
2829 struct net_device *netdev;
2830 struct nic *nic;
2831 int err;
2832
2833 if (!(netdev = alloc_etherdev(sizeof(struct nic))))
2834 return -ENOMEM;
2835
2836 netdev->hw_features |= NETIF_F_RXFCS;
2837 netdev->priv_flags |= IFF_SUPP_NOFCS;
2838 netdev->hw_features |= NETIF_F_RXALL;
2839
2840 netdev->netdev_ops = &e100_netdev_ops;
2841 netdev->ethtool_ops = &e100_ethtool_ops;
2842 netdev->watchdog_timeo = E100_WATCHDOG_PERIOD;
2843 strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
2844
2845 nic = netdev_priv(netdev);
2846 netif_napi_add_weight(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT);
2847 nic->netdev = netdev;
2848 nic->pdev = pdev;
2849 nic->msg_enable = (1 << debug) - 1;
2850 nic->mdio_ctrl = mdio_ctrl_hw;
2851 pci_set_drvdata(pdev, netdev);
2852
2853 if ((err = pci_enable_device(pdev))) {
2854 netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n");
2855 goto err_out_free_dev;
2856 }
2857
2858 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
2859 netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n");
2860 err = -ENODEV;
2861 goto err_out_disable_pdev;
2862 }
2863
2864 if ((err = pci_request_regions(pdev, DRV_NAME))) {
2865 netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n");
2866 goto err_out_disable_pdev;
2867 }
2868
2869 if ((err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))) {
2870 netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n");
2871 goto err_out_free_res;
2872 }
2873
2874 SET_NETDEV_DEV(netdev, &pdev->dev);
2875
2876 if (use_io)
2877 netif_info(nic, probe, nic->netdev, "using i/o access mode\n");
2878
2879 nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr));
2880 if (!nic->csr) {
2881 netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n");
2882 err = -ENOMEM;
2883 goto err_out_free_res;
2884 }
2885
2886 if (ent->driver_data)
2887 nic->flags |= ich;
2888 else
2889 nic->flags &= ~ich;
2890
2891 e100_get_defaults(nic);
2892
2893 /* D100 MAC doesn't allow rx of vlan packets with normal MTU */
2894 if (nic->mac < mac_82558_D101_A4)
2895 netdev->features |= NETIF_F_VLAN_CHALLENGED;
2896
2897 /* locks must be initialized before calling hw_reset */
2898 spin_lock_init(&nic->cb_lock);
2899 spin_lock_init(&nic->cmd_lock);
2900 spin_lock_init(&nic->mdio_lock);
2901
2902 /* Reset the device before pci_set_master() in case device is in some
2903 * funky state and has an interrupt pending - hint: we don't have the
2904 * interrupt handler registered yet. */
2905 e100_hw_reset(nic);
2906
2907 pci_set_master(pdev);
2908
2909 timer_setup(&nic->watchdog, e100_watchdog, 0);
2910
2911 INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task);
2912
2913 if ((err = e100_alloc(nic))) {
2914 netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n");
2915 goto err_out_iounmap;
2916 }
2917
2918 if ((err = e100_eeprom_load(nic)))
2919 goto err_out_free;
2920
2921 e100_phy_init(nic);
2922
2923 eth_hw_addr_set(netdev, (u8 *)nic->eeprom);
2924 if (!is_valid_ether_addr(netdev->dev_addr)) {
2925 if (!eeprom_bad_csum_allow) {
2926 netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n");
2927 err = -EAGAIN;
2928 goto err_out_free;
2929 } else {
2930 netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n");
2931 }
2932 }
2933
2934 /* Wol magic packet can be enabled from eeprom */
2935 if ((nic->mac >= mac_82558_D101_A4) &&
2936 (le16_to_cpu(nic->eeprom[eeprom_id]) & eeprom_id_wol)) {
2937 nic->flags |= wol_magic;
2938 device_set_wakeup_enable(&pdev->dev, true);
2939 }
2940
2941 /* ack any pending wake events, disable PME */
2942 pci_pme_active(pdev, false);
2943
2944 strcpy(netdev->name, "eth%d");
2945 if ((err = register_netdev(netdev))) {
2946 netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n");
2947 goto err_out_free;
2948 }
2949 nic->cbs_pool = dma_pool_create(netdev->name,
2950 &nic->pdev->dev,
2951 nic->params.cbs.max * sizeof(struct cb),
2952 sizeof(u32),
2953 0);
2954 if (!nic->cbs_pool) {
2955 netif_err(nic, probe, nic->netdev, "Cannot create DMA pool, aborting\n");
2956 err = -ENOMEM;
2957 goto err_out_pool;
2958 }
2959 netif_info(nic, probe, nic->netdev,
2960 "addr 0x%llx, irq %d, MAC addr %pM\n",
2961 (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0),
2962 pdev->irq, netdev->dev_addr);
2963
2964 return 0;
2965
2966 err_out_pool:
2967 unregister_netdev(netdev);
2968 err_out_free:
2969 e100_free(nic);
2970 err_out_iounmap:
2971 pci_iounmap(pdev, nic->csr);
2972 err_out_free_res:
2973 pci_release_regions(pdev);
2974 err_out_disable_pdev:
2975 pci_disable_device(pdev);
2976 err_out_free_dev:
2977 free_netdev(netdev);
2978 return err;
2979 }
2980
e100_remove(struct pci_dev * pdev)2981 static void e100_remove(struct pci_dev *pdev)
2982 {
2983 struct net_device *netdev = pci_get_drvdata(pdev);
2984
2985 if (netdev) {
2986 struct nic *nic = netdev_priv(netdev);
2987 unregister_netdev(netdev);
2988 e100_free(nic);
2989 pci_iounmap(pdev, nic->csr);
2990 dma_pool_destroy(nic->cbs_pool);
2991 free_netdev(netdev);
2992 pci_release_regions(pdev);
2993 pci_disable_device(pdev);
2994 }
2995 }
2996
2997 #define E100_82552_SMARTSPEED 0x14 /* SmartSpeed Ctrl register */
2998 #define E100_82552_REV_ANEG 0x0200 /* Reverse auto-negotiation */
2999 #define E100_82552_ANEG_NOW 0x0400 /* Auto-negotiate now */
__e100_shutdown(struct pci_dev * pdev,bool * enable_wake)3000 static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake)
3001 {
3002 struct net_device *netdev = pci_get_drvdata(pdev);
3003 struct nic *nic = netdev_priv(netdev);
3004
3005 netif_device_detach(netdev);
3006
3007 if (netif_running(netdev))
3008 e100_down(nic);
3009
3010 if ((nic->flags & wol_magic) | e100_asf(nic)) {
3011 /* enable reverse auto-negotiation */
3012 if (nic->phy == phy_82552_v) {
3013 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3014 E100_82552_SMARTSPEED);
3015
3016 mdio_write(netdev, nic->mii.phy_id,
3017 E100_82552_SMARTSPEED, smartspeed |
3018 E100_82552_REV_ANEG | E100_82552_ANEG_NOW);
3019 }
3020 *enable_wake = true;
3021 } else {
3022 *enable_wake = false;
3023 }
3024
3025 pci_disable_device(pdev);
3026 }
3027
__e100_power_off(struct pci_dev * pdev,bool wake)3028 static int __e100_power_off(struct pci_dev *pdev, bool wake)
3029 {
3030 if (wake)
3031 return pci_prepare_to_sleep(pdev);
3032
3033 pci_wake_from_d3(pdev, false);
3034 pci_set_power_state(pdev, PCI_D3hot);
3035
3036 return 0;
3037 }
3038
e100_suspend(struct device * dev_d)3039 static int e100_suspend(struct device *dev_d)
3040 {
3041 bool wake;
3042
3043 __e100_shutdown(to_pci_dev(dev_d), &wake);
3044
3045 return 0;
3046 }
3047
e100_resume(struct device * dev_d)3048 static int e100_resume(struct device *dev_d)
3049 {
3050 struct net_device *netdev = dev_get_drvdata(dev_d);
3051 struct nic *nic = netdev_priv(netdev);
3052 int err;
3053
3054 err = pci_enable_device(to_pci_dev(dev_d));
3055 if (err) {
3056 netdev_err(netdev, "Resume cannot enable PCI device, aborting\n");
3057 return err;
3058 }
3059 pci_set_master(to_pci_dev(dev_d));
3060
3061 /* disable reverse auto-negotiation */
3062 if (nic->phy == phy_82552_v) {
3063 u16 smartspeed = mdio_read(netdev, nic->mii.phy_id,
3064 E100_82552_SMARTSPEED);
3065
3066 mdio_write(netdev, nic->mii.phy_id,
3067 E100_82552_SMARTSPEED,
3068 smartspeed & ~(E100_82552_REV_ANEG));
3069 }
3070
3071 if (netif_running(netdev))
3072 e100_up(nic);
3073
3074 netif_device_attach(netdev);
3075
3076 return 0;
3077 }
3078
e100_shutdown(struct pci_dev * pdev)3079 static void e100_shutdown(struct pci_dev *pdev)
3080 {
3081 bool wake;
3082 __e100_shutdown(pdev, &wake);
3083 if (system_state == SYSTEM_POWER_OFF)
3084 __e100_power_off(pdev, wake);
3085 }
3086
3087 /* ------------------ PCI Error Recovery infrastructure -------------- */
3088 /**
3089 * e100_io_error_detected - called when PCI error is detected.
3090 * @pdev: Pointer to PCI device
3091 * @state: The current pci connection state
3092 */
e100_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3093 static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
3094 {
3095 struct net_device *netdev = pci_get_drvdata(pdev);
3096 struct nic *nic = netdev_priv(netdev);
3097
3098 netif_device_detach(netdev);
3099
3100 if (state == pci_channel_io_perm_failure)
3101 return PCI_ERS_RESULT_DISCONNECT;
3102
3103 if (netif_running(netdev))
3104 e100_down(nic);
3105 pci_disable_device(pdev);
3106
3107 /* Request a slot reset. */
3108 return PCI_ERS_RESULT_NEED_RESET;
3109 }
3110
3111 /**
3112 * e100_io_slot_reset - called after the pci bus has been reset.
3113 * @pdev: Pointer to PCI device
3114 *
3115 * Restart the card from scratch.
3116 */
e100_io_slot_reset(struct pci_dev * pdev)3117 static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev)
3118 {
3119 struct net_device *netdev = pci_get_drvdata(pdev);
3120 struct nic *nic = netdev_priv(netdev);
3121
3122 if (pci_enable_device(pdev)) {
3123 pr_err("Cannot re-enable PCI device after reset\n");
3124 return PCI_ERS_RESULT_DISCONNECT;
3125 }
3126 pci_set_master(pdev);
3127
3128 /* Only one device per card can do a reset */
3129 if (0 != PCI_FUNC(pdev->devfn))
3130 return PCI_ERS_RESULT_RECOVERED;
3131 e100_hw_reset(nic);
3132 e100_phy_init(nic);
3133
3134 return PCI_ERS_RESULT_RECOVERED;
3135 }
3136
3137 /**
3138 * e100_io_resume - resume normal operations
3139 * @pdev: Pointer to PCI device
3140 *
3141 * Resume normal operations after an error recovery
3142 * sequence has been completed.
3143 */
e100_io_resume(struct pci_dev * pdev)3144 static void e100_io_resume(struct pci_dev *pdev)
3145 {
3146 struct net_device *netdev = pci_get_drvdata(pdev);
3147 struct nic *nic = netdev_priv(netdev);
3148
3149 /* ack any pending wake events, disable PME */
3150 pci_enable_wake(pdev, PCI_D0, 0);
3151
3152 netif_device_attach(netdev);
3153 if (netif_running(netdev)) {
3154 e100_open(netdev);
3155 mod_timer(&nic->watchdog, jiffies);
3156 }
3157 }
3158
3159 static const struct pci_error_handlers e100_err_handler = {
3160 .error_detected = e100_io_error_detected,
3161 .slot_reset = e100_io_slot_reset,
3162 .resume = e100_io_resume,
3163 };
3164
3165 static DEFINE_SIMPLE_DEV_PM_OPS(e100_pm_ops, e100_suspend, e100_resume);
3166
3167 static struct pci_driver e100_driver = {
3168 .name = DRV_NAME,
3169 .id_table = e100_id_table,
3170 .probe = e100_probe,
3171 .remove = e100_remove,
3172
3173 /* Power Management hooks */
3174 .driver.pm = pm_sleep_ptr(&e100_pm_ops),
3175
3176 .shutdown = e100_shutdown,
3177 .err_handler = &e100_err_handler,
3178 };
3179
e100_init_module(void)3180 static int __init e100_init_module(void)
3181 {
3182 if (((1 << debug) - 1) & NETIF_MSG_DRV) {
3183 pr_info("%s\n", DRV_DESCRIPTION);
3184 pr_info("%s\n", DRV_COPYRIGHT);
3185 }
3186 return pci_register_driver(&e100_driver);
3187 }
3188
e100_cleanup_module(void)3189 static void __exit e100_cleanup_module(void)
3190 {
3191 pci_unregister_driver(&e100_driver);
3192 }
3193
3194 module_init(e100_init_module);
3195 module_exit(e100_cleanup_module);
3196