xref: /linux/drivers/net/ethernet/hisilicon/hns3/hns3vf/hclgevf_main.c (revision eeb409bde964df1956297b6775ff5f53dd98d556)
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclgevf_regs.h"
10 #include "hclge_mbx.h"
11 #include "hnae3.h"
12 #include "hclgevf_devlink.h"
13 #include "hclge_comm_rss.h"
14 #include "hclgevf_trace.h"
15 
16 #define HCLGEVF_NAME	"hclgevf"
17 
18 #define HCLGEVF_RESET_MAX_FAIL_CNT	5
19 
20 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
21 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
22 				  unsigned long delay);
23 
24 static struct hnae3_ae_algo ae_algovf;
25 
26 static struct workqueue_struct *hclgevf_wq;
27 
28 static const struct pci_device_id ae_algovf_pci_tbl[] = {
29 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
30 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
31 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
32 	/* required last entry */
33 	{0, }
34 };
35 
36 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
37 
38 /* hclgevf_cmd_send - send command to command queue
39  * @hw: pointer to the hw struct
40  * @desc: prefilled descriptor for describing the command
41  * @num : the number of descriptors to be sent
42  *
43  * This is the main send command for command queue, it
44  * sends the queue, cleans the queue, etc
45  */
46 int hclgevf_cmd_send(struct hclgevf_hw *hw, struct hclge_desc *desc, int num)
47 {
48 	return hclge_comm_cmd_send(&hw->hw, desc, num);
49 }
50 
51 static void hclgevf_trace_cmd_send(struct hclge_comm_hw *hw, struct hclge_desc *desc,
52 				   int num, bool is_special)
53 {
54 	int i;
55 
56 	trace_hclge_vf_cmd_send(hw, desc, 0, num);
57 
58 	if (is_special)
59 		return;
60 
61 	for (i = 1; i < num; i++)
62 		trace_hclge_vf_cmd_send(hw, &desc[i], i, num);
63 }
64 
65 static void hclgevf_trace_cmd_get(struct hclge_comm_hw *hw, struct hclge_desc *desc,
66 				  int num, bool is_special)
67 {
68 	int i;
69 
70 	if (!HCLGE_COMM_SEND_SYNC(le16_to_cpu(desc->flag)))
71 		return;
72 
73 	trace_hclge_vf_cmd_get(hw, desc, 0, num);
74 
75 	if (is_special)
76 		return;
77 
78 	for (i = 1; i < num; i++)
79 		trace_hclge_vf_cmd_get(hw, &desc[i], i, num);
80 }
81 
82 static const struct hclge_comm_cmq_ops hclgevf_cmq_ops = {
83 	.trace_cmd_send = hclgevf_trace_cmd_send,
84 	.trace_cmd_get = hclgevf_trace_cmd_get,
85 };
86 
87 void hclgevf_arq_init(struct hclgevf_dev *hdev)
88 {
89 	struct hclge_comm_cmq *cmdq = &hdev->hw.hw.cmq;
90 
91 	spin_lock(&cmdq->crq.lock);
92 	/* initialize the pointers of async rx queue of mailbox */
93 	hdev->arq.hdev = hdev;
94 	hdev->arq.head = 0;
95 	hdev->arq.tail = 0;
96 	atomic_set(&hdev->arq.count, 0);
97 	spin_unlock(&cmdq->crq.lock);
98 }
99 
100 struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
101 {
102 	if (!handle->client)
103 		return container_of(handle, struct hclgevf_dev, nic);
104 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
105 		return container_of(handle, struct hclgevf_dev, roce);
106 	else
107 		return container_of(handle, struct hclgevf_dev, nic);
108 }
109 
110 static void hclgevf_update_stats(struct hnae3_handle *handle)
111 {
112 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
113 	int status;
114 
115 	status = hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
116 	if (status)
117 		dev_err(&hdev->pdev->dev,
118 			"VF update of TQPS stats fail, status = %d.\n",
119 			status);
120 }
121 
122 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
123 {
124 	if (strset == ETH_SS_TEST)
125 		return -EOPNOTSUPP;
126 	else if (strset == ETH_SS_STATS)
127 		return hclge_comm_tqps_get_sset_count(handle);
128 
129 	return 0;
130 }
131 
132 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
133 				u8 *data)
134 {
135 	u8 *p = (char *)data;
136 
137 	if (strset == ETH_SS_STATS)
138 		p = hclge_comm_tqps_get_strings(handle, p);
139 }
140 
141 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
142 {
143 	hclge_comm_tqps_get_stats(handle, data);
144 }
145 
146 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
147 				   u8 subcode)
148 {
149 	if (msg) {
150 		memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
151 		msg->code = code;
152 		msg->subcode = subcode;
153 	}
154 }
155 
156 static int hclgevf_get_basic_info(struct hclgevf_dev *hdev)
157 {
158 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
159 	u8 resp_msg[HCLGE_MBX_MAX_RESP_DATA_SIZE];
160 	struct hclge_basic_info *basic_info;
161 	struct hclge_vf_to_pf_msg send_msg;
162 	unsigned long caps;
163 	int status;
164 
165 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_BASIC_INFO, 0);
166 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
167 				      sizeof(resp_msg));
168 	if (status) {
169 		dev_err(&hdev->pdev->dev,
170 			"failed to get basic info from pf, ret = %d", status);
171 		return status;
172 	}
173 
174 	basic_info = (struct hclge_basic_info *)resp_msg;
175 
176 	hdev->hw_tc_map = basic_info->hw_tc_map;
177 	hdev->mbx_api_version = le16_to_cpu(basic_info->mbx_api_version);
178 	caps = le32_to_cpu(basic_info->pf_caps);
179 	if (test_bit(HNAE3_PF_SUPPORT_VLAN_FLTR_MDF_B, &caps))
180 		set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps);
181 
182 	return 0;
183 }
184 
185 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
186 {
187 	struct hnae3_handle *nic = &hdev->nic;
188 	struct hclge_vf_to_pf_msg send_msg;
189 	u8 resp_msg;
190 	int ret;
191 
192 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
193 			       HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
194 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
195 				   sizeof(u8));
196 	if (ret) {
197 		dev_err(&hdev->pdev->dev,
198 			"VF request to get port based vlan state failed %d",
199 			ret);
200 		return ret;
201 	}
202 
203 	nic->port_base_vlan_state = resp_msg;
204 
205 	return 0;
206 }
207 
208 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
209 {
210 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
211 
212 	struct hclge_mbx_vf_queue_info *queue_info;
213 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
214 	struct hclge_vf_to_pf_msg send_msg;
215 	int status;
216 
217 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
218 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
219 				      HCLGEVF_TQPS_RSS_INFO_LEN);
220 	if (status) {
221 		dev_err(&hdev->pdev->dev,
222 			"VF request to get tqp info from PF failed %d",
223 			status);
224 		return status;
225 	}
226 
227 	queue_info = (struct hclge_mbx_vf_queue_info *)resp_msg;
228 	hdev->num_tqps = le16_to_cpu(queue_info->num_tqps);
229 	hdev->rss_size_max = le16_to_cpu(queue_info->rss_size);
230 	hdev->rx_buf_len = le16_to_cpu(queue_info->rx_buf_len);
231 
232 	return 0;
233 }
234 
235 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
236 {
237 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
238 
239 	struct hclge_mbx_vf_queue_depth *queue_depth;
240 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
241 	struct hclge_vf_to_pf_msg send_msg;
242 	int ret;
243 
244 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
245 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
246 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
247 	if (ret) {
248 		dev_err(&hdev->pdev->dev,
249 			"VF request to get tqp depth info from PF failed %d",
250 			ret);
251 		return ret;
252 	}
253 
254 	queue_depth = (struct hclge_mbx_vf_queue_depth *)resp_msg;
255 	hdev->num_tx_desc = le16_to_cpu(queue_depth->num_tx_desc);
256 	hdev->num_rx_desc = le16_to_cpu(queue_depth->num_rx_desc);
257 
258 	return 0;
259 }
260 
261 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
262 {
263 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
264 	struct hclge_vf_to_pf_msg send_msg;
265 	u16 qid_in_pf = 0;
266 	u8 resp_data[2];
267 	int ret;
268 
269 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
270 	*(__le16 *)send_msg.data = cpu_to_le16(queue_id);
271 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
272 				   sizeof(resp_data));
273 	if (!ret)
274 		qid_in_pf = le16_to_cpu(*(__le16 *)resp_data);
275 
276 	return qid_in_pf;
277 }
278 
279 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
280 {
281 	struct hclge_vf_to_pf_msg send_msg;
282 	u8 resp_msg[2];
283 	int ret;
284 
285 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
286 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
287 				   sizeof(resp_msg));
288 	if (ret) {
289 		dev_err(&hdev->pdev->dev,
290 			"VF request to get the pf port media type failed %d",
291 			ret);
292 		return ret;
293 	}
294 
295 	hdev->hw.mac.media_type = resp_msg[0];
296 	hdev->hw.mac.module_type = resp_msg[1];
297 
298 	return 0;
299 }
300 
301 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
302 {
303 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
304 	struct hclge_comm_tqp *tqp;
305 	int i;
306 
307 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
308 				  sizeof(struct hclge_comm_tqp), GFP_KERNEL);
309 	if (!hdev->htqp)
310 		return -ENOMEM;
311 
312 	tqp = hdev->htqp;
313 
314 	for (i = 0; i < hdev->num_tqps; i++) {
315 		tqp->dev = &hdev->pdev->dev;
316 		tqp->index = i;
317 
318 		tqp->q.ae_algo = &ae_algovf;
319 		tqp->q.buf_size = hdev->rx_buf_len;
320 		tqp->q.tx_desc_num = hdev->num_tx_desc;
321 		tqp->q.rx_desc_num = hdev->num_rx_desc;
322 
323 		/* need an extended offset to configure queues >=
324 		 * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
325 		 */
326 		if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
327 			tqp->q.io_base = hdev->hw.hw.io_base +
328 					 HCLGEVF_TQP_REG_OFFSET +
329 					 i * HCLGEVF_TQP_REG_SIZE;
330 		else
331 			tqp->q.io_base = hdev->hw.hw.io_base +
332 					 HCLGEVF_TQP_REG_OFFSET +
333 					 HCLGEVF_TQP_EXT_REG_OFFSET +
334 					 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
335 					 HCLGEVF_TQP_REG_SIZE;
336 
337 		/* when device supports tx push and has device memory,
338 		 * the queue can execute push mode or doorbell mode on
339 		 * device memory.
340 		 */
341 		if (test_bit(HNAE3_DEV_SUPPORT_TX_PUSH_B, ae_dev->caps))
342 			tqp->q.mem_base = hdev->hw.hw.mem_base +
343 					  HCLGEVF_TQP_MEM_OFFSET(hdev, i);
344 
345 		tqp++;
346 	}
347 
348 	return 0;
349 }
350 
351 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
352 {
353 	struct hnae3_handle *nic = &hdev->nic;
354 	struct hnae3_knic_private_info *kinfo;
355 	u16 new_tqps = hdev->num_tqps;
356 	unsigned int i;
357 	u8 num_tc = 0;
358 
359 	kinfo = &nic->kinfo;
360 	kinfo->num_tx_desc = hdev->num_tx_desc;
361 	kinfo->num_rx_desc = hdev->num_rx_desc;
362 	kinfo->rx_buf_len = hdev->rx_buf_len;
363 	for (i = 0; i < HCLGE_COMM_MAX_TC_NUM; i++)
364 		if (hdev->hw_tc_map & BIT(i))
365 			num_tc++;
366 
367 	num_tc = num_tc ? num_tc : 1;
368 	kinfo->tc_info.num_tc = num_tc;
369 	kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc);
370 	new_tqps = kinfo->rss_size * num_tc;
371 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
372 
373 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
374 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
375 	if (!kinfo->tqp)
376 		return -ENOMEM;
377 
378 	for (i = 0; i < kinfo->num_tqps; i++) {
379 		hdev->htqp[i].q.handle = &hdev->nic;
380 		hdev->htqp[i].q.tqp_index = i;
381 		kinfo->tqp[i] = &hdev->htqp[i].q;
382 	}
383 
384 	/* after init the max rss_size and tqps, adjust the default tqp numbers
385 	 * and rss size with the actual vector numbers
386 	 */
387 	kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
388 	kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc,
389 				kinfo->rss_size);
390 
391 	return 0;
392 }
393 
394 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
395 {
396 	struct hclge_vf_to_pf_msg send_msg;
397 	int status;
398 
399 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
400 	status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
401 	if (status)
402 		dev_err(&hdev->pdev->dev,
403 			"VF failed to fetch link status(%d) from PF", status);
404 }
405 
406 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
407 {
408 	struct hnae3_handle *rhandle = &hdev->roce;
409 	struct hnae3_handle *handle = &hdev->nic;
410 	struct hnae3_client *rclient;
411 	struct hnae3_client *client;
412 
413 	if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
414 		return;
415 
416 	client = handle->client;
417 	rclient = hdev->roce_client;
418 
419 	link_state =
420 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
421 	if (link_state != hdev->hw.mac.link) {
422 		hdev->hw.mac.link = link_state;
423 		client->ops->link_status_change(handle, !!link_state);
424 		if (rclient && rclient->ops->link_status_change)
425 			rclient->ops->link_status_change(rhandle, !!link_state);
426 	}
427 
428 	clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
429 }
430 
431 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
432 {
433 #define HCLGEVF_ADVERTISING	0
434 #define HCLGEVF_SUPPORTED	1
435 
436 	struct hclge_vf_to_pf_msg send_msg;
437 
438 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
439 	send_msg.data[0] = HCLGEVF_ADVERTISING;
440 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
441 	send_msg.data[0] = HCLGEVF_SUPPORTED;
442 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
443 }
444 
445 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
446 {
447 	struct hnae3_handle *nic = &hdev->nic;
448 	int ret;
449 
450 	nic->ae_algo = &ae_algovf;
451 	nic->pdev = hdev->pdev;
452 	nic->numa_node_mask = hdev->numa_node_mask;
453 	nic->flags |= HNAE3_SUPPORT_VF;
454 	nic->kinfo.io_base = hdev->hw.hw.io_base;
455 
456 	ret = hclgevf_knic_setup(hdev);
457 	if (ret)
458 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
459 			ret);
460 	return ret;
461 }
462 
463 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
464 {
465 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
466 		dev_warn(&hdev->pdev->dev,
467 			 "vector(vector_id %d) has been freed.\n", vector_id);
468 		return;
469 	}
470 
471 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
472 	hdev->num_msi_left += 1;
473 	hdev->num_msi_used -= 1;
474 }
475 
476 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
477 			      struct hnae3_vector_info *vector_info)
478 {
479 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
480 	struct hnae3_vector_info *vector = vector_info;
481 	int alloc = 0;
482 	int i, j;
483 
484 	vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
485 	vector_num = min(hdev->num_msi_left, vector_num);
486 
487 	for (j = 0; j < vector_num; j++) {
488 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
489 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
490 				vector->vector = pci_irq_vector(hdev->pdev, i);
491 				vector->io_addr = hdev->hw.hw.io_base +
492 					HCLGEVF_VECTOR_REG_BASE +
493 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
494 				hdev->vector_status[i] = 0;
495 				hdev->vector_irq[i] = vector->vector;
496 
497 				vector++;
498 				alloc++;
499 
500 				break;
501 			}
502 		}
503 	}
504 	hdev->num_msi_left -= alloc;
505 	hdev->num_msi_used += alloc;
506 
507 	return alloc;
508 }
509 
510 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
511 {
512 	int i;
513 
514 	for (i = 0; i < hdev->num_msi; i++)
515 		if (vector == hdev->vector_irq[i])
516 			return i;
517 
518 	return -EINVAL;
519 }
520 
521 /* for revision 0x20, vf shared the same rss config with pf */
522 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
523 {
524 #define HCLGEVF_RSS_MBX_RESP_LEN	8
525 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
526 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
527 	struct hclge_vf_to_pf_msg send_msg;
528 	u16 msg_num, hash_key_index;
529 	u8 index;
530 	int ret;
531 
532 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
533 	msg_num = (HCLGE_COMM_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
534 			HCLGEVF_RSS_MBX_RESP_LEN;
535 	for (index = 0; index < msg_num; index++) {
536 		send_msg.data[0] = index;
537 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
538 					   HCLGEVF_RSS_MBX_RESP_LEN);
539 		if (ret) {
540 			dev_err(&hdev->pdev->dev,
541 				"VF get rss hash key from PF failed, ret=%d",
542 				ret);
543 			return ret;
544 		}
545 
546 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
547 		if (index == msg_num - 1)
548 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
549 			       &resp_msg[0],
550 			       HCLGE_COMM_RSS_KEY_SIZE - hash_key_index);
551 		else
552 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
553 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
554 	}
555 
556 	return 0;
557 }
558 
559 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
560 			   u8 *hfunc)
561 {
562 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
563 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
564 	int ret;
565 
566 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
567 		hclge_comm_get_rss_hash_info(rss_cfg, key, hfunc);
568 	} else {
569 		if (hfunc)
570 			*hfunc = ETH_RSS_HASH_TOP;
571 		if (key) {
572 			ret = hclgevf_get_rss_hash_key(hdev);
573 			if (ret)
574 				return ret;
575 			memcpy(key, rss_cfg->rss_hash_key,
576 			       HCLGE_COMM_RSS_KEY_SIZE);
577 		}
578 	}
579 
580 	hclge_comm_get_rss_indir_tbl(rss_cfg, indir,
581 				     hdev->ae_dev->dev_specs.rss_ind_tbl_size);
582 
583 	return 0;
584 }
585 
586 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
587 			   const u8 *key, const u8 hfunc)
588 {
589 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
590 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
591 	int ret, i;
592 
593 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
594 		ret = hclge_comm_set_rss_hash_key(rss_cfg, &hdev->hw.hw, key,
595 						  hfunc);
596 		if (ret)
597 			return ret;
598 	}
599 
600 	/* update the shadow RSS table with user specified qids */
601 	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
602 		rss_cfg->rss_indirection_tbl[i] = indir[i];
603 
604 	/* update the hardware */
605 	return hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
606 					      rss_cfg->rss_indirection_tbl);
607 }
608 
609 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
610 				 struct ethtool_rxnfc *nfc)
611 {
612 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
613 	int ret;
614 
615 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
616 		return -EOPNOTSUPP;
617 
618 	ret = hclge_comm_set_rss_tuple(hdev->ae_dev, &hdev->hw.hw,
619 				       &hdev->rss_cfg, nfc);
620 	if (ret)
621 		dev_err(&hdev->pdev->dev,
622 		"failed to set rss tuple, ret = %d.\n", ret);
623 
624 	return ret;
625 }
626 
627 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
628 				 struct ethtool_rxnfc *nfc)
629 {
630 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
631 	u8 tuple_sets;
632 	int ret;
633 
634 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
635 		return -EOPNOTSUPP;
636 
637 	nfc->data = 0;
638 
639 	ret = hclge_comm_get_rss_tuple(&hdev->rss_cfg, nfc->flow_type,
640 				       &tuple_sets);
641 	if (ret || !tuple_sets)
642 		return ret;
643 
644 	nfc->data = hclge_comm_convert_rss_tuple(tuple_sets);
645 
646 	return 0;
647 }
648 
649 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
650 {
651 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
652 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
653 
654 	return rss_cfg->rss_size;
655 }
656 
657 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
658 				       int vector_id,
659 				       struct hnae3_ring_chain_node *ring_chain)
660 {
661 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
662 	struct hclge_vf_to_pf_msg send_msg;
663 	struct hnae3_ring_chain_node *node;
664 	int status;
665 	int i = 0;
666 
667 	memset(&send_msg, 0, sizeof(send_msg));
668 	send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
669 		HCLGE_MBX_UNMAP_RING_TO_VECTOR;
670 	send_msg.vector_id = vector_id;
671 
672 	for (node = ring_chain; node; node = node->next) {
673 		send_msg.param[i].ring_type =
674 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
675 
676 		send_msg.param[i].tqp_index = node->tqp_index;
677 		send_msg.param[i].int_gl_index =
678 					hnae3_get_field(node->int_gl_idx,
679 							HNAE3_RING_GL_IDX_M,
680 							HNAE3_RING_GL_IDX_S);
681 
682 		i++;
683 		if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
684 			send_msg.ring_num = i;
685 
686 			status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
687 						      NULL, 0);
688 			if (status) {
689 				dev_err(&hdev->pdev->dev,
690 					"Map TQP fail, status is %d.\n",
691 					status);
692 				return status;
693 			}
694 			i = 0;
695 		}
696 	}
697 
698 	return 0;
699 }
700 
701 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
702 				      struct hnae3_ring_chain_node *ring_chain)
703 {
704 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
705 	int vector_id;
706 
707 	vector_id = hclgevf_get_vector_index(hdev, vector);
708 	if (vector_id < 0) {
709 		dev_err(&handle->pdev->dev,
710 			"Get vector index fail. ret =%d\n", vector_id);
711 		return vector_id;
712 	}
713 
714 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
715 }
716 
717 static int hclgevf_unmap_ring_from_vector(
718 				struct hnae3_handle *handle,
719 				int vector,
720 				struct hnae3_ring_chain_node *ring_chain)
721 {
722 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
723 	int ret, vector_id;
724 
725 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
726 		return 0;
727 
728 	vector_id = hclgevf_get_vector_index(hdev, vector);
729 	if (vector_id < 0) {
730 		dev_err(&handle->pdev->dev,
731 			"Get vector index fail. ret =%d\n", vector_id);
732 		return vector_id;
733 	}
734 
735 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
736 	if (ret)
737 		dev_err(&handle->pdev->dev,
738 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
739 			vector_id,
740 			ret);
741 
742 	return ret;
743 }
744 
745 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
746 {
747 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
748 	int vector_id;
749 
750 	vector_id = hclgevf_get_vector_index(hdev, vector);
751 	if (vector_id < 0) {
752 		dev_err(&handle->pdev->dev,
753 			"hclgevf_put_vector get vector index fail. ret =%d\n",
754 			vector_id);
755 		return vector_id;
756 	}
757 
758 	hclgevf_free_vector(hdev, vector_id);
759 
760 	return 0;
761 }
762 
763 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
764 					bool en_uc_pmc, bool en_mc_pmc,
765 					bool en_bc_pmc)
766 {
767 	struct hnae3_handle *handle = &hdev->nic;
768 	struct hclge_vf_to_pf_msg send_msg;
769 	int ret;
770 
771 	memset(&send_msg, 0, sizeof(send_msg));
772 	send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
773 	send_msg.en_bc = en_bc_pmc ? 1 : 0;
774 	send_msg.en_uc = en_uc_pmc ? 1 : 0;
775 	send_msg.en_mc = en_mc_pmc ? 1 : 0;
776 	send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC,
777 					     &handle->priv_flags) ? 1 : 0;
778 
779 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
780 	if (ret)
781 		dev_err(&hdev->pdev->dev,
782 			"Set promisc mode fail, status is %d.\n", ret);
783 
784 	return ret;
785 }
786 
787 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
788 				    bool en_mc_pmc)
789 {
790 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
791 	bool en_bc_pmc;
792 
793 	en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
794 
795 	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
796 					    en_bc_pmc);
797 }
798 
799 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
800 {
801 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
802 
803 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
804 	hclgevf_task_schedule(hdev, 0);
805 }
806 
807 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
808 {
809 	struct hnae3_handle *handle = &hdev->nic;
810 	bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
811 	bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
812 	int ret;
813 
814 	if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
815 		ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
816 		if (!ret)
817 			clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
818 	}
819 }
820 
821 static int hclgevf_tqp_enable_cmd_send(struct hclgevf_dev *hdev, u16 tqp_id,
822 				       u16 stream_id, bool enable)
823 {
824 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
825 	struct hclge_desc desc;
826 
827 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
828 
829 	hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_COM_TQP_QUEUE, false);
830 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
831 	req->stream_id = cpu_to_le16(stream_id);
832 	if (enable)
833 		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
834 
835 	return hclgevf_cmd_send(&hdev->hw, &desc, 1);
836 }
837 
838 static int hclgevf_tqp_enable(struct hnae3_handle *handle, bool enable)
839 {
840 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
841 	int ret;
842 	u16 i;
843 
844 	for (i = 0; i < handle->kinfo.num_tqps; i++) {
845 		ret = hclgevf_tqp_enable_cmd_send(hdev, i, 0, enable);
846 		if (ret)
847 			return ret;
848 	}
849 
850 	return 0;
851 }
852 
853 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
854 {
855 	struct hclge_vf_to_pf_msg send_msg;
856 	u8 host_mac[ETH_ALEN];
857 	int status;
858 
859 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
860 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
861 				      ETH_ALEN);
862 	if (status) {
863 		dev_err(&hdev->pdev->dev,
864 			"fail to get VF MAC from host %d", status);
865 		return status;
866 	}
867 
868 	ether_addr_copy(p, host_mac);
869 
870 	return 0;
871 }
872 
873 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
874 {
875 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
876 	u8 host_mac_addr[ETH_ALEN];
877 
878 	if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
879 		return;
880 
881 	hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
882 	if (hdev->has_pf_mac)
883 		ether_addr_copy(p, host_mac_addr);
884 	else
885 		ether_addr_copy(p, hdev->hw.mac.mac_addr);
886 }
887 
888 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, const void *p,
889 				bool is_first)
890 {
891 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
892 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
893 	struct hclge_vf_to_pf_msg send_msg;
894 	u8 *new_mac_addr = (u8 *)p;
895 	int status;
896 
897 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
898 	send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
899 	ether_addr_copy(send_msg.data, new_mac_addr);
900 	if (is_first && !hdev->has_pf_mac)
901 		eth_zero_addr(&send_msg.data[ETH_ALEN]);
902 	else
903 		ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
904 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
905 	if (!status)
906 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
907 
908 	return status;
909 }
910 
911 static struct hclgevf_mac_addr_node *
912 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
913 {
914 	struct hclgevf_mac_addr_node *mac_node, *tmp;
915 
916 	list_for_each_entry_safe(mac_node, tmp, list, node)
917 		if (ether_addr_equal(mac_addr, mac_node->mac_addr))
918 			return mac_node;
919 
920 	return NULL;
921 }
922 
923 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
924 				    enum HCLGEVF_MAC_NODE_STATE state)
925 {
926 	switch (state) {
927 	/* from set_rx_mode or tmp_add_list */
928 	case HCLGEVF_MAC_TO_ADD:
929 		if (mac_node->state == HCLGEVF_MAC_TO_DEL)
930 			mac_node->state = HCLGEVF_MAC_ACTIVE;
931 		break;
932 	/* only from set_rx_mode */
933 	case HCLGEVF_MAC_TO_DEL:
934 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
935 			list_del(&mac_node->node);
936 			kfree(mac_node);
937 		} else {
938 			mac_node->state = HCLGEVF_MAC_TO_DEL;
939 		}
940 		break;
941 	/* only from tmp_add_list, the mac_node->state won't be
942 	 * HCLGEVF_MAC_ACTIVE
943 	 */
944 	case HCLGEVF_MAC_ACTIVE:
945 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
946 			mac_node->state = HCLGEVF_MAC_ACTIVE;
947 		break;
948 	}
949 }
950 
951 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
952 				   enum HCLGEVF_MAC_NODE_STATE state,
953 				   enum HCLGEVF_MAC_ADDR_TYPE mac_type,
954 				   const unsigned char *addr)
955 {
956 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
957 	struct hclgevf_mac_addr_node *mac_node;
958 	struct list_head *list;
959 
960 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
961 	       &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
962 
963 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
964 
965 	/* if the mac addr is already in the mac list, no need to add a new
966 	 * one into it, just check the mac addr state, convert it to a new
967 	 * state, or just remove it, or do nothing.
968 	 */
969 	mac_node = hclgevf_find_mac_node(list, addr);
970 	if (mac_node) {
971 		hclgevf_update_mac_node(mac_node, state);
972 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
973 		return 0;
974 	}
975 	/* if this address is never added, unnecessary to delete */
976 	if (state == HCLGEVF_MAC_TO_DEL) {
977 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
978 		return -ENOENT;
979 	}
980 
981 	mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
982 	if (!mac_node) {
983 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
984 		return -ENOMEM;
985 	}
986 
987 	mac_node->state = state;
988 	ether_addr_copy(mac_node->mac_addr, addr);
989 	list_add_tail(&mac_node->node, list);
990 
991 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
992 	return 0;
993 }
994 
995 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
996 			       const unsigned char *addr)
997 {
998 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
999 				       HCLGEVF_MAC_ADDR_UC, addr);
1000 }
1001 
1002 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1003 			      const unsigned char *addr)
1004 {
1005 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1006 				       HCLGEVF_MAC_ADDR_UC, addr);
1007 }
1008 
1009 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1010 			       const unsigned char *addr)
1011 {
1012 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1013 				       HCLGEVF_MAC_ADDR_MC, addr);
1014 }
1015 
1016 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1017 			      const unsigned char *addr)
1018 {
1019 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1020 				       HCLGEVF_MAC_ADDR_MC, addr);
1021 }
1022 
1023 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1024 				    struct hclgevf_mac_addr_node *mac_node,
1025 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1026 {
1027 	struct hclge_vf_to_pf_msg send_msg;
1028 	u8 code, subcode;
1029 
1030 	if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1031 		code = HCLGE_MBX_SET_UNICAST;
1032 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1033 			subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1034 		else
1035 			subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1036 	} else {
1037 		code = HCLGE_MBX_SET_MULTICAST;
1038 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1039 			subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1040 		else
1041 			subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1042 	}
1043 
1044 	hclgevf_build_send_msg(&send_msg, code, subcode);
1045 	ether_addr_copy(send_msg.data, mac_node->mac_addr);
1046 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1047 }
1048 
1049 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1050 				    struct list_head *list,
1051 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1052 {
1053 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
1054 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1055 	int ret;
1056 
1057 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1058 		ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1059 		if  (ret) {
1060 			hnae3_format_mac_addr(format_mac_addr,
1061 					      mac_node->mac_addr);
1062 			dev_err(&hdev->pdev->dev,
1063 				"failed to configure mac %s, state = %d, ret = %d\n",
1064 				format_mac_addr, mac_node->state, ret);
1065 			return;
1066 		}
1067 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1068 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1069 		} else {
1070 			list_del(&mac_node->node);
1071 			kfree(mac_node);
1072 		}
1073 	}
1074 }
1075 
1076 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1077 				       struct list_head *mac_list)
1078 {
1079 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1080 
1081 	list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1082 		/* if the mac address from tmp_add_list is not in the
1083 		 * uc/mc_mac_list, it means have received a TO_DEL request
1084 		 * during the time window of sending mac config request to PF
1085 		 * If mac_node state is ACTIVE, then change its state to TO_DEL,
1086 		 * then it will be removed at next time. If is TO_ADD, it means
1087 		 * send TO_ADD request failed, so just remove the mac node.
1088 		 */
1089 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1090 		if (new_node) {
1091 			hclgevf_update_mac_node(new_node, mac_node->state);
1092 			list_del(&mac_node->node);
1093 			kfree(mac_node);
1094 		} else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1095 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1096 			list_move_tail(&mac_node->node, mac_list);
1097 		} else {
1098 			list_del(&mac_node->node);
1099 			kfree(mac_node);
1100 		}
1101 	}
1102 }
1103 
1104 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1105 				       struct list_head *mac_list)
1106 {
1107 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1108 
1109 	list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1110 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1111 		if (new_node) {
1112 			/* If the mac addr is exist in the mac list, it means
1113 			 * received a new request TO_ADD during the time window
1114 			 * of sending mac addr configurrequest to PF, so just
1115 			 * change the mac state to ACTIVE.
1116 			 */
1117 			new_node->state = HCLGEVF_MAC_ACTIVE;
1118 			list_del(&mac_node->node);
1119 			kfree(mac_node);
1120 		} else {
1121 			list_move_tail(&mac_node->node, mac_list);
1122 		}
1123 	}
1124 }
1125 
1126 static void hclgevf_clear_list(struct list_head *list)
1127 {
1128 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1129 
1130 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1131 		list_del(&mac_node->node);
1132 		kfree(mac_node);
1133 	}
1134 }
1135 
1136 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1137 				  enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1138 {
1139 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1140 	struct list_head tmp_add_list, tmp_del_list;
1141 	struct list_head *list;
1142 
1143 	INIT_LIST_HEAD(&tmp_add_list);
1144 	INIT_LIST_HEAD(&tmp_del_list);
1145 
1146 	/* move the mac addr to the tmp_add_list and tmp_del_list, then
1147 	 * we can add/delete these mac addr outside the spin lock
1148 	 */
1149 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1150 		&hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1151 
1152 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1153 
1154 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1155 		switch (mac_node->state) {
1156 		case HCLGEVF_MAC_TO_DEL:
1157 			list_move_tail(&mac_node->node, &tmp_del_list);
1158 			break;
1159 		case HCLGEVF_MAC_TO_ADD:
1160 			new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1161 			if (!new_node)
1162 				goto stop_traverse;
1163 
1164 			ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1165 			new_node->state = mac_node->state;
1166 			list_add_tail(&new_node->node, &tmp_add_list);
1167 			break;
1168 		default:
1169 			break;
1170 		}
1171 	}
1172 
1173 stop_traverse:
1174 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1175 
1176 	/* delete first, in order to get max mac table space for adding */
1177 	hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1178 	hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1179 
1180 	/* if some mac addresses were added/deleted fail, move back to the
1181 	 * mac_list, and retry at next time.
1182 	 */
1183 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1184 
1185 	hclgevf_sync_from_del_list(&tmp_del_list, list);
1186 	hclgevf_sync_from_add_list(&tmp_add_list, list);
1187 
1188 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1189 }
1190 
1191 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1192 {
1193 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1194 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1195 }
1196 
1197 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1198 {
1199 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1200 
1201 	hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1202 	hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1203 
1204 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1205 }
1206 
1207 static int hclgevf_enable_vlan_filter(struct hnae3_handle *handle, bool enable)
1208 {
1209 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1210 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
1211 	struct hclge_vf_to_pf_msg send_msg;
1212 
1213 	if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
1214 		return -EOPNOTSUPP;
1215 
1216 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1217 			       HCLGE_MBX_ENABLE_VLAN_FILTER);
1218 	send_msg.data[0] = enable ? 1 : 0;
1219 
1220 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1221 }
1222 
1223 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1224 				   __be16 proto, u16 vlan_id,
1225 				   bool is_kill)
1226 {
1227 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1228 	struct hclge_mbx_vlan_filter *vlan_filter;
1229 	struct hclge_vf_to_pf_msg send_msg;
1230 	int ret;
1231 
1232 	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1233 		return -EINVAL;
1234 
1235 	if (proto != htons(ETH_P_8021Q))
1236 		return -EPROTONOSUPPORT;
1237 
1238 	/* When device is resetting or reset failed, firmware is unable to
1239 	 * handle mailbox. Just record the vlan id, and remove it after
1240 	 * reset finished.
1241 	 */
1242 	if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1243 	     test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1244 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1245 		return -EBUSY;
1246 	} else if (!is_kill && test_bit(vlan_id, hdev->vlan_del_fail_bmap)) {
1247 		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1248 	}
1249 
1250 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1251 			       HCLGE_MBX_VLAN_FILTER);
1252 	vlan_filter = (struct hclge_mbx_vlan_filter *)send_msg.data;
1253 	vlan_filter->is_kill = is_kill;
1254 	vlan_filter->vlan_id = cpu_to_le16(vlan_id);
1255 	vlan_filter->proto = cpu_to_le16(be16_to_cpu(proto));
1256 
1257 	/* when remove hw vlan filter failed, record the vlan id,
1258 	 * and try to remove it from hw later, to be consistence
1259 	 * with stack.
1260 	 */
1261 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1262 	if (is_kill && ret)
1263 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1264 
1265 	return ret;
1266 }
1267 
1268 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1269 {
1270 #define HCLGEVF_MAX_SYNC_COUNT	60
1271 	struct hnae3_handle *handle = &hdev->nic;
1272 	int ret, sync_cnt = 0;
1273 	u16 vlan_id;
1274 
1275 	if (bitmap_empty(hdev->vlan_del_fail_bmap, VLAN_N_VID))
1276 		return;
1277 
1278 	rtnl_lock();
1279 	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1280 	while (vlan_id != VLAN_N_VID) {
1281 		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1282 					      vlan_id, true);
1283 		if (ret)
1284 			break;
1285 
1286 		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1287 		sync_cnt++;
1288 		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1289 			break;
1290 
1291 		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1292 	}
1293 	rtnl_unlock();
1294 }
1295 
1296 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1297 {
1298 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1299 	struct hclge_vf_to_pf_msg send_msg;
1300 
1301 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1302 			       HCLGE_MBX_VLAN_RX_OFF_CFG);
1303 	send_msg.data[0] = enable ? 1 : 0;
1304 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1305 }
1306 
1307 static int hclgevf_reset_tqp(struct hnae3_handle *handle)
1308 {
1309 #define HCLGEVF_RESET_ALL_QUEUE_DONE	1U
1310 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1311 	struct hclge_vf_to_pf_msg send_msg;
1312 	u8 return_status = 0;
1313 	int ret;
1314 	u16 i;
1315 
1316 	/* disable vf queue before send queue reset msg to PF */
1317 	ret = hclgevf_tqp_enable(handle, false);
1318 	if (ret) {
1319 		dev_err(&hdev->pdev->dev, "failed to disable tqp, ret = %d\n",
1320 			ret);
1321 		return ret;
1322 	}
1323 
1324 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1325 
1326 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &return_status,
1327 				   sizeof(return_status));
1328 	if (ret || return_status == HCLGEVF_RESET_ALL_QUEUE_DONE)
1329 		return ret;
1330 
1331 	for (i = 1; i < handle->kinfo.num_tqps; i++) {
1332 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1333 		*(__le16 *)send_msg.data = cpu_to_le16(i);
1334 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1335 		if (ret)
1336 			return ret;
1337 	}
1338 
1339 	return 0;
1340 }
1341 
1342 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1343 {
1344 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1345 	struct hclge_mbx_mtu_info *mtu_info;
1346 	struct hclge_vf_to_pf_msg send_msg;
1347 
1348 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1349 	mtu_info = (struct hclge_mbx_mtu_info *)send_msg.data;
1350 	mtu_info->mtu = cpu_to_le32(new_mtu);
1351 
1352 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1353 }
1354 
1355 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1356 				 enum hnae3_reset_notify_type type)
1357 {
1358 	struct hnae3_client *client = hdev->nic_client;
1359 	struct hnae3_handle *handle = &hdev->nic;
1360 	int ret;
1361 
1362 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1363 	    !client)
1364 		return 0;
1365 
1366 	if (!client->ops->reset_notify)
1367 		return -EOPNOTSUPP;
1368 
1369 	ret = client->ops->reset_notify(handle, type);
1370 	if (ret)
1371 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1372 			type, ret);
1373 
1374 	return ret;
1375 }
1376 
1377 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
1378 				      enum hnae3_reset_notify_type type)
1379 {
1380 	struct hnae3_client *client = hdev->roce_client;
1381 	struct hnae3_handle *handle = &hdev->roce;
1382 	int ret;
1383 
1384 	if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
1385 		return 0;
1386 
1387 	if (!client->ops->reset_notify)
1388 		return -EOPNOTSUPP;
1389 
1390 	ret = client->ops->reset_notify(handle, type);
1391 	if (ret)
1392 		dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
1393 			type, ret);
1394 	return ret;
1395 }
1396 
1397 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1398 {
1399 #define HCLGEVF_RESET_WAIT_US	20000
1400 #define HCLGEVF_RESET_WAIT_CNT	2000
1401 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1402 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1403 
1404 	u32 val;
1405 	int ret;
1406 
1407 	if (hdev->reset_type == HNAE3_VF_RESET)
1408 		ret = readl_poll_timeout(hdev->hw.hw.io_base +
1409 					 HCLGEVF_VF_RST_ING, val,
1410 					 !(val & HCLGEVF_VF_RST_ING_BIT),
1411 					 HCLGEVF_RESET_WAIT_US,
1412 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1413 	else
1414 		ret = readl_poll_timeout(hdev->hw.hw.io_base +
1415 					 HCLGEVF_RST_ING, val,
1416 					 !(val & HCLGEVF_RST_ING_BITS),
1417 					 HCLGEVF_RESET_WAIT_US,
1418 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1419 
1420 	/* hardware completion status should be available by this time */
1421 	if (ret) {
1422 		dev_err(&hdev->pdev->dev,
1423 			"couldn't get reset done status from h/w, timeout!\n");
1424 		return ret;
1425 	}
1426 
1427 	/* we will wait a bit more to let reset of the stack to complete. This
1428 	 * might happen in case reset assertion was made by PF. Yes, this also
1429 	 * means we might end up waiting bit more even for VF reset.
1430 	 */
1431 	if (hdev->reset_type == HNAE3_VF_FULL_RESET)
1432 		msleep(5000);
1433 	else
1434 		msleep(500);
1435 
1436 	return 0;
1437 }
1438 
1439 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1440 {
1441 	u32 reg_val;
1442 
1443 	reg_val = hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG);
1444 	if (enable)
1445 		reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1446 	else
1447 		reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1448 
1449 	hclgevf_write_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG,
1450 			  reg_val);
1451 }
1452 
1453 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1454 {
1455 	int ret;
1456 
1457 	/* uninitialize the nic client */
1458 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1459 	if (ret)
1460 		return ret;
1461 
1462 	/* re-initialize the hclge device */
1463 	ret = hclgevf_reset_hdev(hdev);
1464 	if (ret) {
1465 		dev_err(&hdev->pdev->dev,
1466 			"hclge device re-init failed, VF is disabled!\n");
1467 		return ret;
1468 	}
1469 
1470 	/* bring up the nic client again */
1471 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1472 	if (ret)
1473 		return ret;
1474 
1475 	/* clear handshake status with IMP */
1476 	hclgevf_reset_handshake(hdev, false);
1477 
1478 	/* bring up the nic to enable TX/RX again */
1479 	return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1480 }
1481 
1482 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1483 {
1484 #define HCLGEVF_RESET_SYNC_TIME 100
1485 
1486 	if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1487 		struct hclge_vf_to_pf_msg send_msg;
1488 		int ret;
1489 
1490 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1491 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1492 		if (ret) {
1493 			dev_err(&hdev->pdev->dev,
1494 				"failed to assert VF reset, ret = %d\n", ret);
1495 			return ret;
1496 		}
1497 		hdev->rst_stats.vf_func_rst_cnt++;
1498 	}
1499 
1500 	set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
1501 	/* inform hardware that preparatory work is done */
1502 	msleep(HCLGEVF_RESET_SYNC_TIME);
1503 	hclgevf_reset_handshake(hdev, true);
1504 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1505 		 hdev->reset_type);
1506 
1507 	return 0;
1508 }
1509 
1510 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1511 {
1512 	dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1513 		 hdev->rst_stats.vf_func_rst_cnt);
1514 	dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1515 		 hdev->rst_stats.flr_rst_cnt);
1516 	dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1517 		 hdev->rst_stats.vf_rst_cnt);
1518 	dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1519 		 hdev->rst_stats.rst_done_cnt);
1520 	dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1521 		 hdev->rst_stats.hw_rst_done_cnt);
1522 	dev_info(&hdev->pdev->dev, "reset count: %u\n",
1523 		 hdev->rst_stats.rst_cnt);
1524 	dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1525 		 hdev->rst_stats.rst_fail_cnt);
1526 	dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1527 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1528 	dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1529 		 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_STATE_REG));
1530 	dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1531 		 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG));
1532 	dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1533 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1534 	dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1535 }
1536 
1537 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1538 {
1539 	/* recover handshake status with IMP when reset fail */
1540 	hclgevf_reset_handshake(hdev, true);
1541 	hdev->rst_stats.rst_fail_cnt++;
1542 	dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1543 		hdev->rst_stats.rst_fail_cnt);
1544 
1545 	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1546 		set_bit(hdev->reset_type, &hdev->reset_pending);
1547 
1548 	if (hclgevf_is_reset_pending(hdev)) {
1549 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1550 		hclgevf_reset_task_schedule(hdev);
1551 	} else {
1552 		set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1553 		hclgevf_dump_rst_info(hdev);
1554 	}
1555 }
1556 
1557 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1558 {
1559 	int ret;
1560 
1561 	hdev->rst_stats.rst_cnt++;
1562 
1563 	/* perform reset of the stack & ae device for a client */
1564 	ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
1565 	if (ret)
1566 		return ret;
1567 
1568 	rtnl_lock();
1569 	/* bring down the nic to stop any ongoing TX/RX */
1570 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1571 	rtnl_unlock();
1572 	if (ret)
1573 		return ret;
1574 
1575 	return hclgevf_reset_prepare_wait(hdev);
1576 }
1577 
1578 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
1579 {
1580 	int ret;
1581 
1582 	hdev->rst_stats.hw_rst_done_cnt++;
1583 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
1584 	if (ret)
1585 		return ret;
1586 
1587 	rtnl_lock();
1588 	/* now, re-initialize the nic client and ae device */
1589 	ret = hclgevf_reset_stack(hdev);
1590 	rtnl_unlock();
1591 	if (ret) {
1592 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1593 		return ret;
1594 	}
1595 
1596 	ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
1597 	/* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
1598 	 * times
1599 	 */
1600 	if (ret &&
1601 	    hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
1602 		return ret;
1603 
1604 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
1605 	if (ret)
1606 		return ret;
1607 
1608 	hdev->last_reset_time = jiffies;
1609 	hdev->rst_stats.rst_done_cnt++;
1610 	hdev->rst_stats.rst_fail_cnt = 0;
1611 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1612 
1613 	return 0;
1614 }
1615 
1616 static void hclgevf_reset(struct hclgevf_dev *hdev)
1617 {
1618 	if (hclgevf_reset_prepare(hdev))
1619 		goto err_reset;
1620 
1621 	/* check if VF could successfully fetch the hardware reset completion
1622 	 * status from the hardware
1623 	 */
1624 	if (hclgevf_reset_wait(hdev)) {
1625 		/* can't do much in this situation, will disable VF */
1626 		dev_err(&hdev->pdev->dev,
1627 			"failed to fetch H/W reset completion status\n");
1628 		goto err_reset;
1629 	}
1630 
1631 	if (hclgevf_reset_rebuild(hdev))
1632 		goto err_reset;
1633 
1634 	return;
1635 
1636 err_reset:
1637 	hclgevf_reset_err_handle(hdev);
1638 }
1639 
1640 static enum hnae3_reset_type hclgevf_get_reset_level(unsigned long *addr)
1641 {
1642 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1643 
1644 	/* return the highest priority reset level amongst all */
1645 	if (test_bit(HNAE3_VF_RESET, addr)) {
1646 		rst_level = HNAE3_VF_RESET;
1647 		clear_bit(HNAE3_VF_RESET, addr);
1648 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1649 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1650 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1651 		rst_level = HNAE3_VF_FULL_RESET;
1652 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1653 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1654 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1655 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1656 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1657 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1658 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1659 		rst_level = HNAE3_VF_FUNC_RESET;
1660 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1661 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
1662 		rst_level = HNAE3_FLR_RESET;
1663 		clear_bit(HNAE3_FLR_RESET, addr);
1664 	}
1665 
1666 	return rst_level;
1667 }
1668 
1669 static void hclgevf_reset_event(struct pci_dev *pdev,
1670 				struct hnae3_handle *handle)
1671 {
1672 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1673 	struct hclgevf_dev *hdev = ae_dev->priv;
1674 
1675 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1676 
1677 	if (hdev->default_reset_request)
1678 		hdev->reset_level =
1679 			hclgevf_get_reset_level(&hdev->default_reset_request);
1680 	else
1681 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1682 
1683 	/* reset of this VF requested */
1684 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1685 	hclgevf_reset_task_schedule(hdev);
1686 
1687 	hdev->last_reset_time = jiffies;
1688 }
1689 
1690 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1691 					  enum hnae3_reset_type rst_type)
1692 {
1693 	struct hclgevf_dev *hdev = ae_dev->priv;
1694 
1695 	set_bit(rst_type, &hdev->default_reset_request);
1696 }
1697 
1698 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1699 {
1700 	writel(en ? 1 : 0, vector->addr);
1701 }
1702 
1703 static void hclgevf_reset_prepare_general(struct hnae3_ae_dev *ae_dev,
1704 					  enum hnae3_reset_type rst_type)
1705 {
1706 #define HCLGEVF_RESET_RETRY_WAIT_MS	500
1707 #define HCLGEVF_RESET_RETRY_CNT		5
1708 
1709 	struct hclgevf_dev *hdev = ae_dev->priv;
1710 	int retry_cnt = 0;
1711 	int ret;
1712 
1713 	while (retry_cnt++ < HCLGEVF_RESET_RETRY_CNT) {
1714 		down(&hdev->reset_sem);
1715 		set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1716 		hdev->reset_type = rst_type;
1717 		ret = hclgevf_reset_prepare(hdev);
1718 		if (!ret && !hdev->reset_pending)
1719 			break;
1720 
1721 		dev_err(&hdev->pdev->dev,
1722 			"failed to prepare to reset, ret=%d, reset_pending:0x%lx, retry_cnt:%d\n",
1723 			ret, hdev->reset_pending, retry_cnt);
1724 		clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1725 		up(&hdev->reset_sem);
1726 		msleep(HCLGEVF_RESET_RETRY_WAIT_MS);
1727 	}
1728 
1729 	/* disable misc vector before reset done */
1730 	hclgevf_enable_vector(&hdev->misc_vector, false);
1731 
1732 	if (hdev->reset_type == HNAE3_FLR_RESET)
1733 		hdev->rst_stats.flr_rst_cnt++;
1734 }
1735 
1736 static void hclgevf_reset_done(struct hnae3_ae_dev *ae_dev)
1737 {
1738 	struct hclgevf_dev *hdev = ae_dev->priv;
1739 	int ret;
1740 
1741 	hclgevf_enable_vector(&hdev->misc_vector, true);
1742 
1743 	ret = hclgevf_reset_rebuild(hdev);
1744 	if (ret)
1745 		dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
1746 			 ret);
1747 
1748 	hdev->reset_type = HNAE3_NONE_RESET;
1749 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1750 	up(&hdev->reset_sem);
1751 }
1752 
1753 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1754 {
1755 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1756 
1757 	return hdev->fw_version;
1758 }
1759 
1760 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1761 {
1762 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1763 
1764 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1765 					    HCLGEVF_MISC_VECTOR_NUM);
1766 	vector->addr = hdev->hw.hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1767 	/* vector status always valid for Vector 0 */
1768 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1769 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1770 
1771 	hdev->num_msi_left -= 1;
1772 	hdev->num_msi_used += 1;
1773 }
1774 
1775 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1776 {
1777 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1778 	    test_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state) &&
1779 	    !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
1780 			      &hdev->state))
1781 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1782 }
1783 
1784 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1785 {
1786 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1787 	    !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
1788 			      &hdev->state))
1789 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1790 }
1791 
1792 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
1793 				  unsigned long delay)
1794 {
1795 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1796 	    !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
1797 		mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
1798 }
1799 
1800 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
1801 {
1802 #define	HCLGEVF_MAX_RESET_ATTEMPTS_CNT	3
1803 
1804 	if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
1805 		return;
1806 
1807 	down(&hdev->reset_sem);
1808 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1809 
1810 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1811 			       &hdev->reset_state)) {
1812 		/* PF has intimated that it is about to reset the hardware.
1813 		 * We now have to poll & check if hardware has actually
1814 		 * completed the reset sequence. On hardware reset completion,
1815 		 * VF needs to reset the client and ae device.
1816 		 */
1817 		hdev->reset_attempts = 0;
1818 
1819 		hdev->last_reset_time = jiffies;
1820 		hdev->reset_type =
1821 			hclgevf_get_reset_level(&hdev->reset_pending);
1822 		if (hdev->reset_type != HNAE3_NONE_RESET)
1823 			hclgevf_reset(hdev);
1824 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1825 				      &hdev->reset_state)) {
1826 		/* we could be here when either of below happens:
1827 		 * 1. reset was initiated due to watchdog timeout caused by
1828 		 *    a. IMP was earlier reset and our TX got choked down and
1829 		 *       which resulted in watchdog reacting and inducing VF
1830 		 *       reset. This also means our cmdq would be unreliable.
1831 		 *    b. problem in TX due to other lower layer(example link
1832 		 *       layer not functioning properly etc.)
1833 		 * 2. VF reset might have been initiated due to some config
1834 		 *    change.
1835 		 *
1836 		 * NOTE: Theres no clear way to detect above cases than to react
1837 		 * to the response of PF for this reset request. PF will ack the
1838 		 * 1b and 2. cases but we will not get any intimation about 1a
1839 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1840 		 * communication between PF and VF would be broken.
1841 		 *
1842 		 * if we are never geting into pending state it means either:
1843 		 * 1. PF is not receiving our request which could be due to IMP
1844 		 *    reset
1845 		 * 2. PF is screwed
1846 		 * We cannot do much for 2. but to check first we can try reset
1847 		 * our PCIe + stack and see if it alleviates the problem.
1848 		 */
1849 		if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
1850 			/* prepare for full reset of stack + pcie interface */
1851 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1852 
1853 			/* "defer" schedule the reset task again */
1854 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1855 		} else {
1856 			hdev->reset_attempts++;
1857 
1858 			set_bit(hdev->reset_level, &hdev->reset_pending);
1859 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1860 		}
1861 		hclgevf_reset_task_schedule(hdev);
1862 	}
1863 
1864 	hdev->reset_type = HNAE3_NONE_RESET;
1865 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1866 	up(&hdev->reset_sem);
1867 }
1868 
1869 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
1870 {
1871 	if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
1872 		return;
1873 
1874 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1875 		return;
1876 
1877 	hclgevf_mbx_async_handler(hdev);
1878 
1879 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1880 }
1881 
1882 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
1883 {
1884 	struct hclge_vf_to_pf_msg send_msg;
1885 	int ret;
1886 
1887 	if (test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state))
1888 		return;
1889 
1890 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
1891 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1892 	if (ret)
1893 		dev_err(&hdev->pdev->dev,
1894 			"VF sends keep alive cmd failed(=%d)\n", ret);
1895 }
1896 
1897 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
1898 {
1899 	unsigned long delta = round_jiffies_relative(HZ);
1900 	struct hnae3_handle *handle = &hdev->nic;
1901 
1902 	if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state) ||
1903 	    test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state))
1904 		return;
1905 
1906 	if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
1907 		delta = jiffies - hdev->last_serv_processed;
1908 
1909 		if (delta < round_jiffies_relative(HZ)) {
1910 			delta = round_jiffies_relative(HZ) - delta;
1911 			goto out;
1912 		}
1913 	}
1914 
1915 	hdev->serv_processed_cnt++;
1916 	if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
1917 		hclgevf_keep_alive(hdev);
1918 
1919 	if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
1920 		hdev->last_serv_processed = jiffies;
1921 		goto out;
1922 	}
1923 
1924 	if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
1925 		hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
1926 
1927 	/* VF does not need to request link status when this bit is set, because
1928 	 * PF will push its link status to VFs when link status changed.
1929 	 */
1930 	if (!test_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state))
1931 		hclgevf_request_link_info(hdev);
1932 
1933 	hclgevf_update_link_mode(hdev);
1934 
1935 	hclgevf_sync_vlan_filter(hdev);
1936 
1937 	hclgevf_sync_mac_table(hdev);
1938 
1939 	hclgevf_sync_promisc_mode(hdev);
1940 
1941 	hdev->last_serv_processed = jiffies;
1942 
1943 out:
1944 	hclgevf_task_schedule(hdev, delta);
1945 }
1946 
1947 static void hclgevf_service_task(struct work_struct *work)
1948 {
1949 	struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
1950 						service_task.work);
1951 
1952 	hclgevf_reset_service_task(hdev);
1953 	hclgevf_mailbox_service_task(hdev);
1954 	hclgevf_periodic_service_task(hdev);
1955 
1956 	/* Handle reset and mbx again in case periodical task delays the
1957 	 * handling by calling hclgevf_task_schedule() in
1958 	 * hclgevf_periodic_service_task()
1959 	 */
1960 	hclgevf_reset_service_task(hdev);
1961 	hclgevf_mailbox_service_task(hdev);
1962 }
1963 
1964 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1965 {
1966 	hclgevf_write_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_SRC_REG, regclr);
1967 }
1968 
1969 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1970 						      u32 *clearval)
1971 {
1972 	u32 val, cmdq_stat_reg, rst_ing_reg;
1973 
1974 	/* fetch the events from their corresponding regs */
1975 	cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
1976 					 HCLGE_COMM_VECTOR0_CMDQ_STATE_REG);
1977 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1978 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1979 		dev_info(&hdev->pdev->dev,
1980 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1981 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1982 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1983 		set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
1984 		*clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
1985 		hdev->rst_stats.vf_rst_cnt++;
1986 		/* set up VF hardware reset status, its PF will clear
1987 		 * this status when PF has initialized done.
1988 		 */
1989 		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
1990 		hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
1991 				  val | HCLGEVF_VF_RST_ING_BIT);
1992 		return HCLGEVF_VECTOR0_EVENT_RST;
1993 	}
1994 
1995 	/* check for vector0 mailbox(=CMDQ RX) event source */
1996 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
1997 		/* for revision 0x21, clearing interrupt is writing bit 0
1998 		 * to the clear register, writing bit 1 means to keep the
1999 		 * old value.
2000 		 * for revision 0x20, the clear register is a read & write
2001 		 * register, so we should just write 0 to the bit we are
2002 		 * handling, and keep other bits as cmdq_stat_reg.
2003 		 */
2004 		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2005 			*clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2006 		else
2007 			*clearval = cmdq_stat_reg &
2008 				    ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2009 
2010 		return HCLGEVF_VECTOR0_EVENT_MBX;
2011 	}
2012 
2013 	/* print other vector0 event source */
2014 	dev_info(&hdev->pdev->dev,
2015 		 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2016 		 cmdq_stat_reg);
2017 
2018 	return HCLGEVF_VECTOR0_EVENT_OTHER;
2019 }
2020 
2021 static void hclgevf_reset_timer(struct timer_list *t)
2022 {
2023 	struct hclgevf_dev *hdev = from_timer(hdev, t, reset_timer);
2024 
2025 	hclgevf_clear_event_cause(hdev, HCLGEVF_VECTOR0_EVENT_RST);
2026 	hclgevf_reset_task_schedule(hdev);
2027 }
2028 
2029 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2030 {
2031 #define HCLGEVF_RESET_DELAY	5
2032 
2033 	enum hclgevf_evt_cause event_cause;
2034 	struct hclgevf_dev *hdev = data;
2035 	u32 clearval;
2036 
2037 	hclgevf_enable_vector(&hdev->misc_vector, false);
2038 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2039 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER)
2040 		hclgevf_clear_event_cause(hdev, clearval);
2041 
2042 	switch (event_cause) {
2043 	case HCLGEVF_VECTOR0_EVENT_RST:
2044 		mod_timer(&hdev->reset_timer,
2045 			  jiffies + msecs_to_jiffies(HCLGEVF_RESET_DELAY));
2046 		break;
2047 	case HCLGEVF_VECTOR0_EVENT_MBX:
2048 		hclgevf_mbx_handler(hdev);
2049 		break;
2050 	default:
2051 		break;
2052 	}
2053 
2054 	hclgevf_enable_vector(&hdev->misc_vector, true);
2055 
2056 	return IRQ_HANDLED;
2057 }
2058 
2059 static int hclgevf_configure(struct hclgevf_dev *hdev)
2060 {
2061 	int ret;
2062 
2063 	hdev->gro_en = true;
2064 
2065 	ret = hclgevf_get_basic_info(hdev);
2066 	if (ret)
2067 		return ret;
2068 
2069 	/* get current port based vlan state from PF */
2070 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2071 	if (ret)
2072 		return ret;
2073 
2074 	/* get queue configuration from PF */
2075 	ret = hclgevf_get_queue_info(hdev);
2076 	if (ret)
2077 		return ret;
2078 
2079 	/* get queue depth info from PF */
2080 	ret = hclgevf_get_queue_depth(hdev);
2081 	if (ret)
2082 		return ret;
2083 
2084 	return hclgevf_get_pf_media_type(hdev);
2085 }
2086 
2087 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2088 {
2089 	struct pci_dev *pdev = ae_dev->pdev;
2090 	struct hclgevf_dev *hdev;
2091 
2092 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2093 	if (!hdev)
2094 		return -ENOMEM;
2095 
2096 	hdev->pdev = pdev;
2097 	hdev->ae_dev = ae_dev;
2098 	ae_dev->priv = hdev;
2099 
2100 	return 0;
2101 }
2102 
2103 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2104 {
2105 	struct hnae3_handle *roce = &hdev->roce;
2106 	struct hnae3_handle *nic = &hdev->nic;
2107 
2108 	roce->rinfo.num_vectors = hdev->num_roce_msix;
2109 
2110 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2111 	    hdev->num_msi_left == 0)
2112 		return -EINVAL;
2113 
2114 	roce->rinfo.base_vector = hdev->roce_base_msix_offset;
2115 
2116 	roce->rinfo.netdev = nic->kinfo.netdev;
2117 	roce->rinfo.roce_io_base = hdev->hw.hw.io_base;
2118 	roce->rinfo.roce_mem_base = hdev->hw.hw.mem_base;
2119 
2120 	roce->pdev = nic->pdev;
2121 	roce->ae_algo = nic->ae_algo;
2122 	roce->numa_node_mask = nic->numa_node_mask;
2123 
2124 	return 0;
2125 }
2126 
2127 static int hclgevf_config_gro(struct hclgevf_dev *hdev)
2128 {
2129 	struct hclgevf_cfg_gro_status_cmd *req;
2130 	struct hclge_desc desc;
2131 	int ret;
2132 
2133 	if (!hnae3_ae_dev_gro_supported(hdev->ae_dev))
2134 		return 0;
2135 
2136 	hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_GRO_GENERIC_CONFIG,
2137 				     false);
2138 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2139 
2140 	req->gro_en = hdev->gro_en ? 1 : 0;
2141 
2142 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2143 	if (ret)
2144 		dev_err(&hdev->pdev->dev,
2145 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
2146 
2147 	return ret;
2148 }
2149 
2150 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2151 {
2152 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
2153 	u16 tc_offset[HCLGE_COMM_MAX_TC_NUM];
2154 	u16 tc_valid[HCLGE_COMM_MAX_TC_NUM];
2155 	u16 tc_size[HCLGE_COMM_MAX_TC_NUM];
2156 	int ret;
2157 
2158 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2159 		ret = hclge_comm_set_rss_algo_key(&hdev->hw.hw,
2160 						  rss_cfg->rss_algo,
2161 						  rss_cfg->rss_hash_key);
2162 		if (ret)
2163 			return ret;
2164 
2165 		ret = hclge_comm_set_rss_input_tuple(&hdev->hw.hw, rss_cfg);
2166 		if (ret)
2167 			return ret;
2168 	}
2169 
2170 	ret = hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
2171 					     rss_cfg->rss_indirection_tbl);
2172 	if (ret)
2173 		return ret;
2174 
2175 	hclge_comm_get_rss_tc_info(rss_cfg->rss_size, hdev->hw_tc_map,
2176 				   tc_offset, tc_valid, tc_size);
2177 
2178 	return hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset,
2179 					  tc_valid, tc_size);
2180 }
2181 
2182 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2183 {
2184 	struct hnae3_handle *nic = &hdev->nic;
2185 	int ret;
2186 
2187 	ret = hclgevf_en_hw_strip_rxvtag(nic, true);
2188 	if (ret) {
2189 		dev_err(&hdev->pdev->dev,
2190 			"failed to enable rx vlan offload, ret = %d\n", ret);
2191 		return ret;
2192 	}
2193 
2194 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2195 				       false);
2196 }
2197 
2198 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2199 {
2200 #define HCLGEVF_FLUSH_LINK_TIMEOUT	100000
2201 
2202 	unsigned long last = hdev->serv_processed_cnt;
2203 	int i = 0;
2204 
2205 	while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2206 	       i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2207 	       last == hdev->serv_processed_cnt)
2208 		usleep_range(1, 1);
2209 }
2210 
2211 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2212 {
2213 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2214 
2215 	if (enable) {
2216 		hclgevf_task_schedule(hdev, 0);
2217 	} else {
2218 		set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2219 
2220 		/* flush memory to make sure DOWN is seen by service task */
2221 		smp_mb__before_atomic();
2222 		hclgevf_flush_link_update(hdev);
2223 	}
2224 }
2225 
2226 static int hclgevf_ae_start(struct hnae3_handle *handle)
2227 {
2228 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2229 
2230 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2231 	clear_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state);
2232 
2233 	hclge_comm_reset_tqp_stats(handle);
2234 
2235 	hclgevf_request_link_info(hdev);
2236 
2237 	hclgevf_update_link_mode(hdev);
2238 
2239 	return 0;
2240 }
2241 
2242 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2243 {
2244 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2245 
2246 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2247 
2248 	if (hdev->reset_type != HNAE3_VF_RESET)
2249 		hclgevf_reset_tqp(handle);
2250 
2251 	hclge_comm_reset_tqp_stats(handle);
2252 	hclgevf_update_link_status(hdev, 0);
2253 }
2254 
2255 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2256 {
2257 #define HCLGEVF_STATE_ALIVE	1
2258 #define HCLGEVF_STATE_NOT_ALIVE	0
2259 
2260 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2261 	struct hclge_vf_to_pf_msg send_msg;
2262 
2263 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2264 	send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2265 				HCLGEVF_STATE_NOT_ALIVE;
2266 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2267 }
2268 
2269 static int hclgevf_client_start(struct hnae3_handle *handle)
2270 {
2271 	return hclgevf_set_alive(handle, true);
2272 }
2273 
2274 static void hclgevf_client_stop(struct hnae3_handle *handle)
2275 {
2276 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2277 	int ret;
2278 
2279 	ret = hclgevf_set_alive(handle, false);
2280 	if (ret)
2281 		dev_warn(&hdev->pdev->dev,
2282 			 "%s failed %d\n", __func__, ret);
2283 }
2284 
2285 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2286 {
2287 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2288 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2289 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2290 
2291 	INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2292 
2293 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2294 	sema_init(&hdev->reset_sem, 1);
2295 
2296 	spin_lock_init(&hdev->mac_table.mac_list_lock);
2297 	INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2298 	INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2299 
2300 	/* bring the device down */
2301 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2302 }
2303 
2304 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2305 {
2306 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2307 	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2308 
2309 	if (hdev->service_task.work.func)
2310 		cancel_delayed_work_sync(&hdev->service_task);
2311 
2312 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2313 }
2314 
2315 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2316 {
2317 	struct pci_dev *pdev = hdev->pdev;
2318 	int vectors;
2319 	int i;
2320 
2321 	if (hnae3_dev_roce_supported(hdev))
2322 		vectors = pci_alloc_irq_vectors(pdev,
2323 						hdev->roce_base_msix_offset + 1,
2324 						hdev->num_msi,
2325 						PCI_IRQ_MSIX);
2326 	else
2327 		vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2328 						hdev->num_msi,
2329 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2330 
2331 	if (vectors < 0) {
2332 		dev_err(&pdev->dev,
2333 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2334 			vectors);
2335 		return vectors;
2336 	}
2337 	if (vectors < hdev->num_msi)
2338 		dev_warn(&hdev->pdev->dev,
2339 			 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2340 			 hdev->num_msi, vectors);
2341 
2342 	hdev->num_msi = vectors;
2343 	hdev->num_msi_left = vectors;
2344 
2345 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2346 					   sizeof(u16), GFP_KERNEL);
2347 	if (!hdev->vector_status) {
2348 		pci_free_irq_vectors(pdev);
2349 		return -ENOMEM;
2350 	}
2351 
2352 	for (i = 0; i < hdev->num_msi; i++)
2353 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2354 
2355 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2356 					sizeof(int), GFP_KERNEL);
2357 	if (!hdev->vector_irq) {
2358 		devm_kfree(&pdev->dev, hdev->vector_status);
2359 		pci_free_irq_vectors(pdev);
2360 		return -ENOMEM;
2361 	}
2362 
2363 	return 0;
2364 }
2365 
2366 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2367 {
2368 	struct pci_dev *pdev = hdev->pdev;
2369 
2370 	devm_kfree(&pdev->dev, hdev->vector_status);
2371 	devm_kfree(&pdev->dev, hdev->vector_irq);
2372 	pci_free_irq_vectors(pdev);
2373 }
2374 
2375 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2376 {
2377 	int ret;
2378 
2379 	hclgevf_get_misc_vector(hdev);
2380 
2381 	snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2382 		 HCLGEVF_NAME, pci_name(hdev->pdev));
2383 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2384 			  0, hdev->misc_vector.name, hdev);
2385 	if (ret) {
2386 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2387 			hdev->misc_vector.vector_irq);
2388 		return ret;
2389 	}
2390 
2391 	hclgevf_clear_event_cause(hdev, 0);
2392 
2393 	/* enable misc. vector(vector 0) */
2394 	hclgevf_enable_vector(&hdev->misc_vector, true);
2395 
2396 	return ret;
2397 }
2398 
2399 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2400 {
2401 	/* disable misc vector(vector 0) */
2402 	hclgevf_enable_vector(&hdev->misc_vector, false);
2403 	synchronize_irq(hdev->misc_vector.vector_irq);
2404 	free_irq(hdev->misc_vector.vector_irq, hdev);
2405 	hclgevf_free_vector(hdev, 0);
2406 }
2407 
2408 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2409 {
2410 	struct device *dev = &hdev->pdev->dev;
2411 
2412 	dev_info(dev, "VF info begin:\n");
2413 
2414 	dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2415 	dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2416 	dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2417 	dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2418 	dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2419 	dev_info(dev, "PF media type of this VF: %u\n",
2420 		 hdev->hw.mac.media_type);
2421 
2422 	dev_info(dev, "VF info end.\n");
2423 }
2424 
2425 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2426 					    struct hnae3_client *client)
2427 {
2428 	struct hclgevf_dev *hdev = ae_dev->priv;
2429 	int rst_cnt = hdev->rst_stats.rst_cnt;
2430 	int ret;
2431 
2432 	ret = client->ops->init_instance(&hdev->nic);
2433 	if (ret)
2434 		return ret;
2435 
2436 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2437 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2438 	    rst_cnt != hdev->rst_stats.rst_cnt) {
2439 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2440 
2441 		client->ops->uninit_instance(&hdev->nic, 0);
2442 		return -EBUSY;
2443 	}
2444 
2445 	hnae3_set_client_init_flag(client, ae_dev, 1);
2446 
2447 	if (netif_msg_drv(&hdev->nic))
2448 		hclgevf_info_show(hdev);
2449 
2450 	return 0;
2451 }
2452 
2453 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2454 					     struct hnae3_client *client)
2455 {
2456 	struct hclgevf_dev *hdev = ae_dev->priv;
2457 	int ret;
2458 
2459 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2460 	    !hdev->nic_client)
2461 		return 0;
2462 
2463 	ret = hclgevf_init_roce_base_info(hdev);
2464 	if (ret)
2465 		return ret;
2466 
2467 	ret = client->ops->init_instance(&hdev->roce);
2468 	if (ret)
2469 		return ret;
2470 
2471 	set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2472 	hnae3_set_client_init_flag(client, ae_dev, 1);
2473 
2474 	return 0;
2475 }
2476 
2477 static int hclgevf_init_client_instance(struct hnae3_client *client,
2478 					struct hnae3_ae_dev *ae_dev)
2479 {
2480 	struct hclgevf_dev *hdev = ae_dev->priv;
2481 	int ret;
2482 
2483 	switch (client->type) {
2484 	case HNAE3_CLIENT_KNIC:
2485 		hdev->nic_client = client;
2486 		hdev->nic.client = client;
2487 
2488 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2489 		if (ret)
2490 			goto clear_nic;
2491 
2492 		ret = hclgevf_init_roce_client_instance(ae_dev,
2493 							hdev->roce_client);
2494 		if (ret)
2495 			goto clear_roce;
2496 
2497 		break;
2498 	case HNAE3_CLIENT_ROCE:
2499 		if (hnae3_dev_roce_supported(hdev)) {
2500 			hdev->roce_client = client;
2501 			hdev->roce.client = client;
2502 		}
2503 
2504 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
2505 		if (ret)
2506 			goto clear_roce;
2507 
2508 		break;
2509 	default:
2510 		return -EINVAL;
2511 	}
2512 
2513 	return 0;
2514 
2515 clear_nic:
2516 	hdev->nic_client = NULL;
2517 	hdev->nic.client = NULL;
2518 	return ret;
2519 clear_roce:
2520 	hdev->roce_client = NULL;
2521 	hdev->roce.client = NULL;
2522 	return ret;
2523 }
2524 
2525 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2526 					   struct hnae3_ae_dev *ae_dev)
2527 {
2528 	struct hclgevf_dev *hdev = ae_dev->priv;
2529 
2530 	/* un-init roce, if it exists */
2531 	if (hdev->roce_client) {
2532 		while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2533 			msleep(HCLGEVF_WAIT_RESET_DONE);
2534 		clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2535 
2536 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2537 		hdev->roce_client = NULL;
2538 		hdev->roce.client = NULL;
2539 	}
2540 
2541 	/* un-init nic/unic, if this was not called by roce client */
2542 	if (client->ops->uninit_instance && hdev->nic_client &&
2543 	    client->type != HNAE3_CLIENT_ROCE) {
2544 		while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2545 			msleep(HCLGEVF_WAIT_RESET_DONE);
2546 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2547 
2548 		client->ops->uninit_instance(&hdev->nic, 0);
2549 		hdev->nic_client = NULL;
2550 		hdev->nic.client = NULL;
2551 	}
2552 }
2553 
2554 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
2555 {
2556 	struct pci_dev *pdev = hdev->pdev;
2557 	struct hclgevf_hw *hw = &hdev->hw;
2558 
2559 	/* for device does not have device memory, return directly */
2560 	if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
2561 		return 0;
2562 
2563 	hw->hw.mem_base =
2564 		devm_ioremap_wc(&pdev->dev,
2565 				pci_resource_start(pdev, HCLGEVF_MEM_BAR),
2566 				pci_resource_len(pdev, HCLGEVF_MEM_BAR));
2567 	if (!hw->hw.mem_base) {
2568 		dev_err(&pdev->dev, "failed to map device memory\n");
2569 		return -EFAULT;
2570 	}
2571 
2572 	return 0;
2573 }
2574 
2575 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2576 {
2577 	struct pci_dev *pdev = hdev->pdev;
2578 	struct hclgevf_hw *hw;
2579 	int ret;
2580 
2581 	ret = pci_enable_device(pdev);
2582 	if (ret) {
2583 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2584 		return ret;
2585 	}
2586 
2587 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2588 	if (ret) {
2589 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2590 		goto err_disable_device;
2591 	}
2592 
2593 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2594 	if (ret) {
2595 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2596 		goto err_disable_device;
2597 	}
2598 
2599 	pci_set_master(pdev);
2600 	hw = &hdev->hw;
2601 	hw->hw.io_base = pci_iomap(pdev, 2, 0);
2602 	if (!hw->hw.io_base) {
2603 		dev_err(&pdev->dev, "can't map configuration register space\n");
2604 		ret = -ENOMEM;
2605 		goto err_release_regions;
2606 	}
2607 
2608 	ret = hclgevf_dev_mem_map(hdev);
2609 	if (ret)
2610 		goto err_unmap_io_base;
2611 
2612 	return 0;
2613 
2614 err_unmap_io_base:
2615 	pci_iounmap(pdev, hdev->hw.hw.io_base);
2616 err_release_regions:
2617 	pci_release_regions(pdev);
2618 err_disable_device:
2619 	pci_disable_device(pdev);
2620 
2621 	return ret;
2622 }
2623 
2624 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2625 {
2626 	struct pci_dev *pdev = hdev->pdev;
2627 
2628 	if (hdev->hw.hw.mem_base)
2629 		devm_iounmap(&pdev->dev, hdev->hw.hw.mem_base);
2630 
2631 	pci_iounmap(pdev, hdev->hw.hw.io_base);
2632 	pci_release_regions(pdev);
2633 	pci_disable_device(pdev);
2634 }
2635 
2636 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2637 {
2638 	struct hclgevf_query_res_cmd *req;
2639 	struct hclge_desc desc;
2640 	int ret;
2641 
2642 	hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_VF_RSRC, true);
2643 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2644 	if (ret) {
2645 		dev_err(&hdev->pdev->dev,
2646 			"query vf resource failed, ret = %d.\n", ret);
2647 		return ret;
2648 	}
2649 
2650 	req = (struct hclgevf_query_res_cmd *)desc.data;
2651 
2652 	if (hnae3_dev_roce_supported(hdev)) {
2653 		hdev->roce_base_msix_offset =
2654 		hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
2655 				HCLGEVF_MSIX_OFT_ROCEE_M,
2656 				HCLGEVF_MSIX_OFT_ROCEE_S);
2657 		hdev->num_roce_msix =
2658 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2659 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2660 
2661 		/* nic's msix numbers is always equals to the roce's. */
2662 		hdev->num_nic_msix = hdev->num_roce_msix;
2663 
2664 		/* VF should have NIC vectors and Roce vectors, NIC vectors
2665 		 * are queued before Roce vectors. The offset is fixed to 64.
2666 		 */
2667 		hdev->num_msi = hdev->num_roce_msix +
2668 				hdev->roce_base_msix_offset;
2669 	} else {
2670 		hdev->num_msi =
2671 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2672 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2673 
2674 		hdev->num_nic_msix = hdev->num_msi;
2675 	}
2676 
2677 	if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
2678 		dev_err(&hdev->pdev->dev,
2679 			"Just %u msi resources, not enough for vf(min:2).\n",
2680 			hdev->num_nic_msix);
2681 		return -EINVAL;
2682 	}
2683 
2684 	return 0;
2685 }
2686 
2687 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
2688 {
2689 #define HCLGEVF_MAX_NON_TSO_BD_NUM			8U
2690 
2691 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2692 
2693 	ae_dev->dev_specs.max_non_tso_bd_num =
2694 					HCLGEVF_MAX_NON_TSO_BD_NUM;
2695 	ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
2696 	ae_dev->dev_specs.rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
2697 	ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
2698 	ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME;
2699 }
2700 
2701 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
2702 				    struct hclge_desc *desc)
2703 {
2704 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2705 	struct hclgevf_dev_specs_0_cmd *req0;
2706 	struct hclgevf_dev_specs_1_cmd *req1;
2707 
2708 	req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
2709 	req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
2710 
2711 	ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
2712 	ae_dev->dev_specs.rss_ind_tbl_size =
2713 					le16_to_cpu(req0->rss_ind_tbl_size);
2714 	ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
2715 	ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
2716 	ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
2717 	ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size);
2718 }
2719 
2720 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
2721 {
2722 	struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
2723 
2724 	if (!dev_specs->max_non_tso_bd_num)
2725 		dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
2726 	if (!dev_specs->rss_ind_tbl_size)
2727 		dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
2728 	if (!dev_specs->rss_key_size)
2729 		dev_specs->rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
2730 	if (!dev_specs->max_int_gl)
2731 		dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
2732 	if (!dev_specs->max_frm_size)
2733 		dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME;
2734 }
2735 
2736 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
2737 {
2738 	struct hclge_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
2739 	int ret;
2740 	int i;
2741 
2742 	/* set default specifications as devices lower than version V3 do not
2743 	 * support querying specifications from firmware.
2744 	 */
2745 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
2746 		hclgevf_set_default_dev_specs(hdev);
2747 		return 0;
2748 	}
2749 
2750 	for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
2751 		hclgevf_cmd_setup_basic_desc(&desc[i],
2752 					     HCLGE_OPC_QUERY_DEV_SPECS, true);
2753 		desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
2754 	}
2755 	hclgevf_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_DEV_SPECS, true);
2756 
2757 	ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
2758 	if (ret)
2759 		return ret;
2760 
2761 	hclgevf_parse_dev_specs(hdev, desc);
2762 	hclgevf_check_dev_specs(hdev);
2763 
2764 	return 0;
2765 }
2766 
2767 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2768 {
2769 	struct pci_dev *pdev = hdev->pdev;
2770 	int ret = 0;
2771 
2772 	if ((hdev->reset_type == HNAE3_VF_FULL_RESET ||
2773 	     hdev->reset_type == HNAE3_FLR_RESET) &&
2774 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2775 		hclgevf_misc_irq_uninit(hdev);
2776 		hclgevf_uninit_msi(hdev);
2777 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2778 	}
2779 
2780 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2781 		pci_set_master(pdev);
2782 		ret = hclgevf_init_msi(hdev);
2783 		if (ret) {
2784 			dev_err(&pdev->dev,
2785 				"failed(%d) to init MSI/MSI-X\n", ret);
2786 			return ret;
2787 		}
2788 
2789 		ret = hclgevf_misc_irq_init(hdev);
2790 		if (ret) {
2791 			hclgevf_uninit_msi(hdev);
2792 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2793 				ret);
2794 			return ret;
2795 		}
2796 
2797 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2798 	}
2799 
2800 	return ret;
2801 }
2802 
2803 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
2804 {
2805 	struct hclge_vf_to_pf_msg send_msg;
2806 
2807 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
2808 			       HCLGE_MBX_VPORT_LIST_CLEAR);
2809 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2810 }
2811 
2812 static void hclgevf_init_rxd_adv_layout(struct hclgevf_dev *hdev)
2813 {
2814 	if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
2815 		hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 1);
2816 }
2817 
2818 static void hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev *hdev)
2819 {
2820 	if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
2821 		hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 0);
2822 }
2823 
2824 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2825 {
2826 	struct pci_dev *pdev = hdev->pdev;
2827 	int ret;
2828 
2829 	ret = hclgevf_pci_reset(hdev);
2830 	if (ret) {
2831 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2832 		return ret;
2833 	}
2834 
2835 	hclgevf_arq_init(hdev);
2836 
2837 	ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
2838 				  &hdev->fw_version, false,
2839 				  hdev->reset_pending);
2840 	if (ret) {
2841 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
2842 		return ret;
2843 	}
2844 
2845 	ret = hclgevf_rss_init_hw(hdev);
2846 	if (ret) {
2847 		dev_err(&hdev->pdev->dev,
2848 			"failed(%d) to initialize RSS\n", ret);
2849 		return ret;
2850 	}
2851 
2852 	ret = hclgevf_config_gro(hdev);
2853 	if (ret)
2854 		return ret;
2855 
2856 	ret = hclgevf_init_vlan_config(hdev);
2857 	if (ret) {
2858 		dev_err(&hdev->pdev->dev,
2859 			"failed(%d) to initialize VLAN config\n", ret);
2860 		return ret;
2861 	}
2862 
2863 	/* get current port based vlan state from PF */
2864 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2865 	if (ret)
2866 		return ret;
2867 
2868 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
2869 
2870 	hclgevf_init_rxd_adv_layout(hdev);
2871 
2872 	dev_info(&hdev->pdev->dev, "Reset done\n");
2873 
2874 	return 0;
2875 }
2876 
2877 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2878 {
2879 	struct pci_dev *pdev = hdev->pdev;
2880 	int ret;
2881 
2882 	ret = hclgevf_pci_init(hdev);
2883 	if (ret)
2884 		return ret;
2885 
2886 	ret = hclgevf_devlink_init(hdev);
2887 	if (ret)
2888 		goto err_devlink_init;
2889 
2890 	ret = hclge_comm_cmd_queue_init(hdev->pdev, &hdev->hw.hw);
2891 	if (ret)
2892 		goto err_cmd_queue_init;
2893 
2894 	hclgevf_arq_init(hdev);
2895 
2896 	hclge_comm_cmd_init_ops(&hdev->hw.hw, &hclgevf_cmq_ops);
2897 	ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
2898 				  &hdev->fw_version, false,
2899 				  hdev->reset_pending);
2900 	if (ret)
2901 		goto err_cmd_init;
2902 
2903 	/* Get vf resource */
2904 	ret = hclgevf_query_vf_resource(hdev);
2905 	if (ret)
2906 		goto err_cmd_init;
2907 
2908 	ret = hclgevf_query_dev_specs(hdev);
2909 	if (ret) {
2910 		dev_err(&pdev->dev,
2911 			"failed to query dev specifications, ret = %d\n", ret);
2912 		goto err_cmd_init;
2913 	}
2914 
2915 	ret = hclgevf_init_msi(hdev);
2916 	if (ret) {
2917 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2918 		goto err_cmd_init;
2919 	}
2920 
2921 	hclgevf_state_init(hdev);
2922 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
2923 	hdev->reset_type = HNAE3_NONE_RESET;
2924 
2925 	ret = hclgevf_misc_irq_init(hdev);
2926 	if (ret)
2927 		goto err_misc_irq_init;
2928 
2929 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2930 
2931 	ret = hclgevf_configure(hdev);
2932 	if (ret) {
2933 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2934 		goto err_config;
2935 	}
2936 
2937 	ret = hclgevf_alloc_tqps(hdev);
2938 	if (ret) {
2939 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2940 		goto err_config;
2941 	}
2942 
2943 	ret = hclgevf_set_handle_info(hdev);
2944 	if (ret)
2945 		goto err_config;
2946 
2947 	ret = hclgevf_config_gro(hdev);
2948 	if (ret)
2949 		goto err_config;
2950 
2951 	/* Initialize RSS for this VF */
2952 	ret = hclge_comm_rss_init_cfg(&hdev->nic, hdev->ae_dev,
2953 				      &hdev->rss_cfg);
2954 	if (ret) {
2955 		dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
2956 		goto err_config;
2957 	}
2958 
2959 	ret = hclgevf_rss_init_hw(hdev);
2960 	if (ret) {
2961 		dev_err(&hdev->pdev->dev,
2962 			"failed(%d) to initialize RSS\n", ret);
2963 		goto err_config;
2964 	}
2965 
2966 	/* ensure vf tbl list as empty before init */
2967 	ret = hclgevf_clear_vport_list(hdev);
2968 	if (ret) {
2969 		dev_err(&pdev->dev,
2970 			"failed to clear tbl list configuration, ret = %d.\n",
2971 			ret);
2972 		goto err_config;
2973 	}
2974 
2975 	ret = hclgevf_init_vlan_config(hdev);
2976 	if (ret) {
2977 		dev_err(&hdev->pdev->dev,
2978 			"failed(%d) to initialize VLAN config\n", ret);
2979 		goto err_config;
2980 	}
2981 
2982 	hclgevf_init_rxd_adv_layout(hdev);
2983 
2984 	set_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state);
2985 
2986 	hdev->last_reset_time = jiffies;
2987 	dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
2988 		 HCLGEVF_DRIVER_NAME);
2989 
2990 	hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
2991 	timer_setup(&hdev->reset_timer, hclgevf_reset_timer, 0);
2992 
2993 	return 0;
2994 
2995 err_config:
2996 	hclgevf_misc_irq_uninit(hdev);
2997 err_misc_irq_init:
2998 	hclgevf_state_uninit(hdev);
2999 	hclgevf_uninit_msi(hdev);
3000 err_cmd_init:
3001 	hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
3002 err_cmd_queue_init:
3003 	hclgevf_devlink_uninit(hdev);
3004 err_devlink_init:
3005 	hclgevf_pci_uninit(hdev);
3006 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3007 	return ret;
3008 }
3009 
3010 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3011 {
3012 	struct hclge_vf_to_pf_msg send_msg;
3013 
3014 	hclgevf_state_uninit(hdev);
3015 	hclgevf_uninit_rxd_adv_layout(hdev);
3016 
3017 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3018 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3019 
3020 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3021 		hclgevf_misc_irq_uninit(hdev);
3022 		hclgevf_uninit_msi(hdev);
3023 	}
3024 
3025 	hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
3026 	hclgevf_devlink_uninit(hdev);
3027 	hclgevf_pci_uninit(hdev);
3028 	hclgevf_uninit_mac_list(hdev);
3029 }
3030 
3031 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3032 {
3033 	struct pci_dev *pdev = ae_dev->pdev;
3034 	int ret;
3035 
3036 	ret = hclgevf_alloc_hdev(ae_dev);
3037 	if (ret) {
3038 		dev_err(&pdev->dev, "hclge device allocation failed\n");
3039 		return ret;
3040 	}
3041 
3042 	ret = hclgevf_init_hdev(ae_dev->priv);
3043 	if (ret) {
3044 		dev_err(&pdev->dev, "hclge device initialization failed\n");
3045 		return ret;
3046 	}
3047 
3048 	return 0;
3049 }
3050 
3051 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3052 {
3053 	struct hclgevf_dev *hdev = ae_dev->priv;
3054 
3055 	hclgevf_uninit_hdev(hdev);
3056 	ae_dev->priv = NULL;
3057 }
3058 
3059 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3060 {
3061 	struct hnae3_handle *nic = &hdev->nic;
3062 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3063 
3064 	return min_t(u32, hdev->rss_size_max,
3065 		     hdev->num_tqps / kinfo->tc_info.num_tc);
3066 }
3067 
3068 /**
3069  * hclgevf_get_channels - Get the current channels enabled and max supported.
3070  * @handle: hardware information for network interface
3071  * @ch: ethtool channels structure
3072  *
3073  * We don't support separate tx and rx queues as channels. The other count
3074  * represents how many queues are being used for control. max_combined counts
3075  * how many queue pairs we can support. They may not be mapped 1 to 1 with
3076  * q_vectors since we support a lot more queue pairs than q_vectors.
3077  **/
3078 static void hclgevf_get_channels(struct hnae3_handle *handle,
3079 				 struct ethtool_channels *ch)
3080 {
3081 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3082 
3083 	ch->max_combined = hclgevf_get_max_channels(hdev);
3084 	ch->other_count = 0;
3085 	ch->max_other = 0;
3086 	ch->combined_count = handle->kinfo.rss_size;
3087 }
3088 
3089 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3090 					  u16 *alloc_tqps, u16 *max_rss_size)
3091 {
3092 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3093 
3094 	*alloc_tqps = hdev->num_tqps;
3095 	*max_rss_size = hdev->rss_size_max;
3096 }
3097 
3098 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3099 				    u32 new_tqps_num)
3100 {
3101 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3102 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3103 	u16 max_rss_size;
3104 
3105 	kinfo->req_rss_size = new_tqps_num;
3106 
3107 	max_rss_size = min_t(u16, hdev->rss_size_max,
3108 			     hdev->num_tqps / kinfo->tc_info.num_tc);
3109 
3110 	/* Use the user's configuration when it is not larger than
3111 	 * max_rss_size, otherwise, use the maximum specification value.
3112 	 */
3113 	if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3114 	    kinfo->req_rss_size <= max_rss_size)
3115 		kinfo->rss_size = kinfo->req_rss_size;
3116 	else if (kinfo->rss_size > max_rss_size ||
3117 		 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3118 		kinfo->rss_size = max_rss_size;
3119 
3120 	kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size;
3121 }
3122 
3123 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3124 				bool rxfh_configured)
3125 {
3126 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3127 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3128 	u16 tc_offset[HCLGE_COMM_MAX_TC_NUM];
3129 	u16 tc_valid[HCLGE_COMM_MAX_TC_NUM];
3130 	u16 tc_size[HCLGE_COMM_MAX_TC_NUM];
3131 	u16 cur_rss_size = kinfo->rss_size;
3132 	u16 cur_tqps = kinfo->num_tqps;
3133 	u32 *rss_indir;
3134 	unsigned int i;
3135 	int ret;
3136 
3137 	hclgevf_update_rss_size(handle, new_tqps_num);
3138 
3139 	hclge_comm_get_rss_tc_info(kinfo->rss_size, hdev->hw_tc_map,
3140 				   tc_offset, tc_valid, tc_size);
3141 	ret = hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset,
3142 					 tc_valid, tc_size);
3143 	if (ret)
3144 		return ret;
3145 
3146 	/* RSS indirection table has been configured by user */
3147 	if (rxfh_configured)
3148 		goto out;
3149 
3150 	/* Reinitializes the rss indirect table according to the new RSS size */
3151 	rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size,
3152 			    sizeof(u32), GFP_KERNEL);
3153 	if (!rss_indir)
3154 		return -ENOMEM;
3155 
3156 	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
3157 		rss_indir[i] = i % kinfo->rss_size;
3158 
3159 	hdev->rss_cfg.rss_size = kinfo->rss_size;
3160 
3161 	ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3162 	if (ret)
3163 		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3164 			ret);
3165 
3166 	kfree(rss_indir);
3167 
3168 out:
3169 	if (!ret)
3170 		dev_info(&hdev->pdev->dev,
3171 			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3172 			 cur_rss_size, kinfo->rss_size,
3173 			 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
3174 
3175 	return ret;
3176 }
3177 
3178 static int hclgevf_get_status(struct hnae3_handle *handle)
3179 {
3180 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3181 
3182 	return hdev->hw.mac.link;
3183 }
3184 
3185 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3186 					    u8 *auto_neg, u32 *speed,
3187 					    u8 *duplex, u32 *lane_num)
3188 {
3189 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3190 
3191 	if (speed)
3192 		*speed = hdev->hw.mac.speed;
3193 	if (duplex)
3194 		*duplex = hdev->hw.mac.duplex;
3195 	if (auto_neg)
3196 		*auto_neg = AUTONEG_DISABLE;
3197 }
3198 
3199 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3200 				 u8 duplex)
3201 {
3202 	hdev->hw.mac.speed = speed;
3203 	hdev->hw.mac.duplex = duplex;
3204 }
3205 
3206 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3207 {
3208 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3209 	bool gro_en_old = hdev->gro_en;
3210 	int ret;
3211 
3212 	hdev->gro_en = enable;
3213 	ret = hclgevf_config_gro(hdev);
3214 	if (ret)
3215 		hdev->gro_en = gro_en_old;
3216 
3217 	return ret;
3218 }
3219 
3220 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3221 				   u8 *module_type)
3222 {
3223 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3224 
3225 	if (media_type)
3226 		*media_type = hdev->hw.mac.media_type;
3227 
3228 	if (module_type)
3229 		*module_type = hdev->hw.mac.module_type;
3230 }
3231 
3232 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3233 {
3234 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3235 
3236 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3237 }
3238 
3239 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
3240 {
3241 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3242 
3243 	return test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
3244 }
3245 
3246 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3247 {
3248 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3249 
3250 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3251 }
3252 
3253 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3254 {
3255 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3256 
3257 	return hdev->rst_stats.hw_rst_done_cnt;
3258 }
3259 
3260 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3261 				  unsigned long *supported,
3262 				  unsigned long *advertising)
3263 {
3264 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3265 
3266 	*supported = hdev->hw.mac.supported;
3267 	*advertising = hdev->hw.mac.advertising;
3268 }
3269 
3270 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3271 				struct hclge_mbx_port_base_vlan *port_base_vlan)
3272 {
3273 	struct hnae3_handle *nic = &hdev->nic;
3274 	struct hclge_vf_to_pf_msg send_msg;
3275 	int ret;
3276 
3277 	rtnl_lock();
3278 
3279 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3280 	    test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3281 		dev_warn(&hdev->pdev->dev,
3282 			 "is resetting when updating port based vlan info\n");
3283 		rtnl_unlock();
3284 		return;
3285 	}
3286 
3287 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3288 	if (ret) {
3289 		rtnl_unlock();
3290 		return;
3291 	}
3292 
3293 	/* send msg to PF and wait update port based vlan info */
3294 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3295 			       HCLGE_MBX_PORT_BASE_VLAN_CFG);
3296 	memcpy(send_msg.data, port_base_vlan, sizeof(*port_base_vlan));
3297 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3298 	if (!ret) {
3299 		if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3300 			nic->port_base_vlan_state = state;
3301 		else
3302 			nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3303 	}
3304 
3305 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3306 	rtnl_unlock();
3307 }
3308 
3309 static const struct hnae3_ae_ops hclgevf_ops = {
3310 	.init_ae_dev = hclgevf_init_ae_dev,
3311 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
3312 	.reset_prepare = hclgevf_reset_prepare_general,
3313 	.reset_done = hclgevf_reset_done,
3314 	.init_client_instance = hclgevf_init_client_instance,
3315 	.uninit_client_instance = hclgevf_uninit_client_instance,
3316 	.start = hclgevf_ae_start,
3317 	.stop = hclgevf_ae_stop,
3318 	.client_start = hclgevf_client_start,
3319 	.client_stop = hclgevf_client_stop,
3320 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
3321 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3322 	.get_vector = hclgevf_get_vector,
3323 	.put_vector = hclgevf_put_vector,
3324 	.reset_queue = hclgevf_reset_tqp,
3325 	.get_mac_addr = hclgevf_get_mac_addr,
3326 	.set_mac_addr = hclgevf_set_mac_addr,
3327 	.add_uc_addr = hclgevf_add_uc_addr,
3328 	.rm_uc_addr = hclgevf_rm_uc_addr,
3329 	.add_mc_addr = hclgevf_add_mc_addr,
3330 	.rm_mc_addr = hclgevf_rm_mc_addr,
3331 	.get_stats = hclgevf_get_stats,
3332 	.update_stats = hclgevf_update_stats,
3333 	.get_strings = hclgevf_get_strings,
3334 	.get_sset_count = hclgevf_get_sset_count,
3335 	.get_rss_key_size = hclge_comm_get_rss_key_size,
3336 	.get_rss = hclgevf_get_rss,
3337 	.set_rss = hclgevf_set_rss,
3338 	.get_rss_tuple = hclgevf_get_rss_tuple,
3339 	.set_rss_tuple = hclgevf_set_rss_tuple,
3340 	.get_tc_size = hclgevf_get_tc_size,
3341 	.get_fw_version = hclgevf_get_fw_version,
3342 	.set_vlan_filter = hclgevf_set_vlan_filter,
3343 	.enable_vlan_filter = hclgevf_enable_vlan_filter,
3344 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3345 	.reset_event = hclgevf_reset_event,
3346 	.set_default_reset_request = hclgevf_set_def_reset_request,
3347 	.set_channels = hclgevf_set_channels,
3348 	.get_channels = hclgevf_get_channels,
3349 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3350 	.get_regs_len = hclgevf_get_regs_len,
3351 	.get_regs = hclgevf_get_regs,
3352 	.get_status = hclgevf_get_status,
3353 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3354 	.get_media_type = hclgevf_get_media_type,
3355 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3356 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
3357 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3358 	.set_gro_en = hclgevf_gro_en,
3359 	.set_mtu = hclgevf_set_mtu,
3360 	.get_global_queue_id = hclgevf_get_qid_global,
3361 	.set_timer_task = hclgevf_set_timer_task,
3362 	.get_link_mode = hclgevf_get_link_mode,
3363 	.set_promisc_mode = hclgevf_set_promisc_mode,
3364 	.request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3365 	.get_cmdq_stat = hclgevf_get_cmdq_stat,
3366 };
3367 
3368 static struct hnae3_ae_algo ae_algovf = {
3369 	.ops = &hclgevf_ops,
3370 	.pdev_id_table = ae_algovf_pci_tbl,
3371 };
3372 
3373 static int __init hclgevf_init(void)
3374 {
3375 	pr_info("%s is initializing\n", HCLGEVF_NAME);
3376 
3377 	hclgevf_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, HCLGEVF_NAME);
3378 	if (!hclgevf_wq) {
3379 		pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3380 		return -ENOMEM;
3381 	}
3382 
3383 	hnae3_register_ae_algo(&ae_algovf);
3384 
3385 	return 0;
3386 }
3387 
3388 static void __exit hclgevf_exit(void)
3389 {
3390 	hnae3_unregister_ae_algo(&ae_algovf);
3391 	destroy_workqueue(hclgevf_wq);
3392 }
3393 module_init(hclgevf_init);
3394 module_exit(hclgevf_exit);
3395 
3396 MODULE_LICENSE("GPL");
3397 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3398 MODULE_DESCRIPTION("HCLGEVF Driver");
3399 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3400