1 // SPDX-License-Identifier: GPL-2.0+ 2 // Copyright (c) 2016-2017 Hisilicon Limited. 3 4 #include <linux/etherdevice.h> 5 #include <linux/iopoll.h> 6 #include <net/rtnetlink.h> 7 #include "hclgevf_cmd.h" 8 #include "hclgevf_main.h" 9 #include "hclgevf_regs.h" 10 #include "hclge_mbx.h" 11 #include "hnae3.h" 12 #include "hclgevf_devlink.h" 13 #include "hclge_comm_rss.h" 14 #include "hclgevf_trace.h" 15 16 #define HCLGEVF_NAME "hclgevf" 17 18 #define HCLGEVF_RESET_MAX_FAIL_CNT 5 19 20 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev); 21 static void hclgevf_task_schedule(struct hclgevf_dev *hdev, 22 unsigned long delay); 23 24 static struct hnae3_ae_algo ae_algovf; 25 26 static struct workqueue_struct *hclgevf_wq; 27 28 static const struct pci_device_id ae_algovf_pci_tbl[] = { 29 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0}, 30 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF), 31 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, 32 /* required last entry */ 33 {0, } 34 }; 35 36 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl); 37 38 /* hclgevf_cmd_send - send command to command queue 39 * @hw: pointer to the hw struct 40 * @desc: prefilled descriptor for describing the command 41 * @num : the number of descriptors to be sent 42 * 43 * This is the main send command for command queue, it 44 * sends the queue, cleans the queue, etc 45 */ 46 int hclgevf_cmd_send(struct hclgevf_hw *hw, struct hclge_desc *desc, int num) 47 { 48 return hclge_comm_cmd_send(&hw->hw, desc, num); 49 } 50 51 static void hclgevf_trace_cmd_send(struct hclge_comm_hw *hw, struct hclge_desc *desc, 52 int num, bool is_special) 53 { 54 int i; 55 56 trace_hclge_vf_cmd_send(hw, desc, 0, num); 57 58 if (is_special) 59 return; 60 61 for (i = 1; i < num; i++) 62 trace_hclge_vf_cmd_send(hw, &desc[i], i, num); 63 } 64 65 static void hclgevf_trace_cmd_get(struct hclge_comm_hw *hw, struct hclge_desc *desc, 66 int num, bool is_special) 67 { 68 int i; 69 70 if (!HCLGE_COMM_SEND_SYNC(le16_to_cpu(desc->flag))) 71 return; 72 73 trace_hclge_vf_cmd_get(hw, desc, 0, num); 74 75 if (is_special) 76 return; 77 78 for (i = 1; i < num; i++) 79 trace_hclge_vf_cmd_get(hw, &desc[i], i, num); 80 } 81 82 static const struct hclge_comm_cmq_ops hclgevf_cmq_ops = { 83 .trace_cmd_send = hclgevf_trace_cmd_send, 84 .trace_cmd_get = hclgevf_trace_cmd_get, 85 }; 86 87 void hclgevf_arq_init(struct hclgevf_dev *hdev) 88 { 89 struct hclge_comm_cmq *cmdq = &hdev->hw.hw.cmq; 90 91 spin_lock(&cmdq->crq.lock); 92 /* initialize the pointers of async rx queue of mailbox */ 93 hdev->arq.hdev = hdev; 94 hdev->arq.head = 0; 95 hdev->arq.tail = 0; 96 atomic_set(&hdev->arq.count, 0); 97 spin_unlock(&cmdq->crq.lock); 98 } 99 100 struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle) 101 { 102 if (!handle->client) 103 return container_of(handle, struct hclgevf_dev, nic); 104 else if (handle->client->type == HNAE3_CLIENT_ROCE) 105 return container_of(handle, struct hclgevf_dev, roce); 106 else 107 return container_of(handle, struct hclgevf_dev, nic); 108 } 109 110 static void hclgevf_update_stats(struct hnae3_handle *handle) 111 { 112 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 113 int status; 114 115 status = hclge_comm_tqps_update_stats(handle, &hdev->hw.hw); 116 if (status) 117 dev_err(&hdev->pdev->dev, 118 "VF update of TQPS stats fail, status = %d.\n", 119 status); 120 } 121 122 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset) 123 { 124 if (strset == ETH_SS_TEST) 125 return -EOPNOTSUPP; 126 else if (strset == ETH_SS_STATS) 127 return hclge_comm_tqps_get_sset_count(handle); 128 129 return 0; 130 } 131 132 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset, 133 u8 **data) 134 { 135 if (strset == ETH_SS_STATS) 136 hclge_comm_tqps_get_strings(handle, data); 137 } 138 139 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data) 140 { 141 hclge_comm_tqps_get_stats(handle, data); 142 } 143 144 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code, 145 u8 subcode) 146 { 147 if (msg) { 148 memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg)); 149 msg->code = code; 150 msg->subcode = subcode; 151 } 152 } 153 154 static int hclgevf_get_basic_info(struct hclgevf_dev *hdev) 155 { 156 struct hnae3_ae_dev *ae_dev = hdev->ae_dev; 157 u8 resp_msg[HCLGE_MBX_MAX_RESP_DATA_SIZE]; 158 struct hclge_basic_info *basic_info; 159 struct hclge_vf_to_pf_msg send_msg; 160 unsigned long caps; 161 int status; 162 163 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_BASIC_INFO, 0); 164 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, 165 sizeof(resp_msg)); 166 if (status) { 167 dev_err(&hdev->pdev->dev, 168 "failed to get basic info from pf, ret = %d", status); 169 return status; 170 } 171 172 basic_info = (struct hclge_basic_info *)resp_msg; 173 174 hdev->hw_tc_map = basic_info->hw_tc_map; 175 hdev->mbx_api_version = le16_to_cpu(basic_info->mbx_api_version); 176 caps = le32_to_cpu(basic_info->pf_caps); 177 if (test_bit(HNAE3_PF_SUPPORT_VLAN_FLTR_MDF_B, &caps)) 178 set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps); 179 180 return 0; 181 } 182 183 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev) 184 { 185 struct hnae3_handle *nic = &hdev->nic; 186 struct hclge_vf_to_pf_msg send_msg; 187 u8 resp_msg; 188 int ret; 189 190 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, 191 HCLGE_MBX_GET_PORT_BASE_VLAN_STATE); 192 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg, 193 sizeof(u8)); 194 if (ret) { 195 dev_err(&hdev->pdev->dev, 196 "VF request to get port based vlan state failed %d", 197 ret); 198 return ret; 199 } 200 201 nic->port_base_vlan_state = resp_msg; 202 203 return 0; 204 } 205 206 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev) 207 { 208 #define HCLGEVF_TQPS_RSS_INFO_LEN 6 209 210 struct hclge_mbx_vf_queue_info *queue_info; 211 u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN]; 212 struct hclge_vf_to_pf_msg send_msg; 213 int status; 214 215 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0); 216 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, 217 HCLGEVF_TQPS_RSS_INFO_LEN); 218 if (status) { 219 dev_err(&hdev->pdev->dev, 220 "VF request to get tqp info from PF failed %d", 221 status); 222 return status; 223 } 224 225 queue_info = (struct hclge_mbx_vf_queue_info *)resp_msg; 226 hdev->num_tqps = le16_to_cpu(queue_info->num_tqps); 227 hdev->rss_size_max = le16_to_cpu(queue_info->rss_size); 228 hdev->rx_buf_len = le16_to_cpu(queue_info->rx_buf_len); 229 230 return 0; 231 } 232 233 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev) 234 { 235 #define HCLGEVF_TQPS_DEPTH_INFO_LEN 4 236 237 struct hclge_mbx_vf_queue_depth *queue_depth; 238 u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN]; 239 struct hclge_vf_to_pf_msg send_msg; 240 int ret; 241 242 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0); 243 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, 244 HCLGEVF_TQPS_DEPTH_INFO_LEN); 245 if (ret) { 246 dev_err(&hdev->pdev->dev, 247 "VF request to get tqp depth info from PF failed %d", 248 ret); 249 return ret; 250 } 251 252 queue_depth = (struct hclge_mbx_vf_queue_depth *)resp_msg; 253 hdev->num_tx_desc = le16_to_cpu(queue_depth->num_tx_desc); 254 hdev->num_rx_desc = le16_to_cpu(queue_depth->num_rx_desc); 255 256 return 0; 257 } 258 259 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id) 260 { 261 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 262 struct hclge_vf_to_pf_msg send_msg; 263 u16 qid_in_pf = 0; 264 u8 resp_data[2]; 265 int ret; 266 267 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0); 268 *(__le16 *)send_msg.data = cpu_to_le16(queue_id); 269 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data, 270 sizeof(resp_data)); 271 if (!ret) 272 qid_in_pf = le16_to_cpu(*(__le16 *)resp_data); 273 274 return qid_in_pf; 275 } 276 277 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev) 278 { 279 struct hclge_vf_to_pf_msg send_msg; 280 u8 resp_msg[2]; 281 int ret; 282 283 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0); 284 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, 285 sizeof(resp_msg)); 286 if (ret) { 287 dev_err(&hdev->pdev->dev, 288 "VF request to get the pf port media type failed %d", 289 ret); 290 return ret; 291 } 292 293 hdev->hw.mac.media_type = resp_msg[0]; 294 hdev->hw.mac.module_type = resp_msg[1]; 295 296 return 0; 297 } 298 299 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev) 300 { 301 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 302 struct hclge_comm_tqp *tqp; 303 int i; 304 305 hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps, 306 sizeof(struct hclge_comm_tqp), GFP_KERNEL); 307 if (!hdev->htqp) 308 return -ENOMEM; 309 310 tqp = hdev->htqp; 311 312 for (i = 0; i < hdev->num_tqps; i++) { 313 tqp->dev = &hdev->pdev->dev; 314 tqp->index = i; 315 316 tqp->q.ae_algo = &ae_algovf; 317 tqp->q.buf_size = hdev->rx_buf_len; 318 tqp->q.tx_desc_num = hdev->num_tx_desc; 319 tqp->q.rx_desc_num = hdev->num_rx_desc; 320 321 /* need an extended offset to configure queues >= 322 * HCLGEVF_TQP_MAX_SIZE_DEV_V2. 323 */ 324 if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2) 325 tqp->q.io_base = hdev->hw.hw.io_base + 326 HCLGEVF_TQP_REG_OFFSET + 327 i * HCLGEVF_TQP_REG_SIZE; 328 else 329 tqp->q.io_base = hdev->hw.hw.io_base + 330 HCLGEVF_TQP_REG_OFFSET + 331 HCLGEVF_TQP_EXT_REG_OFFSET + 332 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) * 333 HCLGEVF_TQP_REG_SIZE; 334 335 /* when device supports tx push and has device memory, 336 * the queue can execute push mode or doorbell mode on 337 * device memory. 338 */ 339 if (test_bit(HNAE3_DEV_SUPPORT_TX_PUSH_B, ae_dev->caps)) 340 tqp->q.mem_base = hdev->hw.hw.mem_base + 341 HCLGEVF_TQP_MEM_OFFSET(hdev, i); 342 343 tqp++; 344 } 345 346 return 0; 347 } 348 349 static int hclgevf_knic_setup(struct hclgevf_dev *hdev) 350 { 351 struct hnae3_handle *nic = &hdev->nic; 352 struct hnae3_knic_private_info *kinfo; 353 u16 new_tqps = hdev->num_tqps; 354 unsigned int i; 355 u8 num_tc = 0; 356 357 kinfo = &nic->kinfo; 358 kinfo->num_tx_desc = hdev->num_tx_desc; 359 kinfo->num_rx_desc = hdev->num_rx_desc; 360 kinfo->rx_buf_len = hdev->rx_buf_len; 361 for (i = 0; i < HCLGE_COMM_MAX_TC_NUM; i++) 362 if (hdev->hw_tc_map & BIT(i)) 363 num_tc++; 364 365 num_tc = num_tc ? num_tc : 1; 366 kinfo->tc_info.num_tc = num_tc; 367 kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc); 368 new_tqps = kinfo->rss_size * num_tc; 369 kinfo->num_tqps = min(new_tqps, hdev->num_tqps); 370 371 kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps, 372 sizeof(struct hnae3_queue *), GFP_KERNEL); 373 if (!kinfo->tqp) 374 return -ENOMEM; 375 376 for (i = 0; i < kinfo->num_tqps; i++) { 377 hdev->htqp[i].q.handle = &hdev->nic; 378 hdev->htqp[i].q.tqp_index = i; 379 kinfo->tqp[i] = &hdev->htqp[i].q; 380 } 381 382 /* after init the max rss_size and tqps, adjust the default tqp numbers 383 * and rss size with the actual vector numbers 384 */ 385 kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps); 386 kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc, 387 kinfo->rss_size); 388 389 return 0; 390 } 391 392 static void hclgevf_request_link_info(struct hclgevf_dev *hdev) 393 { 394 struct hclge_vf_to_pf_msg send_msg; 395 int status; 396 397 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0); 398 status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 399 if (status) 400 dev_err(&hdev->pdev->dev, 401 "VF failed to fetch link status(%d) from PF", status); 402 } 403 404 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state) 405 { 406 struct hnae3_handle *rhandle = &hdev->roce; 407 struct hnae3_handle *handle = &hdev->nic; 408 struct hnae3_client *rclient; 409 struct hnae3_client *client; 410 411 if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state)) 412 return; 413 414 client = handle->client; 415 rclient = hdev->roce_client; 416 417 link_state = 418 test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state; 419 if (link_state != hdev->hw.mac.link) { 420 hdev->hw.mac.link = link_state; 421 client->ops->link_status_change(handle, !!link_state); 422 if (rclient && rclient->ops->link_status_change) 423 rclient->ops->link_status_change(rhandle, !!link_state); 424 } 425 426 clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state); 427 } 428 429 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev) 430 { 431 #define HCLGEVF_ADVERTISING 0 432 #define HCLGEVF_SUPPORTED 1 433 434 struct hclge_vf_to_pf_msg send_msg; 435 436 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0); 437 send_msg.data[0] = HCLGEVF_ADVERTISING; 438 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 439 send_msg.data[0] = HCLGEVF_SUPPORTED; 440 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 441 } 442 443 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev) 444 { 445 struct hnae3_handle *nic = &hdev->nic; 446 int ret; 447 448 nic->ae_algo = &ae_algovf; 449 nic->pdev = hdev->pdev; 450 bitmap_copy(nic->numa_node_mask.bits, hdev->numa_node_mask.bits, 451 MAX_NUMNODES); 452 nic->flags |= HNAE3_SUPPORT_VF; 453 nic->kinfo.io_base = hdev->hw.hw.io_base; 454 455 ret = hclgevf_knic_setup(hdev); 456 if (ret) 457 dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n", 458 ret); 459 return ret; 460 } 461 462 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id) 463 { 464 if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) { 465 dev_warn(&hdev->pdev->dev, 466 "vector(vector_id %d) has been freed.\n", vector_id); 467 return; 468 } 469 470 hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT; 471 hdev->num_msi_left += 1; 472 hdev->num_msi_used -= 1; 473 } 474 475 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num, 476 struct hnae3_vector_info *vector_info) 477 { 478 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 479 struct hnae3_vector_info *vector = vector_info; 480 int alloc = 0; 481 int i, j; 482 483 vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num); 484 vector_num = min(hdev->num_msi_left, vector_num); 485 486 for (j = 0; j < vector_num; j++) { 487 for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) { 488 if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) { 489 vector->vector = pci_irq_vector(hdev->pdev, i); 490 vector->io_addr = hdev->hw.hw.io_base + 491 HCLGEVF_VECTOR_REG_BASE + 492 (i - 1) * HCLGEVF_VECTOR_REG_OFFSET; 493 hdev->vector_status[i] = 0; 494 hdev->vector_irq[i] = vector->vector; 495 496 vector++; 497 alloc++; 498 499 break; 500 } 501 } 502 } 503 hdev->num_msi_left -= alloc; 504 hdev->num_msi_used += alloc; 505 506 return alloc; 507 } 508 509 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector) 510 { 511 int i; 512 513 for (i = 0; i < hdev->num_msi; i++) 514 if (vector == hdev->vector_irq[i]) 515 return i; 516 517 return -EINVAL; 518 } 519 520 /* for revision 0x20, vf shared the same rss config with pf */ 521 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev) 522 { 523 #define HCLGEVF_RSS_MBX_RESP_LEN 8 524 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg; 525 u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN]; 526 struct hclge_vf_to_pf_msg send_msg; 527 u16 msg_num, hash_key_index; 528 u8 index; 529 int ret; 530 531 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0); 532 msg_num = (HCLGE_COMM_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) / 533 HCLGEVF_RSS_MBX_RESP_LEN; 534 for (index = 0; index < msg_num; index++) { 535 send_msg.data[0] = index; 536 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg, 537 HCLGEVF_RSS_MBX_RESP_LEN); 538 if (ret) { 539 dev_err(&hdev->pdev->dev, 540 "VF get rss hash key from PF failed, ret=%d", 541 ret); 542 return ret; 543 } 544 545 hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index; 546 if (index == msg_num - 1) 547 memcpy(&rss_cfg->rss_hash_key[hash_key_index], 548 &resp_msg[0], 549 HCLGE_COMM_RSS_KEY_SIZE - hash_key_index); 550 else 551 memcpy(&rss_cfg->rss_hash_key[hash_key_index], 552 &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN); 553 } 554 555 return 0; 556 } 557 558 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key, 559 u8 *hfunc) 560 { 561 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 562 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg; 563 int ret; 564 565 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) { 566 hclge_comm_get_rss_hash_info(rss_cfg, key, hfunc); 567 } else { 568 if (hfunc) 569 *hfunc = ETH_RSS_HASH_TOP; 570 if (key) { 571 ret = hclgevf_get_rss_hash_key(hdev); 572 if (ret) 573 return ret; 574 memcpy(key, rss_cfg->rss_hash_key, 575 HCLGE_COMM_RSS_KEY_SIZE); 576 } 577 } 578 579 hclge_comm_get_rss_indir_tbl(rss_cfg, indir, 580 hdev->ae_dev->dev_specs.rss_ind_tbl_size); 581 582 return 0; 583 } 584 585 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir, 586 const u8 *key, const u8 hfunc) 587 { 588 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 589 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg; 590 int ret, i; 591 592 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) { 593 ret = hclge_comm_set_rss_hash_key(rss_cfg, &hdev->hw.hw, key, 594 hfunc); 595 if (ret) 596 return ret; 597 } 598 599 /* update the shadow RSS table with user specified qids */ 600 for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++) 601 rss_cfg->rss_indirection_tbl[i] = indir[i]; 602 603 /* update the hardware */ 604 return hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw, 605 rss_cfg->rss_indirection_tbl); 606 } 607 608 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle, 609 struct ethtool_rxnfc *nfc) 610 { 611 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 612 int ret; 613 614 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2) 615 return -EOPNOTSUPP; 616 617 ret = hclge_comm_set_rss_tuple(hdev->ae_dev, &hdev->hw.hw, 618 &hdev->rss_cfg, nfc); 619 if (ret) 620 dev_err(&hdev->pdev->dev, 621 "failed to set rss tuple, ret = %d.\n", ret); 622 623 return ret; 624 } 625 626 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle, 627 struct ethtool_rxnfc *nfc) 628 { 629 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 630 u8 tuple_sets; 631 int ret; 632 633 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2) 634 return -EOPNOTSUPP; 635 636 nfc->data = 0; 637 638 ret = hclge_comm_get_rss_tuple(&hdev->rss_cfg, nfc->flow_type, 639 &tuple_sets); 640 if (ret || !tuple_sets) 641 return ret; 642 643 nfc->data = hclge_comm_convert_rss_tuple(tuple_sets); 644 645 return 0; 646 } 647 648 static int hclgevf_get_tc_size(struct hnae3_handle *handle) 649 { 650 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 651 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg; 652 653 return rss_cfg->rss_size; 654 } 655 656 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en, 657 int vector_id, 658 struct hnae3_ring_chain_node *ring_chain) 659 { 660 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 661 struct hclge_vf_to_pf_msg send_msg; 662 struct hnae3_ring_chain_node *node; 663 int status; 664 int i = 0; 665 666 memset(&send_msg, 0, sizeof(send_msg)); 667 send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR : 668 HCLGE_MBX_UNMAP_RING_TO_VECTOR; 669 send_msg.vector_id = vector_id; 670 671 for (node = ring_chain; node; node = node->next) { 672 send_msg.param[i].ring_type = 673 hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B); 674 675 send_msg.param[i].tqp_index = node->tqp_index; 676 send_msg.param[i].int_gl_index = 677 hnae3_get_field(node->int_gl_idx, 678 HNAE3_RING_GL_IDX_M, 679 HNAE3_RING_GL_IDX_S); 680 681 i++; 682 if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) { 683 send_msg.ring_num = i; 684 685 status = hclgevf_send_mbx_msg(hdev, &send_msg, false, 686 NULL, 0); 687 if (status) { 688 dev_err(&hdev->pdev->dev, 689 "Map TQP fail, status is %d.\n", 690 status); 691 return status; 692 } 693 i = 0; 694 } 695 } 696 697 return 0; 698 } 699 700 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector, 701 struct hnae3_ring_chain_node *ring_chain) 702 { 703 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 704 int vector_id; 705 706 vector_id = hclgevf_get_vector_index(hdev, vector); 707 if (vector_id < 0) { 708 dev_err(&handle->pdev->dev, 709 "Get vector index fail. ret =%d\n", vector_id); 710 return vector_id; 711 } 712 713 return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain); 714 } 715 716 static int hclgevf_unmap_ring_from_vector( 717 struct hnae3_handle *handle, 718 int vector, 719 struct hnae3_ring_chain_node *ring_chain) 720 { 721 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 722 int ret, vector_id; 723 724 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) 725 return 0; 726 727 vector_id = hclgevf_get_vector_index(hdev, vector); 728 if (vector_id < 0) { 729 dev_err(&handle->pdev->dev, 730 "Get vector index fail. ret =%d\n", vector_id); 731 return vector_id; 732 } 733 734 ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain); 735 if (ret) 736 dev_err(&handle->pdev->dev, 737 "Unmap ring from vector fail. vector=%d, ret =%d\n", 738 vector_id, 739 ret); 740 741 return ret; 742 } 743 744 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector) 745 { 746 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 747 int vector_id; 748 749 vector_id = hclgevf_get_vector_index(hdev, vector); 750 if (vector_id < 0) { 751 dev_err(&handle->pdev->dev, 752 "hclgevf_put_vector get vector index fail. ret =%d\n", 753 vector_id); 754 return vector_id; 755 } 756 757 hclgevf_free_vector(hdev, vector_id); 758 759 return 0; 760 } 761 762 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev, 763 bool en_uc_pmc, bool en_mc_pmc, 764 bool en_bc_pmc) 765 { 766 struct hnae3_handle *handle = &hdev->nic; 767 struct hclge_vf_to_pf_msg send_msg; 768 int ret; 769 770 memset(&send_msg, 0, sizeof(send_msg)); 771 send_msg.code = HCLGE_MBX_SET_PROMISC_MODE; 772 send_msg.en_bc = en_bc_pmc ? 1 : 0; 773 send_msg.en_uc = en_uc_pmc ? 1 : 0; 774 send_msg.en_mc = en_mc_pmc ? 1 : 0; 775 send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC, 776 &handle->priv_flags) ? 1 : 0; 777 778 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 779 if (ret) 780 dev_err(&hdev->pdev->dev, 781 "Set promisc mode fail, status is %d.\n", ret); 782 783 return ret; 784 } 785 786 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc, 787 bool en_mc_pmc) 788 { 789 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 790 bool en_bc_pmc; 791 792 en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2; 793 794 return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc, 795 en_bc_pmc); 796 } 797 798 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle) 799 { 800 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 801 802 set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state); 803 hclgevf_task_schedule(hdev, 0); 804 } 805 806 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev) 807 { 808 struct hnae3_handle *handle = &hdev->nic; 809 bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE; 810 bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE; 811 int ret; 812 813 if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) { 814 ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc); 815 if (!ret) 816 clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state); 817 } 818 } 819 820 static int hclgevf_tqp_enable_cmd_send(struct hclgevf_dev *hdev, u16 tqp_id, 821 u16 stream_id, bool enable) 822 { 823 struct hclgevf_cfg_com_tqp_queue_cmd *req; 824 struct hclge_desc desc; 825 826 req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data; 827 828 hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_COM_TQP_QUEUE, false); 829 req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK); 830 req->stream_id = cpu_to_le16(stream_id); 831 if (enable) 832 req->enable |= 1U << HCLGEVF_TQP_ENABLE_B; 833 834 return hclgevf_cmd_send(&hdev->hw, &desc, 1); 835 } 836 837 static int hclgevf_tqp_enable(struct hnae3_handle *handle, bool enable) 838 { 839 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 840 int ret; 841 u16 i; 842 843 for (i = 0; i < handle->kinfo.num_tqps; i++) { 844 ret = hclgevf_tqp_enable_cmd_send(hdev, i, 0, enable); 845 if (ret) 846 return ret; 847 } 848 849 return 0; 850 } 851 852 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p) 853 { 854 struct hclge_vf_to_pf_msg send_msg; 855 u8 host_mac[ETH_ALEN]; 856 int status; 857 858 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0); 859 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac, 860 ETH_ALEN); 861 if (status) { 862 dev_err(&hdev->pdev->dev, 863 "fail to get VF MAC from host %d", status); 864 return status; 865 } 866 867 ether_addr_copy(p, host_mac); 868 869 return 0; 870 } 871 872 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p) 873 { 874 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 875 u8 host_mac_addr[ETH_ALEN]; 876 877 if (hclgevf_get_host_mac_addr(hdev, host_mac_addr)) 878 return; 879 880 hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr); 881 if (hdev->has_pf_mac) 882 ether_addr_copy(p, host_mac_addr); 883 else 884 ether_addr_copy(p, hdev->hw.mac.mac_addr); 885 } 886 887 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, const void *p, 888 bool is_first) 889 { 890 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 891 u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr; 892 struct hclge_vf_to_pf_msg send_msg; 893 u8 *new_mac_addr = (u8 *)p; 894 int status; 895 896 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0); 897 send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY; 898 ether_addr_copy(send_msg.data, new_mac_addr); 899 if (is_first && !hdev->has_pf_mac) 900 eth_zero_addr(&send_msg.data[ETH_ALEN]); 901 else 902 ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr); 903 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 904 if (!status) 905 ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr); 906 907 return status; 908 } 909 910 static struct hclgevf_mac_addr_node * 911 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr) 912 { 913 struct hclgevf_mac_addr_node *mac_node, *tmp; 914 915 list_for_each_entry_safe(mac_node, tmp, list, node) 916 if (ether_addr_equal(mac_addr, mac_node->mac_addr)) 917 return mac_node; 918 919 return NULL; 920 } 921 922 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node, 923 enum HCLGEVF_MAC_NODE_STATE state) 924 { 925 switch (state) { 926 /* from set_rx_mode or tmp_add_list */ 927 case HCLGEVF_MAC_TO_ADD: 928 if (mac_node->state == HCLGEVF_MAC_TO_DEL) 929 mac_node->state = HCLGEVF_MAC_ACTIVE; 930 break; 931 /* only from set_rx_mode */ 932 case HCLGEVF_MAC_TO_DEL: 933 if (mac_node->state == HCLGEVF_MAC_TO_ADD) { 934 list_del(&mac_node->node); 935 kfree(mac_node); 936 } else { 937 mac_node->state = HCLGEVF_MAC_TO_DEL; 938 } 939 break; 940 /* only from tmp_add_list, the mac_node->state won't be 941 * HCLGEVF_MAC_ACTIVE 942 */ 943 case HCLGEVF_MAC_ACTIVE: 944 if (mac_node->state == HCLGEVF_MAC_TO_ADD) 945 mac_node->state = HCLGEVF_MAC_ACTIVE; 946 break; 947 } 948 } 949 950 static int hclgevf_update_mac_list(struct hnae3_handle *handle, 951 enum HCLGEVF_MAC_NODE_STATE state, 952 enum HCLGEVF_MAC_ADDR_TYPE mac_type, 953 const unsigned char *addr) 954 { 955 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 956 struct hclgevf_mac_addr_node *mac_node; 957 struct list_head *list; 958 959 list = (mac_type == HCLGEVF_MAC_ADDR_UC) ? 960 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list; 961 962 spin_lock_bh(&hdev->mac_table.mac_list_lock); 963 964 /* if the mac addr is already in the mac list, no need to add a new 965 * one into it, just check the mac addr state, convert it to a new 966 * state, or just remove it, or do nothing. 967 */ 968 mac_node = hclgevf_find_mac_node(list, addr); 969 if (mac_node) { 970 hclgevf_update_mac_node(mac_node, state); 971 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 972 return 0; 973 } 974 /* if this address is never added, unnecessary to delete */ 975 if (state == HCLGEVF_MAC_TO_DEL) { 976 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 977 return -ENOENT; 978 } 979 980 mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC); 981 if (!mac_node) { 982 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 983 return -ENOMEM; 984 } 985 986 mac_node->state = state; 987 ether_addr_copy(mac_node->mac_addr, addr); 988 list_add_tail(&mac_node->node, list); 989 990 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 991 return 0; 992 } 993 994 static int hclgevf_add_uc_addr(struct hnae3_handle *handle, 995 const unsigned char *addr) 996 { 997 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD, 998 HCLGEVF_MAC_ADDR_UC, addr); 999 } 1000 1001 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle, 1002 const unsigned char *addr) 1003 { 1004 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL, 1005 HCLGEVF_MAC_ADDR_UC, addr); 1006 } 1007 1008 static int hclgevf_add_mc_addr(struct hnae3_handle *handle, 1009 const unsigned char *addr) 1010 { 1011 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD, 1012 HCLGEVF_MAC_ADDR_MC, addr); 1013 } 1014 1015 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle, 1016 const unsigned char *addr) 1017 { 1018 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL, 1019 HCLGEVF_MAC_ADDR_MC, addr); 1020 } 1021 1022 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev, 1023 struct hclgevf_mac_addr_node *mac_node, 1024 enum HCLGEVF_MAC_ADDR_TYPE mac_type) 1025 { 1026 struct hclge_vf_to_pf_msg send_msg; 1027 u8 code, subcode; 1028 1029 if (mac_type == HCLGEVF_MAC_ADDR_UC) { 1030 code = HCLGE_MBX_SET_UNICAST; 1031 if (mac_node->state == HCLGEVF_MAC_TO_ADD) 1032 subcode = HCLGE_MBX_MAC_VLAN_UC_ADD; 1033 else 1034 subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE; 1035 } else { 1036 code = HCLGE_MBX_SET_MULTICAST; 1037 if (mac_node->state == HCLGEVF_MAC_TO_ADD) 1038 subcode = HCLGE_MBX_MAC_VLAN_MC_ADD; 1039 else 1040 subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE; 1041 } 1042 1043 hclgevf_build_send_msg(&send_msg, code, subcode); 1044 ether_addr_copy(send_msg.data, mac_node->mac_addr); 1045 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 1046 } 1047 1048 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev, 1049 struct list_head *list, 1050 enum HCLGEVF_MAC_ADDR_TYPE mac_type) 1051 { 1052 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN]; 1053 struct hclgevf_mac_addr_node *mac_node, *tmp; 1054 int ret; 1055 1056 list_for_each_entry_safe(mac_node, tmp, list, node) { 1057 ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type); 1058 if (ret) { 1059 hnae3_format_mac_addr(format_mac_addr, 1060 mac_node->mac_addr); 1061 dev_err(&hdev->pdev->dev, 1062 "failed to configure mac %s, state = %d, ret = %d\n", 1063 format_mac_addr, mac_node->state, ret); 1064 return; 1065 } 1066 if (mac_node->state == HCLGEVF_MAC_TO_ADD) { 1067 mac_node->state = HCLGEVF_MAC_ACTIVE; 1068 } else { 1069 list_del(&mac_node->node); 1070 kfree(mac_node); 1071 } 1072 } 1073 } 1074 1075 static void hclgevf_sync_from_add_list(struct list_head *add_list, 1076 struct list_head *mac_list) 1077 { 1078 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node; 1079 1080 list_for_each_entry_safe(mac_node, tmp, add_list, node) { 1081 /* if the mac address from tmp_add_list is not in the 1082 * uc/mc_mac_list, it means have received a TO_DEL request 1083 * during the time window of sending mac config request to PF 1084 * If mac_node state is ACTIVE, then change its state to TO_DEL, 1085 * then it will be removed at next time. If is TO_ADD, it means 1086 * send TO_ADD request failed, so just remove the mac node. 1087 */ 1088 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr); 1089 if (new_node) { 1090 hclgevf_update_mac_node(new_node, mac_node->state); 1091 list_del(&mac_node->node); 1092 kfree(mac_node); 1093 } else if (mac_node->state == HCLGEVF_MAC_ACTIVE) { 1094 mac_node->state = HCLGEVF_MAC_TO_DEL; 1095 list_move_tail(&mac_node->node, mac_list); 1096 } else { 1097 list_del(&mac_node->node); 1098 kfree(mac_node); 1099 } 1100 } 1101 } 1102 1103 static void hclgevf_sync_from_del_list(struct list_head *del_list, 1104 struct list_head *mac_list) 1105 { 1106 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node; 1107 1108 list_for_each_entry_safe(mac_node, tmp, del_list, node) { 1109 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr); 1110 if (new_node) { 1111 /* If the mac addr is exist in the mac list, it means 1112 * received a new request TO_ADD during the time window 1113 * of sending mac addr configurrequest to PF, so just 1114 * change the mac state to ACTIVE. 1115 */ 1116 new_node->state = HCLGEVF_MAC_ACTIVE; 1117 list_del(&mac_node->node); 1118 kfree(mac_node); 1119 } else { 1120 list_move_tail(&mac_node->node, mac_list); 1121 } 1122 } 1123 } 1124 1125 static void hclgevf_clear_list(struct list_head *list) 1126 { 1127 struct hclgevf_mac_addr_node *mac_node, *tmp; 1128 1129 list_for_each_entry_safe(mac_node, tmp, list, node) { 1130 list_del(&mac_node->node); 1131 kfree(mac_node); 1132 } 1133 } 1134 1135 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev, 1136 enum HCLGEVF_MAC_ADDR_TYPE mac_type) 1137 { 1138 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node; 1139 struct list_head tmp_add_list, tmp_del_list; 1140 struct list_head *list; 1141 1142 INIT_LIST_HEAD(&tmp_add_list); 1143 INIT_LIST_HEAD(&tmp_del_list); 1144 1145 /* move the mac addr to the tmp_add_list and tmp_del_list, then 1146 * we can add/delete these mac addr outside the spin lock 1147 */ 1148 list = (mac_type == HCLGEVF_MAC_ADDR_UC) ? 1149 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list; 1150 1151 spin_lock_bh(&hdev->mac_table.mac_list_lock); 1152 1153 list_for_each_entry_safe(mac_node, tmp, list, node) { 1154 switch (mac_node->state) { 1155 case HCLGEVF_MAC_TO_DEL: 1156 list_move_tail(&mac_node->node, &tmp_del_list); 1157 break; 1158 case HCLGEVF_MAC_TO_ADD: 1159 new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC); 1160 if (!new_node) 1161 goto stop_traverse; 1162 1163 ether_addr_copy(new_node->mac_addr, mac_node->mac_addr); 1164 new_node->state = mac_node->state; 1165 list_add_tail(&new_node->node, &tmp_add_list); 1166 break; 1167 default: 1168 break; 1169 } 1170 } 1171 1172 stop_traverse: 1173 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1174 1175 /* delete first, in order to get max mac table space for adding */ 1176 hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type); 1177 hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type); 1178 1179 /* if some mac addresses were added/deleted fail, move back to the 1180 * mac_list, and retry at next time. 1181 */ 1182 spin_lock_bh(&hdev->mac_table.mac_list_lock); 1183 1184 hclgevf_sync_from_del_list(&tmp_del_list, list); 1185 hclgevf_sync_from_add_list(&tmp_add_list, list); 1186 1187 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1188 } 1189 1190 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev) 1191 { 1192 hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC); 1193 hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC); 1194 } 1195 1196 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev) 1197 { 1198 spin_lock_bh(&hdev->mac_table.mac_list_lock); 1199 1200 hclgevf_clear_list(&hdev->mac_table.uc_mac_list); 1201 hclgevf_clear_list(&hdev->mac_table.mc_mac_list); 1202 1203 spin_unlock_bh(&hdev->mac_table.mac_list_lock); 1204 } 1205 1206 static int hclgevf_enable_vlan_filter(struct hnae3_handle *handle, bool enable) 1207 { 1208 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1209 struct hnae3_ae_dev *ae_dev = hdev->ae_dev; 1210 struct hclge_vf_to_pf_msg send_msg; 1211 1212 if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps)) 1213 return -EOPNOTSUPP; 1214 1215 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, 1216 HCLGE_MBX_ENABLE_VLAN_FILTER); 1217 send_msg.data[0] = enable ? 1 : 0; 1218 1219 return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1220 } 1221 1222 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle, 1223 __be16 proto, u16 vlan_id, 1224 bool is_kill) 1225 { 1226 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1227 struct hclge_mbx_vlan_filter *vlan_filter; 1228 struct hclge_vf_to_pf_msg send_msg; 1229 int ret; 1230 1231 if (vlan_id > HCLGEVF_MAX_VLAN_ID) 1232 return -EINVAL; 1233 1234 if (proto != htons(ETH_P_8021Q)) 1235 return -EPROTONOSUPPORT; 1236 1237 /* When device is resetting or reset failed, firmware is unable to 1238 * handle mailbox. Just record the vlan id, and remove it after 1239 * reset finished. 1240 */ 1241 if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) || 1242 test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) { 1243 set_bit(vlan_id, hdev->vlan_del_fail_bmap); 1244 return -EBUSY; 1245 } else if (!is_kill && test_bit(vlan_id, hdev->vlan_del_fail_bmap)) { 1246 clear_bit(vlan_id, hdev->vlan_del_fail_bmap); 1247 } 1248 1249 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, 1250 HCLGE_MBX_VLAN_FILTER); 1251 vlan_filter = (struct hclge_mbx_vlan_filter *)send_msg.data; 1252 vlan_filter->is_kill = is_kill; 1253 vlan_filter->vlan_id = cpu_to_le16(vlan_id); 1254 vlan_filter->proto = cpu_to_le16(be16_to_cpu(proto)); 1255 1256 /* when remove hw vlan filter failed, record the vlan id, 1257 * and try to remove it from hw later, to be consistence 1258 * with stack. 1259 */ 1260 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1261 if (is_kill && ret) 1262 set_bit(vlan_id, hdev->vlan_del_fail_bmap); 1263 1264 return ret; 1265 } 1266 1267 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev) 1268 { 1269 #define HCLGEVF_MAX_SYNC_COUNT 60 1270 struct hnae3_handle *handle = &hdev->nic; 1271 int ret, sync_cnt = 0; 1272 u16 vlan_id; 1273 1274 if (bitmap_empty(hdev->vlan_del_fail_bmap, VLAN_N_VID)) 1275 return; 1276 1277 rtnl_lock(); 1278 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID); 1279 while (vlan_id != VLAN_N_VID) { 1280 ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q), 1281 vlan_id, true); 1282 if (ret) 1283 break; 1284 1285 clear_bit(vlan_id, hdev->vlan_del_fail_bmap); 1286 sync_cnt++; 1287 if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT) 1288 break; 1289 1290 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID); 1291 } 1292 rtnl_unlock(); 1293 } 1294 1295 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable) 1296 { 1297 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1298 struct hclge_vf_to_pf_msg send_msg; 1299 1300 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, 1301 HCLGE_MBX_VLAN_RX_OFF_CFG); 1302 send_msg.data[0] = enable ? 1 : 0; 1303 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 1304 } 1305 1306 static int hclgevf_reset_tqp(struct hnae3_handle *handle) 1307 { 1308 #define HCLGEVF_RESET_ALL_QUEUE_DONE 1U 1309 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1310 struct hclge_vf_to_pf_msg send_msg; 1311 u8 return_status = 0; 1312 int ret; 1313 u16 i; 1314 1315 /* disable vf queue before send queue reset msg to PF */ 1316 ret = hclgevf_tqp_enable(handle, false); 1317 if (ret) { 1318 dev_err(&hdev->pdev->dev, "failed to disable tqp, ret = %d\n", 1319 ret); 1320 return ret; 1321 } 1322 1323 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0); 1324 1325 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &return_status, 1326 sizeof(return_status)); 1327 if (ret || return_status == HCLGEVF_RESET_ALL_QUEUE_DONE) 1328 return ret; 1329 1330 for (i = 1; i < handle->kinfo.num_tqps; i++) { 1331 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0); 1332 *(__le16 *)send_msg.data = cpu_to_le16(i); 1333 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1334 if (ret) 1335 return ret; 1336 } 1337 1338 return 0; 1339 } 1340 1341 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu) 1342 { 1343 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1344 struct hclge_mbx_mtu_info *mtu_info; 1345 struct hclge_vf_to_pf_msg send_msg; 1346 1347 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0); 1348 mtu_info = (struct hclge_mbx_mtu_info *)send_msg.data; 1349 mtu_info->mtu = cpu_to_le32(new_mtu); 1350 1351 return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1352 } 1353 1354 static int hclgevf_notify_client(struct hclgevf_dev *hdev, 1355 enum hnae3_reset_notify_type type) 1356 { 1357 struct hnae3_client *client = hdev->nic_client; 1358 struct hnae3_handle *handle = &hdev->nic; 1359 int ret; 1360 1361 if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) || 1362 !client) 1363 return 0; 1364 1365 if (!client->ops->reset_notify) 1366 return -EOPNOTSUPP; 1367 1368 ret = client->ops->reset_notify(handle, type); 1369 if (ret) 1370 dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n", 1371 type, ret); 1372 1373 return ret; 1374 } 1375 1376 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev, 1377 enum hnae3_reset_notify_type type) 1378 { 1379 struct hnae3_client *client = hdev->roce_client; 1380 struct hnae3_handle *handle = &hdev->roce; 1381 int ret; 1382 1383 if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client) 1384 return 0; 1385 1386 if (!client->ops->reset_notify) 1387 return -EOPNOTSUPP; 1388 1389 ret = client->ops->reset_notify(handle, type); 1390 if (ret) 1391 dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)", 1392 type, ret); 1393 return ret; 1394 } 1395 1396 static void hclgevf_set_reset_pending(struct hclgevf_dev *hdev, 1397 enum hnae3_reset_type reset_type) 1398 { 1399 /* When an incorrect reset type is executed, the get_reset_level 1400 * function generates the HNAE3_NONE_RESET flag. As a result, this 1401 * type do not need to pending. 1402 */ 1403 if (reset_type != HNAE3_NONE_RESET) 1404 set_bit(reset_type, &hdev->reset_pending); 1405 } 1406 1407 static int hclgevf_reset_wait(struct hclgevf_dev *hdev) 1408 { 1409 #define HCLGEVF_RESET_WAIT_US 20000 1410 #define HCLGEVF_RESET_WAIT_CNT 2000 1411 #define HCLGEVF_RESET_WAIT_TIMEOUT_US \ 1412 (HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT) 1413 1414 u32 val; 1415 int ret; 1416 1417 if (hdev->reset_type == HNAE3_VF_RESET) 1418 ret = readl_poll_timeout(hdev->hw.hw.io_base + 1419 HCLGEVF_VF_RST_ING, val, 1420 !(val & HCLGEVF_VF_RST_ING_BIT), 1421 HCLGEVF_RESET_WAIT_US, 1422 HCLGEVF_RESET_WAIT_TIMEOUT_US); 1423 else 1424 ret = readl_poll_timeout(hdev->hw.hw.io_base + 1425 HCLGEVF_RST_ING, val, 1426 !(val & HCLGEVF_RST_ING_BITS), 1427 HCLGEVF_RESET_WAIT_US, 1428 HCLGEVF_RESET_WAIT_TIMEOUT_US); 1429 1430 /* hardware completion status should be available by this time */ 1431 if (ret) { 1432 dev_err(&hdev->pdev->dev, 1433 "couldn't get reset done status from h/w, timeout!\n"); 1434 return ret; 1435 } 1436 1437 /* we will wait a bit more to let reset of the stack to complete. This 1438 * might happen in case reset assertion was made by PF. Yes, this also 1439 * means we might end up waiting bit more even for VF reset. 1440 */ 1441 if (hdev->reset_type == HNAE3_VF_FULL_RESET) 1442 msleep(5000); 1443 else 1444 msleep(500); 1445 1446 return 0; 1447 } 1448 1449 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable) 1450 { 1451 u32 reg_val; 1452 1453 reg_val = hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG); 1454 if (enable) 1455 reg_val |= HCLGEVF_NIC_SW_RST_RDY; 1456 else 1457 reg_val &= ~HCLGEVF_NIC_SW_RST_RDY; 1458 1459 hclgevf_write_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG, 1460 reg_val); 1461 } 1462 1463 static int hclgevf_reset_stack(struct hclgevf_dev *hdev) 1464 { 1465 int ret; 1466 1467 /* uninitialize the nic client */ 1468 ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT); 1469 if (ret) 1470 return ret; 1471 1472 /* re-initialize the hclge device */ 1473 ret = hclgevf_reset_hdev(hdev); 1474 if (ret) { 1475 dev_err(&hdev->pdev->dev, 1476 "hclge device re-init failed, VF is disabled!\n"); 1477 return ret; 1478 } 1479 1480 /* bring up the nic client again */ 1481 ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT); 1482 if (ret) 1483 return ret; 1484 1485 /* clear handshake status with IMP */ 1486 hclgevf_reset_handshake(hdev, false); 1487 1488 /* bring up the nic to enable TX/RX again */ 1489 return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT); 1490 } 1491 1492 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev) 1493 { 1494 #define HCLGEVF_RESET_SYNC_TIME 100 1495 1496 if (hdev->reset_type == HNAE3_VF_FUNC_RESET) { 1497 struct hclge_vf_to_pf_msg send_msg; 1498 int ret; 1499 1500 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0); 1501 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0); 1502 if (ret) { 1503 dev_err(&hdev->pdev->dev, 1504 "failed to assert VF reset, ret = %d\n", ret); 1505 return ret; 1506 } 1507 hdev->rst_stats.vf_func_rst_cnt++; 1508 } 1509 1510 set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state); 1511 /* inform hardware that preparatory work is done */ 1512 msleep(HCLGEVF_RESET_SYNC_TIME); 1513 hclgevf_reset_handshake(hdev, true); 1514 dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n", 1515 hdev->reset_type); 1516 1517 return 0; 1518 } 1519 1520 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev) 1521 { 1522 dev_info(&hdev->pdev->dev, "VF function reset count: %u\n", 1523 hdev->rst_stats.vf_func_rst_cnt); 1524 dev_info(&hdev->pdev->dev, "FLR reset count: %u\n", 1525 hdev->rst_stats.flr_rst_cnt); 1526 dev_info(&hdev->pdev->dev, "VF reset count: %u\n", 1527 hdev->rst_stats.vf_rst_cnt); 1528 dev_info(&hdev->pdev->dev, "reset done count: %u\n", 1529 hdev->rst_stats.rst_done_cnt); 1530 dev_info(&hdev->pdev->dev, "HW reset done count: %u\n", 1531 hdev->rst_stats.hw_rst_done_cnt); 1532 dev_info(&hdev->pdev->dev, "reset count: %u\n", 1533 hdev->rst_stats.rst_cnt); 1534 dev_info(&hdev->pdev->dev, "reset fail count: %u\n", 1535 hdev->rst_stats.rst_fail_cnt); 1536 dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n", 1537 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE)); 1538 dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n", 1539 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_STATE_REG)); 1540 dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n", 1541 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG)); 1542 dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n", 1543 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING)); 1544 dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state); 1545 } 1546 1547 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev) 1548 { 1549 /* recover handshake status with IMP when reset fail */ 1550 hclgevf_reset_handshake(hdev, true); 1551 hdev->rst_stats.rst_fail_cnt++; 1552 dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n", 1553 hdev->rst_stats.rst_fail_cnt); 1554 1555 if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT) 1556 hclgevf_set_reset_pending(hdev, hdev->reset_type); 1557 1558 if (hclgevf_is_reset_pending(hdev)) { 1559 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); 1560 hclgevf_reset_task_schedule(hdev); 1561 } else { 1562 set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state); 1563 hclgevf_dump_rst_info(hdev); 1564 } 1565 } 1566 1567 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev) 1568 { 1569 int ret; 1570 1571 hdev->rst_stats.rst_cnt++; 1572 1573 /* perform reset of the stack & ae device for a client */ 1574 ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT); 1575 if (ret) 1576 return ret; 1577 1578 rtnl_lock(); 1579 /* bring down the nic to stop any ongoing TX/RX */ 1580 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT); 1581 rtnl_unlock(); 1582 if (ret) 1583 return ret; 1584 1585 return hclgevf_reset_prepare_wait(hdev); 1586 } 1587 1588 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev) 1589 { 1590 int ret; 1591 1592 hdev->rst_stats.hw_rst_done_cnt++; 1593 ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT); 1594 if (ret) 1595 return ret; 1596 1597 rtnl_lock(); 1598 /* now, re-initialize the nic client and ae device */ 1599 ret = hclgevf_reset_stack(hdev); 1600 rtnl_unlock(); 1601 if (ret) { 1602 dev_err(&hdev->pdev->dev, "failed to reset VF stack\n"); 1603 return ret; 1604 } 1605 1606 ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT); 1607 /* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1 1608 * times 1609 */ 1610 if (ret && 1611 hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1) 1612 return ret; 1613 1614 ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT); 1615 if (ret) 1616 return ret; 1617 1618 hdev->last_reset_time = jiffies; 1619 hdev->rst_stats.rst_done_cnt++; 1620 hdev->rst_stats.rst_fail_cnt = 0; 1621 clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state); 1622 1623 return 0; 1624 } 1625 1626 static void hclgevf_reset(struct hclgevf_dev *hdev) 1627 { 1628 if (hclgevf_reset_prepare(hdev)) 1629 goto err_reset; 1630 1631 /* check if VF could successfully fetch the hardware reset completion 1632 * status from the hardware 1633 */ 1634 if (hclgevf_reset_wait(hdev)) { 1635 /* can't do much in this situation, will disable VF */ 1636 dev_err(&hdev->pdev->dev, 1637 "failed to fetch H/W reset completion status\n"); 1638 goto err_reset; 1639 } 1640 1641 if (hclgevf_reset_rebuild(hdev)) 1642 goto err_reset; 1643 1644 return; 1645 1646 err_reset: 1647 hclgevf_reset_err_handle(hdev); 1648 } 1649 1650 static enum hnae3_reset_type hclgevf_get_reset_level(unsigned long *addr) 1651 { 1652 enum hnae3_reset_type rst_level = HNAE3_NONE_RESET; 1653 1654 /* return the highest priority reset level amongst all */ 1655 if (test_bit(HNAE3_VF_RESET, addr)) { 1656 rst_level = HNAE3_VF_RESET; 1657 clear_bit(HNAE3_VF_RESET, addr); 1658 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr); 1659 clear_bit(HNAE3_VF_FUNC_RESET, addr); 1660 } else if (test_bit(HNAE3_VF_FULL_RESET, addr)) { 1661 rst_level = HNAE3_VF_FULL_RESET; 1662 clear_bit(HNAE3_VF_FULL_RESET, addr); 1663 clear_bit(HNAE3_VF_FUNC_RESET, addr); 1664 } else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) { 1665 rst_level = HNAE3_VF_PF_FUNC_RESET; 1666 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr); 1667 clear_bit(HNAE3_VF_FUNC_RESET, addr); 1668 } else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) { 1669 rst_level = HNAE3_VF_FUNC_RESET; 1670 clear_bit(HNAE3_VF_FUNC_RESET, addr); 1671 } else if (test_bit(HNAE3_FLR_RESET, addr)) { 1672 rst_level = HNAE3_FLR_RESET; 1673 clear_bit(HNAE3_FLR_RESET, addr); 1674 } 1675 1676 clear_bit(HNAE3_NONE_RESET, addr); 1677 1678 return rst_level; 1679 } 1680 1681 static void hclgevf_reset_event(struct pci_dev *pdev, 1682 struct hnae3_handle *handle) 1683 { 1684 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); 1685 struct hclgevf_dev *hdev = ae_dev->priv; 1686 1687 if (hdev->default_reset_request) 1688 hdev->reset_level = 1689 hclgevf_get_reset_level(&hdev->default_reset_request); 1690 else 1691 hdev->reset_level = HNAE3_VF_FUNC_RESET; 1692 1693 dev_info(&hdev->pdev->dev, "received reset request from VF enet, reset level is %d\n", 1694 hdev->reset_level); 1695 1696 /* reset of this VF requested */ 1697 set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state); 1698 hclgevf_reset_task_schedule(hdev); 1699 1700 hdev->last_reset_time = jiffies; 1701 } 1702 1703 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev, 1704 enum hnae3_reset_type rst_type) 1705 { 1706 #define HCLGEVF_SUPPORT_RESET_TYPE \ 1707 (BIT(HNAE3_VF_RESET) | BIT(HNAE3_VF_FUNC_RESET) | \ 1708 BIT(HNAE3_VF_PF_FUNC_RESET) | BIT(HNAE3_VF_FULL_RESET) | \ 1709 BIT(HNAE3_FLR_RESET) | BIT(HNAE3_VF_EXP_RESET)) 1710 1711 struct hclgevf_dev *hdev = ae_dev->priv; 1712 1713 if (!(BIT(rst_type) & HCLGEVF_SUPPORT_RESET_TYPE)) { 1714 /* To prevent reset triggered by hclge_reset_event */ 1715 set_bit(HNAE3_NONE_RESET, &hdev->default_reset_request); 1716 dev_info(&hdev->pdev->dev, "unsupported reset type %d\n", 1717 rst_type); 1718 return; 1719 } 1720 set_bit(rst_type, &hdev->default_reset_request); 1721 } 1722 1723 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en) 1724 { 1725 writel(en ? 1 : 0, vector->addr); 1726 } 1727 1728 static void hclgevf_reset_prepare_general(struct hnae3_ae_dev *ae_dev, 1729 enum hnae3_reset_type rst_type) 1730 { 1731 #define HCLGEVF_RESET_RETRY_WAIT_MS 500 1732 #define HCLGEVF_RESET_RETRY_CNT 5 1733 1734 struct hclgevf_dev *hdev = ae_dev->priv; 1735 int retry_cnt = 0; 1736 int ret; 1737 1738 while (retry_cnt++ < HCLGEVF_RESET_RETRY_CNT) { 1739 down(&hdev->reset_sem); 1740 set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 1741 hdev->reset_type = rst_type; 1742 ret = hclgevf_reset_prepare(hdev); 1743 if (!ret && !hdev->reset_pending) 1744 break; 1745 1746 dev_err(&hdev->pdev->dev, 1747 "failed to prepare to reset, ret=%d, reset_pending:0x%lx, retry_cnt:%d\n", 1748 ret, hdev->reset_pending, retry_cnt); 1749 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 1750 up(&hdev->reset_sem); 1751 msleep(HCLGEVF_RESET_RETRY_WAIT_MS); 1752 } 1753 1754 /* disable misc vector before reset done */ 1755 hclgevf_enable_vector(&hdev->misc_vector, false); 1756 1757 if (hdev->reset_type == HNAE3_FLR_RESET) 1758 hdev->rst_stats.flr_rst_cnt++; 1759 } 1760 1761 static void hclgevf_reset_done(struct hnae3_ae_dev *ae_dev) 1762 { 1763 struct hclgevf_dev *hdev = ae_dev->priv; 1764 int ret; 1765 1766 hclgevf_enable_vector(&hdev->misc_vector, true); 1767 1768 ret = hclgevf_reset_rebuild(hdev); 1769 if (ret) 1770 dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n", 1771 ret); 1772 1773 hdev->reset_type = HNAE3_NONE_RESET; 1774 if (test_and_clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) 1775 up(&hdev->reset_sem); 1776 } 1777 1778 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle) 1779 { 1780 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 1781 1782 return hdev->fw_version; 1783 } 1784 1785 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev) 1786 { 1787 struct hclgevf_misc_vector *vector = &hdev->misc_vector; 1788 1789 vector->vector_irq = pci_irq_vector(hdev->pdev, 1790 HCLGEVF_MISC_VECTOR_NUM); 1791 vector->addr = hdev->hw.hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE; 1792 /* vector status always valid for Vector 0 */ 1793 hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0; 1794 hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq; 1795 1796 hdev->num_msi_left -= 1; 1797 hdev->num_msi_used += 1; 1798 } 1799 1800 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev) 1801 { 1802 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) && 1803 test_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state) && 1804 !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, 1805 &hdev->state)) 1806 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0); 1807 } 1808 1809 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev) 1810 { 1811 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) && 1812 !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, 1813 &hdev->state)) 1814 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0); 1815 } 1816 1817 static void hclgevf_task_schedule(struct hclgevf_dev *hdev, 1818 unsigned long delay) 1819 { 1820 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) && 1821 !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) 1822 mod_delayed_work(hclgevf_wq, &hdev->service_task, delay); 1823 } 1824 1825 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev) 1826 { 1827 #define HCLGEVF_MAX_RESET_ATTEMPTS_CNT 3 1828 1829 if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state)) 1830 return; 1831 1832 down(&hdev->reset_sem); 1833 set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 1834 1835 if (test_and_clear_bit(HCLGEVF_RESET_PENDING, 1836 &hdev->reset_state)) { 1837 /* PF has intimated that it is about to reset the hardware. 1838 * We now have to poll & check if hardware has actually 1839 * completed the reset sequence. On hardware reset completion, 1840 * VF needs to reset the client and ae device. 1841 */ 1842 hdev->reset_attempts = 0; 1843 1844 hdev->last_reset_time = jiffies; 1845 hdev->reset_type = 1846 hclgevf_get_reset_level(&hdev->reset_pending); 1847 if (hdev->reset_type != HNAE3_NONE_RESET) 1848 hclgevf_reset(hdev); 1849 } else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED, 1850 &hdev->reset_state)) { 1851 /* we could be here when either of below happens: 1852 * 1. reset was initiated due to watchdog timeout caused by 1853 * a. IMP was earlier reset and our TX got choked down and 1854 * which resulted in watchdog reacting and inducing VF 1855 * reset. This also means our cmdq would be unreliable. 1856 * b. problem in TX due to other lower layer(example link 1857 * layer not functioning properly etc.) 1858 * 2. VF reset might have been initiated due to some config 1859 * change. 1860 * 1861 * NOTE: Theres no clear way to detect above cases than to react 1862 * to the response of PF for this reset request. PF will ack the 1863 * 1b and 2. cases but we will not get any intimation about 1a 1864 * from PF as cmdq would be in unreliable state i.e. mailbox 1865 * communication between PF and VF would be broken. 1866 * 1867 * if we are never geting into pending state it means either: 1868 * 1. PF is not receiving our request which could be due to IMP 1869 * reset 1870 * 2. PF is screwed 1871 * We cannot do much for 2. but to check first we can try reset 1872 * our PCIe + stack and see if it alleviates the problem. 1873 */ 1874 if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) { 1875 /* prepare for full reset of stack + pcie interface */ 1876 hclgevf_set_reset_pending(hdev, HNAE3_VF_FULL_RESET); 1877 1878 /* "defer" schedule the reset task again */ 1879 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); 1880 } else { 1881 hdev->reset_attempts++; 1882 1883 hclgevf_set_reset_pending(hdev, hdev->reset_level); 1884 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); 1885 } 1886 hclgevf_reset_task_schedule(hdev); 1887 } 1888 1889 hdev->reset_type = HNAE3_NONE_RESET; 1890 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 1891 up(&hdev->reset_sem); 1892 } 1893 1894 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev) 1895 { 1896 if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state)) 1897 return; 1898 1899 if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) 1900 return; 1901 1902 hclgevf_mbx_async_handler(hdev); 1903 1904 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state); 1905 } 1906 1907 static void hclgevf_keep_alive(struct hclgevf_dev *hdev) 1908 { 1909 struct hclge_vf_to_pf_msg send_msg; 1910 int ret; 1911 1912 if (test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state)) 1913 return; 1914 1915 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0); 1916 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 1917 if (ret) 1918 dev_err(&hdev->pdev->dev, 1919 "VF sends keep alive cmd failed(=%d)\n", ret); 1920 } 1921 1922 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev) 1923 { 1924 unsigned long delta = round_jiffies_relative(HZ); 1925 struct hnae3_handle *handle = &hdev->nic; 1926 1927 if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state) || 1928 test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state)) 1929 return; 1930 1931 if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) { 1932 delta = jiffies - hdev->last_serv_processed; 1933 1934 if (delta < round_jiffies_relative(HZ)) { 1935 delta = round_jiffies_relative(HZ) - delta; 1936 goto out; 1937 } 1938 } 1939 1940 hdev->serv_processed_cnt++; 1941 if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL)) 1942 hclgevf_keep_alive(hdev); 1943 1944 if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) { 1945 hdev->last_serv_processed = jiffies; 1946 goto out; 1947 } 1948 1949 if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL)) 1950 hclge_comm_tqps_update_stats(handle, &hdev->hw.hw); 1951 1952 /* VF does not need to request link status when this bit is set, because 1953 * PF will push its link status to VFs when link status changed. 1954 */ 1955 if (!test_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state)) 1956 hclgevf_request_link_info(hdev); 1957 1958 hclgevf_update_link_mode(hdev); 1959 1960 hclgevf_sync_vlan_filter(hdev); 1961 1962 hclgevf_sync_mac_table(hdev); 1963 1964 hclgevf_sync_promisc_mode(hdev); 1965 1966 hdev->last_serv_processed = jiffies; 1967 1968 out: 1969 hclgevf_task_schedule(hdev, delta); 1970 } 1971 1972 static void hclgevf_service_task(struct work_struct *work) 1973 { 1974 struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev, 1975 service_task.work); 1976 1977 hclgevf_reset_service_task(hdev); 1978 hclgevf_mailbox_service_task(hdev); 1979 hclgevf_periodic_service_task(hdev); 1980 1981 /* Handle reset and mbx again in case periodical task delays the 1982 * handling by calling hclgevf_task_schedule() in 1983 * hclgevf_periodic_service_task() 1984 */ 1985 hclgevf_reset_service_task(hdev); 1986 hclgevf_mailbox_service_task(hdev); 1987 } 1988 1989 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr) 1990 { 1991 hclgevf_write_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_SRC_REG, regclr); 1992 } 1993 1994 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev, 1995 u32 *clearval) 1996 { 1997 u32 val, cmdq_stat_reg, rst_ing_reg; 1998 1999 /* fetch the events from their corresponding regs */ 2000 cmdq_stat_reg = hclgevf_read_dev(&hdev->hw, 2001 HCLGE_COMM_VECTOR0_CMDQ_STATE_REG); 2002 if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) { 2003 rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING); 2004 dev_info(&hdev->pdev->dev, 2005 "receive reset interrupt 0x%x!\n", rst_ing_reg); 2006 hclgevf_set_reset_pending(hdev, HNAE3_VF_RESET); 2007 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state); 2008 set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state); 2009 *clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B); 2010 hdev->rst_stats.vf_rst_cnt++; 2011 /* set up VF hardware reset status, its PF will clear 2012 * this status when PF has initialized done. 2013 */ 2014 val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING); 2015 hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING, 2016 val | HCLGEVF_VF_RST_ING_BIT); 2017 return HCLGEVF_VECTOR0_EVENT_RST; 2018 } 2019 2020 /* check for vector0 mailbox(=CMDQ RX) event source */ 2021 if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) { 2022 /* for revision 0x21, clearing interrupt is writing bit 0 2023 * to the clear register, writing bit 1 means to keep the 2024 * old value. 2025 * for revision 0x20, the clear register is a read & write 2026 * register, so we should just write 0 to the bit we are 2027 * handling, and keep other bits as cmdq_stat_reg. 2028 */ 2029 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) 2030 *clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B); 2031 else 2032 *clearval = cmdq_stat_reg & 2033 ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B); 2034 2035 return HCLGEVF_VECTOR0_EVENT_MBX; 2036 } 2037 2038 /* print other vector0 event source */ 2039 dev_info(&hdev->pdev->dev, 2040 "vector 0 interrupt from unknown source, cmdq_src = %#x\n", 2041 cmdq_stat_reg); 2042 2043 return HCLGEVF_VECTOR0_EVENT_OTHER; 2044 } 2045 2046 static void hclgevf_reset_timer(struct timer_list *t) 2047 { 2048 struct hclgevf_dev *hdev = from_timer(hdev, t, reset_timer); 2049 2050 hclgevf_clear_event_cause(hdev, HCLGEVF_VECTOR0_EVENT_RST); 2051 hclgevf_reset_task_schedule(hdev); 2052 } 2053 2054 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data) 2055 { 2056 #define HCLGEVF_RESET_DELAY 5 2057 2058 enum hclgevf_evt_cause event_cause; 2059 struct hclgevf_dev *hdev = data; 2060 u32 clearval; 2061 2062 hclgevf_enable_vector(&hdev->misc_vector, false); 2063 event_cause = hclgevf_check_evt_cause(hdev, &clearval); 2064 if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) 2065 hclgevf_clear_event_cause(hdev, clearval); 2066 2067 switch (event_cause) { 2068 case HCLGEVF_VECTOR0_EVENT_RST: 2069 mod_timer(&hdev->reset_timer, 2070 jiffies + msecs_to_jiffies(HCLGEVF_RESET_DELAY)); 2071 break; 2072 case HCLGEVF_VECTOR0_EVENT_MBX: 2073 hclgevf_mbx_handler(hdev); 2074 break; 2075 default: 2076 break; 2077 } 2078 2079 hclgevf_enable_vector(&hdev->misc_vector, true); 2080 2081 return IRQ_HANDLED; 2082 } 2083 2084 static int hclgevf_configure(struct hclgevf_dev *hdev) 2085 { 2086 int ret; 2087 2088 hdev->gro_en = true; 2089 2090 ret = hclgevf_get_basic_info(hdev); 2091 if (ret) 2092 return ret; 2093 2094 /* get current port based vlan state from PF */ 2095 ret = hclgevf_get_port_base_vlan_filter_state(hdev); 2096 if (ret) 2097 return ret; 2098 2099 /* get queue configuration from PF */ 2100 ret = hclgevf_get_queue_info(hdev); 2101 if (ret) 2102 return ret; 2103 2104 /* get queue depth info from PF */ 2105 ret = hclgevf_get_queue_depth(hdev); 2106 if (ret) 2107 return ret; 2108 2109 return hclgevf_get_pf_media_type(hdev); 2110 } 2111 2112 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev) 2113 { 2114 struct pci_dev *pdev = ae_dev->pdev; 2115 struct hclgevf_dev *hdev; 2116 2117 hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL); 2118 if (!hdev) 2119 return -ENOMEM; 2120 2121 hdev->pdev = pdev; 2122 hdev->ae_dev = ae_dev; 2123 ae_dev->priv = hdev; 2124 2125 return 0; 2126 } 2127 2128 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev) 2129 { 2130 struct hnae3_handle *roce = &hdev->roce; 2131 struct hnae3_handle *nic = &hdev->nic; 2132 2133 roce->rinfo.num_vectors = hdev->num_roce_msix; 2134 2135 if (hdev->num_msi_left < roce->rinfo.num_vectors || 2136 hdev->num_msi_left == 0) 2137 return -EINVAL; 2138 2139 roce->rinfo.base_vector = hdev->roce_base_msix_offset; 2140 2141 roce->rinfo.netdev = nic->kinfo.netdev; 2142 roce->rinfo.roce_io_base = hdev->hw.hw.io_base; 2143 roce->rinfo.roce_mem_base = hdev->hw.hw.mem_base; 2144 2145 roce->pdev = nic->pdev; 2146 roce->ae_algo = nic->ae_algo; 2147 bitmap_copy(roce->numa_node_mask.bits, nic->numa_node_mask.bits, 2148 MAX_NUMNODES); 2149 return 0; 2150 } 2151 2152 static int hclgevf_config_gro(struct hclgevf_dev *hdev) 2153 { 2154 struct hclgevf_cfg_gro_status_cmd *req; 2155 struct hclge_desc desc; 2156 int ret; 2157 2158 if (!hnae3_ae_dev_gro_supported(hdev->ae_dev)) 2159 return 0; 2160 2161 hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_GRO_GENERIC_CONFIG, 2162 false); 2163 req = (struct hclgevf_cfg_gro_status_cmd *)desc.data; 2164 2165 req->gro_en = hdev->gro_en ? 1 : 0; 2166 2167 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1); 2168 if (ret) 2169 dev_err(&hdev->pdev->dev, 2170 "VF GRO hardware config cmd failed, ret = %d.\n", ret); 2171 2172 return ret; 2173 } 2174 2175 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev) 2176 { 2177 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg; 2178 u16 tc_offset[HCLGE_COMM_MAX_TC_NUM]; 2179 u16 tc_valid[HCLGE_COMM_MAX_TC_NUM]; 2180 u16 tc_size[HCLGE_COMM_MAX_TC_NUM]; 2181 int ret; 2182 2183 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) { 2184 ret = hclge_comm_set_rss_algo_key(&hdev->hw.hw, 2185 rss_cfg->rss_algo, 2186 rss_cfg->rss_hash_key); 2187 if (ret) 2188 return ret; 2189 2190 ret = hclge_comm_set_rss_input_tuple(&hdev->hw.hw, rss_cfg); 2191 if (ret) 2192 return ret; 2193 } 2194 2195 ret = hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw, 2196 rss_cfg->rss_indirection_tbl); 2197 if (ret) 2198 return ret; 2199 2200 hclge_comm_get_rss_tc_info(rss_cfg->rss_size, hdev->hw_tc_map, 2201 tc_offset, tc_valid, tc_size); 2202 2203 return hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset, 2204 tc_valid, tc_size); 2205 } 2206 2207 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev) 2208 { 2209 struct hnae3_handle *nic = &hdev->nic; 2210 int ret; 2211 2212 ret = hclgevf_en_hw_strip_rxvtag(nic, true); 2213 if (ret) { 2214 dev_err(&hdev->pdev->dev, 2215 "failed to enable rx vlan offload, ret = %d\n", ret); 2216 return ret; 2217 } 2218 2219 return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0, 2220 false); 2221 } 2222 2223 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev) 2224 { 2225 #define HCLGEVF_FLUSH_LINK_TIMEOUT 100000 2226 2227 unsigned long last = hdev->serv_processed_cnt; 2228 int i = 0; 2229 2230 while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) && 2231 i++ < HCLGEVF_FLUSH_LINK_TIMEOUT && 2232 last == hdev->serv_processed_cnt) 2233 usleep_range(1, 1); 2234 } 2235 2236 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable) 2237 { 2238 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2239 2240 if (enable) { 2241 hclgevf_task_schedule(hdev, 0); 2242 } else { 2243 set_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2244 2245 smp_mb__after_atomic(); /* flush memory to make sure DOWN is seen by service task */ 2246 hclgevf_flush_link_update(hdev); 2247 } 2248 } 2249 2250 static int hclgevf_ae_start(struct hnae3_handle *handle) 2251 { 2252 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2253 2254 clear_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2255 clear_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state); 2256 2257 hclge_comm_reset_tqp_stats(handle); 2258 2259 hclgevf_request_link_info(hdev); 2260 2261 hclgevf_update_link_mode(hdev); 2262 2263 return 0; 2264 } 2265 2266 static void hclgevf_ae_stop(struct hnae3_handle *handle) 2267 { 2268 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2269 2270 set_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2271 2272 if (hdev->reset_type != HNAE3_VF_RESET) 2273 hclgevf_reset_tqp(handle); 2274 2275 hclge_comm_reset_tqp_stats(handle); 2276 hclgevf_update_link_status(hdev, 0); 2277 } 2278 2279 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive) 2280 { 2281 #define HCLGEVF_STATE_ALIVE 1 2282 #define HCLGEVF_STATE_NOT_ALIVE 0 2283 2284 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2285 struct hclge_vf_to_pf_msg send_msg; 2286 2287 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0); 2288 send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE : 2289 HCLGEVF_STATE_NOT_ALIVE; 2290 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 2291 } 2292 2293 static int hclgevf_client_start(struct hnae3_handle *handle) 2294 { 2295 return hclgevf_set_alive(handle, true); 2296 } 2297 2298 static void hclgevf_client_stop(struct hnae3_handle *handle) 2299 { 2300 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 2301 int ret; 2302 2303 ret = hclgevf_set_alive(handle, false); 2304 if (ret) 2305 dev_warn(&hdev->pdev->dev, 2306 "%s failed %d\n", __func__, ret); 2307 } 2308 2309 static void hclgevf_state_init(struct hclgevf_dev *hdev) 2310 { 2311 clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state); 2312 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state); 2313 clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state); 2314 2315 INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task); 2316 /* timer needs to be initialized before misc irq */ 2317 timer_setup(&hdev->reset_timer, hclgevf_reset_timer, 0); 2318 2319 mutex_init(&hdev->mbx_resp.mbx_mutex); 2320 sema_init(&hdev->reset_sem, 1); 2321 2322 spin_lock_init(&hdev->mac_table.mac_list_lock); 2323 INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list); 2324 INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list); 2325 2326 /* bring the device down */ 2327 set_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2328 } 2329 2330 static void hclgevf_state_uninit(struct hclgevf_dev *hdev) 2331 { 2332 set_bit(HCLGEVF_STATE_DOWN, &hdev->state); 2333 set_bit(HCLGEVF_STATE_REMOVING, &hdev->state); 2334 2335 if (hdev->service_task.work.func) 2336 cancel_delayed_work_sync(&hdev->service_task); 2337 2338 mutex_destroy(&hdev->mbx_resp.mbx_mutex); 2339 } 2340 2341 static int hclgevf_init_msi(struct hclgevf_dev *hdev) 2342 { 2343 struct pci_dev *pdev = hdev->pdev; 2344 int vectors; 2345 int i; 2346 2347 if (hnae3_dev_roce_supported(hdev)) 2348 vectors = pci_alloc_irq_vectors(pdev, 2349 hdev->roce_base_msix_offset + 1, 2350 hdev->num_msi, 2351 PCI_IRQ_MSIX); 2352 else 2353 vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM, 2354 hdev->num_msi, 2355 PCI_IRQ_MSI | PCI_IRQ_MSIX); 2356 2357 if (vectors < 0) { 2358 dev_err(&pdev->dev, 2359 "failed(%d) to allocate MSI/MSI-X vectors\n", 2360 vectors); 2361 return vectors; 2362 } 2363 if (vectors < hdev->num_msi) 2364 dev_warn(&hdev->pdev->dev, 2365 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n", 2366 hdev->num_msi, vectors); 2367 2368 hdev->num_msi = vectors; 2369 hdev->num_msi_left = vectors; 2370 2371 hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi, 2372 sizeof(u16), GFP_KERNEL); 2373 if (!hdev->vector_status) { 2374 pci_free_irq_vectors(pdev); 2375 return -ENOMEM; 2376 } 2377 2378 for (i = 0; i < hdev->num_msi; i++) 2379 hdev->vector_status[i] = HCLGEVF_INVALID_VPORT; 2380 2381 hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi, 2382 sizeof(int), GFP_KERNEL); 2383 if (!hdev->vector_irq) { 2384 devm_kfree(&pdev->dev, hdev->vector_status); 2385 pci_free_irq_vectors(pdev); 2386 return -ENOMEM; 2387 } 2388 2389 return 0; 2390 } 2391 2392 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev) 2393 { 2394 struct pci_dev *pdev = hdev->pdev; 2395 2396 devm_kfree(&pdev->dev, hdev->vector_status); 2397 devm_kfree(&pdev->dev, hdev->vector_irq); 2398 pci_free_irq_vectors(pdev); 2399 } 2400 2401 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev) 2402 { 2403 int ret; 2404 2405 hclgevf_get_misc_vector(hdev); 2406 2407 snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s", 2408 HCLGEVF_NAME, pci_name(hdev->pdev)); 2409 ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle, 2410 0, hdev->misc_vector.name, hdev); 2411 if (ret) { 2412 dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n", 2413 hdev->misc_vector.vector_irq); 2414 return ret; 2415 } 2416 2417 hclgevf_clear_event_cause(hdev, 0); 2418 2419 /* enable misc. vector(vector 0) */ 2420 hclgevf_enable_vector(&hdev->misc_vector, true); 2421 2422 return ret; 2423 } 2424 2425 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev) 2426 { 2427 /* disable misc vector(vector 0) */ 2428 hclgevf_enable_vector(&hdev->misc_vector, false); 2429 synchronize_irq(hdev->misc_vector.vector_irq); 2430 free_irq(hdev->misc_vector.vector_irq, hdev); 2431 hclgevf_free_vector(hdev, 0); 2432 } 2433 2434 static void hclgevf_info_show(struct hclgevf_dev *hdev) 2435 { 2436 struct device *dev = &hdev->pdev->dev; 2437 2438 dev_info(dev, "VF info begin:\n"); 2439 2440 dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps); 2441 dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc); 2442 dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc); 2443 dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport); 2444 dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map); 2445 dev_info(dev, "PF media type of this VF: %u\n", 2446 hdev->hw.mac.media_type); 2447 2448 dev_info(dev, "VF info end.\n"); 2449 } 2450 2451 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev, 2452 struct hnae3_client *client) 2453 { 2454 struct hclgevf_dev *hdev = ae_dev->priv; 2455 int rst_cnt = hdev->rst_stats.rst_cnt; 2456 int ret; 2457 2458 ret = client->ops->init_instance(&hdev->nic); 2459 if (ret) 2460 return ret; 2461 2462 set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state); 2463 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) || 2464 rst_cnt != hdev->rst_stats.rst_cnt) { 2465 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state); 2466 2467 client->ops->uninit_instance(&hdev->nic, 0); 2468 return -EBUSY; 2469 } 2470 2471 hnae3_set_client_init_flag(client, ae_dev, 1); 2472 2473 if (netif_msg_drv(&hdev->nic)) 2474 hclgevf_info_show(hdev); 2475 2476 return 0; 2477 } 2478 2479 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev, 2480 struct hnae3_client *client) 2481 { 2482 struct hclgevf_dev *hdev = ae_dev->priv; 2483 int ret; 2484 2485 if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client || 2486 !hdev->nic_client) 2487 return 0; 2488 2489 ret = hclgevf_init_roce_base_info(hdev); 2490 if (ret) 2491 return ret; 2492 2493 ret = client->ops->init_instance(&hdev->roce); 2494 if (ret) 2495 return ret; 2496 2497 set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state); 2498 hnae3_set_client_init_flag(client, ae_dev, 1); 2499 2500 return 0; 2501 } 2502 2503 static int hclgevf_init_client_instance(struct hnae3_client *client, 2504 struct hnae3_ae_dev *ae_dev) 2505 { 2506 struct hclgevf_dev *hdev = ae_dev->priv; 2507 int ret; 2508 2509 switch (client->type) { 2510 case HNAE3_CLIENT_KNIC: 2511 hdev->nic_client = client; 2512 hdev->nic.client = client; 2513 2514 ret = hclgevf_init_nic_client_instance(ae_dev, client); 2515 if (ret) 2516 goto clear_nic; 2517 2518 ret = hclgevf_init_roce_client_instance(ae_dev, 2519 hdev->roce_client); 2520 if (ret) 2521 goto clear_roce; 2522 2523 break; 2524 case HNAE3_CLIENT_ROCE: 2525 if (hnae3_dev_roce_supported(hdev)) { 2526 hdev->roce_client = client; 2527 hdev->roce.client = client; 2528 } 2529 2530 ret = hclgevf_init_roce_client_instance(ae_dev, client); 2531 if (ret) 2532 goto clear_roce; 2533 2534 break; 2535 default: 2536 return -EINVAL; 2537 } 2538 2539 return 0; 2540 2541 clear_nic: 2542 hdev->nic_client = NULL; 2543 hdev->nic.client = NULL; 2544 return ret; 2545 clear_roce: 2546 hdev->roce_client = NULL; 2547 hdev->roce.client = NULL; 2548 return ret; 2549 } 2550 2551 static void hclgevf_uninit_client_instance(struct hnae3_client *client, 2552 struct hnae3_ae_dev *ae_dev) 2553 { 2554 struct hclgevf_dev *hdev = ae_dev->priv; 2555 2556 /* un-init roce, if it exists */ 2557 if (hdev->roce_client) { 2558 while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) 2559 msleep(HCLGEVF_WAIT_RESET_DONE); 2560 clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state); 2561 2562 hdev->roce_client->ops->uninit_instance(&hdev->roce, 0); 2563 hdev->roce_client = NULL; 2564 hdev->roce.client = NULL; 2565 } 2566 2567 /* un-init nic/unic, if this was not called by roce client */ 2568 if (client->ops->uninit_instance && hdev->nic_client && 2569 client->type != HNAE3_CLIENT_ROCE) { 2570 while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) 2571 msleep(HCLGEVF_WAIT_RESET_DONE); 2572 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state); 2573 2574 client->ops->uninit_instance(&hdev->nic, 0); 2575 hdev->nic_client = NULL; 2576 hdev->nic.client = NULL; 2577 } 2578 } 2579 2580 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev) 2581 { 2582 struct pci_dev *pdev = hdev->pdev; 2583 struct hclgevf_hw *hw = &hdev->hw; 2584 2585 /* for device does not have device memory, return directly */ 2586 if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR))) 2587 return 0; 2588 2589 hw->hw.mem_base = 2590 devm_ioremap_wc(&pdev->dev, 2591 pci_resource_start(pdev, HCLGEVF_MEM_BAR), 2592 pci_resource_len(pdev, HCLGEVF_MEM_BAR)); 2593 if (!hw->hw.mem_base) { 2594 dev_err(&pdev->dev, "failed to map device memory\n"); 2595 return -EFAULT; 2596 } 2597 2598 return 0; 2599 } 2600 2601 static int hclgevf_pci_init(struct hclgevf_dev *hdev) 2602 { 2603 struct pci_dev *pdev = hdev->pdev; 2604 struct hclgevf_hw *hw; 2605 int ret; 2606 2607 ret = pci_enable_device(pdev); 2608 if (ret) { 2609 dev_err(&pdev->dev, "failed to enable PCI device\n"); 2610 return ret; 2611 } 2612 2613 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 2614 if (ret) { 2615 dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting"); 2616 goto err_disable_device; 2617 } 2618 2619 ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME); 2620 if (ret) { 2621 dev_err(&pdev->dev, "PCI request regions failed %d\n", ret); 2622 goto err_disable_device; 2623 } 2624 2625 pci_set_master(pdev); 2626 hw = &hdev->hw; 2627 hw->hw.io_base = pci_iomap(pdev, 2, 0); 2628 if (!hw->hw.io_base) { 2629 dev_err(&pdev->dev, "can't map configuration register space\n"); 2630 ret = -ENOMEM; 2631 goto err_release_regions; 2632 } 2633 2634 ret = hclgevf_dev_mem_map(hdev); 2635 if (ret) 2636 goto err_unmap_io_base; 2637 2638 return 0; 2639 2640 err_unmap_io_base: 2641 pci_iounmap(pdev, hdev->hw.hw.io_base); 2642 err_release_regions: 2643 pci_release_regions(pdev); 2644 err_disable_device: 2645 pci_disable_device(pdev); 2646 2647 return ret; 2648 } 2649 2650 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev) 2651 { 2652 struct pci_dev *pdev = hdev->pdev; 2653 2654 if (hdev->hw.hw.mem_base) 2655 devm_iounmap(&pdev->dev, hdev->hw.hw.mem_base); 2656 2657 pci_iounmap(pdev, hdev->hw.hw.io_base); 2658 pci_release_regions(pdev); 2659 pci_disable_device(pdev); 2660 } 2661 2662 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev) 2663 { 2664 struct hclgevf_query_res_cmd *req; 2665 struct hclge_desc desc; 2666 int ret; 2667 2668 hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_VF_RSRC, true); 2669 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1); 2670 if (ret) { 2671 dev_err(&hdev->pdev->dev, 2672 "query vf resource failed, ret = %d.\n", ret); 2673 return ret; 2674 } 2675 2676 req = (struct hclgevf_query_res_cmd *)desc.data; 2677 2678 if (hnae3_dev_roce_supported(hdev)) { 2679 hdev->roce_base_msix_offset = 2680 hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee), 2681 HCLGEVF_MSIX_OFT_ROCEE_M, 2682 HCLGEVF_MSIX_OFT_ROCEE_S); 2683 hdev->num_roce_msix = 2684 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number), 2685 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S); 2686 2687 /* nic's msix numbers is always equals to the roce's. */ 2688 hdev->num_nic_msix = hdev->num_roce_msix; 2689 2690 /* VF should have NIC vectors and Roce vectors, NIC vectors 2691 * are queued before Roce vectors. The offset is fixed to 64. 2692 */ 2693 hdev->num_msi = hdev->num_roce_msix + 2694 hdev->roce_base_msix_offset; 2695 } else { 2696 hdev->num_msi = 2697 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number), 2698 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S); 2699 2700 hdev->num_nic_msix = hdev->num_msi; 2701 } 2702 2703 if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) { 2704 dev_err(&hdev->pdev->dev, 2705 "Just %u msi resources, not enough for vf(min:2).\n", 2706 hdev->num_nic_msix); 2707 return -EINVAL; 2708 } 2709 2710 return 0; 2711 } 2712 2713 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev) 2714 { 2715 #define HCLGEVF_MAX_NON_TSO_BD_NUM 8U 2716 2717 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 2718 2719 ae_dev->dev_specs.max_non_tso_bd_num = 2720 HCLGEVF_MAX_NON_TSO_BD_NUM; 2721 ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE; 2722 ae_dev->dev_specs.rss_key_size = HCLGE_COMM_RSS_KEY_SIZE; 2723 ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL; 2724 ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME; 2725 } 2726 2727 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev, 2728 struct hclge_desc *desc) 2729 { 2730 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 2731 struct hclgevf_dev_specs_0_cmd *req0; 2732 struct hclgevf_dev_specs_1_cmd *req1; 2733 2734 req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data; 2735 req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data; 2736 2737 ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num; 2738 ae_dev->dev_specs.rss_ind_tbl_size = 2739 le16_to_cpu(req0->rss_ind_tbl_size); 2740 ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max); 2741 ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size); 2742 ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl); 2743 ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size); 2744 } 2745 2746 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev) 2747 { 2748 struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs; 2749 2750 if (!dev_specs->max_non_tso_bd_num) 2751 dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM; 2752 if (!dev_specs->rss_ind_tbl_size) 2753 dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE; 2754 if (!dev_specs->rss_key_size) 2755 dev_specs->rss_key_size = HCLGE_COMM_RSS_KEY_SIZE; 2756 if (!dev_specs->max_int_gl) 2757 dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL; 2758 if (!dev_specs->max_frm_size) 2759 dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME; 2760 } 2761 2762 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev) 2763 { 2764 struct hclge_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM]; 2765 int ret; 2766 int i; 2767 2768 /* set default specifications as devices lower than version V3 do not 2769 * support querying specifications from firmware. 2770 */ 2771 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) { 2772 hclgevf_set_default_dev_specs(hdev); 2773 return 0; 2774 } 2775 2776 for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) { 2777 hclgevf_cmd_setup_basic_desc(&desc[i], 2778 HCLGE_OPC_QUERY_DEV_SPECS, true); 2779 desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 2780 } 2781 hclgevf_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_DEV_SPECS, true); 2782 2783 ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM); 2784 if (ret) 2785 return ret; 2786 2787 hclgevf_parse_dev_specs(hdev, desc); 2788 hclgevf_check_dev_specs(hdev); 2789 2790 return 0; 2791 } 2792 2793 static int hclgevf_pci_reset(struct hclgevf_dev *hdev) 2794 { 2795 struct pci_dev *pdev = hdev->pdev; 2796 int ret = 0; 2797 2798 if ((hdev->reset_type == HNAE3_VF_FULL_RESET || 2799 hdev->reset_type == HNAE3_FLR_RESET) && 2800 test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) { 2801 hclgevf_misc_irq_uninit(hdev); 2802 hclgevf_uninit_msi(hdev); 2803 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); 2804 } 2805 2806 if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) { 2807 pci_set_master(pdev); 2808 ret = hclgevf_init_msi(hdev); 2809 if (ret) { 2810 dev_err(&pdev->dev, 2811 "failed(%d) to init MSI/MSI-X\n", ret); 2812 return ret; 2813 } 2814 2815 ret = hclgevf_misc_irq_init(hdev); 2816 if (ret) { 2817 hclgevf_uninit_msi(hdev); 2818 dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n", 2819 ret); 2820 return ret; 2821 } 2822 2823 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); 2824 } 2825 2826 return ret; 2827 } 2828 2829 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev) 2830 { 2831 struct hclge_vf_to_pf_msg send_msg; 2832 2833 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL, 2834 HCLGE_MBX_VPORT_LIST_CLEAR); 2835 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 2836 } 2837 2838 static void hclgevf_init_rxd_adv_layout(struct hclgevf_dev *hdev) 2839 { 2840 if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev)) 2841 hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 1); 2842 } 2843 2844 static void hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev *hdev) 2845 { 2846 if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev)) 2847 hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 0); 2848 } 2849 2850 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev) 2851 { 2852 struct pci_dev *pdev = hdev->pdev; 2853 int ret; 2854 2855 ret = hclgevf_pci_reset(hdev); 2856 if (ret) { 2857 dev_err(&pdev->dev, "pci reset failed %d\n", ret); 2858 return ret; 2859 } 2860 2861 hclgevf_arq_init(hdev); 2862 2863 ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw, 2864 &hdev->fw_version, false, 2865 hdev->reset_pending); 2866 if (ret) { 2867 dev_err(&pdev->dev, "cmd failed %d\n", ret); 2868 return ret; 2869 } 2870 2871 ret = hclgevf_rss_init_hw(hdev); 2872 if (ret) { 2873 dev_err(&hdev->pdev->dev, 2874 "failed(%d) to initialize RSS\n", ret); 2875 return ret; 2876 } 2877 2878 ret = hclgevf_config_gro(hdev); 2879 if (ret) 2880 return ret; 2881 2882 ret = hclgevf_init_vlan_config(hdev); 2883 if (ret) { 2884 dev_err(&hdev->pdev->dev, 2885 "failed(%d) to initialize VLAN config\n", ret); 2886 return ret; 2887 } 2888 2889 /* get current port based vlan state from PF */ 2890 ret = hclgevf_get_port_base_vlan_filter_state(hdev); 2891 if (ret) 2892 return ret; 2893 2894 set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state); 2895 2896 hclgevf_init_rxd_adv_layout(hdev); 2897 2898 dev_info(&hdev->pdev->dev, "Reset done\n"); 2899 2900 return 0; 2901 } 2902 2903 static int hclgevf_init_hdev(struct hclgevf_dev *hdev) 2904 { 2905 struct pci_dev *pdev = hdev->pdev; 2906 int ret; 2907 2908 ret = hclgevf_pci_init(hdev); 2909 if (ret) 2910 return ret; 2911 2912 ret = hclge_comm_cmd_queue_init(hdev->pdev, &hdev->hw.hw); 2913 if (ret) 2914 goto err_cmd_queue_init; 2915 2916 hclgevf_arq_init(hdev); 2917 2918 hclge_comm_cmd_init_ops(&hdev->hw.hw, &hclgevf_cmq_ops); 2919 ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw, 2920 &hdev->fw_version, false, 2921 hdev->reset_pending); 2922 if (ret) 2923 goto err_cmd_init; 2924 2925 /* Get vf resource */ 2926 ret = hclgevf_query_vf_resource(hdev); 2927 if (ret) 2928 goto err_cmd_init; 2929 2930 ret = hclgevf_query_dev_specs(hdev); 2931 if (ret) { 2932 dev_err(&pdev->dev, 2933 "failed to query dev specifications, ret = %d\n", ret); 2934 goto err_cmd_init; 2935 } 2936 2937 ret = hclgevf_init_msi(hdev); 2938 if (ret) { 2939 dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret); 2940 goto err_cmd_init; 2941 } 2942 2943 hclgevf_state_init(hdev); 2944 hdev->reset_level = HNAE3_VF_FUNC_RESET; 2945 hdev->reset_type = HNAE3_NONE_RESET; 2946 2947 ret = hclgevf_misc_irq_init(hdev); 2948 if (ret) 2949 goto err_misc_irq_init; 2950 2951 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); 2952 2953 ret = hclgevf_configure(hdev); 2954 if (ret) { 2955 dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret); 2956 goto err_config; 2957 } 2958 2959 ret = hclgevf_alloc_tqps(hdev); 2960 if (ret) { 2961 dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret); 2962 goto err_config; 2963 } 2964 2965 ret = hclgevf_set_handle_info(hdev); 2966 if (ret) 2967 goto err_config; 2968 2969 ret = hclgevf_config_gro(hdev); 2970 if (ret) 2971 goto err_config; 2972 2973 /* Initialize RSS for this VF */ 2974 ret = hclge_comm_rss_init_cfg(&hdev->nic, hdev->ae_dev, 2975 &hdev->rss_cfg); 2976 if (ret) { 2977 dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret); 2978 goto err_config; 2979 } 2980 2981 ret = hclgevf_rss_init_hw(hdev); 2982 if (ret) { 2983 dev_err(&hdev->pdev->dev, 2984 "failed(%d) to initialize RSS\n", ret); 2985 goto err_config; 2986 } 2987 2988 /* ensure vf tbl list as empty before init */ 2989 ret = hclgevf_clear_vport_list(hdev); 2990 if (ret) { 2991 dev_err(&pdev->dev, 2992 "failed to clear tbl list configuration, ret = %d.\n", 2993 ret); 2994 goto err_config; 2995 } 2996 2997 ret = hclgevf_init_vlan_config(hdev); 2998 if (ret) { 2999 dev_err(&hdev->pdev->dev, 3000 "failed(%d) to initialize VLAN config\n", ret); 3001 goto err_config; 3002 } 3003 3004 hclgevf_init_rxd_adv_layout(hdev); 3005 3006 ret = hclgevf_devlink_init(hdev); 3007 if (ret) 3008 goto err_config; 3009 3010 set_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state); 3011 3012 hdev->last_reset_time = jiffies; 3013 dev_info(&hdev->pdev->dev, "finished initializing %s driver\n", 3014 HCLGEVF_DRIVER_NAME); 3015 3016 hclgevf_task_schedule(hdev, round_jiffies_relative(HZ)); 3017 3018 return 0; 3019 3020 err_config: 3021 hclgevf_misc_irq_uninit(hdev); 3022 err_misc_irq_init: 3023 hclgevf_state_uninit(hdev); 3024 hclgevf_uninit_msi(hdev); 3025 err_cmd_init: 3026 hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw); 3027 err_cmd_queue_init: 3028 hclgevf_pci_uninit(hdev); 3029 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state); 3030 return ret; 3031 } 3032 3033 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev) 3034 { 3035 struct hclge_vf_to_pf_msg send_msg; 3036 3037 hclgevf_state_uninit(hdev); 3038 hclgevf_uninit_rxd_adv_layout(hdev); 3039 3040 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0); 3041 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 3042 3043 if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) { 3044 hclgevf_misc_irq_uninit(hdev); 3045 hclgevf_uninit_msi(hdev); 3046 } 3047 3048 hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw); 3049 hclgevf_devlink_uninit(hdev); 3050 hclgevf_pci_uninit(hdev); 3051 hclgevf_uninit_mac_list(hdev); 3052 } 3053 3054 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev) 3055 { 3056 struct pci_dev *pdev = ae_dev->pdev; 3057 int ret; 3058 3059 ret = hclgevf_alloc_hdev(ae_dev); 3060 if (ret) { 3061 dev_err(&pdev->dev, "hclge device allocation failed\n"); 3062 return ret; 3063 } 3064 3065 ret = hclgevf_init_hdev(ae_dev->priv); 3066 if (ret) { 3067 dev_err(&pdev->dev, "hclge device initialization failed\n"); 3068 return ret; 3069 } 3070 3071 return 0; 3072 } 3073 3074 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev) 3075 { 3076 struct hclgevf_dev *hdev = ae_dev->priv; 3077 3078 hclgevf_uninit_hdev(hdev); 3079 ae_dev->priv = NULL; 3080 } 3081 3082 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev) 3083 { 3084 struct hnae3_handle *nic = &hdev->nic; 3085 struct hnae3_knic_private_info *kinfo = &nic->kinfo; 3086 3087 return min_t(u32, hdev->rss_size_max, 3088 hdev->num_tqps / kinfo->tc_info.num_tc); 3089 } 3090 3091 /** 3092 * hclgevf_get_channels - Get the current channels enabled and max supported. 3093 * @handle: hardware information for network interface 3094 * @ch: ethtool channels structure 3095 * 3096 * We don't support separate tx and rx queues as channels. The other count 3097 * represents how many queues are being used for control. max_combined counts 3098 * how many queue pairs we can support. They may not be mapped 1 to 1 with 3099 * q_vectors since we support a lot more queue pairs than q_vectors. 3100 **/ 3101 static void hclgevf_get_channels(struct hnae3_handle *handle, 3102 struct ethtool_channels *ch) 3103 { 3104 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3105 3106 ch->max_combined = hclgevf_get_max_channels(hdev); 3107 ch->other_count = 0; 3108 ch->max_other = 0; 3109 ch->combined_count = handle->kinfo.rss_size; 3110 } 3111 3112 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle, 3113 u16 *alloc_tqps, u16 *max_rss_size) 3114 { 3115 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3116 3117 *alloc_tqps = hdev->num_tqps; 3118 *max_rss_size = hdev->rss_size_max; 3119 } 3120 3121 static void hclgevf_update_rss_size(struct hnae3_handle *handle, 3122 u32 new_tqps_num) 3123 { 3124 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 3125 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3126 u16 max_rss_size; 3127 3128 kinfo->req_rss_size = new_tqps_num; 3129 3130 max_rss_size = min_t(u16, hdev->rss_size_max, 3131 hdev->num_tqps / kinfo->tc_info.num_tc); 3132 3133 /* Use the user's configuration when it is not larger than 3134 * max_rss_size, otherwise, use the maximum specification value. 3135 */ 3136 if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size && 3137 kinfo->req_rss_size <= max_rss_size) 3138 kinfo->rss_size = kinfo->req_rss_size; 3139 else if (kinfo->rss_size > max_rss_size || 3140 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size)) 3141 kinfo->rss_size = max_rss_size; 3142 3143 kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size; 3144 } 3145 3146 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num, 3147 bool rxfh_configured) 3148 { 3149 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3150 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 3151 u16 tc_offset[HCLGE_COMM_MAX_TC_NUM]; 3152 u16 tc_valid[HCLGE_COMM_MAX_TC_NUM]; 3153 u16 tc_size[HCLGE_COMM_MAX_TC_NUM]; 3154 u16 cur_rss_size = kinfo->rss_size; 3155 u16 cur_tqps = kinfo->num_tqps; 3156 u32 *rss_indir; 3157 unsigned int i; 3158 int ret; 3159 3160 hclgevf_update_rss_size(handle, new_tqps_num); 3161 3162 hclge_comm_get_rss_tc_info(kinfo->rss_size, hdev->hw_tc_map, 3163 tc_offset, tc_valid, tc_size); 3164 ret = hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset, 3165 tc_valid, tc_size); 3166 if (ret) 3167 return ret; 3168 3169 /* RSS indirection table has been configured by user */ 3170 if (rxfh_configured) 3171 goto out; 3172 3173 /* Reinitializes the rss indirect table according to the new RSS size */ 3174 rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size, 3175 sizeof(u32), GFP_KERNEL); 3176 if (!rss_indir) 3177 return -ENOMEM; 3178 3179 for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++) 3180 rss_indir[i] = i % kinfo->rss_size; 3181 3182 hdev->rss_cfg.rss_size = kinfo->rss_size; 3183 3184 ret = hclgevf_set_rss(handle, rss_indir, NULL, 0); 3185 if (ret) 3186 dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n", 3187 ret); 3188 3189 kfree(rss_indir); 3190 3191 out: 3192 if (!ret) 3193 dev_info(&hdev->pdev->dev, 3194 "Channels changed, rss_size from %u to %u, tqps from %u to %u", 3195 cur_rss_size, kinfo->rss_size, 3196 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc); 3197 3198 return ret; 3199 } 3200 3201 static int hclgevf_get_status(struct hnae3_handle *handle) 3202 { 3203 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3204 3205 return hdev->hw.mac.link; 3206 } 3207 3208 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle, 3209 u8 *auto_neg, u32 *speed, 3210 u8 *duplex, u32 *lane_num) 3211 { 3212 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3213 3214 if (speed) 3215 *speed = hdev->hw.mac.speed; 3216 if (duplex) 3217 *duplex = hdev->hw.mac.duplex; 3218 if (auto_neg) 3219 *auto_neg = AUTONEG_DISABLE; 3220 } 3221 3222 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed, 3223 u8 duplex) 3224 { 3225 hdev->hw.mac.speed = speed; 3226 hdev->hw.mac.duplex = duplex; 3227 } 3228 3229 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable) 3230 { 3231 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3232 bool gro_en_old = hdev->gro_en; 3233 int ret; 3234 3235 hdev->gro_en = enable; 3236 ret = hclgevf_config_gro(hdev); 3237 if (ret) 3238 hdev->gro_en = gro_en_old; 3239 3240 return ret; 3241 } 3242 3243 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type, 3244 u8 *module_type) 3245 { 3246 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3247 3248 if (media_type) 3249 *media_type = hdev->hw.mac.media_type; 3250 3251 if (module_type) 3252 *module_type = hdev->hw.mac.module_type; 3253 } 3254 3255 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle) 3256 { 3257 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3258 3259 return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING); 3260 } 3261 3262 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle) 3263 { 3264 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3265 3266 return test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state); 3267 } 3268 3269 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle) 3270 { 3271 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3272 3273 return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state); 3274 } 3275 3276 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle) 3277 { 3278 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3279 3280 return hdev->rst_stats.hw_rst_done_cnt; 3281 } 3282 3283 static void hclgevf_get_link_mode(struct hnae3_handle *handle, 3284 unsigned long *supported, 3285 unsigned long *advertising) 3286 { 3287 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle); 3288 3289 *supported = hdev->hw.mac.supported; 3290 *advertising = hdev->hw.mac.advertising; 3291 } 3292 3293 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state, 3294 struct hclge_mbx_port_base_vlan *port_base_vlan) 3295 { 3296 struct hnae3_handle *nic = &hdev->nic; 3297 struct hclge_vf_to_pf_msg send_msg; 3298 int ret; 3299 3300 rtnl_lock(); 3301 3302 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) || 3303 test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) { 3304 dev_warn(&hdev->pdev->dev, 3305 "is resetting when updating port based vlan info\n"); 3306 rtnl_unlock(); 3307 return; 3308 } 3309 3310 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT); 3311 if (ret) { 3312 rtnl_unlock(); 3313 return; 3314 } 3315 3316 /* send msg to PF and wait update port based vlan info */ 3317 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN, 3318 HCLGE_MBX_PORT_BASE_VLAN_CFG); 3319 memcpy(send_msg.data, port_base_vlan, sizeof(*port_base_vlan)); 3320 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0); 3321 if (!ret) { 3322 if (state == HNAE3_PORT_BASE_VLAN_DISABLE) 3323 nic->port_base_vlan_state = state; 3324 else 3325 nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE; 3326 } 3327 3328 hclgevf_notify_client(hdev, HNAE3_UP_CLIENT); 3329 rtnl_unlock(); 3330 } 3331 3332 static const struct hnae3_ae_ops hclgevf_ops = { 3333 .init_ae_dev = hclgevf_init_ae_dev, 3334 .uninit_ae_dev = hclgevf_uninit_ae_dev, 3335 .reset_prepare = hclgevf_reset_prepare_general, 3336 .reset_done = hclgevf_reset_done, 3337 .init_client_instance = hclgevf_init_client_instance, 3338 .uninit_client_instance = hclgevf_uninit_client_instance, 3339 .start = hclgevf_ae_start, 3340 .stop = hclgevf_ae_stop, 3341 .client_start = hclgevf_client_start, 3342 .client_stop = hclgevf_client_stop, 3343 .map_ring_to_vector = hclgevf_map_ring_to_vector, 3344 .unmap_ring_from_vector = hclgevf_unmap_ring_from_vector, 3345 .get_vector = hclgevf_get_vector, 3346 .put_vector = hclgevf_put_vector, 3347 .reset_queue = hclgevf_reset_tqp, 3348 .get_mac_addr = hclgevf_get_mac_addr, 3349 .set_mac_addr = hclgevf_set_mac_addr, 3350 .add_uc_addr = hclgevf_add_uc_addr, 3351 .rm_uc_addr = hclgevf_rm_uc_addr, 3352 .add_mc_addr = hclgevf_add_mc_addr, 3353 .rm_mc_addr = hclgevf_rm_mc_addr, 3354 .get_stats = hclgevf_get_stats, 3355 .update_stats = hclgevf_update_stats, 3356 .get_strings = hclgevf_get_strings, 3357 .get_sset_count = hclgevf_get_sset_count, 3358 .get_rss_key_size = hclge_comm_get_rss_key_size, 3359 .get_rss = hclgevf_get_rss, 3360 .set_rss = hclgevf_set_rss, 3361 .get_rss_tuple = hclgevf_get_rss_tuple, 3362 .set_rss_tuple = hclgevf_set_rss_tuple, 3363 .get_tc_size = hclgevf_get_tc_size, 3364 .get_fw_version = hclgevf_get_fw_version, 3365 .set_vlan_filter = hclgevf_set_vlan_filter, 3366 .enable_vlan_filter = hclgevf_enable_vlan_filter, 3367 .enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag, 3368 .reset_event = hclgevf_reset_event, 3369 .set_default_reset_request = hclgevf_set_def_reset_request, 3370 .set_channels = hclgevf_set_channels, 3371 .get_channels = hclgevf_get_channels, 3372 .get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info, 3373 .get_regs_len = hclgevf_get_regs_len, 3374 .get_regs = hclgevf_get_regs, 3375 .get_status = hclgevf_get_status, 3376 .get_ksettings_an_result = hclgevf_get_ksettings_an_result, 3377 .get_media_type = hclgevf_get_media_type, 3378 .get_hw_reset_stat = hclgevf_get_hw_reset_stat, 3379 .ae_dev_resetting = hclgevf_ae_dev_resetting, 3380 .ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt, 3381 .set_gro_en = hclgevf_gro_en, 3382 .set_mtu = hclgevf_set_mtu, 3383 .get_global_queue_id = hclgevf_get_qid_global, 3384 .set_timer_task = hclgevf_set_timer_task, 3385 .get_link_mode = hclgevf_get_link_mode, 3386 .set_promisc_mode = hclgevf_set_promisc_mode, 3387 .request_update_promisc_mode = hclgevf_request_update_promisc_mode, 3388 .get_cmdq_stat = hclgevf_get_cmdq_stat, 3389 }; 3390 3391 static struct hnae3_ae_algo ae_algovf = { 3392 .ops = &hclgevf_ops, 3393 .pdev_id_table = ae_algovf_pci_tbl, 3394 }; 3395 3396 static int __init hclgevf_init(void) 3397 { 3398 pr_info("%s is initializing\n", HCLGEVF_NAME); 3399 3400 hclgevf_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, HCLGEVF_NAME); 3401 if (!hclgevf_wq) { 3402 pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME); 3403 return -ENOMEM; 3404 } 3405 3406 hnae3_register_ae_algo(&ae_algovf); 3407 3408 return 0; 3409 } 3410 3411 static void __exit hclgevf_exit(void) 3412 { 3413 hnae3_unregister_ae_algo(&ae_algovf); 3414 destroy_workqueue(hclgevf_wq); 3415 } 3416 module_init(hclgevf_init); 3417 module_exit(hclgevf_exit); 3418 3419 MODULE_LICENSE("GPL"); 3420 MODULE_AUTHOR("Huawei Tech. Co., Ltd."); 3421 MODULE_DESCRIPTION("HCLGEVF Driver"); 3422 MODULE_VERSION(HCLGEVF_MOD_VERSION); 3423