xref: /linux/drivers/net/ethernet/hisilicon/hns3/hns3vf/hclgevf_main.c (revision 0ddd7eaffa644baa78e247bbd220ab7195b1eed6)
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 
12 #define HCLGEVF_NAME	"hclgevf"
13 
14 #define HCLGEVF_RESET_MAX_FAIL_CNT	5
15 
16 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
17 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
18 				  unsigned long delay);
19 
20 static struct hnae3_ae_algo ae_algovf;
21 
22 static struct workqueue_struct *hclgevf_wq;
23 
24 static const struct pci_device_id ae_algovf_pci_tbl[] = {
25 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
26 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
27 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
28 	/* required last entry */
29 	{0, }
30 };
31 
32 static const u8 hclgevf_hash_key[] = {
33 	0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
34 	0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
35 	0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
36 	0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
37 	0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
38 };
39 
40 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
41 
42 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
43 					 HCLGEVF_CMDQ_TX_ADDR_H_REG,
44 					 HCLGEVF_CMDQ_TX_DEPTH_REG,
45 					 HCLGEVF_CMDQ_TX_TAIL_REG,
46 					 HCLGEVF_CMDQ_TX_HEAD_REG,
47 					 HCLGEVF_CMDQ_RX_ADDR_L_REG,
48 					 HCLGEVF_CMDQ_RX_ADDR_H_REG,
49 					 HCLGEVF_CMDQ_RX_DEPTH_REG,
50 					 HCLGEVF_CMDQ_RX_TAIL_REG,
51 					 HCLGEVF_CMDQ_RX_HEAD_REG,
52 					 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
53 					 HCLGEVF_VECTOR0_CMDQ_STATE_REG,
54 					 HCLGEVF_CMDQ_INTR_EN_REG,
55 					 HCLGEVF_CMDQ_INTR_GEN_REG};
56 
57 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
58 					   HCLGEVF_RST_ING,
59 					   HCLGEVF_GRO_EN_REG};
60 
61 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
62 					 HCLGEVF_RING_RX_ADDR_H_REG,
63 					 HCLGEVF_RING_RX_BD_NUM_REG,
64 					 HCLGEVF_RING_RX_BD_LENGTH_REG,
65 					 HCLGEVF_RING_RX_MERGE_EN_REG,
66 					 HCLGEVF_RING_RX_TAIL_REG,
67 					 HCLGEVF_RING_RX_HEAD_REG,
68 					 HCLGEVF_RING_RX_FBD_NUM_REG,
69 					 HCLGEVF_RING_RX_OFFSET_REG,
70 					 HCLGEVF_RING_RX_FBD_OFFSET_REG,
71 					 HCLGEVF_RING_RX_STASH_REG,
72 					 HCLGEVF_RING_RX_BD_ERR_REG,
73 					 HCLGEVF_RING_TX_ADDR_L_REG,
74 					 HCLGEVF_RING_TX_ADDR_H_REG,
75 					 HCLGEVF_RING_TX_BD_NUM_REG,
76 					 HCLGEVF_RING_TX_PRIORITY_REG,
77 					 HCLGEVF_RING_TX_TC_REG,
78 					 HCLGEVF_RING_TX_MERGE_EN_REG,
79 					 HCLGEVF_RING_TX_TAIL_REG,
80 					 HCLGEVF_RING_TX_HEAD_REG,
81 					 HCLGEVF_RING_TX_FBD_NUM_REG,
82 					 HCLGEVF_RING_TX_OFFSET_REG,
83 					 HCLGEVF_RING_TX_EBD_NUM_REG,
84 					 HCLGEVF_RING_TX_EBD_OFFSET_REG,
85 					 HCLGEVF_RING_TX_BD_ERR_REG,
86 					 HCLGEVF_RING_EN_REG};
87 
88 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
89 					     HCLGEVF_TQP_INTR_GL0_REG,
90 					     HCLGEVF_TQP_INTR_GL1_REG,
91 					     HCLGEVF_TQP_INTR_GL2_REG,
92 					     HCLGEVF_TQP_INTR_RL_REG};
93 
94 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
95 {
96 	if (!handle->client)
97 		return container_of(handle, struct hclgevf_dev, nic);
98 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
99 		return container_of(handle, struct hclgevf_dev, roce);
100 	else
101 		return container_of(handle, struct hclgevf_dev, nic);
102 }
103 
104 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
105 {
106 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
107 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
108 	struct hclgevf_desc desc;
109 	struct hclgevf_tqp *tqp;
110 	int status;
111 	int i;
112 
113 	for (i = 0; i < kinfo->num_tqps; i++) {
114 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
115 		hclgevf_cmd_setup_basic_desc(&desc,
116 					     HCLGEVF_OPC_QUERY_RX_STATUS,
117 					     true);
118 
119 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
120 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
121 		if (status) {
122 			dev_err(&hdev->pdev->dev,
123 				"Query tqp stat fail, status = %d,queue = %d\n",
124 				status,	i);
125 			return status;
126 		}
127 		tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
128 			le32_to_cpu(desc.data[1]);
129 
130 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
131 					     true);
132 
133 		desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
134 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
135 		if (status) {
136 			dev_err(&hdev->pdev->dev,
137 				"Query tqp stat fail, status = %d,queue = %d\n",
138 				status, i);
139 			return status;
140 		}
141 		tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
142 			le32_to_cpu(desc.data[1]);
143 	}
144 
145 	return 0;
146 }
147 
148 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
149 {
150 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
151 	struct hclgevf_tqp *tqp;
152 	u64 *buff = data;
153 	int i;
154 
155 	for (i = 0; i < kinfo->num_tqps; i++) {
156 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
157 		*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
158 	}
159 	for (i = 0; i < kinfo->num_tqps; i++) {
160 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
161 		*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
162 	}
163 
164 	return buff;
165 }
166 
167 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
168 {
169 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
170 
171 	return kinfo->num_tqps * 2;
172 }
173 
174 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
175 {
176 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
177 	u8 *buff = data;
178 	int i;
179 
180 	for (i = 0; i < kinfo->num_tqps; i++) {
181 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
182 						       struct hclgevf_tqp, q);
183 		snprintf(buff, ETH_GSTRING_LEN, "txq%u_pktnum_rcd",
184 			 tqp->index);
185 		buff += ETH_GSTRING_LEN;
186 	}
187 
188 	for (i = 0; i < kinfo->num_tqps; i++) {
189 		struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
190 						       struct hclgevf_tqp, q);
191 		snprintf(buff, ETH_GSTRING_LEN, "rxq%u_pktnum_rcd",
192 			 tqp->index);
193 		buff += ETH_GSTRING_LEN;
194 	}
195 
196 	return buff;
197 }
198 
199 static void hclgevf_update_stats(struct hnae3_handle *handle,
200 				 struct net_device_stats *net_stats)
201 {
202 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
203 	int status;
204 
205 	status = hclgevf_tqps_update_stats(handle);
206 	if (status)
207 		dev_err(&hdev->pdev->dev,
208 			"VF update of TQPS stats fail, status = %d.\n",
209 			status);
210 }
211 
212 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
213 {
214 	if (strset == ETH_SS_TEST)
215 		return -EOPNOTSUPP;
216 	else if (strset == ETH_SS_STATS)
217 		return hclgevf_tqps_get_sset_count(handle, strset);
218 
219 	return 0;
220 }
221 
222 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
223 				u8 *data)
224 {
225 	u8 *p = (char *)data;
226 
227 	if (strset == ETH_SS_STATS)
228 		p = hclgevf_tqps_get_strings(handle, p);
229 }
230 
231 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
232 {
233 	hclgevf_tqps_get_stats(handle, data);
234 }
235 
236 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
237 				   u8 subcode)
238 {
239 	if (msg) {
240 		memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
241 		msg->code = code;
242 		msg->subcode = subcode;
243 	}
244 }
245 
246 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
247 {
248 	struct hclge_vf_to_pf_msg send_msg;
249 	u8 resp_msg;
250 	int status;
251 
252 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_TCINFO, 0);
253 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
254 				      sizeof(resp_msg));
255 	if (status) {
256 		dev_err(&hdev->pdev->dev,
257 			"VF request to get TC info from PF failed %d",
258 			status);
259 		return status;
260 	}
261 
262 	hdev->hw_tc_map = resp_msg;
263 
264 	return 0;
265 }
266 
267 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
268 {
269 	struct hnae3_handle *nic = &hdev->nic;
270 	struct hclge_vf_to_pf_msg send_msg;
271 	u8 resp_msg;
272 	int ret;
273 
274 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
275 			       HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
276 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
277 				   sizeof(u8));
278 	if (ret) {
279 		dev_err(&hdev->pdev->dev,
280 			"VF request to get port based vlan state failed %d",
281 			ret);
282 		return ret;
283 	}
284 
285 	nic->port_base_vlan_state = resp_msg;
286 
287 	return 0;
288 }
289 
290 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
291 {
292 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
293 #define HCLGEVF_TQPS_ALLOC_OFFSET	0
294 #define HCLGEVF_TQPS_RSS_SIZE_OFFSET	2
295 #define HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET	4
296 
297 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
298 	struct hclge_vf_to_pf_msg send_msg;
299 	int status;
300 
301 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
302 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
303 				      HCLGEVF_TQPS_RSS_INFO_LEN);
304 	if (status) {
305 		dev_err(&hdev->pdev->dev,
306 			"VF request to get tqp info from PF failed %d",
307 			status);
308 		return status;
309 	}
310 
311 	memcpy(&hdev->num_tqps, &resp_msg[HCLGEVF_TQPS_ALLOC_OFFSET],
312 	       sizeof(u16));
313 	memcpy(&hdev->rss_size_max, &resp_msg[HCLGEVF_TQPS_RSS_SIZE_OFFSET],
314 	       sizeof(u16));
315 	memcpy(&hdev->rx_buf_len, &resp_msg[HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET],
316 	       sizeof(u16));
317 
318 	return 0;
319 }
320 
321 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
322 {
323 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
324 #define HCLGEVF_TQPS_NUM_TX_DESC_OFFSET	0
325 #define HCLGEVF_TQPS_NUM_RX_DESC_OFFSET	2
326 
327 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
328 	struct hclge_vf_to_pf_msg send_msg;
329 	int ret;
330 
331 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
332 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
333 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
334 	if (ret) {
335 		dev_err(&hdev->pdev->dev,
336 			"VF request to get tqp depth info from PF failed %d",
337 			ret);
338 		return ret;
339 	}
340 
341 	memcpy(&hdev->num_tx_desc, &resp_msg[HCLGEVF_TQPS_NUM_TX_DESC_OFFSET],
342 	       sizeof(u16));
343 	memcpy(&hdev->num_rx_desc, &resp_msg[HCLGEVF_TQPS_NUM_RX_DESC_OFFSET],
344 	       sizeof(u16));
345 
346 	return 0;
347 }
348 
349 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
350 {
351 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
352 	struct hclge_vf_to_pf_msg send_msg;
353 	u16 qid_in_pf = 0;
354 	u8 resp_data[2];
355 	int ret;
356 
357 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
358 	memcpy(send_msg.data, &queue_id, sizeof(queue_id));
359 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
360 				   sizeof(resp_data));
361 	if (!ret)
362 		qid_in_pf = *(u16 *)resp_data;
363 
364 	return qid_in_pf;
365 }
366 
367 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
368 {
369 	struct hclge_vf_to_pf_msg send_msg;
370 	u8 resp_msg[2];
371 	int ret;
372 
373 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
374 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
375 				   sizeof(resp_msg));
376 	if (ret) {
377 		dev_err(&hdev->pdev->dev,
378 			"VF request to get the pf port media type failed %d",
379 			ret);
380 		return ret;
381 	}
382 
383 	hdev->hw.mac.media_type = resp_msg[0];
384 	hdev->hw.mac.module_type = resp_msg[1];
385 
386 	return 0;
387 }
388 
389 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
390 {
391 	struct hclgevf_tqp *tqp;
392 	int i;
393 
394 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
395 				  sizeof(struct hclgevf_tqp), GFP_KERNEL);
396 	if (!hdev->htqp)
397 		return -ENOMEM;
398 
399 	tqp = hdev->htqp;
400 
401 	for (i = 0; i < hdev->num_tqps; i++) {
402 		tqp->dev = &hdev->pdev->dev;
403 		tqp->index = i;
404 
405 		tqp->q.ae_algo = &ae_algovf;
406 		tqp->q.buf_size = hdev->rx_buf_len;
407 		tqp->q.tx_desc_num = hdev->num_tx_desc;
408 		tqp->q.rx_desc_num = hdev->num_rx_desc;
409 
410 		/* need an extended offset to configure queues >=
411 		 * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
412 		 */
413 		if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
414 			tqp->q.io_base = hdev->hw.io_base +
415 					 HCLGEVF_TQP_REG_OFFSET +
416 					 i * HCLGEVF_TQP_REG_SIZE;
417 		else
418 			tqp->q.io_base = hdev->hw.io_base +
419 					 HCLGEVF_TQP_REG_OFFSET +
420 					 HCLGEVF_TQP_EXT_REG_OFFSET +
421 					 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
422 					 HCLGEVF_TQP_REG_SIZE;
423 
424 		tqp++;
425 	}
426 
427 	return 0;
428 }
429 
430 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
431 {
432 	struct hnae3_handle *nic = &hdev->nic;
433 	struct hnae3_knic_private_info *kinfo;
434 	u16 new_tqps = hdev->num_tqps;
435 	unsigned int i;
436 	u8 num_tc = 0;
437 
438 	kinfo = &nic->kinfo;
439 	kinfo->num_tx_desc = hdev->num_tx_desc;
440 	kinfo->num_rx_desc = hdev->num_rx_desc;
441 	kinfo->rx_buf_len = hdev->rx_buf_len;
442 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
443 		if (hdev->hw_tc_map & BIT(i))
444 			num_tc++;
445 
446 	num_tc = num_tc ? num_tc : 1;
447 	kinfo->tc_info.num_tc = num_tc;
448 	kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc);
449 	new_tqps = kinfo->rss_size * num_tc;
450 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
451 
452 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
453 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
454 	if (!kinfo->tqp)
455 		return -ENOMEM;
456 
457 	for (i = 0; i < kinfo->num_tqps; i++) {
458 		hdev->htqp[i].q.handle = &hdev->nic;
459 		hdev->htqp[i].q.tqp_index = i;
460 		kinfo->tqp[i] = &hdev->htqp[i].q;
461 	}
462 
463 	/* after init the max rss_size and tqps, adjust the default tqp numbers
464 	 * and rss size with the actual vector numbers
465 	 */
466 	kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
467 	kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc,
468 				kinfo->rss_size);
469 
470 	return 0;
471 }
472 
473 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
474 {
475 	struct hclge_vf_to_pf_msg send_msg;
476 	int status;
477 
478 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
479 	status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
480 	if (status)
481 		dev_err(&hdev->pdev->dev,
482 			"VF failed to fetch link status(%d) from PF", status);
483 }
484 
485 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
486 {
487 	struct hnae3_handle *rhandle = &hdev->roce;
488 	struct hnae3_handle *handle = &hdev->nic;
489 	struct hnae3_client *rclient;
490 	struct hnae3_client *client;
491 
492 	if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
493 		return;
494 
495 	client = handle->client;
496 	rclient = hdev->roce_client;
497 
498 	link_state =
499 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
500 	if (link_state != hdev->hw.mac.link) {
501 		client->ops->link_status_change(handle, !!link_state);
502 		if (rclient && rclient->ops->link_status_change)
503 			rclient->ops->link_status_change(rhandle, !!link_state);
504 		hdev->hw.mac.link = link_state;
505 	}
506 
507 	clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
508 }
509 
510 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
511 {
512 #define HCLGEVF_ADVERTISING	0
513 #define HCLGEVF_SUPPORTED	1
514 
515 	struct hclge_vf_to_pf_msg send_msg;
516 
517 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
518 	send_msg.data[0] = HCLGEVF_ADVERTISING;
519 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
520 	send_msg.data[0] = HCLGEVF_SUPPORTED;
521 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
522 }
523 
524 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
525 {
526 	struct hnae3_handle *nic = &hdev->nic;
527 	int ret;
528 
529 	nic->ae_algo = &ae_algovf;
530 	nic->pdev = hdev->pdev;
531 	nic->numa_node_mask = hdev->numa_node_mask;
532 	nic->flags |= HNAE3_SUPPORT_VF;
533 
534 	ret = hclgevf_knic_setup(hdev);
535 	if (ret)
536 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
537 			ret);
538 	return ret;
539 }
540 
541 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
542 {
543 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
544 		dev_warn(&hdev->pdev->dev,
545 			 "vector(vector_id %d) has been freed.\n", vector_id);
546 		return;
547 	}
548 
549 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
550 	hdev->num_msi_left += 1;
551 	hdev->num_msi_used -= 1;
552 }
553 
554 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
555 			      struct hnae3_vector_info *vector_info)
556 {
557 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
558 	struct hnae3_vector_info *vector = vector_info;
559 	int alloc = 0;
560 	int i, j;
561 
562 	vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
563 	vector_num = min(hdev->num_msi_left, vector_num);
564 
565 	for (j = 0; j < vector_num; j++) {
566 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
567 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
568 				vector->vector = pci_irq_vector(hdev->pdev, i);
569 				vector->io_addr = hdev->hw.io_base +
570 					HCLGEVF_VECTOR_REG_BASE +
571 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
572 				hdev->vector_status[i] = 0;
573 				hdev->vector_irq[i] = vector->vector;
574 
575 				vector++;
576 				alloc++;
577 
578 				break;
579 			}
580 		}
581 	}
582 	hdev->num_msi_left -= alloc;
583 	hdev->num_msi_used += alloc;
584 
585 	return alloc;
586 }
587 
588 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
589 {
590 	int i;
591 
592 	for (i = 0; i < hdev->num_msi; i++)
593 		if (vector == hdev->vector_irq[i])
594 			return i;
595 
596 	return -EINVAL;
597 }
598 
599 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
600 				    const u8 hfunc, const u8 *key)
601 {
602 	struct hclgevf_rss_config_cmd *req;
603 	unsigned int key_offset = 0;
604 	struct hclgevf_desc desc;
605 	int key_counts;
606 	int key_size;
607 	int ret;
608 
609 	key_counts = HCLGEVF_RSS_KEY_SIZE;
610 	req = (struct hclgevf_rss_config_cmd *)desc.data;
611 
612 	while (key_counts) {
613 		hclgevf_cmd_setup_basic_desc(&desc,
614 					     HCLGEVF_OPC_RSS_GENERIC_CONFIG,
615 					     false);
616 
617 		req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
618 		req->hash_config |=
619 			(key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
620 
621 		key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
622 		memcpy(req->hash_key,
623 		       key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
624 
625 		key_counts -= key_size;
626 		key_offset++;
627 		ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
628 		if (ret) {
629 			dev_err(&hdev->pdev->dev,
630 				"Configure RSS config fail, status = %d\n",
631 				ret);
632 			return ret;
633 		}
634 	}
635 
636 	return 0;
637 }
638 
639 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
640 {
641 	return HCLGEVF_RSS_KEY_SIZE;
642 }
643 
644 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
645 {
646 	const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
647 	struct hclgevf_rss_indirection_table_cmd *req;
648 	struct hclgevf_desc desc;
649 	int rss_cfg_tbl_num;
650 	int status;
651 	int i, j;
652 
653 	req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
654 	rss_cfg_tbl_num = hdev->ae_dev->dev_specs.rss_ind_tbl_size /
655 			  HCLGEVF_RSS_CFG_TBL_SIZE;
656 
657 	for (i = 0; i < rss_cfg_tbl_num; i++) {
658 		hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
659 					     false);
660 		req->start_table_index =
661 			cpu_to_le16(i * HCLGEVF_RSS_CFG_TBL_SIZE);
662 		req->rss_set_bitmap = cpu_to_le16(HCLGEVF_RSS_SET_BITMAP_MSK);
663 		for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
664 			req->rss_result[j] =
665 				indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
666 
667 		status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
668 		if (status) {
669 			dev_err(&hdev->pdev->dev,
670 				"VF failed(=%d) to set RSS indirection table\n",
671 				status);
672 			return status;
673 		}
674 	}
675 
676 	return 0;
677 }
678 
679 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev,  u16 rss_size)
680 {
681 	struct hclgevf_rss_tc_mode_cmd *req;
682 	u16 tc_offset[HCLGEVF_MAX_TC_NUM];
683 	u16 tc_valid[HCLGEVF_MAX_TC_NUM];
684 	u16 tc_size[HCLGEVF_MAX_TC_NUM];
685 	struct hclgevf_desc desc;
686 	u16 roundup_size;
687 	unsigned int i;
688 	int status;
689 
690 	req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
691 
692 	roundup_size = roundup_pow_of_two(rss_size);
693 	roundup_size = ilog2(roundup_size);
694 
695 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
696 		tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
697 		tc_size[i] = roundup_size;
698 		tc_offset[i] = rss_size * i;
699 	}
700 
701 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
702 	for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
703 		u16 mode = 0;
704 
705 		hnae3_set_bit(mode, HCLGEVF_RSS_TC_VALID_B,
706 			      (tc_valid[i] & 0x1));
707 		hnae3_set_field(mode, HCLGEVF_RSS_TC_SIZE_M,
708 				HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
709 		hnae3_set_bit(mode, HCLGEVF_RSS_TC_SIZE_MSB_B,
710 			      tc_size[i] >> HCLGEVF_RSS_TC_SIZE_MSB_OFFSET &
711 			      0x1);
712 		hnae3_set_field(mode, HCLGEVF_RSS_TC_OFFSET_M,
713 				HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
714 
715 		req->rss_tc_mode[i] = cpu_to_le16(mode);
716 	}
717 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
718 	if (status)
719 		dev_err(&hdev->pdev->dev,
720 			"VF failed(=%d) to set rss tc mode\n", status);
721 
722 	return status;
723 }
724 
725 /* for revision 0x20, vf shared the same rss config with pf */
726 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
727 {
728 #define HCLGEVF_RSS_MBX_RESP_LEN	8
729 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
730 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
731 	struct hclge_vf_to_pf_msg send_msg;
732 	u16 msg_num, hash_key_index;
733 	u8 index;
734 	int ret;
735 
736 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
737 	msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
738 			HCLGEVF_RSS_MBX_RESP_LEN;
739 	for (index = 0; index < msg_num; index++) {
740 		send_msg.data[0] = index;
741 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
742 					   HCLGEVF_RSS_MBX_RESP_LEN);
743 		if (ret) {
744 			dev_err(&hdev->pdev->dev,
745 				"VF get rss hash key from PF failed, ret=%d",
746 				ret);
747 			return ret;
748 		}
749 
750 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
751 		if (index == msg_num - 1)
752 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
753 			       &resp_msg[0],
754 			       HCLGEVF_RSS_KEY_SIZE - hash_key_index);
755 		else
756 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
757 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
758 	}
759 
760 	return 0;
761 }
762 
763 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
764 			   u8 *hfunc)
765 {
766 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
767 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
768 	int i, ret;
769 
770 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
771 		/* Get hash algorithm */
772 		if (hfunc) {
773 			switch (rss_cfg->hash_algo) {
774 			case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
775 				*hfunc = ETH_RSS_HASH_TOP;
776 				break;
777 			case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
778 				*hfunc = ETH_RSS_HASH_XOR;
779 				break;
780 			default:
781 				*hfunc = ETH_RSS_HASH_UNKNOWN;
782 				break;
783 			}
784 		}
785 
786 		/* Get the RSS Key required by the user */
787 		if (key)
788 			memcpy(key, rss_cfg->rss_hash_key,
789 			       HCLGEVF_RSS_KEY_SIZE);
790 	} else {
791 		if (hfunc)
792 			*hfunc = ETH_RSS_HASH_TOP;
793 		if (key) {
794 			ret = hclgevf_get_rss_hash_key(hdev);
795 			if (ret)
796 				return ret;
797 			memcpy(key, rss_cfg->rss_hash_key,
798 			       HCLGEVF_RSS_KEY_SIZE);
799 		}
800 	}
801 
802 	if (indir)
803 		for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
804 			indir[i] = rss_cfg->rss_indirection_tbl[i];
805 
806 	return 0;
807 }
808 
809 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
810 			   const u8 *key, const u8 hfunc)
811 {
812 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
813 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
814 	int ret, i;
815 
816 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
817 		/* Set the RSS Hash Key if specififed by the user */
818 		if (key) {
819 			switch (hfunc) {
820 			case ETH_RSS_HASH_TOP:
821 				rss_cfg->hash_algo =
822 					HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
823 				break;
824 			case ETH_RSS_HASH_XOR:
825 				rss_cfg->hash_algo =
826 					HCLGEVF_RSS_HASH_ALGO_SIMPLE;
827 				break;
828 			case ETH_RSS_HASH_NO_CHANGE:
829 				break;
830 			default:
831 				return -EINVAL;
832 			}
833 
834 			ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
835 						       key);
836 			if (ret)
837 				return ret;
838 
839 			/* Update the shadow RSS key with user specified qids */
840 			memcpy(rss_cfg->rss_hash_key, key,
841 			       HCLGEVF_RSS_KEY_SIZE);
842 		}
843 	}
844 
845 	/* update the shadow RSS table with user specified qids */
846 	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
847 		rss_cfg->rss_indirection_tbl[i] = indir[i];
848 
849 	/* update the hardware */
850 	return hclgevf_set_rss_indir_table(hdev);
851 }
852 
853 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
854 {
855 	u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
856 
857 	if (nfc->data & RXH_L4_B_2_3)
858 		hash_sets |= HCLGEVF_D_PORT_BIT;
859 	else
860 		hash_sets &= ~HCLGEVF_D_PORT_BIT;
861 
862 	if (nfc->data & RXH_IP_SRC)
863 		hash_sets |= HCLGEVF_S_IP_BIT;
864 	else
865 		hash_sets &= ~HCLGEVF_S_IP_BIT;
866 
867 	if (nfc->data & RXH_IP_DST)
868 		hash_sets |= HCLGEVF_D_IP_BIT;
869 	else
870 		hash_sets &= ~HCLGEVF_D_IP_BIT;
871 
872 	if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
873 		hash_sets |= HCLGEVF_V_TAG_BIT;
874 
875 	return hash_sets;
876 }
877 
878 static int hclgevf_init_rss_tuple_cmd(struct hnae3_handle *handle,
879 				      struct ethtool_rxnfc *nfc,
880 				      struct hclgevf_rss_input_tuple_cmd *req)
881 {
882 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
883 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
884 	u8 tuple_sets;
885 
886 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
887 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
888 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
889 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
890 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
891 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
892 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
893 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
894 
895 	tuple_sets = hclgevf_get_rss_hash_bits(nfc);
896 	switch (nfc->flow_type) {
897 	case TCP_V4_FLOW:
898 		req->ipv4_tcp_en = tuple_sets;
899 		break;
900 	case TCP_V6_FLOW:
901 		req->ipv6_tcp_en = tuple_sets;
902 		break;
903 	case UDP_V4_FLOW:
904 		req->ipv4_udp_en = tuple_sets;
905 		break;
906 	case UDP_V6_FLOW:
907 		req->ipv6_udp_en = tuple_sets;
908 		break;
909 	case SCTP_V4_FLOW:
910 		req->ipv4_sctp_en = tuple_sets;
911 		break;
912 	case SCTP_V6_FLOW:
913 		if (hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
914 		    (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)))
915 			return -EINVAL;
916 
917 		req->ipv6_sctp_en = tuple_sets;
918 		break;
919 	case IPV4_FLOW:
920 		req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
921 		break;
922 	case IPV6_FLOW:
923 		req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
924 		break;
925 	default:
926 		return -EINVAL;
927 	}
928 
929 	return 0;
930 }
931 
932 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
933 				 struct ethtool_rxnfc *nfc)
934 {
935 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
936 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
937 	struct hclgevf_rss_input_tuple_cmd *req;
938 	struct hclgevf_desc desc;
939 	int ret;
940 
941 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
942 		return -EOPNOTSUPP;
943 
944 	if (nfc->data &
945 	    ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
946 		return -EINVAL;
947 
948 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
949 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
950 
951 	ret = hclgevf_init_rss_tuple_cmd(handle, nfc, req);
952 	if (ret) {
953 		dev_err(&hdev->pdev->dev,
954 			"failed to init rss tuple cmd, ret = %d\n", ret);
955 		return ret;
956 	}
957 
958 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
959 	if (ret) {
960 		dev_err(&hdev->pdev->dev,
961 			"Set rss tuple fail, status = %d\n", ret);
962 		return ret;
963 	}
964 
965 	rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
966 	rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
967 	rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
968 	rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
969 	rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
970 	rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
971 	rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
972 	rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
973 	return 0;
974 }
975 
976 static int hclgevf_get_rss_tuple_by_flow_type(struct hclgevf_dev *hdev,
977 					      int flow_type, u8 *tuple_sets)
978 {
979 	switch (flow_type) {
980 	case TCP_V4_FLOW:
981 		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_tcp_en;
982 		break;
983 	case UDP_V4_FLOW:
984 		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_udp_en;
985 		break;
986 	case TCP_V6_FLOW:
987 		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_tcp_en;
988 		break;
989 	case UDP_V6_FLOW:
990 		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_udp_en;
991 		break;
992 	case SCTP_V4_FLOW:
993 		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_sctp_en;
994 		break;
995 	case SCTP_V6_FLOW:
996 		*tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_sctp_en;
997 		break;
998 	case IPV4_FLOW:
999 	case IPV6_FLOW:
1000 		*tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
1001 		break;
1002 	default:
1003 		return -EINVAL;
1004 	}
1005 
1006 	return 0;
1007 }
1008 
1009 static u64 hclgevf_convert_rss_tuple(u8 tuple_sets)
1010 {
1011 	u64 tuple_data = 0;
1012 
1013 	if (tuple_sets & HCLGEVF_D_PORT_BIT)
1014 		tuple_data |= RXH_L4_B_2_3;
1015 	if (tuple_sets & HCLGEVF_S_PORT_BIT)
1016 		tuple_data |= RXH_L4_B_0_1;
1017 	if (tuple_sets & HCLGEVF_D_IP_BIT)
1018 		tuple_data |= RXH_IP_DST;
1019 	if (tuple_sets & HCLGEVF_S_IP_BIT)
1020 		tuple_data |= RXH_IP_SRC;
1021 
1022 	return tuple_data;
1023 }
1024 
1025 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
1026 				 struct ethtool_rxnfc *nfc)
1027 {
1028 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1029 	u8 tuple_sets;
1030 	int ret;
1031 
1032 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
1033 		return -EOPNOTSUPP;
1034 
1035 	nfc->data = 0;
1036 
1037 	ret = hclgevf_get_rss_tuple_by_flow_type(hdev, nfc->flow_type,
1038 						 &tuple_sets);
1039 	if (ret || !tuple_sets)
1040 		return ret;
1041 
1042 	nfc->data = hclgevf_convert_rss_tuple(tuple_sets);
1043 
1044 	return 0;
1045 }
1046 
1047 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
1048 				       struct hclgevf_rss_cfg *rss_cfg)
1049 {
1050 	struct hclgevf_rss_input_tuple_cmd *req;
1051 	struct hclgevf_desc desc;
1052 	int ret;
1053 
1054 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
1055 
1056 	req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
1057 
1058 	req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
1059 	req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
1060 	req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
1061 	req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
1062 	req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
1063 	req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
1064 	req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
1065 	req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
1066 
1067 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1068 	if (ret)
1069 		dev_err(&hdev->pdev->dev,
1070 			"Configure rss input fail, status = %d\n", ret);
1071 	return ret;
1072 }
1073 
1074 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
1075 {
1076 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1077 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1078 
1079 	return rss_cfg->rss_size;
1080 }
1081 
1082 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
1083 				       int vector_id,
1084 				       struct hnae3_ring_chain_node *ring_chain)
1085 {
1086 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1087 	struct hclge_vf_to_pf_msg send_msg;
1088 	struct hnae3_ring_chain_node *node;
1089 	int status;
1090 	int i = 0;
1091 
1092 	memset(&send_msg, 0, sizeof(send_msg));
1093 	send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
1094 		HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1095 	send_msg.vector_id = vector_id;
1096 
1097 	for (node = ring_chain; node; node = node->next) {
1098 		send_msg.param[i].ring_type =
1099 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1100 
1101 		send_msg.param[i].tqp_index = node->tqp_index;
1102 		send_msg.param[i].int_gl_index =
1103 					hnae3_get_field(node->int_gl_idx,
1104 							HNAE3_RING_GL_IDX_M,
1105 							HNAE3_RING_GL_IDX_S);
1106 
1107 		i++;
1108 		if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
1109 			send_msg.ring_num = i;
1110 
1111 			status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
1112 						      NULL, 0);
1113 			if (status) {
1114 				dev_err(&hdev->pdev->dev,
1115 					"Map TQP fail, status is %d.\n",
1116 					status);
1117 				return status;
1118 			}
1119 			i = 0;
1120 		}
1121 	}
1122 
1123 	return 0;
1124 }
1125 
1126 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1127 				      struct hnae3_ring_chain_node *ring_chain)
1128 {
1129 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1130 	int vector_id;
1131 
1132 	vector_id = hclgevf_get_vector_index(hdev, vector);
1133 	if (vector_id < 0) {
1134 		dev_err(&handle->pdev->dev,
1135 			"Get vector index fail. ret =%d\n", vector_id);
1136 		return vector_id;
1137 	}
1138 
1139 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1140 }
1141 
1142 static int hclgevf_unmap_ring_from_vector(
1143 				struct hnae3_handle *handle,
1144 				int vector,
1145 				struct hnae3_ring_chain_node *ring_chain)
1146 {
1147 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1148 	int ret, vector_id;
1149 
1150 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1151 		return 0;
1152 
1153 	vector_id = hclgevf_get_vector_index(hdev, vector);
1154 	if (vector_id < 0) {
1155 		dev_err(&handle->pdev->dev,
1156 			"Get vector index fail. ret =%d\n", vector_id);
1157 		return vector_id;
1158 	}
1159 
1160 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1161 	if (ret)
1162 		dev_err(&handle->pdev->dev,
1163 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
1164 			vector_id,
1165 			ret);
1166 
1167 	return ret;
1168 }
1169 
1170 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1171 {
1172 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1173 	int vector_id;
1174 
1175 	vector_id = hclgevf_get_vector_index(hdev, vector);
1176 	if (vector_id < 0) {
1177 		dev_err(&handle->pdev->dev,
1178 			"hclgevf_put_vector get vector index fail. ret =%d\n",
1179 			vector_id);
1180 		return vector_id;
1181 	}
1182 
1183 	hclgevf_free_vector(hdev, vector_id);
1184 
1185 	return 0;
1186 }
1187 
1188 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1189 					bool en_uc_pmc, bool en_mc_pmc,
1190 					bool en_bc_pmc)
1191 {
1192 	struct hnae3_handle *handle = &hdev->nic;
1193 	struct hclge_vf_to_pf_msg send_msg;
1194 	int ret;
1195 
1196 	memset(&send_msg, 0, sizeof(send_msg));
1197 	send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
1198 	send_msg.en_bc = en_bc_pmc ? 1 : 0;
1199 	send_msg.en_uc = en_uc_pmc ? 1 : 0;
1200 	send_msg.en_mc = en_mc_pmc ? 1 : 0;
1201 	send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC,
1202 					     &handle->priv_flags) ? 1 : 0;
1203 
1204 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1205 	if (ret)
1206 		dev_err(&hdev->pdev->dev,
1207 			"Set promisc mode fail, status is %d.\n", ret);
1208 
1209 	return ret;
1210 }
1211 
1212 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
1213 				    bool en_mc_pmc)
1214 {
1215 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1216 	bool en_bc_pmc;
1217 
1218 	en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
1219 
1220 	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
1221 					    en_bc_pmc);
1222 }
1223 
1224 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
1225 {
1226 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1227 
1228 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1229 	hclgevf_task_schedule(hdev, 0);
1230 }
1231 
1232 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
1233 {
1234 	struct hnae3_handle *handle = &hdev->nic;
1235 	bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
1236 	bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
1237 	int ret;
1238 
1239 	if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
1240 		ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
1241 		if (!ret)
1242 			clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1243 	}
1244 }
1245 
1246 static int hclgevf_tqp_enable_cmd_send(struct hclgevf_dev *hdev, u16 tqp_id,
1247 				       u16 stream_id, bool enable)
1248 {
1249 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
1250 	struct hclgevf_desc desc;
1251 
1252 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1253 
1254 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1255 				     false);
1256 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1257 	req->stream_id = cpu_to_le16(stream_id);
1258 	if (enable)
1259 		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1260 
1261 	return hclgevf_cmd_send(&hdev->hw, &desc, 1);
1262 }
1263 
1264 static int hclgevf_tqp_enable(struct hnae3_handle *handle, bool enable)
1265 {
1266 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1267 	int ret;
1268 	u16 i;
1269 
1270 	for (i = 0; i < handle->kinfo.num_tqps; i++) {
1271 		ret = hclgevf_tqp_enable_cmd_send(hdev, i, 0, enable);
1272 		if (ret)
1273 			return ret;
1274 	}
1275 
1276 	return 0;
1277 }
1278 
1279 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1280 {
1281 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1282 	struct hclgevf_tqp *tqp;
1283 	int i;
1284 
1285 	for (i = 0; i < kinfo->num_tqps; i++) {
1286 		tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1287 		memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1288 	}
1289 }
1290 
1291 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
1292 {
1293 	struct hclge_vf_to_pf_msg send_msg;
1294 	u8 host_mac[ETH_ALEN];
1295 	int status;
1296 
1297 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
1298 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
1299 				      ETH_ALEN);
1300 	if (status) {
1301 		dev_err(&hdev->pdev->dev,
1302 			"fail to get VF MAC from host %d", status);
1303 		return status;
1304 	}
1305 
1306 	ether_addr_copy(p, host_mac);
1307 
1308 	return 0;
1309 }
1310 
1311 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1312 {
1313 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1314 	u8 host_mac_addr[ETH_ALEN];
1315 
1316 	if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
1317 		return;
1318 
1319 	hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
1320 	if (hdev->has_pf_mac)
1321 		ether_addr_copy(p, host_mac_addr);
1322 	else
1323 		ether_addr_copy(p, hdev->hw.mac.mac_addr);
1324 }
1325 
1326 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1327 				bool is_first)
1328 {
1329 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1330 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1331 	struct hclge_vf_to_pf_msg send_msg;
1332 	u8 *new_mac_addr = (u8 *)p;
1333 	int status;
1334 
1335 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
1336 	send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1337 	ether_addr_copy(send_msg.data, new_mac_addr);
1338 	if (is_first && !hdev->has_pf_mac)
1339 		eth_zero_addr(&send_msg.data[ETH_ALEN]);
1340 	else
1341 		ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
1342 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1343 	if (!status)
1344 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1345 
1346 	return status;
1347 }
1348 
1349 static struct hclgevf_mac_addr_node *
1350 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
1351 {
1352 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1353 
1354 	list_for_each_entry_safe(mac_node, tmp, list, node)
1355 		if (ether_addr_equal(mac_addr, mac_node->mac_addr))
1356 			return mac_node;
1357 
1358 	return NULL;
1359 }
1360 
1361 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
1362 				    enum HCLGEVF_MAC_NODE_STATE state)
1363 {
1364 	switch (state) {
1365 	/* from set_rx_mode or tmp_add_list */
1366 	case HCLGEVF_MAC_TO_ADD:
1367 		if (mac_node->state == HCLGEVF_MAC_TO_DEL)
1368 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1369 		break;
1370 	/* only from set_rx_mode */
1371 	case HCLGEVF_MAC_TO_DEL:
1372 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1373 			list_del(&mac_node->node);
1374 			kfree(mac_node);
1375 		} else {
1376 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1377 		}
1378 		break;
1379 	/* only from tmp_add_list, the mac_node->state won't be
1380 	 * HCLGEVF_MAC_ACTIVE
1381 	 */
1382 	case HCLGEVF_MAC_ACTIVE:
1383 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1384 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1385 		break;
1386 	}
1387 }
1388 
1389 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
1390 				   enum HCLGEVF_MAC_NODE_STATE state,
1391 				   enum HCLGEVF_MAC_ADDR_TYPE mac_type,
1392 				   const unsigned char *addr)
1393 {
1394 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1395 	struct hclgevf_mac_addr_node *mac_node;
1396 	struct list_head *list;
1397 
1398 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1399 	       &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1400 
1401 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1402 
1403 	/* if the mac addr is already in the mac list, no need to add a new
1404 	 * one into it, just check the mac addr state, convert it to a new
1405 	 * new state, or just remove it, or do nothing.
1406 	 */
1407 	mac_node = hclgevf_find_mac_node(list, addr);
1408 	if (mac_node) {
1409 		hclgevf_update_mac_node(mac_node, state);
1410 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1411 		return 0;
1412 	}
1413 	/* if this address is never added, unnecessary to delete */
1414 	if (state == HCLGEVF_MAC_TO_DEL) {
1415 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1416 		return -ENOENT;
1417 	}
1418 
1419 	mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
1420 	if (!mac_node) {
1421 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1422 		return -ENOMEM;
1423 	}
1424 
1425 	mac_node->state = state;
1426 	ether_addr_copy(mac_node->mac_addr, addr);
1427 	list_add_tail(&mac_node->node, list);
1428 
1429 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1430 	return 0;
1431 }
1432 
1433 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1434 			       const unsigned char *addr)
1435 {
1436 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1437 				       HCLGEVF_MAC_ADDR_UC, addr);
1438 }
1439 
1440 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1441 			      const unsigned char *addr)
1442 {
1443 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1444 				       HCLGEVF_MAC_ADDR_UC, addr);
1445 }
1446 
1447 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1448 			       const unsigned char *addr)
1449 {
1450 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1451 				       HCLGEVF_MAC_ADDR_MC, addr);
1452 }
1453 
1454 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1455 			      const unsigned char *addr)
1456 {
1457 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1458 				       HCLGEVF_MAC_ADDR_MC, addr);
1459 }
1460 
1461 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1462 				    struct hclgevf_mac_addr_node *mac_node,
1463 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1464 {
1465 	struct hclge_vf_to_pf_msg send_msg;
1466 	u8 code, subcode;
1467 
1468 	if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1469 		code = HCLGE_MBX_SET_UNICAST;
1470 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1471 			subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1472 		else
1473 			subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1474 	} else {
1475 		code = HCLGE_MBX_SET_MULTICAST;
1476 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1477 			subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1478 		else
1479 			subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1480 	}
1481 
1482 	hclgevf_build_send_msg(&send_msg, code, subcode);
1483 	ether_addr_copy(send_msg.data, mac_node->mac_addr);
1484 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1485 }
1486 
1487 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1488 				    struct list_head *list,
1489 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1490 {
1491 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1492 	int ret;
1493 
1494 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1495 		ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1496 		if  (ret) {
1497 			dev_err(&hdev->pdev->dev,
1498 				"failed to configure mac %pM, state = %d, ret = %d\n",
1499 				mac_node->mac_addr, mac_node->state, ret);
1500 			return;
1501 		}
1502 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1503 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1504 		} else {
1505 			list_del(&mac_node->node);
1506 			kfree(mac_node);
1507 		}
1508 	}
1509 }
1510 
1511 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1512 				       struct list_head *mac_list)
1513 {
1514 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1515 
1516 	list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1517 		/* if the mac address from tmp_add_list is not in the
1518 		 * uc/mc_mac_list, it means have received a TO_DEL request
1519 		 * during the time window of sending mac config request to PF
1520 		 * If mac_node state is ACTIVE, then change its state to TO_DEL,
1521 		 * then it will be removed at next time. If is TO_ADD, it means
1522 		 * send TO_ADD request failed, so just remove the mac node.
1523 		 */
1524 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1525 		if (new_node) {
1526 			hclgevf_update_mac_node(new_node, mac_node->state);
1527 			list_del(&mac_node->node);
1528 			kfree(mac_node);
1529 		} else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1530 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1531 			list_del(&mac_node->node);
1532 			list_add_tail(&mac_node->node, mac_list);
1533 		} else {
1534 			list_del(&mac_node->node);
1535 			kfree(mac_node);
1536 		}
1537 	}
1538 }
1539 
1540 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1541 				       struct list_head *mac_list)
1542 {
1543 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1544 
1545 	list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1546 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1547 		if (new_node) {
1548 			/* If the mac addr is exist in the mac list, it means
1549 			 * received a new request TO_ADD during the time window
1550 			 * of sending mac addr configurrequest to PF, so just
1551 			 * change the mac state to ACTIVE.
1552 			 */
1553 			new_node->state = HCLGEVF_MAC_ACTIVE;
1554 			list_del(&mac_node->node);
1555 			kfree(mac_node);
1556 		} else {
1557 			list_del(&mac_node->node);
1558 			list_add_tail(&mac_node->node, mac_list);
1559 		}
1560 	}
1561 }
1562 
1563 static void hclgevf_clear_list(struct list_head *list)
1564 {
1565 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1566 
1567 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1568 		list_del(&mac_node->node);
1569 		kfree(mac_node);
1570 	}
1571 }
1572 
1573 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1574 				  enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1575 {
1576 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1577 	struct list_head tmp_add_list, tmp_del_list;
1578 	struct list_head *list;
1579 
1580 	INIT_LIST_HEAD(&tmp_add_list);
1581 	INIT_LIST_HEAD(&tmp_del_list);
1582 
1583 	/* move the mac addr to the tmp_add_list and tmp_del_list, then
1584 	 * we can add/delete these mac addr outside the spin lock
1585 	 */
1586 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1587 		&hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1588 
1589 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1590 
1591 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1592 		switch (mac_node->state) {
1593 		case HCLGEVF_MAC_TO_DEL:
1594 			list_del(&mac_node->node);
1595 			list_add_tail(&mac_node->node, &tmp_del_list);
1596 			break;
1597 		case HCLGEVF_MAC_TO_ADD:
1598 			new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1599 			if (!new_node)
1600 				goto stop_traverse;
1601 
1602 			ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1603 			new_node->state = mac_node->state;
1604 			list_add_tail(&new_node->node, &tmp_add_list);
1605 			break;
1606 		default:
1607 			break;
1608 		}
1609 	}
1610 
1611 stop_traverse:
1612 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1613 
1614 	/* delete first, in order to get max mac table space for adding */
1615 	hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1616 	hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1617 
1618 	/* if some mac addresses were added/deleted fail, move back to the
1619 	 * mac_list, and retry at next time.
1620 	 */
1621 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1622 
1623 	hclgevf_sync_from_del_list(&tmp_del_list, list);
1624 	hclgevf_sync_from_add_list(&tmp_add_list, list);
1625 
1626 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1627 }
1628 
1629 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1630 {
1631 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1632 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1633 }
1634 
1635 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1636 {
1637 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1638 
1639 	hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1640 	hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1641 
1642 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1643 }
1644 
1645 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1646 				   __be16 proto, u16 vlan_id,
1647 				   bool is_kill)
1648 {
1649 #define HCLGEVF_VLAN_MBX_IS_KILL_OFFSET	0
1650 #define HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET	1
1651 #define HCLGEVF_VLAN_MBX_PROTO_OFFSET	3
1652 
1653 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1654 	struct hclge_vf_to_pf_msg send_msg;
1655 	int ret;
1656 
1657 	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1658 		return -EINVAL;
1659 
1660 	if (proto != htons(ETH_P_8021Q))
1661 		return -EPROTONOSUPPORT;
1662 
1663 	/* When device is resetting or reset failed, firmware is unable to
1664 	 * handle mailbox. Just record the vlan id, and remove it after
1665 	 * reset finished.
1666 	 */
1667 	if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1668 	     test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1669 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1670 		return -EBUSY;
1671 	}
1672 
1673 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1674 			       HCLGE_MBX_VLAN_FILTER);
1675 	send_msg.data[HCLGEVF_VLAN_MBX_IS_KILL_OFFSET] = is_kill;
1676 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET], &vlan_id,
1677 	       sizeof(vlan_id));
1678 	memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_PROTO_OFFSET], &proto,
1679 	       sizeof(proto));
1680 	/* when remove hw vlan filter failed, record the vlan id,
1681 	 * and try to remove it from hw later, to be consistence
1682 	 * with stack.
1683 	 */
1684 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1685 	if (is_kill && ret)
1686 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1687 
1688 	return ret;
1689 }
1690 
1691 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1692 {
1693 #define HCLGEVF_MAX_SYNC_COUNT	60
1694 	struct hnae3_handle *handle = &hdev->nic;
1695 	int ret, sync_cnt = 0;
1696 	u16 vlan_id;
1697 
1698 	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1699 	while (vlan_id != VLAN_N_VID) {
1700 		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1701 					      vlan_id, true);
1702 		if (ret)
1703 			return;
1704 
1705 		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1706 		sync_cnt++;
1707 		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1708 			return;
1709 
1710 		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1711 	}
1712 }
1713 
1714 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1715 {
1716 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1717 	struct hclge_vf_to_pf_msg send_msg;
1718 
1719 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1720 			       HCLGE_MBX_VLAN_RX_OFF_CFG);
1721 	send_msg.data[0] = enable ? 1 : 0;
1722 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1723 }
1724 
1725 static int hclgevf_reset_tqp(struct hnae3_handle *handle)
1726 {
1727 #define HCLGEVF_RESET_ALL_QUEUE_DONE	1U
1728 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1729 	struct hclge_vf_to_pf_msg send_msg;
1730 	u8 return_status = 0;
1731 	int ret;
1732 	u16 i;
1733 
1734 	/* disable vf queue before send queue reset msg to PF */
1735 	ret = hclgevf_tqp_enable(handle, false);
1736 	if (ret) {
1737 		dev_err(&hdev->pdev->dev, "failed to disable tqp, ret = %d\n",
1738 			ret);
1739 		return ret;
1740 	}
1741 
1742 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1743 
1744 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &return_status,
1745 				   sizeof(return_status));
1746 	if (ret || return_status == HCLGEVF_RESET_ALL_QUEUE_DONE)
1747 		return ret;
1748 
1749 	for (i = 1; i < handle->kinfo.num_tqps; i++) {
1750 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1751 		memcpy(send_msg.data, &i, sizeof(i));
1752 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1753 		if (ret)
1754 			return ret;
1755 	}
1756 
1757 	return 0;
1758 }
1759 
1760 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1761 {
1762 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1763 	struct hclge_vf_to_pf_msg send_msg;
1764 
1765 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1766 	memcpy(send_msg.data, &new_mtu, sizeof(new_mtu));
1767 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1768 }
1769 
1770 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1771 				 enum hnae3_reset_notify_type type)
1772 {
1773 	struct hnae3_client *client = hdev->nic_client;
1774 	struct hnae3_handle *handle = &hdev->nic;
1775 	int ret;
1776 
1777 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1778 	    !client)
1779 		return 0;
1780 
1781 	if (!client->ops->reset_notify)
1782 		return -EOPNOTSUPP;
1783 
1784 	ret = client->ops->reset_notify(handle, type);
1785 	if (ret)
1786 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1787 			type, ret);
1788 
1789 	return ret;
1790 }
1791 
1792 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
1793 				      enum hnae3_reset_notify_type type)
1794 {
1795 	struct hnae3_client *client = hdev->roce_client;
1796 	struct hnae3_handle *handle = &hdev->roce;
1797 	int ret;
1798 
1799 	if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
1800 		return 0;
1801 
1802 	if (!client->ops->reset_notify)
1803 		return -EOPNOTSUPP;
1804 
1805 	ret = client->ops->reset_notify(handle, type);
1806 	if (ret)
1807 		dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
1808 			type, ret);
1809 	return ret;
1810 }
1811 
1812 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1813 {
1814 #define HCLGEVF_RESET_WAIT_US	20000
1815 #define HCLGEVF_RESET_WAIT_CNT	2000
1816 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1817 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1818 
1819 	u32 val;
1820 	int ret;
1821 
1822 	if (hdev->reset_type == HNAE3_VF_RESET)
1823 		ret = readl_poll_timeout(hdev->hw.io_base +
1824 					 HCLGEVF_VF_RST_ING, val,
1825 					 !(val & HCLGEVF_VF_RST_ING_BIT),
1826 					 HCLGEVF_RESET_WAIT_US,
1827 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1828 	else
1829 		ret = readl_poll_timeout(hdev->hw.io_base +
1830 					 HCLGEVF_RST_ING, val,
1831 					 !(val & HCLGEVF_RST_ING_BITS),
1832 					 HCLGEVF_RESET_WAIT_US,
1833 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1834 
1835 	/* hardware completion status should be available by this time */
1836 	if (ret) {
1837 		dev_err(&hdev->pdev->dev,
1838 			"couldn't get reset done status from h/w, timeout!\n");
1839 		return ret;
1840 	}
1841 
1842 	/* we will wait a bit more to let reset of the stack to complete. This
1843 	 * might happen in case reset assertion was made by PF. Yes, this also
1844 	 * means we might end up waiting bit more even for VF reset.
1845 	 */
1846 	msleep(5000);
1847 
1848 	return 0;
1849 }
1850 
1851 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1852 {
1853 	u32 reg_val;
1854 
1855 	reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG);
1856 	if (enable)
1857 		reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1858 	else
1859 		reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1860 
1861 	hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1862 			  reg_val);
1863 }
1864 
1865 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1866 {
1867 	int ret;
1868 
1869 	/* uninitialize the nic client */
1870 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1871 	if (ret)
1872 		return ret;
1873 
1874 	/* re-initialize the hclge device */
1875 	ret = hclgevf_reset_hdev(hdev);
1876 	if (ret) {
1877 		dev_err(&hdev->pdev->dev,
1878 			"hclge device re-init failed, VF is disabled!\n");
1879 		return ret;
1880 	}
1881 
1882 	/* bring up the nic client again */
1883 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1884 	if (ret)
1885 		return ret;
1886 
1887 	/* clear handshake status with IMP */
1888 	hclgevf_reset_handshake(hdev, false);
1889 
1890 	/* bring up the nic to enable TX/RX again */
1891 	return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1892 }
1893 
1894 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1895 {
1896 #define HCLGEVF_RESET_SYNC_TIME 100
1897 
1898 	if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1899 		struct hclge_vf_to_pf_msg send_msg;
1900 		int ret;
1901 
1902 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1903 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1904 		if (ret) {
1905 			dev_err(&hdev->pdev->dev,
1906 				"failed to assert VF reset, ret = %d\n", ret);
1907 			return ret;
1908 		}
1909 		hdev->rst_stats.vf_func_rst_cnt++;
1910 	}
1911 
1912 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1913 	/* inform hardware that preparatory work is done */
1914 	msleep(HCLGEVF_RESET_SYNC_TIME);
1915 	hclgevf_reset_handshake(hdev, true);
1916 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1917 		 hdev->reset_type);
1918 
1919 	return 0;
1920 }
1921 
1922 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1923 {
1924 	dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1925 		 hdev->rst_stats.vf_func_rst_cnt);
1926 	dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1927 		 hdev->rst_stats.flr_rst_cnt);
1928 	dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1929 		 hdev->rst_stats.vf_rst_cnt);
1930 	dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1931 		 hdev->rst_stats.rst_done_cnt);
1932 	dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1933 		 hdev->rst_stats.hw_rst_done_cnt);
1934 	dev_info(&hdev->pdev->dev, "reset count: %u\n",
1935 		 hdev->rst_stats.rst_cnt);
1936 	dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1937 		 hdev->rst_stats.rst_fail_cnt);
1938 	dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1939 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1940 	dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1941 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_STATE_REG));
1942 	dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1943 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_CMDQ_TX_DEPTH_REG));
1944 	dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1945 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1946 	dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1947 }
1948 
1949 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1950 {
1951 	/* recover handshake status with IMP when reset fail */
1952 	hclgevf_reset_handshake(hdev, true);
1953 	hdev->rst_stats.rst_fail_cnt++;
1954 	dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1955 		hdev->rst_stats.rst_fail_cnt);
1956 
1957 	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1958 		set_bit(hdev->reset_type, &hdev->reset_pending);
1959 
1960 	if (hclgevf_is_reset_pending(hdev)) {
1961 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1962 		hclgevf_reset_task_schedule(hdev);
1963 	} else {
1964 		set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1965 		hclgevf_dump_rst_info(hdev);
1966 	}
1967 }
1968 
1969 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1970 {
1971 	int ret;
1972 
1973 	hdev->rst_stats.rst_cnt++;
1974 
1975 	/* perform reset of the stack & ae device for a client */
1976 	ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
1977 	if (ret)
1978 		return ret;
1979 
1980 	rtnl_lock();
1981 	/* bring down the nic to stop any ongoing TX/RX */
1982 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1983 	rtnl_unlock();
1984 	if (ret)
1985 		return ret;
1986 
1987 	return hclgevf_reset_prepare_wait(hdev);
1988 }
1989 
1990 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
1991 {
1992 	int ret;
1993 
1994 	hdev->rst_stats.hw_rst_done_cnt++;
1995 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
1996 	if (ret)
1997 		return ret;
1998 
1999 	rtnl_lock();
2000 	/* now, re-initialize the nic client and ae device */
2001 	ret = hclgevf_reset_stack(hdev);
2002 	rtnl_unlock();
2003 	if (ret) {
2004 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
2005 		return ret;
2006 	}
2007 
2008 	ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
2009 	/* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
2010 	 * times
2011 	 */
2012 	if (ret &&
2013 	    hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
2014 		return ret;
2015 
2016 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
2017 	if (ret)
2018 		return ret;
2019 
2020 	hdev->last_reset_time = jiffies;
2021 	hdev->rst_stats.rst_done_cnt++;
2022 	hdev->rst_stats.rst_fail_cnt = 0;
2023 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2024 
2025 	return 0;
2026 }
2027 
2028 static void hclgevf_reset(struct hclgevf_dev *hdev)
2029 {
2030 	if (hclgevf_reset_prepare(hdev))
2031 		goto err_reset;
2032 
2033 	/* check if VF could successfully fetch the hardware reset completion
2034 	 * status from the hardware
2035 	 */
2036 	if (hclgevf_reset_wait(hdev)) {
2037 		/* can't do much in this situation, will disable VF */
2038 		dev_err(&hdev->pdev->dev,
2039 			"failed to fetch H/W reset completion status\n");
2040 		goto err_reset;
2041 	}
2042 
2043 	if (hclgevf_reset_rebuild(hdev))
2044 		goto err_reset;
2045 
2046 	return;
2047 
2048 err_reset:
2049 	hclgevf_reset_err_handle(hdev);
2050 }
2051 
2052 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
2053 						     unsigned long *addr)
2054 {
2055 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
2056 
2057 	/* return the highest priority reset level amongst all */
2058 	if (test_bit(HNAE3_VF_RESET, addr)) {
2059 		rst_level = HNAE3_VF_RESET;
2060 		clear_bit(HNAE3_VF_RESET, addr);
2061 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
2062 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2063 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
2064 		rst_level = HNAE3_VF_FULL_RESET;
2065 		clear_bit(HNAE3_VF_FULL_RESET, addr);
2066 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2067 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
2068 		rst_level = HNAE3_VF_PF_FUNC_RESET;
2069 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
2070 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2071 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
2072 		rst_level = HNAE3_VF_FUNC_RESET;
2073 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
2074 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
2075 		rst_level = HNAE3_FLR_RESET;
2076 		clear_bit(HNAE3_FLR_RESET, addr);
2077 	}
2078 
2079 	return rst_level;
2080 }
2081 
2082 static void hclgevf_reset_event(struct pci_dev *pdev,
2083 				struct hnae3_handle *handle)
2084 {
2085 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2086 	struct hclgevf_dev *hdev = ae_dev->priv;
2087 
2088 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
2089 
2090 	if (hdev->default_reset_request)
2091 		hdev->reset_level =
2092 			hclgevf_get_reset_level(hdev,
2093 						&hdev->default_reset_request);
2094 	else
2095 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
2096 
2097 	/* reset of this VF requested */
2098 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
2099 	hclgevf_reset_task_schedule(hdev);
2100 
2101 	hdev->last_reset_time = jiffies;
2102 }
2103 
2104 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
2105 					  enum hnae3_reset_type rst_type)
2106 {
2107 	struct hclgevf_dev *hdev = ae_dev->priv;
2108 
2109 	set_bit(rst_type, &hdev->default_reset_request);
2110 }
2111 
2112 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
2113 {
2114 	writel(en ? 1 : 0, vector->addr);
2115 }
2116 
2117 static void hclgevf_reset_prepare_general(struct hnae3_ae_dev *ae_dev,
2118 					  enum hnae3_reset_type rst_type)
2119 {
2120 #define HCLGEVF_RESET_RETRY_WAIT_MS	500
2121 #define HCLGEVF_RESET_RETRY_CNT		5
2122 
2123 	struct hclgevf_dev *hdev = ae_dev->priv;
2124 	int retry_cnt = 0;
2125 	int ret;
2126 
2127 retry:
2128 	down(&hdev->reset_sem);
2129 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2130 	hdev->reset_type = rst_type;
2131 	ret = hclgevf_reset_prepare(hdev);
2132 	if (ret) {
2133 		dev_err(&hdev->pdev->dev, "fail to prepare to reset, ret=%d\n",
2134 			ret);
2135 		if (hdev->reset_pending ||
2136 		    retry_cnt++ < HCLGEVF_RESET_RETRY_CNT) {
2137 			dev_err(&hdev->pdev->dev,
2138 				"reset_pending:0x%lx, retry_cnt:%d\n",
2139 				hdev->reset_pending, retry_cnt);
2140 			clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2141 			up(&hdev->reset_sem);
2142 			msleep(HCLGEVF_RESET_RETRY_WAIT_MS);
2143 			goto retry;
2144 		}
2145 	}
2146 
2147 	/* disable misc vector before reset done */
2148 	hclgevf_enable_vector(&hdev->misc_vector, false);
2149 
2150 	if (hdev->reset_type == HNAE3_FLR_RESET)
2151 		hdev->rst_stats.flr_rst_cnt++;
2152 }
2153 
2154 static void hclgevf_reset_done(struct hnae3_ae_dev *ae_dev)
2155 {
2156 	struct hclgevf_dev *hdev = ae_dev->priv;
2157 	int ret;
2158 
2159 	hclgevf_enable_vector(&hdev->misc_vector, true);
2160 
2161 	ret = hclgevf_reset_rebuild(hdev);
2162 	if (ret)
2163 		dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
2164 			 ret);
2165 
2166 	hdev->reset_type = HNAE3_NONE_RESET;
2167 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2168 	up(&hdev->reset_sem);
2169 }
2170 
2171 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
2172 {
2173 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2174 
2175 	return hdev->fw_version;
2176 }
2177 
2178 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
2179 {
2180 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
2181 
2182 	vector->vector_irq = pci_irq_vector(hdev->pdev,
2183 					    HCLGEVF_MISC_VECTOR_NUM);
2184 	vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
2185 	/* vector status always valid for Vector 0 */
2186 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
2187 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
2188 
2189 	hdev->num_msi_left -= 1;
2190 	hdev->num_msi_used += 1;
2191 }
2192 
2193 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
2194 {
2195 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2196 	    !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
2197 			      &hdev->state))
2198 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2199 }
2200 
2201 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
2202 {
2203 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2204 	    !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
2205 			      &hdev->state))
2206 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2207 }
2208 
2209 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
2210 				  unsigned long delay)
2211 {
2212 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2213 	    !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2214 		mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
2215 }
2216 
2217 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
2218 {
2219 #define	HCLGEVF_MAX_RESET_ATTEMPTS_CNT	3
2220 
2221 	if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
2222 		return;
2223 
2224 	down(&hdev->reset_sem);
2225 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2226 
2227 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
2228 			       &hdev->reset_state)) {
2229 		/* PF has intimated that it is about to reset the hardware.
2230 		 * We now have to poll & check if hardware has actually
2231 		 * completed the reset sequence. On hardware reset completion,
2232 		 * VF needs to reset the client and ae device.
2233 		 */
2234 		hdev->reset_attempts = 0;
2235 
2236 		hdev->last_reset_time = jiffies;
2237 		while ((hdev->reset_type =
2238 			hclgevf_get_reset_level(hdev, &hdev->reset_pending))
2239 		       != HNAE3_NONE_RESET)
2240 			hclgevf_reset(hdev);
2241 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
2242 				      &hdev->reset_state)) {
2243 		/* we could be here when either of below happens:
2244 		 * 1. reset was initiated due to watchdog timeout caused by
2245 		 *    a. IMP was earlier reset and our TX got choked down and
2246 		 *       which resulted in watchdog reacting and inducing VF
2247 		 *       reset. This also means our cmdq would be unreliable.
2248 		 *    b. problem in TX due to other lower layer(example link
2249 		 *       layer not functioning properly etc.)
2250 		 * 2. VF reset might have been initiated due to some config
2251 		 *    change.
2252 		 *
2253 		 * NOTE: Theres no clear way to detect above cases than to react
2254 		 * to the response of PF for this reset request. PF will ack the
2255 		 * 1b and 2. cases but we will not get any intimation about 1a
2256 		 * from PF as cmdq would be in unreliable state i.e. mailbox
2257 		 * communication between PF and VF would be broken.
2258 		 *
2259 		 * if we are never geting into pending state it means either:
2260 		 * 1. PF is not receiving our request which could be due to IMP
2261 		 *    reset
2262 		 * 2. PF is screwed
2263 		 * We cannot do much for 2. but to check first we can try reset
2264 		 * our PCIe + stack and see if it alleviates the problem.
2265 		 */
2266 		if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
2267 			/* prepare for full reset of stack + pcie interface */
2268 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
2269 
2270 			/* "defer" schedule the reset task again */
2271 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2272 		} else {
2273 			hdev->reset_attempts++;
2274 
2275 			set_bit(hdev->reset_level, &hdev->reset_pending);
2276 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2277 		}
2278 		hclgevf_reset_task_schedule(hdev);
2279 	}
2280 
2281 	hdev->reset_type = HNAE3_NONE_RESET;
2282 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2283 	up(&hdev->reset_sem);
2284 }
2285 
2286 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
2287 {
2288 	if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
2289 		return;
2290 
2291 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
2292 		return;
2293 
2294 	hclgevf_mbx_async_handler(hdev);
2295 
2296 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2297 }
2298 
2299 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
2300 {
2301 	struct hclge_vf_to_pf_msg send_msg;
2302 	int ret;
2303 
2304 	if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
2305 		return;
2306 
2307 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
2308 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2309 	if (ret)
2310 		dev_err(&hdev->pdev->dev,
2311 			"VF sends keep alive cmd failed(=%d)\n", ret);
2312 }
2313 
2314 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
2315 {
2316 	unsigned long delta = round_jiffies_relative(HZ);
2317 	struct hnae3_handle *handle = &hdev->nic;
2318 
2319 	if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2320 		return;
2321 
2322 	if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
2323 		delta = jiffies - hdev->last_serv_processed;
2324 
2325 		if (delta < round_jiffies_relative(HZ)) {
2326 			delta = round_jiffies_relative(HZ) - delta;
2327 			goto out;
2328 		}
2329 	}
2330 
2331 	hdev->serv_processed_cnt++;
2332 	if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
2333 		hclgevf_keep_alive(hdev);
2334 
2335 	if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
2336 		hdev->last_serv_processed = jiffies;
2337 		goto out;
2338 	}
2339 
2340 	if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
2341 		hclgevf_tqps_update_stats(handle);
2342 
2343 	/* VF does not need to request link status when this bit is set, because
2344 	 * PF will push its link status to VFs when link status changed.
2345 	 */
2346 	if (!test_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state))
2347 		hclgevf_request_link_info(hdev);
2348 
2349 	hclgevf_update_link_mode(hdev);
2350 
2351 	hclgevf_sync_vlan_filter(hdev);
2352 
2353 	hclgevf_sync_mac_table(hdev);
2354 
2355 	hclgevf_sync_promisc_mode(hdev);
2356 
2357 	hdev->last_serv_processed = jiffies;
2358 
2359 out:
2360 	hclgevf_task_schedule(hdev, delta);
2361 }
2362 
2363 static void hclgevf_service_task(struct work_struct *work)
2364 {
2365 	struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
2366 						service_task.work);
2367 
2368 	hclgevf_reset_service_task(hdev);
2369 	hclgevf_mailbox_service_task(hdev);
2370 	hclgevf_periodic_service_task(hdev);
2371 
2372 	/* Handle reset and mbx again in case periodical task delays the
2373 	 * handling by calling hclgevf_task_schedule() in
2374 	 * hclgevf_periodic_service_task()
2375 	 */
2376 	hclgevf_reset_service_task(hdev);
2377 	hclgevf_mailbox_service_task(hdev);
2378 }
2379 
2380 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
2381 {
2382 	hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
2383 }
2384 
2385 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
2386 						      u32 *clearval)
2387 {
2388 	u32 val, cmdq_stat_reg, rst_ing_reg;
2389 
2390 	/* fetch the events from their corresponding regs */
2391 	cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
2392 					 HCLGEVF_VECTOR0_CMDQ_STATE_REG);
2393 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
2394 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2395 		dev_info(&hdev->pdev->dev,
2396 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
2397 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
2398 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2399 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
2400 		*clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
2401 		hdev->rst_stats.vf_rst_cnt++;
2402 		/* set up VF hardware reset status, its PF will clear
2403 		 * this status when PF has initialized done.
2404 		 */
2405 		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
2406 		hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
2407 				  val | HCLGEVF_VF_RST_ING_BIT);
2408 		return HCLGEVF_VECTOR0_EVENT_RST;
2409 	}
2410 
2411 	/* check for vector0 mailbox(=CMDQ RX) event source */
2412 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
2413 		/* for revision 0x21, clearing interrupt is writing bit 0
2414 		 * to the clear register, writing bit 1 means to keep the
2415 		 * old value.
2416 		 * for revision 0x20, the clear register is a read & write
2417 		 * register, so we should just write 0 to the bit we are
2418 		 * handling, and keep other bits as cmdq_stat_reg.
2419 		 */
2420 		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2421 			*clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2422 		else
2423 			*clearval = cmdq_stat_reg &
2424 				    ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2425 
2426 		return HCLGEVF_VECTOR0_EVENT_MBX;
2427 	}
2428 
2429 	/* print other vector0 event source */
2430 	dev_info(&hdev->pdev->dev,
2431 		 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2432 		 cmdq_stat_reg);
2433 
2434 	return HCLGEVF_VECTOR0_EVENT_OTHER;
2435 }
2436 
2437 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2438 {
2439 	enum hclgevf_evt_cause event_cause;
2440 	struct hclgevf_dev *hdev = data;
2441 	u32 clearval;
2442 
2443 	hclgevf_enable_vector(&hdev->misc_vector, false);
2444 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2445 
2446 	switch (event_cause) {
2447 	case HCLGEVF_VECTOR0_EVENT_RST:
2448 		hclgevf_reset_task_schedule(hdev);
2449 		break;
2450 	case HCLGEVF_VECTOR0_EVENT_MBX:
2451 		hclgevf_mbx_handler(hdev);
2452 		break;
2453 	default:
2454 		break;
2455 	}
2456 
2457 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
2458 		hclgevf_clear_event_cause(hdev, clearval);
2459 		hclgevf_enable_vector(&hdev->misc_vector, true);
2460 	}
2461 
2462 	return IRQ_HANDLED;
2463 }
2464 
2465 static int hclgevf_configure(struct hclgevf_dev *hdev)
2466 {
2467 	int ret;
2468 
2469 	/* get current port based vlan state from PF */
2470 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2471 	if (ret)
2472 		return ret;
2473 
2474 	/* get queue configuration from PF */
2475 	ret = hclgevf_get_queue_info(hdev);
2476 	if (ret)
2477 		return ret;
2478 
2479 	/* get queue depth info from PF */
2480 	ret = hclgevf_get_queue_depth(hdev);
2481 	if (ret)
2482 		return ret;
2483 
2484 	ret = hclgevf_get_pf_media_type(hdev);
2485 	if (ret)
2486 		return ret;
2487 
2488 	/* get tc configuration from PF */
2489 	return hclgevf_get_tc_info(hdev);
2490 }
2491 
2492 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2493 {
2494 	struct pci_dev *pdev = ae_dev->pdev;
2495 	struct hclgevf_dev *hdev;
2496 
2497 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2498 	if (!hdev)
2499 		return -ENOMEM;
2500 
2501 	hdev->pdev = pdev;
2502 	hdev->ae_dev = ae_dev;
2503 	ae_dev->priv = hdev;
2504 
2505 	return 0;
2506 }
2507 
2508 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2509 {
2510 	struct hnae3_handle *roce = &hdev->roce;
2511 	struct hnae3_handle *nic = &hdev->nic;
2512 
2513 	roce->rinfo.num_vectors = hdev->num_roce_msix;
2514 
2515 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2516 	    hdev->num_msi_left == 0)
2517 		return -EINVAL;
2518 
2519 	roce->rinfo.base_vector = hdev->roce_base_vector;
2520 
2521 	roce->rinfo.netdev = nic->kinfo.netdev;
2522 	roce->rinfo.roce_io_base = hdev->hw.io_base;
2523 	roce->rinfo.roce_mem_base = hdev->hw.mem_base;
2524 
2525 	roce->pdev = nic->pdev;
2526 	roce->ae_algo = nic->ae_algo;
2527 	roce->numa_node_mask = nic->numa_node_mask;
2528 
2529 	return 0;
2530 }
2531 
2532 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
2533 {
2534 	struct hclgevf_cfg_gro_status_cmd *req;
2535 	struct hclgevf_desc desc;
2536 	int ret;
2537 
2538 	if (!hnae3_dev_gro_supported(hdev))
2539 		return 0;
2540 
2541 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
2542 				     false);
2543 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2544 
2545 	req->gro_en = en ? 1 : 0;
2546 
2547 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2548 	if (ret)
2549 		dev_err(&hdev->pdev->dev,
2550 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
2551 
2552 	return ret;
2553 }
2554 
2555 static int hclgevf_rss_init_cfg(struct hclgevf_dev *hdev)
2556 {
2557 	u16 rss_ind_tbl_size = hdev->ae_dev->dev_specs.rss_ind_tbl_size;
2558 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2559 	struct hclgevf_rss_tuple_cfg *tuple_sets;
2560 	u32 i;
2561 
2562 	rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
2563 	rss_cfg->rss_size = hdev->nic.kinfo.rss_size;
2564 	tuple_sets = &rss_cfg->rss_tuple_sets;
2565 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2566 		u8 *rss_ind_tbl;
2567 
2568 		rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
2569 
2570 		rss_ind_tbl = devm_kcalloc(&hdev->pdev->dev, rss_ind_tbl_size,
2571 					   sizeof(*rss_ind_tbl), GFP_KERNEL);
2572 		if (!rss_ind_tbl)
2573 			return -ENOMEM;
2574 
2575 		rss_cfg->rss_indirection_tbl = rss_ind_tbl;
2576 		memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
2577 		       HCLGEVF_RSS_KEY_SIZE);
2578 
2579 		tuple_sets->ipv4_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2580 		tuple_sets->ipv4_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2581 		tuple_sets->ipv4_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2582 		tuple_sets->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2583 		tuple_sets->ipv6_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2584 		tuple_sets->ipv6_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2585 		tuple_sets->ipv6_sctp_en =
2586 			hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 ?
2587 					HCLGEVF_RSS_INPUT_TUPLE_SCTP_NO_PORT :
2588 					HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2589 		tuple_sets->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2590 	}
2591 
2592 	/* Initialize RSS indirect table */
2593 	for (i = 0; i < rss_ind_tbl_size; i++)
2594 		rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size;
2595 
2596 	return 0;
2597 }
2598 
2599 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2600 {
2601 	struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2602 	int ret;
2603 
2604 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2605 		ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
2606 					       rss_cfg->rss_hash_key);
2607 		if (ret)
2608 			return ret;
2609 
2610 		ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
2611 		if (ret)
2612 			return ret;
2613 	}
2614 
2615 	ret = hclgevf_set_rss_indir_table(hdev);
2616 	if (ret)
2617 		return ret;
2618 
2619 	return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size);
2620 }
2621 
2622 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2623 {
2624 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2625 				       false);
2626 }
2627 
2628 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2629 {
2630 #define HCLGEVF_FLUSH_LINK_TIMEOUT	100000
2631 
2632 	unsigned long last = hdev->serv_processed_cnt;
2633 	int i = 0;
2634 
2635 	while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2636 	       i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2637 	       last == hdev->serv_processed_cnt)
2638 		usleep_range(1, 1);
2639 }
2640 
2641 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2642 {
2643 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2644 
2645 	if (enable) {
2646 		hclgevf_task_schedule(hdev, 0);
2647 	} else {
2648 		set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2649 
2650 		/* flush memory to make sure DOWN is seen by service task */
2651 		smp_mb__before_atomic();
2652 		hclgevf_flush_link_update(hdev);
2653 	}
2654 }
2655 
2656 static int hclgevf_ae_start(struct hnae3_handle *handle)
2657 {
2658 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2659 
2660 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2661 	clear_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state);
2662 
2663 	hclgevf_reset_tqp_stats(handle);
2664 
2665 	hclgevf_request_link_info(hdev);
2666 
2667 	hclgevf_update_link_mode(hdev);
2668 
2669 	return 0;
2670 }
2671 
2672 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2673 {
2674 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2675 
2676 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2677 
2678 	if (hdev->reset_type != HNAE3_VF_RESET)
2679 		hclgevf_reset_tqp(handle);
2680 
2681 	hclgevf_reset_tqp_stats(handle);
2682 	hclgevf_update_link_status(hdev, 0);
2683 }
2684 
2685 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2686 {
2687 #define HCLGEVF_STATE_ALIVE	1
2688 #define HCLGEVF_STATE_NOT_ALIVE	0
2689 
2690 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2691 	struct hclge_vf_to_pf_msg send_msg;
2692 
2693 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2694 	send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2695 				HCLGEVF_STATE_NOT_ALIVE;
2696 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2697 }
2698 
2699 static int hclgevf_client_start(struct hnae3_handle *handle)
2700 {
2701 	return hclgevf_set_alive(handle, true);
2702 }
2703 
2704 static void hclgevf_client_stop(struct hnae3_handle *handle)
2705 {
2706 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2707 	int ret;
2708 
2709 	ret = hclgevf_set_alive(handle, false);
2710 	if (ret)
2711 		dev_warn(&hdev->pdev->dev,
2712 			 "%s failed %d\n", __func__, ret);
2713 }
2714 
2715 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2716 {
2717 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2718 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2719 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2720 
2721 	INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2722 
2723 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2724 	sema_init(&hdev->reset_sem, 1);
2725 
2726 	spin_lock_init(&hdev->mac_table.mac_list_lock);
2727 	INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2728 	INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2729 
2730 	/* bring the device down */
2731 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2732 }
2733 
2734 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2735 {
2736 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2737 	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2738 
2739 	if (hdev->service_task.work.func)
2740 		cancel_delayed_work_sync(&hdev->service_task);
2741 
2742 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2743 }
2744 
2745 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2746 {
2747 	struct pci_dev *pdev = hdev->pdev;
2748 	int vectors;
2749 	int i;
2750 
2751 	if (hnae3_dev_roce_supported(hdev))
2752 		vectors = pci_alloc_irq_vectors(pdev,
2753 						hdev->roce_base_msix_offset + 1,
2754 						hdev->num_msi,
2755 						PCI_IRQ_MSIX);
2756 	else
2757 		vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2758 						hdev->num_msi,
2759 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2760 
2761 	if (vectors < 0) {
2762 		dev_err(&pdev->dev,
2763 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2764 			vectors);
2765 		return vectors;
2766 	}
2767 	if (vectors < hdev->num_msi)
2768 		dev_warn(&hdev->pdev->dev,
2769 			 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2770 			 hdev->num_msi, vectors);
2771 
2772 	hdev->num_msi = vectors;
2773 	hdev->num_msi_left = vectors;
2774 
2775 	hdev->base_msi_vector = pdev->irq;
2776 	hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2777 
2778 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2779 					   sizeof(u16), GFP_KERNEL);
2780 	if (!hdev->vector_status) {
2781 		pci_free_irq_vectors(pdev);
2782 		return -ENOMEM;
2783 	}
2784 
2785 	for (i = 0; i < hdev->num_msi; i++)
2786 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2787 
2788 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2789 					sizeof(int), GFP_KERNEL);
2790 	if (!hdev->vector_irq) {
2791 		devm_kfree(&pdev->dev, hdev->vector_status);
2792 		pci_free_irq_vectors(pdev);
2793 		return -ENOMEM;
2794 	}
2795 
2796 	return 0;
2797 }
2798 
2799 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2800 {
2801 	struct pci_dev *pdev = hdev->pdev;
2802 
2803 	devm_kfree(&pdev->dev, hdev->vector_status);
2804 	devm_kfree(&pdev->dev, hdev->vector_irq);
2805 	pci_free_irq_vectors(pdev);
2806 }
2807 
2808 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2809 {
2810 	int ret;
2811 
2812 	hclgevf_get_misc_vector(hdev);
2813 
2814 	snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2815 		 HCLGEVF_NAME, pci_name(hdev->pdev));
2816 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2817 			  0, hdev->misc_vector.name, hdev);
2818 	if (ret) {
2819 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2820 			hdev->misc_vector.vector_irq);
2821 		return ret;
2822 	}
2823 
2824 	hclgevf_clear_event_cause(hdev, 0);
2825 
2826 	/* enable misc. vector(vector 0) */
2827 	hclgevf_enable_vector(&hdev->misc_vector, true);
2828 
2829 	return ret;
2830 }
2831 
2832 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2833 {
2834 	/* disable misc vector(vector 0) */
2835 	hclgevf_enable_vector(&hdev->misc_vector, false);
2836 	synchronize_irq(hdev->misc_vector.vector_irq);
2837 	free_irq(hdev->misc_vector.vector_irq, hdev);
2838 	hclgevf_free_vector(hdev, 0);
2839 }
2840 
2841 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2842 {
2843 	struct device *dev = &hdev->pdev->dev;
2844 
2845 	dev_info(dev, "VF info begin:\n");
2846 
2847 	dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2848 	dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2849 	dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2850 	dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2851 	dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2852 	dev_info(dev, "PF media type of this VF: %u\n",
2853 		 hdev->hw.mac.media_type);
2854 
2855 	dev_info(dev, "VF info end.\n");
2856 }
2857 
2858 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2859 					    struct hnae3_client *client)
2860 {
2861 	struct hclgevf_dev *hdev = ae_dev->priv;
2862 	int rst_cnt = hdev->rst_stats.rst_cnt;
2863 	int ret;
2864 
2865 	ret = client->ops->init_instance(&hdev->nic);
2866 	if (ret)
2867 		return ret;
2868 
2869 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2870 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2871 	    rst_cnt != hdev->rst_stats.rst_cnt) {
2872 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2873 
2874 		client->ops->uninit_instance(&hdev->nic, 0);
2875 		return -EBUSY;
2876 	}
2877 
2878 	hnae3_set_client_init_flag(client, ae_dev, 1);
2879 
2880 	if (netif_msg_drv(&hdev->nic))
2881 		hclgevf_info_show(hdev);
2882 
2883 	return 0;
2884 }
2885 
2886 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2887 					     struct hnae3_client *client)
2888 {
2889 	struct hclgevf_dev *hdev = ae_dev->priv;
2890 	int ret;
2891 
2892 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2893 	    !hdev->nic_client)
2894 		return 0;
2895 
2896 	ret = hclgevf_init_roce_base_info(hdev);
2897 	if (ret)
2898 		return ret;
2899 
2900 	ret = client->ops->init_instance(&hdev->roce);
2901 	if (ret)
2902 		return ret;
2903 
2904 	set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2905 	hnae3_set_client_init_flag(client, ae_dev, 1);
2906 
2907 	return 0;
2908 }
2909 
2910 static int hclgevf_init_client_instance(struct hnae3_client *client,
2911 					struct hnae3_ae_dev *ae_dev)
2912 {
2913 	struct hclgevf_dev *hdev = ae_dev->priv;
2914 	int ret;
2915 
2916 	switch (client->type) {
2917 	case HNAE3_CLIENT_KNIC:
2918 		hdev->nic_client = client;
2919 		hdev->nic.client = client;
2920 
2921 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2922 		if (ret)
2923 			goto clear_nic;
2924 
2925 		ret = hclgevf_init_roce_client_instance(ae_dev,
2926 							hdev->roce_client);
2927 		if (ret)
2928 			goto clear_roce;
2929 
2930 		break;
2931 	case HNAE3_CLIENT_ROCE:
2932 		if (hnae3_dev_roce_supported(hdev)) {
2933 			hdev->roce_client = client;
2934 			hdev->roce.client = client;
2935 		}
2936 
2937 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
2938 		if (ret)
2939 			goto clear_roce;
2940 
2941 		break;
2942 	default:
2943 		return -EINVAL;
2944 	}
2945 
2946 	return 0;
2947 
2948 clear_nic:
2949 	hdev->nic_client = NULL;
2950 	hdev->nic.client = NULL;
2951 	return ret;
2952 clear_roce:
2953 	hdev->roce_client = NULL;
2954 	hdev->roce.client = NULL;
2955 	return ret;
2956 }
2957 
2958 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2959 					   struct hnae3_ae_dev *ae_dev)
2960 {
2961 	struct hclgevf_dev *hdev = ae_dev->priv;
2962 
2963 	/* un-init roce, if it exists */
2964 	if (hdev->roce_client) {
2965 		clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2966 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2967 		hdev->roce_client = NULL;
2968 		hdev->roce.client = NULL;
2969 	}
2970 
2971 	/* un-init nic/unic, if this was not called by roce client */
2972 	if (client->ops->uninit_instance && hdev->nic_client &&
2973 	    client->type != HNAE3_CLIENT_ROCE) {
2974 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2975 
2976 		client->ops->uninit_instance(&hdev->nic, 0);
2977 		hdev->nic_client = NULL;
2978 		hdev->nic.client = NULL;
2979 	}
2980 }
2981 
2982 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
2983 {
2984 #define HCLGEVF_MEM_BAR		4
2985 
2986 	struct pci_dev *pdev = hdev->pdev;
2987 	struct hclgevf_hw *hw = &hdev->hw;
2988 
2989 	/* for device does not have device memory, return directly */
2990 	if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
2991 		return 0;
2992 
2993 	hw->mem_base = devm_ioremap_wc(&pdev->dev,
2994 				       pci_resource_start(pdev,
2995 							  HCLGEVF_MEM_BAR),
2996 				       pci_resource_len(pdev, HCLGEVF_MEM_BAR));
2997 	if (!hw->mem_base) {
2998 		dev_err(&pdev->dev, "failed to map device memory\n");
2999 		return -EFAULT;
3000 	}
3001 
3002 	return 0;
3003 }
3004 
3005 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
3006 {
3007 	struct pci_dev *pdev = hdev->pdev;
3008 	struct hclgevf_hw *hw;
3009 	int ret;
3010 
3011 	ret = pci_enable_device(pdev);
3012 	if (ret) {
3013 		dev_err(&pdev->dev, "failed to enable PCI device\n");
3014 		return ret;
3015 	}
3016 
3017 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3018 	if (ret) {
3019 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
3020 		goto err_disable_device;
3021 	}
3022 
3023 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
3024 	if (ret) {
3025 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
3026 		goto err_disable_device;
3027 	}
3028 
3029 	pci_set_master(pdev);
3030 	hw = &hdev->hw;
3031 	hw->hdev = hdev;
3032 	hw->io_base = pci_iomap(pdev, 2, 0);
3033 	if (!hw->io_base) {
3034 		dev_err(&pdev->dev, "can't map configuration register space\n");
3035 		ret = -ENOMEM;
3036 		goto err_clr_master;
3037 	}
3038 
3039 	ret = hclgevf_dev_mem_map(hdev);
3040 	if (ret)
3041 		goto err_unmap_io_base;
3042 
3043 	return 0;
3044 
3045 err_unmap_io_base:
3046 	pci_iounmap(pdev, hdev->hw.io_base);
3047 err_clr_master:
3048 	pci_clear_master(pdev);
3049 	pci_release_regions(pdev);
3050 err_disable_device:
3051 	pci_disable_device(pdev);
3052 
3053 	return ret;
3054 }
3055 
3056 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
3057 {
3058 	struct pci_dev *pdev = hdev->pdev;
3059 
3060 	if (hdev->hw.mem_base)
3061 		devm_iounmap(&pdev->dev, hdev->hw.mem_base);
3062 
3063 	pci_iounmap(pdev, hdev->hw.io_base);
3064 	pci_clear_master(pdev);
3065 	pci_release_regions(pdev);
3066 	pci_disable_device(pdev);
3067 }
3068 
3069 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
3070 {
3071 	struct hclgevf_query_res_cmd *req;
3072 	struct hclgevf_desc desc;
3073 	int ret;
3074 
3075 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
3076 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
3077 	if (ret) {
3078 		dev_err(&hdev->pdev->dev,
3079 			"query vf resource failed, ret = %d.\n", ret);
3080 		return ret;
3081 	}
3082 
3083 	req = (struct hclgevf_query_res_cmd *)desc.data;
3084 
3085 	if (hnae3_dev_roce_supported(hdev)) {
3086 		hdev->roce_base_msix_offset =
3087 		hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
3088 				HCLGEVF_MSIX_OFT_ROCEE_M,
3089 				HCLGEVF_MSIX_OFT_ROCEE_S);
3090 		hdev->num_roce_msix =
3091 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3092 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3093 
3094 		/* nic's msix numbers is always equals to the roce's. */
3095 		hdev->num_nic_msix = hdev->num_roce_msix;
3096 
3097 		/* VF should have NIC vectors and Roce vectors, NIC vectors
3098 		 * are queued before Roce vectors. The offset is fixed to 64.
3099 		 */
3100 		hdev->num_msi = hdev->num_roce_msix +
3101 				hdev->roce_base_msix_offset;
3102 	} else {
3103 		hdev->num_msi =
3104 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3105 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3106 
3107 		hdev->num_nic_msix = hdev->num_msi;
3108 	}
3109 
3110 	if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
3111 		dev_err(&hdev->pdev->dev,
3112 			"Just %u msi resources, not enough for vf(min:2).\n",
3113 			hdev->num_nic_msix);
3114 		return -EINVAL;
3115 	}
3116 
3117 	return 0;
3118 }
3119 
3120 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
3121 {
3122 #define HCLGEVF_MAX_NON_TSO_BD_NUM			8U
3123 
3124 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3125 
3126 	ae_dev->dev_specs.max_non_tso_bd_num =
3127 					HCLGEVF_MAX_NON_TSO_BD_NUM;
3128 	ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3129 	ae_dev->dev_specs.rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3130 	ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3131 	ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME;
3132 }
3133 
3134 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
3135 				    struct hclgevf_desc *desc)
3136 {
3137 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3138 	struct hclgevf_dev_specs_0_cmd *req0;
3139 	struct hclgevf_dev_specs_1_cmd *req1;
3140 
3141 	req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
3142 	req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
3143 
3144 	ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
3145 	ae_dev->dev_specs.rss_ind_tbl_size =
3146 					le16_to_cpu(req0->rss_ind_tbl_size);
3147 	ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
3148 	ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
3149 	ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
3150 	ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size);
3151 }
3152 
3153 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
3154 {
3155 	struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
3156 
3157 	if (!dev_specs->max_non_tso_bd_num)
3158 		dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
3159 	if (!dev_specs->rss_ind_tbl_size)
3160 		dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3161 	if (!dev_specs->rss_key_size)
3162 		dev_specs->rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3163 	if (!dev_specs->max_int_gl)
3164 		dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3165 	if (!dev_specs->max_frm_size)
3166 		dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME;
3167 }
3168 
3169 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
3170 {
3171 	struct hclgevf_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
3172 	int ret;
3173 	int i;
3174 
3175 	/* set default specifications as devices lower than version V3 do not
3176 	 * support querying specifications from firmware.
3177 	 */
3178 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
3179 		hclgevf_set_default_dev_specs(hdev);
3180 		return 0;
3181 	}
3182 
3183 	for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
3184 		hclgevf_cmd_setup_basic_desc(&desc[i],
3185 					     HCLGEVF_OPC_QUERY_DEV_SPECS, true);
3186 		desc[i].flag |= cpu_to_le16(HCLGEVF_CMD_FLAG_NEXT);
3187 	}
3188 	hclgevf_cmd_setup_basic_desc(&desc[i], HCLGEVF_OPC_QUERY_DEV_SPECS,
3189 				     true);
3190 
3191 	ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
3192 	if (ret)
3193 		return ret;
3194 
3195 	hclgevf_parse_dev_specs(hdev, desc);
3196 	hclgevf_check_dev_specs(hdev);
3197 
3198 	return 0;
3199 }
3200 
3201 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
3202 {
3203 	struct pci_dev *pdev = hdev->pdev;
3204 	int ret = 0;
3205 
3206 	if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
3207 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3208 		hclgevf_misc_irq_uninit(hdev);
3209 		hclgevf_uninit_msi(hdev);
3210 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3211 	}
3212 
3213 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3214 		pci_set_master(pdev);
3215 		ret = hclgevf_init_msi(hdev);
3216 		if (ret) {
3217 			dev_err(&pdev->dev,
3218 				"failed(%d) to init MSI/MSI-X\n", ret);
3219 			return ret;
3220 		}
3221 
3222 		ret = hclgevf_misc_irq_init(hdev);
3223 		if (ret) {
3224 			hclgevf_uninit_msi(hdev);
3225 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
3226 				ret);
3227 			return ret;
3228 		}
3229 
3230 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3231 	}
3232 
3233 	return ret;
3234 }
3235 
3236 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
3237 {
3238 	struct hclge_vf_to_pf_msg send_msg;
3239 
3240 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
3241 			       HCLGE_MBX_VPORT_LIST_CLEAR);
3242 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3243 }
3244 
3245 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
3246 {
3247 	struct pci_dev *pdev = hdev->pdev;
3248 	int ret;
3249 
3250 	ret = hclgevf_pci_reset(hdev);
3251 	if (ret) {
3252 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
3253 		return ret;
3254 	}
3255 
3256 	ret = hclgevf_cmd_init(hdev);
3257 	if (ret) {
3258 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
3259 		return ret;
3260 	}
3261 
3262 	ret = hclgevf_rss_init_hw(hdev);
3263 	if (ret) {
3264 		dev_err(&hdev->pdev->dev,
3265 			"failed(%d) to initialize RSS\n", ret);
3266 		return ret;
3267 	}
3268 
3269 	ret = hclgevf_config_gro(hdev, true);
3270 	if (ret)
3271 		return ret;
3272 
3273 	ret = hclgevf_init_vlan_config(hdev);
3274 	if (ret) {
3275 		dev_err(&hdev->pdev->dev,
3276 			"failed(%d) to initialize VLAN config\n", ret);
3277 		return ret;
3278 	}
3279 
3280 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
3281 
3282 	dev_info(&hdev->pdev->dev, "Reset done\n");
3283 
3284 	return 0;
3285 }
3286 
3287 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
3288 {
3289 	struct pci_dev *pdev = hdev->pdev;
3290 	int ret;
3291 
3292 	ret = hclgevf_pci_init(hdev);
3293 	if (ret)
3294 		return ret;
3295 
3296 	ret = hclgevf_cmd_queue_init(hdev);
3297 	if (ret)
3298 		goto err_cmd_queue_init;
3299 
3300 	ret = hclgevf_cmd_init(hdev);
3301 	if (ret)
3302 		goto err_cmd_init;
3303 
3304 	/* Get vf resource */
3305 	ret = hclgevf_query_vf_resource(hdev);
3306 	if (ret)
3307 		goto err_cmd_init;
3308 
3309 	ret = hclgevf_query_dev_specs(hdev);
3310 	if (ret) {
3311 		dev_err(&pdev->dev,
3312 			"failed to query dev specifications, ret = %d\n", ret);
3313 		goto err_cmd_init;
3314 	}
3315 
3316 	ret = hclgevf_init_msi(hdev);
3317 	if (ret) {
3318 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
3319 		goto err_cmd_init;
3320 	}
3321 
3322 	hclgevf_state_init(hdev);
3323 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
3324 	hdev->reset_type = HNAE3_NONE_RESET;
3325 
3326 	ret = hclgevf_misc_irq_init(hdev);
3327 	if (ret)
3328 		goto err_misc_irq_init;
3329 
3330 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3331 
3332 	ret = hclgevf_configure(hdev);
3333 	if (ret) {
3334 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
3335 		goto err_config;
3336 	}
3337 
3338 	ret = hclgevf_alloc_tqps(hdev);
3339 	if (ret) {
3340 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
3341 		goto err_config;
3342 	}
3343 
3344 	ret = hclgevf_set_handle_info(hdev);
3345 	if (ret)
3346 		goto err_config;
3347 
3348 	ret = hclgevf_config_gro(hdev, true);
3349 	if (ret)
3350 		goto err_config;
3351 
3352 	/* Initialize RSS for this VF */
3353 	ret = hclgevf_rss_init_cfg(hdev);
3354 	if (ret) {
3355 		dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
3356 		goto err_config;
3357 	}
3358 
3359 	ret = hclgevf_rss_init_hw(hdev);
3360 	if (ret) {
3361 		dev_err(&hdev->pdev->dev,
3362 			"failed(%d) to initialize RSS\n", ret);
3363 		goto err_config;
3364 	}
3365 
3366 	/* ensure vf tbl list as empty before init*/
3367 	ret = hclgevf_clear_vport_list(hdev);
3368 	if (ret) {
3369 		dev_err(&pdev->dev,
3370 			"failed to clear tbl list configuration, ret = %d.\n",
3371 			ret);
3372 		goto err_config;
3373 	}
3374 
3375 	ret = hclgevf_init_vlan_config(hdev);
3376 	if (ret) {
3377 		dev_err(&hdev->pdev->dev,
3378 			"failed(%d) to initialize VLAN config\n", ret);
3379 		goto err_config;
3380 	}
3381 
3382 	hdev->last_reset_time = jiffies;
3383 	dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
3384 		 HCLGEVF_DRIVER_NAME);
3385 
3386 	hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
3387 
3388 	return 0;
3389 
3390 err_config:
3391 	hclgevf_misc_irq_uninit(hdev);
3392 err_misc_irq_init:
3393 	hclgevf_state_uninit(hdev);
3394 	hclgevf_uninit_msi(hdev);
3395 err_cmd_init:
3396 	hclgevf_cmd_uninit(hdev);
3397 err_cmd_queue_init:
3398 	hclgevf_pci_uninit(hdev);
3399 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3400 	return ret;
3401 }
3402 
3403 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3404 {
3405 	struct hclge_vf_to_pf_msg send_msg;
3406 
3407 	hclgevf_state_uninit(hdev);
3408 
3409 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3410 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3411 
3412 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3413 		hclgevf_misc_irq_uninit(hdev);
3414 		hclgevf_uninit_msi(hdev);
3415 	}
3416 
3417 	hclgevf_cmd_uninit(hdev);
3418 	hclgevf_pci_uninit(hdev);
3419 	hclgevf_uninit_mac_list(hdev);
3420 }
3421 
3422 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3423 {
3424 	struct pci_dev *pdev = ae_dev->pdev;
3425 	int ret;
3426 
3427 	ret = hclgevf_alloc_hdev(ae_dev);
3428 	if (ret) {
3429 		dev_err(&pdev->dev, "hclge device allocation failed\n");
3430 		return ret;
3431 	}
3432 
3433 	ret = hclgevf_init_hdev(ae_dev->priv);
3434 	if (ret) {
3435 		dev_err(&pdev->dev, "hclge device initialization failed\n");
3436 		return ret;
3437 	}
3438 
3439 	return 0;
3440 }
3441 
3442 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3443 {
3444 	struct hclgevf_dev *hdev = ae_dev->priv;
3445 
3446 	hclgevf_uninit_hdev(hdev);
3447 	ae_dev->priv = NULL;
3448 }
3449 
3450 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3451 {
3452 	struct hnae3_handle *nic = &hdev->nic;
3453 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3454 
3455 	return min_t(u32, hdev->rss_size_max,
3456 		     hdev->num_tqps / kinfo->tc_info.num_tc);
3457 }
3458 
3459 /**
3460  * hclgevf_get_channels - Get the current channels enabled and max supported.
3461  * @handle: hardware information for network interface
3462  * @ch: ethtool channels structure
3463  *
3464  * We don't support separate tx and rx queues as channels. The other count
3465  * represents how many queues are being used for control. max_combined counts
3466  * how many queue pairs we can support. They may not be mapped 1 to 1 with
3467  * q_vectors since we support a lot more queue pairs than q_vectors.
3468  **/
3469 static void hclgevf_get_channels(struct hnae3_handle *handle,
3470 				 struct ethtool_channels *ch)
3471 {
3472 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3473 
3474 	ch->max_combined = hclgevf_get_max_channels(hdev);
3475 	ch->other_count = 0;
3476 	ch->max_other = 0;
3477 	ch->combined_count = handle->kinfo.rss_size;
3478 }
3479 
3480 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3481 					  u16 *alloc_tqps, u16 *max_rss_size)
3482 {
3483 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3484 
3485 	*alloc_tqps = hdev->num_tqps;
3486 	*max_rss_size = hdev->rss_size_max;
3487 }
3488 
3489 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3490 				    u32 new_tqps_num)
3491 {
3492 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3493 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3494 	u16 max_rss_size;
3495 
3496 	kinfo->req_rss_size = new_tqps_num;
3497 
3498 	max_rss_size = min_t(u16, hdev->rss_size_max,
3499 			     hdev->num_tqps / kinfo->tc_info.num_tc);
3500 
3501 	/* Use the user's configuration when it is not larger than
3502 	 * max_rss_size, otherwise, use the maximum specification value.
3503 	 */
3504 	if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3505 	    kinfo->req_rss_size <= max_rss_size)
3506 		kinfo->rss_size = kinfo->req_rss_size;
3507 	else if (kinfo->rss_size > max_rss_size ||
3508 		 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3509 		kinfo->rss_size = max_rss_size;
3510 
3511 	kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size;
3512 }
3513 
3514 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3515 				bool rxfh_configured)
3516 {
3517 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3518 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3519 	u16 cur_rss_size = kinfo->rss_size;
3520 	u16 cur_tqps = kinfo->num_tqps;
3521 	u32 *rss_indir;
3522 	unsigned int i;
3523 	int ret;
3524 
3525 	hclgevf_update_rss_size(handle, new_tqps_num);
3526 
3527 	ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size);
3528 	if (ret)
3529 		return ret;
3530 
3531 	/* RSS indirection table has been configured by user */
3532 	if (rxfh_configured)
3533 		goto out;
3534 
3535 	/* Reinitializes the rss indirect table according to the new RSS size */
3536 	rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size,
3537 			    sizeof(u32), GFP_KERNEL);
3538 	if (!rss_indir)
3539 		return -ENOMEM;
3540 
3541 	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
3542 		rss_indir[i] = i % kinfo->rss_size;
3543 
3544 	hdev->rss_cfg.rss_size = kinfo->rss_size;
3545 
3546 	ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3547 	if (ret)
3548 		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3549 			ret);
3550 
3551 	kfree(rss_indir);
3552 
3553 out:
3554 	if (!ret)
3555 		dev_info(&hdev->pdev->dev,
3556 			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3557 			 cur_rss_size, kinfo->rss_size,
3558 			 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
3559 
3560 	return ret;
3561 }
3562 
3563 static int hclgevf_get_status(struct hnae3_handle *handle)
3564 {
3565 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3566 
3567 	return hdev->hw.mac.link;
3568 }
3569 
3570 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3571 					    u8 *auto_neg, u32 *speed,
3572 					    u8 *duplex)
3573 {
3574 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3575 
3576 	if (speed)
3577 		*speed = hdev->hw.mac.speed;
3578 	if (duplex)
3579 		*duplex = hdev->hw.mac.duplex;
3580 	if (auto_neg)
3581 		*auto_neg = AUTONEG_DISABLE;
3582 }
3583 
3584 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3585 				 u8 duplex)
3586 {
3587 	hdev->hw.mac.speed = speed;
3588 	hdev->hw.mac.duplex = duplex;
3589 }
3590 
3591 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3592 {
3593 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3594 
3595 	return hclgevf_config_gro(hdev, enable);
3596 }
3597 
3598 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3599 				   u8 *module_type)
3600 {
3601 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3602 
3603 	if (media_type)
3604 		*media_type = hdev->hw.mac.media_type;
3605 
3606 	if (module_type)
3607 		*module_type = hdev->hw.mac.module_type;
3608 }
3609 
3610 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3611 {
3612 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3613 
3614 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3615 }
3616 
3617 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
3618 {
3619 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3620 
3621 	return test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
3622 }
3623 
3624 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3625 {
3626 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3627 
3628 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3629 }
3630 
3631 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3632 {
3633 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3634 
3635 	return hdev->rst_stats.hw_rst_done_cnt;
3636 }
3637 
3638 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3639 				  unsigned long *supported,
3640 				  unsigned long *advertising)
3641 {
3642 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3643 
3644 	*supported = hdev->hw.mac.supported;
3645 	*advertising = hdev->hw.mac.advertising;
3646 }
3647 
3648 #define MAX_SEPARATE_NUM	4
3649 #define SEPARATOR_VALUE		0xFDFCFBFA
3650 #define REG_NUM_PER_LINE	4
3651 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
3652 
3653 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
3654 {
3655 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
3656 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3657 
3658 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
3659 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
3660 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
3661 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
3662 
3663 	return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
3664 		tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
3665 }
3666 
3667 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3668 			     void *data)
3669 {
3670 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3671 	int i, j, reg_um, separator_num;
3672 	u32 *reg = data;
3673 
3674 	*version = hdev->fw_version;
3675 
3676 	/* fetching per-VF registers values from VF PCIe register space */
3677 	reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3678 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3679 	for (i = 0; i < reg_um; i++)
3680 		*reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3681 	for (i = 0; i < separator_num; i++)
3682 		*reg++ = SEPARATOR_VALUE;
3683 
3684 	reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3685 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3686 	for (i = 0; i < reg_um; i++)
3687 		*reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3688 	for (i = 0; i < separator_num; i++)
3689 		*reg++ = SEPARATOR_VALUE;
3690 
3691 	reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3692 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3693 	for (j = 0; j < hdev->num_tqps; j++) {
3694 		for (i = 0; i < reg_um; i++)
3695 			*reg++ = hclgevf_read_dev(&hdev->hw,
3696 						  ring_reg_addr_list[i] +
3697 						  0x200 * j);
3698 		for (i = 0; i < separator_num; i++)
3699 			*reg++ = SEPARATOR_VALUE;
3700 	}
3701 
3702 	reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3703 	separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3704 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
3705 		for (i = 0; i < reg_um; i++)
3706 			*reg++ = hclgevf_read_dev(&hdev->hw,
3707 						  tqp_intr_reg_addr_list[i] +
3708 						  4 * j);
3709 		for (i = 0; i < separator_num; i++)
3710 			*reg++ = SEPARATOR_VALUE;
3711 	}
3712 }
3713 
3714 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3715 					u8 *port_base_vlan_info, u8 data_size)
3716 {
3717 	struct hnae3_handle *nic = &hdev->nic;
3718 	struct hclge_vf_to_pf_msg send_msg;
3719 	int ret;
3720 
3721 	rtnl_lock();
3722 
3723 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3724 	    test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3725 		dev_warn(&hdev->pdev->dev,
3726 			 "is resetting when updating port based vlan info\n");
3727 		rtnl_unlock();
3728 		return;
3729 	}
3730 
3731 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3732 	if (ret) {
3733 		rtnl_unlock();
3734 		return;
3735 	}
3736 
3737 	/* send msg to PF and wait update port based vlan info */
3738 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3739 			       HCLGE_MBX_PORT_BASE_VLAN_CFG);
3740 	memcpy(send_msg.data, port_base_vlan_info, data_size);
3741 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3742 	if (!ret) {
3743 		if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3744 			nic->port_base_vlan_state = state;
3745 		else
3746 			nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3747 	}
3748 
3749 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3750 	rtnl_unlock();
3751 }
3752 
3753 static const struct hnae3_ae_ops hclgevf_ops = {
3754 	.init_ae_dev = hclgevf_init_ae_dev,
3755 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
3756 	.reset_prepare = hclgevf_reset_prepare_general,
3757 	.reset_done = hclgevf_reset_done,
3758 	.init_client_instance = hclgevf_init_client_instance,
3759 	.uninit_client_instance = hclgevf_uninit_client_instance,
3760 	.start = hclgevf_ae_start,
3761 	.stop = hclgevf_ae_stop,
3762 	.client_start = hclgevf_client_start,
3763 	.client_stop = hclgevf_client_stop,
3764 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
3765 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3766 	.get_vector = hclgevf_get_vector,
3767 	.put_vector = hclgevf_put_vector,
3768 	.reset_queue = hclgevf_reset_tqp,
3769 	.get_mac_addr = hclgevf_get_mac_addr,
3770 	.set_mac_addr = hclgevf_set_mac_addr,
3771 	.add_uc_addr = hclgevf_add_uc_addr,
3772 	.rm_uc_addr = hclgevf_rm_uc_addr,
3773 	.add_mc_addr = hclgevf_add_mc_addr,
3774 	.rm_mc_addr = hclgevf_rm_mc_addr,
3775 	.get_stats = hclgevf_get_stats,
3776 	.update_stats = hclgevf_update_stats,
3777 	.get_strings = hclgevf_get_strings,
3778 	.get_sset_count = hclgevf_get_sset_count,
3779 	.get_rss_key_size = hclgevf_get_rss_key_size,
3780 	.get_rss = hclgevf_get_rss,
3781 	.set_rss = hclgevf_set_rss,
3782 	.get_rss_tuple = hclgevf_get_rss_tuple,
3783 	.set_rss_tuple = hclgevf_set_rss_tuple,
3784 	.get_tc_size = hclgevf_get_tc_size,
3785 	.get_fw_version = hclgevf_get_fw_version,
3786 	.set_vlan_filter = hclgevf_set_vlan_filter,
3787 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3788 	.reset_event = hclgevf_reset_event,
3789 	.set_default_reset_request = hclgevf_set_def_reset_request,
3790 	.set_channels = hclgevf_set_channels,
3791 	.get_channels = hclgevf_get_channels,
3792 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3793 	.get_regs_len = hclgevf_get_regs_len,
3794 	.get_regs = hclgevf_get_regs,
3795 	.get_status = hclgevf_get_status,
3796 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3797 	.get_media_type = hclgevf_get_media_type,
3798 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3799 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
3800 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3801 	.set_gro_en = hclgevf_gro_en,
3802 	.set_mtu = hclgevf_set_mtu,
3803 	.get_global_queue_id = hclgevf_get_qid_global,
3804 	.set_timer_task = hclgevf_set_timer_task,
3805 	.get_link_mode = hclgevf_get_link_mode,
3806 	.set_promisc_mode = hclgevf_set_promisc_mode,
3807 	.request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3808 	.get_cmdq_stat = hclgevf_get_cmdq_stat,
3809 };
3810 
3811 static struct hnae3_ae_algo ae_algovf = {
3812 	.ops = &hclgevf_ops,
3813 	.pdev_id_table = ae_algovf_pci_tbl,
3814 };
3815 
3816 static int hclgevf_init(void)
3817 {
3818 	pr_info("%s is initializing\n", HCLGEVF_NAME);
3819 
3820 	hclgevf_wq = alloc_workqueue("%s", 0, 0, HCLGEVF_NAME);
3821 	if (!hclgevf_wq) {
3822 		pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3823 		return -ENOMEM;
3824 	}
3825 
3826 	hnae3_register_ae_algo(&ae_algovf);
3827 
3828 	return 0;
3829 }
3830 
3831 static void hclgevf_exit(void)
3832 {
3833 	hnae3_unregister_ae_algo(&ae_algovf);
3834 	destroy_workqueue(hclgevf_wq);
3835 }
3836 module_init(hclgevf_init);
3837 module_exit(hclgevf_exit);
3838 
3839 MODULE_LICENSE("GPL");
3840 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3841 MODULE_DESCRIPTION("HCLGEVF Driver");
3842 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3843