xref: /linux/drivers/net/ethernet/hisilicon/hns3/hns3vf/hclgevf_main.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclgevf_regs.h"
10 #include "hclge_mbx.h"
11 #include "hnae3.h"
12 #include "hclgevf_devlink.h"
13 #include "hclge_comm_rss.h"
14 #include "hclgevf_trace.h"
15 
16 #define HCLGEVF_NAME	"hclgevf"
17 
18 #define HCLGEVF_RESET_MAX_FAIL_CNT	5
19 
20 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
21 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
22 				  unsigned long delay);
23 
24 static struct hnae3_ae_algo ae_algovf;
25 
26 static struct workqueue_struct *hclgevf_wq;
27 
28 static const struct pci_device_id ae_algovf_pci_tbl[] = {
29 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
30 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
31 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
32 	/* required last entry */
33 	{0, }
34 };
35 
36 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
37 
38 /* hclgevf_cmd_send - send command to command queue
39  * @hw: pointer to the hw struct
40  * @desc: prefilled descriptor for describing the command
41  * @num : the number of descriptors to be sent
42  *
43  * This is the main send command for command queue, it
44  * sends the queue, cleans the queue, etc
45  */
46 int hclgevf_cmd_send(struct hclgevf_hw *hw, struct hclge_desc *desc, int num)
47 {
48 	return hclge_comm_cmd_send(&hw->hw, desc, num);
49 }
50 
51 static void hclgevf_trace_cmd_send(struct hclge_comm_hw *hw, struct hclge_desc *desc,
52 				   int num, bool is_special)
53 {
54 	int i;
55 
56 	trace_hclge_vf_cmd_send(hw, desc, 0, num);
57 
58 	if (is_special)
59 		return;
60 
61 	for (i = 1; i < num; i++)
62 		trace_hclge_vf_cmd_send(hw, &desc[i], i, num);
63 }
64 
65 static void hclgevf_trace_cmd_get(struct hclge_comm_hw *hw, struct hclge_desc *desc,
66 				  int num, bool is_special)
67 {
68 	int i;
69 
70 	if (!HCLGE_COMM_SEND_SYNC(le16_to_cpu(desc->flag)))
71 		return;
72 
73 	trace_hclge_vf_cmd_get(hw, desc, 0, num);
74 
75 	if (is_special)
76 		return;
77 
78 	for (i = 1; i < num; i++)
79 		trace_hclge_vf_cmd_get(hw, &desc[i], i, num);
80 }
81 
82 static const struct hclge_comm_cmq_ops hclgevf_cmq_ops = {
83 	.trace_cmd_send = hclgevf_trace_cmd_send,
84 	.trace_cmd_get = hclgevf_trace_cmd_get,
85 };
86 
87 void hclgevf_arq_init(struct hclgevf_dev *hdev)
88 {
89 	struct hclge_comm_cmq *cmdq = &hdev->hw.hw.cmq;
90 
91 	spin_lock(&cmdq->crq.lock);
92 	/* initialize the pointers of async rx queue of mailbox */
93 	hdev->arq.hdev = hdev;
94 	hdev->arq.head = 0;
95 	hdev->arq.tail = 0;
96 	atomic_set(&hdev->arq.count, 0);
97 	spin_unlock(&cmdq->crq.lock);
98 }
99 
100 struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
101 {
102 	if (!handle->client)
103 		return container_of(handle, struct hclgevf_dev, nic);
104 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
105 		return container_of(handle, struct hclgevf_dev, roce);
106 	else
107 		return container_of(handle, struct hclgevf_dev, nic);
108 }
109 
110 static void hclgevf_update_stats(struct hnae3_handle *handle)
111 {
112 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
113 	int status;
114 
115 	status = hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
116 	if (status)
117 		dev_err(&hdev->pdev->dev,
118 			"VF update of TQPS stats fail, status = %d.\n",
119 			status);
120 }
121 
122 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
123 {
124 	if (strset == ETH_SS_TEST)
125 		return -EOPNOTSUPP;
126 	else if (strset == ETH_SS_STATS)
127 		return hclge_comm_tqps_get_sset_count(handle);
128 
129 	return 0;
130 }
131 
132 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
133 				u8 *data)
134 {
135 	u8 *p = (char *)data;
136 
137 	if (strset == ETH_SS_STATS)
138 		p = hclge_comm_tqps_get_strings(handle, p);
139 }
140 
141 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
142 {
143 	hclge_comm_tqps_get_stats(handle, data);
144 }
145 
146 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
147 				   u8 subcode)
148 {
149 	if (msg) {
150 		memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
151 		msg->code = code;
152 		msg->subcode = subcode;
153 	}
154 }
155 
156 static int hclgevf_get_basic_info(struct hclgevf_dev *hdev)
157 {
158 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
159 	u8 resp_msg[HCLGE_MBX_MAX_RESP_DATA_SIZE];
160 	struct hclge_basic_info *basic_info;
161 	struct hclge_vf_to_pf_msg send_msg;
162 	unsigned long caps;
163 	int status;
164 
165 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_BASIC_INFO, 0);
166 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
167 				      sizeof(resp_msg));
168 	if (status) {
169 		dev_err(&hdev->pdev->dev,
170 			"failed to get basic info from pf, ret = %d", status);
171 		return status;
172 	}
173 
174 	basic_info = (struct hclge_basic_info *)resp_msg;
175 
176 	hdev->hw_tc_map = basic_info->hw_tc_map;
177 	hdev->mbx_api_version = le16_to_cpu(basic_info->mbx_api_version);
178 	caps = le32_to_cpu(basic_info->pf_caps);
179 	if (test_bit(HNAE3_PF_SUPPORT_VLAN_FLTR_MDF_B, &caps))
180 		set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps);
181 
182 	return 0;
183 }
184 
185 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
186 {
187 	struct hnae3_handle *nic = &hdev->nic;
188 	struct hclge_vf_to_pf_msg send_msg;
189 	u8 resp_msg;
190 	int ret;
191 
192 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
193 			       HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
194 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
195 				   sizeof(u8));
196 	if (ret) {
197 		dev_err(&hdev->pdev->dev,
198 			"VF request to get port based vlan state failed %d",
199 			ret);
200 		return ret;
201 	}
202 
203 	nic->port_base_vlan_state = resp_msg;
204 
205 	return 0;
206 }
207 
208 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
209 {
210 #define HCLGEVF_TQPS_RSS_INFO_LEN	6
211 
212 	struct hclge_mbx_vf_queue_info *queue_info;
213 	u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
214 	struct hclge_vf_to_pf_msg send_msg;
215 	int status;
216 
217 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
218 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
219 				      HCLGEVF_TQPS_RSS_INFO_LEN);
220 	if (status) {
221 		dev_err(&hdev->pdev->dev,
222 			"VF request to get tqp info from PF failed %d",
223 			status);
224 		return status;
225 	}
226 
227 	queue_info = (struct hclge_mbx_vf_queue_info *)resp_msg;
228 	hdev->num_tqps = le16_to_cpu(queue_info->num_tqps);
229 	hdev->rss_size_max = le16_to_cpu(queue_info->rss_size);
230 	hdev->rx_buf_len = le16_to_cpu(queue_info->rx_buf_len);
231 
232 	return 0;
233 }
234 
235 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
236 {
237 #define HCLGEVF_TQPS_DEPTH_INFO_LEN	4
238 
239 	struct hclge_mbx_vf_queue_depth *queue_depth;
240 	u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
241 	struct hclge_vf_to_pf_msg send_msg;
242 	int ret;
243 
244 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
245 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
246 				   HCLGEVF_TQPS_DEPTH_INFO_LEN);
247 	if (ret) {
248 		dev_err(&hdev->pdev->dev,
249 			"VF request to get tqp depth info from PF failed %d",
250 			ret);
251 		return ret;
252 	}
253 
254 	queue_depth = (struct hclge_mbx_vf_queue_depth *)resp_msg;
255 	hdev->num_tx_desc = le16_to_cpu(queue_depth->num_tx_desc);
256 	hdev->num_rx_desc = le16_to_cpu(queue_depth->num_rx_desc);
257 
258 	return 0;
259 }
260 
261 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
262 {
263 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
264 	struct hclge_vf_to_pf_msg send_msg;
265 	u16 qid_in_pf = 0;
266 	u8 resp_data[2];
267 	int ret;
268 
269 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
270 	*(__le16 *)send_msg.data = cpu_to_le16(queue_id);
271 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
272 				   sizeof(resp_data));
273 	if (!ret)
274 		qid_in_pf = le16_to_cpu(*(__le16 *)resp_data);
275 
276 	return qid_in_pf;
277 }
278 
279 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
280 {
281 	struct hclge_vf_to_pf_msg send_msg;
282 	u8 resp_msg[2];
283 	int ret;
284 
285 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
286 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
287 				   sizeof(resp_msg));
288 	if (ret) {
289 		dev_err(&hdev->pdev->dev,
290 			"VF request to get the pf port media type failed %d",
291 			ret);
292 		return ret;
293 	}
294 
295 	hdev->hw.mac.media_type = resp_msg[0];
296 	hdev->hw.mac.module_type = resp_msg[1];
297 
298 	return 0;
299 }
300 
301 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
302 {
303 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
304 	struct hclge_comm_tqp *tqp;
305 	int i;
306 
307 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
308 				  sizeof(struct hclge_comm_tqp), GFP_KERNEL);
309 	if (!hdev->htqp)
310 		return -ENOMEM;
311 
312 	tqp = hdev->htqp;
313 
314 	for (i = 0; i < hdev->num_tqps; i++) {
315 		tqp->dev = &hdev->pdev->dev;
316 		tqp->index = i;
317 
318 		tqp->q.ae_algo = &ae_algovf;
319 		tqp->q.buf_size = hdev->rx_buf_len;
320 		tqp->q.tx_desc_num = hdev->num_tx_desc;
321 		tqp->q.rx_desc_num = hdev->num_rx_desc;
322 
323 		/* need an extended offset to configure queues >=
324 		 * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
325 		 */
326 		if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
327 			tqp->q.io_base = hdev->hw.hw.io_base +
328 					 HCLGEVF_TQP_REG_OFFSET +
329 					 i * HCLGEVF_TQP_REG_SIZE;
330 		else
331 			tqp->q.io_base = hdev->hw.hw.io_base +
332 					 HCLGEVF_TQP_REG_OFFSET +
333 					 HCLGEVF_TQP_EXT_REG_OFFSET +
334 					 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
335 					 HCLGEVF_TQP_REG_SIZE;
336 
337 		/* when device supports tx push and has device memory,
338 		 * the queue can execute push mode or doorbell mode on
339 		 * device memory.
340 		 */
341 		if (test_bit(HNAE3_DEV_SUPPORT_TX_PUSH_B, ae_dev->caps))
342 			tqp->q.mem_base = hdev->hw.hw.mem_base +
343 					  HCLGEVF_TQP_MEM_OFFSET(hdev, i);
344 
345 		tqp++;
346 	}
347 
348 	return 0;
349 }
350 
351 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
352 {
353 	struct hnae3_handle *nic = &hdev->nic;
354 	struct hnae3_knic_private_info *kinfo;
355 	u16 new_tqps = hdev->num_tqps;
356 	unsigned int i;
357 	u8 num_tc = 0;
358 
359 	kinfo = &nic->kinfo;
360 	kinfo->num_tx_desc = hdev->num_tx_desc;
361 	kinfo->num_rx_desc = hdev->num_rx_desc;
362 	kinfo->rx_buf_len = hdev->rx_buf_len;
363 	for (i = 0; i < HCLGE_COMM_MAX_TC_NUM; i++)
364 		if (hdev->hw_tc_map & BIT(i))
365 			num_tc++;
366 
367 	num_tc = num_tc ? num_tc : 1;
368 	kinfo->tc_info.num_tc = num_tc;
369 	kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc);
370 	new_tqps = kinfo->rss_size * num_tc;
371 	kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
372 
373 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
374 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
375 	if (!kinfo->tqp)
376 		return -ENOMEM;
377 
378 	for (i = 0; i < kinfo->num_tqps; i++) {
379 		hdev->htqp[i].q.handle = &hdev->nic;
380 		hdev->htqp[i].q.tqp_index = i;
381 		kinfo->tqp[i] = &hdev->htqp[i].q;
382 	}
383 
384 	/* after init the max rss_size and tqps, adjust the default tqp numbers
385 	 * and rss size with the actual vector numbers
386 	 */
387 	kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
388 	kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc,
389 				kinfo->rss_size);
390 
391 	return 0;
392 }
393 
394 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
395 {
396 	struct hclge_vf_to_pf_msg send_msg;
397 	int status;
398 
399 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
400 	status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
401 	if (status)
402 		dev_err(&hdev->pdev->dev,
403 			"VF failed to fetch link status(%d) from PF", status);
404 }
405 
406 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
407 {
408 	struct hnae3_handle *rhandle = &hdev->roce;
409 	struct hnae3_handle *handle = &hdev->nic;
410 	struct hnae3_client *rclient;
411 	struct hnae3_client *client;
412 
413 	if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
414 		return;
415 
416 	client = handle->client;
417 	rclient = hdev->roce_client;
418 
419 	link_state =
420 		test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
421 	if (link_state != hdev->hw.mac.link) {
422 		hdev->hw.mac.link = link_state;
423 		client->ops->link_status_change(handle, !!link_state);
424 		if (rclient && rclient->ops->link_status_change)
425 			rclient->ops->link_status_change(rhandle, !!link_state);
426 	}
427 
428 	clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
429 }
430 
431 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
432 {
433 #define HCLGEVF_ADVERTISING	0
434 #define HCLGEVF_SUPPORTED	1
435 
436 	struct hclge_vf_to_pf_msg send_msg;
437 
438 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
439 	send_msg.data[0] = HCLGEVF_ADVERTISING;
440 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
441 	send_msg.data[0] = HCLGEVF_SUPPORTED;
442 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
443 }
444 
445 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
446 {
447 	struct hnae3_handle *nic = &hdev->nic;
448 	int ret;
449 
450 	nic->ae_algo = &ae_algovf;
451 	nic->pdev = hdev->pdev;
452 	bitmap_copy(nic->numa_node_mask.bits, hdev->numa_node_mask.bits,
453 		    MAX_NUMNODES);
454 	nic->flags |= HNAE3_SUPPORT_VF;
455 	nic->kinfo.io_base = hdev->hw.hw.io_base;
456 
457 	ret = hclgevf_knic_setup(hdev);
458 	if (ret)
459 		dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
460 			ret);
461 	return ret;
462 }
463 
464 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
465 {
466 	if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
467 		dev_warn(&hdev->pdev->dev,
468 			 "vector(vector_id %d) has been freed.\n", vector_id);
469 		return;
470 	}
471 
472 	hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
473 	hdev->num_msi_left += 1;
474 	hdev->num_msi_used -= 1;
475 }
476 
477 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
478 			      struct hnae3_vector_info *vector_info)
479 {
480 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
481 	struct hnae3_vector_info *vector = vector_info;
482 	int alloc = 0;
483 	int i, j;
484 
485 	vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
486 	vector_num = min(hdev->num_msi_left, vector_num);
487 
488 	for (j = 0; j < vector_num; j++) {
489 		for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
490 			if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
491 				vector->vector = pci_irq_vector(hdev->pdev, i);
492 				vector->io_addr = hdev->hw.hw.io_base +
493 					HCLGEVF_VECTOR_REG_BASE +
494 					(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
495 				hdev->vector_status[i] = 0;
496 				hdev->vector_irq[i] = vector->vector;
497 
498 				vector++;
499 				alloc++;
500 
501 				break;
502 			}
503 		}
504 	}
505 	hdev->num_msi_left -= alloc;
506 	hdev->num_msi_used += alloc;
507 
508 	return alloc;
509 }
510 
511 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
512 {
513 	int i;
514 
515 	for (i = 0; i < hdev->num_msi; i++)
516 		if (vector == hdev->vector_irq[i])
517 			return i;
518 
519 	return -EINVAL;
520 }
521 
522 /* for revision 0x20, vf shared the same rss config with pf */
523 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
524 {
525 #define HCLGEVF_RSS_MBX_RESP_LEN	8
526 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
527 	u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
528 	struct hclge_vf_to_pf_msg send_msg;
529 	u16 msg_num, hash_key_index;
530 	u8 index;
531 	int ret;
532 
533 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
534 	msg_num = (HCLGE_COMM_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
535 			HCLGEVF_RSS_MBX_RESP_LEN;
536 	for (index = 0; index < msg_num; index++) {
537 		send_msg.data[0] = index;
538 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
539 					   HCLGEVF_RSS_MBX_RESP_LEN);
540 		if (ret) {
541 			dev_err(&hdev->pdev->dev,
542 				"VF get rss hash key from PF failed, ret=%d",
543 				ret);
544 			return ret;
545 		}
546 
547 		hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
548 		if (index == msg_num - 1)
549 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
550 			       &resp_msg[0],
551 			       HCLGE_COMM_RSS_KEY_SIZE - hash_key_index);
552 		else
553 			memcpy(&rss_cfg->rss_hash_key[hash_key_index],
554 			       &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
555 	}
556 
557 	return 0;
558 }
559 
560 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
561 			   u8 *hfunc)
562 {
563 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
564 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
565 	int ret;
566 
567 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
568 		hclge_comm_get_rss_hash_info(rss_cfg, key, hfunc);
569 	} else {
570 		if (hfunc)
571 			*hfunc = ETH_RSS_HASH_TOP;
572 		if (key) {
573 			ret = hclgevf_get_rss_hash_key(hdev);
574 			if (ret)
575 				return ret;
576 			memcpy(key, rss_cfg->rss_hash_key,
577 			       HCLGE_COMM_RSS_KEY_SIZE);
578 		}
579 	}
580 
581 	hclge_comm_get_rss_indir_tbl(rss_cfg, indir,
582 				     hdev->ae_dev->dev_specs.rss_ind_tbl_size);
583 
584 	return 0;
585 }
586 
587 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
588 			   const u8 *key, const u8 hfunc)
589 {
590 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
591 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
592 	int ret, i;
593 
594 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
595 		ret = hclge_comm_set_rss_hash_key(rss_cfg, &hdev->hw.hw, key,
596 						  hfunc);
597 		if (ret)
598 			return ret;
599 	}
600 
601 	/* update the shadow RSS table with user specified qids */
602 	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
603 		rss_cfg->rss_indirection_tbl[i] = indir[i];
604 
605 	/* update the hardware */
606 	return hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
607 					      rss_cfg->rss_indirection_tbl);
608 }
609 
610 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
611 				 struct ethtool_rxnfc *nfc)
612 {
613 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
614 	int ret;
615 
616 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
617 		return -EOPNOTSUPP;
618 
619 	ret = hclge_comm_set_rss_tuple(hdev->ae_dev, &hdev->hw.hw,
620 				       &hdev->rss_cfg, nfc);
621 	if (ret)
622 		dev_err(&hdev->pdev->dev,
623 		"failed to set rss tuple, ret = %d.\n", ret);
624 
625 	return ret;
626 }
627 
628 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
629 				 struct ethtool_rxnfc *nfc)
630 {
631 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
632 	u8 tuple_sets;
633 	int ret;
634 
635 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
636 		return -EOPNOTSUPP;
637 
638 	nfc->data = 0;
639 
640 	ret = hclge_comm_get_rss_tuple(&hdev->rss_cfg, nfc->flow_type,
641 				       &tuple_sets);
642 	if (ret || !tuple_sets)
643 		return ret;
644 
645 	nfc->data = hclge_comm_convert_rss_tuple(tuple_sets);
646 
647 	return 0;
648 }
649 
650 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
651 {
652 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
653 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
654 
655 	return rss_cfg->rss_size;
656 }
657 
658 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
659 				       int vector_id,
660 				       struct hnae3_ring_chain_node *ring_chain)
661 {
662 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
663 	struct hclge_vf_to_pf_msg send_msg;
664 	struct hnae3_ring_chain_node *node;
665 	int status;
666 	int i = 0;
667 
668 	memset(&send_msg, 0, sizeof(send_msg));
669 	send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
670 		HCLGE_MBX_UNMAP_RING_TO_VECTOR;
671 	send_msg.vector_id = vector_id;
672 
673 	for (node = ring_chain; node; node = node->next) {
674 		send_msg.param[i].ring_type =
675 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
676 
677 		send_msg.param[i].tqp_index = node->tqp_index;
678 		send_msg.param[i].int_gl_index =
679 					hnae3_get_field(node->int_gl_idx,
680 							HNAE3_RING_GL_IDX_M,
681 							HNAE3_RING_GL_IDX_S);
682 
683 		i++;
684 		if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
685 			send_msg.ring_num = i;
686 
687 			status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
688 						      NULL, 0);
689 			if (status) {
690 				dev_err(&hdev->pdev->dev,
691 					"Map TQP fail, status is %d.\n",
692 					status);
693 				return status;
694 			}
695 			i = 0;
696 		}
697 	}
698 
699 	return 0;
700 }
701 
702 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
703 				      struct hnae3_ring_chain_node *ring_chain)
704 {
705 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
706 	int vector_id;
707 
708 	vector_id = hclgevf_get_vector_index(hdev, vector);
709 	if (vector_id < 0) {
710 		dev_err(&handle->pdev->dev,
711 			"Get vector index fail. ret =%d\n", vector_id);
712 		return vector_id;
713 	}
714 
715 	return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
716 }
717 
718 static int hclgevf_unmap_ring_from_vector(
719 				struct hnae3_handle *handle,
720 				int vector,
721 				struct hnae3_ring_chain_node *ring_chain)
722 {
723 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
724 	int ret, vector_id;
725 
726 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
727 		return 0;
728 
729 	vector_id = hclgevf_get_vector_index(hdev, vector);
730 	if (vector_id < 0) {
731 		dev_err(&handle->pdev->dev,
732 			"Get vector index fail. ret =%d\n", vector_id);
733 		return vector_id;
734 	}
735 
736 	ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
737 	if (ret)
738 		dev_err(&handle->pdev->dev,
739 			"Unmap ring from vector fail. vector=%d, ret =%d\n",
740 			vector_id,
741 			ret);
742 
743 	return ret;
744 }
745 
746 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
747 {
748 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
749 	int vector_id;
750 
751 	vector_id = hclgevf_get_vector_index(hdev, vector);
752 	if (vector_id < 0) {
753 		dev_err(&handle->pdev->dev,
754 			"hclgevf_put_vector get vector index fail. ret =%d\n",
755 			vector_id);
756 		return vector_id;
757 	}
758 
759 	hclgevf_free_vector(hdev, vector_id);
760 
761 	return 0;
762 }
763 
764 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
765 					bool en_uc_pmc, bool en_mc_pmc,
766 					bool en_bc_pmc)
767 {
768 	struct hnae3_handle *handle = &hdev->nic;
769 	struct hclge_vf_to_pf_msg send_msg;
770 	int ret;
771 
772 	memset(&send_msg, 0, sizeof(send_msg));
773 	send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
774 	send_msg.en_bc = en_bc_pmc ? 1 : 0;
775 	send_msg.en_uc = en_uc_pmc ? 1 : 0;
776 	send_msg.en_mc = en_mc_pmc ? 1 : 0;
777 	send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC,
778 					     &handle->priv_flags) ? 1 : 0;
779 
780 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
781 	if (ret)
782 		dev_err(&hdev->pdev->dev,
783 			"Set promisc mode fail, status is %d.\n", ret);
784 
785 	return ret;
786 }
787 
788 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
789 				    bool en_mc_pmc)
790 {
791 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
792 	bool en_bc_pmc;
793 
794 	en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
795 
796 	return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
797 					    en_bc_pmc);
798 }
799 
800 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
801 {
802 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
803 
804 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
805 	hclgevf_task_schedule(hdev, 0);
806 }
807 
808 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
809 {
810 	struct hnae3_handle *handle = &hdev->nic;
811 	bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
812 	bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
813 	int ret;
814 
815 	if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
816 		ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
817 		if (!ret)
818 			clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
819 	}
820 }
821 
822 static int hclgevf_tqp_enable_cmd_send(struct hclgevf_dev *hdev, u16 tqp_id,
823 				       u16 stream_id, bool enable)
824 {
825 	struct hclgevf_cfg_com_tqp_queue_cmd *req;
826 	struct hclge_desc desc;
827 
828 	req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
829 
830 	hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_COM_TQP_QUEUE, false);
831 	req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
832 	req->stream_id = cpu_to_le16(stream_id);
833 	if (enable)
834 		req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
835 
836 	return hclgevf_cmd_send(&hdev->hw, &desc, 1);
837 }
838 
839 static int hclgevf_tqp_enable(struct hnae3_handle *handle, bool enable)
840 {
841 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
842 	int ret;
843 	u16 i;
844 
845 	for (i = 0; i < handle->kinfo.num_tqps; i++) {
846 		ret = hclgevf_tqp_enable_cmd_send(hdev, i, 0, enable);
847 		if (ret)
848 			return ret;
849 	}
850 
851 	return 0;
852 }
853 
854 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
855 {
856 	struct hclge_vf_to_pf_msg send_msg;
857 	u8 host_mac[ETH_ALEN];
858 	int status;
859 
860 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
861 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
862 				      ETH_ALEN);
863 	if (status) {
864 		dev_err(&hdev->pdev->dev,
865 			"fail to get VF MAC from host %d", status);
866 		return status;
867 	}
868 
869 	ether_addr_copy(p, host_mac);
870 
871 	return 0;
872 }
873 
874 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
875 {
876 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
877 	u8 host_mac_addr[ETH_ALEN];
878 
879 	if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
880 		return;
881 
882 	hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
883 	if (hdev->has_pf_mac)
884 		ether_addr_copy(p, host_mac_addr);
885 	else
886 		ether_addr_copy(p, hdev->hw.mac.mac_addr);
887 }
888 
889 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, const void *p,
890 				bool is_first)
891 {
892 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
893 	u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
894 	struct hclge_vf_to_pf_msg send_msg;
895 	u8 *new_mac_addr = (u8 *)p;
896 	int status;
897 
898 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
899 	send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
900 	ether_addr_copy(send_msg.data, new_mac_addr);
901 	if (is_first && !hdev->has_pf_mac)
902 		eth_zero_addr(&send_msg.data[ETH_ALEN]);
903 	else
904 		ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
905 	status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
906 	if (!status)
907 		ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
908 
909 	return status;
910 }
911 
912 static struct hclgevf_mac_addr_node *
913 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
914 {
915 	struct hclgevf_mac_addr_node *mac_node, *tmp;
916 
917 	list_for_each_entry_safe(mac_node, tmp, list, node)
918 		if (ether_addr_equal(mac_addr, mac_node->mac_addr))
919 			return mac_node;
920 
921 	return NULL;
922 }
923 
924 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
925 				    enum HCLGEVF_MAC_NODE_STATE state)
926 {
927 	switch (state) {
928 	/* from set_rx_mode or tmp_add_list */
929 	case HCLGEVF_MAC_TO_ADD:
930 		if (mac_node->state == HCLGEVF_MAC_TO_DEL)
931 			mac_node->state = HCLGEVF_MAC_ACTIVE;
932 		break;
933 	/* only from set_rx_mode */
934 	case HCLGEVF_MAC_TO_DEL:
935 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
936 			list_del(&mac_node->node);
937 			kfree(mac_node);
938 		} else {
939 			mac_node->state = HCLGEVF_MAC_TO_DEL;
940 		}
941 		break;
942 	/* only from tmp_add_list, the mac_node->state won't be
943 	 * HCLGEVF_MAC_ACTIVE
944 	 */
945 	case HCLGEVF_MAC_ACTIVE:
946 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
947 			mac_node->state = HCLGEVF_MAC_ACTIVE;
948 		break;
949 	}
950 }
951 
952 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
953 				   enum HCLGEVF_MAC_NODE_STATE state,
954 				   enum HCLGEVF_MAC_ADDR_TYPE mac_type,
955 				   const unsigned char *addr)
956 {
957 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
958 	struct hclgevf_mac_addr_node *mac_node;
959 	struct list_head *list;
960 
961 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
962 	       &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
963 
964 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
965 
966 	/* if the mac addr is already in the mac list, no need to add a new
967 	 * one into it, just check the mac addr state, convert it to a new
968 	 * state, or just remove it, or do nothing.
969 	 */
970 	mac_node = hclgevf_find_mac_node(list, addr);
971 	if (mac_node) {
972 		hclgevf_update_mac_node(mac_node, state);
973 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
974 		return 0;
975 	}
976 	/* if this address is never added, unnecessary to delete */
977 	if (state == HCLGEVF_MAC_TO_DEL) {
978 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
979 		return -ENOENT;
980 	}
981 
982 	mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
983 	if (!mac_node) {
984 		spin_unlock_bh(&hdev->mac_table.mac_list_lock);
985 		return -ENOMEM;
986 	}
987 
988 	mac_node->state = state;
989 	ether_addr_copy(mac_node->mac_addr, addr);
990 	list_add_tail(&mac_node->node, list);
991 
992 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
993 	return 0;
994 }
995 
996 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
997 			       const unsigned char *addr)
998 {
999 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1000 				       HCLGEVF_MAC_ADDR_UC, addr);
1001 }
1002 
1003 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1004 			      const unsigned char *addr)
1005 {
1006 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1007 				       HCLGEVF_MAC_ADDR_UC, addr);
1008 }
1009 
1010 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1011 			       const unsigned char *addr)
1012 {
1013 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1014 				       HCLGEVF_MAC_ADDR_MC, addr);
1015 }
1016 
1017 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1018 			      const unsigned char *addr)
1019 {
1020 	return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1021 				       HCLGEVF_MAC_ADDR_MC, addr);
1022 }
1023 
1024 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1025 				    struct hclgevf_mac_addr_node *mac_node,
1026 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1027 {
1028 	struct hclge_vf_to_pf_msg send_msg;
1029 	u8 code, subcode;
1030 
1031 	if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1032 		code = HCLGE_MBX_SET_UNICAST;
1033 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1034 			subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1035 		else
1036 			subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1037 	} else {
1038 		code = HCLGE_MBX_SET_MULTICAST;
1039 		if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1040 			subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1041 		else
1042 			subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1043 	}
1044 
1045 	hclgevf_build_send_msg(&send_msg, code, subcode);
1046 	ether_addr_copy(send_msg.data, mac_node->mac_addr);
1047 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1048 }
1049 
1050 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1051 				    struct list_head *list,
1052 				    enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1053 {
1054 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
1055 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1056 	int ret;
1057 
1058 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1059 		ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1060 		if  (ret) {
1061 			hnae3_format_mac_addr(format_mac_addr,
1062 					      mac_node->mac_addr);
1063 			dev_err(&hdev->pdev->dev,
1064 				"failed to configure mac %s, state = %d, ret = %d\n",
1065 				format_mac_addr, mac_node->state, ret);
1066 			return;
1067 		}
1068 		if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1069 			mac_node->state = HCLGEVF_MAC_ACTIVE;
1070 		} else {
1071 			list_del(&mac_node->node);
1072 			kfree(mac_node);
1073 		}
1074 	}
1075 }
1076 
1077 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1078 				       struct list_head *mac_list)
1079 {
1080 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1081 
1082 	list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1083 		/* if the mac address from tmp_add_list is not in the
1084 		 * uc/mc_mac_list, it means have received a TO_DEL request
1085 		 * during the time window of sending mac config request to PF
1086 		 * If mac_node state is ACTIVE, then change its state to TO_DEL,
1087 		 * then it will be removed at next time. If is TO_ADD, it means
1088 		 * send TO_ADD request failed, so just remove the mac node.
1089 		 */
1090 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1091 		if (new_node) {
1092 			hclgevf_update_mac_node(new_node, mac_node->state);
1093 			list_del(&mac_node->node);
1094 			kfree(mac_node);
1095 		} else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1096 			mac_node->state = HCLGEVF_MAC_TO_DEL;
1097 			list_move_tail(&mac_node->node, mac_list);
1098 		} else {
1099 			list_del(&mac_node->node);
1100 			kfree(mac_node);
1101 		}
1102 	}
1103 }
1104 
1105 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1106 				       struct list_head *mac_list)
1107 {
1108 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1109 
1110 	list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1111 		new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1112 		if (new_node) {
1113 			/* If the mac addr is exist in the mac list, it means
1114 			 * received a new request TO_ADD during the time window
1115 			 * of sending mac addr configurrequest to PF, so just
1116 			 * change the mac state to ACTIVE.
1117 			 */
1118 			new_node->state = HCLGEVF_MAC_ACTIVE;
1119 			list_del(&mac_node->node);
1120 			kfree(mac_node);
1121 		} else {
1122 			list_move_tail(&mac_node->node, mac_list);
1123 		}
1124 	}
1125 }
1126 
1127 static void hclgevf_clear_list(struct list_head *list)
1128 {
1129 	struct hclgevf_mac_addr_node *mac_node, *tmp;
1130 
1131 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1132 		list_del(&mac_node->node);
1133 		kfree(mac_node);
1134 	}
1135 }
1136 
1137 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1138 				  enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1139 {
1140 	struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1141 	struct list_head tmp_add_list, tmp_del_list;
1142 	struct list_head *list;
1143 
1144 	INIT_LIST_HEAD(&tmp_add_list);
1145 	INIT_LIST_HEAD(&tmp_del_list);
1146 
1147 	/* move the mac addr to the tmp_add_list and tmp_del_list, then
1148 	 * we can add/delete these mac addr outside the spin lock
1149 	 */
1150 	list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1151 		&hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1152 
1153 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1154 
1155 	list_for_each_entry_safe(mac_node, tmp, list, node) {
1156 		switch (mac_node->state) {
1157 		case HCLGEVF_MAC_TO_DEL:
1158 			list_move_tail(&mac_node->node, &tmp_del_list);
1159 			break;
1160 		case HCLGEVF_MAC_TO_ADD:
1161 			new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1162 			if (!new_node)
1163 				goto stop_traverse;
1164 
1165 			ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1166 			new_node->state = mac_node->state;
1167 			list_add_tail(&new_node->node, &tmp_add_list);
1168 			break;
1169 		default:
1170 			break;
1171 		}
1172 	}
1173 
1174 stop_traverse:
1175 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1176 
1177 	/* delete first, in order to get max mac table space for adding */
1178 	hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1179 	hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1180 
1181 	/* if some mac addresses were added/deleted fail, move back to the
1182 	 * mac_list, and retry at next time.
1183 	 */
1184 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1185 
1186 	hclgevf_sync_from_del_list(&tmp_del_list, list);
1187 	hclgevf_sync_from_add_list(&tmp_add_list, list);
1188 
1189 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1190 }
1191 
1192 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1193 {
1194 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1195 	hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1196 }
1197 
1198 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1199 {
1200 	spin_lock_bh(&hdev->mac_table.mac_list_lock);
1201 
1202 	hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1203 	hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1204 
1205 	spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1206 }
1207 
1208 static int hclgevf_enable_vlan_filter(struct hnae3_handle *handle, bool enable)
1209 {
1210 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1211 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
1212 	struct hclge_vf_to_pf_msg send_msg;
1213 
1214 	if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
1215 		return -EOPNOTSUPP;
1216 
1217 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1218 			       HCLGE_MBX_ENABLE_VLAN_FILTER);
1219 	send_msg.data[0] = enable ? 1 : 0;
1220 
1221 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1222 }
1223 
1224 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1225 				   __be16 proto, u16 vlan_id,
1226 				   bool is_kill)
1227 {
1228 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1229 	struct hclge_mbx_vlan_filter *vlan_filter;
1230 	struct hclge_vf_to_pf_msg send_msg;
1231 	int ret;
1232 
1233 	if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1234 		return -EINVAL;
1235 
1236 	if (proto != htons(ETH_P_8021Q))
1237 		return -EPROTONOSUPPORT;
1238 
1239 	/* When device is resetting or reset failed, firmware is unable to
1240 	 * handle mailbox. Just record the vlan id, and remove it after
1241 	 * reset finished.
1242 	 */
1243 	if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1244 	     test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1245 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1246 		return -EBUSY;
1247 	} else if (!is_kill && test_bit(vlan_id, hdev->vlan_del_fail_bmap)) {
1248 		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1249 	}
1250 
1251 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1252 			       HCLGE_MBX_VLAN_FILTER);
1253 	vlan_filter = (struct hclge_mbx_vlan_filter *)send_msg.data;
1254 	vlan_filter->is_kill = is_kill;
1255 	vlan_filter->vlan_id = cpu_to_le16(vlan_id);
1256 	vlan_filter->proto = cpu_to_le16(be16_to_cpu(proto));
1257 
1258 	/* when remove hw vlan filter failed, record the vlan id,
1259 	 * and try to remove it from hw later, to be consistence
1260 	 * with stack.
1261 	 */
1262 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1263 	if (is_kill && ret)
1264 		set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1265 
1266 	return ret;
1267 }
1268 
1269 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1270 {
1271 #define HCLGEVF_MAX_SYNC_COUNT	60
1272 	struct hnae3_handle *handle = &hdev->nic;
1273 	int ret, sync_cnt = 0;
1274 	u16 vlan_id;
1275 
1276 	if (bitmap_empty(hdev->vlan_del_fail_bmap, VLAN_N_VID))
1277 		return;
1278 
1279 	rtnl_lock();
1280 	vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1281 	while (vlan_id != VLAN_N_VID) {
1282 		ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1283 					      vlan_id, true);
1284 		if (ret)
1285 			break;
1286 
1287 		clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1288 		sync_cnt++;
1289 		if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1290 			break;
1291 
1292 		vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1293 	}
1294 	rtnl_unlock();
1295 }
1296 
1297 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1298 {
1299 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1300 	struct hclge_vf_to_pf_msg send_msg;
1301 
1302 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1303 			       HCLGE_MBX_VLAN_RX_OFF_CFG);
1304 	send_msg.data[0] = enable ? 1 : 0;
1305 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1306 }
1307 
1308 static int hclgevf_reset_tqp(struct hnae3_handle *handle)
1309 {
1310 #define HCLGEVF_RESET_ALL_QUEUE_DONE	1U
1311 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1312 	struct hclge_vf_to_pf_msg send_msg;
1313 	u8 return_status = 0;
1314 	int ret;
1315 	u16 i;
1316 
1317 	/* disable vf queue before send queue reset msg to PF */
1318 	ret = hclgevf_tqp_enable(handle, false);
1319 	if (ret) {
1320 		dev_err(&hdev->pdev->dev, "failed to disable tqp, ret = %d\n",
1321 			ret);
1322 		return ret;
1323 	}
1324 
1325 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1326 
1327 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &return_status,
1328 				   sizeof(return_status));
1329 	if (ret || return_status == HCLGEVF_RESET_ALL_QUEUE_DONE)
1330 		return ret;
1331 
1332 	for (i = 1; i < handle->kinfo.num_tqps; i++) {
1333 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1334 		*(__le16 *)send_msg.data = cpu_to_le16(i);
1335 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1336 		if (ret)
1337 			return ret;
1338 	}
1339 
1340 	return 0;
1341 }
1342 
1343 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1344 {
1345 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1346 	struct hclge_mbx_mtu_info *mtu_info;
1347 	struct hclge_vf_to_pf_msg send_msg;
1348 
1349 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1350 	mtu_info = (struct hclge_mbx_mtu_info *)send_msg.data;
1351 	mtu_info->mtu = cpu_to_le32(new_mtu);
1352 
1353 	return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1354 }
1355 
1356 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1357 				 enum hnae3_reset_notify_type type)
1358 {
1359 	struct hnae3_client *client = hdev->nic_client;
1360 	struct hnae3_handle *handle = &hdev->nic;
1361 	int ret;
1362 
1363 	if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1364 	    !client)
1365 		return 0;
1366 
1367 	if (!client->ops->reset_notify)
1368 		return -EOPNOTSUPP;
1369 
1370 	ret = client->ops->reset_notify(handle, type);
1371 	if (ret)
1372 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1373 			type, ret);
1374 
1375 	return ret;
1376 }
1377 
1378 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
1379 				      enum hnae3_reset_notify_type type)
1380 {
1381 	struct hnae3_client *client = hdev->roce_client;
1382 	struct hnae3_handle *handle = &hdev->roce;
1383 	int ret;
1384 
1385 	if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
1386 		return 0;
1387 
1388 	if (!client->ops->reset_notify)
1389 		return -EOPNOTSUPP;
1390 
1391 	ret = client->ops->reset_notify(handle, type);
1392 	if (ret)
1393 		dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
1394 			type, ret);
1395 	return ret;
1396 }
1397 
1398 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1399 {
1400 #define HCLGEVF_RESET_WAIT_US	20000
1401 #define HCLGEVF_RESET_WAIT_CNT	2000
1402 #define HCLGEVF_RESET_WAIT_TIMEOUT_US	\
1403 	(HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1404 
1405 	u32 val;
1406 	int ret;
1407 
1408 	if (hdev->reset_type == HNAE3_VF_RESET)
1409 		ret = readl_poll_timeout(hdev->hw.hw.io_base +
1410 					 HCLGEVF_VF_RST_ING, val,
1411 					 !(val & HCLGEVF_VF_RST_ING_BIT),
1412 					 HCLGEVF_RESET_WAIT_US,
1413 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1414 	else
1415 		ret = readl_poll_timeout(hdev->hw.hw.io_base +
1416 					 HCLGEVF_RST_ING, val,
1417 					 !(val & HCLGEVF_RST_ING_BITS),
1418 					 HCLGEVF_RESET_WAIT_US,
1419 					 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1420 
1421 	/* hardware completion status should be available by this time */
1422 	if (ret) {
1423 		dev_err(&hdev->pdev->dev,
1424 			"couldn't get reset done status from h/w, timeout!\n");
1425 		return ret;
1426 	}
1427 
1428 	/* we will wait a bit more to let reset of the stack to complete. This
1429 	 * might happen in case reset assertion was made by PF. Yes, this also
1430 	 * means we might end up waiting bit more even for VF reset.
1431 	 */
1432 	if (hdev->reset_type == HNAE3_VF_FULL_RESET)
1433 		msleep(5000);
1434 	else
1435 		msleep(500);
1436 
1437 	return 0;
1438 }
1439 
1440 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1441 {
1442 	u32 reg_val;
1443 
1444 	reg_val = hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG);
1445 	if (enable)
1446 		reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1447 	else
1448 		reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1449 
1450 	hclgevf_write_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG,
1451 			  reg_val);
1452 }
1453 
1454 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1455 {
1456 	int ret;
1457 
1458 	/* uninitialize the nic client */
1459 	ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1460 	if (ret)
1461 		return ret;
1462 
1463 	/* re-initialize the hclge device */
1464 	ret = hclgevf_reset_hdev(hdev);
1465 	if (ret) {
1466 		dev_err(&hdev->pdev->dev,
1467 			"hclge device re-init failed, VF is disabled!\n");
1468 		return ret;
1469 	}
1470 
1471 	/* bring up the nic client again */
1472 	ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1473 	if (ret)
1474 		return ret;
1475 
1476 	/* clear handshake status with IMP */
1477 	hclgevf_reset_handshake(hdev, false);
1478 
1479 	/* bring up the nic to enable TX/RX again */
1480 	return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1481 }
1482 
1483 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1484 {
1485 #define HCLGEVF_RESET_SYNC_TIME 100
1486 
1487 	if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1488 		struct hclge_vf_to_pf_msg send_msg;
1489 		int ret;
1490 
1491 		hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1492 		ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1493 		if (ret) {
1494 			dev_err(&hdev->pdev->dev,
1495 				"failed to assert VF reset, ret = %d\n", ret);
1496 			return ret;
1497 		}
1498 		hdev->rst_stats.vf_func_rst_cnt++;
1499 	}
1500 
1501 	set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
1502 	/* inform hardware that preparatory work is done */
1503 	msleep(HCLGEVF_RESET_SYNC_TIME);
1504 	hclgevf_reset_handshake(hdev, true);
1505 	dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1506 		 hdev->reset_type);
1507 
1508 	return 0;
1509 }
1510 
1511 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1512 {
1513 	dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1514 		 hdev->rst_stats.vf_func_rst_cnt);
1515 	dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1516 		 hdev->rst_stats.flr_rst_cnt);
1517 	dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1518 		 hdev->rst_stats.vf_rst_cnt);
1519 	dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1520 		 hdev->rst_stats.rst_done_cnt);
1521 	dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1522 		 hdev->rst_stats.hw_rst_done_cnt);
1523 	dev_info(&hdev->pdev->dev, "reset count: %u\n",
1524 		 hdev->rst_stats.rst_cnt);
1525 	dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1526 		 hdev->rst_stats.rst_fail_cnt);
1527 	dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1528 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1529 	dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1530 		 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_STATE_REG));
1531 	dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1532 		 hclgevf_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG));
1533 	dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1534 		 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1535 	dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1536 }
1537 
1538 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1539 {
1540 	/* recover handshake status with IMP when reset fail */
1541 	hclgevf_reset_handshake(hdev, true);
1542 	hdev->rst_stats.rst_fail_cnt++;
1543 	dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1544 		hdev->rst_stats.rst_fail_cnt);
1545 
1546 	if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1547 		set_bit(hdev->reset_type, &hdev->reset_pending);
1548 
1549 	if (hclgevf_is_reset_pending(hdev)) {
1550 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1551 		hclgevf_reset_task_schedule(hdev);
1552 	} else {
1553 		set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1554 		hclgevf_dump_rst_info(hdev);
1555 	}
1556 }
1557 
1558 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1559 {
1560 	int ret;
1561 
1562 	hdev->rst_stats.rst_cnt++;
1563 
1564 	/* perform reset of the stack & ae device for a client */
1565 	ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
1566 	if (ret)
1567 		return ret;
1568 
1569 	rtnl_lock();
1570 	/* bring down the nic to stop any ongoing TX/RX */
1571 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1572 	rtnl_unlock();
1573 	if (ret)
1574 		return ret;
1575 
1576 	return hclgevf_reset_prepare_wait(hdev);
1577 }
1578 
1579 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
1580 {
1581 	int ret;
1582 
1583 	hdev->rst_stats.hw_rst_done_cnt++;
1584 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
1585 	if (ret)
1586 		return ret;
1587 
1588 	rtnl_lock();
1589 	/* now, re-initialize the nic client and ae device */
1590 	ret = hclgevf_reset_stack(hdev);
1591 	rtnl_unlock();
1592 	if (ret) {
1593 		dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1594 		return ret;
1595 	}
1596 
1597 	ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
1598 	/* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
1599 	 * times
1600 	 */
1601 	if (ret &&
1602 	    hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
1603 		return ret;
1604 
1605 	ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
1606 	if (ret)
1607 		return ret;
1608 
1609 	hdev->last_reset_time = jiffies;
1610 	hdev->rst_stats.rst_done_cnt++;
1611 	hdev->rst_stats.rst_fail_cnt = 0;
1612 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1613 
1614 	return 0;
1615 }
1616 
1617 static void hclgevf_reset(struct hclgevf_dev *hdev)
1618 {
1619 	if (hclgevf_reset_prepare(hdev))
1620 		goto err_reset;
1621 
1622 	/* check if VF could successfully fetch the hardware reset completion
1623 	 * status from the hardware
1624 	 */
1625 	if (hclgevf_reset_wait(hdev)) {
1626 		/* can't do much in this situation, will disable VF */
1627 		dev_err(&hdev->pdev->dev,
1628 			"failed to fetch H/W reset completion status\n");
1629 		goto err_reset;
1630 	}
1631 
1632 	if (hclgevf_reset_rebuild(hdev))
1633 		goto err_reset;
1634 
1635 	return;
1636 
1637 err_reset:
1638 	hclgevf_reset_err_handle(hdev);
1639 }
1640 
1641 static enum hnae3_reset_type hclgevf_get_reset_level(unsigned long *addr)
1642 {
1643 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1644 
1645 	/* return the highest priority reset level amongst all */
1646 	if (test_bit(HNAE3_VF_RESET, addr)) {
1647 		rst_level = HNAE3_VF_RESET;
1648 		clear_bit(HNAE3_VF_RESET, addr);
1649 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1650 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1651 	} else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1652 		rst_level = HNAE3_VF_FULL_RESET;
1653 		clear_bit(HNAE3_VF_FULL_RESET, addr);
1654 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1655 	} else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1656 		rst_level = HNAE3_VF_PF_FUNC_RESET;
1657 		clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1658 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1659 	} else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1660 		rst_level = HNAE3_VF_FUNC_RESET;
1661 		clear_bit(HNAE3_VF_FUNC_RESET, addr);
1662 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
1663 		rst_level = HNAE3_FLR_RESET;
1664 		clear_bit(HNAE3_FLR_RESET, addr);
1665 	}
1666 
1667 	return rst_level;
1668 }
1669 
1670 static void hclgevf_reset_event(struct pci_dev *pdev,
1671 				struct hnae3_handle *handle)
1672 {
1673 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1674 	struct hclgevf_dev *hdev = ae_dev->priv;
1675 
1676 	dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1677 
1678 	if (hdev->default_reset_request)
1679 		hdev->reset_level =
1680 			hclgevf_get_reset_level(&hdev->default_reset_request);
1681 	else
1682 		hdev->reset_level = HNAE3_VF_FUNC_RESET;
1683 
1684 	/* reset of this VF requested */
1685 	set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1686 	hclgevf_reset_task_schedule(hdev);
1687 
1688 	hdev->last_reset_time = jiffies;
1689 }
1690 
1691 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1692 					  enum hnae3_reset_type rst_type)
1693 {
1694 	struct hclgevf_dev *hdev = ae_dev->priv;
1695 
1696 	set_bit(rst_type, &hdev->default_reset_request);
1697 }
1698 
1699 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1700 {
1701 	writel(en ? 1 : 0, vector->addr);
1702 }
1703 
1704 static void hclgevf_reset_prepare_general(struct hnae3_ae_dev *ae_dev,
1705 					  enum hnae3_reset_type rst_type)
1706 {
1707 #define HCLGEVF_RESET_RETRY_WAIT_MS	500
1708 #define HCLGEVF_RESET_RETRY_CNT		5
1709 
1710 	struct hclgevf_dev *hdev = ae_dev->priv;
1711 	int retry_cnt = 0;
1712 	int ret;
1713 
1714 	while (retry_cnt++ < HCLGEVF_RESET_RETRY_CNT) {
1715 		down(&hdev->reset_sem);
1716 		set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1717 		hdev->reset_type = rst_type;
1718 		ret = hclgevf_reset_prepare(hdev);
1719 		if (!ret && !hdev->reset_pending)
1720 			break;
1721 
1722 		dev_err(&hdev->pdev->dev,
1723 			"failed to prepare to reset, ret=%d, reset_pending:0x%lx, retry_cnt:%d\n",
1724 			ret, hdev->reset_pending, retry_cnt);
1725 		clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1726 		up(&hdev->reset_sem);
1727 		msleep(HCLGEVF_RESET_RETRY_WAIT_MS);
1728 	}
1729 
1730 	/* disable misc vector before reset done */
1731 	hclgevf_enable_vector(&hdev->misc_vector, false);
1732 
1733 	if (hdev->reset_type == HNAE3_FLR_RESET)
1734 		hdev->rst_stats.flr_rst_cnt++;
1735 }
1736 
1737 static void hclgevf_reset_done(struct hnae3_ae_dev *ae_dev)
1738 {
1739 	struct hclgevf_dev *hdev = ae_dev->priv;
1740 	int ret;
1741 
1742 	hclgevf_enable_vector(&hdev->misc_vector, true);
1743 
1744 	ret = hclgevf_reset_rebuild(hdev);
1745 	if (ret)
1746 		dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
1747 			 ret);
1748 
1749 	hdev->reset_type = HNAE3_NONE_RESET;
1750 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1751 	up(&hdev->reset_sem);
1752 }
1753 
1754 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1755 {
1756 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1757 
1758 	return hdev->fw_version;
1759 }
1760 
1761 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1762 {
1763 	struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1764 
1765 	vector->vector_irq = pci_irq_vector(hdev->pdev,
1766 					    HCLGEVF_MISC_VECTOR_NUM);
1767 	vector->addr = hdev->hw.hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1768 	/* vector status always valid for Vector 0 */
1769 	hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1770 	hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1771 
1772 	hdev->num_msi_left -= 1;
1773 	hdev->num_msi_used += 1;
1774 }
1775 
1776 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1777 {
1778 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1779 	    test_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state) &&
1780 	    !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
1781 			      &hdev->state))
1782 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1783 }
1784 
1785 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1786 {
1787 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1788 	    !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
1789 			      &hdev->state))
1790 		mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
1791 }
1792 
1793 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
1794 				  unsigned long delay)
1795 {
1796 	if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
1797 	    !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
1798 		mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
1799 }
1800 
1801 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
1802 {
1803 #define	HCLGEVF_MAX_RESET_ATTEMPTS_CNT	3
1804 
1805 	if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
1806 		return;
1807 
1808 	down(&hdev->reset_sem);
1809 	set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1810 
1811 	if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1812 			       &hdev->reset_state)) {
1813 		/* PF has intimated that it is about to reset the hardware.
1814 		 * We now have to poll & check if hardware has actually
1815 		 * completed the reset sequence. On hardware reset completion,
1816 		 * VF needs to reset the client and ae device.
1817 		 */
1818 		hdev->reset_attempts = 0;
1819 
1820 		hdev->last_reset_time = jiffies;
1821 		hdev->reset_type =
1822 			hclgevf_get_reset_level(&hdev->reset_pending);
1823 		if (hdev->reset_type != HNAE3_NONE_RESET)
1824 			hclgevf_reset(hdev);
1825 	} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1826 				      &hdev->reset_state)) {
1827 		/* we could be here when either of below happens:
1828 		 * 1. reset was initiated due to watchdog timeout caused by
1829 		 *    a. IMP was earlier reset and our TX got choked down and
1830 		 *       which resulted in watchdog reacting and inducing VF
1831 		 *       reset. This also means our cmdq would be unreliable.
1832 		 *    b. problem in TX due to other lower layer(example link
1833 		 *       layer not functioning properly etc.)
1834 		 * 2. VF reset might have been initiated due to some config
1835 		 *    change.
1836 		 *
1837 		 * NOTE: Theres no clear way to detect above cases than to react
1838 		 * to the response of PF for this reset request. PF will ack the
1839 		 * 1b and 2. cases but we will not get any intimation about 1a
1840 		 * from PF as cmdq would be in unreliable state i.e. mailbox
1841 		 * communication between PF and VF would be broken.
1842 		 *
1843 		 * if we are never geting into pending state it means either:
1844 		 * 1. PF is not receiving our request which could be due to IMP
1845 		 *    reset
1846 		 * 2. PF is screwed
1847 		 * We cannot do much for 2. but to check first we can try reset
1848 		 * our PCIe + stack and see if it alleviates the problem.
1849 		 */
1850 		if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
1851 			/* prepare for full reset of stack + pcie interface */
1852 			set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1853 
1854 			/* "defer" schedule the reset task again */
1855 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1856 		} else {
1857 			hdev->reset_attempts++;
1858 
1859 			set_bit(hdev->reset_level, &hdev->reset_pending);
1860 			set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1861 		}
1862 		hclgevf_reset_task_schedule(hdev);
1863 	}
1864 
1865 	hdev->reset_type = HNAE3_NONE_RESET;
1866 	clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1867 	up(&hdev->reset_sem);
1868 }
1869 
1870 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
1871 {
1872 	if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
1873 		return;
1874 
1875 	if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1876 		return;
1877 
1878 	hclgevf_mbx_async_handler(hdev);
1879 
1880 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1881 }
1882 
1883 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
1884 {
1885 	struct hclge_vf_to_pf_msg send_msg;
1886 	int ret;
1887 
1888 	if (test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state))
1889 		return;
1890 
1891 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
1892 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1893 	if (ret)
1894 		dev_err(&hdev->pdev->dev,
1895 			"VF sends keep alive cmd failed(=%d)\n", ret);
1896 }
1897 
1898 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
1899 {
1900 	unsigned long delta = round_jiffies_relative(HZ);
1901 	struct hnae3_handle *handle = &hdev->nic;
1902 
1903 	if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state) ||
1904 	    test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state))
1905 		return;
1906 
1907 	if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
1908 		delta = jiffies - hdev->last_serv_processed;
1909 
1910 		if (delta < round_jiffies_relative(HZ)) {
1911 			delta = round_jiffies_relative(HZ) - delta;
1912 			goto out;
1913 		}
1914 	}
1915 
1916 	hdev->serv_processed_cnt++;
1917 	if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
1918 		hclgevf_keep_alive(hdev);
1919 
1920 	if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
1921 		hdev->last_serv_processed = jiffies;
1922 		goto out;
1923 	}
1924 
1925 	if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
1926 		hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
1927 
1928 	/* VF does not need to request link status when this bit is set, because
1929 	 * PF will push its link status to VFs when link status changed.
1930 	 */
1931 	if (!test_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state))
1932 		hclgevf_request_link_info(hdev);
1933 
1934 	hclgevf_update_link_mode(hdev);
1935 
1936 	hclgevf_sync_vlan_filter(hdev);
1937 
1938 	hclgevf_sync_mac_table(hdev);
1939 
1940 	hclgevf_sync_promisc_mode(hdev);
1941 
1942 	hdev->last_serv_processed = jiffies;
1943 
1944 out:
1945 	hclgevf_task_schedule(hdev, delta);
1946 }
1947 
1948 static void hclgevf_service_task(struct work_struct *work)
1949 {
1950 	struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
1951 						service_task.work);
1952 
1953 	hclgevf_reset_service_task(hdev);
1954 	hclgevf_mailbox_service_task(hdev);
1955 	hclgevf_periodic_service_task(hdev);
1956 
1957 	/* Handle reset and mbx again in case periodical task delays the
1958 	 * handling by calling hclgevf_task_schedule() in
1959 	 * hclgevf_periodic_service_task()
1960 	 */
1961 	hclgevf_reset_service_task(hdev);
1962 	hclgevf_mailbox_service_task(hdev);
1963 }
1964 
1965 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1966 {
1967 	hclgevf_write_dev(&hdev->hw, HCLGE_COMM_VECTOR0_CMDQ_SRC_REG, regclr);
1968 }
1969 
1970 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1971 						      u32 *clearval)
1972 {
1973 	u32 val, cmdq_stat_reg, rst_ing_reg;
1974 
1975 	/* fetch the events from their corresponding regs */
1976 	cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
1977 					 HCLGE_COMM_VECTOR0_CMDQ_STATE_REG);
1978 	if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1979 		rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1980 		dev_info(&hdev->pdev->dev,
1981 			 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1982 		set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1983 		set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1984 		set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
1985 		*clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
1986 		hdev->rst_stats.vf_rst_cnt++;
1987 		/* set up VF hardware reset status, its PF will clear
1988 		 * this status when PF has initialized done.
1989 		 */
1990 		val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
1991 		hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
1992 				  val | HCLGEVF_VF_RST_ING_BIT);
1993 		return HCLGEVF_VECTOR0_EVENT_RST;
1994 	}
1995 
1996 	/* check for vector0 mailbox(=CMDQ RX) event source */
1997 	if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
1998 		/* for revision 0x21, clearing interrupt is writing bit 0
1999 		 * to the clear register, writing bit 1 means to keep the
2000 		 * old value.
2001 		 * for revision 0x20, the clear register is a read & write
2002 		 * register, so we should just write 0 to the bit we are
2003 		 * handling, and keep other bits as cmdq_stat_reg.
2004 		 */
2005 		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2006 			*clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2007 		else
2008 			*clearval = cmdq_stat_reg &
2009 				    ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2010 
2011 		return HCLGEVF_VECTOR0_EVENT_MBX;
2012 	}
2013 
2014 	/* print other vector0 event source */
2015 	dev_info(&hdev->pdev->dev,
2016 		 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2017 		 cmdq_stat_reg);
2018 
2019 	return HCLGEVF_VECTOR0_EVENT_OTHER;
2020 }
2021 
2022 static void hclgevf_reset_timer(struct timer_list *t)
2023 {
2024 	struct hclgevf_dev *hdev = from_timer(hdev, t, reset_timer);
2025 
2026 	hclgevf_clear_event_cause(hdev, HCLGEVF_VECTOR0_EVENT_RST);
2027 	hclgevf_reset_task_schedule(hdev);
2028 }
2029 
2030 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2031 {
2032 #define HCLGEVF_RESET_DELAY	5
2033 
2034 	enum hclgevf_evt_cause event_cause;
2035 	struct hclgevf_dev *hdev = data;
2036 	u32 clearval;
2037 
2038 	hclgevf_enable_vector(&hdev->misc_vector, false);
2039 	event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2040 	if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER)
2041 		hclgevf_clear_event_cause(hdev, clearval);
2042 
2043 	switch (event_cause) {
2044 	case HCLGEVF_VECTOR0_EVENT_RST:
2045 		mod_timer(&hdev->reset_timer,
2046 			  jiffies + msecs_to_jiffies(HCLGEVF_RESET_DELAY));
2047 		break;
2048 	case HCLGEVF_VECTOR0_EVENT_MBX:
2049 		hclgevf_mbx_handler(hdev);
2050 		break;
2051 	default:
2052 		break;
2053 	}
2054 
2055 	hclgevf_enable_vector(&hdev->misc_vector, true);
2056 
2057 	return IRQ_HANDLED;
2058 }
2059 
2060 static int hclgevf_configure(struct hclgevf_dev *hdev)
2061 {
2062 	int ret;
2063 
2064 	hdev->gro_en = true;
2065 
2066 	ret = hclgevf_get_basic_info(hdev);
2067 	if (ret)
2068 		return ret;
2069 
2070 	/* get current port based vlan state from PF */
2071 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2072 	if (ret)
2073 		return ret;
2074 
2075 	/* get queue configuration from PF */
2076 	ret = hclgevf_get_queue_info(hdev);
2077 	if (ret)
2078 		return ret;
2079 
2080 	/* get queue depth info from PF */
2081 	ret = hclgevf_get_queue_depth(hdev);
2082 	if (ret)
2083 		return ret;
2084 
2085 	return hclgevf_get_pf_media_type(hdev);
2086 }
2087 
2088 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2089 {
2090 	struct pci_dev *pdev = ae_dev->pdev;
2091 	struct hclgevf_dev *hdev;
2092 
2093 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2094 	if (!hdev)
2095 		return -ENOMEM;
2096 
2097 	hdev->pdev = pdev;
2098 	hdev->ae_dev = ae_dev;
2099 	ae_dev->priv = hdev;
2100 
2101 	return 0;
2102 }
2103 
2104 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2105 {
2106 	struct hnae3_handle *roce = &hdev->roce;
2107 	struct hnae3_handle *nic = &hdev->nic;
2108 
2109 	roce->rinfo.num_vectors = hdev->num_roce_msix;
2110 
2111 	if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2112 	    hdev->num_msi_left == 0)
2113 		return -EINVAL;
2114 
2115 	roce->rinfo.base_vector = hdev->roce_base_msix_offset;
2116 
2117 	roce->rinfo.netdev = nic->kinfo.netdev;
2118 	roce->rinfo.roce_io_base = hdev->hw.hw.io_base;
2119 	roce->rinfo.roce_mem_base = hdev->hw.hw.mem_base;
2120 
2121 	roce->pdev = nic->pdev;
2122 	roce->ae_algo = nic->ae_algo;
2123 	bitmap_copy(roce->numa_node_mask.bits, nic->numa_node_mask.bits,
2124 		    MAX_NUMNODES);
2125 	return 0;
2126 }
2127 
2128 static int hclgevf_config_gro(struct hclgevf_dev *hdev)
2129 {
2130 	struct hclgevf_cfg_gro_status_cmd *req;
2131 	struct hclge_desc desc;
2132 	int ret;
2133 
2134 	if (!hnae3_ae_dev_gro_supported(hdev->ae_dev))
2135 		return 0;
2136 
2137 	hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_GRO_GENERIC_CONFIG,
2138 				     false);
2139 	req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2140 
2141 	req->gro_en = hdev->gro_en ? 1 : 0;
2142 
2143 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2144 	if (ret)
2145 		dev_err(&hdev->pdev->dev,
2146 			"VF GRO hardware config cmd failed, ret = %d.\n", ret);
2147 
2148 	return ret;
2149 }
2150 
2151 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2152 {
2153 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
2154 	u16 tc_offset[HCLGE_COMM_MAX_TC_NUM];
2155 	u16 tc_valid[HCLGE_COMM_MAX_TC_NUM];
2156 	u16 tc_size[HCLGE_COMM_MAX_TC_NUM];
2157 	int ret;
2158 
2159 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2160 		ret = hclge_comm_set_rss_algo_key(&hdev->hw.hw,
2161 						  rss_cfg->rss_algo,
2162 						  rss_cfg->rss_hash_key);
2163 		if (ret)
2164 			return ret;
2165 
2166 		ret = hclge_comm_set_rss_input_tuple(&hdev->hw.hw, rss_cfg);
2167 		if (ret)
2168 			return ret;
2169 	}
2170 
2171 	ret = hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
2172 					     rss_cfg->rss_indirection_tbl);
2173 	if (ret)
2174 		return ret;
2175 
2176 	hclge_comm_get_rss_tc_info(rss_cfg->rss_size, hdev->hw_tc_map,
2177 				   tc_offset, tc_valid, tc_size);
2178 
2179 	return hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset,
2180 					  tc_valid, tc_size);
2181 }
2182 
2183 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2184 {
2185 	struct hnae3_handle *nic = &hdev->nic;
2186 	int ret;
2187 
2188 	ret = hclgevf_en_hw_strip_rxvtag(nic, true);
2189 	if (ret) {
2190 		dev_err(&hdev->pdev->dev,
2191 			"failed to enable rx vlan offload, ret = %d\n", ret);
2192 		return ret;
2193 	}
2194 
2195 	return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2196 				       false);
2197 }
2198 
2199 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2200 {
2201 #define HCLGEVF_FLUSH_LINK_TIMEOUT	100000
2202 
2203 	unsigned long last = hdev->serv_processed_cnt;
2204 	int i = 0;
2205 
2206 	while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2207 	       i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2208 	       last == hdev->serv_processed_cnt)
2209 		usleep_range(1, 1);
2210 }
2211 
2212 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2213 {
2214 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2215 
2216 	if (enable) {
2217 		hclgevf_task_schedule(hdev, 0);
2218 	} else {
2219 		set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2220 
2221 		smp_mb__after_atomic(); /* flush memory to make sure DOWN is seen by service task */
2222 		hclgevf_flush_link_update(hdev);
2223 	}
2224 }
2225 
2226 static int hclgevf_ae_start(struct hnae3_handle *handle)
2227 {
2228 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2229 
2230 	clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2231 	clear_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state);
2232 
2233 	hclge_comm_reset_tqp_stats(handle);
2234 
2235 	hclgevf_request_link_info(hdev);
2236 
2237 	hclgevf_update_link_mode(hdev);
2238 
2239 	return 0;
2240 }
2241 
2242 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2243 {
2244 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2245 
2246 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2247 
2248 	if (hdev->reset_type != HNAE3_VF_RESET)
2249 		hclgevf_reset_tqp(handle);
2250 
2251 	hclge_comm_reset_tqp_stats(handle);
2252 	hclgevf_update_link_status(hdev, 0);
2253 }
2254 
2255 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2256 {
2257 #define HCLGEVF_STATE_ALIVE	1
2258 #define HCLGEVF_STATE_NOT_ALIVE	0
2259 
2260 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2261 	struct hclge_vf_to_pf_msg send_msg;
2262 
2263 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2264 	send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2265 				HCLGEVF_STATE_NOT_ALIVE;
2266 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2267 }
2268 
2269 static int hclgevf_client_start(struct hnae3_handle *handle)
2270 {
2271 	return hclgevf_set_alive(handle, true);
2272 }
2273 
2274 static void hclgevf_client_stop(struct hnae3_handle *handle)
2275 {
2276 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2277 	int ret;
2278 
2279 	ret = hclgevf_set_alive(handle, false);
2280 	if (ret)
2281 		dev_warn(&hdev->pdev->dev,
2282 			 "%s failed %d\n", __func__, ret);
2283 }
2284 
2285 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2286 {
2287 	clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2288 	clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2289 	clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2290 
2291 	INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2292 
2293 	mutex_init(&hdev->mbx_resp.mbx_mutex);
2294 	sema_init(&hdev->reset_sem, 1);
2295 
2296 	spin_lock_init(&hdev->mac_table.mac_list_lock);
2297 	INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2298 	INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2299 
2300 	/* bring the device down */
2301 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2302 }
2303 
2304 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2305 {
2306 	set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2307 	set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2308 
2309 	if (hdev->service_task.work.func)
2310 		cancel_delayed_work_sync(&hdev->service_task);
2311 
2312 	mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2313 }
2314 
2315 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2316 {
2317 	struct pci_dev *pdev = hdev->pdev;
2318 	int vectors;
2319 	int i;
2320 
2321 	if (hnae3_dev_roce_supported(hdev))
2322 		vectors = pci_alloc_irq_vectors(pdev,
2323 						hdev->roce_base_msix_offset + 1,
2324 						hdev->num_msi,
2325 						PCI_IRQ_MSIX);
2326 	else
2327 		vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2328 						hdev->num_msi,
2329 						PCI_IRQ_MSI | PCI_IRQ_MSIX);
2330 
2331 	if (vectors < 0) {
2332 		dev_err(&pdev->dev,
2333 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2334 			vectors);
2335 		return vectors;
2336 	}
2337 	if (vectors < hdev->num_msi)
2338 		dev_warn(&hdev->pdev->dev,
2339 			 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2340 			 hdev->num_msi, vectors);
2341 
2342 	hdev->num_msi = vectors;
2343 	hdev->num_msi_left = vectors;
2344 
2345 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2346 					   sizeof(u16), GFP_KERNEL);
2347 	if (!hdev->vector_status) {
2348 		pci_free_irq_vectors(pdev);
2349 		return -ENOMEM;
2350 	}
2351 
2352 	for (i = 0; i < hdev->num_msi; i++)
2353 		hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2354 
2355 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2356 					sizeof(int), GFP_KERNEL);
2357 	if (!hdev->vector_irq) {
2358 		devm_kfree(&pdev->dev, hdev->vector_status);
2359 		pci_free_irq_vectors(pdev);
2360 		return -ENOMEM;
2361 	}
2362 
2363 	return 0;
2364 }
2365 
2366 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2367 {
2368 	struct pci_dev *pdev = hdev->pdev;
2369 
2370 	devm_kfree(&pdev->dev, hdev->vector_status);
2371 	devm_kfree(&pdev->dev, hdev->vector_irq);
2372 	pci_free_irq_vectors(pdev);
2373 }
2374 
2375 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2376 {
2377 	int ret;
2378 
2379 	hclgevf_get_misc_vector(hdev);
2380 
2381 	snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2382 		 HCLGEVF_NAME, pci_name(hdev->pdev));
2383 	ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2384 			  0, hdev->misc_vector.name, hdev);
2385 	if (ret) {
2386 		dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2387 			hdev->misc_vector.vector_irq);
2388 		return ret;
2389 	}
2390 
2391 	hclgevf_clear_event_cause(hdev, 0);
2392 
2393 	/* enable misc. vector(vector 0) */
2394 	hclgevf_enable_vector(&hdev->misc_vector, true);
2395 
2396 	return ret;
2397 }
2398 
2399 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2400 {
2401 	/* disable misc vector(vector 0) */
2402 	hclgevf_enable_vector(&hdev->misc_vector, false);
2403 	synchronize_irq(hdev->misc_vector.vector_irq);
2404 	free_irq(hdev->misc_vector.vector_irq, hdev);
2405 	hclgevf_free_vector(hdev, 0);
2406 }
2407 
2408 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2409 {
2410 	struct device *dev = &hdev->pdev->dev;
2411 
2412 	dev_info(dev, "VF info begin:\n");
2413 
2414 	dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2415 	dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2416 	dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2417 	dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2418 	dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2419 	dev_info(dev, "PF media type of this VF: %u\n",
2420 		 hdev->hw.mac.media_type);
2421 
2422 	dev_info(dev, "VF info end.\n");
2423 }
2424 
2425 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2426 					    struct hnae3_client *client)
2427 {
2428 	struct hclgevf_dev *hdev = ae_dev->priv;
2429 	int rst_cnt = hdev->rst_stats.rst_cnt;
2430 	int ret;
2431 
2432 	ret = client->ops->init_instance(&hdev->nic);
2433 	if (ret)
2434 		return ret;
2435 
2436 	set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2437 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2438 	    rst_cnt != hdev->rst_stats.rst_cnt) {
2439 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2440 
2441 		client->ops->uninit_instance(&hdev->nic, 0);
2442 		return -EBUSY;
2443 	}
2444 
2445 	hnae3_set_client_init_flag(client, ae_dev, 1);
2446 
2447 	if (netif_msg_drv(&hdev->nic))
2448 		hclgevf_info_show(hdev);
2449 
2450 	return 0;
2451 }
2452 
2453 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2454 					     struct hnae3_client *client)
2455 {
2456 	struct hclgevf_dev *hdev = ae_dev->priv;
2457 	int ret;
2458 
2459 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2460 	    !hdev->nic_client)
2461 		return 0;
2462 
2463 	ret = hclgevf_init_roce_base_info(hdev);
2464 	if (ret)
2465 		return ret;
2466 
2467 	ret = client->ops->init_instance(&hdev->roce);
2468 	if (ret)
2469 		return ret;
2470 
2471 	set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2472 	hnae3_set_client_init_flag(client, ae_dev, 1);
2473 
2474 	return 0;
2475 }
2476 
2477 static int hclgevf_init_client_instance(struct hnae3_client *client,
2478 					struct hnae3_ae_dev *ae_dev)
2479 {
2480 	struct hclgevf_dev *hdev = ae_dev->priv;
2481 	int ret;
2482 
2483 	switch (client->type) {
2484 	case HNAE3_CLIENT_KNIC:
2485 		hdev->nic_client = client;
2486 		hdev->nic.client = client;
2487 
2488 		ret = hclgevf_init_nic_client_instance(ae_dev, client);
2489 		if (ret)
2490 			goto clear_nic;
2491 
2492 		ret = hclgevf_init_roce_client_instance(ae_dev,
2493 							hdev->roce_client);
2494 		if (ret)
2495 			goto clear_roce;
2496 
2497 		break;
2498 	case HNAE3_CLIENT_ROCE:
2499 		if (hnae3_dev_roce_supported(hdev)) {
2500 			hdev->roce_client = client;
2501 			hdev->roce.client = client;
2502 		}
2503 
2504 		ret = hclgevf_init_roce_client_instance(ae_dev, client);
2505 		if (ret)
2506 			goto clear_roce;
2507 
2508 		break;
2509 	default:
2510 		return -EINVAL;
2511 	}
2512 
2513 	return 0;
2514 
2515 clear_nic:
2516 	hdev->nic_client = NULL;
2517 	hdev->nic.client = NULL;
2518 	return ret;
2519 clear_roce:
2520 	hdev->roce_client = NULL;
2521 	hdev->roce.client = NULL;
2522 	return ret;
2523 }
2524 
2525 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2526 					   struct hnae3_ae_dev *ae_dev)
2527 {
2528 	struct hclgevf_dev *hdev = ae_dev->priv;
2529 
2530 	/* un-init roce, if it exists */
2531 	if (hdev->roce_client) {
2532 		while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2533 			msleep(HCLGEVF_WAIT_RESET_DONE);
2534 		clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2535 
2536 		hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2537 		hdev->roce_client = NULL;
2538 		hdev->roce.client = NULL;
2539 	}
2540 
2541 	/* un-init nic/unic, if this was not called by roce client */
2542 	if (client->ops->uninit_instance && hdev->nic_client &&
2543 	    client->type != HNAE3_CLIENT_ROCE) {
2544 		while (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
2545 			msleep(HCLGEVF_WAIT_RESET_DONE);
2546 		clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2547 
2548 		client->ops->uninit_instance(&hdev->nic, 0);
2549 		hdev->nic_client = NULL;
2550 		hdev->nic.client = NULL;
2551 	}
2552 }
2553 
2554 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
2555 {
2556 	struct pci_dev *pdev = hdev->pdev;
2557 	struct hclgevf_hw *hw = &hdev->hw;
2558 
2559 	/* for device does not have device memory, return directly */
2560 	if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
2561 		return 0;
2562 
2563 	hw->hw.mem_base =
2564 		devm_ioremap_wc(&pdev->dev,
2565 				pci_resource_start(pdev, HCLGEVF_MEM_BAR),
2566 				pci_resource_len(pdev, HCLGEVF_MEM_BAR));
2567 	if (!hw->hw.mem_base) {
2568 		dev_err(&pdev->dev, "failed to map device memory\n");
2569 		return -EFAULT;
2570 	}
2571 
2572 	return 0;
2573 }
2574 
2575 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2576 {
2577 	struct pci_dev *pdev = hdev->pdev;
2578 	struct hclgevf_hw *hw;
2579 	int ret;
2580 
2581 	ret = pci_enable_device(pdev);
2582 	if (ret) {
2583 		dev_err(&pdev->dev, "failed to enable PCI device\n");
2584 		return ret;
2585 	}
2586 
2587 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2588 	if (ret) {
2589 		dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2590 		goto err_disable_device;
2591 	}
2592 
2593 	ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2594 	if (ret) {
2595 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2596 		goto err_disable_device;
2597 	}
2598 
2599 	pci_set_master(pdev);
2600 	hw = &hdev->hw;
2601 	hw->hw.io_base = pci_iomap(pdev, 2, 0);
2602 	if (!hw->hw.io_base) {
2603 		dev_err(&pdev->dev, "can't map configuration register space\n");
2604 		ret = -ENOMEM;
2605 		goto err_release_regions;
2606 	}
2607 
2608 	ret = hclgevf_dev_mem_map(hdev);
2609 	if (ret)
2610 		goto err_unmap_io_base;
2611 
2612 	return 0;
2613 
2614 err_unmap_io_base:
2615 	pci_iounmap(pdev, hdev->hw.hw.io_base);
2616 err_release_regions:
2617 	pci_release_regions(pdev);
2618 err_disable_device:
2619 	pci_disable_device(pdev);
2620 
2621 	return ret;
2622 }
2623 
2624 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2625 {
2626 	struct pci_dev *pdev = hdev->pdev;
2627 
2628 	if (hdev->hw.hw.mem_base)
2629 		devm_iounmap(&pdev->dev, hdev->hw.hw.mem_base);
2630 
2631 	pci_iounmap(pdev, hdev->hw.hw.io_base);
2632 	pci_release_regions(pdev);
2633 	pci_disable_device(pdev);
2634 }
2635 
2636 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2637 {
2638 	struct hclgevf_query_res_cmd *req;
2639 	struct hclge_desc desc;
2640 	int ret;
2641 
2642 	hclgevf_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_VF_RSRC, true);
2643 	ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2644 	if (ret) {
2645 		dev_err(&hdev->pdev->dev,
2646 			"query vf resource failed, ret = %d.\n", ret);
2647 		return ret;
2648 	}
2649 
2650 	req = (struct hclgevf_query_res_cmd *)desc.data;
2651 
2652 	if (hnae3_dev_roce_supported(hdev)) {
2653 		hdev->roce_base_msix_offset =
2654 		hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
2655 				HCLGEVF_MSIX_OFT_ROCEE_M,
2656 				HCLGEVF_MSIX_OFT_ROCEE_S);
2657 		hdev->num_roce_msix =
2658 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2659 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2660 
2661 		/* nic's msix numbers is always equals to the roce's. */
2662 		hdev->num_nic_msix = hdev->num_roce_msix;
2663 
2664 		/* VF should have NIC vectors and Roce vectors, NIC vectors
2665 		 * are queued before Roce vectors. The offset is fixed to 64.
2666 		 */
2667 		hdev->num_msi = hdev->num_roce_msix +
2668 				hdev->roce_base_msix_offset;
2669 	} else {
2670 		hdev->num_msi =
2671 		hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
2672 				HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2673 
2674 		hdev->num_nic_msix = hdev->num_msi;
2675 	}
2676 
2677 	if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
2678 		dev_err(&hdev->pdev->dev,
2679 			"Just %u msi resources, not enough for vf(min:2).\n",
2680 			hdev->num_nic_msix);
2681 		return -EINVAL;
2682 	}
2683 
2684 	return 0;
2685 }
2686 
2687 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
2688 {
2689 #define HCLGEVF_MAX_NON_TSO_BD_NUM			8U
2690 
2691 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2692 
2693 	ae_dev->dev_specs.max_non_tso_bd_num =
2694 					HCLGEVF_MAX_NON_TSO_BD_NUM;
2695 	ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
2696 	ae_dev->dev_specs.rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
2697 	ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
2698 	ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME;
2699 }
2700 
2701 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
2702 				    struct hclge_desc *desc)
2703 {
2704 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2705 	struct hclgevf_dev_specs_0_cmd *req0;
2706 	struct hclgevf_dev_specs_1_cmd *req1;
2707 
2708 	req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
2709 	req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
2710 
2711 	ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
2712 	ae_dev->dev_specs.rss_ind_tbl_size =
2713 					le16_to_cpu(req0->rss_ind_tbl_size);
2714 	ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
2715 	ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
2716 	ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
2717 	ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size);
2718 }
2719 
2720 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
2721 {
2722 	struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
2723 
2724 	if (!dev_specs->max_non_tso_bd_num)
2725 		dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
2726 	if (!dev_specs->rss_ind_tbl_size)
2727 		dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
2728 	if (!dev_specs->rss_key_size)
2729 		dev_specs->rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
2730 	if (!dev_specs->max_int_gl)
2731 		dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
2732 	if (!dev_specs->max_frm_size)
2733 		dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME;
2734 }
2735 
2736 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
2737 {
2738 	struct hclge_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
2739 	int ret;
2740 	int i;
2741 
2742 	/* set default specifications as devices lower than version V3 do not
2743 	 * support querying specifications from firmware.
2744 	 */
2745 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
2746 		hclgevf_set_default_dev_specs(hdev);
2747 		return 0;
2748 	}
2749 
2750 	for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
2751 		hclgevf_cmd_setup_basic_desc(&desc[i],
2752 					     HCLGE_OPC_QUERY_DEV_SPECS, true);
2753 		desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
2754 	}
2755 	hclgevf_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_DEV_SPECS, true);
2756 
2757 	ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
2758 	if (ret)
2759 		return ret;
2760 
2761 	hclgevf_parse_dev_specs(hdev, desc);
2762 	hclgevf_check_dev_specs(hdev);
2763 
2764 	return 0;
2765 }
2766 
2767 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2768 {
2769 	struct pci_dev *pdev = hdev->pdev;
2770 	int ret = 0;
2771 
2772 	if ((hdev->reset_type == HNAE3_VF_FULL_RESET ||
2773 	     hdev->reset_type == HNAE3_FLR_RESET) &&
2774 	    test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2775 		hclgevf_misc_irq_uninit(hdev);
2776 		hclgevf_uninit_msi(hdev);
2777 		clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2778 	}
2779 
2780 	if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2781 		pci_set_master(pdev);
2782 		ret = hclgevf_init_msi(hdev);
2783 		if (ret) {
2784 			dev_err(&pdev->dev,
2785 				"failed(%d) to init MSI/MSI-X\n", ret);
2786 			return ret;
2787 		}
2788 
2789 		ret = hclgevf_misc_irq_init(hdev);
2790 		if (ret) {
2791 			hclgevf_uninit_msi(hdev);
2792 			dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2793 				ret);
2794 			return ret;
2795 		}
2796 
2797 		set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2798 	}
2799 
2800 	return ret;
2801 }
2802 
2803 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
2804 {
2805 	struct hclge_vf_to_pf_msg send_msg;
2806 
2807 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
2808 			       HCLGE_MBX_VPORT_LIST_CLEAR);
2809 	return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2810 }
2811 
2812 static void hclgevf_init_rxd_adv_layout(struct hclgevf_dev *hdev)
2813 {
2814 	if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
2815 		hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 1);
2816 }
2817 
2818 static void hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev *hdev)
2819 {
2820 	if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
2821 		hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 0);
2822 }
2823 
2824 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2825 {
2826 	struct pci_dev *pdev = hdev->pdev;
2827 	int ret;
2828 
2829 	ret = hclgevf_pci_reset(hdev);
2830 	if (ret) {
2831 		dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2832 		return ret;
2833 	}
2834 
2835 	hclgevf_arq_init(hdev);
2836 
2837 	ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
2838 				  &hdev->fw_version, false,
2839 				  hdev->reset_pending);
2840 	if (ret) {
2841 		dev_err(&pdev->dev, "cmd failed %d\n", ret);
2842 		return ret;
2843 	}
2844 
2845 	ret = hclgevf_rss_init_hw(hdev);
2846 	if (ret) {
2847 		dev_err(&hdev->pdev->dev,
2848 			"failed(%d) to initialize RSS\n", ret);
2849 		return ret;
2850 	}
2851 
2852 	ret = hclgevf_config_gro(hdev);
2853 	if (ret)
2854 		return ret;
2855 
2856 	ret = hclgevf_init_vlan_config(hdev);
2857 	if (ret) {
2858 		dev_err(&hdev->pdev->dev,
2859 			"failed(%d) to initialize VLAN config\n", ret);
2860 		return ret;
2861 	}
2862 
2863 	/* get current port based vlan state from PF */
2864 	ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2865 	if (ret)
2866 		return ret;
2867 
2868 	set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
2869 
2870 	hclgevf_init_rxd_adv_layout(hdev);
2871 
2872 	dev_info(&hdev->pdev->dev, "Reset done\n");
2873 
2874 	return 0;
2875 }
2876 
2877 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2878 {
2879 	struct pci_dev *pdev = hdev->pdev;
2880 	int ret;
2881 
2882 	ret = hclgevf_pci_init(hdev);
2883 	if (ret)
2884 		return ret;
2885 
2886 	ret = hclge_comm_cmd_queue_init(hdev->pdev, &hdev->hw.hw);
2887 	if (ret)
2888 		goto err_cmd_queue_init;
2889 
2890 	hclgevf_arq_init(hdev);
2891 
2892 	hclge_comm_cmd_init_ops(&hdev->hw.hw, &hclgevf_cmq_ops);
2893 	ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw,
2894 				  &hdev->fw_version, false,
2895 				  hdev->reset_pending);
2896 	if (ret)
2897 		goto err_cmd_init;
2898 
2899 	/* Get vf resource */
2900 	ret = hclgevf_query_vf_resource(hdev);
2901 	if (ret)
2902 		goto err_cmd_init;
2903 
2904 	ret = hclgevf_query_dev_specs(hdev);
2905 	if (ret) {
2906 		dev_err(&pdev->dev,
2907 			"failed to query dev specifications, ret = %d\n", ret);
2908 		goto err_cmd_init;
2909 	}
2910 
2911 	ret = hclgevf_init_msi(hdev);
2912 	if (ret) {
2913 		dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2914 		goto err_cmd_init;
2915 	}
2916 
2917 	hclgevf_state_init(hdev);
2918 	hdev->reset_level = HNAE3_VF_FUNC_RESET;
2919 	hdev->reset_type = HNAE3_NONE_RESET;
2920 
2921 	ret = hclgevf_misc_irq_init(hdev);
2922 	if (ret)
2923 		goto err_misc_irq_init;
2924 
2925 	set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2926 
2927 	ret = hclgevf_configure(hdev);
2928 	if (ret) {
2929 		dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2930 		goto err_config;
2931 	}
2932 
2933 	ret = hclgevf_alloc_tqps(hdev);
2934 	if (ret) {
2935 		dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2936 		goto err_config;
2937 	}
2938 
2939 	ret = hclgevf_set_handle_info(hdev);
2940 	if (ret)
2941 		goto err_config;
2942 
2943 	ret = hclgevf_config_gro(hdev);
2944 	if (ret)
2945 		goto err_config;
2946 
2947 	/* Initialize RSS for this VF */
2948 	ret = hclge_comm_rss_init_cfg(&hdev->nic, hdev->ae_dev,
2949 				      &hdev->rss_cfg);
2950 	if (ret) {
2951 		dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
2952 		goto err_config;
2953 	}
2954 
2955 	ret = hclgevf_rss_init_hw(hdev);
2956 	if (ret) {
2957 		dev_err(&hdev->pdev->dev,
2958 			"failed(%d) to initialize RSS\n", ret);
2959 		goto err_config;
2960 	}
2961 
2962 	/* ensure vf tbl list as empty before init */
2963 	ret = hclgevf_clear_vport_list(hdev);
2964 	if (ret) {
2965 		dev_err(&pdev->dev,
2966 			"failed to clear tbl list configuration, ret = %d.\n",
2967 			ret);
2968 		goto err_config;
2969 	}
2970 
2971 	ret = hclgevf_init_vlan_config(hdev);
2972 	if (ret) {
2973 		dev_err(&hdev->pdev->dev,
2974 			"failed(%d) to initialize VLAN config\n", ret);
2975 		goto err_config;
2976 	}
2977 
2978 	hclgevf_init_rxd_adv_layout(hdev);
2979 
2980 	ret = hclgevf_devlink_init(hdev);
2981 	if (ret)
2982 		goto err_config;
2983 
2984 	set_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state);
2985 
2986 	hdev->last_reset_time = jiffies;
2987 	dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
2988 		 HCLGEVF_DRIVER_NAME);
2989 
2990 	hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
2991 	timer_setup(&hdev->reset_timer, hclgevf_reset_timer, 0);
2992 
2993 	return 0;
2994 
2995 err_config:
2996 	hclgevf_misc_irq_uninit(hdev);
2997 err_misc_irq_init:
2998 	hclgevf_state_uninit(hdev);
2999 	hclgevf_uninit_msi(hdev);
3000 err_cmd_init:
3001 	hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
3002 err_cmd_queue_init:
3003 	hclgevf_pci_uninit(hdev);
3004 	clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3005 	return ret;
3006 }
3007 
3008 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3009 {
3010 	struct hclge_vf_to_pf_msg send_msg;
3011 
3012 	hclgevf_state_uninit(hdev);
3013 	hclgevf_uninit_rxd_adv_layout(hdev);
3014 
3015 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3016 	hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3017 
3018 	if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3019 		hclgevf_misc_irq_uninit(hdev);
3020 		hclgevf_uninit_msi(hdev);
3021 	}
3022 
3023 	hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
3024 	hclgevf_devlink_uninit(hdev);
3025 	hclgevf_pci_uninit(hdev);
3026 	hclgevf_uninit_mac_list(hdev);
3027 }
3028 
3029 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3030 {
3031 	struct pci_dev *pdev = ae_dev->pdev;
3032 	int ret;
3033 
3034 	ret = hclgevf_alloc_hdev(ae_dev);
3035 	if (ret) {
3036 		dev_err(&pdev->dev, "hclge device allocation failed\n");
3037 		return ret;
3038 	}
3039 
3040 	ret = hclgevf_init_hdev(ae_dev->priv);
3041 	if (ret) {
3042 		dev_err(&pdev->dev, "hclge device initialization failed\n");
3043 		return ret;
3044 	}
3045 
3046 	return 0;
3047 }
3048 
3049 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3050 {
3051 	struct hclgevf_dev *hdev = ae_dev->priv;
3052 
3053 	hclgevf_uninit_hdev(hdev);
3054 	ae_dev->priv = NULL;
3055 }
3056 
3057 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3058 {
3059 	struct hnae3_handle *nic = &hdev->nic;
3060 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3061 
3062 	return min_t(u32, hdev->rss_size_max,
3063 		     hdev->num_tqps / kinfo->tc_info.num_tc);
3064 }
3065 
3066 /**
3067  * hclgevf_get_channels - Get the current channels enabled and max supported.
3068  * @handle: hardware information for network interface
3069  * @ch: ethtool channels structure
3070  *
3071  * We don't support separate tx and rx queues as channels. The other count
3072  * represents how many queues are being used for control. max_combined counts
3073  * how many queue pairs we can support. They may not be mapped 1 to 1 with
3074  * q_vectors since we support a lot more queue pairs than q_vectors.
3075  **/
3076 static void hclgevf_get_channels(struct hnae3_handle *handle,
3077 				 struct ethtool_channels *ch)
3078 {
3079 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3080 
3081 	ch->max_combined = hclgevf_get_max_channels(hdev);
3082 	ch->other_count = 0;
3083 	ch->max_other = 0;
3084 	ch->combined_count = handle->kinfo.rss_size;
3085 }
3086 
3087 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3088 					  u16 *alloc_tqps, u16 *max_rss_size)
3089 {
3090 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3091 
3092 	*alloc_tqps = hdev->num_tqps;
3093 	*max_rss_size = hdev->rss_size_max;
3094 }
3095 
3096 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3097 				    u32 new_tqps_num)
3098 {
3099 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3100 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3101 	u16 max_rss_size;
3102 
3103 	kinfo->req_rss_size = new_tqps_num;
3104 
3105 	max_rss_size = min_t(u16, hdev->rss_size_max,
3106 			     hdev->num_tqps / kinfo->tc_info.num_tc);
3107 
3108 	/* Use the user's configuration when it is not larger than
3109 	 * max_rss_size, otherwise, use the maximum specification value.
3110 	 */
3111 	if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3112 	    kinfo->req_rss_size <= max_rss_size)
3113 		kinfo->rss_size = kinfo->req_rss_size;
3114 	else if (kinfo->rss_size > max_rss_size ||
3115 		 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3116 		kinfo->rss_size = max_rss_size;
3117 
3118 	kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size;
3119 }
3120 
3121 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3122 				bool rxfh_configured)
3123 {
3124 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3125 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3126 	u16 tc_offset[HCLGE_COMM_MAX_TC_NUM];
3127 	u16 tc_valid[HCLGE_COMM_MAX_TC_NUM];
3128 	u16 tc_size[HCLGE_COMM_MAX_TC_NUM];
3129 	u16 cur_rss_size = kinfo->rss_size;
3130 	u16 cur_tqps = kinfo->num_tqps;
3131 	u32 *rss_indir;
3132 	unsigned int i;
3133 	int ret;
3134 
3135 	hclgevf_update_rss_size(handle, new_tqps_num);
3136 
3137 	hclge_comm_get_rss_tc_info(kinfo->rss_size, hdev->hw_tc_map,
3138 				   tc_offset, tc_valid, tc_size);
3139 	ret = hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset,
3140 					 tc_valid, tc_size);
3141 	if (ret)
3142 		return ret;
3143 
3144 	/* RSS indirection table has been configured by user */
3145 	if (rxfh_configured)
3146 		goto out;
3147 
3148 	/* Reinitializes the rss indirect table according to the new RSS size */
3149 	rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size,
3150 			    sizeof(u32), GFP_KERNEL);
3151 	if (!rss_indir)
3152 		return -ENOMEM;
3153 
3154 	for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
3155 		rss_indir[i] = i % kinfo->rss_size;
3156 
3157 	hdev->rss_cfg.rss_size = kinfo->rss_size;
3158 
3159 	ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3160 	if (ret)
3161 		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3162 			ret);
3163 
3164 	kfree(rss_indir);
3165 
3166 out:
3167 	if (!ret)
3168 		dev_info(&hdev->pdev->dev,
3169 			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3170 			 cur_rss_size, kinfo->rss_size,
3171 			 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
3172 
3173 	return ret;
3174 }
3175 
3176 static int hclgevf_get_status(struct hnae3_handle *handle)
3177 {
3178 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3179 
3180 	return hdev->hw.mac.link;
3181 }
3182 
3183 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3184 					    u8 *auto_neg, u32 *speed,
3185 					    u8 *duplex, u32 *lane_num)
3186 {
3187 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3188 
3189 	if (speed)
3190 		*speed = hdev->hw.mac.speed;
3191 	if (duplex)
3192 		*duplex = hdev->hw.mac.duplex;
3193 	if (auto_neg)
3194 		*auto_neg = AUTONEG_DISABLE;
3195 }
3196 
3197 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3198 				 u8 duplex)
3199 {
3200 	hdev->hw.mac.speed = speed;
3201 	hdev->hw.mac.duplex = duplex;
3202 }
3203 
3204 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3205 {
3206 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3207 	bool gro_en_old = hdev->gro_en;
3208 	int ret;
3209 
3210 	hdev->gro_en = enable;
3211 	ret = hclgevf_config_gro(hdev);
3212 	if (ret)
3213 		hdev->gro_en = gro_en_old;
3214 
3215 	return ret;
3216 }
3217 
3218 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3219 				   u8 *module_type)
3220 {
3221 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3222 
3223 	if (media_type)
3224 		*media_type = hdev->hw.mac.media_type;
3225 
3226 	if (module_type)
3227 		*module_type = hdev->hw.mac.module_type;
3228 }
3229 
3230 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3231 {
3232 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3233 
3234 	return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3235 }
3236 
3237 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
3238 {
3239 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3240 
3241 	return test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
3242 }
3243 
3244 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3245 {
3246 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3247 
3248 	return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3249 }
3250 
3251 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3252 {
3253 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3254 
3255 	return hdev->rst_stats.hw_rst_done_cnt;
3256 }
3257 
3258 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3259 				  unsigned long *supported,
3260 				  unsigned long *advertising)
3261 {
3262 	struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3263 
3264 	*supported = hdev->hw.mac.supported;
3265 	*advertising = hdev->hw.mac.advertising;
3266 }
3267 
3268 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3269 				struct hclge_mbx_port_base_vlan *port_base_vlan)
3270 {
3271 	struct hnae3_handle *nic = &hdev->nic;
3272 	struct hclge_vf_to_pf_msg send_msg;
3273 	int ret;
3274 
3275 	rtnl_lock();
3276 
3277 	if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3278 	    test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3279 		dev_warn(&hdev->pdev->dev,
3280 			 "is resetting when updating port based vlan info\n");
3281 		rtnl_unlock();
3282 		return;
3283 	}
3284 
3285 	ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3286 	if (ret) {
3287 		rtnl_unlock();
3288 		return;
3289 	}
3290 
3291 	/* send msg to PF and wait update port based vlan info */
3292 	hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3293 			       HCLGE_MBX_PORT_BASE_VLAN_CFG);
3294 	memcpy(send_msg.data, port_base_vlan, sizeof(*port_base_vlan));
3295 	ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3296 	if (!ret) {
3297 		if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3298 			nic->port_base_vlan_state = state;
3299 		else
3300 			nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3301 	}
3302 
3303 	hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3304 	rtnl_unlock();
3305 }
3306 
3307 static const struct hnae3_ae_ops hclgevf_ops = {
3308 	.init_ae_dev = hclgevf_init_ae_dev,
3309 	.uninit_ae_dev = hclgevf_uninit_ae_dev,
3310 	.reset_prepare = hclgevf_reset_prepare_general,
3311 	.reset_done = hclgevf_reset_done,
3312 	.init_client_instance = hclgevf_init_client_instance,
3313 	.uninit_client_instance = hclgevf_uninit_client_instance,
3314 	.start = hclgevf_ae_start,
3315 	.stop = hclgevf_ae_stop,
3316 	.client_start = hclgevf_client_start,
3317 	.client_stop = hclgevf_client_stop,
3318 	.map_ring_to_vector = hclgevf_map_ring_to_vector,
3319 	.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3320 	.get_vector = hclgevf_get_vector,
3321 	.put_vector = hclgevf_put_vector,
3322 	.reset_queue = hclgevf_reset_tqp,
3323 	.get_mac_addr = hclgevf_get_mac_addr,
3324 	.set_mac_addr = hclgevf_set_mac_addr,
3325 	.add_uc_addr = hclgevf_add_uc_addr,
3326 	.rm_uc_addr = hclgevf_rm_uc_addr,
3327 	.add_mc_addr = hclgevf_add_mc_addr,
3328 	.rm_mc_addr = hclgevf_rm_mc_addr,
3329 	.get_stats = hclgevf_get_stats,
3330 	.update_stats = hclgevf_update_stats,
3331 	.get_strings = hclgevf_get_strings,
3332 	.get_sset_count = hclgevf_get_sset_count,
3333 	.get_rss_key_size = hclge_comm_get_rss_key_size,
3334 	.get_rss = hclgevf_get_rss,
3335 	.set_rss = hclgevf_set_rss,
3336 	.get_rss_tuple = hclgevf_get_rss_tuple,
3337 	.set_rss_tuple = hclgevf_set_rss_tuple,
3338 	.get_tc_size = hclgevf_get_tc_size,
3339 	.get_fw_version = hclgevf_get_fw_version,
3340 	.set_vlan_filter = hclgevf_set_vlan_filter,
3341 	.enable_vlan_filter = hclgevf_enable_vlan_filter,
3342 	.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3343 	.reset_event = hclgevf_reset_event,
3344 	.set_default_reset_request = hclgevf_set_def_reset_request,
3345 	.set_channels = hclgevf_set_channels,
3346 	.get_channels = hclgevf_get_channels,
3347 	.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3348 	.get_regs_len = hclgevf_get_regs_len,
3349 	.get_regs = hclgevf_get_regs,
3350 	.get_status = hclgevf_get_status,
3351 	.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3352 	.get_media_type = hclgevf_get_media_type,
3353 	.get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3354 	.ae_dev_resetting = hclgevf_ae_dev_resetting,
3355 	.ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3356 	.set_gro_en = hclgevf_gro_en,
3357 	.set_mtu = hclgevf_set_mtu,
3358 	.get_global_queue_id = hclgevf_get_qid_global,
3359 	.set_timer_task = hclgevf_set_timer_task,
3360 	.get_link_mode = hclgevf_get_link_mode,
3361 	.set_promisc_mode = hclgevf_set_promisc_mode,
3362 	.request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3363 	.get_cmdq_stat = hclgevf_get_cmdq_stat,
3364 };
3365 
3366 static struct hnae3_ae_algo ae_algovf = {
3367 	.ops = &hclgevf_ops,
3368 	.pdev_id_table = ae_algovf_pci_tbl,
3369 };
3370 
3371 static int __init hclgevf_init(void)
3372 {
3373 	pr_info("%s is initializing\n", HCLGEVF_NAME);
3374 
3375 	hclgevf_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, HCLGEVF_NAME);
3376 	if (!hclgevf_wq) {
3377 		pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3378 		return -ENOMEM;
3379 	}
3380 
3381 	hnae3_register_ae_algo(&ae_algovf);
3382 
3383 	return 0;
3384 }
3385 
3386 static void __exit hclgevf_exit(void)
3387 {
3388 	hnae3_unregister_ae_algo(&ae_algovf);
3389 	destroy_workqueue(hclgevf_wq);
3390 }
3391 module_init(hclgevf_init);
3392 module_exit(hclgevf_exit);
3393 
3394 MODULE_LICENSE("GPL");
3395 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3396 MODULE_DESCRIPTION("HCLGEVF Driver");
3397 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3398