xref: /linux/drivers/net/ethernet/hisilicon/hns3/hns3pf/hclge_main.c (revision 9f2c9170934eace462499ba0bfe042cc72900173)
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/acpi.h>
5 #include <linux/device.h>
6 #include <linux/etherdevice.h>
7 #include <linux/init.h>
8 #include <linux/interrupt.h>
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/pci.h>
13 #include <linux/platform_device.h>
14 #include <linux/if_vlan.h>
15 #include <linux/crash_dump.h>
16 #include <net/ipv6.h>
17 #include <net/rtnetlink.h>
18 #include "hclge_cmd.h"
19 #include "hclge_dcb.h"
20 #include "hclge_main.h"
21 #include "hclge_mbx.h"
22 #include "hclge_mdio.h"
23 #include "hclge_tm.h"
24 #include "hclge_err.h"
25 #include "hnae3.h"
26 #include "hclge_devlink.h"
27 #include "hclge_comm_cmd.h"
28 
29 #define HCLGE_NAME			"hclge"
30 
31 #define HCLGE_BUF_SIZE_UNIT	256U
32 #define HCLGE_BUF_MUL_BY	2
33 #define HCLGE_BUF_DIV_BY	2
34 #define NEED_RESERVE_TC_NUM	2
35 #define BUF_MAX_PERCENT		100
36 #define BUF_RESERVE_PERCENT	90
37 
38 #define HCLGE_RESET_MAX_FAIL_CNT	5
39 #define HCLGE_RESET_SYNC_TIME		100
40 #define HCLGE_PF_RESET_SYNC_TIME	20
41 #define HCLGE_PF_RESET_SYNC_CNT		1500
42 
43 /* Get DFX BD number offset */
44 #define HCLGE_DFX_BIOS_BD_OFFSET        1
45 #define HCLGE_DFX_SSU_0_BD_OFFSET       2
46 #define HCLGE_DFX_SSU_1_BD_OFFSET       3
47 #define HCLGE_DFX_IGU_BD_OFFSET         4
48 #define HCLGE_DFX_RPU_0_BD_OFFSET       5
49 #define HCLGE_DFX_RPU_1_BD_OFFSET       6
50 #define HCLGE_DFX_NCSI_BD_OFFSET        7
51 #define HCLGE_DFX_RTC_BD_OFFSET         8
52 #define HCLGE_DFX_PPP_BD_OFFSET         9
53 #define HCLGE_DFX_RCB_BD_OFFSET         10
54 #define HCLGE_DFX_TQP_BD_OFFSET         11
55 #define HCLGE_DFX_SSU_2_BD_OFFSET       12
56 
57 #define HCLGE_LINK_STATUS_MS	10
58 
59 static int hclge_set_mac_mtu(struct hclge_dev *hdev, int new_mps);
60 static int hclge_init_vlan_config(struct hclge_dev *hdev);
61 static void hclge_sync_vlan_filter(struct hclge_dev *hdev);
62 static int hclge_reset_ae_dev(struct hnae3_ae_dev *ae_dev);
63 static bool hclge_get_hw_reset_stat(struct hnae3_handle *handle);
64 static void hclge_rfs_filter_expire(struct hclge_dev *hdev);
65 static int hclge_clear_arfs_rules(struct hclge_dev *hdev);
66 static enum hnae3_reset_type hclge_get_reset_level(struct hnae3_ae_dev *ae_dev,
67 						   unsigned long *addr);
68 static int hclge_set_default_loopback(struct hclge_dev *hdev);
69 
70 static void hclge_sync_mac_table(struct hclge_dev *hdev);
71 static void hclge_restore_hw_table(struct hclge_dev *hdev);
72 static void hclge_sync_promisc_mode(struct hclge_dev *hdev);
73 static void hclge_sync_fd_table(struct hclge_dev *hdev);
74 static void hclge_update_fec_stats(struct hclge_dev *hdev);
75 
76 static struct hnae3_ae_algo ae_algo;
77 
78 static struct workqueue_struct *hclge_wq;
79 
80 static const struct pci_device_id ae_algo_pci_tbl[] = {
81 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
82 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
83 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA), 0},
84 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC), 0},
85 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA), 0},
86 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC), 0},
87 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC), 0},
88 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_200G_RDMA), 0},
89 	/* required last entry */
90 	{0, }
91 };
92 
93 MODULE_DEVICE_TABLE(pci, ae_algo_pci_tbl);
94 
95 static const u32 cmdq_reg_addr_list[] = {HCLGE_COMM_NIC_CSQ_BASEADDR_L_REG,
96 					 HCLGE_COMM_NIC_CSQ_BASEADDR_H_REG,
97 					 HCLGE_COMM_NIC_CSQ_DEPTH_REG,
98 					 HCLGE_COMM_NIC_CSQ_TAIL_REG,
99 					 HCLGE_COMM_NIC_CSQ_HEAD_REG,
100 					 HCLGE_COMM_NIC_CRQ_BASEADDR_L_REG,
101 					 HCLGE_COMM_NIC_CRQ_BASEADDR_H_REG,
102 					 HCLGE_COMM_NIC_CRQ_DEPTH_REG,
103 					 HCLGE_COMM_NIC_CRQ_TAIL_REG,
104 					 HCLGE_COMM_NIC_CRQ_HEAD_REG,
105 					 HCLGE_COMM_VECTOR0_CMDQ_SRC_REG,
106 					 HCLGE_COMM_CMDQ_INTR_STS_REG,
107 					 HCLGE_COMM_CMDQ_INTR_EN_REG,
108 					 HCLGE_COMM_CMDQ_INTR_GEN_REG};
109 
110 static const u32 common_reg_addr_list[] = {HCLGE_MISC_VECTOR_REG_BASE,
111 					   HCLGE_PF_OTHER_INT_REG,
112 					   HCLGE_MISC_RESET_STS_REG,
113 					   HCLGE_MISC_VECTOR_INT_STS,
114 					   HCLGE_GLOBAL_RESET_REG,
115 					   HCLGE_FUN_RST_ING,
116 					   HCLGE_GRO_EN_REG};
117 
118 static const u32 ring_reg_addr_list[] = {HCLGE_RING_RX_ADDR_L_REG,
119 					 HCLGE_RING_RX_ADDR_H_REG,
120 					 HCLGE_RING_RX_BD_NUM_REG,
121 					 HCLGE_RING_RX_BD_LENGTH_REG,
122 					 HCLGE_RING_RX_MERGE_EN_REG,
123 					 HCLGE_RING_RX_TAIL_REG,
124 					 HCLGE_RING_RX_HEAD_REG,
125 					 HCLGE_RING_RX_FBD_NUM_REG,
126 					 HCLGE_RING_RX_OFFSET_REG,
127 					 HCLGE_RING_RX_FBD_OFFSET_REG,
128 					 HCLGE_RING_RX_STASH_REG,
129 					 HCLGE_RING_RX_BD_ERR_REG,
130 					 HCLGE_RING_TX_ADDR_L_REG,
131 					 HCLGE_RING_TX_ADDR_H_REG,
132 					 HCLGE_RING_TX_BD_NUM_REG,
133 					 HCLGE_RING_TX_PRIORITY_REG,
134 					 HCLGE_RING_TX_TC_REG,
135 					 HCLGE_RING_TX_MERGE_EN_REG,
136 					 HCLGE_RING_TX_TAIL_REG,
137 					 HCLGE_RING_TX_HEAD_REG,
138 					 HCLGE_RING_TX_FBD_NUM_REG,
139 					 HCLGE_RING_TX_OFFSET_REG,
140 					 HCLGE_RING_TX_EBD_NUM_REG,
141 					 HCLGE_RING_TX_EBD_OFFSET_REG,
142 					 HCLGE_RING_TX_BD_ERR_REG,
143 					 HCLGE_RING_EN_REG};
144 
145 static const u32 tqp_intr_reg_addr_list[] = {HCLGE_TQP_INTR_CTRL_REG,
146 					     HCLGE_TQP_INTR_GL0_REG,
147 					     HCLGE_TQP_INTR_GL1_REG,
148 					     HCLGE_TQP_INTR_GL2_REG,
149 					     HCLGE_TQP_INTR_RL_REG};
150 
151 static const char hns3_nic_test_strs[][ETH_GSTRING_LEN] = {
152 	"External Loopback test",
153 	"App      Loopback test",
154 	"Serdes   serial Loopback test",
155 	"Serdes   parallel Loopback test",
156 	"Phy      Loopback test"
157 };
158 
159 static const struct hclge_comm_stats_str g_mac_stats_string[] = {
160 	{"mac_tx_mac_pause_num", HCLGE_MAC_STATS_MAX_NUM_V1,
161 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_mac_pause_num)},
162 	{"mac_rx_mac_pause_num", HCLGE_MAC_STATS_MAX_NUM_V1,
163 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_mac_pause_num)},
164 	{"mac_tx_pause_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
165 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pause_xoff_time)},
166 	{"mac_rx_pause_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
167 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pause_xoff_time)},
168 	{"mac_tx_control_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
169 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_ctrl_pkt_num)},
170 	{"mac_rx_control_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
171 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_ctrl_pkt_num)},
172 	{"mac_tx_pfc_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
173 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pause_pkt_num)},
174 	{"mac_tx_pfc_pri0_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
175 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri0_pkt_num)},
176 	{"mac_tx_pfc_pri1_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
177 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri1_pkt_num)},
178 	{"mac_tx_pfc_pri2_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
179 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri2_pkt_num)},
180 	{"mac_tx_pfc_pri3_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
181 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri3_pkt_num)},
182 	{"mac_tx_pfc_pri4_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
183 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri4_pkt_num)},
184 	{"mac_tx_pfc_pri5_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
185 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri5_pkt_num)},
186 	{"mac_tx_pfc_pri6_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
187 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri6_pkt_num)},
188 	{"mac_tx_pfc_pri7_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
189 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri7_pkt_num)},
190 	{"mac_tx_pfc_pri0_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
191 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri0_xoff_time)},
192 	{"mac_tx_pfc_pri1_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
193 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri1_xoff_time)},
194 	{"mac_tx_pfc_pri2_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
195 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri2_xoff_time)},
196 	{"mac_tx_pfc_pri3_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
197 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri3_xoff_time)},
198 	{"mac_tx_pfc_pri4_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
199 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri4_xoff_time)},
200 	{"mac_tx_pfc_pri5_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
201 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri5_xoff_time)},
202 	{"mac_tx_pfc_pri6_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
203 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri6_xoff_time)},
204 	{"mac_tx_pfc_pri7_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
205 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri7_xoff_time)},
206 	{"mac_rx_pfc_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
207 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pause_pkt_num)},
208 	{"mac_rx_pfc_pri0_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
209 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri0_pkt_num)},
210 	{"mac_rx_pfc_pri1_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
211 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri1_pkt_num)},
212 	{"mac_rx_pfc_pri2_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
213 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri2_pkt_num)},
214 	{"mac_rx_pfc_pri3_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
215 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri3_pkt_num)},
216 	{"mac_rx_pfc_pri4_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
217 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri4_pkt_num)},
218 	{"mac_rx_pfc_pri5_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
219 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri5_pkt_num)},
220 	{"mac_rx_pfc_pri6_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
221 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri6_pkt_num)},
222 	{"mac_rx_pfc_pri7_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
223 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri7_pkt_num)},
224 	{"mac_rx_pfc_pri0_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
225 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri0_xoff_time)},
226 	{"mac_rx_pfc_pri1_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
227 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri1_xoff_time)},
228 	{"mac_rx_pfc_pri2_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
229 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri2_xoff_time)},
230 	{"mac_rx_pfc_pri3_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
231 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri3_xoff_time)},
232 	{"mac_rx_pfc_pri4_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
233 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri4_xoff_time)},
234 	{"mac_rx_pfc_pri5_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
235 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri5_xoff_time)},
236 	{"mac_rx_pfc_pri6_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
237 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri6_xoff_time)},
238 	{"mac_rx_pfc_pri7_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2,
239 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri7_xoff_time)},
240 	{"mac_tx_total_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
241 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_total_pkt_num)},
242 	{"mac_tx_total_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1,
243 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_total_oct_num)},
244 	{"mac_tx_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
245 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_good_pkt_num)},
246 	{"mac_tx_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
247 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_bad_pkt_num)},
248 	{"mac_tx_good_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1,
249 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_good_oct_num)},
250 	{"mac_tx_bad_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1,
251 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_bad_oct_num)},
252 	{"mac_tx_uni_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
253 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_uni_pkt_num)},
254 	{"mac_tx_multi_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
255 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_multi_pkt_num)},
256 	{"mac_tx_broad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
257 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_broad_pkt_num)},
258 	{"mac_tx_undersize_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
259 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_undersize_pkt_num)},
260 	{"mac_tx_oversize_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
261 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_oversize_pkt_num)},
262 	{"mac_tx_64_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
263 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_64_oct_pkt_num)},
264 	{"mac_tx_65_127_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
265 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_65_127_oct_pkt_num)},
266 	{"mac_tx_128_255_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
267 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_128_255_oct_pkt_num)},
268 	{"mac_tx_256_511_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
269 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_256_511_oct_pkt_num)},
270 	{"mac_tx_512_1023_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
271 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_512_1023_oct_pkt_num)},
272 	{"mac_tx_1024_1518_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
273 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_1024_1518_oct_pkt_num)},
274 	{"mac_tx_1519_2047_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
275 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_1519_2047_oct_pkt_num)},
276 	{"mac_tx_2048_4095_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
277 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_2048_4095_oct_pkt_num)},
278 	{"mac_tx_4096_8191_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
279 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_4096_8191_oct_pkt_num)},
280 	{"mac_tx_8192_9216_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
281 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_8192_9216_oct_pkt_num)},
282 	{"mac_tx_9217_12287_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
283 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_9217_12287_oct_pkt_num)},
284 	{"mac_tx_12288_16383_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
285 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_12288_16383_oct_pkt_num)},
286 	{"mac_tx_1519_max_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
287 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_1519_max_good_oct_pkt_num)},
288 	{"mac_tx_1519_max_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
289 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_1519_max_bad_oct_pkt_num)},
290 	{"mac_rx_total_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
291 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_total_pkt_num)},
292 	{"mac_rx_total_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1,
293 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_total_oct_num)},
294 	{"mac_rx_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
295 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_good_pkt_num)},
296 	{"mac_rx_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
297 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_bad_pkt_num)},
298 	{"mac_rx_good_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1,
299 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_good_oct_num)},
300 	{"mac_rx_bad_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1,
301 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_bad_oct_num)},
302 	{"mac_rx_uni_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
303 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_uni_pkt_num)},
304 	{"mac_rx_multi_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
305 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_multi_pkt_num)},
306 	{"mac_rx_broad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
307 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_broad_pkt_num)},
308 	{"mac_rx_undersize_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
309 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_undersize_pkt_num)},
310 	{"mac_rx_oversize_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
311 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_oversize_pkt_num)},
312 	{"mac_rx_64_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
313 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_64_oct_pkt_num)},
314 	{"mac_rx_65_127_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
315 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_65_127_oct_pkt_num)},
316 	{"mac_rx_128_255_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
317 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_128_255_oct_pkt_num)},
318 	{"mac_rx_256_511_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
319 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_256_511_oct_pkt_num)},
320 	{"mac_rx_512_1023_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
321 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_512_1023_oct_pkt_num)},
322 	{"mac_rx_1024_1518_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
323 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_1024_1518_oct_pkt_num)},
324 	{"mac_rx_1519_2047_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
325 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_1519_2047_oct_pkt_num)},
326 	{"mac_rx_2048_4095_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
327 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_2048_4095_oct_pkt_num)},
328 	{"mac_rx_4096_8191_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
329 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_4096_8191_oct_pkt_num)},
330 	{"mac_rx_8192_9216_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
331 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_8192_9216_oct_pkt_num)},
332 	{"mac_rx_9217_12287_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
333 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_9217_12287_oct_pkt_num)},
334 	{"mac_rx_12288_16383_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
335 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_12288_16383_oct_pkt_num)},
336 	{"mac_rx_1519_max_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
337 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_1519_max_good_oct_pkt_num)},
338 	{"mac_rx_1519_max_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
339 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_1519_max_bad_oct_pkt_num)},
340 
341 	{"mac_tx_fragment_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
342 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_fragment_pkt_num)},
343 	{"mac_tx_undermin_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
344 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_undermin_pkt_num)},
345 	{"mac_tx_jabber_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
346 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_jabber_pkt_num)},
347 	{"mac_tx_err_all_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
348 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_err_all_pkt_num)},
349 	{"mac_tx_from_app_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
350 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_from_app_good_pkt_num)},
351 	{"mac_tx_from_app_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
352 		HCLGE_MAC_STATS_FIELD_OFF(mac_tx_from_app_bad_pkt_num)},
353 	{"mac_rx_fragment_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
354 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_fragment_pkt_num)},
355 	{"mac_rx_undermin_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
356 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_undermin_pkt_num)},
357 	{"mac_rx_jabber_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
358 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_jabber_pkt_num)},
359 	{"mac_rx_fcs_err_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
360 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_fcs_err_pkt_num)},
361 	{"mac_rx_send_app_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
362 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_send_app_good_pkt_num)},
363 	{"mac_rx_send_app_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1,
364 		HCLGE_MAC_STATS_FIELD_OFF(mac_rx_send_app_bad_pkt_num)}
365 };
366 
367 static const struct hclge_mac_mgr_tbl_entry_cmd hclge_mgr_table[] = {
368 	{
369 		.flags = HCLGE_MAC_MGR_MASK_VLAN_B,
370 		.ethter_type = cpu_to_le16(ETH_P_LLDP),
371 		.mac_addr = {0x01, 0x80, 0xc2, 0x00, 0x00, 0x0e},
372 		.i_port_bitmap = 0x1,
373 	},
374 };
375 
376 static const u32 hclge_dfx_bd_offset_list[] = {
377 	HCLGE_DFX_BIOS_BD_OFFSET,
378 	HCLGE_DFX_SSU_0_BD_OFFSET,
379 	HCLGE_DFX_SSU_1_BD_OFFSET,
380 	HCLGE_DFX_IGU_BD_OFFSET,
381 	HCLGE_DFX_RPU_0_BD_OFFSET,
382 	HCLGE_DFX_RPU_1_BD_OFFSET,
383 	HCLGE_DFX_NCSI_BD_OFFSET,
384 	HCLGE_DFX_RTC_BD_OFFSET,
385 	HCLGE_DFX_PPP_BD_OFFSET,
386 	HCLGE_DFX_RCB_BD_OFFSET,
387 	HCLGE_DFX_TQP_BD_OFFSET,
388 	HCLGE_DFX_SSU_2_BD_OFFSET
389 };
390 
391 static const enum hclge_opcode_type hclge_dfx_reg_opcode_list[] = {
392 	HCLGE_OPC_DFX_BIOS_COMMON_REG,
393 	HCLGE_OPC_DFX_SSU_REG_0,
394 	HCLGE_OPC_DFX_SSU_REG_1,
395 	HCLGE_OPC_DFX_IGU_EGU_REG,
396 	HCLGE_OPC_DFX_RPU_REG_0,
397 	HCLGE_OPC_DFX_RPU_REG_1,
398 	HCLGE_OPC_DFX_NCSI_REG,
399 	HCLGE_OPC_DFX_RTC_REG,
400 	HCLGE_OPC_DFX_PPP_REG,
401 	HCLGE_OPC_DFX_RCB_REG,
402 	HCLGE_OPC_DFX_TQP_REG,
403 	HCLGE_OPC_DFX_SSU_REG_2
404 };
405 
406 static const struct key_info meta_data_key_info[] = {
407 	{ PACKET_TYPE_ID, 6 },
408 	{ IP_FRAGEMENT, 1 },
409 	{ ROCE_TYPE, 1 },
410 	{ NEXT_KEY, 5 },
411 	{ VLAN_NUMBER, 2 },
412 	{ SRC_VPORT, 12 },
413 	{ DST_VPORT, 12 },
414 	{ TUNNEL_PACKET, 1 },
415 };
416 
417 static const struct key_info tuple_key_info[] = {
418 	{ OUTER_DST_MAC, 48, KEY_OPT_MAC, -1, -1 },
419 	{ OUTER_SRC_MAC, 48, KEY_OPT_MAC, -1, -1 },
420 	{ OUTER_VLAN_TAG_FST, 16, KEY_OPT_LE16, -1, -1 },
421 	{ OUTER_VLAN_TAG_SEC, 16, KEY_OPT_LE16, -1, -1 },
422 	{ OUTER_ETH_TYPE, 16, KEY_OPT_LE16, -1, -1 },
423 	{ OUTER_L2_RSV, 16, KEY_OPT_LE16, -1, -1 },
424 	{ OUTER_IP_TOS, 8, KEY_OPT_U8, -1, -1 },
425 	{ OUTER_IP_PROTO, 8, KEY_OPT_U8, -1, -1 },
426 	{ OUTER_SRC_IP, 32, KEY_OPT_IP, -1, -1 },
427 	{ OUTER_DST_IP, 32, KEY_OPT_IP, -1, -1 },
428 	{ OUTER_L3_RSV, 16, KEY_OPT_LE16, -1, -1 },
429 	{ OUTER_SRC_PORT, 16, KEY_OPT_LE16, -1, -1 },
430 	{ OUTER_DST_PORT, 16, KEY_OPT_LE16, -1, -1 },
431 	{ OUTER_L4_RSV, 32, KEY_OPT_LE32, -1, -1 },
432 	{ OUTER_TUN_VNI, 24, KEY_OPT_VNI, -1, -1 },
433 	{ OUTER_TUN_FLOW_ID, 8, KEY_OPT_U8, -1, -1 },
434 	{ INNER_DST_MAC, 48, KEY_OPT_MAC,
435 	  offsetof(struct hclge_fd_rule, tuples.dst_mac),
436 	  offsetof(struct hclge_fd_rule, tuples_mask.dst_mac) },
437 	{ INNER_SRC_MAC, 48, KEY_OPT_MAC,
438 	  offsetof(struct hclge_fd_rule, tuples.src_mac),
439 	  offsetof(struct hclge_fd_rule, tuples_mask.src_mac) },
440 	{ INNER_VLAN_TAG_FST, 16, KEY_OPT_LE16,
441 	  offsetof(struct hclge_fd_rule, tuples.vlan_tag1),
442 	  offsetof(struct hclge_fd_rule, tuples_mask.vlan_tag1) },
443 	{ INNER_VLAN_TAG_SEC, 16, KEY_OPT_LE16, -1, -1 },
444 	{ INNER_ETH_TYPE, 16, KEY_OPT_LE16,
445 	  offsetof(struct hclge_fd_rule, tuples.ether_proto),
446 	  offsetof(struct hclge_fd_rule, tuples_mask.ether_proto) },
447 	{ INNER_L2_RSV, 16, KEY_OPT_LE16,
448 	  offsetof(struct hclge_fd_rule, tuples.l2_user_def),
449 	  offsetof(struct hclge_fd_rule, tuples_mask.l2_user_def) },
450 	{ INNER_IP_TOS, 8, KEY_OPT_U8,
451 	  offsetof(struct hclge_fd_rule, tuples.ip_tos),
452 	  offsetof(struct hclge_fd_rule, tuples_mask.ip_tos) },
453 	{ INNER_IP_PROTO, 8, KEY_OPT_U8,
454 	  offsetof(struct hclge_fd_rule, tuples.ip_proto),
455 	  offsetof(struct hclge_fd_rule, tuples_mask.ip_proto) },
456 	{ INNER_SRC_IP, 32, KEY_OPT_IP,
457 	  offsetof(struct hclge_fd_rule, tuples.src_ip),
458 	  offsetof(struct hclge_fd_rule, tuples_mask.src_ip) },
459 	{ INNER_DST_IP, 32, KEY_OPT_IP,
460 	  offsetof(struct hclge_fd_rule, tuples.dst_ip),
461 	  offsetof(struct hclge_fd_rule, tuples_mask.dst_ip) },
462 	{ INNER_L3_RSV, 16, KEY_OPT_LE16,
463 	  offsetof(struct hclge_fd_rule, tuples.l3_user_def),
464 	  offsetof(struct hclge_fd_rule, tuples_mask.l3_user_def) },
465 	{ INNER_SRC_PORT, 16, KEY_OPT_LE16,
466 	  offsetof(struct hclge_fd_rule, tuples.src_port),
467 	  offsetof(struct hclge_fd_rule, tuples_mask.src_port) },
468 	{ INNER_DST_PORT, 16, KEY_OPT_LE16,
469 	  offsetof(struct hclge_fd_rule, tuples.dst_port),
470 	  offsetof(struct hclge_fd_rule, tuples_mask.dst_port) },
471 	{ INNER_L4_RSV, 32, KEY_OPT_LE32,
472 	  offsetof(struct hclge_fd_rule, tuples.l4_user_def),
473 	  offsetof(struct hclge_fd_rule, tuples_mask.l4_user_def) },
474 };
475 
476 /**
477  * hclge_cmd_send - send command to command queue
478  * @hw: pointer to the hw struct
479  * @desc: prefilled descriptor for describing the command
480  * @num : the number of descriptors to be sent
481  *
482  * This is the main send command for command queue, it
483  * sends the queue, cleans the queue, etc
484  **/
485 int hclge_cmd_send(struct hclge_hw *hw, struct hclge_desc *desc, int num)
486 {
487 	return hclge_comm_cmd_send(&hw->hw, desc, num);
488 }
489 
490 static int hclge_mac_update_stats_defective(struct hclge_dev *hdev)
491 {
492 #define HCLGE_MAC_CMD_NUM 21
493 
494 	u64 *data = (u64 *)(&hdev->mac_stats);
495 	struct hclge_desc desc[HCLGE_MAC_CMD_NUM];
496 	__le64 *desc_data;
497 	u32 data_size;
498 	int ret;
499 	u32 i;
500 
501 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_STATS_MAC, true);
502 	ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_MAC_CMD_NUM);
503 	if (ret) {
504 		dev_err(&hdev->pdev->dev,
505 			"Get MAC pkt stats fail, status = %d.\n", ret);
506 
507 		return ret;
508 	}
509 
510 	/* The first desc has a 64-bit header, so data size need to minus 1 */
511 	data_size = sizeof(desc) / (sizeof(u64)) - 1;
512 
513 	desc_data = (__le64 *)(&desc[0].data[0]);
514 	for (i = 0; i < data_size; i++) {
515 		/* data memory is continuous becase only the first desc has a
516 		 * header in this command
517 		 */
518 		*data += le64_to_cpu(*desc_data);
519 		data++;
520 		desc_data++;
521 	}
522 
523 	return 0;
524 }
525 
526 static int hclge_mac_update_stats_complete(struct hclge_dev *hdev)
527 {
528 #define HCLGE_REG_NUM_PER_DESC		4
529 
530 	u32 reg_num = hdev->ae_dev->dev_specs.mac_stats_num;
531 	u64 *data = (u64 *)(&hdev->mac_stats);
532 	struct hclge_desc *desc;
533 	__le64 *desc_data;
534 	u32 data_size;
535 	u32 desc_num;
536 	int ret;
537 	u32 i;
538 
539 	/* The first desc has a 64-bit header, so need to consider it */
540 	desc_num = reg_num / HCLGE_REG_NUM_PER_DESC + 1;
541 
542 	/* This may be called inside atomic sections,
543 	 * so GFP_ATOMIC is more suitalbe here
544 	 */
545 	desc = kcalloc(desc_num, sizeof(struct hclge_desc), GFP_ATOMIC);
546 	if (!desc)
547 		return -ENOMEM;
548 
549 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_STATS_MAC_ALL, true);
550 	ret = hclge_cmd_send(&hdev->hw, desc, desc_num);
551 	if (ret) {
552 		kfree(desc);
553 		return ret;
554 	}
555 
556 	data_size = min_t(u32, sizeof(hdev->mac_stats) / sizeof(u64), reg_num);
557 
558 	desc_data = (__le64 *)(&desc[0].data[0]);
559 	for (i = 0; i < data_size; i++) {
560 		/* data memory is continuous becase only the first desc has a
561 		 * header in this command
562 		 */
563 		*data += le64_to_cpu(*desc_data);
564 		data++;
565 		desc_data++;
566 	}
567 
568 	kfree(desc);
569 
570 	return 0;
571 }
572 
573 static int hclge_mac_query_reg_num(struct hclge_dev *hdev, u32 *reg_num)
574 {
575 	struct hclge_desc desc;
576 	int ret;
577 
578 	/* Driver needs total register number of both valid registers and
579 	 * reserved registers, but the old firmware only returns number
580 	 * of valid registers in device V2. To be compatible with these
581 	 * devices, driver uses a fixed value.
582 	 */
583 	if (hdev->ae_dev->dev_version == HNAE3_DEVICE_VERSION_V2) {
584 		*reg_num = HCLGE_MAC_STATS_MAX_NUM_V1;
585 		return 0;
586 	}
587 
588 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_MAC_REG_NUM, true);
589 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
590 	if (ret) {
591 		dev_err(&hdev->pdev->dev,
592 			"failed to query mac statistic reg number, ret = %d\n",
593 			ret);
594 		return ret;
595 	}
596 
597 	*reg_num = le32_to_cpu(desc.data[0]);
598 	if (*reg_num == 0) {
599 		dev_err(&hdev->pdev->dev,
600 			"mac statistic reg number is invalid!\n");
601 		return -ENODATA;
602 	}
603 
604 	return 0;
605 }
606 
607 int hclge_mac_update_stats(struct hclge_dev *hdev)
608 {
609 	/* The firmware supports the new statistics acquisition method */
610 	if (hdev->ae_dev->dev_specs.mac_stats_num)
611 		return hclge_mac_update_stats_complete(hdev);
612 	else
613 		return hclge_mac_update_stats_defective(hdev);
614 }
615 
616 static int hclge_comm_get_count(struct hclge_dev *hdev,
617 				const struct hclge_comm_stats_str strs[],
618 				u32 size)
619 {
620 	int count = 0;
621 	u32 i;
622 
623 	for (i = 0; i < size; i++)
624 		if (strs[i].stats_num <= hdev->ae_dev->dev_specs.mac_stats_num)
625 			count++;
626 
627 	return count;
628 }
629 
630 static u64 *hclge_comm_get_stats(struct hclge_dev *hdev,
631 				 const struct hclge_comm_stats_str strs[],
632 				 int size, u64 *data)
633 {
634 	u64 *buf = data;
635 	u32 i;
636 
637 	for (i = 0; i < size; i++) {
638 		if (strs[i].stats_num > hdev->ae_dev->dev_specs.mac_stats_num)
639 			continue;
640 
641 		*buf = HCLGE_STATS_READ(&hdev->mac_stats, strs[i].offset);
642 		buf++;
643 	}
644 
645 	return buf;
646 }
647 
648 static u8 *hclge_comm_get_strings(struct hclge_dev *hdev, u32 stringset,
649 				  const struct hclge_comm_stats_str strs[],
650 				  int size, u8 *data)
651 {
652 	char *buff = (char *)data;
653 	u32 i;
654 
655 	if (stringset != ETH_SS_STATS)
656 		return buff;
657 
658 	for (i = 0; i < size; i++) {
659 		if (strs[i].stats_num > hdev->ae_dev->dev_specs.mac_stats_num)
660 			continue;
661 
662 		snprintf(buff, ETH_GSTRING_LEN, "%s", strs[i].desc);
663 		buff = buff + ETH_GSTRING_LEN;
664 	}
665 
666 	return (u8 *)buff;
667 }
668 
669 static void hclge_update_stats_for_all(struct hclge_dev *hdev)
670 {
671 	struct hnae3_handle *handle;
672 	int status;
673 
674 	handle = &hdev->vport[0].nic;
675 	if (handle->client) {
676 		status = hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
677 		if (status) {
678 			dev_err(&hdev->pdev->dev,
679 				"Update TQPS stats fail, status = %d.\n",
680 				status);
681 		}
682 	}
683 
684 	hclge_update_fec_stats(hdev);
685 
686 	status = hclge_mac_update_stats(hdev);
687 	if (status)
688 		dev_err(&hdev->pdev->dev,
689 			"Update MAC stats fail, status = %d.\n", status);
690 }
691 
692 static void hclge_update_stats(struct hnae3_handle *handle,
693 			       struct net_device_stats *net_stats)
694 {
695 	struct hclge_vport *vport = hclge_get_vport(handle);
696 	struct hclge_dev *hdev = vport->back;
697 	int status;
698 
699 	if (test_and_set_bit(HCLGE_STATE_STATISTICS_UPDATING, &hdev->state))
700 		return;
701 
702 	status = hclge_mac_update_stats(hdev);
703 	if (status)
704 		dev_err(&hdev->pdev->dev,
705 			"Update MAC stats fail, status = %d.\n",
706 			status);
707 
708 	status = hclge_comm_tqps_update_stats(handle, &hdev->hw.hw);
709 	if (status)
710 		dev_err(&hdev->pdev->dev,
711 			"Update TQPS stats fail, status = %d.\n",
712 			status);
713 
714 	clear_bit(HCLGE_STATE_STATISTICS_UPDATING, &hdev->state);
715 }
716 
717 static int hclge_get_sset_count(struct hnae3_handle *handle, int stringset)
718 {
719 #define HCLGE_LOOPBACK_TEST_FLAGS (HNAE3_SUPPORT_APP_LOOPBACK | \
720 		HNAE3_SUPPORT_PHY_LOOPBACK | \
721 		HNAE3_SUPPORT_SERDES_SERIAL_LOOPBACK | \
722 		HNAE3_SUPPORT_SERDES_PARALLEL_LOOPBACK | \
723 		HNAE3_SUPPORT_EXTERNAL_LOOPBACK)
724 
725 	struct hclge_vport *vport = hclge_get_vport(handle);
726 	struct hclge_dev *hdev = vport->back;
727 	int count = 0;
728 
729 	/* Loopback test support rules:
730 	 * mac: only GE mode support
731 	 * serdes: all mac mode will support include GE/XGE/LGE/CGE
732 	 * phy: only support when phy device exist on board
733 	 */
734 	if (stringset == ETH_SS_TEST) {
735 		/* clear loopback bit flags at first */
736 		handle->flags = (handle->flags & (~HCLGE_LOOPBACK_TEST_FLAGS));
737 		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2 ||
738 		    hdev->hw.mac.speed == HCLGE_MAC_SPEED_10M ||
739 		    hdev->hw.mac.speed == HCLGE_MAC_SPEED_100M ||
740 		    hdev->hw.mac.speed == HCLGE_MAC_SPEED_1G) {
741 			count += 1;
742 			handle->flags |= HNAE3_SUPPORT_APP_LOOPBACK;
743 		}
744 
745 		count += 1;
746 		handle->flags |= HNAE3_SUPPORT_SERDES_SERIAL_LOOPBACK;
747 		count += 1;
748 		handle->flags |= HNAE3_SUPPORT_SERDES_PARALLEL_LOOPBACK;
749 		count += 1;
750 		handle->flags |= HNAE3_SUPPORT_EXTERNAL_LOOPBACK;
751 
752 		if ((hdev->hw.mac.phydev && hdev->hw.mac.phydev->drv &&
753 		     hdev->hw.mac.phydev->drv->set_loopback) ||
754 		    hnae3_dev_phy_imp_supported(hdev)) {
755 			count += 1;
756 			handle->flags |= HNAE3_SUPPORT_PHY_LOOPBACK;
757 		}
758 	} else if (stringset == ETH_SS_STATS) {
759 		count = hclge_comm_get_count(hdev, g_mac_stats_string,
760 					     ARRAY_SIZE(g_mac_stats_string)) +
761 			hclge_comm_tqps_get_sset_count(handle);
762 	}
763 
764 	return count;
765 }
766 
767 static void hclge_get_strings(struct hnae3_handle *handle, u32 stringset,
768 			      u8 *data)
769 {
770 	struct hclge_vport *vport = hclge_get_vport(handle);
771 	struct hclge_dev *hdev = vport->back;
772 	u8 *p = (char *)data;
773 	int size;
774 
775 	if (stringset == ETH_SS_STATS) {
776 		size = ARRAY_SIZE(g_mac_stats_string);
777 		p = hclge_comm_get_strings(hdev, stringset, g_mac_stats_string,
778 					   size, p);
779 		p = hclge_comm_tqps_get_strings(handle, p);
780 	} else if (stringset == ETH_SS_TEST) {
781 		if (handle->flags & HNAE3_SUPPORT_EXTERNAL_LOOPBACK) {
782 			memcpy(p, hns3_nic_test_strs[HNAE3_LOOP_EXTERNAL],
783 			       ETH_GSTRING_LEN);
784 			p += ETH_GSTRING_LEN;
785 		}
786 		if (handle->flags & HNAE3_SUPPORT_APP_LOOPBACK) {
787 			memcpy(p, hns3_nic_test_strs[HNAE3_LOOP_APP],
788 			       ETH_GSTRING_LEN);
789 			p += ETH_GSTRING_LEN;
790 		}
791 		if (handle->flags & HNAE3_SUPPORT_SERDES_SERIAL_LOOPBACK) {
792 			memcpy(p, hns3_nic_test_strs[HNAE3_LOOP_SERIAL_SERDES],
793 			       ETH_GSTRING_LEN);
794 			p += ETH_GSTRING_LEN;
795 		}
796 		if (handle->flags & HNAE3_SUPPORT_SERDES_PARALLEL_LOOPBACK) {
797 			memcpy(p,
798 			       hns3_nic_test_strs[HNAE3_LOOP_PARALLEL_SERDES],
799 			       ETH_GSTRING_LEN);
800 			p += ETH_GSTRING_LEN;
801 		}
802 		if (handle->flags & HNAE3_SUPPORT_PHY_LOOPBACK) {
803 			memcpy(p, hns3_nic_test_strs[HNAE3_LOOP_PHY],
804 			       ETH_GSTRING_LEN);
805 			p += ETH_GSTRING_LEN;
806 		}
807 	}
808 }
809 
810 static void hclge_get_stats(struct hnae3_handle *handle, u64 *data)
811 {
812 	struct hclge_vport *vport = hclge_get_vport(handle);
813 	struct hclge_dev *hdev = vport->back;
814 	u64 *p;
815 
816 	p = hclge_comm_get_stats(hdev, g_mac_stats_string,
817 				 ARRAY_SIZE(g_mac_stats_string), data);
818 	p = hclge_comm_tqps_get_stats(handle, p);
819 }
820 
821 static void hclge_get_mac_stat(struct hnae3_handle *handle,
822 			       struct hns3_mac_stats *mac_stats)
823 {
824 	struct hclge_vport *vport = hclge_get_vport(handle);
825 	struct hclge_dev *hdev = vport->back;
826 
827 	hclge_update_stats(handle, NULL);
828 
829 	mac_stats->tx_pause_cnt = hdev->mac_stats.mac_tx_mac_pause_num;
830 	mac_stats->rx_pause_cnt = hdev->mac_stats.mac_rx_mac_pause_num;
831 }
832 
833 static int hclge_parse_func_status(struct hclge_dev *hdev,
834 				   struct hclge_func_status_cmd *status)
835 {
836 #define HCLGE_MAC_ID_MASK	0xF
837 
838 	if (!(status->pf_state & HCLGE_PF_STATE_DONE))
839 		return -EINVAL;
840 
841 	/* Set the pf to main pf */
842 	if (status->pf_state & HCLGE_PF_STATE_MAIN)
843 		hdev->flag |= HCLGE_FLAG_MAIN;
844 	else
845 		hdev->flag &= ~HCLGE_FLAG_MAIN;
846 
847 	hdev->hw.mac.mac_id = status->mac_id & HCLGE_MAC_ID_MASK;
848 	return 0;
849 }
850 
851 static int hclge_query_function_status(struct hclge_dev *hdev)
852 {
853 #define HCLGE_QUERY_MAX_CNT	5
854 
855 	struct hclge_func_status_cmd *req;
856 	struct hclge_desc desc;
857 	int timeout = 0;
858 	int ret;
859 
860 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_FUNC_STATUS, true);
861 	req = (struct hclge_func_status_cmd *)desc.data;
862 
863 	do {
864 		ret = hclge_cmd_send(&hdev->hw, &desc, 1);
865 		if (ret) {
866 			dev_err(&hdev->pdev->dev,
867 				"query function status failed %d.\n", ret);
868 			return ret;
869 		}
870 
871 		/* Check pf reset is done */
872 		if (req->pf_state)
873 			break;
874 		usleep_range(1000, 2000);
875 	} while (timeout++ < HCLGE_QUERY_MAX_CNT);
876 
877 	return hclge_parse_func_status(hdev, req);
878 }
879 
880 static int hclge_query_pf_resource(struct hclge_dev *hdev)
881 {
882 	struct hclge_pf_res_cmd *req;
883 	struct hclge_desc desc;
884 	int ret;
885 
886 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_PF_RSRC, true);
887 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
888 	if (ret) {
889 		dev_err(&hdev->pdev->dev,
890 			"query pf resource failed %d.\n", ret);
891 		return ret;
892 	}
893 
894 	req = (struct hclge_pf_res_cmd *)desc.data;
895 	hdev->num_tqps = le16_to_cpu(req->tqp_num) +
896 			 le16_to_cpu(req->ext_tqp_num);
897 	hdev->pkt_buf_size = le16_to_cpu(req->buf_size) << HCLGE_BUF_UNIT_S;
898 
899 	if (req->tx_buf_size)
900 		hdev->tx_buf_size =
901 			le16_to_cpu(req->tx_buf_size) << HCLGE_BUF_UNIT_S;
902 	else
903 		hdev->tx_buf_size = HCLGE_DEFAULT_TX_BUF;
904 
905 	hdev->tx_buf_size = roundup(hdev->tx_buf_size, HCLGE_BUF_SIZE_UNIT);
906 
907 	if (req->dv_buf_size)
908 		hdev->dv_buf_size =
909 			le16_to_cpu(req->dv_buf_size) << HCLGE_BUF_UNIT_S;
910 	else
911 		hdev->dv_buf_size = HCLGE_DEFAULT_DV;
912 
913 	hdev->dv_buf_size = roundup(hdev->dv_buf_size, HCLGE_BUF_SIZE_UNIT);
914 
915 	hdev->num_nic_msi = le16_to_cpu(req->msixcap_localid_number_nic);
916 	if (hdev->num_nic_msi < HNAE3_MIN_VECTOR_NUM) {
917 		dev_err(&hdev->pdev->dev,
918 			"only %u msi resources available, not enough for pf(min:2).\n",
919 			hdev->num_nic_msi);
920 		return -EINVAL;
921 	}
922 
923 	if (hnae3_dev_roce_supported(hdev)) {
924 		hdev->num_roce_msi =
925 			le16_to_cpu(req->pf_intr_vector_number_roce);
926 
927 		/* PF should have NIC vectors and Roce vectors,
928 		 * NIC vectors are queued before Roce vectors.
929 		 */
930 		hdev->num_msi = hdev->num_nic_msi + hdev->num_roce_msi;
931 	} else {
932 		hdev->num_msi = hdev->num_nic_msi;
933 	}
934 
935 	return 0;
936 }
937 
938 static int hclge_parse_speed(u8 speed_cmd, u32 *speed)
939 {
940 	switch (speed_cmd) {
941 	case HCLGE_FW_MAC_SPEED_10M:
942 		*speed = HCLGE_MAC_SPEED_10M;
943 		break;
944 	case HCLGE_FW_MAC_SPEED_100M:
945 		*speed = HCLGE_MAC_SPEED_100M;
946 		break;
947 	case HCLGE_FW_MAC_SPEED_1G:
948 		*speed = HCLGE_MAC_SPEED_1G;
949 		break;
950 	case HCLGE_FW_MAC_SPEED_10G:
951 		*speed = HCLGE_MAC_SPEED_10G;
952 		break;
953 	case HCLGE_FW_MAC_SPEED_25G:
954 		*speed = HCLGE_MAC_SPEED_25G;
955 		break;
956 	case HCLGE_FW_MAC_SPEED_40G:
957 		*speed = HCLGE_MAC_SPEED_40G;
958 		break;
959 	case HCLGE_FW_MAC_SPEED_50G:
960 		*speed = HCLGE_MAC_SPEED_50G;
961 		break;
962 	case HCLGE_FW_MAC_SPEED_100G:
963 		*speed = HCLGE_MAC_SPEED_100G;
964 		break;
965 	case HCLGE_FW_MAC_SPEED_200G:
966 		*speed = HCLGE_MAC_SPEED_200G;
967 		break;
968 	default:
969 		return -EINVAL;
970 	}
971 
972 	return 0;
973 }
974 
975 static const struct hclge_speed_bit_map speed_bit_map[] = {
976 	{HCLGE_MAC_SPEED_10M, HCLGE_SUPPORT_10M_BIT},
977 	{HCLGE_MAC_SPEED_100M, HCLGE_SUPPORT_100M_BIT},
978 	{HCLGE_MAC_SPEED_1G, HCLGE_SUPPORT_1G_BIT},
979 	{HCLGE_MAC_SPEED_10G, HCLGE_SUPPORT_10G_BIT},
980 	{HCLGE_MAC_SPEED_25G, HCLGE_SUPPORT_25G_BIT},
981 	{HCLGE_MAC_SPEED_40G, HCLGE_SUPPORT_40G_BIT},
982 	{HCLGE_MAC_SPEED_50G, HCLGE_SUPPORT_50G_BIT},
983 	{HCLGE_MAC_SPEED_100G, HCLGE_SUPPORT_100G_BIT},
984 	{HCLGE_MAC_SPEED_200G, HCLGE_SUPPORT_200G_BIT},
985 };
986 
987 static int hclge_get_speed_bit(u32 speed, u32 *speed_bit)
988 {
989 	u16 i;
990 
991 	for (i = 0; i < ARRAY_SIZE(speed_bit_map); i++) {
992 		if (speed == speed_bit_map[i].speed) {
993 			*speed_bit = speed_bit_map[i].speed_bit;
994 			return 0;
995 		}
996 	}
997 
998 	return -EINVAL;
999 }
1000 
1001 static int hclge_check_port_speed(struct hnae3_handle *handle, u32 speed)
1002 {
1003 	struct hclge_vport *vport = hclge_get_vport(handle);
1004 	struct hclge_dev *hdev = vport->back;
1005 	u32 speed_ability = hdev->hw.mac.speed_ability;
1006 	u32 speed_bit = 0;
1007 	int ret;
1008 
1009 	ret = hclge_get_speed_bit(speed, &speed_bit);
1010 	if (ret)
1011 		return ret;
1012 
1013 	if (speed_bit & speed_ability)
1014 		return 0;
1015 
1016 	return -EINVAL;
1017 }
1018 
1019 static void hclge_update_fec_support(struct hclge_mac *mac)
1020 {
1021 	linkmode_clear_bit(ETHTOOL_LINK_MODE_FEC_BASER_BIT, mac->supported);
1022 	linkmode_clear_bit(ETHTOOL_LINK_MODE_FEC_RS_BIT, mac->supported);
1023 	linkmode_clear_bit(ETHTOOL_LINK_MODE_FEC_LLRS_BIT, mac->supported);
1024 	linkmode_clear_bit(ETHTOOL_LINK_MODE_FEC_NONE_BIT, mac->supported);
1025 
1026 	if (mac->fec_ability & BIT(HNAE3_FEC_BASER))
1027 		linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_BASER_BIT,
1028 				 mac->supported);
1029 	if (mac->fec_ability & BIT(HNAE3_FEC_RS))
1030 		linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_RS_BIT,
1031 				 mac->supported);
1032 	if (mac->fec_ability & BIT(HNAE3_FEC_LLRS))
1033 		linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_LLRS_BIT,
1034 				 mac->supported);
1035 	if (mac->fec_ability & BIT(HNAE3_FEC_NONE))
1036 		linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_NONE_BIT,
1037 				 mac->supported);
1038 }
1039 
1040 static void hclge_convert_setting_sr(u16 speed_ability,
1041 				     unsigned long *link_mode)
1042 {
1043 	if (speed_ability & HCLGE_SUPPORT_10G_BIT)
1044 		linkmode_set_bit(ETHTOOL_LINK_MODE_10000baseSR_Full_BIT,
1045 				 link_mode);
1046 	if (speed_ability & HCLGE_SUPPORT_25G_BIT)
1047 		linkmode_set_bit(ETHTOOL_LINK_MODE_25000baseSR_Full_BIT,
1048 				 link_mode);
1049 	if (speed_ability & HCLGE_SUPPORT_40G_BIT)
1050 		linkmode_set_bit(ETHTOOL_LINK_MODE_40000baseSR4_Full_BIT,
1051 				 link_mode);
1052 	if (speed_ability & HCLGE_SUPPORT_50G_BIT)
1053 		linkmode_set_bit(ETHTOOL_LINK_MODE_50000baseSR2_Full_BIT,
1054 				 link_mode);
1055 	if (speed_ability & HCLGE_SUPPORT_100G_BIT)
1056 		linkmode_set_bit(ETHTOOL_LINK_MODE_100000baseSR4_Full_BIT,
1057 				 link_mode);
1058 	if (speed_ability & HCLGE_SUPPORT_200G_BIT)
1059 		linkmode_set_bit(ETHTOOL_LINK_MODE_200000baseSR4_Full_BIT,
1060 				 link_mode);
1061 }
1062 
1063 static void hclge_convert_setting_lr(u16 speed_ability,
1064 				     unsigned long *link_mode)
1065 {
1066 	if (speed_ability & HCLGE_SUPPORT_10G_BIT)
1067 		linkmode_set_bit(ETHTOOL_LINK_MODE_10000baseLR_Full_BIT,
1068 				 link_mode);
1069 	if (speed_ability & HCLGE_SUPPORT_25G_BIT)
1070 		linkmode_set_bit(ETHTOOL_LINK_MODE_25000baseSR_Full_BIT,
1071 				 link_mode);
1072 	if (speed_ability & HCLGE_SUPPORT_50G_BIT)
1073 		linkmode_set_bit(ETHTOOL_LINK_MODE_50000baseLR_ER_FR_Full_BIT,
1074 				 link_mode);
1075 	if (speed_ability & HCLGE_SUPPORT_40G_BIT)
1076 		linkmode_set_bit(ETHTOOL_LINK_MODE_40000baseLR4_Full_BIT,
1077 				 link_mode);
1078 	if (speed_ability & HCLGE_SUPPORT_100G_BIT)
1079 		linkmode_set_bit(ETHTOOL_LINK_MODE_100000baseLR4_ER4_Full_BIT,
1080 				 link_mode);
1081 	if (speed_ability & HCLGE_SUPPORT_200G_BIT)
1082 		linkmode_set_bit(
1083 			ETHTOOL_LINK_MODE_200000baseLR4_ER4_FR4_Full_BIT,
1084 			link_mode);
1085 }
1086 
1087 static void hclge_convert_setting_cr(u16 speed_ability,
1088 				     unsigned long *link_mode)
1089 {
1090 	if (speed_ability & HCLGE_SUPPORT_10G_BIT)
1091 		linkmode_set_bit(ETHTOOL_LINK_MODE_10000baseCR_Full_BIT,
1092 				 link_mode);
1093 	if (speed_ability & HCLGE_SUPPORT_25G_BIT)
1094 		linkmode_set_bit(ETHTOOL_LINK_MODE_25000baseCR_Full_BIT,
1095 				 link_mode);
1096 	if (speed_ability & HCLGE_SUPPORT_40G_BIT)
1097 		linkmode_set_bit(ETHTOOL_LINK_MODE_40000baseCR4_Full_BIT,
1098 				 link_mode);
1099 	if (speed_ability & HCLGE_SUPPORT_50G_BIT)
1100 		linkmode_set_bit(ETHTOOL_LINK_MODE_50000baseCR2_Full_BIT,
1101 				 link_mode);
1102 	if (speed_ability & HCLGE_SUPPORT_100G_BIT)
1103 		linkmode_set_bit(ETHTOOL_LINK_MODE_100000baseCR4_Full_BIT,
1104 				 link_mode);
1105 	if (speed_ability & HCLGE_SUPPORT_200G_BIT)
1106 		linkmode_set_bit(ETHTOOL_LINK_MODE_200000baseCR4_Full_BIT,
1107 				 link_mode);
1108 }
1109 
1110 static void hclge_convert_setting_kr(u16 speed_ability,
1111 				     unsigned long *link_mode)
1112 {
1113 	if (speed_ability & HCLGE_SUPPORT_1G_BIT)
1114 		linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseKX_Full_BIT,
1115 				 link_mode);
1116 	if (speed_ability & HCLGE_SUPPORT_10G_BIT)
1117 		linkmode_set_bit(ETHTOOL_LINK_MODE_10000baseKR_Full_BIT,
1118 				 link_mode);
1119 	if (speed_ability & HCLGE_SUPPORT_25G_BIT)
1120 		linkmode_set_bit(ETHTOOL_LINK_MODE_25000baseKR_Full_BIT,
1121 				 link_mode);
1122 	if (speed_ability & HCLGE_SUPPORT_40G_BIT)
1123 		linkmode_set_bit(ETHTOOL_LINK_MODE_40000baseKR4_Full_BIT,
1124 				 link_mode);
1125 	if (speed_ability & HCLGE_SUPPORT_50G_BIT)
1126 		linkmode_set_bit(ETHTOOL_LINK_MODE_50000baseKR2_Full_BIT,
1127 				 link_mode);
1128 	if (speed_ability & HCLGE_SUPPORT_100G_BIT)
1129 		linkmode_set_bit(ETHTOOL_LINK_MODE_100000baseKR4_Full_BIT,
1130 				 link_mode);
1131 	if (speed_ability & HCLGE_SUPPORT_200G_BIT)
1132 		linkmode_set_bit(ETHTOOL_LINK_MODE_200000baseKR4_Full_BIT,
1133 				 link_mode);
1134 }
1135 
1136 static void hclge_convert_setting_fec(struct hclge_mac *mac)
1137 {
1138 	/* If firmware has reported fec_ability, don't need to convert by speed */
1139 	if (mac->fec_ability)
1140 		goto out;
1141 
1142 	switch (mac->speed) {
1143 	case HCLGE_MAC_SPEED_10G:
1144 	case HCLGE_MAC_SPEED_40G:
1145 		mac->fec_ability = BIT(HNAE3_FEC_BASER) | BIT(HNAE3_FEC_AUTO) |
1146 				   BIT(HNAE3_FEC_NONE);
1147 		break;
1148 	case HCLGE_MAC_SPEED_25G:
1149 	case HCLGE_MAC_SPEED_50G:
1150 		mac->fec_ability = BIT(HNAE3_FEC_BASER) | BIT(HNAE3_FEC_RS) |
1151 				   BIT(HNAE3_FEC_AUTO) | BIT(HNAE3_FEC_NONE);
1152 		break;
1153 	case HCLGE_MAC_SPEED_100G:
1154 		mac->fec_ability = BIT(HNAE3_FEC_RS) | BIT(HNAE3_FEC_AUTO) |
1155 				   BIT(HNAE3_FEC_NONE);
1156 		break;
1157 	case HCLGE_MAC_SPEED_200G:
1158 		mac->fec_ability = BIT(HNAE3_FEC_RS) | BIT(HNAE3_FEC_AUTO) |
1159 				   BIT(HNAE3_FEC_LLRS);
1160 		break;
1161 	default:
1162 		mac->fec_ability = 0;
1163 		break;
1164 	}
1165 
1166 out:
1167 	hclge_update_fec_support(mac);
1168 }
1169 
1170 static void hclge_parse_fiber_link_mode(struct hclge_dev *hdev,
1171 					u16 speed_ability)
1172 {
1173 	struct hclge_mac *mac = &hdev->hw.mac;
1174 
1175 	if (speed_ability & HCLGE_SUPPORT_1G_BIT)
1176 		linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT,
1177 				 mac->supported);
1178 
1179 	hclge_convert_setting_sr(speed_ability, mac->supported);
1180 	hclge_convert_setting_lr(speed_ability, mac->supported);
1181 	hclge_convert_setting_cr(speed_ability, mac->supported);
1182 	if (hnae3_dev_fec_supported(hdev))
1183 		hclge_convert_setting_fec(mac);
1184 
1185 	if (hnae3_dev_pause_supported(hdev))
1186 		linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, mac->supported);
1187 
1188 	linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, mac->supported);
1189 	linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_NONE_BIT, mac->supported);
1190 }
1191 
1192 static void hclge_parse_backplane_link_mode(struct hclge_dev *hdev,
1193 					    u16 speed_ability)
1194 {
1195 	struct hclge_mac *mac = &hdev->hw.mac;
1196 
1197 	hclge_convert_setting_kr(speed_ability, mac->supported);
1198 	if (hnae3_dev_fec_supported(hdev))
1199 		hclge_convert_setting_fec(mac);
1200 
1201 	if (hnae3_dev_pause_supported(hdev))
1202 		linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, mac->supported);
1203 
1204 	linkmode_set_bit(ETHTOOL_LINK_MODE_Backplane_BIT, mac->supported);
1205 	linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_NONE_BIT, mac->supported);
1206 }
1207 
1208 static void hclge_parse_copper_link_mode(struct hclge_dev *hdev,
1209 					 u16 speed_ability)
1210 {
1211 	unsigned long *supported = hdev->hw.mac.supported;
1212 
1213 	/* default to support all speed for GE port */
1214 	if (!speed_ability)
1215 		speed_ability = HCLGE_SUPPORT_GE;
1216 
1217 	if (speed_ability & HCLGE_SUPPORT_1G_BIT)
1218 		linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
1219 				 supported);
1220 
1221 	if (speed_ability & HCLGE_SUPPORT_100M_BIT) {
1222 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT,
1223 				 supported);
1224 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT,
1225 				 supported);
1226 	}
1227 
1228 	if (speed_ability & HCLGE_SUPPORT_10M_BIT) {
1229 		linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, supported);
1230 		linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, supported);
1231 	}
1232 
1233 	if (hnae3_dev_pause_supported(hdev)) {
1234 		linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, supported);
1235 		linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, supported);
1236 	}
1237 
1238 	linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, supported);
1239 	linkmode_set_bit(ETHTOOL_LINK_MODE_TP_BIT, supported);
1240 }
1241 
1242 static void hclge_parse_link_mode(struct hclge_dev *hdev, u16 speed_ability)
1243 {
1244 	u8 media_type = hdev->hw.mac.media_type;
1245 
1246 	if (media_type == HNAE3_MEDIA_TYPE_FIBER)
1247 		hclge_parse_fiber_link_mode(hdev, speed_ability);
1248 	else if (media_type == HNAE3_MEDIA_TYPE_COPPER)
1249 		hclge_parse_copper_link_mode(hdev, speed_ability);
1250 	else if (media_type == HNAE3_MEDIA_TYPE_BACKPLANE)
1251 		hclge_parse_backplane_link_mode(hdev, speed_ability);
1252 }
1253 
1254 static u32 hclge_get_max_speed(u16 speed_ability)
1255 {
1256 	if (speed_ability & HCLGE_SUPPORT_200G_BIT)
1257 		return HCLGE_MAC_SPEED_200G;
1258 
1259 	if (speed_ability & HCLGE_SUPPORT_100G_BIT)
1260 		return HCLGE_MAC_SPEED_100G;
1261 
1262 	if (speed_ability & HCLGE_SUPPORT_50G_BIT)
1263 		return HCLGE_MAC_SPEED_50G;
1264 
1265 	if (speed_ability & HCLGE_SUPPORT_40G_BIT)
1266 		return HCLGE_MAC_SPEED_40G;
1267 
1268 	if (speed_ability & HCLGE_SUPPORT_25G_BIT)
1269 		return HCLGE_MAC_SPEED_25G;
1270 
1271 	if (speed_ability & HCLGE_SUPPORT_10G_BIT)
1272 		return HCLGE_MAC_SPEED_10G;
1273 
1274 	if (speed_ability & HCLGE_SUPPORT_1G_BIT)
1275 		return HCLGE_MAC_SPEED_1G;
1276 
1277 	if (speed_ability & HCLGE_SUPPORT_100M_BIT)
1278 		return HCLGE_MAC_SPEED_100M;
1279 
1280 	if (speed_ability & HCLGE_SUPPORT_10M_BIT)
1281 		return HCLGE_MAC_SPEED_10M;
1282 
1283 	return HCLGE_MAC_SPEED_1G;
1284 }
1285 
1286 static void hclge_parse_cfg(struct hclge_cfg *cfg, struct hclge_desc *desc)
1287 {
1288 #define HCLGE_TX_SPARE_SIZE_UNIT		4096
1289 #define SPEED_ABILITY_EXT_SHIFT			8
1290 
1291 	struct hclge_cfg_param_cmd *req;
1292 	u64 mac_addr_tmp_high;
1293 	u16 speed_ability_ext;
1294 	u64 mac_addr_tmp;
1295 	unsigned int i;
1296 
1297 	req = (struct hclge_cfg_param_cmd *)desc[0].data;
1298 
1299 	/* get the configuration */
1300 	cfg->tc_num = hnae3_get_field(__le32_to_cpu(req->param[0]),
1301 				      HCLGE_CFG_TC_NUM_M, HCLGE_CFG_TC_NUM_S);
1302 	cfg->tqp_desc_num = hnae3_get_field(__le32_to_cpu(req->param[0]),
1303 					    HCLGE_CFG_TQP_DESC_N_M,
1304 					    HCLGE_CFG_TQP_DESC_N_S);
1305 
1306 	cfg->phy_addr = hnae3_get_field(__le32_to_cpu(req->param[1]),
1307 					HCLGE_CFG_PHY_ADDR_M,
1308 					HCLGE_CFG_PHY_ADDR_S);
1309 	cfg->media_type = hnae3_get_field(__le32_to_cpu(req->param[1]),
1310 					  HCLGE_CFG_MEDIA_TP_M,
1311 					  HCLGE_CFG_MEDIA_TP_S);
1312 	cfg->rx_buf_len = hnae3_get_field(__le32_to_cpu(req->param[1]),
1313 					  HCLGE_CFG_RX_BUF_LEN_M,
1314 					  HCLGE_CFG_RX_BUF_LEN_S);
1315 	/* get mac_address */
1316 	mac_addr_tmp = __le32_to_cpu(req->param[2]);
1317 	mac_addr_tmp_high = hnae3_get_field(__le32_to_cpu(req->param[3]),
1318 					    HCLGE_CFG_MAC_ADDR_H_M,
1319 					    HCLGE_CFG_MAC_ADDR_H_S);
1320 
1321 	mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1;
1322 
1323 	cfg->default_speed = hnae3_get_field(__le32_to_cpu(req->param[3]),
1324 					     HCLGE_CFG_DEFAULT_SPEED_M,
1325 					     HCLGE_CFG_DEFAULT_SPEED_S);
1326 	cfg->vf_rss_size_max = hnae3_get_field(__le32_to_cpu(req->param[3]),
1327 					       HCLGE_CFG_RSS_SIZE_M,
1328 					       HCLGE_CFG_RSS_SIZE_S);
1329 
1330 	for (i = 0; i < ETH_ALEN; i++)
1331 		cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff;
1332 
1333 	req = (struct hclge_cfg_param_cmd *)desc[1].data;
1334 	cfg->numa_node_map = __le32_to_cpu(req->param[0]);
1335 
1336 	cfg->speed_ability = hnae3_get_field(__le32_to_cpu(req->param[1]),
1337 					     HCLGE_CFG_SPEED_ABILITY_M,
1338 					     HCLGE_CFG_SPEED_ABILITY_S);
1339 	speed_ability_ext = hnae3_get_field(__le32_to_cpu(req->param[1]),
1340 					    HCLGE_CFG_SPEED_ABILITY_EXT_M,
1341 					    HCLGE_CFG_SPEED_ABILITY_EXT_S);
1342 	cfg->speed_ability |= speed_ability_ext << SPEED_ABILITY_EXT_SHIFT;
1343 
1344 	cfg->vlan_fliter_cap = hnae3_get_field(__le32_to_cpu(req->param[1]),
1345 					       HCLGE_CFG_VLAN_FLTR_CAP_M,
1346 					       HCLGE_CFG_VLAN_FLTR_CAP_S);
1347 
1348 	cfg->umv_space = hnae3_get_field(__le32_to_cpu(req->param[1]),
1349 					 HCLGE_CFG_UMV_TBL_SPACE_M,
1350 					 HCLGE_CFG_UMV_TBL_SPACE_S);
1351 
1352 	cfg->pf_rss_size_max = hnae3_get_field(__le32_to_cpu(req->param[2]),
1353 					       HCLGE_CFG_PF_RSS_SIZE_M,
1354 					       HCLGE_CFG_PF_RSS_SIZE_S);
1355 
1356 	/* HCLGE_CFG_PF_RSS_SIZE_M is the PF max rss size, which is a
1357 	 * power of 2, instead of reading out directly. This would
1358 	 * be more flexible for future changes and expansions.
1359 	 * When VF max  rss size field is HCLGE_CFG_RSS_SIZE_S,
1360 	 * it does not make sense if PF's field is 0. In this case, PF and VF
1361 	 * has the same max rss size filed: HCLGE_CFG_RSS_SIZE_S.
1362 	 */
1363 	cfg->pf_rss_size_max = cfg->pf_rss_size_max ?
1364 			       1U << cfg->pf_rss_size_max :
1365 			       cfg->vf_rss_size_max;
1366 
1367 	/* The unit of the tx spare buffer size queried from configuration
1368 	 * file is HCLGE_TX_SPARE_SIZE_UNIT(4096) bytes, so a conversion is
1369 	 * needed here.
1370 	 */
1371 	cfg->tx_spare_buf_size = hnae3_get_field(__le32_to_cpu(req->param[2]),
1372 						 HCLGE_CFG_TX_SPARE_BUF_SIZE_M,
1373 						 HCLGE_CFG_TX_SPARE_BUF_SIZE_S);
1374 	cfg->tx_spare_buf_size *= HCLGE_TX_SPARE_SIZE_UNIT;
1375 }
1376 
1377 /* hclge_get_cfg: query the static parameter from flash
1378  * @hdev: pointer to struct hclge_dev
1379  * @hcfg: the config structure to be getted
1380  */
1381 static int hclge_get_cfg(struct hclge_dev *hdev, struct hclge_cfg *hcfg)
1382 {
1383 	struct hclge_desc desc[HCLGE_PF_CFG_DESC_NUM];
1384 	struct hclge_cfg_param_cmd *req;
1385 	unsigned int i;
1386 	int ret;
1387 
1388 	for (i = 0; i < HCLGE_PF_CFG_DESC_NUM; i++) {
1389 		u32 offset = 0;
1390 
1391 		req = (struct hclge_cfg_param_cmd *)desc[i].data;
1392 		hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_GET_CFG_PARAM,
1393 					   true);
1394 		hnae3_set_field(offset, HCLGE_CFG_OFFSET_M,
1395 				HCLGE_CFG_OFFSET_S, i * HCLGE_CFG_RD_LEN_BYTES);
1396 		/* Len should be united by 4 bytes when send to hardware */
1397 		hnae3_set_field(offset, HCLGE_CFG_RD_LEN_M, HCLGE_CFG_RD_LEN_S,
1398 				HCLGE_CFG_RD_LEN_BYTES / HCLGE_CFG_RD_LEN_UNIT);
1399 		req->offset = cpu_to_le32(offset);
1400 	}
1401 
1402 	ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_PF_CFG_DESC_NUM);
1403 	if (ret) {
1404 		dev_err(&hdev->pdev->dev, "get config failed %d.\n", ret);
1405 		return ret;
1406 	}
1407 
1408 	hclge_parse_cfg(hcfg, desc);
1409 
1410 	return 0;
1411 }
1412 
1413 static void hclge_set_default_dev_specs(struct hclge_dev *hdev)
1414 {
1415 #define HCLGE_MAX_NON_TSO_BD_NUM			8U
1416 
1417 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1418 
1419 	ae_dev->dev_specs.max_non_tso_bd_num = HCLGE_MAX_NON_TSO_BD_NUM;
1420 	ae_dev->dev_specs.rss_ind_tbl_size = HCLGE_RSS_IND_TBL_SIZE;
1421 	ae_dev->dev_specs.rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
1422 	ae_dev->dev_specs.max_tm_rate = HCLGE_ETHER_MAX_RATE;
1423 	ae_dev->dev_specs.max_int_gl = HCLGE_DEF_MAX_INT_GL;
1424 	ae_dev->dev_specs.max_frm_size = HCLGE_MAC_MAX_FRAME;
1425 	ae_dev->dev_specs.max_qset_num = HCLGE_MAX_QSET_NUM;
1426 	ae_dev->dev_specs.umv_size = HCLGE_DEFAULT_UMV_SPACE_PER_PF;
1427 }
1428 
1429 static void hclge_parse_dev_specs(struct hclge_dev *hdev,
1430 				  struct hclge_desc *desc)
1431 {
1432 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1433 	struct hclge_dev_specs_0_cmd *req0;
1434 	struct hclge_dev_specs_1_cmd *req1;
1435 
1436 	req0 = (struct hclge_dev_specs_0_cmd *)desc[0].data;
1437 	req1 = (struct hclge_dev_specs_1_cmd *)desc[1].data;
1438 
1439 	ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
1440 	ae_dev->dev_specs.rss_ind_tbl_size =
1441 		le16_to_cpu(req0->rss_ind_tbl_size);
1442 	ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
1443 	ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
1444 	ae_dev->dev_specs.max_tm_rate = le32_to_cpu(req0->max_tm_rate);
1445 	ae_dev->dev_specs.max_qset_num = le16_to_cpu(req1->max_qset_num);
1446 	ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
1447 	ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size);
1448 	ae_dev->dev_specs.umv_size = le16_to_cpu(req1->umv_size);
1449 	ae_dev->dev_specs.mc_mac_size = le16_to_cpu(req1->mc_mac_size);
1450 }
1451 
1452 static void hclge_check_dev_specs(struct hclge_dev *hdev)
1453 {
1454 	struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
1455 
1456 	if (!dev_specs->max_non_tso_bd_num)
1457 		dev_specs->max_non_tso_bd_num = HCLGE_MAX_NON_TSO_BD_NUM;
1458 	if (!dev_specs->rss_ind_tbl_size)
1459 		dev_specs->rss_ind_tbl_size = HCLGE_RSS_IND_TBL_SIZE;
1460 	if (!dev_specs->rss_key_size)
1461 		dev_specs->rss_key_size = HCLGE_COMM_RSS_KEY_SIZE;
1462 	if (!dev_specs->max_tm_rate)
1463 		dev_specs->max_tm_rate = HCLGE_ETHER_MAX_RATE;
1464 	if (!dev_specs->max_qset_num)
1465 		dev_specs->max_qset_num = HCLGE_MAX_QSET_NUM;
1466 	if (!dev_specs->max_int_gl)
1467 		dev_specs->max_int_gl = HCLGE_DEF_MAX_INT_GL;
1468 	if (!dev_specs->max_frm_size)
1469 		dev_specs->max_frm_size = HCLGE_MAC_MAX_FRAME;
1470 	if (!dev_specs->umv_size)
1471 		dev_specs->umv_size = HCLGE_DEFAULT_UMV_SPACE_PER_PF;
1472 }
1473 
1474 static int hclge_query_mac_stats_num(struct hclge_dev *hdev)
1475 {
1476 	u32 reg_num = 0;
1477 	int ret;
1478 
1479 	ret = hclge_mac_query_reg_num(hdev, &reg_num);
1480 	if (ret && ret != -EOPNOTSUPP)
1481 		return ret;
1482 
1483 	hdev->ae_dev->dev_specs.mac_stats_num = reg_num;
1484 	return 0;
1485 }
1486 
1487 static int hclge_query_dev_specs(struct hclge_dev *hdev)
1488 {
1489 	struct hclge_desc desc[HCLGE_QUERY_DEV_SPECS_BD_NUM];
1490 	int ret;
1491 	int i;
1492 
1493 	ret = hclge_query_mac_stats_num(hdev);
1494 	if (ret)
1495 		return ret;
1496 
1497 	/* set default specifications as devices lower than version V3 do not
1498 	 * support querying specifications from firmware.
1499 	 */
1500 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
1501 		hclge_set_default_dev_specs(hdev);
1502 		return 0;
1503 	}
1504 
1505 	for (i = 0; i < HCLGE_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
1506 		hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_DEV_SPECS,
1507 					   true);
1508 		desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
1509 	}
1510 	hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_DEV_SPECS, true);
1511 
1512 	ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_QUERY_DEV_SPECS_BD_NUM);
1513 	if (ret)
1514 		return ret;
1515 
1516 	hclge_parse_dev_specs(hdev, desc);
1517 	hclge_check_dev_specs(hdev);
1518 
1519 	return 0;
1520 }
1521 
1522 static int hclge_get_cap(struct hclge_dev *hdev)
1523 {
1524 	int ret;
1525 
1526 	ret = hclge_query_function_status(hdev);
1527 	if (ret) {
1528 		dev_err(&hdev->pdev->dev,
1529 			"query function status error %d.\n", ret);
1530 		return ret;
1531 	}
1532 
1533 	/* get pf resource */
1534 	return hclge_query_pf_resource(hdev);
1535 }
1536 
1537 static void hclge_init_kdump_kernel_config(struct hclge_dev *hdev)
1538 {
1539 #define HCLGE_MIN_TX_DESC	64
1540 #define HCLGE_MIN_RX_DESC	64
1541 
1542 	if (!is_kdump_kernel())
1543 		return;
1544 
1545 	dev_info(&hdev->pdev->dev,
1546 		 "Running kdump kernel. Using minimal resources\n");
1547 
1548 	/* minimal queue pairs equals to the number of vports */
1549 	hdev->num_tqps = hdev->num_req_vfs + 1;
1550 	hdev->num_tx_desc = HCLGE_MIN_TX_DESC;
1551 	hdev->num_rx_desc = HCLGE_MIN_RX_DESC;
1552 }
1553 
1554 static void hclge_init_tc_config(struct hclge_dev *hdev)
1555 {
1556 	unsigned int i;
1557 
1558 	if (hdev->tc_max > HNAE3_MAX_TC ||
1559 	    hdev->tc_max < 1) {
1560 		dev_warn(&hdev->pdev->dev, "TC num = %u.\n",
1561 			 hdev->tc_max);
1562 		hdev->tc_max = 1;
1563 	}
1564 
1565 	/* Dev does not support DCB */
1566 	if (!hnae3_dev_dcb_supported(hdev)) {
1567 		hdev->tc_max = 1;
1568 		hdev->pfc_max = 0;
1569 	} else {
1570 		hdev->pfc_max = hdev->tc_max;
1571 	}
1572 
1573 	hdev->tm_info.num_tc = 1;
1574 
1575 	/* Currently not support uncontiuous tc */
1576 	for (i = 0; i < hdev->tm_info.num_tc; i++)
1577 		hnae3_set_bit(hdev->hw_tc_map, i, 1);
1578 
1579 	hdev->tx_sch_mode = HCLGE_FLAG_TC_BASE_SCH_MODE;
1580 }
1581 
1582 static int hclge_configure(struct hclge_dev *hdev)
1583 {
1584 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1585 	struct hclge_cfg cfg;
1586 	int ret;
1587 
1588 	ret = hclge_get_cfg(hdev, &cfg);
1589 	if (ret)
1590 		return ret;
1591 
1592 	hdev->base_tqp_pid = 0;
1593 	hdev->vf_rss_size_max = cfg.vf_rss_size_max;
1594 	hdev->pf_rss_size_max = cfg.pf_rss_size_max;
1595 	hdev->rx_buf_len = cfg.rx_buf_len;
1596 	ether_addr_copy(hdev->hw.mac.mac_addr, cfg.mac_addr);
1597 	hdev->hw.mac.media_type = cfg.media_type;
1598 	hdev->hw.mac.phy_addr = cfg.phy_addr;
1599 	hdev->num_tx_desc = cfg.tqp_desc_num;
1600 	hdev->num_rx_desc = cfg.tqp_desc_num;
1601 	hdev->tm_info.num_pg = 1;
1602 	hdev->tc_max = cfg.tc_num;
1603 	hdev->tm_info.hw_pfc_map = 0;
1604 	if (cfg.umv_space)
1605 		hdev->wanted_umv_size = cfg.umv_space;
1606 	else
1607 		hdev->wanted_umv_size = hdev->ae_dev->dev_specs.umv_size;
1608 	hdev->tx_spare_buf_size = cfg.tx_spare_buf_size;
1609 	hdev->gro_en = true;
1610 	if (cfg.vlan_fliter_cap == HCLGE_VLAN_FLTR_CAN_MDF)
1611 		set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps);
1612 
1613 	if (hnae3_ae_dev_fd_supported(hdev->ae_dev)) {
1614 		hdev->fd_en = true;
1615 		hdev->fd_active_type = HCLGE_FD_RULE_NONE;
1616 	}
1617 
1618 	ret = hclge_parse_speed(cfg.default_speed, &hdev->hw.mac.speed);
1619 	if (ret) {
1620 		dev_err(&hdev->pdev->dev, "failed to parse speed %u, ret = %d\n",
1621 			cfg.default_speed, ret);
1622 		return ret;
1623 	}
1624 
1625 	hclge_parse_link_mode(hdev, cfg.speed_ability);
1626 
1627 	hdev->hw.mac.max_speed = hclge_get_max_speed(cfg.speed_ability);
1628 
1629 	hclge_init_tc_config(hdev);
1630 	hclge_init_kdump_kernel_config(hdev);
1631 
1632 	return ret;
1633 }
1634 
1635 static int hclge_config_tso(struct hclge_dev *hdev, u16 tso_mss_min,
1636 			    u16 tso_mss_max)
1637 {
1638 	struct hclge_cfg_tso_status_cmd *req;
1639 	struct hclge_desc desc;
1640 
1641 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_TSO_GENERIC_CONFIG, false);
1642 
1643 	req = (struct hclge_cfg_tso_status_cmd *)desc.data;
1644 	req->tso_mss_min = cpu_to_le16(tso_mss_min);
1645 	req->tso_mss_max = cpu_to_le16(tso_mss_max);
1646 
1647 	return hclge_cmd_send(&hdev->hw, &desc, 1);
1648 }
1649 
1650 static int hclge_config_gro(struct hclge_dev *hdev)
1651 {
1652 	struct hclge_cfg_gro_status_cmd *req;
1653 	struct hclge_desc desc;
1654 	int ret;
1655 
1656 	if (!hnae3_ae_dev_gro_supported(hdev->ae_dev))
1657 		return 0;
1658 
1659 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GRO_GENERIC_CONFIG, false);
1660 	req = (struct hclge_cfg_gro_status_cmd *)desc.data;
1661 
1662 	req->gro_en = hdev->gro_en ? 1 : 0;
1663 
1664 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
1665 	if (ret)
1666 		dev_err(&hdev->pdev->dev,
1667 			"GRO hardware config cmd failed, ret = %d\n", ret);
1668 
1669 	return ret;
1670 }
1671 
1672 static int hclge_alloc_tqps(struct hclge_dev *hdev)
1673 {
1674 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1675 	struct hclge_comm_tqp *tqp;
1676 	int i;
1677 
1678 	hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
1679 				  sizeof(struct hclge_comm_tqp), GFP_KERNEL);
1680 	if (!hdev->htqp)
1681 		return -ENOMEM;
1682 
1683 	tqp = hdev->htqp;
1684 
1685 	for (i = 0; i < hdev->num_tqps; i++) {
1686 		tqp->dev = &hdev->pdev->dev;
1687 		tqp->index = i;
1688 
1689 		tqp->q.ae_algo = &ae_algo;
1690 		tqp->q.buf_size = hdev->rx_buf_len;
1691 		tqp->q.tx_desc_num = hdev->num_tx_desc;
1692 		tqp->q.rx_desc_num = hdev->num_rx_desc;
1693 
1694 		/* need an extended offset to configure queues >=
1695 		 * HCLGE_TQP_MAX_SIZE_DEV_V2
1696 		 */
1697 		if (i < HCLGE_TQP_MAX_SIZE_DEV_V2)
1698 			tqp->q.io_base = hdev->hw.hw.io_base +
1699 					 HCLGE_TQP_REG_OFFSET +
1700 					 i * HCLGE_TQP_REG_SIZE;
1701 		else
1702 			tqp->q.io_base = hdev->hw.hw.io_base +
1703 					 HCLGE_TQP_REG_OFFSET +
1704 					 HCLGE_TQP_EXT_REG_OFFSET +
1705 					 (i - HCLGE_TQP_MAX_SIZE_DEV_V2) *
1706 					 HCLGE_TQP_REG_SIZE;
1707 
1708 		/* when device supports tx push and has device memory,
1709 		 * the queue can execute push mode or doorbell mode on
1710 		 * device memory.
1711 		 */
1712 		if (test_bit(HNAE3_DEV_SUPPORT_TX_PUSH_B, ae_dev->caps))
1713 			tqp->q.mem_base = hdev->hw.hw.mem_base +
1714 					  HCLGE_TQP_MEM_OFFSET(hdev, i);
1715 
1716 		tqp++;
1717 	}
1718 
1719 	return 0;
1720 }
1721 
1722 static int hclge_map_tqps_to_func(struct hclge_dev *hdev, u16 func_id,
1723 				  u16 tqp_pid, u16 tqp_vid, bool is_pf)
1724 {
1725 	struct hclge_tqp_map_cmd *req;
1726 	struct hclge_desc desc;
1727 	int ret;
1728 
1729 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_SET_TQP_MAP, false);
1730 
1731 	req = (struct hclge_tqp_map_cmd *)desc.data;
1732 	req->tqp_id = cpu_to_le16(tqp_pid);
1733 	req->tqp_vf = func_id;
1734 	req->tqp_flag = 1U << HCLGE_TQP_MAP_EN_B;
1735 	if (!is_pf)
1736 		req->tqp_flag |= 1U << HCLGE_TQP_MAP_TYPE_B;
1737 	req->tqp_vid = cpu_to_le16(tqp_vid);
1738 
1739 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
1740 	if (ret)
1741 		dev_err(&hdev->pdev->dev, "TQP map failed %d.\n", ret);
1742 
1743 	return ret;
1744 }
1745 
1746 static int  hclge_assign_tqp(struct hclge_vport *vport, u16 num_tqps)
1747 {
1748 	struct hnae3_knic_private_info *kinfo = &vport->nic.kinfo;
1749 	struct hclge_dev *hdev = vport->back;
1750 	int i, alloced;
1751 
1752 	for (i = 0, alloced = 0; i < hdev->num_tqps &&
1753 	     alloced < num_tqps; i++) {
1754 		if (!hdev->htqp[i].alloced) {
1755 			hdev->htqp[i].q.handle = &vport->nic;
1756 			hdev->htqp[i].q.tqp_index = alloced;
1757 			hdev->htqp[i].q.tx_desc_num = kinfo->num_tx_desc;
1758 			hdev->htqp[i].q.rx_desc_num = kinfo->num_rx_desc;
1759 			kinfo->tqp[alloced] = &hdev->htqp[i].q;
1760 			hdev->htqp[i].alloced = true;
1761 			alloced++;
1762 		}
1763 	}
1764 	vport->alloc_tqps = alloced;
1765 	kinfo->rss_size = min_t(u16, hdev->pf_rss_size_max,
1766 				vport->alloc_tqps / hdev->tm_info.num_tc);
1767 
1768 	/* ensure one to one mapping between irq and queue at default */
1769 	kinfo->rss_size = min_t(u16, kinfo->rss_size,
1770 				(hdev->num_nic_msi - 1) / hdev->tm_info.num_tc);
1771 
1772 	return 0;
1773 }
1774 
1775 static int hclge_knic_setup(struct hclge_vport *vport, u16 num_tqps,
1776 			    u16 num_tx_desc, u16 num_rx_desc)
1777 
1778 {
1779 	struct hnae3_handle *nic = &vport->nic;
1780 	struct hnae3_knic_private_info *kinfo = &nic->kinfo;
1781 	struct hclge_dev *hdev = vport->back;
1782 	int ret;
1783 
1784 	kinfo->num_tx_desc = num_tx_desc;
1785 	kinfo->num_rx_desc = num_rx_desc;
1786 
1787 	kinfo->rx_buf_len = hdev->rx_buf_len;
1788 	kinfo->tx_spare_buf_size = hdev->tx_spare_buf_size;
1789 
1790 	kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, num_tqps,
1791 				  sizeof(struct hnae3_queue *), GFP_KERNEL);
1792 	if (!kinfo->tqp)
1793 		return -ENOMEM;
1794 
1795 	ret = hclge_assign_tqp(vport, num_tqps);
1796 	if (ret)
1797 		dev_err(&hdev->pdev->dev, "fail to assign TQPs %d.\n", ret);
1798 
1799 	return ret;
1800 }
1801 
1802 static int hclge_map_tqp_to_vport(struct hclge_dev *hdev,
1803 				  struct hclge_vport *vport)
1804 {
1805 	struct hnae3_handle *nic = &vport->nic;
1806 	struct hnae3_knic_private_info *kinfo;
1807 	u16 i;
1808 
1809 	kinfo = &nic->kinfo;
1810 	for (i = 0; i < vport->alloc_tqps; i++) {
1811 		struct hclge_comm_tqp *q =
1812 			container_of(kinfo->tqp[i], struct hclge_comm_tqp, q);
1813 		bool is_pf;
1814 		int ret;
1815 
1816 		is_pf = !(vport->vport_id);
1817 		ret = hclge_map_tqps_to_func(hdev, vport->vport_id, q->index,
1818 					     i, is_pf);
1819 		if (ret)
1820 			return ret;
1821 	}
1822 
1823 	return 0;
1824 }
1825 
1826 static int hclge_map_tqp(struct hclge_dev *hdev)
1827 {
1828 	struct hclge_vport *vport = hdev->vport;
1829 	u16 i, num_vport;
1830 
1831 	num_vport = hdev->num_req_vfs + 1;
1832 	for (i = 0; i < num_vport; i++) {
1833 		int ret;
1834 
1835 		ret = hclge_map_tqp_to_vport(hdev, vport);
1836 		if (ret)
1837 			return ret;
1838 
1839 		vport++;
1840 	}
1841 
1842 	return 0;
1843 }
1844 
1845 static int hclge_vport_setup(struct hclge_vport *vport, u16 num_tqps)
1846 {
1847 	struct hnae3_handle *nic = &vport->nic;
1848 	struct hclge_dev *hdev = vport->back;
1849 	int ret;
1850 
1851 	nic->pdev = hdev->pdev;
1852 	nic->ae_algo = &ae_algo;
1853 	nic->numa_node_mask = hdev->numa_node_mask;
1854 	nic->kinfo.io_base = hdev->hw.hw.io_base;
1855 
1856 	ret = hclge_knic_setup(vport, num_tqps,
1857 			       hdev->num_tx_desc, hdev->num_rx_desc);
1858 	if (ret)
1859 		dev_err(&hdev->pdev->dev, "knic setup failed %d\n", ret);
1860 
1861 	return ret;
1862 }
1863 
1864 static int hclge_alloc_vport(struct hclge_dev *hdev)
1865 {
1866 	struct pci_dev *pdev = hdev->pdev;
1867 	struct hclge_vport *vport;
1868 	u32 tqp_main_vport;
1869 	u32 tqp_per_vport;
1870 	int num_vport, i;
1871 	int ret;
1872 
1873 	/* We need to alloc a vport for main NIC of PF */
1874 	num_vport = hdev->num_req_vfs + 1;
1875 
1876 	if (hdev->num_tqps < num_vport) {
1877 		dev_err(&hdev->pdev->dev, "tqps(%u) is less than vports(%d)",
1878 			hdev->num_tqps, num_vport);
1879 		return -EINVAL;
1880 	}
1881 
1882 	/* Alloc the same number of TQPs for every vport */
1883 	tqp_per_vport = hdev->num_tqps / num_vport;
1884 	tqp_main_vport = tqp_per_vport + hdev->num_tqps % num_vport;
1885 
1886 	vport = devm_kcalloc(&pdev->dev, num_vport, sizeof(struct hclge_vport),
1887 			     GFP_KERNEL);
1888 	if (!vport)
1889 		return -ENOMEM;
1890 
1891 	hdev->vport = vport;
1892 	hdev->num_alloc_vport = num_vport;
1893 
1894 	if (IS_ENABLED(CONFIG_PCI_IOV))
1895 		hdev->num_alloc_vfs = hdev->num_req_vfs;
1896 
1897 	for (i = 0; i < num_vport; i++) {
1898 		vport->back = hdev;
1899 		vport->vport_id = i;
1900 		vport->vf_info.link_state = IFLA_VF_LINK_STATE_AUTO;
1901 		vport->mps = HCLGE_MAC_DEFAULT_FRAME;
1902 		vport->port_base_vlan_cfg.state = HNAE3_PORT_BASE_VLAN_DISABLE;
1903 		vport->port_base_vlan_cfg.tbl_sta = true;
1904 		vport->rxvlan_cfg.rx_vlan_offload_en = true;
1905 		vport->req_vlan_fltr_en = true;
1906 		INIT_LIST_HEAD(&vport->vlan_list);
1907 		INIT_LIST_HEAD(&vport->uc_mac_list);
1908 		INIT_LIST_HEAD(&vport->mc_mac_list);
1909 		spin_lock_init(&vport->mac_list_lock);
1910 
1911 		if (i == 0)
1912 			ret = hclge_vport_setup(vport, tqp_main_vport);
1913 		else
1914 			ret = hclge_vport_setup(vport, tqp_per_vport);
1915 		if (ret) {
1916 			dev_err(&pdev->dev,
1917 				"vport setup failed for vport %d, %d\n",
1918 				i, ret);
1919 			return ret;
1920 		}
1921 
1922 		vport++;
1923 	}
1924 
1925 	return 0;
1926 }
1927 
1928 static int  hclge_cmd_alloc_tx_buff(struct hclge_dev *hdev,
1929 				    struct hclge_pkt_buf_alloc *buf_alloc)
1930 {
1931 /* TX buffer size is unit by 128 byte */
1932 #define HCLGE_BUF_SIZE_UNIT_SHIFT	7
1933 #define HCLGE_BUF_SIZE_UPDATE_EN_MSK	BIT(15)
1934 	struct hclge_tx_buff_alloc_cmd *req;
1935 	struct hclge_desc desc;
1936 	int ret;
1937 	u8 i;
1938 
1939 	req = (struct hclge_tx_buff_alloc_cmd *)desc.data;
1940 
1941 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_TX_BUFF_ALLOC, 0);
1942 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
1943 		u32 buf_size = buf_alloc->priv_buf[i].tx_buf_size;
1944 
1945 		req->tx_pkt_buff[i] =
1946 			cpu_to_le16((buf_size >> HCLGE_BUF_SIZE_UNIT_SHIFT) |
1947 				     HCLGE_BUF_SIZE_UPDATE_EN_MSK);
1948 	}
1949 
1950 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
1951 	if (ret)
1952 		dev_err(&hdev->pdev->dev, "tx buffer alloc cmd failed %d.\n",
1953 			ret);
1954 
1955 	return ret;
1956 }
1957 
1958 static int hclge_tx_buffer_alloc(struct hclge_dev *hdev,
1959 				 struct hclge_pkt_buf_alloc *buf_alloc)
1960 {
1961 	int ret = hclge_cmd_alloc_tx_buff(hdev, buf_alloc);
1962 
1963 	if (ret)
1964 		dev_err(&hdev->pdev->dev, "tx buffer alloc failed %d\n", ret);
1965 
1966 	return ret;
1967 }
1968 
1969 static u32 hclge_get_tc_num(struct hclge_dev *hdev)
1970 {
1971 	unsigned int i;
1972 	u32 cnt = 0;
1973 
1974 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++)
1975 		if (hdev->hw_tc_map & BIT(i))
1976 			cnt++;
1977 	return cnt;
1978 }
1979 
1980 /* Get the number of pfc enabled TCs, which have private buffer */
1981 static int hclge_get_pfc_priv_num(struct hclge_dev *hdev,
1982 				  struct hclge_pkt_buf_alloc *buf_alloc)
1983 {
1984 	struct hclge_priv_buf *priv;
1985 	unsigned int i;
1986 	int cnt = 0;
1987 
1988 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
1989 		priv = &buf_alloc->priv_buf[i];
1990 		if ((hdev->tm_info.hw_pfc_map & BIT(i)) &&
1991 		    priv->enable)
1992 			cnt++;
1993 	}
1994 
1995 	return cnt;
1996 }
1997 
1998 /* Get the number of pfc disabled TCs, which have private buffer */
1999 static int hclge_get_no_pfc_priv_num(struct hclge_dev *hdev,
2000 				     struct hclge_pkt_buf_alloc *buf_alloc)
2001 {
2002 	struct hclge_priv_buf *priv;
2003 	unsigned int i;
2004 	int cnt = 0;
2005 
2006 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
2007 		priv = &buf_alloc->priv_buf[i];
2008 		if (hdev->hw_tc_map & BIT(i) &&
2009 		    !(hdev->tm_info.hw_pfc_map & BIT(i)) &&
2010 		    priv->enable)
2011 			cnt++;
2012 	}
2013 
2014 	return cnt;
2015 }
2016 
2017 static u32 hclge_get_rx_priv_buff_alloced(struct hclge_pkt_buf_alloc *buf_alloc)
2018 {
2019 	struct hclge_priv_buf *priv;
2020 	u32 rx_priv = 0;
2021 	int i;
2022 
2023 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
2024 		priv = &buf_alloc->priv_buf[i];
2025 		if (priv->enable)
2026 			rx_priv += priv->buf_size;
2027 	}
2028 	return rx_priv;
2029 }
2030 
2031 static u32 hclge_get_tx_buff_alloced(struct hclge_pkt_buf_alloc *buf_alloc)
2032 {
2033 	u32 i, total_tx_size = 0;
2034 
2035 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++)
2036 		total_tx_size += buf_alloc->priv_buf[i].tx_buf_size;
2037 
2038 	return total_tx_size;
2039 }
2040 
2041 static bool  hclge_is_rx_buf_ok(struct hclge_dev *hdev,
2042 				struct hclge_pkt_buf_alloc *buf_alloc,
2043 				u32 rx_all)
2044 {
2045 	u32 shared_buf_min, shared_buf_tc, shared_std, hi_thrd, lo_thrd;
2046 	u32 tc_num = hclge_get_tc_num(hdev);
2047 	u32 shared_buf, aligned_mps;
2048 	u32 rx_priv;
2049 	int i;
2050 
2051 	aligned_mps = roundup(hdev->mps, HCLGE_BUF_SIZE_UNIT);
2052 
2053 	if (hnae3_dev_dcb_supported(hdev))
2054 		shared_buf_min = HCLGE_BUF_MUL_BY * aligned_mps +
2055 					hdev->dv_buf_size;
2056 	else
2057 		shared_buf_min = aligned_mps + HCLGE_NON_DCB_ADDITIONAL_BUF
2058 					+ hdev->dv_buf_size;
2059 
2060 	shared_buf_tc = tc_num * aligned_mps + aligned_mps;
2061 	shared_std = roundup(max_t(u32, shared_buf_min, shared_buf_tc),
2062 			     HCLGE_BUF_SIZE_UNIT);
2063 
2064 	rx_priv = hclge_get_rx_priv_buff_alloced(buf_alloc);
2065 	if (rx_all < rx_priv + shared_std)
2066 		return false;
2067 
2068 	shared_buf = rounddown(rx_all - rx_priv, HCLGE_BUF_SIZE_UNIT);
2069 	buf_alloc->s_buf.buf_size = shared_buf;
2070 	if (hnae3_dev_dcb_supported(hdev)) {
2071 		buf_alloc->s_buf.self.high = shared_buf - hdev->dv_buf_size;
2072 		buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high
2073 			- roundup(aligned_mps / HCLGE_BUF_DIV_BY,
2074 				  HCLGE_BUF_SIZE_UNIT);
2075 	} else {
2076 		buf_alloc->s_buf.self.high = aligned_mps +
2077 						HCLGE_NON_DCB_ADDITIONAL_BUF;
2078 		buf_alloc->s_buf.self.low = aligned_mps;
2079 	}
2080 
2081 	if (hnae3_dev_dcb_supported(hdev)) {
2082 		hi_thrd = shared_buf - hdev->dv_buf_size;
2083 
2084 		if (tc_num <= NEED_RESERVE_TC_NUM)
2085 			hi_thrd = hi_thrd * BUF_RESERVE_PERCENT
2086 					/ BUF_MAX_PERCENT;
2087 
2088 		if (tc_num)
2089 			hi_thrd = hi_thrd / tc_num;
2090 
2091 		hi_thrd = max_t(u32, hi_thrd, HCLGE_BUF_MUL_BY * aligned_mps);
2092 		hi_thrd = rounddown(hi_thrd, HCLGE_BUF_SIZE_UNIT);
2093 		lo_thrd = hi_thrd - aligned_mps / HCLGE_BUF_DIV_BY;
2094 	} else {
2095 		hi_thrd = aligned_mps + HCLGE_NON_DCB_ADDITIONAL_BUF;
2096 		lo_thrd = aligned_mps;
2097 	}
2098 
2099 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
2100 		buf_alloc->s_buf.tc_thrd[i].low = lo_thrd;
2101 		buf_alloc->s_buf.tc_thrd[i].high = hi_thrd;
2102 	}
2103 
2104 	return true;
2105 }
2106 
2107 static int hclge_tx_buffer_calc(struct hclge_dev *hdev,
2108 				struct hclge_pkt_buf_alloc *buf_alloc)
2109 {
2110 	u32 i, total_size;
2111 
2112 	total_size = hdev->pkt_buf_size;
2113 
2114 	/* alloc tx buffer for all enabled tc */
2115 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
2116 		struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i];
2117 
2118 		if (hdev->hw_tc_map & BIT(i)) {
2119 			if (total_size < hdev->tx_buf_size)
2120 				return -ENOMEM;
2121 
2122 			priv->tx_buf_size = hdev->tx_buf_size;
2123 		} else {
2124 			priv->tx_buf_size = 0;
2125 		}
2126 
2127 		total_size -= priv->tx_buf_size;
2128 	}
2129 
2130 	return 0;
2131 }
2132 
2133 static bool hclge_rx_buf_calc_all(struct hclge_dev *hdev, bool max,
2134 				  struct hclge_pkt_buf_alloc *buf_alloc)
2135 {
2136 	u32 rx_all = hdev->pkt_buf_size - hclge_get_tx_buff_alloced(buf_alloc);
2137 	u32 aligned_mps = round_up(hdev->mps, HCLGE_BUF_SIZE_UNIT);
2138 	unsigned int i;
2139 
2140 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
2141 		struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i];
2142 
2143 		priv->enable = 0;
2144 		priv->wl.low = 0;
2145 		priv->wl.high = 0;
2146 		priv->buf_size = 0;
2147 
2148 		if (!(hdev->hw_tc_map & BIT(i)))
2149 			continue;
2150 
2151 		priv->enable = 1;
2152 
2153 		if (hdev->tm_info.hw_pfc_map & BIT(i)) {
2154 			priv->wl.low = max ? aligned_mps : HCLGE_BUF_SIZE_UNIT;
2155 			priv->wl.high = roundup(priv->wl.low + aligned_mps,
2156 						HCLGE_BUF_SIZE_UNIT);
2157 		} else {
2158 			priv->wl.low = 0;
2159 			priv->wl.high = max ? (aligned_mps * HCLGE_BUF_MUL_BY) :
2160 					aligned_mps;
2161 		}
2162 
2163 		priv->buf_size = priv->wl.high + hdev->dv_buf_size;
2164 	}
2165 
2166 	return hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all);
2167 }
2168 
2169 static bool hclge_drop_nopfc_buf_till_fit(struct hclge_dev *hdev,
2170 					  struct hclge_pkt_buf_alloc *buf_alloc)
2171 {
2172 	u32 rx_all = hdev->pkt_buf_size - hclge_get_tx_buff_alloced(buf_alloc);
2173 	int no_pfc_priv_num = hclge_get_no_pfc_priv_num(hdev, buf_alloc);
2174 	int i;
2175 
2176 	/* let the last to be cleared first */
2177 	for (i = HCLGE_MAX_TC_NUM - 1; i >= 0; i--) {
2178 		struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i];
2179 		unsigned int mask = BIT((unsigned int)i);
2180 
2181 		if (hdev->hw_tc_map & mask &&
2182 		    !(hdev->tm_info.hw_pfc_map & mask)) {
2183 			/* Clear the no pfc TC private buffer */
2184 			priv->wl.low = 0;
2185 			priv->wl.high = 0;
2186 			priv->buf_size = 0;
2187 			priv->enable = 0;
2188 			no_pfc_priv_num--;
2189 		}
2190 
2191 		if (hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all) ||
2192 		    no_pfc_priv_num == 0)
2193 			break;
2194 	}
2195 
2196 	return hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all);
2197 }
2198 
2199 static bool hclge_drop_pfc_buf_till_fit(struct hclge_dev *hdev,
2200 					struct hclge_pkt_buf_alloc *buf_alloc)
2201 {
2202 	u32 rx_all = hdev->pkt_buf_size - hclge_get_tx_buff_alloced(buf_alloc);
2203 	int pfc_priv_num = hclge_get_pfc_priv_num(hdev, buf_alloc);
2204 	int i;
2205 
2206 	/* let the last to be cleared first */
2207 	for (i = HCLGE_MAX_TC_NUM - 1; i >= 0; i--) {
2208 		struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i];
2209 		unsigned int mask = BIT((unsigned int)i);
2210 
2211 		if (hdev->hw_tc_map & mask &&
2212 		    hdev->tm_info.hw_pfc_map & mask) {
2213 			/* Reduce the number of pfc TC with private buffer */
2214 			priv->wl.low = 0;
2215 			priv->enable = 0;
2216 			priv->wl.high = 0;
2217 			priv->buf_size = 0;
2218 			pfc_priv_num--;
2219 		}
2220 
2221 		if (hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all) ||
2222 		    pfc_priv_num == 0)
2223 			break;
2224 	}
2225 
2226 	return hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all);
2227 }
2228 
2229 static int hclge_only_alloc_priv_buff(struct hclge_dev *hdev,
2230 				      struct hclge_pkt_buf_alloc *buf_alloc)
2231 {
2232 #define COMPENSATE_BUFFER	0x3C00
2233 #define COMPENSATE_HALF_MPS_NUM	5
2234 #define PRIV_WL_GAP		0x1800
2235 
2236 	u32 rx_priv = hdev->pkt_buf_size - hclge_get_tx_buff_alloced(buf_alloc);
2237 	u32 tc_num = hclge_get_tc_num(hdev);
2238 	u32 half_mps = hdev->mps >> 1;
2239 	u32 min_rx_priv;
2240 	unsigned int i;
2241 
2242 	if (tc_num)
2243 		rx_priv = rx_priv / tc_num;
2244 
2245 	if (tc_num <= NEED_RESERVE_TC_NUM)
2246 		rx_priv = rx_priv * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT;
2247 
2248 	min_rx_priv = hdev->dv_buf_size + COMPENSATE_BUFFER +
2249 			COMPENSATE_HALF_MPS_NUM * half_mps;
2250 	min_rx_priv = round_up(min_rx_priv, HCLGE_BUF_SIZE_UNIT);
2251 	rx_priv = round_down(rx_priv, HCLGE_BUF_SIZE_UNIT);
2252 	if (rx_priv < min_rx_priv)
2253 		return false;
2254 
2255 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
2256 		struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i];
2257 
2258 		priv->enable = 0;
2259 		priv->wl.low = 0;
2260 		priv->wl.high = 0;
2261 		priv->buf_size = 0;
2262 
2263 		if (!(hdev->hw_tc_map & BIT(i)))
2264 			continue;
2265 
2266 		priv->enable = 1;
2267 		priv->buf_size = rx_priv;
2268 		priv->wl.high = rx_priv - hdev->dv_buf_size;
2269 		priv->wl.low = priv->wl.high - PRIV_WL_GAP;
2270 	}
2271 
2272 	buf_alloc->s_buf.buf_size = 0;
2273 
2274 	return true;
2275 }
2276 
2277 /* hclge_rx_buffer_calc: calculate the rx private buffer size for all TCs
2278  * @hdev: pointer to struct hclge_dev
2279  * @buf_alloc: pointer to buffer calculation data
2280  * @return: 0: calculate successful, negative: fail
2281  */
2282 static int hclge_rx_buffer_calc(struct hclge_dev *hdev,
2283 				struct hclge_pkt_buf_alloc *buf_alloc)
2284 {
2285 	/* When DCB is not supported, rx private buffer is not allocated. */
2286 	if (!hnae3_dev_dcb_supported(hdev)) {
2287 		u32 rx_all = hdev->pkt_buf_size;
2288 
2289 		rx_all -= hclge_get_tx_buff_alloced(buf_alloc);
2290 		if (!hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all))
2291 			return -ENOMEM;
2292 
2293 		return 0;
2294 	}
2295 
2296 	if (hclge_only_alloc_priv_buff(hdev, buf_alloc))
2297 		return 0;
2298 
2299 	if (hclge_rx_buf_calc_all(hdev, true, buf_alloc))
2300 		return 0;
2301 
2302 	/* try to decrease the buffer size */
2303 	if (hclge_rx_buf_calc_all(hdev, false, buf_alloc))
2304 		return 0;
2305 
2306 	if (hclge_drop_nopfc_buf_till_fit(hdev, buf_alloc))
2307 		return 0;
2308 
2309 	if (hclge_drop_pfc_buf_till_fit(hdev, buf_alloc))
2310 		return 0;
2311 
2312 	return -ENOMEM;
2313 }
2314 
2315 static int hclge_rx_priv_buf_alloc(struct hclge_dev *hdev,
2316 				   struct hclge_pkt_buf_alloc *buf_alloc)
2317 {
2318 	struct hclge_rx_priv_buff_cmd *req;
2319 	struct hclge_desc desc;
2320 	int ret;
2321 	int i;
2322 
2323 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RX_PRIV_BUFF_ALLOC, false);
2324 	req = (struct hclge_rx_priv_buff_cmd *)desc.data;
2325 
2326 	/* Alloc private buffer TCs */
2327 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
2328 		struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i];
2329 
2330 		req->buf_num[i] =
2331 			cpu_to_le16(priv->buf_size >> HCLGE_BUF_UNIT_S);
2332 		req->buf_num[i] |=
2333 			cpu_to_le16(1 << HCLGE_TC0_PRI_BUF_EN_B);
2334 	}
2335 
2336 	req->shared_buf =
2337 		cpu_to_le16((buf_alloc->s_buf.buf_size >> HCLGE_BUF_UNIT_S) |
2338 			    (1 << HCLGE_TC0_PRI_BUF_EN_B));
2339 
2340 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
2341 	if (ret)
2342 		dev_err(&hdev->pdev->dev,
2343 			"rx private buffer alloc cmd failed %d\n", ret);
2344 
2345 	return ret;
2346 }
2347 
2348 static int hclge_rx_priv_wl_config(struct hclge_dev *hdev,
2349 				   struct hclge_pkt_buf_alloc *buf_alloc)
2350 {
2351 	struct hclge_rx_priv_wl_buf *req;
2352 	struct hclge_priv_buf *priv;
2353 	struct hclge_desc desc[2];
2354 	int i, j;
2355 	int ret;
2356 
2357 	for (i = 0; i < 2; i++) {
2358 		hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_RX_PRIV_WL_ALLOC,
2359 					   false);
2360 		req = (struct hclge_rx_priv_wl_buf *)desc[i].data;
2361 
2362 		/* The first descriptor set the NEXT bit to 1 */
2363 		if (i == 0)
2364 			desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
2365 		else
2366 			desc[i].flag &= ~cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
2367 
2368 		for (j = 0; j < HCLGE_TC_NUM_ONE_DESC; j++) {
2369 			u32 idx = i * HCLGE_TC_NUM_ONE_DESC + j;
2370 
2371 			priv = &buf_alloc->priv_buf[idx];
2372 			req->tc_wl[j].high =
2373 				cpu_to_le16(priv->wl.high >> HCLGE_BUF_UNIT_S);
2374 			req->tc_wl[j].high |=
2375 				cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B));
2376 			req->tc_wl[j].low =
2377 				cpu_to_le16(priv->wl.low >> HCLGE_BUF_UNIT_S);
2378 			req->tc_wl[j].low |=
2379 				 cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B));
2380 		}
2381 	}
2382 
2383 	/* Send 2 descriptor at one time */
2384 	ret = hclge_cmd_send(&hdev->hw, desc, 2);
2385 	if (ret)
2386 		dev_err(&hdev->pdev->dev,
2387 			"rx private waterline config cmd failed %d\n",
2388 			ret);
2389 	return ret;
2390 }
2391 
2392 static int hclge_common_thrd_config(struct hclge_dev *hdev,
2393 				    struct hclge_pkt_buf_alloc *buf_alloc)
2394 {
2395 	struct hclge_shared_buf *s_buf = &buf_alloc->s_buf;
2396 	struct hclge_rx_com_thrd *req;
2397 	struct hclge_desc desc[2];
2398 	struct hclge_tc_thrd *tc;
2399 	int i, j;
2400 	int ret;
2401 
2402 	for (i = 0; i < 2; i++) {
2403 		hclge_cmd_setup_basic_desc(&desc[i],
2404 					   HCLGE_OPC_RX_COM_THRD_ALLOC, false);
2405 		req = (struct hclge_rx_com_thrd *)&desc[i].data;
2406 
2407 		/* The first descriptor set the NEXT bit to 1 */
2408 		if (i == 0)
2409 			desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
2410 		else
2411 			desc[i].flag &= ~cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
2412 
2413 		for (j = 0; j < HCLGE_TC_NUM_ONE_DESC; j++) {
2414 			tc = &s_buf->tc_thrd[i * HCLGE_TC_NUM_ONE_DESC + j];
2415 
2416 			req->com_thrd[j].high =
2417 				cpu_to_le16(tc->high >> HCLGE_BUF_UNIT_S);
2418 			req->com_thrd[j].high |=
2419 				 cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B));
2420 			req->com_thrd[j].low =
2421 				cpu_to_le16(tc->low >> HCLGE_BUF_UNIT_S);
2422 			req->com_thrd[j].low |=
2423 				 cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B));
2424 		}
2425 	}
2426 
2427 	/* Send 2 descriptors at one time */
2428 	ret = hclge_cmd_send(&hdev->hw, desc, 2);
2429 	if (ret)
2430 		dev_err(&hdev->pdev->dev,
2431 			"common threshold config cmd failed %d\n", ret);
2432 	return ret;
2433 }
2434 
2435 static int hclge_common_wl_config(struct hclge_dev *hdev,
2436 				  struct hclge_pkt_buf_alloc *buf_alloc)
2437 {
2438 	struct hclge_shared_buf *buf = &buf_alloc->s_buf;
2439 	struct hclge_rx_com_wl *req;
2440 	struct hclge_desc desc;
2441 	int ret;
2442 
2443 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RX_COM_WL_ALLOC, false);
2444 
2445 	req = (struct hclge_rx_com_wl *)desc.data;
2446 	req->com_wl.high = cpu_to_le16(buf->self.high >> HCLGE_BUF_UNIT_S);
2447 	req->com_wl.high |=  cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B));
2448 
2449 	req->com_wl.low = cpu_to_le16(buf->self.low >> HCLGE_BUF_UNIT_S);
2450 	req->com_wl.low |=  cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B));
2451 
2452 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
2453 	if (ret)
2454 		dev_err(&hdev->pdev->dev,
2455 			"common waterline config cmd failed %d\n", ret);
2456 
2457 	return ret;
2458 }
2459 
2460 int hclge_buffer_alloc(struct hclge_dev *hdev)
2461 {
2462 	struct hclge_pkt_buf_alloc *pkt_buf;
2463 	int ret;
2464 
2465 	pkt_buf = kzalloc(sizeof(*pkt_buf), GFP_KERNEL);
2466 	if (!pkt_buf)
2467 		return -ENOMEM;
2468 
2469 	ret = hclge_tx_buffer_calc(hdev, pkt_buf);
2470 	if (ret) {
2471 		dev_err(&hdev->pdev->dev,
2472 			"could not calc tx buffer size for all TCs %d\n", ret);
2473 		goto out;
2474 	}
2475 
2476 	ret = hclge_tx_buffer_alloc(hdev, pkt_buf);
2477 	if (ret) {
2478 		dev_err(&hdev->pdev->dev,
2479 			"could not alloc tx buffers %d\n", ret);
2480 		goto out;
2481 	}
2482 
2483 	ret = hclge_rx_buffer_calc(hdev, pkt_buf);
2484 	if (ret) {
2485 		dev_err(&hdev->pdev->dev,
2486 			"could not calc rx priv buffer size for all TCs %d\n",
2487 			ret);
2488 		goto out;
2489 	}
2490 
2491 	ret = hclge_rx_priv_buf_alloc(hdev, pkt_buf);
2492 	if (ret) {
2493 		dev_err(&hdev->pdev->dev, "could not alloc rx priv buffer %d\n",
2494 			ret);
2495 		goto out;
2496 	}
2497 
2498 	if (hnae3_dev_dcb_supported(hdev)) {
2499 		ret = hclge_rx_priv_wl_config(hdev, pkt_buf);
2500 		if (ret) {
2501 			dev_err(&hdev->pdev->dev,
2502 				"could not configure rx private waterline %d\n",
2503 				ret);
2504 			goto out;
2505 		}
2506 
2507 		ret = hclge_common_thrd_config(hdev, pkt_buf);
2508 		if (ret) {
2509 			dev_err(&hdev->pdev->dev,
2510 				"could not configure common threshold %d\n",
2511 				ret);
2512 			goto out;
2513 		}
2514 	}
2515 
2516 	ret = hclge_common_wl_config(hdev, pkt_buf);
2517 	if (ret)
2518 		dev_err(&hdev->pdev->dev,
2519 			"could not configure common waterline %d\n", ret);
2520 
2521 out:
2522 	kfree(pkt_buf);
2523 	return ret;
2524 }
2525 
2526 static int hclge_init_roce_base_info(struct hclge_vport *vport)
2527 {
2528 	struct hnae3_handle *roce = &vport->roce;
2529 	struct hnae3_handle *nic = &vport->nic;
2530 	struct hclge_dev *hdev = vport->back;
2531 
2532 	roce->rinfo.num_vectors = vport->back->num_roce_msi;
2533 
2534 	if (hdev->num_msi < hdev->num_nic_msi + hdev->num_roce_msi)
2535 		return -EINVAL;
2536 
2537 	roce->rinfo.base_vector = hdev->num_nic_msi;
2538 
2539 	roce->rinfo.netdev = nic->kinfo.netdev;
2540 	roce->rinfo.roce_io_base = hdev->hw.hw.io_base;
2541 	roce->rinfo.roce_mem_base = hdev->hw.hw.mem_base;
2542 
2543 	roce->pdev = nic->pdev;
2544 	roce->ae_algo = nic->ae_algo;
2545 	roce->numa_node_mask = nic->numa_node_mask;
2546 
2547 	return 0;
2548 }
2549 
2550 static int hclge_init_msi(struct hclge_dev *hdev)
2551 {
2552 	struct pci_dev *pdev = hdev->pdev;
2553 	int vectors;
2554 	int i;
2555 
2556 	vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2557 					hdev->num_msi,
2558 					PCI_IRQ_MSI | PCI_IRQ_MSIX);
2559 	if (vectors < 0) {
2560 		dev_err(&pdev->dev,
2561 			"failed(%d) to allocate MSI/MSI-X vectors\n",
2562 			vectors);
2563 		return vectors;
2564 	}
2565 	if (vectors < hdev->num_msi)
2566 		dev_warn(&hdev->pdev->dev,
2567 			 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2568 			 hdev->num_msi, vectors);
2569 
2570 	hdev->num_msi = vectors;
2571 	hdev->num_msi_left = vectors;
2572 
2573 	hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2574 					   sizeof(u16), GFP_KERNEL);
2575 	if (!hdev->vector_status) {
2576 		pci_free_irq_vectors(pdev);
2577 		return -ENOMEM;
2578 	}
2579 
2580 	for (i = 0; i < hdev->num_msi; i++)
2581 		hdev->vector_status[i] = HCLGE_INVALID_VPORT;
2582 
2583 	hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2584 					sizeof(int), GFP_KERNEL);
2585 	if (!hdev->vector_irq) {
2586 		pci_free_irq_vectors(pdev);
2587 		return -ENOMEM;
2588 	}
2589 
2590 	return 0;
2591 }
2592 
2593 static u8 hclge_check_speed_dup(u8 duplex, int speed)
2594 {
2595 	if (!(speed == HCLGE_MAC_SPEED_10M || speed == HCLGE_MAC_SPEED_100M))
2596 		duplex = HCLGE_MAC_FULL;
2597 
2598 	return duplex;
2599 }
2600 
2601 static struct hclge_mac_speed_map hclge_mac_speed_map_to_fw[] = {
2602 	{HCLGE_MAC_SPEED_10M, HCLGE_FW_MAC_SPEED_10M},
2603 	{HCLGE_MAC_SPEED_100M, HCLGE_FW_MAC_SPEED_100M},
2604 	{HCLGE_MAC_SPEED_1G, HCLGE_FW_MAC_SPEED_1G},
2605 	{HCLGE_MAC_SPEED_10G, HCLGE_FW_MAC_SPEED_10G},
2606 	{HCLGE_MAC_SPEED_25G, HCLGE_FW_MAC_SPEED_25G},
2607 	{HCLGE_MAC_SPEED_40G, HCLGE_FW_MAC_SPEED_40G},
2608 	{HCLGE_MAC_SPEED_50G, HCLGE_FW_MAC_SPEED_50G},
2609 	{HCLGE_MAC_SPEED_100G, HCLGE_FW_MAC_SPEED_100G},
2610 	{HCLGE_MAC_SPEED_200G, HCLGE_FW_MAC_SPEED_200G},
2611 };
2612 
2613 static int hclge_convert_to_fw_speed(u32 speed_drv, u32 *speed_fw)
2614 {
2615 	u16 i;
2616 
2617 	for (i = 0; i < ARRAY_SIZE(hclge_mac_speed_map_to_fw); i++) {
2618 		if (hclge_mac_speed_map_to_fw[i].speed_drv == speed_drv) {
2619 			*speed_fw = hclge_mac_speed_map_to_fw[i].speed_fw;
2620 			return 0;
2621 		}
2622 	}
2623 
2624 	return -EINVAL;
2625 }
2626 
2627 static int hclge_cfg_mac_speed_dup_hw(struct hclge_dev *hdev, int speed,
2628 				      u8 duplex, u8 lane_num)
2629 {
2630 	struct hclge_config_mac_speed_dup_cmd *req;
2631 	struct hclge_desc desc;
2632 	u32 speed_fw;
2633 	int ret;
2634 
2635 	req = (struct hclge_config_mac_speed_dup_cmd *)desc.data;
2636 
2637 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_SPEED_DUP, false);
2638 
2639 	if (duplex)
2640 		hnae3_set_bit(req->speed_dup, HCLGE_CFG_DUPLEX_B, 1);
2641 
2642 	ret = hclge_convert_to_fw_speed(speed, &speed_fw);
2643 	if (ret) {
2644 		dev_err(&hdev->pdev->dev, "invalid speed (%d)\n", speed);
2645 		return ret;
2646 	}
2647 
2648 	hnae3_set_field(req->speed_dup, HCLGE_CFG_SPEED_M, HCLGE_CFG_SPEED_S,
2649 			speed_fw);
2650 	hnae3_set_bit(req->mac_change_fec_en, HCLGE_CFG_MAC_SPEED_CHANGE_EN_B,
2651 		      1);
2652 	req->lane_num = lane_num;
2653 
2654 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
2655 	if (ret) {
2656 		dev_err(&hdev->pdev->dev,
2657 			"mac speed/duplex config cmd failed %d.\n", ret);
2658 		return ret;
2659 	}
2660 
2661 	return 0;
2662 }
2663 
2664 int hclge_cfg_mac_speed_dup(struct hclge_dev *hdev, int speed, u8 duplex, u8 lane_num)
2665 {
2666 	struct hclge_mac *mac = &hdev->hw.mac;
2667 	int ret;
2668 
2669 	duplex = hclge_check_speed_dup(duplex, speed);
2670 	if (!mac->support_autoneg && mac->speed == speed &&
2671 	    mac->duplex == duplex && (mac->lane_num == lane_num || lane_num == 0))
2672 		return 0;
2673 
2674 	ret = hclge_cfg_mac_speed_dup_hw(hdev, speed, duplex, lane_num);
2675 	if (ret)
2676 		return ret;
2677 
2678 	hdev->hw.mac.speed = speed;
2679 	hdev->hw.mac.duplex = duplex;
2680 	if (!lane_num)
2681 		hdev->hw.mac.lane_num = lane_num;
2682 
2683 	return 0;
2684 }
2685 
2686 static int hclge_cfg_mac_speed_dup_h(struct hnae3_handle *handle, int speed,
2687 				     u8 duplex, u8 lane_num)
2688 {
2689 	struct hclge_vport *vport = hclge_get_vport(handle);
2690 	struct hclge_dev *hdev = vport->back;
2691 
2692 	return hclge_cfg_mac_speed_dup(hdev, speed, duplex, lane_num);
2693 }
2694 
2695 static int hclge_set_autoneg_en(struct hclge_dev *hdev, bool enable)
2696 {
2697 	struct hclge_config_auto_neg_cmd *req;
2698 	struct hclge_desc desc;
2699 	u32 flag = 0;
2700 	int ret;
2701 
2702 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_AN_MODE, false);
2703 
2704 	req = (struct hclge_config_auto_neg_cmd *)desc.data;
2705 	if (enable)
2706 		hnae3_set_bit(flag, HCLGE_MAC_CFG_AN_EN_B, 1U);
2707 	req->cfg_an_cmd_flag = cpu_to_le32(flag);
2708 
2709 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
2710 	if (ret)
2711 		dev_err(&hdev->pdev->dev, "auto neg set cmd failed %d.\n",
2712 			ret);
2713 
2714 	return ret;
2715 }
2716 
2717 static int hclge_set_autoneg(struct hnae3_handle *handle, bool enable)
2718 {
2719 	struct hclge_vport *vport = hclge_get_vport(handle);
2720 	struct hclge_dev *hdev = vport->back;
2721 
2722 	if (!hdev->hw.mac.support_autoneg) {
2723 		if (enable) {
2724 			dev_err(&hdev->pdev->dev,
2725 				"autoneg is not supported by current port\n");
2726 			return -EOPNOTSUPP;
2727 		} else {
2728 			return 0;
2729 		}
2730 	}
2731 
2732 	return hclge_set_autoneg_en(hdev, enable);
2733 }
2734 
2735 static int hclge_get_autoneg(struct hnae3_handle *handle)
2736 {
2737 	struct hclge_vport *vport = hclge_get_vport(handle);
2738 	struct hclge_dev *hdev = vport->back;
2739 	struct phy_device *phydev = hdev->hw.mac.phydev;
2740 
2741 	if (phydev)
2742 		return phydev->autoneg;
2743 
2744 	return hdev->hw.mac.autoneg;
2745 }
2746 
2747 static int hclge_restart_autoneg(struct hnae3_handle *handle)
2748 {
2749 	struct hclge_vport *vport = hclge_get_vport(handle);
2750 	struct hclge_dev *hdev = vport->back;
2751 	int ret;
2752 
2753 	dev_dbg(&hdev->pdev->dev, "restart autoneg\n");
2754 
2755 	ret = hclge_notify_client(hdev, HNAE3_DOWN_CLIENT);
2756 	if (ret)
2757 		return ret;
2758 	return hclge_notify_client(hdev, HNAE3_UP_CLIENT);
2759 }
2760 
2761 static int hclge_halt_autoneg(struct hnae3_handle *handle, bool halt)
2762 {
2763 	struct hclge_vport *vport = hclge_get_vport(handle);
2764 	struct hclge_dev *hdev = vport->back;
2765 
2766 	if (hdev->hw.mac.support_autoneg && hdev->hw.mac.autoneg)
2767 		return hclge_set_autoneg_en(hdev, !halt);
2768 
2769 	return 0;
2770 }
2771 
2772 static void hclge_parse_fec_stats_lanes(struct hclge_dev *hdev,
2773 					struct hclge_desc *desc, u32 desc_len)
2774 {
2775 	u32 lane_size = HCLGE_FEC_STATS_MAX_LANES * 2;
2776 	u32 desc_index = 0;
2777 	u32 data_index = 0;
2778 	u32 i;
2779 
2780 	for (i = 0; i < lane_size; i++) {
2781 		if (data_index >= HCLGE_DESC_DATA_LEN) {
2782 			desc_index++;
2783 			data_index = 0;
2784 		}
2785 
2786 		if (desc_index >= desc_len)
2787 			return;
2788 
2789 		hdev->fec_stats.per_lanes[i] +=
2790 			le32_to_cpu(desc[desc_index].data[data_index]);
2791 		data_index++;
2792 	}
2793 }
2794 
2795 static void hclge_parse_fec_stats(struct hclge_dev *hdev,
2796 				  struct hclge_desc *desc, u32 desc_len)
2797 {
2798 	struct hclge_query_fec_stats_cmd *req;
2799 
2800 	req = (struct hclge_query_fec_stats_cmd *)desc[0].data;
2801 
2802 	hdev->fec_stats.base_r_lane_num = req->base_r_lane_num;
2803 	hdev->fec_stats.rs_corr_blocks +=
2804 		le32_to_cpu(req->rs_fec_corr_blocks);
2805 	hdev->fec_stats.rs_uncorr_blocks +=
2806 		le32_to_cpu(req->rs_fec_uncorr_blocks);
2807 	hdev->fec_stats.rs_error_blocks +=
2808 		le32_to_cpu(req->rs_fec_error_blocks);
2809 	hdev->fec_stats.base_r_corr_blocks +=
2810 		le32_to_cpu(req->base_r_fec_corr_blocks);
2811 	hdev->fec_stats.base_r_uncorr_blocks +=
2812 		le32_to_cpu(req->base_r_fec_uncorr_blocks);
2813 
2814 	hclge_parse_fec_stats_lanes(hdev, &desc[1], desc_len - 1);
2815 }
2816 
2817 static int hclge_update_fec_stats_hw(struct hclge_dev *hdev)
2818 {
2819 	struct hclge_desc desc[HCLGE_FEC_STATS_CMD_NUM];
2820 	int ret;
2821 	u32 i;
2822 
2823 	for (i = 0; i < HCLGE_FEC_STATS_CMD_NUM; i++) {
2824 		hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_FEC_STATS,
2825 					   true);
2826 		if (i != (HCLGE_FEC_STATS_CMD_NUM - 1))
2827 			desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
2828 	}
2829 
2830 	ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_FEC_STATS_CMD_NUM);
2831 	if (ret)
2832 		return ret;
2833 
2834 	hclge_parse_fec_stats(hdev, desc, HCLGE_FEC_STATS_CMD_NUM);
2835 
2836 	return 0;
2837 }
2838 
2839 static void hclge_update_fec_stats(struct hclge_dev *hdev)
2840 {
2841 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2842 	int ret;
2843 
2844 	if (!hnae3_ae_dev_fec_stats_supported(ae_dev) ||
2845 	    test_and_set_bit(HCLGE_STATE_FEC_STATS_UPDATING, &hdev->state))
2846 		return;
2847 
2848 	ret = hclge_update_fec_stats_hw(hdev);
2849 	if (ret)
2850 		dev_err(&hdev->pdev->dev,
2851 			"failed to update fec stats, ret = %d\n", ret);
2852 
2853 	clear_bit(HCLGE_STATE_FEC_STATS_UPDATING, &hdev->state);
2854 }
2855 
2856 static void hclge_get_fec_stats_total(struct hclge_dev *hdev,
2857 				      struct ethtool_fec_stats *fec_stats)
2858 {
2859 	fec_stats->corrected_blocks.total = hdev->fec_stats.rs_corr_blocks;
2860 	fec_stats->uncorrectable_blocks.total =
2861 		hdev->fec_stats.rs_uncorr_blocks;
2862 }
2863 
2864 static void hclge_get_fec_stats_lanes(struct hclge_dev *hdev,
2865 				      struct ethtool_fec_stats *fec_stats)
2866 {
2867 	u32 i;
2868 
2869 	if (hdev->fec_stats.base_r_lane_num == 0 ||
2870 	    hdev->fec_stats.base_r_lane_num > HCLGE_FEC_STATS_MAX_LANES) {
2871 		dev_err(&hdev->pdev->dev,
2872 			"fec stats lane number(%llu) is invalid\n",
2873 			hdev->fec_stats.base_r_lane_num);
2874 		return;
2875 	}
2876 
2877 	for (i = 0; i < hdev->fec_stats.base_r_lane_num; i++) {
2878 		fec_stats->corrected_blocks.lanes[i] =
2879 			hdev->fec_stats.base_r_corr_per_lanes[i];
2880 		fec_stats->uncorrectable_blocks.lanes[i] =
2881 			hdev->fec_stats.base_r_uncorr_per_lanes[i];
2882 	}
2883 }
2884 
2885 static void hclge_comm_get_fec_stats(struct hclge_dev *hdev,
2886 				     struct ethtool_fec_stats *fec_stats)
2887 {
2888 	u32 fec_mode = hdev->hw.mac.fec_mode;
2889 
2890 	switch (fec_mode) {
2891 	case BIT(HNAE3_FEC_RS):
2892 	case BIT(HNAE3_FEC_LLRS):
2893 		hclge_get_fec_stats_total(hdev, fec_stats);
2894 		break;
2895 	case BIT(HNAE3_FEC_BASER):
2896 		hclge_get_fec_stats_lanes(hdev, fec_stats);
2897 		break;
2898 	default:
2899 		dev_err(&hdev->pdev->dev,
2900 			"fec stats is not supported by current fec mode(0x%x)\n",
2901 			fec_mode);
2902 		break;
2903 	}
2904 }
2905 
2906 static void hclge_get_fec_stats(struct hnae3_handle *handle,
2907 				struct ethtool_fec_stats *fec_stats)
2908 {
2909 	struct hclge_vport *vport = hclge_get_vport(handle);
2910 	struct hclge_dev *hdev = vport->back;
2911 	u32 fec_mode = hdev->hw.mac.fec_mode;
2912 
2913 	if (fec_mode == BIT(HNAE3_FEC_NONE) ||
2914 	    fec_mode == BIT(HNAE3_FEC_AUTO) ||
2915 	    fec_mode == BIT(HNAE3_FEC_USER_DEF))
2916 		return;
2917 
2918 	hclge_update_fec_stats(hdev);
2919 
2920 	hclge_comm_get_fec_stats(hdev, fec_stats);
2921 }
2922 
2923 static int hclge_set_fec_hw(struct hclge_dev *hdev, u32 fec_mode)
2924 {
2925 	struct hclge_config_fec_cmd *req;
2926 	struct hclge_desc desc;
2927 	int ret;
2928 
2929 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_FEC_MODE, false);
2930 
2931 	req = (struct hclge_config_fec_cmd *)desc.data;
2932 	if (fec_mode & BIT(HNAE3_FEC_AUTO))
2933 		hnae3_set_bit(req->fec_mode, HCLGE_MAC_CFG_FEC_AUTO_EN_B, 1);
2934 	if (fec_mode & BIT(HNAE3_FEC_RS))
2935 		hnae3_set_field(req->fec_mode, HCLGE_MAC_CFG_FEC_MODE_M,
2936 				HCLGE_MAC_CFG_FEC_MODE_S, HCLGE_MAC_FEC_RS);
2937 	if (fec_mode & BIT(HNAE3_FEC_LLRS))
2938 		hnae3_set_field(req->fec_mode, HCLGE_MAC_CFG_FEC_MODE_M,
2939 				HCLGE_MAC_CFG_FEC_MODE_S, HCLGE_MAC_FEC_LLRS);
2940 	if (fec_mode & BIT(HNAE3_FEC_BASER))
2941 		hnae3_set_field(req->fec_mode, HCLGE_MAC_CFG_FEC_MODE_M,
2942 				HCLGE_MAC_CFG_FEC_MODE_S, HCLGE_MAC_FEC_BASER);
2943 
2944 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
2945 	if (ret)
2946 		dev_err(&hdev->pdev->dev, "set fec mode failed %d.\n", ret);
2947 
2948 	return ret;
2949 }
2950 
2951 static int hclge_set_fec(struct hnae3_handle *handle, u32 fec_mode)
2952 {
2953 	struct hclge_vport *vport = hclge_get_vport(handle);
2954 	struct hclge_dev *hdev = vport->back;
2955 	struct hclge_mac *mac = &hdev->hw.mac;
2956 	int ret;
2957 
2958 	if (fec_mode && !(mac->fec_ability & fec_mode)) {
2959 		dev_err(&hdev->pdev->dev, "unsupported fec mode\n");
2960 		return -EINVAL;
2961 	}
2962 
2963 	ret = hclge_set_fec_hw(hdev, fec_mode);
2964 	if (ret)
2965 		return ret;
2966 
2967 	mac->user_fec_mode = fec_mode | BIT(HNAE3_FEC_USER_DEF);
2968 	return 0;
2969 }
2970 
2971 static void hclge_get_fec(struct hnae3_handle *handle, u8 *fec_ability,
2972 			  u8 *fec_mode)
2973 {
2974 	struct hclge_vport *vport = hclge_get_vport(handle);
2975 	struct hclge_dev *hdev = vport->back;
2976 	struct hclge_mac *mac = &hdev->hw.mac;
2977 
2978 	if (fec_ability)
2979 		*fec_ability = mac->fec_ability;
2980 	if (fec_mode)
2981 		*fec_mode = mac->fec_mode;
2982 }
2983 
2984 static int hclge_mac_init(struct hclge_dev *hdev)
2985 {
2986 	struct hclge_mac *mac = &hdev->hw.mac;
2987 	int ret;
2988 
2989 	hdev->support_sfp_query = true;
2990 	hdev->hw.mac.duplex = HCLGE_MAC_FULL;
2991 	ret = hclge_cfg_mac_speed_dup_hw(hdev, hdev->hw.mac.speed,
2992 					 hdev->hw.mac.duplex, hdev->hw.mac.lane_num);
2993 	if (ret)
2994 		return ret;
2995 
2996 	if (hdev->hw.mac.support_autoneg) {
2997 		ret = hclge_set_autoneg_en(hdev, hdev->hw.mac.autoneg);
2998 		if (ret)
2999 			return ret;
3000 	}
3001 
3002 	mac->link = 0;
3003 
3004 	if (mac->user_fec_mode & BIT(HNAE3_FEC_USER_DEF)) {
3005 		ret = hclge_set_fec_hw(hdev, mac->user_fec_mode);
3006 		if (ret)
3007 			return ret;
3008 	}
3009 
3010 	ret = hclge_set_mac_mtu(hdev, hdev->mps);
3011 	if (ret) {
3012 		dev_err(&hdev->pdev->dev, "set mtu failed ret=%d\n", ret);
3013 		return ret;
3014 	}
3015 
3016 	ret = hclge_set_default_loopback(hdev);
3017 	if (ret)
3018 		return ret;
3019 
3020 	ret = hclge_buffer_alloc(hdev);
3021 	if (ret)
3022 		dev_err(&hdev->pdev->dev,
3023 			"allocate buffer fail, ret=%d\n", ret);
3024 
3025 	return ret;
3026 }
3027 
3028 static void hclge_mbx_task_schedule(struct hclge_dev *hdev)
3029 {
3030 	if (!test_bit(HCLGE_STATE_REMOVING, &hdev->state) &&
3031 	    !test_and_set_bit(HCLGE_STATE_MBX_SERVICE_SCHED, &hdev->state)) {
3032 		hdev->last_mbx_scheduled = jiffies;
3033 		mod_delayed_work(hclge_wq, &hdev->service_task, 0);
3034 	}
3035 }
3036 
3037 static void hclge_reset_task_schedule(struct hclge_dev *hdev)
3038 {
3039 	if (!test_bit(HCLGE_STATE_REMOVING, &hdev->state) &&
3040 	    test_bit(HCLGE_STATE_SERVICE_INITED, &hdev->state) &&
3041 	    !test_and_set_bit(HCLGE_STATE_RST_SERVICE_SCHED, &hdev->state)) {
3042 		hdev->last_rst_scheduled = jiffies;
3043 		mod_delayed_work(hclge_wq, &hdev->service_task, 0);
3044 	}
3045 }
3046 
3047 static void hclge_errhand_task_schedule(struct hclge_dev *hdev)
3048 {
3049 	if (!test_bit(HCLGE_STATE_REMOVING, &hdev->state) &&
3050 	    !test_and_set_bit(HCLGE_STATE_ERR_SERVICE_SCHED, &hdev->state))
3051 		mod_delayed_work(hclge_wq, &hdev->service_task, 0);
3052 }
3053 
3054 void hclge_task_schedule(struct hclge_dev *hdev, unsigned long delay_time)
3055 {
3056 	if (!test_bit(HCLGE_STATE_REMOVING, &hdev->state) &&
3057 	    !test_bit(HCLGE_STATE_RST_FAIL, &hdev->state))
3058 		mod_delayed_work(hclge_wq, &hdev->service_task, delay_time);
3059 }
3060 
3061 static int hclge_get_mac_link_status(struct hclge_dev *hdev, int *link_status)
3062 {
3063 	struct hclge_link_status_cmd *req;
3064 	struct hclge_desc desc;
3065 	int ret;
3066 
3067 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_LINK_STATUS, true);
3068 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
3069 	if (ret) {
3070 		dev_err(&hdev->pdev->dev, "get link status cmd failed %d\n",
3071 			ret);
3072 		return ret;
3073 	}
3074 
3075 	req = (struct hclge_link_status_cmd *)desc.data;
3076 	*link_status = (req->status & HCLGE_LINK_STATUS_UP_M) > 0 ?
3077 		HCLGE_LINK_STATUS_UP : HCLGE_LINK_STATUS_DOWN;
3078 
3079 	return 0;
3080 }
3081 
3082 static int hclge_get_mac_phy_link(struct hclge_dev *hdev, int *link_status)
3083 {
3084 	struct phy_device *phydev = hdev->hw.mac.phydev;
3085 
3086 	*link_status = HCLGE_LINK_STATUS_DOWN;
3087 
3088 	if (test_bit(HCLGE_STATE_DOWN, &hdev->state))
3089 		return 0;
3090 
3091 	if (phydev && (phydev->state != PHY_RUNNING || !phydev->link))
3092 		return 0;
3093 
3094 	return hclge_get_mac_link_status(hdev, link_status);
3095 }
3096 
3097 static void hclge_push_link_status(struct hclge_dev *hdev)
3098 {
3099 	struct hclge_vport *vport;
3100 	int ret;
3101 	u16 i;
3102 
3103 	for (i = 0; i < pci_num_vf(hdev->pdev); i++) {
3104 		vport = &hdev->vport[i + HCLGE_VF_VPORT_START_NUM];
3105 
3106 		if (!test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state) ||
3107 		    vport->vf_info.link_state != IFLA_VF_LINK_STATE_AUTO)
3108 			continue;
3109 
3110 		ret = hclge_push_vf_link_status(vport);
3111 		if (ret) {
3112 			dev_err(&hdev->pdev->dev,
3113 				"failed to push link status to vf%u, ret = %d\n",
3114 				i, ret);
3115 		}
3116 	}
3117 }
3118 
3119 static void hclge_update_link_status(struct hclge_dev *hdev)
3120 {
3121 	struct hnae3_handle *rhandle = &hdev->vport[0].roce;
3122 	struct hnae3_handle *handle = &hdev->vport[0].nic;
3123 	struct hnae3_client *rclient = hdev->roce_client;
3124 	struct hnae3_client *client = hdev->nic_client;
3125 	int state;
3126 	int ret;
3127 
3128 	if (!client)
3129 		return;
3130 
3131 	if (test_and_set_bit(HCLGE_STATE_LINK_UPDATING, &hdev->state))
3132 		return;
3133 
3134 	ret = hclge_get_mac_phy_link(hdev, &state);
3135 	if (ret) {
3136 		clear_bit(HCLGE_STATE_LINK_UPDATING, &hdev->state);
3137 		return;
3138 	}
3139 
3140 	if (state != hdev->hw.mac.link) {
3141 		hdev->hw.mac.link = state;
3142 		client->ops->link_status_change(handle, state);
3143 		hclge_config_mac_tnl_int(hdev, state);
3144 		if (rclient && rclient->ops->link_status_change)
3145 			rclient->ops->link_status_change(rhandle, state);
3146 
3147 		hclge_push_link_status(hdev);
3148 	}
3149 
3150 	clear_bit(HCLGE_STATE_LINK_UPDATING, &hdev->state);
3151 }
3152 
3153 static void hclge_update_speed_advertising(struct hclge_mac *mac)
3154 {
3155 	u32 speed_ability;
3156 
3157 	if (hclge_get_speed_bit(mac->speed, &speed_ability))
3158 		return;
3159 
3160 	switch (mac->module_type) {
3161 	case HNAE3_MODULE_TYPE_FIBRE_LR:
3162 		hclge_convert_setting_lr(speed_ability, mac->advertising);
3163 		break;
3164 	case HNAE3_MODULE_TYPE_FIBRE_SR:
3165 	case HNAE3_MODULE_TYPE_AOC:
3166 		hclge_convert_setting_sr(speed_ability, mac->advertising);
3167 		break;
3168 	case HNAE3_MODULE_TYPE_CR:
3169 		hclge_convert_setting_cr(speed_ability, mac->advertising);
3170 		break;
3171 	case HNAE3_MODULE_TYPE_KR:
3172 		hclge_convert_setting_kr(speed_ability, mac->advertising);
3173 		break;
3174 	default:
3175 		break;
3176 	}
3177 }
3178 
3179 static void hclge_update_fec_advertising(struct hclge_mac *mac)
3180 {
3181 	if (mac->fec_mode & BIT(HNAE3_FEC_RS))
3182 		linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_RS_BIT,
3183 				 mac->advertising);
3184 	else if (mac->fec_mode & BIT(HNAE3_FEC_LLRS))
3185 		linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_LLRS_BIT,
3186 				 mac->advertising);
3187 	else if (mac->fec_mode & BIT(HNAE3_FEC_BASER))
3188 		linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_BASER_BIT,
3189 				 mac->advertising);
3190 	else
3191 		linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_NONE_BIT,
3192 				 mac->advertising);
3193 }
3194 
3195 static void hclge_update_pause_advertising(struct hclge_dev *hdev)
3196 {
3197 	struct hclge_mac *mac = &hdev->hw.mac;
3198 	bool rx_en, tx_en;
3199 
3200 	switch (hdev->fc_mode_last_time) {
3201 	case HCLGE_FC_RX_PAUSE:
3202 		rx_en = true;
3203 		tx_en = false;
3204 		break;
3205 	case HCLGE_FC_TX_PAUSE:
3206 		rx_en = false;
3207 		tx_en = true;
3208 		break;
3209 	case HCLGE_FC_FULL:
3210 		rx_en = true;
3211 		tx_en = true;
3212 		break;
3213 	default:
3214 		rx_en = false;
3215 		tx_en = false;
3216 		break;
3217 	}
3218 
3219 	linkmode_set_pause(mac->advertising, tx_en, rx_en);
3220 }
3221 
3222 static void hclge_update_advertising(struct hclge_dev *hdev)
3223 {
3224 	struct hclge_mac *mac = &hdev->hw.mac;
3225 
3226 	linkmode_zero(mac->advertising);
3227 	hclge_update_speed_advertising(mac);
3228 	hclge_update_fec_advertising(mac);
3229 	hclge_update_pause_advertising(hdev);
3230 }
3231 
3232 static void hclge_update_port_capability(struct hclge_dev *hdev,
3233 					 struct hclge_mac *mac)
3234 {
3235 	if (hnae3_dev_fec_supported(hdev))
3236 		hclge_convert_setting_fec(mac);
3237 
3238 	/* firmware can not identify back plane type, the media type
3239 	 * read from configuration can help deal it
3240 	 */
3241 	if (mac->media_type == HNAE3_MEDIA_TYPE_BACKPLANE &&
3242 	    mac->module_type == HNAE3_MODULE_TYPE_UNKNOWN)
3243 		mac->module_type = HNAE3_MODULE_TYPE_KR;
3244 	else if (mac->media_type == HNAE3_MEDIA_TYPE_COPPER)
3245 		mac->module_type = HNAE3_MODULE_TYPE_TP;
3246 
3247 	if (mac->support_autoneg) {
3248 		linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mac->supported);
3249 		linkmode_copy(mac->advertising, mac->supported);
3250 	} else {
3251 		linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT,
3252 				   mac->supported);
3253 		hclge_update_advertising(hdev);
3254 	}
3255 }
3256 
3257 static int hclge_get_sfp_speed(struct hclge_dev *hdev, u32 *speed)
3258 {
3259 	struct hclge_sfp_info_cmd *resp;
3260 	struct hclge_desc desc;
3261 	int ret;
3262 
3263 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GET_SFP_INFO, true);
3264 	resp = (struct hclge_sfp_info_cmd *)desc.data;
3265 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
3266 	if (ret == -EOPNOTSUPP) {
3267 		dev_warn(&hdev->pdev->dev,
3268 			 "IMP do not support get SFP speed %d\n", ret);
3269 		return ret;
3270 	} else if (ret) {
3271 		dev_err(&hdev->pdev->dev, "get sfp speed failed %d\n", ret);
3272 		return ret;
3273 	}
3274 
3275 	*speed = le32_to_cpu(resp->speed);
3276 
3277 	return 0;
3278 }
3279 
3280 static int hclge_get_sfp_info(struct hclge_dev *hdev, struct hclge_mac *mac)
3281 {
3282 	struct hclge_sfp_info_cmd *resp;
3283 	struct hclge_desc desc;
3284 	int ret;
3285 
3286 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GET_SFP_INFO, true);
3287 	resp = (struct hclge_sfp_info_cmd *)desc.data;
3288 
3289 	resp->query_type = QUERY_ACTIVE_SPEED;
3290 
3291 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
3292 	if (ret == -EOPNOTSUPP) {
3293 		dev_warn(&hdev->pdev->dev,
3294 			 "IMP does not support get SFP info %d\n", ret);
3295 		return ret;
3296 	} else if (ret) {
3297 		dev_err(&hdev->pdev->dev, "get sfp info failed %d\n", ret);
3298 		return ret;
3299 	}
3300 
3301 	/* In some case, mac speed get from IMP may be 0, it shouldn't be
3302 	 * set to mac->speed.
3303 	 */
3304 	if (!le32_to_cpu(resp->speed))
3305 		return 0;
3306 
3307 	mac->speed = le32_to_cpu(resp->speed);
3308 	/* if resp->speed_ability is 0, it means it's an old version
3309 	 * firmware, do not update these params
3310 	 */
3311 	if (resp->speed_ability) {
3312 		mac->module_type = le32_to_cpu(resp->module_type);
3313 		mac->speed_ability = le32_to_cpu(resp->speed_ability);
3314 		mac->autoneg = resp->autoneg;
3315 		mac->support_autoneg = resp->autoneg_ability;
3316 		mac->speed_type = QUERY_ACTIVE_SPEED;
3317 		mac->lane_num = resp->lane_num;
3318 		if (!resp->active_fec)
3319 			mac->fec_mode = 0;
3320 		else
3321 			mac->fec_mode = BIT(resp->active_fec);
3322 		mac->fec_ability = resp->fec_ability;
3323 	} else {
3324 		mac->speed_type = QUERY_SFP_SPEED;
3325 	}
3326 
3327 	return 0;
3328 }
3329 
3330 static int hclge_get_phy_link_ksettings(struct hnae3_handle *handle,
3331 					struct ethtool_link_ksettings *cmd)
3332 {
3333 	struct hclge_desc desc[HCLGE_PHY_LINK_SETTING_BD_NUM];
3334 	struct hclge_vport *vport = hclge_get_vport(handle);
3335 	struct hclge_phy_link_ksetting_0_cmd *req0;
3336 	struct hclge_phy_link_ksetting_1_cmd *req1;
3337 	u32 supported, advertising, lp_advertising;
3338 	struct hclge_dev *hdev = vport->back;
3339 	int ret;
3340 
3341 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_PHY_LINK_KSETTING,
3342 				   true);
3343 	desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
3344 	hclge_cmd_setup_basic_desc(&desc[1], HCLGE_OPC_PHY_LINK_KSETTING,
3345 				   true);
3346 
3347 	ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_PHY_LINK_SETTING_BD_NUM);
3348 	if (ret) {
3349 		dev_err(&hdev->pdev->dev,
3350 			"failed to get phy link ksetting, ret = %d.\n", ret);
3351 		return ret;
3352 	}
3353 
3354 	req0 = (struct hclge_phy_link_ksetting_0_cmd *)desc[0].data;
3355 	cmd->base.autoneg = req0->autoneg;
3356 	cmd->base.speed = le32_to_cpu(req0->speed);
3357 	cmd->base.duplex = req0->duplex;
3358 	cmd->base.port = req0->port;
3359 	cmd->base.transceiver = req0->transceiver;
3360 	cmd->base.phy_address = req0->phy_address;
3361 	cmd->base.eth_tp_mdix = req0->eth_tp_mdix;
3362 	cmd->base.eth_tp_mdix_ctrl = req0->eth_tp_mdix_ctrl;
3363 	supported = le32_to_cpu(req0->supported);
3364 	advertising = le32_to_cpu(req0->advertising);
3365 	lp_advertising = le32_to_cpu(req0->lp_advertising);
3366 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
3367 						supported);
3368 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
3369 						advertising);
3370 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.lp_advertising,
3371 						lp_advertising);
3372 
3373 	req1 = (struct hclge_phy_link_ksetting_1_cmd *)desc[1].data;
3374 	cmd->base.master_slave_cfg = req1->master_slave_cfg;
3375 	cmd->base.master_slave_state = req1->master_slave_state;
3376 
3377 	return 0;
3378 }
3379 
3380 static int
3381 hclge_set_phy_link_ksettings(struct hnae3_handle *handle,
3382 			     const struct ethtool_link_ksettings *cmd)
3383 {
3384 	struct hclge_desc desc[HCLGE_PHY_LINK_SETTING_BD_NUM];
3385 	struct hclge_vport *vport = hclge_get_vport(handle);
3386 	struct hclge_phy_link_ksetting_0_cmd *req0;
3387 	struct hclge_phy_link_ksetting_1_cmd *req1;
3388 	struct hclge_dev *hdev = vport->back;
3389 	u32 advertising;
3390 	int ret;
3391 
3392 	if (cmd->base.autoneg == AUTONEG_DISABLE &&
3393 	    ((cmd->base.speed != SPEED_100 && cmd->base.speed != SPEED_10) ||
3394 	     (cmd->base.duplex != DUPLEX_HALF &&
3395 	      cmd->base.duplex != DUPLEX_FULL)))
3396 		return -EINVAL;
3397 
3398 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_PHY_LINK_KSETTING,
3399 				   false);
3400 	desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
3401 	hclge_cmd_setup_basic_desc(&desc[1], HCLGE_OPC_PHY_LINK_KSETTING,
3402 				   false);
3403 
3404 	req0 = (struct hclge_phy_link_ksetting_0_cmd *)desc[0].data;
3405 	req0->autoneg = cmd->base.autoneg;
3406 	req0->speed = cpu_to_le32(cmd->base.speed);
3407 	req0->duplex = cmd->base.duplex;
3408 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
3409 						cmd->link_modes.advertising);
3410 	req0->advertising = cpu_to_le32(advertising);
3411 	req0->eth_tp_mdix_ctrl = cmd->base.eth_tp_mdix_ctrl;
3412 
3413 	req1 = (struct hclge_phy_link_ksetting_1_cmd *)desc[1].data;
3414 	req1->master_slave_cfg = cmd->base.master_slave_cfg;
3415 
3416 	ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_PHY_LINK_SETTING_BD_NUM);
3417 	if (ret) {
3418 		dev_err(&hdev->pdev->dev,
3419 			"failed to set phy link ksettings, ret = %d.\n", ret);
3420 		return ret;
3421 	}
3422 
3423 	hdev->hw.mac.autoneg = cmd->base.autoneg;
3424 	hdev->hw.mac.speed = cmd->base.speed;
3425 	hdev->hw.mac.duplex = cmd->base.duplex;
3426 	linkmode_copy(hdev->hw.mac.advertising, cmd->link_modes.advertising);
3427 
3428 	return 0;
3429 }
3430 
3431 static int hclge_update_tp_port_info(struct hclge_dev *hdev)
3432 {
3433 	struct ethtool_link_ksettings cmd;
3434 	int ret;
3435 
3436 	if (!hnae3_dev_phy_imp_supported(hdev))
3437 		return 0;
3438 
3439 	ret = hclge_get_phy_link_ksettings(&hdev->vport->nic, &cmd);
3440 	if (ret)
3441 		return ret;
3442 
3443 	hdev->hw.mac.autoneg = cmd.base.autoneg;
3444 	hdev->hw.mac.speed = cmd.base.speed;
3445 	hdev->hw.mac.duplex = cmd.base.duplex;
3446 	linkmode_copy(hdev->hw.mac.advertising, cmd.link_modes.advertising);
3447 
3448 	return 0;
3449 }
3450 
3451 static int hclge_tp_port_init(struct hclge_dev *hdev)
3452 {
3453 	struct ethtool_link_ksettings cmd;
3454 
3455 	if (!hnae3_dev_phy_imp_supported(hdev))
3456 		return 0;
3457 
3458 	cmd.base.autoneg = hdev->hw.mac.autoneg;
3459 	cmd.base.speed = hdev->hw.mac.speed;
3460 	cmd.base.duplex = hdev->hw.mac.duplex;
3461 	linkmode_copy(cmd.link_modes.advertising, hdev->hw.mac.advertising);
3462 
3463 	return hclge_set_phy_link_ksettings(&hdev->vport->nic, &cmd);
3464 }
3465 
3466 static int hclge_update_port_info(struct hclge_dev *hdev)
3467 {
3468 	struct hclge_mac *mac = &hdev->hw.mac;
3469 	int speed;
3470 	int ret;
3471 
3472 	/* get the port info from SFP cmd if not copper port */
3473 	if (mac->media_type == HNAE3_MEDIA_TYPE_COPPER)
3474 		return hclge_update_tp_port_info(hdev);
3475 
3476 	/* if IMP does not support get SFP/qSFP info, return directly */
3477 	if (!hdev->support_sfp_query)
3478 		return 0;
3479 
3480 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
3481 		speed = mac->speed;
3482 		ret = hclge_get_sfp_info(hdev, mac);
3483 	} else {
3484 		speed = HCLGE_MAC_SPEED_UNKNOWN;
3485 		ret = hclge_get_sfp_speed(hdev, &speed);
3486 	}
3487 
3488 	if (ret == -EOPNOTSUPP) {
3489 		hdev->support_sfp_query = false;
3490 		return ret;
3491 	} else if (ret) {
3492 		return ret;
3493 	}
3494 
3495 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
3496 		if (mac->speed_type == QUERY_ACTIVE_SPEED) {
3497 			hclge_update_port_capability(hdev, mac);
3498 			if (mac->speed != speed)
3499 				(void)hclge_tm_port_shaper_cfg(hdev);
3500 			return 0;
3501 		}
3502 		return hclge_cfg_mac_speed_dup(hdev, mac->speed,
3503 					       HCLGE_MAC_FULL, mac->lane_num);
3504 	} else {
3505 		if (speed == HCLGE_MAC_SPEED_UNKNOWN)
3506 			return 0; /* do nothing if no SFP */
3507 
3508 		/* must config full duplex for SFP */
3509 		return hclge_cfg_mac_speed_dup(hdev, speed, HCLGE_MAC_FULL, 0);
3510 	}
3511 }
3512 
3513 static int hclge_get_status(struct hnae3_handle *handle)
3514 {
3515 	struct hclge_vport *vport = hclge_get_vport(handle);
3516 	struct hclge_dev *hdev = vport->back;
3517 
3518 	hclge_update_link_status(hdev);
3519 
3520 	return hdev->hw.mac.link;
3521 }
3522 
3523 static struct hclge_vport *hclge_get_vf_vport(struct hclge_dev *hdev, int vf)
3524 {
3525 	if (!pci_num_vf(hdev->pdev)) {
3526 		dev_err(&hdev->pdev->dev,
3527 			"SRIOV is disabled, can not get vport(%d) info.\n", vf);
3528 		return NULL;
3529 	}
3530 
3531 	if (vf < 0 || vf >= pci_num_vf(hdev->pdev)) {
3532 		dev_err(&hdev->pdev->dev,
3533 			"vf id(%d) is out of range(0 <= vfid < %d)\n",
3534 			vf, pci_num_vf(hdev->pdev));
3535 		return NULL;
3536 	}
3537 
3538 	/* VF start from 1 in vport */
3539 	vf += HCLGE_VF_VPORT_START_NUM;
3540 	return &hdev->vport[vf];
3541 }
3542 
3543 static int hclge_get_vf_config(struct hnae3_handle *handle, int vf,
3544 			       struct ifla_vf_info *ivf)
3545 {
3546 	struct hclge_vport *vport = hclge_get_vport(handle);
3547 	struct hclge_dev *hdev = vport->back;
3548 
3549 	vport = hclge_get_vf_vport(hdev, vf);
3550 	if (!vport)
3551 		return -EINVAL;
3552 
3553 	ivf->vf = vf;
3554 	ivf->linkstate = vport->vf_info.link_state;
3555 	ivf->spoofchk = vport->vf_info.spoofchk;
3556 	ivf->trusted = vport->vf_info.trusted;
3557 	ivf->min_tx_rate = 0;
3558 	ivf->max_tx_rate = vport->vf_info.max_tx_rate;
3559 	ivf->vlan = vport->port_base_vlan_cfg.vlan_info.vlan_tag;
3560 	ivf->vlan_proto = htons(vport->port_base_vlan_cfg.vlan_info.vlan_proto);
3561 	ivf->qos = vport->port_base_vlan_cfg.vlan_info.qos;
3562 	ether_addr_copy(ivf->mac, vport->vf_info.mac);
3563 
3564 	return 0;
3565 }
3566 
3567 static int hclge_set_vf_link_state(struct hnae3_handle *handle, int vf,
3568 				   int link_state)
3569 {
3570 	struct hclge_vport *vport = hclge_get_vport(handle);
3571 	struct hclge_dev *hdev = vport->back;
3572 	int link_state_old;
3573 	int ret;
3574 
3575 	vport = hclge_get_vf_vport(hdev, vf);
3576 	if (!vport)
3577 		return -EINVAL;
3578 
3579 	link_state_old = vport->vf_info.link_state;
3580 	vport->vf_info.link_state = link_state;
3581 
3582 	/* return success directly if the VF is unalive, VF will
3583 	 * query link state itself when it starts work.
3584 	 */
3585 	if (!test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state))
3586 		return 0;
3587 
3588 	ret = hclge_push_vf_link_status(vport);
3589 	if (ret) {
3590 		vport->vf_info.link_state = link_state_old;
3591 		dev_err(&hdev->pdev->dev,
3592 			"failed to push vf%d link status, ret = %d\n", vf, ret);
3593 	}
3594 
3595 	return ret;
3596 }
3597 
3598 static u32 hclge_check_event_cause(struct hclge_dev *hdev, u32 *clearval)
3599 {
3600 	u32 cmdq_src_reg, msix_src_reg, hw_err_src_reg;
3601 
3602 	/* fetch the events from their corresponding regs */
3603 	cmdq_src_reg = hclge_read_dev(&hdev->hw, HCLGE_VECTOR0_CMDQ_SRC_REG);
3604 	msix_src_reg = hclge_read_dev(&hdev->hw, HCLGE_MISC_VECTOR_INT_STS);
3605 	hw_err_src_reg = hclge_read_dev(&hdev->hw,
3606 					HCLGE_RAS_PF_OTHER_INT_STS_REG);
3607 
3608 	/* Assumption: If by any chance reset and mailbox events are reported
3609 	 * together then we will only process reset event in this go and will
3610 	 * defer the processing of the mailbox events. Since, we would have not
3611 	 * cleared RX CMDQ event this time we would receive again another
3612 	 * interrupt from H/W just for the mailbox.
3613 	 *
3614 	 * check for vector0 reset event sources
3615 	 */
3616 	if (BIT(HCLGE_VECTOR0_IMPRESET_INT_B) & msix_src_reg) {
3617 		dev_info(&hdev->pdev->dev, "IMP reset interrupt\n");
3618 		set_bit(HNAE3_IMP_RESET, &hdev->reset_pending);
3619 		set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
3620 		*clearval = BIT(HCLGE_VECTOR0_IMPRESET_INT_B);
3621 		hdev->rst_stats.imp_rst_cnt++;
3622 		return HCLGE_VECTOR0_EVENT_RST;
3623 	}
3624 
3625 	if (BIT(HCLGE_VECTOR0_GLOBALRESET_INT_B) & msix_src_reg) {
3626 		dev_info(&hdev->pdev->dev, "global reset interrupt\n");
3627 		set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
3628 		set_bit(HNAE3_GLOBAL_RESET, &hdev->reset_pending);
3629 		*clearval = BIT(HCLGE_VECTOR0_GLOBALRESET_INT_B);
3630 		hdev->rst_stats.global_rst_cnt++;
3631 		return HCLGE_VECTOR0_EVENT_RST;
3632 	}
3633 
3634 	/* check for vector0 msix event and hardware error event source */
3635 	if (msix_src_reg & HCLGE_VECTOR0_REG_MSIX_MASK ||
3636 	    hw_err_src_reg & HCLGE_RAS_REG_ERR_MASK)
3637 		return HCLGE_VECTOR0_EVENT_ERR;
3638 
3639 	/* check for vector0 ptp event source */
3640 	if (BIT(HCLGE_VECTOR0_REG_PTP_INT_B) & msix_src_reg) {
3641 		*clearval = msix_src_reg;
3642 		return HCLGE_VECTOR0_EVENT_PTP;
3643 	}
3644 
3645 	/* check for vector0 mailbox(=CMDQ RX) event source */
3646 	if (BIT(HCLGE_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
3647 		cmdq_src_reg &= ~BIT(HCLGE_VECTOR0_RX_CMDQ_INT_B);
3648 		*clearval = cmdq_src_reg;
3649 		return HCLGE_VECTOR0_EVENT_MBX;
3650 	}
3651 
3652 	/* print other vector0 event source */
3653 	dev_info(&hdev->pdev->dev,
3654 		 "INT status: CMDQ(%#x) HW errors(%#x) other(%#x)\n",
3655 		 cmdq_src_reg, hw_err_src_reg, msix_src_reg);
3656 
3657 	return HCLGE_VECTOR0_EVENT_OTHER;
3658 }
3659 
3660 static void hclge_clear_event_cause(struct hclge_dev *hdev, u32 event_type,
3661 				    u32 regclr)
3662 {
3663 	switch (event_type) {
3664 	case HCLGE_VECTOR0_EVENT_PTP:
3665 	case HCLGE_VECTOR0_EVENT_RST:
3666 		hclge_write_dev(&hdev->hw, HCLGE_MISC_RESET_STS_REG, regclr);
3667 		break;
3668 	case HCLGE_VECTOR0_EVENT_MBX:
3669 		hclge_write_dev(&hdev->hw, HCLGE_VECTOR0_CMDQ_SRC_REG, regclr);
3670 		break;
3671 	default:
3672 		break;
3673 	}
3674 }
3675 
3676 static void hclge_clear_all_event_cause(struct hclge_dev *hdev)
3677 {
3678 	hclge_clear_event_cause(hdev, HCLGE_VECTOR0_EVENT_RST,
3679 				BIT(HCLGE_VECTOR0_GLOBALRESET_INT_B) |
3680 				BIT(HCLGE_VECTOR0_CORERESET_INT_B) |
3681 				BIT(HCLGE_VECTOR0_IMPRESET_INT_B));
3682 	hclge_clear_event_cause(hdev, HCLGE_VECTOR0_EVENT_MBX, 0);
3683 }
3684 
3685 static void hclge_enable_vector(struct hclge_misc_vector *vector, bool enable)
3686 {
3687 	writel(enable ? 1 : 0, vector->addr);
3688 }
3689 
3690 static irqreturn_t hclge_misc_irq_handle(int irq, void *data)
3691 {
3692 	struct hclge_dev *hdev = data;
3693 	unsigned long flags;
3694 	u32 clearval = 0;
3695 	u32 event_cause;
3696 
3697 	hclge_enable_vector(&hdev->misc_vector, false);
3698 	event_cause = hclge_check_event_cause(hdev, &clearval);
3699 
3700 	/* vector 0 interrupt is shared with reset and mailbox source events. */
3701 	switch (event_cause) {
3702 	case HCLGE_VECTOR0_EVENT_ERR:
3703 		hclge_errhand_task_schedule(hdev);
3704 		break;
3705 	case HCLGE_VECTOR0_EVENT_RST:
3706 		hclge_reset_task_schedule(hdev);
3707 		break;
3708 	case HCLGE_VECTOR0_EVENT_PTP:
3709 		spin_lock_irqsave(&hdev->ptp->lock, flags);
3710 		hclge_ptp_clean_tx_hwts(hdev);
3711 		spin_unlock_irqrestore(&hdev->ptp->lock, flags);
3712 		break;
3713 	case HCLGE_VECTOR0_EVENT_MBX:
3714 		/* If we are here then,
3715 		 * 1. Either we are not handling any mbx task and we are not
3716 		 *    scheduled as well
3717 		 *                        OR
3718 		 * 2. We could be handling a mbx task but nothing more is
3719 		 *    scheduled.
3720 		 * In both cases, we should schedule mbx task as there are more
3721 		 * mbx messages reported by this interrupt.
3722 		 */
3723 		hclge_mbx_task_schedule(hdev);
3724 		break;
3725 	default:
3726 		dev_warn(&hdev->pdev->dev,
3727 			 "received unknown or unhandled event of vector0\n");
3728 		break;
3729 	}
3730 
3731 	hclge_clear_event_cause(hdev, event_cause, clearval);
3732 
3733 	/* Enable interrupt if it is not caused by reset event or error event */
3734 	if (event_cause == HCLGE_VECTOR0_EVENT_PTP ||
3735 	    event_cause == HCLGE_VECTOR0_EVENT_MBX ||
3736 	    event_cause == HCLGE_VECTOR0_EVENT_OTHER)
3737 		hclge_enable_vector(&hdev->misc_vector, true);
3738 
3739 	return IRQ_HANDLED;
3740 }
3741 
3742 static void hclge_free_vector(struct hclge_dev *hdev, int vector_id)
3743 {
3744 	if (hdev->vector_status[vector_id] == HCLGE_INVALID_VPORT) {
3745 		dev_warn(&hdev->pdev->dev,
3746 			 "vector(vector_id %d) has been freed.\n", vector_id);
3747 		return;
3748 	}
3749 
3750 	hdev->vector_status[vector_id] = HCLGE_INVALID_VPORT;
3751 	hdev->num_msi_left += 1;
3752 	hdev->num_msi_used -= 1;
3753 }
3754 
3755 static void hclge_get_misc_vector(struct hclge_dev *hdev)
3756 {
3757 	struct hclge_misc_vector *vector = &hdev->misc_vector;
3758 
3759 	vector->vector_irq = pci_irq_vector(hdev->pdev, 0);
3760 
3761 	vector->addr = hdev->hw.hw.io_base + HCLGE_MISC_VECTOR_REG_BASE;
3762 	hdev->vector_status[0] = 0;
3763 
3764 	hdev->num_msi_left -= 1;
3765 	hdev->num_msi_used += 1;
3766 }
3767 
3768 static int hclge_misc_irq_init(struct hclge_dev *hdev)
3769 {
3770 	int ret;
3771 
3772 	hclge_get_misc_vector(hdev);
3773 
3774 	/* this would be explicitly freed in the end */
3775 	snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
3776 		 HCLGE_NAME, pci_name(hdev->pdev));
3777 	ret = request_irq(hdev->misc_vector.vector_irq, hclge_misc_irq_handle,
3778 			  0, hdev->misc_vector.name, hdev);
3779 	if (ret) {
3780 		hclge_free_vector(hdev, 0);
3781 		dev_err(&hdev->pdev->dev, "request misc irq(%d) fail\n",
3782 			hdev->misc_vector.vector_irq);
3783 	}
3784 
3785 	return ret;
3786 }
3787 
3788 static void hclge_misc_irq_uninit(struct hclge_dev *hdev)
3789 {
3790 	free_irq(hdev->misc_vector.vector_irq, hdev);
3791 	hclge_free_vector(hdev, 0);
3792 }
3793 
3794 int hclge_notify_client(struct hclge_dev *hdev,
3795 			enum hnae3_reset_notify_type type)
3796 {
3797 	struct hnae3_handle *handle = &hdev->vport[0].nic;
3798 	struct hnae3_client *client = hdev->nic_client;
3799 	int ret;
3800 
3801 	if (!test_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state) || !client)
3802 		return 0;
3803 
3804 	if (!client->ops->reset_notify)
3805 		return -EOPNOTSUPP;
3806 
3807 	ret = client->ops->reset_notify(handle, type);
3808 	if (ret)
3809 		dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
3810 			type, ret);
3811 
3812 	return ret;
3813 }
3814 
3815 static int hclge_notify_roce_client(struct hclge_dev *hdev,
3816 				    enum hnae3_reset_notify_type type)
3817 {
3818 	struct hnae3_handle *handle = &hdev->vport[0].roce;
3819 	struct hnae3_client *client = hdev->roce_client;
3820 	int ret;
3821 
3822 	if (!test_bit(HCLGE_STATE_ROCE_REGISTERED, &hdev->state) || !client)
3823 		return 0;
3824 
3825 	if (!client->ops->reset_notify)
3826 		return -EOPNOTSUPP;
3827 
3828 	ret = client->ops->reset_notify(handle, type);
3829 	if (ret)
3830 		dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
3831 			type, ret);
3832 
3833 	return ret;
3834 }
3835 
3836 static int hclge_reset_wait(struct hclge_dev *hdev)
3837 {
3838 #define HCLGE_RESET_WATI_MS	100
3839 #define HCLGE_RESET_WAIT_CNT	350
3840 
3841 	u32 val, reg, reg_bit;
3842 	u32 cnt = 0;
3843 
3844 	switch (hdev->reset_type) {
3845 	case HNAE3_IMP_RESET:
3846 		reg = HCLGE_GLOBAL_RESET_REG;
3847 		reg_bit = HCLGE_IMP_RESET_BIT;
3848 		break;
3849 	case HNAE3_GLOBAL_RESET:
3850 		reg = HCLGE_GLOBAL_RESET_REG;
3851 		reg_bit = HCLGE_GLOBAL_RESET_BIT;
3852 		break;
3853 	case HNAE3_FUNC_RESET:
3854 		reg = HCLGE_FUN_RST_ING;
3855 		reg_bit = HCLGE_FUN_RST_ING_B;
3856 		break;
3857 	default:
3858 		dev_err(&hdev->pdev->dev,
3859 			"Wait for unsupported reset type: %d\n",
3860 			hdev->reset_type);
3861 		return -EINVAL;
3862 	}
3863 
3864 	val = hclge_read_dev(&hdev->hw, reg);
3865 	while (hnae3_get_bit(val, reg_bit) && cnt < HCLGE_RESET_WAIT_CNT) {
3866 		msleep(HCLGE_RESET_WATI_MS);
3867 		val = hclge_read_dev(&hdev->hw, reg);
3868 		cnt++;
3869 	}
3870 
3871 	if (cnt >= HCLGE_RESET_WAIT_CNT) {
3872 		dev_warn(&hdev->pdev->dev,
3873 			 "Wait for reset timeout: %d\n", hdev->reset_type);
3874 		return -EBUSY;
3875 	}
3876 
3877 	return 0;
3878 }
3879 
3880 static int hclge_set_vf_rst(struct hclge_dev *hdev, int func_id, bool reset)
3881 {
3882 	struct hclge_vf_rst_cmd *req;
3883 	struct hclge_desc desc;
3884 
3885 	req = (struct hclge_vf_rst_cmd *)desc.data;
3886 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GBL_RST_STATUS, false);
3887 	req->dest_vfid = func_id;
3888 
3889 	if (reset)
3890 		req->vf_rst = 0x1;
3891 
3892 	return hclge_cmd_send(&hdev->hw, &desc, 1);
3893 }
3894 
3895 static int hclge_set_all_vf_rst(struct hclge_dev *hdev, bool reset)
3896 {
3897 	int i;
3898 
3899 	for (i = HCLGE_VF_VPORT_START_NUM; i < hdev->num_alloc_vport; i++) {
3900 		struct hclge_vport *vport = &hdev->vport[i];
3901 		int ret;
3902 
3903 		/* Send cmd to set/clear VF's FUNC_RST_ING */
3904 		ret = hclge_set_vf_rst(hdev, vport->vport_id, reset);
3905 		if (ret) {
3906 			dev_err(&hdev->pdev->dev,
3907 				"set vf(%u) rst failed %d!\n",
3908 				vport->vport_id - HCLGE_VF_VPORT_START_NUM,
3909 				ret);
3910 			return ret;
3911 		}
3912 
3913 		if (!reset || !test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state))
3914 			continue;
3915 
3916 		/* Inform VF to process the reset.
3917 		 * hclge_inform_reset_assert_to_vf may fail if VF
3918 		 * driver is not loaded.
3919 		 */
3920 		ret = hclge_inform_reset_assert_to_vf(vport);
3921 		if (ret)
3922 			dev_warn(&hdev->pdev->dev,
3923 				 "inform reset to vf(%u) failed %d!\n",
3924 				 vport->vport_id - HCLGE_VF_VPORT_START_NUM,
3925 				 ret);
3926 	}
3927 
3928 	return 0;
3929 }
3930 
3931 static void hclge_mailbox_service_task(struct hclge_dev *hdev)
3932 {
3933 	if (!test_and_clear_bit(HCLGE_STATE_MBX_SERVICE_SCHED, &hdev->state) ||
3934 	    test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state) ||
3935 	    test_and_set_bit(HCLGE_STATE_MBX_HANDLING, &hdev->state))
3936 		return;
3937 
3938 	if (time_is_before_jiffies(hdev->last_mbx_scheduled +
3939 				   HCLGE_MBX_SCHED_TIMEOUT))
3940 		dev_warn(&hdev->pdev->dev,
3941 			 "mbx service task is scheduled after %ums on cpu%u!\n",
3942 			 jiffies_to_msecs(jiffies - hdev->last_mbx_scheduled),
3943 			 smp_processor_id());
3944 
3945 	hclge_mbx_handler(hdev);
3946 
3947 	clear_bit(HCLGE_STATE_MBX_HANDLING, &hdev->state);
3948 }
3949 
3950 static void hclge_func_reset_sync_vf(struct hclge_dev *hdev)
3951 {
3952 	struct hclge_pf_rst_sync_cmd *req;
3953 	struct hclge_desc desc;
3954 	int cnt = 0;
3955 	int ret;
3956 
3957 	req = (struct hclge_pf_rst_sync_cmd *)desc.data;
3958 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_VF_RST_RDY, true);
3959 
3960 	do {
3961 		/* vf need to down netdev by mbx during PF or FLR reset */
3962 		hclge_mailbox_service_task(hdev);
3963 
3964 		ret = hclge_cmd_send(&hdev->hw, &desc, 1);
3965 		/* for compatible with old firmware, wait
3966 		 * 100 ms for VF to stop IO
3967 		 */
3968 		if (ret == -EOPNOTSUPP) {
3969 			msleep(HCLGE_RESET_SYNC_TIME);
3970 			return;
3971 		} else if (ret) {
3972 			dev_warn(&hdev->pdev->dev, "sync with VF fail %d!\n",
3973 				 ret);
3974 			return;
3975 		} else if (req->all_vf_ready) {
3976 			return;
3977 		}
3978 		msleep(HCLGE_PF_RESET_SYNC_TIME);
3979 		hclge_comm_cmd_reuse_desc(&desc, true);
3980 	} while (cnt++ < HCLGE_PF_RESET_SYNC_CNT);
3981 
3982 	dev_warn(&hdev->pdev->dev, "sync with VF timeout!\n");
3983 }
3984 
3985 void hclge_report_hw_error(struct hclge_dev *hdev,
3986 			   enum hnae3_hw_error_type type)
3987 {
3988 	struct hnae3_client *client = hdev->nic_client;
3989 
3990 	if (!client || !client->ops->process_hw_error ||
3991 	    !test_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state))
3992 		return;
3993 
3994 	client->ops->process_hw_error(&hdev->vport[0].nic, type);
3995 }
3996 
3997 static void hclge_handle_imp_error(struct hclge_dev *hdev)
3998 {
3999 	u32 reg_val;
4000 
4001 	reg_val = hclge_read_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG);
4002 	if (reg_val & BIT(HCLGE_VECTOR0_IMP_RD_POISON_B)) {
4003 		hclge_report_hw_error(hdev, HNAE3_IMP_RD_POISON_ERROR);
4004 		reg_val &= ~BIT(HCLGE_VECTOR0_IMP_RD_POISON_B);
4005 		hclge_write_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG, reg_val);
4006 	}
4007 
4008 	if (reg_val & BIT(HCLGE_VECTOR0_IMP_CMDQ_ERR_B)) {
4009 		hclge_report_hw_error(hdev, HNAE3_CMDQ_ECC_ERROR);
4010 		reg_val &= ~BIT(HCLGE_VECTOR0_IMP_CMDQ_ERR_B);
4011 		hclge_write_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG, reg_val);
4012 	}
4013 }
4014 
4015 int hclge_func_reset_cmd(struct hclge_dev *hdev, int func_id)
4016 {
4017 	struct hclge_desc desc;
4018 	struct hclge_reset_cmd *req = (struct hclge_reset_cmd *)desc.data;
4019 	int ret;
4020 
4021 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_RST_TRIGGER, false);
4022 	hnae3_set_bit(req->mac_func_reset, HCLGE_CFG_RESET_FUNC_B, 1);
4023 	req->fun_reset_vfid = func_id;
4024 
4025 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
4026 	if (ret)
4027 		dev_err(&hdev->pdev->dev,
4028 			"send function reset cmd fail, status =%d\n", ret);
4029 
4030 	return ret;
4031 }
4032 
4033 static void hclge_do_reset(struct hclge_dev *hdev)
4034 {
4035 	struct hnae3_handle *handle = &hdev->vport[0].nic;
4036 	struct pci_dev *pdev = hdev->pdev;
4037 	u32 val;
4038 
4039 	if (hclge_get_hw_reset_stat(handle)) {
4040 		dev_info(&pdev->dev, "hardware reset not finish\n");
4041 		dev_info(&pdev->dev, "func_rst_reg:0x%x, global_rst_reg:0x%x\n",
4042 			 hclge_read_dev(&hdev->hw, HCLGE_FUN_RST_ING),
4043 			 hclge_read_dev(&hdev->hw, HCLGE_GLOBAL_RESET_REG));
4044 		return;
4045 	}
4046 
4047 	switch (hdev->reset_type) {
4048 	case HNAE3_IMP_RESET:
4049 		dev_info(&pdev->dev, "IMP reset requested\n");
4050 		val = hclge_read_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG);
4051 		hnae3_set_bit(val, HCLGE_TRIGGER_IMP_RESET_B, 1);
4052 		hclge_write_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG, val);
4053 		break;
4054 	case HNAE3_GLOBAL_RESET:
4055 		dev_info(&pdev->dev, "global reset requested\n");
4056 		val = hclge_read_dev(&hdev->hw, HCLGE_GLOBAL_RESET_REG);
4057 		hnae3_set_bit(val, HCLGE_GLOBAL_RESET_BIT, 1);
4058 		hclge_write_dev(&hdev->hw, HCLGE_GLOBAL_RESET_REG, val);
4059 		break;
4060 	case HNAE3_FUNC_RESET:
4061 		dev_info(&pdev->dev, "PF reset requested\n");
4062 		/* schedule again to check later */
4063 		set_bit(HNAE3_FUNC_RESET, &hdev->reset_pending);
4064 		hclge_reset_task_schedule(hdev);
4065 		break;
4066 	default:
4067 		dev_warn(&pdev->dev,
4068 			 "unsupported reset type: %d\n", hdev->reset_type);
4069 		break;
4070 	}
4071 }
4072 
4073 static enum hnae3_reset_type hclge_get_reset_level(struct hnae3_ae_dev *ae_dev,
4074 						   unsigned long *addr)
4075 {
4076 	enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
4077 	struct hclge_dev *hdev = ae_dev->priv;
4078 
4079 	/* return the highest priority reset level amongst all */
4080 	if (test_bit(HNAE3_IMP_RESET, addr)) {
4081 		rst_level = HNAE3_IMP_RESET;
4082 		clear_bit(HNAE3_IMP_RESET, addr);
4083 		clear_bit(HNAE3_GLOBAL_RESET, addr);
4084 		clear_bit(HNAE3_FUNC_RESET, addr);
4085 	} else if (test_bit(HNAE3_GLOBAL_RESET, addr)) {
4086 		rst_level = HNAE3_GLOBAL_RESET;
4087 		clear_bit(HNAE3_GLOBAL_RESET, addr);
4088 		clear_bit(HNAE3_FUNC_RESET, addr);
4089 	} else if (test_bit(HNAE3_FUNC_RESET, addr)) {
4090 		rst_level = HNAE3_FUNC_RESET;
4091 		clear_bit(HNAE3_FUNC_RESET, addr);
4092 	} else if (test_bit(HNAE3_FLR_RESET, addr)) {
4093 		rst_level = HNAE3_FLR_RESET;
4094 		clear_bit(HNAE3_FLR_RESET, addr);
4095 	}
4096 
4097 	if (hdev->reset_type != HNAE3_NONE_RESET &&
4098 	    rst_level < hdev->reset_type)
4099 		return HNAE3_NONE_RESET;
4100 
4101 	return rst_level;
4102 }
4103 
4104 static void hclge_clear_reset_cause(struct hclge_dev *hdev)
4105 {
4106 	u32 clearval = 0;
4107 
4108 	switch (hdev->reset_type) {
4109 	case HNAE3_IMP_RESET:
4110 		clearval = BIT(HCLGE_VECTOR0_IMPRESET_INT_B);
4111 		break;
4112 	case HNAE3_GLOBAL_RESET:
4113 		clearval = BIT(HCLGE_VECTOR0_GLOBALRESET_INT_B);
4114 		break;
4115 	default:
4116 		break;
4117 	}
4118 
4119 	if (!clearval)
4120 		return;
4121 
4122 	/* For revision 0x20, the reset interrupt source
4123 	 * can only be cleared after hardware reset done
4124 	 */
4125 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
4126 		hclge_write_dev(&hdev->hw, HCLGE_MISC_RESET_STS_REG,
4127 				clearval);
4128 
4129 	hclge_enable_vector(&hdev->misc_vector, true);
4130 }
4131 
4132 static void hclge_reset_handshake(struct hclge_dev *hdev, bool enable)
4133 {
4134 	u32 reg_val;
4135 
4136 	reg_val = hclge_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG);
4137 	if (enable)
4138 		reg_val |= HCLGE_COMM_NIC_SW_RST_RDY;
4139 	else
4140 		reg_val &= ~HCLGE_COMM_NIC_SW_RST_RDY;
4141 
4142 	hclge_write_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG, reg_val);
4143 }
4144 
4145 static int hclge_func_reset_notify_vf(struct hclge_dev *hdev)
4146 {
4147 	int ret;
4148 
4149 	ret = hclge_set_all_vf_rst(hdev, true);
4150 	if (ret)
4151 		return ret;
4152 
4153 	hclge_func_reset_sync_vf(hdev);
4154 
4155 	return 0;
4156 }
4157 
4158 static int hclge_reset_prepare_wait(struct hclge_dev *hdev)
4159 {
4160 	u32 reg_val;
4161 	int ret = 0;
4162 
4163 	switch (hdev->reset_type) {
4164 	case HNAE3_FUNC_RESET:
4165 		ret = hclge_func_reset_notify_vf(hdev);
4166 		if (ret)
4167 			return ret;
4168 
4169 		ret = hclge_func_reset_cmd(hdev, 0);
4170 		if (ret) {
4171 			dev_err(&hdev->pdev->dev,
4172 				"asserting function reset fail %d!\n", ret);
4173 			return ret;
4174 		}
4175 
4176 		/* After performaning pf reset, it is not necessary to do the
4177 		 * mailbox handling or send any command to firmware, because
4178 		 * any mailbox handling or command to firmware is only valid
4179 		 * after hclge_comm_cmd_init is called.
4180 		 */
4181 		set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
4182 		hdev->rst_stats.pf_rst_cnt++;
4183 		break;
4184 	case HNAE3_FLR_RESET:
4185 		ret = hclge_func_reset_notify_vf(hdev);
4186 		if (ret)
4187 			return ret;
4188 		break;
4189 	case HNAE3_IMP_RESET:
4190 		hclge_handle_imp_error(hdev);
4191 		reg_val = hclge_read_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG);
4192 		hclge_write_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG,
4193 				BIT(HCLGE_VECTOR0_IMP_RESET_INT_B) | reg_val);
4194 		break;
4195 	default:
4196 		break;
4197 	}
4198 
4199 	/* inform hardware that preparatory work is done */
4200 	msleep(HCLGE_RESET_SYNC_TIME);
4201 	hclge_reset_handshake(hdev, true);
4202 	dev_info(&hdev->pdev->dev, "prepare wait ok\n");
4203 
4204 	return ret;
4205 }
4206 
4207 static void hclge_show_rst_info(struct hclge_dev *hdev)
4208 {
4209 	char *buf;
4210 
4211 	buf = kzalloc(HCLGE_DBG_RESET_INFO_LEN, GFP_KERNEL);
4212 	if (!buf)
4213 		return;
4214 
4215 	hclge_dbg_dump_rst_info(hdev, buf, HCLGE_DBG_RESET_INFO_LEN);
4216 
4217 	dev_info(&hdev->pdev->dev, "dump reset info:\n%s", buf);
4218 
4219 	kfree(buf);
4220 }
4221 
4222 static bool hclge_reset_err_handle(struct hclge_dev *hdev)
4223 {
4224 #define MAX_RESET_FAIL_CNT 5
4225 
4226 	if (hdev->reset_pending) {
4227 		dev_info(&hdev->pdev->dev, "Reset pending %lu\n",
4228 			 hdev->reset_pending);
4229 		return true;
4230 	} else if (hclge_read_dev(&hdev->hw, HCLGE_MISC_VECTOR_INT_STS) &
4231 		   HCLGE_RESET_INT_M) {
4232 		dev_info(&hdev->pdev->dev,
4233 			 "reset failed because new reset interrupt\n");
4234 		hclge_clear_reset_cause(hdev);
4235 		return false;
4236 	} else if (hdev->rst_stats.reset_fail_cnt < MAX_RESET_FAIL_CNT) {
4237 		hdev->rst_stats.reset_fail_cnt++;
4238 		set_bit(hdev->reset_type, &hdev->reset_pending);
4239 		dev_info(&hdev->pdev->dev,
4240 			 "re-schedule reset task(%u)\n",
4241 			 hdev->rst_stats.reset_fail_cnt);
4242 		return true;
4243 	}
4244 
4245 	hclge_clear_reset_cause(hdev);
4246 
4247 	/* recover the handshake status when reset fail */
4248 	hclge_reset_handshake(hdev, true);
4249 
4250 	dev_err(&hdev->pdev->dev, "Reset fail!\n");
4251 
4252 	hclge_show_rst_info(hdev);
4253 
4254 	set_bit(HCLGE_STATE_RST_FAIL, &hdev->state);
4255 
4256 	return false;
4257 }
4258 
4259 static void hclge_update_reset_level(struct hclge_dev *hdev)
4260 {
4261 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
4262 	enum hnae3_reset_type reset_level;
4263 
4264 	/* reset request will not be set during reset, so clear
4265 	 * pending reset request to avoid unnecessary reset
4266 	 * caused by the same reason.
4267 	 */
4268 	hclge_get_reset_level(ae_dev, &hdev->reset_request);
4269 
4270 	/* if default_reset_request has a higher level reset request,
4271 	 * it should be handled as soon as possible. since some errors
4272 	 * need this kind of reset to fix.
4273 	 */
4274 	reset_level = hclge_get_reset_level(ae_dev,
4275 					    &hdev->default_reset_request);
4276 	if (reset_level != HNAE3_NONE_RESET)
4277 		set_bit(reset_level, &hdev->reset_request);
4278 }
4279 
4280 static int hclge_set_rst_done(struct hclge_dev *hdev)
4281 {
4282 	struct hclge_pf_rst_done_cmd *req;
4283 	struct hclge_desc desc;
4284 	int ret;
4285 
4286 	req = (struct hclge_pf_rst_done_cmd *)desc.data;
4287 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_PF_RST_DONE, false);
4288 	req->pf_rst_done |= HCLGE_PF_RESET_DONE_BIT;
4289 
4290 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
4291 	/* To be compatible with the old firmware, which does not support
4292 	 * command HCLGE_OPC_PF_RST_DONE, just print a warning and
4293 	 * return success
4294 	 */
4295 	if (ret == -EOPNOTSUPP) {
4296 		dev_warn(&hdev->pdev->dev,
4297 			 "current firmware does not support command(0x%x)!\n",
4298 			 HCLGE_OPC_PF_RST_DONE);
4299 		return 0;
4300 	} else if (ret) {
4301 		dev_err(&hdev->pdev->dev, "assert PF reset done fail %d!\n",
4302 			ret);
4303 	}
4304 
4305 	return ret;
4306 }
4307 
4308 static int hclge_reset_prepare_up(struct hclge_dev *hdev)
4309 {
4310 	int ret = 0;
4311 
4312 	switch (hdev->reset_type) {
4313 	case HNAE3_FUNC_RESET:
4314 	case HNAE3_FLR_RESET:
4315 		ret = hclge_set_all_vf_rst(hdev, false);
4316 		break;
4317 	case HNAE3_GLOBAL_RESET:
4318 	case HNAE3_IMP_RESET:
4319 		ret = hclge_set_rst_done(hdev);
4320 		break;
4321 	default:
4322 		break;
4323 	}
4324 
4325 	/* clear up the handshake status after re-initialize done */
4326 	hclge_reset_handshake(hdev, false);
4327 
4328 	return ret;
4329 }
4330 
4331 static int hclge_reset_stack(struct hclge_dev *hdev)
4332 {
4333 	int ret;
4334 
4335 	ret = hclge_notify_client(hdev, HNAE3_UNINIT_CLIENT);
4336 	if (ret)
4337 		return ret;
4338 
4339 	ret = hclge_reset_ae_dev(hdev->ae_dev);
4340 	if (ret)
4341 		return ret;
4342 
4343 	return hclge_notify_client(hdev, HNAE3_INIT_CLIENT);
4344 }
4345 
4346 static int hclge_reset_prepare(struct hclge_dev *hdev)
4347 {
4348 	int ret;
4349 
4350 	hdev->rst_stats.reset_cnt++;
4351 	/* perform reset of the stack & ae device for a client */
4352 	ret = hclge_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
4353 	if (ret)
4354 		return ret;
4355 
4356 	rtnl_lock();
4357 	ret = hclge_notify_client(hdev, HNAE3_DOWN_CLIENT);
4358 	rtnl_unlock();
4359 	if (ret)
4360 		return ret;
4361 
4362 	return hclge_reset_prepare_wait(hdev);
4363 }
4364 
4365 static int hclge_reset_rebuild(struct hclge_dev *hdev)
4366 {
4367 	int ret;
4368 
4369 	hdev->rst_stats.hw_reset_done_cnt++;
4370 
4371 	ret = hclge_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
4372 	if (ret)
4373 		return ret;
4374 
4375 	rtnl_lock();
4376 	ret = hclge_reset_stack(hdev);
4377 	rtnl_unlock();
4378 	if (ret)
4379 		return ret;
4380 
4381 	hclge_clear_reset_cause(hdev);
4382 
4383 	ret = hclge_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
4384 	/* ignore RoCE notify error if it fails HCLGE_RESET_MAX_FAIL_CNT - 1
4385 	 * times
4386 	 */
4387 	if (ret &&
4388 	    hdev->rst_stats.reset_fail_cnt < HCLGE_RESET_MAX_FAIL_CNT - 1)
4389 		return ret;
4390 
4391 	ret = hclge_reset_prepare_up(hdev);
4392 	if (ret)
4393 		return ret;
4394 
4395 	rtnl_lock();
4396 	ret = hclge_notify_client(hdev, HNAE3_UP_CLIENT);
4397 	rtnl_unlock();
4398 	if (ret)
4399 		return ret;
4400 
4401 	ret = hclge_notify_roce_client(hdev, HNAE3_UP_CLIENT);
4402 	if (ret)
4403 		return ret;
4404 
4405 	hdev->last_reset_time = jiffies;
4406 	hdev->rst_stats.reset_fail_cnt = 0;
4407 	hdev->rst_stats.reset_done_cnt++;
4408 	clear_bit(HCLGE_STATE_RST_FAIL, &hdev->state);
4409 
4410 	hclge_update_reset_level(hdev);
4411 
4412 	return 0;
4413 }
4414 
4415 static void hclge_reset(struct hclge_dev *hdev)
4416 {
4417 	if (hclge_reset_prepare(hdev))
4418 		goto err_reset;
4419 
4420 	if (hclge_reset_wait(hdev))
4421 		goto err_reset;
4422 
4423 	if (hclge_reset_rebuild(hdev))
4424 		goto err_reset;
4425 
4426 	return;
4427 
4428 err_reset:
4429 	if (hclge_reset_err_handle(hdev))
4430 		hclge_reset_task_schedule(hdev);
4431 }
4432 
4433 static void hclge_reset_event(struct pci_dev *pdev, struct hnae3_handle *handle)
4434 {
4435 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
4436 	struct hclge_dev *hdev = ae_dev->priv;
4437 
4438 	/* We might end up getting called broadly because of 2 below cases:
4439 	 * 1. Recoverable error was conveyed through APEI and only way to bring
4440 	 *    normalcy is to reset.
4441 	 * 2. A new reset request from the stack due to timeout
4442 	 *
4443 	 * check if this is a new reset request and we are not here just because
4444 	 * last reset attempt did not succeed and watchdog hit us again. We will
4445 	 * know this if last reset request did not occur very recently (watchdog
4446 	 * timer = 5*HZ, let us check after sufficiently large time, say 4*5*Hz)
4447 	 * In case of new request we reset the "reset level" to PF reset.
4448 	 * And if it is a repeat reset request of the most recent one then we
4449 	 * want to make sure we throttle the reset request. Therefore, we will
4450 	 * not allow it again before 3*HZ times.
4451 	 */
4452 
4453 	if (time_before(jiffies, (hdev->last_reset_time +
4454 				  HCLGE_RESET_INTERVAL))) {
4455 		mod_timer(&hdev->reset_timer, jiffies + HCLGE_RESET_INTERVAL);
4456 		return;
4457 	}
4458 
4459 	if (hdev->default_reset_request) {
4460 		hdev->reset_level =
4461 			hclge_get_reset_level(ae_dev,
4462 					      &hdev->default_reset_request);
4463 	} else if (time_after(jiffies, (hdev->last_reset_time + 4 * 5 * HZ))) {
4464 		hdev->reset_level = HNAE3_FUNC_RESET;
4465 	}
4466 
4467 	dev_info(&hdev->pdev->dev, "received reset event, reset type is %d\n",
4468 		 hdev->reset_level);
4469 
4470 	/* request reset & schedule reset task */
4471 	set_bit(hdev->reset_level, &hdev->reset_request);
4472 	hclge_reset_task_schedule(hdev);
4473 
4474 	if (hdev->reset_level < HNAE3_GLOBAL_RESET)
4475 		hdev->reset_level++;
4476 }
4477 
4478 static void hclge_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
4479 					enum hnae3_reset_type rst_type)
4480 {
4481 	struct hclge_dev *hdev = ae_dev->priv;
4482 
4483 	set_bit(rst_type, &hdev->default_reset_request);
4484 }
4485 
4486 static void hclge_reset_timer(struct timer_list *t)
4487 {
4488 	struct hclge_dev *hdev = from_timer(hdev, t, reset_timer);
4489 
4490 	/* if default_reset_request has no value, it means that this reset
4491 	 * request has already be handled, so just return here
4492 	 */
4493 	if (!hdev->default_reset_request)
4494 		return;
4495 
4496 	dev_info(&hdev->pdev->dev,
4497 		 "triggering reset in reset timer\n");
4498 	hclge_reset_event(hdev->pdev, NULL);
4499 }
4500 
4501 static void hclge_reset_subtask(struct hclge_dev *hdev)
4502 {
4503 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
4504 
4505 	/* check if there is any ongoing reset in the hardware. This status can
4506 	 * be checked from reset_pending. If there is then, we need to wait for
4507 	 * hardware to complete reset.
4508 	 *    a. If we are able to figure out in reasonable time that hardware
4509 	 *       has fully resetted then, we can proceed with driver, client
4510 	 *       reset.
4511 	 *    b. else, we can come back later to check this status so re-sched
4512 	 *       now.
4513 	 */
4514 	hdev->last_reset_time = jiffies;
4515 	hdev->reset_type = hclge_get_reset_level(ae_dev, &hdev->reset_pending);
4516 	if (hdev->reset_type != HNAE3_NONE_RESET)
4517 		hclge_reset(hdev);
4518 
4519 	/* check if we got any *new* reset requests to be honored */
4520 	hdev->reset_type = hclge_get_reset_level(ae_dev, &hdev->reset_request);
4521 	if (hdev->reset_type != HNAE3_NONE_RESET)
4522 		hclge_do_reset(hdev);
4523 
4524 	hdev->reset_type = HNAE3_NONE_RESET;
4525 }
4526 
4527 static void hclge_handle_err_reset_request(struct hclge_dev *hdev)
4528 {
4529 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
4530 	enum hnae3_reset_type reset_type;
4531 
4532 	if (ae_dev->hw_err_reset_req) {
4533 		reset_type = hclge_get_reset_level(ae_dev,
4534 						   &ae_dev->hw_err_reset_req);
4535 		hclge_set_def_reset_request(ae_dev, reset_type);
4536 	}
4537 
4538 	if (hdev->default_reset_request && ae_dev->ops->reset_event)
4539 		ae_dev->ops->reset_event(hdev->pdev, NULL);
4540 
4541 	/* enable interrupt after error handling complete */
4542 	hclge_enable_vector(&hdev->misc_vector, true);
4543 }
4544 
4545 static void hclge_handle_err_recovery(struct hclge_dev *hdev)
4546 {
4547 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
4548 
4549 	ae_dev->hw_err_reset_req = 0;
4550 
4551 	if (hclge_find_error_source(hdev)) {
4552 		hclge_handle_error_info_log(ae_dev);
4553 		hclge_handle_mac_tnl(hdev);
4554 	}
4555 
4556 	hclge_handle_err_reset_request(hdev);
4557 }
4558 
4559 static void hclge_misc_err_recovery(struct hclge_dev *hdev)
4560 {
4561 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
4562 	struct device *dev = &hdev->pdev->dev;
4563 	u32 msix_sts_reg;
4564 
4565 	msix_sts_reg = hclge_read_dev(&hdev->hw, HCLGE_MISC_VECTOR_INT_STS);
4566 	if (msix_sts_reg & HCLGE_VECTOR0_REG_MSIX_MASK) {
4567 		if (hclge_handle_hw_msix_error
4568 				(hdev, &hdev->default_reset_request))
4569 			dev_info(dev, "received msix interrupt 0x%x\n",
4570 				 msix_sts_reg);
4571 	}
4572 
4573 	hclge_handle_hw_ras_error(ae_dev);
4574 
4575 	hclge_handle_err_reset_request(hdev);
4576 }
4577 
4578 static void hclge_errhand_service_task(struct hclge_dev *hdev)
4579 {
4580 	if (!test_and_clear_bit(HCLGE_STATE_ERR_SERVICE_SCHED, &hdev->state))
4581 		return;
4582 
4583 	if (hnae3_dev_ras_imp_supported(hdev))
4584 		hclge_handle_err_recovery(hdev);
4585 	else
4586 		hclge_misc_err_recovery(hdev);
4587 }
4588 
4589 static void hclge_reset_service_task(struct hclge_dev *hdev)
4590 {
4591 	if (!test_and_clear_bit(HCLGE_STATE_RST_SERVICE_SCHED, &hdev->state))
4592 		return;
4593 
4594 	if (time_is_before_jiffies(hdev->last_rst_scheduled +
4595 				   HCLGE_RESET_SCHED_TIMEOUT))
4596 		dev_warn(&hdev->pdev->dev,
4597 			 "reset service task is scheduled after %ums on cpu%u!\n",
4598 			 jiffies_to_msecs(jiffies - hdev->last_rst_scheduled),
4599 			 smp_processor_id());
4600 
4601 	down(&hdev->reset_sem);
4602 	set_bit(HCLGE_STATE_RST_HANDLING, &hdev->state);
4603 
4604 	hclge_reset_subtask(hdev);
4605 
4606 	clear_bit(HCLGE_STATE_RST_HANDLING, &hdev->state);
4607 	up(&hdev->reset_sem);
4608 }
4609 
4610 static void hclge_update_vport_alive(struct hclge_dev *hdev)
4611 {
4612 	int i;
4613 
4614 	/* start from vport 1 for PF is always alive */
4615 	for (i = 1; i < hdev->num_alloc_vport; i++) {
4616 		struct hclge_vport *vport = &hdev->vport[i];
4617 
4618 		if (time_after(jiffies, vport->last_active_jiffies + 8 * HZ))
4619 			clear_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state);
4620 
4621 		/* If vf is not alive, set to default value */
4622 		if (!test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state))
4623 			vport->mps = HCLGE_MAC_DEFAULT_FRAME;
4624 	}
4625 }
4626 
4627 static void hclge_periodic_service_task(struct hclge_dev *hdev)
4628 {
4629 	unsigned long delta = round_jiffies_relative(HZ);
4630 
4631 	if (test_bit(HCLGE_STATE_RST_FAIL, &hdev->state))
4632 		return;
4633 
4634 	/* Always handle the link updating to make sure link state is
4635 	 * updated when it is triggered by mbx.
4636 	 */
4637 	hclge_update_link_status(hdev);
4638 	hclge_sync_mac_table(hdev);
4639 	hclge_sync_promisc_mode(hdev);
4640 	hclge_sync_fd_table(hdev);
4641 
4642 	if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
4643 		delta = jiffies - hdev->last_serv_processed;
4644 
4645 		if (delta < round_jiffies_relative(HZ)) {
4646 			delta = round_jiffies_relative(HZ) - delta;
4647 			goto out;
4648 		}
4649 	}
4650 
4651 	hdev->serv_processed_cnt++;
4652 	hclge_update_vport_alive(hdev);
4653 
4654 	if (test_bit(HCLGE_STATE_DOWN, &hdev->state)) {
4655 		hdev->last_serv_processed = jiffies;
4656 		goto out;
4657 	}
4658 
4659 	if (!(hdev->serv_processed_cnt % HCLGE_STATS_TIMER_INTERVAL))
4660 		hclge_update_stats_for_all(hdev);
4661 
4662 	hclge_update_port_info(hdev);
4663 	hclge_sync_vlan_filter(hdev);
4664 
4665 	if (!(hdev->serv_processed_cnt % HCLGE_ARFS_EXPIRE_INTERVAL))
4666 		hclge_rfs_filter_expire(hdev);
4667 
4668 	hdev->last_serv_processed = jiffies;
4669 
4670 out:
4671 	hclge_task_schedule(hdev, delta);
4672 }
4673 
4674 static void hclge_ptp_service_task(struct hclge_dev *hdev)
4675 {
4676 	unsigned long flags;
4677 
4678 	if (!test_bit(HCLGE_STATE_PTP_EN, &hdev->state) ||
4679 	    !test_bit(HCLGE_STATE_PTP_TX_HANDLING, &hdev->state) ||
4680 	    !time_is_before_jiffies(hdev->ptp->tx_start + HZ))
4681 		return;
4682 
4683 	/* to prevent concurrence with the irq handler */
4684 	spin_lock_irqsave(&hdev->ptp->lock, flags);
4685 
4686 	/* check HCLGE_STATE_PTP_TX_HANDLING here again, since the irq
4687 	 * handler may handle it just before spin_lock_irqsave().
4688 	 */
4689 	if (test_bit(HCLGE_STATE_PTP_TX_HANDLING, &hdev->state))
4690 		hclge_ptp_clean_tx_hwts(hdev);
4691 
4692 	spin_unlock_irqrestore(&hdev->ptp->lock, flags);
4693 }
4694 
4695 static void hclge_service_task(struct work_struct *work)
4696 {
4697 	struct hclge_dev *hdev =
4698 		container_of(work, struct hclge_dev, service_task.work);
4699 
4700 	hclge_errhand_service_task(hdev);
4701 	hclge_reset_service_task(hdev);
4702 	hclge_ptp_service_task(hdev);
4703 	hclge_mailbox_service_task(hdev);
4704 	hclge_periodic_service_task(hdev);
4705 
4706 	/* Handle error recovery, reset and mbx again in case periodical task
4707 	 * delays the handling by calling hclge_task_schedule() in
4708 	 * hclge_periodic_service_task().
4709 	 */
4710 	hclge_errhand_service_task(hdev);
4711 	hclge_reset_service_task(hdev);
4712 	hclge_mailbox_service_task(hdev);
4713 }
4714 
4715 struct hclge_vport *hclge_get_vport(struct hnae3_handle *handle)
4716 {
4717 	/* VF handle has no client */
4718 	if (!handle->client)
4719 		return container_of(handle, struct hclge_vport, nic);
4720 	else if (handle->client->type == HNAE3_CLIENT_ROCE)
4721 		return container_of(handle, struct hclge_vport, roce);
4722 	else
4723 		return container_of(handle, struct hclge_vport, nic);
4724 }
4725 
4726 static void hclge_get_vector_info(struct hclge_dev *hdev, u16 idx,
4727 				  struct hnae3_vector_info *vector_info)
4728 {
4729 #define HCLGE_PF_MAX_VECTOR_NUM_DEV_V2	64
4730 
4731 	vector_info->vector = pci_irq_vector(hdev->pdev, idx);
4732 
4733 	/* need an extend offset to config vector >= 64 */
4734 	if (idx - 1 < HCLGE_PF_MAX_VECTOR_NUM_DEV_V2)
4735 		vector_info->io_addr = hdev->hw.hw.io_base +
4736 				HCLGE_VECTOR_REG_BASE +
4737 				(idx - 1) * HCLGE_VECTOR_REG_OFFSET;
4738 	else
4739 		vector_info->io_addr = hdev->hw.hw.io_base +
4740 				HCLGE_VECTOR_EXT_REG_BASE +
4741 				(idx - 1) / HCLGE_PF_MAX_VECTOR_NUM_DEV_V2 *
4742 				HCLGE_VECTOR_REG_OFFSET_H +
4743 				(idx - 1) % HCLGE_PF_MAX_VECTOR_NUM_DEV_V2 *
4744 				HCLGE_VECTOR_REG_OFFSET;
4745 
4746 	hdev->vector_status[idx] = hdev->vport[0].vport_id;
4747 	hdev->vector_irq[idx] = vector_info->vector;
4748 }
4749 
4750 static int hclge_get_vector(struct hnae3_handle *handle, u16 vector_num,
4751 			    struct hnae3_vector_info *vector_info)
4752 {
4753 	struct hclge_vport *vport = hclge_get_vport(handle);
4754 	struct hnae3_vector_info *vector = vector_info;
4755 	struct hclge_dev *hdev = vport->back;
4756 	int alloc = 0;
4757 	u16 i = 0;
4758 	u16 j;
4759 
4760 	vector_num = min_t(u16, hdev->num_nic_msi - 1, vector_num);
4761 	vector_num = min(hdev->num_msi_left, vector_num);
4762 
4763 	for (j = 0; j < vector_num; j++) {
4764 		while (++i < hdev->num_nic_msi) {
4765 			if (hdev->vector_status[i] == HCLGE_INVALID_VPORT) {
4766 				hclge_get_vector_info(hdev, i, vector);
4767 				vector++;
4768 				alloc++;
4769 
4770 				break;
4771 			}
4772 		}
4773 	}
4774 	hdev->num_msi_left -= alloc;
4775 	hdev->num_msi_used += alloc;
4776 
4777 	return alloc;
4778 }
4779 
4780 static int hclge_get_vector_index(struct hclge_dev *hdev, int vector)
4781 {
4782 	int i;
4783 
4784 	for (i = 0; i < hdev->num_msi; i++)
4785 		if (vector == hdev->vector_irq[i])
4786 			return i;
4787 
4788 	return -EINVAL;
4789 }
4790 
4791 static int hclge_put_vector(struct hnae3_handle *handle, int vector)
4792 {
4793 	struct hclge_vport *vport = hclge_get_vport(handle);
4794 	struct hclge_dev *hdev = vport->back;
4795 	int vector_id;
4796 
4797 	vector_id = hclge_get_vector_index(hdev, vector);
4798 	if (vector_id < 0) {
4799 		dev_err(&hdev->pdev->dev,
4800 			"Get vector index fail. vector = %d\n", vector);
4801 		return vector_id;
4802 	}
4803 
4804 	hclge_free_vector(hdev, vector_id);
4805 
4806 	return 0;
4807 }
4808 
4809 static int hclge_get_rss(struct hnae3_handle *handle, u32 *indir,
4810 			 u8 *key, u8 *hfunc)
4811 {
4812 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
4813 	struct hclge_vport *vport = hclge_get_vport(handle);
4814 	struct hclge_comm_rss_cfg *rss_cfg = &vport->back->rss_cfg;
4815 
4816 	hclge_comm_get_rss_hash_info(rss_cfg, key, hfunc);
4817 
4818 	hclge_comm_get_rss_indir_tbl(rss_cfg, indir,
4819 				     ae_dev->dev_specs.rss_ind_tbl_size);
4820 
4821 	return 0;
4822 }
4823 
4824 static int hclge_set_rss(struct hnae3_handle *handle, const u32 *indir,
4825 			 const  u8 *key, const  u8 hfunc)
4826 {
4827 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
4828 	struct hclge_vport *vport = hclge_get_vport(handle);
4829 	struct hclge_dev *hdev = vport->back;
4830 	struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg;
4831 	int ret, i;
4832 
4833 	ret = hclge_comm_set_rss_hash_key(rss_cfg, &hdev->hw.hw, key, hfunc);
4834 	if (ret) {
4835 		dev_err(&hdev->pdev->dev, "invalid hfunc type %u\n", hfunc);
4836 		return ret;
4837 	}
4838 
4839 	/* Update the shadow RSS table with user specified qids */
4840 	for (i = 0; i < ae_dev->dev_specs.rss_ind_tbl_size; i++)
4841 		rss_cfg->rss_indirection_tbl[i] = indir[i];
4842 
4843 	/* Update the hardware */
4844 	return hclge_comm_set_rss_indir_table(ae_dev, &hdev->hw.hw,
4845 					      rss_cfg->rss_indirection_tbl);
4846 }
4847 
4848 static int hclge_set_rss_tuple(struct hnae3_handle *handle,
4849 			       struct ethtool_rxnfc *nfc)
4850 {
4851 	struct hclge_vport *vport = hclge_get_vport(handle);
4852 	struct hclge_dev *hdev = vport->back;
4853 	int ret;
4854 
4855 	ret = hclge_comm_set_rss_tuple(hdev->ae_dev, &hdev->hw.hw,
4856 				       &hdev->rss_cfg, nfc);
4857 	if (ret) {
4858 		dev_err(&hdev->pdev->dev,
4859 			"failed to set rss tuple, ret = %d.\n", ret);
4860 		return ret;
4861 	}
4862 
4863 	return 0;
4864 }
4865 
4866 static int hclge_get_rss_tuple(struct hnae3_handle *handle,
4867 			       struct ethtool_rxnfc *nfc)
4868 {
4869 	struct hclge_vport *vport = hclge_get_vport(handle);
4870 	u8 tuple_sets;
4871 	int ret;
4872 
4873 	nfc->data = 0;
4874 
4875 	ret = hclge_comm_get_rss_tuple(&vport->back->rss_cfg, nfc->flow_type,
4876 				       &tuple_sets);
4877 	if (ret || !tuple_sets)
4878 		return ret;
4879 
4880 	nfc->data = hclge_comm_convert_rss_tuple(tuple_sets);
4881 
4882 	return 0;
4883 }
4884 
4885 static int hclge_get_tc_size(struct hnae3_handle *handle)
4886 {
4887 	struct hclge_vport *vport = hclge_get_vport(handle);
4888 	struct hclge_dev *hdev = vport->back;
4889 
4890 	return hdev->pf_rss_size_max;
4891 }
4892 
4893 static int hclge_init_rss_tc_mode(struct hclge_dev *hdev)
4894 {
4895 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
4896 	struct hclge_vport *vport = hdev->vport;
4897 	u16 tc_offset[HCLGE_MAX_TC_NUM] = {0};
4898 	u16 tc_valid[HCLGE_MAX_TC_NUM] = {0};
4899 	u16 tc_size[HCLGE_MAX_TC_NUM] = {0};
4900 	struct hnae3_tc_info *tc_info;
4901 	u16 roundup_size;
4902 	u16 rss_size;
4903 	int i;
4904 
4905 	tc_info = &vport->nic.kinfo.tc_info;
4906 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
4907 		rss_size = tc_info->tqp_count[i];
4908 		tc_valid[i] = 0;
4909 
4910 		if (!(hdev->hw_tc_map & BIT(i)))
4911 			continue;
4912 
4913 		/* tc_size set to hardware is the log2 of roundup power of two
4914 		 * of rss_size, the acutal queue size is limited by indirection
4915 		 * table.
4916 		 */
4917 		if (rss_size > ae_dev->dev_specs.rss_ind_tbl_size ||
4918 		    rss_size == 0) {
4919 			dev_err(&hdev->pdev->dev,
4920 				"Configure rss tc size failed, invalid TC_SIZE = %u\n",
4921 				rss_size);
4922 			return -EINVAL;
4923 		}
4924 
4925 		roundup_size = roundup_pow_of_two(rss_size);
4926 		roundup_size = ilog2(roundup_size);
4927 
4928 		tc_valid[i] = 1;
4929 		tc_size[i] = roundup_size;
4930 		tc_offset[i] = tc_info->tqp_offset[i];
4931 	}
4932 
4933 	return hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset, tc_valid,
4934 					  tc_size);
4935 }
4936 
4937 int hclge_rss_init_hw(struct hclge_dev *hdev)
4938 {
4939 	u16 *rss_indir = hdev->rss_cfg.rss_indirection_tbl;
4940 	u8 *key = hdev->rss_cfg.rss_hash_key;
4941 	u8 hfunc = hdev->rss_cfg.rss_algo;
4942 	int ret;
4943 
4944 	ret = hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw,
4945 					     rss_indir);
4946 	if (ret)
4947 		return ret;
4948 
4949 	ret = hclge_comm_set_rss_algo_key(&hdev->hw.hw, hfunc, key);
4950 	if (ret)
4951 		return ret;
4952 
4953 	ret = hclge_comm_set_rss_input_tuple(&hdev->vport[0].nic,
4954 					     &hdev->hw.hw, true,
4955 					     &hdev->rss_cfg);
4956 	if (ret)
4957 		return ret;
4958 
4959 	return hclge_init_rss_tc_mode(hdev);
4960 }
4961 
4962 int hclge_bind_ring_with_vector(struct hclge_vport *vport,
4963 				int vector_id, bool en,
4964 				struct hnae3_ring_chain_node *ring_chain)
4965 {
4966 	struct hclge_dev *hdev = vport->back;
4967 	struct hnae3_ring_chain_node *node;
4968 	struct hclge_desc desc;
4969 	struct hclge_ctrl_vector_chain_cmd *req =
4970 		(struct hclge_ctrl_vector_chain_cmd *)desc.data;
4971 	enum hclge_comm_cmd_status status;
4972 	enum hclge_opcode_type op;
4973 	u16 tqp_type_and_id;
4974 	int i;
4975 
4976 	op = en ? HCLGE_OPC_ADD_RING_TO_VECTOR : HCLGE_OPC_DEL_RING_TO_VECTOR;
4977 	hclge_cmd_setup_basic_desc(&desc, op, false);
4978 	req->int_vector_id_l = hnae3_get_field(vector_id,
4979 					       HCLGE_VECTOR_ID_L_M,
4980 					       HCLGE_VECTOR_ID_L_S);
4981 	req->int_vector_id_h = hnae3_get_field(vector_id,
4982 					       HCLGE_VECTOR_ID_H_M,
4983 					       HCLGE_VECTOR_ID_H_S);
4984 
4985 	i = 0;
4986 	for (node = ring_chain; node; node = node->next) {
4987 		tqp_type_and_id = le16_to_cpu(req->tqp_type_and_id[i]);
4988 		hnae3_set_field(tqp_type_and_id,  HCLGE_INT_TYPE_M,
4989 				HCLGE_INT_TYPE_S,
4990 				hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B));
4991 		hnae3_set_field(tqp_type_and_id, HCLGE_TQP_ID_M,
4992 				HCLGE_TQP_ID_S, node->tqp_index);
4993 		hnae3_set_field(tqp_type_and_id, HCLGE_INT_GL_IDX_M,
4994 				HCLGE_INT_GL_IDX_S,
4995 				hnae3_get_field(node->int_gl_idx,
4996 						HNAE3_RING_GL_IDX_M,
4997 						HNAE3_RING_GL_IDX_S));
4998 		req->tqp_type_and_id[i] = cpu_to_le16(tqp_type_and_id);
4999 		if (++i >= HCLGE_VECTOR_ELEMENTS_PER_CMD) {
5000 			req->int_cause_num = HCLGE_VECTOR_ELEMENTS_PER_CMD;
5001 			req->vfid = vport->vport_id;
5002 
5003 			status = hclge_cmd_send(&hdev->hw, &desc, 1);
5004 			if (status) {
5005 				dev_err(&hdev->pdev->dev,
5006 					"Map TQP fail, status is %d.\n",
5007 					status);
5008 				return -EIO;
5009 			}
5010 			i = 0;
5011 
5012 			hclge_cmd_setup_basic_desc(&desc,
5013 						   op,
5014 						   false);
5015 			req->int_vector_id_l =
5016 				hnae3_get_field(vector_id,
5017 						HCLGE_VECTOR_ID_L_M,
5018 						HCLGE_VECTOR_ID_L_S);
5019 			req->int_vector_id_h =
5020 				hnae3_get_field(vector_id,
5021 						HCLGE_VECTOR_ID_H_M,
5022 						HCLGE_VECTOR_ID_H_S);
5023 		}
5024 	}
5025 
5026 	if (i > 0) {
5027 		req->int_cause_num = i;
5028 		req->vfid = vport->vport_id;
5029 		status = hclge_cmd_send(&hdev->hw, &desc, 1);
5030 		if (status) {
5031 			dev_err(&hdev->pdev->dev,
5032 				"Map TQP fail, status is %d.\n", status);
5033 			return -EIO;
5034 		}
5035 	}
5036 
5037 	return 0;
5038 }
5039 
5040 static int hclge_map_ring_to_vector(struct hnae3_handle *handle, int vector,
5041 				    struct hnae3_ring_chain_node *ring_chain)
5042 {
5043 	struct hclge_vport *vport = hclge_get_vport(handle);
5044 	struct hclge_dev *hdev = vport->back;
5045 	int vector_id;
5046 
5047 	vector_id = hclge_get_vector_index(hdev, vector);
5048 	if (vector_id < 0) {
5049 		dev_err(&hdev->pdev->dev,
5050 			"failed to get vector index. vector=%d\n", vector);
5051 		return vector_id;
5052 	}
5053 
5054 	return hclge_bind_ring_with_vector(vport, vector_id, true, ring_chain);
5055 }
5056 
5057 static int hclge_unmap_ring_frm_vector(struct hnae3_handle *handle, int vector,
5058 				       struct hnae3_ring_chain_node *ring_chain)
5059 {
5060 	struct hclge_vport *vport = hclge_get_vport(handle);
5061 	struct hclge_dev *hdev = vport->back;
5062 	int vector_id, ret;
5063 
5064 	if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state))
5065 		return 0;
5066 
5067 	vector_id = hclge_get_vector_index(hdev, vector);
5068 	if (vector_id < 0) {
5069 		dev_err(&handle->pdev->dev,
5070 			"Get vector index fail. ret =%d\n", vector_id);
5071 		return vector_id;
5072 	}
5073 
5074 	ret = hclge_bind_ring_with_vector(vport, vector_id, false, ring_chain);
5075 	if (ret)
5076 		dev_err(&handle->pdev->dev,
5077 			"Unmap ring from vector fail. vectorid=%d, ret =%d\n",
5078 			vector_id, ret);
5079 
5080 	return ret;
5081 }
5082 
5083 static int hclge_cmd_set_promisc_mode(struct hclge_dev *hdev, u8 vf_id,
5084 				      bool en_uc, bool en_mc, bool en_bc)
5085 {
5086 	struct hclge_vport *vport = &hdev->vport[vf_id];
5087 	struct hnae3_handle *handle = &vport->nic;
5088 	struct hclge_promisc_cfg_cmd *req;
5089 	struct hclge_desc desc;
5090 	bool uc_tx_en = en_uc;
5091 	u8 promisc_cfg = 0;
5092 	int ret;
5093 
5094 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_PROMISC_MODE, false);
5095 
5096 	req = (struct hclge_promisc_cfg_cmd *)desc.data;
5097 	req->vf_id = vf_id;
5098 
5099 	if (test_bit(HNAE3_PFLAG_LIMIT_PROMISC, &handle->priv_flags))
5100 		uc_tx_en = false;
5101 
5102 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_UC_RX_EN, en_uc ? 1 : 0);
5103 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_MC_RX_EN, en_mc ? 1 : 0);
5104 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_BC_RX_EN, en_bc ? 1 : 0);
5105 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_UC_TX_EN, uc_tx_en ? 1 : 0);
5106 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_MC_TX_EN, en_mc ? 1 : 0);
5107 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_BC_TX_EN, en_bc ? 1 : 0);
5108 	req->extend_promisc = promisc_cfg;
5109 
5110 	/* to be compatible with DEVICE_VERSION_V1/2 */
5111 	promisc_cfg = 0;
5112 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_EN_UC, en_uc ? 1 : 0);
5113 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_EN_MC, en_mc ? 1 : 0);
5114 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_EN_BC, en_bc ? 1 : 0);
5115 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_TX_EN, 1);
5116 	hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_RX_EN, 1);
5117 	req->promisc = promisc_cfg;
5118 
5119 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
5120 	if (ret)
5121 		dev_err(&hdev->pdev->dev,
5122 			"failed to set vport %u promisc mode, ret = %d.\n",
5123 			vf_id, ret);
5124 
5125 	return ret;
5126 }
5127 
5128 int hclge_set_vport_promisc_mode(struct hclge_vport *vport, bool en_uc_pmc,
5129 				 bool en_mc_pmc, bool en_bc_pmc)
5130 {
5131 	return hclge_cmd_set_promisc_mode(vport->back, vport->vport_id,
5132 					  en_uc_pmc, en_mc_pmc, en_bc_pmc);
5133 }
5134 
5135 static int hclge_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
5136 				  bool en_mc_pmc)
5137 {
5138 	struct hclge_vport *vport = hclge_get_vport(handle);
5139 	struct hclge_dev *hdev = vport->back;
5140 	bool en_bc_pmc = true;
5141 
5142 	/* For device whose version below V2, if broadcast promisc enabled,
5143 	 * vlan filter is always bypassed. So broadcast promisc should be
5144 	 * disabled until user enable promisc mode
5145 	 */
5146 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
5147 		en_bc_pmc = handle->netdev_flags & HNAE3_BPE ? true : false;
5148 
5149 	return hclge_set_vport_promisc_mode(vport, en_uc_pmc, en_mc_pmc,
5150 					    en_bc_pmc);
5151 }
5152 
5153 static void hclge_request_update_promisc_mode(struct hnae3_handle *handle)
5154 {
5155 	struct hclge_vport *vport = hclge_get_vport(handle);
5156 
5157 	set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, &vport->state);
5158 }
5159 
5160 static void hclge_sync_fd_state(struct hclge_dev *hdev)
5161 {
5162 	if (hlist_empty(&hdev->fd_rule_list))
5163 		hdev->fd_active_type = HCLGE_FD_RULE_NONE;
5164 }
5165 
5166 static void hclge_fd_inc_rule_cnt(struct hclge_dev *hdev, u16 location)
5167 {
5168 	if (!test_bit(location, hdev->fd_bmap)) {
5169 		set_bit(location, hdev->fd_bmap);
5170 		hdev->hclge_fd_rule_num++;
5171 	}
5172 }
5173 
5174 static void hclge_fd_dec_rule_cnt(struct hclge_dev *hdev, u16 location)
5175 {
5176 	if (test_bit(location, hdev->fd_bmap)) {
5177 		clear_bit(location, hdev->fd_bmap);
5178 		hdev->hclge_fd_rule_num--;
5179 	}
5180 }
5181 
5182 static void hclge_fd_free_node(struct hclge_dev *hdev,
5183 			       struct hclge_fd_rule *rule)
5184 {
5185 	hlist_del(&rule->rule_node);
5186 	kfree(rule);
5187 	hclge_sync_fd_state(hdev);
5188 }
5189 
5190 static void hclge_update_fd_rule_node(struct hclge_dev *hdev,
5191 				      struct hclge_fd_rule *old_rule,
5192 				      struct hclge_fd_rule *new_rule,
5193 				      enum HCLGE_FD_NODE_STATE state)
5194 {
5195 	switch (state) {
5196 	case HCLGE_FD_TO_ADD:
5197 	case HCLGE_FD_ACTIVE:
5198 		/* 1) if the new state is TO_ADD, just replace the old rule
5199 		 * with the same location, no matter its state, because the
5200 		 * new rule will be configured to the hardware.
5201 		 * 2) if the new state is ACTIVE, it means the new rule
5202 		 * has been configured to the hardware, so just replace
5203 		 * the old rule node with the same location.
5204 		 * 3) for it doesn't add a new node to the list, so it's
5205 		 * unnecessary to update the rule number and fd_bmap.
5206 		 */
5207 		new_rule->rule_node.next = old_rule->rule_node.next;
5208 		new_rule->rule_node.pprev = old_rule->rule_node.pprev;
5209 		memcpy(old_rule, new_rule, sizeof(*old_rule));
5210 		kfree(new_rule);
5211 		break;
5212 	case HCLGE_FD_DELETED:
5213 		hclge_fd_dec_rule_cnt(hdev, old_rule->location);
5214 		hclge_fd_free_node(hdev, old_rule);
5215 		break;
5216 	case HCLGE_FD_TO_DEL:
5217 		/* if new request is TO_DEL, and old rule is existent
5218 		 * 1) the state of old rule is TO_DEL, we need do nothing,
5219 		 * because we delete rule by location, other rule content
5220 		 * is unncessary.
5221 		 * 2) the state of old rule is ACTIVE, we need to change its
5222 		 * state to TO_DEL, so the rule will be deleted when periodic
5223 		 * task being scheduled.
5224 		 * 3) the state of old rule is TO_ADD, it means the rule hasn't
5225 		 * been added to hardware, so we just delete the rule node from
5226 		 * fd_rule_list directly.
5227 		 */
5228 		if (old_rule->state == HCLGE_FD_TO_ADD) {
5229 			hclge_fd_dec_rule_cnt(hdev, old_rule->location);
5230 			hclge_fd_free_node(hdev, old_rule);
5231 			return;
5232 		}
5233 		old_rule->state = HCLGE_FD_TO_DEL;
5234 		break;
5235 	}
5236 }
5237 
5238 static struct hclge_fd_rule *hclge_find_fd_rule(struct hlist_head *hlist,
5239 						u16 location,
5240 						struct hclge_fd_rule **parent)
5241 {
5242 	struct hclge_fd_rule *rule;
5243 	struct hlist_node *node;
5244 
5245 	hlist_for_each_entry_safe(rule, node, hlist, rule_node) {
5246 		if (rule->location == location)
5247 			return rule;
5248 		else if (rule->location > location)
5249 			return NULL;
5250 		/* record the parent node, use to keep the nodes in fd_rule_list
5251 		 * in ascend order.
5252 		 */
5253 		*parent = rule;
5254 	}
5255 
5256 	return NULL;
5257 }
5258 
5259 /* insert fd rule node in ascend order according to rule->location */
5260 static void hclge_fd_insert_rule_node(struct hlist_head *hlist,
5261 				      struct hclge_fd_rule *rule,
5262 				      struct hclge_fd_rule *parent)
5263 {
5264 	INIT_HLIST_NODE(&rule->rule_node);
5265 
5266 	if (parent)
5267 		hlist_add_behind(&rule->rule_node, &parent->rule_node);
5268 	else
5269 		hlist_add_head(&rule->rule_node, hlist);
5270 }
5271 
5272 static int hclge_fd_set_user_def_cmd(struct hclge_dev *hdev,
5273 				     struct hclge_fd_user_def_cfg *cfg)
5274 {
5275 	struct hclge_fd_user_def_cfg_cmd *req;
5276 	struct hclge_desc desc;
5277 	u16 data = 0;
5278 	int ret;
5279 
5280 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_USER_DEF_OP, false);
5281 
5282 	req = (struct hclge_fd_user_def_cfg_cmd *)desc.data;
5283 
5284 	hnae3_set_bit(data, HCLGE_FD_USER_DEF_EN_B, cfg[0].ref_cnt > 0);
5285 	hnae3_set_field(data, HCLGE_FD_USER_DEF_OFT_M,
5286 			HCLGE_FD_USER_DEF_OFT_S, cfg[0].offset);
5287 	req->ol2_cfg = cpu_to_le16(data);
5288 
5289 	data = 0;
5290 	hnae3_set_bit(data, HCLGE_FD_USER_DEF_EN_B, cfg[1].ref_cnt > 0);
5291 	hnae3_set_field(data, HCLGE_FD_USER_DEF_OFT_M,
5292 			HCLGE_FD_USER_DEF_OFT_S, cfg[1].offset);
5293 	req->ol3_cfg = cpu_to_le16(data);
5294 
5295 	data = 0;
5296 	hnae3_set_bit(data, HCLGE_FD_USER_DEF_EN_B, cfg[2].ref_cnt > 0);
5297 	hnae3_set_field(data, HCLGE_FD_USER_DEF_OFT_M,
5298 			HCLGE_FD_USER_DEF_OFT_S, cfg[2].offset);
5299 	req->ol4_cfg = cpu_to_le16(data);
5300 
5301 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
5302 	if (ret)
5303 		dev_err(&hdev->pdev->dev,
5304 			"failed to set fd user def data, ret= %d\n", ret);
5305 	return ret;
5306 }
5307 
5308 static void hclge_sync_fd_user_def_cfg(struct hclge_dev *hdev, bool locked)
5309 {
5310 	int ret;
5311 
5312 	if (!test_and_clear_bit(HCLGE_STATE_FD_USER_DEF_CHANGED, &hdev->state))
5313 		return;
5314 
5315 	if (!locked)
5316 		spin_lock_bh(&hdev->fd_rule_lock);
5317 
5318 	ret = hclge_fd_set_user_def_cmd(hdev, hdev->fd_cfg.user_def_cfg);
5319 	if (ret)
5320 		set_bit(HCLGE_STATE_FD_USER_DEF_CHANGED, &hdev->state);
5321 
5322 	if (!locked)
5323 		spin_unlock_bh(&hdev->fd_rule_lock);
5324 }
5325 
5326 static int hclge_fd_check_user_def_refcnt(struct hclge_dev *hdev,
5327 					  struct hclge_fd_rule *rule)
5328 {
5329 	struct hlist_head *hlist = &hdev->fd_rule_list;
5330 	struct hclge_fd_rule *fd_rule, *parent = NULL;
5331 	struct hclge_fd_user_def_info *info, *old_info;
5332 	struct hclge_fd_user_def_cfg *cfg;
5333 
5334 	if (!rule || rule->rule_type != HCLGE_FD_EP_ACTIVE ||
5335 	    rule->ep.user_def.layer == HCLGE_FD_USER_DEF_NONE)
5336 		return 0;
5337 
5338 	/* for valid layer is start from 1, so need minus 1 to get the cfg */
5339 	cfg = &hdev->fd_cfg.user_def_cfg[rule->ep.user_def.layer - 1];
5340 	info = &rule->ep.user_def;
5341 
5342 	if (!cfg->ref_cnt || cfg->offset == info->offset)
5343 		return 0;
5344 
5345 	if (cfg->ref_cnt > 1)
5346 		goto error;
5347 
5348 	fd_rule = hclge_find_fd_rule(hlist, rule->location, &parent);
5349 	if (fd_rule) {
5350 		old_info = &fd_rule->ep.user_def;
5351 		if (info->layer == old_info->layer)
5352 			return 0;
5353 	}
5354 
5355 error:
5356 	dev_err(&hdev->pdev->dev,
5357 		"No available offset for layer%d fd rule, each layer only support one user def offset.\n",
5358 		info->layer + 1);
5359 	return -ENOSPC;
5360 }
5361 
5362 static void hclge_fd_inc_user_def_refcnt(struct hclge_dev *hdev,
5363 					 struct hclge_fd_rule *rule)
5364 {
5365 	struct hclge_fd_user_def_cfg *cfg;
5366 
5367 	if (!rule || rule->rule_type != HCLGE_FD_EP_ACTIVE ||
5368 	    rule->ep.user_def.layer == HCLGE_FD_USER_DEF_NONE)
5369 		return;
5370 
5371 	cfg = &hdev->fd_cfg.user_def_cfg[rule->ep.user_def.layer - 1];
5372 	if (!cfg->ref_cnt) {
5373 		cfg->offset = rule->ep.user_def.offset;
5374 		set_bit(HCLGE_STATE_FD_USER_DEF_CHANGED, &hdev->state);
5375 	}
5376 	cfg->ref_cnt++;
5377 }
5378 
5379 static void hclge_fd_dec_user_def_refcnt(struct hclge_dev *hdev,
5380 					 struct hclge_fd_rule *rule)
5381 {
5382 	struct hclge_fd_user_def_cfg *cfg;
5383 
5384 	if (!rule || rule->rule_type != HCLGE_FD_EP_ACTIVE ||
5385 	    rule->ep.user_def.layer == HCLGE_FD_USER_DEF_NONE)
5386 		return;
5387 
5388 	cfg = &hdev->fd_cfg.user_def_cfg[rule->ep.user_def.layer - 1];
5389 	if (!cfg->ref_cnt)
5390 		return;
5391 
5392 	cfg->ref_cnt--;
5393 	if (!cfg->ref_cnt) {
5394 		cfg->offset = 0;
5395 		set_bit(HCLGE_STATE_FD_USER_DEF_CHANGED, &hdev->state);
5396 	}
5397 }
5398 
5399 static void hclge_update_fd_list(struct hclge_dev *hdev,
5400 				 enum HCLGE_FD_NODE_STATE state, u16 location,
5401 				 struct hclge_fd_rule *new_rule)
5402 {
5403 	struct hlist_head *hlist = &hdev->fd_rule_list;
5404 	struct hclge_fd_rule *fd_rule, *parent = NULL;
5405 
5406 	fd_rule = hclge_find_fd_rule(hlist, location, &parent);
5407 	if (fd_rule) {
5408 		hclge_fd_dec_user_def_refcnt(hdev, fd_rule);
5409 		if (state == HCLGE_FD_ACTIVE)
5410 			hclge_fd_inc_user_def_refcnt(hdev, new_rule);
5411 		hclge_sync_fd_user_def_cfg(hdev, true);
5412 
5413 		hclge_update_fd_rule_node(hdev, fd_rule, new_rule, state);
5414 		return;
5415 	}
5416 
5417 	/* it's unlikely to fail here, because we have checked the rule
5418 	 * exist before.
5419 	 */
5420 	if (unlikely(state == HCLGE_FD_TO_DEL || state == HCLGE_FD_DELETED)) {
5421 		dev_warn(&hdev->pdev->dev,
5422 			 "failed to delete fd rule %u, it's inexistent\n",
5423 			 location);
5424 		return;
5425 	}
5426 
5427 	hclge_fd_inc_user_def_refcnt(hdev, new_rule);
5428 	hclge_sync_fd_user_def_cfg(hdev, true);
5429 
5430 	hclge_fd_insert_rule_node(hlist, new_rule, parent);
5431 	hclge_fd_inc_rule_cnt(hdev, new_rule->location);
5432 
5433 	if (state == HCLGE_FD_TO_ADD) {
5434 		set_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state);
5435 		hclge_task_schedule(hdev, 0);
5436 	}
5437 }
5438 
5439 static int hclge_get_fd_mode(struct hclge_dev *hdev, u8 *fd_mode)
5440 {
5441 	struct hclge_get_fd_mode_cmd *req;
5442 	struct hclge_desc desc;
5443 	int ret;
5444 
5445 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_MODE_CTRL, true);
5446 
5447 	req = (struct hclge_get_fd_mode_cmd *)desc.data;
5448 
5449 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
5450 	if (ret) {
5451 		dev_err(&hdev->pdev->dev, "get fd mode fail, ret=%d\n", ret);
5452 		return ret;
5453 	}
5454 
5455 	*fd_mode = req->mode;
5456 
5457 	return ret;
5458 }
5459 
5460 static int hclge_get_fd_allocation(struct hclge_dev *hdev,
5461 				   u32 *stage1_entry_num,
5462 				   u32 *stage2_entry_num,
5463 				   u16 *stage1_counter_num,
5464 				   u16 *stage2_counter_num)
5465 {
5466 	struct hclge_get_fd_allocation_cmd *req;
5467 	struct hclge_desc desc;
5468 	int ret;
5469 
5470 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_GET_ALLOCATION, true);
5471 
5472 	req = (struct hclge_get_fd_allocation_cmd *)desc.data;
5473 
5474 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
5475 	if (ret) {
5476 		dev_err(&hdev->pdev->dev, "query fd allocation fail, ret=%d\n",
5477 			ret);
5478 		return ret;
5479 	}
5480 
5481 	*stage1_entry_num = le32_to_cpu(req->stage1_entry_num);
5482 	*stage2_entry_num = le32_to_cpu(req->stage2_entry_num);
5483 	*stage1_counter_num = le16_to_cpu(req->stage1_counter_num);
5484 	*stage2_counter_num = le16_to_cpu(req->stage2_counter_num);
5485 
5486 	return ret;
5487 }
5488 
5489 static int hclge_set_fd_key_config(struct hclge_dev *hdev,
5490 				   enum HCLGE_FD_STAGE stage_num)
5491 {
5492 	struct hclge_set_fd_key_config_cmd *req;
5493 	struct hclge_fd_key_cfg *stage;
5494 	struct hclge_desc desc;
5495 	int ret;
5496 
5497 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_KEY_CONFIG, false);
5498 
5499 	req = (struct hclge_set_fd_key_config_cmd *)desc.data;
5500 	stage = &hdev->fd_cfg.key_cfg[stage_num];
5501 	req->stage = stage_num;
5502 	req->key_select = stage->key_sel;
5503 	req->inner_sipv6_word_en = stage->inner_sipv6_word_en;
5504 	req->inner_dipv6_word_en = stage->inner_dipv6_word_en;
5505 	req->outer_sipv6_word_en = stage->outer_sipv6_word_en;
5506 	req->outer_dipv6_word_en = stage->outer_dipv6_word_en;
5507 	req->tuple_mask = cpu_to_le32(~stage->tuple_active);
5508 	req->meta_data_mask = cpu_to_le32(~stage->meta_data_active);
5509 
5510 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
5511 	if (ret)
5512 		dev_err(&hdev->pdev->dev, "set fd key fail, ret=%d\n", ret);
5513 
5514 	return ret;
5515 }
5516 
5517 static void hclge_fd_disable_user_def(struct hclge_dev *hdev)
5518 {
5519 	struct hclge_fd_user_def_cfg *cfg = hdev->fd_cfg.user_def_cfg;
5520 
5521 	spin_lock_bh(&hdev->fd_rule_lock);
5522 	memset(cfg, 0, sizeof(hdev->fd_cfg.user_def_cfg));
5523 	spin_unlock_bh(&hdev->fd_rule_lock);
5524 
5525 	hclge_fd_set_user_def_cmd(hdev, cfg);
5526 }
5527 
5528 static int hclge_init_fd_config(struct hclge_dev *hdev)
5529 {
5530 #define LOW_2_WORDS		0x03
5531 	struct hclge_fd_key_cfg *key_cfg;
5532 	int ret;
5533 
5534 	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev))
5535 		return 0;
5536 
5537 	ret = hclge_get_fd_mode(hdev, &hdev->fd_cfg.fd_mode);
5538 	if (ret)
5539 		return ret;
5540 
5541 	switch (hdev->fd_cfg.fd_mode) {
5542 	case HCLGE_FD_MODE_DEPTH_2K_WIDTH_400B_STAGE_1:
5543 		hdev->fd_cfg.max_key_length = MAX_KEY_LENGTH;
5544 		break;
5545 	case HCLGE_FD_MODE_DEPTH_4K_WIDTH_200B_STAGE_1:
5546 		hdev->fd_cfg.max_key_length = MAX_KEY_LENGTH / 2;
5547 		break;
5548 	default:
5549 		dev_err(&hdev->pdev->dev,
5550 			"Unsupported flow director mode %u\n",
5551 			hdev->fd_cfg.fd_mode);
5552 		return -EOPNOTSUPP;
5553 	}
5554 
5555 	key_cfg = &hdev->fd_cfg.key_cfg[HCLGE_FD_STAGE_1];
5556 	key_cfg->key_sel = HCLGE_FD_KEY_BASE_ON_TUPLE;
5557 	key_cfg->inner_sipv6_word_en = LOW_2_WORDS;
5558 	key_cfg->inner_dipv6_word_en = LOW_2_WORDS;
5559 	key_cfg->outer_sipv6_word_en = 0;
5560 	key_cfg->outer_dipv6_word_en = 0;
5561 
5562 	key_cfg->tuple_active = BIT(INNER_VLAN_TAG_FST) | BIT(INNER_ETH_TYPE) |
5563 				BIT(INNER_IP_PROTO) | BIT(INNER_IP_TOS) |
5564 				BIT(INNER_SRC_IP) | BIT(INNER_DST_IP) |
5565 				BIT(INNER_SRC_PORT) | BIT(INNER_DST_PORT);
5566 
5567 	/* If use max 400bit key, we can support tuples for ether type */
5568 	if (hdev->fd_cfg.fd_mode == HCLGE_FD_MODE_DEPTH_2K_WIDTH_400B_STAGE_1) {
5569 		key_cfg->tuple_active |=
5570 				BIT(INNER_DST_MAC) | BIT(INNER_SRC_MAC);
5571 		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
5572 			key_cfg->tuple_active |= HCLGE_FD_TUPLE_USER_DEF_TUPLES;
5573 	}
5574 
5575 	/* roce_type is used to filter roce frames
5576 	 * dst_vport is used to specify the rule
5577 	 */
5578 	key_cfg->meta_data_active = BIT(ROCE_TYPE) | BIT(DST_VPORT);
5579 
5580 	ret = hclge_get_fd_allocation(hdev,
5581 				      &hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1],
5582 				      &hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_2],
5583 				      &hdev->fd_cfg.cnt_num[HCLGE_FD_STAGE_1],
5584 				      &hdev->fd_cfg.cnt_num[HCLGE_FD_STAGE_2]);
5585 	if (ret)
5586 		return ret;
5587 
5588 	return hclge_set_fd_key_config(hdev, HCLGE_FD_STAGE_1);
5589 }
5590 
5591 static int hclge_fd_tcam_config(struct hclge_dev *hdev, u8 stage, bool sel_x,
5592 				int loc, u8 *key, bool is_add)
5593 {
5594 	struct hclge_fd_tcam_config_1_cmd *req1;
5595 	struct hclge_fd_tcam_config_2_cmd *req2;
5596 	struct hclge_fd_tcam_config_3_cmd *req3;
5597 	struct hclge_desc desc[3];
5598 	int ret;
5599 
5600 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_FD_TCAM_OP, false);
5601 	desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
5602 	hclge_cmd_setup_basic_desc(&desc[1], HCLGE_OPC_FD_TCAM_OP, false);
5603 	desc[1].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
5604 	hclge_cmd_setup_basic_desc(&desc[2], HCLGE_OPC_FD_TCAM_OP, false);
5605 
5606 	req1 = (struct hclge_fd_tcam_config_1_cmd *)desc[0].data;
5607 	req2 = (struct hclge_fd_tcam_config_2_cmd *)desc[1].data;
5608 	req3 = (struct hclge_fd_tcam_config_3_cmd *)desc[2].data;
5609 
5610 	req1->stage = stage;
5611 	req1->xy_sel = sel_x ? 1 : 0;
5612 	hnae3_set_bit(req1->port_info, HCLGE_FD_EPORT_SW_EN_B, 0);
5613 	req1->index = cpu_to_le32(loc);
5614 	req1->entry_vld = sel_x ? is_add : 0;
5615 
5616 	if (key) {
5617 		memcpy(req1->tcam_data, &key[0], sizeof(req1->tcam_data));
5618 		memcpy(req2->tcam_data, &key[sizeof(req1->tcam_data)],
5619 		       sizeof(req2->tcam_data));
5620 		memcpy(req3->tcam_data, &key[sizeof(req1->tcam_data) +
5621 		       sizeof(req2->tcam_data)], sizeof(req3->tcam_data));
5622 	}
5623 
5624 	ret = hclge_cmd_send(&hdev->hw, desc, 3);
5625 	if (ret)
5626 		dev_err(&hdev->pdev->dev,
5627 			"config tcam key fail, ret=%d\n",
5628 			ret);
5629 
5630 	return ret;
5631 }
5632 
5633 static int hclge_fd_ad_config(struct hclge_dev *hdev, u8 stage, int loc,
5634 			      struct hclge_fd_ad_data *action)
5635 {
5636 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
5637 	struct hclge_fd_ad_config_cmd *req;
5638 	struct hclge_desc desc;
5639 	u64 ad_data = 0;
5640 	int ret;
5641 
5642 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_AD_OP, false);
5643 
5644 	req = (struct hclge_fd_ad_config_cmd *)desc.data;
5645 	req->index = cpu_to_le32(loc);
5646 	req->stage = stage;
5647 
5648 	hnae3_set_bit(ad_data, HCLGE_FD_AD_WR_RULE_ID_B,
5649 		      action->write_rule_id_to_bd);
5650 	hnae3_set_field(ad_data, HCLGE_FD_AD_RULE_ID_M, HCLGE_FD_AD_RULE_ID_S,
5651 			action->rule_id);
5652 	if (test_bit(HNAE3_DEV_SUPPORT_FD_FORWARD_TC_B, ae_dev->caps)) {
5653 		hnae3_set_bit(ad_data, HCLGE_FD_AD_TC_OVRD_B,
5654 			      action->override_tc);
5655 		hnae3_set_field(ad_data, HCLGE_FD_AD_TC_SIZE_M,
5656 				HCLGE_FD_AD_TC_SIZE_S, (u32)action->tc_size);
5657 	}
5658 	ad_data <<= 32;
5659 	hnae3_set_bit(ad_data, HCLGE_FD_AD_DROP_B, action->drop_packet);
5660 	hnae3_set_bit(ad_data, HCLGE_FD_AD_DIRECT_QID_B,
5661 		      action->forward_to_direct_queue);
5662 	hnae3_set_field(ad_data, HCLGE_FD_AD_QID_M, HCLGE_FD_AD_QID_S,
5663 			action->queue_id);
5664 	hnae3_set_bit(ad_data, HCLGE_FD_AD_USE_COUNTER_B, action->use_counter);
5665 	hnae3_set_field(ad_data, HCLGE_FD_AD_COUNTER_NUM_M,
5666 			HCLGE_FD_AD_COUNTER_NUM_S, action->counter_id);
5667 	hnae3_set_bit(ad_data, HCLGE_FD_AD_NXT_STEP_B, action->use_next_stage);
5668 	hnae3_set_field(ad_data, HCLGE_FD_AD_NXT_KEY_M, HCLGE_FD_AD_NXT_KEY_S,
5669 			action->counter_id);
5670 
5671 	req->ad_data = cpu_to_le64(ad_data);
5672 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
5673 	if (ret)
5674 		dev_err(&hdev->pdev->dev, "fd ad config fail, ret=%d\n", ret);
5675 
5676 	return ret;
5677 }
5678 
5679 static bool hclge_fd_convert_tuple(u32 tuple_bit, u8 *key_x, u8 *key_y,
5680 				   struct hclge_fd_rule *rule)
5681 {
5682 	int offset, moffset, ip_offset;
5683 	enum HCLGE_FD_KEY_OPT key_opt;
5684 	u16 tmp_x_s, tmp_y_s;
5685 	u32 tmp_x_l, tmp_y_l;
5686 	u8 *p = (u8 *)rule;
5687 	int i;
5688 
5689 	if (rule->unused_tuple & BIT(tuple_bit))
5690 		return true;
5691 
5692 	key_opt = tuple_key_info[tuple_bit].key_opt;
5693 	offset = tuple_key_info[tuple_bit].offset;
5694 	moffset = tuple_key_info[tuple_bit].moffset;
5695 
5696 	switch (key_opt) {
5697 	case KEY_OPT_U8:
5698 		calc_x(*key_x, p[offset], p[moffset]);
5699 		calc_y(*key_y, p[offset], p[moffset]);
5700 
5701 		return true;
5702 	case KEY_OPT_LE16:
5703 		calc_x(tmp_x_s, *(u16 *)(&p[offset]), *(u16 *)(&p[moffset]));
5704 		calc_y(tmp_y_s, *(u16 *)(&p[offset]), *(u16 *)(&p[moffset]));
5705 		*(__le16 *)key_x = cpu_to_le16(tmp_x_s);
5706 		*(__le16 *)key_y = cpu_to_le16(tmp_y_s);
5707 
5708 		return true;
5709 	case KEY_OPT_LE32:
5710 		calc_x(tmp_x_l, *(u32 *)(&p[offset]), *(u32 *)(&p[moffset]));
5711 		calc_y(tmp_y_l, *(u32 *)(&p[offset]), *(u32 *)(&p[moffset]));
5712 		*(__le32 *)key_x = cpu_to_le32(tmp_x_l);
5713 		*(__le32 *)key_y = cpu_to_le32(tmp_y_l);
5714 
5715 		return true;
5716 	case KEY_OPT_MAC:
5717 		for (i = 0; i < ETH_ALEN; i++) {
5718 			calc_x(key_x[ETH_ALEN - 1 - i], p[offset + i],
5719 			       p[moffset + i]);
5720 			calc_y(key_y[ETH_ALEN - 1 - i], p[offset + i],
5721 			       p[moffset + i]);
5722 		}
5723 
5724 		return true;
5725 	case KEY_OPT_IP:
5726 		ip_offset = IPV4_INDEX * sizeof(u32);
5727 		calc_x(tmp_x_l, *(u32 *)(&p[offset + ip_offset]),
5728 		       *(u32 *)(&p[moffset + ip_offset]));
5729 		calc_y(tmp_y_l, *(u32 *)(&p[offset + ip_offset]),
5730 		       *(u32 *)(&p[moffset + ip_offset]));
5731 		*(__le32 *)key_x = cpu_to_le32(tmp_x_l);
5732 		*(__le32 *)key_y = cpu_to_le32(tmp_y_l);
5733 
5734 		return true;
5735 	default:
5736 		return false;
5737 	}
5738 }
5739 
5740 static u32 hclge_get_port_number(enum HLCGE_PORT_TYPE port_type, u8 pf_id,
5741 				 u8 vf_id, u8 network_port_id)
5742 {
5743 	u32 port_number = 0;
5744 
5745 	if (port_type == HOST_PORT) {
5746 		hnae3_set_field(port_number, HCLGE_PF_ID_M, HCLGE_PF_ID_S,
5747 				pf_id);
5748 		hnae3_set_field(port_number, HCLGE_VF_ID_M, HCLGE_VF_ID_S,
5749 				vf_id);
5750 		hnae3_set_bit(port_number, HCLGE_PORT_TYPE_B, HOST_PORT);
5751 	} else {
5752 		hnae3_set_field(port_number, HCLGE_NETWORK_PORT_ID_M,
5753 				HCLGE_NETWORK_PORT_ID_S, network_port_id);
5754 		hnae3_set_bit(port_number, HCLGE_PORT_TYPE_B, NETWORK_PORT);
5755 	}
5756 
5757 	return port_number;
5758 }
5759 
5760 static void hclge_fd_convert_meta_data(struct hclge_fd_key_cfg *key_cfg,
5761 				       __le32 *key_x, __le32 *key_y,
5762 				       struct hclge_fd_rule *rule)
5763 {
5764 	u32 tuple_bit, meta_data = 0, tmp_x, tmp_y, port_number;
5765 	u8 cur_pos = 0, tuple_size, shift_bits;
5766 	unsigned int i;
5767 
5768 	for (i = 0; i < MAX_META_DATA; i++) {
5769 		tuple_size = meta_data_key_info[i].key_length;
5770 		tuple_bit = key_cfg->meta_data_active & BIT(i);
5771 
5772 		switch (tuple_bit) {
5773 		case BIT(ROCE_TYPE):
5774 			hnae3_set_bit(meta_data, cur_pos, NIC_PACKET);
5775 			cur_pos += tuple_size;
5776 			break;
5777 		case BIT(DST_VPORT):
5778 			port_number = hclge_get_port_number(HOST_PORT, 0,
5779 							    rule->vf_id, 0);
5780 			hnae3_set_field(meta_data,
5781 					GENMASK(cur_pos + tuple_size, cur_pos),
5782 					cur_pos, port_number);
5783 			cur_pos += tuple_size;
5784 			break;
5785 		default:
5786 			break;
5787 		}
5788 	}
5789 
5790 	calc_x(tmp_x, meta_data, 0xFFFFFFFF);
5791 	calc_y(tmp_y, meta_data, 0xFFFFFFFF);
5792 	shift_bits = sizeof(meta_data) * 8 - cur_pos;
5793 
5794 	*key_x = cpu_to_le32(tmp_x << shift_bits);
5795 	*key_y = cpu_to_le32(tmp_y << shift_bits);
5796 }
5797 
5798 /* A complete key is combined with meta data key and tuple key.
5799  * Meta data key is stored at the MSB region, and tuple key is stored at
5800  * the LSB region, unused bits will be filled 0.
5801  */
5802 static int hclge_config_key(struct hclge_dev *hdev, u8 stage,
5803 			    struct hclge_fd_rule *rule)
5804 {
5805 	struct hclge_fd_key_cfg *key_cfg = &hdev->fd_cfg.key_cfg[stage];
5806 	u8 key_x[MAX_KEY_BYTES], key_y[MAX_KEY_BYTES];
5807 	u8 *cur_key_x, *cur_key_y;
5808 	u8 meta_data_region;
5809 	u8 tuple_size;
5810 	int ret;
5811 	u32 i;
5812 
5813 	memset(key_x, 0, sizeof(key_x));
5814 	memset(key_y, 0, sizeof(key_y));
5815 	cur_key_x = key_x;
5816 	cur_key_y = key_y;
5817 
5818 	for (i = 0; i < MAX_TUPLE; i++) {
5819 		bool tuple_valid;
5820 
5821 		tuple_size = tuple_key_info[i].key_length / 8;
5822 		if (!(key_cfg->tuple_active & BIT(i)))
5823 			continue;
5824 
5825 		tuple_valid = hclge_fd_convert_tuple(i, cur_key_x,
5826 						     cur_key_y, rule);
5827 		if (tuple_valid) {
5828 			cur_key_x += tuple_size;
5829 			cur_key_y += tuple_size;
5830 		}
5831 	}
5832 
5833 	meta_data_region = hdev->fd_cfg.max_key_length / 8 -
5834 			MAX_META_DATA_LENGTH / 8;
5835 
5836 	hclge_fd_convert_meta_data(key_cfg,
5837 				   (__le32 *)(key_x + meta_data_region),
5838 				   (__le32 *)(key_y + meta_data_region),
5839 				   rule);
5840 
5841 	ret = hclge_fd_tcam_config(hdev, stage, false, rule->location, key_y,
5842 				   true);
5843 	if (ret) {
5844 		dev_err(&hdev->pdev->dev,
5845 			"fd key_y config fail, loc=%u, ret=%d\n",
5846 			rule->queue_id, ret);
5847 		return ret;
5848 	}
5849 
5850 	ret = hclge_fd_tcam_config(hdev, stage, true, rule->location, key_x,
5851 				   true);
5852 	if (ret)
5853 		dev_err(&hdev->pdev->dev,
5854 			"fd key_x config fail, loc=%u, ret=%d\n",
5855 			rule->queue_id, ret);
5856 	return ret;
5857 }
5858 
5859 static int hclge_config_action(struct hclge_dev *hdev, u8 stage,
5860 			       struct hclge_fd_rule *rule)
5861 {
5862 	struct hclge_vport *vport = hdev->vport;
5863 	struct hnae3_knic_private_info *kinfo = &vport->nic.kinfo;
5864 	struct hclge_fd_ad_data ad_data;
5865 
5866 	memset(&ad_data, 0, sizeof(struct hclge_fd_ad_data));
5867 	ad_data.ad_id = rule->location;
5868 
5869 	if (rule->action == HCLGE_FD_ACTION_DROP_PACKET) {
5870 		ad_data.drop_packet = true;
5871 	} else if (rule->action == HCLGE_FD_ACTION_SELECT_TC) {
5872 		ad_data.override_tc = true;
5873 		ad_data.queue_id =
5874 			kinfo->tc_info.tqp_offset[rule->cls_flower.tc];
5875 		ad_data.tc_size =
5876 			ilog2(kinfo->tc_info.tqp_count[rule->cls_flower.tc]);
5877 	} else {
5878 		ad_data.forward_to_direct_queue = true;
5879 		ad_data.queue_id = rule->queue_id;
5880 	}
5881 
5882 	if (hdev->fd_cfg.cnt_num[HCLGE_FD_STAGE_1]) {
5883 		ad_data.use_counter = true;
5884 		ad_data.counter_id = rule->vf_id %
5885 				     hdev->fd_cfg.cnt_num[HCLGE_FD_STAGE_1];
5886 	} else {
5887 		ad_data.use_counter = false;
5888 		ad_data.counter_id = 0;
5889 	}
5890 
5891 	ad_data.use_next_stage = false;
5892 	ad_data.next_input_key = 0;
5893 
5894 	ad_data.write_rule_id_to_bd = true;
5895 	ad_data.rule_id = rule->location;
5896 
5897 	return hclge_fd_ad_config(hdev, stage, ad_data.ad_id, &ad_data);
5898 }
5899 
5900 static int hclge_fd_check_tcpip4_tuple(struct ethtool_tcpip4_spec *spec,
5901 				       u32 *unused_tuple)
5902 {
5903 	if (!spec || !unused_tuple)
5904 		return -EINVAL;
5905 
5906 	*unused_tuple |= BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC);
5907 
5908 	if (!spec->ip4src)
5909 		*unused_tuple |= BIT(INNER_SRC_IP);
5910 
5911 	if (!spec->ip4dst)
5912 		*unused_tuple |= BIT(INNER_DST_IP);
5913 
5914 	if (!spec->psrc)
5915 		*unused_tuple |= BIT(INNER_SRC_PORT);
5916 
5917 	if (!spec->pdst)
5918 		*unused_tuple |= BIT(INNER_DST_PORT);
5919 
5920 	if (!spec->tos)
5921 		*unused_tuple |= BIT(INNER_IP_TOS);
5922 
5923 	return 0;
5924 }
5925 
5926 static int hclge_fd_check_ip4_tuple(struct ethtool_usrip4_spec *spec,
5927 				    u32 *unused_tuple)
5928 {
5929 	if (!spec || !unused_tuple)
5930 		return -EINVAL;
5931 
5932 	*unused_tuple |= BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC) |
5933 		BIT(INNER_SRC_PORT) | BIT(INNER_DST_PORT);
5934 
5935 	if (!spec->ip4src)
5936 		*unused_tuple |= BIT(INNER_SRC_IP);
5937 
5938 	if (!spec->ip4dst)
5939 		*unused_tuple |= BIT(INNER_DST_IP);
5940 
5941 	if (!spec->tos)
5942 		*unused_tuple |= BIT(INNER_IP_TOS);
5943 
5944 	if (!spec->proto)
5945 		*unused_tuple |= BIT(INNER_IP_PROTO);
5946 
5947 	if (spec->l4_4_bytes)
5948 		return -EOPNOTSUPP;
5949 
5950 	if (spec->ip_ver != ETH_RX_NFC_IP4)
5951 		return -EOPNOTSUPP;
5952 
5953 	return 0;
5954 }
5955 
5956 static int hclge_fd_check_tcpip6_tuple(struct ethtool_tcpip6_spec *spec,
5957 				       u32 *unused_tuple)
5958 {
5959 	if (!spec || !unused_tuple)
5960 		return -EINVAL;
5961 
5962 	*unused_tuple |= BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC);
5963 
5964 	/* check whether src/dst ip address used */
5965 	if (ipv6_addr_any((struct in6_addr *)spec->ip6src))
5966 		*unused_tuple |= BIT(INNER_SRC_IP);
5967 
5968 	if (ipv6_addr_any((struct in6_addr *)spec->ip6dst))
5969 		*unused_tuple |= BIT(INNER_DST_IP);
5970 
5971 	if (!spec->psrc)
5972 		*unused_tuple |= BIT(INNER_SRC_PORT);
5973 
5974 	if (!spec->pdst)
5975 		*unused_tuple |= BIT(INNER_DST_PORT);
5976 
5977 	if (!spec->tclass)
5978 		*unused_tuple |= BIT(INNER_IP_TOS);
5979 
5980 	return 0;
5981 }
5982 
5983 static int hclge_fd_check_ip6_tuple(struct ethtool_usrip6_spec *spec,
5984 				    u32 *unused_tuple)
5985 {
5986 	if (!spec || !unused_tuple)
5987 		return -EINVAL;
5988 
5989 	*unused_tuple |= BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC) |
5990 			BIT(INNER_SRC_PORT) | BIT(INNER_DST_PORT);
5991 
5992 	/* check whether src/dst ip address used */
5993 	if (ipv6_addr_any((struct in6_addr *)spec->ip6src))
5994 		*unused_tuple |= BIT(INNER_SRC_IP);
5995 
5996 	if (ipv6_addr_any((struct in6_addr *)spec->ip6dst))
5997 		*unused_tuple |= BIT(INNER_DST_IP);
5998 
5999 	if (!spec->l4_proto)
6000 		*unused_tuple |= BIT(INNER_IP_PROTO);
6001 
6002 	if (!spec->tclass)
6003 		*unused_tuple |= BIT(INNER_IP_TOS);
6004 
6005 	if (spec->l4_4_bytes)
6006 		return -EOPNOTSUPP;
6007 
6008 	return 0;
6009 }
6010 
6011 static int hclge_fd_check_ether_tuple(struct ethhdr *spec, u32 *unused_tuple)
6012 {
6013 	if (!spec || !unused_tuple)
6014 		return -EINVAL;
6015 
6016 	*unused_tuple |= BIT(INNER_SRC_IP) | BIT(INNER_DST_IP) |
6017 		BIT(INNER_SRC_PORT) | BIT(INNER_DST_PORT) |
6018 		BIT(INNER_IP_TOS) | BIT(INNER_IP_PROTO);
6019 
6020 	if (is_zero_ether_addr(spec->h_source))
6021 		*unused_tuple |= BIT(INNER_SRC_MAC);
6022 
6023 	if (is_zero_ether_addr(spec->h_dest))
6024 		*unused_tuple |= BIT(INNER_DST_MAC);
6025 
6026 	if (!spec->h_proto)
6027 		*unused_tuple |= BIT(INNER_ETH_TYPE);
6028 
6029 	return 0;
6030 }
6031 
6032 static int hclge_fd_check_ext_tuple(struct hclge_dev *hdev,
6033 				    struct ethtool_rx_flow_spec *fs,
6034 				    u32 *unused_tuple)
6035 {
6036 	if (fs->flow_type & FLOW_EXT) {
6037 		if (fs->h_ext.vlan_etype) {
6038 			dev_err(&hdev->pdev->dev, "vlan-etype is not supported!\n");
6039 			return -EOPNOTSUPP;
6040 		}
6041 
6042 		if (!fs->h_ext.vlan_tci)
6043 			*unused_tuple |= BIT(INNER_VLAN_TAG_FST);
6044 
6045 		if (fs->m_ext.vlan_tci &&
6046 		    be16_to_cpu(fs->h_ext.vlan_tci) >= VLAN_N_VID) {
6047 			dev_err(&hdev->pdev->dev,
6048 				"failed to config vlan_tci, invalid vlan_tci: %u, max is %d.\n",
6049 				ntohs(fs->h_ext.vlan_tci), VLAN_N_VID - 1);
6050 			return -EINVAL;
6051 		}
6052 	} else {
6053 		*unused_tuple |= BIT(INNER_VLAN_TAG_FST);
6054 	}
6055 
6056 	if (fs->flow_type & FLOW_MAC_EXT) {
6057 		if (hdev->fd_cfg.fd_mode !=
6058 		    HCLGE_FD_MODE_DEPTH_2K_WIDTH_400B_STAGE_1) {
6059 			dev_err(&hdev->pdev->dev,
6060 				"FLOW_MAC_EXT is not supported in current fd mode!\n");
6061 			return -EOPNOTSUPP;
6062 		}
6063 
6064 		if (is_zero_ether_addr(fs->h_ext.h_dest))
6065 			*unused_tuple |= BIT(INNER_DST_MAC);
6066 		else
6067 			*unused_tuple &= ~BIT(INNER_DST_MAC);
6068 	}
6069 
6070 	return 0;
6071 }
6072 
6073 static int hclge_fd_get_user_def_layer(u32 flow_type, u32 *unused_tuple,
6074 				       struct hclge_fd_user_def_info *info)
6075 {
6076 	switch (flow_type) {
6077 	case ETHER_FLOW:
6078 		info->layer = HCLGE_FD_USER_DEF_L2;
6079 		*unused_tuple &= ~BIT(INNER_L2_RSV);
6080 		break;
6081 	case IP_USER_FLOW:
6082 	case IPV6_USER_FLOW:
6083 		info->layer = HCLGE_FD_USER_DEF_L3;
6084 		*unused_tuple &= ~BIT(INNER_L3_RSV);
6085 		break;
6086 	case TCP_V4_FLOW:
6087 	case UDP_V4_FLOW:
6088 	case TCP_V6_FLOW:
6089 	case UDP_V6_FLOW:
6090 		info->layer = HCLGE_FD_USER_DEF_L4;
6091 		*unused_tuple &= ~BIT(INNER_L4_RSV);
6092 		break;
6093 	default:
6094 		return -EOPNOTSUPP;
6095 	}
6096 
6097 	return 0;
6098 }
6099 
6100 static bool hclge_fd_is_user_def_all_masked(struct ethtool_rx_flow_spec *fs)
6101 {
6102 	return be32_to_cpu(fs->m_ext.data[1] | fs->m_ext.data[0]) == 0;
6103 }
6104 
6105 static int hclge_fd_parse_user_def_field(struct hclge_dev *hdev,
6106 					 struct ethtool_rx_flow_spec *fs,
6107 					 u32 *unused_tuple,
6108 					 struct hclge_fd_user_def_info *info)
6109 {
6110 	u32 tuple_active = hdev->fd_cfg.key_cfg[HCLGE_FD_STAGE_1].tuple_active;
6111 	u32 flow_type = fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT);
6112 	u16 data, offset, data_mask, offset_mask;
6113 	int ret;
6114 
6115 	info->layer = HCLGE_FD_USER_DEF_NONE;
6116 	*unused_tuple |= HCLGE_FD_TUPLE_USER_DEF_TUPLES;
6117 
6118 	if (!(fs->flow_type & FLOW_EXT) || hclge_fd_is_user_def_all_masked(fs))
6119 		return 0;
6120 
6121 	/* user-def data from ethtool is 64 bit value, the bit0~15 is used
6122 	 * for data, and bit32~47 is used for offset.
6123 	 */
6124 	data = be32_to_cpu(fs->h_ext.data[1]) & HCLGE_FD_USER_DEF_DATA;
6125 	data_mask = be32_to_cpu(fs->m_ext.data[1]) & HCLGE_FD_USER_DEF_DATA;
6126 	offset = be32_to_cpu(fs->h_ext.data[0]) & HCLGE_FD_USER_DEF_OFFSET;
6127 	offset_mask = be32_to_cpu(fs->m_ext.data[0]) & HCLGE_FD_USER_DEF_OFFSET;
6128 
6129 	if (!(tuple_active & HCLGE_FD_TUPLE_USER_DEF_TUPLES)) {
6130 		dev_err(&hdev->pdev->dev, "user-def bytes are not supported\n");
6131 		return -EOPNOTSUPP;
6132 	}
6133 
6134 	if (offset > HCLGE_FD_MAX_USER_DEF_OFFSET) {
6135 		dev_err(&hdev->pdev->dev,
6136 			"user-def offset[%u] should be no more than %u\n",
6137 			offset, HCLGE_FD_MAX_USER_DEF_OFFSET);
6138 		return -EINVAL;
6139 	}
6140 
6141 	if (offset_mask != HCLGE_FD_USER_DEF_OFFSET_UNMASK) {
6142 		dev_err(&hdev->pdev->dev, "user-def offset can't be masked\n");
6143 		return -EINVAL;
6144 	}
6145 
6146 	ret = hclge_fd_get_user_def_layer(flow_type, unused_tuple, info);
6147 	if (ret) {
6148 		dev_err(&hdev->pdev->dev,
6149 			"unsupported flow type for user-def bytes, ret = %d\n",
6150 			ret);
6151 		return ret;
6152 	}
6153 
6154 	info->data = data;
6155 	info->data_mask = data_mask;
6156 	info->offset = offset;
6157 
6158 	return 0;
6159 }
6160 
6161 static int hclge_fd_check_spec(struct hclge_dev *hdev,
6162 			       struct ethtool_rx_flow_spec *fs,
6163 			       u32 *unused_tuple,
6164 			       struct hclge_fd_user_def_info *info)
6165 {
6166 	u32 flow_type;
6167 	int ret;
6168 
6169 	if (fs->location >= hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]) {
6170 		dev_err(&hdev->pdev->dev,
6171 			"failed to config fd rules, invalid rule location: %u, max is %u\n.",
6172 			fs->location,
6173 			hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1] - 1);
6174 		return -EINVAL;
6175 	}
6176 
6177 	ret = hclge_fd_parse_user_def_field(hdev, fs, unused_tuple, info);
6178 	if (ret)
6179 		return ret;
6180 
6181 	flow_type = fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT);
6182 	switch (flow_type) {
6183 	case SCTP_V4_FLOW:
6184 	case TCP_V4_FLOW:
6185 	case UDP_V4_FLOW:
6186 		ret = hclge_fd_check_tcpip4_tuple(&fs->h_u.tcp_ip4_spec,
6187 						  unused_tuple);
6188 		break;
6189 	case IP_USER_FLOW:
6190 		ret = hclge_fd_check_ip4_tuple(&fs->h_u.usr_ip4_spec,
6191 					       unused_tuple);
6192 		break;
6193 	case SCTP_V6_FLOW:
6194 	case TCP_V6_FLOW:
6195 	case UDP_V6_FLOW:
6196 		ret = hclge_fd_check_tcpip6_tuple(&fs->h_u.tcp_ip6_spec,
6197 						  unused_tuple);
6198 		break;
6199 	case IPV6_USER_FLOW:
6200 		ret = hclge_fd_check_ip6_tuple(&fs->h_u.usr_ip6_spec,
6201 					       unused_tuple);
6202 		break;
6203 	case ETHER_FLOW:
6204 		if (hdev->fd_cfg.fd_mode !=
6205 			HCLGE_FD_MODE_DEPTH_2K_WIDTH_400B_STAGE_1) {
6206 			dev_err(&hdev->pdev->dev,
6207 				"ETHER_FLOW is not supported in current fd mode!\n");
6208 			return -EOPNOTSUPP;
6209 		}
6210 
6211 		ret = hclge_fd_check_ether_tuple(&fs->h_u.ether_spec,
6212 						 unused_tuple);
6213 		break;
6214 	default:
6215 		dev_err(&hdev->pdev->dev,
6216 			"unsupported protocol type, protocol type = %#x\n",
6217 			flow_type);
6218 		return -EOPNOTSUPP;
6219 	}
6220 
6221 	if (ret) {
6222 		dev_err(&hdev->pdev->dev,
6223 			"failed to check flow union tuple, ret = %d\n",
6224 			ret);
6225 		return ret;
6226 	}
6227 
6228 	return hclge_fd_check_ext_tuple(hdev, fs, unused_tuple);
6229 }
6230 
6231 static void hclge_fd_get_tcpip4_tuple(struct hclge_dev *hdev,
6232 				      struct ethtool_rx_flow_spec *fs,
6233 				      struct hclge_fd_rule *rule, u8 ip_proto)
6234 {
6235 	rule->tuples.src_ip[IPV4_INDEX] =
6236 			be32_to_cpu(fs->h_u.tcp_ip4_spec.ip4src);
6237 	rule->tuples_mask.src_ip[IPV4_INDEX] =
6238 			be32_to_cpu(fs->m_u.tcp_ip4_spec.ip4src);
6239 
6240 	rule->tuples.dst_ip[IPV4_INDEX] =
6241 			be32_to_cpu(fs->h_u.tcp_ip4_spec.ip4dst);
6242 	rule->tuples_mask.dst_ip[IPV4_INDEX] =
6243 			be32_to_cpu(fs->m_u.tcp_ip4_spec.ip4dst);
6244 
6245 	rule->tuples.src_port = be16_to_cpu(fs->h_u.tcp_ip4_spec.psrc);
6246 	rule->tuples_mask.src_port = be16_to_cpu(fs->m_u.tcp_ip4_spec.psrc);
6247 
6248 	rule->tuples.dst_port = be16_to_cpu(fs->h_u.tcp_ip4_spec.pdst);
6249 	rule->tuples_mask.dst_port = be16_to_cpu(fs->m_u.tcp_ip4_spec.pdst);
6250 
6251 	rule->tuples.ip_tos = fs->h_u.tcp_ip4_spec.tos;
6252 	rule->tuples_mask.ip_tos = fs->m_u.tcp_ip4_spec.tos;
6253 
6254 	rule->tuples.ether_proto = ETH_P_IP;
6255 	rule->tuples_mask.ether_proto = 0xFFFF;
6256 
6257 	rule->tuples.ip_proto = ip_proto;
6258 	rule->tuples_mask.ip_proto = 0xFF;
6259 }
6260 
6261 static void hclge_fd_get_ip4_tuple(struct hclge_dev *hdev,
6262 				   struct ethtool_rx_flow_spec *fs,
6263 				   struct hclge_fd_rule *rule)
6264 {
6265 	rule->tuples.src_ip[IPV4_INDEX] =
6266 			be32_to_cpu(fs->h_u.usr_ip4_spec.ip4src);
6267 	rule->tuples_mask.src_ip[IPV4_INDEX] =
6268 			be32_to_cpu(fs->m_u.usr_ip4_spec.ip4src);
6269 
6270 	rule->tuples.dst_ip[IPV4_INDEX] =
6271 			be32_to_cpu(fs->h_u.usr_ip4_spec.ip4dst);
6272 	rule->tuples_mask.dst_ip[IPV4_INDEX] =
6273 			be32_to_cpu(fs->m_u.usr_ip4_spec.ip4dst);
6274 
6275 	rule->tuples.ip_tos = fs->h_u.usr_ip4_spec.tos;
6276 	rule->tuples_mask.ip_tos = fs->m_u.usr_ip4_spec.tos;
6277 
6278 	rule->tuples.ip_proto = fs->h_u.usr_ip4_spec.proto;
6279 	rule->tuples_mask.ip_proto = fs->m_u.usr_ip4_spec.proto;
6280 
6281 	rule->tuples.ether_proto = ETH_P_IP;
6282 	rule->tuples_mask.ether_proto = 0xFFFF;
6283 }
6284 
6285 static void hclge_fd_get_tcpip6_tuple(struct hclge_dev *hdev,
6286 				      struct ethtool_rx_flow_spec *fs,
6287 				      struct hclge_fd_rule *rule, u8 ip_proto)
6288 {
6289 	be32_to_cpu_array(rule->tuples.src_ip, fs->h_u.tcp_ip6_spec.ip6src,
6290 			  IPV6_SIZE);
6291 	be32_to_cpu_array(rule->tuples_mask.src_ip, fs->m_u.tcp_ip6_spec.ip6src,
6292 			  IPV6_SIZE);
6293 
6294 	be32_to_cpu_array(rule->tuples.dst_ip, fs->h_u.tcp_ip6_spec.ip6dst,
6295 			  IPV6_SIZE);
6296 	be32_to_cpu_array(rule->tuples_mask.dst_ip, fs->m_u.tcp_ip6_spec.ip6dst,
6297 			  IPV6_SIZE);
6298 
6299 	rule->tuples.src_port = be16_to_cpu(fs->h_u.tcp_ip6_spec.psrc);
6300 	rule->tuples_mask.src_port = be16_to_cpu(fs->m_u.tcp_ip6_spec.psrc);
6301 
6302 	rule->tuples.dst_port = be16_to_cpu(fs->h_u.tcp_ip6_spec.pdst);
6303 	rule->tuples_mask.dst_port = be16_to_cpu(fs->m_u.tcp_ip6_spec.pdst);
6304 
6305 	rule->tuples.ether_proto = ETH_P_IPV6;
6306 	rule->tuples_mask.ether_proto = 0xFFFF;
6307 
6308 	rule->tuples.ip_tos = fs->h_u.tcp_ip6_spec.tclass;
6309 	rule->tuples_mask.ip_tos = fs->m_u.tcp_ip6_spec.tclass;
6310 
6311 	rule->tuples.ip_proto = ip_proto;
6312 	rule->tuples_mask.ip_proto = 0xFF;
6313 }
6314 
6315 static void hclge_fd_get_ip6_tuple(struct hclge_dev *hdev,
6316 				   struct ethtool_rx_flow_spec *fs,
6317 				   struct hclge_fd_rule *rule)
6318 {
6319 	be32_to_cpu_array(rule->tuples.src_ip, fs->h_u.usr_ip6_spec.ip6src,
6320 			  IPV6_SIZE);
6321 	be32_to_cpu_array(rule->tuples_mask.src_ip, fs->m_u.usr_ip6_spec.ip6src,
6322 			  IPV6_SIZE);
6323 
6324 	be32_to_cpu_array(rule->tuples.dst_ip, fs->h_u.usr_ip6_spec.ip6dst,
6325 			  IPV6_SIZE);
6326 	be32_to_cpu_array(rule->tuples_mask.dst_ip, fs->m_u.usr_ip6_spec.ip6dst,
6327 			  IPV6_SIZE);
6328 
6329 	rule->tuples.ip_proto = fs->h_u.usr_ip6_spec.l4_proto;
6330 	rule->tuples_mask.ip_proto = fs->m_u.usr_ip6_spec.l4_proto;
6331 
6332 	rule->tuples.ip_tos = fs->h_u.tcp_ip6_spec.tclass;
6333 	rule->tuples_mask.ip_tos = fs->m_u.tcp_ip6_spec.tclass;
6334 
6335 	rule->tuples.ether_proto = ETH_P_IPV6;
6336 	rule->tuples_mask.ether_proto = 0xFFFF;
6337 }
6338 
6339 static void hclge_fd_get_ether_tuple(struct hclge_dev *hdev,
6340 				     struct ethtool_rx_flow_spec *fs,
6341 				     struct hclge_fd_rule *rule)
6342 {
6343 	ether_addr_copy(rule->tuples.src_mac, fs->h_u.ether_spec.h_source);
6344 	ether_addr_copy(rule->tuples_mask.src_mac, fs->m_u.ether_spec.h_source);
6345 
6346 	ether_addr_copy(rule->tuples.dst_mac, fs->h_u.ether_spec.h_dest);
6347 	ether_addr_copy(rule->tuples_mask.dst_mac, fs->m_u.ether_spec.h_dest);
6348 
6349 	rule->tuples.ether_proto = be16_to_cpu(fs->h_u.ether_spec.h_proto);
6350 	rule->tuples_mask.ether_proto = be16_to_cpu(fs->m_u.ether_spec.h_proto);
6351 }
6352 
6353 static void hclge_fd_get_user_def_tuple(struct hclge_fd_user_def_info *info,
6354 					struct hclge_fd_rule *rule)
6355 {
6356 	switch (info->layer) {
6357 	case HCLGE_FD_USER_DEF_L2:
6358 		rule->tuples.l2_user_def = info->data;
6359 		rule->tuples_mask.l2_user_def = info->data_mask;
6360 		break;
6361 	case HCLGE_FD_USER_DEF_L3:
6362 		rule->tuples.l3_user_def = info->data;
6363 		rule->tuples_mask.l3_user_def = info->data_mask;
6364 		break;
6365 	case HCLGE_FD_USER_DEF_L4:
6366 		rule->tuples.l4_user_def = (u32)info->data << 16;
6367 		rule->tuples_mask.l4_user_def = (u32)info->data_mask << 16;
6368 		break;
6369 	default:
6370 		break;
6371 	}
6372 
6373 	rule->ep.user_def = *info;
6374 }
6375 
6376 static int hclge_fd_get_tuple(struct hclge_dev *hdev,
6377 			      struct ethtool_rx_flow_spec *fs,
6378 			      struct hclge_fd_rule *rule,
6379 			      struct hclge_fd_user_def_info *info)
6380 {
6381 	u32 flow_type = fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT);
6382 
6383 	switch (flow_type) {
6384 	case SCTP_V4_FLOW:
6385 		hclge_fd_get_tcpip4_tuple(hdev, fs, rule, IPPROTO_SCTP);
6386 		break;
6387 	case TCP_V4_FLOW:
6388 		hclge_fd_get_tcpip4_tuple(hdev, fs, rule, IPPROTO_TCP);
6389 		break;
6390 	case UDP_V4_FLOW:
6391 		hclge_fd_get_tcpip4_tuple(hdev, fs, rule, IPPROTO_UDP);
6392 		break;
6393 	case IP_USER_FLOW:
6394 		hclge_fd_get_ip4_tuple(hdev, fs, rule);
6395 		break;
6396 	case SCTP_V6_FLOW:
6397 		hclge_fd_get_tcpip6_tuple(hdev, fs, rule, IPPROTO_SCTP);
6398 		break;
6399 	case TCP_V6_FLOW:
6400 		hclge_fd_get_tcpip6_tuple(hdev, fs, rule, IPPROTO_TCP);
6401 		break;
6402 	case UDP_V6_FLOW:
6403 		hclge_fd_get_tcpip6_tuple(hdev, fs, rule, IPPROTO_UDP);
6404 		break;
6405 	case IPV6_USER_FLOW:
6406 		hclge_fd_get_ip6_tuple(hdev, fs, rule);
6407 		break;
6408 	case ETHER_FLOW:
6409 		hclge_fd_get_ether_tuple(hdev, fs, rule);
6410 		break;
6411 	default:
6412 		return -EOPNOTSUPP;
6413 	}
6414 
6415 	if (fs->flow_type & FLOW_EXT) {
6416 		rule->tuples.vlan_tag1 = be16_to_cpu(fs->h_ext.vlan_tci);
6417 		rule->tuples_mask.vlan_tag1 = be16_to_cpu(fs->m_ext.vlan_tci);
6418 		hclge_fd_get_user_def_tuple(info, rule);
6419 	}
6420 
6421 	if (fs->flow_type & FLOW_MAC_EXT) {
6422 		ether_addr_copy(rule->tuples.dst_mac, fs->h_ext.h_dest);
6423 		ether_addr_copy(rule->tuples_mask.dst_mac, fs->m_ext.h_dest);
6424 	}
6425 
6426 	return 0;
6427 }
6428 
6429 static int hclge_fd_config_rule(struct hclge_dev *hdev,
6430 				struct hclge_fd_rule *rule)
6431 {
6432 	int ret;
6433 
6434 	ret = hclge_config_action(hdev, HCLGE_FD_STAGE_1, rule);
6435 	if (ret)
6436 		return ret;
6437 
6438 	return hclge_config_key(hdev, HCLGE_FD_STAGE_1, rule);
6439 }
6440 
6441 static int hclge_add_fd_entry_common(struct hclge_dev *hdev,
6442 				     struct hclge_fd_rule *rule)
6443 {
6444 	int ret;
6445 
6446 	spin_lock_bh(&hdev->fd_rule_lock);
6447 
6448 	if (hdev->fd_active_type != rule->rule_type &&
6449 	    (hdev->fd_active_type == HCLGE_FD_TC_FLOWER_ACTIVE ||
6450 	     hdev->fd_active_type == HCLGE_FD_EP_ACTIVE)) {
6451 		dev_err(&hdev->pdev->dev,
6452 			"mode conflict(new type %d, active type %d), please delete existent rules first\n",
6453 			rule->rule_type, hdev->fd_active_type);
6454 		spin_unlock_bh(&hdev->fd_rule_lock);
6455 		return -EINVAL;
6456 	}
6457 
6458 	ret = hclge_fd_check_user_def_refcnt(hdev, rule);
6459 	if (ret)
6460 		goto out;
6461 
6462 	ret = hclge_clear_arfs_rules(hdev);
6463 	if (ret)
6464 		goto out;
6465 
6466 	ret = hclge_fd_config_rule(hdev, rule);
6467 	if (ret)
6468 		goto out;
6469 
6470 	rule->state = HCLGE_FD_ACTIVE;
6471 	hdev->fd_active_type = rule->rule_type;
6472 	hclge_update_fd_list(hdev, rule->state, rule->location, rule);
6473 
6474 out:
6475 	spin_unlock_bh(&hdev->fd_rule_lock);
6476 	return ret;
6477 }
6478 
6479 static bool hclge_is_cls_flower_active(struct hnae3_handle *handle)
6480 {
6481 	struct hclge_vport *vport = hclge_get_vport(handle);
6482 	struct hclge_dev *hdev = vport->back;
6483 
6484 	return hdev->fd_active_type == HCLGE_FD_TC_FLOWER_ACTIVE;
6485 }
6486 
6487 static int hclge_fd_parse_ring_cookie(struct hclge_dev *hdev, u64 ring_cookie,
6488 				      u16 *vport_id, u8 *action, u16 *queue_id)
6489 {
6490 	struct hclge_vport *vport = hdev->vport;
6491 
6492 	if (ring_cookie == RX_CLS_FLOW_DISC) {
6493 		*action = HCLGE_FD_ACTION_DROP_PACKET;
6494 	} else {
6495 		u32 ring = ethtool_get_flow_spec_ring(ring_cookie);
6496 		u8 vf = ethtool_get_flow_spec_ring_vf(ring_cookie);
6497 		u16 tqps;
6498 
6499 		/* To keep consistent with user's configuration, minus 1 when
6500 		 * printing 'vf', because vf id from ethtool is added 1 for vf.
6501 		 */
6502 		if (vf > hdev->num_req_vfs) {
6503 			dev_err(&hdev->pdev->dev,
6504 				"Error: vf id (%u) should be less than %u\n",
6505 				vf - 1U, hdev->num_req_vfs);
6506 			return -EINVAL;
6507 		}
6508 
6509 		*vport_id = vf ? hdev->vport[vf].vport_id : vport->vport_id;
6510 		tqps = hdev->vport[vf].nic.kinfo.num_tqps;
6511 
6512 		if (ring >= tqps) {
6513 			dev_err(&hdev->pdev->dev,
6514 				"Error: queue id (%u) > max tqp num (%u)\n",
6515 				ring, tqps - 1U);
6516 			return -EINVAL;
6517 		}
6518 
6519 		*action = HCLGE_FD_ACTION_SELECT_QUEUE;
6520 		*queue_id = ring;
6521 	}
6522 
6523 	return 0;
6524 }
6525 
6526 static int hclge_add_fd_entry(struct hnae3_handle *handle,
6527 			      struct ethtool_rxnfc *cmd)
6528 {
6529 	struct hclge_vport *vport = hclge_get_vport(handle);
6530 	struct hclge_dev *hdev = vport->back;
6531 	struct hclge_fd_user_def_info info;
6532 	u16 dst_vport_id = 0, q_index = 0;
6533 	struct ethtool_rx_flow_spec *fs;
6534 	struct hclge_fd_rule *rule;
6535 	u32 unused = 0;
6536 	u8 action;
6537 	int ret;
6538 
6539 	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev)) {
6540 		dev_err(&hdev->pdev->dev,
6541 			"flow table director is not supported\n");
6542 		return -EOPNOTSUPP;
6543 	}
6544 
6545 	if (!hdev->fd_en) {
6546 		dev_err(&hdev->pdev->dev,
6547 			"please enable flow director first\n");
6548 		return -EOPNOTSUPP;
6549 	}
6550 
6551 	fs = (struct ethtool_rx_flow_spec *)&cmd->fs;
6552 
6553 	ret = hclge_fd_check_spec(hdev, fs, &unused, &info);
6554 	if (ret)
6555 		return ret;
6556 
6557 	ret = hclge_fd_parse_ring_cookie(hdev, fs->ring_cookie, &dst_vport_id,
6558 					 &action, &q_index);
6559 	if (ret)
6560 		return ret;
6561 
6562 	rule = kzalloc(sizeof(*rule), GFP_KERNEL);
6563 	if (!rule)
6564 		return -ENOMEM;
6565 
6566 	ret = hclge_fd_get_tuple(hdev, fs, rule, &info);
6567 	if (ret) {
6568 		kfree(rule);
6569 		return ret;
6570 	}
6571 
6572 	rule->flow_type = fs->flow_type;
6573 	rule->location = fs->location;
6574 	rule->unused_tuple = unused;
6575 	rule->vf_id = dst_vport_id;
6576 	rule->queue_id = q_index;
6577 	rule->action = action;
6578 	rule->rule_type = HCLGE_FD_EP_ACTIVE;
6579 
6580 	ret = hclge_add_fd_entry_common(hdev, rule);
6581 	if (ret)
6582 		kfree(rule);
6583 
6584 	return ret;
6585 }
6586 
6587 static int hclge_del_fd_entry(struct hnae3_handle *handle,
6588 			      struct ethtool_rxnfc *cmd)
6589 {
6590 	struct hclge_vport *vport = hclge_get_vport(handle);
6591 	struct hclge_dev *hdev = vport->back;
6592 	struct ethtool_rx_flow_spec *fs;
6593 	int ret;
6594 
6595 	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev))
6596 		return -EOPNOTSUPP;
6597 
6598 	fs = (struct ethtool_rx_flow_spec *)&cmd->fs;
6599 
6600 	if (fs->location >= hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1])
6601 		return -EINVAL;
6602 
6603 	spin_lock_bh(&hdev->fd_rule_lock);
6604 	if (hdev->fd_active_type == HCLGE_FD_TC_FLOWER_ACTIVE ||
6605 	    !test_bit(fs->location, hdev->fd_bmap)) {
6606 		dev_err(&hdev->pdev->dev,
6607 			"Delete fail, rule %u is inexistent\n", fs->location);
6608 		spin_unlock_bh(&hdev->fd_rule_lock);
6609 		return -ENOENT;
6610 	}
6611 
6612 	ret = hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true, fs->location,
6613 				   NULL, false);
6614 	if (ret)
6615 		goto out;
6616 
6617 	hclge_update_fd_list(hdev, HCLGE_FD_DELETED, fs->location, NULL);
6618 
6619 out:
6620 	spin_unlock_bh(&hdev->fd_rule_lock);
6621 	return ret;
6622 }
6623 
6624 static void hclge_clear_fd_rules_in_list(struct hclge_dev *hdev,
6625 					 bool clear_list)
6626 {
6627 	struct hclge_fd_rule *rule;
6628 	struct hlist_node *node;
6629 	u16 location;
6630 
6631 	spin_lock_bh(&hdev->fd_rule_lock);
6632 
6633 	for_each_set_bit(location, hdev->fd_bmap,
6634 			 hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1])
6635 		hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true, location,
6636 				     NULL, false);
6637 
6638 	if (clear_list) {
6639 		hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list,
6640 					  rule_node) {
6641 			hlist_del(&rule->rule_node);
6642 			kfree(rule);
6643 		}
6644 		hdev->fd_active_type = HCLGE_FD_RULE_NONE;
6645 		hdev->hclge_fd_rule_num = 0;
6646 		bitmap_zero(hdev->fd_bmap,
6647 			    hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]);
6648 	}
6649 
6650 	spin_unlock_bh(&hdev->fd_rule_lock);
6651 }
6652 
6653 static void hclge_del_all_fd_entries(struct hclge_dev *hdev)
6654 {
6655 	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev))
6656 		return;
6657 
6658 	hclge_clear_fd_rules_in_list(hdev, true);
6659 	hclge_fd_disable_user_def(hdev);
6660 }
6661 
6662 static int hclge_restore_fd_entries(struct hnae3_handle *handle)
6663 {
6664 	struct hclge_vport *vport = hclge_get_vport(handle);
6665 	struct hclge_dev *hdev = vport->back;
6666 	struct hclge_fd_rule *rule;
6667 	struct hlist_node *node;
6668 
6669 	/* Return ok here, because reset error handling will check this
6670 	 * return value. If error is returned here, the reset process will
6671 	 * fail.
6672 	 */
6673 	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev))
6674 		return 0;
6675 
6676 	/* if fd is disabled, should not restore it when reset */
6677 	if (!hdev->fd_en)
6678 		return 0;
6679 
6680 	spin_lock_bh(&hdev->fd_rule_lock);
6681 	hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) {
6682 		if (rule->state == HCLGE_FD_ACTIVE)
6683 			rule->state = HCLGE_FD_TO_ADD;
6684 	}
6685 	spin_unlock_bh(&hdev->fd_rule_lock);
6686 	set_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state);
6687 
6688 	return 0;
6689 }
6690 
6691 static int hclge_get_fd_rule_cnt(struct hnae3_handle *handle,
6692 				 struct ethtool_rxnfc *cmd)
6693 {
6694 	struct hclge_vport *vport = hclge_get_vport(handle);
6695 	struct hclge_dev *hdev = vport->back;
6696 
6697 	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev) || hclge_is_cls_flower_active(handle))
6698 		return -EOPNOTSUPP;
6699 
6700 	cmd->rule_cnt = hdev->hclge_fd_rule_num;
6701 	cmd->data = hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1];
6702 
6703 	return 0;
6704 }
6705 
6706 static void hclge_fd_get_tcpip4_info(struct hclge_fd_rule *rule,
6707 				     struct ethtool_tcpip4_spec *spec,
6708 				     struct ethtool_tcpip4_spec *spec_mask)
6709 {
6710 	spec->ip4src = cpu_to_be32(rule->tuples.src_ip[IPV4_INDEX]);
6711 	spec_mask->ip4src = rule->unused_tuple & BIT(INNER_SRC_IP) ?
6712 			0 : cpu_to_be32(rule->tuples_mask.src_ip[IPV4_INDEX]);
6713 
6714 	spec->ip4dst = cpu_to_be32(rule->tuples.dst_ip[IPV4_INDEX]);
6715 	spec_mask->ip4dst = rule->unused_tuple & BIT(INNER_DST_IP) ?
6716 			0 : cpu_to_be32(rule->tuples_mask.dst_ip[IPV4_INDEX]);
6717 
6718 	spec->psrc = cpu_to_be16(rule->tuples.src_port);
6719 	spec_mask->psrc = rule->unused_tuple & BIT(INNER_SRC_PORT) ?
6720 			0 : cpu_to_be16(rule->tuples_mask.src_port);
6721 
6722 	spec->pdst = cpu_to_be16(rule->tuples.dst_port);
6723 	spec_mask->pdst = rule->unused_tuple & BIT(INNER_DST_PORT) ?
6724 			0 : cpu_to_be16(rule->tuples_mask.dst_port);
6725 
6726 	spec->tos = rule->tuples.ip_tos;
6727 	spec_mask->tos = rule->unused_tuple & BIT(INNER_IP_TOS) ?
6728 			0 : rule->tuples_mask.ip_tos;
6729 }
6730 
6731 static void hclge_fd_get_ip4_info(struct hclge_fd_rule *rule,
6732 				  struct ethtool_usrip4_spec *spec,
6733 				  struct ethtool_usrip4_spec *spec_mask)
6734 {
6735 	spec->ip4src = cpu_to_be32(rule->tuples.src_ip[IPV4_INDEX]);
6736 	spec_mask->ip4src = rule->unused_tuple & BIT(INNER_SRC_IP) ?
6737 			0 : cpu_to_be32(rule->tuples_mask.src_ip[IPV4_INDEX]);
6738 
6739 	spec->ip4dst = cpu_to_be32(rule->tuples.dst_ip[IPV4_INDEX]);
6740 	spec_mask->ip4dst = rule->unused_tuple & BIT(INNER_DST_IP) ?
6741 			0 : cpu_to_be32(rule->tuples_mask.dst_ip[IPV4_INDEX]);
6742 
6743 	spec->tos = rule->tuples.ip_tos;
6744 	spec_mask->tos = rule->unused_tuple & BIT(INNER_IP_TOS) ?
6745 			0 : rule->tuples_mask.ip_tos;
6746 
6747 	spec->proto = rule->tuples.ip_proto;
6748 	spec_mask->proto = rule->unused_tuple & BIT(INNER_IP_PROTO) ?
6749 			0 : rule->tuples_mask.ip_proto;
6750 
6751 	spec->ip_ver = ETH_RX_NFC_IP4;
6752 }
6753 
6754 static void hclge_fd_get_tcpip6_info(struct hclge_fd_rule *rule,
6755 				     struct ethtool_tcpip6_spec *spec,
6756 				     struct ethtool_tcpip6_spec *spec_mask)
6757 {
6758 	cpu_to_be32_array(spec->ip6src,
6759 			  rule->tuples.src_ip, IPV6_SIZE);
6760 	cpu_to_be32_array(spec->ip6dst,
6761 			  rule->tuples.dst_ip, IPV6_SIZE);
6762 	if (rule->unused_tuple & BIT(INNER_SRC_IP))
6763 		memset(spec_mask->ip6src, 0, sizeof(spec_mask->ip6src));
6764 	else
6765 		cpu_to_be32_array(spec_mask->ip6src, rule->tuples_mask.src_ip,
6766 				  IPV6_SIZE);
6767 
6768 	if (rule->unused_tuple & BIT(INNER_DST_IP))
6769 		memset(spec_mask->ip6dst, 0, sizeof(spec_mask->ip6dst));
6770 	else
6771 		cpu_to_be32_array(spec_mask->ip6dst, rule->tuples_mask.dst_ip,
6772 				  IPV6_SIZE);
6773 
6774 	spec->tclass = rule->tuples.ip_tos;
6775 	spec_mask->tclass = rule->unused_tuple & BIT(INNER_IP_TOS) ?
6776 			0 : rule->tuples_mask.ip_tos;
6777 
6778 	spec->psrc = cpu_to_be16(rule->tuples.src_port);
6779 	spec_mask->psrc = rule->unused_tuple & BIT(INNER_SRC_PORT) ?
6780 			0 : cpu_to_be16(rule->tuples_mask.src_port);
6781 
6782 	spec->pdst = cpu_to_be16(rule->tuples.dst_port);
6783 	spec_mask->pdst = rule->unused_tuple & BIT(INNER_DST_PORT) ?
6784 			0 : cpu_to_be16(rule->tuples_mask.dst_port);
6785 }
6786 
6787 static void hclge_fd_get_ip6_info(struct hclge_fd_rule *rule,
6788 				  struct ethtool_usrip6_spec *spec,
6789 				  struct ethtool_usrip6_spec *spec_mask)
6790 {
6791 	cpu_to_be32_array(spec->ip6src, rule->tuples.src_ip, IPV6_SIZE);
6792 	cpu_to_be32_array(spec->ip6dst, rule->tuples.dst_ip, IPV6_SIZE);
6793 	if (rule->unused_tuple & BIT(INNER_SRC_IP))
6794 		memset(spec_mask->ip6src, 0, sizeof(spec_mask->ip6src));
6795 	else
6796 		cpu_to_be32_array(spec_mask->ip6src,
6797 				  rule->tuples_mask.src_ip, IPV6_SIZE);
6798 
6799 	if (rule->unused_tuple & BIT(INNER_DST_IP))
6800 		memset(spec_mask->ip6dst, 0, sizeof(spec_mask->ip6dst));
6801 	else
6802 		cpu_to_be32_array(spec_mask->ip6dst,
6803 				  rule->tuples_mask.dst_ip, IPV6_SIZE);
6804 
6805 	spec->tclass = rule->tuples.ip_tos;
6806 	spec_mask->tclass = rule->unused_tuple & BIT(INNER_IP_TOS) ?
6807 			0 : rule->tuples_mask.ip_tos;
6808 
6809 	spec->l4_proto = rule->tuples.ip_proto;
6810 	spec_mask->l4_proto = rule->unused_tuple & BIT(INNER_IP_PROTO) ?
6811 			0 : rule->tuples_mask.ip_proto;
6812 }
6813 
6814 static void hclge_fd_get_ether_info(struct hclge_fd_rule *rule,
6815 				    struct ethhdr *spec,
6816 				    struct ethhdr *spec_mask)
6817 {
6818 	ether_addr_copy(spec->h_source, rule->tuples.src_mac);
6819 	ether_addr_copy(spec->h_dest, rule->tuples.dst_mac);
6820 
6821 	if (rule->unused_tuple & BIT(INNER_SRC_MAC))
6822 		eth_zero_addr(spec_mask->h_source);
6823 	else
6824 		ether_addr_copy(spec_mask->h_source, rule->tuples_mask.src_mac);
6825 
6826 	if (rule->unused_tuple & BIT(INNER_DST_MAC))
6827 		eth_zero_addr(spec_mask->h_dest);
6828 	else
6829 		ether_addr_copy(spec_mask->h_dest, rule->tuples_mask.dst_mac);
6830 
6831 	spec->h_proto = cpu_to_be16(rule->tuples.ether_proto);
6832 	spec_mask->h_proto = rule->unused_tuple & BIT(INNER_ETH_TYPE) ?
6833 			0 : cpu_to_be16(rule->tuples_mask.ether_proto);
6834 }
6835 
6836 static void hclge_fd_get_user_def_info(struct ethtool_rx_flow_spec *fs,
6837 				       struct hclge_fd_rule *rule)
6838 {
6839 	if ((rule->unused_tuple & HCLGE_FD_TUPLE_USER_DEF_TUPLES) ==
6840 	    HCLGE_FD_TUPLE_USER_DEF_TUPLES) {
6841 		fs->h_ext.data[0] = 0;
6842 		fs->h_ext.data[1] = 0;
6843 		fs->m_ext.data[0] = 0;
6844 		fs->m_ext.data[1] = 0;
6845 	} else {
6846 		fs->h_ext.data[0] = cpu_to_be32(rule->ep.user_def.offset);
6847 		fs->h_ext.data[1] = cpu_to_be32(rule->ep.user_def.data);
6848 		fs->m_ext.data[0] =
6849 				cpu_to_be32(HCLGE_FD_USER_DEF_OFFSET_UNMASK);
6850 		fs->m_ext.data[1] = cpu_to_be32(rule->ep.user_def.data_mask);
6851 	}
6852 }
6853 
6854 static void hclge_fd_get_ext_info(struct ethtool_rx_flow_spec *fs,
6855 				  struct hclge_fd_rule *rule)
6856 {
6857 	if (fs->flow_type & FLOW_EXT) {
6858 		fs->h_ext.vlan_tci = cpu_to_be16(rule->tuples.vlan_tag1);
6859 		fs->m_ext.vlan_tci =
6860 				rule->unused_tuple & BIT(INNER_VLAN_TAG_FST) ?
6861 				0 : cpu_to_be16(rule->tuples_mask.vlan_tag1);
6862 
6863 		hclge_fd_get_user_def_info(fs, rule);
6864 	}
6865 
6866 	if (fs->flow_type & FLOW_MAC_EXT) {
6867 		ether_addr_copy(fs->h_ext.h_dest, rule->tuples.dst_mac);
6868 		if (rule->unused_tuple & BIT(INNER_DST_MAC))
6869 			eth_zero_addr(fs->m_u.ether_spec.h_dest);
6870 		else
6871 			ether_addr_copy(fs->m_u.ether_spec.h_dest,
6872 					rule->tuples_mask.dst_mac);
6873 	}
6874 }
6875 
6876 static struct hclge_fd_rule *hclge_get_fd_rule(struct hclge_dev *hdev,
6877 					       u16 location)
6878 {
6879 	struct hclge_fd_rule *rule = NULL;
6880 	struct hlist_node *node2;
6881 
6882 	hlist_for_each_entry_safe(rule, node2, &hdev->fd_rule_list, rule_node) {
6883 		if (rule->location == location)
6884 			return rule;
6885 		else if (rule->location > location)
6886 			return NULL;
6887 	}
6888 
6889 	return NULL;
6890 }
6891 
6892 static void hclge_fd_get_ring_cookie(struct ethtool_rx_flow_spec *fs,
6893 				     struct hclge_fd_rule *rule)
6894 {
6895 	if (rule->action == HCLGE_FD_ACTION_DROP_PACKET) {
6896 		fs->ring_cookie = RX_CLS_FLOW_DISC;
6897 	} else {
6898 		u64 vf_id;
6899 
6900 		fs->ring_cookie = rule->queue_id;
6901 		vf_id = rule->vf_id;
6902 		vf_id <<= ETHTOOL_RX_FLOW_SPEC_RING_VF_OFF;
6903 		fs->ring_cookie |= vf_id;
6904 	}
6905 }
6906 
6907 static int hclge_get_fd_rule_info(struct hnae3_handle *handle,
6908 				  struct ethtool_rxnfc *cmd)
6909 {
6910 	struct hclge_vport *vport = hclge_get_vport(handle);
6911 	struct hclge_fd_rule *rule = NULL;
6912 	struct hclge_dev *hdev = vport->back;
6913 	struct ethtool_rx_flow_spec *fs;
6914 
6915 	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev))
6916 		return -EOPNOTSUPP;
6917 
6918 	fs = (struct ethtool_rx_flow_spec *)&cmd->fs;
6919 
6920 	spin_lock_bh(&hdev->fd_rule_lock);
6921 
6922 	rule = hclge_get_fd_rule(hdev, fs->location);
6923 	if (!rule) {
6924 		spin_unlock_bh(&hdev->fd_rule_lock);
6925 		return -ENOENT;
6926 	}
6927 
6928 	fs->flow_type = rule->flow_type;
6929 	switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) {
6930 	case SCTP_V4_FLOW:
6931 	case TCP_V4_FLOW:
6932 	case UDP_V4_FLOW:
6933 		hclge_fd_get_tcpip4_info(rule, &fs->h_u.tcp_ip4_spec,
6934 					 &fs->m_u.tcp_ip4_spec);
6935 		break;
6936 	case IP_USER_FLOW:
6937 		hclge_fd_get_ip4_info(rule, &fs->h_u.usr_ip4_spec,
6938 				      &fs->m_u.usr_ip4_spec);
6939 		break;
6940 	case SCTP_V6_FLOW:
6941 	case TCP_V6_FLOW:
6942 	case UDP_V6_FLOW:
6943 		hclge_fd_get_tcpip6_info(rule, &fs->h_u.tcp_ip6_spec,
6944 					 &fs->m_u.tcp_ip6_spec);
6945 		break;
6946 	case IPV6_USER_FLOW:
6947 		hclge_fd_get_ip6_info(rule, &fs->h_u.usr_ip6_spec,
6948 				      &fs->m_u.usr_ip6_spec);
6949 		break;
6950 	/* The flow type of fd rule has been checked before adding in to rule
6951 	 * list. As other flow types have been handled, it must be ETHER_FLOW
6952 	 * for the default case
6953 	 */
6954 	default:
6955 		hclge_fd_get_ether_info(rule, &fs->h_u.ether_spec,
6956 					&fs->m_u.ether_spec);
6957 		break;
6958 	}
6959 
6960 	hclge_fd_get_ext_info(fs, rule);
6961 
6962 	hclge_fd_get_ring_cookie(fs, rule);
6963 
6964 	spin_unlock_bh(&hdev->fd_rule_lock);
6965 
6966 	return 0;
6967 }
6968 
6969 static int hclge_get_all_rules(struct hnae3_handle *handle,
6970 			       struct ethtool_rxnfc *cmd, u32 *rule_locs)
6971 {
6972 	struct hclge_vport *vport = hclge_get_vport(handle);
6973 	struct hclge_dev *hdev = vport->back;
6974 	struct hclge_fd_rule *rule;
6975 	struct hlist_node *node2;
6976 	int cnt = 0;
6977 
6978 	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev))
6979 		return -EOPNOTSUPP;
6980 
6981 	cmd->data = hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1];
6982 
6983 	spin_lock_bh(&hdev->fd_rule_lock);
6984 	hlist_for_each_entry_safe(rule, node2,
6985 				  &hdev->fd_rule_list, rule_node) {
6986 		if (cnt == cmd->rule_cnt) {
6987 			spin_unlock_bh(&hdev->fd_rule_lock);
6988 			return -EMSGSIZE;
6989 		}
6990 
6991 		if (rule->state == HCLGE_FD_TO_DEL)
6992 			continue;
6993 
6994 		rule_locs[cnt] = rule->location;
6995 		cnt++;
6996 	}
6997 
6998 	spin_unlock_bh(&hdev->fd_rule_lock);
6999 
7000 	cmd->rule_cnt = cnt;
7001 
7002 	return 0;
7003 }
7004 
7005 static void hclge_fd_get_flow_tuples(const struct flow_keys *fkeys,
7006 				     struct hclge_fd_rule_tuples *tuples)
7007 {
7008 #define flow_ip6_src fkeys->addrs.v6addrs.src.in6_u.u6_addr32
7009 #define flow_ip6_dst fkeys->addrs.v6addrs.dst.in6_u.u6_addr32
7010 
7011 	tuples->ether_proto = be16_to_cpu(fkeys->basic.n_proto);
7012 	tuples->ip_proto = fkeys->basic.ip_proto;
7013 	tuples->dst_port = be16_to_cpu(fkeys->ports.dst);
7014 
7015 	if (fkeys->basic.n_proto == htons(ETH_P_IP)) {
7016 		tuples->src_ip[3] = be32_to_cpu(fkeys->addrs.v4addrs.src);
7017 		tuples->dst_ip[3] = be32_to_cpu(fkeys->addrs.v4addrs.dst);
7018 	} else {
7019 		int i;
7020 
7021 		for (i = 0; i < IPV6_SIZE; i++) {
7022 			tuples->src_ip[i] = be32_to_cpu(flow_ip6_src[i]);
7023 			tuples->dst_ip[i] = be32_to_cpu(flow_ip6_dst[i]);
7024 		}
7025 	}
7026 }
7027 
7028 /* traverse all rules, check whether an existed rule has the same tuples */
7029 static struct hclge_fd_rule *
7030 hclge_fd_search_flow_keys(struct hclge_dev *hdev,
7031 			  const struct hclge_fd_rule_tuples *tuples)
7032 {
7033 	struct hclge_fd_rule *rule = NULL;
7034 	struct hlist_node *node;
7035 
7036 	hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) {
7037 		if (!memcmp(tuples, &rule->tuples, sizeof(*tuples)))
7038 			return rule;
7039 	}
7040 
7041 	return NULL;
7042 }
7043 
7044 static void hclge_fd_build_arfs_rule(const struct hclge_fd_rule_tuples *tuples,
7045 				     struct hclge_fd_rule *rule)
7046 {
7047 	rule->unused_tuple = BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC) |
7048 			     BIT(INNER_VLAN_TAG_FST) | BIT(INNER_IP_TOS) |
7049 			     BIT(INNER_SRC_PORT);
7050 	rule->action = 0;
7051 	rule->vf_id = 0;
7052 	rule->rule_type = HCLGE_FD_ARFS_ACTIVE;
7053 	rule->state = HCLGE_FD_TO_ADD;
7054 	if (tuples->ether_proto == ETH_P_IP) {
7055 		if (tuples->ip_proto == IPPROTO_TCP)
7056 			rule->flow_type = TCP_V4_FLOW;
7057 		else
7058 			rule->flow_type = UDP_V4_FLOW;
7059 	} else {
7060 		if (tuples->ip_proto == IPPROTO_TCP)
7061 			rule->flow_type = TCP_V6_FLOW;
7062 		else
7063 			rule->flow_type = UDP_V6_FLOW;
7064 	}
7065 	memcpy(&rule->tuples, tuples, sizeof(rule->tuples));
7066 	memset(&rule->tuples_mask, 0xFF, sizeof(rule->tuples_mask));
7067 }
7068 
7069 static int hclge_add_fd_entry_by_arfs(struct hnae3_handle *handle, u16 queue_id,
7070 				      u16 flow_id, struct flow_keys *fkeys)
7071 {
7072 	struct hclge_vport *vport = hclge_get_vport(handle);
7073 	struct hclge_fd_rule_tuples new_tuples = {};
7074 	struct hclge_dev *hdev = vport->back;
7075 	struct hclge_fd_rule *rule;
7076 	u16 bit_id;
7077 
7078 	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev))
7079 		return -EOPNOTSUPP;
7080 
7081 	/* when there is already fd rule existed add by user,
7082 	 * arfs should not work
7083 	 */
7084 	spin_lock_bh(&hdev->fd_rule_lock);
7085 	if (hdev->fd_active_type != HCLGE_FD_ARFS_ACTIVE &&
7086 	    hdev->fd_active_type != HCLGE_FD_RULE_NONE) {
7087 		spin_unlock_bh(&hdev->fd_rule_lock);
7088 		return -EOPNOTSUPP;
7089 	}
7090 
7091 	hclge_fd_get_flow_tuples(fkeys, &new_tuples);
7092 
7093 	/* check is there flow director filter existed for this flow,
7094 	 * if not, create a new filter for it;
7095 	 * if filter exist with different queue id, modify the filter;
7096 	 * if filter exist with same queue id, do nothing
7097 	 */
7098 	rule = hclge_fd_search_flow_keys(hdev, &new_tuples);
7099 	if (!rule) {
7100 		bit_id = find_first_zero_bit(hdev->fd_bmap, MAX_FD_FILTER_NUM);
7101 		if (bit_id >= hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]) {
7102 			spin_unlock_bh(&hdev->fd_rule_lock);
7103 			return -ENOSPC;
7104 		}
7105 
7106 		rule = kzalloc(sizeof(*rule), GFP_ATOMIC);
7107 		if (!rule) {
7108 			spin_unlock_bh(&hdev->fd_rule_lock);
7109 			return -ENOMEM;
7110 		}
7111 
7112 		rule->location = bit_id;
7113 		rule->arfs.flow_id = flow_id;
7114 		rule->queue_id = queue_id;
7115 		hclge_fd_build_arfs_rule(&new_tuples, rule);
7116 		hclge_update_fd_list(hdev, rule->state, rule->location, rule);
7117 		hdev->fd_active_type = HCLGE_FD_ARFS_ACTIVE;
7118 	} else if (rule->queue_id != queue_id) {
7119 		rule->queue_id = queue_id;
7120 		rule->state = HCLGE_FD_TO_ADD;
7121 		set_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state);
7122 		hclge_task_schedule(hdev, 0);
7123 	}
7124 	spin_unlock_bh(&hdev->fd_rule_lock);
7125 	return rule->location;
7126 }
7127 
7128 static void hclge_rfs_filter_expire(struct hclge_dev *hdev)
7129 {
7130 #ifdef CONFIG_RFS_ACCEL
7131 	struct hnae3_handle *handle = &hdev->vport[0].nic;
7132 	struct hclge_fd_rule *rule;
7133 	struct hlist_node *node;
7134 
7135 	spin_lock_bh(&hdev->fd_rule_lock);
7136 	if (hdev->fd_active_type != HCLGE_FD_ARFS_ACTIVE) {
7137 		spin_unlock_bh(&hdev->fd_rule_lock);
7138 		return;
7139 	}
7140 	hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) {
7141 		if (rule->state != HCLGE_FD_ACTIVE)
7142 			continue;
7143 		if (rps_may_expire_flow(handle->netdev, rule->queue_id,
7144 					rule->arfs.flow_id, rule->location)) {
7145 			rule->state = HCLGE_FD_TO_DEL;
7146 			set_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state);
7147 		}
7148 	}
7149 	spin_unlock_bh(&hdev->fd_rule_lock);
7150 #endif
7151 }
7152 
7153 /* make sure being called after lock up with fd_rule_lock */
7154 static int hclge_clear_arfs_rules(struct hclge_dev *hdev)
7155 {
7156 #ifdef CONFIG_RFS_ACCEL
7157 	struct hclge_fd_rule *rule;
7158 	struct hlist_node *node;
7159 	int ret;
7160 
7161 	if (hdev->fd_active_type != HCLGE_FD_ARFS_ACTIVE)
7162 		return 0;
7163 
7164 	hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) {
7165 		switch (rule->state) {
7166 		case HCLGE_FD_TO_DEL:
7167 		case HCLGE_FD_ACTIVE:
7168 			ret = hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true,
7169 						   rule->location, NULL, false);
7170 			if (ret)
7171 				return ret;
7172 			fallthrough;
7173 		case HCLGE_FD_TO_ADD:
7174 			hclge_fd_dec_rule_cnt(hdev, rule->location);
7175 			hlist_del(&rule->rule_node);
7176 			kfree(rule);
7177 			break;
7178 		default:
7179 			break;
7180 		}
7181 	}
7182 	hclge_sync_fd_state(hdev);
7183 
7184 #endif
7185 	return 0;
7186 }
7187 
7188 static void hclge_get_cls_key_basic(const struct flow_rule *flow,
7189 				    struct hclge_fd_rule *rule)
7190 {
7191 	if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_BASIC)) {
7192 		struct flow_match_basic match;
7193 		u16 ethtype_key, ethtype_mask;
7194 
7195 		flow_rule_match_basic(flow, &match);
7196 		ethtype_key = ntohs(match.key->n_proto);
7197 		ethtype_mask = ntohs(match.mask->n_proto);
7198 
7199 		if (ethtype_key == ETH_P_ALL) {
7200 			ethtype_key = 0;
7201 			ethtype_mask = 0;
7202 		}
7203 		rule->tuples.ether_proto = ethtype_key;
7204 		rule->tuples_mask.ether_proto = ethtype_mask;
7205 		rule->tuples.ip_proto = match.key->ip_proto;
7206 		rule->tuples_mask.ip_proto = match.mask->ip_proto;
7207 	} else {
7208 		rule->unused_tuple |= BIT(INNER_IP_PROTO);
7209 		rule->unused_tuple |= BIT(INNER_ETH_TYPE);
7210 	}
7211 }
7212 
7213 static void hclge_get_cls_key_mac(const struct flow_rule *flow,
7214 				  struct hclge_fd_rule *rule)
7215 {
7216 	if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
7217 		struct flow_match_eth_addrs match;
7218 
7219 		flow_rule_match_eth_addrs(flow, &match);
7220 		ether_addr_copy(rule->tuples.dst_mac, match.key->dst);
7221 		ether_addr_copy(rule->tuples_mask.dst_mac, match.mask->dst);
7222 		ether_addr_copy(rule->tuples.src_mac, match.key->src);
7223 		ether_addr_copy(rule->tuples_mask.src_mac, match.mask->src);
7224 	} else {
7225 		rule->unused_tuple |= BIT(INNER_DST_MAC);
7226 		rule->unused_tuple |= BIT(INNER_SRC_MAC);
7227 	}
7228 }
7229 
7230 static void hclge_get_cls_key_vlan(const struct flow_rule *flow,
7231 				   struct hclge_fd_rule *rule)
7232 {
7233 	if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_VLAN)) {
7234 		struct flow_match_vlan match;
7235 
7236 		flow_rule_match_vlan(flow, &match);
7237 		rule->tuples.vlan_tag1 = match.key->vlan_id |
7238 				(match.key->vlan_priority << VLAN_PRIO_SHIFT);
7239 		rule->tuples_mask.vlan_tag1 = match.mask->vlan_id |
7240 				(match.mask->vlan_priority << VLAN_PRIO_SHIFT);
7241 	} else {
7242 		rule->unused_tuple |= BIT(INNER_VLAN_TAG_FST);
7243 	}
7244 }
7245 
7246 static void hclge_get_cls_key_ip(const struct flow_rule *flow,
7247 				 struct hclge_fd_rule *rule)
7248 {
7249 	u16 addr_type = 0;
7250 
7251 	if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_CONTROL)) {
7252 		struct flow_match_control match;
7253 
7254 		flow_rule_match_control(flow, &match);
7255 		addr_type = match.key->addr_type;
7256 	}
7257 
7258 	if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
7259 		struct flow_match_ipv4_addrs match;
7260 
7261 		flow_rule_match_ipv4_addrs(flow, &match);
7262 		rule->tuples.src_ip[IPV4_INDEX] = be32_to_cpu(match.key->src);
7263 		rule->tuples_mask.src_ip[IPV4_INDEX] =
7264 						be32_to_cpu(match.mask->src);
7265 		rule->tuples.dst_ip[IPV4_INDEX] = be32_to_cpu(match.key->dst);
7266 		rule->tuples_mask.dst_ip[IPV4_INDEX] =
7267 						be32_to_cpu(match.mask->dst);
7268 	} else if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
7269 		struct flow_match_ipv6_addrs match;
7270 
7271 		flow_rule_match_ipv6_addrs(flow, &match);
7272 		be32_to_cpu_array(rule->tuples.src_ip, match.key->src.s6_addr32,
7273 				  IPV6_SIZE);
7274 		be32_to_cpu_array(rule->tuples_mask.src_ip,
7275 				  match.mask->src.s6_addr32, IPV6_SIZE);
7276 		be32_to_cpu_array(rule->tuples.dst_ip, match.key->dst.s6_addr32,
7277 				  IPV6_SIZE);
7278 		be32_to_cpu_array(rule->tuples_mask.dst_ip,
7279 				  match.mask->dst.s6_addr32, IPV6_SIZE);
7280 	} else {
7281 		rule->unused_tuple |= BIT(INNER_SRC_IP);
7282 		rule->unused_tuple |= BIT(INNER_DST_IP);
7283 	}
7284 }
7285 
7286 static void hclge_get_cls_key_port(const struct flow_rule *flow,
7287 				   struct hclge_fd_rule *rule)
7288 {
7289 	if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_PORTS)) {
7290 		struct flow_match_ports match;
7291 
7292 		flow_rule_match_ports(flow, &match);
7293 
7294 		rule->tuples.src_port = be16_to_cpu(match.key->src);
7295 		rule->tuples_mask.src_port = be16_to_cpu(match.mask->src);
7296 		rule->tuples.dst_port = be16_to_cpu(match.key->dst);
7297 		rule->tuples_mask.dst_port = be16_to_cpu(match.mask->dst);
7298 	} else {
7299 		rule->unused_tuple |= BIT(INNER_SRC_PORT);
7300 		rule->unused_tuple |= BIT(INNER_DST_PORT);
7301 	}
7302 }
7303 
7304 static int hclge_parse_cls_flower(struct hclge_dev *hdev,
7305 				  struct flow_cls_offload *cls_flower,
7306 				  struct hclge_fd_rule *rule)
7307 {
7308 	struct flow_rule *flow = flow_cls_offload_flow_rule(cls_flower);
7309 	struct flow_dissector *dissector = flow->match.dissector;
7310 
7311 	if (dissector->used_keys &
7312 	    ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
7313 	      BIT(FLOW_DISSECTOR_KEY_BASIC) |
7314 	      BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
7315 	      BIT(FLOW_DISSECTOR_KEY_VLAN) |
7316 	      BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
7317 	      BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
7318 	      BIT(FLOW_DISSECTOR_KEY_PORTS))) {
7319 		dev_err(&hdev->pdev->dev, "unsupported key set: %#x\n",
7320 			dissector->used_keys);
7321 		return -EOPNOTSUPP;
7322 	}
7323 
7324 	hclge_get_cls_key_basic(flow, rule);
7325 	hclge_get_cls_key_mac(flow, rule);
7326 	hclge_get_cls_key_vlan(flow, rule);
7327 	hclge_get_cls_key_ip(flow, rule);
7328 	hclge_get_cls_key_port(flow, rule);
7329 
7330 	return 0;
7331 }
7332 
7333 static int hclge_check_cls_flower(struct hclge_dev *hdev,
7334 				  struct flow_cls_offload *cls_flower, int tc)
7335 {
7336 	u32 prio = cls_flower->common.prio;
7337 
7338 	if (tc < 0 || tc > hdev->tc_max) {
7339 		dev_err(&hdev->pdev->dev, "invalid traffic class\n");
7340 		return -EINVAL;
7341 	}
7342 
7343 	if (prio == 0 ||
7344 	    prio > hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]) {
7345 		dev_err(&hdev->pdev->dev,
7346 			"prio %u should be in range[1, %u]\n",
7347 			prio, hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]);
7348 		return -EINVAL;
7349 	}
7350 
7351 	if (test_bit(prio - 1, hdev->fd_bmap)) {
7352 		dev_err(&hdev->pdev->dev, "prio %u is already used\n", prio);
7353 		return -EINVAL;
7354 	}
7355 	return 0;
7356 }
7357 
7358 static int hclge_add_cls_flower(struct hnae3_handle *handle,
7359 				struct flow_cls_offload *cls_flower,
7360 				int tc)
7361 {
7362 	struct hclge_vport *vport = hclge_get_vport(handle);
7363 	struct hclge_dev *hdev = vport->back;
7364 	struct hclge_fd_rule *rule;
7365 	int ret;
7366 
7367 	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev)) {
7368 		dev_err(&hdev->pdev->dev,
7369 			"cls flower is not supported\n");
7370 		return -EOPNOTSUPP;
7371 	}
7372 
7373 	ret = hclge_check_cls_flower(hdev, cls_flower, tc);
7374 	if (ret) {
7375 		dev_err(&hdev->pdev->dev,
7376 			"failed to check cls flower params, ret = %d\n", ret);
7377 		return ret;
7378 	}
7379 
7380 	rule = kzalloc(sizeof(*rule), GFP_KERNEL);
7381 	if (!rule)
7382 		return -ENOMEM;
7383 
7384 	ret = hclge_parse_cls_flower(hdev, cls_flower, rule);
7385 	if (ret) {
7386 		kfree(rule);
7387 		return ret;
7388 	}
7389 
7390 	rule->action = HCLGE_FD_ACTION_SELECT_TC;
7391 	rule->cls_flower.tc = tc;
7392 	rule->location = cls_flower->common.prio - 1;
7393 	rule->vf_id = 0;
7394 	rule->cls_flower.cookie = cls_flower->cookie;
7395 	rule->rule_type = HCLGE_FD_TC_FLOWER_ACTIVE;
7396 
7397 	ret = hclge_add_fd_entry_common(hdev, rule);
7398 	if (ret)
7399 		kfree(rule);
7400 
7401 	return ret;
7402 }
7403 
7404 static struct hclge_fd_rule *hclge_find_cls_flower(struct hclge_dev *hdev,
7405 						   unsigned long cookie)
7406 {
7407 	struct hclge_fd_rule *rule;
7408 	struct hlist_node *node;
7409 
7410 	hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) {
7411 		if (rule->cls_flower.cookie == cookie)
7412 			return rule;
7413 	}
7414 
7415 	return NULL;
7416 }
7417 
7418 static int hclge_del_cls_flower(struct hnae3_handle *handle,
7419 				struct flow_cls_offload *cls_flower)
7420 {
7421 	struct hclge_vport *vport = hclge_get_vport(handle);
7422 	struct hclge_dev *hdev = vport->back;
7423 	struct hclge_fd_rule *rule;
7424 	int ret;
7425 
7426 	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev))
7427 		return -EOPNOTSUPP;
7428 
7429 	spin_lock_bh(&hdev->fd_rule_lock);
7430 
7431 	rule = hclge_find_cls_flower(hdev, cls_flower->cookie);
7432 	if (!rule) {
7433 		spin_unlock_bh(&hdev->fd_rule_lock);
7434 		return -EINVAL;
7435 	}
7436 
7437 	ret = hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true, rule->location,
7438 				   NULL, false);
7439 	if (ret) {
7440 		spin_unlock_bh(&hdev->fd_rule_lock);
7441 		return ret;
7442 	}
7443 
7444 	hclge_update_fd_list(hdev, HCLGE_FD_DELETED, rule->location, NULL);
7445 	spin_unlock_bh(&hdev->fd_rule_lock);
7446 
7447 	return 0;
7448 }
7449 
7450 static void hclge_sync_fd_list(struct hclge_dev *hdev, struct hlist_head *hlist)
7451 {
7452 	struct hclge_fd_rule *rule;
7453 	struct hlist_node *node;
7454 	int ret = 0;
7455 
7456 	if (!test_and_clear_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state))
7457 		return;
7458 
7459 	spin_lock_bh(&hdev->fd_rule_lock);
7460 
7461 	hlist_for_each_entry_safe(rule, node, hlist, rule_node) {
7462 		switch (rule->state) {
7463 		case HCLGE_FD_TO_ADD:
7464 			ret = hclge_fd_config_rule(hdev, rule);
7465 			if (ret)
7466 				goto out;
7467 			rule->state = HCLGE_FD_ACTIVE;
7468 			break;
7469 		case HCLGE_FD_TO_DEL:
7470 			ret = hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true,
7471 						   rule->location, NULL, false);
7472 			if (ret)
7473 				goto out;
7474 			hclge_fd_dec_rule_cnt(hdev, rule->location);
7475 			hclge_fd_free_node(hdev, rule);
7476 			break;
7477 		default:
7478 			break;
7479 		}
7480 	}
7481 
7482 out:
7483 	if (ret)
7484 		set_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state);
7485 
7486 	spin_unlock_bh(&hdev->fd_rule_lock);
7487 }
7488 
7489 static void hclge_sync_fd_table(struct hclge_dev *hdev)
7490 {
7491 	if (!hnae3_ae_dev_fd_supported(hdev->ae_dev))
7492 		return;
7493 
7494 	if (test_and_clear_bit(HCLGE_STATE_FD_CLEAR_ALL, &hdev->state)) {
7495 		bool clear_list = hdev->fd_active_type == HCLGE_FD_ARFS_ACTIVE;
7496 
7497 		hclge_clear_fd_rules_in_list(hdev, clear_list);
7498 	}
7499 
7500 	hclge_sync_fd_user_def_cfg(hdev, false);
7501 
7502 	hclge_sync_fd_list(hdev, &hdev->fd_rule_list);
7503 }
7504 
7505 static bool hclge_get_hw_reset_stat(struct hnae3_handle *handle)
7506 {
7507 	struct hclge_vport *vport = hclge_get_vport(handle);
7508 	struct hclge_dev *hdev = vport->back;
7509 
7510 	return hclge_read_dev(&hdev->hw, HCLGE_GLOBAL_RESET_REG) ||
7511 	       hclge_read_dev(&hdev->hw, HCLGE_FUN_RST_ING);
7512 }
7513 
7514 static bool hclge_get_cmdq_stat(struct hnae3_handle *handle)
7515 {
7516 	struct hclge_vport *vport = hclge_get_vport(handle);
7517 	struct hclge_dev *hdev = vport->back;
7518 
7519 	return test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
7520 }
7521 
7522 static bool hclge_ae_dev_resetting(struct hnae3_handle *handle)
7523 {
7524 	struct hclge_vport *vport = hclge_get_vport(handle);
7525 	struct hclge_dev *hdev = vport->back;
7526 
7527 	return test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state);
7528 }
7529 
7530 static unsigned long hclge_ae_dev_reset_cnt(struct hnae3_handle *handle)
7531 {
7532 	struct hclge_vport *vport = hclge_get_vport(handle);
7533 	struct hclge_dev *hdev = vport->back;
7534 
7535 	return hdev->rst_stats.hw_reset_done_cnt;
7536 }
7537 
7538 static void hclge_enable_fd(struct hnae3_handle *handle, bool enable)
7539 {
7540 	struct hclge_vport *vport = hclge_get_vport(handle);
7541 	struct hclge_dev *hdev = vport->back;
7542 
7543 	hdev->fd_en = enable;
7544 
7545 	if (!enable)
7546 		set_bit(HCLGE_STATE_FD_CLEAR_ALL, &hdev->state);
7547 	else
7548 		hclge_restore_fd_entries(handle);
7549 
7550 	hclge_task_schedule(hdev, 0);
7551 }
7552 
7553 static void hclge_cfg_mac_mode(struct hclge_dev *hdev, bool enable)
7554 {
7555 	struct hclge_desc desc;
7556 	struct hclge_config_mac_mode_cmd *req =
7557 		(struct hclge_config_mac_mode_cmd *)desc.data;
7558 	u32 loop_en = 0;
7559 	int ret;
7560 
7561 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_MAC_MODE, false);
7562 
7563 	if (enable) {
7564 		hnae3_set_bit(loop_en, HCLGE_MAC_TX_EN_B, 1U);
7565 		hnae3_set_bit(loop_en, HCLGE_MAC_RX_EN_B, 1U);
7566 		hnae3_set_bit(loop_en, HCLGE_MAC_PAD_TX_B, 1U);
7567 		hnae3_set_bit(loop_en, HCLGE_MAC_PAD_RX_B, 1U);
7568 		hnae3_set_bit(loop_en, HCLGE_MAC_FCS_TX_B, 1U);
7569 		hnae3_set_bit(loop_en, HCLGE_MAC_RX_FCS_B, 1U);
7570 		hnae3_set_bit(loop_en, HCLGE_MAC_RX_FCS_STRIP_B, 1U);
7571 		hnae3_set_bit(loop_en, HCLGE_MAC_TX_OVERSIZE_TRUNCATE_B, 1U);
7572 		hnae3_set_bit(loop_en, HCLGE_MAC_RX_OVERSIZE_TRUNCATE_B, 1U);
7573 		hnae3_set_bit(loop_en, HCLGE_MAC_TX_UNDER_MIN_ERR_B, 1U);
7574 	}
7575 
7576 	req->txrx_pad_fcs_loop_en = cpu_to_le32(loop_en);
7577 
7578 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
7579 	if (ret)
7580 		dev_err(&hdev->pdev->dev,
7581 			"mac enable fail, ret =%d.\n", ret);
7582 }
7583 
7584 static int hclge_config_switch_param(struct hclge_dev *hdev, int vfid,
7585 				     u8 switch_param, u8 param_mask)
7586 {
7587 	struct hclge_mac_vlan_switch_cmd *req;
7588 	struct hclge_desc desc;
7589 	u32 func_id;
7590 	int ret;
7591 
7592 	func_id = hclge_get_port_number(HOST_PORT, 0, vfid, 0);
7593 	req = (struct hclge_mac_vlan_switch_cmd *)desc.data;
7594 
7595 	/* read current config parameter */
7596 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_SWITCH_PARAM,
7597 				   true);
7598 	req->roce_sel = HCLGE_MAC_VLAN_NIC_SEL;
7599 	req->func_id = cpu_to_le32(func_id);
7600 
7601 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
7602 	if (ret) {
7603 		dev_err(&hdev->pdev->dev,
7604 			"read mac vlan switch parameter fail, ret = %d\n", ret);
7605 		return ret;
7606 	}
7607 
7608 	/* modify and write new config parameter */
7609 	hclge_comm_cmd_reuse_desc(&desc, false);
7610 	req->switch_param = (req->switch_param & param_mask) | switch_param;
7611 	req->param_mask = param_mask;
7612 
7613 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
7614 	if (ret)
7615 		dev_err(&hdev->pdev->dev,
7616 			"set mac vlan switch parameter fail, ret = %d\n", ret);
7617 	return ret;
7618 }
7619 
7620 static void hclge_phy_link_status_wait(struct hclge_dev *hdev,
7621 				       int link_ret)
7622 {
7623 #define HCLGE_PHY_LINK_STATUS_NUM  200
7624 
7625 	struct phy_device *phydev = hdev->hw.mac.phydev;
7626 	int i = 0;
7627 	int ret;
7628 
7629 	do {
7630 		ret = phy_read_status(phydev);
7631 		if (ret) {
7632 			dev_err(&hdev->pdev->dev,
7633 				"phy update link status fail, ret = %d\n", ret);
7634 			return;
7635 		}
7636 
7637 		if (phydev->link == link_ret)
7638 			break;
7639 
7640 		msleep(HCLGE_LINK_STATUS_MS);
7641 	} while (++i < HCLGE_PHY_LINK_STATUS_NUM);
7642 }
7643 
7644 static int hclge_mac_link_status_wait(struct hclge_dev *hdev, int link_ret)
7645 {
7646 #define HCLGE_MAC_LINK_STATUS_NUM  100
7647 
7648 	int link_status;
7649 	int i = 0;
7650 	int ret;
7651 
7652 	do {
7653 		ret = hclge_get_mac_link_status(hdev, &link_status);
7654 		if (ret)
7655 			return ret;
7656 		if (link_status == link_ret)
7657 			return 0;
7658 
7659 		msleep(HCLGE_LINK_STATUS_MS);
7660 	} while (++i < HCLGE_MAC_LINK_STATUS_NUM);
7661 	return -EBUSY;
7662 }
7663 
7664 static int hclge_mac_phy_link_status_wait(struct hclge_dev *hdev, bool en,
7665 					  bool is_phy)
7666 {
7667 	int link_ret;
7668 
7669 	link_ret = en ? HCLGE_LINK_STATUS_UP : HCLGE_LINK_STATUS_DOWN;
7670 
7671 	if (is_phy)
7672 		hclge_phy_link_status_wait(hdev, link_ret);
7673 
7674 	return hclge_mac_link_status_wait(hdev, link_ret);
7675 }
7676 
7677 static int hclge_set_app_loopback(struct hclge_dev *hdev, bool en)
7678 {
7679 	struct hclge_config_mac_mode_cmd *req;
7680 	struct hclge_desc desc;
7681 	u32 loop_en;
7682 	int ret;
7683 
7684 	req = (struct hclge_config_mac_mode_cmd *)&desc.data[0];
7685 	/* 1 Read out the MAC mode config at first */
7686 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_MAC_MODE, true);
7687 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
7688 	if (ret) {
7689 		dev_err(&hdev->pdev->dev,
7690 			"mac loopback get fail, ret =%d.\n", ret);
7691 		return ret;
7692 	}
7693 
7694 	/* 2 Then setup the loopback flag */
7695 	loop_en = le32_to_cpu(req->txrx_pad_fcs_loop_en);
7696 	hnae3_set_bit(loop_en, HCLGE_MAC_APP_LP_B, en ? 1 : 0);
7697 
7698 	req->txrx_pad_fcs_loop_en = cpu_to_le32(loop_en);
7699 
7700 	/* 3 Config mac work mode with loopback flag
7701 	 * and its original configure parameters
7702 	 */
7703 	hclge_comm_cmd_reuse_desc(&desc, false);
7704 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
7705 	if (ret)
7706 		dev_err(&hdev->pdev->dev,
7707 			"mac loopback set fail, ret =%d.\n", ret);
7708 	return ret;
7709 }
7710 
7711 static int hclge_cfg_common_loopback_cmd_send(struct hclge_dev *hdev, bool en,
7712 					      enum hnae3_loop loop_mode)
7713 {
7714 	struct hclge_common_lb_cmd *req;
7715 	struct hclge_desc desc;
7716 	u8 loop_mode_b;
7717 	int ret;
7718 
7719 	req = (struct hclge_common_lb_cmd *)desc.data;
7720 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_COMMON_LOOPBACK, false);
7721 
7722 	switch (loop_mode) {
7723 	case HNAE3_LOOP_SERIAL_SERDES:
7724 		loop_mode_b = HCLGE_CMD_SERDES_SERIAL_INNER_LOOP_B;
7725 		break;
7726 	case HNAE3_LOOP_PARALLEL_SERDES:
7727 		loop_mode_b = HCLGE_CMD_SERDES_PARALLEL_INNER_LOOP_B;
7728 		break;
7729 	case HNAE3_LOOP_PHY:
7730 		loop_mode_b = HCLGE_CMD_GE_PHY_INNER_LOOP_B;
7731 		break;
7732 	default:
7733 		dev_err(&hdev->pdev->dev,
7734 			"unsupported loopback mode %d\n", loop_mode);
7735 		return -ENOTSUPP;
7736 	}
7737 
7738 	req->mask = loop_mode_b;
7739 	if (en)
7740 		req->enable = loop_mode_b;
7741 
7742 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
7743 	if (ret)
7744 		dev_err(&hdev->pdev->dev,
7745 			"failed to send loopback cmd, loop_mode = %d, ret = %d\n",
7746 			loop_mode, ret);
7747 
7748 	return ret;
7749 }
7750 
7751 static int hclge_cfg_common_loopback_wait(struct hclge_dev *hdev)
7752 {
7753 #define HCLGE_COMMON_LB_RETRY_MS	10
7754 #define HCLGE_COMMON_LB_RETRY_NUM	100
7755 
7756 	struct hclge_common_lb_cmd *req;
7757 	struct hclge_desc desc;
7758 	u32 i = 0;
7759 	int ret;
7760 
7761 	req = (struct hclge_common_lb_cmd *)desc.data;
7762 
7763 	do {
7764 		msleep(HCLGE_COMMON_LB_RETRY_MS);
7765 		hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_COMMON_LOOPBACK,
7766 					   true);
7767 		ret = hclge_cmd_send(&hdev->hw, &desc, 1);
7768 		if (ret) {
7769 			dev_err(&hdev->pdev->dev,
7770 				"failed to get loopback done status, ret = %d\n",
7771 				ret);
7772 			return ret;
7773 		}
7774 	} while (++i < HCLGE_COMMON_LB_RETRY_NUM &&
7775 		 !(req->result & HCLGE_CMD_COMMON_LB_DONE_B));
7776 
7777 	if (!(req->result & HCLGE_CMD_COMMON_LB_DONE_B)) {
7778 		dev_err(&hdev->pdev->dev, "wait loopback timeout\n");
7779 		return -EBUSY;
7780 	} else if (!(req->result & HCLGE_CMD_COMMON_LB_SUCCESS_B)) {
7781 		dev_err(&hdev->pdev->dev, "failed to do loopback test\n");
7782 		return -EIO;
7783 	}
7784 
7785 	return 0;
7786 }
7787 
7788 static int hclge_cfg_common_loopback(struct hclge_dev *hdev, bool en,
7789 				     enum hnae3_loop loop_mode)
7790 {
7791 	int ret;
7792 
7793 	ret = hclge_cfg_common_loopback_cmd_send(hdev, en, loop_mode);
7794 	if (ret)
7795 		return ret;
7796 
7797 	return hclge_cfg_common_loopback_wait(hdev);
7798 }
7799 
7800 static int hclge_set_common_loopback(struct hclge_dev *hdev, bool en,
7801 				     enum hnae3_loop loop_mode)
7802 {
7803 	int ret;
7804 
7805 	ret = hclge_cfg_common_loopback(hdev, en, loop_mode);
7806 	if (ret)
7807 		return ret;
7808 
7809 	hclge_cfg_mac_mode(hdev, en);
7810 
7811 	ret = hclge_mac_phy_link_status_wait(hdev, en, false);
7812 	if (ret)
7813 		dev_err(&hdev->pdev->dev,
7814 			"serdes loopback config mac mode timeout\n");
7815 
7816 	return ret;
7817 }
7818 
7819 static int hclge_enable_phy_loopback(struct hclge_dev *hdev,
7820 				     struct phy_device *phydev)
7821 {
7822 	int ret;
7823 
7824 	if (!phydev->suspended) {
7825 		ret = phy_suspend(phydev);
7826 		if (ret)
7827 			return ret;
7828 	}
7829 
7830 	ret = phy_resume(phydev);
7831 	if (ret)
7832 		return ret;
7833 
7834 	return phy_loopback(phydev, true);
7835 }
7836 
7837 static int hclge_disable_phy_loopback(struct hclge_dev *hdev,
7838 				      struct phy_device *phydev)
7839 {
7840 	int ret;
7841 
7842 	ret = phy_loopback(phydev, false);
7843 	if (ret)
7844 		return ret;
7845 
7846 	return phy_suspend(phydev);
7847 }
7848 
7849 static int hclge_set_phy_loopback(struct hclge_dev *hdev, bool en)
7850 {
7851 	struct phy_device *phydev = hdev->hw.mac.phydev;
7852 	int ret;
7853 
7854 	if (!phydev) {
7855 		if (hnae3_dev_phy_imp_supported(hdev))
7856 			return hclge_set_common_loopback(hdev, en,
7857 							 HNAE3_LOOP_PHY);
7858 		return -ENOTSUPP;
7859 	}
7860 
7861 	if (en)
7862 		ret = hclge_enable_phy_loopback(hdev, phydev);
7863 	else
7864 		ret = hclge_disable_phy_loopback(hdev, phydev);
7865 	if (ret) {
7866 		dev_err(&hdev->pdev->dev,
7867 			"set phy loopback fail, ret = %d\n", ret);
7868 		return ret;
7869 	}
7870 
7871 	hclge_cfg_mac_mode(hdev, en);
7872 
7873 	ret = hclge_mac_phy_link_status_wait(hdev, en, true);
7874 	if (ret)
7875 		dev_err(&hdev->pdev->dev,
7876 			"phy loopback config mac mode timeout\n");
7877 
7878 	return ret;
7879 }
7880 
7881 static int hclge_tqp_enable_cmd_send(struct hclge_dev *hdev, u16 tqp_id,
7882 				     u16 stream_id, bool enable)
7883 {
7884 	struct hclge_desc desc;
7885 	struct hclge_cfg_com_tqp_queue_cmd *req =
7886 		(struct hclge_cfg_com_tqp_queue_cmd *)desc.data;
7887 
7888 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_COM_TQP_QUEUE, false);
7889 	req->tqp_id = cpu_to_le16(tqp_id);
7890 	req->stream_id = cpu_to_le16(stream_id);
7891 	if (enable)
7892 		req->enable |= 1U << HCLGE_TQP_ENABLE_B;
7893 
7894 	return hclge_cmd_send(&hdev->hw, &desc, 1);
7895 }
7896 
7897 static int hclge_tqp_enable(struct hnae3_handle *handle, bool enable)
7898 {
7899 	struct hclge_vport *vport = hclge_get_vport(handle);
7900 	struct hclge_dev *hdev = vport->back;
7901 	int ret;
7902 	u16 i;
7903 
7904 	for (i = 0; i < handle->kinfo.num_tqps; i++) {
7905 		ret = hclge_tqp_enable_cmd_send(hdev, i, 0, enable);
7906 		if (ret)
7907 			return ret;
7908 	}
7909 	return 0;
7910 }
7911 
7912 static int hclge_set_loopback(struct hnae3_handle *handle,
7913 			      enum hnae3_loop loop_mode, bool en)
7914 {
7915 	struct hclge_vport *vport = hclge_get_vport(handle);
7916 	struct hclge_dev *hdev = vport->back;
7917 	int ret = 0;
7918 
7919 	/* Loopback can be enabled in three places: SSU, MAC, and serdes. By
7920 	 * default, SSU loopback is enabled, so if the SMAC and the DMAC are
7921 	 * the same, the packets are looped back in the SSU. If SSU loopback
7922 	 * is disabled, packets can reach MAC even if SMAC is the same as DMAC.
7923 	 */
7924 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
7925 		u8 switch_param = en ? 0 : BIT(HCLGE_SWITCH_ALW_LPBK_B);
7926 
7927 		ret = hclge_config_switch_param(hdev, PF_VPORT_ID, switch_param,
7928 						HCLGE_SWITCH_ALW_LPBK_MASK);
7929 		if (ret)
7930 			return ret;
7931 	}
7932 
7933 	switch (loop_mode) {
7934 	case HNAE3_LOOP_APP:
7935 		ret = hclge_set_app_loopback(hdev, en);
7936 		break;
7937 	case HNAE3_LOOP_SERIAL_SERDES:
7938 	case HNAE3_LOOP_PARALLEL_SERDES:
7939 		ret = hclge_set_common_loopback(hdev, en, loop_mode);
7940 		break;
7941 	case HNAE3_LOOP_PHY:
7942 		ret = hclge_set_phy_loopback(hdev, en);
7943 		break;
7944 	case HNAE3_LOOP_EXTERNAL:
7945 		break;
7946 	default:
7947 		ret = -ENOTSUPP;
7948 		dev_err(&hdev->pdev->dev,
7949 			"loop_mode %d is not supported\n", loop_mode);
7950 		break;
7951 	}
7952 
7953 	if (ret)
7954 		return ret;
7955 
7956 	ret = hclge_tqp_enable(handle, en);
7957 	if (ret)
7958 		dev_err(&hdev->pdev->dev, "failed to %s tqp in loopback, ret = %d\n",
7959 			en ? "enable" : "disable", ret);
7960 
7961 	return ret;
7962 }
7963 
7964 static int hclge_set_default_loopback(struct hclge_dev *hdev)
7965 {
7966 	int ret;
7967 
7968 	ret = hclge_set_app_loopback(hdev, false);
7969 	if (ret)
7970 		return ret;
7971 
7972 	ret = hclge_cfg_common_loopback(hdev, false, HNAE3_LOOP_SERIAL_SERDES);
7973 	if (ret)
7974 		return ret;
7975 
7976 	return hclge_cfg_common_loopback(hdev, false,
7977 					 HNAE3_LOOP_PARALLEL_SERDES);
7978 }
7979 
7980 static void hclge_flush_link_update(struct hclge_dev *hdev)
7981 {
7982 #define HCLGE_FLUSH_LINK_TIMEOUT	100000
7983 
7984 	unsigned long last = hdev->serv_processed_cnt;
7985 	int i = 0;
7986 
7987 	while (test_bit(HCLGE_STATE_LINK_UPDATING, &hdev->state) &&
7988 	       i++ < HCLGE_FLUSH_LINK_TIMEOUT &&
7989 	       last == hdev->serv_processed_cnt)
7990 		usleep_range(1, 1);
7991 }
7992 
7993 static void hclge_set_timer_task(struct hnae3_handle *handle, bool enable)
7994 {
7995 	struct hclge_vport *vport = hclge_get_vport(handle);
7996 	struct hclge_dev *hdev = vport->back;
7997 
7998 	if (enable) {
7999 		hclge_task_schedule(hdev, 0);
8000 	} else {
8001 		/* Set the DOWN flag here to disable link updating */
8002 		set_bit(HCLGE_STATE_DOWN, &hdev->state);
8003 
8004 		/* flush memory to make sure DOWN is seen by service task */
8005 		smp_mb__before_atomic();
8006 		hclge_flush_link_update(hdev);
8007 	}
8008 }
8009 
8010 static int hclge_ae_start(struct hnae3_handle *handle)
8011 {
8012 	struct hclge_vport *vport = hclge_get_vport(handle);
8013 	struct hclge_dev *hdev = vport->back;
8014 
8015 	/* mac enable */
8016 	hclge_cfg_mac_mode(hdev, true);
8017 	clear_bit(HCLGE_STATE_DOWN, &hdev->state);
8018 	hdev->hw.mac.link = 0;
8019 
8020 	/* reset tqp stats */
8021 	hclge_comm_reset_tqp_stats(handle);
8022 
8023 	hclge_mac_start_phy(hdev);
8024 
8025 	return 0;
8026 }
8027 
8028 static void hclge_ae_stop(struct hnae3_handle *handle)
8029 {
8030 	struct hclge_vport *vport = hclge_get_vport(handle);
8031 	struct hclge_dev *hdev = vport->back;
8032 
8033 	set_bit(HCLGE_STATE_DOWN, &hdev->state);
8034 	spin_lock_bh(&hdev->fd_rule_lock);
8035 	hclge_clear_arfs_rules(hdev);
8036 	spin_unlock_bh(&hdev->fd_rule_lock);
8037 
8038 	/* If it is not PF reset or FLR, the firmware will disable the MAC,
8039 	 * so it only need to stop phy here.
8040 	 */
8041 	if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state) &&
8042 	    hdev->reset_type != HNAE3_FUNC_RESET &&
8043 	    hdev->reset_type != HNAE3_FLR_RESET) {
8044 		hclge_mac_stop_phy(hdev);
8045 		hclge_update_link_status(hdev);
8046 		return;
8047 	}
8048 
8049 	hclge_reset_tqp(handle);
8050 
8051 	hclge_config_mac_tnl_int(hdev, false);
8052 
8053 	/* Mac disable */
8054 	hclge_cfg_mac_mode(hdev, false);
8055 
8056 	hclge_mac_stop_phy(hdev);
8057 
8058 	/* reset tqp stats */
8059 	hclge_comm_reset_tqp_stats(handle);
8060 	hclge_update_link_status(hdev);
8061 }
8062 
8063 int hclge_vport_start(struct hclge_vport *vport)
8064 {
8065 	struct hclge_dev *hdev = vport->back;
8066 
8067 	set_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state);
8068 	set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, &vport->state);
8069 	vport->last_active_jiffies = jiffies;
8070 
8071 	if (test_bit(vport->vport_id, hdev->vport_config_block)) {
8072 		if (vport->vport_id) {
8073 			hclge_restore_mac_table_common(vport);
8074 			hclge_restore_vport_vlan_table(vport);
8075 		} else {
8076 			hclge_restore_hw_table(hdev);
8077 		}
8078 	}
8079 
8080 	clear_bit(vport->vport_id, hdev->vport_config_block);
8081 
8082 	return 0;
8083 }
8084 
8085 void hclge_vport_stop(struct hclge_vport *vport)
8086 {
8087 	clear_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state);
8088 }
8089 
8090 static int hclge_client_start(struct hnae3_handle *handle)
8091 {
8092 	struct hclge_vport *vport = hclge_get_vport(handle);
8093 
8094 	return hclge_vport_start(vport);
8095 }
8096 
8097 static void hclge_client_stop(struct hnae3_handle *handle)
8098 {
8099 	struct hclge_vport *vport = hclge_get_vport(handle);
8100 
8101 	hclge_vport_stop(vport);
8102 }
8103 
8104 static int hclge_get_mac_vlan_cmd_status(struct hclge_vport *vport,
8105 					 u16 cmdq_resp, u8  resp_code,
8106 					 enum hclge_mac_vlan_tbl_opcode op)
8107 {
8108 	struct hclge_dev *hdev = vport->back;
8109 
8110 	if (cmdq_resp) {
8111 		dev_err(&hdev->pdev->dev,
8112 			"cmdq execute failed for get_mac_vlan_cmd_status,status=%u.\n",
8113 			cmdq_resp);
8114 		return -EIO;
8115 	}
8116 
8117 	if (op == HCLGE_MAC_VLAN_ADD) {
8118 		if (!resp_code || resp_code == 1)
8119 			return 0;
8120 		else if (resp_code == HCLGE_ADD_UC_OVERFLOW ||
8121 			 resp_code == HCLGE_ADD_MC_OVERFLOW)
8122 			return -ENOSPC;
8123 
8124 		dev_err(&hdev->pdev->dev,
8125 			"add mac addr failed for undefined, code=%u.\n",
8126 			resp_code);
8127 		return -EIO;
8128 	} else if (op == HCLGE_MAC_VLAN_REMOVE) {
8129 		if (!resp_code) {
8130 			return 0;
8131 		} else if (resp_code == 1) {
8132 			dev_dbg(&hdev->pdev->dev,
8133 				"remove mac addr failed for miss.\n");
8134 			return -ENOENT;
8135 		}
8136 
8137 		dev_err(&hdev->pdev->dev,
8138 			"remove mac addr failed for undefined, code=%u.\n",
8139 			resp_code);
8140 		return -EIO;
8141 	} else if (op == HCLGE_MAC_VLAN_LKUP) {
8142 		if (!resp_code) {
8143 			return 0;
8144 		} else if (resp_code == 1) {
8145 			dev_dbg(&hdev->pdev->dev,
8146 				"lookup mac addr failed for miss.\n");
8147 			return -ENOENT;
8148 		}
8149 
8150 		dev_err(&hdev->pdev->dev,
8151 			"lookup mac addr failed for undefined, code=%u.\n",
8152 			resp_code);
8153 		return -EIO;
8154 	}
8155 
8156 	dev_err(&hdev->pdev->dev,
8157 		"unknown opcode for get_mac_vlan_cmd_status, opcode=%d.\n", op);
8158 
8159 	return -EINVAL;
8160 }
8161 
8162 static int hclge_update_desc_vfid(struct hclge_desc *desc, int vfid, bool clr)
8163 {
8164 #define HCLGE_VF_NUM_IN_FIRST_DESC 192
8165 
8166 	unsigned int word_num;
8167 	unsigned int bit_num;
8168 
8169 	if (vfid > 255 || vfid < 0)
8170 		return -EIO;
8171 
8172 	if (vfid >= 0 && vfid < HCLGE_VF_NUM_IN_FIRST_DESC) {
8173 		word_num = vfid / 32;
8174 		bit_num  = vfid % 32;
8175 		if (clr)
8176 			desc[1].data[word_num] &= cpu_to_le32(~(1 << bit_num));
8177 		else
8178 			desc[1].data[word_num] |= cpu_to_le32(1 << bit_num);
8179 	} else {
8180 		word_num = (vfid - HCLGE_VF_NUM_IN_FIRST_DESC) / 32;
8181 		bit_num  = vfid % 32;
8182 		if (clr)
8183 			desc[2].data[word_num] &= cpu_to_le32(~(1 << bit_num));
8184 		else
8185 			desc[2].data[word_num] |= cpu_to_le32(1 << bit_num);
8186 	}
8187 
8188 	return 0;
8189 }
8190 
8191 static bool hclge_is_all_function_id_zero(struct hclge_desc *desc)
8192 {
8193 #define HCLGE_DESC_NUMBER 3
8194 #define HCLGE_FUNC_NUMBER_PER_DESC 6
8195 	int i, j;
8196 
8197 	for (i = 1; i < HCLGE_DESC_NUMBER; i++)
8198 		for (j = 0; j < HCLGE_FUNC_NUMBER_PER_DESC; j++)
8199 			if (desc[i].data[j])
8200 				return false;
8201 
8202 	return true;
8203 }
8204 
8205 static void hclge_prepare_mac_addr(struct hclge_mac_vlan_tbl_entry_cmd *new_req,
8206 				   const u8 *addr, bool is_mc)
8207 {
8208 	const unsigned char *mac_addr = addr;
8209 	u32 high_val = mac_addr[2] << 16 | (mac_addr[3] << 24) |
8210 		       (mac_addr[0]) | (mac_addr[1] << 8);
8211 	u32 low_val  = mac_addr[4] | (mac_addr[5] << 8);
8212 
8213 	hnae3_set_bit(new_req->flags, HCLGE_MAC_VLAN_BIT0_EN_B, 1);
8214 	if (is_mc) {
8215 		hnae3_set_bit(new_req->entry_type, HCLGE_MAC_VLAN_BIT1_EN_B, 1);
8216 		hnae3_set_bit(new_req->mc_mac_en, HCLGE_MAC_VLAN_BIT0_EN_B, 1);
8217 	}
8218 
8219 	new_req->mac_addr_hi32 = cpu_to_le32(high_val);
8220 	new_req->mac_addr_lo16 = cpu_to_le16(low_val & 0xffff);
8221 }
8222 
8223 static int hclge_remove_mac_vlan_tbl(struct hclge_vport *vport,
8224 				     struct hclge_mac_vlan_tbl_entry_cmd *req)
8225 {
8226 	struct hclge_dev *hdev = vport->back;
8227 	struct hclge_desc desc;
8228 	u8 resp_code;
8229 	u16 retval;
8230 	int ret;
8231 
8232 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_REMOVE, false);
8233 
8234 	memcpy(desc.data, req, sizeof(struct hclge_mac_vlan_tbl_entry_cmd));
8235 
8236 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
8237 	if (ret) {
8238 		dev_err(&hdev->pdev->dev,
8239 			"del mac addr failed for cmd_send, ret =%d.\n",
8240 			ret);
8241 		return ret;
8242 	}
8243 	resp_code = (le32_to_cpu(desc.data[0]) >> 8) & 0xff;
8244 	retval = le16_to_cpu(desc.retval);
8245 
8246 	return hclge_get_mac_vlan_cmd_status(vport, retval, resp_code,
8247 					     HCLGE_MAC_VLAN_REMOVE);
8248 }
8249 
8250 static int hclge_lookup_mac_vlan_tbl(struct hclge_vport *vport,
8251 				     struct hclge_mac_vlan_tbl_entry_cmd *req,
8252 				     struct hclge_desc *desc,
8253 				     bool is_mc)
8254 {
8255 	struct hclge_dev *hdev = vport->back;
8256 	u8 resp_code;
8257 	u16 retval;
8258 	int ret;
8259 
8260 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_MAC_VLAN_ADD, true);
8261 	if (is_mc) {
8262 		desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
8263 		memcpy(desc[0].data,
8264 		       req,
8265 		       sizeof(struct hclge_mac_vlan_tbl_entry_cmd));
8266 		hclge_cmd_setup_basic_desc(&desc[1],
8267 					   HCLGE_OPC_MAC_VLAN_ADD,
8268 					   true);
8269 		desc[1].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
8270 		hclge_cmd_setup_basic_desc(&desc[2],
8271 					   HCLGE_OPC_MAC_VLAN_ADD,
8272 					   true);
8273 		ret = hclge_cmd_send(&hdev->hw, desc, 3);
8274 	} else {
8275 		memcpy(desc[0].data,
8276 		       req,
8277 		       sizeof(struct hclge_mac_vlan_tbl_entry_cmd));
8278 		ret = hclge_cmd_send(&hdev->hw, desc, 1);
8279 	}
8280 	if (ret) {
8281 		dev_err(&hdev->pdev->dev,
8282 			"lookup mac addr failed for cmd_send, ret =%d.\n",
8283 			ret);
8284 		return ret;
8285 	}
8286 	resp_code = (le32_to_cpu(desc[0].data[0]) >> 8) & 0xff;
8287 	retval = le16_to_cpu(desc[0].retval);
8288 
8289 	return hclge_get_mac_vlan_cmd_status(vport, retval, resp_code,
8290 					     HCLGE_MAC_VLAN_LKUP);
8291 }
8292 
8293 static int hclge_add_mac_vlan_tbl(struct hclge_vport *vport,
8294 				  struct hclge_mac_vlan_tbl_entry_cmd *req,
8295 				  struct hclge_desc *mc_desc)
8296 {
8297 	struct hclge_dev *hdev = vport->back;
8298 	int cfg_status;
8299 	u8 resp_code;
8300 	u16 retval;
8301 	int ret;
8302 
8303 	if (!mc_desc) {
8304 		struct hclge_desc desc;
8305 
8306 		hclge_cmd_setup_basic_desc(&desc,
8307 					   HCLGE_OPC_MAC_VLAN_ADD,
8308 					   false);
8309 		memcpy(desc.data, req,
8310 		       sizeof(struct hclge_mac_vlan_tbl_entry_cmd));
8311 		ret = hclge_cmd_send(&hdev->hw, &desc, 1);
8312 		resp_code = (le32_to_cpu(desc.data[0]) >> 8) & 0xff;
8313 		retval = le16_to_cpu(desc.retval);
8314 
8315 		cfg_status = hclge_get_mac_vlan_cmd_status(vport, retval,
8316 							   resp_code,
8317 							   HCLGE_MAC_VLAN_ADD);
8318 	} else {
8319 		hclge_comm_cmd_reuse_desc(&mc_desc[0], false);
8320 		mc_desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
8321 		hclge_comm_cmd_reuse_desc(&mc_desc[1], false);
8322 		mc_desc[1].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
8323 		hclge_comm_cmd_reuse_desc(&mc_desc[2], false);
8324 		mc_desc[2].flag &= cpu_to_le16(~HCLGE_COMM_CMD_FLAG_NEXT);
8325 		memcpy(mc_desc[0].data, req,
8326 		       sizeof(struct hclge_mac_vlan_tbl_entry_cmd));
8327 		ret = hclge_cmd_send(&hdev->hw, mc_desc, 3);
8328 		resp_code = (le32_to_cpu(mc_desc[0].data[0]) >> 8) & 0xff;
8329 		retval = le16_to_cpu(mc_desc[0].retval);
8330 
8331 		cfg_status = hclge_get_mac_vlan_cmd_status(vport, retval,
8332 							   resp_code,
8333 							   HCLGE_MAC_VLAN_ADD);
8334 	}
8335 
8336 	if (ret) {
8337 		dev_err(&hdev->pdev->dev,
8338 			"add mac addr failed for cmd_send, ret =%d.\n",
8339 			ret);
8340 		return ret;
8341 	}
8342 
8343 	return cfg_status;
8344 }
8345 
8346 static int hclge_set_umv_space(struct hclge_dev *hdev, u16 space_size,
8347 			       u16 *allocated_size)
8348 {
8349 	struct hclge_umv_spc_alc_cmd *req;
8350 	struct hclge_desc desc;
8351 	int ret;
8352 
8353 	req = (struct hclge_umv_spc_alc_cmd *)desc.data;
8354 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_ALLOCATE, false);
8355 
8356 	req->space_size = cpu_to_le32(space_size);
8357 
8358 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
8359 	if (ret) {
8360 		dev_err(&hdev->pdev->dev, "failed to set umv space, ret = %d\n",
8361 			ret);
8362 		return ret;
8363 	}
8364 
8365 	*allocated_size = le32_to_cpu(desc.data[1]);
8366 
8367 	return 0;
8368 }
8369 
8370 static int hclge_init_umv_space(struct hclge_dev *hdev)
8371 {
8372 	u16 allocated_size = 0;
8373 	int ret;
8374 
8375 	ret = hclge_set_umv_space(hdev, hdev->wanted_umv_size, &allocated_size);
8376 	if (ret)
8377 		return ret;
8378 
8379 	if (allocated_size < hdev->wanted_umv_size)
8380 		dev_warn(&hdev->pdev->dev,
8381 			 "failed to alloc umv space, want %u, get %u\n",
8382 			 hdev->wanted_umv_size, allocated_size);
8383 
8384 	hdev->max_umv_size = allocated_size;
8385 	hdev->priv_umv_size = hdev->max_umv_size / (hdev->num_alloc_vport + 1);
8386 	hdev->share_umv_size = hdev->priv_umv_size +
8387 			hdev->max_umv_size % (hdev->num_alloc_vport + 1);
8388 
8389 	if (hdev->ae_dev->dev_specs.mc_mac_size)
8390 		set_bit(HNAE3_DEV_SUPPORT_MC_MAC_MNG_B, hdev->ae_dev->caps);
8391 
8392 	return 0;
8393 }
8394 
8395 static void hclge_reset_umv_space(struct hclge_dev *hdev)
8396 {
8397 	struct hclge_vport *vport;
8398 	int i;
8399 
8400 	for (i = 0; i < hdev->num_alloc_vport; i++) {
8401 		vport = &hdev->vport[i];
8402 		vport->used_umv_num = 0;
8403 	}
8404 
8405 	mutex_lock(&hdev->vport_lock);
8406 	hdev->share_umv_size = hdev->priv_umv_size +
8407 			hdev->max_umv_size % (hdev->num_alloc_vport + 1);
8408 	mutex_unlock(&hdev->vport_lock);
8409 
8410 	hdev->used_mc_mac_num = 0;
8411 }
8412 
8413 static bool hclge_is_umv_space_full(struct hclge_vport *vport, bool need_lock)
8414 {
8415 	struct hclge_dev *hdev = vport->back;
8416 	bool is_full;
8417 
8418 	if (need_lock)
8419 		mutex_lock(&hdev->vport_lock);
8420 
8421 	is_full = (vport->used_umv_num >= hdev->priv_umv_size &&
8422 		   hdev->share_umv_size == 0);
8423 
8424 	if (need_lock)
8425 		mutex_unlock(&hdev->vport_lock);
8426 
8427 	return is_full;
8428 }
8429 
8430 static void hclge_update_umv_space(struct hclge_vport *vport, bool is_free)
8431 {
8432 	struct hclge_dev *hdev = vport->back;
8433 
8434 	if (is_free) {
8435 		if (vport->used_umv_num > hdev->priv_umv_size)
8436 			hdev->share_umv_size++;
8437 
8438 		if (vport->used_umv_num > 0)
8439 			vport->used_umv_num--;
8440 	} else {
8441 		if (vport->used_umv_num >= hdev->priv_umv_size &&
8442 		    hdev->share_umv_size > 0)
8443 			hdev->share_umv_size--;
8444 		vport->used_umv_num++;
8445 	}
8446 }
8447 
8448 static struct hclge_mac_node *hclge_find_mac_node(struct list_head *list,
8449 						  const u8 *mac_addr)
8450 {
8451 	struct hclge_mac_node *mac_node, *tmp;
8452 
8453 	list_for_each_entry_safe(mac_node, tmp, list, node)
8454 		if (ether_addr_equal(mac_addr, mac_node->mac_addr))
8455 			return mac_node;
8456 
8457 	return NULL;
8458 }
8459 
8460 static void hclge_update_mac_node(struct hclge_mac_node *mac_node,
8461 				  enum HCLGE_MAC_NODE_STATE state)
8462 {
8463 	switch (state) {
8464 	/* from set_rx_mode or tmp_add_list */
8465 	case HCLGE_MAC_TO_ADD:
8466 		if (mac_node->state == HCLGE_MAC_TO_DEL)
8467 			mac_node->state = HCLGE_MAC_ACTIVE;
8468 		break;
8469 	/* only from set_rx_mode */
8470 	case HCLGE_MAC_TO_DEL:
8471 		if (mac_node->state == HCLGE_MAC_TO_ADD) {
8472 			list_del(&mac_node->node);
8473 			kfree(mac_node);
8474 		} else {
8475 			mac_node->state = HCLGE_MAC_TO_DEL;
8476 		}
8477 		break;
8478 	/* only from tmp_add_list, the mac_node->state won't be
8479 	 * ACTIVE.
8480 	 */
8481 	case HCLGE_MAC_ACTIVE:
8482 		if (mac_node->state == HCLGE_MAC_TO_ADD)
8483 			mac_node->state = HCLGE_MAC_ACTIVE;
8484 
8485 		break;
8486 	}
8487 }
8488 
8489 int hclge_update_mac_list(struct hclge_vport *vport,
8490 			  enum HCLGE_MAC_NODE_STATE state,
8491 			  enum HCLGE_MAC_ADDR_TYPE mac_type,
8492 			  const unsigned char *addr)
8493 {
8494 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
8495 	struct hclge_dev *hdev = vport->back;
8496 	struct hclge_mac_node *mac_node;
8497 	struct list_head *list;
8498 
8499 	list = (mac_type == HCLGE_MAC_ADDR_UC) ?
8500 		&vport->uc_mac_list : &vport->mc_mac_list;
8501 
8502 	spin_lock_bh(&vport->mac_list_lock);
8503 
8504 	/* if the mac addr is already in the mac list, no need to add a new
8505 	 * one into it, just check the mac addr state, convert it to a new
8506 	 * state, or just remove it, or do nothing.
8507 	 */
8508 	mac_node = hclge_find_mac_node(list, addr);
8509 	if (mac_node) {
8510 		hclge_update_mac_node(mac_node, state);
8511 		spin_unlock_bh(&vport->mac_list_lock);
8512 		set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, &vport->state);
8513 		return 0;
8514 	}
8515 
8516 	/* if this address is never added, unnecessary to delete */
8517 	if (state == HCLGE_MAC_TO_DEL) {
8518 		spin_unlock_bh(&vport->mac_list_lock);
8519 		hnae3_format_mac_addr(format_mac_addr, addr);
8520 		dev_err(&hdev->pdev->dev,
8521 			"failed to delete address %s from mac list\n",
8522 			format_mac_addr);
8523 		return -ENOENT;
8524 	}
8525 
8526 	mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
8527 	if (!mac_node) {
8528 		spin_unlock_bh(&vport->mac_list_lock);
8529 		return -ENOMEM;
8530 	}
8531 
8532 	set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, &vport->state);
8533 
8534 	mac_node->state = state;
8535 	ether_addr_copy(mac_node->mac_addr, addr);
8536 	list_add_tail(&mac_node->node, list);
8537 
8538 	spin_unlock_bh(&vport->mac_list_lock);
8539 
8540 	return 0;
8541 }
8542 
8543 static int hclge_add_uc_addr(struct hnae3_handle *handle,
8544 			     const unsigned char *addr)
8545 {
8546 	struct hclge_vport *vport = hclge_get_vport(handle);
8547 
8548 	return hclge_update_mac_list(vport, HCLGE_MAC_TO_ADD, HCLGE_MAC_ADDR_UC,
8549 				     addr);
8550 }
8551 
8552 int hclge_add_uc_addr_common(struct hclge_vport *vport,
8553 			     const unsigned char *addr)
8554 {
8555 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
8556 	struct hclge_dev *hdev = vport->back;
8557 	struct hclge_mac_vlan_tbl_entry_cmd req;
8558 	struct hclge_desc desc;
8559 	u16 egress_port = 0;
8560 	int ret;
8561 
8562 	/* mac addr check */
8563 	if (is_zero_ether_addr(addr) ||
8564 	    is_broadcast_ether_addr(addr) ||
8565 	    is_multicast_ether_addr(addr)) {
8566 		hnae3_format_mac_addr(format_mac_addr, addr);
8567 		dev_err(&hdev->pdev->dev,
8568 			"Set_uc mac err! invalid mac:%s. is_zero:%d,is_br=%d,is_mul=%d\n",
8569 			 format_mac_addr, is_zero_ether_addr(addr),
8570 			 is_broadcast_ether_addr(addr),
8571 			 is_multicast_ether_addr(addr));
8572 		return -EINVAL;
8573 	}
8574 
8575 	memset(&req, 0, sizeof(req));
8576 
8577 	hnae3_set_field(egress_port, HCLGE_MAC_EPORT_VFID_M,
8578 			HCLGE_MAC_EPORT_VFID_S, vport->vport_id);
8579 
8580 	req.egress_port = cpu_to_le16(egress_port);
8581 
8582 	hclge_prepare_mac_addr(&req, addr, false);
8583 
8584 	/* Lookup the mac address in the mac_vlan table, and add
8585 	 * it if the entry is inexistent. Repeated unicast entry
8586 	 * is not allowed in the mac vlan table.
8587 	 */
8588 	ret = hclge_lookup_mac_vlan_tbl(vport, &req, &desc, false);
8589 	if (ret == -ENOENT) {
8590 		mutex_lock(&hdev->vport_lock);
8591 		if (!hclge_is_umv_space_full(vport, false)) {
8592 			ret = hclge_add_mac_vlan_tbl(vport, &req, NULL);
8593 			if (!ret)
8594 				hclge_update_umv_space(vport, false);
8595 			mutex_unlock(&hdev->vport_lock);
8596 			return ret;
8597 		}
8598 		mutex_unlock(&hdev->vport_lock);
8599 
8600 		if (!(vport->overflow_promisc_flags & HNAE3_OVERFLOW_UPE))
8601 			dev_err(&hdev->pdev->dev, "UC MAC table full(%u)\n",
8602 				hdev->priv_umv_size);
8603 
8604 		return -ENOSPC;
8605 	}
8606 
8607 	/* check if we just hit the duplicate */
8608 	if (!ret)
8609 		return -EEXIST;
8610 
8611 	return ret;
8612 }
8613 
8614 static int hclge_rm_uc_addr(struct hnae3_handle *handle,
8615 			    const unsigned char *addr)
8616 {
8617 	struct hclge_vport *vport = hclge_get_vport(handle);
8618 
8619 	return hclge_update_mac_list(vport, HCLGE_MAC_TO_DEL, HCLGE_MAC_ADDR_UC,
8620 				     addr);
8621 }
8622 
8623 int hclge_rm_uc_addr_common(struct hclge_vport *vport,
8624 			    const unsigned char *addr)
8625 {
8626 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
8627 	struct hclge_dev *hdev = vport->back;
8628 	struct hclge_mac_vlan_tbl_entry_cmd req;
8629 	int ret;
8630 
8631 	/* mac addr check */
8632 	if (is_zero_ether_addr(addr) ||
8633 	    is_broadcast_ether_addr(addr) ||
8634 	    is_multicast_ether_addr(addr)) {
8635 		hnae3_format_mac_addr(format_mac_addr, addr);
8636 		dev_dbg(&hdev->pdev->dev, "Remove mac err! invalid mac:%s.\n",
8637 			format_mac_addr);
8638 		return -EINVAL;
8639 	}
8640 
8641 	memset(&req, 0, sizeof(req));
8642 	hnae3_set_bit(req.entry_type, HCLGE_MAC_VLAN_BIT0_EN_B, 0);
8643 	hclge_prepare_mac_addr(&req, addr, false);
8644 	ret = hclge_remove_mac_vlan_tbl(vport, &req);
8645 	if (!ret || ret == -ENOENT) {
8646 		mutex_lock(&hdev->vport_lock);
8647 		hclge_update_umv_space(vport, true);
8648 		mutex_unlock(&hdev->vport_lock);
8649 		return 0;
8650 	}
8651 
8652 	return ret;
8653 }
8654 
8655 static int hclge_add_mc_addr(struct hnae3_handle *handle,
8656 			     const unsigned char *addr)
8657 {
8658 	struct hclge_vport *vport = hclge_get_vport(handle);
8659 
8660 	return hclge_update_mac_list(vport, HCLGE_MAC_TO_ADD, HCLGE_MAC_ADDR_MC,
8661 				     addr);
8662 }
8663 
8664 int hclge_add_mc_addr_common(struct hclge_vport *vport,
8665 			     const unsigned char *addr)
8666 {
8667 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
8668 	struct hclge_dev *hdev = vport->back;
8669 	struct hclge_mac_vlan_tbl_entry_cmd req;
8670 	struct hclge_desc desc[3];
8671 	bool is_new_addr = false;
8672 	int status;
8673 
8674 	/* mac addr check */
8675 	if (!is_multicast_ether_addr(addr)) {
8676 		hnae3_format_mac_addr(format_mac_addr, addr);
8677 		dev_err(&hdev->pdev->dev,
8678 			"Add mc mac err! invalid mac:%s.\n",
8679 			 format_mac_addr);
8680 		return -EINVAL;
8681 	}
8682 	memset(&req, 0, sizeof(req));
8683 	hclge_prepare_mac_addr(&req, addr, true);
8684 	status = hclge_lookup_mac_vlan_tbl(vport, &req, desc, true);
8685 	if (status) {
8686 		if (hnae3_ae_dev_mc_mac_mng_supported(hdev->ae_dev) &&
8687 		    hdev->used_mc_mac_num >=
8688 		    hdev->ae_dev->dev_specs.mc_mac_size)
8689 			goto err_no_space;
8690 
8691 		is_new_addr = true;
8692 
8693 		/* This mac addr do not exist, add new entry for it */
8694 		memset(desc[0].data, 0, sizeof(desc[0].data));
8695 		memset(desc[1].data, 0, sizeof(desc[0].data));
8696 		memset(desc[2].data, 0, sizeof(desc[0].data));
8697 	}
8698 	status = hclge_update_desc_vfid(desc, vport->vport_id, false);
8699 	if (status)
8700 		return status;
8701 	status = hclge_add_mac_vlan_tbl(vport, &req, desc);
8702 	if (status == -ENOSPC)
8703 		goto err_no_space;
8704 	else if (!status && is_new_addr)
8705 		hdev->used_mc_mac_num++;
8706 
8707 	return status;
8708 
8709 err_no_space:
8710 	/* if already overflow, not to print each time */
8711 	if (!(vport->overflow_promisc_flags & HNAE3_OVERFLOW_MPE)) {
8712 		vport->overflow_promisc_flags |= HNAE3_OVERFLOW_MPE;
8713 		dev_err(&hdev->pdev->dev, "mc mac vlan table is full\n");
8714 	}
8715 
8716 	return -ENOSPC;
8717 }
8718 
8719 static int hclge_rm_mc_addr(struct hnae3_handle *handle,
8720 			    const unsigned char *addr)
8721 {
8722 	struct hclge_vport *vport = hclge_get_vport(handle);
8723 
8724 	return hclge_update_mac_list(vport, HCLGE_MAC_TO_DEL, HCLGE_MAC_ADDR_MC,
8725 				     addr);
8726 }
8727 
8728 int hclge_rm_mc_addr_common(struct hclge_vport *vport,
8729 			    const unsigned char *addr)
8730 {
8731 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
8732 	struct hclge_dev *hdev = vport->back;
8733 	struct hclge_mac_vlan_tbl_entry_cmd req;
8734 	enum hclge_comm_cmd_status status;
8735 	struct hclge_desc desc[3];
8736 
8737 	/* mac addr check */
8738 	if (!is_multicast_ether_addr(addr)) {
8739 		hnae3_format_mac_addr(format_mac_addr, addr);
8740 		dev_dbg(&hdev->pdev->dev,
8741 			"Remove mc mac err! invalid mac:%s.\n",
8742 			 format_mac_addr);
8743 		return -EINVAL;
8744 	}
8745 
8746 	memset(&req, 0, sizeof(req));
8747 	hclge_prepare_mac_addr(&req, addr, true);
8748 	status = hclge_lookup_mac_vlan_tbl(vport, &req, desc, true);
8749 	if (!status) {
8750 		/* This mac addr exist, remove this handle's VFID for it */
8751 		status = hclge_update_desc_vfid(desc, vport->vport_id, true);
8752 		if (status)
8753 			return status;
8754 
8755 		if (hclge_is_all_function_id_zero(desc)) {
8756 			/* All the vfid is zero, so need to delete this entry */
8757 			status = hclge_remove_mac_vlan_tbl(vport, &req);
8758 			if (!status)
8759 				hdev->used_mc_mac_num--;
8760 		} else {
8761 			/* Not all the vfid is zero, update the vfid */
8762 			status = hclge_add_mac_vlan_tbl(vport, &req, desc);
8763 		}
8764 	} else if (status == -ENOENT) {
8765 		status = 0;
8766 	}
8767 
8768 	return status;
8769 }
8770 
8771 static void hclge_sync_vport_mac_list(struct hclge_vport *vport,
8772 				      struct list_head *list,
8773 				      enum HCLGE_MAC_ADDR_TYPE mac_type)
8774 {
8775 	int (*sync)(struct hclge_vport *vport, const unsigned char *addr);
8776 	struct hclge_mac_node *mac_node, *tmp;
8777 	int ret;
8778 
8779 	if (mac_type == HCLGE_MAC_ADDR_UC)
8780 		sync = hclge_add_uc_addr_common;
8781 	else
8782 		sync = hclge_add_mc_addr_common;
8783 
8784 	list_for_each_entry_safe(mac_node, tmp, list, node) {
8785 		ret = sync(vport, mac_node->mac_addr);
8786 		if (!ret) {
8787 			mac_node->state = HCLGE_MAC_ACTIVE;
8788 		} else {
8789 			set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE,
8790 				&vport->state);
8791 
8792 			/* If one unicast mac address is existing in hardware,
8793 			 * we need to try whether other unicast mac addresses
8794 			 * are new addresses that can be added.
8795 			 * Multicast mac address can be reusable, even though
8796 			 * there is no space to add new multicast mac address,
8797 			 * we should check whether other mac addresses are
8798 			 * existing in hardware for reuse.
8799 			 */
8800 			if ((mac_type == HCLGE_MAC_ADDR_UC && ret != -EEXIST) ||
8801 			    (mac_type == HCLGE_MAC_ADDR_MC && ret != -ENOSPC))
8802 				break;
8803 		}
8804 	}
8805 }
8806 
8807 static void hclge_unsync_vport_mac_list(struct hclge_vport *vport,
8808 					struct list_head *list,
8809 					enum HCLGE_MAC_ADDR_TYPE mac_type)
8810 {
8811 	int (*unsync)(struct hclge_vport *vport, const unsigned char *addr);
8812 	struct hclge_mac_node *mac_node, *tmp;
8813 	int ret;
8814 
8815 	if (mac_type == HCLGE_MAC_ADDR_UC)
8816 		unsync = hclge_rm_uc_addr_common;
8817 	else
8818 		unsync = hclge_rm_mc_addr_common;
8819 
8820 	list_for_each_entry_safe(mac_node, tmp, list, node) {
8821 		ret = unsync(vport, mac_node->mac_addr);
8822 		if (!ret || ret == -ENOENT) {
8823 			list_del(&mac_node->node);
8824 			kfree(mac_node);
8825 		} else {
8826 			set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE,
8827 				&vport->state);
8828 			break;
8829 		}
8830 	}
8831 }
8832 
8833 static bool hclge_sync_from_add_list(struct list_head *add_list,
8834 				     struct list_head *mac_list)
8835 {
8836 	struct hclge_mac_node *mac_node, *tmp, *new_node;
8837 	bool all_added = true;
8838 
8839 	list_for_each_entry_safe(mac_node, tmp, add_list, node) {
8840 		if (mac_node->state == HCLGE_MAC_TO_ADD)
8841 			all_added = false;
8842 
8843 		/* if the mac address from tmp_add_list is not in the
8844 		 * uc/mc_mac_list, it means have received a TO_DEL request
8845 		 * during the time window of adding the mac address into mac
8846 		 * table. if mac_node state is ACTIVE, then change it to TO_DEL,
8847 		 * then it will be removed at next time. else it must be TO_ADD,
8848 		 * this address hasn't been added into mac table,
8849 		 * so just remove the mac node.
8850 		 */
8851 		new_node = hclge_find_mac_node(mac_list, mac_node->mac_addr);
8852 		if (new_node) {
8853 			hclge_update_mac_node(new_node, mac_node->state);
8854 			list_del(&mac_node->node);
8855 			kfree(mac_node);
8856 		} else if (mac_node->state == HCLGE_MAC_ACTIVE) {
8857 			mac_node->state = HCLGE_MAC_TO_DEL;
8858 			list_move_tail(&mac_node->node, mac_list);
8859 		} else {
8860 			list_del(&mac_node->node);
8861 			kfree(mac_node);
8862 		}
8863 	}
8864 
8865 	return all_added;
8866 }
8867 
8868 static void hclge_sync_from_del_list(struct list_head *del_list,
8869 				     struct list_head *mac_list)
8870 {
8871 	struct hclge_mac_node *mac_node, *tmp, *new_node;
8872 
8873 	list_for_each_entry_safe(mac_node, tmp, del_list, node) {
8874 		new_node = hclge_find_mac_node(mac_list, mac_node->mac_addr);
8875 		if (new_node) {
8876 			/* If the mac addr exists in the mac list, it means
8877 			 * received a new TO_ADD request during the time window
8878 			 * of configuring the mac address. For the mac node
8879 			 * state is TO_ADD, and the address is already in the
8880 			 * in the hardware(due to delete fail), so we just need
8881 			 * to change the mac node state to ACTIVE.
8882 			 */
8883 			new_node->state = HCLGE_MAC_ACTIVE;
8884 			list_del(&mac_node->node);
8885 			kfree(mac_node);
8886 		} else {
8887 			list_move_tail(&mac_node->node, mac_list);
8888 		}
8889 	}
8890 }
8891 
8892 static void hclge_update_overflow_flags(struct hclge_vport *vport,
8893 					enum HCLGE_MAC_ADDR_TYPE mac_type,
8894 					bool is_all_added)
8895 {
8896 	if (mac_type == HCLGE_MAC_ADDR_UC) {
8897 		if (is_all_added)
8898 			vport->overflow_promisc_flags &= ~HNAE3_OVERFLOW_UPE;
8899 		else
8900 			vport->overflow_promisc_flags |= HNAE3_OVERFLOW_UPE;
8901 	} else {
8902 		if (is_all_added)
8903 			vport->overflow_promisc_flags &= ~HNAE3_OVERFLOW_MPE;
8904 		else
8905 			vport->overflow_promisc_flags |= HNAE3_OVERFLOW_MPE;
8906 	}
8907 }
8908 
8909 static void hclge_sync_vport_mac_table(struct hclge_vport *vport,
8910 				       enum HCLGE_MAC_ADDR_TYPE mac_type)
8911 {
8912 	struct hclge_mac_node *mac_node, *tmp, *new_node;
8913 	struct list_head tmp_add_list, tmp_del_list;
8914 	struct list_head *list;
8915 	bool all_added;
8916 
8917 	INIT_LIST_HEAD(&tmp_add_list);
8918 	INIT_LIST_HEAD(&tmp_del_list);
8919 
8920 	/* move the mac addr to the tmp_add_list and tmp_del_list, then
8921 	 * we can add/delete these mac addr outside the spin lock
8922 	 */
8923 	list = (mac_type == HCLGE_MAC_ADDR_UC) ?
8924 		&vport->uc_mac_list : &vport->mc_mac_list;
8925 
8926 	spin_lock_bh(&vport->mac_list_lock);
8927 
8928 	list_for_each_entry_safe(mac_node, tmp, list, node) {
8929 		switch (mac_node->state) {
8930 		case HCLGE_MAC_TO_DEL:
8931 			list_move_tail(&mac_node->node, &tmp_del_list);
8932 			break;
8933 		case HCLGE_MAC_TO_ADD:
8934 			new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
8935 			if (!new_node)
8936 				goto stop_traverse;
8937 			ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
8938 			new_node->state = mac_node->state;
8939 			list_add_tail(&new_node->node, &tmp_add_list);
8940 			break;
8941 		default:
8942 			break;
8943 		}
8944 	}
8945 
8946 stop_traverse:
8947 	spin_unlock_bh(&vport->mac_list_lock);
8948 
8949 	/* delete first, in order to get max mac table space for adding */
8950 	hclge_unsync_vport_mac_list(vport, &tmp_del_list, mac_type);
8951 	hclge_sync_vport_mac_list(vport, &tmp_add_list, mac_type);
8952 
8953 	/* if some mac addresses were added/deleted fail, move back to the
8954 	 * mac_list, and retry at next time.
8955 	 */
8956 	spin_lock_bh(&vport->mac_list_lock);
8957 
8958 	hclge_sync_from_del_list(&tmp_del_list, list);
8959 	all_added = hclge_sync_from_add_list(&tmp_add_list, list);
8960 
8961 	spin_unlock_bh(&vport->mac_list_lock);
8962 
8963 	hclge_update_overflow_flags(vport, mac_type, all_added);
8964 }
8965 
8966 static bool hclge_need_sync_mac_table(struct hclge_vport *vport)
8967 {
8968 	struct hclge_dev *hdev = vport->back;
8969 
8970 	if (test_bit(vport->vport_id, hdev->vport_config_block))
8971 		return false;
8972 
8973 	if (test_and_clear_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, &vport->state))
8974 		return true;
8975 
8976 	return false;
8977 }
8978 
8979 static void hclge_sync_mac_table(struct hclge_dev *hdev)
8980 {
8981 	int i;
8982 
8983 	for (i = 0; i < hdev->num_alloc_vport; i++) {
8984 		struct hclge_vport *vport = &hdev->vport[i];
8985 
8986 		if (!hclge_need_sync_mac_table(vport))
8987 			continue;
8988 
8989 		hclge_sync_vport_mac_table(vport, HCLGE_MAC_ADDR_UC);
8990 		hclge_sync_vport_mac_table(vport, HCLGE_MAC_ADDR_MC);
8991 	}
8992 }
8993 
8994 static void hclge_build_del_list(struct list_head *list,
8995 				 bool is_del_list,
8996 				 struct list_head *tmp_del_list)
8997 {
8998 	struct hclge_mac_node *mac_cfg, *tmp;
8999 
9000 	list_for_each_entry_safe(mac_cfg, tmp, list, node) {
9001 		switch (mac_cfg->state) {
9002 		case HCLGE_MAC_TO_DEL:
9003 		case HCLGE_MAC_ACTIVE:
9004 			list_move_tail(&mac_cfg->node, tmp_del_list);
9005 			break;
9006 		case HCLGE_MAC_TO_ADD:
9007 			if (is_del_list) {
9008 				list_del(&mac_cfg->node);
9009 				kfree(mac_cfg);
9010 			}
9011 			break;
9012 		}
9013 	}
9014 }
9015 
9016 static void hclge_unsync_del_list(struct hclge_vport *vport,
9017 				  int (*unsync)(struct hclge_vport *vport,
9018 						const unsigned char *addr),
9019 				  bool is_del_list,
9020 				  struct list_head *tmp_del_list)
9021 {
9022 	struct hclge_mac_node *mac_cfg, *tmp;
9023 	int ret;
9024 
9025 	list_for_each_entry_safe(mac_cfg, tmp, tmp_del_list, node) {
9026 		ret = unsync(vport, mac_cfg->mac_addr);
9027 		if (!ret || ret == -ENOENT) {
9028 			/* clear all mac addr from hardware, but remain these
9029 			 * mac addr in the mac list, and restore them after
9030 			 * vf reset finished.
9031 			 */
9032 			if (!is_del_list &&
9033 			    mac_cfg->state == HCLGE_MAC_ACTIVE) {
9034 				mac_cfg->state = HCLGE_MAC_TO_ADD;
9035 			} else {
9036 				list_del(&mac_cfg->node);
9037 				kfree(mac_cfg);
9038 			}
9039 		} else if (is_del_list) {
9040 			mac_cfg->state = HCLGE_MAC_TO_DEL;
9041 		}
9042 	}
9043 }
9044 
9045 void hclge_rm_vport_all_mac_table(struct hclge_vport *vport, bool is_del_list,
9046 				  enum HCLGE_MAC_ADDR_TYPE mac_type)
9047 {
9048 	int (*unsync)(struct hclge_vport *vport, const unsigned char *addr);
9049 	struct hclge_dev *hdev = vport->back;
9050 	struct list_head tmp_del_list, *list;
9051 
9052 	if (mac_type == HCLGE_MAC_ADDR_UC) {
9053 		list = &vport->uc_mac_list;
9054 		unsync = hclge_rm_uc_addr_common;
9055 	} else {
9056 		list = &vport->mc_mac_list;
9057 		unsync = hclge_rm_mc_addr_common;
9058 	}
9059 
9060 	INIT_LIST_HEAD(&tmp_del_list);
9061 
9062 	if (!is_del_list)
9063 		set_bit(vport->vport_id, hdev->vport_config_block);
9064 
9065 	spin_lock_bh(&vport->mac_list_lock);
9066 
9067 	hclge_build_del_list(list, is_del_list, &tmp_del_list);
9068 
9069 	spin_unlock_bh(&vport->mac_list_lock);
9070 
9071 	hclge_unsync_del_list(vport, unsync, is_del_list, &tmp_del_list);
9072 
9073 	spin_lock_bh(&vport->mac_list_lock);
9074 
9075 	hclge_sync_from_del_list(&tmp_del_list, list);
9076 
9077 	spin_unlock_bh(&vport->mac_list_lock);
9078 }
9079 
9080 /* remove all mac address when uninitailize */
9081 static void hclge_uninit_vport_mac_list(struct hclge_vport *vport,
9082 					enum HCLGE_MAC_ADDR_TYPE mac_type)
9083 {
9084 	struct hclge_mac_node *mac_node, *tmp;
9085 	struct hclge_dev *hdev = vport->back;
9086 	struct list_head tmp_del_list, *list;
9087 
9088 	INIT_LIST_HEAD(&tmp_del_list);
9089 
9090 	list = (mac_type == HCLGE_MAC_ADDR_UC) ?
9091 		&vport->uc_mac_list : &vport->mc_mac_list;
9092 
9093 	spin_lock_bh(&vport->mac_list_lock);
9094 
9095 	list_for_each_entry_safe(mac_node, tmp, list, node) {
9096 		switch (mac_node->state) {
9097 		case HCLGE_MAC_TO_DEL:
9098 		case HCLGE_MAC_ACTIVE:
9099 			list_move_tail(&mac_node->node, &tmp_del_list);
9100 			break;
9101 		case HCLGE_MAC_TO_ADD:
9102 			list_del(&mac_node->node);
9103 			kfree(mac_node);
9104 			break;
9105 		}
9106 	}
9107 
9108 	spin_unlock_bh(&vport->mac_list_lock);
9109 
9110 	hclge_unsync_vport_mac_list(vport, &tmp_del_list, mac_type);
9111 
9112 	if (!list_empty(&tmp_del_list))
9113 		dev_warn(&hdev->pdev->dev,
9114 			 "uninit %s mac list for vport %u not completely.\n",
9115 			 mac_type == HCLGE_MAC_ADDR_UC ? "uc" : "mc",
9116 			 vport->vport_id);
9117 
9118 	list_for_each_entry_safe(mac_node, tmp, &tmp_del_list, node) {
9119 		list_del(&mac_node->node);
9120 		kfree(mac_node);
9121 	}
9122 }
9123 
9124 static void hclge_uninit_mac_table(struct hclge_dev *hdev)
9125 {
9126 	struct hclge_vport *vport;
9127 	int i;
9128 
9129 	for (i = 0; i < hdev->num_alloc_vport; i++) {
9130 		vport = &hdev->vport[i];
9131 		hclge_uninit_vport_mac_list(vport, HCLGE_MAC_ADDR_UC);
9132 		hclge_uninit_vport_mac_list(vport, HCLGE_MAC_ADDR_MC);
9133 	}
9134 }
9135 
9136 static int hclge_get_mac_ethertype_cmd_status(struct hclge_dev *hdev,
9137 					      u16 cmdq_resp, u8 resp_code)
9138 {
9139 #define HCLGE_ETHERTYPE_SUCCESS_ADD		0
9140 #define HCLGE_ETHERTYPE_ALREADY_ADD		1
9141 #define HCLGE_ETHERTYPE_MGR_TBL_OVERFLOW	2
9142 #define HCLGE_ETHERTYPE_KEY_CONFLICT		3
9143 
9144 	int return_status;
9145 
9146 	if (cmdq_resp) {
9147 		dev_err(&hdev->pdev->dev,
9148 			"cmdq execute failed for get_mac_ethertype_cmd_status, status=%u.\n",
9149 			cmdq_resp);
9150 		return -EIO;
9151 	}
9152 
9153 	switch (resp_code) {
9154 	case HCLGE_ETHERTYPE_SUCCESS_ADD:
9155 	case HCLGE_ETHERTYPE_ALREADY_ADD:
9156 		return_status = 0;
9157 		break;
9158 	case HCLGE_ETHERTYPE_MGR_TBL_OVERFLOW:
9159 		dev_err(&hdev->pdev->dev,
9160 			"add mac ethertype failed for manager table overflow.\n");
9161 		return_status = -EIO;
9162 		break;
9163 	case HCLGE_ETHERTYPE_KEY_CONFLICT:
9164 		dev_err(&hdev->pdev->dev,
9165 			"add mac ethertype failed for key conflict.\n");
9166 		return_status = -EIO;
9167 		break;
9168 	default:
9169 		dev_err(&hdev->pdev->dev,
9170 			"add mac ethertype failed for undefined, code=%u.\n",
9171 			resp_code);
9172 		return_status = -EIO;
9173 	}
9174 
9175 	return return_status;
9176 }
9177 
9178 static int hclge_set_vf_mac(struct hnae3_handle *handle, int vf,
9179 			    u8 *mac_addr)
9180 {
9181 	struct hclge_vport *vport = hclge_get_vport(handle);
9182 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
9183 	struct hclge_dev *hdev = vport->back;
9184 
9185 	vport = hclge_get_vf_vport(hdev, vf);
9186 	if (!vport)
9187 		return -EINVAL;
9188 
9189 	hnae3_format_mac_addr(format_mac_addr, mac_addr);
9190 	if (ether_addr_equal(mac_addr, vport->vf_info.mac)) {
9191 		dev_info(&hdev->pdev->dev,
9192 			 "Specified MAC(=%s) is same as before, no change committed!\n",
9193 			 format_mac_addr);
9194 		return 0;
9195 	}
9196 
9197 	ether_addr_copy(vport->vf_info.mac, mac_addr);
9198 
9199 	/* there is a timewindow for PF to know VF unalive, it may
9200 	 * cause send mailbox fail, but it doesn't matter, VF will
9201 	 * query it when reinit.
9202 	 */
9203 	if (test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state)) {
9204 		dev_info(&hdev->pdev->dev,
9205 			 "MAC of VF %d has been set to %s, and it will be reinitialized!\n",
9206 			 vf, format_mac_addr);
9207 		(void)hclge_inform_reset_assert_to_vf(vport);
9208 		return 0;
9209 	}
9210 
9211 	dev_info(&hdev->pdev->dev, "MAC of VF %d has been set to %s\n",
9212 		 vf, format_mac_addr);
9213 	return 0;
9214 }
9215 
9216 static int hclge_add_mgr_tbl(struct hclge_dev *hdev,
9217 			     const struct hclge_mac_mgr_tbl_entry_cmd *req)
9218 {
9219 	struct hclge_desc desc;
9220 	u8 resp_code;
9221 	u16 retval;
9222 	int ret;
9223 
9224 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_ETHTYPE_ADD, false);
9225 	memcpy(desc.data, req, sizeof(struct hclge_mac_mgr_tbl_entry_cmd));
9226 
9227 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
9228 	if (ret) {
9229 		dev_err(&hdev->pdev->dev,
9230 			"add mac ethertype failed for cmd_send, ret =%d.\n",
9231 			ret);
9232 		return ret;
9233 	}
9234 
9235 	resp_code = (le32_to_cpu(desc.data[0]) >> 8) & 0xff;
9236 	retval = le16_to_cpu(desc.retval);
9237 
9238 	return hclge_get_mac_ethertype_cmd_status(hdev, retval, resp_code);
9239 }
9240 
9241 static int init_mgr_tbl(struct hclge_dev *hdev)
9242 {
9243 	int ret;
9244 	int i;
9245 
9246 	for (i = 0; i < ARRAY_SIZE(hclge_mgr_table); i++) {
9247 		ret = hclge_add_mgr_tbl(hdev, &hclge_mgr_table[i]);
9248 		if (ret) {
9249 			dev_err(&hdev->pdev->dev,
9250 				"add mac ethertype failed, ret =%d.\n",
9251 				ret);
9252 			return ret;
9253 		}
9254 	}
9255 
9256 	return 0;
9257 }
9258 
9259 static void hclge_get_mac_addr(struct hnae3_handle *handle, u8 *p)
9260 {
9261 	struct hclge_vport *vport = hclge_get_vport(handle);
9262 	struct hclge_dev *hdev = vport->back;
9263 
9264 	ether_addr_copy(p, hdev->hw.mac.mac_addr);
9265 }
9266 
9267 int hclge_update_mac_node_for_dev_addr(struct hclge_vport *vport,
9268 				       const u8 *old_addr, const u8 *new_addr)
9269 {
9270 	struct list_head *list = &vport->uc_mac_list;
9271 	struct hclge_mac_node *old_node, *new_node;
9272 
9273 	new_node = hclge_find_mac_node(list, new_addr);
9274 	if (!new_node) {
9275 		new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
9276 		if (!new_node)
9277 			return -ENOMEM;
9278 
9279 		new_node->state = HCLGE_MAC_TO_ADD;
9280 		ether_addr_copy(new_node->mac_addr, new_addr);
9281 		list_add(&new_node->node, list);
9282 	} else {
9283 		if (new_node->state == HCLGE_MAC_TO_DEL)
9284 			new_node->state = HCLGE_MAC_ACTIVE;
9285 
9286 		/* make sure the new addr is in the list head, avoid dev
9287 		 * addr may be not re-added into mac table for the umv space
9288 		 * limitation after global/imp reset which will clear mac
9289 		 * table by hardware.
9290 		 */
9291 		list_move(&new_node->node, list);
9292 	}
9293 
9294 	if (old_addr && !ether_addr_equal(old_addr, new_addr)) {
9295 		old_node = hclge_find_mac_node(list, old_addr);
9296 		if (old_node) {
9297 			if (old_node->state == HCLGE_MAC_TO_ADD) {
9298 				list_del(&old_node->node);
9299 				kfree(old_node);
9300 			} else {
9301 				old_node->state = HCLGE_MAC_TO_DEL;
9302 			}
9303 		}
9304 	}
9305 
9306 	set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, &vport->state);
9307 
9308 	return 0;
9309 }
9310 
9311 static int hclge_set_mac_addr(struct hnae3_handle *handle, const void *p,
9312 			      bool is_first)
9313 {
9314 	const unsigned char *new_addr = (const unsigned char *)p;
9315 	struct hclge_vport *vport = hclge_get_vport(handle);
9316 	char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN];
9317 	struct hclge_dev *hdev = vport->back;
9318 	unsigned char *old_addr = NULL;
9319 	int ret;
9320 
9321 	/* mac addr check */
9322 	if (is_zero_ether_addr(new_addr) ||
9323 	    is_broadcast_ether_addr(new_addr) ||
9324 	    is_multicast_ether_addr(new_addr)) {
9325 		hnae3_format_mac_addr(format_mac_addr, new_addr);
9326 		dev_err(&hdev->pdev->dev,
9327 			"change uc mac err! invalid mac: %s.\n",
9328 			 format_mac_addr);
9329 		return -EINVAL;
9330 	}
9331 
9332 	ret = hclge_pause_addr_cfg(hdev, new_addr);
9333 	if (ret) {
9334 		dev_err(&hdev->pdev->dev,
9335 			"failed to configure mac pause address, ret = %d\n",
9336 			ret);
9337 		return ret;
9338 	}
9339 
9340 	if (!is_first)
9341 		old_addr = hdev->hw.mac.mac_addr;
9342 
9343 	spin_lock_bh(&vport->mac_list_lock);
9344 	ret = hclge_update_mac_node_for_dev_addr(vport, old_addr, new_addr);
9345 	if (ret) {
9346 		hnae3_format_mac_addr(format_mac_addr, new_addr);
9347 		dev_err(&hdev->pdev->dev,
9348 			"failed to change the mac addr:%s, ret = %d\n",
9349 			format_mac_addr, ret);
9350 		spin_unlock_bh(&vport->mac_list_lock);
9351 
9352 		if (!is_first)
9353 			hclge_pause_addr_cfg(hdev, old_addr);
9354 
9355 		return ret;
9356 	}
9357 	/* we must update dev addr with spin lock protect, preventing dev addr
9358 	 * being removed by set_rx_mode path.
9359 	 */
9360 	ether_addr_copy(hdev->hw.mac.mac_addr, new_addr);
9361 	spin_unlock_bh(&vport->mac_list_lock);
9362 
9363 	hclge_task_schedule(hdev, 0);
9364 
9365 	return 0;
9366 }
9367 
9368 static int hclge_mii_ioctl(struct hclge_dev *hdev, struct ifreq *ifr, int cmd)
9369 {
9370 	struct mii_ioctl_data *data = if_mii(ifr);
9371 
9372 	if (!hnae3_dev_phy_imp_supported(hdev))
9373 		return -EOPNOTSUPP;
9374 
9375 	switch (cmd) {
9376 	case SIOCGMIIPHY:
9377 		data->phy_id = hdev->hw.mac.phy_addr;
9378 		/* this command reads phy id and register at the same time */
9379 		fallthrough;
9380 	case SIOCGMIIREG:
9381 		data->val_out = hclge_read_phy_reg(hdev, data->reg_num);
9382 		return 0;
9383 
9384 	case SIOCSMIIREG:
9385 		return hclge_write_phy_reg(hdev, data->reg_num, data->val_in);
9386 	default:
9387 		return -EOPNOTSUPP;
9388 	}
9389 }
9390 
9391 static int hclge_do_ioctl(struct hnae3_handle *handle, struct ifreq *ifr,
9392 			  int cmd)
9393 {
9394 	struct hclge_vport *vport = hclge_get_vport(handle);
9395 	struct hclge_dev *hdev = vport->back;
9396 
9397 	switch (cmd) {
9398 	case SIOCGHWTSTAMP:
9399 		return hclge_ptp_get_cfg(hdev, ifr);
9400 	case SIOCSHWTSTAMP:
9401 		return hclge_ptp_set_cfg(hdev, ifr);
9402 	default:
9403 		if (!hdev->hw.mac.phydev)
9404 			return hclge_mii_ioctl(hdev, ifr, cmd);
9405 	}
9406 
9407 	return phy_mii_ioctl(hdev->hw.mac.phydev, ifr, cmd);
9408 }
9409 
9410 static int hclge_set_port_vlan_filter_bypass(struct hclge_dev *hdev, u8 vf_id,
9411 					     bool bypass_en)
9412 {
9413 	struct hclge_port_vlan_filter_bypass_cmd *req;
9414 	struct hclge_desc desc;
9415 	int ret;
9416 
9417 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_PORT_VLAN_BYPASS, false);
9418 	req = (struct hclge_port_vlan_filter_bypass_cmd *)desc.data;
9419 	req->vf_id = vf_id;
9420 	hnae3_set_bit(req->bypass_state, HCLGE_INGRESS_BYPASS_B,
9421 		      bypass_en ? 1 : 0);
9422 
9423 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
9424 	if (ret)
9425 		dev_err(&hdev->pdev->dev,
9426 			"failed to set vport%u port vlan filter bypass state, ret = %d.\n",
9427 			vf_id, ret);
9428 
9429 	return ret;
9430 }
9431 
9432 static int hclge_set_vlan_filter_ctrl(struct hclge_dev *hdev, u8 vlan_type,
9433 				      u8 fe_type, bool filter_en, u8 vf_id)
9434 {
9435 	struct hclge_vlan_filter_ctrl_cmd *req;
9436 	struct hclge_desc desc;
9437 	int ret;
9438 
9439 	/* read current vlan filter parameter */
9440 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_VLAN_FILTER_CTRL, true);
9441 	req = (struct hclge_vlan_filter_ctrl_cmd *)desc.data;
9442 	req->vlan_type = vlan_type;
9443 	req->vf_id = vf_id;
9444 
9445 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
9446 	if (ret) {
9447 		dev_err(&hdev->pdev->dev, "failed to get vport%u vlan filter config, ret = %d.\n",
9448 			vf_id, ret);
9449 		return ret;
9450 	}
9451 
9452 	/* modify and write new config parameter */
9453 	hclge_comm_cmd_reuse_desc(&desc, false);
9454 	req->vlan_fe = filter_en ?
9455 			(req->vlan_fe | fe_type) : (req->vlan_fe & ~fe_type);
9456 
9457 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
9458 	if (ret)
9459 		dev_err(&hdev->pdev->dev, "failed to set vport%u vlan filter, ret = %d.\n",
9460 			vf_id, ret);
9461 
9462 	return ret;
9463 }
9464 
9465 static int hclge_set_vport_vlan_filter(struct hclge_vport *vport, bool enable)
9466 {
9467 	struct hclge_dev *hdev = vport->back;
9468 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
9469 	int ret;
9470 
9471 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
9472 		return hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF,
9473 						  HCLGE_FILTER_FE_EGRESS_V1_B,
9474 						  enable, vport->vport_id);
9475 
9476 	ret = hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF,
9477 					 HCLGE_FILTER_FE_EGRESS, enable,
9478 					 vport->vport_id);
9479 	if (ret)
9480 		return ret;
9481 
9482 	if (test_bit(HNAE3_DEV_SUPPORT_PORT_VLAN_BYPASS_B, ae_dev->caps)) {
9483 		ret = hclge_set_port_vlan_filter_bypass(hdev, vport->vport_id,
9484 							!enable);
9485 	} else if (!vport->vport_id) {
9486 		if (test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
9487 			enable = false;
9488 
9489 		ret = hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_PORT,
9490 						 HCLGE_FILTER_FE_INGRESS,
9491 						 enable, 0);
9492 	}
9493 
9494 	return ret;
9495 }
9496 
9497 static bool hclge_need_enable_vport_vlan_filter(struct hclge_vport *vport)
9498 {
9499 	struct hnae3_handle *handle = &vport->nic;
9500 	struct hclge_vport_vlan_cfg *vlan, *tmp;
9501 	struct hclge_dev *hdev = vport->back;
9502 
9503 	if (vport->vport_id) {
9504 		if (vport->port_base_vlan_cfg.state !=
9505 			HNAE3_PORT_BASE_VLAN_DISABLE)
9506 			return true;
9507 
9508 		if (vport->vf_info.trusted && vport->vf_info.request_uc_en)
9509 			return false;
9510 	} else if (handle->netdev_flags & HNAE3_USER_UPE) {
9511 		return false;
9512 	}
9513 
9514 	if (!vport->req_vlan_fltr_en)
9515 		return false;
9516 
9517 	/* compatible with former device, always enable vlan filter */
9518 	if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, hdev->ae_dev->caps))
9519 		return true;
9520 
9521 	list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node)
9522 		if (vlan->vlan_id != 0)
9523 			return true;
9524 
9525 	return false;
9526 }
9527 
9528 int hclge_enable_vport_vlan_filter(struct hclge_vport *vport, bool request_en)
9529 {
9530 	struct hclge_dev *hdev = vport->back;
9531 	bool need_en;
9532 	int ret;
9533 
9534 	mutex_lock(&hdev->vport_lock);
9535 
9536 	vport->req_vlan_fltr_en = request_en;
9537 
9538 	need_en = hclge_need_enable_vport_vlan_filter(vport);
9539 	if (need_en == vport->cur_vlan_fltr_en) {
9540 		mutex_unlock(&hdev->vport_lock);
9541 		return 0;
9542 	}
9543 
9544 	ret = hclge_set_vport_vlan_filter(vport, need_en);
9545 	if (ret) {
9546 		mutex_unlock(&hdev->vport_lock);
9547 		return ret;
9548 	}
9549 
9550 	vport->cur_vlan_fltr_en = need_en;
9551 
9552 	mutex_unlock(&hdev->vport_lock);
9553 
9554 	return 0;
9555 }
9556 
9557 static int hclge_enable_vlan_filter(struct hnae3_handle *handle, bool enable)
9558 {
9559 	struct hclge_vport *vport = hclge_get_vport(handle);
9560 
9561 	return hclge_enable_vport_vlan_filter(vport, enable);
9562 }
9563 
9564 static int hclge_set_vf_vlan_filter_cmd(struct hclge_dev *hdev, u16 vfid,
9565 					bool is_kill, u16 vlan,
9566 					struct hclge_desc *desc)
9567 {
9568 	struct hclge_vlan_filter_vf_cfg_cmd *req0;
9569 	struct hclge_vlan_filter_vf_cfg_cmd *req1;
9570 	u8 vf_byte_val;
9571 	u8 vf_byte_off;
9572 	int ret;
9573 
9574 	hclge_cmd_setup_basic_desc(&desc[0],
9575 				   HCLGE_OPC_VLAN_FILTER_VF_CFG, false);
9576 	hclge_cmd_setup_basic_desc(&desc[1],
9577 				   HCLGE_OPC_VLAN_FILTER_VF_CFG, false);
9578 
9579 	desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
9580 
9581 	vf_byte_off = vfid / 8;
9582 	vf_byte_val = 1 << (vfid % 8);
9583 
9584 	req0 = (struct hclge_vlan_filter_vf_cfg_cmd *)desc[0].data;
9585 	req1 = (struct hclge_vlan_filter_vf_cfg_cmd *)desc[1].data;
9586 
9587 	req0->vlan_id  = cpu_to_le16(vlan);
9588 	req0->vlan_cfg = is_kill;
9589 
9590 	if (vf_byte_off < HCLGE_MAX_VF_BYTES)
9591 		req0->vf_bitmap[vf_byte_off] = vf_byte_val;
9592 	else
9593 		req1->vf_bitmap[vf_byte_off - HCLGE_MAX_VF_BYTES] = vf_byte_val;
9594 
9595 	ret = hclge_cmd_send(&hdev->hw, desc, 2);
9596 	if (ret) {
9597 		dev_err(&hdev->pdev->dev,
9598 			"Send vf vlan command fail, ret =%d.\n",
9599 			ret);
9600 		return ret;
9601 	}
9602 
9603 	return 0;
9604 }
9605 
9606 static int hclge_check_vf_vlan_cmd_status(struct hclge_dev *hdev, u16 vfid,
9607 					  bool is_kill, struct hclge_desc *desc)
9608 {
9609 	struct hclge_vlan_filter_vf_cfg_cmd *req;
9610 
9611 	req = (struct hclge_vlan_filter_vf_cfg_cmd *)desc[0].data;
9612 
9613 	if (!is_kill) {
9614 #define HCLGE_VF_VLAN_NO_ENTRY	2
9615 		if (!req->resp_code || req->resp_code == 1)
9616 			return 0;
9617 
9618 		if (req->resp_code == HCLGE_VF_VLAN_NO_ENTRY) {
9619 			set_bit(vfid, hdev->vf_vlan_full);
9620 			dev_warn(&hdev->pdev->dev,
9621 				 "vf vlan table is full, vf vlan filter is disabled\n");
9622 			return 0;
9623 		}
9624 
9625 		dev_err(&hdev->pdev->dev,
9626 			"Add vf vlan filter fail, ret =%u.\n",
9627 			req->resp_code);
9628 	} else {
9629 #define HCLGE_VF_VLAN_DEL_NO_FOUND	1
9630 		if (!req->resp_code)
9631 			return 0;
9632 
9633 		/* vf vlan filter is disabled when vf vlan table is full,
9634 		 * then new vlan id will not be added into vf vlan table.
9635 		 * Just return 0 without warning, avoid massive verbose
9636 		 * print logs when unload.
9637 		 */
9638 		if (req->resp_code == HCLGE_VF_VLAN_DEL_NO_FOUND)
9639 			return 0;
9640 
9641 		dev_err(&hdev->pdev->dev,
9642 			"Kill vf vlan filter fail, ret =%u.\n",
9643 			req->resp_code);
9644 	}
9645 
9646 	return -EIO;
9647 }
9648 
9649 static int hclge_set_vf_vlan_common(struct hclge_dev *hdev, u16 vfid,
9650 				    bool is_kill, u16 vlan)
9651 {
9652 	struct hclge_vport *vport = &hdev->vport[vfid];
9653 	struct hclge_desc desc[2];
9654 	int ret;
9655 
9656 	/* if vf vlan table is full, firmware will close vf vlan filter, it
9657 	 * is unable and unnecessary to add new vlan id to vf vlan filter.
9658 	 * If spoof check is enable, and vf vlan is full, it shouldn't add
9659 	 * new vlan, because tx packets with these vlan id will be dropped.
9660 	 */
9661 	if (test_bit(vfid, hdev->vf_vlan_full) && !is_kill) {
9662 		if (vport->vf_info.spoofchk && vlan) {
9663 			dev_err(&hdev->pdev->dev,
9664 				"Can't add vlan due to spoof check is on and vf vlan table is full\n");
9665 			return -EPERM;
9666 		}
9667 		return 0;
9668 	}
9669 
9670 	ret = hclge_set_vf_vlan_filter_cmd(hdev, vfid, is_kill, vlan, desc);
9671 	if (ret)
9672 		return ret;
9673 
9674 	return hclge_check_vf_vlan_cmd_status(hdev, vfid, is_kill, desc);
9675 }
9676 
9677 static int hclge_set_port_vlan_filter(struct hclge_dev *hdev, __be16 proto,
9678 				      u16 vlan_id, bool is_kill)
9679 {
9680 	struct hclge_vlan_filter_pf_cfg_cmd *req;
9681 	struct hclge_desc desc;
9682 	u8 vlan_offset_byte_val;
9683 	u8 vlan_offset_byte;
9684 	u8 vlan_offset_160;
9685 	int ret;
9686 
9687 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_VLAN_FILTER_PF_CFG, false);
9688 
9689 	vlan_offset_160 = vlan_id / HCLGE_VLAN_ID_OFFSET_STEP;
9690 	vlan_offset_byte = (vlan_id % HCLGE_VLAN_ID_OFFSET_STEP) /
9691 			   HCLGE_VLAN_BYTE_SIZE;
9692 	vlan_offset_byte_val = 1 << (vlan_id % HCLGE_VLAN_BYTE_SIZE);
9693 
9694 	req = (struct hclge_vlan_filter_pf_cfg_cmd *)desc.data;
9695 	req->vlan_offset = vlan_offset_160;
9696 	req->vlan_cfg = is_kill;
9697 	req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val;
9698 
9699 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
9700 	if (ret)
9701 		dev_err(&hdev->pdev->dev,
9702 			"port vlan command, send fail, ret =%d.\n", ret);
9703 	return ret;
9704 }
9705 
9706 static bool hclge_need_update_port_vlan(struct hclge_dev *hdev, u16 vport_id,
9707 					u16 vlan_id, bool is_kill)
9708 {
9709 	/* vlan 0 may be added twice when 8021q module is enabled */
9710 	if (!is_kill && !vlan_id &&
9711 	    test_bit(vport_id, hdev->vlan_table[vlan_id]))
9712 		return false;
9713 
9714 	if (!is_kill && test_and_set_bit(vport_id, hdev->vlan_table[vlan_id])) {
9715 		dev_warn(&hdev->pdev->dev,
9716 			 "Add port vlan failed, vport %u is already in vlan %u\n",
9717 			 vport_id, vlan_id);
9718 		return false;
9719 	}
9720 
9721 	if (is_kill &&
9722 	    !test_and_clear_bit(vport_id, hdev->vlan_table[vlan_id])) {
9723 		dev_warn(&hdev->pdev->dev,
9724 			 "Delete port vlan failed, vport %u is not in vlan %u\n",
9725 			 vport_id, vlan_id);
9726 		return false;
9727 	}
9728 
9729 	return true;
9730 }
9731 
9732 static int hclge_set_vlan_filter_hw(struct hclge_dev *hdev, __be16 proto,
9733 				    u16 vport_id, u16 vlan_id,
9734 				    bool is_kill)
9735 {
9736 	u16 vport_idx, vport_num = 0;
9737 	int ret;
9738 
9739 	if (is_kill && !vlan_id)
9740 		return 0;
9741 
9742 	if (vlan_id >= VLAN_N_VID)
9743 		return -EINVAL;
9744 
9745 	ret = hclge_set_vf_vlan_common(hdev, vport_id, is_kill, vlan_id);
9746 	if (ret) {
9747 		dev_err(&hdev->pdev->dev,
9748 			"Set %u vport vlan filter config fail, ret =%d.\n",
9749 			vport_id, ret);
9750 		return ret;
9751 	}
9752 
9753 	if (!hclge_need_update_port_vlan(hdev, vport_id, vlan_id, is_kill))
9754 		return 0;
9755 
9756 	for_each_set_bit(vport_idx, hdev->vlan_table[vlan_id], HCLGE_VPORT_NUM)
9757 		vport_num++;
9758 
9759 	if ((is_kill && vport_num == 0) || (!is_kill && vport_num == 1))
9760 		ret = hclge_set_port_vlan_filter(hdev, proto, vlan_id,
9761 						 is_kill);
9762 
9763 	return ret;
9764 }
9765 
9766 static int hclge_set_vlan_tx_offload_cfg(struct hclge_vport *vport)
9767 {
9768 	struct hclge_tx_vtag_cfg *vcfg = &vport->txvlan_cfg;
9769 	struct hclge_vport_vtag_tx_cfg_cmd *req;
9770 	struct hclge_dev *hdev = vport->back;
9771 	struct hclge_desc desc;
9772 	u16 bmap_index;
9773 	int status;
9774 
9775 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_VLAN_PORT_TX_CFG, false);
9776 
9777 	req = (struct hclge_vport_vtag_tx_cfg_cmd *)desc.data;
9778 	req->def_vlan_tag1 = cpu_to_le16(vcfg->default_tag1);
9779 	req->def_vlan_tag2 = cpu_to_le16(vcfg->default_tag2);
9780 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_ACCEPT_TAG1_B,
9781 		      vcfg->accept_tag1 ? 1 : 0);
9782 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_ACCEPT_UNTAG1_B,
9783 		      vcfg->accept_untag1 ? 1 : 0);
9784 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_ACCEPT_TAG2_B,
9785 		      vcfg->accept_tag2 ? 1 : 0);
9786 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_ACCEPT_UNTAG2_B,
9787 		      vcfg->accept_untag2 ? 1 : 0);
9788 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_PORT_INS_TAG1_EN_B,
9789 		      vcfg->insert_tag1_en ? 1 : 0);
9790 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_PORT_INS_TAG2_EN_B,
9791 		      vcfg->insert_tag2_en ? 1 : 0);
9792 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_TAG_SHIFT_MODE_EN_B,
9793 		      vcfg->tag_shift_mode_en ? 1 : 0);
9794 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_CFG_NIC_ROCE_SEL_B, 0);
9795 
9796 	req->vf_offset = vport->vport_id / HCLGE_VF_NUM_PER_CMD;
9797 	bmap_index = vport->vport_id % HCLGE_VF_NUM_PER_CMD /
9798 			HCLGE_VF_NUM_PER_BYTE;
9799 	req->vf_bitmap[bmap_index] =
9800 		1U << (vport->vport_id % HCLGE_VF_NUM_PER_BYTE);
9801 
9802 	status = hclge_cmd_send(&hdev->hw, &desc, 1);
9803 	if (status)
9804 		dev_err(&hdev->pdev->dev,
9805 			"Send port txvlan cfg command fail, ret =%d\n",
9806 			status);
9807 
9808 	return status;
9809 }
9810 
9811 static int hclge_set_vlan_rx_offload_cfg(struct hclge_vport *vport)
9812 {
9813 	struct hclge_rx_vtag_cfg *vcfg = &vport->rxvlan_cfg;
9814 	struct hclge_vport_vtag_rx_cfg_cmd *req;
9815 	struct hclge_dev *hdev = vport->back;
9816 	struct hclge_desc desc;
9817 	u16 bmap_index;
9818 	int status;
9819 
9820 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_VLAN_PORT_RX_CFG, false);
9821 
9822 	req = (struct hclge_vport_vtag_rx_cfg_cmd *)desc.data;
9823 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_REM_TAG1_EN_B,
9824 		      vcfg->strip_tag1_en ? 1 : 0);
9825 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_REM_TAG2_EN_B,
9826 		      vcfg->strip_tag2_en ? 1 : 0);
9827 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_SHOW_TAG1_EN_B,
9828 		      vcfg->vlan1_vlan_prionly ? 1 : 0);
9829 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_SHOW_TAG2_EN_B,
9830 		      vcfg->vlan2_vlan_prionly ? 1 : 0);
9831 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_DISCARD_TAG1_EN_B,
9832 		      vcfg->strip_tag1_discard_en ? 1 : 0);
9833 	hnae3_set_bit(req->vport_vlan_cfg, HCLGE_DISCARD_TAG2_EN_B,
9834 		      vcfg->strip_tag2_discard_en ? 1 : 0);
9835 
9836 	req->vf_offset = vport->vport_id / HCLGE_VF_NUM_PER_CMD;
9837 	bmap_index = vport->vport_id % HCLGE_VF_NUM_PER_CMD /
9838 			HCLGE_VF_NUM_PER_BYTE;
9839 	req->vf_bitmap[bmap_index] =
9840 		1U << (vport->vport_id % HCLGE_VF_NUM_PER_BYTE);
9841 
9842 	status = hclge_cmd_send(&hdev->hw, &desc, 1);
9843 	if (status)
9844 		dev_err(&hdev->pdev->dev,
9845 			"Send port rxvlan cfg command fail, ret =%d\n",
9846 			status);
9847 
9848 	return status;
9849 }
9850 
9851 static int hclge_vlan_offload_cfg(struct hclge_vport *vport,
9852 				  u16 port_base_vlan_state,
9853 				  u16 vlan_tag, u8 qos)
9854 {
9855 	int ret;
9856 
9857 	if (port_base_vlan_state == HNAE3_PORT_BASE_VLAN_DISABLE) {
9858 		vport->txvlan_cfg.accept_tag1 = true;
9859 		vport->txvlan_cfg.insert_tag1_en = false;
9860 		vport->txvlan_cfg.default_tag1 = 0;
9861 	} else {
9862 		struct hnae3_ae_dev *ae_dev = pci_get_drvdata(vport->nic.pdev);
9863 
9864 		vport->txvlan_cfg.accept_tag1 =
9865 			ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3;
9866 		vport->txvlan_cfg.insert_tag1_en = true;
9867 		vport->txvlan_cfg.default_tag1 = (qos << VLAN_PRIO_SHIFT) |
9868 						 vlan_tag;
9869 	}
9870 
9871 	vport->txvlan_cfg.accept_untag1 = true;
9872 
9873 	/* accept_tag2 and accept_untag2 are not supported on
9874 	 * pdev revision(0x20), new revision support them,
9875 	 * this two fields can not be configured by user.
9876 	 */
9877 	vport->txvlan_cfg.accept_tag2 = true;
9878 	vport->txvlan_cfg.accept_untag2 = true;
9879 	vport->txvlan_cfg.insert_tag2_en = false;
9880 	vport->txvlan_cfg.default_tag2 = 0;
9881 	vport->txvlan_cfg.tag_shift_mode_en = true;
9882 
9883 	if (port_base_vlan_state == HNAE3_PORT_BASE_VLAN_DISABLE) {
9884 		vport->rxvlan_cfg.strip_tag1_en = false;
9885 		vport->rxvlan_cfg.strip_tag2_en =
9886 				vport->rxvlan_cfg.rx_vlan_offload_en;
9887 		vport->rxvlan_cfg.strip_tag2_discard_en = false;
9888 	} else {
9889 		vport->rxvlan_cfg.strip_tag1_en =
9890 				vport->rxvlan_cfg.rx_vlan_offload_en;
9891 		vport->rxvlan_cfg.strip_tag2_en = true;
9892 		vport->rxvlan_cfg.strip_tag2_discard_en = true;
9893 	}
9894 
9895 	vport->rxvlan_cfg.strip_tag1_discard_en = false;
9896 	vport->rxvlan_cfg.vlan1_vlan_prionly = false;
9897 	vport->rxvlan_cfg.vlan2_vlan_prionly = false;
9898 
9899 	ret = hclge_set_vlan_tx_offload_cfg(vport);
9900 	if (ret)
9901 		return ret;
9902 
9903 	return hclge_set_vlan_rx_offload_cfg(vport);
9904 }
9905 
9906 static int hclge_set_vlan_protocol_type(struct hclge_dev *hdev)
9907 {
9908 	struct hclge_rx_vlan_type_cfg_cmd *rx_req;
9909 	struct hclge_tx_vlan_type_cfg_cmd *tx_req;
9910 	struct hclge_desc desc;
9911 	int status;
9912 
9913 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_TYPE_ID, false);
9914 	rx_req = (struct hclge_rx_vlan_type_cfg_cmd *)desc.data;
9915 	rx_req->ot_fst_vlan_type =
9916 		cpu_to_le16(hdev->vlan_type_cfg.rx_ot_fst_vlan_type);
9917 	rx_req->ot_sec_vlan_type =
9918 		cpu_to_le16(hdev->vlan_type_cfg.rx_ot_sec_vlan_type);
9919 	rx_req->in_fst_vlan_type =
9920 		cpu_to_le16(hdev->vlan_type_cfg.rx_in_fst_vlan_type);
9921 	rx_req->in_sec_vlan_type =
9922 		cpu_to_le16(hdev->vlan_type_cfg.rx_in_sec_vlan_type);
9923 
9924 	status = hclge_cmd_send(&hdev->hw, &desc, 1);
9925 	if (status) {
9926 		dev_err(&hdev->pdev->dev,
9927 			"Send rxvlan protocol type command fail, ret =%d\n",
9928 			status);
9929 		return status;
9930 	}
9931 
9932 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_INSERT, false);
9933 
9934 	tx_req = (struct hclge_tx_vlan_type_cfg_cmd *)desc.data;
9935 	tx_req->ot_vlan_type = cpu_to_le16(hdev->vlan_type_cfg.tx_ot_vlan_type);
9936 	tx_req->in_vlan_type = cpu_to_le16(hdev->vlan_type_cfg.tx_in_vlan_type);
9937 
9938 	status = hclge_cmd_send(&hdev->hw, &desc, 1);
9939 	if (status)
9940 		dev_err(&hdev->pdev->dev,
9941 			"Send txvlan protocol type command fail, ret =%d\n",
9942 			status);
9943 
9944 	return status;
9945 }
9946 
9947 static int hclge_init_vlan_filter(struct hclge_dev *hdev)
9948 {
9949 	struct hclge_vport *vport;
9950 	int ret;
9951 	int i;
9952 
9953 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
9954 		return hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF,
9955 						  HCLGE_FILTER_FE_EGRESS_V1_B,
9956 						  true, 0);
9957 
9958 	/* for revision 0x21, vf vlan filter is per function */
9959 	for (i = 0; i < hdev->num_alloc_vport; i++) {
9960 		vport = &hdev->vport[i];
9961 		ret = hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF,
9962 						 HCLGE_FILTER_FE_EGRESS, true,
9963 						 vport->vport_id);
9964 		if (ret)
9965 			return ret;
9966 		vport->cur_vlan_fltr_en = true;
9967 	}
9968 
9969 	return hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_PORT,
9970 					  HCLGE_FILTER_FE_INGRESS, true, 0);
9971 }
9972 
9973 static int hclge_init_vlan_type(struct hclge_dev *hdev)
9974 {
9975 	hdev->vlan_type_cfg.rx_in_fst_vlan_type = ETH_P_8021Q;
9976 	hdev->vlan_type_cfg.rx_in_sec_vlan_type = ETH_P_8021Q;
9977 	hdev->vlan_type_cfg.rx_ot_fst_vlan_type = ETH_P_8021Q;
9978 	hdev->vlan_type_cfg.rx_ot_sec_vlan_type = ETH_P_8021Q;
9979 	hdev->vlan_type_cfg.tx_ot_vlan_type = ETH_P_8021Q;
9980 	hdev->vlan_type_cfg.tx_in_vlan_type = ETH_P_8021Q;
9981 
9982 	return hclge_set_vlan_protocol_type(hdev);
9983 }
9984 
9985 static int hclge_init_vport_vlan_offload(struct hclge_dev *hdev)
9986 {
9987 	struct hclge_port_base_vlan_config *cfg;
9988 	struct hclge_vport *vport;
9989 	int ret;
9990 	int i;
9991 
9992 	for (i = 0; i < hdev->num_alloc_vport; i++) {
9993 		vport = &hdev->vport[i];
9994 		cfg = &vport->port_base_vlan_cfg;
9995 
9996 		ret = hclge_vlan_offload_cfg(vport, cfg->state,
9997 					     cfg->vlan_info.vlan_tag,
9998 					     cfg->vlan_info.qos);
9999 		if (ret)
10000 			return ret;
10001 	}
10002 	return 0;
10003 }
10004 
10005 static int hclge_init_vlan_config(struct hclge_dev *hdev)
10006 {
10007 	struct hnae3_handle *handle = &hdev->vport[0].nic;
10008 	int ret;
10009 
10010 	ret = hclge_init_vlan_filter(hdev);
10011 	if (ret)
10012 		return ret;
10013 
10014 	ret = hclge_init_vlan_type(hdev);
10015 	if (ret)
10016 		return ret;
10017 
10018 	ret = hclge_init_vport_vlan_offload(hdev);
10019 	if (ret)
10020 		return ret;
10021 
10022 	return hclge_set_vlan_filter(handle, htons(ETH_P_8021Q), 0, false);
10023 }
10024 
10025 static void hclge_add_vport_vlan_table(struct hclge_vport *vport, u16 vlan_id,
10026 				       bool writen_to_tbl)
10027 {
10028 	struct hclge_vport_vlan_cfg *vlan, *tmp;
10029 	struct hclge_dev *hdev = vport->back;
10030 
10031 	mutex_lock(&hdev->vport_lock);
10032 
10033 	list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) {
10034 		if (vlan->vlan_id == vlan_id) {
10035 			mutex_unlock(&hdev->vport_lock);
10036 			return;
10037 		}
10038 	}
10039 
10040 	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
10041 	if (!vlan) {
10042 		mutex_unlock(&hdev->vport_lock);
10043 		return;
10044 	}
10045 
10046 	vlan->hd_tbl_status = writen_to_tbl;
10047 	vlan->vlan_id = vlan_id;
10048 
10049 	list_add_tail(&vlan->node, &vport->vlan_list);
10050 	mutex_unlock(&hdev->vport_lock);
10051 }
10052 
10053 static int hclge_add_vport_all_vlan_table(struct hclge_vport *vport)
10054 {
10055 	struct hclge_vport_vlan_cfg *vlan, *tmp;
10056 	struct hclge_dev *hdev = vport->back;
10057 	int ret;
10058 
10059 	mutex_lock(&hdev->vport_lock);
10060 
10061 	list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) {
10062 		if (!vlan->hd_tbl_status) {
10063 			ret = hclge_set_vlan_filter_hw(hdev, htons(ETH_P_8021Q),
10064 						       vport->vport_id,
10065 						       vlan->vlan_id, false);
10066 			if (ret) {
10067 				dev_err(&hdev->pdev->dev,
10068 					"restore vport vlan list failed, ret=%d\n",
10069 					ret);
10070 
10071 				mutex_unlock(&hdev->vport_lock);
10072 				return ret;
10073 			}
10074 		}
10075 		vlan->hd_tbl_status = true;
10076 	}
10077 
10078 	mutex_unlock(&hdev->vport_lock);
10079 
10080 	return 0;
10081 }
10082 
10083 static void hclge_rm_vport_vlan_table(struct hclge_vport *vport, u16 vlan_id,
10084 				      bool is_write_tbl)
10085 {
10086 	struct hclge_vport_vlan_cfg *vlan, *tmp;
10087 	struct hclge_dev *hdev = vport->back;
10088 
10089 	mutex_lock(&hdev->vport_lock);
10090 
10091 	list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) {
10092 		if (vlan->vlan_id == vlan_id) {
10093 			if (is_write_tbl && vlan->hd_tbl_status)
10094 				hclge_set_vlan_filter_hw(hdev,
10095 							 htons(ETH_P_8021Q),
10096 							 vport->vport_id,
10097 							 vlan_id,
10098 							 true);
10099 
10100 			list_del(&vlan->node);
10101 			kfree(vlan);
10102 			break;
10103 		}
10104 	}
10105 
10106 	mutex_unlock(&hdev->vport_lock);
10107 }
10108 
10109 void hclge_rm_vport_all_vlan_table(struct hclge_vport *vport, bool is_del_list)
10110 {
10111 	struct hclge_vport_vlan_cfg *vlan, *tmp;
10112 	struct hclge_dev *hdev = vport->back;
10113 
10114 	mutex_lock(&hdev->vport_lock);
10115 
10116 	list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) {
10117 		if (vlan->hd_tbl_status)
10118 			hclge_set_vlan_filter_hw(hdev,
10119 						 htons(ETH_P_8021Q),
10120 						 vport->vport_id,
10121 						 vlan->vlan_id,
10122 						 true);
10123 
10124 		vlan->hd_tbl_status = false;
10125 		if (is_del_list) {
10126 			list_del(&vlan->node);
10127 			kfree(vlan);
10128 		}
10129 	}
10130 	clear_bit(vport->vport_id, hdev->vf_vlan_full);
10131 	mutex_unlock(&hdev->vport_lock);
10132 }
10133 
10134 void hclge_uninit_vport_vlan_table(struct hclge_dev *hdev)
10135 {
10136 	struct hclge_vport_vlan_cfg *vlan, *tmp;
10137 	struct hclge_vport *vport;
10138 	int i;
10139 
10140 	mutex_lock(&hdev->vport_lock);
10141 
10142 	for (i = 0; i < hdev->num_alloc_vport; i++) {
10143 		vport = &hdev->vport[i];
10144 		list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) {
10145 			list_del(&vlan->node);
10146 			kfree(vlan);
10147 		}
10148 	}
10149 
10150 	mutex_unlock(&hdev->vport_lock);
10151 }
10152 
10153 void hclge_restore_vport_port_base_vlan_config(struct hclge_dev *hdev)
10154 {
10155 	struct hclge_vlan_info *vlan_info;
10156 	struct hclge_vport *vport;
10157 	u16 vlan_proto;
10158 	u16 vlan_id;
10159 	u16 state;
10160 	int vf_id;
10161 	int ret;
10162 
10163 	/* PF should restore all vfs port base vlan */
10164 	for (vf_id = 0; vf_id < hdev->num_alloc_vfs; vf_id++) {
10165 		vport = &hdev->vport[vf_id + HCLGE_VF_VPORT_START_NUM];
10166 		vlan_info = vport->port_base_vlan_cfg.tbl_sta ?
10167 			    &vport->port_base_vlan_cfg.vlan_info :
10168 			    &vport->port_base_vlan_cfg.old_vlan_info;
10169 
10170 		vlan_id = vlan_info->vlan_tag;
10171 		vlan_proto = vlan_info->vlan_proto;
10172 		state = vport->port_base_vlan_cfg.state;
10173 
10174 		if (state != HNAE3_PORT_BASE_VLAN_DISABLE) {
10175 			clear_bit(vport->vport_id, hdev->vlan_table[vlan_id]);
10176 			ret = hclge_set_vlan_filter_hw(hdev, htons(vlan_proto),
10177 						       vport->vport_id,
10178 						       vlan_id, false);
10179 			vport->port_base_vlan_cfg.tbl_sta = ret == 0;
10180 		}
10181 	}
10182 }
10183 
10184 void hclge_restore_vport_vlan_table(struct hclge_vport *vport)
10185 {
10186 	struct hclge_vport_vlan_cfg *vlan, *tmp;
10187 	struct hclge_dev *hdev = vport->back;
10188 	int ret;
10189 
10190 	mutex_lock(&hdev->vport_lock);
10191 
10192 	if (vport->port_base_vlan_cfg.state == HNAE3_PORT_BASE_VLAN_DISABLE) {
10193 		list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) {
10194 			ret = hclge_set_vlan_filter_hw(hdev, htons(ETH_P_8021Q),
10195 						       vport->vport_id,
10196 						       vlan->vlan_id, false);
10197 			if (ret)
10198 				break;
10199 			vlan->hd_tbl_status = true;
10200 		}
10201 	}
10202 
10203 	mutex_unlock(&hdev->vport_lock);
10204 }
10205 
10206 /* For global reset and imp reset, hardware will clear the mac table,
10207  * so we change the mac address state from ACTIVE to TO_ADD, then they
10208  * can be restored in the service task after reset complete. Furtherly,
10209  * the mac addresses with state TO_DEL or DEL_FAIL are unnecessary to
10210  * be restored after reset, so just remove these mac nodes from mac_list.
10211  */
10212 static void hclge_mac_node_convert_for_reset(struct list_head *list)
10213 {
10214 	struct hclge_mac_node *mac_node, *tmp;
10215 
10216 	list_for_each_entry_safe(mac_node, tmp, list, node) {
10217 		if (mac_node->state == HCLGE_MAC_ACTIVE) {
10218 			mac_node->state = HCLGE_MAC_TO_ADD;
10219 		} else if (mac_node->state == HCLGE_MAC_TO_DEL) {
10220 			list_del(&mac_node->node);
10221 			kfree(mac_node);
10222 		}
10223 	}
10224 }
10225 
10226 void hclge_restore_mac_table_common(struct hclge_vport *vport)
10227 {
10228 	spin_lock_bh(&vport->mac_list_lock);
10229 
10230 	hclge_mac_node_convert_for_reset(&vport->uc_mac_list);
10231 	hclge_mac_node_convert_for_reset(&vport->mc_mac_list);
10232 	set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, &vport->state);
10233 
10234 	spin_unlock_bh(&vport->mac_list_lock);
10235 }
10236 
10237 static void hclge_restore_hw_table(struct hclge_dev *hdev)
10238 {
10239 	struct hclge_vport *vport = &hdev->vport[0];
10240 	struct hnae3_handle *handle = &vport->nic;
10241 
10242 	hclge_restore_mac_table_common(vport);
10243 	hclge_restore_vport_port_base_vlan_config(hdev);
10244 	hclge_restore_vport_vlan_table(vport);
10245 	set_bit(HCLGE_STATE_FD_USER_DEF_CHANGED, &hdev->state);
10246 	hclge_restore_fd_entries(handle);
10247 }
10248 
10249 int hclge_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
10250 {
10251 	struct hclge_vport *vport = hclge_get_vport(handle);
10252 
10253 	if (vport->port_base_vlan_cfg.state == HNAE3_PORT_BASE_VLAN_DISABLE) {
10254 		vport->rxvlan_cfg.strip_tag1_en = false;
10255 		vport->rxvlan_cfg.strip_tag2_en = enable;
10256 		vport->rxvlan_cfg.strip_tag2_discard_en = false;
10257 	} else {
10258 		vport->rxvlan_cfg.strip_tag1_en = enable;
10259 		vport->rxvlan_cfg.strip_tag2_en = true;
10260 		vport->rxvlan_cfg.strip_tag2_discard_en = true;
10261 	}
10262 
10263 	vport->rxvlan_cfg.strip_tag1_discard_en = false;
10264 	vport->rxvlan_cfg.vlan1_vlan_prionly = false;
10265 	vport->rxvlan_cfg.vlan2_vlan_prionly = false;
10266 	vport->rxvlan_cfg.rx_vlan_offload_en = enable;
10267 
10268 	return hclge_set_vlan_rx_offload_cfg(vport);
10269 }
10270 
10271 static void hclge_set_vport_vlan_fltr_change(struct hclge_vport *vport)
10272 {
10273 	struct hclge_dev *hdev = vport->back;
10274 
10275 	if (test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, hdev->ae_dev->caps))
10276 		set_bit(HCLGE_VPORT_STATE_VLAN_FLTR_CHANGE, &vport->state);
10277 }
10278 
10279 static int hclge_update_vlan_filter_entries(struct hclge_vport *vport,
10280 					    u16 port_base_vlan_state,
10281 					    struct hclge_vlan_info *new_info,
10282 					    struct hclge_vlan_info *old_info)
10283 {
10284 	struct hclge_dev *hdev = vport->back;
10285 	int ret;
10286 
10287 	if (port_base_vlan_state == HNAE3_PORT_BASE_VLAN_ENABLE) {
10288 		hclge_rm_vport_all_vlan_table(vport, false);
10289 		/* force clear VLAN 0 */
10290 		ret = hclge_set_vf_vlan_common(hdev, vport->vport_id, true, 0);
10291 		if (ret)
10292 			return ret;
10293 		return hclge_set_vlan_filter_hw(hdev,
10294 						 htons(new_info->vlan_proto),
10295 						 vport->vport_id,
10296 						 new_info->vlan_tag,
10297 						 false);
10298 	}
10299 
10300 	vport->port_base_vlan_cfg.tbl_sta = false;
10301 
10302 	/* force add VLAN 0 */
10303 	ret = hclge_set_vf_vlan_common(hdev, vport->vport_id, false, 0);
10304 	if (ret)
10305 		return ret;
10306 
10307 	ret = hclge_set_vlan_filter_hw(hdev, htons(old_info->vlan_proto),
10308 				       vport->vport_id, old_info->vlan_tag,
10309 				       true);
10310 	if (ret)
10311 		return ret;
10312 
10313 	return hclge_add_vport_all_vlan_table(vport);
10314 }
10315 
10316 static bool hclge_need_update_vlan_filter(const struct hclge_vlan_info *new_cfg,
10317 					  const struct hclge_vlan_info *old_cfg)
10318 {
10319 	if (new_cfg->vlan_tag != old_cfg->vlan_tag)
10320 		return true;
10321 
10322 	if (new_cfg->vlan_tag == 0 && (new_cfg->qos == 0 || old_cfg->qos == 0))
10323 		return true;
10324 
10325 	return false;
10326 }
10327 
10328 static int hclge_modify_port_base_vlan_tag(struct hclge_vport *vport,
10329 					   struct hclge_vlan_info *new_info,
10330 					   struct hclge_vlan_info *old_info)
10331 {
10332 	struct hclge_dev *hdev = vport->back;
10333 	int ret;
10334 
10335 	/* add new VLAN tag */
10336 	ret = hclge_set_vlan_filter_hw(hdev, htons(new_info->vlan_proto),
10337 				       vport->vport_id, new_info->vlan_tag,
10338 				       false);
10339 	if (ret)
10340 		return ret;
10341 
10342 	vport->port_base_vlan_cfg.tbl_sta = false;
10343 	/* remove old VLAN tag */
10344 	if (old_info->vlan_tag == 0)
10345 		ret = hclge_set_vf_vlan_common(hdev, vport->vport_id,
10346 					       true, 0);
10347 	else
10348 		ret = hclge_set_vlan_filter_hw(hdev, htons(ETH_P_8021Q),
10349 					       vport->vport_id,
10350 					       old_info->vlan_tag, true);
10351 	if (ret)
10352 		dev_err(&hdev->pdev->dev,
10353 			"failed to clear vport%u port base vlan %u, ret = %d.\n",
10354 			vport->vport_id, old_info->vlan_tag, ret);
10355 
10356 	return ret;
10357 }
10358 
10359 int hclge_update_port_base_vlan_cfg(struct hclge_vport *vport, u16 state,
10360 				    struct hclge_vlan_info *vlan_info)
10361 {
10362 	struct hnae3_handle *nic = &vport->nic;
10363 	struct hclge_vlan_info *old_vlan_info;
10364 	int ret;
10365 
10366 	old_vlan_info = &vport->port_base_vlan_cfg.vlan_info;
10367 
10368 	ret = hclge_vlan_offload_cfg(vport, state, vlan_info->vlan_tag,
10369 				     vlan_info->qos);
10370 	if (ret)
10371 		return ret;
10372 
10373 	if (!hclge_need_update_vlan_filter(vlan_info, old_vlan_info))
10374 		goto out;
10375 
10376 	if (state == HNAE3_PORT_BASE_VLAN_MODIFY)
10377 		ret = hclge_modify_port_base_vlan_tag(vport, vlan_info,
10378 						      old_vlan_info);
10379 	else
10380 		ret = hclge_update_vlan_filter_entries(vport, state, vlan_info,
10381 						       old_vlan_info);
10382 	if (ret)
10383 		return ret;
10384 
10385 out:
10386 	vport->port_base_vlan_cfg.state = state;
10387 	if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
10388 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_DISABLE;
10389 	else
10390 		nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
10391 
10392 	vport->port_base_vlan_cfg.old_vlan_info = *old_vlan_info;
10393 	vport->port_base_vlan_cfg.vlan_info = *vlan_info;
10394 	vport->port_base_vlan_cfg.tbl_sta = true;
10395 	hclge_set_vport_vlan_fltr_change(vport);
10396 
10397 	return 0;
10398 }
10399 
10400 static u16 hclge_get_port_base_vlan_state(struct hclge_vport *vport,
10401 					  enum hnae3_port_base_vlan_state state,
10402 					  u16 vlan, u8 qos)
10403 {
10404 	if (state == HNAE3_PORT_BASE_VLAN_DISABLE) {
10405 		if (!vlan && !qos)
10406 			return HNAE3_PORT_BASE_VLAN_NOCHANGE;
10407 
10408 		return HNAE3_PORT_BASE_VLAN_ENABLE;
10409 	}
10410 
10411 	if (!vlan && !qos)
10412 		return HNAE3_PORT_BASE_VLAN_DISABLE;
10413 
10414 	if (vport->port_base_vlan_cfg.vlan_info.vlan_tag == vlan &&
10415 	    vport->port_base_vlan_cfg.vlan_info.qos == qos)
10416 		return HNAE3_PORT_BASE_VLAN_NOCHANGE;
10417 
10418 	return HNAE3_PORT_BASE_VLAN_MODIFY;
10419 }
10420 
10421 static int hclge_set_vf_vlan_filter(struct hnae3_handle *handle, int vfid,
10422 				    u16 vlan, u8 qos, __be16 proto)
10423 {
10424 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
10425 	struct hclge_vport *vport = hclge_get_vport(handle);
10426 	struct hclge_dev *hdev = vport->back;
10427 	struct hclge_vlan_info vlan_info;
10428 	u16 state;
10429 	int ret;
10430 
10431 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
10432 		return -EOPNOTSUPP;
10433 
10434 	vport = hclge_get_vf_vport(hdev, vfid);
10435 	if (!vport)
10436 		return -EINVAL;
10437 
10438 	/* qos is a 3 bits value, so can not be bigger than 7 */
10439 	if (vlan > VLAN_N_VID - 1 || qos > 7)
10440 		return -EINVAL;
10441 	if (proto != htons(ETH_P_8021Q))
10442 		return -EPROTONOSUPPORT;
10443 
10444 	state = hclge_get_port_base_vlan_state(vport,
10445 					       vport->port_base_vlan_cfg.state,
10446 					       vlan, qos);
10447 	if (state == HNAE3_PORT_BASE_VLAN_NOCHANGE)
10448 		return 0;
10449 
10450 	vlan_info.vlan_tag = vlan;
10451 	vlan_info.qos = qos;
10452 	vlan_info.vlan_proto = ntohs(proto);
10453 
10454 	ret = hclge_update_port_base_vlan_cfg(vport, state, &vlan_info);
10455 	if (ret) {
10456 		dev_err(&hdev->pdev->dev,
10457 			"failed to update port base vlan for vf %d, ret = %d\n",
10458 			vfid, ret);
10459 		return ret;
10460 	}
10461 
10462 	/* there is a timewindow for PF to know VF unalive, it may
10463 	 * cause send mailbox fail, but it doesn't matter, VF will
10464 	 * query it when reinit.
10465 	 * for DEVICE_VERSION_V3, vf doesn't need to know about the port based
10466 	 * VLAN state.
10467 	 */
10468 	if (ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3 &&
10469 	    test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state))
10470 		(void)hclge_push_vf_port_base_vlan_info(&hdev->vport[0],
10471 							vport->vport_id,
10472 							state, &vlan_info);
10473 
10474 	return 0;
10475 }
10476 
10477 static void hclge_clear_vf_vlan(struct hclge_dev *hdev)
10478 {
10479 	struct hclge_vlan_info *vlan_info;
10480 	struct hclge_vport *vport;
10481 	int ret;
10482 	int vf;
10483 
10484 	/* clear port base vlan for all vf */
10485 	for (vf = HCLGE_VF_VPORT_START_NUM; vf < hdev->num_alloc_vport; vf++) {
10486 		vport = &hdev->vport[vf];
10487 		vlan_info = &vport->port_base_vlan_cfg.vlan_info;
10488 
10489 		ret = hclge_set_vlan_filter_hw(hdev, htons(ETH_P_8021Q),
10490 					       vport->vport_id,
10491 					       vlan_info->vlan_tag, true);
10492 		if (ret)
10493 			dev_err(&hdev->pdev->dev,
10494 				"failed to clear vf vlan for vf%d, ret = %d\n",
10495 				vf - HCLGE_VF_VPORT_START_NUM, ret);
10496 	}
10497 }
10498 
10499 int hclge_set_vlan_filter(struct hnae3_handle *handle, __be16 proto,
10500 			  u16 vlan_id, bool is_kill)
10501 {
10502 	struct hclge_vport *vport = hclge_get_vport(handle);
10503 	struct hclge_dev *hdev = vport->back;
10504 	bool writen_to_tbl = false;
10505 	int ret = 0;
10506 
10507 	/* When device is resetting or reset failed, firmware is unable to
10508 	 * handle mailbox. Just record the vlan id, and remove it after
10509 	 * reset finished.
10510 	 */
10511 	if ((test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state) ||
10512 	     test_bit(HCLGE_STATE_RST_FAIL, &hdev->state)) && is_kill) {
10513 		set_bit(vlan_id, vport->vlan_del_fail_bmap);
10514 		return -EBUSY;
10515 	}
10516 
10517 	/* when port base vlan enabled, we use port base vlan as the vlan
10518 	 * filter entry. In this case, we don't update vlan filter table
10519 	 * when user add new vlan or remove exist vlan, just update the vport
10520 	 * vlan list. The vlan id in vlan list will be writen in vlan filter
10521 	 * table until port base vlan disabled
10522 	 */
10523 	if (handle->port_base_vlan_state == HNAE3_PORT_BASE_VLAN_DISABLE) {
10524 		ret = hclge_set_vlan_filter_hw(hdev, proto, vport->vport_id,
10525 					       vlan_id, is_kill);
10526 		writen_to_tbl = true;
10527 	}
10528 
10529 	if (!ret) {
10530 		if (!is_kill)
10531 			hclge_add_vport_vlan_table(vport, vlan_id,
10532 						   writen_to_tbl);
10533 		else if (is_kill && vlan_id != 0)
10534 			hclge_rm_vport_vlan_table(vport, vlan_id, false);
10535 	} else if (is_kill) {
10536 		/* when remove hw vlan filter failed, record the vlan id,
10537 		 * and try to remove it from hw later, to be consistence
10538 		 * with stack
10539 		 */
10540 		set_bit(vlan_id, vport->vlan_del_fail_bmap);
10541 	}
10542 
10543 	hclge_set_vport_vlan_fltr_change(vport);
10544 
10545 	return ret;
10546 }
10547 
10548 static void hclge_sync_vlan_fltr_state(struct hclge_dev *hdev)
10549 {
10550 	struct hclge_vport *vport;
10551 	int ret;
10552 	u16 i;
10553 
10554 	for (i = 0; i < hdev->num_alloc_vport; i++) {
10555 		vport = &hdev->vport[i];
10556 		if (!test_and_clear_bit(HCLGE_VPORT_STATE_VLAN_FLTR_CHANGE,
10557 					&vport->state))
10558 			continue;
10559 
10560 		ret = hclge_enable_vport_vlan_filter(vport,
10561 						     vport->req_vlan_fltr_en);
10562 		if (ret) {
10563 			dev_err(&hdev->pdev->dev,
10564 				"failed to sync vlan filter state for vport%u, ret = %d\n",
10565 				vport->vport_id, ret);
10566 			set_bit(HCLGE_VPORT_STATE_VLAN_FLTR_CHANGE,
10567 				&vport->state);
10568 			return;
10569 		}
10570 	}
10571 }
10572 
10573 static void hclge_sync_vlan_filter(struct hclge_dev *hdev)
10574 {
10575 #define HCLGE_MAX_SYNC_COUNT	60
10576 
10577 	int i, ret, sync_cnt = 0;
10578 	u16 vlan_id;
10579 
10580 	/* start from vport 1 for PF is always alive */
10581 	for (i = 0; i < hdev->num_alloc_vport; i++) {
10582 		struct hclge_vport *vport = &hdev->vport[i];
10583 
10584 		vlan_id = find_first_bit(vport->vlan_del_fail_bmap,
10585 					 VLAN_N_VID);
10586 		while (vlan_id != VLAN_N_VID) {
10587 			ret = hclge_set_vlan_filter_hw(hdev, htons(ETH_P_8021Q),
10588 						       vport->vport_id, vlan_id,
10589 						       true);
10590 			if (ret && ret != -EINVAL)
10591 				return;
10592 
10593 			clear_bit(vlan_id, vport->vlan_del_fail_bmap);
10594 			hclge_rm_vport_vlan_table(vport, vlan_id, false);
10595 			hclge_set_vport_vlan_fltr_change(vport);
10596 
10597 			sync_cnt++;
10598 			if (sync_cnt >= HCLGE_MAX_SYNC_COUNT)
10599 				return;
10600 
10601 			vlan_id = find_first_bit(vport->vlan_del_fail_bmap,
10602 						 VLAN_N_VID);
10603 		}
10604 	}
10605 
10606 	hclge_sync_vlan_fltr_state(hdev);
10607 }
10608 
10609 static int hclge_set_mac_mtu(struct hclge_dev *hdev, int new_mps)
10610 {
10611 	struct hclge_config_max_frm_size_cmd *req;
10612 	struct hclge_desc desc;
10613 
10614 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_MAX_FRM_SIZE, false);
10615 
10616 	req = (struct hclge_config_max_frm_size_cmd *)desc.data;
10617 	req->max_frm_size = cpu_to_le16(new_mps);
10618 	req->min_frm_size = HCLGE_MAC_MIN_FRAME;
10619 
10620 	return hclge_cmd_send(&hdev->hw, &desc, 1);
10621 }
10622 
10623 static int hclge_set_mtu(struct hnae3_handle *handle, int new_mtu)
10624 {
10625 	struct hclge_vport *vport = hclge_get_vport(handle);
10626 
10627 	return hclge_set_vport_mtu(vport, new_mtu);
10628 }
10629 
10630 int hclge_set_vport_mtu(struct hclge_vport *vport, int new_mtu)
10631 {
10632 	struct hclge_dev *hdev = vport->back;
10633 	int i, max_frm_size, ret;
10634 
10635 	/* HW supprt 2 layer vlan */
10636 	max_frm_size = new_mtu + ETH_HLEN + ETH_FCS_LEN + 2 * VLAN_HLEN;
10637 	if (max_frm_size < HCLGE_MAC_MIN_FRAME ||
10638 	    max_frm_size > hdev->ae_dev->dev_specs.max_frm_size)
10639 		return -EINVAL;
10640 
10641 	max_frm_size = max(max_frm_size, HCLGE_MAC_DEFAULT_FRAME);
10642 	mutex_lock(&hdev->vport_lock);
10643 	/* VF's mps must fit within hdev->mps */
10644 	if (vport->vport_id && max_frm_size > hdev->mps) {
10645 		mutex_unlock(&hdev->vport_lock);
10646 		return -EINVAL;
10647 	} else if (vport->vport_id) {
10648 		vport->mps = max_frm_size;
10649 		mutex_unlock(&hdev->vport_lock);
10650 		return 0;
10651 	}
10652 
10653 	/* PF's mps must be greater then VF's mps */
10654 	for (i = 1; i < hdev->num_alloc_vport; i++)
10655 		if (max_frm_size < hdev->vport[i].mps) {
10656 			dev_err(&hdev->pdev->dev,
10657 				"failed to set pf mtu for less than vport %d, mps = %u.\n",
10658 				i, hdev->vport[i].mps);
10659 			mutex_unlock(&hdev->vport_lock);
10660 			return -EINVAL;
10661 		}
10662 
10663 	hclge_notify_client(hdev, HNAE3_DOWN_CLIENT);
10664 
10665 	ret = hclge_set_mac_mtu(hdev, max_frm_size);
10666 	if (ret) {
10667 		dev_err(&hdev->pdev->dev,
10668 			"Change mtu fail, ret =%d\n", ret);
10669 		goto out;
10670 	}
10671 
10672 	hdev->mps = max_frm_size;
10673 	vport->mps = max_frm_size;
10674 
10675 	ret = hclge_buffer_alloc(hdev);
10676 	if (ret)
10677 		dev_err(&hdev->pdev->dev,
10678 			"Allocate buffer fail, ret =%d\n", ret);
10679 
10680 out:
10681 	hclge_notify_client(hdev, HNAE3_UP_CLIENT);
10682 	mutex_unlock(&hdev->vport_lock);
10683 	return ret;
10684 }
10685 
10686 static int hclge_reset_tqp_cmd_send(struct hclge_dev *hdev, u16 queue_id,
10687 				    bool enable)
10688 {
10689 	struct hclge_reset_tqp_queue_cmd *req;
10690 	struct hclge_desc desc;
10691 	int ret;
10692 
10693 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RESET_TQP_QUEUE, false);
10694 
10695 	req = (struct hclge_reset_tqp_queue_cmd *)desc.data;
10696 	req->tqp_id = cpu_to_le16(queue_id);
10697 	if (enable)
10698 		hnae3_set_bit(req->reset_req, HCLGE_TQP_RESET_B, 1U);
10699 
10700 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
10701 	if (ret) {
10702 		dev_err(&hdev->pdev->dev,
10703 			"Send tqp reset cmd error, status =%d\n", ret);
10704 		return ret;
10705 	}
10706 
10707 	return 0;
10708 }
10709 
10710 static int hclge_get_reset_status(struct hclge_dev *hdev, u16 queue_id,
10711 				  u8 *reset_status)
10712 {
10713 	struct hclge_reset_tqp_queue_cmd *req;
10714 	struct hclge_desc desc;
10715 	int ret;
10716 
10717 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RESET_TQP_QUEUE, true);
10718 
10719 	req = (struct hclge_reset_tqp_queue_cmd *)desc.data;
10720 	req->tqp_id = cpu_to_le16(queue_id);
10721 
10722 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
10723 	if (ret) {
10724 		dev_err(&hdev->pdev->dev,
10725 			"Get reset status error, status =%d\n", ret);
10726 		return ret;
10727 	}
10728 
10729 	*reset_status = hnae3_get_bit(req->ready_to_reset, HCLGE_TQP_RESET_B);
10730 
10731 	return 0;
10732 }
10733 
10734 u16 hclge_covert_handle_qid_global(struct hnae3_handle *handle, u16 queue_id)
10735 {
10736 	struct hclge_comm_tqp *tqp;
10737 	struct hnae3_queue *queue;
10738 
10739 	queue = handle->kinfo.tqp[queue_id];
10740 	tqp = container_of(queue, struct hclge_comm_tqp, q);
10741 
10742 	return tqp->index;
10743 }
10744 
10745 static int hclge_reset_tqp_cmd(struct hnae3_handle *handle)
10746 {
10747 	struct hclge_vport *vport = hclge_get_vport(handle);
10748 	struct hclge_dev *hdev = vport->back;
10749 	u16 reset_try_times = 0;
10750 	u8 reset_status;
10751 	u16 queue_gid;
10752 	int ret;
10753 	u16 i;
10754 
10755 	for (i = 0; i < handle->kinfo.num_tqps; i++) {
10756 		queue_gid = hclge_covert_handle_qid_global(handle, i);
10757 		ret = hclge_reset_tqp_cmd_send(hdev, queue_gid, true);
10758 		if (ret) {
10759 			dev_err(&hdev->pdev->dev,
10760 				"failed to send reset tqp cmd, ret = %d\n",
10761 				ret);
10762 			return ret;
10763 		}
10764 
10765 		while (reset_try_times++ < HCLGE_TQP_RESET_TRY_TIMES) {
10766 			ret = hclge_get_reset_status(hdev, queue_gid,
10767 						     &reset_status);
10768 			if (ret)
10769 				return ret;
10770 
10771 			if (reset_status)
10772 				break;
10773 
10774 			/* Wait for tqp hw reset */
10775 			usleep_range(1000, 1200);
10776 		}
10777 
10778 		if (reset_try_times >= HCLGE_TQP_RESET_TRY_TIMES) {
10779 			dev_err(&hdev->pdev->dev,
10780 				"wait for tqp hw reset timeout\n");
10781 			return -ETIME;
10782 		}
10783 
10784 		ret = hclge_reset_tqp_cmd_send(hdev, queue_gid, false);
10785 		if (ret) {
10786 			dev_err(&hdev->pdev->dev,
10787 				"failed to deassert soft reset, ret = %d\n",
10788 				ret);
10789 			return ret;
10790 		}
10791 		reset_try_times = 0;
10792 	}
10793 	return 0;
10794 }
10795 
10796 static int hclge_reset_rcb(struct hnae3_handle *handle)
10797 {
10798 #define HCLGE_RESET_RCB_NOT_SUPPORT	0U
10799 #define HCLGE_RESET_RCB_SUCCESS		1U
10800 
10801 	struct hclge_vport *vport = hclge_get_vport(handle);
10802 	struct hclge_dev *hdev = vport->back;
10803 	struct hclge_reset_cmd *req;
10804 	struct hclge_desc desc;
10805 	u8 return_status;
10806 	u16 queue_gid;
10807 	int ret;
10808 
10809 	queue_gid = hclge_covert_handle_qid_global(handle, 0);
10810 
10811 	req = (struct hclge_reset_cmd *)desc.data;
10812 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_RST_TRIGGER, false);
10813 	hnae3_set_bit(req->fun_reset_rcb, HCLGE_CFG_RESET_RCB_B, 1);
10814 	req->fun_reset_rcb_vqid_start = cpu_to_le16(queue_gid);
10815 	req->fun_reset_rcb_vqid_num = cpu_to_le16(handle->kinfo.num_tqps);
10816 
10817 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
10818 	if (ret) {
10819 		dev_err(&hdev->pdev->dev,
10820 			"failed to send rcb reset cmd, ret = %d\n", ret);
10821 		return ret;
10822 	}
10823 
10824 	return_status = req->fun_reset_rcb_return_status;
10825 	if (return_status == HCLGE_RESET_RCB_SUCCESS)
10826 		return 0;
10827 
10828 	if (return_status != HCLGE_RESET_RCB_NOT_SUPPORT) {
10829 		dev_err(&hdev->pdev->dev, "failed to reset rcb, ret = %u\n",
10830 			return_status);
10831 		return -EIO;
10832 	}
10833 
10834 	/* if reset rcb cmd is unsupported, we need to send reset tqp cmd
10835 	 * again to reset all tqps
10836 	 */
10837 	return hclge_reset_tqp_cmd(handle);
10838 }
10839 
10840 int hclge_reset_tqp(struct hnae3_handle *handle)
10841 {
10842 	struct hclge_vport *vport = hclge_get_vport(handle);
10843 	struct hclge_dev *hdev = vport->back;
10844 	int ret;
10845 
10846 	/* only need to disable PF's tqp */
10847 	if (!vport->vport_id) {
10848 		ret = hclge_tqp_enable(handle, false);
10849 		if (ret) {
10850 			dev_err(&hdev->pdev->dev,
10851 				"failed to disable tqp, ret = %d\n", ret);
10852 			return ret;
10853 		}
10854 	}
10855 
10856 	return hclge_reset_rcb(handle);
10857 }
10858 
10859 static u32 hclge_get_fw_version(struct hnae3_handle *handle)
10860 {
10861 	struct hclge_vport *vport = hclge_get_vport(handle);
10862 	struct hclge_dev *hdev = vport->back;
10863 
10864 	return hdev->fw_version;
10865 }
10866 
10867 static void hclge_set_flowctrl_adv(struct hclge_dev *hdev, u32 rx_en, u32 tx_en)
10868 {
10869 	struct phy_device *phydev = hdev->hw.mac.phydev;
10870 
10871 	if (!phydev)
10872 		return;
10873 
10874 	phy_set_asym_pause(phydev, rx_en, tx_en);
10875 }
10876 
10877 static int hclge_cfg_pauseparam(struct hclge_dev *hdev, u32 rx_en, u32 tx_en)
10878 {
10879 	int ret;
10880 
10881 	if (hdev->tm_info.fc_mode == HCLGE_FC_PFC)
10882 		return 0;
10883 
10884 	ret = hclge_mac_pause_en_cfg(hdev, tx_en, rx_en);
10885 	if (ret)
10886 		dev_err(&hdev->pdev->dev,
10887 			"configure pauseparam error, ret = %d.\n", ret);
10888 
10889 	return ret;
10890 }
10891 
10892 int hclge_cfg_flowctrl(struct hclge_dev *hdev)
10893 {
10894 	struct phy_device *phydev = hdev->hw.mac.phydev;
10895 	u16 remote_advertising = 0;
10896 	u16 local_advertising;
10897 	u32 rx_pause, tx_pause;
10898 	u8 flowctl;
10899 
10900 	if (!phydev->link || !phydev->autoneg)
10901 		return 0;
10902 
10903 	local_advertising = linkmode_adv_to_lcl_adv_t(phydev->advertising);
10904 
10905 	if (phydev->pause)
10906 		remote_advertising = LPA_PAUSE_CAP;
10907 
10908 	if (phydev->asym_pause)
10909 		remote_advertising |= LPA_PAUSE_ASYM;
10910 
10911 	flowctl = mii_resolve_flowctrl_fdx(local_advertising,
10912 					   remote_advertising);
10913 	tx_pause = flowctl & FLOW_CTRL_TX;
10914 	rx_pause = flowctl & FLOW_CTRL_RX;
10915 
10916 	if (phydev->duplex == HCLGE_MAC_HALF) {
10917 		tx_pause = 0;
10918 		rx_pause = 0;
10919 	}
10920 
10921 	return hclge_cfg_pauseparam(hdev, rx_pause, tx_pause);
10922 }
10923 
10924 static void hclge_get_pauseparam(struct hnae3_handle *handle, u32 *auto_neg,
10925 				 u32 *rx_en, u32 *tx_en)
10926 {
10927 	struct hclge_vport *vport = hclge_get_vport(handle);
10928 	struct hclge_dev *hdev = vport->back;
10929 	u8 media_type = hdev->hw.mac.media_type;
10930 
10931 	*auto_neg = (media_type == HNAE3_MEDIA_TYPE_COPPER) ?
10932 		    hclge_get_autoneg(handle) : 0;
10933 
10934 	if (hdev->tm_info.fc_mode == HCLGE_FC_PFC) {
10935 		*rx_en = 0;
10936 		*tx_en = 0;
10937 		return;
10938 	}
10939 
10940 	if (hdev->tm_info.fc_mode == HCLGE_FC_RX_PAUSE) {
10941 		*rx_en = 1;
10942 		*tx_en = 0;
10943 	} else if (hdev->tm_info.fc_mode == HCLGE_FC_TX_PAUSE) {
10944 		*tx_en = 1;
10945 		*rx_en = 0;
10946 	} else if (hdev->tm_info.fc_mode == HCLGE_FC_FULL) {
10947 		*rx_en = 1;
10948 		*tx_en = 1;
10949 	} else {
10950 		*rx_en = 0;
10951 		*tx_en = 0;
10952 	}
10953 }
10954 
10955 static void hclge_record_user_pauseparam(struct hclge_dev *hdev,
10956 					 u32 rx_en, u32 tx_en)
10957 {
10958 	if (rx_en && tx_en)
10959 		hdev->fc_mode_last_time = HCLGE_FC_FULL;
10960 	else if (rx_en && !tx_en)
10961 		hdev->fc_mode_last_time = HCLGE_FC_RX_PAUSE;
10962 	else if (!rx_en && tx_en)
10963 		hdev->fc_mode_last_time = HCLGE_FC_TX_PAUSE;
10964 	else
10965 		hdev->fc_mode_last_time = HCLGE_FC_NONE;
10966 
10967 	hdev->tm_info.fc_mode = hdev->fc_mode_last_time;
10968 }
10969 
10970 static int hclge_set_pauseparam(struct hnae3_handle *handle, u32 auto_neg,
10971 				u32 rx_en, u32 tx_en)
10972 {
10973 	struct hclge_vport *vport = hclge_get_vport(handle);
10974 	struct hclge_dev *hdev = vport->back;
10975 	struct phy_device *phydev = hdev->hw.mac.phydev;
10976 	u32 fc_autoneg;
10977 
10978 	if (phydev || hnae3_dev_phy_imp_supported(hdev)) {
10979 		fc_autoneg = hclge_get_autoneg(handle);
10980 		if (auto_neg != fc_autoneg) {
10981 			dev_info(&hdev->pdev->dev,
10982 				 "To change autoneg please use: ethtool -s <dev> autoneg <on|off>\n");
10983 			return -EOPNOTSUPP;
10984 		}
10985 	}
10986 
10987 	if (hdev->tm_info.fc_mode == HCLGE_FC_PFC) {
10988 		dev_info(&hdev->pdev->dev,
10989 			 "Priority flow control enabled. Cannot set link flow control.\n");
10990 		return -EOPNOTSUPP;
10991 	}
10992 
10993 	hclge_set_flowctrl_adv(hdev, rx_en, tx_en);
10994 
10995 	hclge_record_user_pauseparam(hdev, rx_en, tx_en);
10996 
10997 	if (!auto_neg || hnae3_dev_phy_imp_supported(hdev))
10998 		return hclge_cfg_pauseparam(hdev, rx_en, tx_en);
10999 
11000 	if (phydev)
11001 		return phy_start_aneg(phydev);
11002 
11003 	return -EOPNOTSUPP;
11004 }
11005 
11006 static void hclge_get_ksettings_an_result(struct hnae3_handle *handle,
11007 					  u8 *auto_neg, u32 *speed, u8 *duplex, u32 *lane_num)
11008 {
11009 	struct hclge_vport *vport = hclge_get_vport(handle);
11010 	struct hclge_dev *hdev = vport->back;
11011 
11012 	if (speed)
11013 		*speed = hdev->hw.mac.speed;
11014 	if (duplex)
11015 		*duplex = hdev->hw.mac.duplex;
11016 	if (auto_neg)
11017 		*auto_neg = hdev->hw.mac.autoneg;
11018 	if (lane_num)
11019 		*lane_num = hdev->hw.mac.lane_num;
11020 }
11021 
11022 static void hclge_get_media_type(struct hnae3_handle *handle, u8 *media_type,
11023 				 u8 *module_type)
11024 {
11025 	struct hclge_vport *vport = hclge_get_vport(handle);
11026 	struct hclge_dev *hdev = vport->back;
11027 
11028 	/* When nic is down, the service task is not running, doesn't update
11029 	 * the port information per second. Query the port information before
11030 	 * return the media type, ensure getting the correct media information.
11031 	 */
11032 	hclge_update_port_info(hdev);
11033 
11034 	if (media_type)
11035 		*media_type = hdev->hw.mac.media_type;
11036 
11037 	if (module_type)
11038 		*module_type = hdev->hw.mac.module_type;
11039 }
11040 
11041 static void hclge_get_mdix_mode(struct hnae3_handle *handle,
11042 				u8 *tp_mdix_ctrl, u8 *tp_mdix)
11043 {
11044 	struct hclge_vport *vport = hclge_get_vport(handle);
11045 	struct hclge_dev *hdev = vport->back;
11046 	struct phy_device *phydev = hdev->hw.mac.phydev;
11047 	int mdix_ctrl, mdix, is_resolved;
11048 	unsigned int retval;
11049 
11050 	if (!phydev) {
11051 		*tp_mdix_ctrl = ETH_TP_MDI_INVALID;
11052 		*tp_mdix = ETH_TP_MDI_INVALID;
11053 		return;
11054 	}
11055 
11056 	phy_write(phydev, HCLGE_PHY_PAGE_REG, HCLGE_PHY_PAGE_MDIX);
11057 
11058 	retval = phy_read(phydev, HCLGE_PHY_CSC_REG);
11059 	mdix_ctrl = hnae3_get_field(retval, HCLGE_PHY_MDIX_CTRL_M,
11060 				    HCLGE_PHY_MDIX_CTRL_S);
11061 
11062 	retval = phy_read(phydev, HCLGE_PHY_CSS_REG);
11063 	mdix = hnae3_get_bit(retval, HCLGE_PHY_MDIX_STATUS_B);
11064 	is_resolved = hnae3_get_bit(retval, HCLGE_PHY_SPEED_DUP_RESOLVE_B);
11065 
11066 	phy_write(phydev, HCLGE_PHY_PAGE_REG, HCLGE_PHY_PAGE_COPPER);
11067 
11068 	switch (mdix_ctrl) {
11069 	case 0x0:
11070 		*tp_mdix_ctrl = ETH_TP_MDI;
11071 		break;
11072 	case 0x1:
11073 		*tp_mdix_ctrl = ETH_TP_MDI_X;
11074 		break;
11075 	case 0x3:
11076 		*tp_mdix_ctrl = ETH_TP_MDI_AUTO;
11077 		break;
11078 	default:
11079 		*tp_mdix_ctrl = ETH_TP_MDI_INVALID;
11080 		break;
11081 	}
11082 
11083 	if (!is_resolved)
11084 		*tp_mdix = ETH_TP_MDI_INVALID;
11085 	else if (mdix)
11086 		*tp_mdix = ETH_TP_MDI_X;
11087 	else
11088 		*tp_mdix = ETH_TP_MDI;
11089 }
11090 
11091 static void hclge_info_show(struct hclge_dev *hdev)
11092 {
11093 	struct device *dev = &hdev->pdev->dev;
11094 
11095 	dev_info(dev, "PF info begin:\n");
11096 
11097 	dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
11098 	dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
11099 	dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
11100 	dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
11101 	dev_info(dev, "Numbers of VF for this PF: %u\n", hdev->num_req_vfs);
11102 	dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
11103 	dev_info(dev, "Total buffer size for TX/RX: %u\n", hdev->pkt_buf_size);
11104 	dev_info(dev, "TX buffer size for each TC: %u\n", hdev->tx_buf_size);
11105 	dev_info(dev, "DV buffer size for each TC: %u\n", hdev->dv_buf_size);
11106 	dev_info(dev, "This is %s PF\n",
11107 		 hdev->flag & HCLGE_FLAG_MAIN ? "main" : "not main");
11108 	dev_info(dev, "DCB %s\n",
11109 		 hdev->flag & HCLGE_FLAG_DCB_ENABLE ? "enable" : "disable");
11110 	dev_info(dev, "MQPRIO %s\n",
11111 		 hdev->flag & HCLGE_FLAG_MQPRIO_ENABLE ? "enable" : "disable");
11112 	dev_info(dev, "Default tx spare buffer size: %u\n",
11113 		 hdev->tx_spare_buf_size);
11114 
11115 	dev_info(dev, "PF info end.\n");
11116 }
11117 
11118 static int hclge_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
11119 					  struct hclge_vport *vport)
11120 {
11121 	struct hnae3_client *client = vport->nic.client;
11122 	struct hclge_dev *hdev = ae_dev->priv;
11123 	int rst_cnt = hdev->rst_stats.reset_cnt;
11124 	int ret;
11125 
11126 	ret = client->ops->init_instance(&vport->nic);
11127 	if (ret)
11128 		return ret;
11129 
11130 	set_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state);
11131 	if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state) ||
11132 	    rst_cnt != hdev->rst_stats.reset_cnt) {
11133 		ret = -EBUSY;
11134 		goto init_nic_err;
11135 	}
11136 
11137 	/* Enable nic hw error interrupts */
11138 	ret = hclge_config_nic_hw_error(hdev, true);
11139 	if (ret) {
11140 		dev_err(&ae_dev->pdev->dev,
11141 			"fail(%d) to enable hw error interrupts\n", ret);
11142 		goto init_nic_err;
11143 	}
11144 
11145 	hnae3_set_client_init_flag(client, ae_dev, 1);
11146 
11147 	if (netif_msg_drv(&hdev->vport->nic))
11148 		hclge_info_show(hdev);
11149 
11150 	return ret;
11151 
11152 init_nic_err:
11153 	clear_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state);
11154 	while (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state))
11155 		msleep(HCLGE_WAIT_RESET_DONE);
11156 
11157 	client->ops->uninit_instance(&vport->nic, 0);
11158 
11159 	return ret;
11160 }
11161 
11162 static int hclge_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
11163 					   struct hclge_vport *vport)
11164 {
11165 	struct hclge_dev *hdev = ae_dev->priv;
11166 	struct hnae3_client *client;
11167 	int rst_cnt;
11168 	int ret;
11169 
11170 	if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
11171 	    !hdev->nic_client)
11172 		return 0;
11173 
11174 	client = hdev->roce_client;
11175 	ret = hclge_init_roce_base_info(vport);
11176 	if (ret)
11177 		return ret;
11178 
11179 	rst_cnt = hdev->rst_stats.reset_cnt;
11180 	ret = client->ops->init_instance(&vport->roce);
11181 	if (ret)
11182 		return ret;
11183 
11184 	set_bit(HCLGE_STATE_ROCE_REGISTERED, &hdev->state);
11185 	if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state) ||
11186 	    rst_cnt != hdev->rst_stats.reset_cnt) {
11187 		ret = -EBUSY;
11188 		goto init_roce_err;
11189 	}
11190 
11191 	/* Enable roce ras interrupts */
11192 	ret = hclge_config_rocee_ras_interrupt(hdev, true);
11193 	if (ret) {
11194 		dev_err(&ae_dev->pdev->dev,
11195 			"fail(%d) to enable roce ras interrupts\n", ret);
11196 		goto init_roce_err;
11197 	}
11198 
11199 	hnae3_set_client_init_flag(client, ae_dev, 1);
11200 
11201 	return 0;
11202 
11203 init_roce_err:
11204 	clear_bit(HCLGE_STATE_ROCE_REGISTERED, &hdev->state);
11205 	while (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state))
11206 		msleep(HCLGE_WAIT_RESET_DONE);
11207 
11208 	hdev->roce_client->ops->uninit_instance(&vport->roce, 0);
11209 
11210 	return ret;
11211 }
11212 
11213 static int hclge_init_client_instance(struct hnae3_client *client,
11214 				      struct hnae3_ae_dev *ae_dev)
11215 {
11216 	struct hclge_dev *hdev = ae_dev->priv;
11217 	struct hclge_vport *vport = &hdev->vport[0];
11218 	int ret;
11219 
11220 	switch (client->type) {
11221 	case HNAE3_CLIENT_KNIC:
11222 		hdev->nic_client = client;
11223 		vport->nic.client = client;
11224 		ret = hclge_init_nic_client_instance(ae_dev, vport);
11225 		if (ret)
11226 			goto clear_nic;
11227 
11228 		ret = hclge_init_roce_client_instance(ae_dev, vport);
11229 		if (ret)
11230 			goto clear_roce;
11231 
11232 		break;
11233 	case HNAE3_CLIENT_ROCE:
11234 		if (hnae3_dev_roce_supported(hdev)) {
11235 			hdev->roce_client = client;
11236 			vport->roce.client = client;
11237 		}
11238 
11239 		ret = hclge_init_roce_client_instance(ae_dev, vport);
11240 		if (ret)
11241 			goto clear_roce;
11242 
11243 		break;
11244 	default:
11245 		return -EINVAL;
11246 	}
11247 
11248 	return 0;
11249 
11250 clear_nic:
11251 	hdev->nic_client = NULL;
11252 	vport->nic.client = NULL;
11253 	return ret;
11254 clear_roce:
11255 	hdev->roce_client = NULL;
11256 	vport->roce.client = NULL;
11257 	return ret;
11258 }
11259 
11260 static void hclge_uninit_client_instance(struct hnae3_client *client,
11261 					 struct hnae3_ae_dev *ae_dev)
11262 {
11263 	struct hclge_dev *hdev = ae_dev->priv;
11264 	struct hclge_vport *vport = &hdev->vport[0];
11265 
11266 	if (hdev->roce_client) {
11267 		clear_bit(HCLGE_STATE_ROCE_REGISTERED, &hdev->state);
11268 		while (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state))
11269 			msleep(HCLGE_WAIT_RESET_DONE);
11270 
11271 		hdev->roce_client->ops->uninit_instance(&vport->roce, 0);
11272 		hdev->roce_client = NULL;
11273 		vport->roce.client = NULL;
11274 	}
11275 	if (client->type == HNAE3_CLIENT_ROCE)
11276 		return;
11277 	if (hdev->nic_client && client->ops->uninit_instance) {
11278 		clear_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state);
11279 		while (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state))
11280 			msleep(HCLGE_WAIT_RESET_DONE);
11281 
11282 		client->ops->uninit_instance(&vport->nic, 0);
11283 		hdev->nic_client = NULL;
11284 		vport->nic.client = NULL;
11285 	}
11286 }
11287 
11288 static int hclge_dev_mem_map(struct hclge_dev *hdev)
11289 {
11290 	struct pci_dev *pdev = hdev->pdev;
11291 	struct hclge_hw *hw = &hdev->hw;
11292 
11293 	/* for device does not have device memory, return directly */
11294 	if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGE_MEM_BAR)))
11295 		return 0;
11296 
11297 	hw->hw.mem_base =
11298 		devm_ioremap_wc(&pdev->dev,
11299 				pci_resource_start(pdev, HCLGE_MEM_BAR),
11300 				pci_resource_len(pdev, HCLGE_MEM_BAR));
11301 	if (!hw->hw.mem_base) {
11302 		dev_err(&pdev->dev, "failed to map device memory\n");
11303 		return -EFAULT;
11304 	}
11305 
11306 	return 0;
11307 }
11308 
11309 static int hclge_pci_init(struct hclge_dev *hdev)
11310 {
11311 	struct pci_dev *pdev = hdev->pdev;
11312 	struct hclge_hw *hw;
11313 	int ret;
11314 
11315 	ret = pci_enable_device(pdev);
11316 	if (ret) {
11317 		dev_err(&pdev->dev, "failed to enable PCI device\n");
11318 		return ret;
11319 	}
11320 
11321 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
11322 	if (ret) {
11323 		ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
11324 		if (ret) {
11325 			dev_err(&pdev->dev,
11326 				"can't set consistent PCI DMA");
11327 			goto err_disable_device;
11328 		}
11329 		dev_warn(&pdev->dev, "set DMA mask to 32 bits\n");
11330 	}
11331 
11332 	ret = pci_request_regions(pdev, HCLGE_DRIVER_NAME);
11333 	if (ret) {
11334 		dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
11335 		goto err_disable_device;
11336 	}
11337 
11338 	pci_set_master(pdev);
11339 	hw = &hdev->hw;
11340 	hw->hw.io_base = pcim_iomap(pdev, 2, 0);
11341 	if (!hw->hw.io_base) {
11342 		dev_err(&pdev->dev, "Can't map configuration register space\n");
11343 		ret = -ENOMEM;
11344 		goto err_clr_master;
11345 	}
11346 
11347 	ret = hclge_dev_mem_map(hdev);
11348 	if (ret)
11349 		goto err_unmap_io_base;
11350 
11351 	hdev->num_req_vfs = pci_sriov_get_totalvfs(pdev);
11352 
11353 	return 0;
11354 
11355 err_unmap_io_base:
11356 	pcim_iounmap(pdev, hdev->hw.hw.io_base);
11357 err_clr_master:
11358 	pci_clear_master(pdev);
11359 	pci_release_regions(pdev);
11360 err_disable_device:
11361 	pci_disable_device(pdev);
11362 
11363 	return ret;
11364 }
11365 
11366 static void hclge_pci_uninit(struct hclge_dev *hdev)
11367 {
11368 	struct pci_dev *pdev = hdev->pdev;
11369 
11370 	if (hdev->hw.hw.mem_base)
11371 		devm_iounmap(&pdev->dev, hdev->hw.hw.mem_base);
11372 
11373 	pcim_iounmap(pdev, hdev->hw.hw.io_base);
11374 	pci_free_irq_vectors(pdev);
11375 	pci_clear_master(pdev);
11376 	pci_release_mem_regions(pdev);
11377 	pci_disable_device(pdev);
11378 }
11379 
11380 static void hclge_state_init(struct hclge_dev *hdev)
11381 {
11382 	set_bit(HCLGE_STATE_SERVICE_INITED, &hdev->state);
11383 	set_bit(HCLGE_STATE_DOWN, &hdev->state);
11384 	clear_bit(HCLGE_STATE_RST_SERVICE_SCHED, &hdev->state);
11385 	clear_bit(HCLGE_STATE_RST_HANDLING, &hdev->state);
11386 	clear_bit(HCLGE_STATE_RST_FAIL, &hdev->state);
11387 	clear_bit(HCLGE_STATE_MBX_SERVICE_SCHED, &hdev->state);
11388 	clear_bit(HCLGE_STATE_MBX_HANDLING, &hdev->state);
11389 }
11390 
11391 static void hclge_state_uninit(struct hclge_dev *hdev)
11392 {
11393 	set_bit(HCLGE_STATE_DOWN, &hdev->state);
11394 	set_bit(HCLGE_STATE_REMOVING, &hdev->state);
11395 
11396 	if (hdev->reset_timer.function)
11397 		del_timer_sync(&hdev->reset_timer);
11398 	if (hdev->service_task.work.func)
11399 		cancel_delayed_work_sync(&hdev->service_task);
11400 }
11401 
11402 static void hclge_reset_prepare_general(struct hnae3_ae_dev *ae_dev,
11403 					enum hnae3_reset_type rst_type)
11404 {
11405 #define HCLGE_RESET_RETRY_WAIT_MS	500
11406 #define HCLGE_RESET_RETRY_CNT	5
11407 
11408 	struct hclge_dev *hdev = ae_dev->priv;
11409 	int retry_cnt = 0;
11410 	int ret;
11411 
11412 	while (retry_cnt++ < HCLGE_RESET_RETRY_CNT) {
11413 		down(&hdev->reset_sem);
11414 		set_bit(HCLGE_STATE_RST_HANDLING, &hdev->state);
11415 		hdev->reset_type = rst_type;
11416 		ret = hclge_reset_prepare(hdev);
11417 		if (!ret && !hdev->reset_pending)
11418 			break;
11419 
11420 		dev_err(&hdev->pdev->dev,
11421 			"failed to prepare to reset, ret=%d, reset_pending:0x%lx, retry_cnt:%d\n",
11422 			ret, hdev->reset_pending, retry_cnt);
11423 		clear_bit(HCLGE_STATE_RST_HANDLING, &hdev->state);
11424 		up(&hdev->reset_sem);
11425 		msleep(HCLGE_RESET_RETRY_WAIT_MS);
11426 	}
11427 
11428 	/* disable misc vector before reset done */
11429 	hclge_enable_vector(&hdev->misc_vector, false);
11430 	set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state);
11431 
11432 	if (hdev->reset_type == HNAE3_FLR_RESET)
11433 		hdev->rst_stats.flr_rst_cnt++;
11434 }
11435 
11436 static void hclge_reset_done(struct hnae3_ae_dev *ae_dev)
11437 {
11438 	struct hclge_dev *hdev = ae_dev->priv;
11439 	int ret;
11440 
11441 	hclge_enable_vector(&hdev->misc_vector, true);
11442 
11443 	ret = hclge_reset_rebuild(hdev);
11444 	if (ret)
11445 		dev_err(&hdev->pdev->dev, "fail to rebuild, ret=%d\n", ret);
11446 
11447 	hdev->reset_type = HNAE3_NONE_RESET;
11448 	clear_bit(HCLGE_STATE_RST_HANDLING, &hdev->state);
11449 	up(&hdev->reset_sem);
11450 }
11451 
11452 static void hclge_clear_resetting_state(struct hclge_dev *hdev)
11453 {
11454 	u16 i;
11455 
11456 	for (i = 0; i < hdev->num_alloc_vport; i++) {
11457 		struct hclge_vport *vport = &hdev->vport[i];
11458 		int ret;
11459 
11460 		 /* Send cmd to clear vport's FUNC_RST_ING */
11461 		ret = hclge_set_vf_rst(hdev, vport->vport_id, false);
11462 		if (ret)
11463 			dev_warn(&hdev->pdev->dev,
11464 				 "clear vport(%u) rst failed %d!\n",
11465 				 vport->vport_id, ret);
11466 	}
11467 }
11468 
11469 static int hclge_clear_hw_resource(struct hclge_dev *hdev)
11470 {
11471 	struct hclge_desc desc;
11472 	int ret;
11473 
11474 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CLEAR_HW_RESOURCE, false);
11475 
11476 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
11477 	/* This new command is only supported by new firmware, it will
11478 	 * fail with older firmware. Error value -EOPNOSUPP can only be
11479 	 * returned by older firmware running this command, to keep code
11480 	 * backward compatible we will override this value and return
11481 	 * success.
11482 	 */
11483 	if (ret && ret != -EOPNOTSUPP) {
11484 		dev_err(&hdev->pdev->dev,
11485 			"failed to clear hw resource, ret = %d\n", ret);
11486 		return ret;
11487 	}
11488 	return 0;
11489 }
11490 
11491 static void hclge_init_rxd_adv_layout(struct hclge_dev *hdev)
11492 {
11493 	if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
11494 		hclge_write_dev(&hdev->hw, HCLGE_RXD_ADV_LAYOUT_EN_REG, 1);
11495 }
11496 
11497 static void hclge_uninit_rxd_adv_layout(struct hclge_dev *hdev)
11498 {
11499 	if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
11500 		hclge_write_dev(&hdev->hw, HCLGE_RXD_ADV_LAYOUT_EN_REG, 0);
11501 }
11502 
11503 static int hclge_init_ae_dev(struct hnae3_ae_dev *ae_dev)
11504 {
11505 	struct pci_dev *pdev = ae_dev->pdev;
11506 	struct hclge_dev *hdev;
11507 	int ret;
11508 
11509 	hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
11510 	if (!hdev)
11511 		return -ENOMEM;
11512 
11513 	hdev->pdev = pdev;
11514 	hdev->ae_dev = ae_dev;
11515 	hdev->reset_type = HNAE3_NONE_RESET;
11516 	hdev->reset_level = HNAE3_FUNC_RESET;
11517 	ae_dev->priv = hdev;
11518 
11519 	/* HW supprt 2 layer vlan */
11520 	hdev->mps = ETH_FRAME_LEN + ETH_FCS_LEN + 2 * VLAN_HLEN;
11521 
11522 	mutex_init(&hdev->vport_lock);
11523 	spin_lock_init(&hdev->fd_rule_lock);
11524 	sema_init(&hdev->reset_sem, 1);
11525 
11526 	ret = hclge_pci_init(hdev);
11527 	if (ret)
11528 		goto out;
11529 
11530 	ret = hclge_devlink_init(hdev);
11531 	if (ret)
11532 		goto err_pci_uninit;
11533 
11534 	/* Firmware command queue initialize */
11535 	ret = hclge_comm_cmd_queue_init(hdev->pdev, &hdev->hw.hw);
11536 	if (ret)
11537 		goto err_devlink_uninit;
11538 
11539 	/* Firmware command initialize */
11540 	ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw, &hdev->fw_version,
11541 				  true, hdev->reset_pending);
11542 	if (ret)
11543 		goto err_cmd_uninit;
11544 
11545 	ret  = hclge_clear_hw_resource(hdev);
11546 	if (ret)
11547 		goto err_cmd_uninit;
11548 
11549 	ret = hclge_get_cap(hdev);
11550 	if (ret)
11551 		goto err_cmd_uninit;
11552 
11553 	ret = hclge_query_dev_specs(hdev);
11554 	if (ret) {
11555 		dev_err(&pdev->dev, "failed to query dev specifications, ret = %d.\n",
11556 			ret);
11557 		goto err_cmd_uninit;
11558 	}
11559 
11560 	ret = hclge_configure(hdev);
11561 	if (ret) {
11562 		dev_err(&pdev->dev, "Configure dev error, ret = %d.\n", ret);
11563 		goto err_cmd_uninit;
11564 	}
11565 
11566 	ret = hclge_init_msi(hdev);
11567 	if (ret) {
11568 		dev_err(&pdev->dev, "Init MSI/MSI-X error, ret = %d.\n", ret);
11569 		goto err_cmd_uninit;
11570 	}
11571 
11572 	ret = hclge_misc_irq_init(hdev);
11573 	if (ret)
11574 		goto err_msi_uninit;
11575 
11576 	ret = hclge_alloc_tqps(hdev);
11577 	if (ret) {
11578 		dev_err(&pdev->dev, "Allocate TQPs error, ret = %d.\n", ret);
11579 		goto err_msi_irq_uninit;
11580 	}
11581 
11582 	ret = hclge_alloc_vport(hdev);
11583 	if (ret)
11584 		goto err_msi_irq_uninit;
11585 
11586 	ret = hclge_map_tqp(hdev);
11587 	if (ret)
11588 		goto err_msi_irq_uninit;
11589 
11590 	if (hdev->hw.mac.media_type == HNAE3_MEDIA_TYPE_COPPER) {
11591 		if (hnae3_dev_phy_imp_supported(hdev))
11592 			ret = hclge_update_tp_port_info(hdev);
11593 		else
11594 			ret = hclge_mac_mdio_config(hdev);
11595 
11596 		if (ret)
11597 			goto err_msi_irq_uninit;
11598 	}
11599 
11600 	ret = hclge_init_umv_space(hdev);
11601 	if (ret)
11602 		goto err_mdiobus_unreg;
11603 
11604 	ret = hclge_mac_init(hdev);
11605 	if (ret) {
11606 		dev_err(&pdev->dev, "Mac init error, ret = %d\n", ret);
11607 		goto err_mdiobus_unreg;
11608 	}
11609 
11610 	ret = hclge_config_tso(hdev, HCLGE_TSO_MSS_MIN, HCLGE_TSO_MSS_MAX);
11611 	if (ret) {
11612 		dev_err(&pdev->dev, "Enable tso fail, ret =%d\n", ret);
11613 		goto err_mdiobus_unreg;
11614 	}
11615 
11616 	ret = hclge_config_gro(hdev);
11617 	if (ret)
11618 		goto err_mdiobus_unreg;
11619 
11620 	ret = hclge_init_vlan_config(hdev);
11621 	if (ret) {
11622 		dev_err(&pdev->dev, "VLAN init fail, ret =%d\n", ret);
11623 		goto err_mdiobus_unreg;
11624 	}
11625 
11626 	ret = hclge_tm_schd_init(hdev);
11627 	if (ret) {
11628 		dev_err(&pdev->dev, "tm schd init fail, ret =%d\n", ret);
11629 		goto err_mdiobus_unreg;
11630 	}
11631 
11632 	ret = hclge_comm_rss_init_cfg(&hdev->vport->nic, hdev->ae_dev,
11633 				      &hdev->rss_cfg);
11634 	if (ret) {
11635 		dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
11636 		goto err_mdiobus_unreg;
11637 	}
11638 
11639 	ret = hclge_rss_init_hw(hdev);
11640 	if (ret) {
11641 		dev_err(&pdev->dev, "Rss init fail, ret =%d\n", ret);
11642 		goto err_mdiobus_unreg;
11643 	}
11644 
11645 	ret = init_mgr_tbl(hdev);
11646 	if (ret) {
11647 		dev_err(&pdev->dev, "manager table init fail, ret =%d\n", ret);
11648 		goto err_mdiobus_unreg;
11649 	}
11650 
11651 	ret = hclge_init_fd_config(hdev);
11652 	if (ret) {
11653 		dev_err(&pdev->dev,
11654 			"fd table init fail, ret=%d\n", ret);
11655 		goto err_mdiobus_unreg;
11656 	}
11657 
11658 	ret = hclge_ptp_init(hdev);
11659 	if (ret)
11660 		goto err_mdiobus_unreg;
11661 
11662 	ret = hclge_update_port_info(hdev);
11663 	if (ret)
11664 		goto err_mdiobus_unreg;
11665 
11666 	INIT_KFIFO(hdev->mac_tnl_log);
11667 
11668 	hclge_dcb_ops_set(hdev);
11669 
11670 	timer_setup(&hdev->reset_timer, hclge_reset_timer, 0);
11671 	INIT_DELAYED_WORK(&hdev->service_task, hclge_service_task);
11672 
11673 	hclge_clear_all_event_cause(hdev);
11674 	hclge_clear_resetting_state(hdev);
11675 
11676 	/* Log and clear the hw errors those already occurred */
11677 	if (hnae3_dev_ras_imp_supported(hdev))
11678 		hclge_handle_occurred_error(hdev);
11679 	else
11680 		hclge_handle_all_hns_hw_errors(ae_dev);
11681 
11682 	/* request delayed reset for the error recovery because an immediate
11683 	 * global reset on a PF affecting pending initialization of other PFs
11684 	 */
11685 	if (ae_dev->hw_err_reset_req) {
11686 		enum hnae3_reset_type reset_level;
11687 
11688 		reset_level = hclge_get_reset_level(ae_dev,
11689 						    &ae_dev->hw_err_reset_req);
11690 		hclge_set_def_reset_request(ae_dev, reset_level);
11691 		mod_timer(&hdev->reset_timer, jiffies + HCLGE_RESET_INTERVAL);
11692 	}
11693 
11694 	hclge_init_rxd_adv_layout(hdev);
11695 
11696 	/* Enable MISC vector(vector0) */
11697 	hclge_enable_vector(&hdev->misc_vector, true);
11698 
11699 	hclge_state_init(hdev);
11700 	hdev->last_reset_time = jiffies;
11701 
11702 	dev_info(&hdev->pdev->dev, "%s driver initialization finished.\n",
11703 		 HCLGE_DRIVER_NAME);
11704 
11705 	hclge_task_schedule(hdev, round_jiffies_relative(HZ));
11706 
11707 	return 0;
11708 
11709 err_mdiobus_unreg:
11710 	if (hdev->hw.mac.phydev)
11711 		mdiobus_unregister(hdev->hw.mac.mdio_bus);
11712 err_msi_irq_uninit:
11713 	hclge_misc_irq_uninit(hdev);
11714 err_msi_uninit:
11715 	pci_free_irq_vectors(pdev);
11716 err_cmd_uninit:
11717 	hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
11718 err_devlink_uninit:
11719 	hclge_devlink_uninit(hdev);
11720 err_pci_uninit:
11721 	pcim_iounmap(pdev, hdev->hw.hw.io_base);
11722 	pci_clear_master(pdev);
11723 	pci_release_regions(pdev);
11724 	pci_disable_device(pdev);
11725 out:
11726 	mutex_destroy(&hdev->vport_lock);
11727 	return ret;
11728 }
11729 
11730 static void hclge_stats_clear(struct hclge_dev *hdev)
11731 {
11732 	memset(&hdev->mac_stats, 0, sizeof(hdev->mac_stats));
11733 	memset(&hdev->fec_stats, 0, sizeof(hdev->fec_stats));
11734 }
11735 
11736 static int hclge_set_mac_spoofchk(struct hclge_dev *hdev, int vf, bool enable)
11737 {
11738 	return hclge_config_switch_param(hdev, vf, enable,
11739 					 HCLGE_SWITCH_ANTI_SPOOF_MASK);
11740 }
11741 
11742 static int hclge_set_vlan_spoofchk(struct hclge_dev *hdev, int vf, bool enable)
11743 {
11744 	return hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF,
11745 					  HCLGE_FILTER_FE_NIC_INGRESS_B,
11746 					  enable, vf);
11747 }
11748 
11749 static int hclge_set_vf_spoofchk_hw(struct hclge_dev *hdev, int vf, bool enable)
11750 {
11751 	int ret;
11752 
11753 	ret = hclge_set_mac_spoofchk(hdev, vf, enable);
11754 	if (ret) {
11755 		dev_err(&hdev->pdev->dev,
11756 			"Set vf %d mac spoof check %s failed, ret=%d\n",
11757 			vf, enable ? "on" : "off", ret);
11758 		return ret;
11759 	}
11760 
11761 	ret = hclge_set_vlan_spoofchk(hdev, vf, enable);
11762 	if (ret)
11763 		dev_err(&hdev->pdev->dev,
11764 			"Set vf %d vlan spoof check %s failed, ret=%d\n",
11765 			vf, enable ? "on" : "off", ret);
11766 
11767 	return ret;
11768 }
11769 
11770 static int hclge_set_vf_spoofchk(struct hnae3_handle *handle, int vf,
11771 				 bool enable)
11772 {
11773 	struct hclge_vport *vport = hclge_get_vport(handle);
11774 	struct hclge_dev *hdev = vport->back;
11775 	u32 new_spoofchk = enable ? 1 : 0;
11776 	int ret;
11777 
11778 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
11779 		return -EOPNOTSUPP;
11780 
11781 	vport = hclge_get_vf_vport(hdev, vf);
11782 	if (!vport)
11783 		return -EINVAL;
11784 
11785 	if (vport->vf_info.spoofchk == new_spoofchk)
11786 		return 0;
11787 
11788 	if (enable && test_bit(vport->vport_id, hdev->vf_vlan_full))
11789 		dev_warn(&hdev->pdev->dev,
11790 			 "vf %d vlan table is full, enable spoof check may cause its packet send fail\n",
11791 			 vf);
11792 	else if (enable && hclge_is_umv_space_full(vport, true))
11793 		dev_warn(&hdev->pdev->dev,
11794 			 "vf %d mac table is full, enable spoof check may cause its packet send fail\n",
11795 			 vf);
11796 
11797 	ret = hclge_set_vf_spoofchk_hw(hdev, vport->vport_id, enable);
11798 	if (ret)
11799 		return ret;
11800 
11801 	vport->vf_info.spoofchk = new_spoofchk;
11802 	return 0;
11803 }
11804 
11805 static int hclge_reset_vport_spoofchk(struct hclge_dev *hdev)
11806 {
11807 	struct hclge_vport *vport = hdev->vport;
11808 	int ret;
11809 	int i;
11810 
11811 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
11812 		return 0;
11813 
11814 	/* resume the vf spoof check state after reset */
11815 	for (i = 0; i < hdev->num_alloc_vport; i++) {
11816 		ret = hclge_set_vf_spoofchk_hw(hdev, vport->vport_id,
11817 					       vport->vf_info.spoofchk);
11818 		if (ret)
11819 			return ret;
11820 
11821 		vport++;
11822 	}
11823 
11824 	return 0;
11825 }
11826 
11827 static int hclge_set_vf_trust(struct hnae3_handle *handle, int vf, bool enable)
11828 {
11829 	struct hclge_vport *vport = hclge_get_vport(handle);
11830 	struct hclge_dev *hdev = vport->back;
11831 	u32 new_trusted = enable ? 1 : 0;
11832 
11833 	vport = hclge_get_vf_vport(hdev, vf);
11834 	if (!vport)
11835 		return -EINVAL;
11836 
11837 	if (vport->vf_info.trusted == new_trusted)
11838 		return 0;
11839 
11840 	vport->vf_info.trusted = new_trusted;
11841 	set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, &vport->state);
11842 	hclge_task_schedule(hdev, 0);
11843 
11844 	return 0;
11845 }
11846 
11847 static void hclge_reset_vf_rate(struct hclge_dev *hdev)
11848 {
11849 	int ret;
11850 	int vf;
11851 
11852 	/* reset vf rate to default value */
11853 	for (vf = HCLGE_VF_VPORT_START_NUM; vf < hdev->num_alloc_vport; vf++) {
11854 		struct hclge_vport *vport = &hdev->vport[vf];
11855 
11856 		vport->vf_info.max_tx_rate = 0;
11857 		ret = hclge_tm_qs_shaper_cfg(vport, vport->vf_info.max_tx_rate);
11858 		if (ret)
11859 			dev_err(&hdev->pdev->dev,
11860 				"vf%d failed to reset to default, ret=%d\n",
11861 				vf - HCLGE_VF_VPORT_START_NUM, ret);
11862 	}
11863 }
11864 
11865 static int hclge_vf_rate_param_check(struct hclge_dev *hdev,
11866 				     int min_tx_rate, int max_tx_rate)
11867 {
11868 	if (min_tx_rate != 0 ||
11869 	    max_tx_rate < 0 || max_tx_rate > hdev->hw.mac.max_speed) {
11870 		dev_err(&hdev->pdev->dev,
11871 			"min_tx_rate:%d [0], max_tx_rate:%d [0, %u]\n",
11872 			min_tx_rate, max_tx_rate, hdev->hw.mac.max_speed);
11873 		return -EINVAL;
11874 	}
11875 
11876 	return 0;
11877 }
11878 
11879 static int hclge_set_vf_rate(struct hnae3_handle *handle, int vf,
11880 			     int min_tx_rate, int max_tx_rate, bool force)
11881 {
11882 	struct hclge_vport *vport = hclge_get_vport(handle);
11883 	struct hclge_dev *hdev = vport->back;
11884 	int ret;
11885 
11886 	ret = hclge_vf_rate_param_check(hdev, min_tx_rate, max_tx_rate);
11887 	if (ret)
11888 		return ret;
11889 
11890 	vport = hclge_get_vf_vport(hdev, vf);
11891 	if (!vport)
11892 		return -EINVAL;
11893 
11894 	if (!force && max_tx_rate == vport->vf_info.max_tx_rate)
11895 		return 0;
11896 
11897 	ret = hclge_tm_qs_shaper_cfg(vport, max_tx_rate);
11898 	if (ret)
11899 		return ret;
11900 
11901 	vport->vf_info.max_tx_rate = max_tx_rate;
11902 
11903 	return 0;
11904 }
11905 
11906 static int hclge_resume_vf_rate(struct hclge_dev *hdev)
11907 {
11908 	struct hnae3_handle *handle = &hdev->vport->nic;
11909 	struct hclge_vport *vport;
11910 	int ret;
11911 	int vf;
11912 
11913 	/* resume the vf max_tx_rate after reset */
11914 	for (vf = 0; vf < pci_num_vf(hdev->pdev); vf++) {
11915 		vport = hclge_get_vf_vport(hdev, vf);
11916 		if (!vport)
11917 			return -EINVAL;
11918 
11919 		/* zero means max rate, after reset, firmware already set it to
11920 		 * max rate, so just continue.
11921 		 */
11922 		if (!vport->vf_info.max_tx_rate)
11923 			continue;
11924 
11925 		ret = hclge_set_vf_rate(handle, vf, 0,
11926 					vport->vf_info.max_tx_rate, true);
11927 		if (ret) {
11928 			dev_err(&hdev->pdev->dev,
11929 				"vf%d failed to resume tx_rate:%u, ret=%d\n",
11930 				vf, vport->vf_info.max_tx_rate, ret);
11931 			return ret;
11932 		}
11933 	}
11934 
11935 	return 0;
11936 }
11937 
11938 static void hclge_reset_vport_state(struct hclge_dev *hdev)
11939 {
11940 	struct hclge_vport *vport = hdev->vport;
11941 	int i;
11942 
11943 	for (i = 0; i < hdev->num_alloc_vport; i++) {
11944 		hclge_vport_stop(vport);
11945 		vport++;
11946 	}
11947 }
11948 
11949 static int hclge_reset_ae_dev(struct hnae3_ae_dev *ae_dev)
11950 {
11951 	struct hclge_dev *hdev = ae_dev->priv;
11952 	struct pci_dev *pdev = ae_dev->pdev;
11953 	int ret;
11954 
11955 	set_bit(HCLGE_STATE_DOWN, &hdev->state);
11956 
11957 	hclge_stats_clear(hdev);
11958 	/* NOTE: pf reset needn't to clear or restore pf and vf table entry.
11959 	 * so here should not clean table in memory.
11960 	 */
11961 	if (hdev->reset_type == HNAE3_IMP_RESET ||
11962 	    hdev->reset_type == HNAE3_GLOBAL_RESET) {
11963 		memset(hdev->vlan_table, 0, sizeof(hdev->vlan_table));
11964 		memset(hdev->vf_vlan_full, 0, sizeof(hdev->vf_vlan_full));
11965 		bitmap_set(hdev->vport_config_block, 0, hdev->num_alloc_vport);
11966 		hclge_reset_umv_space(hdev);
11967 	}
11968 
11969 	ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw, &hdev->fw_version,
11970 				  true, hdev->reset_pending);
11971 	if (ret) {
11972 		dev_err(&pdev->dev, "Cmd queue init failed\n");
11973 		return ret;
11974 	}
11975 
11976 	ret = hclge_map_tqp(hdev);
11977 	if (ret) {
11978 		dev_err(&pdev->dev, "Map tqp error, ret = %d.\n", ret);
11979 		return ret;
11980 	}
11981 
11982 	ret = hclge_mac_init(hdev);
11983 	if (ret) {
11984 		dev_err(&pdev->dev, "Mac init error, ret = %d\n", ret);
11985 		return ret;
11986 	}
11987 
11988 	ret = hclge_tp_port_init(hdev);
11989 	if (ret) {
11990 		dev_err(&pdev->dev, "failed to init tp port, ret = %d\n",
11991 			ret);
11992 		return ret;
11993 	}
11994 
11995 	ret = hclge_config_tso(hdev, HCLGE_TSO_MSS_MIN, HCLGE_TSO_MSS_MAX);
11996 	if (ret) {
11997 		dev_err(&pdev->dev, "Enable tso fail, ret =%d\n", ret);
11998 		return ret;
11999 	}
12000 
12001 	ret = hclge_config_gro(hdev);
12002 	if (ret)
12003 		return ret;
12004 
12005 	ret = hclge_init_vlan_config(hdev);
12006 	if (ret) {
12007 		dev_err(&pdev->dev, "VLAN init fail, ret =%d\n", ret);
12008 		return ret;
12009 	}
12010 
12011 	ret = hclge_tm_init_hw(hdev, true);
12012 	if (ret) {
12013 		dev_err(&pdev->dev, "tm init hw fail, ret =%d\n", ret);
12014 		return ret;
12015 	}
12016 
12017 	ret = hclge_rss_init_hw(hdev);
12018 	if (ret) {
12019 		dev_err(&pdev->dev, "Rss init fail, ret =%d\n", ret);
12020 		return ret;
12021 	}
12022 
12023 	ret = init_mgr_tbl(hdev);
12024 	if (ret) {
12025 		dev_err(&pdev->dev,
12026 			"failed to reinit manager table, ret = %d\n", ret);
12027 		return ret;
12028 	}
12029 
12030 	ret = hclge_init_fd_config(hdev);
12031 	if (ret) {
12032 		dev_err(&pdev->dev, "fd table init fail, ret=%d\n", ret);
12033 		return ret;
12034 	}
12035 
12036 	ret = hclge_ptp_init(hdev);
12037 	if (ret)
12038 		return ret;
12039 
12040 	/* Log and clear the hw errors those already occurred */
12041 	if (hnae3_dev_ras_imp_supported(hdev))
12042 		hclge_handle_occurred_error(hdev);
12043 	else
12044 		hclge_handle_all_hns_hw_errors(ae_dev);
12045 
12046 	/* Re-enable the hw error interrupts because
12047 	 * the interrupts get disabled on global reset.
12048 	 */
12049 	ret = hclge_config_nic_hw_error(hdev, true);
12050 	if (ret) {
12051 		dev_err(&pdev->dev,
12052 			"fail(%d) to re-enable NIC hw error interrupts\n",
12053 			ret);
12054 		return ret;
12055 	}
12056 
12057 	if (hdev->roce_client) {
12058 		ret = hclge_config_rocee_ras_interrupt(hdev, true);
12059 		if (ret) {
12060 			dev_err(&pdev->dev,
12061 				"fail(%d) to re-enable roce ras interrupts\n",
12062 				ret);
12063 			return ret;
12064 		}
12065 	}
12066 
12067 	hclge_reset_vport_state(hdev);
12068 	ret = hclge_reset_vport_spoofchk(hdev);
12069 	if (ret)
12070 		return ret;
12071 
12072 	ret = hclge_resume_vf_rate(hdev);
12073 	if (ret)
12074 		return ret;
12075 
12076 	hclge_init_rxd_adv_layout(hdev);
12077 
12078 	dev_info(&pdev->dev, "Reset done, %s driver initialization finished.\n",
12079 		 HCLGE_DRIVER_NAME);
12080 
12081 	return 0;
12082 }
12083 
12084 static void hclge_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
12085 {
12086 	struct hclge_dev *hdev = ae_dev->priv;
12087 	struct hclge_mac *mac = &hdev->hw.mac;
12088 
12089 	hclge_reset_vf_rate(hdev);
12090 	hclge_clear_vf_vlan(hdev);
12091 	hclge_state_uninit(hdev);
12092 	hclge_ptp_uninit(hdev);
12093 	hclge_uninit_rxd_adv_layout(hdev);
12094 	hclge_uninit_mac_table(hdev);
12095 	hclge_del_all_fd_entries(hdev);
12096 
12097 	if (mac->phydev)
12098 		mdiobus_unregister(mac->mdio_bus);
12099 
12100 	/* Disable MISC vector(vector0) */
12101 	hclge_enable_vector(&hdev->misc_vector, false);
12102 	synchronize_irq(hdev->misc_vector.vector_irq);
12103 
12104 	/* Disable all hw interrupts */
12105 	hclge_config_mac_tnl_int(hdev, false);
12106 	hclge_config_nic_hw_error(hdev, false);
12107 	hclge_config_rocee_ras_interrupt(hdev, false);
12108 
12109 	hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw);
12110 	hclge_misc_irq_uninit(hdev);
12111 	hclge_devlink_uninit(hdev);
12112 	hclge_pci_uninit(hdev);
12113 	hclge_uninit_vport_vlan_table(hdev);
12114 	mutex_destroy(&hdev->vport_lock);
12115 	ae_dev->priv = NULL;
12116 }
12117 
12118 static u32 hclge_get_max_channels(struct hnae3_handle *handle)
12119 {
12120 	struct hclge_vport *vport = hclge_get_vport(handle);
12121 	struct hclge_dev *hdev = vport->back;
12122 
12123 	return min_t(u32, hdev->pf_rss_size_max, vport->alloc_tqps);
12124 }
12125 
12126 static void hclge_get_channels(struct hnae3_handle *handle,
12127 			       struct ethtool_channels *ch)
12128 {
12129 	ch->max_combined = hclge_get_max_channels(handle);
12130 	ch->other_count = 1;
12131 	ch->max_other = 1;
12132 	ch->combined_count = handle->kinfo.rss_size;
12133 }
12134 
12135 static void hclge_get_tqps_and_rss_info(struct hnae3_handle *handle,
12136 					u16 *alloc_tqps, u16 *max_rss_size)
12137 {
12138 	struct hclge_vport *vport = hclge_get_vport(handle);
12139 	struct hclge_dev *hdev = vport->back;
12140 
12141 	*alloc_tqps = vport->alloc_tqps;
12142 	*max_rss_size = hdev->pf_rss_size_max;
12143 }
12144 
12145 static int hclge_set_rss_tc_mode_cfg(struct hnae3_handle *handle)
12146 {
12147 	struct hclge_vport *vport = hclge_get_vport(handle);
12148 	u16 tc_offset[HCLGE_MAX_TC_NUM] = {0};
12149 	struct hclge_dev *hdev = vport->back;
12150 	u16 tc_size[HCLGE_MAX_TC_NUM] = {0};
12151 	u16 tc_valid[HCLGE_MAX_TC_NUM];
12152 	u16 roundup_size;
12153 	unsigned int i;
12154 
12155 	roundup_size = roundup_pow_of_two(vport->nic.kinfo.rss_size);
12156 	roundup_size = ilog2(roundup_size);
12157 	/* Set the RSS TC mode according to the new RSS size */
12158 	for (i = 0; i < HCLGE_MAX_TC_NUM; i++) {
12159 		tc_valid[i] = 0;
12160 
12161 		if (!(hdev->hw_tc_map & BIT(i)))
12162 			continue;
12163 
12164 		tc_valid[i] = 1;
12165 		tc_size[i] = roundup_size;
12166 		tc_offset[i] = vport->nic.kinfo.rss_size * i;
12167 	}
12168 
12169 	return hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset, tc_valid,
12170 					  tc_size);
12171 }
12172 
12173 static int hclge_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
12174 			      bool rxfh_configured)
12175 {
12176 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
12177 	struct hclge_vport *vport = hclge_get_vport(handle);
12178 	struct hnae3_knic_private_info *kinfo = &vport->nic.kinfo;
12179 	struct hclge_dev *hdev = vport->back;
12180 	u16 cur_rss_size = kinfo->rss_size;
12181 	u16 cur_tqps = kinfo->num_tqps;
12182 	u32 *rss_indir;
12183 	unsigned int i;
12184 	int ret;
12185 
12186 	kinfo->req_rss_size = new_tqps_num;
12187 
12188 	ret = hclge_tm_vport_map_update(hdev);
12189 	if (ret) {
12190 		dev_err(&hdev->pdev->dev, "tm vport map fail, ret =%d\n", ret);
12191 		return ret;
12192 	}
12193 
12194 	ret = hclge_set_rss_tc_mode_cfg(handle);
12195 	if (ret)
12196 		return ret;
12197 
12198 	/* RSS indirection table has been configured by user */
12199 	if (rxfh_configured)
12200 		goto out;
12201 
12202 	/* Reinitializes the rss indirect table according to the new RSS size */
12203 	rss_indir = kcalloc(ae_dev->dev_specs.rss_ind_tbl_size, sizeof(u32),
12204 			    GFP_KERNEL);
12205 	if (!rss_indir)
12206 		return -ENOMEM;
12207 
12208 	for (i = 0; i < ae_dev->dev_specs.rss_ind_tbl_size; i++)
12209 		rss_indir[i] = i % kinfo->rss_size;
12210 
12211 	ret = hclge_set_rss(handle, rss_indir, NULL, 0);
12212 	if (ret)
12213 		dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
12214 			ret);
12215 
12216 	kfree(rss_indir);
12217 
12218 out:
12219 	if (!ret)
12220 		dev_info(&hdev->pdev->dev,
12221 			 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
12222 			 cur_rss_size, kinfo->rss_size,
12223 			 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
12224 
12225 	return ret;
12226 }
12227 
12228 static int hclge_get_regs_num(struct hclge_dev *hdev, u32 *regs_num_32_bit,
12229 			      u32 *regs_num_64_bit)
12230 {
12231 	struct hclge_desc desc;
12232 	u32 total_num;
12233 	int ret;
12234 
12235 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_REG_NUM, true);
12236 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
12237 	if (ret) {
12238 		dev_err(&hdev->pdev->dev,
12239 			"Query register number cmd failed, ret = %d.\n", ret);
12240 		return ret;
12241 	}
12242 
12243 	*regs_num_32_bit = le32_to_cpu(desc.data[0]);
12244 	*regs_num_64_bit = le32_to_cpu(desc.data[1]);
12245 
12246 	total_num = *regs_num_32_bit + *regs_num_64_bit;
12247 	if (!total_num)
12248 		return -EINVAL;
12249 
12250 	return 0;
12251 }
12252 
12253 static int hclge_get_32_bit_regs(struct hclge_dev *hdev, u32 regs_num,
12254 				 void *data)
12255 {
12256 #define HCLGE_32_BIT_REG_RTN_DATANUM 8
12257 #define HCLGE_32_BIT_DESC_NODATA_LEN 2
12258 
12259 	struct hclge_desc *desc;
12260 	u32 *reg_val = data;
12261 	__le32 *desc_data;
12262 	int nodata_num;
12263 	int cmd_num;
12264 	int i, k, n;
12265 	int ret;
12266 
12267 	if (regs_num == 0)
12268 		return 0;
12269 
12270 	nodata_num = HCLGE_32_BIT_DESC_NODATA_LEN;
12271 	cmd_num = DIV_ROUND_UP(regs_num + nodata_num,
12272 			       HCLGE_32_BIT_REG_RTN_DATANUM);
12273 	desc = kcalloc(cmd_num, sizeof(struct hclge_desc), GFP_KERNEL);
12274 	if (!desc)
12275 		return -ENOMEM;
12276 
12277 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_QUERY_32_BIT_REG, true);
12278 	ret = hclge_cmd_send(&hdev->hw, desc, cmd_num);
12279 	if (ret) {
12280 		dev_err(&hdev->pdev->dev,
12281 			"Query 32 bit register cmd failed, ret = %d.\n", ret);
12282 		kfree(desc);
12283 		return ret;
12284 	}
12285 
12286 	for (i = 0; i < cmd_num; i++) {
12287 		if (i == 0) {
12288 			desc_data = (__le32 *)(&desc[i].data[0]);
12289 			n = HCLGE_32_BIT_REG_RTN_DATANUM - nodata_num;
12290 		} else {
12291 			desc_data = (__le32 *)(&desc[i]);
12292 			n = HCLGE_32_BIT_REG_RTN_DATANUM;
12293 		}
12294 		for (k = 0; k < n; k++) {
12295 			*reg_val++ = le32_to_cpu(*desc_data++);
12296 
12297 			regs_num--;
12298 			if (!regs_num)
12299 				break;
12300 		}
12301 	}
12302 
12303 	kfree(desc);
12304 	return 0;
12305 }
12306 
12307 static int hclge_get_64_bit_regs(struct hclge_dev *hdev, u32 regs_num,
12308 				 void *data)
12309 {
12310 #define HCLGE_64_BIT_REG_RTN_DATANUM 4
12311 #define HCLGE_64_BIT_DESC_NODATA_LEN 1
12312 
12313 	struct hclge_desc *desc;
12314 	u64 *reg_val = data;
12315 	__le64 *desc_data;
12316 	int nodata_len;
12317 	int cmd_num;
12318 	int i, k, n;
12319 	int ret;
12320 
12321 	if (regs_num == 0)
12322 		return 0;
12323 
12324 	nodata_len = HCLGE_64_BIT_DESC_NODATA_LEN;
12325 	cmd_num = DIV_ROUND_UP(regs_num + nodata_len,
12326 			       HCLGE_64_BIT_REG_RTN_DATANUM);
12327 	desc = kcalloc(cmd_num, sizeof(struct hclge_desc), GFP_KERNEL);
12328 	if (!desc)
12329 		return -ENOMEM;
12330 
12331 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_QUERY_64_BIT_REG, true);
12332 	ret = hclge_cmd_send(&hdev->hw, desc, cmd_num);
12333 	if (ret) {
12334 		dev_err(&hdev->pdev->dev,
12335 			"Query 64 bit register cmd failed, ret = %d.\n", ret);
12336 		kfree(desc);
12337 		return ret;
12338 	}
12339 
12340 	for (i = 0; i < cmd_num; i++) {
12341 		if (i == 0) {
12342 			desc_data = (__le64 *)(&desc[i].data[0]);
12343 			n = HCLGE_64_BIT_REG_RTN_DATANUM - nodata_len;
12344 		} else {
12345 			desc_data = (__le64 *)(&desc[i]);
12346 			n = HCLGE_64_BIT_REG_RTN_DATANUM;
12347 		}
12348 		for (k = 0; k < n; k++) {
12349 			*reg_val++ = le64_to_cpu(*desc_data++);
12350 
12351 			regs_num--;
12352 			if (!regs_num)
12353 				break;
12354 		}
12355 	}
12356 
12357 	kfree(desc);
12358 	return 0;
12359 }
12360 
12361 #define MAX_SEPARATE_NUM	4
12362 #define SEPARATOR_VALUE		0xFDFCFBFA
12363 #define REG_NUM_PER_LINE	4
12364 #define REG_LEN_PER_LINE	(REG_NUM_PER_LINE * sizeof(u32))
12365 #define REG_SEPARATOR_LINE	1
12366 #define REG_NUM_REMAIN_MASK	3
12367 
12368 int hclge_query_bd_num_cmd_send(struct hclge_dev *hdev, struct hclge_desc *desc)
12369 {
12370 	int i;
12371 
12372 	/* initialize command BD except the last one */
12373 	for (i = 0; i < HCLGE_GET_DFX_REG_TYPE_CNT - 1; i++) {
12374 		hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_DFX_BD_NUM,
12375 					   true);
12376 		desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
12377 	}
12378 
12379 	/* initialize the last command BD */
12380 	hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_DFX_BD_NUM, true);
12381 
12382 	return hclge_cmd_send(&hdev->hw, desc, HCLGE_GET_DFX_REG_TYPE_CNT);
12383 }
12384 
12385 static int hclge_get_dfx_reg_bd_num(struct hclge_dev *hdev,
12386 				    int *bd_num_list,
12387 				    u32 type_num)
12388 {
12389 	u32 entries_per_desc, desc_index, index, offset, i;
12390 	struct hclge_desc desc[HCLGE_GET_DFX_REG_TYPE_CNT];
12391 	int ret;
12392 
12393 	ret = hclge_query_bd_num_cmd_send(hdev, desc);
12394 	if (ret) {
12395 		dev_err(&hdev->pdev->dev,
12396 			"Get dfx bd num fail, status is %d.\n", ret);
12397 		return ret;
12398 	}
12399 
12400 	entries_per_desc = ARRAY_SIZE(desc[0].data);
12401 	for (i = 0; i < type_num; i++) {
12402 		offset = hclge_dfx_bd_offset_list[i];
12403 		index = offset % entries_per_desc;
12404 		desc_index = offset / entries_per_desc;
12405 		bd_num_list[i] = le32_to_cpu(desc[desc_index].data[index]);
12406 	}
12407 
12408 	return ret;
12409 }
12410 
12411 static int hclge_dfx_reg_cmd_send(struct hclge_dev *hdev,
12412 				  struct hclge_desc *desc_src, int bd_num,
12413 				  enum hclge_opcode_type cmd)
12414 {
12415 	struct hclge_desc *desc = desc_src;
12416 	int i, ret;
12417 
12418 	hclge_cmd_setup_basic_desc(desc, cmd, true);
12419 	for (i = 0; i < bd_num - 1; i++) {
12420 		desc->flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
12421 		desc++;
12422 		hclge_cmd_setup_basic_desc(desc, cmd, true);
12423 	}
12424 
12425 	desc = desc_src;
12426 	ret = hclge_cmd_send(&hdev->hw, desc, bd_num);
12427 	if (ret)
12428 		dev_err(&hdev->pdev->dev,
12429 			"Query dfx reg cmd(0x%x) send fail, status is %d.\n",
12430 			cmd, ret);
12431 
12432 	return ret;
12433 }
12434 
12435 static int hclge_dfx_reg_fetch_data(struct hclge_desc *desc_src, int bd_num,
12436 				    void *data)
12437 {
12438 	int entries_per_desc, reg_num, separator_num, desc_index, index, i;
12439 	struct hclge_desc *desc = desc_src;
12440 	u32 *reg = data;
12441 
12442 	entries_per_desc = ARRAY_SIZE(desc->data);
12443 	reg_num = entries_per_desc * bd_num;
12444 	separator_num = REG_NUM_PER_LINE - (reg_num & REG_NUM_REMAIN_MASK);
12445 	for (i = 0; i < reg_num; i++) {
12446 		index = i % entries_per_desc;
12447 		desc_index = i / entries_per_desc;
12448 		*reg++ = le32_to_cpu(desc[desc_index].data[index]);
12449 	}
12450 	for (i = 0; i < separator_num; i++)
12451 		*reg++ = SEPARATOR_VALUE;
12452 
12453 	return reg_num + separator_num;
12454 }
12455 
12456 static int hclge_get_dfx_reg_len(struct hclge_dev *hdev, int *len)
12457 {
12458 	u32 dfx_reg_type_num = ARRAY_SIZE(hclge_dfx_bd_offset_list);
12459 	int data_len_per_desc, bd_num, i;
12460 	int *bd_num_list;
12461 	u32 data_len;
12462 	int ret;
12463 
12464 	bd_num_list = kcalloc(dfx_reg_type_num, sizeof(int), GFP_KERNEL);
12465 	if (!bd_num_list)
12466 		return -ENOMEM;
12467 
12468 	ret = hclge_get_dfx_reg_bd_num(hdev, bd_num_list, dfx_reg_type_num);
12469 	if (ret) {
12470 		dev_err(&hdev->pdev->dev,
12471 			"Get dfx reg bd num fail, status is %d.\n", ret);
12472 		goto out;
12473 	}
12474 
12475 	data_len_per_desc = sizeof_field(struct hclge_desc, data);
12476 	*len = 0;
12477 	for (i = 0; i < dfx_reg_type_num; i++) {
12478 		bd_num = bd_num_list[i];
12479 		data_len = data_len_per_desc * bd_num;
12480 		*len += (data_len / REG_LEN_PER_LINE + 1) * REG_LEN_PER_LINE;
12481 	}
12482 
12483 out:
12484 	kfree(bd_num_list);
12485 	return ret;
12486 }
12487 
12488 static int hclge_get_dfx_reg(struct hclge_dev *hdev, void *data)
12489 {
12490 	u32 dfx_reg_type_num = ARRAY_SIZE(hclge_dfx_bd_offset_list);
12491 	int bd_num, bd_num_max, buf_len, i;
12492 	struct hclge_desc *desc_src;
12493 	int *bd_num_list;
12494 	u32 *reg = data;
12495 	int ret;
12496 
12497 	bd_num_list = kcalloc(dfx_reg_type_num, sizeof(int), GFP_KERNEL);
12498 	if (!bd_num_list)
12499 		return -ENOMEM;
12500 
12501 	ret = hclge_get_dfx_reg_bd_num(hdev, bd_num_list, dfx_reg_type_num);
12502 	if (ret) {
12503 		dev_err(&hdev->pdev->dev,
12504 			"Get dfx reg bd num fail, status is %d.\n", ret);
12505 		goto out;
12506 	}
12507 
12508 	bd_num_max = bd_num_list[0];
12509 	for (i = 1; i < dfx_reg_type_num; i++)
12510 		bd_num_max = max_t(int, bd_num_max, bd_num_list[i]);
12511 
12512 	buf_len = sizeof(*desc_src) * bd_num_max;
12513 	desc_src = kzalloc(buf_len, GFP_KERNEL);
12514 	if (!desc_src) {
12515 		ret = -ENOMEM;
12516 		goto out;
12517 	}
12518 
12519 	for (i = 0; i < dfx_reg_type_num; i++) {
12520 		bd_num = bd_num_list[i];
12521 		ret = hclge_dfx_reg_cmd_send(hdev, desc_src, bd_num,
12522 					     hclge_dfx_reg_opcode_list[i]);
12523 		if (ret) {
12524 			dev_err(&hdev->pdev->dev,
12525 				"Get dfx reg fail, status is %d.\n", ret);
12526 			break;
12527 		}
12528 
12529 		reg += hclge_dfx_reg_fetch_data(desc_src, bd_num, reg);
12530 	}
12531 
12532 	kfree(desc_src);
12533 out:
12534 	kfree(bd_num_list);
12535 	return ret;
12536 }
12537 
12538 static int hclge_fetch_pf_reg(struct hclge_dev *hdev, void *data,
12539 			      struct hnae3_knic_private_info *kinfo)
12540 {
12541 #define HCLGE_RING_REG_OFFSET		0x200
12542 #define HCLGE_RING_INT_REG_OFFSET	0x4
12543 
12544 	int i, j, reg_num, separator_num;
12545 	int data_num_sum;
12546 	u32 *reg = data;
12547 
12548 	/* fetching per-PF registers valus from PF PCIe register space */
12549 	reg_num = ARRAY_SIZE(cmdq_reg_addr_list);
12550 	separator_num = MAX_SEPARATE_NUM - (reg_num & REG_NUM_REMAIN_MASK);
12551 	for (i = 0; i < reg_num; i++)
12552 		*reg++ = hclge_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
12553 	for (i = 0; i < separator_num; i++)
12554 		*reg++ = SEPARATOR_VALUE;
12555 	data_num_sum = reg_num + separator_num;
12556 
12557 	reg_num = ARRAY_SIZE(common_reg_addr_list);
12558 	separator_num = MAX_SEPARATE_NUM - (reg_num & REG_NUM_REMAIN_MASK);
12559 	for (i = 0; i < reg_num; i++)
12560 		*reg++ = hclge_read_dev(&hdev->hw, common_reg_addr_list[i]);
12561 	for (i = 0; i < separator_num; i++)
12562 		*reg++ = SEPARATOR_VALUE;
12563 	data_num_sum += reg_num + separator_num;
12564 
12565 	reg_num = ARRAY_SIZE(ring_reg_addr_list);
12566 	separator_num = MAX_SEPARATE_NUM - (reg_num & REG_NUM_REMAIN_MASK);
12567 	for (j = 0; j < kinfo->num_tqps; j++) {
12568 		for (i = 0; i < reg_num; i++)
12569 			*reg++ = hclge_read_dev(&hdev->hw,
12570 						ring_reg_addr_list[i] +
12571 						HCLGE_RING_REG_OFFSET * j);
12572 		for (i = 0; i < separator_num; i++)
12573 			*reg++ = SEPARATOR_VALUE;
12574 	}
12575 	data_num_sum += (reg_num + separator_num) * kinfo->num_tqps;
12576 
12577 	reg_num = ARRAY_SIZE(tqp_intr_reg_addr_list);
12578 	separator_num = MAX_SEPARATE_NUM - (reg_num & REG_NUM_REMAIN_MASK);
12579 	for (j = 0; j < hdev->num_msi_used - 1; j++) {
12580 		for (i = 0; i < reg_num; i++)
12581 			*reg++ = hclge_read_dev(&hdev->hw,
12582 						tqp_intr_reg_addr_list[i] +
12583 						HCLGE_RING_INT_REG_OFFSET * j);
12584 		for (i = 0; i < separator_num; i++)
12585 			*reg++ = SEPARATOR_VALUE;
12586 	}
12587 	data_num_sum += (reg_num + separator_num) * (hdev->num_msi_used - 1);
12588 
12589 	return data_num_sum;
12590 }
12591 
12592 static int hclge_get_regs_len(struct hnae3_handle *handle)
12593 {
12594 	int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
12595 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
12596 	struct hclge_vport *vport = hclge_get_vport(handle);
12597 	struct hclge_dev *hdev = vport->back;
12598 	int regs_num_32_bit, regs_num_64_bit, dfx_regs_len;
12599 	int regs_lines_32_bit, regs_lines_64_bit;
12600 	int ret;
12601 
12602 	ret = hclge_get_regs_num(hdev, &regs_num_32_bit, &regs_num_64_bit);
12603 	if (ret) {
12604 		dev_err(&hdev->pdev->dev,
12605 			"Get register number failed, ret = %d.\n", ret);
12606 		return ret;
12607 	}
12608 
12609 	ret = hclge_get_dfx_reg_len(hdev, &dfx_regs_len);
12610 	if (ret) {
12611 		dev_err(&hdev->pdev->dev,
12612 			"Get dfx reg len failed, ret = %d.\n", ret);
12613 		return ret;
12614 	}
12615 
12616 	cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE +
12617 		REG_SEPARATOR_LINE;
12618 	common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE +
12619 		REG_SEPARATOR_LINE;
12620 	ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE +
12621 		REG_SEPARATOR_LINE;
12622 	tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE +
12623 		REG_SEPARATOR_LINE;
12624 	regs_lines_32_bit = regs_num_32_bit * sizeof(u32) / REG_LEN_PER_LINE +
12625 		REG_SEPARATOR_LINE;
12626 	regs_lines_64_bit = regs_num_64_bit * sizeof(u64) / REG_LEN_PER_LINE +
12627 		REG_SEPARATOR_LINE;
12628 
12629 	return (cmdq_lines + common_lines + ring_lines * kinfo->num_tqps +
12630 		tqp_intr_lines * (hdev->num_msi_used - 1) + regs_lines_32_bit +
12631 		regs_lines_64_bit) * REG_LEN_PER_LINE + dfx_regs_len;
12632 }
12633 
12634 static void hclge_get_regs(struct hnae3_handle *handle, u32 *version,
12635 			   void *data)
12636 {
12637 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
12638 	struct hclge_vport *vport = hclge_get_vport(handle);
12639 	struct hclge_dev *hdev = vport->back;
12640 	u32 regs_num_32_bit, regs_num_64_bit;
12641 	int i, reg_num, separator_num, ret;
12642 	u32 *reg = data;
12643 
12644 	*version = hdev->fw_version;
12645 
12646 	ret = hclge_get_regs_num(hdev, &regs_num_32_bit, &regs_num_64_bit);
12647 	if (ret) {
12648 		dev_err(&hdev->pdev->dev,
12649 			"Get register number failed, ret = %d.\n", ret);
12650 		return;
12651 	}
12652 
12653 	reg += hclge_fetch_pf_reg(hdev, reg, kinfo);
12654 
12655 	ret = hclge_get_32_bit_regs(hdev, regs_num_32_bit, reg);
12656 	if (ret) {
12657 		dev_err(&hdev->pdev->dev,
12658 			"Get 32 bit register failed, ret = %d.\n", ret);
12659 		return;
12660 	}
12661 	reg_num = regs_num_32_bit;
12662 	reg += reg_num;
12663 	separator_num = MAX_SEPARATE_NUM - (reg_num & REG_NUM_REMAIN_MASK);
12664 	for (i = 0; i < separator_num; i++)
12665 		*reg++ = SEPARATOR_VALUE;
12666 
12667 	ret = hclge_get_64_bit_regs(hdev, regs_num_64_bit, reg);
12668 	if (ret) {
12669 		dev_err(&hdev->pdev->dev,
12670 			"Get 64 bit register failed, ret = %d.\n", ret);
12671 		return;
12672 	}
12673 	reg_num = regs_num_64_bit * 2;
12674 	reg += reg_num;
12675 	separator_num = MAX_SEPARATE_NUM - (reg_num & REG_NUM_REMAIN_MASK);
12676 	for (i = 0; i < separator_num; i++)
12677 		*reg++ = SEPARATOR_VALUE;
12678 
12679 	ret = hclge_get_dfx_reg(hdev, reg);
12680 	if (ret)
12681 		dev_err(&hdev->pdev->dev,
12682 			"Get dfx register failed, ret = %d.\n", ret);
12683 }
12684 
12685 static int hclge_set_led_status(struct hclge_dev *hdev, u8 locate_led_status)
12686 {
12687 	struct hclge_set_led_state_cmd *req;
12688 	struct hclge_desc desc;
12689 	int ret;
12690 
12691 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_LED_STATUS_CFG, false);
12692 
12693 	req = (struct hclge_set_led_state_cmd *)desc.data;
12694 	hnae3_set_field(req->locate_led_config, HCLGE_LED_LOCATE_STATE_M,
12695 			HCLGE_LED_LOCATE_STATE_S, locate_led_status);
12696 
12697 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
12698 	if (ret)
12699 		dev_err(&hdev->pdev->dev,
12700 			"Send set led state cmd error, ret =%d\n", ret);
12701 
12702 	return ret;
12703 }
12704 
12705 enum hclge_led_status {
12706 	HCLGE_LED_OFF,
12707 	HCLGE_LED_ON,
12708 	HCLGE_LED_NO_CHANGE = 0xFF,
12709 };
12710 
12711 static int hclge_set_led_id(struct hnae3_handle *handle,
12712 			    enum ethtool_phys_id_state status)
12713 {
12714 	struct hclge_vport *vport = hclge_get_vport(handle);
12715 	struct hclge_dev *hdev = vport->back;
12716 
12717 	switch (status) {
12718 	case ETHTOOL_ID_ACTIVE:
12719 		return hclge_set_led_status(hdev, HCLGE_LED_ON);
12720 	case ETHTOOL_ID_INACTIVE:
12721 		return hclge_set_led_status(hdev, HCLGE_LED_OFF);
12722 	default:
12723 		return -EINVAL;
12724 	}
12725 }
12726 
12727 static void hclge_get_link_mode(struct hnae3_handle *handle,
12728 				unsigned long *supported,
12729 				unsigned long *advertising)
12730 {
12731 	unsigned int size = BITS_TO_LONGS(__ETHTOOL_LINK_MODE_MASK_NBITS);
12732 	struct hclge_vport *vport = hclge_get_vport(handle);
12733 	struct hclge_dev *hdev = vport->back;
12734 	unsigned int idx = 0;
12735 
12736 	for (; idx < size; idx++) {
12737 		supported[idx] = hdev->hw.mac.supported[idx];
12738 		advertising[idx] = hdev->hw.mac.advertising[idx];
12739 	}
12740 }
12741 
12742 static int hclge_gro_en(struct hnae3_handle *handle, bool enable)
12743 {
12744 	struct hclge_vport *vport = hclge_get_vport(handle);
12745 	struct hclge_dev *hdev = vport->back;
12746 	bool gro_en_old = hdev->gro_en;
12747 	int ret;
12748 
12749 	hdev->gro_en = enable;
12750 	ret = hclge_config_gro(hdev);
12751 	if (ret)
12752 		hdev->gro_en = gro_en_old;
12753 
12754 	return ret;
12755 }
12756 
12757 static void hclge_sync_promisc_mode(struct hclge_dev *hdev)
12758 {
12759 	struct hclge_vport *vport = &hdev->vport[0];
12760 	struct hnae3_handle *handle = &vport->nic;
12761 	u8 tmp_flags;
12762 	int ret;
12763 	u16 i;
12764 
12765 	if (vport->last_promisc_flags != vport->overflow_promisc_flags) {
12766 		set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, &vport->state);
12767 		vport->last_promisc_flags = vport->overflow_promisc_flags;
12768 	}
12769 
12770 	if (test_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, &vport->state)) {
12771 		tmp_flags = handle->netdev_flags | vport->last_promisc_flags;
12772 		ret = hclge_set_promisc_mode(handle, tmp_flags & HNAE3_UPE,
12773 					     tmp_flags & HNAE3_MPE);
12774 		if (!ret) {
12775 			clear_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE,
12776 				  &vport->state);
12777 			set_bit(HCLGE_VPORT_STATE_VLAN_FLTR_CHANGE,
12778 				&vport->state);
12779 		}
12780 	}
12781 
12782 	for (i = 1; i < hdev->num_alloc_vport; i++) {
12783 		bool uc_en = false;
12784 		bool mc_en = false;
12785 		bool bc_en;
12786 
12787 		vport = &hdev->vport[i];
12788 
12789 		if (!test_and_clear_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE,
12790 					&vport->state))
12791 			continue;
12792 
12793 		if (vport->vf_info.trusted) {
12794 			uc_en = vport->vf_info.request_uc_en > 0 ||
12795 				vport->overflow_promisc_flags &
12796 				HNAE3_OVERFLOW_UPE;
12797 			mc_en = vport->vf_info.request_mc_en > 0 ||
12798 				vport->overflow_promisc_flags &
12799 				HNAE3_OVERFLOW_MPE;
12800 		}
12801 		bc_en = vport->vf_info.request_bc_en > 0;
12802 
12803 		ret = hclge_cmd_set_promisc_mode(hdev, vport->vport_id, uc_en,
12804 						 mc_en, bc_en);
12805 		if (ret) {
12806 			set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE,
12807 				&vport->state);
12808 			return;
12809 		}
12810 		hclge_set_vport_vlan_fltr_change(vport);
12811 	}
12812 }
12813 
12814 static bool hclge_module_existed(struct hclge_dev *hdev)
12815 {
12816 	struct hclge_desc desc;
12817 	u32 existed;
12818 	int ret;
12819 
12820 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GET_SFP_EXIST, true);
12821 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
12822 	if (ret) {
12823 		dev_err(&hdev->pdev->dev,
12824 			"failed to get SFP exist state, ret = %d\n", ret);
12825 		return false;
12826 	}
12827 
12828 	existed = le32_to_cpu(desc.data[0]);
12829 
12830 	return existed != 0;
12831 }
12832 
12833 /* need 6 bds(total 140 bytes) in one reading
12834  * return the number of bytes actually read, 0 means read failed.
12835  */
12836 static u16 hclge_get_sfp_eeprom_info(struct hclge_dev *hdev, u32 offset,
12837 				     u32 len, u8 *data)
12838 {
12839 	struct hclge_desc desc[HCLGE_SFP_INFO_CMD_NUM];
12840 	struct hclge_sfp_info_bd0_cmd *sfp_info_bd0;
12841 	u16 read_len;
12842 	u16 copy_len;
12843 	int ret;
12844 	int i;
12845 
12846 	/* setup all 6 bds to read module eeprom info. */
12847 	for (i = 0; i < HCLGE_SFP_INFO_CMD_NUM; i++) {
12848 		hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_GET_SFP_EEPROM,
12849 					   true);
12850 
12851 		/* bd0~bd4 need next flag */
12852 		if (i < HCLGE_SFP_INFO_CMD_NUM - 1)
12853 			desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
12854 	}
12855 
12856 	/* setup bd0, this bd contains offset and read length. */
12857 	sfp_info_bd0 = (struct hclge_sfp_info_bd0_cmd *)desc[0].data;
12858 	sfp_info_bd0->offset = cpu_to_le16((u16)offset);
12859 	read_len = min_t(u16, len, HCLGE_SFP_INFO_MAX_LEN);
12860 	sfp_info_bd0->read_len = cpu_to_le16(read_len);
12861 
12862 	ret = hclge_cmd_send(&hdev->hw, desc, i);
12863 	if (ret) {
12864 		dev_err(&hdev->pdev->dev,
12865 			"failed to get SFP eeprom info, ret = %d\n", ret);
12866 		return 0;
12867 	}
12868 
12869 	/* copy sfp info from bd0 to out buffer. */
12870 	copy_len = min_t(u16, len, HCLGE_SFP_INFO_BD0_LEN);
12871 	memcpy(data, sfp_info_bd0->data, copy_len);
12872 	read_len = copy_len;
12873 
12874 	/* copy sfp info from bd1~bd5 to out buffer if needed. */
12875 	for (i = 1; i < HCLGE_SFP_INFO_CMD_NUM; i++) {
12876 		if (read_len >= len)
12877 			return read_len;
12878 
12879 		copy_len = min_t(u16, len - read_len, HCLGE_SFP_INFO_BDX_LEN);
12880 		memcpy(data + read_len, desc[i].data, copy_len);
12881 		read_len += copy_len;
12882 	}
12883 
12884 	return read_len;
12885 }
12886 
12887 static int hclge_get_module_eeprom(struct hnae3_handle *handle, u32 offset,
12888 				   u32 len, u8 *data)
12889 {
12890 	struct hclge_vport *vport = hclge_get_vport(handle);
12891 	struct hclge_dev *hdev = vport->back;
12892 	u32 read_len = 0;
12893 	u16 data_len;
12894 
12895 	if (hdev->hw.mac.media_type != HNAE3_MEDIA_TYPE_FIBER)
12896 		return -EOPNOTSUPP;
12897 
12898 	if (!hclge_module_existed(hdev))
12899 		return -ENXIO;
12900 
12901 	while (read_len < len) {
12902 		data_len = hclge_get_sfp_eeprom_info(hdev,
12903 						     offset + read_len,
12904 						     len - read_len,
12905 						     data + read_len);
12906 		if (!data_len)
12907 			return -EIO;
12908 
12909 		read_len += data_len;
12910 	}
12911 
12912 	return 0;
12913 }
12914 
12915 static int hclge_get_link_diagnosis_info(struct hnae3_handle *handle,
12916 					 u32 *status_code)
12917 {
12918 	struct hclge_vport *vport = hclge_get_vport(handle);
12919 	struct hclge_dev *hdev = vport->back;
12920 	struct hclge_desc desc;
12921 	int ret;
12922 
12923 	if (hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2)
12924 		return -EOPNOTSUPP;
12925 
12926 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_LINK_DIAGNOSIS, true);
12927 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
12928 	if (ret) {
12929 		dev_err(&hdev->pdev->dev,
12930 			"failed to query link diagnosis info, ret = %d\n", ret);
12931 		return ret;
12932 	}
12933 
12934 	*status_code = le32_to_cpu(desc.data[0]);
12935 	return 0;
12936 }
12937 
12938 /* After disable sriov, VF still has some config and info need clean,
12939  * which configed by PF.
12940  */
12941 static void hclge_clear_vport_vf_info(struct hclge_vport *vport, int vfid)
12942 {
12943 	struct hclge_dev *hdev = vport->back;
12944 	struct hclge_vlan_info vlan_info;
12945 	int ret;
12946 
12947 	/* after disable sriov, clean VF rate configured by PF */
12948 	ret = hclge_tm_qs_shaper_cfg(vport, 0);
12949 	if (ret)
12950 		dev_err(&hdev->pdev->dev,
12951 			"failed to clean vf%d rate config, ret = %d\n",
12952 			vfid, ret);
12953 
12954 	vlan_info.vlan_tag = 0;
12955 	vlan_info.qos = 0;
12956 	vlan_info.vlan_proto = ETH_P_8021Q;
12957 	ret = hclge_update_port_base_vlan_cfg(vport,
12958 					      HNAE3_PORT_BASE_VLAN_DISABLE,
12959 					      &vlan_info);
12960 	if (ret)
12961 		dev_err(&hdev->pdev->dev,
12962 			"failed to clean vf%d port base vlan, ret = %d\n",
12963 			vfid, ret);
12964 
12965 	ret = hclge_set_vf_spoofchk_hw(hdev, vport->vport_id, false);
12966 	if (ret)
12967 		dev_err(&hdev->pdev->dev,
12968 			"failed to clean vf%d spoof config, ret = %d\n",
12969 			vfid, ret);
12970 
12971 	memset(&vport->vf_info, 0, sizeof(vport->vf_info));
12972 }
12973 
12974 static void hclge_clean_vport_config(struct hnae3_ae_dev *ae_dev, int num_vfs)
12975 {
12976 	struct hclge_dev *hdev = ae_dev->priv;
12977 	struct hclge_vport *vport;
12978 	int i;
12979 
12980 	for (i = 0; i < num_vfs; i++) {
12981 		vport = &hdev->vport[i + HCLGE_VF_VPORT_START_NUM];
12982 
12983 		hclge_clear_vport_vf_info(vport, i);
12984 	}
12985 }
12986 
12987 static int hclge_get_dscp_prio(struct hnae3_handle *h, u8 dscp, u8 *tc_mode,
12988 			       u8 *priority)
12989 {
12990 	struct hclge_vport *vport = hclge_get_vport(h);
12991 
12992 	if (dscp >= HNAE3_MAX_DSCP)
12993 		return -EINVAL;
12994 
12995 	if (tc_mode)
12996 		*tc_mode = vport->nic.kinfo.tc_map_mode;
12997 	if (priority)
12998 		*priority = vport->nic.kinfo.dscp_prio[dscp] == HNAE3_PRIO_ID_INVALID ? 0 :
12999 			    vport->nic.kinfo.dscp_prio[dscp];
13000 
13001 	return 0;
13002 }
13003 
13004 static const struct hnae3_ae_ops hclge_ops = {
13005 	.init_ae_dev = hclge_init_ae_dev,
13006 	.uninit_ae_dev = hclge_uninit_ae_dev,
13007 	.reset_prepare = hclge_reset_prepare_general,
13008 	.reset_done = hclge_reset_done,
13009 	.init_client_instance = hclge_init_client_instance,
13010 	.uninit_client_instance = hclge_uninit_client_instance,
13011 	.map_ring_to_vector = hclge_map_ring_to_vector,
13012 	.unmap_ring_from_vector = hclge_unmap_ring_frm_vector,
13013 	.get_vector = hclge_get_vector,
13014 	.put_vector = hclge_put_vector,
13015 	.set_promisc_mode = hclge_set_promisc_mode,
13016 	.request_update_promisc_mode = hclge_request_update_promisc_mode,
13017 	.set_loopback = hclge_set_loopback,
13018 	.start = hclge_ae_start,
13019 	.stop = hclge_ae_stop,
13020 	.client_start = hclge_client_start,
13021 	.client_stop = hclge_client_stop,
13022 	.get_status = hclge_get_status,
13023 	.get_ksettings_an_result = hclge_get_ksettings_an_result,
13024 	.cfg_mac_speed_dup_h = hclge_cfg_mac_speed_dup_h,
13025 	.get_media_type = hclge_get_media_type,
13026 	.check_port_speed = hclge_check_port_speed,
13027 	.get_fec_stats = hclge_get_fec_stats,
13028 	.get_fec = hclge_get_fec,
13029 	.set_fec = hclge_set_fec,
13030 	.get_rss_key_size = hclge_comm_get_rss_key_size,
13031 	.get_rss = hclge_get_rss,
13032 	.set_rss = hclge_set_rss,
13033 	.set_rss_tuple = hclge_set_rss_tuple,
13034 	.get_rss_tuple = hclge_get_rss_tuple,
13035 	.get_tc_size = hclge_get_tc_size,
13036 	.get_mac_addr = hclge_get_mac_addr,
13037 	.set_mac_addr = hclge_set_mac_addr,
13038 	.do_ioctl = hclge_do_ioctl,
13039 	.add_uc_addr = hclge_add_uc_addr,
13040 	.rm_uc_addr = hclge_rm_uc_addr,
13041 	.add_mc_addr = hclge_add_mc_addr,
13042 	.rm_mc_addr = hclge_rm_mc_addr,
13043 	.set_autoneg = hclge_set_autoneg,
13044 	.get_autoneg = hclge_get_autoneg,
13045 	.restart_autoneg = hclge_restart_autoneg,
13046 	.halt_autoneg = hclge_halt_autoneg,
13047 	.get_pauseparam = hclge_get_pauseparam,
13048 	.set_pauseparam = hclge_set_pauseparam,
13049 	.set_mtu = hclge_set_mtu,
13050 	.reset_queue = hclge_reset_tqp,
13051 	.get_stats = hclge_get_stats,
13052 	.get_mac_stats = hclge_get_mac_stat,
13053 	.update_stats = hclge_update_stats,
13054 	.get_strings = hclge_get_strings,
13055 	.get_sset_count = hclge_get_sset_count,
13056 	.get_fw_version = hclge_get_fw_version,
13057 	.get_mdix_mode = hclge_get_mdix_mode,
13058 	.enable_vlan_filter = hclge_enable_vlan_filter,
13059 	.set_vlan_filter = hclge_set_vlan_filter,
13060 	.set_vf_vlan_filter = hclge_set_vf_vlan_filter,
13061 	.enable_hw_strip_rxvtag = hclge_en_hw_strip_rxvtag,
13062 	.reset_event = hclge_reset_event,
13063 	.get_reset_level = hclge_get_reset_level,
13064 	.set_default_reset_request = hclge_set_def_reset_request,
13065 	.get_tqps_and_rss_info = hclge_get_tqps_and_rss_info,
13066 	.set_channels = hclge_set_channels,
13067 	.get_channels = hclge_get_channels,
13068 	.get_regs_len = hclge_get_regs_len,
13069 	.get_regs = hclge_get_regs,
13070 	.set_led_id = hclge_set_led_id,
13071 	.get_link_mode = hclge_get_link_mode,
13072 	.add_fd_entry = hclge_add_fd_entry,
13073 	.del_fd_entry = hclge_del_fd_entry,
13074 	.get_fd_rule_cnt = hclge_get_fd_rule_cnt,
13075 	.get_fd_rule_info = hclge_get_fd_rule_info,
13076 	.get_fd_all_rules = hclge_get_all_rules,
13077 	.enable_fd = hclge_enable_fd,
13078 	.add_arfs_entry = hclge_add_fd_entry_by_arfs,
13079 	.dbg_read_cmd = hclge_dbg_read_cmd,
13080 	.handle_hw_ras_error = hclge_handle_hw_ras_error,
13081 	.get_hw_reset_stat = hclge_get_hw_reset_stat,
13082 	.ae_dev_resetting = hclge_ae_dev_resetting,
13083 	.ae_dev_reset_cnt = hclge_ae_dev_reset_cnt,
13084 	.set_gro_en = hclge_gro_en,
13085 	.get_global_queue_id = hclge_covert_handle_qid_global,
13086 	.set_timer_task = hclge_set_timer_task,
13087 	.mac_connect_phy = hclge_mac_connect_phy,
13088 	.mac_disconnect_phy = hclge_mac_disconnect_phy,
13089 	.get_vf_config = hclge_get_vf_config,
13090 	.set_vf_link_state = hclge_set_vf_link_state,
13091 	.set_vf_spoofchk = hclge_set_vf_spoofchk,
13092 	.set_vf_trust = hclge_set_vf_trust,
13093 	.set_vf_rate = hclge_set_vf_rate,
13094 	.set_vf_mac = hclge_set_vf_mac,
13095 	.get_module_eeprom = hclge_get_module_eeprom,
13096 	.get_cmdq_stat = hclge_get_cmdq_stat,
13097 	.add_cls_flower = hclge_add_cls_flower,
13098 	.del_cls_flower = hclge_del_cls_flower,
13099 	.cls_flower_active = hclge_is_cls_flower_active,
13100 	.get_phy_link_ksettings = hclge_get_phy_link_ksettings,
13101 	.set_phy_link_ksettings = hclge_set_phy_link_ksettings,
13102 	.set_tx_hwts_info = hclge_ptp_set_tx_info,
13103 	.get_rx_hwts = hclge_ptp_get_rx_hwts,
13104 	.get_ts_info = hclge_ptp_get_ts_info,
13105 	.get_link_diagnosis_info = hclge_get_link_diagnosis_info,
13106 	.clean_vf_config = hclge_clean_vport_config,
13107 	.get_dscp_prio = hclge_get_dscp_prio,
13108 };
13109 
13110 static struct hnae3_ae_algo ae_algo = {
13111 	.ops = &hclge_ops,
13112 	.pdev_id_table = ae_algo_pci_tbl,
13113 };
13114 
13115 static int __init hclge_init(void)
13116 {
13117 	pr_info("%s is initializing\n", HCLGE_NAME);
13118 
13119 	hclge_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, HCLGE_NAME);
13120 	if (!hclge_wq) {
13121 		pr_err("%s: failed to create workqueue\n", HCLGE_NAME);
13122 		return -ENOMEM;
13123 	}
13124 
13125 	hnae3_register_ae_algo(&ae_algo);
13126 
13127 	return 0;
13128 }
13129 
13130 static void __exit hclge_exit(void)
13131 {
13132 	hnae3_unregister_ae_algo_prepare(&ae_algo);
13133 	hnae3_unregister_ae_algo(&ae_algo);
13134 	destroy_workqueue(hclge_wq);
13135 }
13136 module_init(hclge_init);
13137 module_exit(hclge_exit);
13138 
13139 MODULE_LICENSE("GPL");
13140 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
13141 MODULE_DESCRIPTION("HCLGE Driver");
13142 MODULE_VERSION(HCLGE_MOD_VERSION);
13143