1 // SPDX-License-Identifier: GPL-2.0+ 2 // Copyright (c) 2016-2017 Hisilicon Limited. 3 4 #include <linux/acpi.h> 5 #include <linux/device.h> 6 #include <linux/etherdevice.h> 7 #include <linux/init.h> 8 #include <linux/interrupt.h> 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/pci.h> 13 #include <linux/platform_device.h> 14 #include <linux/if_vlan.h> 15 #include <linux/crash_dump.h> 16 17 #include <net/rtnetlink.h> 18 19 #include "hclge_cmd.h" 20 #include "hclge_dcb.h" 21 #include "hclge_main.h" 22 #include "hclge_mbx.h" 23 #include "hclge_mdio.h" 24 #include "hclge_regs.h" 25 #include "hclge_tm.h" 26 #include "hclge_err.h" 27 #include "hnae3.h" 28 #include "hclge_devlink.h" 29 #include "hclge_comm_cmd.h" 30 31 #include "hclge_trace.h" 32 33 #define HCLGE_NAME "hclge" 34 35 #define HCLGE_BUF_SIZE_UNIT 256U 36 #define HCLGE_BUF_MUL_BY 2 37 #define HCLGE_BUF_DIV_BY 2 38 #define NEED_RESERVE_TC_NUM 2 39 #define BUF_MAX_PERCENT 100 40 #define BUF_RESERVE_PERCENT 90 41 42 #define HCLGE_RESET_MAX_FAIL_CNT 5 43 #define HCLGE_RESET_SYNC_TIME 100 44 #define HCLGE_PF_RESET_SYNC_TIME 20 45 #define HCLGE_PF_RESET_SYNC_CNT 1500 46 47 #define HCLGE_LINK_STATUS_MS 10 48 49 static int hclge_set_mac_mtu(struct hclge_dev *hdev, int new_mps); 50 static int hclge_init_vlan_config(struct hclge_dev *hdev); 51 static void hclge_sync_vlan_filter(struct hclge_dev *hdev); 52 static int hclge_reset_ae_dev(struct hnae3_ae_dev *ae_dev); 53 static bool hclge_get_hw_reset_stat(struct hnae3_handle *handle); 54 static void hclge_rfs_filter_expire(struct hclge_dev *hdev); 55 static int hclge_clear_arfs_rules(struct hclge_dev *hdev); 56 static enum hnae3_reset_type hclge_get_reset_level(struct hnae3_ae_dev *ae_dev, 57 unsigned long *addr); 58 static int hclge_set_default_loopback(struct hclge_dev *hdev); 59 60 static void hclge_sync_mac_table(struct hclge_dev *hdev); 61 static void hclge_restore_hw_table(struct hclge_dev *hdev); 62 static void hclge_sync_promisc_mode(struct hclge_dev *hdev); 63 static void hclge_sync_fd_table(struct hclge_dev *hdev); 64 static void hclge_update_fec_stats(struct hclge_dev *hdev); 65 static int hclge_mac_link_status_wait(struct hclge_dev *hdev, int link_ret, 66 int wait_cnt); 67 static int hclge_update_port_info(struct hclge_dev *hdev); 68 69 static struct hnae3_ae_algo ae_algo; 70 71 static struct workqueue_struct *hclge_wq; 72 73 static const struct pci_device_id ae_algo_pci_tbl[] = { 74 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0}, 75 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0}, 76 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA), 0}, 77 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC), 0}, 78 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA), 0}, 79 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC), 0}, 80 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC), 0}, 81 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_200G_RDMA), 0}, 82 /* required last entry */ 83 {0, } 84 }; 85 86 MODULE_DEVICE_TABLE(pci, ae_algo_pci_tbl); 87 88 static const char hns3_nic_test_strs[][ETH_GSTRING_LEN] = { 89 "External Loopback test", 90 "App Loopback test", 91 "Serdes serial Loopback test", 92 "Serdes parallel Loopback test", 93 "Phy Loopback test" 94 }; 95 96 static const struct hclge_comm_stats_str g_mac_stats_string[] = { 97 {"mac_tx_mac_pause_num", HCLGE_MAC_STATS_MAX_NUM_V1, 98 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_mac_pause_num)}, 99 {"mac_rx_mac_pause_num", HCLGE_MAC_STATS_MAX_NUM_V1, 100 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_mac_pause_num)}, 101 {"mac_tx_pause_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 102 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pause_xoff_time)}, 103 {"mac_rx_pause_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 104 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pause_xoff_time)}, 105 {"mac_tx_control_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 106 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_ctrl_pkt_num)}, 107 {"mac_rx_control_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 108 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_ctrl_pkt_num)}, 109 {"mac_tx_pfc_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 110 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pause_pkt_num)}, 111 {"mac_tx_pfc_pri0_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 112 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri0_pkt_num)}, 113 {"mac_tx_pfc_pri1_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 114 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri1_pkt_num)}, 115 {"mac_tx_pfc_pri2_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 116 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri2_pkt_num)}, 117 {"mac_tx_pfc_pri3_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 118 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri3_pkt_num)}, 119 {"mac_tx_pfc_pri4_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 120 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri4_pkt_num)}, 121 {"mac_tx_pfc_pri5_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 122 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri5_pkt_num)}, 123 {"mac_tx_pfc_pri6_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 124 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri6_pkt_num)}, 125 {"mac_tx_pfc_pri7_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 126 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri7_pkt_num)}, 127 {"mac_tx_pfc_pri0_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 128 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri0_xoff_time)}, 129 {"mac_tx_pfc_pri1_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 130 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri1_xoff_time)}, 131 {"mac_tx_pfc_pri2_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 132 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri2_xoff_time)}, 133 {"mac_tx_pfc_pri3_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 134 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri3_xoff_time)}, 135 {"mac_tx_pfc_pri4_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 136 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri4_xoff_time)}, 137 {"mac_tx_pfc_pri5_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 138 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri5_xoff_time)}, 139 {"mac_tx_pfc_pri6_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 140 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri6_xoff_time)}, 141 {"mac_tx_pfc_pri7_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 142 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri7_xoff_time)}, 143 {"mac_rx_pfc_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 144 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pause_pkt_num)}, 145 {"mac_rx_pfc_pri0_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 146 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri0_pkt_num)}, 147 {"mac_rx_pfc_pri1_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 148 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri1_pkt_num)}, 149 {"mac_rx_pfc_pri2_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 150 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri2_pkt_num)}, 151 {"mac_rx_pfc_pri3_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 152 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri3_pkt_num)}, 153 {"mac_rx_pfc_pri4_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 154 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri4_pkt_num)}, 155 {"mac_rx_pfc_pri5_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 156 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri5_pkt_num)}, 157 {"mac_rx_pfc_pri6_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 158 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri6_pkt_num)}, 159 {"mac_rx_pfc_pri7_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 160 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri7_pkt_num)}, 161 {"mac_rx_pfc_pri0_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 162 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri0_xoff_time)}, 163 {"mac_rx_pfc_pri1_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 164 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri1_xoff_time)}, 165 {"mac_rx_pfc_pri2_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 166 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri2_xoff_time)}, 167 {"mac_rx_pfc_pri3_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 168 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri3_xoff_time)}, 169 {"mac_rx_pfc_pri4_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 170 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri4_xoff_time)}, 171 {"mac_rx_pfc_pri5_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 172 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri5_xoff_time)}, 173 {"mac_rx_pfc_pri6_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 174 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri6_xoff_time)}, 175 {"mac_rx_pfc_pri7_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 176 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri7_xoff_time)}, 177 {"mac_tx_total_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 178 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_total_pkt_num)}, 179 {"mac_tx_total_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1, 180 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_total_oct_num)}, 181 {"mac_tx_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 182 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_good_pkt_num)}, 183 {"mac_tx_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 184 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_bad_pkt_num)}, 185 {"mac_tx_good_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1, 186 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_good_oct_num)}, 187 {"mac_tx_bad_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1, 188 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_bad_oct_num)}, 189 {"mac_tx_uni_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 190 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_uni_pkt_num)}, 191 {"mac_tx_multi_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 192 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_multi_pkt_num)}, 193 {"mac_tx_broad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 194 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_broad_pkt_num)}, 195 {"mac_tx_undersize_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 196 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_undersize_pkt_num)}, 197 {"mac_tx_oversize_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 198 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_oversize_pkt_num)}, 199 {"mac_tx_64_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 200 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_64_oct_pkt_num)}, 201 {"mac_tx_65_127_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 202 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_65_127_oct_pkt_num)}, 203 {"mac_tx_128_255_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 204 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_128_255_oct_pkt_num)}, 205 {"mac_tx_256_511_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 206 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_256_511_oct_pkt_num)}, 207 {"mac_tx_512_1023_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 208 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_512_1023_oct_pkt_num)}, 209 {"mac_tx_1024_1518_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 210 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_1024_1518_oct_pkt_num)}, 211 {"mac_tx_1519_2047_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 212 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_1519_2047_oct_pkt_num)}, 213 {"mac_tx_2048_4095_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 214 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_2048_4095_oct_pkt_num)}, 215 {"mac_tx_4096_8191_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 216 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_4096_8191_oct_pkt_num)}, 217 {"mac_tx_8192_9216_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 218 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_8192_9216_oct_pkt_num)}, 219 {"mac_tx_9217_12287_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 220 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_9217_12287_oct_pkt_num)}, 221 {"mac_tx_12288_16383_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 222 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_12288_16383_oct_pkt_num)}, 223 {"mac_tx_1519_max_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 224 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_1519_max_good_oct_pkt_num)}, 225 {"mac_tx_1519_max_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 226 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_1519_max_bad_oct_pkt_num)}, 227 {"mac_rx_total_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 228 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_total_pkt_num)}, 229 {"mac_rx_total_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1, 230 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_total_oct_num)}, 231 {"mac_rx_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 232 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_good_pkt_num)}, 233 {"mac_rx_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 234 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_bad_pkt_num)}, 235 {"mac_rx_good_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1, 236 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_good_oct_num)}, 237 {"mac_rx_bad_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1, 238 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_bad_oct_num)}, 239 {"mac_rx_uni_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 240 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_uni_pkt_num)}, 241 {"mac_rx_multi_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 242 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_multi_pkt_num)}, 243 {"mac_rx_broad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 244 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_broad_pkt_num)}, 245 {"mac_rx_undersize_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 246 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_undersize_pkt_num)}, 247 {"mac_rx_oversize_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 248 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_oversize_pkt_num)}, 249 {"mac_rx_64_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 250 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_64_oct_pkt_num)}, 251 {"mac_rx_65_127_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 252 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_65_127_oct_pkt_num)}, 253 {"mac_rx_128_255_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 254 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_128_255_oct_pkt_num)}, 255 {"mac_rx_256_511_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 256 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_256_511_oct_pkt_num)}, 257 {"mac_rx_512_1023_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 258 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_512_1023_oct_pkt_num)}, 259 {"mac_rx_1024_1518_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 260 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_1024_1518_oct_pkt_num)}, 261 {"mac_rx_1519_2047_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 262 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_1519_2047_oct_pkt_num)}, 263 {"mac_rx_2048_4095_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 264 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_2048_4095_oct_pkt_num)}, 265 {"mac_rx_4096_8191_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 266 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_4096_8191_oct_pkt_num)}, 267 {"mac_rx_8192_9216_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 268 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_8192_9216_oct_pkt_num)}, 269 {"mac_rx_9217_12287_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 270 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_9217_12287_oct_pkt_num)}, 271 {"mac_rx_12288_16383_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 272 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_12288_16383_oct_pkt_num)}, 273 {"mac_rx_1519_max_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 274 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_1519_max_good_oct_pkt_num)}, 275 {"mac_rx_1519_max_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 276 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_1519_max_bad_oct_pkt_num)}, 277 278 {"mac_tx_fragment_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 279 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_fragment_pkt_num)}, 280 {"mac_tx_undermin_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 281 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_undermin_pkt_num)}, 282 {"mac_tx_jabber_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 283 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_jabber_pkt_num)}, 284 {"mac_tx_err_all_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 285 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_err_all_pkt_num)}, 286 {"mac_tx_from_app_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 287 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_from_app_good_pkt_num)}, 288 {"mac_tx_from_app_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 289 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_from_app_bad_pkt_num)}, 290 {"mac_rx_fragment_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 291 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_fragment_pkt_num)}, 292 {"mac_rx_undermin_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 293 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_undermin_pkt_num)}, 294 {"mac_rx_jabber_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 295 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_jabber_pkt_num)}, 296 {"mac_rx_fcs_err_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 297 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_fcs_err_pkt_num)}, 298 {"mac_rx_send_app_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 299 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_send_app_good_pkt_num)}, 300 {"mac_rx_send_app_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 301 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_send_app_bad_pkt_num)} 302 }; 303 304 static const struct hclge_mac_mgr_tbl_entry_cmd hclge_mgr_table[] = { 305 { 306 .flags = HCLGE_MAC_MGR_MASK_VLAN_B, 307 .ethter_type = cpu_to_le16(ETH_P_LLDP), 308 .mac_addr = {0x01, 0x80, 0xc2, 0x00, 0x00, 0x0e}, 309 .i_port_bitmap = 0x1, 310 }, 311 }; 312 313 static const struct key_info meta_data_key_info[] = { 314 { PACKET_TYPE_ID, 6 }, 315 { IP_FRAGEMENT, 1 }, 316 { ROCE_TYPE, 1 }, 317 { NEXT_KEY, 5 }, 318 { VLAN_NUMBER, 2 }, 319 { SRC_VPORT, 12 }, 320 { DST_VPORT, 12 }, 321 { TUNNEL_PACKET, 1 }, 322 }; 323 324 static const struct key_info tuple_key_info[] = { 325 { OUTER_DST_MAC, 48, KEY_OPT_MAC, -1, -1 }, 326 { OUTER_SRC_MAC, 48, KEY_OPT_MAC, -1, -1 }, 327 { OUTER_VLAN_TAG_FST, 16, KEY_OPT_LE16, -1, -1 }, 328 { OUTER_VLAN_TAG_SEC, 16, KEY_OPT_LE16, -1, -1 }, 329 { OUTER_ETH_TYPE, 16, KEY_OPT_LE16, -1, -1 }, 330 { OUTER_L2_RSV, 16, KEY_OPT_LE16, -1, -1 }, 331 { OUTER_IP_TOS, 8, KEY_OPT_U8, -1, -1 }, 332 { OUTER_IP_PROTO, 8, KEY_OPT_U8, -1, -1 }, 333 { OUTER_SRC_IP, 32, KEY_OPT_IP, -1, -1 }, 334 { OUTER_DST_IP, 32, KEY_OPT_IP, -1, -1 }, 335 { OUTER_L3_RSV, 16, KEY_OPT_LE16, -1, -1 }, 336 { OUTER_SRC_PORT, 16, KEY_OPT_LE16, -1, -1 }, 337 { OUTER_DST_PORT, 16, KEY_OPT_LE16, -1, -1 }, 338 { OUTER_L4_RSV, 32, KEY_OPT_LE32, -1, -1 }, 339 { OUTER_TUN_VNI, 24, KEY_OPT_VNI, -1, -1 }, 340 { OUTER_TUN_FLOW_ID, 8, KEY_OPT_U8, -1, -1 }, 341 { INNER_DST_MAC, 48, KEY_OPT_MAC, 342 offsetof(struct hclge_fd_rule, tuples.dst_mac), 343 offsetof(struct hclge_fd_rule, tuples_mask.dst_mac) }, 344 { INNER_SRC_MAC, 48, KEY_OPT_MAC, 345 offsetof(struct hclge_fd_rule, tuples.src_mac), 346 offsetof(struct hclge_fd_rule, tuples_mask.src_mac) }, 347 { INNER_VLAN_TAG_FST, 16, KEY_OPT_LE16, 348 offsetof(struct hclge_fd_rule, tuples.vlan_tag1), 349 offsetof(struct hclge_fd_rule, tuples_mask.vlan_tag1) }, 350 { INNER_VLAN_TAG_SEC, 16, KEY_OPT_LE16, -1, -1 }, 351 { INNER_ETH_TYPE, 16, KEY_OPT_LE16, 352 offsetof(struct hclge_fd_rule, tuples.ether_proto), 353 offsetof(struct hclge_fd_rule, tuples_mask.ether_proto) }, 354 { INNER_L2_RSV, 16, KEY_OPT_LE16, 355 offsetof(struct hclge_fd_rule, tuples.l2_user_def), 356 offsetof(struct hclge_fd_rule, tuples_mask.l2_user_def) }, 357 { INNER_IP_TOS, 8, KEY_OPT_U8, 358 offsetof(struct hclge_fd_rule, tuples.ip_tos), 359 offsetof(struct hclge_fd_rule, tuples_mask.ip_tos) }, 360 { INNER_IP_PROTO, 8, KEY_OPT_U8, 361 offsetof(struct hclge_fd_rule, tuples.ip_proto), 362 offsetof(struct hclge_fd_rule, tuples_mask.ip_proto) }, 363 { INNER_SRC_IP, 32, KEY_OPT_IP, 364 offsetof(struct hclge_fd_rule, tuples.src_ip), 365 offsetof(struct hclge_fd_rule, tuples_mask.src_ip) }, 366 { INNER_DST_IP, 32, KEY_OPT_IP, 367 offsetof(struct hclge_fd_rule, tuples.dst_ip), 368 offsetof(struct hclge_fd_rule, tuples_mask.dst_ip) }, 369 { INNER_L3_RSV, 16, KEY_OPT_LE16, 370 offsetof(struct hclge_fd_rule, tuples.l3_user_def), 371 offsetof(struct hclge_fd_rule, tuples_mask.l3_user_def) }, 372 { INNER_SRC_PORT, 16, KEY_OPT_LE16, 373 offsetof(struct hclge_fd_rule, tuples.src_port), 374 offsetof(struct hclge_fd_rule, tuples_mask.src_port) }, 375 { INNER_DST_PORT, 16, KEY_OPT_LE16, 376 offsetof(struct hclge_fd_rule, tuples.dst_port), 377 offsetof(struct hclge_fd_rule, tuples_mask.dst_port) }, 378 { INNER_L4_RSV, 32, KEY_OPT_LE32, 379 offsetof(struct hclge_fd_rule, tuples.l4_user_def), 380 offsetof(struct hclge_fd_rule, tuples_mask.l4_user_def) }, 381 }; 382 383 /** 384 * hclge_cmd_send - send command to command queue 385 * @hw: pointer to the hw struct 386 * @desc: prefilled descriptor for describing the command 387 * @num : the number of descriptors to be sent 388 * 389 * This is the main send command for command queue, it 390 * sends the queue, cleans the queue, etc 391 **/ 392 int hclge_cmd_send(struct hclge_hw *hw, struct hclge_desc *desc, int num) 393 { 394 return hclge_comm_cmd_send(&hw->hw, desc, num); 395 } 396 397 static void hclge_trace_cmd_send(struct hclge_comm_hw *hw, struct hclge_desc *desc, 398 int num, bool is_special) 399 { 400 int i; 401 402 trace_hclge_pf_cmd_send(hw, desc, 0, num); 403 404 if (!is_special) { 405 for (i = 1; i < num; i++) 406 trace_hclge_pf_cmd_send(hw, &desc[i], i, num); 407 } else { 408 for (i = 1; i < num; i++) 409 trace_hclge_pf_special_cmd_send(hw, (__le32 *)&desc[i], 410 i, num); 411 } 412 } 413 414 static void hclge_trace_cmd_get(struct hclge_comm_hw *hw, struct hclge_desc *desc, 415 int num, bool is_special) 416 { 417 int i; 418 419 if (!HCLGE_COMM_SEND_SYNC(le16_to_cpu(desc->flag))) 420 return; 421 422 trace_hclge_pf_cmd_get(hw, desc, 0, num); 423 424 if (!is_special) { 425 for (i = 1; i < num; i++) 426 trace_hclge_pf_cmd_get(hw, &desc[i], i, num); 427 } else { 428 for (i = 1; i < num; i++) 429 trace_hclge_pf_special_cmd_get(hw, (__le32 *)&desc[i], 430 i, num); 431 } 432 } 433 434 static const struct hclge_comm_cmq_ops hclge_cmq_ops = { 435 .trace_cmd_send = hclge_trace_cmd_send, 436 .trace_cmd_get = hclge_trace_cmd_get, 437 }; 438 439 static int hclge_mac_update_stats_defective(struct hclge_dev *hdev) 440 { 441 #define HCLGE_MAC_CMD_NUM 21 442 443 u64 *data = (u64 *)(&hdev->mac_stats); 444 struct hclge_desc desc[HCLGE_MAC_CMD_NUM]; 445 __le64 *desc_data; 446 u32 data_size; 447 int ret; 448 u32 i; 449 450 hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_STATS_MAC, true); 451 ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_MAC_CMD_NUM); 452 if (ret) { 453 dev_err(&hdev->pdev->dev, 454 "Get MAC pkt stats fail, status = %d.\n", ret); 455 456 return ret; 457 } 458 459 /* The first desc has a 64-bit header, so data size need to minus 1 */ 460 data_size = sizeof(desc) / (sizeof(u64)) - 1; 461 462 desc_data = (__le64 *)(&desc[0].data[0]); 463 for (i = 0; i < data_size; i++) { 464 /* data memory is continuous becase only the first desc has a 465 * header in this command 466 */ 467 *data += le64_to_cpu(*desc_data); 468 data++; 469 desc_data++; 470 } 471 472 return 0; 473 } 474 475 static int hclge_mac_update_stats_complete(struct hclge_dev *hdev) 476 { 477 #define HCLGE_REG_NUM_PER_DESC 4 478 479 u32 reg_num = hdev->ae_dev->dev_specs.mac_stats_num; 480 u64 *data = (u64 *)(&hdev->mac_stats); 481 struct hclge_desc *desc; 482 __le64 *desc_data; 483 u32 data_size; 484 u32 desc_num; 485 int ret; 486 u32 i; 487 488 /* The first desc has a 64-bit header, so need to consider it */ 489 desc_num = reg_num / HCLGE_REG_NUM_PER_DESC + 1; 490 491 /* This may be called inside atomic sections, 492 * so GFP_ATOMIC is more suitalbe here 493 */ 494 desc = kcalloc(desc_num, sizeof(struct hclge_desc), GFP_ATOMIC); 495 if (!desc) 496 return -ENOMEM; 497 498 hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_STATS_MAC_ALL, true); 499 ret = hclge_cmd_send(&hdev->hw, desc, desc_num); 500 if (ret) { 501 kfree(desc); 502 return ret; 503 } 504 505 data_size = min_t(u32, sizeof(hdev->mac_stats) / sizeof(u64), reg_num); 506 507 desc_data = (__le64 *)(&desc[0].data[0]); 508 for (i = 0; i < data_size; i++) { 509 /* data memory is continuous becase only the first desc has a 510 * header in this command 511 */ 512 *data += le64_to_cpu(*desc_data); 513 data++; 514 desc_data++; 515 } 516 517 kfree(desc); 518 519 return 0; 520 } 521 522 static int hclge_mac_query_reg_num(struct hclge_dev *hdev, u32 *reg_num) 523 { 524 struct hclge_desc desc; 525 int ret; 526 527 /* Driver needs total register number of both valid registers and 528 * reserved registers, but the old firmware only returns number 529 * of valid registers in device V2. To be compatible with these 530 * devices, driver uses a fixed value. 531 */ 532 if (hdev->ae_dev->dev_version == HNAE3_DEVICE_VERSION_V2) { 533 *reg_num = HCLGE_MAC_STATS_MAX_NUM_V1; 534 return 0; 535 } 536 537 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_MAC_REG_NUM, true); 538 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 539 if (ret) { 540 dev_err(&hdev->pdev->dev, 541 "failed to query mac statistic reg number, ret = %d\n", 542 ret); 543 return ret; 544 } 545 546 *reg_num = le32_to_cpu(desc.data[0]); 547 if (*reg_num == 0) { 548 dev_err(&hdev->pdev->dev, 549 "mac statistic reg number is invalid!\n"); 550 return -ENODATA; 551 } 552 553 return 0; 554 } 555 556 int hclge_mac_update_stats(struct hclge_dev *hdev) 557 { 558 /* The firmware supports the new statistics acquisition method */ 559 if (hdev->ae_dev->dev_specs.mac_stats_num) 560 return hclge_mac_update_stats_complete(hdev); 561 else 562 return hclge_mac_update_stats_defective(hdev); 563 } 564 565 static int hclge_comm_get_count(struct hclge_dev *hdev, 566 const struct hclge_comm_stats_str strs[], 567 u32 size) 568 { 569 int count = 0; 570 u32 i; 571 572 for (i = 0; i < size; i++) 573 if (strs[i].stats_num <= hdev->ae_dev->dev_specs.mac_stats_num) 574 count++; 575 576 return count; 577 } 578 579 static u64 *hclge_comm_get_stats(struct hclge_dev *hdev, 580 const struct hclge_comm_stats_str strs[], 581 int size, u64 *data) 582 { 583 u64 *buf = data; 584 u32 i; 585 586 for (i = 0; i < size; i++) { 587 if (strs[i].stats_num > hdev->ae_dev->dev_specs.mac_stats_num) 588 continue; 589 590 *buf = HCLGE_STATS_READ(&hdev->mac_stats, strs[i].offset); 591 buf++; 592 } 593 594 return buf; 595 } 596 597 static u8 *hclge_comm_get_strings(struct hclge_dev *hdev, u32 stringset, 598 const struct hclge_comm_stats_str strs[], 599 int size, u8 *data) 600 { 601 char *buff = (char *)data; 602 u32 i; 603 604 if (stringset != ETH_SS_STATS) 605 return buff; 606 607 for (i = 0; i < size; i++) { 608 if (strs[i].stats_num > hdev->ae_dev->dev_specs.mac_stats_num) 609 continue; 610 611 snprintf(buff, ETH_GSTRING_LEN, "%s", strs[i].desc); 612 buff = buff + ETH_GSTRING_LEN; 613 } 614 615 return (u8 *)buff; 616 } 617 618 static void hclge_update_stats_for_all(struct hclge_dev *hdev) 619 { 620 struct hnae3_handle *handle; 621 int status; 622 623 handle = &hdev->vport[0].nic; 624 if (handle->client) { 625 status = hclge_comm_tqps_update_stats(handle, &hdev->hw.hw); 626 if (status) { 627 dev_err(&hdev->pdev->dev, 628 "Update TQPS stats fail, status = %d.\n", 629 status); 630 } 631 } 632 633 hclge_update_fec_stats(hdev); 634 635 status = hclge_mac_update_stats(hdev); 636 if (status) 637 dev_err(&hdev->pdev->dev, 638 "Update MAC stats fail, status = %d.\n", status); 639 } 640 641 static void hclge_update_stats(struct hnae3_handle *handle) 642 { 643 struct hclge_vport *vport = hclge_get_vport(handle); 644 struct hclge_dev *hdev = vport->back; 645 int status; 646 647 if (test_and_set_bit(HCLGE_STATE_STATISTICS_UPDATING, &hdev->state)) 648 return; 649 650 status = hclge_mac_update_stats(hdev); 651 if (status) 652 dev_err(&hdev->pdev->dev, 653 "Update MAC stats fail, status = %d.\n", 654 status); 655 656 status = hclge_comm_tqps_update_stats(handle, &hdev->hw.hw); 657 if (status) 658 dev_err(&hdev->pdev->dev, 659 "Update TQPS stats fail, status = %d.\n", 660 status); 661 662 clear_bit(HCLGE_STATE_STATISTICS_UPDATING, &hdev->state); 663 } 664 665 static int hclge_get_sset_count(struct hnae3_handle *handle, int stringset) 666 { 667 #define HCLGE_LOOPBACK_TEST_FLAGS (HNAE3_SUPPORT_APP_LOOPBACK | \ 668 HNAE3_SUPPORT_PHY_LOOPBACK | \ 669 HNAE3_SUPPORT_SERDES_SERIAL_LOOPBACK | \ 670 HNAE3_SUPPORT_SERDES_PARALLEL_LOOPBACK | \ 671 HNAE3_SUPPORT_EXTERNAL_LOOPBACK) 672 673 struct hclge_vport *vport = hclge_get_vport(handle); 674 struct hclge_dev *hdev = vport->back; 675 int count = 0; 676 677 /* Loopback test support rules: 678 * mac: only GE mode support 679 * serdes: all mac mode will support include GE/XGE/LGE/CGE 680 * phy: only support when phy device exist on board 681 */ 682 if (stringset == ETH_SS_TEST) { 683 /* clear loopback bit flags at first */ 684 handle->flags = (handle->flags & (~HCLGE_LOOPBACK_TEST_FLAGS)); 685 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2 || 686 hdev->hw.mac.speed == HCLGE_MAC_SPEED_10M || 687 hdev->hw.mac.speed == HCLGE_MAC_SPEED_100M || 688 hdev->hw.mac.speed == HCLGE_MAC_SPEED_1G) { 689 count += 1; 690 handle->flags |= HNAE3_SUPPORT_APP_LOOPBACK; 691 } 692 693 if (hdev->ae_dev->dev_specs.hilink_version != 694 HCLGE_HILINK_H60) { 695 count += 1; 696 handle->flags |= HNAE3_SUPPORT_SERDES_SERIAL_LOOPBACK; 697 } 698 699 count += 1; 700 handle->flags |= HNAE3_SUPPORT_SERDES_PARALLEL_LOOPBACK; 701 count += 1; 702 handle->flags |= HNAE3_SUPPORT_EXTERNAL_LOOPBACK; 703 704 if ((hdev->hw.mac.phydev && hdev->hw.mac.phydev->drv && 705 hdev->hw.mac.phydev->drv->set_loopback) || 706 hnae3_dev_phy_imp_supported(hdev)) { 707 count += 1; 708 handle->flags |= HNAE3_SUPPORT_PHY_LOOPBACK; 709 } 710 } else if (stringset == ETH_SS_STATS) { 711 count = hclge_comm_get_count(hdev, g_mac_stats_string, 712 ARRAY_SIZE(g_mac_stats_string)) + 713 hclge_comm_tqps_get_sset_count(handle); 714 } 715 716 return count; 717 } 718 719 static void hclge_get_strings(struct hnae3_handle *handle, u32 stringset, 720 u8 *data) 721 { 722 struct hclge_vport *vport = hclge_get_vport(handle); 723 struct hclge_dev *hdev = vport->back; 724 u8 *p = (char *)data; 725 int size; 726 727 if (stringset == ETH_SS_STATS) { 728 size = ARRAY_SIZE(g_mac_stats_string); 729 p = hclge_comm_get_strings(hdev, stringset, g_mac_stats_string, 730 size, p); 731 p = hclge_comm_tqps_get_strings(handle, p); 732 } else if (stringset == ETH_SS_TEST) { 733 if (handle->flags & HNAE3_SUPPORT_EXTERNAL_LOOPBACK) { 734 memcpy(p, hns3_nic_test_strs[HNAE3_LOOP_EXTERNAL], 735 ETH_GSTRING_LEN); 736 p += ETH_GSTRING_LEN; 737 } 738 if (handle->flags & HNAE3_SUPPORT_APP_LOOPBACK) { 739 memcpy(p, hns3_nic_test_strs[HNAE3_LOOP_APP], 740 ETH_GSTRING_LEN); 741 p += ETH_GSTRING_LEN; 742 } 743 if (handle->flags & HNAE3_SUPPORT_SERDES_SERIAL_LOOPBACK) { 744 memcpy(p, hns3_nic_test_strs[HNAE3_LOOP_SERIAL_SERDES], 745 ETH_GSTRING_LEN); 746 p += ETH_GSTRING_LEN; 747 } 748 if (handle->flags & HNAE3_SUPPORT_SERDES_PARALLEL_LOOPBACK) { 749 memcpy(p, 750 hns3_nic_test_strs[HNAE3_LOOP_PARALLEL_SERDES], 751 ETH_GSTRING_LEN); 752 p += ETH_GSTRING_LEN; 753 } 754 if (handle->flags & HNAE3_SUPPORT_PHY_LOOPBACK) { 755 memcpy(p, hns3_nic_test_strs[HNAE3_LOOP_PHY], 756 ETH_GSTRING_LEN); 757 p += ETH_GSTRING_LEN; 758 } 759 } 760 } 761 762 static void hclge_get_stats(struct hnae3_handle *handle, u64 *data) 763 { 764 struct hclge_vport *vport = hclge_get_vport(handle); 765 struct hclge_dev *hdev = vport->back; 766 u64 *p; 767 768 p = hclge_comm_get_stats(hdev, g_mac_stats_string, 769 ARRAY_SIZE(g_mac_stats_string), data); 770 p = hclge_comm_tqps_get_stats(handle, p); 771 } 772 773 static void hclge_get_mac_stat(struct hnae3_handle *handle, 774 struct hns3_mac_stats *mac_stats) 775 { 776 struct hclge_vport *vport = hclge_get_vport(handle); 777 struct hclge_dev *hdev = vport->back; 778 779 hclge_update_stats(handle); 780 781 mac_stats->tx_pause_cnt = hdev->mac_stats.mac_tx_mac_pause_num; 782 mac_stats->rx_pause_cnt = hdev->mac_stats.mac_rx_mac_pause_num; 783 } 784 785 static int hclge_parse_func_status(struct hclge_dev *hdev, 786 struct hclge_func_status_cmd *status) 787 { 788 #define HCLGE_MAC_ID_MASK 0xF 789 790 if (!(status->pf_state & HCLGE_PF_STATE_DONE)) 791 return -EINVAL; 792 793 /* Set the pf to main pf */ 794 if (status->pf_state & HCLGE_PF_STATE_MAIN) 795 hdev->flag |= HCLGE_FLAG_MAIN; 796 else 797 hdev->flag &= ~HCLGE_FLAG_MAIN; 798 799 hdev->hw.mac.mac_id = status->mac_id & HCLGE_MAC_ID_MASK; 800 return 0; 801 } 802 803 static int hclge_query_function_status(struct hclge_dev *hdev) 804 { 805 #define HCLGE_QUERY_MAX_CNT 5 806 807 struct hclge_func_status_cmd *req; 808 struct hclge_desc desc; 809 int timeout = 0; 810 int ret; 811 812 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_FUNC_STATUS, true); 813 req = (struct hclge_func_status_cmd *)desc.data; 814 815 do { 816 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 817 if (ret) { 818 dev_err(&hdev->pdev->dev, 819 "query function status failed %d.\n", ret); 820 return ret; 821 } 822 823 /* Check pf reset is done */ 824 if (req->pf_state) 825 break; 826 usleep_range(1000, 2000); 827 } while (timeout++ < HCLGE_QUERY_MAX_CNT); 828 829 return hclge_parse_func_status(hdev, req); 830 } 831 832 static int hclge_query_pf_resource(struct hclge_dev *hdev) 833 { 834 struct hclge_pf_res_cmd *req; 835 struct hclge_desc desc; 836 int ret; 837 838 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_PF_RSRC, true); 839 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 840 if (ret) { 841 dev_err(&hdev->pdev->dev, 842 "query pf resource failed %d.\n", ret); 843 return ret; 844 } 845 846 req = (struct hclge_pf_res_cmd *)desc.data; 847 hdev->num_tqps = le16_to_cpu(req->tqp_num) + 848 le16_to_cpu(req->ext_tqp_num); 849 hdev->pkt_buf_size = le16_to_cpu(req->buf_size) << HCLGE_BUF_UNIT_S; 850 851 if (req->tx_buf_size) 852 hdev->tx_buf_size = 853 le16_to_cpu(req->tx_buf_size) << HCLGE_BUF_UNIT_S; 854 else 855 hdev->tx_buf_size = HCLGE_DEFAULT_TX_BUF; 856 857 hdev->tx_buf_size = roundup(hdev->tx_buf_size, HCLGE_BUF_SIZE_UNIT); 858 859 if (req->dv_buf_size) 860 hdev->dv_buf_size = 861 le16_to_cpu(req->dv_buf_size) << HCLGE_BUF_UNIT_S; 862 else 863 hdev->dv_buf_size = HCLGE_DEFAULT_DV; 864 865 hdev->dv_buf_size = roundup(hdev->dv_buf_size, HCLGE_BUF_SIZE_UNIT); 866 867 hdev->num_nic_msi = le16_to_cpu(req->msixcap_localid_number_nic); 868 if (hdev->num_nic_msi < HNAE3_MIN_VECTOR_NUM) { 869 dev_err(&hdev->pdev->dev, 870 "only %u msi resources available, not enough for pf(min:2).\n", 871 hdev->num_nic_msi); 872 return -EINVAL; 873 } 874 875 if (hnae3_dev_roce_supported(hdev)) { 876 hdev->num_roce_msi = 877 le16_to_cpu(req->pf_intr_vector_number_roce); 878 879 /* PF should have NIC vectors and Roce vectors, 880 * NIC vectors are queued before Roce vectors. 881 */ 882 hdev->num_msi = hdev->num_nic_msi + hdev->num_roce_msi; 883 } else { 884 hdev->num_msi = hdev->num_nic_msi; 885 } 886 887 return 0; 888 } 889 890 static int hclge_parse_speed(u8 speed_cmd, u32 *speed) 891 { 892 switch (speed_cmd) { 893 case HCLGE_FW_MAC_SPEED_10M: 894 *speed = HCLGE_MAC_SPEED_10M; 895 break; 896 case HCLGE_FW_MAC_SPEED_100M: 897 *speed = HCLGE_MAC_SPEED_100M; 898 break; 899 case HCLGE_FW_MAC_SPEED_1G: 900 *speed = HCLGE_MAC_SPEED_1G; 901 break; 902 case HCLGE_FW_MAC_SPEED_10G: 903 *speed = HCLGE_MAC_SPEED_10G; 904 break; 905 case HCLGE_FW_MAC_SPEED_25G: 906 *speed = HCLGE_MAC_SPEED_25G; 907 break; 908 case HCLGE_FW_MAC_SPEED_40G: 909 *speed = HCLGE_MAC_SPEED_40G; 910 break; 911 case HCLGE_FW_MAC_SPEED_50G: 912 *speed = HCLGE_MAC_SPEED_50G; 913 break; 914 case HCLGE_FW_MAC_SPEED_100G: 915 *speed = HCLGE_MAC_SPEED_100G; 916 break; 917 case HCLGE_FW_MAC_SPEED_200G: 918 *speed = HCLGE_MAC_SPEED_200G; 919 break; 920 default: 921 return -EINVAL; 922 } 923 924 return 0; 925 } 926 927 static const struct hclge_speed_bit_map speed_bit_map[] = { 928 {HCLGE_MAC_SPEED_10M, HCLGE_SUPPORT_10M_BIT}, 929 {HCLGE_MAC_SPEED_100M, HCLGE_SUPPORT_100M_BIT}, 930 {HCLGE_MAC_SPEED_1G, HCLGE_SUPPORT_1G_BIT}, 931 {HCLGE_MAC_SPEED_10G, HCLGE_SUPPORT_10G_BIT}, 932 {HCLGE_MAC_SPEED_25G, HCLGE_SUPPORT_25G_BIT}, 933 {HCLGE_MAC_SPEED_40G, HCLGE_SUPPORT_40G_BIT}, 934 {HCLGE_MAC_SPEED_50G, HCLGE_SUPPORT_50G_BITS}, 935 {HCLGE_MAC_SPEED_100G, HCLGE_SUPPORT_100G_BITS}, 936 {HCLGE_MAC_SPEED_200G, HCLGE_SUPPORT_200G_BITS}, 937 }; 938 939 static int hclge_get_speed_bit(u32 speed, u32 *speed_bit) 940 { 941 u16 i; 942 943 for (i = 0; i < ARRAY_SIZE(speed_bit_map); i++) { 944 if (speed == speed_bit_map[i].speed) { 945 *speed_bit = speed_bit_map[i].speed_bit; 946 return 0; 947 } 948 } 949 950 return -EINVAL; 951 } 952 953 static int hclge_check_port_speed(struct hnae3_handle *handle, u32 speed) 954 { 955 struct hclge_vport *vport = hclge_get_vport(handle); 956 struct hclge_dev *hdev = vport->back; 957 u32 speed_ability = hdev->hw.mac.speed_ability; 958 u32 speed_bit = 0; 959 int ret; 960 961 ret = hclge_get_speed_bit(speed, &speed_bit); 962 if (ret) 963 return ret; 964 965 if (speed_bit & speed_ability) 966 return 0; 967 968 return -EINVAL; 969 } 970 971 static void hclge_update_fec_support(struct hclge_mac *mac) 972 { 973 linkmode_clear_bit(ETHTOOL_LINK_MODE_FEC_BASER_BIT, mac->supported); 974 linkmode_clear_bit(ETHTOOL_LINK_MODE_FEC_RS_BIT, mac->supported); 975 linkmode_clear_bit(ETHTOOL_LINK_MODE_FEC_LLRS_BIT, mac->supported); 976 linkmode_clear_bit(ETHTOOL_LINK_MODE_FEC_NONE_BIT, mac->supported); 977 978 if (mac->fec_ability & BIT(HNAE3_FEC_BASER)) 979 linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_BASER_BIT, 980 mac->supported); 981 if (mac->fec_ability & BIT(HNAE3_FEC_RS)) 982 linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_RS_BIT, 983 mac->supported); 984 if (mac->fec_ability & BIT(HNAE3_FEC_LLRS)) 985 linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_LLRS_BIT, 986 mac->supported); 987 if (mac->fec_ability & BIT(HNAE3_FEC_NONE)) 988 linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_NONE_BIT, 989 mac->supported); 990 } 991 992 static const struct hclge_link_mode_bmap hclge_sr_link_mode_bmap[] = { 993 {HCLGE_SUPPORT_10G_BIT, ETHTOOL_LINK_MODE_10000baseSR_Full_BIT}, 994 {HCLGE_SUPPORT_25G_BIT, ETHTOOL_LINK_MODE_25000baseSR_Full_BIT}, 995 {HCLGE_SUPPORT_40G_BIT, ETHTOOL_LINK_MODE_40000baseSR4_Full_BIT}, 996 {HCLGE_SUPPORT_50G_R2_BIT, ETHTOOL_LINK_MODE_50000baseSR2_Full_BIT}, 997 {HCLGE_SUPPORT_50G_R1_BIT, ETHTOOL_LINK_MODE_50000baseSR_Full_BIT}, 998 {HCLGE_SUPPORT_100G_R4_BIT, ETHTOOL_LINK_MODE_100000baseSR4_Full_BIT}, 999 {HCLGE_SUPPORT_100G_R2_BIT, ETHTOOL_LINK_MODE_100000baseSR2_Full_BIT}, 1000 {HCLGE_SUPPORT_200G_R4_EXT_BIT, 1001 ETHTOOL_LINK_MODE_200000baseSR4_Full_BIT}, 1002 {HCLGE_SUPPORT_200G_R4_BIT, ETHTOOL_LINK_MODE_200000baseSR4_Full_BIT}, 1003 }; 1004 1005 static const struct hclge_link_mode_bmap hclge_lr_link_mode_bmap[] = { 1006 {HCLGE_SUPPORT_10G_BIT, ETHTOOL_LINK_MODE_10000baseLR_Full_BIT}, 1007 {HCLGE_SUPPORT_40G_BIT, ETHTOOL_LINK_MODE_40000baseLR4_Full_BIT}, 1008 {HCLGE_SUPPORT_50G_R1_BIT, ETHTOOL_LINK_MODE_50000baseLR_ER_FR_Full_BIT}, 1009 {HCLGE_SUPPORT_100G_R4_BIT, 1010 ETHTOOL_LINK_MODE_100000baseLR4_ER4_Full_BIT}, 1011 {HCLGE_SUPPORT_100G_R2_BIT, 1012 ETHTOOL_LINK_MODE_100000baseLR2_ER2_FR2_Full_BIT}, 1013 {HCLGE_SUPPORT_200G_R4_EXT_BIT, 1014 ETHTOOL_LINK_MODE_200000baseLR4_ER4_FR4_Full_BIT}, 1015 {HCLGE_SUPPORT_200G_R4_BIT, 1016 ETHTOOL_LINK_MODE_200000baseLR4_ER4_FR4_Full_BIT}, 1017 }; 1018 1019 static const struct hclge_link_mode_bmap hclge_cr_link_mode_bmap[] = { 1020 {HCLGE_SUPPORT_10G_BIT, ETHTOOL_LINK_MODE_10000baseCR_Full_BIT}, 1021 {HCLGE_SUPPORT_25G_BIT, ETHTOOL_LINK_MODE_25000baseCR_Full_BIT}, 1022 {HCLGE_SUPPORT_40G_BIT, ETHTOOL_LINK_MODE_40000baseCR4_Full_BIT}, 1023 {HCLGE_SUPPORT_50G_R2_BIT, ETHTOOL_LINK_MODE_50000baseCR2_Full_BIT}, 1024 {HCLGE_SUPPORT_50G_R1_BIT, ETHTOOL_LINK_MODE_50000baseCR_Full_BIT}, 1025 {HCLGE_SUPPORT_100G_R4_BIT, ETHTOOL_LINK_MODE_100000baseCR4_Full_BIT}, 1026 {HCLGE_SUPPORT_100G_R2_BIT, ETHTOOL_LINK_MODE_100000baseCR2_Full_BIT}, 1027 {HCLGE_SUPPORT_200G_R4_EXT_BIT, 1028 ETHTOOL_LINK_MODE_200000baseCR4_Full_BIT}, 1029 {HCLGE_SUPPORT_200G_R4_BIT, ETHTOOL_LINK_MODE_200000baseCR4_Full_BIT}, 1030 }; 1031 1032 static const struct hclge_link_mode_bmap hclge_kr_link_mode_bmap[] = { 1033 {HCLGE_SUPPORT_1G_BIT, ETHTOOL_LINK_MODE_1000baseKX_Full_BIT}, 1034 {HCLGE_SUPPORT_10G_BIT, ETHTOOL_LINK_MODE_10000baseKR_Full_BIT}, 1035 {HCLGE_SUPPORT_25G_BIT, ETHTOOL_LINK_MODE_25000baseKR_Full_BIT}, 1036 {HCLGE_SUPPORT_40G_BIT, ETHTOOL_LINK_MODE_40000baseKR4_Full_BIT}, 1037 {HCLGE_SUPPORT_50G_R2_BIT, ETHTOOL_LINK_MODE_50000baseKR2_Full_BIT}, 1038 {HCLGE_SUPPORT_50G_R1_BIT, ETHTOOL_LINK_MODE_50000baseKR_Full_BIT}, 1039 {HCLGE_SUPPORT_100G_R4_BIT, ETHTOOL_LINK_MODE_100000baseKR4_Full_BIT}, 1040 {HCLGE_SUPPORT_100G_R2_BIT, ETHTOOL_LINK_MODE_100000baseKR2_Full_BIT}, 1041 {HCLGE_SUPPORT_200G_R4_EXT_BIT, 1042 ETHTOOL_LINK_MODE_200000baseKR4_Full_BIT}, 1043 {HCLGE_SUPPORT_200G_R4_BIT, ETHTOOL_LINK_MODE_200000baseKR4_Full_BIT}, 1044 }; 1045 1046 static void hclge_convert_setting_sr(u16 speed_ability, 1047 unsigned long *link_mode) 1048 { 1049 int i; 1050 1051 for (i = 0; i < ARRAY_SIZE(hclge_sr_link_mode_bmap); i++) { 1052 if (speed_ability & hclge_sr_link_mode_bmap[i].support_bit) 1053 linkmode_set_bit(hclge_sr_link_mode_bmap[i].link_mode, 1054 link_mode); 1055 } 1056 } 1057 1058 static void hclge_convert_setting_lr(u16 speed_ability, 1059 unsigned long *link_mode) 1060 { 1061 int i; 1062 1063 for (i = 0; i < ARRAY_SIZE(hclge_lr_link_mode_bmap); i++) { 1064 if (speed_ability & hclge_lr_link_mode_bmap[i].support_bit) 1065 linkmode_set_bit(hclge_lr_link_mode_bmap[i].link_mode, 1066 link_mode); 1067 } 1068 } 1069 1070 static void hclge_convert_setting_cr(u16 speed_ability, 1071 unsigned long *link_mode) 1072 { 1073 int i; 1074 1075 for (i = 0; i < ARRAY_SIZE(hclge_cr_link_mode_bmap); i++) { 1076 if (speed_ability & hclge_cr_link_mode_bmap[i].support_bit) 1077 linkmode_set_bit(hclge_cr_link_mode_bmap[i].link_mode, 1078 link_mode); 1079 } 1080 } 1081 1082 static void hclge_convert_setting_kr(u16 speed_ability, 1083 unsigned long *link_mode) 1084 { 1085 int i; 1086 1087 for (i = 0; i < ARRAY_SIZE(hclge_kr_link_mode_bmap); i++) { 1088 if (speed_ability & hclge_kr_link_mode_bmap[i].support_bit) 1089 linkmode_set_bit(hclge_kr_link_mode_bmap[i].link_mode, 1090 link_mode); 1091 } 1092 } 1093 1094 static void hclge_convert_setting_fec(struct hclge_mac *mac) 1095 { 1096 /* If firmware has reported fec_ability, don't need to convert by speed */ 1097 if (mac->fec_ability) 1098 goto out; 1099 1100 switch (mac->speed) { 1101 case HCLGE_MAC_SPEED_10G: 1102 case HCLGE_MAC_SPEED_40G: 1103 mac->fec_ability = BIT(HNAE3_FEC_BASER) | BIT(HNAE3_FEC_AUTO) | 1104 BIT(HNAE3_FEC_NONE); 1105 break; 1106 case HCLGE_MAC_SPEED_25G: 1107 case HCLGE_MAC_SPEED_50G: 1108 mac->fec_ability = BIT(HNAE3_FEC_BASER) | BIT(HNAE3_FEC_RS) | 1109 BIT(HNAE3_FEC_AUTO) | BIT(HNAE3_FEC_NONE); 1110 break; 1111 case HCLGE_MAC_SPEED_100G: 1112 mac->fec_ability = BIT(HNAE3_FEC_RS) | BIT(HNAE3_FEC_AUTO) | 1113 BIT(HNAE3_FEC_NONE); 1114 break; 1115 case HCLGE_MAC_SPEED_200G: 1116 mac->fec_ability = BIT(HNAE3_FEC_RS) | BIT(HNAE3_FEC_AUTO) | 1117 BIT(HNAE3_FEC_LLRS); 1118 break; 1119 default: 1120 mac->fec_ability = 0; 1121 break; 1122 } 1123 1124 out: 1125 hclge_update_fec_support(mac); 1126 } 1127 1128 static void hclge_parse_fiber_link_mode(struct hclge_dev *hdev, 1129 u16 speed_ability) 1130 { 1131 struct hclge_mac *mac = &hdev->hw.mac; 1132 1133 if (speed_ability & HCLGE_SUPPORT_1G_BIT) 1134 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 1135 mac->supported); 1136 1137 hclge_convert_setting_sr(speed_ability, mac->supported); 1138 hclge_convert_setting_lr(speed_ability, mac->supported); 1139 hclge_convert_setting_cr(speed_ability, mac->supported); 1140 if (hnae3_dev_fec_supported(hdev)) 1141 hclge_convert_setting_fec(mac); 1142 1143 if (hnae3_dev_pause_supported(hdev)) 1144 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, mac->supported); 1145 1146 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, mac->supported); 1147 linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_NONE_BIT, mac->supported); 1148 } 1149 1150 static void hclge_parse_backplane_link_mode(struct hclge_dev *hdev, 1151 u16 speed_ability) 1152 { 1153 struct hclge_mac *mac = &hdev->hw.mac; 1154 1155 hclge_convert_setting_kr(speed_ability, mac->supported); 1156 if (hnae3_dev_fec_supported(hdev)) 1157 hclge_convert_setting_fec(mac); 1158 1159 if (hnae3_dev_pause_supported(hdev)) 1160 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, mac->supported); 1161 1162 linkmode_set_bit(ETHTOOL_LINK_MODE_Backplane_BIT, mac->supported); 1163 linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_NONE_BIT, mac->supported); 1164 } 1165 1166 static void hclge_parse_copper_link_mode(struct hclge_dev *hdev, 1167 u16 speed_ability) 1168 { 1169 unsigned long *supported = hdev->hw.mac.supported; 1170 1171 /* default to support all speed for GE port */ 1172 if (!speed_ability) 1173 speed_ability = HCLGE_SUPPORT_GE; 1174 1175 if (speed_ability & HCLGE_SUPPORT_1G_BIT) 1176 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 1177 supported); 1178 1179 if (speed_ability & HCLGE_SUPPORT_100M_BIT) { 1180 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, 1181 supported); 1182 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, 1183 supported); 1184 } 1185 1186 if (speed_ability & HCLGE_SUPPORT_10M_BIT) { 1187 linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, supported); 1188 linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, supported); 1189 } 1190 1191 if (hnae3_dev_pause_supported(hdev)) { 1192 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, supported); 1193 linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, supported); 1194 } 1195 1196 linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, supported); 1197 linkmode_set_bit(ETHTOOL_LINK_MODE_TP_BIT, supported); 1198 } 1199 1200 static void hclge_parse_link_mode(struct hclge_dev *hdev, u16 speed_ability) 1201 { 1202 u8 media_type = hdev->hw.mac.media_type; 1203 1204 if (media_type == HNAE3_MEDIA_TYPE_FIBER) 1205 hclge_parse_fiber_link_mode(hdev, speed_ability); 1206 else if (media_type == HNAE3_MEDIA_TYPE_COPPER) 1207 hclge_parse_copper_link_mode(hdev, speed_ability); 1208 else if (media_type == HNAE3_MEDIA_TYPE_BACKPLANE) 1209 hclge_parse_backplane_link_mode(hdev, speed_ability); 1210 } 1211 1212 static u32 hclge_get_max_speed(u16 speed_ability) 1213 { 1214 if (speed_ability & HCLGE_SUPPORT_200G_BITS) 1215 return HCLGE_MAC_SPEED_200G; 1216 1217 if (speed_ability & HCLGE_SUPPORT_100G_BITS) 1218 return HCLGE_MAC_SPEED_100G; 1219 1220 if (speed_ability & HCLGE_SUPPORT_50G_BITS) 1221 return HCLGE_MAC_SPEED_50G; 1222 1223 if (speed_ability & HCLGE_SUPPORT_40G_BIT) 1224 return HCLGE_MAC_SPEED_40G; 1225 1226 if (speed_ability & HCLGE_SUPPORT_25G_BIT) 1227 return HCLGE_MAC_SPEED_25G; 1228 1229 if (speed_ability & HCLGE_SUPPORT_10G_BIT) 1230 return HCLGE_MAC_SPEED_10G; 1231 1232 if (speed_ability & HCLGE_SUPPORT_1G_BIT) 1233 return HCLGE_MAC_SPEED_1G; 1234 1235 if (speed_ability & HCLGE_SUPPORT_100M_BIT) 1236 return HCLGE_MAC_SPEED_100M; 1237 1238 if (speed_ability & HCLGE_SUPPORT_10M_BIT) 1239 return HCLGE_MAC_SPEED_10M; 1240 1241 return HCLGE_MAC_SPEED_1G; 1242 } 1243 1244 static void hclge_parse_cfg(struct hclge_cfg *cfg, struct hclge_desc *desc) 1245 { 1246 #define HCLGE_TX_SPARE_SIZE_UNIT 4096 1247 #define SPEED_ABILITY_EXT_SHIFT 8 1248 1249 struct hclge_cfg_param_cmd *req; 1250 u64 mac_addr_tmp_high; 1251 u16 speed_ability_ext; 1252 u64 mac_addr_tmp; 1253 unsigned int i; 1254 1255 req = (struct hclge_cfg_param_cmd *)desc[0].data; 1256 1257 /* get the configuration */ 1258 cfg->tc_num = hnae3_get_field(__le32_to_cpu(req->param[0]), 1259 HCLGE_CFG_TC_NUM_M, HCLGE_CFG_TC_NUM_S); 1260 cfg->tqp_desc_num = hnae3_get_field(__le32_to_cpu(req->param[0]), 1261 HCLGE_CFG_TQP_DESC_N_M, 1262 HCLGE_CFG_TQP_DESC_N_S); 1263 1264 cfg->phy_addr = hnae3_get_field(__le32_to_cpu(req->param[1]), 1265 HCLGE_CFG_PHY_ADDR_M, 1266 HCLGE_CFG_PHY_ADDR_S); 1267 cfg->media_type = hnae3_get_field(__le32_to_cpu(req->param[1]), 1268 HCLGE_CFG_MEDIA_TP_M, 1269 HCLGE_CFG_MEDIA_TP_S); 1270 cfg->rx_buf_len = hnae3_get_field(__le32_to_cpu(req->param[1]), 1271 HCLGE_CFG_RX_BUF_LEN_M, 1272 HCLGE_CFG_RX_BUF_LEN_S); 1273 /* get mac_address */ 1274 mac_addr_tmp = __le32_to_cpu(req->param[2]); 1275 mac_addr_tmp_high = hnae3_get_field(__le32_to_cpu(req->param[3]), 1276 HCLGE_CFG_MAC_ADDR_H_M, 1277 HCLGE_CFG_MAC_ADDR_H_S); 1278 1279 mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1; 1280 1281 cfg->default_speed = hnae3_get_field(__le32_to_cpu(req->param[3]), 1282 HCLGE_CFG_DEFAULT_SPEED_M, 1283 HCLGE_CFG_DEFAULT_SPEED_S); 1284 cfg->vf_rss_size_max = hnae3_get_field(__le32_to_cpu(req->param[3]), 1285 HCLGE_CFG_RSS_SIZE_M, 1286 HCLGE_CFG_RSS_SIZE_S); 1287 1288 for (i = 0; i < ETH_ALEN; i++) 1289 cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff; 1290 1291 req = (struct hclge_cfg_param_cmd *)desc[1].data; 1292 cfg->numa_node_map = __le32_to_cpu(req->param[0]); 1293 1294 cfg->speed_ability = hnae3_get_field(__le32_to_cpu(req->param[1]), 1295 HCLGE_CFG_SPEED_ABILITY_M, 1296 HCLGE_CFG_SPEED_ABILITY_S); 1297 speed_ability_ext = hnae3_get_field(__le32_to_cpu(req->param[1]), 1298 HCLGE_CFG_SPEED_ABILITY_EXT_M, 1299 HCLGE_CFG_SPEED_ABILITY_EXT_S); 1300 cfg->speed_ability |= speed_ability_ext << SPEED_ABILITY_EXT_SHIFT; 1301 1302 cfg->vlan_fliter_cap = hnae3_get_field(__le32_to_cpu(req->param[1]), 1303 HCLGE_CFG_VLAN_FLTR_CAP_M, 1304 HCLGE_CFG_VLAN_FLTR_CAP_S); 1305 1306 cfg->umv_space = hnae3_get_field(__le32_to_cpu(req->param[1]), 1307 HCLGE_CFG_UMV_TBL_SPACE_M, 1308 HCLGE_CFG_UMV_TBL_SPACE_S); 1309 1310 cfg->pf_rss_size_max = hnae3_get_field(__le32_to_cpu(req->param[2]), 1311 HCLGE_CFG_PF_RSS_SIZE_M, 1312 HCLGE_CFG_PF_RSS_SIZE_S); 1313 1314 /* HCLGE_CFG_PF_RSS_SIZE_M is the PF max rss size, which is a 1315 * power of 2, instead of reading out directly. This would 1316 * be more flexible for future changes and expansions. 1317 * When VF max rss size field is HCLGE_CFG_RSS_SIZE_S, 1318 * it does not make sense if PF's field is 0. In this case, PF and VF 1319 * has the same max rss size filed: HCLGE_CFG_RSS_SIZE_S. 1320 */ 1321 cfg->pf_rss_size_max = cfg->pf_rss_size_max ? 1322 1U << cfg->pf_rss_size_max : 1323 cfg->vf_rss_size_max; 1324 1325 /* The unit of the tx spare buffer size queried from configuration 1326 * file is HCLGE_TX_SPARE_SIZE_UNIT(4096) bytes, so a conversion is 1327 * needed here. 1328 */ 1329 cfg->tx_spare_buf_size = hnae3_get_field(__le32_to_cpu(req->param[2]), 1330 HCLGE_CFG_TX_SPARE_BUF_SIZE_M, 1331 HCLGE_CFG_TX_SPARE_BUF_SIZE_S); 1332 cfg->tx_spare_buf_size *= HCLGE_TX_SPARE_SIZE_UNIT; 1333 } 1334 1335 /* hclge_get_cfg: query the static parameter from flash 1336 * @hdev: pointer to struct hclge_dev 1337 * @hcfg: the config structure to be getted 1338 */ 1339 static int hclge_get_cfg(struct hclge_dev *hdev, struct hclge_cfg *hcfg) 1340 { 1341 struct hclge_desc desc[HCLGE_PF_CFG_DESC_NUM]; 1342 struct hclge_cfg_param_cmd *req; 1343 unsigned int i; 1344 int ret; 1345 1346 for (i = 0; i < HCLGE_PF_CFG_DESC_NUM; i++) { 1347 u32 offset = 0; 1348 1349 req = (struct hclge_cfg_param_cmd *)desc[i].data; 1350 hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_GET_CFG_PARAM, 1351 true); 1352 hnae3_set_field(offset, HCLGE_CFG_OFFSET_M, 1353 HCLGE_CFG_OFFSET_S, i * HCLGE_CFG_RD_LEN_BYTES); 1354 /* Len should be united by 4 bytes when send to hardware */ 1355 hnae3_set_field(offset, HCLGE_CFG_RD_LEN_M, HCLGE_CFG_RD_LEN_S, 1356 HCLGE_CFG_RD_LEN_BYTES / HCLGE_CFG_RD_LEN_UNIT); 1357 req->offset = cpu_to_le32(offset); 1358 } 1359 1360 ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_PF_CFG_DESC_NUM); 1361 if (ret) { 1362 dev_err(&hdev->pdev->dev, "get config failed %d.\n", ret); 1363 return ret; 1364 } 1365 1366 hclge_parse_cfg(hcfg, desc); 1367 1368 return 0; 1369 } 1370 1371 static void hclge_set_default_dev_specs(struct hclge_dev *hdev) 1372 { 1373 #define HCLGE_MAX_NON_TSO_BD_NUM 8U 1374 1375 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 1376 1377 ae_dev->dev_specs.max_non_tso_bd_num = HCLGE_MAX_NON_TSO_BD_NUM; 1378 ae_dev->dev_specs.rss_ind_tbl_size = HCLGE_RSS_IND_TBL_SIZE; 1379 ae_dev->dev_specs.rss_key_size = HCLGE_COMM_RSS_KEY_SIZE; 1380 ae_dev->dev_specs.max_tm_rate = HCLGE_ETHER_MAX_RATE; 1381 ae_dev->dev_specs.max_int_gl = HCLGE_DEF_MAX_INT_GL; 1382 ae_dev->dev_specs.max_frm_size = HCLGE_MAC_MAX_FRAME; 1383 ae_dev->dev_specs.max_qset_num = HCLGE_MAX_QSET_NUM; 1384 ae_dev->dev_specs.umv_size = HCLGE_DEFAULT_UMV_SPACE_PER_PF; 1385 ae_dev->dev_specs.tnl_num = 0; 1386 } 1387 1388 static void hclge_parse_dev_specs(struct hclge_dev *hdev, 1389 struct hclge_desc *desc) 1390 { 1391 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 1392 struct hclge_dev_specs_0_cmd *req0; 1393 struct hclge_dev_specs_1_cmd *req1; 1394 1395 req0 = (struct hclge_dev_specs_0_cmd *)desc[0].data; 1396 req1 = (struct hclge_dev_specs_1_cmd *)desc[1].data; 1397 1398 ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num; 1399 ae_dev->dev_specs.rss_ind_tbl_size = 1400 le16_to_cpu(req0->rss_ind_tbl_size); 1401 ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max); 1402 ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size); 1403 ae_dev->dev_specs.max_tm_rate = le32_to_cpu(req0->max_tm_rate); 1404 ae_dev->dev_specs.max_qset_num = le16_to_cpu(req1->max_qset_num); 1405 ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl); 1406 ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size); 1407 ae_dev->dev_specs.umv_size = le16_to_cpu(req1->umv_size); 1408 ae_dev->dev_specs.mc_mac_size = le16_to_cpu(req1->mc_mac_size); 1409 ae_dev->dev_specs.tnl_num = req1->tnl_num; 1410 ae_dev->dev_specs.hilink_version = req1->hilink_version; 1411 } 1412 1413 static void hclge_check_dev_specs(struct hclge_dev *hdev) 1414 { 1415 struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs; 1416 1417 if (!dev_specs->max_non_tso_bd_num) 1418 dev_specs->max_non_tso_bd_num = HCLGE_MAX_NON_TSO_BD_NUM; 1419 if (!dev_specs->rss_ind_tbl_size) 1420 dev_specs->rss_ind_tbl_size = HCLGE_RSS_IND_TBL_SIZE; 1421 if (!dev_specs->rss_key_size) 1422 dev_specs->rss_key_size = HCLGE_COMM_RSS_KEY_SIZE; 1423 if (!dev_specs->max_tm_rate) 1424 dev_specs->max_tm_rate = HCLGE_ETHER_MAX_RATE; 1425 if (!dev_specs->max_qset_num) 1426 dev_specs->max_qset_num = HCLGE_MAX_QSET_NUM; 1427 if (!dev_specs->max_int_gl) 1428 dev_specs->max_int_gl = HCLGE_DEF_MAX_INT_GL; 1429 if (!dev_specs->max_frm_size) 1430 dev_specs->max_frm_size = HCLGE_MAC_MAX_FRAME; 1431 if (!dev_specs->umv_size) 1432 dev_specs->umv_size = HCLGE_DEFAULT_UMV_SPACE_PER_PF; 1433 } 1434 1435 static int hclge_query_mac_stats_num(struct hclge_dev *hdev) 1436 { 1437 u32 reg_num = 0; 1438 int ret; 1439 1440 ret = hclge_mac_query_reg_num(hdev, ®_num); 1441 if (ret && ret != -EOPNOTSUPP) 1442 return ret; 1443 1444 hdev->ae_dev->dev_specs.mac_stats_num = reg_num; 1445 return 0; 1446 } 1447 1448 static int hclge_query_dev_specs(struct hclge_dev *hdev) 1449 { 1450 struct hclge_desc desc[HCLGE_QUERY_DEV_SPECS_BD_NUM]; 1451 int ret; 1452 int i; 1453 1454 ret = hclge_query_mac_stats_num(hdev); 1455 if (ret) 1456 return ret; 1457 1458 /* set default specifications as devices lower than version V3 do not 1459 * support querying specifications from firmware. 1460 */ 1461 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) { 1462 hclge_set_default_dev_specs(hdev); 1463 return 0; 1464 } 1465 1466 for (i = 0; i < HCLGE_QUERY_DEV_SPECS_BD_NUM - 1; i++) { 1467 hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_DEV_SPECS, 1468 true); 1469 desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 1470 } 1471 hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_DEV_SPECS, true); 1472 1473 ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_QUERY_DEV_SPECS_BD_NUM); 1474 if (ret) 1475 return ret; 1476 1477 hclge_parse_dev_specs(hdev, desc); 1478 hclge_check_dev_specs(hdev); 1479 1480 return 0; 1481 } 1482 1483 static int hclge_get_cap(struct hclge_dev *hdev) 1484 { 1485 int ret; 1486 1487 ret = hclge_query_function_status(hdev); 1488 if (ret) { 1489 dev_err(&hdev->pdev->dev, 1490 "query function status error %d.\n", ret); 1491 return ret; 1492 } 1493 1494 /* get pf resource */ 1495 return hclge_query_pf_resource(hdev); 1496 } 1497 1498 static void hclge_init_kdump_kernel_config(struct hclge_dev *hdev) 1499 { 1500 #define HCLGE_MIN_TX_DESC 64 1501 #define HCLGE_MIN_RX_DESC 64 1502 1503 if (!is_kdump_kernel()) 1504 return; 1505 1506 dev_info(&hdev->pdev->dev, 1507 "Running kdump kernel. Using minimal resources\n"); 1508 1509 /* minimal queue pairs equals to the number of vports */ 1510 hdev->num_tqps = hdev->num_req_vfs + 1; 1511 hdev->num_tx_desc = HCLGE_MIN_TX_DESC; 1512 hdev->num_rx_desc = HCLGE_MIN_RX_DESC; 1513 } 1514 1515 static void hclge_init_tc_config(struct hclge_dev *hdev) 1516 { 1517 unsigned int i; 1518 1519 if (hdev->tc_max > HNAE3_MAX_TC || 1520 hdev->tc_max < 1) { 1521 dev_warn(&hdev->pdev->dev, "TC num = %u.\n", 1522 hdev->tc_max); 1523 hdev->tc_max = 1; 1524 } 1525 1526 /* Dev does not support DCB */ 1527 if (!hnae3_dev_dcb_supported(hdev)) { 1528 hdev->tc_max = 1; 1529 hdev->pfc_max = 0; 1530 } else { 1531 hdev->pfc_max = hdev->tc_max; 1532 } 1533 1534 hdev->tm_info.num_tc = 1; 1535 1536 /* Currently not support uncontiuous tc */ 1537 for (i = 0; i < hdev->tm_info.num_tc; i++) 1538 hnae3_set_bit(hdev->hw_tc_map, i, 1); 1539 1540 hdev->tx_sch_mode = HCLGE_FLAG_TC_BASE_SCH_MODE; 1541 } 1542 1543 static int hclge_configure(struct hclge_dev *hdev) 1544 { 1545 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 1546 struct hclge_cfg cfg; 1547 int ret; 1548 1549 ret = hclge_get_cfg(hdev, &cfg); 1550 if (ret) 1551 return ret; 1552 1553 hdev->base_tqp_pid = 0; 1554 hdev->vf_rss_size_max = cfg.vf_rss_size_max; 1555 hdev->pf_rss_size_max = cfg.pf_rss_size_max; 1556 hdev->rx_buf_len = cfg.rx_buf_len; 1557 ether_addr_copy(hdev->hw.mac.mac_addr, cfg.mac_addr); 1558 hdev->hw.mac.media_type = cfg.media_type; 1559 hdev->hw.mac.phy_addr = cfg.phy_addr; 1560 hdev->num_tx_desc = cfg.tqp_desc_num; 1561 hdev->num_rx_desc = cfg.tqp_desc_num; 1562 hdev->tm_info.num_pg = 1; 1563 hdev->tc_max = cfg.tc_num; 1564 hdev->tm_info.hw_pfc_map = 0; 1565 if (cfg.umv_space) 1566 hdev->wanted_umv_size = cfg.umv_space; 1567 else 1568 hdev->wanted_umv_size = hdev->ae_dev->dev_specs.umv_size; 1569 hdev->tx_spare_buf_size = cfg.tx_spare_buf_size; 1570 hdev->gro_en = true; 1571 if (cfg.vlan_fliter_cap == HCLGE_VLAN_FLTR_CAN_MDF) 1572 set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps); 1573 1574 if (hnae3_ae_dev_fd_supported(hdev->ae_dev)) { 1575 hdev->fd_en = true; 1576 hdev->fd_active_type = HCLGE_FD_RULE_NONE; 1577 } 1578 1579 ret = hclge_parse_speed(cfg.default_speed, &hdev->hw.mac.speed); 1580 if (ret) { 1581 dev_err(&hdev->pdev->dev, "failed to parse speed %u, ret = %d\n", 1582 cfg.default_speed, ret); 1583 return ret; 1584 } 1585 hdev->hw.mac.req_speed = hdev->hw.mac.speed; 1586 hdev->hw.mac.req_autoneg = AUTONEG_ENABLE; 1587 hdev->hw.mac.req_duplex = DUPLEX_FULL; 1588 1589 hclge_parse_link_mode(hdev, cfg.speed_ability); 1590 1591 hdev->hw.mac.max_speed = hclge_get_max_speed(cfg.speed_ability); 1592 1593 hclge_init_tc_config(hdev); 1594 hclge_init_kdump_kernel_config(hdev); 1595 1596 return ret; 1597 } 1598 1599 static int hclge_config_tso(struct hclge_dev *hdev, u16 tso_mss_min, 1600 u16 tso_mss_max) 1601 { 1602 struct hclge_cfg_tso_status_cmd *req; 1603 struct hclge_desc desc; 1604 1605 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_TSO_GENERIC_CONFIG, false); 1606 1607 req = (struct hclge_cfg_tso_status_cmd *)desc.data; 1608 req->tso_mss_min = cpu_to_le16(tso_mss_min); 1609 req->tso_mss_max = cpu_to_le16(tso_mss_max); 1610 1611 return hclge_cmd_send(&hdev->hw, &desc, 1); 1612 } 1613 1614 static int hclge_config_gro(struct hclge_dev *hdev) 1615 { 1616 struct hclge_cfg_gro_status_cmd *req; 1617 struct hclge_desc desc; 1618 int ret; 1619 1620 if (!hnae3_ae_dev_gro_supported(hdev->ae_dev)) 1621 return 0; 1622 1623 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GRO_GENERIC_CONFIG, false); 1624 req = (struct hclge_cfg_gro_status_cmd *)desc.data; 1625 1626 req->gro_en = hdev->gro_en ? 1 : 0; 1627 1628 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 1629 if (ret) 1630 dev_err(&hdev->pdev->dev, 1631 "GRO hardware config cmd failed, ret = %d\n", ret); 1632 1633 return ret; 1634 } 1635 1636 static int hclge_alloc_tqps(struct hclge_dev *hdev) 1637 { 1638 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 1639 struct hclge_comm_tqp *tqp; 1640 int i; 1641 1642 hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps, 1643 sizeof(struct hclge_comm_tqp), GFP_KERNEL); 1644 if (!hdev->htqp) 1645 return -ENOMEM; 1646 1647 tqp = hdev->htqp; 1648 1649 for (i = 0; i < hdev->num_tqps; i++) { 1650 tqp->dev = &hdev->pdev->dev; 1651 tqp->index = i; 1652 1653 tqp->q.ae_algo = &ae_algo; 1654 tqp->q.buf_size = hdev->rx_buf_len; 1655 tqp->q.tx_desc_num = hdev->num_tx_desc; 1656 tqp->q.rx_desc_num = hdev->num_rx_desc; 1657 1658 /* need an extended offset to configure queues >= 1659 * HCLGE_TQP_MAX_SIZE_DEV_V2 1660 */ 1661 if (i < HCLGE_TQP_MAX_SIZE_DEV_V2) 1662 tqp->q.io_base = hdev->hw.hw.io_base + 1663 HCLGE_TQP_REG_OFFSET + 1664 i * HCLGE_TQP_REG_SIZE; 1665 else 1666 tqp->q.io_base = hdev->hw.hw.io_base + 1667 HCLGE_TQP_REG_OFFSET + 1668 HCLGE_TQP_EXT_REG_OFFSET + 1669 (i - HCLGE_TQP_MAX_SIZE_DEV_V2) * 1670 HCLGE_TQP_REG_SIZE; 1671 1672 /* when device supports tx push and has device memory, 1673 * the queue can execute push mode or doorbell mode on 1674 * device memory. 1675 */ 1676 if (test_bit(HNAE3_DEV_SUPPORT_TX_PUSH_B, ae_dev->caps)) 1677 tqp->q.mem_base = hdev->hw.hw.mem_base + 1678 HCLGE_TQP_MEM_OFFSET(hdev, i); 1679 1680 tqp++; 1681 } 1682 1683 return 0; 1684 } 1685 1686 static int hclge_map_tqps_to_func(struct hclge_dev *hdev, u16 func_id, 1687 u16 tqp_pid, u16 tqp_vid, bool is_pf) 1688 { 1689 struct hclge_tqp_map_cmd *req; 1690 struct hclge_desc desc; 1691 int ret; 1692 1693 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_SET_TQP_MAP, false); 1694 1695 req = (struct hclge_tqp_map_cmd *)desc.data; 1696 req->tqp_id = cpu_to_le16(tqp_pid); 1697 req->tqp_vf = func_id; 1698 req->tqp_flag = 1U << HCLGE_TQP_MAP_EN_B; 1699 if (!is_pf) 1700 req->tqp_flag |= 1U << HCLGE_TQP_MAP_TYPE_B; 1701 req->tqp_vid = cpu_to_le16(tqp_vid); 1702 1703 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 1704 if (ret) 1705 dev_err(&hdev->pdev->dev, "TQP map failed %d.\n", ret); 1706 1707 return ret; 1708 } 1709 1710 static int hclge_assign_tqp(struct hclge_vport *vport, u16 num_tqps) 1711 { 1712 struct hnae3_knic_private_info *kinfo = &vport->nic.kinfo; 1713 struct hclge_dev *hdev = vport->back; 1714 int i, alloced; 1715 1716 for (i = 0, alloced = 0; i < hdev->num_tqps && 1717 alloced < num_tqps; i++) { 1718 if (!hdev->htqp[i].alloced) { 1719 hdev->htqp[i].q.handle = &vport->nic; 1720 hdev->htqp[i].q.tqp_index = alloced; 1721 hdev->htqp[i].q.tx_desc_num = kinfo->num_tx_desc; 1722 hdev->htqp[i].q.rx_desc_num = kinfo->num_rx_desc; 1723 kinfo->tqp[alloced] = &hdev->htqp[i].q; 1724 hdev->htqp[i].alloced = true; 1725 alloced++; 1726 } 1727 } 1728 vport->alloc_tqps = alloced; 1729 kinfo->rss_size = min_t(u16, hdev->pf_rss_size_max, 1730 vport->alloc_tqps / hdev->tm_info.num_tc); 1731 1732 /* ensure one to one mapping between irq and queue at default */ 1733 kinfo->rss_size = min_t(u16, kinfo->rss_size, 1734 (hdev->num_nic_msi - 1) / hdev->tm_info.num_tc); 1735 1736 return 0; 1737 } 1738 1739 static int hclge_knic_setup(struct hclge_vport *vport, u16 num_tqps, 1740 u16 num_tx_desc, u16 num_rx_desc) 1741 1742 { 1743 struct hnae3_handle *nic = &vport->nic; 1744 struct hnae3_knic_private_info *kinfo = &nic->kinfo; 1745 struct hclge_dev *hdev = vport->back; 1746 int ret; 1747 1748 kinfo->num_tx_desc = num_tx_desc; 1749 kinfo->num_rx_desc = num_rx_desc; 1750 1751 kinfo->rx_buf_len = hdev->rx_buf_len; 1752 kinfo->tx_spare_buf_size = hdev->tx_spare_buf_size; 1753 1754 kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, num_tqps, 1755 sizeof(struct hnae3_queue *), GFP_KERNEL); 1756 if (!kinfo->tqp) 1757 return -ENOMEM; 1758 1759 ret = hclge_assign_tqp(vport, num_tqps); 1760 if (ret) 1761 dev_err(&hdev->pdev->dev, "fail to assign TQPs %d.\n", ret); 1762 1763 return ret; 1764 } 1765 1766 static int hclge_map_tqp_to_vport(struct hclge_dev *hdev, 1767 struct hclge_vport *vport) 1768 { 1769 struct hnae3_handle *nic = &vport->nic; 1770 struct hnae3_knic_private_info *kinfo; 1771 u16 i; 1772 1773 kinfo = &nic->kinfo; 1774 for (i = 0; i < vport->alloc_tqps; i++) { 1775 struct hclge_comm_tqp *q = 1776 container_of(kinfo->tqp[i], struct hclge_comm_tqp, q); 1777 bool is_pf; 1778 int ret; 1779 1780 is_pf = !(vport->vport_id); 1781 ret = hclge_map_tqps_to_func(hdev, vport->vport_id, q->index, 1782 i, is_pf); 1783 if (ret) 1784 return ret; 1785 } 1786 1787 return 0; 1788 } 1789 1790 static int hclge_map_tqp(struct hclge_dev *hdev) 1791 { 1792 struct hclge_vport *vport = hdev->vport; 1793 u16 i, num_vport; 1794 1795 num_vport = hdev->num_req_vfs + 1; 1796 for (i = 0; i < num_vport; i++) { 1797 int ret; 1798 1799 ret = hclge_map_tqp_to_vport(hdev, vport); 1800 if (ret) 1801 return ret; 1802 1803 vport++; 1804 } 1805 1806 return 0; 1807 } 1808 1809 static int hclge_vport_setup(struct hclge_vport *vport, u16 num_tqps) 1810 { 1811 struct hnae3_handle *nic = &vport->nic; 1812 struct hclge_dev *hdev = vport->back; 1813 int ret; 1814 1815 nic->pdev = hdev->pdev; 1816 nic->ae_algo = &ae_algo; 1817 bitmap_copy(nic->numa_node_mask.bits, hdev->numa_node_mask.bits, 1818 MAX_NUMNODES); 1819 nic->kinfo.io_base = hdev->hw.hw.io_base; 1820 1821 ret = hclge_knic_setup(vport, num_tqps, 1822 hdev->num_tx_desc, hdev->num_rx_desc); 1823 if (ret) 1824 dev_err(&hdev->pdev->dev, "knic setup failed %d\n", ret); 1825 1826 return ret; 1827 } 1828 1829 static int hclge_alloc_vport(struct hclge_dev *hdev) 1830 { 1831 struct pci_dev *pdev = hdev->pdev; 1832 struct hclge_vport *vport; 1833 u32 tqp_main_vport; 1834 u32 tqp_per_vport; 1835 int num_vport, i; 1836 int ret; 1837 1838 /* We need to alloc a vport for main NIC of PF */ 1839 num_vport = hdev->num_req_vfs + 1; 1840 1841 if (hdev->num_tqps < num_vport) { 1842 dev_err(&hdev->pdev->dev, "tqps(%u) is less than vports(%d)", 1843 hdev->num_tqps, num_vport); 1844 return -EINVAL; 1845 } 1846 1847 /* Alloc the same number of TQPs for every vport */ 1848 tqp_per_vport = hdev->num_tqps / num_vport; 1849 tqp_main_vport = tqp_per_vport + hdev->num_tqps % num_vport; 1850 1851 vport = devm_kcalloc(&pdev->dev, num_vport, sizeof(struct hclge_vport), 1852 GFP_KERNEL); 1853 if (!vport) 1854 return -ENOMEM; 1855 1856 hdev->vport = vport; 1857 hdev->num_alloc_vport = num_vport; 1858 1859 if (IS_ENABLED(CONFIG_PCI_IOV)) 1860 hdev->num_alloc_vfs = hdev->num_req_vfs; 1861 1862 for (i = 0; i < num_vport; i++) { 1863 vport->back = hdev; 1864 vport->vport_id = i; 1865 vport->vf_info.link_state = IFLA_VF_LINK_STATE_AUTO; 1866 vport->mps = HCLGE_MAC_DEFAULT_FRAME; 1867 vport->port_base_vlan_cfg.state = HNAE3_PORT_BASE_VLAN_DISABLE; 1868 vport->port_base_vlan_cfg.tbl_sta = true; 1869 vport->rxvlan_cfg.rx_vlan_offload_en = true; 1870 vport->req_vlan_fltr_en = true; 1871 INIT_LIST_HEAD(&vport->vlan_list); 1872 INIT_LIST_HEAD(&vport->uc_mac_list); 1873 INIT_LIST_HEAD(&vport->mc_mac_list); 1874 spin_lock_init(&vport->mac_list_lock); 1875 1876 if (i == 0) 1877 ret = hclge_vport_setup(vport, tqp_main_vport); 1878 else 1879 ret = hclge_vport_setup(vport, tqp_per_vport); 1880 if (ret) { 1881 dev_err(&pdev->dev, 1882 "vport setup failed for vport %d, %d\n", 1883 i, ret); 1884 return ret; 1885 } 1886 1887 vport++; 1888 } 1889 1890 return 0; 1891 } 1892 1893 static int hclge_cmd_alloc_tx_buff(struct hclge_dev *hdev, 1894 struct hclge_pkt_buf_alloc *buf_alloc) 1895 { 1896 /* TX buffer size is unit by 128 byte */ 1897 #define HCLGE_BUF_SIZE_UNIT_SHIFT 7 1898 #define HCLGE_BUF_SIZE_UPDATE_EN_MSK BIT(15) 1899 struct hclge_tx_buff_alloc_cmd *req; 1900 struct hclge_desc desc; 1901 int ret; 1902 u8 i; 1903 1904 req = (struct hclge_tx_buff_alloc_cmd *)desc.data; 1905 1906 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_TX_BUFF_ALLOC, 0); 1907 for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { 1908 u32 buf_size = buf_alloc->priv_buf[i].tx_buf_size; 1909 1910 req->tx_pkt_buff[i] = 1911 cpu_to_le16((buf_size >> HCLGE_BUF_SIZE_UNIT_SHIFT) | 1912 HCLGE_BUF_SIZE_UPDATE_EN_MSK); 1913 } 1914 1915 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 1916 if (ret) 1917 dev_err(&hdev->pdev->dev, "tx buffer alloc cmd failed %d.\n", 1918 ret); 1919 1920 return ret; 1921 } 1922 1923 static int hclge_tx_buffer_alloc(struct hclge_dev *hdev, 1924 struct hclge_pkt_buf_alloc *buf_alloc) 1925 { 1926 int ret = hclge_cmd_alloc_tx_buff(hdev, buf_alloc); 1927 1928 if (ret) 1929 dev_err(&hdev->pdev->dev, "tx buffer alloc failed %d\n", ret); 1930 1931 return ret; 1932 } 1933 1934 static u32 hclge_get_tc_num(struct hclge_dev *hdev) 1935 { 1936 unsigned int i; 1937 u32 cnt = 0; 1938 1939 for (i = 0; i < HCLGE_MAX_TC_NUM; i++) 1940 if (hdev->hw_tc_map & BIT(i)) 1941 cnt++; 1942 return cnt; 1943 } 1944 1945 /* Get the number of pfc enabled TCs, which have private buffer */ 1946 static int hclge_get_pfc_priv_num(struct hclge_dev *hdev, 1947 struct hclge_pkt_buf_alloc *buf_alloc) 1948 { 1949 struct hclge_priv_buf *priv; 1950 unsigned int i; 1951 int cnt = 0; 1952 1953 for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { 1954 priv = &buf_alloc->priv_buf[i]; 1955 if ((hdev->tm_info.hw_pfc_map & BIT(i)) && 1956 priv->enable) 1957 cnt++; 1958 } 1959 1960 return cnt; 1961 } 1962 1963 /* Get the number of pfc disabled TCs, which have private buffer */ 1964 static int hclge_get_no_pfc_priv_num(struct hclge_dev *hdev, 1965 struct hclge_pkt_buf_alloc *buf_alloc) 1966 { 1967 struct hclge_priv_buf *priv; 1968 unsigned int i; 1969 int cnt = 0; 1970 1971 for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { 1972 priv = &buf_alloc->priv_buf[i]; 1973 if (hdev->hw_tc_map & BIT(i) && 1974 !(hdev->tm_info.hw_pfc_map & BIT(i)) && 1975 priv->enable) 1976 cnt++; 1977 } 1978 1979 return cnt; 1980 } 1981 1982 static u32 hclge_get_rx_priv_buff_alloced(struct hclge_pkt_buf_alloc *buf_alloc) 1983 { 1984 struct hclge_priv_buf *priv; 1985 u32 rx_priv = 0; 1986 int i; 1987 1988 for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { 1989 priv = &buf_alloc->priv_buf[i]; 1990 if (priv->enable) 1991 rx_priv += priv->buf_size; 1992 } 1993 return rx_priv; 1994 } 1995 1996 static u32 hclge_get_tx_buff_alloced(struct hclge_pkt_buf_alloc *buf_alloc) 1997 { 1998 u32 i, total_tx_size = 0; 1999 2000 for (i = 0; i < HCLGE_MAX_TC_NUM; i++) 2001 total_tx_size += buf_alloc->priv_buf[i].tx_buf_size; 2002 2003 return total_tx_size; 2004 } 2005 2006 static bool hclge_is_rx_buf_ok(struct hclge_dev *hdev, 2007 struct hclge_pkt_buf_alloc *buf_alloc, 2008 u32 rx_all) 2009 { 2010 u32 shared_buf_min, shared_buf_tc, shared_std, hi_thrd, lo_thrd; 2011 u32 tc_num = hclge_get_tc_num(hdev); 2012 u32 shared_buf, aligned_mps; 2013 u32 rx_priv; 2014 int i; 2015 2016 aligned_mps = roundup(hdev->mps, HCLGE_BUF_SIZE_UNIT); 2017 2018 if (hnae3_dev_dcb_supported(hdev)) 2019 shared_buf_min = HCLGE_BUF_MUL_BY * aligned_mps + 2020 hdev->dv_buf_size; 2021 else 2022 shared_buf_min = aligned_mps + HCLGE_NON_DCB_ADDITIONAL_BUF 2023 + hdev->dv_buf_size; 2024 2025 shared_buf_tc = tc_num * aligned_mps + aligned_mps; 2026 shared_std = roundup(max_t(u32, shared_buf_min, shared_buf_tc), 2027 HCLGE_BUF_SIZE_UNIT); 2028 2029 rx_priv = hclge_get_rx_priv_buff_alloced(buf_alloc); 2030 if (rx_all < rx_priv + shared_std) 2031 return false; 2032 2033 shared_buf = rounddown(rx_all - rx_priv, HCLGE_BUF_SIZE_UNIT); 2034 buf_alloc->s_buf.buf_size = shared_buf; 2035 if (hnae3_dev_dcb_supported(hdev)) { 2036 buf_alloc->s_buf.self.high = shared_buf - hdev->dv_buf_size; 2037 buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high 2038 - roundup(aligned_mps / HCLGE_BUF_DIV_BY, 2039 HCLGE_BUF_SIZE_UNIT); 2040 } else { 2041 buf_alloc->s_buf.self.high = aligned_mps + 2042 HCLGE_NON_DCB_ADDITIONAL_BUF; 2043 buf_alloc->s_buf.self.low = aligned_mps; 2044 } 2045 2046 if (hnae3_dev_dcb_supported(hdev)) { 2047 hi_thrd = shared_buf - hdev->dv_buf_size; 2048 2049 if (tc_num <= NEED_RESERVE_TC_NUM) 2050 hi_thrd = hi_thrd * BUF_RESERVE_PERCENT 2051 / BUF_MAX_PERCENT; 2052 2053 if (tc_num) 2054 hi_thrd = hi_thrd / tc_num; 2055 2056 hi_thrd = max_t(u32, hi_thrd, HCLGE_BUF_MUL_BY * aligned_mps); 2057 hi_thrd = rounddown(hi_thrd, HCLGE_BUF_SIZE_UNIT); 2058 lo_thrd = hi_thrd - aligned_mps / HCLGE_BUF_DIV_BY; 2059 } else { 2060 hi_thrd = aligned_mps + HCLGE_NON_DCB_ADDITIONAL_BUF; 2061 lo_thrd = aligned_mps; 2062 } 2063 2064 for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { 2065 buf_alloc->s_buf.tc_thrd[i].low = lo_thrd; 2066 buf_alloc->s_buf.tc_thrd[i].high = hi_thrd; 2067 } 2068 2069 return true; 2070 } 2071 2072 static int hclge_tx_buffer_calc(struct hclge_dev *hdev, 2073 struct hclge_pkt_buf_alloc *buf_alloc) 2074 { 2075 u32 i, total_size; 2076 2077 total_size = hdev->pkt_buf_size; 2078 2079 /* alloc tx buffer for all enabled tc */ 2080 for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { 2081 struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i]; 2082 2083 if (hdev->hw_tc_map & BIT(i)) { 2084 if (total_size < hdev->tx_buf_size) 2085 return -ENOMEM; 2086 2087 priv->tx_buf_size = hdev->tx_buf_size; 2088 } else { 2089 priv->tx_buf_size = 0; 2090 } 2091 2092 total_size -= priv->tx_buf_size; 2093 } 2094 2095 return 0; 2096 } 2097 2098 static bool hclge_rx_buf_calc_all(struct hclge_dev *hdev, bool max, 2099 struct hclge_pkt_buf_alloc *buf_alloc) 2100 { 2101 u32 rx_all = hdev->pkt_buf_size - hclge_get_tx_buff_alloced(buf_alloc); 2102 u32 aligned_mps = round_up(hdev->mps, HCLGE_BUF_SIZE_UNIT); 2103 unsigned int i; 2104 2105 for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { 2106 struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i]; 2107 2108 priv->enable = 0; 2109 priv->wl.low = 0; 2110 priv->wl.high = 0; 2111 priv->buf_size = 0; 2112 2113 if (!(hdev->hw_tc_map & BIT(i))) 2114 continue; 2115 2116 priv->enable = 1; 2117 2118 if (hdev->tm_info.hw_pfc_map & BIT(i)) { 2119 priv->wl.low = max ? aligned_mps : HCLGE_BUF_SIZE_UNIT; 2120 priv->wl.high = roundup(priv->wl.low + aligned_mps, 2121 HCLGE_BUF_SIZE_UNIT); 2122 } else { 2123 priv->wl.low = 0; 2124 priv->wl.high = max ? (aligned_mps * HCLGE_BUF_MUL_BY) : 2125 aligned_mps; 2126 } 2127 2128 priv->buf_size = priv->wl.high + hdev->dv_buf_size; 2129 } 2130 2131 return hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all); 2132 } 2133 2134 static bool hclge_drop_nopfc_buf_till_fit(struct hclge_dev *hdev, 2135 struct hclge_pkt_buf_alloc *buf_alloc) 2136 { 2137 u32 rx_all = hdev->pkt_buf_size - hclge_get_tx_buff_alloced(buf_alloc); 2138 int no_pfc_priv_num = hclge_get_no_pfc_priv_num(hdev, buf_alloc); 2139 int i; 2140 2141 /* let the last to be cleared first */ 2142 for (i = HCLGE_MAX_TC_NUM - 1; i >= 0; i--) { 2143 struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i]; 2144 unsigned int mask = BIT((unsigned int)i); 2145 2146 if (hdev->hw_tc_map & mask && 2147 !(hdev->tm_info.hw_pfc_map & mask)) { 2148 /* Clear the no pfc TC private buffer */ 2149 priv->wl.low = 0; 2150 priv->wl.high = 0; 2151 priv->buf_size = 0; 2152 priv->enable = 0; 2153 no_pfc_priv_num--; 2154 } 2155 2156 if (hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all) || 2157 no_pfc_priv_num == 0) 2158 break; 2159 } 2160 2161 return hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all); 2162 } 2163 2164 static bool hclge_drop_pfc_buf_till_fit(struct hclge_dev *hdev, 2165 struct hclge_pkt_buf_alloc *buf_alloc) 2166 { 2167 u32 rx_all = hdev->pkt_buf_size - hclge_get_tx_buff_alloced(buf_alloc); 2168 int pfc_priv_num = hclge_get_pfc_priv_num(hdev, buf_alloc); 2169 int i; 2170 2171 /* let the last to be cleared first */ 2172 for (i = HCLGE_MAX_TC_NUM - 1; i >= 0; i--) { 2173 struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i]; 2174 unsigned int mask = BIT((unsigned int)i); 2175 2176 if (hdev->hw_tc_map & mask && 2177 hdev->tm_info.hw_pfc_map & mask) { 2178 /* Reduce the number of pfc TC with private buffer */ 2179 priv->wl.low = 0; 2180 priv->enable = 0; 2181 priv->wl.high = 0; 2182 priv->buf_size = 0; 2183 pfc_priv_num--; 2184 } 2185 2186 if (hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all) || 2187 pfc_priv_num == 0) 2188 break; 2189 } 2190 2191 return hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all); 2192 } 2193 2194 static int hclge_only_alloc_priv_buff(struct hclge_dev *hdev, 2195 struct hclge_pkt_buf_alloc *buf_alloc) 2196 { 2197 #define COMPENSATE_BUFFER 0x3C00 2198 #define COMPENSATE_HALF_MPS_NUM 5 2199 #define PRIV_WL_GAP 0x1800 2200 2201 u32 rx_priv = hdev->pkt_buf_size - hclge_get_tx_buff_alloced(buf_alloc); 2202 u32 tc_num = hclge_get_tc_num(hdev); 2203 u32 half_mps = hdev->mps >> 1; 2204 u32 min_rx_priv; 2205 unsigned int i; 2206 2207 if (tc_num) 2208 rx_priv = rx_priv / tc_num; 2209 2210 if (tc_num <= NEED_RESERVE_TC_NUM) 2211 rx_priv = rx_priv * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT; 2212 2213 min_rx_priv = hdev->dv_buf_size + COMPENSATE_BUFFER + 2214 COMPENSATE_HALF_MPS_NUM * half_mps; 2215 min_rx_priv = round_up(min_rx_priv, HCLGE_BUF_SIZE_UNIT); 2216 rx_priv = round_down(rx_priv, HCLGE_BUF_SIZE_UNIT); 2217 if (rx_priv < min_rx_priv) 2218 return false; 2219 2220 for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { 2221 struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i]; 2222 2223 priv->enable = 0; 2224 priv->wl.low = 0; 2225 priv->wl.high = 0; 2226 priv->buf_size = 0; 2227 2228 if (!(hdev->hw_tc_map & BIT(i))) 2229 continue; 2230 2231 priv->enable = 1; 2232 priv->buf_size = rx_priv; 2233 priv->wl.high = rx_priv - hdev->dv_buf_size; 2234 priv->wl.low = priv->wl.high - PRIV_WL_GAP; 2235 } 2236 2237 buf_alloc->s_buf.buf_size = 0; 2238 2239 return true; 2240 } 2241 2242 /* hclge_rx_buffer_calc: calculate the rx private buffer size for all TCs 2243 * @hdev: pointer to struct hclge_dev 2244 * @buf_alloc: pointer to buffer calculation data 2245 * @return: 0: calculate successful, negative: fail 2246 */ 2247 static int hclge_rx_buffer_calc(struct hclge_dev *hdev, 2248 struct hclge_pkt_buf_alloc *buf_alloc) 2249 { 2250 /* When DCB is not supported, rx private buffer is not allocated. */ 2251 if (!hnae3_dev_dcb_supported(hdev)) { 2252 u32 rx_all = hdev->pkt_buf_size; 2253 2254 rx_all -= hclge_get_tx_buff_alloced(buf_alloc); 2255 if (!hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all)) 2256 return -ENOMEM; 2257 2258 return 0; 2259 } 2260 2261 if (hclge_only_alloc_priv_buff(hdev, buf_alloc)) 2262 return 0; 2263 2264 if (hclge_rx_buf_calc_all(hdev, true, buf_alloc)) 2265 return 0; 2266 2267 /* try to decrease the buffer size */ 2268 if (hclge_rx_buf_calc_all(hdev, false, buf_alloc)) 2269 return 0; 2270 2271 if (hclge_drop_nopfc_buf_till_fit(hdev, buf_alloc)) 2272 return 0; 2273 2274 if (hclge_drop_pfc_buf_till_fit(hdev, buf_alloc)) 2275 return 0; 2276 2277 return -ENOMEM; 2278 } 2279 2280 static int hclge_rx_priv_buf_alloc(struct hclge_dev *hdev, 2281 struct hclge_pkt_buf_alloc *buf_alloc) 2282 { 2283 struct hclge_rx_priv_buff_cmd *req; 2284 struct hclge_desc desc; 2285 int ret; 2286 int i; 2287 2288 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RX_PRIV_BUFF_ALLOC, false); 2289 req = (struct hclge_rx_priv_buff_cmd *)desc.data; 2290 2291 /* Alloc private buffer TCs */ 2292 for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { 2293 struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i]; 2294 2295 req->buf_num[i] = 2296 cpu_to_le16(priv->buf_size >> HCLGE_BUF_UNIT_S); 2297 req->buf_num[i] |= 2298 cpu_to_le16(1 << HCLGE_TC0_PRI_BUF_EN_B); 2299 } 2300 2301 req->shared_buf = 2302 cpu_to_le16((buf_alloc->s_buf.buf_size >> HCLGE_BUF_UNIT_S) | 2303 (1 << HCLGE_TC0_PRI_BUF_EN_B)); 2304 2305 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 2306 if (ret) 2307 dev_err(&hdev->pdev->dev, 2308 "rx private buffer alloc cmd failed %d\n", ret); 2309 2310 return ret; 2311 } 2312 2313 static int hclge_rx_priv_wl_config(struct hclge_dev *hdev, 2314 struct hclge_pkt_buf_alloc *buf_alloc) 2315 { 2316 struct hclge_rx_priv_wl_buf *req; 2317 struct hclge_priv_buf *priv; 2318 struct hclge_desc desc[2]; 2319 int i, j; 2320 int ret; 2321 2322 for (i = 0; i < 2; i++) { 2323 hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_RX_PRIV_WL_ALLOC, 2324 false); 2325 req = (struct hclge_rx_priv_wl_buf *)desc[i].data; 2326 2327 /* The first descriptor set the NEXT bit to 1 */ 2328 if (i == 0) 2329 desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 2330 else 2331 desc[i].flag &= ~cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 2332 2333 for (j = 0; j < HCLGE_TC_NUM_ONE_DESC; j++) { 2334 u32 idx = i * HCLGE_TC_NUM_ONE_DESC + j; 2335 2336 priv = &buf_alloc->priv_buf[idx]; 2337 req->tc_wl[j].high = 2338 cpu_to_le16(priv->wl.high >> HCLGE_BUF_UNIT_S); 2339 req->tc_wl[j].high |= 2340 cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B)); 2341 req->tc_wl[j].low = 2342 cpu_to_le16(priv->wl.low >> HCLGE_BUF_UNIT_S); 2343 req->tc_wl[j].low |= 2344 cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B)); 2345 } 2346 } 2347 2348 /* Send 2 descriptor at one time */ 2349 ret = hclge_cmd_send(&hdev->hw, desc, 2); 2350 if (ret) 2351 dev_err(&hdev->pdev->dev, 2352 "rx private waterline config cmd failed %d\n", 2353 ret); 2354 return ret; 2355 } 2356 2357 static int hclge_common_thrd_config(struct hclge_dev *hdev, 2358 struct hclge_pkt_buf_alloc *buf_alloc) 2359 { 2360 struct hclge_shared_buf *s_buf = &buf_alloc->s_buf; 2361 struct hclge_rx_com_thrd *req; 2362 struct hclge_desc desc[2]; 2363 struct hclge_tc_thrd *tc; 2364 int i, j; 2365 int ret; 2366 2367 for (i = 0; i < 2; i++) { 2368 hclge_cmd_setup_basic_desc(&desc[i], 2369 HCLGE_OPC_RX_COM_THRD_ALLOC, false); 2370 req = (struct hclge_rx_com_thrd *)&desc[i].data; 2371 2372 /* The first descriptor set the NEXT bit to 1 */ 2373 if (i == 0) 2374 desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 2375 else 2376 desc[i].flag &= ~cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 2377 2378 for (j = 0; j < HCLGE_TC_NUM_ONE_DESC; j++) { 2379 tc = &s_buf->tc_thrd[i * HCLGE_TC_NUM_ONE_DESC + j]; 2380 2381 req->com_thrd[j].high = 2382 cpu_to_le16(tc->high >> HCLGE_BUF_UNIT_S); 2383 req->com_thrd[j].high |= 2384 cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B)); 2385 req->com_thrd[j].low = 2386 cpu_to_le16(tc->low >> HCLGE_BUF_UNIT_S); 2387 req->com_thrd[j].low |= 2388 cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B)); 2389 } 2390 } 2391 2392 /* Send 2 descriptors at one time */ 2393 ret = hclge_cmd_send(&hdev->hw, desc, 2); 2394 if (ret) 2395 dev_err(&hdev->pdev->dev, 2396 "common threshold config cmd failed %d\n", ret); 2397 return ret; 2398 } 2399 2400 static int hclge_common_wl_config(struct hclge_dev *hdev, 2401 struct hclge_pkt_buf_alloc *buf_alloc) 2402 { 2403 struct hclge_shared_buf *buf = &buf_alloc->s_buf; 2404 struct hclge_rx_com_wl *req; 2405 struct hclge_desc desc; 2406 int ret; 2407 2408 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RX_COM_WL_ALLOC, false); 2409 2410 req = (struct hclge_rx_com_wl *)desc.data; 2411 req->com_wl.high = cpu_to_le16(buf->self.high >> HCLGE_BUF_UNIT_S); 2412 req->com_wl.high |= cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B)); 2413 2414 req->com_wl.low = cpu_to_le16(buf->self.low >> HCLGE_BUF_UNIT_S); 2415 req->com_wl.low |= cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B)); 2416 2417 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 2418 if (ret) 2419 dev_err(&hdev->pdev->dev, 2420 "common waterline config cmd failed %d\n", ret); 2421 2422 return ret; 2423 } 2424 2425 int hclge_buffer_alloc(struct hclge_dev *hdev) 2426 { 2427 struct hclge_pkt_buf_alloc *pkt_buf; 2428 int ret; 2429 2430 pkt_buf = kzalloc(sizeof(*pkt_buf), GFP_KERNEL); 2431 if (!pkt_buf) 2432 return -ENOMEM; 2433 2434 ret = hclge_tx_buffer_calc(hdev, pkt_buf); 2435 if (ret) { 2436 dev_err(&hdev->pdev->dev, 2437 "could not calc tx buffer size for all TCs %d\n", ret); 2438 goto out; 2439 } 2440 2441 ret = hclge_tx_buffer_alloc(hdev, pkt_buf); 2442 if (ret) { 2443 dev_err(&hdev->pdev->dev, 2444 "could not alloc tx buffers %d\n", ret); 2445 goto out; 2446 } 2447 2448 ret = hclge_rx_buffer_calc(hdev, pkt_buf); 2449 if (ret) { 2450 dev_err(&hdev->pdev->dev, 2451 "could not calc rx priv buffer size for all TCs %d\n", 2452 ret); 2453 goto out; 2454 } 2455 2456 ret = hclge_rx_priv_buf_alloc(hdev, pkt_buf); 2457 if (ret) { 2458 dev_err(&hdev->pdev->dev, "could not alloc rx priv buffer %d\n", 2459 ret); 2460 goto out; 2461 } 2462 2463 if (hnae3_dev_dcb_supported(hdev)) { 2464 ret = hclge_rx_priv_wl_config(hdev, pkt_buf); 2465 if (ret) { 2466 dev_err(&hdev->pdev->dev, 2467 "could not configure rx private waterline %d\n", 2468 ret); 2469 goto out; 2470 } 2471 2472 ret = hclge_common_thrd_config(hdev, pkt_buf); 2473 if (ret) { 2474 dev_err(&hdev->pdev->dev, 2475 "could not configure common threshold %d\n", 2476 ret); 2477 goto out; 2478 } 2479 } 2480 2481 ret = hclge_common_wl_config(hdev, pkt_buf); 2482 if (ret) 2483 dev_err(&hdev->pdev->dev, 2484 "could not configure common waterline %d\n", ret); 2485 2486 out: 2487 kfree(pkt_buf); 2488 return ret; 2489 } 2490 2491 static int hclge_init_roce_base_info(struct hclge_vport *vport) 2492 { 2493 struct hnae3_handle *roce = &vport->roce; 2494 struct hnae3_handle *nic = &vport->nic; 2495 struct hclge_dev *hdev = vport->back; 2496 2497 roce->rinfo.num_vectors = vport->back->num_roce_msi; 2498 2499 if (hdev->num_msi < hdev->num_nic_msi + hdev->num_roce_msi) 2500 return -EINVAL; 2501 2502 roce->rinfo.base_vector = hdev->num_nic_msi; 2503 2504 roce->rinfo.netdev = nic->kinfo.netdev; 2505 roce->rinfo.roce_io_base = hdev->hw.hw.io_base; 2506 roce->rinfo.roce_mem_base = hdev->hw.hw.mem_base; 2507 2508 roce->pdev = nic->pdev; 2509 roce->ae_algo = nic->ae_algo; 2510 bitmap_copy(roce->numa_node_mask.bits, nic->numa_node_mask.bits, 2511 MAX_NUMNODES); 2512 2513 return 0; 2514 } 2515 2516 static int hclge_init_msi(struct hclge_dev *hdev) 2517 { 2518 struct pci_dev *pdev = hdev->pdev; 2519 int vectors; 2520 int i; 2521 2522 vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM, 2523 hdev->num_msi, 2524 PCI_IRQ_MSI | PCI_IRQ_MSIX); 2525 if (vectors < 0) { 2526 dev_err(&pdev->dev, 2527 "failed(%d) to allocate MSI/MSI-X vectors\n", 2528 vectors); 2529 return vectors; 2530 } 2531 if (vectors < hdev->num_msi) 2532 dev_warn(&hdev->pdev->dev, 2533 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n", 2534 hdev->num_msi, vectors); 2535 2536 hdev->num_msi = vectors; 2537 hdev->num_msi_left = vectors; 2538 2539 hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi, 2540 sizeof(u16), GFP_KERNEL); 2541 if (!hdev->vector_status) { 2542 pci_free_irq_vectors(pdev); 2543 return -ENOMEM; 2544 } 2545 2546 for (i = 0; i < hdev->num_msi; i++) 2547 hdev->vector_status[i] = HCLGE_INVALID_VPORT; 2548 2549 hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi, 2550 sizeof(int), GFP_KERNEL); 2551 if (!hdev->vector_irq) { 2552 pci_free_irq_vectors(pdev); 2553 return -ENOMEM; 2554 } 2555 2556 return 0; 2557 } 2558 2559 static u8 hclge_check_speed_dup(u8 duplex, int speed) 2560 { 2561 if (!(speed == HCLGE_MAC_SPEED_10M || speed == HCLGE_MAC_SPEED_100M)) 2562 duplex = HCLGE_MAC_FULL; 2563 2564 return duplex; 2565 } 2566 2567 static struct hclge_mac_speed_map hclge_mac_speed_map_to_fw[] = { 2568 {HCLGE_MAC_SPEED_10M, HCLGE_FW_MAC_SPEED_10M}, 2569 {HCLGE_MAC_SPEED_100M, HCLGE_FW_MAC_SPEED_100M}, 2570 {HCLGE_MAC_SPEED_1G, HCLGE_FW_MAC_SPEED_1G}, 2571 {HCLGE_MAC_SPEED_10G, HCLGE_FW_MAC_SPEED_10G}, 2572 {HCLGE_MAC_SPEED_25G, HCLGE_FW_MAC_SPEED_25G}, 2573 {HCLGE_MAC_SPEED_40G, HCLGE_FW_MAC_SPEED_40G}, 2574 {HCLGE_MAC_SPEED_50G, HCLGE_FW_MAC_SPEED_50G}, 2575 {HCLGE_MAC_SPEED_100G, HCLGE_FW_MAC_SPEED_100G}, 2576 {HCLGE_MAC_SPEED_200G, HCLGE_FW_MAC_SPEED_200G}, 2577 }; 2578 2579 static int hclge_convert_to_fw_speed(u32 speed_drv, u32 *speed_fw) 2580 { 2581 u16 i; 2582 2583 for (i = 0; i < ARRAY_SIZE(hclge_mac_speed_map_to_fw); i++) { 2584 if (hclge_mac_speed_map_to_fw[i].speed_drv == speed_drv) { 2585 *speed_fw = hclge_mac_speed_map_to_fw[i].speed_fw; 2586 return 0; 2587 } 2588 } 2589 2590 return -EINVAL; 2591 } 2592 2593 static int hclge_cfg_mac_speed_dup_hw(struct hclge_dev *hdev, int speed, 2594 u8 duplex, u8 lane_num) 2595 { 2596 struct hclge_config_mac_speed_dup_cmd *req; 2597 struct hclge_desc desc; 2598 u32 speed_fw; 2599 int ret; 2600 2601 req = (struct hclge_config_mac_speed_dup_cmd *)desc.data; 2602 2603 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_SPEED_DUP, false); 2604 2605 if (duplex) 2606 hnae3_set_bit(req->speed_dup, HCLGE_CFG_DUPLEX_B, 1); 2607 2608 ret = hclge_convert_to_fw_speed(speed, &speed_fw); 2609 if (ret) { 2610 dev_err(&hdev->pdev->dev, "invalid speed (%d)\n", speed); 2611 return ret; 2612 } 2613 2614 hnae3_set_field(req->speed_dup, HCLGE_CFG_SPEED_M, HCLGE_CFG_SPEED_S, 2615 speed_fw); 2616 hnae3_set_bit(req->mac_change_fec_en, HCLGE_CFG_MAC_SPEED_CHANGE_EN_B, 2617 1); 2618 req->lane_num = lane_num; 2619 2620 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 2621 if (ret) { 2622 dev_err(&hdev->pdev->dev, 2623 "mac speed/duplex config cmd failed %d.\n", ret); 2624 return ret; 2625 } 2626 2627 return 0; 2628 } 2629 2630 int hclge_cfg_mac_speed_dup(struct hclge_dev *hdev, int speed, u8 duplex, u8 lane_num) 2631 { 2632 struct hclge_mac *mac = &hdev->hw.mac; 2633 int ret; 2634 2635 duplex = hclge_check_speed_dup(duplex, speed); 2636 if (!mac->support_autoneg && mac->speed == speed && 2637 mac->duplex == duplex && (mac->lane_num == lane_num || lane_num == 0)) 2638 return 0; 2639 2640 ret = hclge_cfg_mac_speed_dup_hw(hdev, speed, duplex, lane_num); 2641 if (ret) 2642 return ret; 2643 2644 hdev->hw.mac.speed = speed; 2645 hdev->hw.mac.duplex = duplex; 2646 if (!lane_num) 2647 hdev->hw.mac.lane_num = lane_num; 2648 2649 return 0; 2650 } 2651 2652 static int hclge_cfg_mac_speed_dup_h(struct hnae3_handle *handle, int speed, 2653 u8 duplex, u8 lane_num) 2654 { 2655 struct hclge_vport *vport = hclge_get_vport(handle); 2656 struct hclge_dev *hdev = vport->back; 2657 int ret; 2658 2659 ret = hclge_cfg_mac_speed_dup(hdev, speed, duplex, lane_num); 2660 2661 if (ret) 2662 return ret; 2663 2664 hdev->hw.mac.req_speed = speed; 2665 hdev->hw.mac.req_duplex = duplex; 2666 2667 return 0; 2668 } 2669 2670 static int hclge_set_autoneg_en(struct hclge_dev *hdev, bool enable) 2671 { 2672 struct hclge_config_auto_neg_cmd *req; 2673 struct hclge_desc desc; 2674 u32 flag = 0; 2675 int ret; 2676 2677 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_AN_MODE, false); 2678 2679 req = (struct hclge_config_auto_neg_cmd *)desc.data; 2680 if (enable) 2681 hnae3_set_bit(flag, HCLGE_MAC_CFG_AN_EN_B, 1U); 2682 req->cfg_an_cmd_flag = cpu_to_le32(flag); 2683 2684 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 2685 if (ret) 2686 dev_err(&hdev->pdev->dev, "auto neg set cmd failed %d.\n", 2687 ret); 2688 2689 return ret; 2690 } 2691 2692 static int hclge_set_autoneg(struct hnae3_handle *handle, bool enable) 2693 { 2694 struct hclge_vport *vport = hclge_get_vport(handle); 2695 struct hclge_dev *hdev = vport->back; 2696 2697 if (!hdev->hw.mac.support_autoneg) { 2698 if (enable) { 2699 dev_err(&hdev->pdev->dev, 2700 "autoneg is not supported by current port\n"); 2701 return -EOPNOTSUPP; 2702 } else { 2703 return 0; 2704 } 2705 } 2706 2707 return hclge_set_autoneg_en(hdev, enable); 2708 } 2709 2710 static int hclge_get_autoneg(struct hnae3_handle *handle) 2711 { 2712 struct hclge_vport *vport = hclge_get_vport(handle); 2713 struct hclge_dev *hdev = vport->back; 2714 struct phy_device *phydev = hdev->hw.mac.phydev; 2715 2716 if (phydev) 2717 return phydev->autoneg; 2718 2719 return hdev->hw.mac.autoneg; 2720 } 2721 2722 static int hclge_restart_autoneg(struct hnae3_handle *handle) 2723 { 2724 struct hclge_vport *vport = hclge_get_vport(handle); 2725 struct hclge_dev *hdev = vport->back; 2726 int ret; 2727 2728 dev_dbg(&hdev->pdev->dev, "restart autoneg\n"); 2729 2730 ret = hclge_notify_client(hdev, HNAE3_DOWN_CLIENT); 2731 if (ret) 2732 return ret; 2733 return hclge_notify_client(hdev, HNAE3_UP_CLIENT); 2734 } 2735 2736 static int hclge_halt_autoneg(struct hnae3_handle *handle, bool halt) 2737 { 2738 struct hclge_vport *vport = hclge_get_vport(handle); 2739 struct hclge_dev *hdev = vport->back; 2740 2741 if (hdev->hw.mac.support_autoneg && hdev->hw.mac.autoneg) 2742 return hclge_set_autoneg_en(hdev, !halt); 2743 2744 return 0; 2745 } 2746 2747 static void hclge_parse_fec_stats_lanes(struct hclge_dev *hdev, 2748 struct hclge_desc *desc, u32 desc_len) 2749 { 2750 u32 lane_size = HCLGE_FEC_STATS_MAX_LANES * 2; 2751 u32 desc_index = 0; 2752 u32 data_index = 0; 2753 u32 i; 2754 2755 for (i = 0; i < lane_size; i++) { 2756 if (data_index >= HCLGE_DESC_DATA_LEN) { 2757 desc_index++; 2758 data_index = 0; 2759 } 2760 2761 if (desc_index >= desc_len) 2762 return; 2763 2764 hdev->fec_stats.per_lanes[i] += 2765 le32_to_cpu(desc[desc_index].data[data_index]); 2766 data_index++; 2767 } 2768 } 2769 2770 static void hclge_parse_fec_stats(struct hclge_dev *hdev, 2771 struct hclge_desc *desc, u32 desc_len) 2772 { 2773 struct hclge_query_fec_stats_cmd *req; 2774 2775 req = (struct hclge_query_fec_stats_cmd *)desc[0].data; 2776 2777 hdev->fec_stats.base_r_lane_num = req->base_r_lane_num; 2778 hdev->fec_stats.rs_corr_blocks += 2779 le32_to_cpu(req->rs_fec_corr_blocks); 2780 hdev->fec_stats.rs_uncorr_blocks += 2781 le32_to_cpu(req->rs_fec_uncorr_blocks); 2782 hdev->fec_stats.rs_error_blocks += 2783 le32_to_cpu(req->rs_fec_error_blocks); 2784 hdev->fec_stats.base_r_corr_blocks += 2785 le32_to_cpu(req->base_r_fec_corr_blocks); 2786 hdev->fec_stats.base_r_uncorr_blocks += 2787 le32_to_cpu(req->base_r_fec_uncorr_blocks); 2788 2789 hclge_parse_fec_stats_lanes(hdev, &desc[1], desc_len - 1); 2790 } 2791 2792 static int hclge_update_fec_stats_hw(struct hclge_dev *hdev) 2793 { 2794 struct hclge_desc desc[HCLGE_FEC_STATS_CMD_NUM]; 2795 int ret; 2796 u32 i; 2797 2798 for (i = 0; i < HCLGE_FEC_STATS_CMD_NUM; i++) { 2799 hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_FEC_STATS, 2800 true); 2801 if (i != (HCLGE_FEC_STATS_CMD_NUM - 1)) 2802 desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 2803 } 2804 2805 ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_FEC_STATS_CMD_NUM); 2806 if (ret) 2807 return ret; 2808 2809 hclge_parse_fec_stats(hdev, desc, HCLGE_FEC_STATS_CMD_NUM); 2810 2811 return 0; 2812 } 2813 2814 static void hclge_update_fec_stats(struct hclge_dev *hdev) 2815 { 2816 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 2817 int ret; 2818 2819 if (!hnae3_ae_dev_fec_stats_supported(ae_dev) || 2820 test_and_set_bit(HCLGE_STATE_FEC_STATS_UPDATING, &hdev->state)) 2821 return; 2822 2823 ret = hclge_update_fec_stats_hw(hdev); 2824 if (ret) 2825 dev_err(&hdev->pdev->dev, 2826 "failed to update fec stats, ret = %d\n", ret); 2827 2828 clear_bit(HCLGE_STATE_FEC_STATS_UPDATING, &hdev->state); 2829 } 2830 2831 static void hclge_get_fec_stats_total(struct hclge_dev *hdev, 2832 struct ethtool_fec_stats *fec_stats) 2833 { 2834 fec_stats->corrected_blocks.total = hdev->fec_stats.rs_corr_blocks; 2835 fec_stats->uncorrectable_blocks.total = 2836 hdev->fec_stats.rs_uncorr_blocks; 2837 } 2838 2839 static void hclge_get_fec_stats_lanes(struct hclge_dev *hdev, 2840 struct ethtool_fec_stats *fec_stats) 2841 { 2842 u32 i; 2843 2844 if (hdev->fec_stats.base_r_lane_num == 0 || 2845 hdev->fec_stats.base_r_lane_num > HCLGE_FEC_STATS_MAX_LANES) { 2846 dev_err(&hdev->pdev->dev, 2847 "fec stats lane number(%llu) is invalid\n", 2848 hdev->fec_stats.base_r_lane_num); 2849 return; 2850 } 2851 2852 for (i = 0; i < hdev->fec_stats.base_r_lane_num; i++) { 2853 fec_stats->corrected_blocks.lanes[i] = 2854 hdev->fec_stats.base_r_corr_per_lanes[i]; 2855 fec_stats->uncorrectable_blocks.lanes[i] = 2856 hdev->fec_stats.base_r_uncorr_per_lanes[i]; 2857 } 2858 } 2859 2860 static void hclge_comm_get_fec_stats(struct hclge_dev *hdev, 2861 struct ethtool_fec_stats *fec_stats) 2862 { 2863 u32 fec_mode = hdev->hw.mac.fec_mode; 2864 2865 switch (fec_mode) { 2866 case BIT(HNAE3_FEC_RS): 2867 case BIT(HNAE3_FEC_LLRS): 2868 hclge_get_fec_stats_total(hdev, fec_stats); 2869 break; 2870 case BIT(HNAE3_FEC_BASER): 2871 hclge_get_fec_stats_lanes(hdev, fec_stats); 2872 break; 2873 default: 2874 dev_err(&hdev->pdev->dev, 2875 "fec stats is not supported by current fec mode(0x%x)\n", 2876 fec_mode); 2877 break; 2878 } 2879 } 2880 2881 static void hclge_get_fec_stats(struct hnae3_handle *handle, 2882 struct ethtool_fec_stats *fec_stats) 2883 { 2884 struct hclge_vport *vport = hclge_get_vport(handle); 2885 struct hclge_dev *hdev = vport->back; 2886 u32 fec_mode = hdev->hw.mac.fec_mode; 2887 2888 if (fec_mode == BIT(HNAE3_FEC_NONE) || 2889 fec_mode == BIT(HNAE3_FEC_AUTO) || 2890 fec_mode == BIT(HNAE3_FEC_USER_DEF)) 2891 return; 2892 2893 hclge_update_fec_stats(hdev); 2894 2895 hclge_comm_get_fec_stats(hdev, fec_stats); 2896 } 2897 2898 static int hclge_set_fec_hw(struct hclge_dev *hdev, u32 fec_mode) 2899 { 2900 struct hclge_config_fec_cmd *req; 2901 struct hclge_desc desc; 2902 int ret; 2903 2904 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_FEC_MODE, false); 2905 2906 req = (struct hclge_config_fec_cmd *)desc.data; 2907 if (fec_mode & BIT(HNAE3_FEC_AUTO)) 2908 hnae3_set_bit(req->fec_mode, HCLGE_MAC_CFG_FEC_AUTO_EN_B, 1); 2909 if (fec_mode & BIT(HNAE3_FEC_RS)) 2910 hnae3_set_field(req->fec_mode, HCLGE_MAC_CFG_FEC_MODE_M, 2911 HCLGE_MAC_CFG_FEC_MODE_S, HCLGE_MAC_FEC_RS); 2912 if (fec_mode & BIT(HNAE3_FEC_LLRS)) 2913 hnae3_set_field(req->fec_mode, HCLGE_MAC_CFG_FEC_MODE_M, 2914 HCLGE_MAC_CFG_FEC_MODE_S, HCLGE_MAC_FEC_LLRS); 2915 if (fec_mode & BIT(HNAE3_FEC_BASER)) 2916 hnae3_set_field(req->fec_mode, HCLGE_MAC_CFG_FEC_MODE_M, 2917 HCLGE_MAC_CFG_FEC_MODE_S, HCLGE_MAC_FEC_BASER); 2918 2919 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 2920 if (ret) 2921 dev_err(&hdev->pdev->dev, "set fec mode failed %d.\n", ret); 2922 2923 return ret; 2924 } 2925 2926 static int hclge_set_fec(struct hnae3_handle *handle, u32 fec_mode) 2927 { 2928 struct hclge_vport *vport = hclge_get_vport(handle); 2929 struct hclge_dev *hdev = vport->back; 2930 struct hclge_mac *mac = &hdev->hw.mac; 2931 int ret; 2932 2933 if (fec_mode && !(mac->fec_ability & fec_mode)) { 2934 dev_err(&hdev->pdev->dev, "unsupported fec mode\n"); 2935 return -EINVAL; 2936 } 2937 2938 ret = hclge_set_fec_hw(hdev, fec_mode); 2939 if (ret) 2940 return ret; 2941 2942 mac->user_fec_mode = fec_mode | BIT(HNAE3_FEC_USER_DEF); 2943 return 0; 2944 } 2945 2946 static void hclge_get_fec(struct hnae3_handle *handle, u8 *fec_ability, 2947 u8 *fec_mode) 2948 { 2949 struct hclge_vport *vport = hclge_get_vport(handle); 2950 struct hclge_dev *hdev = vport->back; 2951 struct hclge_mac *mac = &hdev->hw.mac; 2952 2953 if (fec_ability) 2954 *fec_ability = mac->fec_ability; 2955 if (fec_mode) 2956 *fec_mode = mac->fec_mode; 2957 } 2958 2959 static int hclge_mac_init(struct hclge_dev *hdev) 2960 { 2961 struct hclge_mac *mac = &hdev->hw.mac; 2962 int ret; 2963 2964 hdev->support_sfp_query = true; 2965 2966 if (!test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state)) 2967 hdev->hw.mac.duplex = HCLGE_MAC_FULL; 2968 2969 if (hdev->hw.mac.support_autoneg) { 2970 ret = hclge_set_autoneg_en(hdev, hdev->hw.mac.autoneg); 2971 if (ret) 2972 return ret; 2973 } 2974 2975 if (!hdev->hw.mac.autoneg) { 2976 ret = hclge_cfg_mac_speed_dup_hw(hdev, hdev->hw.mac.req_speed, 2977 hdev->hw.mac.req_duplex, 2978 hdev->hw.mac.lane_num); 2979 if (ret) 2980 return ret; 2981 } 2982 2983 mac->link = 0; 2984 2985 if (mac->user_fec_mode & BIT(HNAE3_FEC_USER_DEF)) { 2986 ret = hclge_set_fec_hw(hdev, mac->user_fec_mode); 2987 if (ret) 2988 return ret; 2989 } 2990 2991 ret = hclge_set_mac_mtu(hdev, hdev->mps); 2992 if (ret) { 2993 dev_err(&hdev->pdev->dev, "set mtu failed ret=%d\n", ret); 2994 return ret; 2995 } 2996 2997 ret = hclge_set_default_loopback(hdev); 2998 if (ret) 2999 return ret; 3000 3001 ret = hclge_buffer_alloc(hdev); 3002 if (ret) 3003 dev_err(&hdev->pdev->dev, 3004 "allocate buffer fail, ret=%d\n", ret); 3005 3006 return ret; 3007 } 3008 3009 static void hclge_mbx_task_schedule(struct hclge_dev *hdev) 3010 { 3011 if (!test_bit(HCLGE_STATE_REMOVING, &hdev->state) && 3012 !test_and_set_bit(HCLGE_STATE_MBX_SERVICE_SCHED, &hdev->state)) { 3013 hdev->last_mbx_scheduled = jiffies; 3014 mod_delayed_work(hclge_wq, &hdev->service_task, 0); 3015 } 3016 } 3017 3018 static void hclge_reset_task_schedule(struct hclge_dev *hdev) 3019 { 3020 if (!test_bit(HCLGE_STATE_REMOVING, &hdev->state) && 3021 test_bit(HCLGE_STATE_SERVICE_INITED, &hdev->state) && 3022 !test_and_set_bit(HCLGE_STATE_RST_SERVICE_SCHED, &hdev->state)) { 3023 hdev->last_rst_scheduled = jiffies; 3024 mod_delayed_work(hclge_wq, &hdev->service_task, 0); 3025 } 3026 } 3027 3028 static void hclge_errhand_task_schedule(struct hclge_dev *hdev) 3029 { 3030 if (!test_bit(HCLGE_STATE_REMOVING, &hdev->state) && 3031 !test_and_set_bit(HCLGE_STATE_ERR_SERVICE_SCHED, &hdev->state)) 3032 mod_delayed_work(hclge_wq, &hdev->service_task, 0); 3033 } 3034 3035 void hclge_task_schedule(struct hclge_dev *hdev, unsigned long delay_time) 3036 { 3037 if (!test_bit(HCLGE_STATE_REMOVING, &hdev->state) && 3038 !test_bit(HCLGE_STATE_RST_FAIL, &hdev->state)) 3039 mod_delayed_work(hclge_wq, &hdev->service_task, delay_time); 3040 } 3041 3042 static int hclge_get_mac_link_status(struct hclge_dev *hdev, int *link_status) 3043 { 3044 struct hclge_link_status_cmd *req; 3045 struct hclge_desc desc; 3046 int ret; 3047 3048 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_LINK_STATUS, true); 3049 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 3050 if (ret) { 3051 dev_err(&hdev->pdev->dev, "get link status cmd failed %d\n", 3052 ret); 3053 return ret; 3054 } 3055 3056 req = (struct hclge_link_status_cmd *)desc.data; 3057 *link_status = (req->status & HCLGE_LINK_STATUS_UP_M) > 0 ? 3058 HCLGE_LINK_STATUS_UP : HCLGE_LINK_STATUS_DOWN; 3059 3060 return 0; 3061 } 3062 3063 static int hclge_get_mac_phy_link(struct hclge_dev *hdev, int *link_status) 3064 { 3065 struct phy_device *phydev = hdev->hw.mac.phydev; 3066 3067 *link_status = HCLGE_LINK_STATUS_DOWN; 3068 3069 if (test_bit(HCLGE_STATE_DOWN, &hdev->state)) 3070 return 0; 3071 3072 if (phydev && (phydev->state != PHY_RUNNING || !phydev->link)) 3073 return 0; 3074 3075 return hclge_get_mac_link_status(hdev, link_status); 3076 } 3077 3078 static void hclge_push_link_status(struct hclge_dev *hdev) 3079 { 3080 struct hclge_vport *vport; 3081 int ret; 3082 u16 i; 3083 3084 for (i = 0; i < pci_num_vf(hdev->pdev); i++) { 3085 vport = &hdev->vport[i + HCLGE_VF_VPORT_START_NUM]; 3086 3087 if (!test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state) || 3088 vport->vf_info.link_state != IFLA_VF_LINK_STATE_AUTO) 3089 continue; 3090 3091 ret = hclge_push_vf_link_status(vport); 3092 if (ret) { 3093 dev_err(&hdev->pdev->dev, 3094 "failed to push link status to vf%u, ret = %d\n", 3095 i, ret); 3096 } 3097 } 3098 } 3099 3100 static void hclge_update_link_status(struct hclge_dev *hdev) 3101 { 3102 struct hnae3_handle *handle = &hdev->vport[0].nic; 3103 struct hnae3_client *client = hdev->nic_client; 3104 int state; 3105 int ret; 3106 3107 if (!client) 3108 return; 3109 3110 if (test_and_set_bit(HCLGE_STATE_LINK_UPDATING, &hdev->state)) 3111 return; 3112 3113 ret = hclge_get_mac_phy_link(hdev, &state); 3114 if (ret) { 3115 clear_bit(HCLGE_STATE_LINK_UPDATING, &hdev->state); 3116 return; 3117 } 3118 3119 if (state != hdev->hw.mac.link) { 3120 hdev->hw.mac.link = state; 3121 if (state == HCLGE_LINK_STATUS_UP) 3122 hclge_update_port_info(hdev); 3123 3124 client->ops->link_status_change(handle, state); 3125 hclge_config_mac_tnl_int(hdev, state); 3126 3127 if (test_bit(HCLGE_STATE_ROCE_REGISTERED, &hdev->state)) { 3128 struct hnae3_handle *rhandle = &hdev->vport[0].roce; 3129 struct hnae3_client *rclient = hdev->roce_client; 3130 3131 if (rclient && rclient->ops->link_status_change) 3132 rclient->ops->link_status_change(rhandle, 3133 state); 3134 } 3135 3136 hclge_push_link_status(hdev); 3137 } 3138 3139 clear_bit(HCLGE_STATE_LINK_UPDATING, &hdev->state); 3140 } 3141 3142 static void hclge_update_speed_advertising(struct hclge_mac *mac) 3143 { 3144 u32 speed_ability; 3145 3146 if (hclge_get_speed_bit(mac->speed, &speed_ability)) 3147 return; 3148 3149 switch (mac->module_type) { 3150 case HNAE3_MODULE_TYPE_FIBRE_LR: 3151 hclge_convert_setting_lr(speed_ability, mac->advertising); 3152 break; 3153 case HNAE3_MODULE_TYPE_FIBRE_SR: 3154 case HNAE3_MODULE_TYPE_AOC: 3155 hclge_convert_setting_sr(speed_ability, mac->advertising); 3156 break; 3157 case HNAE3_MODULE_TYPE_CR: 3158 hclge_convert_setting_cr(speed_ability, mac->advertising); 3159 break; 3160 case HNAE3_MODULE_TYPE_KR: 3161 hclge_convert_setting_kr(speed_ability, mac->advertising); 3162 break; 3163 default: 3164 break; 3165 } 3166 } 3167 3168 static void hclge_update_fec_advertising(struct hclge_mac *mac) 3169 { 3170 if (mac->fec_mode & BIT(HNAE3_FEC_RS)) 3171 linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_RS_BIT, 3172 mac->advertising); 3173 else if (mac->fec_mode & BIT(HNAE3_FEC_LLRS)) 3174 linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_LLRS_BIT, 3175 mac->advertising); 3176 else if (mac->fec_mode & BIT(HNAE3_FEC_BASER)) 3177 linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_BASER_BIT, 3178 mac->advertising); 3179 else 3180 linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_NONE_BIT, 3181 mac->advertising); 3182 } 3183 3184 static void hclge_update_pause_advertising(struct hclge_dev *hdev) 3185 { 3186 struct hclge_mac *mac = &hdev->hw.mac; 3187 bool rx_en, tx_en; 3188 3189 switch (hdev->fc_mode_last_time) { 3190 case HCLGE_FC_RX_PAUSE: 3191 rx_en = true; 3192 tx_en = false; 3193 break; 3194 case HCLGE_FC_TX_PAUSE: 3195 rx_en = false; 3196 tx_en = true; 3197 break; 3198 case HCLGE_FC_FULL: 3199 rx_en = true; 3200 tx_en = true; 3201 break; 3202 default: 3203 rx_en = false; 3204 tx_en = false; 3205 break; 3206 } 3207 3208 linkmode_set_pause(mac->advertising, tx_en, rx_en); 3209 } 3210 3211 static void hclge_update_advertising(struct hclge_dev *hdev) 3212 { 3213 struct hclge_mac *mac = &hdev->hw.mac; 3214 3215 linkmode_zero(mac->advertising); 3216 hclge_update_speed_advertising(mac); 3217 hclge_update_fec_advertising(mac); 3218 hclge_update_pause_advertising(hdev); 3219 } 3220 3221 static void hclge_update_port_capability(struct hclge_dev *hdev, 3222 struct hclge_mac *mac) 3223 { 3224 if (hnae3_dev_fec_supported(hdev)) 3225 hclge_convert_setting_fec(mac); 3226 3227 /* firmware can not identify back plane type, the media type 3228 * read from configuration can help deal it 3229 */ 3230 if (mac->media_type == HNAE3_MEDIA_TYPE_BACKPLANE && 3231 mac->module_type == HNAE3_MODULE_TYPE_UNKNOWN) 3232 mac->module_type = HNAE3_MODULE_TYPE_KR; 3233 else if (mac->media_type == HNAE3_MEDIA_TYPE_COPPER) 3234 mac->module_type = HNAE3_MODULE_TYPE_TP; 3235 3236 if (mac->support_autoneg) { 3237 linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mac->supported); 3238 linkmode_copy(mac->advertising, mac->supported); 3239 } else { 3240 linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 3241 mac->supported); 3242 hclge_update_advertising(hdev); 3243 } 3244 } 3245 3246 static int hclge_get_sfp_speed(struct hclge_dev *hdev, u32 *speed) 3247 { 3248 struct hclge_sfp_info_cmd *resp; 3249 struct hclge_desc desc; 3250 int ret; 3251 3252 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GET_SFP_INFO, true); 3253 resp = (struct hclge_sfp_info_cmd *)desc.data; 3254 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 3255 if (ret == -EOPNOTSUPP) { 3256 dev_warn(&hdev->pdev->dev, 3257 "IMP do not support get SFP speed %d\n", ret); 3258 return ret; 3259 } else if (ret) { 3260 dev_err(&hdev->pdev->dev, "get sfp speed failed %d\n", ret); 3261 return ret; 3262 } 3263 3264 *speed = le32_to_cpu(resp->speed); 3265 3266 return 0; 3267 } 3268 3269 static int hclge_get_sfp_info(struct hclge_dev *hdev, struct hclge_mac *mac) 3270 { 3271 struct hclge_sfp_info_cmd *resp; 3272 struct hclge_desc desc; 3273 int ret; 3274 3275 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GET_SFP_INFO, true); 3276 resp = (struct hclge_sfp_info_cmd *)desc.data; 3277 3278 resp->query_type = QUERY_ACTIVE_SPEED; 3279 3280 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 3281 if (ret == -EOPNOTSUPP) { 3282 dev_warn(&hdev->pdev->dev, 3283 "IMP does not support get SFP info %d\n", ret); 3284 return ret; 3285 } else if (ret) { 3286 dev_err(&hdev->pdev->dev, "get sfp info failed %d\n", ret); 3287 return ret; 3288 } 3289 3290 /* In some case, mac speed get from IMP may be 0, it shouldn't be 3291 * set to mac->speed. 3292 */ 3293 if (!le32_to_cpu(resp->speed)) 3294 return 0; 3295 3296 mac->speed = le32_to_cpu(resp->speed); 3297 /* if resp->speed_ability is 0, it means it's an old version 3298 * firmware, do not update these params 3299 */ 3300 if (resp->speed_ability) { 3301 mac->module_type = le32_to_cpu(resp->module_type); 3302 mac->speed_ability = le32_to_cpu(resp->speed_ability); 3303 mac->autoneg = resp->autoneg; 3304 mac->support_autoneg = resp->autoneg_ability; 3305 mac->speed_type = QUERY_ACTIVE_SPEED; 3306 mac->lane_num = resp->lane_num; 3307 if (!resp->active_fec) 3308 mac->fec_mode = 0; 3309 else 3310 mac->fec_mode = BIT(resp->active_fec); 3311 mac->fec_ability = resp->fec_ability; 3312 } else { 3313 mac->speed_type = QUERY_SFP_SPEED; 3314 } 3315 3316 return 0; 3317 } 3318 3319 static int hclge_get_phy_link_ksettings(struct hnae3_handle *handle, 3320 struct ethtool_link_ksettings *cmd) 3321 { 3322 struct hclge_desc desc[HCLGE_PHY_LINK_SETTING_BD_NUM]; 3323 struct hclge_vport *vport = hclge_get_vport(handle); 3324 struct hclge_phy_link_ksetting_0_cmd *req0; 3325 struct hclge_phy_link_ksetting_1_cmd *req1; 3326 u32 supported, advertising, lp_advertising; 3327 struct hclge_dev *hdev = vport->back; 3328 int ret; 3329 3330 hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_PHY_LINK_KSETTING, 3331 true); 3332 desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 3333 hclge_cmd_setup_basic_desc(&desc[1], HCLGE_OPC_PHY_LINK_KSETTING, 3334 true); 3335 3336 ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_PHY_LINK_SETTING_BD_NUM); 3337 if (ret) { 3338 dev_err(&hdev->pdev->dev, 3339 "failed to get phy link ksetting, ret = %d.\n", ret); 3340 return ret; 3341 } 3342 3343 req0 = (struct hclge_phy_link_ksetting_0_cmd *)desc[0].data; 3344 cmd->base.autoneg = req0->autoneg; 3345 cmd->base.speed = le32_to_cpu(req0->speed); 3346 cmd->base.duplex = req0->duplex; 3347 cmd->base.port = req0->port; 3348 cmd->base.transceiver = req0->transceiver; 3349 cmd->base.phy_address = req0->phy_address; 3350 cmd->base.eth_tp_mdix = req0->eth_tp_mdix; 3351 cmd->base.eth_tp_mdix_ctrl = req0->eth_tp_mdix_ctrl; 3352 supported = le32_to_cpu(req0->supported); 3353 advertising = le32_to_cpu(req0->advertising); 3354 lp_advertising = le32_to_cpu(req0->lp_advertising); 3355 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 3356 supported); 3357 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 3358 advertising); 3359 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.lp_advertising, 3360 lp_advertising); 3361 3362 req1 = (struct hclge_phy_link_ksetting_1_cmd *)desc[1].data; 3363 cmd->base.master_slave_cfg = req1->master_slave_cfg; 3364 cmd->base.master_slave_state = req1->master_slave_state; 3365 3366 return 0; 3367 } 3368 3369 static int 3370 hclge_set_phy_link_ksettings(struct hnae3_handle *handle, 3371 const struct ethtool_link_ksettings *cmd) 3372 { 3373 struct hclge_desc desc[HCLGE_PHY_LINK_SETTING_BD_NUM]; 3374 struct hclge_vport *vport = hclge_get_vport(handle); 3375 struct hclge_phy_link_ksetting_0_cmd *req0; 3376 struct hclge_phy_link_ksetting_1_cmd *req1; 3377 struct hclge_dev *hdev = vport->back; 3378 u32 advertising; 3379 int ret; 3380 3381 if (cmd->base.autoneg == AUTONEG_DISABLE && 3382 ((cmd->base.speed != SPEED_100 && cmd->base.speed != SPEED_10) || 3383 (cmd->base.duplex != DUPLEX_HALF && 3384 cmd->base.duplex != DUPLEX_FULL))) 3385 return -EINVAL; 3386 3387 hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_PHY_LINK_KSETTING, 3388 false); 3389 desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 3390 hclge_cmd_setup_basic_desc(&desc[1], HCLGE_OPC_PHY_LINK_KSETTING, 3391 false); 3392 3393 req0 = (struct hclge_phy_link_ksetting_0_cmd *)desc[0].data; 3394 req0->autoneg = cmd->base.autoneg; 3395 req0->speed = cpu_to_le32(cmd->base.speed); 3396 req0->duplex = cmd->base.duplex; 3397 ethtool_convert_link_mode_to_legacy_u32(&advertising, 3398 cmd->link_modes.advertising); 3399 req0->advertising = cpu_to_le32(advertising); 3400 req0->eth_tp_mdix_ctrl = cmd->base.eth_tp_mdix_ctrl; 3401 3402 req1 = (struct hclge_phy_link_ksetting_1_cmd *)desc[1].data; 3403 req1->master_slave_cfg = cmd->base.master_slave_cfg; 3404 3405 ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_PHY_LINK_SETTING_BD_NUM); 3406 if (ret) { 3407 dev_err(&hdev->pdev->dev, 3408 "failed to set phy link ksettings, ret = %d.\n", ret); 3409 return ret; 3410 } 3411 3412 hdev->hw.mac.req_autoneg = cmd->base.autoneg; 3413 hdev->hw.mac.req_speed = cmd->base.speed; 3414 hdev->hw.mac.req_duplex = cmd->base.duplex; 3415 linkmode_copy(hdev->hw.mac.advertising, cmd->link_modes.advertising); 3416 3417 return 0; 3418 } 3419 3420 static int hclge_update_tp_port_info(struct hclge_dev *hdev) 3421 { 3422 struct ethtool_link_ksettings cmd; 3423 int ret; 3424 3425 if (!hnae3_dev_phy_imp_supported(hdev)) 3426 return 0; 3427 3428 ret = hclge_get_phy_link_ksettings(&hdev->vport->nic, &cmd); 3429 if (ret) 3430 return ret; 3431 3432 hdev->hw.mac.autoneg = cmd.base.autoneg; 3433 hdev->hw.mac.speed = cmd.base.speed; 3434 hdev->hw.mac.duplex = cmd.base.duplex; 3435 linkmode_copy(hdev->hw.mac.advertising, cmd.link_modes.advertising); 3436 3437 return 0; 3438 } 3439 3440 static int hclge_tp_port_init(struct hclge_dev *hdev) 3441 { 3442 struct ethtool_link_ksettings cmd; 3443 3444 if (!hnae3_dev_phy_imp_supported(hdev)) 3445 return 0; 3446 3447 cmd.base.autoneg = hdev->hw.mac.req_autoneg; 3448 cmd.base.speed = hdev->hw.mac.req_speed; 3449 cmd.base.duplex = hdev->hw.mac.req_duplex; 3450 linkmode_copy(cmd.link_modes.advertising, hdev->hw.mac.advertising); 3451 3452 return hclge_set_phy_link_ksettings(&hdev->vport->nic, &cmd); 3453 } 3454 3455 static int hclge_update_port_info(struct hclge_dev *hdev) 3456 { 3457 struct hclge_mac *mac = &hdev->hw.mac; 3458 int speed; 3459 int ret; 3460 3461 /* get the port info from SFP cmd if not copper port */ 3462 if (mac->media_type == HNAE3_MEDIA_TYPE_COPPER) 3463 return hclge_update_tp_port_info(hdev); 3464 3465 /* if IMP does not support get SFP/qSFP info, return directly */ 3466 if (!hdev->support_sfp_query) 3467 return 0; 3468 3469 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) { 3470 speed = mac->speed; 3471 ret = hclge_get_sfp_info(hdev, mac); 3472 } else { 3473 speed = HCLGE_MAC_SPEED_UNKNOWN; 3474 ret = hclge_get_sfp_speed(hdev, &speed); 3475 } 3476 3477 if (ret == -EOPNOTSUPP) { 3478 hdev->support_sfp_query = false; 3479 return ret; 3480 } else if (ret) { 3481 return ret; 3482 } 3483 3484 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) { 3485 if (mac->speed_type == QUERY_ACTIVE_SPEED) { 3486 hclge_update_port_capability(hdev, mac); 3487 if (mac->speed != speed) 3488 (void)hclge_tm_port_shaper_cfg(hdev); 3489 return 0; 3490 } 3491 return hclge_cfg_mac_speed_dup(hdev, mac->speed, 3492 HCLGE_MAC_FULL, mac->lane_num); 3493 } else { 3494 if (speed == HCLGE_MAC_SPEED_UNKNOWN) 3495 return 0; /* do nothing if no SFP */ 3496 3497 /* must config full duplex for SFP */ 3498 return hclge_cfg_mac_speed_dup(hdev, speed, HCLGE_MAC_FULL, 0); 3499 } 3500 } 3501 3502 static int hclge_get_status(struct hnae3_handle *handle) 3503 { 3504 struct hclge_vport *vport = hclge_get_vport(handle); 3505 struct hclge_dev *hdev = vport->back; 3506 3507 hclge_update_link_status(hdev); 3508 3509 return hdev->hw.mac.link; 3510 } 3511 3512 struct hclge_vport *hclge_get_vf_vport(struct hclge_dev *hdev, int vf) 3513 { 3514 if (!pci_num_vf(hdev->pdev)) { 3515 dev_err(&hdev->pdev->dev, 3516 "SRIOV is disabled, can not get vport(%d) info.\n", vf); 3517 return NULL; 3518 } 3519 3520 if (vf < 0 || vf >= pci_num_vf(hdev->pdev)) { 3521 dev_err(&hdev->pdev->dev, 3522 "vf id(%d) is out of range(0 <= vfid < %d)\n", 3523 vf, pci_num_vf(hdev->pdev)); 3524 return NULL; 3525 } 3526 3527 /* VF start from 1 in vport */ 3528 vf += HCLGE_VF_VPORT_START_NUM; 3529 return &hdev->vport[vf]; 3530 } 3531 3532 static int hclge_get_vf_config(struct hnae3_handle *handle, int vf, 3533 struct ifla_vf_info *ivf) 3534 { 3535 struct hclge_vport *vport = hclge_get_vport(handle); 3536 struct hclge_dev *hdev = vport->back; 3537 3538 vport = hclge_get_vf_vport(hdev, vf); 3539 if (!vport) 3540 return -EINVAL; 3541 3542 ivf->vf = vf; 3543 ivf->linkstate = vport->vf_info.link_state; 3544 ivf->spoofchk = vport->vf_info.spoofchk; 3545 ivf->trusted = vport->vf_info.trusted; 3546 ivf->min_tx_rate = 0; 3547 ivf->max_tx_rate = vport->vf_info.max_tx_rate; 3548 ivf->vlan = vport->port_base_vlan_cfg.vlan_info.vlan_tag; 3549 ivf->vlan_proto = htons(vport->port_base_vlan_cfg.vlan_info.vlan_proto); 3550 ivf->qos = vport->port_base_vlan_cfg.vlan_info.qos; 3551 ether_addr_copy(ivf->mac, vport->vf_info.mac); 3552 3553 return 0; 3554 } 3555 3556 static int hclge_set_vf_link_state(struct hnae3_handle *handle, int vf, 3557 int link_state) 3558 { 3559 struct hclge_vport *vport = hclge_get_vport(handle); 3560 struct hclge_dev *hdev = vport->back; 3561 int link_state_old; 3562 int ret; 3563 3564 vport = hclge_get_vf_vport(hdev, vf); 3565 if (!vport) 3566 return -EINVAL; 3567 3568 link_state_old = vport->vf_info.link_state; 3569 vport->vf_info.link_state = link_state; 3570 3571 /* return success directly if the VF is unalive, VF will 3572 * query link state itself when it starts work. 3573 */ 3574 if (!test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state)) 3575 return 0; 3576 3577 ret = hclge_push_vf_link_status(vport); 3578 if (ret) { 3579 vport->vf_info.link_state = link_state_old; 3580 dev_err(&hdev->pdev->dev, 3581 "failed to push vf%d link status, ret = %d\n", vf, ret); 3582 } 3583 3584 return ret; 3585 } 3586 3587 static u32 hclge_check_event_cause(struct hclge_dev *hdev, u32 *clearval) 3588 { 3589 u32 cmdq_src_reg, msix_src_reg, hw_err_src_reg; 3590 3591 /* fetch the events from their corresponding regs */ 3592 cmdq_src_reg = hclge_read_dev(&hdev->hw, HCLGE_VECTOR0_CMDQ_SRC_REG); 3593 msix_src_reg = hclge_read_dev(&hdev->hw, HCLGE_MISC_VECTOR_INT_STS); 3594 hw_err_src_reg = hclge_read_dev(&hdev->hw, 3595 HCLGE_RAS_PF_OTHER_INT_STS_REG); 3596 3597 /* Assumption: If by any chance reset and mailbox events are reported 3598 * together then we will only process reset event in this go and will 3599 * defer the processing of the mailbox events. Since, we would have not 3600 * cleared RX CMDQ event this time we would receive again another 3601 * interrupt from H/W just for the mailbox. 3602 * 3603 * check for vector0 reset event sources 3604 */ 3605 if (BIT(HCLGE_VECTOR0_IMPRESET_INT_B) & msix_src_reg) { 3606 dev_info(&hdev->pdev->dev, "IMP reset interrupt\n"); 3607 set_bit(HNAE3_IMP_RESET, &hdev->reset_pending); 3608 set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state); 3609 *clearval = BIT(HCLGE_VECTOR0_IMPRESET_INT_B); 3610 hdev->rst_stats.imp_rst_cnt++; 3611 return HCLGE_VECTOR0_EVENT_RST; 3612 } 3613 3614 if (BIT(HCLGE_VECTOR0_GLOBALRESET_INT_B) & msix_src_reg) { 3615 dev_info(&hdev->pdev->dev, "global reset interrupt\n"); 3616 set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state); 3617 set_bit(HNAE3_GLOBAL_RESET, &hdev->reset_pending); 3618 *clearval = BIT(HCLGE_VECTOR0_GLOBALRESET_INT_B); 3619 hdev->rst_stats.global_rst_cnt++; 3620 return HCLGE_VECTOR0_EVENT_RST; 3621 } 3622 3623 /* check for vector0 msix event and hardware error event source */ 3624 if (msix_src_reg & HCLGE_VECTOR0_REG_MSIX_MASK || 3625 hw_err_src_reg & HCLGE_RAS_REG_ERR_MASK) 3626 return HCLGE_VECTOR0_EVENT_ERR; 3627 3628 /* check for vector0 ptp event source */ 3629 if (BIT(HCLGE_VECTOR0_REG_PTP_INT_B) & msix_src_reg) { 3630 *clearval = msix_src_reg; 3631 return HCLGE_VECTOR0_EVENT_PTP; 3632 } 3633 3634 /* check for vector0 mailbox(=CMDQ RX) event source */ 3635 if (BIT(HCLGE_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) { 3636 cmdq_src_reg &= ~BIT(HCLGE_VECTOR0_RX_CMDQ_INT_B); 3637 *clearval = cmdq_src_reg; 3638 return HCLGE_VECTOR0_EVENT_MBX; 3639 } 3640 3641 /* print other vector0 event source */ 3642 dev_info(&hdev->pdev->dev, 3643 "INT status: CMDQ(%#x) HW errors(%#x) other(%#x)\n", 3644 cmdq_src_reg, hw_err_src_reg, msix_src_reg); 3645 3646 return HCLGE_VECTOR0_EVENT_OTHER; 3647 } 3648 3649 static void hclge_clear_event_cause(struct hclge_dev *hdev, u32 event_type, 3650 u32 regclr) 3651 { 3652 #define HCLGE_IMP_RESET_DELAY 5 3653 3654 switch (event_type) { 3655 case HCLGE_VECTOR0_EVENT_PTP: 3656 case HCLGE_VECTOR0_EVENT_RST: 3657 if (regclr == BIT(HCLGE_VECTOR0_IMPRESET_INT_B)) 3658 mdelay(HCLGE_IMP_RESET_DELAY); 3659 3660 hclge_write_dev(&hdev->hw, HCLGE_MISC_RESET_STS_REG, regclr); 3661 break; 3662 case HCLGE_VECTOR0_EVENT_MBX: 3663 hclge_write_dev(&hdev->hw, HCLGE_VECTOR0_CMDQ_SRC_REG, regclr); 3664 break; 3665 default: 3666 break; 3667 } 3668 } 3669 3670 static void hclge_clear_all_event_cause(struct hclge_dev *hdev) 3671 { 3672 hclge_clear_event_cause(hdev, HCLGE_VECTOR0_EVENT_RST, 3673 BIT(HCLGE_VECTOR0_GLOBALRESET_INT_B) | 3674 BIT(HCLGE_VECTOR0_CORERESET_INT_B) | 3675 BIT(HCLGE_VECTOR0_IMPRESET_INT_B)); 3676 hclge_clear_event_cause(hdev, HCLGE_VECTOR0_EVENT_MBX, 0); 3677 } 3678 3679 static void hclge_enable_vector(struct hclge_misc_vector *vector, bool enable) 3680 { 3681 writel(enable ? 1 : 0, vector->addr); 3682 } 3683 3684 static irqreturn_t hclge_misc_irq_handle(int irq, void *data) 3685 { 3686 struct hclge_dev *hdev = data; 3687 unsigned long flags; 3688 u32 clearval = 0; 3689 u32 event_cause; 3690 3691 hclge_enable_vector(&hdev->misc_vector, false); 3692 event_cause = hclge_check_event_cause(hdev, &clearval); 3693 3694 /* vector 0 interrupt is shared with reset and mailbox source events. */ 3695 switch (event_cause) { 3696 case HCLGE_VECTOR0_EVENT_ERR: 3697 hclge_errhand_task_schedule(hdev); 3698 break; 3699 case HCLGE_VECTOR0_EVENT_RST: 3700 hclge_reset_task_schedule(hdev); 3701 break; 3702 case HCLGE_VECTOR0_EVENT_PTP: 3703 spin_lock_irqsave(&hdev->ptp->lock, flags); 3704 hclge_ptp_clean_tx_hwts(hdev); 3705 spin_unlock_irqrestore(&hdev->ptp->lock, flags); 3706 break; 3707 case HCLGE_VECTOR0_EVENT_MBX: 3708 /* If we are here then, 3709 * 1. Either we are not handling any mbx task and we are not 3710 * scheduled as well 3711 * OR 3712 * 2. We could be handling a mbx task but nothing more is 3713 * scheduled. 3714 * In both cases, we should schedule mbx task as there are more 3715 * mbx messages reported by this interrupt. 3716 */ 3717 hclge_mbx_task_schedule(hdev); 3718 break; 3719 default: 3720 dev_warn(&hdev->pdev->dev, 3721 "received unknown or unhandled event of vector0\n"); 3722 break; 3723 } 3724 3725 hclge_clear_event_cause(hdev, event_cause, clearval); 3726 3727 /* Enable interrupt if it is not caused by reset event or error event */ 3728 if (event_cause == HCLGE_VECTOR0_EVENT_PTP || 3729 event_cause == HCLGE_VECTOR0_EVENT_MBX || 3730 event_cause == HCLGE_VECTOR0_EVENT_OTHER) 3731 hclge_enable_vector(&hdev->misc_vector, true); 3732 3733 return IRQ_HANDLED; 3734 } 3735 3736 static void hclge_free_vector(struct hclge_dev *hdev, int vector_id) 3737 { 3738 if (hdev->vector_status[vector_id] == HCLGE_INVALID_VPORT) { 3739 dev_warn(&hdev->pdev->dev, 3740 "vector(vector_id %d) has been freed.\n", vector_id); 3741 return; 3742 } 3743 3744 hdev->vector_status[vector_id] = HCLGE_INVALID_VPORT; 3745 hdev->num_msi_left += 1; 3746 hdev->num_msi_used -= 1; 3747 } 3748 3749 static void hclge_get_misc_vector(struct hclge_dev *hdev) 3750 { 3751 struct hclge_misc_vector *vector = &hdev->misc_vector; 3752 3753 vector->vector_irq = pci_irq_vector(hdev->pdev, 0); 3754 3755 vector->addr = hdev->hw.hw.io_base + HCLGE_MISC_VECTOR_REG_BASE; 3756 hdev->vector_status[0] = 0; 3757 3758 hdev->num_msi_left -= 1; 3759 hdev->num_msi_used += 1; 3760 } 3761 3762 static int hclge_misc_irq_init(struct hclge_dev *hdev) 3763 { 3764 int ret; 3765 3766 hclge_get_misc_vector(hdev); 3767 3768 /* this would be explicitly freed in the end */ 3769 snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s", 3770 HCLGE_NAME, pci_name(hdev->pdev)); 3771 ret = request_irq(hdev->misc_vector.vector_irq, hclge_misc_irq_handle, 3772 0, hdev->misc_vector.name, hdev); 3773 if (ret) { 3774 hclge_free_vector(hdev, 0); 3775 dev_err(&hdev->pdev->dev, "request misc irq(%d) fail\n", 3776 hdev->misc_vector.vector_irq); 3777 } 3778 3779 return ret; 3780 } 3781 3782 static void hclge_misc_irq_uninit(struct hclge_dev *hdev) 3783 { 3784 free_irq(hdev->misc_vector.vector_irq, hdev); 3785 hclge_free_vector(hdev, 0); 3786 } 3787 3788 int hclge_notify_client(struct hclge_dev *hdev, 3789 enum hnae3_reset_notify_type type) 3790 { 3791 struct hnae3_handle *handle = &hdev->vport[0].nic; 3792 struct hnae3_client *client = hdev->nic_client; 3793 int ret; 3794 3795 if (!test_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state) || !client) 3796 return 0; 3797 3798 if (!client->ops->reset_notify) 3799 return -EOPNOTSUPP; 3800 3801 ret = client->ops->reset_notify(handle, type); 3802 if (ret) 3803 dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n", 3804 type, ret); 3805 3806 return ret; 3807 } 3808 3809 static int hclge_notify_roce_client(struct hclge_dev *hdev, 3810 enum hnae3_reset_notify_type type) 3811 { 3812 struct hnae3_handle *handle = &hdev->vport[0].roce; 3813 struct hnae3_client *client = hdev->roce_client; 3814 int ret; 3815 3816 if (!test_bit(HCLGE_STATE_ROCE_REGISTERED, &hdev->state) || !client) 3817 return 0; 3818 3819 if (!client->ops->reset_notify) 3820 return -EOPNOTSUPP; 3821 3822 ret = client->ops->reset_notify(handle, type); 3823 if (ret) 3824 dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)", 3825 type, ret); 3826 3827 return ret; 3828 } 3829 3830 static int hclge_reset_wait(struct hclge_dev *hdev) 3831 { 3832 #define HCLGE_RESET_WATI_MS 100 3833 #define HCLGE_RESET_WAIT_CNT 350 3834 3835 u32 val, reg, reg_bit; 3836 u32 cnt = 0; 3837 3838 switch (hdev->reset_type) { 3839 case HNAE3_IMP_RESET: 3840 reg = HCLGE_GLOBAL_RESET_REG; 3841 reg_bit = HCLGE_IMP_RESET_BIT; 3842 break; 3843 case HNAE3_GLOBAL_RESET: 3844 reg = HCLGE_GLOBAL_RESET_REG; 3845 reg_bit = HCLGE_GLOBAL_RESET_BIT; 3846 break; 3847 case HNAE3_FUNC_RESET: 3848 reg = HCLGE_FUN_RST_ING; 3849 reg_bit = HCLGE_FUN_RST_ING_B; 3850 break; 3851 default: 3852 dev_err(&hdev->pdev->dev, 3853 "Wait for unsupported reset type: %d\n", 3854 hdev->reset_type); 3855 return -EINVAL; 3856 } 3857 3858 val = hclge_read_dev(&hdev->hw, reg); 3859 while (hnae3_get_bit(val, reg_bit) && cnt < HCLGE_RESET_WAIT_CNT) { 3860 msleep(HCLGE_RESET_WATI_MS); 3861 val = hclge_read_dev(&hdev->hw, reg); 3862 cnt++; 3863 } 3864 3865 if (cnt >= HCLGE_RESET_WAIT_CNT) { 3866 dev_warn(&hdev->pdev->dev, 3867 "Wait for reset timeout: %d\n", hdev->reset_type); 3868 return -EBUSY; 3869 } 3870 3871 return 0; 3872 } 3873 3874 static int hclge_set_vf_rst(struct hclge_dev *hdev, int func_id, bool reset) 3875 { 3876 struct hclge_vf_rst_cmd *req; 3877 struct hclge_desc desc; 3878 3879 req = (struct hclge_vf_rst_cmd *)desc.data; 3880 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GBL_RST_STATUS, false); 3881 req->dest_vfid = func_id; 3882 3883 if (reset) 3884 req->vf_rst = 0x1; 3885 3886 return hclge_cmd_send(&hdev->hw, &desc, 1); 3887 } 3888 3889 static int hclge_set_all_vf_rst(struct hclge_dev *hdev, bool reset) 3890 { 3891 int i; 3892 3893 for (i = HCLGE_VF_VPORT_START_NUM; i < hdev->num_alloc_vport; i++) { 3894 struct hclge_vport *vport = &hdev->vport[i]; 3895 int ret; 3896 3897 /* Send cmd to set/clear VF's FUNC_RST_ING */ 3898 ret = hclge_set_vf_rst(hdev, vport->vport_id, reset); 3899 if (ret) { 3900 dev_err(&hdev->pdev->dev, 3901 "set vf(%u) rst failed %d!\n", 3902 vport->vport_id - HCLGE_VF_VPORT_START_NUM, 3903 ret); 3904 return ret; 3905 } 3906 3907 if (!reset || 3908 !test_bit(HCLGE_VPORT_STATE_INITED, &vport->state)) 3909 continue; 3910 3911 if (!test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state) && 3912 hdev->reset_type == HNAE3_FUNC_RESET) { 3913 set_bit(HCLGE_VPORT_NEED_NOTIFY_RESET, 3914 &vport->need_notify); 3915 continue; 3916 } 3917 3918 /* Inform VF to process the reset. 3919 * hclge_inform_reset_assert_to_vf may fail if VF 3920 * driver is not loaded. 3921 */ 3922 ret = hclge_inform_reset_assert_to_vf(vport); 3923 if (ret) 3924 dev_warn(&hdev->pdev->dev, 3925 "inform reset to vf(%u) failed %d!\n", 3926 vport->vport_id - HCLGE_VF_VPORT_START_NUM, 3927 ret); 3928 } 3929 3930 return 0; 3931 } 3932 3933 static void hclge_mailbox_service_task(struct hclge_dev *hdev) 3934 { 3935 if (!test_and_clear_bit(HCLGE_STATE_MBX_SERVICE_SCHED, &hdev->state) || 3936 test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state) || 3937 test_and_set_bit(HCLGE_STATE_MBX_HANDLING, &hdev->state)) 3938 return; 3939 3940 if (time_is_before_jiffies(hdev->last_mbx_scheduled + 3941 HCLGE_MBX_SCHED_TIMEOUT)) 3942 dev_warn(&hdev->pdev->dev, 3943 "mbx service task is scheduled after %ums on cpu%u!\n", 3944 jiffies_to_msecs(jiffies - hdev->last_mbx_scheduled), 3945 smp_processor_id()); 3946 3947 hclge_mbx_handler(hdev); 3948 3949 clear_bit(HCLGE_STATE_MBX_HANDLING, &hdev->state); 3950 } 3951 3952 static void hclge_func_reset_sync_vf(struct hclge_dev *hdev) 3953 { 3954 struct hclge_pf_rst_sync_cmd *req; 3955 struct hclge_desc desc; 3956 int cnt = 0; 3957 int ret; 3958 3959 req = (struct hclge_pf_rst_sync_cmd *)desc.data; 3960 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_VF_RST_RDY, true); 3961 3962 do { 3963 /* vf need to down netdev by mbx during PF or FLR reset */ 3964 hclge_mailbox_service_task(hdev); 3965 3966 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 3967 /* for compatible with old firmware, wait 3968 * 100 ms for VF to stop IO 3969 */ 3970 if (ret == -EOPNOTSUPP) { 3971 msleep(HCLGE_RESET_SYNC_TIME); 3972 return; 3973 } else if (ret) { 3974 dev_warn(&hdev->pdev->dev, "sync with VF fail %d!\n", 3975 ret); 3976 return; 3977 } else if (req->all_vf_ready) { 3978 return; 3979 } 3980 msleep(HCLGE_PF_RESET_SYNC_TIME); 3981 hclge_comm_cmd_reuse_desc(&desc, true); 3982 } while (cnt++ < HCLGE_PF_RESET_SYNC_CNT); 3983 3984 dev_warn(&hdev->pdev->dev, "sync with VF timeout!\n"); 3985 } 3986 3987 void hclge_report_hw_error(struct hclge_dev *hdev, 3988 enum hnae3_hw_error_type type) 3989 { 3990 struct hnae3_client *client = hdev->nic_client; 3991 3992 if (!client || !client->ops->process_hw_error || 3993 !test_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state)) 3994 return; 3995 3996 client->ops->process_hw_error(&hdev->vport[0].nic, type); 3997 } 3998 3999 static void hclge_handle_imp_error(struct hclge_dev *hdev) 4000 { 4001 u32 reg_val; 4002 4003 reg_val = hclge_read_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG); 4004 if (reg_val & BIT(HCLGE_VECTOR0_IMP_RD_POISON_B)) { 4005 hclge_report_hw_error(hdev, HNAE3_IMP_RD_POISON_ERROR); 4006 reg_val &= ~BIT(HCLGE_VECTOR0_IMP_RD_POISON_B); 4007 hclge_write_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG, reg_val); 4008 } 4009 4010 if (reg_val & BIT(HCLGE_VECTOR0_IMP_CMDQ_ERR_B)) { 4011 hclge_report_hw_error(hdev, HNAE3_CMDQ_ECC_ERROR); 4012 reg_val &= ~BIT(HCLGE_VECTOR0_IMP_CMDQ_ERR_B); 4013 hclge_write_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG, reg_val); 4014 } 4015 } 4016 4017 int hclge_func_reset_cmd(struct hclge_dev *hdev, int func_id) 4018 { 4019 struct hclge_desc desc; 4020 struct hclge_reset_cmd *req = (struct hclge_reset_cmd *)desc.data; 4021 int ret; 4022 4023 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_RST_TRIGGER, false); 4024 hnae3_set_bit(req->mac_func_reset, HCLGE_CFG_RESET_FUNC_B, 1); 4025 req->fun_reset_vfid = func_id; 4026 4027 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 4028 if (ret) 4029 dev_err(&hdev->pdev->dev, 4030 "send function reset cmd fail, status =%d\n", ret); 4031 4032 return ret; 4033 } 4034 4035 static void hclge_do_reset(struct hclge_dev *hdev) 4036 { 4037 struct hnae3_handle *handle = &hdev->vport[0].nic; 4038 struct pci_dev *pdev = hdev->pdev; 4039 u32 val; 4040 4041 if (hclge_get_hw_reset_stat(handle)) { 4042 dev_info(&pdev->dev, "hardware reset not finish\n"); 4043 dev_info(&pdev->dev, "func_rst_reg:0x%x, global_rst_reg:0x%x\n", 4044 hclge_read_dev(&hdev->hw, HCLGE_FUN_RST_ING), 4045 hclge_read_dev(&hdev->hw, HCLGE_GLOBAL_RESET_REG)); 4046 return; 4047 } 4048 4049 switch (hdev->reset_type) { 4050 case HNAE3_IMP_RESET: 4051 dev_info(&pdev->dev, "IMP reset requested\n"); 4052 val = hclge_read_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG); 4053 hnae3_set_bit(val, HCLGE_TRIGGER_IMP_RESET_B, 1); 4054 hclge_write_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG, val); 4055 break; 4056 case HNAE3_GLOBAL_RESET: 4057 dev_info(&pdev->dev, "global reset requested\n"); 4058 val = hclge_read_dev(&hdev->hw, HCLGE_GLOBAL_RESET_REG); 4059 hnae3_set_bit(val, HCLGE_GLOBAL_RESET_BIT, 1); 4060 hclge_write_dev(&hdev->hw, HCLGE_GLOBAL_RESET_REG, val); 4061 break; 4062 case HNAE3_FUNC_RESET: 4063 dev_info(&pdev->dev, "PF reset requested\n"); 4064 /* schedule again to check later */ 4065 set_bit(HNAE3_FUNC_RESET, &hdev->reset_pending); 4066 hclge_reset_task_schedule(hdev); 4067 break; 4068 default: 4069 dev_warn(&pdev->dev, 4070 "unsupported reset type: %d\n", hdev->reset_type); 4071 break; 4072 } 4073 } 4074 4075 static enum hnae3_reset_type hclge_get_reset_level(struct hnae3_ae_dev *ae_dev, 4076 unsigned long *addr) 4077 { 4078 enum hnae3_reset_type rst_level = HNAE3_NONE_RESET; 4079 struct hclge_dev *hdev = ae_dev->priv; 4080 4081 /* return the highest priority reset level amongst all */ 4082 if (test_bit(HNAE3_IMP_RESET, addr)) { 4083 rst_level = HNAE3_IMP_RESET; 4084 clear_bit(HNAE3_IMP_RESET, addr); 4085 clear_bit(HNAE3_GLOBAL_RESET, addr); 4086 clear_bit(HNAE3_FUNC_RESET, addr); 4087 } else if (test_bit(HNAE3_GLOBAL_RESET, addr)) { 4088 rst_level = HNAE3_GLOBAL_RESET; 4089 clear_bit(HNAE3_GLOBAL_RESET, addr); 4090 clear_bit(HNAE3_FUNC_RESET, addr); 4091 } else if (test_bit(HNAE3_FUNC_RESET, addr)) { 4092 rst_level = HNAE3_FUNC_RESET; 4093 clear_bit(HNAE3_FUNC_RESET, addr); 4094 } else if (test_bit(HNAE3_FLR_RESET, addr)) { 4095 rst_level = HNAE3_FLR_RESET; 4096 clear_bit(HNAE3_FLR_RESET, addr); 4097 } 4098 4099 if (hdev->reset_type != HNAE3_NONE_RESET && 4100 rst_level < hdev->reset_type) 4101 return HNAE3_NONE_RESET; 4102 4103 return rst_level; 4104 } 4105 4106 static void hclge_clear_reset_cause(struct hclge_dev *hdev) 4107 { 4108 u32 clearval = 0; 4109 4110 switch (hdev->reset_type) { 4111 case HNAE3_IMP_RESET: 4112 clearval = BIT(HCLGE_VECTOR0_IMPRESET_INT_B); 4113 break; 4114 case HNAE3_GLOBAL_RESET: 4115 clearval = BIT(HCLGE_VECTOR0_GLOBALRESET_INT_B); 4116 break; 4117 default: 4118 break; 4119 } 4120 4121 if (!clearval) 4122 return; 4123 4124 /* For revision 0x20, the reset interrupt source 4125 * can only be cleared after hardware reset done 4126 */ 4127 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2) 4128 hclge_write_dev(&hdev->hw, HCLGE_MISC_RESET_STS_REG, 4129 clearval); 4130 4131 hclge_enable_vector(&hdev->misc_vector, true); 4132 } 4133 4134 static void hclge_reset_handshake(struct hclge_dev *hdev, bool enable) 4135 { 4136 u32 reg_val; 4137 4138 reg_val = hclge_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG); 4139 if (enable) 4140 reg_val |= HCLGE_COMM_NIC_SW_RST_RDY; 4141 else 4142 reg_val &= ~HCLGE_COMM_NIC_SW_RST_RDY; 4143 4144 hclge_write_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG, reg_val); 4145 } 4146 4147 static int hclge_func_reset_notify_vf(struct hclge_dev *hdev) 4148 { 4149 int ret; 4150 4151 ret = hclge_set_all_vf_rst(hdev, true); 4152 if (ret) 4153 return ret; 4154 4155 hclge_func_reset_sync_vf(hdev); 4156 4157 return 0; 4158 } 4159 4160 static int hclge_reset_prepare_wait(struct hclge_dev *hdev) 4161 { 4162 u32 reg_val; 4163 int ret = 0; 4164 4165 switch (hdev->reset_type) { 4166 case HNAE3_FUNC_RESET: 4167 ret = hclge_func_reset_notify_vf(hdev); 4168 if (ret) 4169 return ret; 4170 4171 ret = hclge_func_reset_cmd(hdev, 0); 4172 if (ret) { 4173 dev_err(&hdev->pdev->dev, 4174 "asserting function reset fail %d!\n", ret); 4175 return ret; 4176 } 4177 4178 /* After performaning pf reset, it is not necessary to do the 4179 * mailbox handling or send any command to firmware, because 4180 * any mailbox handling or command to firmware is only valid 4181 * after hclge_comm_cmd_init is called. 4182 */ 4183 set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state); 4184 hdev->rst_stats.pf_rst_cnt++; 4185 break; 4186 case HNAE3_FLR_RESET: 4187 ret = hclge_func_reset_notify_vf(hdev); 4188 if (ret) 4189 return ret; 4190 break; 4191 case HNAE3_IMP_RESET: 4192 hclge_handle_imp_error(hdev); 4193 reg_val = hclge_read_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG); 4194 hclge_write_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG, 4195 BIT(HCLGE_VECTOR0_IMP_RESET_INT_B) | reg_val); 4196 break; 4197 default: 4198 break; 4199 } 4200 4201 /* inform hardware that preparatory work is done */ 4202 msleep(HCLGE_RESET_SYNC_TIME); 4203 hclge_reset_handshake(hdev, true); 4204 dev_info(&hdev->pdev->dev, "prepare wait ok\n"); 4205 4206 return ret; 4207 } 4208 4209 static void hclge_show_rst_info(struct hclge_dev *hdev) 4210 { 4211 char *buf; 4212 4213 buf = kzalloc(HCLGE_DBG_RESET_INFO_LEN, GFP_KERNEL); 4214 if (!buf) 4215 return; 4216 4217 hclge_dbg_dump_rst_info(hdev, buf, HCLGE_DBG_RESET_INFO_LEN); 4218 4219 dev_info(&hdev->pdev->dev, "dump reset info:\n%s", buf); 4220 4221 kfree(buf); 4222 } 4223 4224 static bool hclge_reset_err_handle(struct hclge_dev *hdev) 4225 { 4226 #define MAX_RESET_FAIL_CNT 5 4227 4228 if (hdev->reset_pending) { 4229 dev_info(&hdev->pdev->dev, "Reset pending %lu\n", 4230 hdev->reset_pending); 4231 return true; 4232 } else if (hclge_read_dev(&hdev->hw, HCLGE_MISC_VECTOR_INT_STS) & 4233 HCLGE_RESET_INT_M) { 4234 dev_info(&hdev->pdev->dev, 4235 "reset failed because new reset interrupt\n"); 4236 hclge_clear_reset_cause(hdev); 4237 return false; 4238 } else if (hdev->rst_stats.reset_fail_cnt < MAX_RESET_FAIL_CNT) { 4239 hdev->rst_stats.reset_fail_cnt++; 4240 set_bit(hdev->reset_type, &hdev->reset_pending); 4241 dev_info(&hdev->pdev->dev, 4242 "re-schedule reset task(%u)\n", 4243 hdev->rst_stats.reset_fail_cnt); 4244 return true; 4245 } 4246 4247 hclge_clear_reset_cause(hdev); 4248 4249 /* recover the handshake status when reset fail */ 4250 hclge_reset_handshake(hdev, true); 4251 4252 dev_err(&hdev->pdev->dev, "Reset fail!\n"); 4253 4254 hclge_show_rst_info(hdev); 4255 4256 set_bit(HCLGE_STATE_RST_FAIL, &hdev->state); 4257 4258 return false; 4259 } 4260 4261 static void hclge_update_reset_level(struct hclge_dev *hdev) 4262 { 4263 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 4264 enum hnae3_reset_type reset_level; 4265 4266 /* reset request will not be set during reset, so clear 4267 * pending reset request to avoid unnecessary reset 4268 * caused by the same reason. 4269 */ 4270 hclge_get_reset_level(ae_dev, &hdev->reset_request); 4271 4272 /* if default_reset_request has a higher level reset request, 4273 * it should be handled as soon as possible. since some errors 4274 * need this kind of reset to fix. 4275 */ 4276 reset_level = hclge_get_reset_level(ae_dev, 4277 &hdev->default_reset_request); 4278 if (reset_level != HNAE3_NONE_RESET) 4279 set_bit(reset_level, &hdev->reset_request); 4280 } 4281 4282 static int hclge_set_rst_done(struct hclge_dev *hdev) 4283 { 4284 struct hclge_pf_rst_done_cmd *req; 4285 struct hclge_desc desc; 4286 int ret; 4287 4288 req = (struct hclge_pf_rst_done_cmd *)desc.data; 4289 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_PF_RST_DONE, false); 4290 req->pf_rst_done |= HCLGE_PF_RESET_DONE_BIT; 4291 4292 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 4293 /* To be compatible with the old firmware, which does not support 4294 * command HCLGE_OPC_PF_RST_DONE, just print a warning and 4295 * return success 4296 */ 4297 if (ret == -EOPNOTSUPP) { 4298 dev_warn(&hdev->pdev->dev, 4299 "current firmware does not support command(0x%x)!\n", 4300 HCLGE_OPC_PF_RST_DONE); 4301 return 0; 4302 } else if (ret) { 4303 dev_err(&hdev->pdev->dev, "assert PF reset done fail %d!\n", 4304 ret); 4305 } 4306 4307 return ret; 4308 } 4309 4310 static int hclge_reset_prepare_up(struct hclge_dev *hdev) 4311 { 4312 int ret = 0; 4313 4314 switch (hdev->reset_type) { 4315 case HNAE3_FUNC_RESET: 4316 case HNAE3_FLR_RESET: 4317 ret = hclge_set_all_vf_rst(hdev, false); 4318 break; 4319 case HNAE3_GLOBAL_RESET: 4320 case HNAE3_IMP_RESET: 4321 ret = hclge_set_rst_done(hdev); 4322 break; 4323 default: 4324 break; 4325 } 4326 4327 /* clear up the handshake status after re-initialize done */ 4328 hclge_reset_handshake(hdev, false); 4329 4330 return ret; 4331 } 4332 4333 static int hclge_reset_stack(struct hclge_dev *hdev) 4334 { 4335 int ret; 4336 4337 ret = hclge_notify_client(hdev, HNAE3_UNINIT_CLIENT); 4338 if (ret) 4339 return ret; 4340 4341 ret = hclge_reset_ae_dev(hdev->ae_dev); 4342 if (ret) 4343 return ret; 4344 4345 return hclge_notify_client(hdev, HNAE3_INIT_CLIENT); 4346 } 4347 4348 static int hclge_reset_prepare(struct hclge_dev *hdev) 4349 { 4350 int ret; 4351 4352 hdev->rst_stats.reset_cnt++; 4353 /* perform reset of the stack & ae device for a client */ 4354 ret = hclge_notify_roce_client(hdev, HNAE3_DOWN_CLIENT); 4355 if (ret) 4356 return ret; 4357 4358 rtnl_lock(); 4359 ret = hclge_notify_client(hdev, HNAE3_DOWN_CLIENT); 4360 rtnl_unlock(); 4361 if (ret) 4362 return ret; 4363 4364 return hclge_reset_prepare_wait(hdev); 4365 } 4366 4367 static int hclge_reset_rebuild(struct hclge_dev *hdev) 4368 { 4369 int ret; 4370 4371 hdev->rst_stats.hw_reset_done_cnt++; 4372 4373 ret = hclge_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT); 4374 if (ret) 4375 return ret; 4376 4377 rtnl_lock(); 4378 ret = hclge_reset_stack(hdev); 4379 rtnl_unlock(); 4380 if (ret) 4381 return ret; 4382 4383 hclge_clear_reset_cause(hdev); 4384 4385 ret = hclge_notify_roce_client(hdev, HNAE3_INIT_CLIENT); 4386 /* ignore RoCE notify error if it fails HCLGE_RESET_MAX_FAIL_CNT - 1 4387 * times 4388 */ 4389 if (ret && 4390 hdev->rst_stats.reset_fail_cnt < HCLGE_RESET_MAX_FAIL_CNT - 1) 4391 return ret; 4392 4393 ret = hclge_reset_prepare_up(hdev); 4394 if (ret) 4395 return ret; 4396 4397 rtnl_lock(); 4398 ret = hclge_notify_client(hdev, HNAE3_UP_CLIENT); 4399 rtnl_unlock(); 4400 if (ret) 4401 return ret; 4402 4403 ret = hclge_notify_roce_client(hdev, HNAE3_UP_CLIENT); 4404 if (ret) 4405 return ret; 4406 4407 hdev->last_reset_time = jiffies; 4408 hdev->rst_stats.reset_fail_cnt = 0; 4409 hdev->rst_stats.reset_done_cnt++; 4410 clear_bit(HCLGE_STATE_RST_FAIL, &hdev->state); 4411 4412 hclge_update_reset_level(hdev); 4413 4414 return 0; 4415 } 4416 4417 static void hclge_reset(struct hclge_dev *hdev) 4418 { 4419 if (hclge_reset_prepare(hdev)) 4420 goto err_reset; 4421 4422 if (hclge_reset_wait(hdev)) 4423 goto err_reset; 4424 4425 if (hclge_reset_rebuild(hdev)) 4426 goto err_reset; 4427 4428 return; 4429 4430 err_reset: 4431 if (hclge_reset_err_handle(hdev)) 4432 hclge_reset_task_schedule(hdev); 4433 } 4434 4435 static void hclge_reset_event(struct pci_dev *pdev, struct hnae3_handle *handle) 4436 { 4437 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); 4438 struct hclge_dev *hdev = ae_dev->priv; 4439 4440 /* We might end up getting called broadly because of 2 below cases: 4441 * 1. Recoverable error was conveyed through APEI and only way to bring 4442 * normalcy is to reset. 4443 * 2. A new reset request from the stack due to timeout 4444 * 4445 * check if this is a new reset request and we are not here just because 4446 * last reset attempt did not succeed and watchdog hit us again. We will 4447 * know this if last reset request did not occur very recently (watchdog 4448 * timer = 5*HZ, let us check after sufficiently large time, say 4*5*Hz) 4449 * In case of new request we reset the "reset level" to PF reset. 4450 * And if it is a repeat reset request of the most recent one then we 4451 * want to make sure we throttle the reset request. Therefore, we will 4452 * not allow it again before 3*HZ times. 4453 */ 4454 4455 if (time_before(jiffies, (hdev->last_reset_time + 4456 HCLGE_RESET_INTERVAL))) { 4457 mod_timer(&hdev->reset_timer, jiffies + HCLGE_RESET_INTERVAL); 4458 return; 4459 } 4460 4461 if (hdev->default_reset_request) { 4462 hdev->reset_level = 4463 hclge_get_reset_level(ae_dev, 4464 &hdev->default_reset_request); 4465 } else if (time_after(jiffies, (hdev->last_reset_time + 4 * 5 * HZ))) { 4466 hdev->reset_level = HNAE3_FUNC_RESET; 4467 } 4468 4469 dev_info(&hdev->pdev->dev, "received reset event, reset type is %d\n", 4470 hdev->reset_level); 4471 4472 /* request reset & schedule reset task */ 4473 set_bit(hdev->reset_level, &hdev->reset_request); 4474 hclge_reset_task_schedule(hdev); 4475 4476 if (hdev->reset_level < HNAE3_GLOBAL_RESET) 4477 hdev->reset_level++; 4478 } 4479 4480 static void hclge_set_def_reset_request(struct hnae3_ae_dev *ae_dev, 4481 enum hnae3_reset_type rst_type) 4482 { 4483 struct hclge_dev *hdev = ae_dev->priv; 4484 4485 set_bit(rst_type, &hdev->default_reset_request); 4486 } 4487 4488 static void hclge_reset_timer(struct timer_list *t) 4489 { 4490 struct hclge_dev *hdev = from_timer(hdev, t, reset_timer); 4491 4492 /* if default_reset_request has no value, it means that this reset 4493 * request has already be handled, so just return here 4494 */ 4495 if (!hdev->default_reset_request) 4496 return; 4497 4498 dev_info(&hdev->pdev->dev, 4499 "triggering reset in reset timer\n"); 4500 hclge_reset_event(hdev->pdev, NULL); 4501 } 4502 4503 static void hclge_reset_subtask(struct hclge_dev *hdev) 4504 { 4505 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 4506 4507 /* check if there is any ongoing reset in the hardware. This status can 4508 * be checked from reset_pending. If there is then, we need to wait for 4509 * hardware to complete reset. 4510 * a. If we are able to figure out in reasonable time that hardware 4511 * has fully resetted then, we can proceed with driver, client 4512 * reset. 4513 * b. else, we can come back later to check this status so re-sched 4514 * now. 4515 */ 4516 hdev->last_reset_time = jiffies; 4517 hdev->reset_type = hclge_get_reset_level(ae_dev, &hdev->reset_pending); 4518 if (hdev->reset_type != HNAE3_NONE_RESET) 4519 hclge_reset(hdev); 4520 4521 /* check if we got any *new* reset requests to be honored */ 4522 hdev->reset_type = hclge_get_reset_level(ae_dev, &hdev->reset_request); 4523 if (hdev->reset_type != HNAE3_NONE_RESET) 4524 hclge_do_reset(hdev); 4525 4526 hdev->reset_type = HNAE3_NONE_RESET; 4527 } 4528 4529 static void hclge_handle_err_reset_request(struct hclge_dev *hdev) 4530 { 4531 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 4532 enum hnae3_reset_type reset_type; 4533 4534 if (ae_dev->hw_err_reset_req) { 4535 reset_type = hclge_get_reset_level(ae_dev, 4536 &ae_dev->hw_err_reset_req); 4537 hclge_set_def_reset_request(ae_dev, reset_type); 4538 } 4539 4540 if (hdev->default_reset_request && ae_dev->ops->reset_event) 4541 ae_dev->ops->reset_event(hdev->pdev, NULL); 4542 4543 /* enable interrupt after error handling complete */ 4544 hclge_enable_vector(&hdev->misc_vector, true); 4545 } 4546 4547 static void hclge_handle_err_recovery(struct hclge_dev *hdev) 4548 { 4549 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 4550 4551 ae_dev->hw_err_reset_req = 0; 4552 4553 if (hclge_find_error_source(hdev)) { 4554 hclge_handle_error_info_log(ae_dev); 4555 hclge_handle_mac_tnl(hdev); 4556 hclge_handle_vf_queue_err_ras(hdev); 4557 } 4558 4559 hclge_handle_err_reset_request(hdev); 4560 } 4561 4562 static void hclge_misc_err_recovery(struct hclge_dev *hdev) 4563 { 4564 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 4565 struct device *dev = &hdev->pdev->dev; 4566 u32 msix_sts_reg; 4567 4568 msix_sts_reg = hclge_read_dev(&hdev->hw, HCLGE_MISC_VECTOR_INT_STS); 4569 if (msix_sts_reg & HCLGE_VECTOR0_REG_MSIX_MASK) { 4570 if (hclge_handle_hw_msix_error 4571 (hdev, &hdev->default_reset_request)) 4572 dev_info(dev, "received msix interrupt 0x%x\n", 4573 msix_sts_reg); 4574 } 4575 4576 hclge_handle_hw_ras_error(ae_dev); 4577 4578 hclge_handle_err_reset_request(hdev); 4579 } 4580 4581 static void hclge_errhand_service_task(struct hclge_dev *hdev) 4582 { 4583 if (!test_and_clear_bit(HCLGE_STATE_ERR_SERVICE_SCHED, &hdev->state)) 4584 return; 4585 4586 if (hnae3_dev_ras_imp_supported(hdev)) 4587 hclge_handle_err_recovery(hdev); 4588 else 4589 hclge_misc_err_recovery(hdev); 4590 } 4591 4592 static void hclge_reset_service_task(struct hclge_dev *hdev) 4593 { 4594 if (!test_and_clear_bit(HCLGE_STATE_RST_SERVICE_SCHED, &hdev->state)) 4595 return; 4596 4597 if (time_is_before_jiffies(hdev->last_rst_scheduled + 4598 HCLGE_RESET_SCHED_TIMEOUT)) 4599 dev_warn(&hdev->pdev->dev, 4600 "reset service task is scheduled after %ums on cpu%u!\n", 4601 jiffies_to_msecs(jiffies - hdev->last_rst_scheduled), 4602 smp_processor_id()); 4603 4604 down(&hdev->reset_sem); 4605 set_bit(HCLGE_STATE_RST_HANDLING, &hdev->state); 4606 4607 hclge_reset_subtask(hdev); 4608 4609 clear_bit(HCLGE_STATE_RST_HANDLING, &hdev->state); 4610 up(&hdev->reset_sem); 4611 } 4612 4613 static void hclge_update_vport_alive(struct hclge_dev *hdev) 4614 { 4615 #define HCLGE_ALIVE_SECONDS_NORMAL 8 4616 4617 unsigned long alive_time = HCLGE_ALIVE_SECONDS_NORMAL * HZ; 4618 int i; 4619 4620 /* start from vport 1 for PF is always alive */ 4621 for (i = 1; i < hdev->num_alloc_vport; i++) { 4622 struct hclge_vport *vport = &hdev->vport[i]; 4623 4624 if (!test_bit(HCLGE_VPORT_STATE_INITED, &vport->state) || 4625 !test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state)) 4626 continue; 4627 if (time_after(jiffies, vport->last_active_jiffies + 4628 alive_time)) { 4629 clear_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state); 4630 dev_warn(&hdev->pdev->dev, 4631 "VF %u heartbeat timeout\n", 4632 i - HCLGE_VF_VPORT_START_NUM); 4633 } 4634 } 4635 } 4636 4637 static void hclge_periodic_service_task(struct hclge_dev *hdev) 4638 { 4639 unsigned long delta = round_jiffies_relative(HZ); 4640 4641 if (test_bit(HCLGE_STATE_RST_FAIL, &hdev->state)) 4642 return; 4643 4644 /* Always handle the link updating to make sure link state is 4645 * updated when it is triggered by mbx. 4646 */ 4647 hclge_update_link_status(hdev); 4648 hclge_sync_mac_table(hdev); 4649 hclge_sync_promisc_mode(hdev); 4650 hclge_sync_fd_table(hdev); 4651 4652 if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) { 4653 delta = jiffies - hdev->last_serv_processed; 4654 4655 if (delta < round_jiffies_relative(HZ)) { 4656 delta = round_jiffies_relative(HZ) - delta; 4657 goto out; 4658 } 4659 } 4660 4661 hdev->serv_processed_cnt++; 4662 hclge_update_vport_alive(hdev); 4663 4664 if (test_bit(HCLGE_STATE_DOWN, &hdev->state)) { 4665 hdev->last_serv_processed = jiffies; 4666 goto out; 4667 } 4668 4669 if (!(hdev->serv_processed_cnt % HCLGE_STATS_TIMER_INTERVAL)) 4670 hclge_update_stats_for_all(hdev); 4671 4672 hclge_update_port_info(hdev); 4673 hclge_sync_vlan_filter(hdev); 4674 4675 if (!(hdev->serv_processed_cnt % HCLGE_ARFS_EXPIRE_INTERVAL)) 4676 hclge_rfs_filter_expire(hdev); 4677 4678 hdev->last_serv_processed = jiffies; 4679 4680 out: 4681 hclge_task_schedule(hdev, delta); 4682 } 4683 4684 static void hclge_ptp_service_task(struct hclge_dev *hdev) 4685 { 4686 unsigned long flags; 4687 4688 if (!test_bit(HCLGE_STATE_PTP_EN, &hdev->state) || 4689 !test_bit(HCLGE_STATE_PTP_TX_HANDLING, &hdev->state) || 4690 !time_is_before_jiffies(hdev->ptp->tx_start + HZ)) 4691 return; 4692 4693 /* to prevent concurrence with the irq handler */ 4694 spin_lock_irqsave(&hdev->ptp->lock, flags); 4695 4696 /* check HCLGE_STATE_PTP_TX_HANDLING here again, since the irq 4697 * handler may handle it just before spin_lock_irqsave(). 4698 */ 4699 if (test_bit(HCLGE_STATE_PTP_TX_HANDLING, &hdev->state)) 4700 hclge_ptp_clean_tx_hwts(hdev); 4701 4702 spin_unlock_irqrestore(&hdev->ptp->lock, flags); 4703 } 4704 4705 static void hclge_service_task(struct work_struct *work) 4706 { 4707 struct hclge_dev *hdev = 4708 container_of(work, struct hclge_dev, service_task.work); 4709 4710 hclge_errhand_service_task(hdev); 4711 hclge_reset_service_task(hdev); 4712 hclge_ptp_service_task(hdev); 4713 hclge_mailbox_service_task(hdev); 4714 hclge_periodic_service_task(hdev); 4715 4716 /* Handle error recovery, reset and mbx again in case periodical task 4717 * delays the handling by calling hclge_task_schedule() in 4718 * hclge_periodic_service_task(). 4719 */ 4720 hclge_errhand_service_task(hdev); 4721 hclge_reset_service_task(hdev); 4722 hclge_mailbox_service_task(hdev); 4723 } 4724 4725 struct hclge_vport *hclge_get_vport(struct hnae3_handle *handle) 4726 { 4727 /* VF handle has no client */ 4728 if (!handle->client) 4729 return container_of(handle, struct hclge_vport, nic); 4730 else if (handle->client->type == HNAE3_CLIENT_ROCE) 4731 return container_of(handle, struct hclge_vport, roce); 4732 else 4733 return container_of(handle, struct hclge_vport, nic); 4734 } 4735 4736 static void hclge_get_vector_info(struct hclge_dev *hdev, u16 idx, 4737 struct hnae3_vector_info *vector_info) 4738 { 4739 #define HCLGE_PF_MAX_VECTOR_NUM_DEV_V2 64 4740 4741 vector_info->vector = pci_irq_vector(hdev->pdev, idx); 4742 4743 /* need an extend offset to config vector >= 64 */ 4744 if (idx - 1 < HCLGE_PF_MAX_VECTOR_NUM_DEV_V2) 4745 vector_info->io_addr = hdev->hw.hw.io_base + 4746 HCLGE_VECTOR_REG_BASE + 4747 (idx - 1) * HCLGE_VECTOR_REG_OFFSET; 4748 else 4749 vector_info->io_addr = hdev->hw.hw.io_base + 4750 HCLGE_VECTOR_EXT_REG_BASE + 4751 (idx - 1) / HCLGE_PF_MAX_VECTOR_NUM_DEV_V2 * 4752 HCLGE_VECTOR_REG_OFFSET_H + 4753 (idx - 1) % HCLGE_PF_MAX_VECTOR_NUM_DEV_V2 * 4754 HCLGE_VECTOR_REG_OFFSET; 4755 4756 hdev->vector_status[idx] = hdev->vport[0].vport_id; 4757 hdev->vector_irq[idx] = vector_info->vector; 4758 } 4759 4760 static int hclge_get_vector(struct hnae3_handle *handle, u16 vector_num, 4761 struct hnae3_vector_info *vector_info) 4762 { 4763 struct hclge_vport *vport = hclge_get_vport(handle); 4764 struct hnae3_vector_info *vector = vector_info; 4765 struct hclge_dev *hdev = vport->back; 4766 int alloc = 0; 4767 u16 i = 0; 4768 u16 j; 4769 4770 vector_num = min_t(u16, hdev->num_nic_msi - 1, vector_num); 4771 vector_num = min(hdev->num_msi_left, vector_num); 4772 4773 for (j = 0; j < vector_num; j++) { 4774 while (++i < hdev->num_nic_msi) { 4775 if (hdev->vector_status[i] == HCLGE_INVALID_VPORT) { 4776 hclge_get_vector_info(hdev, i, vector); 4777 vector++; 4778 alloc++; 4779 4780 break; 4781 } 4782 } 4783 } 4784 hdev->num_msi_left -= alloc; 4785 hdev->num_msi_used += alloc; 4786 4787 return alloc; 4788 } 4789 4790 static int hclge_get_vector_index(struct hclge_dev *hdev, int vector) 4791 { 4792 int i; 4793 4794 for (i = 0; i < hdev->num_msi; i++) 4795 if (vector == hdev->vector_irq[i]) 4796 return i; 4797 4798 return -EINVAL; 4799 } 4800 4801 static int hclge_put_vector(struct hnae3_handle *handle, int vector) 4802 { 4803 struct hclge_vport *vport = hclge_get_vport(handle); 4804 struct hclge_dev *hdev = vport->back; 4805 int vector_id; 4806 4807 vector_id = hclge_get_vector_index(hdev, vector); 4808 if (vector_id < 0) { 4809 dev_err(&hdev->pdev->dev, 4810 "Get vector index fail. vector = %d\n", vector); 4811 return vector_id; 4812 } 4813 4814 hclge_free_vector(hdev, vector_id); 4815 4816 return 0; 4817 } 4818 4819 static int hclge_get_rss(struct hnae3_handle *handle, u32 *indir, 4820 u8 *key, u8 *hfunc) 4821 { 4822 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev); 4823 struct hclge_vport *vport = hclge_get_vport(handle); 4824 struct hclge_comm_rss_cfg *rss_cfg = &vport->back->rss_cfg; 4825 4826 hclge_comm_get_rss_hash_info(rss_cfg, key, hfunc); 4827 4828 hclge_comm_get_rss_indir_tbl(rss_cfg, indir, 4829 ae_dev->dev_specs.rss_ind_tbl_size); 4830 4831 return 0; 4832 } 4833 4834 static int hclge_set_rss(struct hnae3_handle *handle, const u32 *indir, 4835 const u8 *key, const u8 hfunc) 4836 { 4837 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev); 4838 struct hclge_vport *vport = hclge_get_vport(handle); 4839 struct hclge_dev *hdev = vport->back; 4840 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg; 4841 int ret, i; 4842 4843 ret = hclge_comm_set_rss_hash_key(rss_cfg, &hdev->hw.hw, key, hfunc); 4844 if (ret) { 4845 dev_err(&hdev->pdev->dev, "invalid hfunc type %u\n", hfunc); 4846 return ret; 4847 } 4848 4849 /* Update the shadow RSS table with user specified qids */ 4850 for (i = 0; i < ae_dev->dev_specs.rss_ind_tbl_size; i++) 4851 rss_cfg->rss_indirection_tbl[i] = indir[i]; 4852 4853 /* Update the hardware */ 4854 return hclge_comm_set_rss_indir_table(ae_dev, &hdev->hw.hw, 4855 rss_cfg->rss_indirection_tbl); 4856 } 4857 4858 static int hclge_set_rss_tuple(struct hnae3_handle *handle, 4859 struct ethtool_rxnfc *nfc) 4860 { 4861 struct hclge_vport *vport = hclge_get_vport(handle); 4862 struct hclge_dev *hdev = vport->back; 4863 int ret; 4864 4865 ret = hclge_comm_set_rss_tuple(hdev->ae_dev, &hdev->hw.hw, 4866 &hdev->rss_cfg, nfc); 4867 if (ret) { 4868 dev_err(&hdev->pdev->dev, 4869 "failed to set rss tuple, ret = %d.\n", ret); 4870 return ret; 4871 } 4872 4873 return 0; 4874 } 4875 4876 static int hclge_get_rss_tuple(struct hnae3_handle *handle, 4877 struct ethtool_rxnfc *nfc) 4878 { 4879 struct hclge_vport *vport = hclge_get_vport(handle); 4880 u8 tuple_sets; 4881 int ret; 4882 4883 nfc->data = 0; 4884 4885 ret = hclge_comm_get_rss_tuple(&vport->back->rss_cfg, nfc->flow_type, 4886 &tuple_sets); 4887 if (ret || !tuple_sets) 4888 return ret; 4889 4890 nfc->data = hclge_comm_convert_rss_tuple(tuple_sets); 4891 4892 return 0; 4893 } 4894 4895 static int hclge_get_tc_size(struct hnae3_handle *handle) 4896 { 4897 struct hclge_vport *vport = hclge_get_vport(handle); 4898 struct hclge_dev *hdev = vport->back; 4899 4900 return hdev->pf_rss_size_max; 4901 } 4902 4903 static int hclge_init_rss_tc_mode(struct hclge_dev *hdev) 4904 { 4905 struct hnae3_ae_dev *ae_dev = hdev->ae_dev; 4906 struct hclge_vport *vport = hdev->vport; 4907 u16 tc_offset[HCLGE_MAX_TC_NUM] = {0}; 4908 u16 tc_valid[HCLGE_MAX_TC_NUM] = {0}; 4909 u16 tc_size[HCLGE_MAX_TC_NUM] = {0}; 4910 struct hnae3_tc_info *tc_info; 4911 u16 roundup_size; 4912 u16 rss_size; 4913 int i; 4914 4915 tc_info = &vport->nic.kinfo.tc_info; 4916 for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { 4917 rss_size = tc_info->tqp_count[i]; 4918 tc_valid[i] = 0; 4919 4920 if (!(hdev->hw_tc_map & BIT(i))) 4921 continue; 4922 4923 /* tc_size set to hardware is the log2 of roundup power of two 4924 * of rss_size, the acutal queue size is limited by indirection 4925 * table. 4926 */ 4927 if (rss_size > ae_dev->dev_specs.rss_ind_tbl_size || 4928 rss_size == 0) { 4929 dev_err(&hdev->pdev->dev, 4930 "Configure rss tc size failed, invalid TC_SIZE = %u\n", 4931 rss_size); 4932 return -EINVAL; 4933 } 4934 4935 roundup_size = roundup_pow_of_two(rss_size); 4936 roundup_size = ilog2(roundup_size); 4937 4938 tc_valid[i] = 1; 4939 tc_size[i] = roundup_size; 4940 tc_offset[i] = tc_info->tqp_offset[i]; 4941 } 4942 4943 return hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset, tc_valid, 4944 tc_size); 4945 } 4946 4947 int hclge_rss_init_hw(struct hclge_dev *hdev) 4948 { 4949 u16 *rss_indir = hdev->rss_cfg.rss_indirection_tbl; 4950 u8 *key = hdev->rss_cfg.rss_hash_key; 4951 u8 hfunc = hdev->rss_cfg.rss_algo; 4952 int ret; 4953 4954 ret = hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw, 4955 rss_indir); 4956 if (ret) 4957 return ret; 4958 4959 ret = hclge_comm_set_rss_algo_key(&hdev->hw.hw, hfunc, key); 4960 if (ret) 4961 return ret; 4962 4963 ret = hclge_comm_set_rss_input_tuple(&hdev->hw.hw, &hdev->rss_cfg); 4964 if (ret) 4965 return ret; 4966 4967 return hclge_init_rss_tc_mode(hdev); 4968 } 4969 4970 int hclge_bind_ring_with_vector(struct hclge_vport *vport, 4971 int vector_id, bool en, 4972 struct hnae3_ring_chain_node *ring_chain) 4973 { 4974 struct hclge_dev *hdev = vport->back; 4975 struct hnae3_ring_chain_node *node; 4976 struct hclge_desc desc; 4977 struct hclge_ctrl_vector_chain_cmd *req = 4978 (struct hclge_ctrl_vector_chain_cmd *)desc.data; 4979 enum hclge_comm_cmd_status status; 4980 enum hclge_opcode_type op; 4981 u16 tqp_type_and_id; 4982 int i; 4983 4984 op = en ? HCLGE_OPC_ADD_RING_TO_VECTOR : HCLGE_OPC_DEL_RING_TO_VECTOR; 4985 hclge_cmd_setup_basic_desc(&desc, op, false); 4986 req->int_vector_id_l = hnae3_get_field(vector_id, 4987 HCLGE_VECTOR_ID_L_M, 4988 HCLGE_VECTOR_ID_L_S); 4989 req->int_vector_id_h = hnae3_get_field(vector_id, 4990 HCLGE_VECTOR_ID_H_M, 4991 HCLGE_VECTOR_ID_H_S); 4992 4993 i = 0; 4994 for (node = ring_chain; node; node = node->next) { 4995 tqp_type_and_id = le16_to_cpu(req->tqp_type_and_id[i]); 4996 hnae3_set_field(tqp_type_and_id, HCLGE_INT_TYPE_M, 4997 HCLGE_INT_TYPE_S, 4998 hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B)); 4999 hnae3_set_field(tqp_type_and_id, HCLGE_TQP_ID_M, 5000 HCLGE_TQP_ID_S, node->tqp_index); 5001 hnae3_set_field(tqp_type_and_id, HCLGE_INT_GL_IDX_M, 5002 HCLGE_INT_GL_IDX_S, 5003 hnae3_get_field(node->int_gl_idx, 5004 HNAE3_RING_GL_IDX_M, 5005 HNAE3_RING_GL_IDX_S)); 5006 req->tqp_type_and_id[i] = cpu_to_le16(tqp_type_and_id); 5007 if (++i >= HCLGE_VECTOR_ELEMENTS_PER_CMD) { 5008 req->int_cause_num = HCLGE_VECTOR_ELEMENTS_PER_CMD; 5009 req->vfid = vport->vport_id; 5010 5011 status = hclge_cmd_send(&hdev->hw, &desc, 1); 5012 if (status) { 5013 dev_err(&hdev->pdev->dev, 5014 "Map TQP fail, status is %d.\n", 5015 status); 5016 return -EIO; 5017 } 5018 i = 0; 5019 5020 hclge_cmd_setup_basic_desc(&desc, 5021 op, 5022 false); 5023 req->int_vector_id_l = 5024 hnae3_get_field(vector_id, 5025 HCLGE_VECTOR_ID_L_M, 5026 HCLGE_VECTOR_ID_L_S); 5027 req->int_vector_id_h = 5028 hnae3_get_field(vector_id, 5029 HCLGE_VECTOR_ID_H_M, 5030 HCLGE_VECTOR_ID_H_S); 5031 } 5032 } 5033 5034 if (i > 0) { 5035 req->int_cause_num = i; 5036 req->vfid = vport->vport_id; 5037 status = hclge_cmd_send(&hdev->hw, &desc, 1); 5038 if (status) { 5039 dev_err(&hdev->pdev->dev, 5040 "Map TQP fail, status is %d.\n", status); 5041 return -EIO; 5042 } 5043 } 5044 5045 return 0; 5046 } 5047 5048 static int hclge_map_ring_to_vector(struct hnae3_handle *handle, int vector, 5049 struct hnae3_ring_chain_node *ring_chain) 5050 { 5051 struct hclge_vport *vport = hclge_get_vport(handle); 5052 struct hclge_dev *hdev = vport->back; 5053 int vector_id; 5054 5055 vector_id = hclge_get_vector_index(hdev, vector); 5056 if (vector_id < 0) { 5057 dev_err(&hdev->pdev->dev, 5058 "failed to get vector index. vector=%d\n", vector); 5059 return vector_id; 5060 } 5061 5062 return hclge_bind_ring_with_vector(vport, vector_id, true, ring_chain); 5063 } 5064 5065 static int hclge_unmap_ring_frm_vector(struct hnae3_handle *handle, int vector, 5066 struct hnae3_ring_chain_node *ring_chain) 5067 { 5068 struct hclge_vport *vport = hclge_get_vport(handle); 5069 struct hclge_dev *hdev = vport->back; 5070 int vector_id, ret; 5071 5072 if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state)) 5073 return 0; 5074 5075 vector_id = hclge_get_vector_index(hdev, vector); 5076 if (vector_id < 0) { 5077 dev_err(&handle->pdev->dev, 5078 "Get vector index fail. ret =%d\n", vector_id); 5079 return vector_id; 5080 } 5081 5082 ret = hclge_bind_ring_with_vector(vport, vector_id, false, ring_chain); 5083 if (ret) 5084 dev_err(&handle->pdev->dev, 5085 "Unmap ring from vector fail. vectorid=%d, ret =%d\n", 5086 vector_id, ret); 5087 5088 return ret; 5089 } 5090 5091 static int hclge_cmd_set_promisc_mode(struct hclge_dev *hdev, u8 vf_id, 5092 bool en_uc, bool en_mc, bool en_bc) 5093 { 5094 struct hclge_vport *vport = &hdev->vport[vf_id]; 5095 struct hnae3_handle *handle = &vport->nic; 5096 struct hclge_promisc_cfg_cmd *req; 5097 struct hclge_desc desc; 5098 bool uc_tx_en = en_uc; 5099 u8 promisc_cfg = 0; 5100 int ret; 5101 5102 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_PROMISC_MODE, false); 5103 5104 req = (struct hclge_promisc_cfg_cmd *)desc.data; 5105 req->vf_id = vf_id; 5106 5107 if (test_bit(HNAE3_PFLAG_LIMIT_PROMISC, &handle->priv_flags)) 5108 uc_tx_en = false; 5109 5110 hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_UC_RX_EN, en_uc ? 1 : 0); 5111 hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_MC_RX_EN, en_mc ? 1 : 0); 5112 hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_BC_RX_EN, en_bc ? 1 : 0); 5113 hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_UC_TX_EN, uc_tx_en ? 1 : 0); 5114 hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_MC_TX_EN, en_mc ? 1 : 0); 5115 hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_BC_TX_EN, en_bc ? 1 : 0); 5116 req->extend_promisc = promisc_cfg; 5117 5118 /* to be compatible with DEVICE_VERSION_V1/2 */ 5119 promisc_cfg = 0; 5120 hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_EN_UC, en_uc ? 1 : 0); 5121 hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_EN_MC, en_mc ? 1 : 0); 5122 hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_EN_BC, en_bc ? 1 : 0); 5123 hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_TX_EN, 1); 5124 hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_RX_EN, 1); 5125 req->promisc = promisc_cfg; 5126 5127 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 5128 if (ret) 5129 dev_err(&hdev->pdev->dev, 5130 "failed to set vport %u promisc mode, ret = %d.\n", 5131 vf_id, ret); 5132 5133 return ret; 5134 } 5135 5136 int hclge_set_vport_promisc_mode(struct hclge_vport *vport, bool en_uc_pmc, 5137 bool en_mc_pmc, bool en_bc_pmc) 5138 { 5139 return hclge_cmd_set_promisc_mode(vport->back, vport->vport_id, 5140 en_uc_pmc, en_mc_pmc, en_bc_pmc); 5141 } 5142 5143 static int hclge_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc, 5144 bool en_mc_pmc) 5145 { 5146 struct hclge_vport *vport = hclge_get_vport(handle); 5147 struct hclge_dev *hdev = vport->back; 5148 bool en_bc_pmc = true; 5149 5150 /* For device whose version below V2, if broadcast promisc enabled, 5151 * vlan filter is always bypassed. So broadcast promisc should be 5152 * disabled until user enable promisc mode 5153 */ 5154 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2) 5155 en_bc_pmc = handle->netdev_flags & HNAE3_BPE ? true : false; 5156 5157 return hclge_set_vport_promisc_mode(vport, en_uc_pmc, en_mc_pmc, 5158 en_bc_pmc); 5159 } 5160 5161 static void hclge_request_update_promisc_mode(struct hnae3_handle *handle) 5162 { 5163 struct hclge_vport *vport = hclge_get_vport(handle); 5164 5165 set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, &vport->state); 5166 } 5167 5168 static void hclge_sync_fd_state(struct hclge_dev *hdev) 5169 { 5170 if (hlist_empty(&hdev->fd_rule_list)) 5171 hdev->fd_active_type = HCLGE_FD_RULE_NONE; 5172 } 5173 5174 static void hclge_fd_inc_rule_cnt(struct hclge_dev *hdev, u16 location) 5175 { 5176 if (!test_bit(location, hdev->fd_bmap)) { 5177 set_bit(location, hdev->fd_bmap); 5178 hdev->hclge_fd_rule_num++; 5179 } 5180 } 5181 5182 static void hclge_fd_dec_rule_cnt(struct hclge_dev *hdev, u16 location) 5183 { 5184 if (test_bit(location, hdev->fd_bmap)) { 5185 clear_bit(location, hdev->fd_bmap); 5186 hdev->hclge_fd_rule_num--; 5187 } 5188 } 5189 5190 static void hclge_fd_free_node(struct hclge_dev *hdev, 5191 struct hclge_fd_rule *rule) 5192 { 5193 hlist_del(&rule->rule_node); 5194 kfree(rule); 5195 hclge_sync_fd_state(hdev); 5196 } 5197 5198 static void hclge_update_fd_rule_node(struct hclge_dev *hdev, 5199 struct hclge_fd_rule *old_rule, 5200 struct hclge_fd_rule *new_rule, 5201 enum HCLGE_FD_NODE_STATE state) 5202 { 5203 switch (state) { 5204 case HCLGE_FD_TO_ADD: 5205 case HCLGE_FD_ACTIVE: 5206 /* 1) if the new state is TO_ADD, just replace the old rule 5207 * with the same location, no matter its state, because the 5208 * new rule will be configured to the hardware. 5209 * 2) if the new state is ACTIVE, it means the new rule 5210 * has been configured to the hardware, so just replace 5211 * the old rule node with the same location. 5212 * 3) for it doesn't add a new node to the list, so it's 5213 * unnecessary to update the rule number and fd_bmap. 5214 */ 5215 new_rule->rule_node.next = old_rule->rule_node.next; 5216 new_rule->rule_node.pprev = old_rule->rule_node.pprev; 5217 memcpy(old_rule, new_rule, sizeof(*old_rule)); 5218 kfree(new_rule); 5219 break; 5220 case HCLGE_FD_DELETED: 5221 hclge_fd_dec_rule_cnt(hdev, old_rule->location); 5222 hclge_fd_free_node(hdev, old_rule); 5223 break; 5224 case HCLGE_FD_TO_DEL: 5225 /* if new request is TO_DEL, and old rule is existent 5226 * 1) the state of old rule is TO_DEL, we need do nothing, 5227 * because we delete rule by location, other rule content 5228 * is unncessary. 5229 * 2) the state of old rule is ACTIVE, we need to change its 5230 * state to TO_DEL, so the rule will be deleted when periodic 5231 * task being scheduled. 5232 * 3) the state of old rule is TO_ADD, it means the rule hasn't 5233 * been added to hardware, so we just delete the rule node from 5234 * fd_rule_list directly. 5235 */ 5236 if (old_rule->state == HCLGE_FD_TO_ADD) { 5237 hclge_fd_dec_rule_cnt(hdev, old_rule->location); 5238 hclge_fd_free_node(hdev, old_rule); 5239 return; 5240 } 5241 old_rule->state = HCLGE_FD_TO_DEL; 5242 break; 5243 } 5244 } 5245 5246 static struct hclge_fd_rule *hclge_find_fd_rule(struct hlist_head *hlist, 5247 u16 location, 5248 struct hclge_fd_rule **parent) 5249 { 5250 struct hclge_fd_rule *rule; 5251 struct hlist_node *node; 5252 5253 hlist_for_each_entry_safe(rule, node, hlist, rule_node) { 5254 if (rule->location == location) 5255 return rule; 5256 else if (rule->location > location) 5257 return NULL; 5258 /* record the parent node, use to keep the nodes in fd_rule_list 5259 * in ascend order. 5260 */ 5261 *parent = rule; 5262 } 5263 5264 return NULL; 5265 } 5266 5267 /* insert fd rule node in ascend order according to rule->location */ 5268 static void hclge_fd_insert_rule_node(struct hlist_head *hlist, 5269 struct hclge_fd_rule *rule, 5270 struct hclge_fd_rule *parent) 5271 { 5272 INIT_HLIST_NODE(&rule->rule_node); 5273 5274 if (parent) 5275 hlist_add_behind(&rule->rule_node, &parent->rule_node); 5276 else 5277 hlist_add_head(&rule->rule_node, hlist); 5278 } 5279 5280 static int hclge_fd_set_user_def_cmd(struct hclge_dev *hdev, 5281 struct hclge_fd_user_def_cfg *cfg) 5282 { 5283 struct hclge_fd_user_def_cfg_cmd *req; 5284 struct hclge_desc desc; 5285 u16 data = 0; 5286 int ret; 5287 5288 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_USER_DEF_OP, false); 5289 5290 req = (struct hclge_fd_user_def_cfg_cmd *)desc.data; 5291 5292 hnae3_set_bit(data, HCLGE_FD_USER_DEF_EN_B, cfg[0].ref_cnt > 0); 5293 hnae3_set_field(data, HCLGE_FD_USER_DEF_OFT_M, 5294 HCLGE_FD_USER_DEF_OFT_S, cfg[0].offset); 5295 req->ol2_cfg = cpu_to_le16(data); 5296 5297 data = 0; 5298 hnae3_set_bit(data, HCLGE_FD_USER_DEF_EN_B, cfg[1].ref_cnt > 0); 5299 hnae3_set_field(data, HCLGE_FD_USER_DEF_OFT_M, 5300 HCLGE_FD_USER_DEF_OFT_S, cfg[1].offset); 5301 req->ol3_cfg = cpu_to_le16(data); 5302 5303 data = 0; 5304 hnae3_set_bit(data, HCLGE_FD_USER_DEF_EN_B, cfg[2].ref_cnt > 0); 5305 hnae3_set_field(data, HCLGE_FD_USER_DEF_OFT_M, 5306 HCLGE_FD_USER_DEF_OFT_S, cfg[2].offset); 5307 req->ol4_cfg = cpu_to_le16(data); 5308 5309 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 5310 if (ret) 5311 dev_err(&hdev->pdev->dev, 5312 "failed to set fd user def data, ret= %d\n", ret); 5313 return ret; 5314 } 5315 5316 static void hclge_sync_fd_user_def_cfg(struct hclge_dev *hdev, bool locked) 5317 { 5318 int ret; 5319 5320 if (!test_and_clear_bit(HCLGE_STATE_FD_USER_DEF_CHANGED, &hdev->state)) 5321 return; 5322 5323 if (!locked) 5324 spin_lock_bh(&hdev->fd_rule_lock); 5325 5326 ret = hclge_fd_set_user_def_cmd(hdev, hdev->fd_cfg.user_def_cfg); 5327 if (ret) 5328 set_bit(HCLGE_STATE_FD_USER_DEF_CHANGED, &hdev->state); 5329 5330 if (!locked) 5331 spin_unlock_bh(&hdev->fd_rule_lock); 5332 } 5333 5334 static int hclge_fd_check_user_def_refcnt(struct hclge_dev *hdev, 5335 struct hclge_fd_rule *rule) 5336 { 5337 struct hlist_head *hlist = &hdev->fd_rule_list; 5338 struct hclge_fd_rule *fd_rule, *parent = NULL; 5339 struct hclge_fd_user_def_info *info, *old_info; 5340 struct hclge_fd_user_def_cfg *cfg; 5341 5342 if (!rule || rule->rule_type != HCLGE_FD_EP_ACTIVE || 5343 rule->ep.user_def.layer == HCLGE_FD_USER_DEF_NONE) 5344 return 0; 5345 5346 /* for valid layer is start from 1, so need minus 1 to get the cfg */ 5347 cfg = &hdev->fd_cfg.user_def_cfg[rule->ep.user_def.layer - 1]; 5348 info = &rule->ep.user_def; 5349 5350 if (!cfg->ref_cnt || cfg->offset == info->offset) 5351 return 0; 5352 5353 if (cfg->ref_cnt > 1) 5354 goto error; 5355 5356 fd_rule = hclge_find_fd_rule(hlist, rule->location, &parent); 5357 if (fd_rule) { 5358 old_info = &fd_rule->ep.user_def; 5359 if (info->layer == old_info->layer) 5360 return 0; 5361 } 5362 5363 error: 5364 dev_err(&hdev->pdev->dev, 5365 "No available offset for layer%d fd rule, each layer only support one user def offset.\n", 5366 info->layer + 1); 5367 return -ENOSPC; 5368 } 5369 5370 static void hclge_fd_inc_user_def_refcnt(struct hclge_dev *hdev, 5371 struct hclge_fd_rule *rule) 5372 { 5373 struct hclge_fd_user_def_cfg *cfg; 5374 5375 if (!rule || rule->rule_type != HCLGE_FD_EP_ACTIVE || 5376 rule->ep.user_def.layer == HCLGE_FD_USER_DEF_NONE) 5377 return; 5378 5379 cfg = &hdev->fd_cfg.user_def_cfg[rule->ep.user_def.layer - 1]; 5380 if (!cfg->ref_cnt) { 5381 cfg->offset = rule->ep.user_def.offset; 5382 set_bit(HCLGE_STATE_FD_USER_DEF_CHANGED, &hdev->state); 5383 } 5384 cfg->ref_cnt++; 5385 } 5386 5387 static void hclge_fd_dec_user_def_refcnt(struct hclge_dev *hdev, 5388 struct hclge_fd_rule *rule) 5389 { 5390 struct hclge_fd_user_def_cfg *cfg; 5391 5392 if (!rule || rule->rule_type != HCLGE_FD_EP_ACTIVE || 5393 rule->ep.user_def.layer == HCLGE_FD_USER_DEF_NONE) 5394 return; 5395 5396 cfg = &hdev->fd_cfg.user_def_cfg[rule->ep.user_def.layer - 1]; 5397 if (!cfg->ref_cnt) 5398 return; 5399 5400 cfg->ref_cnt--; 5401 if (!cfg->ref_cnt) { 5402 cfg->offset = 0; 5403 set_bit(HCLGE_STATE_FD_USER_DEF_CHANGED, &hdev->state); 5404 } 5405 } 5406 5407 static void hclge_update_fd_list(struct hclge_dev *hdev, 5408 enum HCLGE_FD_NODE_STATE state, u16 location, 5409 struct hclge_fd_rule *new_rule) 5410 { 5411 struct hlist_head *hlist = &hdev->fd_rule_list; 5412 struct hclge_fd_rule *fd_rule, *parent = NULL; 5413 5414 fd_rule = hclge_find_fd_rule(hlist, location, &parent); 5415 if (fd_rule) { 5416 hclge_fd_dec_user_def_refcnt(hdev, fd_rule); 5417 if (state == HCLGE_FD_ACTIVE) 5418 hclge_fd_inc_user_def_refcnt(hdev, new_rule); 5419 hclge_sync_fd_user_def_cfg(hdev, true); 5420 5421 hclge_update_fd_rule_node(hdev, fd_rule, new_rule, state); 5422 return; 5423 } 5424 5425 /* it's unlikely to fail here, because we have checked the rule 5426 * exist before. 5427 */ 5428 if (unlikely(state == HCLGE_FD_TO_DEL || state == HCLGE_FD_DELETED)) { 5429 dev_warn(&hdev->pdev->dev, 5430 "failed to delete fd rule %u, it's inexistent\n", 5431 location); 5432 return; 5433 } 5434 5435 hclge_fd_inc_user_def_refcnt(hdev, new_rule); 5436 hclge_sync_fd_user_def_cfg(hdev, true); 5437 5438 hclge_fd_insert_rule_node(hlist, new_rule, parent); 5439 hclge_fd_inc_rule_cnt(hdev, new_rule->location); 5440 5441 if (state == HCLGE_FD_TO_ADD) { 5442 set_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state); 5443 hclge_task_schedule(hdev, 0); 5444 } 5445 } 5446 5447 static int hclge_get_fd_mode(struct hclge_dev *hdev, u8 *fd_mode) 5448 { 5449 struct hclge_get_fd_mode_cmd *req; 5450 struct hclge_desc desc; 5451 int ret; 5452 5453 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_MODE_CTRL, true); 5454 5455 req = (struct hclge_get_fd_mode_cmd *)desc.data; 5456 5457 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 5458 if (ret) { 5459 dev_err(&hdev->pdev->dev, "get fd mode fail, ret=%d\n", ret); 5460 return ret; 5461 } 5462 5463 *fd_mode = req->mode; 5464 5465 return ret; 5466 } 5467 5468 static int hclge_get_fd_allocation(struct hclge_dev *hdev, 5469 u32 *stage1_entry_num, 5470 u32 *stage2_entry_num, 5471 u16 *stage1_counter_num, 5472 u16 *stage2_counter_num) 5473 { 5474 struct hclge_get_fd_allocation_cmd *req; 5475 struct hclge_desc desc; 5476 int ret; 5477 5478 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_GET_ALLOCATION, true); 5479 5480 req = (struct hclge_get_fd_allocation_cmd *)desc.data; 5481 5482 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 5483 if (ret) { 5484 dev_err(&hdev->pdev->dev, "query fd allocation fail, ret=%d\n", 5485 ret); 5486 return ret; 5487 } 5488 5489 *stage1_entry_num = le32_to_cpu(req->stage1_entry_num); 5490 *stage2_entry_num = le32_to_cpu(req->stage2_entry_num); 5491 *stage1_counter_num = le16_to_cpu(req->stage1_counter_num); 5492 *stage2_counter_num = le16_to_cpu(req->stage2_counter_num); 5493 5494 return ret; 5495 } 5496 5497 static int hclge_set_fd_key_config(struct hclge_dev *hdev, 5498 enum HCLGE_FD_STAGE stage_num) 5499 { 5500 struct hclge_set_fd_key_config_cmd *req; 5501 struct hclge_fd_key_cfg *stage; 5502 struct hclge_desc desc; 5503 int ret; 5504 5505 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_KEY_CONFIG, false); 5506 5507 req = (struct hclge_set_fd_key_config_cmd *)desc.data; 5508 stage = &hdev->fd_cfg.key_cfg[stage_num]; 5509 req->stage = stage_num; 5510 req->key_select = stage->key_sel; 5511 req->inner_sipv6_word_en = stage->inner_sipv6_word_en; 5512 req->inner_dipv6_word_en = stage->inner_dipv6_word_en; 5513 req->outer_sipv6_word_en = stage->outer_sipv6_word_en; 5514 req->outer_dipv6_word_en = stage->outer_dipv6_word_en; 5515 req->tuple_mask = cpu_to_le32(~stage->tuple_active); 5516 req->meta_data_mask = cpu_to_le32(~stage->meta_data_active); 5517 5518 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 5519 if (ret) 5520 dev_err(&hdev->pdev->dev, "set fd key fail, ret=%d\n", ret); 5521 5522 return ret; 5523 } 5524 5525 static void hclge_fd_disable_user_def(struct hclge_dev *hdev) 5526 { 5527 struct hclge_fd_user_def_cfg *cfg = hdev->fd_cfg.user_def_cfg; 5528 5529 spin_lock_bh(&hdev->fd_rule_lock); 5530 memset(cfg, 0, sizeof(hdev->fd_cfg.user_def_cfg)); 5531 spin_unlock_bh(&hdev->fd_rule_lock); 5532 5533 hclge_fd_set_user_def_cmd(hdev, cfg); 5534 } 5535 5536 static int hclge_init_fd_config(struct hclge_dev *hdev) 5537 { 5538 #define LOW_2_WORDS 0x03 5539 struct hclge_fd_key_cfg *key_cfg; 5540 int ret; 5541 5542 if (!hnae3_ae_dev_fd_supported(hdev->ae_dev)) 5543 return 0; 5544 5545 ret = hclge_get_fd_mode(hdev, &hdev->fd_cfg.fd_mode); 5546 if (ret) 5547 return ret; 5548 5549 switch (hdev->fd_cfg.fd_mode) { 5550 case HCLGE_FD_MODE_DEPTH_2K_WIDTH_400B_STAGE_1: 5551 hdev->fd_cfg.max_key_length = MAX_KEY_LENGTH; 5552 break; 5553 case HCLGE_FD_MODE_DEPTH_4K_WIDTH_200B_STAGE_1: 5554 hdev->fd_cfg.max_key_length = MAX_KEY_LENGTH / 2; 5555 break; 5556 default: 5557 dev_err(&hdev->pdev->dev, 5558 "Unsupported flow director mode %u\n", 5559 hdev->fd_cfg.fd_mode); 5560 return -EOPNOTSUPP; 5561 } 5562 5563 key_cfg = &hdev->fd_cfg.key_cfg[HCLGE_FD_STAGE_1]; 5564 key_cfg->key_sel = HCLGE_FD_KEY_BASE_ON_TUPLE; 5565 key_cfg->inner_sipv6_word_en = LOW_2_WORDS; 5566 key_cfg->inner_dipv6_word_en = LOW_2_WORDS; 5567 key_cfg->outer_sipv6_word_en = 0; 5568 key_cfg->outer_dipv6_word_en = 0; 5569 5570 key_cfg->tuple_active = BIT(INNER_VLAN_TAG_FST) | BIT(INNER_ETH_TYPE) | 5571 BIT(INNER_IP_PROTO) | BIT(INNER_IP_TOS) | 5572 BIT(INNER_SRC_IP) | BIT(INNER_DST_IP) | 5573 BIT(INNER_SRC_PORT) | BIT(INNER_DST_PORT); 5574 5575 /* If use max 400bit key, we can support tuples for ether type */ 5576 if (hdev->fd_cfg.fd_mode == HCLGE_FD_MODE_DEPTH_2K_WIDTH_400B_STAGE_1) { 5577 key_cfg->tuple_active |= 5578 BIT(INNER_DST_MAC) | BIT(INNER_SRC_MAC); 5579 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) 5580 key_cfg->tuple_active |= HCLGE_FD_TUPLE_USER_DEF_TUPLES; 5581 } 5582 5583 /* roce_type is used to filter roce frames 5584 * dst_vport is used to specify the rule 5585 */ 5586 key_cfg->meta_data_active = BIT(ROCE_TYPE) | BIT(DST_VPORT); 5587 5588 ret = hclge_get_fd_allocation(hdev, 5589 &hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1], 5590 &hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_2], 5591 &hdev->fd_cfg.cnt_num[HCLGE_FD_STAGE_1], 5592 &hdev->fd_cfg.cnt_num[HCLGE_FD_STAGE_2]); 5593 if (ret) 5594 return ret; 5595 5596 return hclge_set_fd_key_config(hdev, HCLGE_FD_STAGE_1); 5597 } 5598 5599 static int hclge_fd_tcam_config(struct hclge_dev *hdev, u8 stage, bool sel_x, 5600 int loc, u8 *key, bool is_add) 5601 { 5602 struct hclge_fd_tcam_config_1_cmd *req1; 5603 struct hclge_fd_tcam_config_2_cmd *req2; 5604 struct hclge_fd_tcam_config_3_cmd *req3; 5605 struct hclge_desc desc[3]; 5606 int ret; 5607 5608 hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_FD_TCAM_OP, false); 5609 desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 5610 hclge_cmd_setup_basic_desc(&desc[1], HCLGE_OPC_FD_TCAM_OP, false); 5611 desc[1].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 5612 hclge_cmd_setup_basic_desc(&desc[2], HCLGE_OPC_FD_TCAM_OP, false); 5613 5614 req1 = (struct hclge_fd_tcam_config_1_cmd *)desc[0].data; 5615 req2 = (struct hclge_fd_tcam_config_2_cmd *)desc[1].data; 5616 req3 = (struct hclge_fd_tcam_config_3_cmd *)desc[2].data; 5617 5618 req1->stage = stage; 5619 req1->xy_sel = sel_x ? 1 : 0; 5620 hnae3_set_bit(req1->port_info, HCLGE_FD_EPORT_SW_EN_B, 0); 5621 req1->index = cpu_to_le32(loc); 5622 req1->entry_vld = sel_x ? is_add : 0; 5623 5624 if (key) { 5625 memcpy(req1->tcam_data, &key[0], sizeof(req1->tcam_data)); 5626 memcpy(req2->tcam_data, &key[sizeof(req1->tcam_data)], 5627 sizeof(req2->tcam_data)); 5628 memcpy(req3->tcam_data, &key[sizeof(req1->tcam_data) + 5629 sizeof(req2->tcam_data)], sizeof(req3->tcam_data)); 5630 } 5631 5632 ret = hclge_cmd_send(&hdev->hw, desc, 3); 5633 if (ret) 5634 dev_err(&hdev->pdev->dev, 5635 "config tcam key fail, ret=%d\n", 5636 ret); 5637 5638 return ret; 5639 } 5640 5641 static int hclge_fd_ad_config(struct hclge_dev *hdev, u8 stage, int loc, 5642 struct hclge_fd_ad_data *action) 5643 { 5644 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 5645 struct hclge_fd_ad_config_cmd *req; 5646 struct hclge_desc desc; 5647 u64 ad_data = 0; 5648 int ret; 5649 5650 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_AD_OP, false); 5651 5652 req = (struct hclge_fd_ad_config_cmd *)desc.data; 5653 req->index = cpu_to_le32(loc); 5654 req->stage = stage; 5655 5656 hnae3_set_bit(ad_data, HCLGE_FD_AD_WR_RULE_ID_B, 5657 action->write_rule_id_to_bd); 5658 hnae3_set_field(ad_data, HCLGE_FD_AD_RULE_ID_M, HCLGE_FD_AD_RULE_ID_S, 5659 action->rule_id); 5660 if (test_bit(HNAE3_DEV_SUPPORT_FD_FORWARD_TC_B, ae_dev->caps)) { 5661 hnae3_set_bit(ad_data, HCLGE_FD_AD_TC_OVRD_B, 5662 action->override_tc); 5663 hnae3_set_field(ad_data, HCLGE_FD_AD_TC_SIZE_M, 5664 HCLGE_FD_AD_TC_SIZE_S, (u32)action->tc_size); 5665 } 5666 ad_data <<= 32; 5667 hnae3_set_bit(ad_data, HCLGE_FD_AD_DROP_B, action->drop_packet); 5668 hnae3_set_bit(ad_data, HCLGE_FD_AD_DIRECT_QID_B, 5669 action->forward_to_direct_queue); 5670 hnae3_set_field(ad_data, HCLGE_FD_AD_QID_M, HCLGE_FD_AD_QID_S, 5671 action->queue_id); 5672 hnae3_set_bit(ad_data, HCLGE_FD_AD_USE_COUNTER_B, action->use_counter); 5673 hnae3_set_field(ad_data, HCLGE_FD_AD_COUNTER_NUM_M, 5674 HCLGE_FD_AD_COUNTER_NUM_S, action->counter_id); 5675 hnae3_set_bit(ad_data, HCLGE_FD_AD_NXT_STEP_B, action->use_next_stage); 5676 hnae3_set_field(ad_data, HCLGE_FD_AD_NXT_KEY_M, HCLGE_FD_AD_NXT_KEY_S, 5677 action->counter_id); 5678 5679 req->ad_data = cpu_to_le64(ad_data); 5680 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 5681 if (ret) 5682 dev_err(&hdev->pdev->dev, "fd ad config fail, ret=%d\n", ret); 5683 5684 return ret; 5685 } 5686 5687 static bool hclge_fd_convert_tuple(u32 tuple_bit, u8 *key_x, u8 *key_y, 5688 struct hclge_fd_rule *rule) 5689 { 5690 int offset, moffset, ip_offset; 5691 enum HCLGE_FD_KEY_OPT key_opt; 5692 u16 tmp_x_s, tmp_y_s; 5693 u32 tmp_x_l, tmp_y_l; 5694 u8 *p = (u8 *)rule; 5695 int i; 5696 5697 if (rule->unused_tuple & BIT(tuple_bit)) 5698 return true; 5699 5700 key_opt = tuple_key_info[tuple_bit].key_opt; 5701 offset = tuple_key_info[tuple_bit].offset; 5702 moffset = tuple_key_info[tuple_bit].moffset; 5703 5704 switch (key_opt) { 5705 case KEY_OPT_U8: 5706 calc_x(*key_x, p[offset], p[moffset]); 5707 calc_y(*key_y, p[offset], p[moffset]); 5708 5709 return true; 5710 case KEY_OPT_LE16: 5711 calc_x(tmp_x_s, *(u16 *)(&p[offset]), *(u16 *)(&p[moffset])); 5712 calc_y(tmp_y_s, *(u16 *)(&p[offset]), *(u16 *)(&p[moffset])); 5713 *(__le16 *)key_x = cpu_to_le16(tmp_x_s); 5714 *(__le16 *)key_y = cpu_to_le16(tmp_y_s); 5715 5716 return true; 5717 case KEY_OPT_LE32: 5718 calc_x(tmp_x_l, *(u32 *)(&p[offset]), *(u32 *)(&p[moffset])); 5719 calc_y(tmp_y_l, *(u32 *)(&p[offset]), *(u32 *)(&p[moffset])); 5720 *(__le32 *)key_x = cpu_to_le32(tmp_x_l); 5721 *(__le32 *)key_y = cpu_to_le32(tmp_y_l); 5722 5723 return true; 5724 case KEY_OPT_MAC: 5725 for (i = 0; i < ETH_ALEN; i++) { 5726 calc_x(key_x[ETH_ALEN - 1 - i], p[offset + i], 5727 p[moffset + i]); 5728 calc_y(key_y[ETH_ALEN - 1 - i], p[offset + i], 5729 p[moffset + i]); 5730 } 5731 5732 return true; 5733 case KEY_OPT_IP: 5734 ip_offset = IPV4_INDEX * sizeof(u32); 5735 calc_x(tmp_x_l, *(u32 *)(&p[offset + ip_offset]), 5736 *(u32 *)(&p[moffset + ip_offset])); 5737 calc_y(tmp_y_l, *(u32 *)(&p[offset + ip_offset]), 5738 *(u32 *)(&p[moffset + ip_offset])); 5739 *(__le32 *)key_x = cpu_to_le32(tmp_x_l); 5740 *(__le32 *)key_y = cpu_to_le32(tmp_y_l); 5741 5742 return true; 5743 default: 5744 return false; 5745 } 5746 } 5747 5748 static u32 hclge_get_port_number(enum HLCGE_PORT_TYPE port_type, u8 pf_id, 5749 u8 vf_id, u8 network_port_id) 5750 { 5751 u32 port_number = 0; 5752 5753 if (port_type == HOST_PORT) { 5754 hnae3_set_field(port_number, HCLGE_PF_ID_M, HCLGE_PF_ID_S, 5755 pf_id); 5756 hnae3_set_field(port_number, HCLGE_VF_ID_M, HCLGE_VF_ID_S, 5757 vf_id); 5758 hnae3_set_bit(port_number, HCLGE_PORT_TYPE_B, HOST_PORT); 5759 } else { 5760 hnae3_set_field(port_number, HCLGE_NETWORK_PORT_ID_M, 5761 HCLGE_NETWORK_PORT_ID_S, network_port_id); 5762 hnae3_set_bit(port_number, HCLGE_PORT_TYPE_B, NETWORK_PORT); 5763 } 5764 5765 return port_number; 5766 } 5767 5768 static void hclge_fd_convert_meta_data(struct hclge_fd_key_cfg *key_cfg, 5769 __le32 *key_x, __le32 *key_y, 5770 struct hclge_fd_rule *rule) 5771 { 5772 u32 tuple_bit, meta_data = 0, tmp_x, tmp_y, port_number; 5773 u8 cur_pos = 0, tuple_size, shift_bits; 5774 unsigned int i; 5775 5776 for (i = 0; i < MAX_META_DATA; i++) { 5777 tuple_size = meta_data_key_info[i].key_length; 5778 tuple_bit = key_cfg->meta_data_active & BIT(i); 5779 5780 switch (tuple_bit) { 5781 case BIT(ROCE_TYPE): 5782 hnae3_set_bit(meta_data, cur_pos, NIC_PACKET); 5783 cur_pos += tuple_size; 5784 break; 5785 case BIT(DST_VPORT): 5786 port_number = hclge_get_port_number(HOST_PORT, 0, 5787 rule->vf_id, 0); 5788 hnae3_set_field(meta_data, 5789 GENMASK(cur_pos + tuple_size, cur_pos), 5790 cur_pos, port_number); 5791 cur_pos += tuple_size; 5792 break; 5793 default: 5794 break; 5795 } 5796 } 5797 5798 calc_x(tmp_x, meta_data, 0xFFFFFFFF); 5799 calc_y(tmp_y, meta_data, 0xFFFFFFFF); 5800 shift_bits = sizeof(meta_data) * 8 - cur_pos; 5801 5802 *key_x = cpu_to_le32(tmp_x << shift_bits); 5803 *key_y = cpu_to_le32(tmp_y << shift_bits); 5804 } 5805 5806 /* A complete key is combined with meta data key and tuple key. 5807 * Meta data key is stored at the MSB region, and tuple key is stored at 5808 * the LSB region, unused bits will be filled 0. 5809 */ 5810 static int hclge_config_key(struct hclge_dev *hdev, u8 stage, 5811 struct hclge_fd_rule *rule) 5812 { 5813 struct hclge_fd_key_cfg *key_cfg = &hdev->fd_cfg.key_cfg[stage]; 5814 u8 key_x[MAX_KEY_BYTES], key_y[MAX_KEY_BYTES]; 5815 u8 *cur_key_x, *cur_key_y; 5816 u8 meta_data_region; 5817 u8 tuple_size; 5818 int ret; 5819 u32 i; 5820 5821 memset(key_x, 0, sizeof(key_x)); 5822 memset(key_y, 0, sizeof(key_y)); 5823 cur_key_x = key_x; 5824 cur_key_y = key_y; 5825 5826 for (i = 0; i < MAX_TUPLE; i++) { 5827 bool tuple_valid; 5828 5829 tuple_size = tuple_key_info[i].key_length / 8; 5830 if (!(key_cfg->tuple_active & BIT(i))) 5831 continue; 5832 5833 tuple_valid = hclge_fd_convert_tuple(i, cur_key_x, 5834 cur_key_y, rule); 5835 if (tuple_valid) { 5836 cur_key_x += tuple_size; 5837 cur_key_y += tuple_size; 5838 } 5839 } 5840 5841 meta_data_region = hdev->fd_cfg.max_key_length / 8 - 5842 MAX_META_DATA_LENGTH / 8; 5843 5844 hclge_fd_convert_meta_data(key_cfg, 5845 (__le32 *)(key_x + meta_data_region), 5846 (__le32 *)(key_y + meta_data_region), 5847 rule); 5848 5849 ret = hclge_fd_tcam_config(hdev, stage, false, rule->location, key_y, 5850 true); 5851 if (ret) { 5852 dev_err(&hdev->pdev->dev, 5853 "fd key_y config fail, loc=%u, ret=%d\n", 5854 rule->queue_id, ret); 5855 return ret; 5856 } 5857 5858 ret = hclge_fd_tcam_config(hdev, stage, true, rule->location, key_x, 5859 true); 5860 if (ret) 5861 dev_err(&hdev->pdev->dev, 5862 "fd key_x config fail, loc=%u, ret=%d\n", 5863 rule->queue_id, ret); 5864 return ret; 5865 } 5866 5867 static int hclge_config_action(struct hclge_dev *hdev, u8 stage, 5868 struct hclge_fd_rule *rule) 5869 { 5870 struct hclge_vport *vport = hdev->vport; 5871 struct hnae3_knic_private_info *kinfo = &vport->nic.kinfo; 5872 struct hclge_fd_ad_data ad_data; 5873 5874 memset(&ad_data, 0, sizeof(struct hclge_fd_ad_data)); 5875 ad_data.ad_id = rule->location; 5876 5877 if (rule->action == HCLGE_FD_ACTION_DROP_PACKET) { 5878 ad_data.drop_packet = true; 5879 } else if (rule->action == HCLGE_FD_ACTION_SELECT_TC) { 5880 ad_data.override_tc = true; 5881 ad_data.queue_id = 5882 kinfo->tc_info.tqp_offset[rule->cls_flower.tc]; 5883 ad_data.tc_size = 5884 ilog2(kinfo->tc_info.tqp_count[rule->cls_flower.tc]); 5885 } else { 5886 ad_data.forward_to_direct_queue = true; 5887 ad_data.queue_id = rule->queue_id; 5888 } 5889 5890 if (hdev->fd_cfg.cnt_num[HCLGE_FD_STAGE_1]) { 5891 ad_data.use_counter = true; 5892 ad_data.counter_id = rule->vf_id % 5893 hdev->fd_cfg.cnt_num[HCLGE_FD_STAGE_1]; 5894 } else { 5895 ad_data.use_counter = false; 5896 ad_data.counter_id = 0; 5897 } 5898 5899 ad_data.use_next_stage = false; 5900 ad_data.next_input_key = 0; 5901 5902 ad_data.write_rule_id_to_bd = true; 5903 ad_data.rule_id = rule->location; 5904 5905 return hclge_fd_ad_config(hdev, stage, ad_data.ad_id, &ad_data); 5906 } 5907 5908 static int hclge_fd_check_tcpip4_tuple(struct ethtool_tcpip4_spec *spec, 5909 u32 *unused_tuple) 5910 { 5911 if (!spec || !unused_tuple) 5912 return -EINVAL; 5913 5914 *unused_tuple |= BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC); 5915 5916 if (!spec->ip4src) 5917 *unused_tuple |= BIT(INNER_SRC_IP); 5918 5919 if (!spec->ip4dst) 5920 *unused_tuple |= BIT(INNER_DST_IP); 5921 5922 if (!spec->psrc) 5923 *unused_tuple |= BIT(INNER_SRC_PORT); 5924 5925 if (!spec->pdst) 5926 *unused_tuple |= BIT(INNER_DST_PORT); 5927 5928 if (!spec->tos) 5929 *unused_tuple |= BIT(INNER_IP_TOS); 5930 5931 return 0; 5932 } 5933 5934 static int hclge_fd_check_ip4_tuple(struct ethtool_usrip4_spec *spec, 5935 u32 *unused_tuple) 5936 { 5937 if (!spec || !unused_tuple) 5938 return -EINVAL; 5939 5940 *unused_tuple |= BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC) | 5941 BIT(INNER_SRC_PORT) | BIT(INNER_DST_PORT); 5942 5943 if (!spec->ip4src) 5944 *unused_tuple |= BIT(INNER_SRC_IP); 5945 5946 if (!spec->ip4dst) 5947 *unused_tuple |= BIT(INNER_DST_IP); 5948 5949 if (!spec->tos) 5950 *unused_tuple |= BIT(INNER_IP_TOS); 5951 5952 if (!spec->proto) 5953 *unused_tuple |= BIT(INNER_IP_PROTO); 5954 5955 if (spec->l4_4_bytes) 5956 return -EOPNOTSUPP; 5957 5958 if (spec->ip_ver != ETH_RX_NFC_IP4) 5959 return -EOPNOTSUPP; 5960 5961 return 0; 5962 } 5963 5964 static int hclge_fd_check_tcpip6_tuple(struct ethtool_tcpip6_spec *spec, 5965 u32 *unused_tuple) 5966 { 5967 if (!spec || !unused_tuple) 5968 return -EINVAL; 5969 5970 *unused_tuple |= BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC); 5971 5972 /* check whether src/dst ip address used */ 5973 if (ipv6_addr_any((struct in6_addr *)spec->ip6src)) 5974 *unused_tuple |= BIT(INNER_SRC_IP); 5975 5976 if (ipv6_addr_any((struct in6_addr *)spec->ip6dst)) 5977 *unused_tuple |= BIT(INNER_DST_IP); 5978 5979 if (!spec->psrc) 5980 *unused_tuple |= BIT(INNER_SRC_PORT); 5981 5982 if (!spec->pdst) 5983 *unused_tuple |= BIT(INNER_DST_PORT); 5984 5985 if (!spec->tclass) 5986 *unused_tuple |= BIT(INNER_IP_TOS); 5987 5988 return 0; 5989 } 5990 5991 static int hclge_fd_check_ip6_tuple(struct ethtool_usrip6_spec *spec, 5992 u32 *unused_tuple) 5993 { 5994 if (!spec || !unused_tuple) 5995 return -EINVAL; 5996 5997 *unused_tuple |= BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC) | 5998 BIT(INNER_SRC_PORT) | BIT(INNER_DST_PORT); 5999 6000 /* check whether src/dst ip address used */ 6001 if (ipv6_addr_any((struct in6_addr *)spec->ip6src)) 6002 *unused_tuple |= BIT(INNER_SRC_IP); 6003 6004 if (ipv6_addr_any((struct in6_addr *)spec->ip6dst)) 6005 *unused_tuple |= BIT(INNER_DST_IP); 6006 6007 if (!spec->l4_proto) 6008 *unused_tuple |= BIT(INNER_IP_PROTO); 6009 6010 if (!spec->tclass) 6011 *unused_tuple |= BIT(INNER_IP_TOS); 6012 6013 if (spec->l4_4_bytes) 6014 return -EOPNOTSUPP; 6015 6016 return 0; 6017 } 6018 6019 static int hclge_fd_check_ether_tuple(struct ethhdr *spec, u32 *unused_tuple) 6020 { 6021 if (!spec || !unused_tuple) 6022 return -EINVAL; 6023 6024 *unused_tuple |= BIT(INNER_SRC_IP) | BIT(INNER_DST_IP) | 6025 BIT(INNER_SRC_PORT) | BIT(INNER_DST_PORT) | 6026 BIT(INNER_IP_TOS) | BIT(INNER_IP_PROTO); 6027 6028 if (is_zero_ether_addr(spec->h_source)) 6029 *unused_tuple |= BIT(INNER_SRC_MAC); 6030 6031 if (is_zero_ether_addr(spec->h_dest)) 6032 *unused_tuple |= BIT(INNER_DST_MAC); 6033 6034 if (!spec->h_proto) 6035 *unused_tuple |= BIT(INNER_ETH_TYPE); 6036 6037 return 0; 6038 } 6039 6040 static int hclge_fd_check_ext_tuple(struct hclge_dev *hdev, 6041 struct ethtool_rx_flow_spec *fs, 6042 u32 *unused_tuple) 6043 { 6044 if (fs->flow_type & FLOW_EXT) { 6045 if (fs->h_ext.vlan_etype) { 6046 dev_err(&hdev->pdev->dev, "vlan-etype is not supported!\n"); 6047 return -EOPNOTSUPP; 6048 } 6049 6050 if (!fs->h_ext.vlan_tci) 6051 *unused_tuple |= BIT(INNER_VLAN_TAG_FST); 6052 6053 if (fs->m_ext.vlan_tci && 6054 be16_to_cpu(fs->h_ext.vlan_tci) >= VLAN_N_VID) { 6055 dev_err(&hdev->pdev->dev, 6056 "failed to config vlan_tci, invalid vlan_tci: %u, max is %d.\n", 6057 ntohs(fs->h_ext.vlan_tci), VLAN_N_VID - 1); 6058 return -EINVAL; 6059 } 6060 } else { 6061 *unused_tuple |= BIT(INNER_VLAN_TAG_FST); 6062 } 6063 6064 if (fs->flow_type & FLOW_MAC_EXT) { 6065 if (hdev->fd_cfg.fd_mode != 6066 HCLGE_FD_MODE_DEPTH_2K_WIDTH_400B_STAGE_1) { 6067 dev_err(&hdev->pdev->dev, 6068 "FLOW_MAC_EXT is not supported in current fd mode!\n"); 6069 return -EOPNOTSUPP; 6070 } 6071 6072 if (is_zero_ether_addr(fs->h_ext.h_dest)) 6073 *unused_tuple |= BIT(INNER_DST_MAC); 6074 else 6075 *unused_tuple &= ~BIT(INNER_DST_MAC); 6076 } 6077 6078 return 0; 6079 } 6080 6081 static int hclge_fd_get_user_def_layer(u32 flow_type, u32 *unused_tuple, 6082 struct hclge_fd_user_def_info *info) 6083 { 6084 switch (flow_type) { 6085 case ETHER_FLOW: 6086 info->layer = HCLGE_FD_USER_DEF_L2; 6087 *unused_tuple &= ~BIT(INNER_L2_RSV); 6088 break; 6089 case IP_USER_FLOW: 6090 case IPV6_USER_FLOW: 6091 info->layer = HCLGE_FD_USER_DEF_L3; 6092 *unused_tuple &= ~BIT(INNER_L3_RSV); 6093 break; 6094 case TCP_V4_FLOW: 6095 case UDP_V4_FLOW: 6096 case TCP_V6_FLOW: 6097 case UDP_V6_FLOW: 6098 info->layer = HCLGE_FD_USER_DEF_L4; 6099 *unused_tuple &= ~BIT(INNER_L4_RSV); 6100 break; 6101 default: 6102 return -EOPNOTSUPP; 6103 } 6104 6105 return 0; 6106 } 6107 6108 static bool hclge_fd_is_user_def_all_masked(struct ethtool_rx_flow_spec *fs) 6109 { 6110 return be32_to_cpu(fs->m_ext.data[1] | fs->m_ext.data[0]) == 0; 6111 } 6112 6113 static int hclge_fd_parse_user_def_field(struct hclge_dev *hdev, 6114 struct ethtool_rx_flow_spec *fs, 6115 u32 *unused_tuple, 6116 struct hclge_fd_user_def_info *info) 6117 { 6118 u32 tuple_active = hdev->fd_cfg.key_cfg[HCLGE_FD_STAGE_1].tuple_active; 6119 u32 flow_type = fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT); 6120 u16 data, offset, data_mask, offset_mask; 6121 int ret; 6122 6123 info->layer = HCLGE_FD_USER_DEF_NONE; 6124 *unused_tuple |= HCLGE_FD_TUPLE_USER_DEF_TUPLES; 6125 6126 if (!(fs->flow_type & FLOW_EXT) || hclge_fd_is_user_def_all_masked(fs)) 6127 return 0; 6128 6129 /* user-def data from ethtool is 64 bit value, the bit0~15 is used 6130 * for data, and bit32~47 is used for offset. 6131 */ 6132 data = be32_to_cpu(fs->h_ext.data[1]) & HCLGE_FD_USER_DEF_DATA; 6133 data_mask = be32_to_cpu(fs->m_ext.data[1]) & HCLGE_FD_USER_DEF_DATA; 6134 offset = be32_to_cpu(fs->h_ext.data[0]) & HCLGE_FD_USER_DEF_OFFSET; 6135 offset_mask = be32_to_cpu(fs->m_ext.data[0]) & HCLGE_FD_USER_DEF_OFFSET; 6136 6137 if (!(tuple_active & HCLGE_FD_TUPLE_USER_DEF_TUPLES)) { 6138 dev_err(&hdev->pdev->dev, "user-def bytes are not supported\n"); 6139 return -EOPNOTSUPP; 6140 } 6141 6142 if (offset > HCLGE_FD_MAX_USER_DEF_OFFSET) { 6143 dev_err(&hdev->pdev->dev, 6144 "user-def offset[%u] should be no more than %u\n", 6145 offset, HCLGE_FD_MAX_USER_DEF_OFFSET); 6146 return -EINVAL; 6147 } 6148 6149 if (offset_mask != HCLGE_FD_USER_DEF_OFFSET_UNMASK) { 6150 dev_err(&hdev->pdev->dev, "user-def offset can't be masked\n"); 6151 return -EINVAL; 6152 } 6153 6154 ret = hclge_fd_get_user_def_layer(flow_type, unused_tuple, info); 6155 if (ret) { 6156 dev_err(&hdev->pdev->dev, 6157 "unsupported flow type for user-def bytes, ret = %d\n", 6158 ret); 6159 return ret; 6160 } 6161 6162 info->data = data; 6163 info->data_mask = data_mask; 6164 info->offset = offset; 6165 6166 return 0; 6167 } 6168 6169 static int hclge_fd_check_spec(struct hclge_dev *hdev, 6170 struct ethtool_rx_flow_spec *fs, 6171 u32 *unused_tuple, 6172 struct hclge_fd_user_def_info *info) 6173 { 6174 u32 flow_type; 6175 int ret; 6176 6177 if (fs->location >= hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]) { 6178 dev_err(&hdev->pdev->dev, 6179 "failed to config fd rules, invalid rule location: %u, max is %u\n.", 6180 fs->location, 6181 hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1] - 1); 6182 return -EINVAL; 6183 } 6184 6185 ret = hclge_fd_parse_user_def_field(hdev, fs, unused_tuple, info); 6186 if (ret) 6187 return ret; 6188 6189 flow_type = fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT); 6190 switch (flow_type) { 6191 case SCTP_V4_FLOW: 6192 case TCP_V4_FLOW: 6193 case UDP_V4_FLOW: 6194 ret = hclge_fd_check_tcpip4_tuple(&fs->h_u.tcp_ip4_spec, 6195 unused_tuple); 6196 break; 6197 case IP_USER_FLOW: 6198 ret = hclge_fd_check_ip4_tuple(&fs->h_u.usr_ip4_spec, 6199 unused_tuple); 6200 break; 6201 case SCTP_V6_FLOW: 6202 case TCP_V6_FLOW: 6203 case UDP_V6_FLOW: 6204 ret = hclge_fd_check_tcpip6_tuple(&fs->h_u.tcp_ip6_spec, 6205 unused_tuple); 6206 break; 6207 case IPV6_USER_FLOW: 6208 ret = hclge_fd_check_ip6_tuple(&fs->h_u.usr_ip6_spec, 6209 unused_tuple); 6210 break; 6211 case ETHER_FLOW: 6212 if (hdev->fd_cfg.fd_mode != 6213 HCLGE_FD_MODE_DEPTH_2K_WIDTH_400B_STAGE_1) { 6214 dev_err(&hdev->pdev->dev, 6215 "ETHER_FLOW is not supported in current fd mode!\n"); 6216 return -EOPNOTSUPP; 6217 } 6218 6219 ret = hclge_fd_check_ether_tuple(&fs->h_u.ether_spec, 6220 unused_tuple); 6221 break; 6222 default: 6223 dev_err(&hdev->pdev->dev, 6224 "unsupported protocol type, protocol type = %#x\n", 6225 flow_type); 6226 return -EOPNOTSUPP; 6227 } 6228 6229 if (ret) { 6230 dev_err(&hdev->pdev->dev, 6231 "failed to check flow union tuple, ret = %d\n", 6232 ret); 6233 return ret; 6234 } 6235 6236 return hclge_fd_check_ext_tuple(hdev, fs, unused_tuple); 6237 } 6238 6239 static void hclge_fd_get_tcpip4_tuple(struct ethtool_rx_flow_spec *fs, 6240 struct hclge_fd_rule *rule, u8 ip_proto) 6241 { 6242 rule->tuples.src_ip[IPV4_INDEX] = 6243 be32_to_cpu(fs->h_u.tcp_ip4_spec.ip4src); 6244 rule->tuples_mask.src_ip[IPV4_INDEX] = 6245 be32_to_cpu(fs->m_u.tcp_ip4_spec.ip4src); 6246 6247 rule->tuples.dst_ip[IPV4_INDEX] = 6248 be32_to_cpu(fs->h_u.tcp_ip4_spec.ip4dst); 6249 rule->tuples_mask.dst_ip[IPV4_INDEX] = 6250 be32_to_cpu(fs->m_u.tcp_ip4_spec.ip4dst); 6251 6252 rule->tuples.src_port = be16_to_cpu(fs->h_u.tcp_ip4_spec.psrc); 6253 rule->tuples_mask.src_port = be16_to_cpu(fs->m_u.tcp_ip4_spec.psrc); 6254 6255 rule->tuples.dst_port = be16_to_cpu(fs->h_u.tcp_ip4_spec.pdst); 6256 rule->tuples_mask.dst_port = be16_to_cpu(fs->m_u.tcp_ip4_spec.pdst); 6257 6258 rule->tuples.ip_tos = fs->h_u.tcp_ip4_spec.tos; 6259 rule->tuples_mask.ip_tos = fs->m_u.tcp_ip4_spec.tos; 6260 6261 rule->tuples.ether_proto = ETH_P_IP; 6262 rule->tuples_mask.ether_proto = 0xFFFF; 6263 6264 rule->tuples.ip_proto = ip_proto; 6265 rule->tuples_mask.ip_proto = 0xFF; 6266 } 6267 6268 static void hclge_fd_get_ip4_tuple(struct ethtool_rx_flow_spec *fs, 6269 struct hclge_fd_rule *rule) 6270 { 6271 rule->tuples.src_ip[IPV4_INDEX] = 6272 be32_to_cpu(fs->h_u.usr_ip4_spec.ip4src); 6273 rule->tuples_mask.src_ip[IPV4_INDEX] = 6274 be32_to_cpu(fs->m_u.usr_ip4_spec.ip4src); 6275 6276 rule->tuples.dst_ip[IPV4_INDEX] = 6277 be32_to_cpu(fs->h_u.usr_ip4_spec.ip4dst); 6278 rule->tuples_mask.dst_ip[IPV4_INDEX] = 6279 be32_to_cpu(fs->m_u.usr_ip4_spec.ip4dst); 6280 6281 rule->tuples.ip_tos = fs->h_u.usr_ip4_spec.tos; 6282 rule->tuples_mask.ip_tos = fs->m_u.usr_ip4_spec.tos; 6283 6284 rule->tuples.ip_proto = fs->h_u.usr_ip4_spec.proto; 6285 rule->tuples_mask.ip_proto = fs->m_u.usr_ip4_spec.proto; 6286 6287 rule->tuples.ether_proto = ETH_P_IP; 6288 rule->tuples_mask.ether_proto = 0xFFFF; 6289 } 6290 6291 static void hclge_fd_get_tcpip6_tuple(struct ethtool_rx_flow_spec *fs, 6292 struct hclge_fd_rule *rule, u8 ip_proto) 6293 { 6294 ipv6_addr_be32_to_cpu(rule->tuples.src_ip, 6295 fs->h_u.tcp_ip6_spec.ip6src); 6296 ipv6_addr_be32_to_cpu(rule->tuples_mask.src_ip, 6297 fs->m_u.tcp_ip6_spec.ip6src); 6298 6299 ipv6_addr_be32_to_cpu(rule->tuples.dst_ip, 6300 fs->h_u.tcp_ip6_spec.ip6dst); 6301 ipv6_addr_be32_to_cpu(rule->tuples_mask.dst_ip, 6302 fs->m_u.tcp_ip6_spec.ip6dst); 6303 6304 rule->tuples.src_port = be16_to_cpu(fs->h_u.tcp_ip6_spec.psrc); 6305 rule->tuples_mask.src_port = be16_to_cpu(fs->m_u.tcp_ip6_spec.psrc); 6306 6307 rule->tuples.dst_port = be16_to_cpu(fs->h_u.tcp_ip6_spec.pdst); 6308 rule->tuples_mask.dst_port = be16_to_cpu(fs->m_u.tcp_ip6_spec.pdst); 6309 6310 rule->tuples.ether_proto = ETH_P_IPV6; 6311 rule->tuples_mask.ether_proto = 0xFFFF; 6312 6313 rule->tuples.ip_tos = fs->h_u.tcp_ip6_spec.tclass; 6314 rule->tuples_mask.ip_tos = fs->m_u.tcp_ip6_spec.tclass; 6315 6316 rule->tuples.ip_proto = ip_proto; 6317 rule->tuples_mask.ip_proto = 0xFF; 6318 } 6319 6320 static void hclge_fd_get_ip6_tuple(struct ethtool_rx_flow_spec *fs, 6321 struct hclge_fd_rule *rule) 6322 { 6323 ipv6_addr_be32_to_cpu(rule->tuples.src_ip, 6324 fs->h_u.usr_ip6_spec.ip6src); 6325 ipv6_addr_be32_to_cpu(rule->tuples_mask.src_ip, 6326 fs->m_u.usr_ip6_spec.ip6src); 6327 6328 ipv6_addr_be32_to_cpu(rule->tuples.dst_ip, 6329 fs->h_u.usr_ip6_spec.ip6dst); 6330 ipv6_addr_be32_to_cpu(rule->tuples_mask.dst_ip, 6331 fs->m_u.usr_ip6_spec.ip6dst); 6332 6333 rule->tuples.ip_proto = fs->h_u.usr_ip6_spec.l4_proto; 6334 rule->tuples_mask.ip_proto = fs->m_u.usr_ip6_spec.l4_proto; 6335 6336 rule->tuples.ip_tos = fs->h_u.tcp_ip6_spec.tclass; 6337 rule->tuples_mask.ip_tos = fs->m_u.tcp_ip6_spec.tclass; 6338 6339 rule->tuples.ether_proto = ETH_P_IPV6; 6340 rule->tuples_mask.ether_proto = 0xFFFF; 6341 } 6342 6343 static void hclge_fd_get_ether_tuple(struct ethtool_rx_flow_spec *fs, 6344 struct hclge_fd_rule *rule) 6345 { 6346 ether_addr_copy(rule->tuples.src_mac, fs->h_u.ether_spec.h_source); 6347 ether_addr_copy(rule->tuples_mask.src_mac, fs->m_u.ether_spec.h_source); 6348 6349 ether_addr_copy(rule->tuples.dst_mac, fs->h_u.ether_spec.h_dest); 6350 ether_addr_copy(rule->tuples_mask.dst_mac, fs->m_u.ether_spec.h_dest); 6351 6352 rule->tuples.ether_proto = be16_to_cpu(fs->h_u.ether_spec.h_proto); 6353 rule->tuples_mask.ether_proto = be16_to_cpu(fs->m_u.ether_spec.h_proto); 6354 } 6355 6356 static void hclge_fd_get_user_def_tuple(struct hclge_fd_user_def_info *info, 6357 struct hclge_fd_rule *rule) 6358 { 6359 switch (info->layer) { 6360 case HCLGE_FD_USER_DEF_L2: 6361 rule->tuples.l2_user_def = info->data; 6362 rule->tuples_mask.l2_user_def = info->data_mask; 6363 break; 6364 case HCLGE_FD_USER_DEF_L3: 6365 rule->tuples.l3_user_def = info->data; 6366 rule->tuples_mask.l3_user_def = info->data_mask; 6367 break; 6368 case HCLGE_FD_USER_DEF_L4: 6369 rule->tuples.l4_user_def = (u32)info->data << 16; 6370 rule->tuples_mask.l4_user_def = (u32)info->data_mask << 16; 6371 break; 6372 default: 6373 break; 6374 } 6375 6376 rule->ep.user_def = *info; 6377 } 6378 6379 static int hclge_fd_get_tuple(struct ethtool_rx_flow_spec *fs, 6380 struct hclge_fd_rule *rule, 6381 struct hclge_fd_user_def_info *info) 6382 { 6383 u32 flow_type = fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT); 6384 6385 switch (flow_type) { 6386 case SCTP_V4_FLOW: 6387 hclge_fd_get_tcpip4_tuple(fs, rule, IPPROTO_SCTP); 6388 break; 6389 case TCP_V4_FLOW: 6390 hclge_fd_get_tcpip4_tuple(fs, rule, IPPROTO_TCP); 6391 break; 6392 case UDP_V4_FLOW: 6393 hclge_fd_get_tcpip4_tuple(fs, rule, IPPROTO_UDP); 6394 break; 6395 case IP_USER_FLOW: 6396 hclge_fd_get_ip4_tuple(fs, rule); 6397 break; 6398 case SCTP_V6_FLOW: 6399 hclge_fd_get_tcpip6_tuple(fs, rule, IPPROTO_SCTP); 6400 break; 6401 case TCP_V6_FLOW: 6402 hclge_fd_get_tcpip6_tuple(fs, rule, IPPROTO_TCP); 6403 break; 6404 case UDP_V6_FLOW: 6405 hclge_fd_get_tcpip6_tuple(fs, rule, IPPROTO_UDP); 6406 break; 6407 case IPV6_USER_FLOW: 6408 hclge_fd_get_ip6_tuple(fs, rule); 6409 break; 6410 case ETHER_FLOW: 6411 hclge_fd_get_ether_tuple(fs, rule); 6412 break; 6413 default: 6414 return -EOPNOTSUPP; 6415 } 6416 6417 if (fs->flow_type & FLOW_EXT) { 6418 rule->tuples.vlan_tag1 = be16_to_cpu(fs->h_ext.vlan_tci); 6419 rule->tuples_mask.vlan_tag1 = be16_to_cpu(fs->m_ext.vlan_tci); 6420 hclge_fd_get_user_def_tuple(info, rule); 6421 } 6422 6423 if (fs->flow_type & FLOW_MAC_EXT) { 6424 ether_addr_copy(rule->tuples.dst_mac, fs->h_ext.h_dest); 6425 ether_addr_copy(rule->tuples_mask.dst_mac, fs->m_ext.h_dest); 6426 } 6427 6428 return 0; 6429 } 6430 6431 static int hclge_fd_config_rule(struct hclge_dev *hdev, 6432 struct hclge_fd_rule *rule) 6433 { 6434 int ret; 6435 6436 ret = hclge_config_action(hdev, HCLGE_FD_STAGE_1, rule); 6437 if (ret) 6438 return ret; 6439 6440 return hclge_config_key(hdev, HCLGE_FD_STAGE_1, rule); 6441 } 6442 6443 static int hclge_add_fd_entry_common(struct hclge_dev *hdev, 6444 struct hclge_fd_rule *rule) 6445 { 6446 int ret; 6447 6448 spin_lock_bh(&hdev->fd_rule_lock); 6449 6450 if (hdev->fd_active_type != rule->rule_type && 6451 (hdev->fd_active_type == HCLGE_FD_TC_FLOWER_ACTIVE || 6452 hdev->fd_active_type == HCLGE_FD_EP_ACTIVE)) { 6453 dev_err(&hdev->pdev->dev, 6454 "mode conflict(new type %d, active type %d), please delete existent rules first\n", 6455 rule->rule_type, hdev->fd_active_type); 6456 spin_unlock_bh(&hdev->fd_rule_lock); 6457 return -EINVAL; 6458 } 6459 6460 ret = hclge_fd_check_user_def_refcnt(hdev, rule); 6461 if (ret) 6462 goto out; 6463 6464 ret = hclge_clear_arfs_rules(hdev); 6465 if (ret) 6466 goto out; 6467 6468 ret = hclge_fd_config_rule(hdev, rule); 6469 if (ret) 6470 goto out; 6471 6472 rule->state = HCLGE_FD_ACTIVE; 6473 hdev->fd_active_type = rule->rule_type; 6474 hclge_update_fd_list(hdev, rule->state, rule->location, rule); 6475 6476 out: 6477 spin_unlock_bh(&hdev->fd_rule_lock); 6478 return ret; 6479 } 6480 6481 static bool hclge_is_cls_flower_active(struct hnae3_handle *handle) 6482 { 6483 struct hclge_vport *vport = hclge_get_vport(handle); 6484 struct hclge_dev *hdev = vport->back; 6485 6486 return hdev->fd_active_type == HCLGE_FD_TC_FLOWER_ACTIVE; 6487 } 6488 6489 static int hclge_fd_parse_ring_cookie(struct hclge_dev *hdev, u64 ring_cookie, 6490 u16 *vport_id, u8 *action, u16 *queue_id) 6491 { 6492 struct hclge_vport *vport = hdev->vport; 6493 6494 if (ring_cookie == RX_CLS_FLOW_DISC) { 6495 *action = HCLGE_FD_ACTION_DROP_PACKET; 6496 } else { 6497 u32 ring = ethtool_get_flow_spec_ring(ring_cookie); 6498 u8 vf = ethtool_get_flow_spec_ring_vf(ring_cookie); 6499 u16 tqps; 6500 6501 /* To keep consistent with user's configuration, minus 1 when 6502 * printing 'vf', because vf id from ethtool is added 1 for vf. 6503 */ 6504 if (vf > hdev->num_req_vfs) { 6505 dev_err(&hdev->pdev->dev, 6506 "Error: vf id (%u) should be less than %u\n", 6507 vf - 1U, hdev->num_req_vfs); 6508 return -EINVAL; 6509 } 6510 6511 *vport_id = vf ? hdev->vport[vf].vport_id : vport->vport_id; 6512 tqps = hdev->vport[vf].nic.kinfo.num_tqps; 6513 6514 if (ring >= tqps) { 6515 dev_err(&hdev->pdev->dev, 6516 "Error: queue id (%u) > max tqp num (%u)\n", 6517 ring, tqps - 1U); 6518 return -EINVAL; 6519 } 6520 6521 *action = HCLGE_FD_ACTION_SELECT_QUEUE; 6522 *queue_id = ring; 6523 } 6524 6525 return 0; 6526 } 6527 6528 static int hclge_add_fd_entry(struct hnae3_handle *handle, 6529 struct ethtool_rxnfc *cmd) 6530 { 6531 struct hclge_vport *vport = hclge_get_vport(handle); 6532 struct hclge_dev *hdev = vport->back; 6533 struct hclge_fd_user_def_info info; 6534 u16 dst_vport_id = 0, q_index = 0; 6535 struct ethtool_rx_flow_spec *fs; 6536 struct hclge_fd_rule *rule; 6537 u32 unused = 0; 6538 u8 action; 6539 int ret; 6540 6541 if (!hnae3_ae_dev_fd_supported(hdev->ae_dev)) { 6542 dev_err(&hdev->pdev->dev, 6543 "flow table director is not supported\n"); 6544 return -EOPNOTSUPP; 6545 } 6546 6547 if (!hdev->fd_en) { 6548 dev_err(&hdev->pdev->dev, 6549 "please enable flow director first\n"); 6550 return -EOPNOTSUPP; 6551 } 6552 6553 fs = (struct ethtool_rx_flow_spec *)&cmd->fs; 6554 6555 ret = hclge_fd_check_spec(hdev, fs, &unused, &info); 6556 if (ret) 6557 return ret; 6558 6559 ret = hclge_fd_parse_ring_cookie(hdev, fs->ring_cookie, &dst_vport_id, 6560 &action, &q_index); 6561 if (ret) 6562 return ret; 6563 6564 rule = kzalloc(sizeof(*rule), GFP_KERNEL); 6565 if (!rule) 6566 return -ENOMEM; 6567 6568 ret = hclge_fd_get_tuple(fs, rule, &info); 6569 if (ret) { 6570 kfree(rule); 6571 return ret; 6572 } 6573 6574 rule->flow_type = fs->flow_type; 6575 rule->location = fs->location; 6576 rule->unused_tuple = unused; 6577 rule->vf_id = dst_vport_id; 6578 rule->queue_id = q_index; 6579 rule->action = action; 6580 rule->rule_type = HCLGE_FD_EP_ACTIVE; 6581 6582 ret = hclge_add_fd_entry_common(hdev, rule); 6583 if (ret) 6584 kfree(rule); 6585 6586 return ret; 6587 } 6588 6589 static int hclge_del_fd_entry(struct hnae3_handle *handle, 6590 struct ethtool_rxnfc *cmd) 6591 { 6592 struct hclge_vport *vport = hclge_get_vport(handle); 6593 struct hclge_dev *hdev = vport->back; 6594 struct ethtool_rx_flow_spec *fs; 6595 int ret; 6596 6597 if (!hnae3_ae_dev_fd_supported(hdev->ae_dev)) 6598 return -EOPNOTSUPP; 6599 6600 fs = (struct ethtool_rx_flow_spec *)&cmd->fs; 6601 6602 if (fs->location >= hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]) 6603 return -EINVAL; 6604 6605 spin_lock_bh(&hdev->fd_rule_lock); 6606 if (hdev->fd_active_type == HCLGE_FD_TC_FLOWER_ACTIVE || 6607 !test_bit(fs->location, hdev->fd_bmap)) { 6608 dev_err(&hdev->pdev->dev, 6609 "Delete fail, rule %u is inexistent\n", fs->location); 6610 spin_unlock_bh(&hdev->fd_rule_lock); 6611 return -ENOENT; 6612 } 6613 6614 ret = hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true, fs->location, 6615 NULL, false); 6616 if (ret) 6617 goto out; 6618 6619 hclge_update_fd_list(hdev, HCLGE_FD_DELETED, fs->location, NULL); 6620 6621 out: 6622 spin_unlock_bh(&hdev->fd_rule_lock); 6623 return ret; 6624 } 6625 6626 static void hclge_clear_fd_rules_in_list(struct hclge_dev *hdev, 6627 bool clear_list) 6628 { 6629 struct hclge_fd_rule *rule; 6630 struct hlist_node *node; 6631 u16 location; 6632 6633 spin_lock_bh(&hdev->fd_rule_lock); 6634 6635 for_each_set_bit(location, hdev->fd_bmap, 6636 hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]) 6637 hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true, location, 6638 NULL, false); 6639 6640 if (clear_list) { 6641 hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, 6642 rule_node) { 6643 hlist_del(&rule->rule_node); 6644 kfree(rule); 6645 } 6646 hdev->fd_active_type = HCLGE_FD_RULE_NONE; 6647 hdev->hclge_fd_rule_num = 0; 6648 bitmap_zero(hdev->fd_bmap, 6649 hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]); 6650 } 6651 6652 spin_unlock_bh(&hdev->fd_rule_lock); 6653 } 6654 6655 static void hclge_del_all_fd_entries(struct hclge_dev *hdev) 6656 { 6657 if (!hnae3_ae_dev_fd_supported(hdev->ae_dev)) 6658 return; 6659 6660 hclge_clear_fd_rules_in_list(hdev, true); 6661 hclge_fd_disable_user_def(hdev); 6662 } 6663 6664 static int hclge_restore_fd_entries(struct hnae3_handle *handle) 6665 { 6666 struct hclge_vport *vport = hclge_get_vport(handle); 6667 struct hclge_dev *hdev = vport->back; 6668 struct hclge_fd_rule *rule; 6669 struct hlist_node *node; 6670 6671 /* Return ok here, because reset error handling will check this 6672 * return value. If error is returned here, the reset process will 6673 * fail. 6674 */ 6675 if (!hnae3_ae_dev_fd_supported(hdev->ae_dev)) 6676 return 0; 6677 6678 /* if fd is disabled, should not restore it when reset */ 6679 if (!hdev->fd_en) 6680 return 0; 6681 6682 spin_lock_bh(&hdev->fd_rule_lock); 6683 hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) { 6684 if (rule->state == HCLGE_FD_ACTIVE) 6685 rule->state = HCLGE_FD_TO_ADD; 6686 } 6687 spin_unlock_bh(&hdev->fd_rule_lock); 6688 set_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state); 6689 6690 return 0; 6691 } 6692 6693 static int hclge_get_fd_rule_cnt(struct hnae3_handle *handle, 6694 struct ethtool_rxnfc *cmd) 6695 { 6696 struct hclge_vport *vport = hclge_get_vport(handle); 6697 struct hclge_dev *hdev = vport->back; 6698 6699 if (!hnae3_ae_dev_fd_supported(hdev->ae_dev) || hclge_is_cls_flower_active(handle)) 6700 return -EOPNOTSUPP; 6701 6702 cmd->rule_cnt = hdev->hclge_fd_rule_num; 6703 cmd->data = hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]; 6704 6705 return 0; 6706 } 6707 6708 static void hclge_fd_get_tcpip4_info(struct hclge_fd_rule *rule, 6709 struct ethtool_tcpip4_spec *spec, 6710 struct ethtool_tcpip4_spec *spec_mask) 6711 { 6712 spec->ip4src = cpu_to_be32(rule->tuples.src_ip[IPV4_INDEX]); 6713 spec_mask->ip4src = rule->unused_tuple & BIT(INNER_SRC_IP) ? 6714 0 : cpu_to_be32(rule->tuples_mask.src_ip[IPV4_INDEX]); 6715 6716 spec->ip4dst = cpu_to_be32(rule->tuples.dst_ip[IPV4_INDEX]); 6717 spec_mask->ip4dst = rule->unused_tuple & BIT(INNER_DST_IP) ? 6718 0 : cpu_to_be32(rule->tuples_mask.dst_ip[IPV4_INDEX]); 6719 6720 spec->psrc = cpu_to_be16(rule->tuples.src_port); 6721 spec_mask->psrc = rule->unused_tuple & BIT(INNER_SRC_PORT) ? 6722 0 : cpu_to_be16(rule->tuples_mask.src_port); 6723 6724 spec->pdst = cpu_to_be16(rule->tuples.dst_port); 6725 spec_mask->pdst = rule->unused_tuple & BIT(INNER_DST_PORT) ? 6726 0 : cpu_to_be16(rule->tuples_mask.dst_port); 6727 6728 spec->tos = rule->tuples.ip_tos; 6729 spec_mask->tos = rule->unused_tuple & BIT(INNER_IP_TOS) ? 6730 0 : rule->tuples_mask.ip_tos; 6731 } 6732 6733 static void hclge_fd_get_ip4_info(struct hclge_fd_rule *rule, 6734 struct ethtool_usrip4_spec *spec, 6735 struct ethtool_usrip4_spec *spec_mask) 6736 { 6737 spec->ip4src = cpu_to_be32(rule->tuples.src_ip[IPV4_INDEX]); 6738 spec_mask->ip4src = rule->unused_tuple & BIT(INNER_SRC_IP) ? 6739 0 : cpu_to_be32(rule->tuples_mask.src_ip[IPV4_INDEX]); 6740 6741 spec->ip4dst = cpu_to_be32(rule->tuples.dst_ip[IPV4_INDEX]); 6742 spec_mask->ip4dst = rule->unused_tuple & BIT(INNER_DST_IP) ? 6743 0 : cpu_to_be32(rule->tuples_mask.dst_ip[IPV4_INDEX]); 6744 6745 spec->tos = rule->tuples.ip_tos; 6746 spec_mask->tos = rule->unused_tuple & BIT(INNER_IP_TOS) ? 6747 0 : rule->tuples_mask.ip_tos; 6748 6749 spec->proto = rule->tuples.ip_proto; 6750 spec_mask->proto = rule->unused_tuple & BIT(INNER_IP_PROTO) ? 6751 0 : rule->tuples_mask.ip_proto; 6752 6753 spec->ip_ver = ETH_RX_NFC_IP4; 6754 } 6755 6756 static void hclge_fd_get_tcpip6_info(struct hclge_fd_rule *rule, 6757 struct ethtool_tcpip6_spec *spec, 6758 struct ethtool_tcpip6_spec *spec_mask) 6759 { 6760 ipv6_addr_cpu_to_be32(spec->ip6src, rule->tuples.src_ip); 6761 ipv6_addr_cpu_to_be32(spec->ip6dst, rule->tuples.dst_ip); 6762 if (rule->unused_tuple & BIT(INNER_SRC_IP)) 6763 memset(spec_mask->ip6src, 0, sizeof(spec_mask->ip6src)); 6764 else 6765 ipv6_addr_cpu_to_be32(spec_mask->ip6src, 6766 rule->tuples_mask.src_ip); 6767 6768 if (rule->unused_tuple & BIT(INNER_DST_IP)) 6769 memset(spec_mask->ip6dst, 0, sizeof(spec_mask->ip6dst)); 6770 else 6771 ipv6_addr_cpu_to_be32(spec_mask->ip6dst, 6772 rule->tuples_mask.dst_ip); 6773 6774 spec->tclass = rule->tuples.ip_tos; 6775 spec_mask->tclass = rule->unused_tuple & BIT(INNER_IP_TOS) ? 6776 0 : rule->tuples_mask.ip_tos; 6777 6778 spec->psrc = cpu_to_be16(rule->tuples.src_port); 6779 spec_mask->psrc = rule->unused_tuple & BIT(INNER_SRC_PORT) ? 6780 0 : cpu_to_be16(rule->tuples_mask.src_port); 6781 6782 spec->pdst = cpu_to_be16(rule->tuples.dst_port); 6783 spec_mask->pdst = rule->unused_tuple & BIT(INNER_DST_PORT) ? 6784 0 : cpu_to_be16(rule->tuples_mask.dst_port); 6785 } 6786 6787 static void hclge_fd_get_ip6_info(struct hclge_fd_rule *rule, 6788 struct ethtool_usrip6_spec *spec, 6789 struct ethtool_usrip6_spec *spec_mask) 6790 { 6791 ipv6_addr_cpu_to_be32(spec->ip6src, rule->tuples.src_ip); 6792 ipv6_addr_cpu_to_be32(spec->ip6dst, rule->tuples.dst_ip); 6793 if (rule->unused_tuple & BIT(INNER_SRC_IP)) 6794 memset(spec_mask->ip6src, 0, sizeof(spec_mask->ip6src)); 6795 else 6796 ipv6_addr_cpu_to_be32(spec_mask->ip6src, 6797 rule->tuples_mask.src_ip); 6798 6799 if (rule->unused_tuple & BIT(INNER_DST_IP)) 6800 memset(spec_mask->ip6dst, 0, sizeof(spec_mask->ip6dst)); 6801 else 6802 ipv6_addr_cpu_to_be32(spec_mask->ip6dst, 6803 rule->tuples_mask.dst_ip); 6804 6805 spec->tclass = rule->tuples.ip_tos; 6806 spec_mask->tclass = rule->unused_tuple & BIT(INNER_IP_TOS) ? 6807 0 : rule->tuples_mask.ip_tos; 6808 6809 spec->l4_proto = rule->tuples.ip_proto; 6810 spec_mask->l4_proto = rule->unused_tuple & BIT(INNER_IP_PROTO) ? 6811 0 : rule->tuples_mask.ip_proto; 6812 } 6813 6814 static void hclge_fd_get_ether_info(struct hclge_fd_rule *rule, 6815 struct ethhdr *spec, 6816 struct ethhdr *spec_mask) 6817 { 6818 ether_addr_copy(spec->h_source, rule->tuples.src_mac); 6819 ether_addr_copy(spec->h_dest, rule->tuples.dst_mac); 6820 6821 if (rule->unused_tuple & BIT(INNER_SRC_MAC)) 6822 eth_zero_addr(spec_mask->h_source); 6823 else 6824 ether_addr_copy(spec_mask->h_source, rule->tuples_mask.src_mac); 6825 6826 if (rule->unused_tuple & BIT(INNER_DST_MAC)) 6827 eth_zero_addr(spec_mask->h_dest); 6828 else 6829 ether_addr_copy(spec_mask->h_dest, rule->tuples_mask.dst_mac); 6830 6831 spec->h_proto = cpu_to_be16(rule->tuples.ether_proto); 6832 spec_mask->h_proto = rule->unused_tuple & BIT(INNER_ETH_TYPE) ? 6833 0 : cpu_to_be16(rule->tuples_mask.ether_proto); 6834 } 6835 6836 static void hclge_fd_get_user_def_info(struct ethtool_rx_flow_spec *fs, 6837 struct hclge_fd_rule *rule) 6838 { 6839 if ((rule->unused_tuple & HCLGE_FD_TUPLE_USER_DEF_TUPLES) == 6840 HCLGE_FD_TUPLE_USER_DEF_TUPLES) { 6841 fs->h_ext.data[0] = 0; 6842 fs->h_ext.data[1] = 0; 6843 fs->m_ext.data[0] = 0; 6844 fs->m_ext.data[1] = 0; 6845 } else { 6846 fs->h_ext.data[0] = cpu_to_be32(rule->ep.user_def.offset); 6847 fs->h_ext.data[1] = cpu_to_be32(rule->ep.user_def.data); 6848 fs->m_ext.data[0] = 6849 cpu_to_be32(HCLGE_FD_USER_DEF_OFFSET_UNMASK); 6850 fs->m_ext.data[1] = cpu_to_be32(rule->ep.user_def.data_mask); 6851 } 6852 } 6853 6854 static void hclge_fd_get_ext_info(struct ethtool_rx_flow_spec *fs, 6855 struct hclge_fd_rule *rule) 6856 { 6857 if (fs->flow_type & FLOW_EXT) { 6858 fs->h_ext.vlan_tci = cpu_to_be16(rule->tuples.vlan_tag1); 6859 fs->m_ext.vlan_tci = 6860 rule->unused_tuple & BIT(INNER_VLAN_TAG_FST) ? 6861 0 : cpu_to_be16(rule->tuples_mask.vlan_tag1); 6862 6863 hclge_fd_get_user_def_info(fs, rule); 6864 } 6865 6866 if (fs->flow_type & FLOW_MAC_EXT) { 6867 ether_addr_copy(fs->h_ext.h_dest, rule->tuples.dst_mac); 6868 if (rule->unused_tuple & BIT(INNER_DST_MAC)) 6869 eth_zero_addr(fs->m_u.ether_spec.h_dest); 6870 else 6871 ether_addr_copy(fs->m_u.ether_spec.h_dest, 6872 rule->tuples_mask.dst_mac); 6873 } 6874 } 6875 6876 static struct hclge_fd_rule *hclge_get_fd_rule(struct hclge_dev *hdev, 6877 u16 location) 6878 { 6879 struct hclge_fd_rule *rule = NULL; 6880 struct hlist_node *node2; 6881 6882 hlist_for_each_entry_safe(rule, node2, &hdev->fd_rule_list, rule_node) { 6883 if (rule->location == location) 6884 return rule; 6885 else if (rule->location > location) 6886 return NULL; 6887 } 6888 6889 return NULL; 6890 } 6891 6892 static void hclge_fd_get_ring_cookie(struct ethtool_rx_flow_spec *fs, 6893 struct hclge_fd_rule *rule) 6894 { 6895 if (rule->action == HCLGE_FD_ACTION_DROP_PACKET) { 6896 fs->ring_cookie = RX_CLS_FLOW_DISC; 6897 } else { 6898 u64 vf_id; 6899 6900 fs->ring_cookie = rule->queue_id; 6901 vf_id = rule->vf_id; 6902 vf_id <<= ETHTOOL_RX_FLOW_SPEC_RING_VF_OFF; 6903 fs->ring_cookie |= vf_id; 6904 } 6905 } 6906 6907 static int hclge_get_fd_rule_info(struct hnae3_handle *handle, 6908 struct ethtool_rxnfc *cmd) 6909 { 6910 struct hclge_vport *vport = hclge_get_vport(handle); 6911 struct hclge_fd_rule *rule = NULL; 6912 struct hclge_dev *hdev = vport->back; 6913 struct ethtool_rx_flow_spec *fs; 6914 6915 if (!hnae3_ae_dev_fd_supported(hdev->ae_dev)) 6916 return -EOPNOTSUPP; 6917 6918 fs = (struct ethtool_rx_flow_spec *)&cmd->fs; 6919 6920 spin_lock_bh(&hdev->fd_rule_lock); 6921 6922 rule = hclge_get_fd_rule(hdev, fs->location); 6923 if (!rule) { 6924 spin_unlock_bh(&hdev->fd_rule_lock); 6925 return -ENOENT; 6926 } 6927 6928 fs->flow_type = rule->flow_type; 6929 switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) { 6930 case SCTP_V4_FLOW: 6931 case TCP_V4_FLOW: 6932 case UDP_V4_FLOW: 6933 hclge_fd_get_tcpip4_info(rule, &fs->h_u.tcp_ip4_spec, 6934 &fs->m_u.tcp_ip4_spec); 6935 break; 6936 case IP_USER_FLOW: 6937 hclge_fd_get_ip4_info(rule, &fs->h_u.usr_ip4_spec, 6938 &fs->m_u.usr_ip4_spec); 6939 break; 6940 case SCTP_V6_FLOW: 6941 case TCP_V6_FLOW: 6942 case UDP_V6_FLOW: 6943 hclge_fd_get_tcpip6_info(rule, &fs->h_u.tcp_ip6_spec, 6944 &fs->m_u.tcp_ip6_spec); 6945 break; 6946 case IPV6_USER_FLOW: 6947 hclge_fd_get_ip6_info(rule, &fs->h_u.usr_ip6_spec, 6948 &fs->m_u.usr_ip6_spec); 6949 break; 6950 /* The flow type of fd rule has been checked before adding in to rule 6951 * list. As other flow types have been handled, it must be ETHER_FLOW 6952 * for the default case 6953 */ 6954 default: 6955 hclge_fd_get_ether_info(rule, &fs->h_u.ether_spec, 6956 &fs->m_u.ether_spec); 6957 break; 6958 } 6959 6960 hclge_fd_get_ext_info(fs, rule); 6961 6962 hclge_fd_get_ring_cookie(fs, rule); 6963 6964 spin_unlock_bh(&hdev->fd_rule_lock); 6965 6966 return 0; 6967 } 6968 6969 static int hclge_get_all_rules(struct hnae3_handle *handle, 6970 struct ethtool_rxnfc *cmd, u32 *rule_locs) 6971 { 6972 struct hclge_vport *vport = hclge_get_vport(handle); 6973 struct hclge_dev *hdev = vport->back; 6974 struct hclge_fd_rule *rule; 6975 struct hlist_node *node2; 6976 int cnt = 0; 6977 6978 if (!hnae3_ae_dev_fd_supported(hdev->ae_dev)) 6979 return -EOPNOTSUPP; 6980 6981 cmd->data = hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]; 6982 6983 spin_lock_bh(&hdev->fd_rule_lock); 6984 hlist_for_each_entry_safe(rule, node2, 6985 &hdev->fd_rule_list, rule_node) { 6986 if (cnt == cmd->rule_cnt) { 6987 spin_unlock_bh(&hdev->fd_rule_lock); 6988 return -EMSGSIZE; 6989 } 6990 6991 if (rule->state == HCLGE_FD_TO_DEL) 6992 continue; 6993 6994 rule_locs[cnt] = rule->location; 6995 cnt++; 6996 } 6997 6998 spin_unlock_bh(&hdev->fd_rule_lock); 6999 7000 cmd->rule_cnt = cnt; 7001 7002 return 0; 7003 } 7004 7005 static void hclge_fd_get_flow_tuples(const struct flow_keys *fkeys, 7006 struct hclge_fd_rule_tuples *tuples) 7007 { 7008 #define flow_ip6_src fkeys->addrs.v6addrs.src.in6_u.u6_addr32 7009 #define flow_ip6_dst fkeys->addrs.v6addrs.dst.in6_u.u6_addr32 7010 7011 tuples->ether_proto = be16_to_cpu(fkeys->basic.n_proto); 7012 tuples->ip_proto = fkeys->basic.ip_proto; 7013 tuples->dst_port = be16_to_cpu(fkeys->ports.dst); 7014 7015 if (fkeys->basic.n_proto == htons(ETH_P_IP)) { 7016 tuples->src_ip[3] = be32_to_cpu(fkeys->addrs.v4addrs.src); 7017 tuples->dst_ip[3] = be32_to_cpu(fkeys->addrs.v4addrs.dst); 7018 } else { 7019 int i; 7020 7021 for (i = 0; i < IPV6_ADDR_WORDS; i++) { 7022 tuples->src_ip[i] = be32_to_cpu(flow_ip6_src[i]); 7023 tuples->dst_ip[i] = be32_to_cpu(flow_ip6_dst[i]); 7024 } 7025 } 7026 } 7027 7028 /* traverse all rules, check whether an existed rule has the same tuples */ 7029 static struct hclge_fd_rule * 7030 hclge_fd_search_flow_keys(struct hclge_dev *hdev, 7031 const struct hclge_fd_rule_tuples *tuples) 7032 { 7033 struct hclge_fd_rule *rule = NULL; 7034 struct hlist_node *node; 7035 7036 hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) { 7037 if (!memcmp(tuples, &rule->tuples, sizeof(*tuples))) 7038 return rule; 7039 } 7040 7041 return NULL; 7042 } 7043 7044 static void hclge_fd_build_arfs_rule(const struct hclge_fd_rule_tuples *tuples, 7045 struct hclge_fd_rule *rule) 7046 { 7047 rule->unused_tuple = BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC) | 7048 BIT(INNER_VLAN_TAG_FST) | BIT(INNER_IP_TOS) | 7049 BIT(INNER_SRC_PORT); 7050 rule->action = 0; 7051 rule->vf_id = 0; 7052 rule->rule_type = HCLGE_FD_ARFS_ACTIVE; 7053 rule->state = HCLGE_FD_TO_ADD; 7054 if (tuples->ether_proto == ETH_P_IP) { 7055 if (tuples->ip_proto == IPPROTO_TCP) 7056 rule->flow_type = TCP_V4_FLOW; 7057 else 7058 rule->flow_type = UDP_V4_FLOW; 7059 } else { 7060 if (tuples->ip_proto == IPPROTO_TCP) 7061 rule->flow_type = TCP_V6_FLOW; 7062 else 7063 rule->flow_type = UDP_V6_FLOW; 7064 } 7065 memcpy(&rule->tuples, tuples, sizeof(rule->tuples)); 7066 memset(&rule->tuples_mask, 0xFF, sizeof(rule->tuples_mask)); 7067 } 7068 7069 static int hclge_add_fd_entry_by_arfs(struct hnae3_handle *handle, u16 queue_id, 7070 u16 flow_id, struct flow_keys *fkeys) 7071 { 7072 struct hclge_vport *vport = hclge_get_vport(handle); 7073 struct hclge_fd_rule_tuples new_tuples = {}; 7074 struct hclge_dev *hdev = vport->back; 7075 struct hclge_fd_rule *rule; 7076 u16 bit_id; 7077 7078 if (!hnae3_ae_dev_fd_supported(hdev->ae_dev)) 7079 return -EOPNOTSUPP; 7080 7081 /* when there is already fd rule existed add by user, 7082 * arfs should not work 7083 */ 7084 spin_lock_bh(&hdev->fd_rule_lock); 7085 if (hdev->fd_active_type != HCLGE_FD_ARFS_ACTIVE && 7086 hdev->fd_active_type != HCLGE_FD_RULE_NONE) { 7087 spin_unlock_bh(&hdev->fd_rule_lock); 7088 return -EOPNOTSUPP; 7089 } 7090 7091 hclge_fd_get_flow_tuples(fkeys, &new_tuples); 7092 7093 /* check is there flow director filter existed for this flow, 7094 * if not, create a new filter for it; 7095 * if filter exist with different queue id, modify the filter; 7096 * if filter exist with same queue id, do nothing 7097 */ 7098 rule = hclge_fd_search_flow_keys(hdev, &new_tuples); 7099 if (!rule) { 7100 bit_id = find_first_zero_bit(hdev->fd_bmap, MAX_FD_FILTER_NUM); 7101 if (bit_id >= hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]) { 7102 spin_unlock_bh(&hdev->fd_rule_lock); 7103 return -ENOSPC; 7104 } 7105 7106 rule = kzalloc(sizeof(*rule), GFP_ATOMIC); 7107 if (!rule) { 7108 spin_unlock_bh(&hdev->fd_rule_lock); 7109 return -ENOMEM; 7110 } 7111 7112 rule->location = bit_id; 7113 rule->arfs.flow_id = flow_id; 7114 rule->queue_id = queue_id; 7115 hclge_fd_build_arfs_rule(&new_tuples, rule); 7116 hclge_update_fd_list(hdev, rule->state, rule->location, rule); 7117 hdev->fd_active_type = HCLGE_FD_ARFS_ACTIVE; 7118 } else if (rule->queue_id != queue_id) { 7119 rule->queue_id = queue_id; 7120 rule->state = HCLGE_FD_TO_ADD; 7121 set_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state); 7122 hclge_task_schedule(hdev, 0); 7123 } 7124 spin_unlock_bh(&hdev->fd_rule_lock); 7125 return rule->location; 7126 } 7127 7128 static void hclge_rfs_filter_expire(struct hclge_dev *hdev) 7129 { 7130 #ifdef CONFIG_RFS_ACCEL 7131 struct hnae3_handle *handle = &hdev->vport[0].nic; 7132 struct hclge_fd_rule *rule; 7133 struct hlist_node *node; 7134 7135 spin_lock_bh(&hdev->fd_rule_lock); 7136 if (hdev->fd_active_type != HCLGE_FD_ARFS_ACTIVE) { 7137 spin_unlock_bh(&hdev->fd_rule_lock); 7138 return; 7139 } 7140 hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) { 7141 if (rule->state != HCLGE_FD_ACTIVE) 7142 continue; 7143 if (rps_may_expire_flow(handle->netdev, rule->queue_id, 7144 rule->arfs.flow_id, rule->location)) { 7145 rule->state = HCLGE_FD_TO_DEL; 7146 set_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state); 7147 } 7148 } 7149 spin_unlock_bh(&hdev->fd_rule_lock); 7150 #endif 7151 } 7152 7153 /* make sure being called after lock up with fd_rule_lock */ 7154 static int hclge_clear_arfs_rules(struct hclge_dev *hdev) 7155 { 7156 #ifdef CONFIG_RFS_ACCEL 7157 struct hclge_fd_rule *rule; 7158 struct hlist_node *node; 7159 int ret; 7160 7161 if (hdev->fd_active_type != HCLGE_FD_ARFS_ACTIVE) 7162 return 0; 7163 7164 hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) { 7165 switch (rule->state) { 7166 case HCLGE_FD_TO_DEL: 7167 case HCLGE_FD_ACTIVE: 7168 ret = hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true, 7169 rule->location, NULL, false); 7170 if (ret) 7171 return ret; 7172 fallthrough; 7173 case HCLGE_FD_TO_ADD: 7174 hclge_fd_dec_rule_cnt(hdev, rule->location); 7175 hlist_del(&rule->rule_node); 7176 kfree(rule); 7177 break; 7178 default: 7179 break; 7180 } 7181 } 7182 hclge_sync_fd_state(hdev); 7183 7184 #endif 7185 return 0; 7186 } 7187 7188 static void hclge_get_cls_key_basic(const struct flow_rule *flow, 7189 struct hclge_fd_rule *rule) 7190 { 7191 if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_BASIC)) { 7192 struct flow_match_basic match; 7193 u16 ethtype_key, ethtype_mask; 7194 7195 flow_rule_match_basic(flow, &match); 7196 ethtype_key = ntohs(match.key->n_proto); 7197 ethtype_mask = ntohs(match.mask->n_proto); 7198 7199 if (ethtype_key == ETH_P_ALL) { 7200 ethtype_key = 0; 7201 ethtype_mask = 0; 7202 } 7203 rule->tuples.ether_proto = ethtype_key; 7204 rule->tuples_mask.ether_proto = ethtype_mask; 7205 rule->tuples.ip_proto = match.key->ip_proto; 7206 rule->tuples_mask.ip_proto = match.mask->ip_proto; 7207 } else { 7208 rule->unused_tuple |= BIT(INNER_IP_PROTO); 7209 rule->unused_tuple |= BIT(INNER_ETH_TYPE); 7210 } 7211 } 7212 7213 static void hclge_get_cls_key_mac(const struct flow_rule *flow, 7214 struct hclge_fd_rule *rule) 7215 { 7216 if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 7217 struct flow_match_eth_addrs match; 7218 7219 flow_rule_match_eth_addrs(flow, &match); 7220 ether_addr_copy(rule->tuples.dst_mac, match.key->dst); 7221 ether_addr_copy(rule->tuples_mask.dst_mac, match.mask->dst); 7222 ether_addr_copy(rule->tuples.src_mac, match.key->src); 7223 ether_addr_copy(rule->tuples_mask.src_mac, match.mask->src); 7224 } else { 7225 rule->unused_tuple |= BIT(INNER_DST_MAC); 7226 rule->unused_tuple |= BIT(INNER_SRC_MAC); 7227 } 7228 } 7229 7230 static void hclge_get_cls_key_vlan(const struct flow_rule *flow, 7231 struct hclge_fd_rule *rule) 7232 { 7233 if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_VLAN)) { 7234 struct flow_match_vlan match; 7235 7236 flow_rule_match_vlan(flow, &match); 7237 rule->tuples.vlan_tag1 = match.key->vlan_id | 7238 (match.key->vlan_priority << VLAN_PRIO_SHIFT); 7239 rule->tuples_mask.vlan_tag1 = match.mask->vlan_id | 7240 (match.mask->vlan_priority << VLAN_PRIO_SHIFT); 7241 } else { 7242 rule->unused_tuple |= BIT(INNER_VLAN_TAG_FST); 7243 } 7244 } 7245 7246 static int hclge_get_cls_key_ip(const struct flow_rule *flow, 7247 struct hclge_fd_rule *rule, 7248 struct netlink_ext_ack *extack) 7249 { 7250 u16 addr_type = 0; 7251 7252 if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_CONTROL)) { 7253 struct flow_match_control match; 7254 7255 flow_rule_match_control(flow, &match); 7256 addr_type = match.key->addr_type; 7257 7258 if (flow_rule_has_control_flags(match.mask->flags, extack)) 7259 return -EOPNOTSUPP; 7260 } 7261 7262 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 7263 struct flow_match_ipv4_addrs match; 7264 7265 flow_rule_match_ipv4_addrs(flow, &match); 7266 rule->tuples.src_ip[IPV4_INDEX] = be32_to_cpu(match.key->src); 7267 rule->tuples_mask.src_ip[IPV4_INDEX] = 7268 be32_to_cpu(match.mask->src); 7269 rule->tuples.dst_ip[IPV4_INDEX] = be32_to_cpu(match.key->dst); 7270 rule->tuples_mask.dst_ip[IPV4_INDEX] = 7271 be32_to_cpu(match.mask->dst); 7272 } else if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 7273 struct flow_match_ipv6_addrs match; 7274 7275 flow_rule_match_ipv6_addrs(flow, &match); 7276 ipv6_addr_be32_to_cpu(rule->tuples.src_ip, 7277 match.key->src.s6_addr32); 7278 ipv6_addr_be32_to_cpu(rule->tuples_mask.src_ip, 7279 match.mask->src.s6_addr32); 7280 ipv6_addr_be32_to_cpu(rule->tuples.dst_ip, 7281 match.key->dst.s6_addr32); 7282 ipv6_addr_be32_to_cpu(rule->tuples_mask.dst_ip, 7283 match.mask->dst.s6_addr32); 7284 } else { 7285 rule->unused_tuple |= BIT(INNER_SRC_IP); 7286 rule->unused_tuple |= BIT(INNER_DST_IP); 7287 } 7288 7289 return 0; 7290 } 7291 7292 static void hclge_get_cls_key_port(const struct flow_rule *flow, 7293 struct hclge_fd_rule *rule) 7294 { 7295 if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_PORTS)) { 7296 struct flow_match_ports match; 7297 7298 flow_rule_match_ports(flow, &match); 7299 7300 rule->tuples.src_port = be16_to_cpu(match.key->src); 7301 rule->tuples_mask.src_port = be16_to_cpu(match.mask->src); 7302 rule->tuples.dst_port = be16_to_cpu(match.key->dst); 7303 rule->tuples_mask.dst_port = be16_to_cpu(match.mask->dst); 7304 } else { 7305 rule->unused_tuple |= BIT(INNER_SRC_PORT); 7306 rule->unused_tuple |= BIT(INNER_DST_PORT); 7307 } 7308 } 7309 7310 static int hclge_parse_cls_flower(struct hclge_dev *hdev, 7311 struct flow_cls_offload *cls_flower, 7312 struct hclge_fd_rule *rule) 7313 { 7314 struct flow_rule *flow = flow_cls_offload_flow_rule(cls_flower); 7315 struct netlink_ext_ack *extack = cls_flower->common.extack; 7316 struct flow_dissector *dissector = flow->match.dissector; 7317 int ret; 7318 7319 if (dissector->used_keys & 7320 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) | 7321 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) | 7322 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 7323 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) | 7324 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 7325 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 7326 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS))) { 7327 dev_err(&hdev->pdev->dev, "unsupported key set: %#llx\n", 7328 dissector->used_keys); 7329 return -EOPNOTSUPP; 7330 } 7331 7332 hclge_get_cls_key_basic(flow, rule); 7333 hclge_get_cls_key_mac(flow, rule); 7334 hclge_get_cls_key_vlan(flow, rule); 7335 7336 ret = hclge_get_cls_key_ip(flow, rule, extack); 7337 if (ret) 7338 return ret; 7339 7340 hclge_get_cls_key_port(flow, rule); 7341 7342 return 0; 7343 } 7344 7345 static int hclge_check_cls_flower(struct hclge_dev *hdev, 7346 struct flow_cls_offload *cls_flower, int tc) 7347 { 7348 u32 prio = cls_flower->common.prio; 7349 7350 if (tc < 0 || tc > hdev->tc_max) { 7351 dev_err(&hdev->pdev->dev, "invalid traffic class\n"); 7352 return -EINVAL; 7353 } 7354 7355 if (prio == 0 || 7356 prio > hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]) { 7357 dev_err(&hdev->pdev->dev, 7358 "prio %u should be in range[1, %u]\n", 7359 prio, hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]); 7360 return -EINVAL; 7361 } 7362 7363 if (test_bit(prio - 1, hdev->fd_bmap)) { 7364 dev_err(&hdev->pdev->dev, "prio %u is already used\n", prio); 7365 return -EINVAL; 7366 } 7367 return 0; 7368 } 7369 7370 static int hclge_add_cls_flower(struct hnae3_handle *handle, 7371 struct flow_cls_offload *cls_flower, 7372 int tc) 7373 { 7374 struct hclge_vport *vport = hclge_get_vport(handle); 7375 struct hclge_dev *hdev = vport->back; 7376 struct hclge_fd_rule *rule; 7377 int ret; 7378 7379 if (!hnae3_ae_dev_fd_supported(hdev->ae_dev)) { 7380 dev_err(&hdev->pdev->dev, 7381 "cls flower is not supported\n"); 7382 return -EOPNOTSUPP; 7383 } 7384 7385 ret = hclge_check_cls_flower(hdev, cls_flower, tc); 7386 if (ret) { 7387 dev_err(&hdev->pdev->dev, 7388 "failed to check cls flower params, ret = %d\n", ret); 7389 return ret; 7390 } 7391 7392 rule = kzalloc(sizeof(*rule), GFP_KERNEL); 7393 if (!rule) 7394 return -ENOMEM; 7395 7396 ret = hclge_parse_cls_flower(hdev, cls_flower, rule); 7397 if (ret) { 7398 kfree(rule); 7399 return ret; 7400 } 7401 7402 rule->action = HCLGE_FD_ACTION_SELECT_TC; 7403 rule->cls_flower.tc = tc; 7404 rule->location = cls_flower->common.prio - 1; 7405 rule->vf_id = 0; 7406 rule->cls_flower.cookie = cls_flower->cookie; 7407 rule->rule_type = HCLGE_FD_TC_FLOWER_ACTIVE; 7408 7409 ret = hclge_add_fd_entry_common(hdev, rule); 7410 if (ret) 7411 kfree(rule); 7412 7413 return ret; 7414 } 7415 7416 static struct hclge_fd_rule *hclge_find_cls_flower(struct hclge_dev *hdev, 7417 unsigned long cookie) 7418 { 7419 struct hclge_fd_rule *rule; 7420 struct hlist_node *node; 7421 7422 hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) { 7423 if (rule->cls_flower.cookie == cookie) 7424 return rule; 7425 } 7426 7427 return NULL; 7428 } 7429 7430 static int hclge_del_cls_flower(struct hnae3_handle *handle, 7431 struct flow_cls_offload *cls_flower) 7432 { 7433 struct hclge_vport *vport = hclge_get_vport(handle); 7434 struct hclge_dev *hdev = vport->back; 7435 struct hclge_fd_rule *rule; 7436 int ret; 7437 7438 if (!hnae3_ae_dev_fd_supported(hdev->ae_dev)) 7439 return -EOPNOTSUPP; 7440 7441 spin_lock_bh(&hdev->fd_rule_lock); 7442 7443 rule = hclge_find_cls_flower(hdev, cls_flower->cookie); 7444 if (!rule) { 7445 spin_unlock_bh(&hdev->fd_rule_lock); 7446 return -EINVAL; 7447 } 7448 7449 ret = hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true, rule->location, 7450 NULL, false); 7451 if (ret) { 7452 /* if tcam config fail, set rule state to TO_DEL, 7453 * so the rule will be deleted when periodic 7454 * task being scheduled. 7455 */ 7456 hclge_update_fd_list(hdev, HCLGE_FD_TO_DEL, rule->location, NULL); 7457 set_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state); 7458 spin_unlock_bh(&hdev->fd_rule_lock); 7459 return ret; 7460 } 7461 7462 hclge_update_fd_list(hdev, HCLGE_FD_DELETED, rule->location, NULL); 7463 spin_unlock_bh(&hdev->fd_rule_lock); 7464 7465 return 0; 7466 } 7467 7468 static void hclge_sync_fd_list(struct hclge_dev *hdev, struct hlist_head *hlist) 7469 { 7470 struct hclge_fd_rule *rule; 7471 struct hlist_node *node; 7472 int ret = 0; 7473 7474 if (!test_and_clear_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state)) 7475 return; 7476 7477 spin_lock_bh(&hdev->fd_rule_lock); 7478 7479 hlist_for_each_entry_safe(rule, node, hlist, rule_node) { 7480 switch (rule->state) { 7481 case HCLGE_FD_TO_ADD: 7482 ret = hclge_fd_config_rule(hdev, rule); 7483 if (ret) 7484 goto out; 7485 rule->state = HCLGE_FD_ACTIVE; 7486 break; 7487 case HCLGE_FD_TO_DEL: 7488 ret = hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true, 7489 rule->location, NULL, false); 7490 if (ret) 7491 goto out; 7492 hclge_fd_dec_rule_cnt(hdev, rule->location); 7493 hclge_fd_free_node(hdev, rule); 7494 break; 7495 default: 7496 break; 7497 } 7498 } 7499 7500 out: 7501 if (ret) 7502 set_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state); 7503 7504 spin_unlock_bh(&hdev->fd_rule_lock); 7505 } 7506 7507 static void hclge_sync_fd_table(struct hclge_dev *hdev) 7508 { 7509 if (!hnae3_ae_dev_fd_supported(hdev->ae_dev)) 7510 return; 7511 7512 if (test_and_clear_bit(HCLGE_STATE_FD_CLEAR_ALL, &hdev->state)) { 7513 bool clear_list = hdev->fd_active_type == HCLGE_FD_ARFS_ACTIVE; 7514 7515 hclge_clear_fd_rules_in_list(hdev, clear_list); 7516 } 7517 7518 hclge_sync_fd_user_def_cfg(hdev, false); 7519 7520 hclge_sync_fd_list(hdev, &hdev->fd_rule_list); 7521 } 7522 7523 static bool hclge_get_hw_reset_stat(struct hnae3_handle *handle) 7524 { 7525 struct hclge_vport *vport = hclge_get_vport(handle); 7526 struct hclge_dev *hdev = vport->back; 7527 7528 return hclge_read_dev(&hdev->hw, HCLGE_GLOBAL_RESET_REG) || 7529 hclge_read_dev(&hdev->hw, HCLGE_FUN_RST_ING); 7530 } 7531 7532 static bool hclge_get_cmdq_stat(struct hnae3_handle *handle) 7533 { 7534 struct hclge_vport *vport = hclge_get_vport(handle); 7535 struct hclge_dev *hdev = vport->back; 7536 7537 return test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state); 7538 } 7539 7540 static bool hclge_ae_dev_resetting(struct hnae3_handle *handle) 7541 { 7542 struct hclge_vport *vport = hclge_get_vport(handle); 7543 struct hclge_dev *hdev = vport->back; 7544 7545 return test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state); 7546 } 7547 7548 static unsigned long hclge_ae_dev_reset_cnt(struct hnae3_handle *handle) 7549 { 7550 struct hclge_vport *vport = hclge_get_vport(handle); 7551 struct hclge_dev *hdev = vport->back; 7552 7553 return hdev->rst_stats.hw_reset_done_cnt; 7554 } 7555 7556 static void hclge_enable_fd(struct hnae3_handle *handle, bool enable) 7557 { 7558 struct hclge_vport *vport = hclge_get_vport(handle); 7559 struct hclge_dev *hdev = vport->back; 7560 7561 hdev->fd_en = enable; 7562 7563 if (!enable) 7564 set_bit(HCLGE_STATE_FD_CLEAR_ALL, &hdev->state); 7565 else 7566 hclge_restore_fd_entries(handle); 7567 7568 hclge_task_schedule(hdev, 0); 7569 } 7570 7571 static void hclge_cfg_mac_mode(struct hclge_dev *hdev, bool enable) 7572 { 7573 #define HCLGE_LINK_STATUS_WAIT_CNT 3 7574 7575 struct hclge_desc desc; 7576 struct hclge_config_mac_mode_cmd *req = 7577 (struct hclge_config_mac_mode_cmd *)desc.data; 7578 u32 loop_en = 0; 7579 int ret; 7580 7581 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_MAC_MODE, false); 7582 7583 if (enable) { 7584 hnae3_set_bit(loop_en, HCLGE_MAC_TX_EN_B, 1U); 7585 hnae3_set_bit(loop_en, HCLGE_MAC_RX_EN_B, 1U); 7586 hnae3_set_bit(loop_en, HCLGE_MAC_PAD_TX_B, 1U); 7587 hnae3_set_bit(loop_en, HCLGE_MAC_PAD_RX_B, 1U); 7588 hnae3_set_bit(loop_en, HCLGE_MAC_FCS_TX_B, 1U); 7589 hnae3_set_bit(loop_en, HCLGE_MAC_RX_FCS_B, 1U); 7590 hnae3_set_bit(loop_en, HCLGE_MAC_RX_FCS_STRIP_B, 1U); 7591 hnae3_set_bit(loop_en, HCLGE_MAC_TX_OVERSIZE_TRUNCATE_B, 1U); 7592 hnae3_set_bit(loop_en, HCLGE_MAC_RX_OVERSIZE_TRUNCATE_B, 1U); 7593 hnae3_set_bit(loop_en, HCLGE_MAC_TX_UNDER_MIN_ERR_B, 1U); 7594 } 7595 7596 req->txrx_pad_fcs_loop_en = cpu_to_le32(loop_en); 7597 7598 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 7599 if (ret) { 7600 dev_err(&hdev->pdev->dev, 7601 "mac enable fail, ret =%d.\n", ret); 7602 return; 7603 } 7604 7605 if (!enable) 7606 hclge_mac_link_status_wait(hdev, HCLGE_LINK_STATUS_DOWN, 7607 HCLGE_LINK_STATUS_WAIT_CNT); 7608 } 7609 7610 static int hclge_config_switch_param(struct hclge_dev *hdev, int vfid, 7611 u8 switch_param, u8 param_mask) 7612 { 7613 struct hclge_mac_vlan_switch_cmd *req; 7614 struct hclge_desc desc; 7615 u32 func_id; 7616 int ret; 7617 7618 func_id = hclge_get_port_number(HOST_PORT, 0, vfid, 0); 7619 req = (struct hclge_mac_vlan_switch_cmd *)desc.data; 7620 7621 /* read current config parameter */ 7622 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_SWITCH_PARAM, 7623 true); 7624 req->roce_sel = HCLGE_MAC_VLAN_NIC_SEL; 7625 req->func_id = cpu_to_le32(func_id); 7626 7627 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 7628 if (ret) { 7629 dev_err(&hdev->pdev->dev, 7630 "read mac vlan switch parameter fail, ret = %d\n", ret); 7631 return ret; 7632 } 7633 7634 /* modify and write new config parameter */ 7635 hclge_comm_cmd_reuse_desc(&desc, false); 7636 req->switch_param = (req->switch_param & param_mask) | switch_param; 7637 req->param_mask = param_mask; 7638 7639 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 7640 if (ret) 7641 dev_err(&hdev->pdev->dev, 7642 "set mac vlan switch parameter fail, ret = %d\n", ret); 7643 return ret; 7644 } 7645 7646 static void hclge_phy_link_status_wait(struct hclge_dev *hdev, 7647 int link_ret) 7648 { 7649 #define HCLGE_PHY_LINK_STATUS_NUM 200 7650 7651 struct phy_device *phydev = hdev->hw.mac.phydev; 7652 int i = 0; 7653 int ret; 7654 7655 do { 7656 ret = phy_read_status(phydev); 7657 if (ret) { 7658 dev_err(&hdev->pdev->dev, 7659 "phy update link status fail, ret = %d\n", ret); 7660 return; 7661 } 7662 7663 if (phydev->link == link_ret) 7664 break; 7665 7666 msleep(HCLGE_LINK_STATUS_MS); 7667 } while (++i < HCLGE_PHY_LINK_STATUS_NUM); 7668 } 7669 7670 static int hclge_mac_link_status_wait(struct hclge_dev *hdev, int link_ret, 7671 int wait_cnt) 7672 { 7673 int link_status; 7674 int i = 0; 7675 int ret; 7676 7677 do { 7678 ret = hclge_get_mac_link_status(hdev, &link_status); 7679 if (ret) 7680 return ret; 7681 if (link_status == link_ret) 7682 return 0; 7683 7684 msleep(HCLGE_LINK_STATUS_MS); 7685 } while (++i < wait_cnt); 7686 return -EBUSY; 7687 } 7688 7689 static int hclge_mac_phy_link_status_wait(struct hclge_dev *hdev, bool en, 7690 bool is_phy) 7691 { 7692 #define HCLGE_MAC_LINK_STATUS_NUM 100 7693 7694 int link_ret; 7695 7696 link_ret = en ? HCLGE_LINK_STATUS_UP : HCLGE_LINK_STATUS_DOWN; 7697 7698 if (is_phy) 7699 hclge_phy_link_status_wait(hdev, link_ret); 7700 7701 return hclge_mac_link_status_wait(hdev, link_ret, 7702 HCLGE_MAC_LINK_STATUS_NUM); 7703 } 7704 7705 static int hclge_set_app_loopback(struct hclge_dev *hdev, bool en) 7706 { 7707 struct hclge_config_mac_mode_cmd *req; 7708 struct hclge_desc desc; 7709 u32 loop_en; 7710 int ret; 7711 7712 req = (struct hclge_config_mac_mode_cmd *)&desc.data[0]; 7713 /* 1 Read out the MAC mode config at first */ 7714 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_MAC_MODE, true); 7715 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 7716 if (ret) { 7717 dev_err(&hdev->pdev->dev, 7718 "mac loopback get fail, ret =%d.\n", ret); 7719 return ret; 7720 } 7721 7722 /* 2 Then setup the loopback flag */ 7723 loop_en = le32_to_cpu(req->txrx_pad_fcs_loop_en); 7724 hnae3_set_bit(loop_en, HCLGE_MAC_APP_LP_B, en ? 1 : 0); 7725 7726 req->txrx_pad_fcs_loop_en = cpu_to_le32(loop_en); 7727 7728 /* 3 Config mac work mode with loopback flag 7729 * and its original configure parameters 7730 */ 7731 hclge_comm_cmd_reuse_desc(&desc, false); 7732 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 7733 if (ret) 7734 dev_err(&hdev->pdev->dev, 7735 "mac loopback set fail, ret =%d.\n", ret); 7736 return ret; 7737 } 7738 7739 static int hclge_cfg_common_loopback_cmd_send(struct hclge_dev *hdev, bool en, 7740 enum hnae3_loop loop_mode) 7741 { 7742 struct hclge_common_lb_cmd *req; 7743 struct hclge_desc desc; 7744 u8 loop_mode_b; 7745 int ret; 7746 7747 req = (struct hclge_common_lb_cmd *)desc.data; 7748 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_COMMON_LOOPBACK, false); 7749 7750 switch (loop_mode) { 7751 case HNAE3_LOOP_SERIAL_SERDES: 7752 loop_mode_b = HCLGE_CMD_SERDES_SERIAL_INNER_LOOP_B; 7753 break; 7754 case HNAE3_LOOP_PARALLEL_SERDES: 7755 loop_mode_b = HCLGE_CMD_SERDES_PARALLEL_INNER_LOOP_B; 7756 break; 7757 case HNAE3_LOOP_PHY: 7758 loop_mode_b = HCLGE_CMD_GE_PHY_INNER_LOOP_B; 7759 break; 7760 default: 7761 dev_err(&hdev->pdev->dev, 7762 "unsupported loopback mode %d\n", loop_mode); 7763 return -ENOTSUPP; 7764 } 7765 7766 req->mask = loop_mode_b; 7767 if (en) 7768 req->enable = loop_mode_b; 7769 7770 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 7771 if (ret) 7772 dev_err(&hdev->pdev->dev, 7773 "failed to send loopback cmd, loop_mode = %d, ret = %d\n", 7774 loop_mode, ret); 7775 7776 return ret; 7777 } 7778 7779 static int hclge_cfg_common_loopback_wait(struct hclge_dev *hdev) 7780 { 7781 #define HCLGE_COMMON_LB_RETRY_MS 10 7782 #define HCLGE_COMMON_LB_RETRY_NUM 100 7783 7784 struct hclge_common_lb_cmd *req; 7785 struct hclge_desc desc; 7786 u32 i = 0; 7787 int ret; 7788 7789 req = (struct hclge_common_lb_cmd *)desc.data; 7790 7791 do { 7792 msleep(HCLGE_COMMON_LB_RETRY_MS); 7793 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_COMMON_LOOPBACK, 7794 true); 7795 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 7796 if (ret) { 7797 dev_err(&hdev->pdev->dev, 7798 "failed to get loopback done status, ret = %d\n", 7799 ret); 7800 return ret; 7801 } 7802 } while (++i < HCLGE_COMMON_LB_RETRY_NUM && 7803 !(req->result & HCLGE_CMD_COMMON_LB_DONE_B)); 7804 7805 if (!(req->result & HCLGE_CMD_COMMON_LB_DONE_B)) { 7806 dev_err(&hdev->pdev->dev, "wait loopback timeout\n"); 7807 return -EBUSY; 7808 } else if (!(req->result & HCLGE_CMD_COMMON_LB_SUCCESS_B)) { 7809 dev_err(&hdev->pdev->dev, "failed to do loopback test\n"); 7810 return -EIO; 7811 } 7812 7813 return 0; 7814 } 7815 7816 static int hclge_cfg_common_loopback(struct hclge_dev *hdev, bool en, 7817 enum hnae3_loop loop_mode) 7818 { 7819 int ret; 7820 7821 ret = hclge_cfg_common_loopback_cmd_send(hdev, en, loop_mode); 7822 if (ret) 7823 return ret; 7824 7825 return hclge_cfg_common_loopback_wait(hdev); 7826 } 7827 7828 static int hclge_set_common_loopback(struct hclge_dev *hdev, bool en, 7829 enum hnae3_loop loop_mode) 7830 { 7831 int ret; 7832 7833 ret = hclge_cfg_common_loopback(hdev, en, loop_mode); 7834 if (ret) 7835 return ret; 7836 7837 hclge_cfg_mac_mode(hdev, en); 7838 7839 ret = hclge_mac_phy_link_status_wait(hdev, en, false); 7840 if (ret) 7841 dev_err(&hdev->pdev->dev, 7842 "serdes loopback config mac mode timeout\n"); 7843 7844 return ret; 7845 } 7846 7847 static int hclge_enable_phy_loopback(struct hclge_dev *hdev, 7848 struct phy_device *phydev) 7849 { 7850 int ret; 7851 7852 if (!phydev->suspended) { 7853 ret = phy_suspend(phydev); 7854 if (ret) 7855 return ret; 7856 } 7857 7858 ret = phy_resume(phydev); 7859 if (ret) 7860 return ret; 7861 7862 return phy_loopback(phydev, true); 7863 } 7864 7865 static int hclge_disable_phy_loopback(struct hclge_dev *hdev, 7866 struct phy_device *phydev) 7867 { 7868 int ret; 7869 7870 ret = phy_loopback(phydev, false); 7871 if (ret) 7872 return ret; 7873 7874 return phy_suspend(phydev); 7875 } 7876 7877 static int hclge_set_phy_loopback(struct hclge_dev *hdev, bool en) 7878 { 7879 struct phy_device *phydev = hdev->hw.mac.phydev; 7880 int ret; 7881 7882 if (!phydev) { 7883 if (hnae3_dev_phy_imp_supported(hdev)) 7884 return hclge_set_common_loopback(hdev, en, 7885 HNAE3_LOOP_PHY); 7886 return -ENOTSUPP; 7887 } 7888 7889 if (en) 7890 ret = hclge_enable_phy_loopback(hdev, phydev); 7891 else 7892 ret = hclge_disable_phy_loopback(hdev, phydev); 7893 if (ret) { 7894 dev_err(&hdev->pdev->dev, 7895 "set phy loopback fail, ret = %d\n", ret); 7896 return ret; 7897 } 7898 7899 hclge_cfg_mac_mode(hdev, en); 7900 7901 ret = hclge_mac_phy_link_status_wait(hdev, en, true); 7902 if (ret) 7903 dev_err(&hdev->pdev->dev, 7904 "phy loopback config mac mode timeout\n"); 7905 7906 return ret; 7907 } 7908 7909 static int hclge_tqp_enable_cmd_send(struct hclge_dev *hdev, u16 tqp_id, 7910 u16 stream_id, bool enable) 7911 { 7912 struct hclge_desc desc; 7913 struct hclge_cfg_com_tqp_queue_cmd *req = 7914 (struct hclge_cfg_com_tqp_queue_cmd *)desc.data; 7915 7916 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_COM_TQP_QUEUE, false); 7917 req->tqp_id = cpu_to_le16(tqp_id); 7918 req->stream_id = cpu_to_le16(stream_id); 7919 if (enable) 7920 req->enable |= 1U << HCLGE_TQP_ENABLE_B; 7921 7922 return hclge_cmd_send(&hdev->hw, &desc, 1); 7923 } 7924 7925 static int hclge_tqp_enable(struct hnae3_handle *handle, bool enable) 7926 { 7927 struct hclge_vport *vport = hclge_get_vport(handle); 7928 struct hclge_dev *hdev = vport->back; 7929 int ret; 7930 u16 i; 7931 7932 for (i = 0; i < handle->kinfo.num_tqps; i++) { 7933 ret = hclge_tqp_enable_cmd_send(hdev, i, 0, enable); 7934 if (ret) 7935 return ret; 7936 } 7937 return 0; 7938 } 7939 7940 static int hclge_set_loopback(struct hnae3_handle *handle, 7941 enum hnae3_loop loop_mode, bool en) 7942 { 7943 struct hclge_vport *vport = hclge_get_vport(handle); 7944 struct hclge_dev *hdev = vport->back; 7945 int ret = 0; 7946 7947 /* Loopback can be enabled in three places: SSU, MAC, and serdes. By 7948 * default, SSU loopback is enabled, so if the SMAC and the DMAC are 7949 * the same, the packets are looped back in the SSU. If SSU loopback 7950 * is disabled, packets can reach MAC even if SMAC is the same as DMAC. 7951 */ 7952 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) { 7953 u8 switch_param = en ? 0 : BIT(HCLGE_SWITCH_ALW_LPBK_B); 7954 7955 ret = hclge_config_switch_param(hdev, PF_VPORT_ID, switch_param, 7956 HCLGE_SWITCH_ALW_LPBK_MASK); 7957 if (ret) 7958 return ret; 7959 } 7960 7961 switch (loop_mode) { 7962 case HNAE3_LOOP_APP: 7963 ret = hclge_set_app_loopback(hdev, en); 7964 break; 7965 case HNAE3_LOOP_SERIAL_SERDES: 7966 case HNAE3_LOOP_PARALLEL_SERDES: 7967 ret = hclge_set_common_loopback(hdev, en, loop_mode); 7968 break; 7969 case HNAE3_LOOP_PHY: 7970 ret = hclge_set_phy_loopback(hdev, en); 7971 break; 7972 case HNAE3_LOOP_EXTERNAL: 7973 break; 7974 default: 7975 ret = -ENOTSUPP; 7976 dev_err(&hdev->pdev->dev, 7977 "loop_mode %d is not supported\n", loop_mode); 7978 break; 7979 } 7980 7981 if (ret) 7982 return ret; 7983 7984 ret = hclge_tqp_enable(handle, en); 7985 if (ret) 7986 dev_err(&hdev->pdev->dev, "failed to %s tqp in loopback, ret = %d\n", 7987 en ? "enable" : "disable", ret); 7988 7989 return ret; 7990 } 7991 7992 static int hclge_set_default_loopback(struct hclge_dev *hdev) 7993 { 7994 int ret; 7995 7996 ret = hclge_set_app_loopback(hdev, false); 7997 if (ret) 7998 return ret; 7999 8000 ret = hclge_cfg_common_loopback(hdev, false, HNAE3_LOOP_SERIAL_SERDES); 8001 if (ret) 8002 return ret; 8003 8004 return hclge_cfg_common_loopback(hdev, false, 8005 HNAE3_LOOP_PARALLEL_SERDES); 8006 } 8007 8008 static void hclge_flush_link_update(struct hclge_dev *hdev) 8009 { 8010 #define HCLGE_FLUSH_LINK_TIMEOUT 100000 8011 8012 unsigned long last = hdev->serv_processed_cnt; 8013 int i = 0; 8014 8015 while (test_bit(HCLGE_STATE_LINK_UPDATING, &hdev->state) && 8016 i++ < HCLGE_FLUSH_LINK_TIMEOUT && 8017 last == hdev->serv_processed_cnt) 8018 usleep_range(1, 1); 8019 } 8020 8021 static void hclge_set_timer_task(struct hnae3_handle *handle, bool enable) 8022 { 8023 struct hclge_vport *vport = hclge_get_vport(handle); 8024 struct hclge_dev *hdev = vport->back; 8025 8026 if (enable) { 8027 hclge_task_schedule(hdev, 0); 8028 } else { 8029 /* Set the DOWN flag here to disable link updating */ 8030 set_bit(HCLGE_STATE_DOWN, &hdev->state); 8031 8032 smp_mb__after_atomic(); /* flush memory to make sure DOWN is seen by service task */ 8033 hclge_flush_link_update(hdev); 8034 } 8035 } 8036 8037 static int hclge_ae_start(struct hnae3_handle *handle) 8038 { 8039 struct hclge_vport *vport = hclge_get_vport(handle); 8040 struct hclge_dev *hdev = vport->back; 8041 8042 /* mac enable */ 8043 hclge_cfg_mac_mode(hdev, true); 8044 clear_bit(HCLGE_STATE_DOWN, &hdev->state); 8045 hdev->hw.mac.link = 0; 8046 8047 /* reset tqp stats */ 8048 hclge_comm_reset_tqp_stats(handle); 8049 8050 hclge_mac_start_phy(hdev); 8051 8052 return 0; 8053 } 8054 8055 static void hclge_ae_stop(struct hnae3_handle *handle) 8056 { 8057 struct hclge_vport *vport = hclge_get_vport(handle); 8058 struct hclge_dev *hdev = vport->back; 8059 8060 set_bit(HCLGE_STATE_DOWN, &hdev->state); 8061 spin_lock_bh(&hdev->fd_rule_lock); 8062 hclge_clear_arfs_rules(hdev); 8063 spin_unlock_bh(&hdev->fd_rule_lock); 8064 8065 /* If it is not PF reset or FLR, the firmware will disable the MAC, 8066 * so it only need to stop phy here. 8067 */ 8068 if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state)) { 8069 hclge_pfc_pause_en_cfg(hdev, HCLGE_PFC_TX_RX_DISABLE, 8070 HCLGE_PFC_DISABLE); 8071 if (hdev->reset_type != HNAE3_FUNC_RESET && 8072 hdev->reset_type != HNAE3_FLR_RESET) { 8073 hclge_mac_stop_phy(hdev); 8074 hclge_update_link_status(hdev); 8075 return; 8076 } 8077 } 8078 8079 hclge_reset_tqp(handle); 8080 8081 hclge_config_mac_tnl_int(hdev, false); 8082 8083 /* Mac disable */ 8084 hclge_cfg_mac_mode(hdev, false); 8085 8086 hclge_mac_stop_phy(hdev); 8087 8088 /* reset tqp stats */ 8089 hclge_comm_reset_tqp_stats(handle); 8090 hclge_update_link_status(hdev); 8091 } 8092 8093 int hclge_vport_start(struct hclge_vport *vport) 8094 { 8095 struct hclge_dev *hdev = vport->back; 8096 8097 set_bit(HCLGE_VPORT_STATE_INITED, &vport->state); 8098 set_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state); 8099 set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, &vport->state); 8100 vport->last_active_jiffies = jiffies; 8101 vport->need_notify = 0; 8102 8103 if (test_bit(vport->vport_id, hdev->vport_config_block)) { 8104 if (vport->vport_id) { 8105 hclge_restore_mac_table_common(vport); 8106 hclge_restore_vport_vlan_table(vport); 8107 } else { 8108 hclge_restore_hw_table(hdev); 8109 } 8110 } 8111 8112 clear_bit(vport->vport_id, hdev->vport_config_block); 8113 8114 return 0; 8115 } 8116 8117 void hclge_vport_stop(struct hclge_vport *vport) 8118 { 8119 clear_bit(HCLGE_VPORT_STATE_INITED, &vport->state); 8120 clear_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state); 8121 vport->need_notify = 0; 8122 } 8123 8124 static int hclge_client_start(struct hnae3_handle *handle) 8125 { 8126 struct hclge_vport *vport = hclge_get_vport(handle); 8127 8128 return hclge_vport_start(vport); 8129 } 8130 8131 static void hclge_client_stop(struct hnae3_handle *handle) 8132 { 8133 struct hclge_vport *vport = hclge_get_vport(handle); 8134 8135 hclge_vport_stop(vport); 8136 } 8137 8138 static int hclge_get_mac_vlan_cmd_status(struct hclge_vport *vport, 8139 u16 cmdq_resp, u8 resp_code, 8140 enum hclge_mac_vlan_tbl_opcode op) 8141 { 8142 struct hclge_dev *hdev = vport->back; 8143 8144 if (cmdq_resp) { 8145 dev_err(&hdev->pdev->dev, 8146 "cmdq execute failed for get_mac_vlan_cmd_status,status=%u.\n", 8147 cmdq_resp); 8148 return -EIO; 8149 } 8150 8151 if (op == HCLGE_MAC_VLAN_ADD) { 8152 if (!resp_code || resp_code == 1) 8153 return 0; 8154 else if (resp_code == HCLGE_ADD_UC_OVERFLOW || 8155 resp_code == HCLGE_ADD_MC_OVERFLOW) 8156 return -ENOSPC; 8157 8158 dev_err(&hdev->pdev->dev, 8159 "add mac addr failed for undefined, code=%u.\n", 8160 resp_code); 8161 return -EIO; 8162 } else if (op == HCLGE_MAC_VLAN_REMOVE) { 8163 if (!resp_code) { 8164 return 0; 8165 } else if (resp_code == 1) { 8166 dev_dbg(&hdev->pdev->dev, 8167 "remove mac addr failed for miss.\n"); 8168 return -ENOENT; 8169 } 8170 8171 dev_err(&hdev->pdev->dev, 8172 "remove mac addr failed for undefined, code=%u.\n", 8173 resp_code); 8174 return -EIO; 8175 } else if (op == HCLGE_MAC_VLAN_LKUP) { 8176 if (!resp_code) { 8177 return 0; 8178 } else if (resp_code == 1) { 8179 dev_dbg(&hdev->pdev->dev, 8180 "lookup mac addr failed for miss.\n"); 8181 return -ENOENT; 8182 } 8183 8184 dev_err(&hdev->pdev->dev, 8185 "lookup mac addr failed for undefined, code=%u.\n", 8186 resp_code); 8187 return -EIO; 8188 } 8189 8190 dev_err(&hdev->pdev->dev, 8191 "unknown opcode for get_mac_vlan_cmd_status, opcode=%d.\n", op); 8192 8193 return -EINVAL; 8194 } 8195 8196 static int hclge_update_desc_vfid(struct hclge_desc *desc, int vfid, bool clr) 8197 { 8198 #define HCLGE_VF_NUM_IN_FIRST_DESC 192 8199 8200 unsigned int word_num; 8201 unsigned int bit_num; 8202 8203 if (vfid > 255 || vfid < 0) 8204 return -EIO; 8205 8206 if (vfid >= 0 && vfid < HCLGE_VF_NUM_IN_FIRST_DESC) { 8207 word_num = vfid / 32; 8208 bit_num = vfid % 32; 8209 if (clr) 8210 desc[1].data[word_num] &= cpu_to_le32(~(1 << bit_num)); 8211 else 8212 desc[1].data[word_num] |= cpu_to_le32(1 << bit_num); 8213 } else { 8214 word_num = (vfid - HCLGE_VF_NUM_IN_FIRST_DESC) / 32; 8215 bit_num = vfid % 32; 8216 if (clr) 8217 desc[2].data[word_num] &= cpu_to_le32(~(1 << bit_num)); 8218 else 8219 desc[2].data[word_num] |= cpu_to_le32(1 << bit_num); 8220 } 8221 8222 return 0; 8223 } 8224 8225 static bool hclge_is_all_function_id_zero(struct hclge_desc *desc) 8226 { 8227 #define HCLGE_DESC_NUMBER 3 8228 #define HCLGE_FUNC_NUMBER_PER_DESC 6 8229 int i, j; 8230 8231 for (i = 1; i < HCLGE_DESC_NUMBER; i++) 8232 for (j = 0; j < HCLGE_FUNC_NUMBER_PER_DESC; j++) 8233 if (desc[i].data[j]) 8234 return false; 8235 8236 return true; 8237 } 8238 8239 static void hclge_prepare_mac_addr(struct hclge_mac_vlan_tbl_entry_cmd *new_req, 8240 const u8 *addr, bool is_mc) 8241 { 8242 const unsigned char *mac_addr = addr; 8243 u32 high_val = mac_addr[2] << 16 | (mac_addr[3] << 24) | 8244 (mac_addr[0]) | (mac_addr[1] << 8); 8245 u32 low_val = mac_addr[4] | (mac_addr[5] << 8); 8246 8247 hnae3_set_bit(new_req->flags, HCLGE_MAC_VLAN_BIT0_EN_B, 1); 8248 if (is_mc) { 8249 hnae3_set_bit(new_req->entry_type, HCLGE_MAC_VLAN_BIT1_EN_B, 1); 8250 hnae3_set_bit(new_req->mc_mac_en, HCLGE_MAC_VLAN_BIT0_EN_B, 1); 8251 } 8252 8253 new_req->mac_addr_hi32 = cpu_to_le32(high_val); 8254 new_req->mac_addr_lo16 = cpu_to_le16(low_val & 0xffff); 8255 } 8256 8257 static int hclge_remove_mac_vlan_tbl(struct hclge_vport *vport, 8258 struct hclge_mac_vlan_tbl_entry_cmd *req) 8259 { 8260 struct hclge_dev *hdev = vport->back; 8261 struct hclge_desc desc; 8262 u8 resp_code; 8263 u16 retval; 8264 int ret; 8265 8266 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_REMOVE, false); 8267 8268 memcpy(desc.data, req, sizeof(struct hclge_mac_vlan_tbl_entry_cmd)); 8269 8270 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 8271 if (ret) { 8272 dev_err(&hdev->pdev->dev, 8273 "del mac addr failed for cmd_send, ret =%d.\n", 8274 ret); 8275 return ret; 8276 } 8277 resp_code = (le32_to_cpu(desc.data[0]) >> 8) & 0xff; 8278 retval = le16_to_cpu(desc.retval); 8279 8280 return hclge_get_mac_vlan_cmd_status(vport, retval, resp_code, 8281 HCLGE_MAC_VLAN_REMOVE); 8282 } 8283 8284 static int hclge_lookup_mac_vlan_tbl(struct hclge_vport *vport, 8285 struct hclge_mac_vlan_tbl_entry_cmd *req, 8286 struct hclge_desc *desc, 8287 bool is_mc) 8288 { 8289 struct hclge_dev *hdev = vport->back; 8290 u8 resp_code; 8291 u16 retval; 8292 int ret; 8293 8294 hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_MAC_VLAN_ADD, true); 8295 if (is_mc) { 8296 desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 8297 memcpy(desc[0].data, 8298 req, 8299 sizeof(struct hclge_mac_vlan_tbl_entry_cmd)); 8300 hclge_cmd_setup_basic_desc(&desc[1], 8301 HCLGE_OPC_MAC_VLAN_ADD, 8302 true); 8303 desc[1].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 8304 hclge_cmd_setup_basic_desc(&desc[2], 8305 HCLGE_OPC_MAC_VLAN_ADD, 8306 true); 8307 ret = hclge_cmd_send(&hdev->hw, desc, 3); 8308 } else { 8309 memcpy(desc[0].data, 8310 req, 8311 sizeof(struct hclge_mac_vlan_tbl_entry_cmd)); 8312 ret = hclge_cmd_send(&hdev->hw, desc, 1); 8313 } 8314 if (ret) { 8315 dev_err(&hdev->pdev->dev, 8316 "lookup mac addr failed for cmd_send, ret =%d.\n", 8317 ret); 8318 return ret; 8319 } 8320 resp_code = (le32_to_cpu(desc[0].data[0]) >> 8) & 0xff; 8321 retval = le16_to_cpu(desc[0].retval); 8322 8323 return hclge_get_mac_vlan_cmd_status(vport, retval, resp_code, 8324 HCLGE_MAC_VLAN_LKUP); 8325 } 8326 8327 static int hclge_add_mac_vlan_tbl(struct hclge_vport *vport, 8328 struct hclge_mac_vlan_tbl_entry_cmd *req, 8329 struct hclge_desc *mc_desc) 8330 { 8331 struct hclge_dev *hdev = vport->back; 8332 int cfg_status; 8333 u8 resp_code; 8334 u16 retval; 8335 int ret; 8336 8337 if (!mc_desc) { 8338 struct hclge_desc desc; 8339 8340 hclge_cmd_setup_basic_desc(&desc, 8341 HCLGE_OPC_MAC_VLAN_ADD, 8342 false); 8343 memcpy(desc.data, req, 8344 sizeof(struct hclge_mac_vlan_tbl_entry_cmd)); 8345 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 8346 resp_code = (le32_to_cpu(desc.data[0]) >> 8) & 0xff; 8347 retval = le16_to_cpu(desc.retval); 8348 8349 cfg_status = hclge_get_mac_vlan_cmd_status(vport, retval, 8350 resp_code, 8351 HCLGE_MAC_VLAN_ADD); 8352 } else { 8353 hclge_comm_cmd_reuse_desc(&mc_desc[0], false); 8354 mc_desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 8355 hclge_comm_cmd_reuse_desc(&mc_desc[1], false); 8356 mc_desc[1].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 8357 hclge_comm_cmd_reuse_desc(&mc_desc[2], false); 8358 mc_desc[2].flag &= cpu_to_le16(~HCLGE_COMM_CMD_FLAG_NEXT); 8359 memcpy(mc_desc[0].data, req, 8360 sizeof(struct hclge_mac_vlan_tbl_entry_cmd)); 8361 ret = hclge_cmd_send(&hdev->hw, mc_desc, 3); 8362 resp_code = (le32_to_cpu(mc_desc[0].data[0]) >> 8) & 0xff; 8363 retval = le16_to_cpu(mc_desc[0].retval); 8364 8365 cfg_status = hclge_get_mac_vlan_cmd_status(vport, retval, 8366 resp_code, 8367 HCLGE_MAC_VLAN_ADD); 8368 } 8369 8370 if (ret) { 8371 dev_err(&hdev->pdev->dev, 8372 "add mac addr failed for cmd_send, ret =%d.\n", 8373 ret); 8374 return ret; 8375 } 8376 8377 return cfg_status; 8378 } 8379 8380 static int hclge_set_umv_space(struct hclge_dev *hdev, u16 space_size, 8381 u16 *allocated_size) 8382 { 8383 struct hclge_umv_spc_alc_cmd *req; 8384 struct hclge_desc desc; 8385 int ret; 8386 8387 req = (struct hclge_umv_spc_alc_cmd *)desc.data; 8388 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_ALLOCATE, false); 8389 8390 req->space_size = cpu_to_le32(space_size); 8391 8392 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 8393 if (ret) { 8394 dev_err(&hdev->pdev->dev, "failed to set umv space, ret = %d\n", 8395 ret); 8396 return ret; 8397 } 8398 8399 *allocated_size = le32_to_cpu(desc.data[1]); 8400 8401 return 0; 8402 } 8403 8404 static int hclge_init_umv_space(struct hclge_dev *hdev) 8405 { 8406 u16 allocated_size = 0; 8407 int ret; 8408 8409 ret = hclge_set_umv_space(hdev, hdev->wanted_umv_size, &allocated_size); 8410 if (ret) 8411 return ret; 8412 8413 if (allocated_size < hdev->wanted_umv_size) 8414 dev_warn(&hdev->pdev->dev, 8415 "failed to alloc umv space, want %u, get %u\n", 8416 hdev->wanted_umv_size, allocated_size); 8417 8418 hdev->max_umv_size = allocated_size; 8419 hdev->priv_umv_size = hdev->max_umv_size / (hdev->num_alloc_vport + 1); 8420 hdev->share_umv_size = hdev->priv_umv_size + 8421 hdev->max_umv_size % (hdev->num_alloc_vport + 1); 8422 8423 if (hdev->ae_dev->dev_specs.mc_mac_size) 8424 set_bit(HNAE3_DEV_SUPPORT_MC_MAC_MNG_B, hdev->ae_dev->caps); 8425 8426 return 0; 8427 } 8428 8429 static void hclge_reset_umv_space(struct hclge_dev *hdev) 8430 { 8431 struct hclge_vport *vport; 8432 int i; 8433 8434 for (i = 0; i < hdev->num_alloc_vport; i++) { 8435 vport = &hdev->vport[i]; 8436 vport->used_umv_num = 0; 8437 } 8438 8439 mutex_lock(&hdev->vport_lock); 8440 hdev->share_umv_size = hdev->priv_umv_size + 8441 hdev->max_umv_size % (hdev->num_alloc_vport + 1); 8442 mutex_unlock(&hdev->vport_lock); 8443 8444 hdev->used_mc_mac_num = 0; 8445 } 8446 8447 static bool hclge_is_umv_space_full(struct hclge_vport *vport, bool need_lock) 8448 { 8449 struct hclge_dev *hdev = vport->back; 8450 bool is_full; 8451 8452 if (need_lock) 8453 mutex_lock(&hdev->vport_lock); 8454 8455 is_full = (vport->used_umv_num >= hdev->priv_umv_size && 8456 hdev->share_umv_size == 0); 8457 8458 if (need_lock) 8459 mutex_unlock(&hdev->vport_lock); 8460 8461 return is_full; 8462 } 8463 8464 static void hclge_update_umv_space(struct hclge_vport *vport, bool is_free) 8465 { 8466 struct hclge_dev *hdev = vport->back; 8467 8468 if (is_free) { 8469 if (vport->used_umv_num > hdev->priv_umv_size) 8470 hdev->share_umv_size++; 8471 8472 if (vport->used_umv_num > 0) 8473 vport->used_umv_num--; 8474 } else { 8475 if (vport->used_umv_num >= hdev->priv_umv_size && 8476 hdev->share_umv_size > 0) 8477 hdev->share_umv_size--; 8478 vport->used_umv_num++; 8479 } 8480 } 8481 8482 static struct hclge_mac_node *hclge_find_mac_node(struct list_head *list, 8483 const u8 *mac_addr) 8484 { 8485 struct hclge_mac_node *mac_node, *tmp; 8486 8487 list_for_each_entry_safe(mac_node, tmp, list, node) 8488 if (ether_addr_equal(mac_addr, mac_node->mac_addr)) 8489 return mac_node; 8490 8491 return NULL; 8492 } 8493 8494 static void hclge_update_mac_node(struct hclge_mac_node *mac_node, 8495 enum HCLGE_MAC_NODE_STATE state) 8496 { 8497 switch (state) { 8498 /* from set_rx_mode or tmp_add_list */ 8499 case HCLGE_MAC_TO_ADD: 8500 if (mac_node->state == HCLGE_MAC_TO_DEL) 8501 mac_node->state = HCLGE_MAC_ACTIVE; 8502 break; 8503 /* only from set_rx_mode */ 8504 case HCLGE_MAC_TO_DEL: 8505 if (mac_node->state == HCLGE_MAC_TO_ADD) { 8506 list_del(&mac_node->node); 8507 kfree(mac_node); 8508 } else { 8509 mac_node->state = HCLGE_MAC_TO_DEL; 8510 } 8511 break; 8512 /* only from tmp_add_list, the mac_node->state won't be 8513 * ACTIVE. 8514 */ 8515 case HCLGE_MAC_ACTIVE: 8516 if (mac_node->state == HCLGE_MAC_TO_ADD) 8517 mac_node->state = HCLGE_MAC_ACTIVE; 8518 8519 break; 8520 } 8521 } 8522 8523 int hclge_update_mac_list(struct hclge_vport *vport, 8524 enum HCLGE_MAC_NODE_STATE state, 8525 enum HCLGE_MAC_ADDR_TYPE mac_type, 8526 const unsigned char *addr) 8527 { 8528 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN]; 8529 struct hclge_dev *hdev = vport->back; 8530 struct hclge_mac_node *mac_node; 8531 struct list_head *list; 8532 8533 list = (mac_type == HCLGE_MAC_ADDR_UC) ? 8534 &vport->uc_mac_list : &vport->mc_mac_list; 8535 8536 spin_lock_bh(&vport->mac_list_lock); 8537 8538 /* if the mac addr is already in the mac list, no need to add a new 8539 * one into it, just check the mac addr state, convert it to a new 8540 * state, or just remove it, or do nothing. 8541 */ 8542 mac_node = hclge_find_mac_node(list, addr); 8543 if (mac_node) { 8544 hclge_update_mac_node(mac_node, state); 8545 spin_unlock_bh(&vport->mac_list_lock); 8546 set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, &vport->state); 8547 return 0; 8548 } 8549 8550 /* if this address is never added, unnecessary to delete */ 8551 if (state == HCLGE_MAC_TO_DEL) { 8552 spin_unlock_bh(&vport->mac_list_lock); 8553 hnae3_format_mac_addr(format_mac_addr, addr); 8554 dev_err(&hdev->pdev->dev, 8555 "failed to delete address %s from mac list\n", 8556 format_mac_addr); 8557 return -ENOENT; 8558 } 8559 8560 mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC); 8561 if (!mac_node) { 8562 spin_unlock_bh(&vport->mac_list_lock); 8563 return -ENOMEM; 8564 } 8565 8566 set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, &vport->state); 8567 8568 mac_node->state = state; 8569 ether_addr_copy(mac_node->mac_addr, addr); 8570 list_add_tail(&mac_node->node, list); 8571 8572 spin_unlock_bh(&vport->mac_list_lock); 8573 8574 return 0; 8575 } 8576 8577 static int hclge_add_uc_addr(struct hnae3_handle *handle, 8578 const unsigned char *addr) 8579 { 8580 struct hclge_vport *vport = hclge_get_vport(handle); 8581 8582 return hclge_update_mac_list(vport, HCLGE_MAC_TO_ADD, HCLGE_MAC_ADDR_UC, 8583 addr); 8584 } 8585 8586 int hclge_add_uc_addr_common(struct hclge_vport *vport, 8587 const unsigned char *addr) 8588 { 8589 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN]; 8590 struct hclge_dev *hdev = vport->back; 8591 struct hclge_mac_vlan_tbl_entry_cmd req; 8592 struct hclge_desc desc; 8593 u16 egress_port = 0; 8594 int ret; 8595 8596 /* mac addr check */ 8597 if (is_zero_ether_addr(addr) || 8598 is_broadcast_ether_addr(addr) || 8599 is_multicast_ether_addr(addr)) { 8600 hnae3_format_mac_addr(format_mac_addr, addr); 8601 dev_err(&hdev->pdev->dev, 8602 "Set_uc mac err! invalid mac:%s. is_zero:%d,is_br=%d,is_mul=%d\n", 8603 format_mac_addr, is_zero_ether_addr(addr), 8604 is_broadcast_ether_addr(addr), 8605 is_multicast_ether_addr(addr)); 8606 return -EINVAL; 8607 } 8608 8609 memset(&req, 0, sizeof(req)); 8610 8611 hnae3_set_field(egress_port, HCLGE_MAC_EPORT_VFID_M, 8612 HCLGE_MAC_EPORT_VFID_S, vport->vport_id); 8613 8614 req.egress_port = cpu_to_le16(egress_port); 8615 8616 hclge_prepare_mac_addr(&req, addr, false); 8617 8618 /* Lookup the mac address in the mac_vlan table, and add 8619 * it if the entry is inexistent. Repeated unicast entry 8620 * is not allowed in the mac vlan table. 8621 */ 8622 ret = hclge_lookup_mac_vlan_tbl(vport, &req, &desc, false); 8623 if (ret == -ENOENT) { 8624 mutex_lock(&hdev->vport_lock); 8625 if (!hclge_is_umv_space_full(vport, false)) { 8626 ret = hclge_add_mac_vlan_tbl(vport, &req, NULL); 8627 if (!ret) 8628 hclge_update_umv_space(vport, false); 8629 mutex_unlock(&hdev->vport_lock); 8630 return ret; 8631 } 8632 mutex_unlock(&hdev->vport_lock); 8633 8634 if (!(vport->overflow_promisc_flags & HNAE3_OVERFLOW_UPE)) 8635 dev_err(&hdev->pdev->dev, "UC MAC table full(%u)\n", 8636 hdev->priv_umv_size); 8637 8638 return -ENOSPC; 8639 } 8640 8641 /* check if we just hit the duplicate */ 8642 if (!ret) 8643 return -EEXIST; 8644 8645 return ret; 8646 } 8647 8648 static int hclge_rm_uc_addr(struct hnae3_handle *handle, 8649 const unsigned char *addr) 8650 { 8651 struct hclge_vport *vport = hclge_get_vport(handle); 8652 8653 return hclge_update_mac_list(vport, HCLGE_MAC_TO_DEL, HCLGE_MAC_ADDR_UC, 8654 addr); 8655 } 8656 8657 int hclge_rm_uc_addr_common(struct hclge_vport *vport, 8658 const unsigned char *addr) 8659 { 8660 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN]; 8661 struct hclge_dev *hdev = vport->back; 8662 struct hclge_mac_vlan_tbl_entry_cmd req; 8663 int ret; 8664 8665 /* mac addr check */ 8666 if (is_zero_ether_addr(addr) || 8667 is_broadcast_ether_addr(addr) || 8668 is_multicast_ether_addr(addr)) { 8669 hnae3_format_mac_addr(format_mac_addr, addr); 8670 dev_dbg(&hdev->pdev->dev, "Remove mac err! invalid mac:%s.\n", 8671 format_mac_addr); 8672 return -EINVAL; 8673 } 8674 8675 memset(&req, 0, sizeof(req)); 8676 hnae3_set_bit(req.entry_type, HCLGE_MAC_VLAN_BIT0_EN_B, 0); 8677 hclge_prepare_mac_addr(&req, addr, false); 8678 ret = hclge_remove_mac_vlan_tbl(vport, &req); 8679 if (!ret || ret == -ENOENT) { 8680 mutex_lock(&hdev->vport_lock); 8681 hclge_update_umv_space(vport, true); 8682 mutex_unlock(&hdev->vport_lock); 8683 return 0; 8684 } 8685 8686 return ret; 8687 } 8688 8689 static int hclge_add_mc_addr(struct hnae3_handle *handle, 8690 const unsigned char *addr) 8691 { 8692 struct hclge_vport *vport = hclge_get_vport(handle); 8693 8694 return hclge_update_mac_list(vport, HCLGE_MAC_TO_ADD, HCLGE_MAC_ADDR_MC, 8695 addr); 8696 } 8697 8698 int hclge_add_mc_addr_common(struct hclge_vport *vport, 8699 const unsigned char *addr) 8700 { 8701 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN]; 8702 struct hclge_dev *hdev = vport->back; 8703 struct hclge_mac_vlan_tbl_entry_cmd req; 8704 struct hclge_desc desc[3]; 8705 bool is_new_addr = false; 8706 int status; 8707 8708 /* mac addr check */ 8709 if (!is_multicast_ether_addr(addr)) { 8710 hnae3_format_mac_addr(format_mac_addr, addr); 8711 dev_err(&hdev->pdev->dev, 8712 "Add mc mac err! invalid mac:%s.\n", 8713 format_mac_addr); 8714 return -EINVAL; 8715 } 8716 memset(&req, 0, sizeof(req)); 8717 hclge_prepare_mac_addr(&req, addr, true); 8718 status = hclge_lookup_mac_vlan_tbl(vport, &req, desc, true); 8719 if (status) { 8720 if (hnae3_ae_dev_mc_mac_mng_supported(hdev->ae_dev) && 8721 hdev->used_mc_mac_num >= 8722 hdev->ae_dev->dev_specs.mc_mac_size) 8723 goto err_no_space; 8724 8725 is_new_addr = true; 8726 8727 /* This mac addr do not exist, add new entry for it */ 8728 memset(desc[0].data, 0, sizeof(desc[0].data)); 8729 memset(desc[1].data, 0, sizeof(desc[0].data)); 8730 memset(desc[2].data, 0, sizeof(desc[0].data)); 8731 } 8732 status = hclge_update_desc_vfid(desc, vport->vport_id, false); 8733 if (status) 8734 return status; 8735 status = hclge_add_mac_vlan_tbl(vport, &req, desc); 8736 if (status == -ENOSPC) 8737 goto err_no_space; 8738 else if (!status && is_new_addr) 8739 hdev->used_mc_mac_num++; 8740 8741 return status; 8742 8743 err_no_space: 8744 /* if already overflow, not to print each time */ 8745 if (!(vport->overflow_promisc_flags & HNAE3_OVERFLOW_MPE)) { 8746 vport->overflow_promisc_flags |= HNAE3_OVERFLOW_MPE; 8747 dev_err(&hdev->pdev->dev, "mc mac vlan table is full\n"); 8748 } 8749 8750 return -ENOSPC; 8751 } 8752 8753 static int hclge_rm_mc_addr(struct hnae3_handle *handle, 8754 const unsigned char *addr) 8755 { 8756 struct hclge_vport *vport = hclge_get_vport(handle); 8757 8758 return hclge_update_mac_list(vport, HCLGE_MAC_TO_DEL, HCLGE_MAC_ADDR_MC, 8759 addr); 8760 } 8761 8762 int hclge_rm_mc_addr_common(struct hclge_vport *vport, 8763 const unsigned char *addr) 8764 { 8765 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN]; 8766 struct hclge_dev *hdev = vport->back; 8767 struct hclge_mac_vlan_tbl_entry_cmd req; 8768 enum hclge_comm_cmd_status status; 8769 struct hclge_desc desc[3]; 8770 8771 /* mac addr check */ 8772 if (!is_multicast_ether_addr(addr)) { 8773 hnae3_format_mac_addr(format_mac_addr, addr); 8774 dev_dbg(&hdev->pdev->dev, 8775 "Remove mc mac err! invalid mac:%s.\n", 8776 format_mac_addr); 8777 return -EINVAL; 8778 } 8779 8780 memset(&req, 0, sizeof(req)); 8781 hclge_prepare_mac_addr(&req, addr, true); 8782 status = hclge_lookup_mac_vlan_tbl(vport, &req, desc, true); 8783 if (!status) { 8784 /* This mac addr exist, remove this handle's VFID for it */ 8785 status = hclge_update_desc_vfid(desc, vport->vport_id, true); 8786 if (status) 8787 return status; 8788 8789 if (hclge_is_all_function_id_zero(desc)) { 8790 /* All the vfid is zero, so need to delete this entry */ 8791 status = hclge_remove_mac_vlan_tbl(vport, &req); 8792 if (!status) 8793 hdev->used_mc_mac_num--; 8794 } else { 8795 /* Not all the vfid is zero, update the vfid */ 8796 status = hclge_add_mac_vlan_tbl(vport, &req, desc); 8797 } 8798 } else if (status == -ENOENT) { 8799 status = 0; 8800 } 8801 8802 return status; 8803 } 8804 8805 static void hclge_sync_vport_mac_list(struct hclge_vport *vport, 8806 struct list_head *list, 8807 enum HCLGE_MAC_ADDR_TYPE mac_type) 8808 { 8809 int (*sync)(struct hclge_vport *vport, const unsigned char *addr); 8810 struct hclge_mac_node *mac_node, *tmp; 8811 int ret; 8812 8813 if (mac_type == HCLGE_MAC_ADDR_UC) 8814 sync = hclge_add_uc_addr_common; 8815 else 8816 sync = hclge_add_mc_addr_common; 8817 8818 list_for_each_entry_safe(mac_node, tmp, list, node) { 8819 ret = sync(vport, mac_node->mac_addr); 8820 if (!ret) { 8821 mac_node->state = HCLGE_MAC_ACTIVE; 8822 } else { 8823 set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, 8824 &vport->state); 8825 8826 /* If one unicast mac address is existing in hardware, 8827 * we need to try whether other unicast mac addresses 8828 * are new addresses that can be added. 8829 * Multicast mac address can be reusable, even though 8830 * there is no space to add new multicast mac address, 8831 * we should check whether other mac addresses are 8832 * existing in hardware for reuse. 8833 */ 8834 if ((mac_type == HCLGE_MAC_ADDR_UC && ret != -EEXIST) || 8835 (mac_type == HCLGE_MAC_ADDR_MC && ret != -ENOSPC)) 8836 break; 8837 } 8838 } 8839 } 8840 8841 static void hclge_unsync_vport_mac_list(struct hclge_vport *vport, 8842 struct list_head *list, 8843 enum HCLGE_MAC_ADDR_TYPE mac_type) 8844 { 8845 int (*unsync)(struct hclge_vport *vport, const unsigned char *addr); 8846 struct hclge_mac_node *mac_node, *tmp; 8847 int ret; 8848 8849 if (mac_type == HCLGE_MAC_ADDR_UC) 8850 unsync = hclge_rm_uc_addr_common; 8851 else 8852 unsync = hclge_rm_mc_addr_common; 8853 8854 list_for_each_entry_safe(mac_node, tmp, list, node) { 8855 ret = unsync(vport, mac_node->mac_addr); 8856 if (!ret || ret == -ENOENT) { 8857 list_del(&mac_node->node); 8858 kfree(mac_node); 8859 } else { 8860 set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, 8861 &vport->state); 8862 break; 8863 } 8864 } 8865 } 8866 8867 static bool hclge_sync_from_add_list(struct list_head *add_list, 8868 struct list_head *mac_list) 8869 { 8870 struct hclge_mac_node *mac_node, *tmp, *new_node; 8871 bool all_added = true; 8872 8873 list_for_each_entry_safe(mac_node, tmp, add_list, node) { 8874 if (mac_node->state == HCLGE_MAC_TO_ADD) 8875 all_added = false; 8876 8877 /* if the mac address from tmp_add_list is not in the 8878 * uc/mc_mac_list, it means have received a TO_DEL request 8879 * during the time window of adding the mac address into mac 8880 * table. if mac_node state is ACTIVE, then change it to TO_DEL, 8881 * then it will be removed at next time. else it must be TO_ADD, 8882 * this address hasn't been added into mac table, 8883 * so just remove the mac node. 8884 */ 8885 new_node = hclge_find_mac_node(mac_list, mac_node->mac_addr); 8886 if (new_node) { 8887 hclge_update_mac_node(new_node, mac_node->state); 8888 list_del(&mac_node->node); 8889 kfree(mac_node); 8890 } else if (mac_node->state == HCLGE_MAC_ACTIVE) { 8891 mac_node->state = HCLGE_MAC_TO_DEL; 8892 list_move_tail(&mac_node->node, mac_list); 8893 } else { 8894 list_del(&mac_node->node); 8895 kfree(mac_node); 8896 } 8897 } 8898 8899 return all_added; 8900 } 8901 8902 static void hclge_sync_from_del_list(struct list_head *del_list, 8903 struct list_head *mac_list) 8904 { 8905 struct hclge_mac_node *mac_node, *tmp, *new_node; 8906 8907 list_for_each_entry_safe(mac_node, tmp, del_list, node) { 8908 new_node = hclge_find_mac_node(mac_list, mac_node->mac_addr); 8909 if (new_node) { 8910 /* If the mac addr exists in the mac list, it means 8911 * received a new TO_ADD request during the time window 8912 * of configuring the mac address. For the mac node 8913 * state is TO_ADD, and the address is already in the 8914 * in the hardware(due to delete fail), so we just need 8915 * to change the mac node state to ACTIVE. 8916 */ 8917 new_node->state = HCLGE_MAC_ACTIVE; 8918 list_del(&mac_node->node); 8919 kfree(mac_node); 8920 } else { 8921 list_move_tail(&mac_node->node, mac_list); 8922 } 8923 } 8924 } 8925 8926 static void hclge_update_overflow_flags(struct hclge_vport *vport, 8927 enum HCLGE_MAC_ADDR_TYPE mac_type, 8928 bool is_all_added) 8929 { 8930 if (mac_type == HCLGE_MAC_ADDR_UC) { 8931 if (is_all_added) 8932 vport->overflow_promisc_flags &= ~HNAE3_OVERFLOW_UPE; 8933 else if (hclge_is_umv_space_full(vport, true)) 8934 vport->overflow_promisc_flags |= HNAE3_OVERFLOW_UPE; 8935 } else { 8936 if (is_all_added) 8937 vport->overflow_promisc_flags &= ~HNAE3_OVERFLOW_MPE; 8938 else 8939 vport->overflow_promisc_flags |= HNAE3_OVERFLOW_MPE; 8940 } 8941 } 8942 8943 static void hclge_sync_vport_mac_table(struct hclge_vport *vport, 8944 enum HCLGE_MAC_ADDR_TYPE mac_type) 8945 { 8946 struct hclge_mac_node *mac_node, *tmp, *new_node; 8947 struct list_head tmp_add_list, tmp_del_list; 8948 struct list_head *list; 8949 bool all_added; 8950 8951 INIT_LIST_HEAD(&tmp_add_list); 8952 INIT_LIST_HEAD(&tmp_del_list); 8953 8954 /* move the mac addr to the tmp_add_list and tmp_del_list, then 8955 * we can add/delete these mac addr outside the spin lock 8956 */ 8957 list = (mac_type == HCLGE_MAC_ADDR_UC) ? 8958 &vport->uc_mac_list : &vport->mc_mac_list; 8959 8960 spin_lock_bh(&vport->mac_list_lock); 8961 8962 list_for_each_entry_safe(mac_node, tmp, list, node) { 8963 switch (mac_node->state) { 8964 case HCLGE_MAC_TO_DEL: 8965 list_move_tail(&mac_node->node, &tmp_del_list); 8966 break; 8967 case HCLGE_MAC_TO_ADD: 8968 new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC); 8969 if (!new_node) 8970 goto stop_traverse; 8971 ether_addr_copy(new_node->mac_addr, mac_node->mac_addr); 8972 new_node->state = mac_node->state; 8973 list_add_tail(&new_node->node, &tmp_add_list); 8974 break; 8975 default: 8976 break; 8977 } 8978 } 8979 8980 stop_traverse: 8981 spin_unlock_bh(&vport->mac_list_lock); 8982 8983 /* delete first, in order to get max mac table space for adding */ 8984 hclge_unsync_vport_mac_list(vport, &tmp_del_list, mac_type); 8985 hclge_sync_vport_mac_list(vport, &tmp_add_list, mac_type); 8986 8987 /* if some mac addresses were added/deleted fail, move back to the 8988 * mac_list, and retry at next time. 8989 */ 8990 spin_lock_bh(&vport->mac_list_lock); 8991 8992 hclge_sync_from_del_list(&tmp_del_list, list); 8993 all_added = hclge_sync_from_add_list(&tmp_add_list, list); 8994 8995 spin_unlock_bh(&vport->mac_list_lock); 8996 8997 hclge_update_overflow_flags(vport, mac_type, all_added); 8998 } 8999 9000 static bool hclge_need_sync_mac_table(struct hclge_vport *vport) 9001 { 9002 struct hclge_dev *hdev = vport->back; 9003 9004 if (test_bit(vport->vport_id, hdev->vport_config_block)) 9005 return false; 9006 9007 if (test_and_clear_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, &vport->state)) 9008 return true; 9009 9010 return false; 9011 } 9012 9013 static void hclge_sync_mac_table(struct hclge_dev *hdev) 9014 { 9015 int i; 9016 9017 for (i = 0; i < hdev->num_alloc_vport; i++) { 9018 struct hclge_vport *vport = &hdev->vport[i]; 9019 9020 if (!hclge_need_sync_mac_table(vport)) 9021 continue; 9022 9023 hclge_sync_vport_mac_table(vport, HCLGE_MAC_ADDR_UC); 9024 hclge_sync_vport_mac_table(vport, HCLGE_MAC_ADDR_MC); 9025 } 9026 } 9027 9028 static void hclge_build_del_list(struct list_head *list, 9029 bool is_del_list, 9030 struct list_head *tmp_del_list) 9031 { 9032 struct hclge_mac_node *mac_cfg, *tmp; 9033 9034 list_for_each_entry_safe(mac_cfg, tmp, list, node) { 9035 switch (mac_cfg->state) { 9036 case HCLGE_MAC_TO_DEL: 9037 case HCLGE_MAC_ACTIVE: 9038 list_move_tail(&mac_cfg->node, tmp_del_list); 9039 break; 9040 case HCLGE_MAC_TO_ADD: 9041 if (is_del_list) { 9042 list_del(&mac_cfg->node); 9043 kfree(mac_cfg); 9044 } 9045 break; 9046 } 9047 } 9048 } 9049 9050 static void hclge_unsync_del_list(struct hclge_vport *vport, 9051 int (*unsync)(struct hclge_vport *vport, 9052 const unsigned char *addr), 9053 bool is_del_list, 9054 struct list_head *tmp_del_list) 9055 { 9056 struct hclge_mac_node *mac_cfg, *tmp; 9057 int ret; 9058 9059 list_for_each_entry_safe(mac_cfg, tmp, tmp_del_list, node) { 9060 ret = unsync(vport, mac_cfg->mac_addr); 9061 if (!ret || ret == -ENOENT) { 9062 /* clear all mac addr from hardware, but remain these 9063 * mac addr in the mac list, and restore them after 9064 * vf reset finished. 9065 */ 9066 if (!is_del_list && 9067 mac_cfg->state == HCLGE_MAC_ACTIVE) { 9068 mac_cfg->state = HCLGE_MAC_TO_ADD; 9069 } else { 9070 list_del(&mac_cfg->node); 9071 kfree(mac_cfg); 9072 } 9073 } else if (is_del_list) { 9074 mac_cfg->state = HCLGE_MAC_TO_DEL; 9075 } 9076 } 9077 } 9078 9079 void hclge_rm_vport_all_mac_table(struct hclge_vport *vport, bool is_del_list, 9080 enum HCLGE_MAC_ADDR_TYPE mac_type) 9081 { 9082 int (*unsync)(struct hclge_vport *vport, const unsigned char *addr); 9083 struct hclge_dev *hdev = vport->back; 9084 struct list_head tmp_del_list, *list; 9085 9086 if (mac_type == HCLGE_MAC_ADDR_UC) { 9087 list = &vport->uc_mac_list; 9088 unsync = hclge_rm_uc_addr_common; 9089 } else { 9090 list = &vport->mc_mac_list; 9091 unsync = hclge_rm_mc_addr_common; 9092 } 9093 9094 INIT_LIST_HEAD(&tmp_del_list); 9095 9096 if (!is_del_list) 9097 set_bit(vport->vport_id, hdev->vport_config_block); 9098 9099 spin_lock_bh(&vport->mac_list_lock); 9100 9101 hclge_build_del_list(list, is_del_list, &tmp_del_list); 9102 9103 spin_unlock_bh(&vport->mac_list_lock); 9104 9105 hclge_unsync_del_list(vport, unsync, is_del_list, &tmp_del_list); 9106 9107 spin_lock_bh(&vport->mac_list_lock); 9108 9109 hclge_sync_from_del_list(&tmp_del_list, list); 9110 9111 spin_unlock_bh(&vport->mac_list_lock); 9112 } 9113 9114 /* remove all mac address when uninitailize */ 9115 static void hclge_uninit_vport_mac_list(struct hclge_vport *vport, 9116 enum HCLGE_MAC_ADDR_TYPE mac_type) 9117 { 9118 struct hclge_mac_node *mac_node, *tmp; 9119 struct hclge_dev *hdev = vport->back; 9120 struct list_head tmp_del_list, *list; 9121 9122 INIT_LIST_HEAD(&tmp_del_list); 9123 9124 list = (mac_type == HCLGE_MAC_ADDR_UC) ? 9125 &vport->uc_mac_list : &vport->mc_mac_list; 9126 9127 spin_lock_bh(&vport->mac_list_lock); 9128 9129 list_for_each_entry_safe(mac_node, tmp, list, node) { 9130 switch (mac_node->state) { 9131 case HCLGE_MAC_TO_DEL: 9132 case HCLGE_MAC_ACTIVE: 9133 list_move_tail(&mac_node->node, &tmp_del_list); 9134 break; 9135 case HCLGE_MAC_TO_ADD: 9136 list_del(&mac_node->node); 9137 kfree(mac_node); 9138 break; 9139 } 9140 } 9141 9142 spin_unlock_bh(&vport->mac_list_lock); 9143 9144 hclge_unsync_vport_mac_list(vport, &tmp_del_list, mac_type); 9145 9146 if (!list_empty(&tmp_del_list)) 9147 dev_warn(&hdev->pdev->dev, 9148 "uninit %s mac list for vport %u not completely.\n", 9149 mac_type == HCLGE_MAC_ADDR_UC ? "uc" : "mc", 9150 vport->vport_id); 9151 9152 list_for_each_entry_safe(mac_node, tmp, &tmp_del_list, node) { 9153 list_del(&mac_node->node); 9154 kfree(mac_node); 9155 } 9156 } 9157 9158 static void hclge_uninit_mac_table(struct hclge_dev *hdev) 9159 { 9160 struct hclge_vport *vport; 9161 int i; 9162 9163 for (i = 0; i < hdev->num_alloc_vport; i++) { 9164 vport = &hdev->vport[i]; 9165 hclge_uninit_vport_mac_list(vport, HCLGE_MAC_ADDR_UC); 9166 hclge_uninit_vport_mac_list(vport, HCLGE_MAC_ADDR_MC); 9167 } 9168 } 9169 9170 static int hclge_get_mac_ethertype_cmd_status(struct hclge_dev *hdev, 9171 u16 cmdq_resp, u8 resp_code) 9172 { 9173 #define HCLGE_ETHERTYPE_SUCCESS_ADD 0 9174 #define HCLGE_ETHERTYPE_ALREADY_ADD 1 9175 #define HCLGE_ETHERTYPE_MGR_TBL_OVERFLOW 2 9176 #define HCLGE_ETHERTYPE_KEY_CONFLICT 3 9177 9178 int return_status; 9179 9180 if (cmdq_resp) { 9181 dev_err(&hdev->pdev->dev, 9182 "cmdq execute failed for get_mac_ethertype_cmd_status, status=%u.\n", 9183 cmdq_resp); 9184 return -EIO; 9185 } 9186 9187 switch (resp_code) { 9188 case HCLGE_ETHERTYPE_SUCCESS_ADD: 9189 case HCLGE_ETHERTYPE_ALREADY_ADD: 9190 return_status = 0; 9191 break; 9192 case HCLGE_ETHERTYPE_MGR_TBL_OVERFLOW: 9193 dev_err(&hdev->pdev->dev, 9194 "add mac ethertype failed for manager table overflow.\n"); 9195 return_status = -EIO; 9196 break; 9197 case HCLGE_ETHERTYPE_KEY_CONFLICT: 9198 dev_err(&hdev->pdev->dev, 9199 "add mac ethertype failed for key conflict.\n"); 9200 return_status = -EIO; 9201 break; 9202 default: 9203 dev_err(&hdev->pdev->dev, 9204 "add mac ethertype failed for undefined, code=%u.\n", 9205 resp_code); 9206 return_status = -EIO; 9207 } 9208 9209 return return_status; 9210 } 9211 9212 static int hclge_set_vf_mac(struct hnae3_handle *handle, int vf, 9213 u8 *mac_addr) 9214 { 9215 struct hclge_vport *vport = hclge_get_vport(handle); 9216 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN]; 9217 struct hclge_dev *hdev = vport->back; 9218 9219 vport = hclge_get_vf_vport(hdev, vf); 9220 if (!vport) 9221 return -EINVAL; 9222 9223 hnae3_format_mac_addr(format_mac_addr, mac_addr); 9224 if (ether_addr_equal(mac_addr, vport->vf_info.mac)) { 9225 dev_info(&hdev->pdev->dev, 9226 "Specified MAC(=%s) is same as before, no change committed!\n", 9227 format_mac_addr); 9228 return 0; 9229 } 9230 9231 ether_addr_copy(vport->vf_info.mac, mac_addr); 9232 9233 /* there is a timewindow for PF to know VF unalive, it may 9234 * cause send mailbox fail, but it doesn't matter, VF will 9235 * query it when reinit. 9236 */ 9237 if (test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state)) { 9238 dev_info(&hdev->pdev->dev, 9239 "MAC of VF %d has been set to %s, and it will be reinitialized!\n", 9240 vf, format_mac_addr); 9241 (void)hclge_inform_reset_assert_to_vf(vport); 9242 return 0; 9243 } 9244 9245 dev_info(&hdev->pdev->dev, 9246 "MAC of VF %d has been set to %s, will be active after VF reset\n", 9247 vf, format_mac_addr); 9248 return 0; 9249 } 9250 9251 static int hclge_add_mgr_tbl(struct hclge_dev *hdev, 9252 const struct hclge_mac_mgr_tbl_entry_cmd *req) 9253 { 9254 struct hclge_desc desc; 9255 u8 resp_code; 9256 u16 retval; 9257 int ret; 9258 9259 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_ETHTYPE_ADD, false); 9260 memcpy(desc.data, req, sizeof(struct hclge_mac_mgr_tbl_entry_cmd)); 9261 9262 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 9263 if (ret) { 9264 dev_err(&hdev->pdev->dev, 9265 "add mac ethertype failed for cmd_send, ret =%d.\n", 9266 ret); 9267 return ret; 9268 } 9269 9270 resp_code = (le32_to_cpu(desc.data[0]) >> 8) & 0xff; 9271 retval = le16_to_cpu(desc.retval); 9272 9273 return hclge_get_mac_ethertype_cmd_status(hdev, retval, resp_code); 9274 } 9275 9276 static int init_mgr_tbl(struct hclge_dev *hdev) 9277 { 9278 int ret; 9279 int i; 9280 9281 for (i = 0; i < ARRAY_SIZE(hclge_mgr_table); i++) { 9282 ret = hclge_add_mgr_tbl(hdev, &hclge_mgr_table[i]); 9283 if (ret) { 9284 dev_err(&hdev->pdev->dev, 9285 "add mac ethertype failed, ret =%d.\n", 9286 ret); 9287 return ret; 9288 } 9289 } 9290 9291 return 0; 9292 } 9293 9294 static void hclge_get_mac_addr(struct hnae3_handle *handle, u8 *p) 9295 { 9296 struct hclge_vport *vport = hclge_get_vport(handle); 9297 struct hclge_dev *hdev = vport->back; 9298 9299 ether_addr_copy(p, hdev->hw.mac.mac_addr); 9300 } 9301 9302 int hclge_update_mac_node_for_dev_addr(struct hclge_vport *vport, 9303 const u8 *old_addr, const u8 *new_addr) 9304 { 9305 struct list_head *list = &vport->uc_mac_list; 9306 struct hclge_mac_node *old_node, *new_node; 9307 9308 new_node = hclge_find_mac_node(list, new_addr); 9309 if (!new_node) { 9310 new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC); 9311 if (!new_node) 9312 return -ENOMEM; 9313 9314 new_node->state = HCLGE_MAC_TO_ADD; 9315 ether_addr_copy(new_node->mac_addr, new_addr); 9316 list_add(&new_node->node, list); 9317 } else { 9318 if (new_node->state == HCLGE_MAC_TO_DEL) 9319 new_node->state = HCLGE_MAC_ACTIVE; 9320 9321 /* make sure the new addr is in the list head, avoid dev 9322 * addr may be not re-added into mac table for the umv space 9323 * limitation after global/imp reset which will clear mac 9324 * table by hardware. 9325 */ 9326 list_move(&new_node->node, list); 9327 } 9328 9329 if (old_addr && !ether_addr_equal(old_addr, new_addr)) { 9330 old_node = hclge_find_mac_node(list, old_addr); 9331 if (old_node) { 9332 if (old_node->state == HCLGE_MAC_TO_ADD) { 9333 list_del(&old_node->node); 9334 kfree(old_node); 9335 } else { 9336 old_node->state = HCLGE_MAC_TO_DEL; 9337 } 9338 } 9339 } 9340 9341 set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, &vport->state); 9342 9343 return 0; 9344 } 9345 9346 static int hclge_set_mac_addr(struct hnae3_handle *handle, const void *p, 9347 bool is_first) 9348 { 9349 const unsigned char *new_addr = (const unsigned char *)p; 9350 struct hclge_vport *vport = hclge_get_vport(handle); 9351 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN]; 9352 struct hclge_dev *hdev = vport->back; 9353 unsigned char *old_addr = NULL; 9354 int ret; 9355 9356 /* mac addr check */ 9357 if (is_zero_ether_addr(new_addr) || 9358 is_broadcast_ether_addr(new_addr) || 9359 is_multicast_ether_addr(new_addr)) { 9360 hnae3_format_mac_addr(format_mac_addr, new_addr); 9361 dev_err(&hdev->pdev->dev, 9362 "change uc mac err! invalid mac: %s.\n", 9363 format_mac_addr); 9364 return -EINVAL; 9365 } 9366 9367 ret = hclge_pause_addr_cfg(hdev, new_addr); 9368 if (ret) { 9369 dev_err(&hdev->pdev->dev, 9370 "failed to configure mac pause address, ret = %d\n", 9371 ret); 9372 return ret; 9373 } 9374 9375 if (!is_first) 9376 old_addr = hdev->hw.mac.mac_addr; 9377 9378 spin_lock_bh(&vport->mac_list_lock); 9379 ret = hclge_update_mac_node_for_dev_addr(vport, old_addr, new_addr); 9380 if (ret) { 9381 hnae3_format_mac_addr(format_mac_addr, new_addr); 9382 dev_err(&hdev->pdev->dev, 9383 "failed to change the mac addr:%s, ret = %d\n", 9384 format_mac_addr, ret); 9385 spin_unlock_bh(&vport->mac_list_lock); 9386 9387 if (!is_first) 9388 hclge_pause_addr_cfg(hdev, old_addr); 9389 9390 return ret; 9391 } 9392 /* we must update dev addr with spin lock protect, preventing dev addr 9393 * being removed by set_rx_mode path. 9394 */ 9395 ether_addr_copy(hdev->hw.mac.mac_addr, new_addr); 9396 spin_unlock_bh(&vport->mac_list_lock); 9397 9398 hclge_task_schedule(hdev, 0); 9399 9400 return 0; 9401 } 9402 9403 static int hclge_mii_ioctl(struct hclge_dev *hdev, struct ifreq *ifr, int cmd) 9404 { 9405 struct mii_ioctl_data *data = if_mii(ifr); 9406 9407 if (!hnae3_dev_phy_imp_supported(hdev)) 9408 return -EOPNOTSUPP; 9409 9410 switch (cmd) { 9411 case SIOCGMIIPHY: 9412 data->phy_id = hdev->hw.mac.phy_addr; 9413 /* this command reads phy id and register at the same time */ 9414 fallthrough; 9415 case SIOCGMIIREG: 9416 data->val_out = hclge_read_phy_reg(hdev, data->reg_num); 9417 return 0; 9418 9419 case SIOCSMIIREG: 9420 return hclge_write_phy_reg(hdev, data->reg_num, data->val_in); 9421 default: 9422 return -EOPNOTSUPP; 9423 } 9424 } 9425 9426 static int hclge_do_ioctl(struct hnae3_handle *handle, struct ifreq *ifr, 9427 int cmd) 9428 { 9429 struct hclge_vport *vport = hclge_get_vport(handle); 9430 struct hclge_dev *hdev = vport->back; 9431 9432 switch (cmd) { 9433 case SIOCGHWTSTAMP: 9434 return hclge_ptp_get_cfg(hdev, ifr); 9435 case SIOCSHWTSTAMP: 9436 return hclge_ptp_set_cfg(hdev, ifr); 9437 default: 9438 if (!hdev->hw.mac.phydev) 9439 return hclge_mii_ioctl(hdev, ifr, cmd); 9440 } 9441 9442 return phy_mii_ioctl(hdev->hw.mac.phydev, ifr, cmd); 9443 } 9444 9445 static int hclge_set_port_vlan_filter_bypass(struct hclge_dev *hdev, u8 vf_id, 9446 bool bypass_en) 9447 { 9448 struct hclge_port_vlan_filter_bypass_cmd *req; 9449 struct hclge_desc desc; 9450 int ret; 9451 9452 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_PORT_VLAN_BYPASS, false); 9453 req = (struct hclge_port_vlan_filter_bypass_cmd *)desc.data; 9454 req->vf_id = vf_id; 9455 hnae3_set_bit(req->bypass_state, HCLGE_INGRESS_BYPASS_B, 9456 bypass_en ? 1 : 0); 9457 9458 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 9459 if (ret) 9460 dev_err(&hdev->pdev->dev, 9461 "failed to set vport%u port vlan filter bypass state, ret = %d.\n", 9462 vf_id, ret); 9463 9464 return ret; 9465 } 9466 9467 static int hclge_set_vlan_filter_ctrl(struct hclge_dev *hdev, u8 vlan_type, 9468 u8 fe_type, bool filter_en, u8 vf_id) 9469 { 9470 struct hclge_vlan_filter_ctrl_cmd *req; 9471 struct hclge_desc desc; 9472 int ret; 9473 9474 /* read current vlan filter parameter */ 9475 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_VLAN_FILTER_CTRL, true); 9476 req = (struct hclge_vlan_filter_ctrl_cmd *)desc.data; 9477 req->vlan_type = vlan_type; 9478 req->vf_id = vf_id; 9479 9480 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 9481 if (ret) { 9482 dev_err(&hdev->pdev->dev, "failed to get vport%u vlan filter config, ret = %d.\n", 9483 vf_id, ret); 9484 return ret; 9485 } 9486 9487 /* modify and write new config parameter */ 9488 hclge_comm_cmd_reuse_desc(&desc, false); 9489 req->vlan_fe = filter_en ? 9490 (req->vlan_fe | fe_type) : (req->vlan_fe & ~fe_type); 9491 9492 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 9493 if (ret) 9494 dev_err(&hdev->pdev->dev, "failed to set vport%u vlan filter, ret = %d.\n", 9495 vf_id, ret); 9496 9497 return ret; 9498 } 9499 9500 static int hclge_set_vport_vlan_filter(struct hclge_vport *vport, bool enable) 9501 { 9502 struct hclge_dev *hdev = vport->back; 9503 struct hnae3_ae_dev *ae_dev = hdev->ae_dev; 9504 int ret; 9505 9506 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2) 9507 return hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF, 9508 HCLGE_FILTER_FE_EGRESS_V1_B, 9509 enable, vport->vport_id); 9510 9511 ret = hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF, 9512 HCLGE_FILTER_FE_EGRESS, enable, 9513 vport->vport_id); 9514 if (ret) 9515 return ret; 9516 9517 if (test_bit(HNAE3_DEV_SUPPORT_PORT_VLAN_BYPASS_B, ae_dev->caps)) { 9518 ret = hclge_set_port_vlan_filter_bypass(hdev, vport->vport_id, 9519 !enable); 9520 } else if (!vport->vport_id) { 9521 if (test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps)) 9522 enable = false; 9523 9524 ret = hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_PORT, 9525 HCLGE_FILTER_FE_INGRESS, 9526 enable, 0); 9527 } 9528 9529 return ret; 9530 } 9531 9532 static bool hclge_need_enable_vport_vlan_filter(struct hclge_vport *vport) 9533 { 9534 struct hnae3_handle *handle = &vport->nic; 9535 struct hclge_vport_vlan_cfg *vlan, *tmp; 9536 struct hclge_dev *hdev = vport->back; 9537 9538 if (vport->vport_id) { 9539 if (vport->port_base_vlan_cfg.state != 9540 HNAE3_PORT_BASE_VLAN_DISABLE) 9541 return true; 9542 9543 if (vport->vf_info.trusted && vport->vf_info.request_uc_en) 9544 return false; 9545 } else if (handle->netdev_flags & HNAE3_USER_UPE) { 9546 return false; 9547 } 9548 9549 if (!vport->req_vlan_fltr_en) 9550 return false; 9551 9552 /* compatible with former device, always enable vlan filter */ 9553 if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, hdev->ae_dev->caps)) 9554 return true; 9555 9556 list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) 9557 if (vlan->vlan_id != 0) 9558 return true; 9559 9560 return false; 9561 } 9562 9563 int hclge_enable_vport_vlan_filter(struct hclge_vport *vport, bool request_en) 9564 { 9565 struct hclge_dev *hdev = vport->back; 9566 bool need_en; 9567 int ret; 9568 9569 mutex_lock(&hdev->vport_lock); 9570 9571 vport->req_vlan_fltr_en = request_en; 9572 9573 need_en = hclge_need_enable_vport_vlan_filter(vport); 9574 if (need_en == vport->cur_vlan_fltr_en) { 9575 mutex_unlock(&hdev->vport_lock); 9576 return 0; 9577 } 9578 9579 ret = hclge_set_vport_vlan_filter(vport, need_en); 9580 if (ret) { 9581 mutex_unlock(&hdev->vport_lock); 9582 return ret; 9583 } 9584 9585 vport->cur_vlan_fltr_en = need_en; 9586 9587 mutex_unlock(&hdev->vport_lock); 9588 9589 return 0; 9590 } 9591 9592 static int hclge_enable_vlan_filter(struct hnae3_handle *handle, bool enable) 9593 { 9594 struct hclge_vport *vport = hclge_get_vport(handle); 9595 9596 return hclge_enable_vport_vlan_filter(vport, enable); 9597 } 9598 9599 static int hclge_set_vf_vlan_filter_cmd(struct hclge_dev *hdev, u16 vfid, 9600 bool is_kill, u16 vlan, 9601 struct hclge_desc *desc) 9602 { 9603 struct hclge_vlan_filter_vf_cfg_cmd *req0; 9604 struct hclge_vlan_filter_vf_cfg_cmd *req1; 9605 u8 vf_byte_val; 9606 u8 vf_byte_off; 9607 int ret; 9608 9609 hclge_cmd_setup_basic_desc(&desc[0], 9610 HCLGE_OPC_VLAN_FILTER_VF_CFG, false); 9611 hclge_cmd_setup_basic_desc(&desc[1], 9612 HCLGE_OPC_VLAN_FILTER_VF_CFG, false); 9613 9614 desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 9615 9616 vf_byte_off = vfid / 8; 9617 vf_byte_val = 1 << (vfid % 8); 9618 9619 req0 = (struct hclge_vlan_filter_vf_cfg_cmd *)desc[0].data; 9620 req1 = (struct hclge_vlan_filter_vf_cfg_cmd *)desc[1].data; 9621 9622 req0->vlan_id = cpu_to_le16(vlan); 9623 req0->vlan_cfg = is_kill; 9624 9625 if (vf_byte_off < HCLGE_MAX_VF_BYTES) 9626 req0->vf_bitmap[vf_byte_off] = vf_byte_val; 9627 else 9628 req1->vf_bitmap[vf_byte_off - HCLGE_MAX_VF_BYTES] = vf_byte_val; 9629 9630 ret = hclge_cmd_send(&hdev->hw, desc, 2); 9631 if (ret) { 9632 dev_err(&hdev->pdev->dev, 9633 "Send vf vlan command fail, ret =%d.\n", 9634 ret); 9635 return ret; 9636 } 9637 9638 return 0; 9639 } 9640 9641 static int hclge_check_vf_vlan_cmd_status(struct hclge_dev *hdev, u16 vfid, 9642 bool is_kill, struct hclge_desc *desc) 9643 { 9644 struct hclge_vlan_filter_vf_cfg_cmd *req; 9645 9646 req = (struct hclge_vlan_filter_vf_cfg_cmd *)desc[0].data; 9647 9648 if (!is_kill) { 9649 #define HCLGE_VF_VLAN_NO_ENTRY 2 9650 if (!req->resp_code || req->resp_code == 1) 9651 return 0; 9652 9653 if (req->resp_code == HCLGE_VF_VLAN_NO_ENTRY) { 9654 set_bit(vfid, hdev->vf_vlan_full); 9655 dev_warn(&hdev->pdev->dev, 9656 "vf vlan table is full, vf vlan filter is disabled\n"); 9657 return 0; 9658 } 9659 9660 dev_err(&hdev->pdev->dev, 9661 "Add vf vlan filter fail, ret =%u.\n", 9662 req->resp_code); 9663 } else { 9664 #define HCLGE_VF_VLAN_DEL_NO_FOUND 1 9665 if (!req->resp_code) 9666 return 0; 9667 9668 /* vf vlan filter is disabled when vf vlan table is full, 9669 * then new vlan id will not be added into vf vlan table. 9670 * Just return 0 without warning, avoid massive verbose 9671 * print logs when unload. 9672 */ 9673 if (req->resp_code == HCLGE_VF_VLAN_DEL_NO_FOUND) 9674 return 0; 9675 9676 dev_err(&hdev->pdev->dev, 9677 "Kill vf vlan filter fail, ret =%u.\n", 9678 req->resp_code); 9679 } 9680 9681 return -EIO; 9682 } 9683 9684 static int hclge_set_vf_vlan_common(struct hclge_dev *hdev, u16 vfid, 9685 bool is_kill, u16 vlan) 9686 { 9687 struct hclge_vport *vport = &hdev->vport[vfid]; 9688 struct hclge_desc desc[2]; 9689 int ret; 9690 9691 /* if vf vlan table is full, firmware will close vf vlan filter, it 9692 * is unable and unnecessary to add new vlan id to vf vlan filter. 9693 * If spoof check is enable, and vf vlan is full, it shouldn't add 9694 * new vlan, because tx packets with these vlan id will be dropped. 9695 */ 9696 if (test_bit(vfid, hdev->vf_vlan_full) && !is_kill) { 9697 if (vport->vf_info.spoofchk && vlan) { 9698 dev_err(&hdev->pdev->dev, 9699 "Can't add vlan due to spoof check is on and vf vlan table is full\n"); 9700 return -EPERM; 9701 } 9702 return 0; 9703 } 9704 9705 ret = hclge_set_vf_vlan_filter_cmd(hdev, vfid, is_kill, vlan, desc); 9706 if (ret) 9707 return ret; 9708 9709 return hclge_check_vf_vlan_cmd_status(hdev, vfid, is_kill, desc); 9710 } 9711 9712 static int hclge_set_port_vlan_filter(struct hclge_dev *hdev, __be16 proto, 9713 u16 vlan_id, bool is_kill) 9714 { 9715 struct hclge_vlan_filter_pf_cfg_cmd *req; 9716 struct hclge_desc desc; 9717 u8 vlan_offset_byte_val; 9718 u8 vlan_offset_byte; 9719 u8 vlan_offset_160; 9720 int ret; 9721 9722 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_VLAN_FILTER_PF_CFG, false); 9723 9724 vlan_offset_160 = vlan_id / HCLGE_VLAN_ID_OFFSET_STEP; 9725 vlan_offset_byte = (vlan_id % HCLGE_VLAN_ID_OFFSET_STEP) / 9726 HCLGE_VLAN_BYTE_SIZE; 9727 vlan_offset_byte_val = 1 << (vlan_id % HCLGE_VLAN_BYTE_SIZE); 9728 9729 req = (struct hclge_vlan_filter_pf_cfg_cmd *)desc.data; 9730 req->vlan_offset = vlan_offset_160; 9731 req->vlan_cfg = is_kill; 9732 req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val; 9733 9734 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 9735 if (ret) 9736 dev_err(&hdev->pdev->dev, 9737 "port vlan command, send fail, ret =%d.\n", ret); 9738 return ret; 9739 } 9740 9741 static bool hclge_need_update_port_vlan(struct hclge_dev *hdev, u16 vport_id, 9742 u16 vlan_id, bool is_kill) 9743 { 9744 /* vlan 0 may be added twice when 8021q module is enabled */ 9745 if (!is_kill && !vlan_id && 9746 test_bit(vport_id, hdev->vlan_table[vlan_id])) 9747 return false; 9748 9749 if (!is_kill && test_and_set_bit(vport_id, hdev->vlan_table[vlan_id])) { 9750 dev_warn(&hdev->pdev->dev, 9751 "Add port vlan failed, vport %u is already in vlan %u\n", 9752 vport_id, vlan_id); 9753 return false; 9754 } 9755 9756 if (is_kill && 9757 !test_and_clear_bit(vport_id, hdev->vlan_table[vlan_id])) { 9758 dev_warn(&hdev->pdev->dev, 9759 "Delete port vlan failed, vport %u is not in vlan %u\n", 9760 vport_id, vlan_id); 9761 return false; 9762 } 9763 9764 return true; 9765 } 9766 9767 static int hclge_set_vlan_filter_hw(struct hclge_dev *hdev, __be16 proto, 9768 u16 vport_id, u16 vlan_id, 9769 bool is_kill) 9770 { 9771 u16 vport_idx, vport_num = 0; 9772 int ret; 9773 9774 if (is_kill && !vlan_id) 9775 return 0; 9776 9777 if (vlan_id >= VLAN_N_VID) 9778 return -EINVAL; 9779 9780 ret = hclge_set_vf_vlan_common(hdev, vport_id, is_kill, vlan_id); 9781 if (ret) { 9782 dev_err(&hdev->pdev->dev, 9783 "Set %u vport vlan filter config fail, ret =%d.\n", 9784 vport_id, ret); 9785 return ret; 9786 } 9787 9788 if (!hclge_need_update_port_vlan(hdev, vport_id, vlan_id, is_kill)) 9789 return 0; 9790 9791 for_each_set_bit(vport_idx, hdev->vlan_table[vlan_id], HCLGE_VPORT_NUM) 9792 vport_num++; 9793 9794 if ((is_kill && vport_num == 0) || (!is_kill && vport_num == 1)) 9795 ret = hclge_set_port_vlan_filter(hdev, proto, vlan_id, 9796 is_kill); 9797 9798 return ret; 9799 } 9800 9801 static int hclge_set_vlan_tx_offload_cfg(struct hclge_vport *vport) 9802 { 9803 struct hclge_tx_vtag_cfg *vcfg = &vport->txvlan_cfg; 9804 struct hclge_vport_vtag_tx_cfg_cmd *req; 9805 struct hclge_dev *hdev = vport->back; 9806 struct hclge_desc desc; 9807 u16 bmap_index; 9808 int status; 9809 9810 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_VLAN_PORT_TX_CFG, false); 9811 9812 req = (struct hclge_vport_vtag_tx_cfg_cmd *)desc.data; 9813 req->def_vlan_tag1 = cpu_to_le16(vcfg->default_tag1); 9814 req->def_vlan_tag2 = cpu_to_le16(vcfg->default_tag2); 9815 hnae3_set_bit(req->vport_vlan_cfg, HCLGE_ACCEPT_TAG1_B, 9816 vcfg->accept_tag1 ? 1 : 0); 9817 hnae3_set_bit(req->vport_vlan_cfg, HCLGE_ACCEPT_UNTAG1_B, 9818 vcfg->accept_untag1 ? 1 : 0); 9819 hnae3_set_bit(req->vport_vlan_cfg, HCLGE_ACCEPT_TAG2_B, 9820 vcfg->accept_tag2 ? 1 : 0); 9821 hnae3_set_bit(req->vport_vlan_cfg, HCLGE_ACCEPT_UNTAG2_B, 9822 vcfg->accept_untag2 ? 1 : 0); 9823 hnae3_set_bit(req->vport_vlan_cfg, HCLGE_PORT_INS_TAG1_EN_B, 9824 vcfg->insert_tag1_en ? 1 : 0); 9825 hnae3_set_bit(req->vport_vlan_cfg, HCLGE_PORT_INS_TAG2_EN_B, 9826 vcfg->insert_tag2_en ? 1 : 0); 9827 hnae3_set_bit(req->vport_vlan_cfg, HCLGE_TAG_SHIFT_MODE_EN_B, 9828 vcfg->tag_shift_mode_en ? 1 : 0); 9829 hnae3_set_bit(req->vport_vlan_cfg, HCLGE_CFG_NIC_ROCE_SEL_B, 0); 9830 9831 req->vf_offset = vport->vport_id / HCLGE_VF_NUM_PER_CMD; 9832 bmap_index = vport->vport_id % HCLGE_VF_NUM_PER_CMD / 9833 HCLGE_VF_NUM_PER_BYTE; 9834 req->vf_bitmap[bmap_index] = 9835 1U << (vport->vport_id % HCLGE_VF_NUM_PER_BYTE); 9836 9837 status = hclge_cmd_send(&hdev->hw, &desc, 1); 9838 if (status) 9839 dev_err(&hdev->pdev->dev, 9840 "Send port txvlan cfg command fail, ret =%d\n", 9841 status); 9842 9843 return status; 9844 } 9845 9846 static int hclge_set_vlan_rx_offload_cfg(struct hclge_vport *vport) 9847 { 9848 struct hclge_rx_vtag_cfg *vcfg = &vport->rxvlan_cfg; 9849 struct hclge_vport_vtag_rx_cfg_cmd *req; 9850 struct hclge_dev *hdev = vport->back; 9851 struct hclge_desc desc; 9852 u16 bmap_index; 9853 int status; 9854 9855 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_VLAN_PORT_RX_CFG, false); 9856 9857 req = (struct hclge_vport_vtag_rx_cfg_cmd *)desc.data; 9858 hnae3_set_bit(req->vport_vlan_cfg, HCLGE_REM_TAG1_EN_B, 9859 vcfg->strip_tag1_en ? 1 : 0); 9860 hnae3_set_bit(req->vport_vlan_cfg, HCLGE_REM_TAG2_EN_B, 9861 vcfg->strip_tag2_en ? 1 : 0); 9862 hnae3_set_bit(req->vport_vlan_cfg, HCLGE_SHOW_TAG1_EN_B, 9863 vcfg->vlan1_vlan_prionly ? 1 : 0); 9864 hnae3_set_bit(req->vport_vlan_cfg, HCLGE_SHOW_TAG2_EN_B, 9865 vcfg->vlan2_vlan_prionly ? 1 : 0); 9866 hnae3_set_bit(req->vport_vlan_cfg, HCLGE_DISCARD_TAG1_EN_B, 9867 vcfg->strip_tag1_discard_en ? 1 : 0); 9868 hnae3_set_bit(req->vport_vlan_cfg, HCLGE_DISCARD_TAG2_EN_B, 9869 vcfg->strip_tag2_discard_en ? 1 : 0); 9870 9871 req->vf_offset = vport->vport_id / HCLGE_VF_NUM_PER_CMD; 9872 bmap_index = vport->vport_id % HCLGE_VF_NUM_PER_CMD / 9873 HCLGE_VF_NUM_PER_BYTE; 9874 req->vf_bitmap[bmap_index] = 9875 1U << (vport->vport_id % HCLGE_VF_NUM_PER_BYTE); 9876 9877 status = hclge_cmd_send(&hdev->hw, &desc, 1); 9878 if (status) 9879 dev_err(&hdev->pdev->dev, 9880 "Send port rxvlan cfg command fail, ret =%d\n", 9881 status); 9882 9883 return status; 9884 } 9885 9886 static int hclge_vlan_offload_cfg(struct hclge_vport *vport, 9887 u16 port_base_vlan_state, 9888 u16 vlan_tag, u8 qos) 9889 { 9890 int ret; 9891 9892 if (port_base_vlan_state == HNAE3_PORT_BASE_VLAN_DISABLE) { 9893 vport->txvlan_cfg.accept_tag1 = true; 9894 vport->txvlan_cfg.insert_tag1_en = false; 9895 vport->txvlan_cfg.default_tag1 = 0; 9896 } else { 9897 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(vport->nic.pdev); 9898 9899 vport->txvlan_cfg.accept_tag1 = 9900 ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3; 9901 vport->txvlan_cfg.insert_tag1_en = true; 9902 vport->txvlan_cfg.default_tag1 = (qos << VLAN_PRIO_SHIFT) | 9903 vlan_tag; 9904 } 9905 9906 vport->txvlan_cfg.accept_untag1 = true; 9907 9908 /* accept_tag2 and accept_untag2 are not supported on 9909 * pdev revision(0x20), new revision support them, 9910 * this two fields can not be configured by user. 9911 */ 9912 vport->txvlan_cfg.accept_tag2 = true; 9913 vport->txvlan_cfg.accept_untag2 = true; 9914 vport->txvlan_cfg.insert_tag2_en = false; 9915 vport->txvlan_cfg.default_tag2 = 0; 9916 vport->txvlan_cfg.tag_shift_mode_en = true; 9917 9918 if (port_base_vlan_state == HNAE3_PORT_BASE_VLAN_DISABLE) { 9919 vport->rxvlan_cfg.strip_tag1_en = false; 9920 vport->rxvlan_cfg.strip_tag2_en = 9921 vport->rxvlan_cfg.rx_vlan_offload_en; 9922 vport->rxvlan_cfg.strip_tag2_discard_en = false; 9923 } else { 9924 vport->rxvlan_cfg.strip_tag1_en = 9925 vport->rxvlan_cfg.rx_vlan_offload_en; 9926 vport->rxvlan_cfg.strip_tag2_en = true; 9927 vport->rxvlan_cfg.strip_tag2_discard_en = true; 9928 } 9929 9930 vport->rxvlan_cfg.strip_tag1_discard_en = false; 9931 vport->rxvlan_cfg.vlan1_vlan_prionly = false; 9932 vport->rxvlan_cfg.vlan2_vlan_prionly = false; 9933 9934 ret = hclge_set_vlan_tx_offload_cfg(vport); 9935 if (ret) 9936 return ret; 9937 9938 return hclge_set_vlan_rx_offload_cfg(vport); 9939 } 9940 9941 static int hclge_set_vlan_protocol_type(struct hclge_dev *hdev) 9942 { 9943 struct hclge_rx_vlan_type_cfg_cmd *rx_req; 9944 struct hclge_tx_vlan_type_cfg_cmd *tx_req; 9945 struct hclge_desc desc; 9946 int status; 9947 9948 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_TYPE_ID, false); 9949 rx_req = (struct hclge_rx_vlan_type_cfg_cmd *)desc.data; 9950 rx_req->ot_fst_vlan_type = 9951 cpu_to_le16(hdev->vlan_type_cfg.rx_ot_fst_vlan_type); 9952 rx_req->ot_sec_vlan_type = 9953 cpu_to_le16(hdev->vlan_type_cfg.rx_ot_sec_vlan_type); 9954 rx_req->in_fst_vlan_type = 9955 cpu_to_le16(hdev->vlan_type_cfg.rx_in_fst_vlan_type); 9956 rx_req->in_sec_vlan_type = 9957 cpu_to_le16(hdev->vlan_type_cfg.rx_in_sec_vlan_type); 9958 9959 status = hclge_cmd_send(&hdev->hw, &desc, 1); 9960 if (status) { 9961 dev_err(&hdev->pdev->dev, 9962 "Send rxvlan protocol type command fail, ret =%d\n", 9963 status); 9964 return status; 9965 } 9966 9967 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_INSERT, false); 9968 9969 tx_req = (struct hclge_tx_vlan_type_cfg_cmd *)desc.data; 9970 tx_req->ot_vlan_type = cpu_to_le16(hdev->vlan_type_cfg.tx_ot_vlan_type); 9971 tx_req->in_vlan_type = cpu_to_le16(hdev->vlan_type_cfg.tx_in_vlan_type); 9972 9973 status = hclge_cmd_send(&hdev->hw, &desc, 1); 9974 if (status) 9975 dev_err(&hdev->pdev->dev, 9976 "Send txvlan protocol type command fail, ret =%d\n", 9977 status); 9978 9979 return status; 9980 } 9981 9982 static int hclge_init_vlan_filter(struct hclge_dev *hdev) 9983 { 9984 struct hclge_vport *vport; 9985 bool enable = true; 9986 int ret; 9987 int i; 9988 9989 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2) 9990 return hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF, 9991 HCLGE_FILTER_FE_EGRESS_V1_B, 9992 true, 0); 9993 9994 /* for revision 0x21, vf vlan filter is per function */ 9995 for (i = 0; i < hdev->num_alloc_vport; i++) { 9996 vport = &hdev->vport[i]; 9997 ret = hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF, 9998 HCLGE_FILTER_FE_EGRESS, true, 9999 vport->vport_id); 10000 if (ret) 10001 return ret; 10002 vport->cur_vlan_fltr_en = true; 10003 } 10004 10005 if (test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, hdev->ae_dev->caps) && 10006 !test_bit(HNAE3_DEV_SUPPORT_PORT_VLAN_BYPASS_B, hdev->ae_dev->caps)) 10007 enable = false; 10008 10009 return hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_PORT, 10010 HCLGE_FILTER_FE_INGRESS, enable, 0); 10011 } 10012 10013 static int hclge_init_vlan_type(struct hclge_dev *hdev) 10014 { 10015 hdev->vlan_type_cfg.rx_in_fst_vlan_type = ETH_P_8021Q; 10016 hdev->vlan_type_cfg.rx_in_sec_vlan_type = ETH_P_8021Q; 10017 hdev->vlan_type_cfg.rx_ot_fst_vlan_type = ETH_P_8021Q; 10018 hdev->vlan_type_cfg.rx_ot_sec_vlan_type = ETH_P_8021Q; 10019 hdev->vlan_type_cfg.tx_ot_vlan_type = ETH_P_8021Q; 10020 hdev->vlan_type_cfg.tx_in_vlan_type = ETH_P_8021Q; 10021 10022 return hclge_set_vlan_protocol_type(hdev); 10023 } 10024 10025 static int hclge_init_vport_vlan_offload(struct hclge_dev *hdev) 10026 { 10027 struct hclge_port_base_vlan_config *cfg; 10028 struct hclge_vport *vport; 10029 int ret; 10030 int i; 10031 10032 for (i = 0; i < hdev->num_alloc_vport; i++) { 10033 vport = &hdev->vport[i]; 10034 cfg = &vport->port_base_vlan_cfg; 10035 10036 ret = hclge_vlan_offload_cfg(vport, cfg->state, 10037 cfg->vlan_info.vlan_tag, 10038 cfg->vlan_info.qos); 10039 if (ret) 10040 return ret; 10041 } 10042 return 0; 10043 } 10044 10045 static int hclge_init_vlan_config(struct hclge_dev *hdev) 10046 { 10047 struct hnae3_handle *handle = &hdev->vport[0].nic; 10048 int ret; 10049 10050 ret = hclge_init_vlan_filter(hdev); 10051 if (ret) 10052 return ret; 10053 10054 ret = hclge_init_vlan_type(hdev); 10055 if (ret) 10056 return ret; 10057 10058 ret = hclge_init_vport_vlan_offload(hdev); 10059 if (ret) 10060 return ret; 10061 10062 return hclge_set_vlan_filter(handle, htons(ETH_P_8021Q), 0, false); 10063 } 10064 10065 static void hclge_add_vport_vlan_table(struct hclge_vport *vport, u16 vlan_id, 10066 bool writen_to_tbl) 10067 { 10068 struct hclge_vport_vlan_cfg *vlan, *tmp; 10069 struct hclge_dev *hdev = vport->back; 10070 10071 mutex_lock(&hdev->vport_lock); 10072 10073 list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) { 10074 if (vlan->vlan_id == vlan_id) { 10075 mutex_unlock(&hdev->vport_lock); 10076 return; 10077 } 10078 } 10079 10080 vlan = kzalloc(sizeof(*vlan), GFP_KERNEL); 10081 if (!vlan) { 10082 mutex_unlock(&hdev->vport_lock); 10083 return; 10084 } 10085 10086 vlan->hd_tbl_status = writen_to_tbl; 10087 vlan->vlan_id = vlan_id; 10088 10089 list_add_tail(&vlan->node, &vport->vlan_list); 10090 mutex_unlock(&hdev->vport_lock); 10091 } 10092 10093 static int hclge_add_vport_all_vlan_table(struct hclge_vport *vport) 10094 { 10095 struct hclge_vport_vlan_cfg *vlan, *tmp; 10096 struct hclge_dev *hdev = vport->back; 10097 int ret; 10098 10099 mutex_lock(&hdev->vport_lock); 10100 10101 list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) { 10102 if (!vlan->hd_tbl_status) { 10103 ret = hclge_set_vlan_filter_hw(hdev, htons(ETH_P_8021Q), 10104 vport->vport_id, 10105 vlan->vlan_id, false); 10106 if (ret) { 10107 dev_err(&hdev->pdev->dev, 10108 "restore vport vlan list failed, ret=%d\n", 10109 ret); 10110 10111 mutex_unlock(&hdev->vport_lock); 10112 return ret; 10113 } 10114 } 10115 vlan->hd_tbl_status = true; 10116 } 10117 10118 mutex_unlock(&hdev->vport_lock); 10119 10120 return 0; 10121 } 10122 10123 static void hclge_rm_vport_vlan_table(struct hclge_vport *vport, u16 vlan_id, 10124 bool is_write_tbl) 10125 { 10126 struct hclge_vport_vlan_cfg *vlan, *tmp; 10127 struct hclge_dev *hdev = vport->back; 10128 10129 list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) { 10130 if (vlan->vlan_id == vlan_id) { 10131 if (is_write_tbl && vlan->hd_tbl_status) 10132 hclge_set_vlan_filter_hw(hdev, 10133 htons(ETH_P_8021Q), 10134 vport->vport_id, 10135 vlan_id, 10136 true); 10137 10138 list_del(&vlan->node); 10139 kfree(vlan); 10140 break; 10141 } 10142 } 10143 } 10144 10145 void hclge_rm_vport_all_vlan_table(struct hclge_vport *vport, bool is_del_list) 10146 { 10147 struct hclge_vport_vlan_cfg *vlan, *tmp; 10148 struct hclge_dev *hdev = vport->back; 10149 10150 mutex_lock(&hdev->vport_lock); 10151 10152 list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) { 10153 if (vlan->hd_tbl_status) 10154 hclge_set_vlan_filter_hw(hdev, 10155 htons(ETH_P_8021Q), 10156 vport->vport_id, 10157 vlan->vlan_id, 10158 true); 10159 10160 vlan->hd_tbl_status = false; 10161 if (is_del_list) { 10162 list_del(&vlan->node); 10163 kfree(vlan); 10164 } 10165 } 10166 clear_bit(vport->vport_id, hdev->vf_vlan_full); 10167 mutex_unlock(&hdev->vport_lock); 10168 } 10169 10170 void hclge_uninit_vport_vlan_table(struct hclge_dev *hdev) 10171 { 10172 struct hclge_vport_vlan_cfg *vlan, *tmp; 10173 struct hclge_vport *vport; 10174 int i; 10175 10176 mutex_lock(&hdev->vport_lock); 10177 10178 for (i = 0; i < hdev->num_alloc_vport; i++) { 10179 vport = &hdev->vport[i]; 10180 list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) { 10181 list_del(&vlan->node); 10182 kfree(vlan); 10183 } 10184 } 10185 10186 mutex_unlock(&hdev->vport_lock); 10187 } 10188 10189 void hclge_restore_vport_port_base_vlan_config(struct hclge_dev *hdev) 10190 { 10191 struct hclge_vlan_info *vlan_info; 10192 struct hclge_vport *vport; 10193 u16 vlan_proto; 10194 u16 vlan_id; 10195 u16 state; 10196 int vf_id; 10197 int ret; 10198 10199 /* PF should restore all vfs port base vlan */ 10200 for (vf_id = 0; vf_id < hdev->num_alloc_vfs; vf_id++) { 10201 vport = &hdev->vport[vf_id + HCLGE_VF_VPORT_START_NUM]; 10202 vlan_info = vport->port_base_vlan_cfg.tbl_sta ? 10203 &vport->port_base_vlan_cfg.vlan_info : 10204 &vport->port_base_vlan_cfg.old_vlan_info; 10205 10206 vlan_id = vlan_info->vlan_tag; 10207 vlan_proto = vlan_info->vlan_proto; 10208 state = vport->port_base_vlan_cfg.state; 10209 10210 if (state != HNAE3_PORT_BASE_VLAN_DISABLE) { 10211 clear_bit(vport->vport_id, hdev->vlan_table[vlan_id]); 10212 ret = hclge_set_vlan_filter_hw(hdev, htons(vlan_proto), 10213 vport->vport_id, 10214 vlan_id, false); 10215 vport->port_base_vlan_cfg.tbl_sta = ret == 0; 10216 } 10217 } 10218 } 10219 10220 void hclge_restore_vport_vlan_table(struct hclge_vport *vport) 10221 { 10222 struct hclge_vport_vlan_cfg *vlan, *tmp; 10223 struct hclge_dev *hdev = vport->back; 10224 int ret; 10225 10226 mutex_lock(&hdev->vport_lock); 10227 10228 if (vport->port_base_vlan_cfg.state == HNAE3_PORT_BASE_VLAN_DISABLE) { 10229 list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) { 10230 ret = hclge_set_vlan_filter_hw(hdev, htons(ETH_P_8021Q), 10231 vport->vport_id, 10232 vlan->vlan_id, false); 10233 if (ret) 10234 break; 10235 vlan->hd_tbl_status = true; 10236 } 10237 } 10238 10239 mutex_unlock(&hdev->vport_lock); 10240 } 10241 10242 /* For global reset and imp reset, hardware will clear the mac table, 10243 * so we change the mac address state from ACTIVE to TO_ADD, then they 10244 * can be restored in the service task after reset complete. Furtherly, 10245 * the mac addresses with state TO_DEL or DEL_FAIL are unnecessary to 10246 * be restored after reset, so just remove these mac nodes from mac_list. 10247 */ 10248 static void hclge_mac_node_convert_for_reset(struct list_head *list) 10249 { 10250 struct hclge_mac_node *mac_node, *tmp; 10251 10252 list_for_each_entry_safe(mac_node, tmp, list, node) { 10253 if (mac_node->state == HCLGE_MAC_ACTIVE) { 10254 mac_node->state = HCLGE_MAC_TO_ADD; 10255 } else if (mac_node->state == HCLGE_MAC_TO_DEL) { 10256 list_del(&mac_node->node); 10257 kfree(mac_node); 10258 } 10259 } 10260 } 10261 10262 void hclge_restore_mac_table_common(struct hclge_vport *vport) 10263 { 10264 spin_lock_bh(&vport->mac_list_lock); 10265 10266 hclge_mac_node_convert_for_reset(&vport->uc_mac_list); 10267 hclge_mac_node_convert_for_reset(&vport->mc_mac_list); 10268 set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, &vport->state); 10269 10270 spin_unlock_bh(&vport->mac_list_lock); 10271 } 10272 10273 static void hclge_restore_hw_table(struct hclge_dev *hdev) 10274 { 10275 struct hclge_vport *vport = &hdev->vport[0]; 10276 struct hnae3_handle *handle = &vport->nic; 10277 10278 hclge_restore_mac_table_common(vport); 10279 hclge_restore_vport_port_base_vlan_config(hdev); 10280 hclge_restore_vport_vlan_table(vport); 10281 set_bit(HCLGE_STATE_FD_USER_DEF_CHANGED, &hdev->state); 10282 hclge_restore_fd_entries(handle); 10283 } 10284 10285 int hclge_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable) 10286 { 10287 struct hclge_vport *vport = hclge_get_vport(handle); 10288 10289 if (vport->port_base_vlan_cfg.state == HNAE3_PORT_BASE_VLAN_DISABLE) { 10290 vport->rxvlan_cfg.strip_tag1_en = false; 10291 vport->rxvlan_cfg.strip_tag2_en = enable; 10292 vport->rxvlan_cfg.strip_tag2_discard_en = false; 10293 } else { 10294 vport->rxvlan_cfg.strip_tag1_en = enable; 10295 vport->rxvlan_cfg.strip_tag2_en = true; 10296 vport->rxvlan_cfg.strip_tag2_discard_en = true; 10297 } 10298 10299 vport->rxvlan_cfg.strip_tag1_discard_en = false; 10300 vport->rxvlan_cfg.vlan1_vlan_prionly = false; 10301 vport->rxvlan_cfg.vlan2_vlan_prionly = false; 10302 vport->rxvlan_cfg.rx_vlan_offload_en = enable; 10303 10304 return hclge_set_vlan_rx_offload_cfg(vport); 10305 } 10306 10307 static void hclge_set_vport_vlan_fltr_change(struct hclge_vport *vport) 10308 { 10309 struct hclge_dev *hdev = vport->back; 10310 10311 if (test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, hdev->ae_dev->caps)) 10312 set_bit(HCLGE_VPORT_STATE_VLAN_FLTR_CHANGE, &vport->state); 10313 } 10314 10315 static int hclge_update_vlan_filter_entries(struct hclge_vport *vport, 10316 u16 port_base_vlan_state, 10317 struct hclge_vlan_info *new_info, 10318 struct hclge_vlan_info *old_info) 10319 { 10320 struct hclge_dev *hdev = vport->back; 10321 int ret; 10322 10323 if (port_base_vlan_state == HNAE3_PORT_BASE_VLAN_ENABLE) { 10324 hclge_rm_vport_all_vlan_table(vport, false); 10325 /* force clear VLAN 0 */ 10326 ret = hclge_set_vf_vlan_common(hdev, vport->vport_id, true, 0); 10327 if (ret) 10328 return ret; 10329 return hclge_set_vlan_filter_hw(hdev, 10330 htons(new_info->vlan_proto), 10331 vport->vport_id, 10332 new_info->vlan_tag, 10333 false); 10334 } 10335 10336 vport->port_base_vlan_cfg.tbl_sta = false; 10337 10338 /* force add VLAN 0 */ 10339 ret = hclge_set_vf_vlan_common(hdev, vport->vport_id, false, 0); 10340 if (ret) 10341 return ret; 10342 10343 ret = hclge_set_vlan_filter_hw(hdev, htons(old_info->vlan_proto), 10344 vport->vport_id, old_info->vlan_tag, 10345 true); 10346 if (ret) 10347 return ret; 10348 10349 return hclge_add_vport_all_vlan_table(vport); 10350 } 10351 10352 static bool hclge_need_update_vlan_filter(const struct hclge_vlan_info *new_cfg, 10353 const struct hclge_vlan_info *old_cfg) 10354 { 10355 if (new_cfg->vlan_tag != old_cfg->vlan_tag) 10356 return true; 10357 10358 if (new_cfg->vlan_tag == 0 && (new_cfg->qos == 0 || old_cfg->qos == 0)) 10359 return true; 10360 10361 return false; 10362 } 10363 10364 static int hclge_modify_port_base_vlan_tag(struct hclge_vport *vport, 10365 struct hclge_vlan_info *new_info, 10366 struct hclge_vlan_info *old_info) 10367 { 10368 struct hclge_dev *hdev = vport->back; 10369 int ret; 10370 10371 /* add new VLAN tag */ 10372 ret = hclge_set_vlan_filter_hw(hdev, htons(new_info->vlan_proto), 10373 vport->vport_id, new_info->vlan_tag, 10374 false); 10375 if (ret) 10376 return ret; 10377 10378 vport->port_base_vlan_cfg.tbl_sta = false; 10379 /* remove old VLAN tag */ 10380 if (old_info->vlan_tag == 0) 10381 ret = hclge_set_vf_vlan_common(hdev, vport->vport_id, 10382 true, 0); 10383 else 10384 ret = hclge_set_vlan_filter_hw(hdev, htons(ETH_P_8021Q), 10385 vport->vport_id, 10386 old_info->vlan_tag, true); 10387 if (ret) 10388 dev_err(&hdev->pdev->dev, 10389 "failed to clear vport%u port base vlan %u, ret = %d.\n", 10390 vport->vport_id, old_info->vlan_tag, ret); 10391 10392 return ret; 10393 } 10394 10395 int hclge_update_port_base_vlan_cfg(struct hclge_vport *vport, u16 state, 10396 struct hclge_vlan_info *vlan_info) 10397 { 10398 struct hnae3_handle *nic = &vport->nic; 10399 struct hclge_vlan_info *old_vlan_info; 10400 int ret; 10401 10402 old_vlan_info = &vport->port_base_vlan_cfg.vlan_info; 10403 10404 ret = hclge_vlan_offload_cfg(vport, state, vlan_info->vlan_tag, 10405 vlan_info->qos); 10406 if (ret) 10407 return ret; 10408 10409 if (!hclge_need_update_vlan_filter(vlan_info, old_vlan_info)) 10410 goto out; 10411 10412 if (state == HNAE3_PORT_BASE_VLAN_MODIFY) 10413 ret = hclge_modify_port_base_vlan_tag(vport, vlan_info, 10414 old_vlan_info); 10415 else 10416 ret = hclge_update_vlan_filter_entries(vport, state, vlan_info, 10417 old_vlan_info); 10418 if (ret) 10419 return ret; 10420 10421 out: 10422 vport->port_base_vlan_cfg.state = state; 10423 if (state == HNAE3_PORT_BASE_VLAN_DISABLE) 10424 nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_DISABLE; 10425 else 10426 nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE; 10427 10428 vport->port_base_vlan_cfg.old_vlan_info = *old_vlan_info; 10429 vport->port_base_vlan_cfg.vlan_info = *vlan_info; 10430 vport->port_base_vlan_cfg.tbl_sta = true; 10431 hclge_set_vport_vlan_fltr_change(vport); 10432 10433 return 0; 10434 } 10435 10436 static u16 hclge_get_port_base_vlan_state(struct hclge_vport *vport, 10437 enum hnae3_port_base_vlan_state state, 10438 u16 vlan, u8 qos) 10439 { 10440 if (state == HNAE3_PORT_BASE_VLAN_DISABLE) { 10441 if (!vlan && !qos) 10442 return HNAE3_PORT_BASE_VLAN_NOCHANGE; 10443 10444 return HNAE3_PORT_BASE_VLAN_ENABLE; 10445 } 10446 10447 if (!vlan && !qos) 10448 return HNAE3_PORT_BASE_VLAN_DISABLE; 10449 10450 if (vport->port_base_vlan_cfg.vlan_info.vlan_tag == vlan && 10451 vport->port_base_vlan_cfg.vlan_info.qos == qos) 10452 return HNAE3_PORT_BASE_VLAN_NOCHANGE; 10453 10454 return HNAE3_PORT_BASE_VLAN_MODIFY; 10455 } 10456 10457 static int hclge_set_vf_vlan_filter(struct hnae3_handle *handle, int vfid, 10458 u16 vlan, u8 qos, __be16 proto) 10459 { 10460 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev); 10461 struct hclge_vport *vport = hclge_get_vport(handle); 10462 struct hclge_dev *hdev = vport->back; 10463 struct hclge_vlan_info vlan_info; 10464 u16 state; 10465 int ret; 10466 10467 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2) 10468 return -EOPNOTSUPP; 10469 10470 vport = hclge_get_vf_vport(hdev, vfid); 10471 if (!vport) 10472 return -EINVAL; 10473 10474 /* qos is a 3 bits value, so can not be bigger than 7 */ 10475 if (vlan > VLAN_N_VID - 1 || qos > 7) 10476 return -EINVAL; 10477 if (proto != htons(ETH_P_8021Q)) 10478 return -EPROTONOSUPPORT; 10479 10480 state = hclge_get_port_base_vlan_state(vport, 10481 vport->port_base_vlan_cfg.state, 10482 vlan, qos); 10483 if (state == HNAE3_PORT_BASE_VLAN_NOCHANGE) 10484 return 0; 10485 10486 vlan_info.vlan_tag = vlan; 10487 vlan_info.qos = qos; 10488 vlan_info.vlan_proto = ntohs(proto); 10489 10490 ret = hclge_update_port_base_vlan_cfg(vport, state, &vlan_info); 10491 if (ret) { 10492 dev_err(&hdev->pdev->dev, 10493 "failed to update port base vlan for vf %d, ret = %d\n", 10494 vfid, ret); 10495 return ret; 10496 } 10497 10498 /* there is a timewindow for PF to know VF unalive, it may 10499 * cause send mailbox fail, but it doesn't matter, VF will 10500 * query it when reinit. 10501 * for DEVICE_VERSION_V3, vf doesn't need to know about the port based 10502 * VLAN state. 10503 */ 10504 if (ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) { 10505 if (test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state)) 10506 (void)hclge_push_vf_port_base_vlan_info(&hdev->vport[0], 10507 vport->vport_id, 10508 state, 10509 &vlan_info); 10510 else 10511 set_bit(HCLGE_VPORT_NEED_NOTIFY_VF_VLAN, 10512 &vport->need_notify); 10513 } 10514 return 0; 10515 } 10516 10517 static void hclge_clear_vf_vlan(struct hclge_dev *hdev) 10518 { 10519 struct hclge_vlan_info *vlan_info; 10520 struct hclge_vport *vport; 10521 int ret; 10522 int vf; 10523 10524 /* clear port base vlan for all vf */ 10525 for (vf = HCLGE_VF_VPORT_START_NUM; vf < hdev->num_alloc_vport; vf++) { 10526 vport = &hdev->vport[vf]; 10527 vlan_info = &vport->port_base_vlan_cfg.vlan_info; 10528 10529 ret = hclge_set_vlan_filter_hw(hdev, htons(ETH_P_8021Q), 10530 vport->vport_id, 10531 vlan_info->vlan_tag, true); 10532 if (ret) 10533 dev_err(&hdev->pdev->dev, 10534 "failed to clear vf vlan for vf%d, ret = %d\n", 10535 vf - HCLGE_VF_VPORT_START_NUM, ret); 10536 } 10537 } 10538 10539 int hclge_set_vlan_filter(struct hnae3_handle *handle, __be16 proto, 10540 u16 vlan_id, bool is_kill) 10541 { 10542 struct hclge_vport *vport = hclge_get_vport(handle); 10543 struct hclge_dev *hdev = vport->back; 10544 bool writen_to_tbl = false; 10545 int ret = 0; 10546 10547 /* When device is resetting or reset failed, firmware is unable to 10548 * handle mailbox. Just record the vlan id, and remove it after 10549 * reset finished. 10550 */ 10551 mutex_lock(&hdev->vport_lock); 10552 if ((test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state) || 10553 test_bit(HCLGE_STATE_RST_FAIL, &hdev->state)) && is_kill) { 10554 set_bit(vlan_id, vport->vlan_del_fail_bmap); 10555 mutex_unlock(&hdev->vport_lock); 10556 return -EBUSY; 10557 } else if (!is_kill && test_bit(vlan_id, vport->vlan_del_fail_bmap)) { 10558 clear_bit(vlan_id, vport->vlan_del_fail_bmap); 10559 } 10560 mutex_unlock(&hdev->vport_lock); 10561 10562 /* when port base vlan enabled, we use port base vlan as the vlan 10563 * filter entry. In this case, we don't update vlan filter table 10564 * when user add new vlan or remove exist vlan, just update the vport 10565 * vlan list. The vlan id in vlan list will be writen in vlan filter 10566 * table until port base vlan disabled 10567 */ 10568 if (handle->port_base_vlan_state == HNAE3_PORT_BASE_VLAN_DISABLE) { 10569 ret = hclge_set_vlan_filter_hw(hdev, proto, vport->vport_id, 10570 vlan_id, is_kill); 10571 writen_to_tbl = true; 10572 } 10573 10574 if (!ret) { 10575 if (!is_kill) { 10576 hclge_add_vport_vlan_table(vport, vlan_id, 10577 writen_to_tbl); 10578 } else if (is_kill && vlan_id != 0) { 10579 mutex_lock(&hdev->vport_lock); 10580 hclge_rm_vport_vlan_table(vport, vlan_id, false); 10581 mutex_unlock(&hdev->vport_lock); 10582 } 10583 } else if (is_kill) { 10584 /* when remove hw vlan filter failed, record the vlan id, 10585 * and try to remove it from hw later, to be consistence 10586 * with stack 10587 */ 10588 mutex_lock(&hdev->vport_lock); 10589 set_bit(vlan_id, vport->vlan_del_fail_bmap); 10590 mutex_unlock(&hdev->vport_lock); 10591 } 10592 10593 hclge_set_vport_vlan_fltr_change(vport); 10594 10595 return ret; 10596 } 10597 10598 static void hclge_sync_vlan_fltr_state(struct hclge_dev *hdev) 10599 { 10600 struct hclge_vport *vport; 10601 int ret; 10602 u16 i; 10603 10604 for (i = 0; i < hdev->num_alloc_vport; i++) { 10605 vport = &hdev->vport[i]; 10606 if (!test_and_clear_bit(HCLGE_VPORT_STATE_VLAN_FLTR_CHANGE, 10607 &vport->state)) 10608 continue; 10609 10610 ret = hclge_enable_vport_vlan_filter(vport, 10611 vport->req_vlan_fltr_en); 10612 if (ret) { 10613 dev_err(&hdev->pdev->dev, 10614 "failed to sync vlan filter state for vport%u, ret = %d\n", 10615 vport->vport_id, ret); 10616 set_bit(HCLGE_VPORT_STATE_VLAN_FLTR_CHANGE, 10617 &vport->state); 10618 return; 10619 } 10620 } 10621 } 10622 10623 static void hclge_sync_vlan_filter(struct hclge_dev *hdev) 10624 { 10625 #define HCLGE_MAX_SYNC_COUNT 60 10626 10627 int i, ret, sync_cnt = 0; 10628 u16 vlan_id; 10629 10630 mutex_lock(&hdev->vport_lock); 10631 /* start from vport 1 for PF is always alive */ 10632 for (i = 0; i < hdev->num_alloc_vport; i++) { 10633 struct hclge_vport *vport = &hdev->vport[i]; 10634 10635 vlan_id = find_first_bit(vport->vlan_del_fail_bmap, 10636 VLAN_N_VID); 10637 while (vlan_id != VLAN_N_VID) { 10638 ret = hclge_set_vlan_filter_hw(hdev, htons(ETH_P_8021Q), 10639 vport->vport_id, vlan_id, 10640 true); 10641 if (ret && ret != -EINVAL) { 10642 mutex_unlock(&hdev->vport_lock); 10643 return; 10644 } 10645 10646 clear_bit(vlan_id, vport->vlan_del_fail_bmap); 10647 hclge_rm_vport_vlan_table(vport, vlan_id, false); 10648 hclge_set_vport_vlan_fltr_change(vport); 10649 10650 sync_cnt++; 10651 if (sync_cnt >= HCLGE_MAX_SYNC_COUNT) { 10652 mutex_unlock(&hdev->vport_lock); 10653 return; 10654 } 10655 10656 vlan_id = find_first_bit(vport->vlan_del_fail_bmap, 10657 VLAN_N_VID); 10658 } 10659 } 10660 mutex_unlock(&hdev->vport_lock); 10661 10662 hclge_sync_vlan_fltr_state(hdev); 10663 } 10664 10665 static int hclge_set_mac_mtu(struct hclge_dev *hdev, int new_mps) 10666 { 10667 struct hclge_config_max_frm_size_cmd *req; 10668 struct hclge_desc desc; 10669 10670 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_MAX_FRM_SIZE, false); 10671 10672 req = (struct hclge_config_max_frm_size_cmd *)desc.data; 10673 req->max_frm_size = cpu_to_le16(new_mps); 10674 req->min_frm_size = HCLGE_MAC_MIN_FRAME; 10675 10676 return hclge_cmd_send(&hdev->hw, &desc, 1); 10677 } 10678 10679 static int hclge_set_mtu(struct hnae3_handle *handle, int new_mtu) 10680 { 10681 struct hclge_vport *vport = hclge_get_vport(handle); 10682 10683 return hclge_set_vport_mtu(vport, new_mtu); 10684 } 10685 10686 int hclge_set_vport_mtu(struct hclge_vport *vport, int new_mtu) 10687 { 10688 struct hclge_dev *hdev = vport->back; 10689 int i, max_frm_size, ret; 10690 10691 /* HW supprt 2 layer vlan */ 10692 max_frm_size = new_mtu + ETH_HLEN + ETH_FCS_LEN + 2 * VLAN_HLEN; 10693 if (max_frm_size < HCLGE_MAC_MIN_FRAME || 10694 max_frm_size > hdev->ae_dev->dev_specs.max_frm_size) 10695 return -EINVAL; 10696 10697 max_frm_size = max(max_frm_size, HCLGE_MAC_DEFAULT_FRAME); 10698 mutex_lock(&hdev->vport_lock); 10699 /* VF's mps must fit within hdev->mps */ 10700 if (vport->vport_id && max_frm_size > hdev->mps) { 10701 mutex_unlock(&hdev->vport_lock); 10702 return -EINVAL; 10703 } else if (vport->vport_id) { 10704 vport->mps = max_frm_size; 10705 mutex_unlock(&hdev->vport_lock); 10706 return 0; 10707 } 10708 10709 /* PF's mps must be greater then VF's mps */ 10710 for (i = 1; i < hdev->num_alloc_vport; i++) 10711 if (max_frm_size < hdev->vport[i].mps) { 10712 dev_err(&hdev->pdev->dev, 10713 "failed to set pf mtu for less than vport %d, mps = %u.\n", 10714 i, hdev->vport[i].mps); 10715 mutex_unlock(&hdev->vport_lock); 10716 return -EINVAL; 10717 } 10718 10719 hclge_notify_client(hdev, HNAE3_DOWN_CLIENT); 10720 10721 ret = hclge_set_mac_mtu(hdev, max_frm_size); 10722 if (ret) { 10723 dev_err(&hdev->pdev->dev, 10724 "Change mtu fail, ret =%d\n", ret); 10725 goto out; 10726 } 10727 10728 hdev->mps = max_frm_size; 10729 vport->mps = max_frm_size; 10730 10731 ret = hclge_buffer_alloc(hdev); 10732 if (ret) 10733 dev_err(&hdev->pdev->dev, 10734 "Allocate buffer fail, ret =%d\n", ret); 10735 10736 out: 10737 hclge_notify_client(hdev, HNAE3_UP_CLIENT); 10738 mutex_unlock(&hdev->vport_lock); 10739 return ret; 10740 } 10741 10742 static int hclge_reset_tqp_cmd_send(struct hclge_dev *hdev, u16 queue_id, 10743 bool enable) 10744 { 10745 struct hclge_reset_tqp_queue_cmd *req; 10746 struct hclge_desc desc; 10747 int ret; 10748 10749 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RESET_TQP_QUEUE, false); 10750 10751 req = (struct hclge_reset_tqp_queue_cmd *)desc.data; 10752 req->tqp_id = cpu_to_le16(queue_id); 10753 if (enable) 10754 hnae3_set_bit(req->reset_req, HCLGE_TQP_RESET_B, 1U); 10755 10756 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 10757 if (ret) { 10758 dev_err(&hdev->pdev->dev, 10759 "Send tqp reset cmd error, status =%d\n", ret); 10760 return ret; 10761 } 10762 10763 return 0; 10764 } 10765 10766 static int hclge_get_reset_status(struct hclge_dev *hdev, u16 queue_id, 10767 u8 *reset_status) 10768 { 10769 struct hclge_reset_tqp_queue_cmd *req; 10770 struct hclge_desc desc; 10771 int ret; 10772 10773 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RESET_TQP_QUEUE, true); 10774 10775 req = (struct hclge_reset_tqp_queue_cmd *)desc.data; 10776 req->tqp_id = cpu_to_le16(queue_id); 10777 10778 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 10779 if (ret) { 10780 dev_err(&hdev->pdev->dev, 10781 "Get reset status error, status =%d\n", ret); 10782 return ret; 10783 } 10784 10785 *reset_status = hnae3_get_bit(req->ready_to_reset, HCLGE_TQP_RESET_B); 10786 10787 return 0; 10788 } 10789 10790 u16 hclge_covert_handle_qid_global(struct hnae3_handle *handle, u16 queue_id) 10791 { 10792 struct hclge_comm_tqp *tqp; 10793 struct hnae3_queue *queue; 10794 10795 queue = handle->kinfo.tqp[queue_id]; 10796 tqp = container_of(queue, struct hclge_comm_tqp, q); 10797 10798 return tqp->index; 10799 } 10800 10801 static int hclge_reset_tqp_cmd(struct hnae3_handle *handle) 10802 { 10803 struct hclge_vport *vport = hclge_get_vport(handle); 10804 struct hclge_dev *hdev = vport->back; 10805 u16 reset_try_times = 0; 10806 u8 reset_status; 10807 u16 queue_gid; 10808 int ret; 10809 u16 i; 10810 10811 for (i = 0; i < handle->kinfo.num_tqps; i++) { 10812 queue_gid = hclge_covert_handle_qid_global(handle, i); 10813 ret = hclge_reset_tqp_cmd_send(hdev, queue_gid, true); 10814 if (ret) { 10815 dev_err(&hdev->pdev->dev, 10816 "failed to send reset tqp cmd, ret = %d\n", 10817 ret); 10818 return ret; 10819 } 10820 10821 while (reset_try_times++ < HCLGE_TQP_RESET_TRY_TIMES) { 10822 ret = hclge_get_reset_status(hdev, queue_gid, 10823 &reset_status); 10824 if (ret) 10825 return ret; 10826 10827 if (reset_status) 10828 break; 10829 10830 /* Wait for tqp hw reset */ 10831 usleep_range(1000, 1200); 10832 } 10833 10834 if (reset_try_times >= HCLGE_TQP_RESET_TRY_TIMES) { 10835 dev_err(&hdev->pdev->dev, 10836 "wait for tqp hw reset timeout\n"); 10837 return -ETIME; 10838 } 10839 10840 ret = hclge_reset_tqp_cmd_send(hdev, queue_gid, false); 10841 if (ret) { 10842 dev_err(&hdev->pdev->dev, 10843 "failed to deassert soft reset, ret = %d\n", 10844 ret); 10845 return ret; 10846 } 10847 reset_try_times = 0; 10848 } 10849 return 0; 10850 } 10851 10852 static int hclge_reset_rcb(struct hnae3_handle *handle) 10853 { 10854 #define HCLGE_RESET_RCB_NOT_SUPPORT 0U 10855 #define HCLGE_RESET_RCB_SUCCESS 1U 10856 10857 struct hclge_vport *vport = hclge_get_vport(handle); 10858 struct hclge_dev *hdev = vport->back; 10859 struct hclge_reset_cmd *req; 10860 struct hclge_desc desc; 10861 u8 return_status; 10862 u16 queue_gid; 10863 int ret; 10864 10865 queue_gid = hclge_covert_handle_qid_global(handle, 0); 10866 10867 req = (struct hclge_reset_cmd *)desc.data; 10868 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_RST_TRIGGER, false); 10869 hnae3_set_bit(req->fun_reset_rcb, HCLGE_CFG_RESET_RCB_B, 1); 10870 req->fun_reset_rcb_vqid_start = cpu_to_le16(queue_gid); 10871 req->fun_reset_rcb_vqid_num = cpu_to_le16(handle->kinfo.num_tqps); 10872 10873 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 10874 if (ret) { 10875 dev_err(&hdev->pdev->dev, 10876 "failed to send rcb reset cmd, ret = %d\n", ret); 10877 return ret; 10878 } 10879 10880 return_status = req->fun_reset_rcb_return_status; 10881 if (return_status == HCLGE_RESET_RCB_SUCCESS) 10882 return 0; 10883 10884 if (return_status != HCLGE_RESET_RCB_NOT_SUPPORT) { 10885 dev_err(&hdev->pdev->dev, "failed to reset rcb, ret = %u\n", 10886 return_status); 10887 return -EIO; 10888 } 10889 10890 /* if reset rcb cmd is unsupported, we need to send reset tqp cmd 10891 * again to reset all tqps 10892 */ 10893 return hclge_reset_tqp_cmd(handle); 10894 } 10895 10896 int hclge_reset_tqp(struct hnae3_handle *handle) 10897 { 10898 struct hclge_vport *vport = hclge_get_vport(handle); 10899 struct hclge_dev *hdev = vport->back; 10900 int ret; 10901 10902 /* only need to disable PF's tqp */ 10903 if (!vport->vport_id) { 10904 ret = hclge_tqp_enable(handle, false); 10905 if (ret) { 10906 dev_err(&hdev->pdev->dev, 10907 "failed to disable tqp, ret = %d\n", ret); 10908 return ret; 10909 } 10910 } 10911 10912 return hclge_reset_rcb(handle); 10913 } 10914 10915 static u32 hclge_get_fw_version(struct hnae3_handle *handle) 10916 { 10917 struct hclge_vport *vport = hclge_get_vport(handle); 10918 struct hclge_dev *hdev = vport->back; 10919 10920 return hdev->fw_version; 10921 } 10922 10923 int hclge_query_scc_version(struct hclge_dev *hdev, u32 *scc_version) 10924 { 10925 struct hclge_comm_query_scc_cmd *resp; 10926 struct hclge_desc desc; 10927 int ret; 10928 10929 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_SCC_VER, 1); 10930 resp = (struct hclge_comm_query_scc_cmd *)desc.data; 10931 10932 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 10933 if (ret) 10934 return ret; 10935 10936 *scc_version = le32_to_cpu(resp->scc_version); 10937 10938 return 0; 10939 } 10940 10941 static void hclge_set_flowctrl_adv(struct hclge_dev *hdev, u32 rx_en, u32 tx_en) 10942 { 10943 struct phy_device *phydev = hdev->hw.mac.phydev; 10944 10945 if (!phydev) 10946 return; 10947 10948 phy_set_asym_pause(phydev, rx_en, tx_en); 10949 } 10950 10951 static int hclge_cfg_pauseparam(struct hclge_dev *hdev, u32 rx_en, u32 tx_en) 10952 { 10953 int ret; 10954 10955 if (hdev->tm_info.fc_mode == HCLGE_FC_PFC) 10956 return 0; 10957 10958 ret = hclge_mac_pause_en_cfg(hdev, tx_en, rx_en); 10959 if (ret) 10960 dev_err(&hdev->pdev->dev, 10961 "configure pauseparam error, ret = %d.\n", ret); 10962 10963 return ret; 10964 } 10965 10966 int hclge_cfg_flowctrl(struct hclge_dev *hdev) 10967 { 10968 struct phy_device *phydev = hdev->hw.mac.phydev; 10969 u16 remote_advertising = 0; 10970 u16 local_advertising; 10971 u32 rx_pause, tx_pause; 10972 u8 flowctl; 10973 10974 if (!phydev->link) 10975 return 0; 10976 10977 if (!phydev->autoneg) 10978 return hclge_mac_pause_setup_hw(hdev); 10979 10980 local_advertising = linkmode_adv_to_lcl_adv_t(phydev->advertising); 10981 10982 if (phydev->pause) 10983 remote_advertising = LPA_PAUSE_CAP; 10984 10985 if (phydev->asym_pause) 10986 remote_advertising |= LPA_PAUSE_ASYM; 10987 10988 flowctl = mii_resolve_flowctrl_fdx(local_advertising, 10989 remote_advertising); 10990 tx_pause = flowctl & FLOW_CTRL_TX; 10991 rx_pause = flowctl & FLOW_CTRL_RX; 10992 10993 if (phydev->duplex == HCLGE_MAC_HALF) { 10994 tx_pause = 0; 10995 rx_pause = 0; 10996 } 10997 10998 return hclge_cfg_pauseparam(hdev, rx_pause, tx_pause); 10999 } 11000 11001 static void hclge_get_pauseparam(struct hnae3_handle *handle, u32 *auto_neg, 11002 u32 *rx_en, u32 *tx_en) 11003 { 11004 struct hclge_vport *vport = hclge_get_vport(handle); 11005 struct hclge_dev *hdev = vport->back; 11006 u8 media_type = hdev->hw.mac.media_type; 11007 11008 *auto_neg = (media_type == HNAE3_MEDIA_TYPE_COPPER) ? 11009 hclge_get_autoneg(handle) : 0; 11010 11011 if (hdev->tm_info.fc_mode == HCLGE_FC_PFC) { 11012 *rx_en = 0; 11013 *tx_en = 0; 11014 return; 11015 } 11016 11017 if (hdev->tm_info.fc_mode == HCLGE_FC_RX_PAUSE) { 11018 *rx_en = 1; 11019 *tx_en = 0; 11020 } else if (hdev->tm_info.fc_mode == HCLGE_FC_TX_PAUSE) { 11021 *tx_en = 1; 11022 *rx_en = 0; 11023 } else if (hdev->tm_info.fc_mode == HCLGE_FC_FULL) { 11024 *rx_en = 1; 11025 *tx_en = 1; 11026 } else { 11027 *rx_en = 0; 11028 *tx_en = 0; 11029 } 11030 } 11031 11032 static void hclge_record_user_pauseparam(struct hclge_dev *hdev, 11033 u32 rx_en, u32 tx_en) 11034 { 11035 if (rx_en && tx_en) 11036 hdev->fc_mode_last_time = HCLGE_FC_FULL; 11037 else if (rx_en && !tx_en) 11038 hdev->fc_mode_last_time = HCLGE_FC_RX_PAUSE; 11039 else if (!rx_en && tx_en) 11040 hdev->fc_mode_last_time = HCLGE_FC_TX_PAUSE; 11041 else 11042 hdev->fc_mode_last_time = HCLGE_FC_NONE; 11043 11044 hdev->tm_info.fc_mode = hdev->fc_mode_last_time; 11045 } 11046 11047 static int hclge_set_pauseparam(struct hnae3_handle *handle, u32 auto_neg, 11048 u32 rx_en, u32 tx_en) 11049 { 11050 struct hclge_vport *vport = hclge_get_vport(handle); 11051 struct hclge_dev *hdev = vport->back; 11052 struct phy_device *phydev = hdev->hw.mac.phydev; 11053 u32 fc_autoneg; 11054 11055 if (phydev || hnae3_dev_phy_imp_supported(hdev)) { 11056 fc_autoneg = hclge_get_autoneg(handle); 11057 if (auto_neg != fc_autoneg) { 11058 dev_info(&hdev->pdev->dev, 11059 "To change autoneg please use: ethtool -s <dev> autoneg <on|off>\n"); 11060 return -EOPNOTSUPP; 11061 } 11062 } 11063 11064 if (hdev->tm_info.fc_mode == HCLGE_FC_PFC) { 11065 dev_info(&hdev->pdev->dev, 11066 "Priority flow control enabled. Cannot set link flow control.\n"); 11067 return -EOPNOTSUPP; 11068 } 11069 11070 hclge_set_flowctrl_adv(hdev, rx_en, tx_en); 11071 11072 hclge_record_user_pauseparam(hdev, rx_en, tx_en); 11073 11074 if (!auto_neg || hnae3_dev_phy_imp_supported(hdev)) 11075 return hclge_cfg_pauseparam(hdev, rx_en, tx_en); 11076 11077 if (phydev) 11078 return phy_start_aneg(phydev); 11079 11080 return -EOPNOTSUPP; 11081 } 11082 11083 static void hclge_get_ksettings_an_result(struct hnae3_handle *handle, 11084 u8 *auto_neg, u32 *speed, u8 *duplex, u32 *lane_num) 11085 { 11086 struct hclge_vport *vport = hclge_get_vport(handle); 11087 struct hclge_dev *hdev = vport->back; 11088 11089 if (speed) 11090 *speed = hdev->hw.mac.speed; 11091 if (duplex) 11092 *duplex = hdev->hw.mac.duplex; 11093 if (auto_neg) 11094 *auto_neg = hdev->hw.mac.autoneg; 11095 if (lane_num) 11096 *lane_num = hdev->hw.mac.lane_num; 11097 } 11098 11099 static void hclge_get_media_type(struct hnae3_handle *handle, u8 *media_type, 11100 u8 *module_type) 11101 { 11102 struct hclge_vport *vport = hclge_get_vport(handle); 11103 struct hclge_dev *hdev = vport->back; 11104 11105 /* When nic is down, the service task is not running, doesn't update 11106 * the port information per second. Query the port information before 11107 * return the media type, ensure getting the correct media information. 11108 */ 11109 hclge_update_port_info(hdev); 11110 11111 if (media_type) 11112 *media_type = hdev->hw.mac.media_type; 11113 11114 if (module_type) 11115 *module_type = hdev->hw.mac.module_type; 11116 } 11117 11118 static void hclge_get_mdix_mode(struct hnae3_handle *handle, 11119 u8 *tp_mdix_ctrl, u8 *tp_mdix) 11120 { 11121 struct hclge_vport *vport = hclge_get_vport(handle); 11122 struct hclge_dev *hdev = vport->back; 11123 struct phy_device *phydev = hdev->hw.mac.phydev; 11124 int mdix_ctrl, mdix, is_resolved; 11125 unsigned int retval; 11126 11127 if (!phydev) { 11128 *tp_mdix_ctrl = ETH_TP_MDI_INVALID; 11129 *tp_mdix = ETH_TP_MDI_INVALID; 11130 return; 11131 } 11132 11133 phy_write(phydev, HCLGE_PHY_PAGE_REG, HCLGE_PHY_PAGE_MDIX); 11134 11135 retval = phy_read(phydev, HCLGE_PHY_CSC_REG); 11136 mdix_ctrl = hnae3_get_field(retval, HCLGE_PHY_MDIX_CTRL_M, 11137 HCLGE_PHY_MDIX_CTRL_S); 11138 11139 retval = phy_read(phydev, HCLGE_PHY_CSS_REG); 11140 mdix = hnae3_get_bit(retval, HCLGE_PHY_MDIX_STATUS_B); 11141 is_resolved = hnae3_get_bit(retval, HCLGE_PHY_SPEED_DUP_RESOLVE_B); 11142 11143 phy_write(phydev, HCLGE_PHY_PAGE_REG, HCLGE_PHY_PAGE_COPPER); 11144 11145 switch (mdix_ctrl) { 11146 case 0x0: 11147 *tp_mdix_ctrl = ETH_TP_MDI; 11148 break; 11149 case 0x1: 11150 *tp_mdix_ctrl = ETH_TP_MDI_X; 11151 break; 11152 case 0x3: 11153 *tp_mdix_ctrl = ETH_TP_MDI_AUTO; 11154 break; 11155 default: 11156 *tp_mdix_ctrl = ETH_TP_MDI_INVALID; 11157 break; 11158 } 11159 11160 if (!is_resolved) 11161 *tp_mdix = ETH_TP_MDI_INVALID; 11162 else if (mdix) 11163 *tp_mdix = ETH_TP_MDI_X; 11164 else 11165 *tp_mdix = ETH_TP_MDI; 11166 } 11167 11168 static void hclge_info_show(struct hclge_dev *hdev) 11169 { 11170 struct hnae3_handle *handle = &hdev->vport->nic; 11171 struct device *dev = &hdev->pdev->dev; 11172 11173 dev_info(dev, "PF info begin:\n"); 11174 11175 dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps); 11176 dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc); 11177 dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc); 11178 dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport); 11179 dev_info(dev, "Numbers of VF for this PF: %u\n", hdev->num_req_vfs); 11180 dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map); 11181 dev_info(dev, "Total buffer size for TX/RX: %u\n", hdev->pkt_buf_size); 11182 dev_info(dev, "TX buffer size for each TC: %u\n", hdev->tx_buf_size); 11183 dev_info(dev, "DV buffer size for each TC: %u\n", hdev->dv_buf_size); 11184 dev_info(dev, "This is %s PF\n", 11185 hdev->flag & HCLGE_FLAG_MAIN ? "main" : "not main"); 11186 dev_info(dev, "DCB %s\n", 11187 handle->kinfo.tc_info.dcb_ets_active ? "enable" : "disable"); 11188 dev_info(dev, "MQPRIO %s\n", 11189 handle->kinfo.tc_info.mqprio_active ? "enable" : "disable"); 11190 dev_info(dev, "Default tx spare buffer size: %u\n", 11191 hdev->tx_spare_buf_size); 11192 11193 dev_info(dev, "PF info end.\n"); 11194 } 11195 11196 static int hclge_init_nic_client_instance(struct hnae3_ae_dev *ae_dev, 11197 struct hclge_vport *vport) 11198 { 11199 struct hnae3_client *client = vport->nic.client; 11200 struct hclge_dev *hdev = ae_dev->priv; 11201 int rst_cnt = hdev->rst_stats.reset_cnt; 11202 int ret; 11203 11204 ret = client->ops->init_instance(&vport->nic); 11205 if (ret) 11206 return ret; 11207 11208 set_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state); 11209 if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state) || 11210 rst_cnt != hdev->rst_stats.reset_cnt) { 11211 ret = -EBUSY; 11212 goto init_nic_err; 11213 } 11214 11215 /* Enable nic hw error interrupts */ 11216 ret = hclge_config_nic_hw_error(hdev, true); 11217 if (ret) { 11218 dev_err(&ae_dev->pdev->dev, 11219 "fail(%d) to enable hw error interrupts\n", ret); 11220 goto init_nic_err; 11221 } 11222 11223 hnae3_set_client_init_flag(client, ae_dev, 1); 11224 11225 if (netif_msg_drv(&hdev->vport->nic)) 11226 hclge_info_show(hdev); 11227 11228 return ret; 11229 11230 init_nic_err: 11231 clear_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state); 11232 while (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state)) 11233 msleep(HCLGE_WAIT_RESET_DONE); 11234 11235 client->ops->uninit_instance(&vport->nic, 0); 11236 11237 return ret; 11238 } 11239 11240 static int hclge_init_roce_client_instance(struct hnae3_ae_dev *ae_dev, 11241 struct hclge_vport *vport) 11242 { 11243 struct hclge_dev *hdev = ae_dev->priv; 11244 struct hnae3_client *client; 11245 int rst_cnt; 11246 int ret; 11247 11248 if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client || 11249 !hdev->nic_client) 11250 return 0; 11251 11252 client = hdev->roce_client; 11253 ret = hclge_init_roce_base_info(vport); 11254 if (ret) 11255 return ret; 11256 11257 rst_cnt = hdev->rst_stats.reset_cnt; 11258 ret = client->ops->init_instance(&vport->roce); 11259 if (ret) 11260 return ret; 11261 11262 set_bit(HCLGE_STATE_ROCE_REGISTERED, &hdev->state); 11263 if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state) || 11264 rst_cnt != hdev->rst_stats.reset_cnt) { 11265 ret = -EBUSY; 11266 goto init_roce_err; 11267 } 11268 11269 /* Enable roce ras interrupts */ 11270 ret = hclge_config_rocee_ras_interrupt(hdev, true); 11271 if (ret) { 11272 dev_err(&ae_dev->pdev->dev, 11273 "fail(%d) to enable roce ras interrupts\n", ret); 11274 goto init_roce_err; 11275 } 11276 11277 hnae3_set_client_init_flag(client, ae_dev, 1); 11278 11279 return 0; 11280 11281 init_roce_err: 11282 clear_bit(HCLGE_STATE_ROCE_REGISTERED, &hdev->state); 11283 while (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state)) 11284 msleep(HCLGE_WAIT_RESET_DONE); 11285 11286 hdev->roce_client->ops->uninit_instance(&vport->roce, 0); 11287 11288 return ret; 11289 } 11290 11291 static int hclge_init_client_instance(struct hnae3_client *client, 11292 struct hnae3_ae_dev *ae_dev) 11293 { 11294 struct hclge_dev *hdev = ae_dev->priv; 11295 struct hclge_vport *vport = &hdev->vport[0]; 11296 int ret; 11297 11298 switch (client->type) { 11299 case HNAE3_CLIENT_KNIC: 11300 hdev->nic_client = client; 11301 vport->nic.client = client; 11302 ret = hclge_init_nic_client_instance(ae_dev, vport); 11303 if (ret) 11304 goto clear_nic; 11305 11306 ret = hclge_init_roce_client_instance(ae_dev, vport); 11307 if (ret) 11308 goto clear_roce; 11309 11310 break; 11311 case HNAE3_CLIENT_ROCE: 11312 if (hnae3_dev_roce_supported(hdev)) { 11313 hdev->roce_client = client; 11314 vport->roce.client = client; 11315 } 11316 11317 ret = hclge_init_roce_client_instance(ae_dev, vport); 11318 if (ret) 11319 goto clear_roce; 11320 11321 break; 11322 default: 11323 return -EINVAL; 11324 } 11325 11326 return 0; 11327 11328 clear_nic: 11329 hdev->nic_client = NULL; 11330 vport->nic.client = NULL; 11331 return ret; 11332 clear_roce: 11333 hdev->roce_client = NULL; 11334 vport->roce.client = NULL; 11335 return ret; 11336 } 11337 11338 static bool hclge_uninit_need_wait(struct hclge_dev *hdev) 11339 { 11340 return test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state) || 11341 test_bit(HCLGE_STATE_LINK_UPDATING, &hdev->state); 11342 } 11343 11344 static void hclge_uninit_client_instance(struct hnae3_client *client, 11345 struct hnae3_ae_dev *ae_dev) 11346 { 11347 struct hclge_dev *hdev = ae_dev->priv; 11348 struct hclge_vport *vport = &hdev->vport[0]; 11349 11350 if (hdev->roce_client) { 11351 clear_bit(HCLGE_STATE_ROCE_REGISTERED, &hdev->state); 11352 while (hclge_uninit_need_wait(hdev)) 11353 msleep(HCLGE_WAIT_RESET_DONE); 11354 11355 hdev->roce_client->ops->uninit_instance(&vport->roce, 0); 11356 hdev->roce_client = NULL; 11357 vport->roce.client = NULL; 11358 } 11359 if (client->type == HNAE3_CLIENT_ROCE) 11360 return; 11361 if (hdev->nic_client && client->ops->uninit_instance) { 11362 clear_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state); 11363 while (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state)) 11364 msleep(HCLGE_WAIT_RESET_DONE); 11365 11366 client->ops->uninit_instance(&vport->nic, 0); 11367 hdev->nic_client = NULL; 11368 vport->nic.client = NULL; 11369 } 11370 } 11371 11372 static int hclge_dev_mem_map(struct hclge_dev *hdev) 11373 { 11374 struct pci_dev *pdev = hdev->pdev; 11375 struct hclge_hw *hw = &hdev->hw; 11376 11377 /* for device does not have device memory, return directly */ 11378 if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGE_MEM_BAR))) 11379 return 0; 11380 11381 hw->hw.mem_base = 11382 devm_ioremap_wc(&pdev->dev, 11383 pci_resource_start(pdev, HCLGE_MEM_BAR), 11384 pci_resource_len(pdev, HCLGE_MEM_BAR)); 11385 if (!hw->hw.mem_base) { 11386 dev_err(&pdev->dev, "failed to map device memory\n"); 11387 return -EFAULT; 11388 } 11389 11390 return 0; 11391 } 11392 11393 static int hclge_pci_init(struct hclge_dev *hdev) 11394 { 11395 struct pci_dev *pdev = hdev->pdev; 11396 struct hclge_hw *hw; 11397 int ret; 11398 11399 ret = pci_enable_device(pdev); 11400 if (ret) { 11401 dev_err(&pdev->dev, "failed to enable PCI device\n"); 11402 return ret; 11403 } 11404 11405 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 11406 if (ret) { 11407 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 11408 if (ret) { 11409 dev_err(&pdev->dev, 11410 "can't set consistent PCI DMA"); 11411 goto err_disable_device; 11412 } 11413 dev_warn(&pdev->dev, "set DMA mask to 32 bits\n"); 11414 } 11415 11416 ret = pci_request_regions(pdev, HCLGE_DRIVER_NAME); 11417 if (ret) { 11418 dev_err(&pdev->dev, "PCI request regions failed %d\n", ret); 11419 goto err_disable_device; 11420 } 11421 11422 pci_set_master(pdev); 11423 hw = &hdev->hw; 11424 hw->hw.io_base = pcim_iomap(pdev, 2, 0); 11425 if (!hw->hw.io_base) { 11426 dev_err(&pdev->dev, "Can't map configuration register space\n"); 11427 ret = -ENOMEM; 11428 goto err_release_regions; 11429 } 11430 11431 ret = hclge_dev_mem_map(hdev); 11432 if (ret) 11433 goto err_unmap_io_base; 11434 11435 hdev->num_req_vfs = pci_sriov_get_totalvfs(pdev); 11436 11437 return 0; 11438 11439 err_unmap_io_base: 11440 pcim_iounmap(pdev, hdev->hw.hw.io_base); 11441 err_release_regions: 11442 pci_release_regions(pdev); 11443 err_disable_device: 11444 pci_disable_device(pdev); 11445 11446 return ret; 11447 } 11448 11449 static void hclge_pci_uninit(struct hclge_dev *hdev) 11450 { 11451 struct pci_dev *pdev = hdev->pdev; 11452 11453 if (hdev->hw.hw.mem_base) 11454 devm_iounmap(&pdev->dev, hdev->hw.hw.mem_base); 11455 11456 pcim_iounmap(pdev, hdev->hw.hw.io_base); 11457 pci_free_irq_vectors(pdev); 11458 pci_release_regions(pdev); 11459 pci_disable_device(pdev); 11460 } 11461 11462 static void hclge_state_init(struct hclge_dev *hdev) 11463 { 11464 set_bit(HCLGE_STATE_SERVICE_INITED, &hdev->state); 11465 set_bit(HCLGE_STATE_DOWN, &hdev->state); 11466 clear_bit(HCLGE_STATE_RST_SERVICE_SCHED, &hdev->state); 11467 clear_bit(HCLGE_STATE_RST_HANDLING, &hdev->state); 11468 clear_bit(HCLGE_STATE_RST_FAIL, &hdev->state); 11469 clear_bit(HCLGE_STATE_MBX_SERVICE_SCHED, &hdev->state); 11470 clear_bit(HCLGE_STATE_MBX_HANDLING, &hdev->state); 11471 } 11472 11473 static void hclge_state_uninit(struct hclge_dev *hdev) 11474 { 11475 set_bit(HCLGE_STATE_DOWN, &hdev->state); 11476 set_bit(HCLGE_STATE_REMOVING, &hdev->state); 11477 11478 if (hdev->reset_timer.function) 11479 del_timer_sync(&hdev->reset_timer); 11480 if (hdev->service_task.work.func) 11481 cancel_delayed_work_sync(&hdev->service_task); 11482 } 11483 11484 static void hclge_reset_prepare_general(struct hnae3_ae_dev *ae_dev, 11485 enum hnae3_reset_type rst_type) 11486 { 11487 #define HCLGE_RESET_RETRY_WAIT_MS 500 11488 #define HCLGE_RESET_RETRY_CNT 5 11489 11490 struct hclge_dev *hdev = ae_dev->priv; 11491 int retry_cnt = 0; 11492 int ret; 11493 11494 while (retry_cnt++ < HCLGE_RESET_RETRY_CNT) { 11495 down(&hdev->reset_sem); 11496 set_bit(HCLGE_STATE_RST_HANDLING, &hdev->state); 11497 hdev->reset_type = rst_type; 11498 ret = hclge_reset_prepare(hdev); 11499 if (!ret && !hdev->reset_pending) 11500 break; 11501 11502 dev_err(&hdev->pdev->dev, 11503 "failed to prepare to reset, ret=%d, reset_pending:0x%lx, retry_cnt:%d\n", 11504 ret, hdev->reset_pending, retry_cnt); 11505 clear_bit(HCLGE_STATE_RST_HANDLING, &hdev->state); 11506 up(&hdev->reset_sem); 11507 msleep(HCLGE_RESET_RETRY_WAIT_MS); 11508 } 11509 11510 /* disable misc vector before reset done */ 11511 hclge_enable_vector(&hdev->misc_vector, false); 11512 set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state); 11513 11514 if (hdev->reset_type == HNAE3_FLR_RESET) 11515 hdev->rst_stats.flr_rst_cnt++; 11516 } 11517 11518 static void hclge_reset_done(struct hnae3_ae_dev *ae_dev) 11519 { 11520 struct hclge_dev *hdev = ae_dev->priv; 11521 int ret; 11522 11523 hclge_enable_vector(&hdev->misc_vector, true); 11524 11525 ret = hclge_reset_rebuild(hdev); 11526 if (ret) 11527 dev_err(&hdev->pdev->dev, "fail to rebuild, ret=%d\n", ret); 11528 11529 hdev->reset_type = HNAE3_NONE_RESET; 11530 if (test_and_clear_bit(HCLGE_STATE_RST_HANDLING, &hdev->state)) 11531 up(&hdev->reset_sem); 11532 } 11533 11534 static void hclge_clear_resetting_state(struct hclge_dev *hdev) 11535 { 11536 u16 i; 11537 11538 for (i = 0; i < hdev->num_alloc_vport; i++) { 11539 struct hclge_vport *vport = &hdev->vport[i]; 11540 int ret; 11541 11542 /* Send cmd to clear vport's FUNC_RST_ING */ 11543 ret = hclge_set_vf_rst(hdev, vport->vport_id, false); 11544 if (ret) 11545 dev_warn(&hdev->pdev->dev, 11546 "clear vport(%u) rst failed %d!\n", 11547 vport->vport_id, ret); 11548 } 11549 } 11550 11551 static int hclge_clear_hw_resource(struct hclge_dev *hdev) 11552 { 11553 struct hclge_desc desc; 11554 int ret; 11555 11556 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CLEAR_HW_RESOURCE, false); 11557 11558 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 11559 /* This new command is only supported by new firmware, it will 11560 * fail with older firmware. Error value -EOPNOSUPP can only be 11561 * returned by older firmware running this command, to keep code 11562 * backward compatible we will override this value and return 11563 * success. 11564 */ 11565 if (ret && ret != -EOPNOTSUPP) { 11566 dev_err(&hdev->pdev->dev, 11567 "failed to clear hw resource, ret = %d\n", ret); 11568 return ret; 11569 } 11570 return 0; 11571 } 11572 11573 static void hclge_init_rxd_adv_layout(struct hclge_dev *hdev) 11574 { 11575 if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev)) 11576 hclge_write_dev(&hdev->hw, HCLGE_RXD_ADV_LAYOUT_EN_REG, 1); 11577 } 11578 11579 static void hclge_uninit_rxd_adv_layout(struct hclge_dev *hdev) 11580 { 11581 if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev)) 11582 hclge_write_dev(&hdev->hw, HCLGE_RXD_ADV_LAYOUT_EN_REG, 0); 11583 } 11584 11585 static struct hclge_wol_info *hclge_get_wol_info(struct hnae3_handle *handle) 11586 { 11587 struct hclge_vport *vport = hclge_get_vport(handle); 11588 11589 return &vport->back->hw.mac.wol; 11590 } 11591 11592 static int hclge_get_wol_supported_mode(struct hclge_dev *hdev, 11593 u32 *wol_supported) 11594 { 11595 struct hclge_query_wol_supported_cmd *wol_supported_cmd; 11596 struct hclge_desc desc; 11597 int ret; 11598 11599 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_WOL_GET_SUPPORTED_MODE, 11600 true); 11601 wol_supported_cmd = (struct hclge_query_wol_supported_cmd *)desc.data; 11602 11603 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 11604 if (ret) { 11605 dev_err(&hdev->pdev->dev, 11606 "failed to query wol supported, ret = %d\n", ret); 11607 return ret; 11608 } 11609 11610 *wol_supported = le32_to_cpu(wol_supported_cmd->supported_wake_mode); 11611 11612 return 0; 11613 } 11614 11615 static int hclge_set_wol_cfg(struct hclge_dev *hdev, 11616 struct hclge_wol_info *wol_info) 11617 { 11618 struct hclge_wol_cfg_cmd *wol_cfg_cmd; 11619 struct hclge_desc desc; 11620 int ret; 11621 11622 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_WOL_CFG, false); 11623 wol_cfg_cmd = (struct hclge_wol_cfg_cmd *)desc.data; 11624 wol_cfg_cmd->wake_on_lan_mode = cpu_to_le32(wol_info->wol_current_mode); 11625 wol_cfg_cmd->sopass_size = wol_info->wol_sopass_size; 11626 memcpy(wol_cfg_cmd->sopass, wol_info->wol_sopass, SOPASS_MAX); 11627 11628 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 11629 if (ret) 11630 dev_err(&hdev->pdev->dev, 11631 "failed to set wol config, ret = %d\n", ret); 11632 11633 return ret; 11634 } 11635 11636 static int hclge_update_wol(struct hclge_dev *hdev) 11637 { 11638 struct hclge_wol_info *wol_info = &hdev->hw.mac.wol; 11639 11640 if (!hnae3_ae_dev_wol_supported(hdev->ae_dev)) 11641 return 0; 11642 11643 return hclge_set_wol_cfg(hdev, wol_info); 11644 } 11645 11646 static int hclge_init_wol(struct hclge_dev *hdev) 11647 { 11648 struct hclge_wol_info *wol_info = &hdev->hw.mac.wol; 11649 int ret; 11650 11651 if (!hnae3_ae_dev_wol_supported(hdev->ae_dev)) 11652 return 0; 11653 11654 memset(wol_info, 0, sizeof(struct hclge_wol_info)); 11655 ret = hclge_get_wol_supported_mode(hdev, 11656 &wol_info->wol_support_mode); 11657 if (ret) { 11658 wol_info->wol_support_mode = 0; 11659 return ret; 11660 } 11661 11662 return hclge_update_wol(hdev); 11663 } 11664 11665 static void hclge_get_wol(struct hnae3_handle *handle, 11666 struct ethtool_wolinfo *wol) 11667 { 11668 struct hclge_wol_info *wol_info = hclge_get_wol_info(handle); 11669 11670 wol->supported = wol_info->wol_support_mode; 11671 wol->wolopts = wol_info->wol_current_mode; 11672 if (wol_info->wol_current_mode & WAKE_MAGICSECURE) 11673 memcpy(wol->sopass, wol_info->wol_sopass, SOPASS_MAX); 11674 } 11675 11676 static int hclge_set_wol(struct hnae3_handle *handle, 11677 struct ethtool_wolinfo *wol) 11678 { 11679 struct hclge_wol_info *wol_info = hclge_get_wol_info(handle); 11680 struct hclge_vport *vport = hclge_get_vport(handle); 11681 u32 wol_mode; 11682 int ret; 11683 11684 wol_mode = wol->wolopts; 11685 if (wol_mode & ~wol_info->wol_support_mode) 11686 return -EINVAL; 11687 11688 wol_info->wol_current_mode = wol_mode; 11689 if (wol_mode & WAKE_MAGICSECURE) { 11690 memcpy(wol_info->wol_sopass, wol->sopass, SOPASS_MAX); 11691 wol_info->wol_sopass_size = SOPASS_MAX; 11692 } else { 11693 wol_info->wol_sopass_size = 0; 11694 } 11695 11696 ret = hclge_set_wol_cfg(vport->back, wol_info); 11697 if (ret) 11698 wol_info->wol_current_mode = 0; 11699 11700 return ret; 11701 } 11702 11703 static int hclge_init_ae_dev(struct hnae3_ae_dev *ae_dev) 11704 { 11705 struct pci_dev *pdev = ae_dev->pdev; 11706 struct hclge_dev *hdev; 11707 int ret; 11708 11709 hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL); 11710 if (!hdev) 11711 return -ENOMEM; 11712 11713 hdev->pdev = pdev; 11714 hdev->ae_dev = ae_dev; 11715 hdev->reset_type = HNAE3_NONE_RESET; 11716 hdev->reset_level = HNAE3_FUNC_RESET; 11717 ae_dev->priv = hdev; 11718 11719 /* HW supprt 2 layer vlan */ 11720 hdev->mps = ETH_FRAME_LEN + ETH_FCS_LEN + 2 * VLAN_HLEN; 11721 11722 mutex_init(&hdev->vport_lock); 11723 spin_lock_init(&hdev->fd_rule_lock); 11724 sema_init(&hdev->reset_sem, 1); 11725 11726 ret = hclge_pci_init(hdev); 11727 if (ret) 11728 goto out; 11729 11730 /* Firmware command queue initialize */ 11731 ret = hclge_comm_cmd_queue_init(hdev->pdev, &hdev->hw.hw); 11732 if (ret) 11733 goto err_pci_uninit; 11734 11735 /* Firmware command initialize */ 11736 hclge_comm_cmd_init_ops(&hdev->hw.hw, &hclge_cmq_ops); 11737 ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw, &hdev->fw_version, 11738 true, hdev->reset_pending); 11739 if (ret) 11740 goto err_cmd_uninit; 11741 11742 ret = hclge_clear_hw_resource(hdev); 11743 if (ret) 11744 goto err_cmd_uninit; 11745 11746 ret = hclge_get_cap(hdev); 11747 if (ret) 11748 goto err_cmd_uninit; 11749 11750 ret = hclge_query_dev_specs(hdev); 11751 if (ret) { 11752 dev_err(&pdev->dev, "failed to query dev specifications, ret = %d.\n", 11753 ret); 11754 goto err_cmd_uninit; 11755 } 11756 11757 ret = hclge_configure(hdev); 11758 if (ret) { 11759 dev_err(&pdev->dev, "Configure dev error, ret = %d.\n", ret); 11760 goto err_cmd_uninit; 11761 } 11762 11763 ret = hclge_init_msi(hdev); 11764 if (ret) { 11765 dev_err(&pdev->dev, "Init MSI/MSI-X error, ret = %d.\n", ret); 11766 goto err_cmd_uninit; 11767 } 11768 11769 ret = hclge_misc_irq_init(hdev); 11770 if (ret) 11771 goto err_msi_uninit; 11772 11773 ret = hclge_alloc_tqps(hdev); 11774 if (ret) { 11775 dev_err(&pdev->dev, "Allocate TQPs error, ret = %d.\n", ret); 11776 goto err_msi_irq_uninit; 11777 } 11778 11779 ret = hclge_alloc_vport(hdev); 11780 if (ret) 11781 goto err_msi_irq_uninit; 11782 11783 ret = hclge_map_tqp(hdev); 11784 if (ret) 11785 goto err_msi_irq_uninit; 11786 11787 if (hdev->hw.mac.media_type == HNAE3_MEDIA_TYPE_COPPER) { 11788 clear_bit(HNAE3_DEV_SUPPORT_FEC_B, ae_dev->caps); 11789 if (hnae3_dev_phy_imp_supported(hdev)) 11790 ret = hclge_update_tp_port_info(hdev); 11791 else 11792 ret = hclge_mac_mdio_config(hdev); 11793 11794 if (ret) 11795 goto err_msi_irq_uninit; 11796 } 11797 11798 ret = hclge_init_umv_space(hdev); 11799 if (ret) 11800 goto err_mdiobus_unreg; 11801 11802 ret = hclge_mac_init(hdev); 11803 if (ret) { 11804 dev_err(&pdev->dev, "Mac init error, ret = %d\n", ret); 11805 goto err_mdiobus_unreg; 11806 } 11807 11808 ret = hclge_config_tso(hdev, HCLGE_TSO_MSS_MIN, HCLGE_TSO_MSS_MAX); 11809 if (ret) { 11810 dev_err(&pdev->dev, "Enable tso fail, ret =%d\n", ret); 11811 goto err_mdiobus_unreg; 11812 } 11813 11814 ret = hclge_config_gro(hdev); 11815 if (ret) 11816 goto err_mdiobus_unreg; 11817 11818 ret = hclge_init_vlan_config(hdev); 11819 if (ret) { 11820 dev_err(&pdev->dev, "VLAN init fail, ret =%d\n", ret); 11821 goto err_mdiobus_unreg; 11822 } 11823 11824 ret = hclge_tm_schd_init(hdev); 11825 if (ret) { 11826 dev_err(&pdev->dev, "tm schd init fail, ret =%d\n", ret); 11827 goto err_mdiobus_unreg; 11828 } 11829 11830 ret = hclge_comm_rss_init_cfg(&hdev->vport->nic, hdev->ae_dev, 11831 &hdev->rss_cfg); 11832 if (ret) { 11833 dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret); 11834 goto err_mdiobus_unreg; 11835 } 11836 11837 ret = hclge_rss_init_hw(hdev); 11838 if (ret) { 11839 dev_err(&pdev->dev, "Rss init fail, ret =%d\n", ret); 11840 goto err_mdiobus_unreg; 11841 } 11842 11843 ret = init_mgr_tbl(hdev); 11844 if (ret) { 11845 dev_err(&pdev->dev, "manager table init fail, ret =%d\n", ret); 11846 goto err_mdiobus_unreg; 11847 } 11848 11849 ret = hclge_init_fd_config(hdev); 11850 if (ret) { 11851 dev_err(&pdev->dev, 11852 "fd table init fail, ret=%d\n", ret); 11853 goto err_mdiobus_unreg; 11854 } 11855 11856 ret = hclge_ptp_init(hdev); 11857 if (ret) 11858 goto err_mdiobus_unreg; 11859 11860 ret = hclge_update_port_info(hdev); 11861 if (ret) 11862 goto err_ptp_uninit; 11863 11864 INIT_KFIFO(hdev->mac_tnl_log); 11865 11866 hclge_dcb_ops_set(hdev); 11867 11868 timer_setup(&hdev->reset_timer, hclge_reset_timer, 0); 11869 INIT_DELAYED_WORK(&hdev->service_task, hclge_service_task); 11870 11871 hclge_clear_all_event_cause(hdev); 11872 hclge_clear_resetting_state(hdev); 11873 11874 /* Log and clear the hw errors those already occurred */ 11875 if (hnae3_dev_ras_imp_supported(hdev)) 11876 hclge_handle_occurred_error(hdev); 11877 else 11878 hclge_handle_all_hns_hw_errors(ae_dev); 11879 11880 /* request delayed reset for the error recovery because an immediate 11881 * global reset on a PF affecting pending initialization of other PFs 11882 */ 11883 if (ae_dev->hw_err_reset_req) { 11884 enum hnae3_reset_type reset_level; 11885 11886 reset_level = hclge_get_reset_level(ae_dev, 11887 &ae_dev->hw_err_reset_req); 11888 hclge_set_def_reset_request(ae_dev, reset_level); 11889 mod_timer(&hdev->reset_timer, jiffies + HCLGE_RESET_INTERVAL); 11890 } 11891 11892 hclge_init_rxd_adv_layout(hdev); 11893 11894 /* Enable MISC vector(vector0) */ 11895 hclge_enable_vector(&hdev->misc_vector, true); 11896 11897 ret = hclge_init_wol(hdev); 11898 if (ret) 11899 dev_warn(&pdev->dev, 11900 "failed to wake on lan init, ret = %d\n", ret); 11901 11902 ret = hclge_devlink_init(hdev); 11903 if (ret) 11904 goto err_ptp_uninit; 11905 11906 hclge_state_init(hdev); 11907 hdev->last_reset_time = jiffies; 11908 11909 dev_info(&hdev->pdev->dev, "%s driver initialization finished.\n", 11910 HCLGE_DRIVER_NAME); 11911 11912 hclge_task_schedule(hdev, round_jiffies_relative(HZ)); 11913 return 0; 11914 11915 err_ptp_uninit: 11916 hclge_ptp_uninit(hdev); 11917 err_mdiobus_unreg: 11918 if (hdev->hw.mac.phydev) 11919 mdiobus_unregister(hdev->hw.mac.mdio_bus); 11920 err_msi_irq_uninit: 11921 hclge_misc_irq_uninit(hdev); 11922 err_msi_uninit: 11923 pci_free_irq_vectors(pdev); 11924 err_cmd_uninit: 11925 hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw); 11926 err_pci_uninit: 11927 pcim_iounmap(pdev, hdev->hw.hw.io_base); 11928 pci_release_regions(pdev); 11929 pci_disable_device(pdev); 11930 out: 11931 mutex_destroy(&hdev->vport_lock); 11932 return ret; 11933 } 11934 11935 static void hclge_stats_clear(struct hclge_dev *hdev) 11936 { 11937 memset(&hdev->mac_stats, 0, sizeof(hdev->mac_stats)); 11938 memset(&hdev->fec_stats, 0, sizeof(hdev->fec_stats)); 11939 } 11940 11941 static int hclge_set_mac_spoofchk(struct hclge_dev *hdev, int vf, bool enable) 11942 { 11943 return hclge_config_switch_param(hdev, vf, enable, 11944 HCLGE_SWITCH_ANTI_SPOOF_MASK); 11945 } 11946 11947 static int hclge_set_vlan_spoofchk(struct hclge_dev *hdev, int vf, bool enable) 11948 { 11949 return hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF, 11950 HCLGE_FILTER_FE_NIC_INGRESS_B, 11951 enable, vf); 11952 } 11953 11954 static int hclge_set_vf_spoofchk_hw(struct hclge_dev *hdev, int vf, bool enable) 11955 { 11956 int ret; 11957 11958 ret = hclge_set_mac_spoofchk(hdev, vf, enable); 11959 if (ret) { 11960 dev_err(&hdev->pdev->dev, 11961 "Set vf %d mac spoof check %s failed, ret=%d\n", 11962 vf, enable ? "on" : "off", ret); 11963 return ret; 11964 } 11965 11966 ret = hclge_set_vlan_spoofchk(hdev, vf, enable); 11967 if (ret) 11968 dev_err(&hdev->pdev->dev, 11969 "Set vf %d vlan spoof check %s failed, ret=%d\n", 11970 vf, enable ? "on" : "off", ret); 11971 11972 return ret; 11973 } 11974 11975 static int hclge_set_vf_spoofchk(struct hnae3_handle *handle, int vf, 11976 bool enable) 11977 { 11978 struct hclge_vport *vport = hclge_get_vport(handle); 11979 struct hclge_dev *hdev = vport->back; 11980 u32 new_spoofchk = enable ? 1 : 0; 11981 int ret; 11982 11983 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2) 11984 return -EOPNOTSUPP; 11985 11986 vport = hclge_get_vf_vport(hdev, vf); 11987 if (!vport) 11988 return -EINVAL; 11989 11990 if (vport->vf_info.spoofchk == new_spoofchk) 11991 return 0; 11992 11993 if (enable && test_bit(vport->vport_id, hdev->vf_vlan_full)) 11994 dev_warn(&hdev->pdev->dev, 11995 "vf %d vlan table is full, enable spoof check may cause its packet send fail\n", 11996 vf); 11997 else if (enable && hclge_is_umv_space_full(vport, true)) 11998 dev_warn(&hdev->pdev->dev, 11999 "vf %d mac table is full, enable spoof check may cause its packet send fail\n", 12000 vf); 12001 12002 ret = hclge_set_vf_spoofchk_hw(hdev, vport->vport_id, enable); 12003 if (ret) 12004 return ret; 12005 12006 vport->vf_info.spoofchk = new_spoofchk; 12007 return 0; 12008 } 12009 12010 static int hclge_reset_vport_spoofchk(struct hclge_dev *hdev) 12011 { 12012 struct hclge_vport *vport = hdev->vport; 12013 int ret; 12014 int i; 12015 12016 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2) 12017 return 0; 12018 12019 /* resume the vf spoof check state after reset */ 12020 for (i = 0; i < hdev->num_alloc_vport; i++) { 12021 ret = hclge_set_vf_spoofchk_hw(hdev, vport->vport_id, 12022 vport->vf_info.spoofchk); 12023 if (ret) 12024 return ret; 12025 12026 vport++; 12027 } 12028 12029 return 0; 12030 } 12031 12032 static int hclge_set_vf_trust(struct hnae3_handle *handle, int vf, bool enable) 12033 { 12034 struct hclge_vport *vport = hclge_get_vport(handle); 12035 struct hclge_dev *hdev = vport->back; 12036 u32 new_trusted = enable ? 1 : 0; 12037 12038 vport = hclge_get_vf_vport(hdev, vf); 12039 if (!vport) 12040 return -EINVAL; 12041 12042 if (vport->vf_info.trusted == new_trusted) 12043 return 0; 12044 12045 vport->vf_info.trusted = new_trusted; 12046 set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, &vport->state); 12047 hclge_task_schedule(hdev, 0); 12048 12049 return 0; 12050 } 12051 12052 static void hclge_reset_vf_rate(struct hclge_dev *hdev) 12053 { 12054 int ret; 12055 int vf; 12056 12057 /* reset vf rate to default value */ 12058 for (vf = HCLGE_VF_VPORT_START_NUM; vf < hdev->num_alloc_vport; vf++) { 12059 struct hclge_vport *vport = &hdev->vport[vf]; 12060 12061 vport->vf_info.max_tx_rate = 0; 12062 ret = hclge_tm_qs_shaper_cfg(vport, vport->vf_info.max_tx_rate); 12063 if (ret) 12064 dev_err(&hdev->pdev->dev, 12065 "vf%d failed to reset to default, ret=%d\n", 12066 vf - HCLGE_VF_VPORT_START_NUM, ret); 12067 } 12068 } 12069 12070 static int hclge_vf_rate_param_check(struct hclge_dev *hdev, 12071 int min_tx_rate, int max_tx_rate) 12072 { 12073 if (min_tx_rate != 0 || 12074 max_tx_rate < 0 || max_tx_rate > hdev->hw.mac.max_speed) { 12075 dev_err(&hdev->pdev->dev, 12076 "min_tx_rate:%d [0], max_tx_rate:%d [0, %u]\n", 12077 min_tx_rate, max_tx_rate, hdev->hw.mac.max_speed); 12078 return -EINVAL; 12079 } 12080 12081 return 0; 12082 } 12083 12084 static int hclge_set_vf_rate(struct hnae3_handle *handle, int vf, 12085 int min_tx_rate, int max_tx_rate, bool force) 12086 { 12087 struct hclge_vport *vport = hclge_get_vport(handle); 12088 struct hclge_dev *hdev = vport->back; 12089 int ret; 12090 12091 ret = hclge_vf_rate_param_check(hdev, min_tx_rate, max_tx_rate); 12092 if (ret) 12093 return ret; 12094 12095 vport = hclge_get_vf_vport(hdev, vf); 12096 if (!vport) 12097 return -EINVAL; 12098 12099 if (!force && max_tx_rate == vport->vf_info.max_tx_rate) 12100 return 0; 12101 12102 ret = hclge_tm_qs_shaper_cfg(vport, max_tx_rate); 12103 if (ret) 12104 return ret; 12105 12106 vport->vf_info.max_tx_rate = max_tx_rate; 12107 12108 return 0; 12109 } 12110 12111 static int hclge_resume_vf_rate(struct hclge_dev *hdev) 12112 { 12113 struct hnae3_handle *handle = &hdev->vport->nic; 12114 struct hclge_vport *vport; 12115 int ret; 12116 int vf; 12117 12118 /* resume the vf max_tx_rate after reset */ 12119 for (vf = 0; vf < pci_num_vf(hdev->pdev); vf++) { 12120 vport = hclge_get_vf_vport(hdev, vf); 12121 if (!vport) 12122 return -EINVAL; 12123 12124 /* zero means max rate, after reset, firmware already set it to 12125 * max rate, so just continue. 12126 */ 12127 if (!vport->vf_info.max_tx_rate) 12128 continue; 12129 12130 ret = hclge_set_vf_rate(handle, vf, 0, 12131 vport->vf_info.max_tx_rate, true); 12132 if (ret) { 12133 dev_err(&hdev->pdev->dev, 12134 "vf%d failed to resume tx_rate:%u, ret=%d\n", 12135 vf, vport->vf_info.max_tx_rate, ret); 12136 return ret; 12137 } 12138 } 12139 12140 return 0; 12141 } 12142 12143 static void hclge_reset_vport_state(struct hclge_dev *hdev) 12144 { 12145 struct hclge_vport *vport = hdev->vport; 12146 int i; 12147 12148 for (i = 0; i < hdev->num_alloc_vport; i++) { 12149 clear_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state); 12150 vport++; 12151 } 12152 } 12153 12154 static int hclge_reset_ae_dev(struct hnae3_ae_dev *ae_dev) 12155 { 12156 struct hclge_dev *hdev = ae_dev->priv; 12157 struct pci_dev *pdev = ae_dev->pdev; 12158 int ret; 12159 12160 set_bit(HCLGE_STATE_DOWN, &hdev->state); 12161 12162 hclge_stats_clear(hdev); 12163 /* NOTE: pf reset needn't to clear or restore pf and vf table entry. 12164 * so here should not clean table in memory. 12165 */ 12166 if (hdev->reset_type == HNAE3_IMP_RESET || 12167 hdev->reset_type == HNAE3_GLOBAL_RESET) { 12168 memset(hdev->vlan_table, 0, sizeof(hdev->vlan_table)); 12169 memset(hdev->vf_vlan_full, 0, sizeof(hdev->vf_vlan_full)); 12170 bitmap_set(hdev->vport_config_block, 0, hdev->num_alloc_vport); 12171 hclge_reset_umv_space(hdev); 12172 } 12173 12174 ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw, &hdev->fw_version, 12175 true, hdev->reset_pending); 12176 if (ret) { 12177 dev_err(&pdev->dev, "Cmd queue init failed\n"); 12178 return ret; 12179 } 12180 12181 ret = hclge_map_tqp(hdev); 12182 if (ret) { 12183 dev_err(&pdev->dev, "Map tqp error, ret = %d.\n", ret); 12184 return ret; 12185 } 12186 12187 ret = hclge_mac_init(hdev); 12188 if (ret) { 12189 dev_err(&pdev->dev, "Mac init error, ret = %d\n", ret); 12190 return ret; 12191 } 12192 12193 ret = hclge_tp_port_init(hdev); 12194 if (ret) { 12195 dev_err(&pdev->dev, "failed to init tp port, ret = %d\n", 12196 ret); 12197 return ret; 12198 } 12199 12200 ret = hclge_config_tso(hdev, HCLGE_TSO_MSS_MIN, HCLGE_TSO_MSS_MAX); 12201 if (ret) { 12202 dev_err(&pdev->dev, "Enable tso fail, ret =%d\n", ret); 12203 return ret; 12204 } 12205 12206 ret = hclge_config_gro(hdev); 12207 if (ret) 12208 return ret; 12209 12210 ret = hclge_init_vlan_config(hdev); 12211 if (ret) { 12212 dev_err(&pdev->dev, "VLAN init fail, ret =%d\n", ret); 12213 return ret; 12214 } 12215 12216 hclge_reset_tc_config(hdev); 12217 12218 ret = hclge_tm_init_hw(hdev, true); 12219 if (ret) { 12220 dev_err(&pdev->dev, "tm init hw fail, ret =%d\n", ret); 12221 return ret; 12222 } 12223 12224 ret = hclge_rss_init_hw(hdev); 12225 if (ret) { 12226 dev_err(&pdev->dev, "Rss init fail, ret =%d\n", ret); 12227 return ret; 12228 } 12229 12230 ret = init_mgr_tbl(hdev); 12231 if (ret) { 12232 dev_err(&pdev->dev, 12233 "failed to reinit manager table, ret = %d\n", ret); 12234 return ret; 12235 } 12236 12237 ret = hclge_init_fd_config(hdev); 12238 if (ret) { 12239 dev_err(&pdev->dev, "fd table init fail, ret=%d\n", ret); 12240 return ret; 12241 } 12242 12243 ret = hclge_ptp_init(hdev); 12244 if (ret) 12245 return ret; 12246 12247 /* Log and clear the hw errors those already occurred */ 12248 if (hnae3_dev_ras_imp_supported(hdev)) 12249 hclge_handle_occurred_error(hdev); 12250 else 12251 hclge_handle_all_hns_hw_errors(ae_dev); 12252 12253 /* Re-enable the hw error interrupts because 12254 * the interrupts get disabled on global reset. 12255 */ 12256 ret = hclge_config_nic_hw_error(hdev, true); 12257 if (ret) { 12258 dev_err(&pdev->dev, 12259 "fail(%d) to re-enable NIC hw error interrupts\n", 12260 ret); 12261 return ret; 12262 } 12263 12264 if (hdev->roce_client) { 12265 ret = hclge_config_rocee_ras_interrupt(hdev, true); 12266 if (ret) { 12267 dev_err(&pdev->dev, 12268 "fail(%d) to re-enable roce ras interrupts\n", 12269 ret); 12270 return ret; 12271 } 12272 } 12273 12274 hclge_reset_vport_state(hdev); 12275 ret = hclge_reset_vport_spoofchk(hdev); 12276 if (ret) 12277 return ret; 12278 12279 ret = hclge_resume_vf_rate(hdev); 12280 if (ret) 12281 return ret; 12282 12283 hclge_init_rxd_adv_layout(hdev); 12284 12285 ret = hclge_update_wol(hdev); 12286 if (ret) 12287 dev_warn(&pdev->dev, 12288 "failed to update wol config, ret = %d\n", ret); 12289 12290 dev_info(&pdev->dev, "Reset done, %s driver initialization finished.\n", 12291 HCLGE_DRIVER_NAME); 12292 12293 return 0; 12294 } 12295 12296 static void hclge_uninit_ae_dev(struct hnae3_ae_dev *ae_dev) 12297 { 12298 struct hclge_dev *hdev = ae_dev->priv; 12299 struct hclge_mac *mac = &hdev->hw.mac; 12300 12301 hclge_reset_vf_rate(hdev); 12302 hclge_clear_vf_vlan(hdev); 12303 hclge_state_uninit(hdev); 12304 hclge_ptp_uninit(hdev); 12305 hclge_uninit_rxd_adv_layout(hdev); 12306 hclge_uninit_mac_table(hdev); 12307 hclge_del_all_fd_entries(hdev); 12308 12309 if (mac->phydev) 12310 mdiobus_unregister(mac->mdio_bus); 12311 12312 /* Disable MISC vector(vector0) */ 12313 hclge_enable_vector(&hdev->misc_vector, false); 12314 synchronize_irq(hdev->misc_vector.vector_irq); 12315 12316 /* Disable all hw interrupts */ 12317 hclge_config_mac_tnl_int(hdev, false); 12318 hclge_config_nic_hw_error(hdev, false); 12319 hclge_config_rocee_ras_interrupt(hdev, false); 12320 12321 hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw); 12322 hclge_misc_irq_uninit(hdev); 12323 hclge_devlink_uninit(hdev); 12324 hclge_pci_uninit(hdev); 12325 hclge_uninit_vport_vlan_table(hdev); 12326 mutex_destroy(&hdev->vport_lock); 12327 ae_dev->priv = NULL; 12328 } 12329 12330 static u32 hclge_get_max_channels(struct hnae3_handle *handle) 12331 { 12332 struct hclge_vport *vport = hclge_get_vport(handle); 12333 struct hclge_dev *hdev = vport->back; 12334 12335 return min_t(u32, hdev->pf_rss_size_max, vport->alloc_tqps); 12336 } 12337 12338 static void hclge_get_channels(struct hnae3_handle *handle, 12339 struct ethtool_channels *ch) 12340 { 12341 ch->max_combined = hclge_get_max_channels(handle); 12342 ch->other_count = 1; 12343 ch->max_other = 1; 12344 ch->combined_count = handle->kinfo.rss_size; 12345 } 12346 12347 static void hclge_get_tqps_and_rss_info(struct hnae3_handle *handle, 12348 u16 *alloc_tqps, u16 *max_rss_size) 12349 { 12350 struct hclge_vport *vport = hclge_get_vport(handle); 12351 struct hclge_dev *hdev = vport->back; 12352 12353 *alloc_tqps = vport->alloc_tqps; 12354 *max_rss_size = hdev->pf_rss_size_max; 12355 } 12356 12357 static int hclge_set_rss_tc_mode_cfg(struct hnae3_handle *handle) 12358 { 12359 struct hclge_vport *vport = hclge_get_vport(handle); 12360 u16 tc_offset[HCLGE_MAX_TC_NUM] = {0}; 12361 struct hclge_dev *hdev = vport->back; 12362 u16 tc_size[HCLGE_MAX_TC_NUM] = {0}; 12363 u16 tc_valid[HCLGE_MAX_TC_NUM]; 12364 u16 roundup_size; 12365 unsigned int i; 12366 12367 roundup_size = roundup_pow_of_two(vport->nic.kinfo.rss_size); 12368 roundup_size = ilog2(roundup_size); 12369 /* Set the RSS TC mode according to the new RSS size */ 12370 for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { 12371 tc_valid[i] = 0; 12372 12373 if (!(hdev->hw_tc_map & BIT(i))) 12374 continue; 12375 12376 tc_valid[i] = 1; 12377 tc_size[i] = roundup_size; 12378 tc_offset[i] = vport->nic.kinfo.rss_size * i; 12379 } 12380 12381 return hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset, tc_valid, 12382 tc_size); 12383 } 12384 12385 static int hclge_set_channels(struct hnae3_handle *handle, u32 new_tqps_num, 12386 bool rxfh_configured) 12387 { 12388 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev); 12389 struct hclge_vport *vport = hclge_get_vport(handle); 12390 struct hnae3_knic_private_info *kinfo = &vport->nic.kinfo; 12391 struct hclge_dev *hdev = vport->back; 12392 u16 cur_rss_size = kinfo->rss_size; 12393 u16 cur_tqps = kinfo->num_tqps; 12394 u32 *rss_indir; 12395 unsigned int i; 12396 int ret; 12397 12398 kinfo->req_rss_size = new_tqps_num; 12399 12400 ret = hclge_tm_vport_map_update(hdev); 12401 if (ret) { 12402 dev_err(&hdev->pdev->dev, "tm vport map fail, ret =%d\n", ret); 12403 return ret; 12404 } 12405 12406 ret = hclge_set_rss_tc_mode_cfg(handle); 12407 if (ret) 12408 return ret; 12409 12410 /* RSS indirection table has been configured by user */ 12411 if (rxfh_configured) 12412 goto out; 12413 12414 /* Reinitializes the rss indirect table according to the new RSS size */ 12415 rss_indir = kcalloc(ae_dev->dev_specs.rss_ind_tbl_size, sizeof(u32), 12416 GFP_KERNEL); 12417 if (!rss_indir) 12418 return -ENOMEM; 12419 12420 for (i = 0; i < ae_dev->dev_specs.rss_ind_tbl_size; i++) 12421 rss_indir[i] = i % kinfo->rss_size; 12422 12423 ret = hclge_set_rss(handle, rss_indir, NULL, 0); 12424 if (ret) 12425 dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n", 12426 ret); 12427 12428 kfree(rss_indir); 12429 12430 out: 12431 if (!ret) 12432 dev_info(&hdev->pdev->dev, 12433 "Channels changed, rss_size from %u to %u, tqps from %u to %u", 12434 cur_rss_size, kinfo->rss_size, 12435 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc); 12436 12437 return ret; 12438 } 12439 12440 static int hclge_set_led_status(struct hclge_dev *hdev, u8 locate_led_status) 12441 { 12442 struct hclge_set_led_state_cmd *req; 12443 struct hclge_desc desc; 12444 int ret; 12445 12446 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_LED_STATUS_CFG, false); 12447 12448 req = (struct hclge_set_led_state_cmd *)desc.data; 12449 hnae3_set_field(req->locate_led_config, HCLGE_LED_LOCATE_STATE_M, 12450 HCLGE_LED_LOCATE_STATE_S, locate_led_status); 12451 12452 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 12453 if (ret) 12454 dev_err(&hdev->pdev->dev, 12455 "Send set led state cmd error, ret =%d\n", ret); 12456 12457 return ret; 12458 } 12459 12460 enum hclge_led_status { 12461 HCLGE_LED_OFF, 12462 HCLGE_LED_ON, 12463 HCLGE_LED_NO_CHANGE = 0xFF, 12464 }; 12465 12466 static int hclge_set_led_id(struct hnae3_handle *handle, 12467 enum ethtool_phys_id_state status) 12468 { 12469 struct hclge_vport *vport = hclge_get_vport(handle); 12470 struct hclge_dev *hdev = vport->back; 12471 12472 switch (status) { 12473 case ETHTOOL_ID_ACTIVE: 12474 return hclge_set_led_status(hdev, HCLGE_LED_ON); 12475 case ETHTOOL_ID_INACTIVE: 12476 return hclge_set_led_status(hdev, HCLGE_LED_OFF); 12477 default: 12478 return -EINVAL; 12479 } 12480 } 12481 12482 static void hclge_get_link_mode(struct hnae3_handle *handle, 12483 unsigned long *supported, 12484 unsigned long *advertising) 12485 { 12486 unsigned int size = BITS_TO_LONGS(__ETHTOOL_LINK_MODE_MASK_NBITS); 12487 struct hclge_vport *vport = hclge_get_vport(handle); 12488 struct hclge_dev *hdev = vport->back; 12489 unsigned int idx = 0; 12490 12491 for (; idx < size; idx++) { 12492 supported[idx] = hdev->hw.mac.supported[idx]; 12493 advertising[idx] = hdev->hw.mac.advertising[idx]; 12494 } 12495 } 12496 12497 static int hclge_gro_en(struct hnae3_handle *handle, bool enable) 12498 { 12499 struct hclge_vport *vport = hclge_get_vport(handle); 12500 struct hclge_dev *hdev = vport->back; 12501 bool gro_en_old = hdev->gro_en; 12502 int ret; 12503 12504 hdev->gro_en = enable; 12505 ret = hclge_config_gro(hdev); 12506 if (ret) 12507 hdev->gro_en = gro_en_old; 12508 12509 return ret; 12510 } 12511 12512 static int hclge_sync_vport_promisc_mode(struct hclge_vport *vport) 12513 { 12514 struct hnae3_handle *handle = &vport->nic; 12515 struct hclge_dev *hdev = vport->back; 12516 bool uc_en = false; 12517 bool mc_en = false; 12518 u8 tmp_flags; 12519 bool bc_en; 12520 int ret; 12521 12522 if (vport->last_promisc_flags != vport->overflow_promisc_flags) { 12523 set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, &vport->state); 12524 vport->last_promisc_flags = vport->overflow_promisc_flags; 12525 } 12526 12527 if (!test_and_clear_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, 12528 &vport->state)) 12529 return 0; 12530 12531 /* for PF */ 12532 if (!vport->vport_id) { 12533 tmp_flags = handle->netdev_flags | vport->last_promisc_flags; 12534 ret = hclge_set_promisc_mode(handle, tmp_flags & HNAE3_UPE, 12535 tmp_flags & HNAE3_MPE); 12536 if (!ret) 12537 set_bit(HCLGE_VPORT_STATE_VLAN_FLTR_CHANGE, 12538 &vport->state); 12539 else 12540 set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, 12541 &vport->state); 12542 return ret; 12543 } 12544 12545 /* for VF */ 12546 if (vport->vf_info.trusted) { 12547 uc_en = vport->vf_info.request_uc_en > 0 || 12548 vport->overflow_promisc_flags & HNAE3_OVERFLOW_UPE; 12549 mc_en = vport->vf_info.request_mc_en > 0 || 12550 vport->overflow_promisc_flags & HNAE3_OVERFLOW_MPE; 12551 } 12552 bc_en = vport->vf_info.request_bc_en > 0; 12553 12554 ret = hclge_cmd_set_promisc_mode(hdev, vport->vport_id, uc_en, 12555 mc_en, bc_en); 12556 if (ret) { 12557 set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, &vport->state); 12558 return ret; 12559 } 12560 hclge_set_vport_vlan_fltr_change(vport); 12561 12562 return 0; 12563 } 12564 12565 static void hclge_sync_promisc_mode(struct hclge_dev *hdev) 12566 { 12567 struct hclge_vport *vport; 12568 int ret; 12569 u16 i; 12570 12571 for (i = 0; i < hdev->num_alloc_vport; i++) { 12572 vport = &hdev->vport[i]; 12573 12574 ret = hclge_sync_vport_promisc_mode(vport); 12575 if (ret) 12576 return; 12577 } 12578 } 12579 12580 static bool hclge_module_existed(struct hclge_dev *hdev) 12581 { 12582 struct hclge_desc desc; 12583 u32 existed; 12584 int ret; 12585 12586 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GET_SFP_EXIST, true); 12587 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 12588 if (ret) { 12589 dev_err(&hdev->pdev->dev, 12590 "failed to get SFP exist state, ret = %d\n", ret); 12591 return false; 12592 } 12593 12594 existed = le32_to_cpu(desc.data[0]); 12595 12596 return existed != 0; 12597 } 12598 12599 /* need 6 bds(total 140 bytes) in one reading 12600 * return the number of bytes actually read, 0 means read failed. 12601 */ 12602 static u16 hclge_get_sfp_eeprom_info(struct hclge_dev *hdev, u32 offset, 12603 u32 len, u8 *data) 12604 { 12605 struct hclge_desc desc[HCLGE_SFP_INFO_CMD_NUM]; 12606 struct hclge_sfp_info_bd0_cmd *sfp_info_bd0; 12607 u16 read_len; 12608 u16 copy_len; 12609 int ret; 12610 int i; 12611 12612 /* setup all 6 bds to read module eeprom info. */ 12613 for (i = 0; i < HCLGE_SFP_INFO_CMD_NUM; i++) { 12614 hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_GET_SFP_EEPROM, 12615 true); 12616 12617 /* bd0~bd4 need next flag */ 12618 if (i < HCLGE_SFP_INFO_CMD_NUM - 1) 12619 desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 12620 } 12621 12622 /* setup bd0, this bd contains offset and read length. */ 12623 sfp_info_bd0 = (struct hclge_sfp_info_bd0_cmd *)desc[0].data; 12624 sfp_info_bd0->offset = cpu_to_le16((u16)offset); 12625 read_len = min_t(u16, len, HCLGE_SFP_INFO_MAX_LEN); 12626 sfp_info_bd0->read_len = cpu_to_le16(read_len); 12627 12628 ret = hclge_cmd_send(&hdev->hw, desc, i); 12629 if (ret) { 12630 dev_err(&hdev->pdev->dev, 12631 "failed to get SFP eeprom info, ret = %d\n", ret); 12632 return 0; 12633 } 12634 12635 /* copy sfp info from bd0 to out buffer. */ 12636 copy_len = min_t(u16, len, HCLGE_SFP_INFO_BD0_LEN); 12637 memcpy(data, sfp_info_bd0->data, copy_len); 12638 read_len = copy_len; 12639 12640 /* copy sfp info from bd1~bd5 to out buffer if needed. */ 12641 for (i = 1; i < HCLGE_SFP_INFO_CMD_NUM; i++) { 12642 if (read_len >= len) 12643 return read_len; 12644 12645 copy_len = min_t(u16, len - read_len, HCLGE_SFP_INFO_BDX_LEN); 12646 memcpy(data + read_len, desc[i].data, copy_len); 12647 read_len += copy_len; 12648 } 12649 12650 return read_len; 12651 } 12652 12653 static int hclge_get_module_eeprom(struct hnae3_handle *handle, u32 offset, 12654 u32 len, u8 *data) 12655 { 12656 struct hclge_vport *vport = hclge_get_vport(handle); 12657 struct hclge_dev *hdev = vport->back; 12658 u32 read_len = 0; 12659 u16 data_len; 12660 12661 if (hdev->hw.mac.media_type != HNAE3_MEDIA_TYPE_FIBER) 12662 return -EOPNOTSUPP; 12663 12664 if (!hclge_module_existed(hdev)) 12665 return -ENXIO; 12666 12667 while (read_len < len) { 12668 data_len = hclge_get_sfp_eeprom_info(hdev, 12669 offset + read_len, 12670 len - read_len, 12671 data + read_len); 12672 if (!data_len) 12673 return -EIO; 12674 12675 read_len += data_len; 12676 } 12677 12678 return 0; 12679 } 12680 12681 static int hclge_get_link_diagnosis_info(struct hnae3_handle *handle, 12682 u32 *status_code) 12683 { 12684 struct hclge_vport *vport = hclge_get_vport(handle); 12685 struct hclge_dev *hdev = vport->back; 12686 struct hclge_desc desc; 12687 int ret; 12688 12689 if (hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2) 12690 return -EOPNOTSUPP; 12691 12692 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_LINK_DIAGNOSIS, true); 12693 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 12694 if (ret) { 12695 dev_err(&hdev->pdev->dev, 12696 "failed to query link diagnosis info, ret = %d\n", ret); 12697 return ret; 12698 } 12699 12700 *status_code = le32_to_cpu(desc.data[0]); 12701 return 0; 12702 } 12703 12704 /* After disable sriov, VF still has some config and info need clean, 12705 * which configed by PF. 12706 */ 12707 static void hclge_clear_vport_vf_info(struct hclge_vport *vport, int vfid) 12708 { 12709 struct hclge_dev *hdev = vport->back; 12710 struct hclge_vlan_info vlan_info; 12711 int ret; 12712 12713 clear_bit(HCLGE_VPORT_STATE_INITED, &vport->state); 12714 clear_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state); 12715 vport->need_notify = 0; 12716 vport->mps = 0; 12717 12718 /* after disable sriov, clean VF rate configured by PF */ 12719 ret = hclge_tm_qs_shaper_cfg(vport, 0); 12720 if (ret) 12721 dev_err(&hdev->pdev->dev, 12722 "failed to clean vf%d rate config, ret = %d\n", 12723 vfid, ret); 12724 12725 vlan_info.vlan_tag = 0; 12726 vlan_info.qos = 0; 12727 vlan_info.vlan_proto = ETH_P_8021Q; 12728 ret = hclge_update_port_base_vlan_cfg(vport, 12729 HNAE3_PORT_BASE_VLAN_DISABLE, 12730 &vlan_info); 12731 if (ret) 12732 dev_err(&hdev->pdev->dev, 12733 "failed to clean vf%d port base vlan, ret = %d\n", 12734 vfid, ret); 12735 12736 ret = hclge_set_vf_spoofchk_hw(hdev, vport->vport_id, false); 12737 if (ret) 12738 dev_err(&hdev->pdev->dev, 12739 "failed to clean vf%d spoof config, ret = %d\n", 12740 vfid, ret); 12741 12742 memset(&vport->vf_info, 0, sizeof(vport->vf_info)); 12743 } 12744 12745 static void hclge_clean_vport_config(struct hnae3_ae_dev *ae_dev, int num_vfs) 12746 { 12747 struct hclge_dev *hdev = ae_dev->priv; 12748 struct hclge_vport *vport; 12749 int i; 12750 12751 for (i = 0; i < num_vfs; i++) { 12752 vport = &hdev->vport[i + HCLGE_VF_VPORT_START_NUM]; 12753 12754 hclge_clear_vport_vf_info(vport, i); 12755 } 12756 } 12757 12758 static int hclge_get_dscp_prio(struct hnae3_handle *h, u8 dscp, u8 *tc_mode, 12759 u8 *priority) 12760 { 12761 struct hclge_vport *vport = hclge_get_vport(h); 12762 12763 if (dscp >= HNAE3_MAX_DSCP) 12764 return -EINVAL; 12765 12766 if (tc_mode) 12767 *tc_mode = vport->nic.kinfo.tc_map_mode; 12768 if (priority) 12769 *priority = vport->nic.kinfo.dscp_prio[dscp] == HNAE3_PRIO_ID_INVALID ? 0 : 12770 vport->nic.kinfo.dscp_prio[dscp]; 12771 12772 return 0; 12773 } 12774 12775 static const struct hnae3_ae_ops hclge_ops = { 12776 .init_ae_dev = hclge_init_ae_dev, 12777 .uninit_ae_dev = hclge_uninit_ae_dev, 12778 .reset_prepare = hclge_reset_prepare_general, 12779 .reset_done = hclge_reset_done, 12780 .init_client_instance = hclge_init_client_instance, 12781 .uninit_client_instance = hclge_uninit_client_instance, 12782 .map_ring_to_vector = hclge_map_ring_to_vector, 12783 .unmap_ring_from_vector = hclge_unmap_ring_frm_vector, 12784 .get_vector = hclge_get_vector, 12785 .put_vector = hclge_put_vector, 12786 .set_promisc_mode = hclge_set_promisc_mode, 12787 .request_update_promisc_mode = hclge_request_update_promisc_mode, 12788 .set_loopback = hclge_set_loopback, 12789 .start = hclge_ae_start, 12790 .stop = hclge_ae_stop, 12791 .client_start = hclge_client_start, 12792 .client_stop = hclge_client_stop, 12793 .get_status = hclge_get_status, 12794 .get_ksettings_an_result = hclge_get_ksettings_an_result, 12795 .cfg_mac_speed_dup_h = hclge_cfg_mac_speed_dup_h, 12796 .get_media_type = hclge_get_media_type, 12797 .check_port_speed = hclge_check_port_speed, 12798 .get_fec_stats = hclge_get_fec_stats, 12799 .get_fec = hclge_get_fec, 12800 .set_fec = hclge_set_fec, 12801 .get_rss_key_size = hclge_comm_get_rss_key_size, 12802 .get_rss = hclge_get_rss, 12803 .set_rss = hclge_set_rss, 12804 .set_rss_tuple = hclge_set_rss_tuple, 12805 .get_rss_tuple = hclge_get_rss_tuple, 12806 .get_tc_size = hclge_get_tc_size, 12807 .get_mac_addr = hclge_get_mac_addr, 12808 .set_mac_addr = hclge_set_mac_addr, 12809 .do_ioctl = hclge_do_ioctl, 12810 .add_uc_addr = hclge_add_uc_addr, 12811 .rm_uc_addr = hclge_rm_uc_addr, 12812 .add_mc_addr = hclge_add_mc_addr, 12813 .rm_mc_addr = hclge_rm_mc_addr, 12814 .set_autoneg = hclge_set_autoneg, 12815 .get_autoneg = hclge_get_autoneg, 12816 .restart_autoneg = hclge_restart_autoneg, 12817 .halt_autoneg = hclge_halt_autoneg, 12818 .get_pauseparam = hclge_get_pauseparam, 12819 .set_pauseparam = hclge_set_pauseparam, 12820 .set_mtu = hclge_set_mtu, 12821 .reset_queue = hclge_reset_tqp, 12822 .get_stats = hclge_get_stats, 12823 .get_mac_stats = hclge_get_mac_stat, 12824 .update_stats = hclge_update_stats, 12825 .get_strings = hclge_get_strings, 12826 .get_sset_count = hclge_get_sset_count, 12827 .get_fw_version = hclge_get_fw_version, 12828 .get_mdix_mode = hclge_get_mdix_mode, 12829 .enable_vlan_filter = hclge_enable_vlan_filter, 12830 .set_vlan_filter = hclge_set_vlan_filter, 12831 .set_vf_vlan_filter = hclge_set_vf_vlan_filter, 12832 .enable_hw_strip_rxvtag = hclge_en_hw_strip_rxvtag, 12833 .reset_event = hclge_reset_event, 12834 .get_reset_level = hclge_get_reset_level, 12835 .set_default_reset_request = hclge_set_def_reset_request, 12836 .get_tqps_and_rss_info = hclge_get_tqps_and_rss_info, 12837 .set_channels = hclge_set_channels, 12838 .get_channels = hclge_get_channels, 12839 .get_regs_len = hclge_get_regs_len, 12840 .get_regs = hclge_get_regs, 12841 .set_led_id = hclge_set_led_id, 12842 .get_link_mode = hclge_get_link_mode, 12843 .add_fd_entry = hclge_add_fd_entry, 12844 .del_fd_entry = hclge_del_fd_entry, 12845 .get_fd_rule_cnt = hclge_get_fd_rule_cnt, 12846 .get_fd_rule_info = hclge_get_fd_rule_info, 12847 .get_fd_all_rules = hclge_get_all_rules, 12848 .enable_fd = hclge_enable_fd, 12849 .add_arfs_entry = hclge_add_fd_entry_by_arfs, 12850 .dbg_read_cmd = hclge_dbg_read_cmd, 12851 .handle_hw_ras_error = hclge_handle_hw_ras_error, 12852 .get_hw_reset_stat = hclge_get_hw_reset_stat, 12853 .ae_dev_resetting = hclge_ae_dev_resetting, 12854 .ae_dev_reset_cnt = hclge_ae_dev_reset_cnt, 12855 .set_gro_en = hclge_gro_en, 12856 .get_global_queue_id = hclge_covert_handle_qid_global, 12857 .set_timer_task = hclge_set_timer_task, 12858 .mac_connect_phy = hclge_mac_connect_phy, 12859 .mac_disconnect_phy = hclge_mac_disconnect_phy, 12860 .get_vf_config = hclge_get_vf_config, 12861 .set_vf_link_state = hclge_set_vf_link_state, 12862 .set_vf_spoofchk = hclge_set_vf_spoofchk, 12863 .set_vf_trust = hclge_set_vf_trust, 12864 .set_vf_rate = hclge_set_vf_rate, 12865 .set_vf_mac = hclge_set_vf_mac, 12866 .get_module_eeprom = hclge_get_module_eeprom, 12867 .get_cmdq_stat = hclge_get_cmdq_stat, 12868 .add_cls_flower = hclge_add_cls_flower, 12869 .del_cls_flower = hclge_del_cls_flower, 12870 .cls_flower_active = hclge_is_cls_flower_active, 12871 .get_phy_link_ksettings = hclge_get_phy_link_ksettings, 12872 .set_phy_link_ksettings = hclge_set_phy_link_ksettings, 12873 .set_tx_hwts_info = hclge_ptp_set_tx_info, 12874 .get_rx_hwts = hclge_ptp_get_rx_hwts, 12875 .get_ts_info = hclge_ptp_get_ts_info, 12876 .get_link_diagnosis_info = hclge_get_link_diagnosis_info, 12877 .clean_vf_config = hclge_clean_vport_config, 12878 .get_dscp_prio = hclge_get_dscp_prio, 12879 .get_wol = hclge_get_wol, 12880 .set_wol = hclge_set_wol, 12881 }; 12882 12883 static struct hnae3_ae_algo ae_algo = { 12884 .ops = &hclge_ops, 12885 .pdev_id_table = ae_algo_pci_tbl, 12886 }; 12887 12888 static int __init hclge_init(void) 12889 { 12890 pr_info("%s is initializing\n", HCLGE_NAME); 12891 12892 hclge_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, HCLGE_NAME); 12893 if (!hclge_wq) { 12894 pr_err("%s: failed to create workqueue\n", HCLGE_NAME); 12895 return -ENOMEM; 12896 } 12897 12898 hnae3_register_ae_algo(&ae_algo); 12899 12900 return 0; 12901 } 12902 12903 static void __exit hclge_exit(void) 12904 { 12905 hnae3_unregister_ae_algo_prepare(&ae_algo); 12906 hnae3_unregister_ae_algo(&ae_algo); 12907 destroy_workqueue(hclge_wq); 12908 } 12909 module_init(hclge_init); 12910 module_exit(hclge_exit); 12911 12912 MODULE_LICENSE("GPL"); 12913 MODULE_AUTHOR("Huawei Tech. Co., Ltd."); 12914 MODULE_DESCRIPTION("HCLGE Driver"); 12915 MODULE_VERSION(HCLGE_MOD_VERSION); 12916