1 // SPDX-License-Identifier: GPL-2.0+ 2 // Copyright (c) 2016-2017 Hisilicon Limited. 3 4 #include <linux/acpi.h> 5 #include <linux/device.h> 6 #include <linux/etherdevice.h> 7 #include <linux/init.h> 8 #include <linux/interrupt.h> 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/pci.h> 13 #include <linux/platform_device.h> 14 #include <linux/if_vlan.h> 15 #include <linux/crash_dump.h> 16 #include <net/ipv6.h> 17 #include <net/rtnetlink.h> 18 #include "hclge_cmd.h" 19 #include "hclge_dcb.h" 20 #include "hclge_main.h" 21 #include "hclge_mbx.h" 22 #include "hclge_mdio.h" 23 #include "hclge_regs.h" 24 #include "hclge_tm.h" 25 #include "hclge_err.h" 26 #include "hnae3.h" 27 #include "hclge_devlink.h" 28 #include "hclge_comm_cmd.h" 29 30 #define HCLGE_NAME "hclge" 31 32 #define HCLGE_BUF_SIZE_UNIT 256U 33 #define HCLGE_BUF_MUL_BY 2 34 #define HCLGE_BUF_DIV_BY 2 35 #define NEED_RESERVE_TC_NUM 2 36 #define BUF_MAX_PERCENT 100 37 #define BUF_RESERVE_PERCENT 90 38 39 #define HCLGE_RESET_MAX_FAIL_CNT 5 40 #define HCLGE_RESET_SYNC_TIME 100 41 #define HCLGE_PF_RESET_SYNC_TIME 20 42 #define HCLGE_PF_RESET_SYNC_CNT 1500 43 44 #define HCLGE_LINK_STATUS_MS 10 45 46 static int hclge_set_mac_mtu(struct hclge_dev *hdev, int new_mps); 47 static int hclge_init_vlan_config(struct hclge_dev *hdev); 48 static void hclge_sync_vlan_filter(struct hclge_dev *hdev); 49 static int hclge_reset_ae_dev(struct hnae3_ae_dev *ae_dev); 50 static bool hclge_get_hw_reset_stat(struct hnae3_handle *handle); 51 static void hclge_rfs_filter_expire(struct hclge_dev *hdev); 52 static int hclge_clear_arfs_rules(struct hclge_dev *hdev); 53 static enum hnae3_reset_type hclge_get_reset_level(struct hnae3_ae_dev *ae_dev, 54 unsigned long *addr); 55 static int hclge_set_default_loopback(struct hclge_dev *hdev); 56 57 static void hclge_sync_mac_table(struct hclge_dev *hdev); 58 static void hclge_restore_hw_table(struct hclge_dev *hdev); 59 static void hclge_sync_promisc_mode(struct hclge_dev *hdev); 60 static void hclge_sync_fd_table(struct hclge_dev *hdev); 61 static void hclge_update_fec_stats(struct hclge_dev *hdev); 62 static int hclge_mac_link_status_wait(struct hclge_dev *hdev, int link_ret, 63 int wait_cnt); 64 65 static struct hnae3_ae_algo ae_algo; 66 67 static struct workqueue_struct *hclge_wq; 68 69 static const struct pci_device_id ae_algo_pci_tbl[] = { 70 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0}, 71 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0}, 72 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA), 0}, 73 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC), 0}, 74 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA), 0}, 75 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC), 0}, 76 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC), 0}, 77 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_200G_RDMA), 0}, 78 /* required last entry */ 79 {0, } 80 }; 81 82 MODULE_DEVICE_TABLE(pci, ae_algo_pci_tbl); 83 84 static const char hns3_nic_test_strs[][ETH_GSTRING_LEN] = { 85 "External Loopback test", 86 "App Loopback test", 87 "Serdes serial Loopback test", 88 "Serdes parallel Loopback test", 89 "Phy Loopback test" 90 }; 91 92 static const struct hclge_comm_stats_str g_mac_stats_string[] = { 93 {"mac_tx_mac_pause_num", HCLGE_MAC_STATS_MAX_NUM_V1, 94 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_mac_pause_num)}, 95 {"mac_rx_mac_pause_num", HCLGE_MAC_STATS_MAX_NUM_V1, 96 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_mac_pause_num)}, 97 {"mac_tx_pause_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 98 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pause_xoff_time)}, 99 {"mac_rx_pause_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 100 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pause_xoff_time)}, 101 {"mac_tx_control_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 102 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_ctrl_pkt_num)}, 103 {"mac_rx_control_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 104 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_ctrl_pkt_num)}, 105 {"mac_tx_pfc_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 106 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pause_pkt_num)}, 107 {"mac_tx_pfc_pri0_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 108 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri0_pkt_num)}, 109 {"mac_tx_pfc_pri1_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 110 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri1_pkt_num)}, 111 {"mac_tx_pfc_pri2_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 112 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri2_pkt_num)}, 113 {"mac_tx_pfc_pri3_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 114 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri3_pkt_num)}, 115 {"mac_tx_pfc_pri4_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 116 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri4_pkt_num)}, 117 {"mac_tx_pfc_pri5_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 118 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri5_pkt_num)}, 119 {"mac_tx_pfc_pri6_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 120 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri6_pkt_num)}, 121 {"mac_tx_pfc_pri7_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 122 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri7_pkt_num)}, 123 {"mac_tx_pfc_pri0_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 124 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri0_xoff_time)}, 125 {"mac_tx_pfc_pri1_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 126 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri1_xoff_time)}, 127 {"mac_tx_pfc_pri2_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 128 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri2_xoff_time)}, 129 {"mac_tx_pfc_pri3_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 130 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri3_xoff_time)}, 131 {"mac_tx_pfc_pri4_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 132 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri4_xoff_time)}, 133 {"mac_tx_pfc_pri5_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 134 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri5_xoff_time)}, 135 {"mac_tx_pfc_pri6_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 136 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri6_xoff_time)}, 137 {"mac_tx_pfc_pri7_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 138 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_pfc_pri7_xoff_time)}, 139 {"mac_rx_pfc_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 140 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pause_pkt_num)}, 141 {"mac_rx_pfc_pri0_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 142 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri0_pkt_num)}, 143 {"mac_rx_pfc_pri1_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 144 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri1_pkt_num)}, 145 {"mac_rx_pfc_pri2_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 146 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri2_pkt_num)}, 147 {"mac_rx_pfc_pri3_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 148 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri3_pkt_num)}, 149 {"mac_rx_pfc_pri4_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 150 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri4_pkt_num)}, 151 {"mac_rx_pfc_pri5_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 152 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri5_pkt_num)}, 153 {"mac_rx_pfc_pri6_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 154 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri6_pkt_num)}, 155 {"mac_rx_pfc_pri7_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 156 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri7_pkt_num)}, 157 {"mac_rx_pfc_pri0_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 158 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri0_xoff_time)}, 159 {"mac_rx_pfc_pri1_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 160 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri1_xoff_time)}, 161 {"mac_rx_pfc_pri2_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 162 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri2_xoff_time)}, 163 {"mac_rx_pfc_pri3_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 164 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri3_xoff_time)}, 165 {"mac_rx_pfc_pri4_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 166 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri4_xoff_time)}, 167 {"mac_rx_pfc_pri5_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 168 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri5_xoff_time)}, 169 {"mac_rx_pfc_pri6_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 170 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri6_xoff_time)}, 171 {"mac_rx_pfc_pri7_xoff_time", HCLGE_MAC_STATS_MAX_NUM_V2, 172 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_pfc_pri7_xoff_time)}, 173 {"mac_tx_total_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 174 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_total_pkt_num)}, 175 {"mac_tx_total_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1, 176 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_total_oct_num)}, 177 {"mac_tx_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 178 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_good_pkt_num)}, 179 {"mac_tx_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 180 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_bad_pkt_num)}, 181 {"mac_tx_good_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1, 182 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_good_oct_num)}, 183 {"mac_tx_bad_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1, 184 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_bad_oct_num)}, 185 {"mac_tx_uni_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 186 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_uni_pkt_num)}, 187 {"mac_tx_multi_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 188 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_multi_pkt_num)}, 189 {"mac_tx_broad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 190 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_broad_pkt_num)}, 191 {"mac_tx_undersize_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 192 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_undersize_pkt_num)}, 193 {"mac_tx_oversize_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 194 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_oversize_pkt_num)}, 195 {"mac_tx_64_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 196 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_64_oct_pkt_num)}, 197 {"mac_tx_65_127_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 198 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_65_127_oct_pkt_num)}, 199 {"mac_tx_128_255_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 200 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_128_255_oct_pkt_num)}, 201 {"mac_tx_256_511_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 202 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_256_511_oct_pkt_num)}, 203 {"mac_tx_512_1023_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 204 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_512_1023_oct_pkt_num)}, 205 {"mac_tx_1024_1518_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 206 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_1024_1518_oct_pkt_num)}, 207 {"mac_tx_1519_2047_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 208 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_1519_2047_oct_pkt_num)}, 209 {"mac_tx_2048_4095_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 210 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_2048_4095_oct_pkt_num)}, 211 {"mac_tx_4096_8191_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 212 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_4096_8191_oct_pkt_num)}, 213 {"mac_tx_8192_9216_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 214 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_8192_9216_oct_pkt_num)}, 215 {"mac_tx_9217_12287_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 216 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_9217_12287_oct_pkt_num)}, 217 {"mac_tx_12288_16383_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 218 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_12288_16383_oct_pkt_num)}, 219 {"mac_tx_1519_max_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 220 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_1519_max_good_oct_pkt_num)}, 221 {"mac_tx_1519_max_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 222 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_1519_max_bad_oct_pkt_num)}, 223 {"mac_rx_total_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 224 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_total_pkt_num)}, 225 {"mac_rx_total_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1, 226 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_total_oct_num)}, 227 {"mac_rx_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 228 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_good_pkt_num)}, 229 {"mac_rx_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 230 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_bad_pkt_num)}, 231 {"mac_rx_good_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1, 232 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_good_oct_num)}, 233 {"mac_rx_bad_oct_num", HCLGE_MAC_STATS_MAX_NUM_V1, 234 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_bad_oct_num)}, 235 {"mac_rx_uni_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 236 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_uni_pkt_num)}, 237 {"mac_rx_multi_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 238 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_multi_pkt_num)}, 239 {"mac_rx_broad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 240 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_broad_pkt_num)}, 241 {"mac_rx_undersize_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 242 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_undersize_pkt_num)}, 243 {"mac_rx_oversize_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 244 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_oversize_pkt_num)}, 245 {"mac_rx_64_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 246 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_64_oct_pkt_num)}, 247 {"mac_rx_65_127_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 248 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_65_127_oct_pkt_num)}, 249 {"mac_rx_128_255_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 250 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_128_255_oct_pkt_num)}, 251 {"mac_rx_256_511_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 252 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_256_511_oct_pkt_num)}, 253 {"mac_rx_512_1023_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 254 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_512_1023_oct_pkt_num)}, 255 {"mac_rx_1024_1518_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 256 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_1024_1518_oct_pkt_num)}, 257 {"mac_rx_1519_2047_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 258 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_1519_2047_oct_pkt_num)}, 259 {"mac_rx_2048_4095_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 260 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_2048_4095_oct_pkt_num)}, 261 {"mac_rx_4096_8191_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 262 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_4096_8191_oct_pkt_num)}, 263 {"mac_rx_8192_9216_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 264 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_8192_9216_oct_pkt_num)}, 265 {"mac_rx_9217_12287_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 266 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_9217_12287_oct_pkt_num)}, 267 {"mac_rx_12288_16383_oct_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 268 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_12288_16383_oct_pkt_num)}, 269 {"mac_rx_1519_max_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 270 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_1519_max_good_oct_pkt_num)}, 271 {"mac_rx_1519_max_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 272 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_1519_max_bad_oct_pkt_num)}, 273 274 {"mac_tx_fragment_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 275 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_fragment_pkt_num)}, 276 {"mac_tx_undermin_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 277 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_undermin_pkt_num)}, 278 {"mac_tx_jabber_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 279 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_jabber_pkt_num)}, 280 {"mac_tx_err_all_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 281 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_err_all_pkt_num)}, 282 {"mac_tx_from_app_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 283 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_from_app_good_pkt_num)}, 284 {"mac_tx_from_app_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 285 HCLGE_MAC_STATS_FIELD_OFF(mac_tx_from_app_bad_pkt_num)}, 286 {"mac_rx_fragment_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 287 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_fragment_pkt_num)}, 288 {"mac_rx_undermin_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 289 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_undermin_pkt_num)}, 290 {"mac_rx_jabber_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 291 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_jabber_pkt_num)}, 292 {"mac_rx_fcs_err_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 293 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_fcs_err_pkt_num)}, 294 {"mac_rx_send_app_good_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 295 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_send_app_good_pkt_num)}, 296 {"mac_rx_send_app_bad_pkt_num", HCLGE_MAC_STATS_MAX_NUM_V1, 297 HCLGE_MAC_STATS_FIELD_OFF(mac_rx_send_app_bad_pkt_num)} 298 }; 299 300 static const struct hclge_mac_mgr_tbl_entry_cmd hclge_mgr_table[] = { 301 { 302 .flags = HCLGE_MAC_MGR_MASK_VLAN_B, 303 .ethter_type = cpu_to_le16(ETH_P_LLDP), 304 .mac_addr = {0x01, 0x80, 0xc2, 0x00, 0x00, 0x0e}, 305 .i_port_bitmap = 0x1, 306 }, 307 }; 308 309 static const struct key_info meta_data_key_info[] = { 310 { PACKET_TYPE_ID, 6 }, 311 { IP_FRAGEMENT, 1 }, 312 { ROCE_TYPE, 1 }, 313 { NEXT_KEY, 5 }, 314 { VLAN_NUMBER, 2 }, 315 { SRC_VPORT, 12 }, 316 { DST_VPORT, 12 }, 317 { TUNNEL_PACKET, 1 }, 318 }; 319 320 static const struct key_info tuple_key_info[] = { 321 { OUTER_DST_MAC, 48, KEY_OPT_MAC, -1, -1 }, 322 { OUTER_SRC_MAC, 48, KEY_OPT_MAC, -1, -1 }, 323 { OUTER_VLAN_TAG_FST, 16, KEY_OPT_LE16, -1, -1 }, 324 { OUTER_VLAN_TAG_SEC, 16, KEY_OPT_LE16, -1, -1 }, 325 { OUTER_ETH_TYPE, 16, KEY_OPT_LE16, -1, -1 }, 326 { OUTER_L2_RSV, 16, KEY_OPT_LE16, -1, -1 }, 327 { OUTER_IP_TOS, 8, KEY_OPT_U8, -1, -1 }, 328 { OUTER_IP_PROTO, 8, KEY_OPT_U8, -1, -1 }, 329 { OUTER_SRC_IP, 32, KEY_OPT_IP, -1, -1 }, 330 { OUTER_DST_IP, 32, KEY_OPT_IP, -1, -1 }, 331 { OUTER_L3_RSV, 16, KEY_OPT_LE16, -1, -1 }, 332 { OUTER_SRC_PORT, 16, KEY_OPT_LE16, -1, -1 }, 333 { OUTER_DST_PORT, 16, KEY_OPT_LE16, -1, -1 }, 334 { OUTER_L4_RSV, 32, KEY_OPT_LE32, -1, -1 }, 335 { OUTER_TUN_VNI, 24, KEY_OPT_VNI, -1, -1 }, 336 { OUTER_TUN_FLOW_ID, 8, KEY_OPT_U8, -1, -1 }, 337 { INNER_DST_MAC, 48, KEY_OPT_MAC, 338 offsetof(struct hclge_fd_rule, tuples.dst_mac), 339 offsetof(struct hclge_fd_rule, tuples_mask.dst_mac) }, 340 { INNER_SRC_MAC, 48, KEY_OPT_MAC, 341 offsetof(struct hclge_fd_rule, tuples.src_mac), 342 offsetof(struct hclge_fd_rule, tuples_mask.src_mac) }, 343 { INNER_VLAN_TAG_FST, 16, KEY_OPT_LE16, 344 offsetof(struct hclge_fd_rule, tuples.vlan_tag1), 345 offsetof(struct hclge_fd_rule, tuples_mask.vlan_tag1) }, 346 { INNER_VLAN_TAG_SEC, 16, KEY_OPT_LE16, -1, -1 }, 347 { INNER_ETH_TYPE, 16, KEY_OPT_LE16, 348 offsetof(struct hclge_fd_rule, tuples.ether_proto), 349 offsetof(struct hclge_fd_rule, tuples_mask.ether_proto) }, 350 { INNER_L2_RSV, 16, KEY_OPT_LE16, 351 offsetof(struct hclge_fd_rule, tuples.l2_user_def), 352 offsetof(struct hclge_fd_rule, tuples_mask.l2_user_def) }, 353 { INNER_IP_TOS, 8, KEY_OPT_U8, 354 offsetof(struct hclge_fd_rule, tuples.ip_tos), 355 offsetof(struct hclge_fd_rule, tuples_mask.ip_tos) }, 356 { INNER_IP_PROTO, 8, KEY_OPT_U8, 357 offsetof(struct hclge_fd_rule, tuples.ip_proto), 358 offsetof(struct hclge_fd_rule, tuples_mask.ip_proto) }, 359 { INNER_SRC_IP, 32, KEY_OPT_IP, 360 offsetof(struct hclge_fd_rule, tuples.src_ip), 361 offsetof(struct hclge_fd_rule, tuples_mask.src_ip) }, 362 { INNER_DST_IP, 32, KEY_OPT_IP, 363 offsetof(struct hclge_fd_rule, tuples.dst_ip), 364 offsetof(struct hclge_fd_rule, tuples_mask.dst_ip) }, 365 { INNER_L3_RSV, 16, KEY_OPT_LE16, 366 offsetof(struct hclge_fd_rule, tuples.l3_user_def), 367 offsetof(struct hclge_fd_rule, tuples_mask.l3_user_def) }, 368 { INNER_SRC_PORT, 16, KEY_OPT_LE16, 369 offsetof(struct hclge_fd_rule, tuples.src_port), 370 offsetof(struct hclge_fd_rule, tuples_mask.src_port) }, 371 { INNER_DST_PORT, 16, KEY_OPT_LE16, 372 offsetof(struct hclge_fd_rule, tuples.dst_port), 373 offsetof(struct hclge_fd_rule, tuples_mask.dst_port) }, 374 { INNER_L4_RSV, 32, KEY_OPT_LE32, 375 offsetof(struct hclge_fd_rule, tuples.l4_user_def), 376 offsetof(struct hclge_fd_rule, tuples_mask.l4_user_def) }, 377 }; 378 379 /** 380 * hclge_cmd_send - send command to command queue 381 * @hw: pointer to the hw struct 382 * @desc: prefilled descriptor for describing the command 383 * @num : the number of descriptors to be sent 384 * 385 * This is the main send command for command queue, it 386 * sends the queue, cleans the queue, etc 387 **/ 388 int hclge_cmd_send(struct hclge_hw *hw, struct hclge_desc *desc, int num) 389 { 390 return hclge_comm_cmd_send(&hw->hw, desc, num); 391 } 392 393 static int hclge_mac_update_stats_defective(struct hclge_dev *hdev) 394 { 395 #define HCLGE_MAC_CMD_NUM 21 396 397 u64 *data = (u64 *)(&hdev->mac_stats); 398 struct hclge_desc desc[HCLGE_MAC_CMD_NUM]; 399 __le64 *desc_data; 400 u32 data_size; 401 int ret; 402 u32 i; 403 404 hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_STATS_MAC, true); 405 ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_MAC_CMD_NUM); 406 if (ret) { 407 dev_err(&hdev->pdev->dev, 408 "Get MAC pkt stats fail, status = %d.\n", ret); 409 410 return ret; 411 } 412 413 /* The first desc has a 64-bit header, so data size need to minus 1 */ 414 data_size = sizeof(desc) / (sizeof(u64)) - 1; 415 416 desc_data = (__le64 *)(&desc[0].data[0]); 417 for (i = 0; i < data_size; i++) { 418 /* data memory is continuous becase only the first desc has a 419 * header in this command 420 */ 421 *data += le64_to_cpu(*desc_data); 422 data++; 423 desc_data++; 424 } 425 426 return 0; 427 } 428 429 static int hclge_mac_update_stats_complete(struct hclge_dev *hdev) 430 { 431 #define HCLGE_REG_NUM_PER_DESC 4 432 433 u32 reg_num = hdev->ae_dev->dev_specs.mac_stats_num; 434 u64 *data = (u64 *)(&hdev->mac_stats); 435 struct hclge_desc *desc; 436 __le64 *desc_data; 437 u32 data_size; 438 u32 desc_num; 439 int ret; 440 u32 i; 441 442 /* The first desc has a 64-bit header, so need to consider it */ 443 desc_num = reg_num / HCLGE_REG_NUM_PER_DESC + 1; 444 445 /* This may be called inside atomic sections, 446 * so GFP_ATOMIC is more suitalbe here 447 */ 448 desc = kcalloc(desc_num, sizeof(struct hclge_desc), GFP_ATOMIC); 449 if (!desc) 450 return -ENOMEM; 451 452 hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_STATS_MAC_ALL, true); 453 ret = hclge_cmd_send(&hdev->hw, desc, desc_num); 454 if (ret) { 455 kfree(desc); 456 return ret; 457 } 458 459 data_size = min_t(u32, sizeof(hdev->mac_stats) / sizeof(u64), reg_num); 460 461 desc_data = (__le64 *)(&desc[0].data[0]); 462 for (i = 0; i < data_size; i++) { 463 /* data memory is continuous becase only the first desc has a 464 * header in this command 465 */ 466 *data += le64_to_cpu(*desc_data); 467 data++; 468 desc_data++; 469 } 470 471 kfree(desc); 472 473 return 0; 474 } 475 476 static int hclge_mac_query_reg_num(struct hclge_dev *hdev, u32 *reg_num) 477 { 478 struct hclge_desc desc; 479 int ret; 480 481 /* Driver needs total register number of both valid registers and 482 * reserved registers, but the old firmware only returns number 483 * of valid registers in device V2. To be compatible with these 484 * devices, driver uses a fixed value. 485 */ 486 if (hdev->ae_dev->dev_version == HNAE3_DEVICE_VERSION_V2) { 487 *reg_num = HCLGE_MAC_STATS_MAX_NUM_V1; 488 return 0; 489 } 490 491 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_MAC_REG_NUM, true); 492 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 493 if (ret) { 494 dev_err(&hdev->pdev->dev, 495 "failed to query mac statistic reg number, ret = %d\n", 496 ret); 497 return ret; 498 } 499 500 *reg_num = le32_to_cpu(desc.data[0]); 501 if (*reg_num == 0) { 502 dev_err(&hdev->pdev->dev, 503 "mac statistic reg number is invalid!\n"); 504 return -ENODATA; 505 } 506 507 return 0; 508 } 509 510 int hclge_mac_update_stats(struct hclge_dev *hdev) 511 { 512 /* The firmware supports the new statistics acquisition method */ 513 if (hdev->ae_dev->dev_specs.mac_stats_num) 514 return hclge_mac_update_stats_complete(hdev); 515 else 516 return hclge_mac_update_stats_defective(hdev); 517 } 518 519 static int hclge_comm_get_count(struct hclge_dev *hdev, 520 const struct hclge_comm_stats_str strs[], 521 u32 size) 522 { 523 int count = 0; 524 u32 i; 525 526 for (i = 0; i < size; i++) 527 if (strs[i].stats_num <= hdev->ae_dev->dev_specs.mac_stats_num) 528 count++; 529 530 return count; 531 } 532 533 static u64 *hclge_comm_get_stats(struct hclge_dev *hdev, 534 const struct hclge_comm_stats_str strs[], 535 int size, u64 *data) 536 { 537 u64 *buf = data; 538 u32 i; 539 540 for (i = 0; i < size; i++) { 541 if (strs[i].stats_num > hdev->ae_dev->dev_specs.mac_stats_num) 542 continue; 543 544 *buf = HCLGE_STATS_READ(&hdev->mac_stats, strs[i].offset); 545 buf++; 546 } 547 548 return buf; 549 } 550 551 static u8 *hclge_comm_get_strings(struct hclge_dev *hdev, u32 stringset, 552 const struct hclge_comm_stats_str strs[], 553 int size, u8 *data) 554 { 555 char *buff = (char *)data; 556 u32 i; 557 558 if (stringset != ETH_SS_STATS) 559 return buff; 560 561 for (i = 0; i < size; i++) { 562 if (strs[i].stats_num > hdev->ae_dev->dev_specs.mac_stats_num) 563 continue; 564 565 snprintf(buff, ETH_GSTRING_LEN, "%s", strs[i].desc); 566 buff = buff + ETH_GSTRING_LEN; 567 } 568 569 return (u8 *)buff; 570 } 571 572 static void hclge_update_stats_for_all(struct hclge_dev *hdev) 573 { 574 struct hnae3_handle *handle; 575 int status; 576 577 handle = &hdev->vport[0].nic; 578 if (handle->client) { 579 status = hclge_comm_tqps_update_stats(handle, &hdev->hw.hw); 580 if (status) { 581 dev_err(&hdev->pdev->dev, 582 "Update TQPS stats fail, status = %d.\n", 583 status); 584 } 585 } 586 587 hclge_update_fec_stats(hdev); 588 589 status = hclge_mac_update_stats(hdev); 590 if (status) 591 dev_err(&hdev->pdev->dev, 592 "Update MAC stats fail, status = %d.\n", status); 593 } 594 595 static void hclge_update_stats(struct hnae3_handle *handle) 596 { 597 struct hclge_vport *vport = hclge_get_vport(handle); 598 struct hclge_dev *hdev = vport->back; 599 int status; 600 601 if (test_and_set_bit(HCLGE_STATE_STATISTICS_UPDATING, &hdev->state)) 602 return; 603 604 status = hclge_mac_update_stats(hdev); 605 if (status) 606 dev_err(&hdev->pdev->dev, 607 "Update MAC stats fail, status = %d.\n", 608 status); 609 610 status = hclge_comm_tqps_update_stats(handle, &hdev->hw.hw); 611 if (status) 612 dev_err(&hdev->pdev->dev, 613 "Update TQPS stats fail, status = %d.\n", 614 status); 615 616 clear_bit(HCLGE_STATE_STATISTICS_UPDATING, &hdev->state); 617 } 618 619 static int hclge_get_sset_count(struct hnae3_handle *handle, int stringset) 620 { 621 #define HCLGE_LOOPBACK_TEST_FLAGS (HNAE3_SUPPORT_APP_LOOPBACK | \ 622 HNAE3_SUPPORT_PHY_LOOPBACK | \ 623 HNAE3_SUPPORT_SERDES_SERIAL_LOOPBACK | \ 624 HNAE3_SUPPORT_SERDES_PARALLEL_LOOPBACK | \ 625 HNAE3_SUPPORT_EXTERNAL_LOOPBACK) 626 627 struct hclge_vport *vport = hclge_get_vport(handle); 628 struct hclge_dev *hdev = vport->back; 629 int count = 0; 630 631 /* Loopback test support rules: 632 * mac: only GE mode support 633 * serdes: all mac mode will support include GE/XGE/LGE/CGE 634 * phy: only support when phy device exist on board 635 */ 636 if (stringset == ETH_SS_TEST) { 637 /* clear loopback bit flags at first */ 638 handle->flags = (handle->flags & (~HCLGE_LOOPBACK_TEST_FLAGS)); 639 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2 || 640 hdev->hw.mac.speed == HCLGE_MAC_SPEED_10M || 641 hdev->hw.mac.speed == HCLGE_MAC_SPEED_100M || 642 hdev->hw.mac.speed == HCLGE_MAC_SPEED_1G) { 643 count += 1; 644 handle->flags |= HNAE3_SUPPORT_APP_LOOPBACK; 645 } 646 647 count += 1; 648 handle->flags |= HNAE3_SUPPORT_SERDES_SERIAL_LOOPBACK; 649 count += 1; 650 handle->flags |= HNAE3_SUPPORT_SERDES_PARALLEL_LOOPBACK; 651 count += 1; 652 handle->flags |= HNAE3_SUPPORT_EXTERNAL_LOOPBACK; 653 654 if ((hdev->hw.mac.phydev && hdev->hw.mac.phydev->drv && 655 hdev->hw.mac.phydev->drv->set_loopback) || 656 hnae3_dev_phy_imp_supported(hdev)) { 657 count += 1; 658 handle->flags |= HNAE3_SUPPORT_PHY_LOOPBACK; 659 } 660 } else if (stringset == ETH_SS_STATS) { 661 count = hclge_comm_get_count(hdev, g_mac_stats_string, 662 ARRAY_SIZE(g_mac_stats_string)) + 663 hclge_comm_tqps_get_sset_count(handle); 664 } 665 666 return count; 667 } 668 669 static void hclge_get_strings(struct hnae3_handle *handle, u32 stringset, 670 u8 *data) 671 { 672 struct hclge_vport *vport = hclge_get_vport(handle); 673 struct hclge_dev *hdev = vport->back; 674 u8 *p = (char *)data; 675 int size; 676 677 if (stringset == ETH_SS_STATS) { 678 size = ARRAY_SIZE(g_mac_stats_string); 679 p = hclge_comm_get_strings(hdev, stringset, g_mac_stats_string, 680 size, p); 681 p = hclge_comm_tqps_get_strings(handle, p); 682 } else if (stringset == ETH_SS_TEST) { 683 if (handle->flags & HNAE3_SUPPORT_EXTERNAL_LOOPBACK) { 684 memcpy(p, hns3_nic_test_strs[HNAE3_LOOP_EXTERNAL], 685 ETH_GSTRING_LEN); 686 p += ETH_GSTRING_LEN; 687 } 688 if (handle->flags & HNAE3_SUPPORT_APP_LOOPBACK) { 689 memcpy(p, hns3_nic_test_strs[HNAE3_LOOP_APP], 690 ETH_GSTRING_LEN); 691 p += ETH_GSTRING_LEN; 692 } 693 if (handle->flags & HNAE3_SUPPORT_SERDES_SERIAL_LOOPBACK) { 694 memcpy(p, hns3_nic_test_strs[HNAE3_LOOP_SERIAL_SERDES], 695 ETH_GSTRING_LEN); 696 p += ETH_GSTRING_LEN; 697 } 698 if (handle->flags & HNAE3_SUPPORT_SERDES_PARALLEL_LOOPBACK) { 699 memcpy(p, 700 hns3_nic_test_strs[HNAE3_LOOP_PARALLEL_SERDES], 701 ETH_GSTRING_LEN); 702 p += ETH_GSTRING_LEN; 703 } 704 if (handle->flags & HNAE3_SUPPORT_PHY_LOOPBACK) { 705 memcpy(p, hns3_nic_test_strs[HNAE3_LOOP_PHY], 706 ETH_GSTRING_LEN); 707 p += ETH_GSTRING_LEN; 708 } 709 } 710 } 711 712 static void hclge_get_stats(struct hnae3_handle *handle, u64 *data) 713 { 714 struct hclge_vport *vport = hclge_get_vport(handle); 715 struct hclge_dev *hdev = vport->back; 716 u64 *p; 717 718 p = hclge_comm_get_stats(hdev, g_mac_stats_string, 719 ARRAY_SIZE(g_mac_stats_string), data); 720 p = hclge_comm_tqps_get_stats(handle, p); 721 } 722 723 static void hclge_get_mac_stat(struct hnae3_handle *handle, 724 struct hns3_mac_stats *mac_stats) 725 { 726 struct hclge_vport *vport = hclge_get_vport(handle); 727 struct hclge_dev *hdev = vport->back; 728 729 hclge_update_stats(handle); 730 731 mac_stats->tx_pause_cnt = hdev->mac_stats.mac_tx_mac_pause_num; 732 mac_stats->rx_pause_cnt = hdev->mac_stats.mac_rx_mac_pause_num; 733 } 734 735 static int hclge_parse_func_status(struct hclge_dev *hdev, 736 struct hclge_func_status_cmd *status) 737 { 738 #define HCLGE_MAC_ID_MASK 0xF 739 740 if (!(status->pf_state & HCLGE_PF_STATE_DONE)) 741 return -EINVAL; 742 743 /* Set the pf to main pf */ 744 if (status->pf_state & HCLGE_PF_STATE_MAIN) 745 hdev->flag |= HCLGE_FLAG_MAIN; 746 else 747 hdev->flag &= ~HCLGE_FLAG_MAIN; 748 749 hdev->hw.mac.mac_id = status->mac_id & HCLGE_MAC_ID_MASK; 750 return 0; 751 } 752 753 static int hclge_query_function_status(struct hclge_dev *hdev) 754 { 755 #define HCLGE_QUERY_MAX_CNT 5 756 757 struct hclge_func_status_cmd *req; 758 struct hclge_desc desc; 759 int timeout = 0; 760 int ret; 761 762 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_FUNC_STATUS, true); 763 req = (struct hclge_func_status_cmd *)desc.data; 764 765 do { 766 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 767 if (ret) { 768 dev_err(&hdev->pdev->dev, 769 "query function status failed %d.\n", ret); 770 return ret; 771 } 772 773 /* Check pf reset is done */ 774 if (req->pf_state) 775 break; 776 usleep_range(1000, 2000); 777 } while (timeout++ < HCLGE_QUERY_MAX_CNT); 778 779 return hclge_parse_func_status(hdev, req); 780 } 781 782 static int hclge_query_pf_resource(struct hclge_dev *hdev) 783 { 784 struct hclge_pf_res_cmd *req; 785 struct hclge_desc desc; 786 int ret; 787 788 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_PF_RSRC, true); 789 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 790 if (ret) { 791 dev_err(&hdev->pdev->dev, 792 "query pf resource failed %d.\n", ret); 793 return ret; 794 } 795 796 req = (struct hclge_pf_res_cmd *)desc.data; 797 hdev->num_tqps = le16_to_cpu(req->tqp_num) + 798 le16_to_cpu(req->ext_tqp_num); 799 hdev->pkt_buf_size = le16_to_cpu(req->buf_size) << HCLGE_BUF_UNIT_S; 800 801 if (req->tx_buf_size) 802 hdev->tx_buf_size = 803 le16_to_cpu(req->tx_buf_size) << HCLGE_BUF_UNIT_S; 804 else 805 hdev->tx_buf_size = HCLGE_DEFAULT_TX_BUF; 806 807 hdev->tx_buf_size = roundup(hdev->tx_buf_size, HCLGE_BUF_SIZE_UNIT); 808 809 if (req->dv_buf_size) 810 hdev->dv_buf_size = 811 le16_to_cpu(req->dv_buf_size) << HCLGE_BUF_UNIT_S; 812 else 813 hdev->dv_buf_size = HCLGE_DEFAULT_DV; 814 815 hdev->dv_buf_size = roundup(hdev->dv_buf_size, HCLGE_BUF_SIZE_UNIT); 816 817 hdev->num_nic_msi = le16_to_cpu(req->msixcap_localid_number_nic); 818 if (hdev->num_nic_msi < HNAE3_MIN_VECTOR_NUM) { 819 dev_err(&hdev->pdev->dev, 820 "only %u msi resources available, not enough for pf(min:2).\n", 821 hdev->num_nic_msi); 822 return -EINVAL; 823 } 824 825 if (hnae3_dev_roce_supported(hdev)) { 826 hdev->num_roce_msi = 827 le16_to_cpu(req->pf_intr_vector_number_roce); 828 829 /* PF should have NIC vectors and Roce vectors, 830 * NIC vectors are queued before Roce vectors. 831 */ 832 hdev->num_msi = hdev->num_nic_msi + hdev->num_roce_msi; 833 } else { 834 hdev->num_msi = hdev->num_nic_msi; 835 } 836 837 return 0; 838 } 839 840 static int hclge_parse_speed(u8 speed_cmd, u32 *speed) 841 { 842 switch (speed_cmd) { 843 case HCLGE_FW_MAC_SPEED_10M: 844 *speed = HCLGE_MAC_SPEED_10M; 845 break; 846 case HCLGE_FW_MAC_SPEED_100M: 847 *speed = HCLGE_MAC_SPEED_100M; 848 break; 849 case HCLGE_FW_MAC_SPEED_1G: 850 *speed = HCLGE_MAC_SPEED_1G; 851 break; 852 case HCLGE_FW_MAC_SPEED_10G: 853 *speed = HCLGE_MAC_SPEED_10G; 854 break; 855 case HCLGE_FW_MAC_SPEED_25G: 856 *speed = HCLGE_MAC_SPEED_25G; 857 break; 858 case HCLGE_FW_MAC_SPEED_40G: 859 *speed = HCLGE_MAC_SPEED_40G; 860 break; 861 case HCLGE_FW_MAC_SPEED_50G: 862 *speed = HCLGE_MAC_SPEED_50G; 863 break; 864 case HCLGE_FW_MAC_SPEED_100G: 865 *speed = HCLGE_MAC_SPEED_100G; 866 break; 867 case HCLGE_FW_MAC_SPEED_200G: 868 *speed = HCLGE_MAC_SPEED_200G; 869 break; 870 default: 871 return -EINVAL; 872 } 873 874 return 0; 875 } 876 877 static const struct hclge_speed_bit_map speed_bit_map[] = { 878 {HCLGE_MAC_SPEED_10M, HCLGE_SUPPORT_10M_BIT}, 879 {HCLGE_MAC_SPEED_100M, HCLGE_SUPPORT_100M_BIT}, 880 {HCLGE_MAC_SPEED_1G, HCLGE_SUPPORT_1G_BIT}, 881 {HCLGE_MAC_SPEED_10G, HCLGE_SUPPORT_10G_BIT}, 882 {HCLGE_MAC_SPEED_25G, HCLGE_SUPPORT_25G_BIT}, 883 {HCLGE_MAC_SPEED_40G, HCLGE_SUPPORT_40G_BIT}, 884 {HCLGE_MAC_SPEED_50G, HCLGE_SUPPORT_50G_BITS}, 885 {HCLGE_MAC_SPEED_100G, HCLGE_SUPPORT_100G_BITS}, 886 {HCLGE_MAC_SPEED_200G, HCLGE_SUPPORT_200G_BIT}, 887 }; 888 889 static int hclge_get_speed_bit(u32 speed, u32 *speed_bit) 890 { 891 u16 i; 892 893 for (i = 0; i < ARRAY_SIZE(speed_bit_map); i++) { 894 if (speed == speed_bit_map[i].speed) { 895 *speed_bit = speed_bit_map[i].speed_bit; 896 return 0; 897 } 898 } 899 900 return -EINVAL; 901 } 902 903 static int hclge_check_port_speed(struct hnae3_handle *handle, u32 speed) 904 { 905 struct hclge_vport *vport = hclge_get_vport(handle); 906 struct hclge_dev *hdev = vport->back; 907 u32 speed_ability = hdev->hw.mac.speed_ability; 908 u32 speed_bit = 0; 909 int ret; 910 911 ret = hclge_get_speed_bit(speed, &speed_bit); 912 if (ret) 913 return ret; 914 915 if (speed_bit & speed_ability) 916 return 0; 917 918 return -EINVAL; 919 } 920 921 static void hclge_update_fec_support(struct hclge_mac *mac) 922 { 923 linkmode_clear_bit(ETHTOOL_LINK_MODE_FEC_BASER_BIT, mac->supported); 924 linkmode_clear_bit(ETHTOOL_LINK_MODE_FEC_RS_BIT, mac->supported); 925 linkmode_clear_bit(ETHTOOL_LINK_MODE_FEC_LLRS_BIT, mac->supported); 926 linkmode_clear_bit(ETHTOOL_LINK_MODE_FEC_NONE_BIT, mac->supported); 927 928 if (mac->fec_ability & BIT(HNAE3_FEC_BASER)) 929 linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_BASER_BIT, 930 mac->supported); 931 if (mac->fec_ability & BIT(HNAE3_FEC_RS)) 932 linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_RS_BIT, 933 mac->supported); 934 if (mac->fec_ability & BIT(HNAE3_FEC_LLRS)) 935 linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_LLRS_BIT, 936 mac->supported); 937 if (mac->fec_ability & BIT(HNAE3_FEC_NONE)) 938 linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_NONE_BIT, 939 mac->supported); 940 } 941 942 static const struct hclge_link_mode_bmap hclge_sr_link_mode_bmap[8] = { 943 {HCLGE_SUPPORT_10G_BIT, ETHTOOL_LINK_MODE_10000baseSR_Full_BIT}, 944 {HCLGE_SUPPORT_25G_BIT, ETHTOOL_LINK_MODE_25000baseSR_Full_BIT}, 945 {HCLGE_SUPPORT_40G_BIT, ETHTOOL_LINK_MODE_40000baseSR4_Full_BIT}, 946 {HCLGE_SUPPORT_50G_R2_BIT, ETHTOOL_LINK_MODE_50000baseSR2_Full_BIT}, 947 {HCLGE_SUPPORT_50G_R1_BIT, ETHTOOL_LINK_MODE_50000baseSR_Full_BIT}, 948 {HCLGE_SUPPORT_100G_R4_BIT, ETHTOOL_LINK_MODE_100000baseSR4_Full_BIT}, 949 {HCLGE_SUPPORT_100G_R2_BIT, ETHTOOL_LINK_MODE_100000baseSR2_Full_BIT}, 950 {HCLGE_SUPPORT_200G_BIT, ETHTOOL_LINK_MODE_200000baseSR4_Full_BIT}, 951 }; 952 953 static const struct hclge_link_mode_bmap hclge_lr_link_mode_bmap[6] = { 954 {HCLGE_SUPPORT_10G_BIT, ETHTOOL_LINK_MODE_10000baseLR_Full_BIT}, 955 {HCLGE_SUPPORT_40G_BIT, ETHTOOL_LINK_MODE_40000baseLR4_Full_BIT}, 956 {HCLGE_SUPPORT_50G_R1_BIT, ETHTOOL_LINK_MODE_50000baseLR_ER_FR_Full_BIT}, 957 {HCLGE_SUPPORT_100G_R4_BIT, 958 ETHTOOL_LINK_MODE_100000baseLR4_ER4_Full_BIT}, 959 {HCLGE_SUPPORT_100G_R2_BIT, 960 ETHTOOL_LINK_MODE_100000baseLR2_ER2_FR2_Full_BIT}, 961 {HCLGE_SUPPORT_200G_BIT, 962 ETHTOOL_LINK_MODE_200000baseLR4_ER4_FR4_Full_BIT}, 963 }; 964 965 static const struct hclge_link_mode_bmap hclge_cr_link_mode_bmap[8] = { 966 {HCLGE_SUPPORT_10G_BIT, ETHTOOL_LINK_MODE_10000baseCR_Full_BIT}, 967 {HCLGE_SUPPORT_25G_BIT, ETHTOOL_LINK_MODE_25000baseCR_Full_BIT}, 968 {HCLGE_SUPPORT_40G_BIT, ETHTOOL_LINK_MODE_40000baseCR4_Full_BIT}, 969 {HCLGE_SUPPORT_50G_R2_BIT, ETHTOOL_LINK_MODE_50000baseCR2_Full_BIT}, 970 {HCLGE_SUPPORT_50G_R1_BIT, ETHTOOL_LINK_MODE_50000baseCR_Full_BIT}, 971 {HCLGE_SUPPORT_100G_R4_BIT, ETHTOOL_LINK_MODE_100000baseCR4_Full_BIT}, 972 {HCLGE_SUPPORT_100G_R2_BIT, ETHTOOL_LINK_MODE_100000baseCR2_Full_BIT}, 973 {HCLGE_SUPPORT_200G_BIT, ETHTOOL_LINK_MODE_200000baseCR4_Full_BIT}, 974 }; 975 976 static const struct hclge_link_mode_bmap hclge_kr_link_mode_bmap[9] = { 977 {HCLGE_SUPPORT_1G_BIT, ETHTOOL_LINK_MODE_1000baseKX_Full_BIT}, 978 {HCLGE_SUPPORT_10G_BIT, ETHTOOL_LINK_MODE_10000baseKR_Full_BIT}, 979 {HCLGE_SUPPORT_25G_BIT, ETHTOOL_LINK_MODE_25000baseKR_Full_BIT}, 980 {HCLGE_SUPPORT_40G_BIT, ETHTOOL_LINK_MODE_40000baseKR4_Full_BIT}, 981 {HCLGE_SUPPORT_50G_R2_BIT, ETHTOOL_LINK_MODE_50000baseKR2_Full_BIT}, 982 {HCLGE_SUPPORT_50G_R1_BIT, ETHTOOL_LINK_MODE_50000baseKR_Full_BIT}, 983 {HCLGE_SUPPORT_100G_R4_BIT, ETHTOOL_LINK_MODE_100000baseKR4_Full_BIT}, 984 {HCLGE_SUPPORT_100G_R2_BIT, ETHTOOL_LINK_MODE_100000baseKR2_Full_BIT}, 985 {HCLGE_SUPPORT_200G_BIT, ETHTOOL_LINK_MODE_200000baseKR4_Full_BIT}, 986 }; 987 988 static void hclge_convert_setting_sr(u16 speed_ability, 989 unsigned long *link_mode) 990 { 991 int i; 992 993 for (i = 0; i < ARRAY_SIZE(hclge_sr_link_mode_bmap); i++) { 994 if (speed_ability & hclge_sr_link_mode_bmap[i].support_bit) 995 linkmode_set_bit(hclge_sr_link_mode_bmap[i].link_mode, 996 link_mode); 997 } 998 } 999 1000 static void hclge_convert_setting_lr(u16 speed_ability, 1001 unsigned long *link_mode) 1002 { 1003 int i; 1004 1005 for (i = 0; i < ARRAY_SIZE(hclge_lr_link_mode_bmap); i++) { 1006 if (speed_ability & hclge_lr_link_mode_bmap[i].support_bit) 1007 linkmode_set_bit(hclge_lr_link_mode_bmap[i].link_mode, 1008 link_mode); 1009 } 1010 } 1011 1012 static void hclge_convert_setting_cr(u16 speed_ability, 1013 unsigned long *link_mode) 1014 { 1015 int i; 1016 1017 for (i = 0; i < ARRAY_SIZE(hclge_cr_link_mode_bmap); i++) { 1018 if (speed_ability & hclge_cr_link_mode_bmap[i].support_bit) 1019 linkmode_set_bit(hclge_cr_link_mode_bmap[i].link_mode, 1020 link_mode); 1021 } 1022 } 1023 1024 static void hclge_convert_setting_kr(u16 speed_ability, 1025 unsigned long *link_mode) 1026 { 1027 int i; 1028 1029 for (i = 0; i < ARRAY_SIZE(hclge_kr_link_mode_bmap); i++) { 1030 if (speed_ability & hclge_kr_link_mode_bmap[i].support_bit) 1031 linkmode_set_bit(hclge_kr_link_mode_bmap[i].link_mode, 1032 link_mode); 1033 } 1034 } 1035 1036 static void hclge_convert_setting_fec(struct hclge_mac *mac) 1037 { 1038 /* If firmware has reported fec_ability, don't need to convert by speed */ 1039 if (mac->fec_ability) 1040 goto out; 1041 1042 switch (mac->speed) { 1043 case HCLGE_MAC_SPEED_10G: 1044 case HCLGE_MAC_SPEED_40G: 1045 mac->fec_ability = BIT(HNAE3_FEC_BASER) | BIT(HNAE3_FEC_AUTO) | 1046 BIT(HNAE3_FEC_NONE); 1047 break; 1048 case HCLGE_MAC_SPEED_25G: 1049 case HCLGE_MAC_SPEED_50G: 1050 mac->fec_ability = BIT(HNAE3_FEC_BASER) | BIT(HNAE3_FEC_RS) | 1051 BIT(HNAE3_FEC_AUTO) | BIT(HNAE3_FEC_NONE); 1052 break; 1053 case HCLGE_MAC_SPEED_100G: 1054 mac->fec_ability = BIT(HNAE3_FEC_RS) | BIT(HNAE3_FEC_AUTO) | 1055 BIT(HNAE3_FEC_NONE); 1056 break; 1057 case HCLGE_MAC_SPEED_200G: 1058 mac->fec_ability = BIT(HNAE3_FEC_RS) | BIT(HNAE3_FEC_AUTO) | 1059 BIT(HNAE3_FEC_LLRS); 1060 break; 1061 default: 1062 mac->fec_ability = 0; 1063 break; 1064 } 1065 1066 out: 1067 hclge_update_fec_support(mac); 1068 } 1069 1070 static void hclge_parse_fiber_link_mode(struct hclge_dev *hdev, 1071 u16 speed_ability) 1072 { 1073 struct hclge_mac *mac = &hdev->hw.mac; 1074 1075 if (speed_ability & HCLGE_SUPPORT_1G_BIT) 1076 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, 1077 mac->supported); 1078 1079 hclge_convert_setting_sr(speed_ability, mac->supported); 1080 hclge_convert_setting_lr(speed_ability, mac->supported); 1081 hclge_convert_setting_cr(speed_ability, mac->supported); 1082 if (hnae3_dev_fec_supported(hdev)) 1083 hclge_convert_setting_fec(mac); 1084 1085 if (hnae3_dev_pause_supported(hdev)) 1086 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, mac->supported); 1087 1088 linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, mac->supported); 1089 linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_NONE_BIT, mac->supported); 1090 } 1091 1092 static void hclge_parse_backplane_link_mode(struct hclge_dev *hdev, 1093 u16 speed_ability) 1094 { 1095 struct hclge_mac *mac = &hdev->hw.mac; 1096 1097 hclge_convert_setting_kr(speed_ability, mac->supported); 1098 if (hnae3_dev_fec_supported(hdev)) 1099 hclge_convert_setting_fec(mac); 1100 1101 if (hnae3_dev_pause_supported(hdev)) 1102 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, mac->supported); 1103 1104 linkmode_set_bit(ETHTOOL_LINK_MODE_Backplane_BIT, mac->supported); 1105 linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_NONE_BIT, mac->supported); 1106 } 1107 1108 static void hclge_parse_copper_link_mode(struct hclge_dev *hdev, 1109 u16 speed_ability) 1110 { 1111 unsigned long *supported = hdev->hw.mac.supported; 1112 1113 /* default to support all speed for GE port */ 1114 if (!speed_ability) 1115 speed_ability = HCLGE_SUPPORT_GE; 1116 1117 if (speed_ability & HCLGE_SUPPORT_1G_BIT) 1118 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, 1119 supported); 1120 1121 if (speed_ability & HCLGE_SUPPORT_100M_BIT) { 1122 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, 1123 supported); 1124 linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, 1125 supported); 1126 } 1127 1128 if (speed_ability & HCLGE_SUPPORT_10M_BIT) { 1129 linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, supported); 1130 linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, supported); 1131 } 1132 1133 if (hnae3_dev_pause_supported(hdev)) { 1134 linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, supported); 1135 linkmode_set_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, supported); 1136 } 1137 1138 linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, supported); 1139 linkmode_set_bit(ETHTOOL_LINK_MODE_TP_BIT, supported); 1140 } 1141 1142 static void hclge_parse_link_mode(struct hclge_dev *hdev, u16 speed_ability) 1143 { 1144 u8 media_type = hdev->hw.mac.media_type; 1145 1146 if (media_type == HNAE3_MEDIA_TYPE_FIBER) 1147 hclge_parse_fiber_link_mode(hdev, speed_ability); 1148 else if (media_type == HNAE3_MEDIA_TYPE_COPPER) 1149 hclge_parse_copper_link_mode(hdev, speed_ability); 1150 else if (media_type == HNAE3_MEDIA_TYPE_BACKPLANE) 1151 hclge_parse_backplane_link_mode(hdev, speed_ability); 1152 } 1153 1154 static u32 hclge_get_max_speed(u16 speed_ability) 1155 { 1156 if (speed_ability & HCLGE_SUPPORT_200G_BIT) 1157 return HCLGE_MAC_SPEED_200G; 1158 1159 if (speed_ability & HCLGE_SUPPORT_100G_BITS) 1160 return HCLGE_MAC_SPEED_100G; 1161 1162 if (speed_ability & HCLGE_SUPPORT_50G_BITS) 1163 return HCLGE_MAC_SPEED_50G; 1164 1165 if (speed_ability & HCLGE_SUPPORT_40G_BIT) 1166 return HCLGE_MAC_SPEED_40G; 1167 1168 if (speed_ability & HCLGE_SUPPORT_25G_BIT) 1169 return HCLGE_MAC_SPEED_25G; 1170 1171 if (speed_ability & HCLGE_SUPPORT_10G_BIT) 1172 return HCLGE_MAC_SPEED_10G; 1173 1174 if (speed_ability & HCLGE_SUPPORT_1G_BIT) 1175 return HCLGE_MAC_SPEED_1G; 1176 1177 if (speed_ability & HCLGE_SUPPORT_100M_BIT) 1178 return HCLGE_MAC_SPEED_100M; 1179 1180 if (speed_ability & HCLGE_SUPPORT_10M_BIT) 1181 return HCLGE_MAC_SPEED_10M; 1182 1183 return HCLGE_MAC_SPEED_1G; 1184 } 1185 1186 static void hclge_parse_cfg(struct hclge_cfg *cfg, struct hclge_desc *desc) 1187 { 1188 #define HCLGE_TX_SPARE_SIZE_UNIT 4096 1189 #define SPEED_ABILITY_EXT_SHIFT 8 1190 1191 struct hclge_cfg_param_cmd *req; 1192 u64 mac_addr_tmp_high; 1193 u16 speed_ability_ext; 1194 u64 mac_addr_tmp; 1195 unsigned int i; 1196 1197 req = (struct hclge_cfg_param_cmd *)desc[0].data; 1198 1199 /* get the configuration */ 1200 cfg->tc_num = hnae3_get_field(__le32_to_cpu(req->param[0]), 1201 HCLGE_CFG_TC_NUM_M, HCLGE_CFG_TC_NUM_S); 1202 cfg->tqp_desc_num = hnae3_get_field(__le32_to_cpu(req->param[0]), 1203 HCLGE_CFG_TQP_DESC_N_M, 1204 HCLGE_CFG_TQP_DESC_N_S); 1205 1206 cfg->phy_addr = hnae3_get_field(__le32_to_cpu(req->param[1]), 1207 HCLGE_CFG_PHY_ADDR_M, 1208 HCLGE_CFG_PHY_ADDR_S); 1209 cfg->media_type = hnae3_get_field(__le32_to_cpu(req->param[1]), 1210 HCLGE_CFG_MEDIA_TP_M, 1211 HCLGE_CFG_MEDIA_TP_S); 1212 cfg->rx_buf_len = hnae3_get_field(__le32_to_cpu(req->param[1]), 1213 HCLGE_CFG_RX_BUF_LEN_M, 1214 HCLGE_CFG_RX_BUF_LEN_S); 1215 /* get mac_address */ 1216 mac_addr_tmp = __le32_to_cpu(req->param[2]); 1217 mac_addr_tmp_high = hnae3_get_field(__le32_to_cpu(req->param[3]), 1218 HCLGE_CFG_MAC_ADDR_H_M, 1219 HCLGE_CFG_MAC_ADDR_H_S); 1220 1221 mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1; 1222 1223 cfg->default_speed = hnae3_get_field(__le32_to_cpu(req->param[3]), 1224 HCLGE_CFG_DEFAULT_SPEED_M, 1225 HCLGE_CFG_DEFAULT_SPEED_S); 1226 cfg->vf_rss_size_max = hnae3_get_field(__le32_to_cpu(req->param[3]), 1227 HCLGE_CFG_RSS_SIZE_M, 1228 HCLGE_CFG_RSS_SIZE_S); 1229 1230 for (i = 0; i < ETH_ALEN; i++) 1231 cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff; 1232 1233 req = (struct hclge_cfg_param_cmd *)desc[1].data; 1234 cfg->numa_node_map = __le32_to_cpu(req->param[0]); 1235 1236 cfg->speed_ability = hnae3_get_field(__le32_to_cpu(req->param[1]), 1237 HCLGE_CFG_SPEED_ABILITY_M, 1238 HCLGE_CFG_SPEED_ABILITY_S); 1239 speed_ability_ext = hnae3_get_field(__le32_to_cpu(req->param[1]), 1240 HCLGE_CFG_SPEED_ABILITY_EXT_M, 1241 HCLGE_CFG_SPEED_ABILITY_EXT_S); 1242 cfg->speed_ability |= speed_ability_ext << SPEED_ABILITY_EXT_SHIFT; 1243 1244 cfg->vlan_fliter_cap = hnae3_get_field(__le32_to_cpu(req->param[1]), 1245 HCLGE_CFG_VLAN_FLTR_CAP_M, 1246 HCLGE_CFG_VLAN_FLTR_CAP_S); 1247 1248 cfg->umv_space = hnae3_get_field(__le32_to_cpu(req->param[1]), 1249 HCLGE_CFG_UMV_TBL_SPACE_M, 1250 HCLGE_CFG_UMV_TBL_SPACE_S); 1251 1252 cfg->pf_rss_size_max = hnae3_get_field(__le32_to_cpu(req->param[2]), 1253 HCLGE_CFG_PF_RSS_SIZE_M, 1254 HCLGE_CFG_PF_RSS_SIZE_S); 1255 1256 /* HCLGE_CFG_PF_RSS_SIZE_M is the PF max rss size, which is a 1257 * power of 2, instead of reading out directly. This would 1258 * be more flexible for future changes and expansions. 1259 * When VF max rss size field is HCLGE_CFG_RSS_SIZE_S, 1260 * it does not make sense if PF's field is 0. In this case, PF and VF 1261 * has the same max rss size filed: HCLGE_CFG_RSS_SIZE_S. 1262 */ 1263 cfg->pf_rss_size_max = cfg->pf_rss_size_max ? 1264 1U << cfg->pf_rss_size_max : 1265 cfg->vf_rss_size_max; 1266 1267 /* The unit of the tx spare buffer size queried from configuration 1268 * file is HCLGE_TX_SPARE_SIZE_UNIT(4096) bytes, so a conversion is 1269 * needed here. 1270 */ 1271 cfg->tx_spare_buf_size = hnae3_get_field(__le32_to_cpu(req->param[2]), 1272 HCLGE_CFG_TX_SPARE_BUF_SIZE_M, 1273 HCLGE_CFG_TX_SPARE_BUF_SIZE_S); 1274 cfg->tx_spare_buf_size *= HCLGE_TX_SPARE_SIZE_UNIT; 1275 } 1276 1277 /* hclge_get_cfg: query the static parameter from flash 1278 * @hdev: pointer to struct hclge_dev 1279 * @hcfg: the config structure to be getted 1280 */ 1281 static int hclge_get_cfg(struct hclge_dev *hdev, struct hclge_cfg *hcfg) 1282 { 1283 struct hclge_desc desc[HCLGE_PF_CFG_DESC_NUM]; 1284 struct hclge_cfg_param_cmd *req; 1285 unsigned int i; 1286 int ret; 1287 1288 for (i = 0; i < HCLGE_PF_CFG_DESC_NUM; i++) { 1289 u32 offset = 0; 1290 1291 req = (struct hclge_cfg_param_cmd *)desc[i].data; 1292 hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_GET_CFG_PARAM, 1293 true); 1294 hnae3_set_field(offset, HCLGE_CFG_OFFSET_M, 1295 HCLGE_CFG_OFFSET_S, i * HCLGE_CFG_RD_LEN_BYTES); 1296 /* Len should be united by 4 bytes when send to hardware */ 1297 hnae3_set_field(offset, HCLGE_CFG_RD_LEN_M, HCLGE_CFG_RD_LEN_S, 1298 HCLGE_CFG_RD_LEN_BYTES / HCLGE_CFG_RD_LEN_UNIT); 1299 req->offset = cpu_to_le32(offset); 1300 } 1301 1302 ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_PF_CFG_DESC_NUM); 1303 if (ret) { 1304 dev_err(&hdev->pdev->dev, "get config failed %d.\n", ret); 1305 return ret; 1306 } 1307 1308 hclge_parse_cfg(hcfg, desc); 1309 1310 return 0; 1311 } 1312 1313 static void hclge_set_default_dev_specs(struct hclge_dev *hdev) 1314 { 1315 #define HCLGE_MAX_NON_TSO_BD_NUM 8U 1316 1317 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 1318 1319 ae_dev->dev_specs.max_non_tso_bd_num = HCLGE_MAX_NON_TSO_BD_NUM; 1320 ae_dev->dev_specs.rss_ind_tbl_size = HCLGE_RSS_IND_TBL_SIZE; 1321 ae_dev->dev_specs.rss_key_size = HCLGE_COMM_RSS_KEY_SIZE; 1322 ae_dev->dev_specs.max_tm_rate = HCLGE_ETHER_MAX_RATE; 1323 ae_dev->dev_specs.max_int_gl = HCLGE_DEF_MAX_INT_GL; 1324 ae_dev->dev_specs.max_frm_size = HCLGE_MAC_MAX_FRAME; 1325 ae_dev->dev_specs.max_qset_num = HCLGE_MAX_QSET_NUM; 1326 ae_dev->dev_specs.umv_size = HCLGE_DEFAULT_UMV_SPACE_PER_PF; 1327 ae_dev->dev_specs.tnl_num = 0; 1328 } 1329 1330 static void hclge_parse_dev_specs(struct hclge_dev *hdev, 1331 struct hclge_desc *desc) 1332 { 1333 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 1334 struct hclge_dev_specs_0_cmd *req0; 1335 struct hclge_dev_specs_1_cmd *req1; 1336 1337 req0 = (struct hclge_dev_specs_0_cmd *)desc[0].data; 1338 req1 = (struct hclge_dev_specs_1_cmd *)desc[1].data; 1339 1340 ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num; 1341 ae_dev->dev_specs.rss_ind_tbl_size = 1342 le16_to_cpu(req0->rss_ind_tbl_size); 1343 ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max); 1344 ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size); 1345 ae_dev->dev_specs.max_tm_rate = le32_to_cpu(req0->max_tm_rate); 1346 ae_dev->dev_specs.max_qset_num = le16_to_cpu(req1->max_qset_num); 1347 ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl); 1348 ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size); 1349 ae_dev->dev_specs.umv_size = le16_to_cpu(req1->umv_size); 1350 ae_dev->dev_specs.mc_mac_size = le16_to_cpu(req1->mc_mac_size); 1351 ae_dev->dev_specs.tnl_num = req1->tnl_num; 1352 } 1353 1354 static void hclge_check_dev_specs(struct hclge_dev *hdev) 1355 { 1356 struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs; 1357 1358 if (!dev_specs->max_non_tso_bd_num) 1359 dev_specs->max_non_tso_bd_num = HCLGE_MAX_NON_TSO_BD_NUM; 1360 if (!dev_specs->rss_ind_tbl_size) 1361 dev_specs->rss_ind_tbl_size = HCLGE_RSS_IND_TBL_SIZE; 1362 if (!dev_specs->rss_key_size) 1363 dev_specs->rss_key_size = HCLGE_COMM_RSS_KEY_SIZE; 1364 if (!dev_specs->max_tm_rate) 1365 dev_specs->max_tm_rate = HCLGE_ETHER_MAX_RATE; 1366 if (!dev_specs->max_qset_num) 1367 dev_specs->max_qset_num = HCLGE_MAX_QSET_NUM; 1368 if (!dev_specs->max_int_gl) 1369 dev_specs->max_int_gl = HCLGE_DEF_MAX_INT_GL; 1370 if (!dev_specs->max_frm_size) 1371 dev_specs->max_frm_size = HCLGE_MAC_MAX_FRAME; 1372 if (!dev_specs->umv_size) 1373 dev_specs->umv_size = HCLGE_DEFAULT_UMV_SPACE_PER_PF; 1374 } 1375 1376 static int hclge_query_mac_stats_num(struct hclge_dev *hdev) 1377 { 1378 u32 reg_num = 0; 1379 int ret; 1380 1381 ret = hclge_mac_query_reg_num(hdev, ®_num); 1382 if (ret && ret != -EOPNOTSUPP) 1383 return ret; 1384 1385 hdev->ae_dev->dev_specs.mac_stats_num = reg_num; 1386 return 0; 1387 } 1388 1389 static int hclge_query_dev_specs(struct hclge_dev *hdev) 1390 { 1391 struct hclge_desc desc[HCLGE_QUERY_DEV_SPECS_BD_NUM]; 1392 int ret; 1393 int i; 1394 1395 ret = hclge_query_mac_stats_num(hdev); 1396 if (ret) 1397 return ret; 1398 1399 /* set default specifications as devices lower than version V3 do not 1400 * support querying specifications from firmware. 1401 */ 1402 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) { 1403 hclge_set_default_dev_specs(hdev); 1404 return 0; 1405 } 1406 1407 for (i = 0; i < HCLGE_QUERY_DEV_SPECS_BD_NUM - 1; i++) { 1408 hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_DEV_SPECS, 1409 true); 1410 desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 1411 } 1412 hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_DEV_SPECS, true); 1413 1414 ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_QUERY_DEV_SPECS_BD_NUM); 1415 if (ret) 1416 return ret; 1417 1418 hclge_parse_dev_specs(hdev, desc); 1419 hclge_check_dev_specs(hdev); 1420 1421 return 0; 1422 } 1423 1424 static int hclge_get_cap(struct hclge_dev *hdev) 1425 { 1426 int ret; 1427 1428 ret = hclge_query_function_status(hdev); 1429 if (ret) { 1430 dev_err(&hdev->pdev->dev, 1431 "query function status error %d.\n", ret); 1432 return ret; 1433 } 1434 1435 /* get pf resource */ 1436 return hclge_query_pf_resource(hdev); 1437 } 1438 1439 static void hclge_init_kdump_kernel_config(struct hclge_dev *hdev) 1440 { 1441 #define HCLGE_MIN_TX_DESC 64 1442 #define HCLGE_MIN_RX_DESC 64 1443 1444 if (!is_kdump_kernel()) 1445 return; 1446 1447 dev_info(&hdev->pdev->dev, 1448 "Running kdump kernel. Using minimal resources\n"); 1449 1450 /* minimal queue pairs equals to the number of vports */ 1451 hdev->num_tqps = hdev->num_req_vfs + 1; 1452 hdev->num_tx_desc = HCLGE_MIN_TX_DESC; 1453 hdev->num_rx_desc = HCLGE_MIN_RX_DESC; 1454 } 1455 1456 static void hclge_init_tc_config(struct hclge_dev *hdev) 1457 { 1458 unsigned int i; 1459 1460 if (hdev->tc_max > HNAE3_MAX_TC || 1461 hdev->tc_max < 1) { 1462 dev_warn(&hdev->pdev->dev, "TC num = %u.\n", 1463 hdev->tc_max); 1464 hdev->tc_max = 1; 1465 } 1466 1467 /* Dev does not support DCB */ 1468 if (!hnae3_dev_dcb_supported(hdev)) { 1469 hdev->tc_max = 1; 1470 hdev->pfc_max = 0; 1471 } else { 1472 hdev->pfc_max = hdev->tc_max; 1473 } 1474 1475 hdev->tm_info.num_tc = 1; 1476 1477 /* Currently not support uncontiuous tc */ 1478 for (i = 0; i < hdev->tm_info.num_tc; i++) 1479 hnae3_set_bit(hdev->hw_tc_map, i, 1); 1480 1481 hdev->tx_sch_mode = HCLGE_FLAG_TC_BASE_SCH_MODE; 1482 } 1483 1484 static int hclge_configure(struct hclge_dev *hdev) 1485 { 1486 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 1487 struct hclge_cfg cfg; 1488 int ret; 1489 1490 ret = hclge_get_cfg(hdev, &cfg); 1491 if (ret) 1492 return ret; 1493 1494 hdev->base_tqp_pid = 0; 1495 hdev->vf_rss_size_max = cfg.vf_rss_size_max; 1496 hdev->pf_rss_size_max = cfg.pf_rss_size_max; 1497 hdev->rx_buf_len = cfg.rx_buf_len; 1498 ether_addr_copy(hdev->hw.mac.mac_addr, cfg.mac_addr); 1499 hdev->hw.mac.media_type = cfg.media_type; 1500 hdev->hw.mac.phy_addr = cfg.phy_addr; 1501 hdev->num_tx_desc = cfg.tqp_desc_num; 1502 hdev->num_rx_desc = cfg.tqp_desc_num; 1503 hdev->tm_info.num_pg = 1; 1504 hdev->tc_max = cfg.tc_num; 1505 hdev->tm_info.hw_pfc_map = 0; 1506 if (cfg.umv_space) 1507 hdev->wanted_umv_size = cfg.umv_space; 1508 else 1509 hdev->wanted_umv_size = hdev->ae_dev->dev_specs.umv_size; 1510 hdev->tx_spare_buf_size = cfg.tx_spare_buf_size; 1511 hdev->gro_en = true; 1512 if (cfg.vlan_fliter_cap == HCLGE_VLAN_FLTR_CAN_MDF) 1513 set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps); 1514 1515 if (hnae3_ae_dev_fd_supported(hdev->ae_dev)) { 1516 hdev->fd_en = true; 1517 hdev->fd_active_type = HCLGE_FD_RULE_NONE; 1518 } 1519 1520 ret = hclge_parse_speed(cfg.default_speed, &hdev->hw.mac.speed); 1521 if (ret) { 1522 dev_err(&hdev->pdev->dev, "failed to parse speed %u, ret = %d\n", 1523 cfg.default_speed, ret); 1524 return ret; 1525 } 1526 1527 hclge_parse_link_mode(hdev, cfg.speed_ability); 1528 1529 hdev->hw.mac.max_speed = hclge_get_max_speed(cfg.speed_ability); 1530 1531 hclge_init_tc_config(hdev); 1532 hclge_init_kdump_kernel_config(hdev); 1533 1534 return ret; 1535 } 1536 1537 static int hclge_config_tso(struct hclge_dev *hdev, u16 tso_mss_min, 1538 u16 tso_mss_max) 1539 { 1540 struct hclge_cfg_tso_status_cmd *req; 1541 struct hclge_desc desc; 1542 1543 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_TSO_GENERIC_CONFIG, false); 1544 1545 req = (struct hclge_cfg_tso_status_cmd *)desc.data; 1546 req->tso_mss_min = cpu_to_le16(tso_mss_min); 1547 req->tso_mss_max = cpu_to_le16(tso_mss_max); 1548 1549 return hclge_cmd_send(&hdev->hw, &desc, 1); 1550 } 1551 1552 static int hclge_config_gro(struct hclge_dev *hdev) 1553 { 1554 struct hclge_cfg_gro_status_cmd *req; 1555 struct hclge_desc desc; 1556 int ret; 1557 1558 if (!hnae3_ae_dev_gro_supported(hdev->ae_dev)) 1559 return 0; 1560 1561 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GRO_GENERIC_CONFIG, false); 1562 req = (struct hclge_cfg_gro_status_cmd *)desc.data; 1563 1564 req->gro_en = hdev->gro_en ? 1 : 0; 1565 1566 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 1567 if (ret) 1568 dev_err(&hdev->pdev->dev, 1569 "GRO hardware config cmd failed, ret = %d\n", ret); 1570 1571 return ret; 1572 } 1573 1574 static int hclge_alloc_tqps(struct hclge_dev *hdev) 1575 { 1576 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 1577 struct hclge_comm_tqp *tqp; 1578 int i; 1579 1580 hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps, 1581 sizeof(struct hclge_comm_tqp), GFP_KERNEL); 1582 if (!hdev->htqp) 1583 return -ENOMEM; 1584 1585 tqp = hdev->htqp; 1586 1587 for (i = 0; i < hdev->num_tqps; i++) { 1588 tqp->dev = &hdev->pdev->dev; 1589 tqp->index = i; 1590 1591 tqp->q.ae_algo = &ae_algo; 1592 tqp->q.buf_size = hdev->rx_buf_len; 1593 tqp->q.tx_desc_num = hdev->num_tx_desc; 1594 tqp->q.rx_desc_num = hdev->num_rx_desc; 1595 1596 /* need an extended offset to configure queues >= 1597 * HCLGE_TQP_MAX_SIZE_DEV_V2 1598 */ 1599 if (i < HCLGE_TQP_MAX_SIZE_DEV_V2) 1600 tqp->q.io_base = hdev->hw.hw.io_base + 1601 HCLGE_TQP_REG_OFFSET + 1602 i * HCLGE_TQP_REG_SIZE; 1603 else 1604 tqp->q.io_base = hdev->hw.hw.io_base + 1605 HCLGE_TQP_REG_OFFSET + 1606 HCLGE_TQP_EXT_REG_OFFSET + 1607 (i - HCLGE_TQP_MAX_SIZE_DEV_V2) * 1608 HCLGE_TQP_REG_SIZE; 1609 1610 /* when device supports tx push and has device memory, 1611 * the queue can execute push mode or doorbell mode on 1612 * device memory. 1613 */ 1614 if (test_bit(HNAE3_DEV_SUPPORT_TX_PUSH_B, ae_dev->caps)) 1615 tqp->q.mem_base = hdev->hw.hw.mem_base + 1616 HCLGE_TQP_MEM_OFFSET(hdev, i); 1617 1618 tqp++; 1619 } 1620 1621 return 0; 1622 } 1623 1624 static int hclge_map_tqps_to_func(struct hclge_dev *hdev, u16 func_id, 1625 u16 tqp_pid, u16 tqp_vid, bool is_pf) 1626 { 1627 struct hclge_tqp_map_cmd *req; 1628 struct hclge_desc desc; 1629 int ret; 1630 1631 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_SET_TQP_MAP, false); 1632 1633 req = (struct hclge_tqp_map_cmd *)desc.data; 1634 req->tqp_id = cpu_to_le16(tqp_pid); 1635 req->tqp_vf = func_id; 1636 req->tqp_flag = 1U << HCLGE_TQP_MAP_EN_B; 1637 if (!is_pf) 1638 req->tqp_flag |= 1U << HCLGE_TQP_MAP_TYPE_B; 1639 req->tqp_vid = cpu_to_le16(tqp_vid); 1640 1641 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 1642 if (ret) 1643 dev_err(&hdev->pdev->dev, "TQP map failed %d.\n", ret); 1644 1645 return ret; 1646 } 1647 1648 static int hclge_assign_tqp(struct hclge_vport *vport, u16 num_tqps) 1649 { 1650 struct hnae3_knic_private_info *kinfo = &vport->nic.kinfo; 1651 struct hclge_dev *hdev = vport->back; 1652 int i, alloced; 1653 1654 for (i = 0, alloced = 0; i < hdev->num_tqps && 1655 alloced < num_tqps; i++) { 1656 if (!hdev->htqp[i].alloced) { 1657 hdev->htqp[i].q.handle = &vport->nic; 1658 hdev->htqp[i].q.tqp_index = alloced; 1659 hdev->htqp[i].q.tx_desc_num = kinfo->num_tx_desc; 1660 hdev->htqp[i].q.rx_desc_num = kinfo->num_rx_desc; 1661 kinfo->tqp[alloced] = &hdev->htqp[i].q; 1662 hdev->htqp[i].alloced = true; 1663 alloced++; 1664 } 1665 } 1666 vport->alloc_tqps = alloced; 1667 kinfo->rss_size = min_t(u16, hdev->pf_rss_size_max, 1668 vport->alloc_tqps / hdev->tm_info.num_tc); 1669 1670 /* ensure one to one mapping between irq and queue at default */ 1671 kinfo->rss_size = min_t(u16, kinfo->rss_size, 1672 (hdev->num_nic_msi - 1) / hdev->tm_info.num_tc); 1673 1674 return 0; 1675 } 1676 1677 static int hclge_knic_setup(struct hclge_vport *vport, u16 num_tqps, 1678 u16 num_tx_desc, u16 num_rx_desc) 1679 1680 { 1681 struct hnae3_handle *nic = &vport->nic; 1682 struct hnae3_knic_private_info *kinfo = &nic->kinfo; 1683 struct hclge_dev *hdev = vport->back; 1684 int ret; 1685 1686 kinfo->num_tx_desc = num_tx_desc; 1687 kinfo->num_rx_desc = num_rx_desc; 1688 1689 kinfo->rx_buf_len = hdev->rx_buf_len; 1690 kinfo->tx_spare_buf_size = hdev->tx_spare_buf_size; 1691 1692 kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, num_tqps, 1693 sizeof(struct hnae3_queue *), GFP_KERNEL); 1694 if (!kinfo->tqp) 1695 return -ENOMEM; 1696 1697 ret = hclge_assign_tqp(vport, num_tqps); 1698 if (ret) 1699 dev_err(&hdev->pdev->dev, "fail to assign TQPs %d.\n", ret); 1700 1701 return ret; 1702 } 1703 1704 static int hclge_map_tqp_to_vport(struct hclge_dev *hdev, 1705 struct hclge_vport *vport) 1706 { 1707 struct hnae3_handle *nic = &vport->nic; 1708 struct hnae3_knic_private_info *kinfo; 1709 u16 i; 1710 1711 kinfo = &nic->kinfo; 1712 for (i = 0; i < vport->alloc_tqps; i++) { 1713 struct hclge_comm_tqp *q = 1714 container_of(kinfo->tqp[i], struct hclge_comm_tqp, q); 1715 bool is_pf; 1716 int ret; 1717 1718 is_pf = !(vport->vport_id); 1719 ret = hclge_map_tqps_to_func(hdev, vport->vport_id, q->index, 1720 i, is_pf); 1721 if (ret) 1722 return ret; 1723 } 1724 1725 return 0; 1726 } 1727 1728 static int hclge_map_tqp(struct hclge_dev *hdev) 1729 { 1730 struct hclge_vport *vport = hdev->vport; 1731 u16 i, num_vport; 1732 1733 num_vport = hdev->num_req_vfs + 1; 1734 for (i = 0; i < num_vport; i++) { 1735 int ret; 1736 1737 ret = hclge_map_tqp_to_vport(hdev, vport); 1738 if (ret) 1739 return ret; 1740 1741 vport++; 1742 } 1743 1744 return 0; 1745 } 1746 1747 static int hclge_vport_setup(struct hclge_vport *vport, u16 num_tqps) 1748 { 1749 struct hnae3_handle *nic = &vport->nic; 1750 struct hclge_dev *hdev = vport->back; 1751 int ret; 1752 1753 nic->pdev = hdev->pdev; 1754 nic->ae_algo = &ae_algo; 1755 nic->numa_node_mask = hdev->numa_node_mask; 1756 nic->kinfo.io_base = hdev->hw.hw.io_base; 1757 1758 ret = hclge_knic_setup(vport, num_tqps, 1759 hdev->num_tx_desc, hdev->num_rx_desc); 1760 if (ret) 1761 dev_err(&hdev->pdev->dev, "knic setup failed %d\n", ret); 1762 1763 return ret; 1764 } 1765 1766 static int hclge_alloc_vport(struct hclge_dev *hdev) 1767 { 1768 struct pci_dev *pdev = hdev->pdev; 1769 struct hclge_vport *vport; 1770 u32 tqp_main_vport; 1771 u32 tqp_per_vport; 1772 int num_vport, i; 1773 int ret; 1774 1775 /* We need to alloc a vport for main NIC of PF */ 1776 num_vport = hdev->num_req_vfs + 1; 1777 1778 if (hdev->num_tqps < num_vport) { 1779 dev_err(&hdev->pdev->dev, "tqps(%u) is less than vports(%d)", 1780 hdev->num_tqps, num_vport); 1781 return -EINVAL; 1782 } 1783 1784 /* Alloc the same number of TQPs for every vport */ 1785 tqp_per_vport = hdev->num_tqps / num_vport; 1786 tqp_main_vport = tqp_per_vport + hdev->num_tqps % num_vport; 1787 1788 vport = devm_kcalloc(&pdev->dev, num_vport, sizeof(struct hclge_vport), 1789 GFP_KERNEL); 1790 if (!vport) 1791 return -ENOMEM; 1792 1793 hdev->vport = vport; 1794 hdev->num_alloc_vport = num_vport; 1795 1796 if (IS_ENABLED(CONFIG_PCI_IOV)) 1797 hdev->num_alloc_vfs = hdev->num_req_vfs; 1798 1799 for (i = 0; i < num_vport; i++) { 1800 vport->back = hdev; 1801 vport->vport_id = i; 1802 vport->vf_info.link_state = IFLA_VF_LINK_STATE_AUTO; 1803 vport->mps = HCLGE_MAC_DEFAULT_FRAME; 1804 vport->port_base_vlan_cfg.state = HNAE3_PORT_BASE_VLAN_DISABLE; 1805 vport->port_base_vlan_cfg.tbl_sta = true; 1806 vport->rxvlan_cfg.rx_vlan_offload_en = true; 1807 vport->req_vlan_fltr_en = true; 1808 INIT_LIST_HEAD(&vport->vlan_list); 1809 INIT_LIST_HEAD(&vport->uc_mac_list); 1810 INIT_LIST_HEAD(&vport->mc_mac_list); 1811 spin_lock_init(&vport->mac_list_lock); 1812 1813 if (i == 0) 1814 ret = hclge_vport_setup(vport, tqp_main_vport); 1815 else 1816 ret = hclge_vport_setup(vport, tqp_per_vport); 1817 if (ret) { 1818 dev_err(&pdev->dev, 1819 "vport setup failed for vport %d, %d\n", 1820 i, ret); 1821 return ret; 1822 } 1823 1824 vport++; 1825 } 1826 1827 return 0; 1828 } 1829 1830 static int hclge_cmd_alloc_tx_buff(struct hclge_dev *hdev, 1831 struct hclge_pkt_buf_alloc *buf_alloc) 1832 { 1833 /* TX buffer size is unit by 128 byte */ 1834 #define HCLGE_BUF_SIZE_UNIT_SHIFT 7 1835 #define HCLGE_BUF_SIZE_UPDATE_EN_MSK BIT(15) 1836 struct hclge_tx_buff_alloc_cmd *req; 1837 struct hclge_desc desc; 1838 int ret; 1839 u8 i; 1840 1841 req = (struct hclge_tx_buff_alloc_cmd *)desc.data; 1842 1843 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_TX_BUFF_ALLOC, 0); 1844 for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { 1845 u32 buf_size = buf_alloc->priv_buf[i].tx_buf_size; 1846 1847 req->tx_pkt_buff[i] = 1848 cpu_to_le16((buf_size >> HCLGE_BUF_SIZE_UNIT_SHIFT) | 1849 HCLGE_BUF_SIZE_UPDATE_EN_MSK); 1850 } 1851 1852 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 1853 if (ret) 1854 dev_err(&hdev->pdev->dev, "tx buffer alloc cmd failed %d.\n", 1855 ret); 1856 1857 return ret; 1858 } 1859 1860 static int hclge_tx_buffer_alloc(struct hclge_dev *hdev, 1861 struct hclge_pkt_buf_alloc *buf_alloc) 1862 { 1863 int ret = hclge_cmd_alloc_tx_buff(hdev, buf_alloc); 1864 1865 if (ret) 1866 dev_err(&hdev->pdev->dev, "tx buffer alloc failed %d\n", ret); 1867 1868 return ret; 1869 } 1870 1871 static u32 hclge_get_tc_num(struct hclge_dev *hdev) 1872 { 1873 unsigned int i; 1874 u32 cnt = 0; 1875 1876 for (i = 0; i < HCLGE_MAX_TC_NUM; i++) 1877 if (hdev->hw_tc_map & BIT(i)) 1878 cnt++; 1879 return cnt; 1880 } 1881 1882 /* Get the number of pfc enabled TCs, which have private buffer */ 1883 static int hclge_get_pfc_priv_num(struct hclge_dev *hdev, 1884 struct hclge_pkt_buf_alloc *buf_alloc) 1885 { 1886 struct hclge_priv_buf *priv; 1887 unsigned int i; 1888 int cnt = 0; 1889 1890 for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { 1891 priv = &buf_alloc->priv_buf[i]; 1892 if ((hdev->tm_info.hw_pfc_map & BIT(i)) && 1893 priv->enable) 1894 cnt++; 1895 } 1896 1897 return cnt; 1898 } 1899 1900 /* Get the number of pfc disabled TCs, which have private buffer */ 1901 static int hclge_get_no_pfc_priv_num(struct hclge_dev *hdev, 1902 struct hclge_pkt_buf_alloc *buf_alloc) 1903 { 1904 struct hclge_priv_buf *priv; 1905 unsigned int i; 1906 int cnt = 0; 1907 1908 for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { 1909 priv = &buf_alloc->priv_buf[i]; 1910 if (hdev->hw_tc_map & BIT(i) && 1911 !(hdev->tm_info.hw_pfc_map & BIT(i)) && 1912 priv->enable) 1913 cnt++; 1914 } 1915 1916 return cnt; 1917 } 1918 1919 static u32 hclge_get_rx_priv_buff_alloced(struct hclge_pkt_buf_alloc *buf_alloc) 1920 { 1921 struct hclge_priv_buf *priv; 1922 u32 rx_priv = 0; 1923 int i; 1924 1925 for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { 1926 priv = &buf_alloc->priv_buf[i]; 1927 if (priv->enable) 1928 rx_priv += priv->buf_size; 1929 } 1930 return rx_priv; 1931 } 1932 1933 static u32 hclge_get_tx_buff_alloced(struct hclge_pkt_buf_alloc *buf_alloc) 1934 { 1935 u32 i, total_tx_size = 0; 1936 1937 for (i = 0; i < HCLGE_MAX_TC_NUM; i++) 1938 total_tx_size += buf_alloc->priv_buf[i].tx_buf_size; 1939 1940 return total_tx_size; 1941 } 1942 1943 static bool hclge_is_rx_buf_ok(struct hclge_dev *hdev, 1944 struct hclge_pkt_buf_alloc *buf_alloc, 1945 u32 rx_all) 1946 { 1947 u32 shared_buf_min, shared_buf_tc, shared_std, hi_thrd, lo_thrd; 1948 u32 tc_num = hclge_get_tc_num(hdev); 1949 u32 shared_buf, aligned_mps; 1950 u32 rx_priv; 1951 int i; 1952 1953 aligned_mps = roundup(hdev->mps, HCLGE_BUF_SIZE_UNIT); 1954 1955 if (hnae3_dev_dcb_supported(hdev)) 1956 shared_buf_min = HCLGE_BUF_MUL_BY * aligned_mps + 1957 hdev->dv_buf_size; 1958 else 1959 shared_buf_min = aligned_mps + HCLGE_NON_DCB_ADDITIONAL_BUF 1960 + hdev->dv_buf_size; 1961 1962 shared_buf_tc = tc_num * aligned_mps + aligned_mps; 1963 shared_std = roundup(max_t(u32, shared_buf_min, shared_buf_tc), 1964 HCLGE_BUF_SIZE_UNIT); 1965 1966 rx_priv = hclge_get_rx_priv_buff_alloced(buf_alloc); 1967 if (rx_all < rx_priv + shared_std) 1968 return false; 1969 1970 shared_buf = rounddown(rx_all - rx_priv, HCLGE_BUF_SIZE_UNIT); 1971 buf_alloc->s_buf.buf_size = shared_buf; 1972 if (hnae3_dev_dcb_supported(hdev)) { 1973 buf_alloc->s_buf.self.high = shared_buf - hdev->dv_buf_size; 1974 buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high 1975 - roundup(aligned_mps / HCLGE_BUF_DIV_BY, 1976 HCLGE_BUF_SIZE_UNIT); 1977 } else { 1978 buf_alloc->s_buf.self.high = aligned_mps + 1979 HCLGE_NON_DCB_ADDITIONAL_BUF; 1980 buf_alloc->s_buf.self.low = aligned_mps; 1981 } 1982 1983 if (hnae3_dev_dcb_supported(hdev)) { 1984 hi_thrd = shared_buf - hdev->dv_buf_size; 1985 1986 if (tc_num <= NEED_RESERVE_TC_NUM) 1987 hi_thrd = hi_thrd * BUF_RESERVE_PERCENT 1988 / BUF_MAX_PERCENT; 1989 1990 if (tc_num) 1991 hi_thrd = hi_thrd / tc_num; 1992 1993 hi_thrd = max_t(u32, hi_thrd, HCLGE_BUF_MUL_BY * aligned_mps); 1994 hi_thrd = rounddown(hi_thrd, HCLGE_BUF_SIZE_UNIT); 1995 lo_thrd = hi_thrd - aligned_mps / HCLGE_BUF_DIV_BY; 1996 } else { 1997 hi_thrd = aligned_mps + HCLGE_NON_DCB_ADDITIONAL_BUF; 1998 lo_thrd = aligned_mps; 1999 } 2000 2001 for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { 2002 buf_alloc->s_buf.tc_thrd[i].low = lo_thrd; 2003 buf_alloc->s_buf.tc_thrd[i].high = hi_thrd; 2004 } 2005 2006 return true; 2007 } 2008 2009 static int hclge_tx_buffer_calc(struct hclge_dev *hdev, 2010 struct hclge_pkt_buf_alloc *buf_alloc) 2011 { 2012 u32 i, total_size; 2013 2014 total_size = hdev->pkt_buf_size; 2015 2016 /* alloc tx buffer for all enabled tc */ 2017 for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { 2018 struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i]; 2019 2020 if (hdev->hw_tc_map & BIT(i)) { 2021 if (total_size < hdev->tx_buf_size) 2022 return -ENOMEM; 2023 2024 priv->tx_buf_size = hdev->tx_buf_size; 2025 } else { 2026 priv->tx_buf_size = 0; 2027 } 2028 2029 total_size -= priv->tx_buf_size; 2030 } 2031 2032 return 0; 2033 } 2034 2035 static bool hclge_rx_buf_calc_all(struct hclge_dev *hdev, bool max, 2036 struct hclge_pkt_buf_alloc *buf_alloc) 2037 { 2038 u32 rx_all = hdev->pkt_buf_size - hclge_get_tx_buff_alloced(buf_alloc); 2039 u32 aligned_mps = round_up(hdev->mps, HCLGE_BUF_SIZE_UNIT); 2040 unsigned int i; 2041 2042 for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { 2043 struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i]; 2044 2045 priv->enable = 0; 2046 priv->wl.low = 0; 2047 priv->wl.high = 0; 2048 priv->buf_size = 0; 2049 2050 if (!(hdev->hw_tc_map & BIT(i))) 2051 continue; 2052 2053 priv->enable = 1; 2054 2055 if (hdev->tm_info.hw_pfc_map & BIT(i)) { 2056 priv->wl.low = max ? aligned_mps : HCLGE_BUF_SIZE_UNIT; 2057 priv->wl.high = roundup(priv->wl.low + aligned_mps, 2058 HCLGE_BUF_SIZE_UNIT); 2059 } else { 2060 priv->wl.low = 0; 2061 priv->wl.high = max ? (aligned_mps * HCLGE_BUF_MUL_BY) : 2062 aligned_mps; 2063 } 2064 2065 priv->buf_size = priv->wl.high + hdev->dv_buf_size; 2066 } 2067 2068 return hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all); 2069 } 2070 2071 static bool hclge_drop_nopfc_buf_till_fit(struct hclge_dev *hdev, 2072 struct hclge_pkt_buf_alloc *buf_alloc) 2073 { 2074 u32 rx_all = hdev->pkt_buf_size - hclge_get_tx_buff_alloced(buf_alloc); 2075 int no_pfc_priv_num = hclge_get_no_pfc_priv_num(hdev, buf_alloc); 2076 int i; 2077 2078 /* let the last to be cleared first */ 2079 for (i = HCLGE_MAX_TC_NUM - 1; i >= 0; i--) { 2080 struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i]; 2081 unsigned int mask = BIT((unsigned int)i); 2082 2083 if (hdev->hw_tc_map & mask && 2084 !(hdev->tm_info.hw_pfc_map & mask)) { 2085 /* Clear the no pfc TC private buffer */ 2086 priv->wl.low = 0; 2087 priv->wl.high = 0; 2088 priv->buf_size = 0; 2089 priv->enable = 0; 2090 no_pfc_priv_num--; 2091 } 2092 2093 if (hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all) || 2094 no_pfc_priv_num == 0) 2095 break; 2096 } 2097 2098 return hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all); 2099 } 2100 2101 static bool hclge_drop_pfc_buf_till_fit(struct hclge_dev *hdev, 2102 struct hclge_pkt_buf_alloc *buf_alloc) 2103 { 2104 u32 rx_all = hdev->pkt_buf_size - hclge_get_tx_buff_alloced(buf_alloc); 2105 int pfc_priv_num = hclge_get_pfc_priv_num(hdev, buf_alloc); 2106 int i; 2107 2108 /* let the last to be cleared first */ 2109 for (i = HCLGE_MAX_TC_NUM - 1; i >= 0; i--) { 2110 struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i]; 2111 unsigned int mask = BIT((unsigned int)i); 2112 2113 if (hdev->hw_tc_map & mask && 2114 hdev->tm_info.hw_pfc_map & mask) { 2115 /* Reduce the number of pfc TC with private buffer */ 2116 priv->wl.low = 0; 2117 priv->enable = 0; 2118 priv->wl.high = 0; 2119 priv->buf_size = 0; 2120 pfc_priv_num--; 2121 } 2122 2123 if (hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all) || 2124 pfc_priv_num == 0) 2125 break; 2126 } 2127 2128 return hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all); 2129 } 2130 2131 static int hclge_only_alloc_priv_buff(struct hclge_dev *hdev, 2132 struct hclge_pkt_buf_alloc *buf_alloc) 2133 { 2134 #define COMPENSATE_BUFFER 0x3C00 2135 #define COMPENSATE_HALF_MPS_NUM 5 2136 #define PRIV_WL_GAP 0x1800 2137 2138 u32 rx_priv = hdev->pkt_buf_size - hclge_get_tx_buff_alloced(buf_alloc); 2139 u32 tc_num = hclge_get_tc_num(hdev); 2140 u32 half_mps = hdev->mps >> 1; 2141 u32 min_rx_priv; 2142 unsigned int i; 2143 2144 if (tc_num) 2145 rx_priv = rx_priv / tc_num; 2146 2147 if (tc_num <= NEED_RESERVE_TC_NUM) 2148 rx_priv = rx_priv * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT; 2149 2150 min_rx_priv = hdev->dv_buf_size + COMPENSATE_BUFFER + 2151 COMPENSATE_HALF_MPS_NUM * half_mps; 2152 min_rx_priv = round_up(min_rx_priv, HCLGE_BUF_SIZE_UNIT); 2153 rx_priv = round_down(rx_priv, HCLGE_BUF_SIZE_UNIT); 2154 if (rx_priv < min_rx_priv) 2155 return false; 2156 2157 for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { 2158 struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i]; 2159 2160 priv->enable = 0; 2161 priv->wl.low = 0; 2162 priv->wl.high = 0; 2163 priv->buf_size = 0; 2164 2165 if (!(hdev->hw_tc_map & BIT(i))) 2166 continue; 2167 2168 priv->enable = 1; 2169 priv->buf_size = rx_priv; 2170 priv->wl.high = rx_priv - hdev->dv_buf_size; 2171 priv->wl.low = priv->wl.high - PRIV_WL_GAP; 2172 } 2173 2174 buf_alloc->s_buf.buf_size = 0; 2175 2176 return true; 2177 } 2178 2179 /* hclge_rx_buffer_calc: calculate the rx private buffer size for all TCs 2180 * @hdev: pointer to struct hclge_dev 2181 * @buf_alloc: pointer to buffer calculation data 2182 * @return: 0: calculate successful, negative: fail 2183 */ 2184 static int hclge_rx_buffer_calc(struct hclge_dev *hdev, 2185 struct hclge_pkt_buf_alloc *buf_alloc) 2186 { 2187 /* When DCB is not supported, rx private buffer is not allocated. */ 2188 if (!hnae3_dev_dcb_supported(hdev)) { 2189 u32 rx_all = hdev->pkt_buf_size; 2190 2191 rx_all -= hclge_get_tx_buff_alloced(buf_alloc); 2192 if (!hclge_is_rx_buf_ok(hdev, buf_alloc, rx_all)) 2193 return -ENOMEM; 2194 2195 return 0; 2196 } 2197 2198 if (hclge_only_alloc_priv_buff(hdev, buf_alloc)) 2199 return 0; 2200 2201 if (hclge_rx_buf_calc_all(hdev, true, buf_alloc)) 2202 return 0; 2203 2204 /* try to decrease the buffer size */ 2205 if (hclge_rx_buf_calc_all(hdev, false, buf_alloc)) 2206 return 0; 2207 2208 if (hclge_drop_nopfc_buf_till_fit(hdev, buf_alloc)) 2209 return 0; 2210 2211 if (hclge_drop_pfc_buf_till_fit(hdev, buf_alloc)) 2212 return 0; 2213 2214 return -ENOMEM; 2215 } 2216 2217 static int hclge_rx_priv_buf_alloc(struct hclge_dev *hdev, 2218 struct hclge_pkt_buf_alloc *buf_alloc) 2219 { 2220 struct hclge_rx_priv_buff_cmd *req; 2221 struct hclge_desc desc; 2222 int ret; 2223 int i; 2224 2225 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RX_PRIV_BUFF_ALLOC, false); 2226 req = (struct hclge_rx_priv_buff_cmd *)desc.data; 2227 2228 /* Alloc private buffer TCs */ 2229 for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { 2230 struct hclge_priv_buf *priv = &buf_alloc->priv_buf[i]; 2231 2232 req->buf_num[i] = 2233 cpu_to_le16(priv->buf_size >> HCLGE_BUF_UNIT_S); 2234 req->buf_num[i] |= 2235 cpu_to_le16(1 << HCLGE_TC0_PRI_BUF_EN_B); 2236 } 2237 2238 req->shared_buf = 2239 cpu_to_le16((buf_alloc->s_buf.buf_size >> HCLGE_BUF_UNIT_S) | 2240 (1 << HCLGE_TC0_PRI_BUF_EN_B)); 2241 2242 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 2243 if (ret) 2244 dev_err(&hdev->pdev->dev, 2245 "rx private buffer alloc cmd failed %d\n", ret); 2246 2247 return ret; 2248 } 2249 2250 static int hclge_rx_priv_wl_config(struct hclge_dev *hdev, 2251 struct hclge_pkt_buf_alloc *buf_alloc) 2252 { 2253 struct hclge_rx_priv_wl_buf *req; 2254 struct hclge_priv_buf *priv; 2255 struct hclge_desc desc[2]; 2256 int i, j; 2257 int ret; 2258 2259 for (i = 0; i < 2; i++) { 2260 hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_RX_PRIV_WL_ALLOC, 2261 false); 2262 req = (struct hclge_rx_priv_wl_buf *)desc[i].data; 2263 2264 /* The first descriptor set the NEXT bit to 1 */ 2265 if (i == 0) 2266 desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 2267 else 2268 desc[i].flag &= ~cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 2269 2270 for (j = 0; j < HCLGE_TC_NUM_ONE_DESC; j++) { 2271 u32 idx = i * HCLGE_TC_NUM_ONE_DESC + j; 2272 2273 priv = &buf_alloc->priv_buf[idx]; 2274 req->tc_wl[j].high = 2275 cpu_to_le16(priv->wl.high >> HCLGE_BUF_UNIT_S); 2276 req->tc_wl[j].high |= 2277 cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B)); 2278 req->tc_wl[j].low = 2279 cpu_to_le16(priv->wl.low >> HCLGE_BUF_UNIT_S); 2280 req->tc_wl[j].low |= 2281 cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B)); 2282 } 2283 } 2284 2285 /* Send 2 descriptor at one time */ 2286 ret = hclge_cmd_send(&hdev->hw, desc, 2); 2287 if (ret) 2288 dev_err(&hdev->pdev->dev, 2289 "rx private waterline config cmd failed %d\n", 2290 ret); 2291 return ret; 2292 } 2293 2294 static int hclge_common_thrd_config(struct hclge_dev *hdev, 2295 struct hclge_pkt_buf_alloc *buf_alloc) 2296 { 2297 struct hclge_shared_buf *s_buf = &buf_alloc->s_buf; 2298 struct hclge_rx_com_thrd *req; 2299 struct hclge_desc desc[2]; 2300 struct hclge_tc_thrd *tc; 2301 int i, j; 2302 int ret; 2303 2304 for (i = 0; i < 2; i++) { 2305 hclge_cmd_setup_basic_desc(&desc[i], 2306 HCLGE_OPC_RX_COM_THRD_ALLOC, false); 2307 req = (struct hclge_rx_com_thrd *)&desc[i].data; 2308 2309 /* The first descriptor set the NEXT bit to 1 */ 2310 if (i == 0) 2311 desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 2312 else 2313 desc[i].flag &= ~cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 2314 2315 for (j = 0; j < HCLGE_TC_NUM_ONE_DESC; j++) { 2316 tc = &s_buf->tc_thrd[i * HCLGE_TC_NUM_ONE_DESC + j]; 2317 2318 req->com_thrd[j].high = 2319 cpu_to_le16(tc->high >> HCLGE_BUF_UNIT_S); 2320 req->com_thrd[j].high |= 2321 cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B)); 2322 req->com_thrd[j].low = 2323 cpu_to_le16(tc->low >> HCLGE_BUF_UNIT_S); 2324 req->com_thrd[j].low |= 2325 cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B)); 2326 } 2327 } 2328 2329 /* Send 2 descriptors at one time */ 2330 ret = hclge_cmd_send(&hdev->hw, desc, 2); 2331 if (ret) 2332 dev_err(&hdev->pdev->dev, 2333 "common threshold config cmd failed %d\n", ret); 2334 return ret; 2335 } 2336 2337 static int hclge_common_wl_config(struct hclge_dev *hdev, 2338 struct hclge_pkt_buf_alloc *buf_alloc) 2339 { 2340 struct hclge_shared_buf *buf = &buf_alloc->s_buf; 2341 struct hclge_rx_com_wl *req; 2342 struct hclge_desc desc; 2343 int ret; 2344 2345 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RX_COM_WL_ALLOC, false); 2346 2347 req = (struct hclge_rx_com_wl *)desc.data; 2348 req->com_wl.high = cpu_to_le16(buf->self.high >> HCLGE_BUF_UNIT_S); 2349 req->com_wl.high |= cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B)); 2350 2351 req->com_wl.low = cpu_to_le16(buf->self.low >> HCLGE_BUF_UNIT_S); 2352 req->com_wl.low |= cpu_to_le16(BIT(HCLGE_RX_PRIV_EN_B)); 2353 2354 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 2355 if (ret) 2356 dev_err(&hdev->pdev->dev, 2357 "common waterline config cmd failed %d\n", ret); 2358 2359 return ret; 2360 } 2361 2362 int hclge_buffer_alloc(struct hclge_dev *hdev) 2363 { 2364 struct hclge_pkt_buf_alloc *pkt_buf; 2365 int ret; 2366 2367 pkt_buf = kzalloc(sizeof(*pkt_buf), GFP_KERNEL); 2368 if (!pkt_buf) 2369 return -ENOMEM; 2370 2371 ret = hclge_tx_buffer_calc(hdev, pkt_buf); 2372 if (ret) { 2373 dev_err(&hdev->pdev->dev, 2374 "could not calc tx buffer size for all TCs %d\n", ret); 2375 goto out; 2376 } 2377 2378 ret = hclge_tx_buffer_alloc(hdev, pkt_buf); 2379 if (ret) { 2380 dev_err(&hdev->pdev->dev, 2381 "could not alloc tx buffers %d\n", ret); 2382 goto out; 2383 } 2384 2385 ret = hclge_rx_buffer_calc(hdev, pkt_buf); 2386 if (ret) { 2387 dev_err(&hdev->pdev->dev, 2388 "could not calc rx priv buffer size for all TCs %d\n", 2389 ret); 2390 goto out; 2391 } 2392 2393 ret = hclge_rx_priv_buf_alloc(hdev, pkt_buf); 2394 if (ret) { 2395 dev_err(&hdev->pdev->dev, "could not alloc rx priv buffer %d\n", 2396 ret); 2397 goto out; 2398 } 2399 2400 if (hnae3_dev_dcb_supported(hdev)) { 2401 ret = hclge_rx_priv_wl_config(hdev, pkt_buf); 2402 if (ret) { 2403 dev_err(&hdev->pdev->dev, 2404 "could not configure rx private waterline %d\n", 2405 ret); 2406 goto out; 2407 } 2408 2409 ret = hclge_common_thrd_config(hdev, pkt_buf); 2410 if (ret) { 2411 dev_err(&hdev->pdev->dev, 2412 "could not configure common threshold %d\n", 2413 ret); 2414 goto out; 2415 } 2416 } 2417 2418 ret = hclge_common_wl_config(hdev, pkt_buf); 2419 if (ret) 2420 dev_err(&hdev->pdev->dev, 2421 "could not configure common waterline %d\n", ret); 2422 2423 out: 2424 kfree(pkt_buf); 2425 return ret; 2426 } 2427 2428 static int hclge_init_roce_base_info(struct hclge_vport *vport) 2429 { 2430 struct hnae3_handle *roce = &vport->roce; 2431 struct hnae3_handle *nic = &vport->nic; 2432 struct hclge_dev *hdev = vport->back; 2433 2434 roce->rinfo.num_vectors = vport->back->num_roce_msi; 2435 2436 if (hdev->num_msi < hdev->num_nic_msi + hdev->num_roce_msi) 2437 return -EINVAL; 2438 2439 roce->rinfo.base_vector = hdev->num_nic_msi; 2440 2441 roce->rinfo.netdev = nic->kinfo.netdev; 2442 roce->rinfo.roce_io_base = hdev->hw.hw.io_base; 2443 roce->rinfo.roce_mem_base = hdev->hw.hw.mem_base; 2444 2445 roce->pdev = nic->pdev; 2446 roce->ae_algo = nic->ae_algo; 2447 roce->numa_node_mask = nic->numa_node_mask; 2448 2449 return 0; 2450 } 2451 2452 static int hclge_init_msi(struct hclge_dev *hdev) 2453 { 2454 struct pci_dev *pdev = hdev->pdev; 2455 int vectors; 2456 int i; 2457 2458 vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM, 2459 hdev->num_msi, 2460 PCI_IRQ_MSI | PCI_IRQ_MSIX); 2461 if (vectors < 0) { 2462 dev_err(&pdev->dev, 2463 "failed(%d) to allocate MSI/MSI-X vectors\n", 2464 vectors); 2465 return vectors; 2466 } 2467 if (vectors < hdev->num_msi) 2468 dev_warn(&hdev->pdev->dev, 2469 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n", 2470 hdev->num_msi, vectors); 2471 2472 hdev->num_msi = vectors; 2473 hdev->num_msi_left = vectors; 2474 2475 hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi, 2476 sizeof(u16), GFP_KERNEL); 2477 if (!hdev->vector_status) { 2478 pci_free_irq_vectors(pdev); 2479 return -ENOMEM; 2480 } 2481 2482 for (i = 0; i < hdev->num_msi; i++) 2483 hdev->vector_status[i] = HCLGE_INVALID_VPORT; 2484 2485 hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi, 2486 sizeof(int), GFP_KERNEL); 2487 if (!hdev->vector_irq) { 2488 pci_free_irq_vectors(pdev); 2489 return -ENOMEM; 2490 } 2491 2492 return 0; 2493 } 2494 2495 static u8 hclge_check_speed_dup(u8 duplex, int speed) 2496 { 2497 if (!(speed == HCLGE_MAC_SPEED_10M || speed == HCLGE_MAC_SPEED_100M)) 2498 duplex = HCLGE_MAC_FULL; 2499 2500 return duplex; 2501 } 2502 2503 static struct hclge_mac_speed_map hclge_mac_speed_map_to_fw[] = { 2504 {HCLGE_MAC_SPEED_10M, HCLGE_FW_MAC_SPEED_10M}, 2505 {HCLGE_MAC_SPEED_100M, HCLGE_FW_MAC_SPEED_100M}, 2506 {HCLGE_MAC_SPEED_1G, HCLGE_FW_MAC_SPEED_1G}, 2507 {HCLGE_MAC_SPEED_10G, HCLGE_FW_MAC_SPEED_10G}, 2508 {HCLGE_MAC_SPEED_25G, HCLGE_FW_MAC_SPEED_25G}, 2509 {HCLGE_MAC_SPEED_40G, HCLGE_FW_MAC_SPEED_40G}, 2510 {HCLGE_MAC_SPEED_50G, HCLGE_FW_MAC_SPEED_50G}, 2511 {HCLGE_MAC_SPEED_100G, HCLGE_FW_MAC_SPEED_100G}, 2512 {HCLGE_MAC_SPEED_200G, HCLGE_FW_MAC_SPEED_200G}, 2513 }; 2514 2515 static int hclge_convert_to_fw_speed(u32 speed_drv, u32 *speed_fw) 2516 { 2517 u16 i; 2518 2519 for (i = 0; i < ARRAY_SIZE(hclge_mac_speed_map_to_fw); i++) { 2520 if (hclge_mac_speed_map_to_fw[i].speed_drv == speed_drv) { 2521 *speed_fw = hclge_mac_speed_map_to_fw[i].speed_fw; 2522 return 0; 2523 } 2524 } 2525 2526 return -EINVAL; 2527 } 2528 2529 static int hclge_cfg_mac_speed_dup_hw(struct hclge_dev *hdev, int speed, 2530 u8 duplex, u8 lane_num) 2531 { 2532 struct hclge_config_mac_speed_dup_cmd *req; 2533 struct hclge_desc desc; 2534 u32 speed_fw; 2535 int ret; 2536 2537 req = (struct hclge_config_mac_speed_dup_cmd *)desc.data; 2538 2539 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_SPEED_DUP, false); 2540 2541 if (duplex) 2542 hnae3_set_bit(req->speed_dup, HCLGE_CFG_DUPLEX_B, 1); 2543 2544 ret = hclge_convert_to_fw_speed(speed, &speed_fw); 2545 if (ret) { 2546 dev_err(&hdev->pdev->dev, "invalid speed (%d)\n", speed); 2547 return ret; 2548 } 2549 2550 hnae3_set_field(req->speed_dup, HCLGE_CFG_SPEED_M, HCLGE_CFG_SPEED_S, 2551 speed_fw); 2552 hnae3_set_bit(req->mac_change_fec_en, HCLGE_CFG_MAC_SPEED_CHANGE_EN_B, 2553 1); 2554 req->lane_num = lane_num; 2555 2556 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 2557 if (ret) { 2558 dev_err(&hdev->pdev->dev, 2559 "mac speed/duplex config cmd failed %d.\n", ret); 2560 return ret; 2561 } 2562 2563 return 0; 2564 } 2565 2566 int hclge_cfg_mac_speed_dup(struct hclge_dev *hdev, int speed, u8 duplex, u8 lane_num) 2567 { 2568 struct hclge_mac *mac = &hdev->hw.mac; 2569 int ret; 2570 2571 duplex = hclge_check_speed_dup(duplex, speed); 2572 if (!mac->support_autoneg && mac->speed == speed && 2573 mac->duplex == duplex && (mac->lane_num == lane_num || lane_num == 0)) 2574 return 0; 2575 2576 ret = hclge_cfg_mac_speed_dup_hw(hdev, speed, duplex, lane_num); 2577 if (ret) 2578 return ret; 2579 2580 hdev->hw.mac.speed = speed; 2581 hdev->hw.mac.duplex = duplex; 2582 if (!lane_num) 2583 hdev->hw.mac.lane_num = lane_num; 2584 2585 return 0; 2586 } 2587 2588 static int hclge_cfg_mac_speed_dup_h(struct hnae3_handle *handle, int speed, 2589 u8 duplex, u8 lane_num) 2590 { 2591 struct hclge_vport *vport = hclge_get_vport(handle); 2592 struct hclge_dev *hdev = vport->back; 2593 2594 return hclge_cfg_mac_speed_dup(hdev, speed, duplex, lane_num); 2595 } 2596 2597 static int hclge_set_autoneg_en(struct hclge_dev *hdev, bool enable) 2598 { 2599 struct hclge_config_auto_neg_cmd *req; 2600 struct hclge_desc desc; 2601 u32 flag = 0; 2602 int ret; 2603 2604 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_AN_MODE, false); 2605 2606 req = (struct hclge_config_auto_neg_cmd *)desc.data; 2607 if (enable) 2608 hnae3_set_bit(flag, HCLGE_MAC_CFG_AN_EN_B, 1U); 2609 req->cfg_an_cmd_flag = cpu_to_le32(flag); 2610 2611 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 2612 if (ret) 2613 dev_err(&hdev->pdev->dev, "auto neg set cmd failed %d.\n", 2614 ret); 2615 2616 return ret; 2617 } 2618 2619 static int hclge_set_autoneg(struct hnae3_handle *handle, bool enable) 2620 { 2621 struct hclge_vport *vport = hclge_get_vport(handle); 2622 struct hclge_dev *hdev = vport->back; 2623 2624 if (!hdev->hw.mac.support_autoneg) { 2625 if (enable) { 2626 dev_err(&hdev->pdev->dev, 2627 "autoneg is not supported by current port\n"); 2628 return -EOPNOTSUPP; 2629 } else { 2630 return 0; 2631 } 2632 } 2633 2634 return hclge_set_autoneg_en(hdev, enable); 2635 } 2636 2637 static int hclge_get_autoneg(struct hnae3_handle *handle) 2638 { 2639 struct hclge_vport *vport = hclge_get_vport(handle); 2640 struct hclge_dev *hdev = vport->back; 2641 struct phy_device *phydev = hdev->hw.mac.phydev; 2642 2643 if (phydev) 2644 return phydev->autoneg; 2645 2646 return hdev->hw.mac.autoneg; 2647 } 2648 2649 static int hclge_restart_autoneg(struct hnae3_handle *handle) 2650 { 2651 struct hclge_vport *vport = hclge_get_vport(handle); 2652 struct hclge_dev *hdev = vport->back; 2653 int ret; 2654 2655 dev_dbg(&hdev->pdev->dev, "restart autoneg\n"); 2656 2657 ret = hclge_notify_client(hdev, HNAE3_DOWN_CLIENT); 2658 if (ret) 2659 return ret; 2660 return hclge_notify_client(hdev, HNAE3_UP_CLIENT); 2661 } 2662 2663 static int hclge_halt_autoneg(struct hnae3_handle *handle, bool halt) 2664 { 2665 struct hclge_vport *vport = hclge_get_vport(handle); 2666 struct hclge_dev *hdev = vport->back; 2667 2668 if (hdev->hw.mac.support_autoneg && hdev->hw.mac.autoneg) 2669 return hclge_set_autoneg_en(hdev, !halt); 2670 2671 return 0; 2672 } 2673 2674 static void hclge_parse_fec_stats_lanes(struct hclge_dev *hdev, 2675 struct hclge_desc *desc, u32 desc_len) 2676 { 2677 u32 lane_size = HCLGE_FEC_STATS_MAX_LANES * 2; 2678 u32 desc_index = 0; 2679 u32 data_index = 0; 2680 u32 i; 2681 2682 for (i = 0; i < lane_size; i++) { 2683 if (data_index >= HCLGE_DESC_DATA_LEN) { 2684 desc_index++; 2685 data_index = 0; 2686 } 2687 2688 if (desc_index >= desc_len) 2689 return; 2690 2691 hdev->fec_stats.per_lanes[i] += 2692 le32_to_cpu(desc[desc_index].data[data_index]); 2693 data_index++; 2694 } 2695 } 2696 2697 static void hclge_parse_fec_stats(struct hclge_dev *hdev, 2698 struct hclge_desc *desc, u32 desc_len) 2699 { 2700 struct hclge_query_fec_stats_cmd *req; 2701 2702 req = (struct hclge_query_fec_stats_cmd *)desc[0].data; 2703 2704 hdev->fec_stats.base_r_lane_num = req->base_r_lane_num; 2705 hdev->fec_stats.rs_corr_blocks += 2706 le32_to_cpu(req->rs_fec_corr_blocks); 2707 hdev->fec_stats.rs_uncorr_blocks += 2708 le32_to_cpu(req->rs_fec_uncorr_blocks); 2709 hdev->fec_stats.rs_error_blocks += 2710 le32_to_cpu(req->rs_fec_error_blocks); 2711 hdev->fec_stats.base_r_corr_blocks += 2712 le32_to_cpu(req->base_r_fec_corr_blocks); 2713 hdev->fec_stats.base_r_uncorr_blocks += 2714 le32_to_cpu(req->base_r_fec_uncorr_blocks); 2715 2716 hclge_parse_fec_stats_lanes(hdev, &desc[1], desc_len - 1); 2717 } 2718 2719 static int hclge_update_fec_stats_hw(struct hclge_dev *hdev) 2720 { 2721 struct hclge_desc desc[HCLGE_FEC_STATS_CMD_NUM]; 2722 int ret; 2723 u32 i; 2724 2725 for (i = 0; i < HCLGE_FEC_STATS_CMD_NUM; i++) { 2726 hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_QUERY_FEC_STATS, 2727 true); 2728 if (i != (HCLGE_FEC_STATS_CMD_NUM - 1)) 2729 desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 2730 } 2731 2732 ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_FEC_STATS_CMD_NUM); 2733 if (ret) 2734 return ret; 2735 2736 hclge_parse_fec_stats(hdev, desc, HCLGE_FEC_STATS_CMD_NUM); 2737 2738 return 0; 2739 } 2740 2741 static void hclge_update_fec_stats(struct hclge_dev *hdev) 2742 { 2743 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 2744 int ret; 2745 2746 if (!hnae3_ae_dev_fec_stats_supported(ae_dev) || 2747 test_and_set_bit(HCLGE_STATE_FEC_STATS_UPDATING, &hdev->state)) 2748 return; 2749 2750 ret = hclge_update_fec_stats_hw(hdev); 2751 if (ret) 2752 dev_err(&hdev->pdev->dev, 2753 "failed to update fec stats, ret = %d\n", ret); 2754 2755 clear_bit(HCLGE_STATE_FEC_STATS_UPDATING, &hdev->state); 2756 } 2757 2758 static void hclge_get_fec_stats_total(struct hclge_dev *hdev, 2759 struct ethtool_fec_stats *fec_stats) 2760 { 2761 fec_stats->corrected_blocks.total = hdev->fec_stats.rs_corr_blocks; 2762 fec_stats->uncorrectable_blocks.total = 2763 hdev->fec_stats.rs_uncorr_blocks; 2764 } 2765 2766 static void hclge_get_fec_stats_lanes(struct hclge_dev *hdev, 2767 struct ethtool_fec_stats *fec_stats) 2768 { 2769 u32 i; 2770 2771 if (hdev->fec_stats.base_r_lane_num == 0 || 2772 hdev->fec_stats.base_r_lane_num > HCLGE_FEC_STATS_MAX_LANES) { 2773 dev_err(&hdev->pdev->dev, 2774 "fec stats lane number(%llu) is invalid\n", 2775 hdev->fec_stats.base_r_lane_num); 2776 return; 2777 } 2778 2779 for (i = 0; i < hdev->fec_stats.base_r_lane_num; i++) { 2780 fec_stats->corrected_blocks.lanes[i] = 2781 hdev->fec_stats.base_r_corr_per_lanes[i]; 2782 fec_stats->uncorrectable_blocks.lanes[i] = 2783 hdev->fec_stats.base_r_uncorr_per_lanes[i]; 2784 } 2785 } 2786 2787 static void hclge_comm_get_fec_stats(struct hclge_dev *hdev, 2788 struct ethtool_fec_stats *fec_stats) 2789 { 2790 u32 fec_mode = hdev->hw.mac.fec_mode; 2791 2792 switch (fec_mode) { 2793 case BIT(HNAE3_FEC_RS): 2794 case BIT(HNAE3_FEC_LLRS): 2795 hclge_get_fec_stats_total(hdev, fec_stats); 2796 break; 2797 case BIT(HNAE3_FEC_BASER): 2798 hclge_get_fec_stats_lanes(hdev, fec_stats); 2799 break; 2800 default: 2801 dev_err(&hdev->pdev->dev, 2802 "fec stats is not supported by current fec mode(0x%x)\n", 2803 fec_mode); 2804 break; 2805 } 2806 } 2807 2808 static void hclge_get_fec_stats(struct hnae3_handle *handle, 2809 struct ethtool_fec_stats *fec_stats) 2810 { 2811 struct hclge_vport *vport = hclge_get_vport(handle); 2812 struct hclge_dev *hdev = vport->back; 2813 u32 fec_mode = hdev->hw.mac.fec_mode; 2814 2815 if (fec_mode == BIT(HNAE3_FEC_NONE) || 2816 fec_mode == BIT(HNAE3_FEC_AUTO) || 2817 fec_mode == BIT(HNAE3_FEC_USER_DEF)) 2818 return; 2819 2820 hclge_update_fec_stats(hdev); 2821 2822 hclge_comm_get_fec_stats(hdev, fec_stats); 2823 } 2824 2825 static int hclge_set_fec_hw(struct hclge_dev *hdev, u32 fec_mode) 2826 { 2827 struct hclge_config_fec_cmd *req; 2828 struct hclge_desc desc; 2829 int ret; 2830 2831 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_FEC_MODE, false); 2832 2833 req = (struct hclge_config_fec_cmd *)desc.data; 2834 if (fec_mode & BIT(HNAE3_FEC_AUTO)) 2835 hnae3_set_bit(req->fec_mode, HCLGE_MAC_CFG_FEC_AUTO_EN_B, 1); 2836 if (fec_mode & BIT(HNAE3_FEC_RS)) 2837 hnae3_set_field(req->fec_mode, HCLGE_MAC_CFG_FEC_MODE_M, 2838 HCLGE_MAC_CFG_FEC_MODE_S, HCLGE_MAC_FEC_RS); 2839 if (fec_mode & BIT(HNAE3_FEC_LLRS)) 2840 hnae3_set_field(req->fec_mode, HCLGE_MAC_CFG_FEC_MODE_M, 2841 HCLGE_MAC_CFG_FEC_MODE_S, HCLGE_MAC_FEC_LLRS); 2842 if (fec_mode & BIT(HNAE3_FEC_BASER)) 2843 hnae3_set_field(req->fec_mode, HCLGE_MAC_CFG_FEC_MODE_M, 2844 HCLGE_MAC_CFG_FEC_MODE_S, HCLGE_MAC_FEC_BASER); 2845 2846 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 2847 if (ret) 2848 dev_err(&hdev->pdev->dev, "set fec mode failed %d.\n", ret); 2849 2850 return ret; 2851 } 2852 2853 static int hclge_set_fec(struct hnae3_handle *handle, u32 fec_mode) 2854 { 2855 struct hclge_vport *vport = hclge_get_vport(handle); 2856 struct hclge_dev *hdev = vport->back; 2857 struct hclge_mac *mac = &hdev->hw.mac; 2858 int ret; 2859 2860 if (fec_mode && !(mac->fec_ability & fec_mode)) { 2861 dev_err(&hdev->pdev->dev, "unsupported fec mode\n"); 2862 return -EINVAL; 2863 } 2864 2865 ret = hclge_set_fec_hw(hdev, fec_mode); 2866 if (ret) 2867 return ret; 2868 2869 mac->user_fec_mode = fec_mode | BIT(HNAE3_FEC_USER_DEF); 2870 return 0; 2871 } 2872 2873 static void hclge_get_fec(struct hnae3_handle *handle, u8 *fec_ability, 2874 u8 *fec_mode) 2875 { 2876 struct hclge_vport *vport = hclge_get_vport(handle); 2877 struct hclge_dev *hdev = vport->back; 2878 struct hclge_mac *mac = &hdev->hw.mac; 2879 2880 if (fec_ability) 2881 *fec_ability = mac->fec_ability; 2882 if (fec_mode) 2883 *fec_mode = mac->fec_mode; 2884 } 2885 2886 static int hclge_mac_init(struct hclge_dev *hdev) 2887 { 2888 struct hclge_mac *mac = &hdev->hw.mac; 2889 int ret; 2890 2891 hdev->support_sfp_query = true; 2892 hdev->hw.mac.duplex = HCLGE_MAC_FULL; 2893 ret = hclge_cfg_mac_speed_dup_hw(hdev, hdev->hw.mac.speed, 2894 hdev->hw.mac.duplex, hdev->hw.mac.lane_num); 2895 if (ret) 2896 return ret; 2897 2898 if (hdev->hw.mac.support_autoneg) { 2899 ret = hclge_set_autoneg_en(hdev, hdev->hw.mac.autoneg); 2900 if (ret) 2901 return ret; 2902 } 2903 2904 mac->link = 0; 2905 2906 if (mac->user_fec_mode & BIT(HNAE3_FEC_USER_DEF)) { 2907 ret = hclge_set_fec_hw(hdev, mac->user_fec_mode); 2908 if (ret) 2909 return ret; 2910 } 2911 2912 ret = hclge_set_mac_mtu(hdev, hdev->mps); 2913 if (ret) { 2914 dev_err(&hdev->pdev->dev, "set mtu failed ret=%d\n", ret); 2915 return ret; 2916 } 2917 2918 ret = hclge_set_default_loopback(hdev); 2919 if (ret) 2920 return ret; 2921 2922 ret = hclge_buffer_alloc(hdev); 2923 if (ret) 2924 dev_err(&hdev->pdev->dev, 2925 "allocate buffer fail, ret=%d\n", ret); 2926 2927 return ret; 2928 } 2929 2930 static void hclge_mbx_task_schedule(struct hclge_dev *hdev) 2931 { 2932 if (!test_bit(HCLGE_STATE_REMOVING, &hdev->state) && 2933 !test_and_set_bit(HCLGE_STATE_MBX_SERVICE_SCHED, &hdev->state)) { 2934 hdev->last_mbx_scheduled = jiffies; 2935 mod_delayed_work(hclge_wq, &hdev->service_task, 0); 2936 } 2937 } 2938 2939 static void hclge_reset_task_schedule(struct hclge_dev *hdev) 2940 { 2941 if (!test_bit(HCLGE_STATE_REMOVING, &hdev->state) && 2942 test_bit(HCLGE_STATE_SERVICE_INITED, &hdev->state) && 2943 !test_and_set_bit(HCLGE_STATE_RST_SERVICE_SCHED, &hdev->state)) { 2944 hdev->last_rst_scheduled = jiffies; 2945 mod_delayed_work(hclge_wq, &hdev->service_task, 0); 2946 } 2947 } 2948 2949 static void hclge_errhand_task_schedule(struct hclge_dev *hdev) 2950 { 2951 if (!test_bit(HCLGE_STATE_REMOVING, &hdev->state) && 2952 !test_and_set_bit(HCLGE_STATE_ERR_SERVICE_SCHED, &hdev->state)) 2953 mod_delayed_work(hclge_wq, &hdev->service_task, 0); 2954 } 2955 2956 void hclge_task_schedule(struct hclge_dev *hdev, unsigned long delay_time) 2957 { 2958 if (!test_bit(HCLGE_STATE_REMOVING, &hdev->state) && 2959 !test_bit(HCLGE_STATE_RST_FAIL, &hdev->state)) 2960 mod_delayed_work(hclge_wq, &hdev->service_task, delay_time); 2961 } 2962 2963 static int hclge_get_mac_link_status(struct hclge_dev *hdev, int *link_status) 2964 { 2965 struct hclge_link_status_cmd *req; 2966 struct hclge_desc desc; 2967 int ret; 2968 2969 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_LINK_STATUS, true); 2970 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 2971 if (ret) { 2972 dev_err(&hdev->pdev->dev, "get link status cmd failed %d\n", 2973 ret); 2974 return ret; 2975 } 2976 2977 req = (struct hclge_link_status_cmd *)desc.data; 2978 *link_status = (req->status & HCLGE_LINK_STATUS_UP_M) > 0 ? 2979 HCLGE_LINK_STATUS_UP : HCLGE_LINK_STATUS_DOWN; 2980 2981 return 0; 2982 } 2983 2984 static int hclge_get_mac_phy_link(struct hclge_dev *hdev, int *link_status) 2985 { 2986 struct phy_device *phydev = hdev->hw.mac.phydev; 2987 2988 *link_status = HCLGE_LINK_STATUS_DOWN; 2989 2990 if (test_bit(HCLGE_STATE_DOWN, &hdev->state)) 2991 return 0; 2992 2993 if (phydev && (phydev->state != PHY_RUNNING || !phydev->link)) 2994 return 0; 2995 2996 return hclge_get_mac_link_status(hdev, link_status); 2997 } 2998 2999 static void hclge_push_link_status(struct hclge_dev *hdev) 3000 { 3001 struct hclge_vport *vport; 3002 int ret; 3003 u16 i; 3004 3005 for (i = 0; i < pci_num_vf(hdev->pdev); i++) { 3006 vport = &hdev->vport[i + HCLGE_VF_VPORT_START_NUM]; 3007 3008 if (!test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state) || 3009 vport->vf_info.link_state != IFLA_VF_LINK_STATE_AUTO) 3010 continue; 3011 3012 ret = hclge_push_vf_link_status(vport); 3013 if (ret) { 3014 dev_err(&hdev->pdev->dev, 3015 "failed to push link status to vf%u, ret = %d\n", 3016 i, ret); 3017 } 3018 } 3019 } 3020 3021 static void hclge_update_link_status(struct hclge_dev *hdev) 3022 { 3023 struct hnae3_handle *rhandle = &hdev->vport[0].roce; 3024 struct hnae3_handle *handle = &hdev->vport[0].nic; 3025 struct hnae3_client *rclient = hdev->roce_client; 3026 struct hnae3_client *client = hdev->nic_client; 3027 int state; 3028 int ret; 3029 3030 if (!client) 3031 return; 3032 3033 if (test_and_set_bit(HCLGE_STATE_LINK_UPDATING, &hdev->state)) 3034 return; 3035 3036 ret = hclge_get_mac_phy_link(hdev, &state); 3037 if (ret) { 3038 clear_bit(HCLGE_STATE_LINK_UPDATING, &hdev->state); 3039 return; 3040 } 3041 3042 if (state != hdev->hw.mac.link) { 3043 hdev->hw.mac.link = state; 3044 client->ops->link_status_change(handle, state); 3045 hclge_config_mac_tnl_int(hdev, state); 3046 if (rclient && rclient->ops->link_status_change) 3047 rclient->ops->link_status_change(rhandle, state); 3048 3049 hclge_push_link_status(hdev); 3050 } 3051 3052 clear_bit(HCLGE_STATE_LINK_UPDATING, &hdev->state); 3053 } 3054 3055 static void hclge_update_speed_advertising(struct hclge_mac *mac) 3056 { 3057 u32 speed_ability; 3058 3059 if (hclge_get_speed_bit(mac->speed, &speed_ability)) 3060 return; 3061 3062 switch (mac->module_type) { 3063 case HNAE3_MODULE_TYPE_FIBRE_LR: 3064 hclge_convert_setting_lr(speed_ability, mac->advertising); 3065 break; 3066 case HNAE3_MODULE_TYPE_FIBRE_SR: 3067 case HNAE3_MODULE_TYPE_AOC: 3068 hclge_convert_setting_sr(speed_ability, mac->advertising); 3069 break; 3070 case HNAE3_MODULE_TYPE_CR: 3071 hclge_convert_setting_cr(speed_ability, mac->advertising); 3072 break; 3073 case HNAE3_MODULE_TYPE_KR: 3074 hclge_convert_setting_kr(speed_ability, mac->advertising); 3075 break; 3076 default: 3077 break; 3078 } 3079 } 3080 3081 static void hclge_update_fec_advertising(struct hclge_mac *mac) 3082 { 3083 if (mac->fec_mode & BIT(HNAE3_FEC_RS)) 3084 linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_RS_BIT, 3085 mac->advertising); 3086 else if (mac->fec_mode & BIT(HNAE3_FEC_LLRS)) 3087 linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_LLRS_BIT, 3088 mac->advertising); 3089 else if (mac->fec_mode & BIT(HNAE3_FEC_BASER)) 3090 linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_BASER_BIT, 3091 mac->advertising); 3092 else 3093 linkmode_set_bit(ETHTOOL_LINK_MODE_FEC_NONE_BIT, 3094 mac->advertising); 3095 } 3096 3097 static void hclge_update_pause_advertising(struct hclge_dev *hdev) 3098 { 3099 struct hclge_mac *mac = &hdev->hw.mac; 3100 bool rx_en, tx_en; 3101 3102 switch (hdev->fc_mode_last_time) { 3103 case HCLGE_FC_RX_PAUSE: 3104 rx_en = true; 3105 tx_en = false; 3106 break; 3107 case HCLGE_FC_TX_PAUSE: 3108 rx_en = false; 3109 tx_en = true; 3110 break; 3111 case HCLGE_FC_FULL: 3112 rx_en = true; 3113 tx_en = true; 3114 break; 3115 default: 3116 rx_en = false; 3117 tx_en = false; 3118 break; 3119 } 3120 3121 linkmode_set_pause(mac->advertising, tx_en, rx_en); 3122 } 3123 3124 static void hclge_update_advertising(struct hclge_dev *hdev) 3125 { 3126 struct hclge_mac *mac = &hdev->hw.mac; 3127 3128 linkmode_zero(mac->advertising); 3129 hclge_update_speed_advertising(mac); 3130 hclge_update_fec_advertising(mac); 3131 hclge_update_pause_advertising(hdev); 3132 } 3133 3134 static void hclge_update_port_capability(struct hclge_dev *hdev, 3135 struct hclge_mac *mac) 3136 { 3137 if (hnae3_dev_fec_supported(hdev)) 3138 hclge_convert_setting_fec(mac); 3139 3140 /* firmware can not identify back plane type, the media type 3141 * read from configuration can help deal it 3142 */ 3143 if (mac->media_type == HNAE3_MEDIA_TYPE_BACKPLANE && 3144 mac->module_type == HNAE3_MODULE_TYPE_UNKNOWN) 3145 mac->module_type = HNAE3_MODULE_TYPE_KR; 3146 else if (mac->media_type == HNAE3_MEDIA_TYPE_COPPER) 3147 mac->module_type = HNAE3_MODULE_TYPE_TP; 3148 3149 if (mac->support_autoneg) { 3150 linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mac->supported); 3151 linkmode_copy(mac->advertising, mac->supported); 3152 } else { 3153 linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, 3154 mac->supported); 3155 hclge_update_advertising(hdev); 3156 } 3157 } 3158 3159 static int hclge_get_sfp_speed(struct hclge_dev *hdev, u32 *speed) 3160 { 3161 struct hclge_sfp_info_cmd *resp; 3162 struct hclge_desc desc; 3163 int ret; 3164 3165 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GET_SFP_INFO, true); 3166 resp = (struct hclge_sfp_info_cmd *)desc.data; 3167 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 3168 if (ret == -EOPNOTSUPP) { 3169 dev_warn(&hdev->pdev->dev, 3170 "IMP do not support get SFP speed %d\n", ret); 3171 return ret; 3172 } else if (ret) { 3173 dev_err(&hdev->pdev->dev, "get sfp speed failed %d\n", ret); 3174 return ret; 3175 } 3176 3177 *speed = le32_to_cpu(resp->speed); 3178 3179 return 0; 3180 } 3181 3182 static int hclge_get_sfp_info(struct hclge_dev *hdev, struct hclge_mac *mac) 3183 { 3184 struct hclge_sfp_info_cmd *resp; 3185 struct hclge_desc desc; 3186 int ret; 3187 3188 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GET_SFP_INFO, true); 3189 resp = (struct hclge_sfp_info_cmd *)desc.data; 3190 3191 resp->query_type = QUERY_ACTIVE_SPEED; 3192 3193 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 3194 if (ret == -EOPNOTSUPP) { 3195 dev_warn(&hdev->pdev->dev, 3196 "IMP does not support get SFP info %d\n", ret); 3197 return ret; 3198 } else if (ret) { 3199 dev_err(&hdev->pdev->dev, "get sfp info failed %d\n", ret); 3200 return ret; 3201 } 3202 3203 /* In some case, mac speed get from IMP may be 0, it shouldn't be 3204 * set to mac->speed. 3205 */ 3206 if (!le32_to_cpu(resp->speed)) 3207 return 0; 3208 3209 mac->speed = le32_to_cpu(resp->speed); 3210 /* if resp->speed_ability is 0, it means it's an old version 3211 * firmware, do not update these params 3212 */ 3213 if (resp->speed_ability) { 3214 mac->module_type = le32_to_cpu(resp->module_type); 3215 mac->speed_ability = le32_to_cpu(resp->speed_ability); 3216 mac->autoneg = resp->autoneg; 3217 mac->support_autoneg = resp->autoneg_ability; 3218 mac->speed_type = QUERY_ACTIVE_SPEED; 3219 mac->lane_num = resp->lane_num; 3220 if (!resp->active_fec) 3221 mac->fec_mode = 0; 3222 else 3223 mac->fec_mode = BIT(resp->active_fec); 3224 mac->fec_ability = resp->fec_ability; 3225 } else { 3226 mac->speed_type = QUERY_SFP_SPEED; 3227 } 3228 3229 return 0; 3230 } 3231 3232 static int hclge_get_phy_link_ksettings(struct hnae3_handle *handle, 3233 struct ethtool_link_ksettings *cmd) 3234 { 3235 struct hclge_desc desc[HCLGE_PHY_LINK_SETTING_BD_NUM]; 3236 struct hclge_vport *vport = hclge_get_vport(handle); 3237 struct hclge_phy_link_ksetting_0_cmd *req0; 3238 struct hclge_phy_link_ksetting_1_cmd *req1; 3239 u32 supported, advertising, lp_advertising; 3240 struct hclge_dev *hdev = vport->back; 3241 int ret; 3242 3243 hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_PHY_LINK_KSETTING, 3244 true); 3245 desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 3246 hclge_cmd_setup_basic_desc(&desc[1], HCLGE_OPC_PHY_LINK_KSETTING, 3247 true); 3248 3249 ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_PHY_LINK_SETTING_BD_NUM); 3250 if (ret) { 3251 dev_err(&hdev->pdev->dev, 3252 "failed to get phy link ksetting, ret = %d.\n", ret); 3253 return ret; 3254 } 3255 3256 req0 = (struct hclge_phy_link_ksetting_0_cmd *)desc[0].data; 3257 cmd->base.autoneg = req0->autoneg; 3258 cmd->base.speed = le32_to_cpu(req0->speed); 3259 cmd->base.duplex = req0->duplex; 3260 cmd->base.port = req0->port; 3261 cmd->base.transceiver = req0->transceiver; 3262 cmd->base.phy_address = req0->phy_address; 3263 cmd->base.eth_tp_mdix = req0->eth_tp_mdix; 3264 cmd->base.eth_tp_mdix_ctrl = req0->eth_tp_mdix_ctrl; 3265 supported = le32_to_cpu(req0->supported); 3266 advertising = le32_to_cpu(req0->advertising); 3267 lp_advertising = le32_to_cpu(req0->lp_advertising); 3268 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 3269 supported); 3270 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 3271 advertising); 3272 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.lp_advertising, 3273 lp_advertising); 3274 3275 req1 = (struct hclge_phy_link_ksetting_1_cmd *)desc[1].data; 3276 cmd->base.master_slave_cfg = req1->master_slave_cfg; 3277 cmd->base.master_slave_state = req1->master_slave_state; 3278 3279 return 0; 3280 } 3281 3282 static int 3283 hclge_set_phy_link_ksettings(struct hnae3_handle *handle, 3284 const struct ethtool_link_ksettings *cmd) 3285 { 3286 struct hclge_desc desc[HCLGE_PHY_LINK_SETTING_BD_NUM]; 3287 struct hclge_vport *vport = hclge_get_vport(handle); 3288 struct hclge_phy_link_ksetting_0_cmd *req0; 3289 struct hclge_phy_link_ksetting_1_cmd *req1; 3290 struct hclge_dev *hdev = vport->back; 3291 u32 advertising; 3292 int ret; 3293 3294 if (cmd->base.autoneg == AUTONEG_DISABLE && 3295 ((cmd->base.speed != SPEED_100 && cmd->base.speed != SPEED_10) || 3296 (cmd->base.duplex != DUPLEX_HALF && 3297 cmd->base.duplex != DUPLEX_FULL))) 3298 return -EINVAL; 3299 3300 hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_PHY_LINK_KSETTING, 3301 false); 3302 desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 3303 hclge_cmd_setup_basic_desc(&desc[1], HCLGE_OPC_PHY_LINK_KSETTING, 3304 false); 3305 3306 req0 = (struct hclge_phy_link_ksetting_0_cmd *)desc[0].data; 3307 req0->autoneg = cmd->base.autoneg; 3308 req0->speed = cpu_to_le32(cmd->base.speed); 3309 req0->duplex = cmd->base.duplex; 3310 ethtool_convert_link_mode_to_legacy_u32(&advertising, 3311 cmd->link_modes.advertising); 3312 req0->advertising = cpu_to_le32(advertising); 3313 req0->eth_tp_mdix_ctrl = cmd->base.eth_tp_mdix_ctrl; 3314 3315 req1 = (struct hclge_phy_link_ksetting_1_cmd *)desc[1].data; 3316 req1->master_slave_cfg = cmd->base.master_slave_cfg; 3317 3318 ret = hclge_cmd_send(&hdev->hw, desc, HCLGE_PHY_LINK_SETTING_BD_NUM); 3319 if (ret) { 3320 dev_err(&hdev->pdev->dev, 3321 "failed to set phy link ksettings, ret = %d.\n", ret); 3322 return ret; 3323 } 3324 3325 hdev->hw.mac.autoneg = cmd->base.autoneg; 3326 hdev->hw.mac.speed = cmd->base.speed; 3327 hdev->hw.mac.duplex = cmd->base.duplex; 3328 linkmode_copy(hdev->hw.mac.advertising, cmd->link_modes.advertising); 3329 3330 return 0; 3331 } 3332 3333 static int hclge_update_tp_port_info(struct hclge_dev *hdev) 3334 { 3335 struct ethtool_link_ksettings cmd; 3336 int ret; 3337 3338 if (!hnae3_dev_phy_imp_supported(hdev)) 3339 return 0; 3340 3341 ret = hclge_get_phy_link_ksettings(&hdev->vport->nic, &cmd); 3342 if (ret) 3343 return ret; 3344 3345 hdev->hw.mac.autoneg = cmd.base.autoneg; 3346 hdev->hw.mac.speed = cmd.base.speed; 3347 hdev->hw.mac.duplex = cmd.base.duplex; 3348 linkmode_copy(hdev->hw.mac.advertising, cmd.link_modes.advertising); 3349 3350 return 0; 3351 } 3352 3353 static int hclge_tp_port_init(struct hclge_dev *hdev) 3354 { 3355 struct ethtool_link_ksettings cmd; 3356 3357 if (!hnae3_dev_phy_imp_supported(hdev)) 3358 return 0; 3359 3360 cmd.base.autoneg = hdev->hw.mac.autoneg; 3361 cmd.base.speed = hdev->hw.mac.speed; 3362 cmd.base.duplex = hdev->hw.mac.duplex; 3363 linkmode_copy(cmd.link_modes.advertising, hdev->hw.mac.advertising); 3364 3365 return hclge_set_phy_link_ksettings(&hdev->vport->nic, &cmd); 3366 } 3367 3368 static int hclge_update_port_info(struct hclge_dev *hdev) 3369 { 3370 struct hclge_mac *mac = &hdev->hw.mac; 3371 int speed; 3372 int ret; 3373 3374 /* get the port info from SFP cmd if not copper port */ 3375 if (mac->media_type == HNAE3_MEDIA_TYPE_COPPER) 3376 return hclge_update_tp_port_info(hdev); 3377 3378 /* if IMP does not support get SFP/qSFP info, return directly */ 3379 if (!hdev->support_sfp_query) 3380 return 0; 3381 3382 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) { 3383 speed = mac->speed; 3384 ret = hclge_get_sfp_info(hdev, mac); 3385 } else { 3386 speed = HCLGE_MAC_SPEED_UNKNOWN; 3387 ret = hclge_get_sfp_speed(hdev, &speed); 3388 } 3389 3390 if (ret == -EOPNOTSUPP) { 3391 hdev->support_sfp_query = false; 3392 return ret; 3393 } else if (ret) { 3394 return ret; 3395 } 3396 3397 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) { 3398 if (mac->speed_type == QUERY_ACTIVE_SPEED) { 3399 hclge_update_port_capability(hdev, mac); 3400 if (mac->speed != speed) 3401 (void)hclge_tm_port_shaper_cfg(hdev); 3402 return 0; 3403 } 3404 return hclge_cfg_mac_speed_dup(hdev, mac->speed, 3405 HCLGE_MAC_FULL, mac->lane_num); 3406 } else { 3407 if (speed == HCLGE_MAC_SPEED_UNKNOWN) 3408 return 0; /* do nothing if no SFP */ 3409 3410 /* must config full duplex for SFP */ 3411 return hclge_cfg_mac_speed_dup(hdev, speed, HCLGE_MAC_FULL, 0); 3412 } 3413 } 3414 3415 static int hclge_get_status(struct hnae3_handle *handle) 3416 { 3417 struct hclge_vport *vport = hclge_get_vport(handle); 3418 struct hclge_dev *hdev = vport->back; 3419 3420 hclge_update_link_status(hdev); 3421 3422 return hdev->hw.mac.link; 3423 } 3424 3425 struct hclge_vport *hclge_get_vf_vport(struct hclge_dev *hdev, int vf) 3426 { 3427 if (!pci_num_vf(hdev->pdev)) { 3428 dev_err(&hdev->pdev->dev, 3429 "SRIOV is disabled, can not get vport(%d) info.\n", vf); 3430 return NULL; 3431 } 3432 3433 if (vf < 0 || vf >= pci_num_vf(hdev->pdev)) { 3434 dev_err(&hdev->pdev->dev, 3435 "vf id(%d) is out of range(0 <= vfid < %d)\n", 3436 vf, pci_num_vf(hdev->pdev)); 3437 return NULL; 3438 } 3439 3440 /* VF start from 1 in vport */ 3441 vf += HCLGE_VF_VPORT_START_NUM; 3442 return &hdev->vport[vf]; 3443 } 3444 3445 static int hclge_get_vf_config(struct hnae3_handle *handle, int vf, 3446 struct ifla_vf_info *ivf) 3447 { 3448 struct hclge_vport *vport = hclge_get_vport(handle); 3449 struct hclge_dev *hdev = vport->back; 3450 3451 vport = hclge_get_vf_vport(hdev, vf); 3452 if (!vport) 3453 return -EINVAL; 3454 3455 ivf->vf = vf; 3456 ivf->linkstate = vport->vf_info.link_state; 3457 ivf->spoofchk = vport->vf_info.spoofchk; 3458 ivf->trusted = vport->vf_info.trusted; 3459 ivf->min_tx_rate = 0; 3460 ivf->max_tx_rate = vport->vf_info.max_tx_rate; 3461 ivf->vlan = vport->port_base_vlan_cfg.vlan_info.vlan_tag; 3462 ivf->vlan_proto = htons(vport->port_base_vlan_cfg.vlan_info.vlan_proto); 3463 ivf->qos = vport->port_base_vlan_cfg.vlan_info.qos; 3464 ether_addr_copy(ivf->mac, vport->vf_info.mac); 3465 3466 return 0; 3467 } 3468 3469 static int hclge_set_vf_link_state(struct hnae3_handle *handle, int vf, 3470 int link_state) 3471 { 3472 struct hclge_vport *vport = hclge_get_vport(handle); 3473 struct hclge_dev *hdev = vport->back; 3474 int link_state_old; 3475 int ret; 3476 3477 vport = hclge_get_vf_vport(hdev, vf); 3478 if (!vport) 3479 return -EINVAL; 3480 3481 link_state_old = vport->vf_info.link_state; 3482 vport->vf_info.link_state = link_state; 3483 3484 /* return success directly if the VF is unalive, VF will 3485 * query link state itself when it starts work. 3486 */ 3487 if (!test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state)) 3488 return 0; 3489 3490 ret = hclge_push_vf_link_status(vport); 3491 if (ret) { 3492 vport->vf_info.link_state = link_state_old; 3493 dev_err(&hdev->pdev->dev, 3494 "failed to push vf%d link status, ret = %d\n", vf, ret); 3495 } 3496 3497 return ret; 3498 } 3499 3500 static u32 hclge_check_event_cause(struct hclge_dev *hdev, u32 *clearval) 3501 { 3502 u32 cmdq_src_reg, msix_src_reg, hw_err_src_reg; 3503 3504 /* fetch the events from their corresponding regs */ 3505 cmdq_src_reg = hclge_read_dev(&hdev->hw, HCLGE_VECTOR0_CMDQ_SRC_REG); 3506 msix_src_reg = hclge_read_dev(&hdev->hw, HCLGE_MISC_VECTOR_INT_STS); 3507 hw_err_src_reg = hclge_read_dev(&hdev->hw, 3508 HCLGE_RAS_PF_OTHER_INT_STS_REG); 3509 3510 /* Assumption: If by any chance reset and mailbox events are reported 3511 * together then we will only process reset event in this go and will 3512 * defer the processing of the mailbox events. Since, we would have not 3513 * cleared RX CMDQ event this time we would receive again another 3514 * interrupt from H/W just for the mailbox. 3515 * 3516 * check for vector0 reset event sources 3517 */ 3518 if (BIT(HCLGE_VECTOR0_IMPRESET_INT_B) & msix_src_reg) { 3519 dev_info(&hdev->pdev->dev, "IMP reset interrupt\n"); 3520 set_bit(HNAE3_IMP_RESET, &hdev->reset_pending); 3521 set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state); 3522 *clearval = BIT(HCLGE_VECTOR0_IMPRESET_INT_B); 3523 hdev->rst_stats.imp_rst_cnt++; 3524 return HCLGE_VECTOR0_EVENT_RST; 3525 } 3526 3527 if (BIT(HCLGE_VECTOR0_GLOBALRESET_INT_B) & msix_src_reg) { 3528 dev_info(&hdev->pdev->dev, "global reset interrupt\n"); 3529 set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state); 3530 set_bit(HNAE3_GLOBAL_RESET, &hdev->reset_pending); 3531 *clearval = BIT(HCLGE_VECTOR0_GLOBALRESET_INT_B); 3532 hdev->rst_stats.global_rst_cnt++; 3533 return HCLGE_VECTOR0_EVENT_RST; 3534 } 3535 3536 /* check for vector0 msix event and hardware error event source */ 3537 if (msix_src_reg & HCLGE_VECTOR0_REG_MSIX_MASK || 3538 hw_err_src_reg & HCLGE_RAS_REG_ERR_MASK) 3539 return HCLGE_VECTOR0_EVENT_ERR; 3540 3541 /* check for vector0 ptp event source */ 3542 if (BIT(HCLGE_VECTOR0_REG_PTP_INT_B) & msix_src_reg) { 3543 *clearval = msix_src_reg; 3544 return HCLGE_VECTOR0_EVENT_PTP; 3545 } 3546 3547 /* check for vector0 mailbox(=CMDQ RX) event source */ 3548 if (BIT(HCLGE_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) { 3549 cmdq_src_reg &= ~BIT(HCLGE_VECTOR0_RX_CMDQ_INT_B); 3550 *clearval = cmdq_src_reg; 3551 return HCLGE_VECTOR0_EVENT_MBX; 3552 } 3553 3554 /* print other vector0 event source */ 3555 dev_info(&hdev->pdev->dev, 3556 "INT status: CMDQ(%#x) HW errors(%#x) other(%#x)\n", 3557 cmdq_src_reg, hw_err_src_reg, msix_src_reg); 3558 3559 return HCLGE_VECTOR0_EVENT_OTHER; 3560 } 3561 3562 static void hclge_clear_event_cause(struct hclge_dev *hdev, u32 event_type, 3563 u32 regclr) 3564 { 3565 #define HCLGE_IMP_RESET_DELAY 5 3566 3567 switch (event_type) { 3568 case HCLGE_VECTOR0_EVENT_PTP: 3569 case HCLGE_VECTOR0_EVENT_RST: 3570 if (regclr == BIT(HCLGE_VECTOR0_IMPRESET_INT_B)) 3571 mdelay(HCLGE_IMP_RESET_DELAY); 3572 3573 hclge_write_dev(&hdev->hw, HCLGE_MISC_RESET_STS_REG, regclr); 3574 break; 3575 case HCLGE_VECTOR0_EVENT_MBX: 3576 hclge_write_dev(&hdev->hw, HCLGE_VECTOR0_CMDQ_SRC_REG, regclr); 3577 break; 3578 default: 3579 break; 3580 } 3581 } 3582 3583 static void hclge_clear_all_event_cause(struct hclge_dev *hdev) 3584 { 3585 hclge_clear_event_cause(hdev, HCLGE_VECTOR0_EVENT_RST, 3586 BIT(HCLGE_VECTOR0_GLOBALRESET_INT_B) | 3587 BIT(HCLGE_VECTOR0_CORERESET_INT_B) | 3588 BIT(HCLGE_VECTOR0_IMPRESET_INT_B)); 3589 hclge_clear_event_cause(hdev, HCLGE_VECTOR0_EVENT_MBX, 0); 3590 } 3591 3592 static void hclge_enable_vector(struct hclge_misc_vector *vector, bool enable) 3593 { 3594 writel(enable ? 1 : 0, vector->addr); 3595 } 3596 3597 static irqreturn_t hclge_misc_irq_handle(int irq, void *data) 3598 { 3599 struct hclge_dev *hdev = data; 3600 unsigned long flags; 3601 u32 clearval = 0; 3602 u32 event_cause; 3603 3604 hclge_enable_vector(&hdev->misc_vector, false); 3605 event_cause = hclge_check_event_cause(hdev, &clearval); 3606 3607 /* vector 0 interrupt is shared with reset and mailbox source events. */ 3608 switch (event_cause) { 3609 case HCLGE_VECTOR0_EVENT_ERR: 3610 hclge_errhand_task_schedule(hdev); 3611 break; 3612 case HCLGE_VECTOR0_EVENT_RST: 3613 hclge_reset_task_schedule(hdev); 3614 break; 3615 case HCLGE_VECTOR0_EVENT_PTP: 3616 spin_lock_irqsave(&hdev->ptp->lock, flags); 3617 hclge_ptp_clean_tx_hwts(hdev); 3618 spin_unlock_irqrestore(&hdev->ptp->lock, flags); 3619 break; 3620 case HCLGE_VECTOR0_EVENT_MBX: 3621 /* If we are here then, 3622 * 1. Either we are not handling any mbx task and we are not 3623 * scheduled as well 3624 * OR 3625 * 2. We could be handling a mbx task but nothing more is 3626 * scheduled. 3627 * In both cases, we should schedule mbx task as there are more 3628 * mbx messages reported by this interrupt. 3629 */ 3630 hclge_mbx_task_schedule(hdev); 3631 break; 3632 default: 3633 dev_warn(&hdev->pdev->dev, 3634 "received unknown or unhandled event of vector0\n"); 3635 break; 3636 } 3637 3638 hclge_clear_event_cause(hdev, event_cause, clearval); 3639 3640 /* Enable interrupt if it is not caused by reset event or error event */ 3641 if (event_cause == HCLGE_VECTOR0_EVENT_PTP || 3642 event_cause == HCLGE_VECTOR0_EVENT_MBX || 3643 event_cause == HCLGE_VECTOR0_EVENT_OTHER) 3644 hclge_enable_vector(&hdev->misc_vector, true); 3645 3646 return IRQ_HANDLED; 3647 } 3648 3649 static void hclge_free_vector(struct hclge_dev *hdev, int vector_id) 3650 { 3651 if (hdev->vector_status[vector_id] == HCLGE_INVALID_VPORT) { 3652 dev_warn(&hdev->pdev->dev, 3653 "vector(vector_id %d) has been freed.\n", vector_id); 3654 return; 3655 } 3656 3657 hdev->vector_status[vector_id] = HCLGE_INVALID_VPORT; 3658 hdev->num_msi_left += 1; 3659 hdev->num_msi_used -= 1; 3660 } 3661 3662 static void hclge_get_misc_vector(struct hclge_dev *hdev) 3663 { 3664 struct hclge_misc_vector *vector = &hdev->misc_vector; 3665 3666 vector->vector_irq = pci_irq_vector(hdev->pdev, 0); 3667 3668 vector->addr = hdev->hw.hw.io_base + HCLGE_MISC_VECTOR_REG_BASE; 3669 hdev->vector_status[0] = 0; 3670 3671 hdev->num_msi_left -= 1; 3672 hdev->num_msi_used += 1; 3673 } 3674 3675 static int hclge_misc_irq_init(struct hclge_dev *hdev) 3676 { 3677 int ret; 3678 3679 hclge_get_misc_vector(hdev); 3680 3681 /* this would be explicitly freed in the end */ 3682 snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s", 3683 HCLGE_NAME, pci_name(hdev->pdev)); 3684 ret = request_irq(hdev->misc_vector.vector_irq, hclge_misc_irq_handle, 3685 0, hdev->misc_vector.name, hdev); 3686 if (ret) { 3687 hclge_free_vector(hdev, 0); 3688 dev_err(&hdev->pdev->dev, "request misc irq(%d) fail\n", 3689 hdev->misc_vector.vector_irq); 3690 } 3691 3692 return ret; 3693 } 3694 3695 static void hclge_misc_irq_uninit(struct hclge_dev *hdev) 3696 { 3697 free_irq(hdev->misc_vector.vector_irq, hdev); 3698 hclge_free_vector(hdev, 0); 3699 } 3700 3701 int hclge_notify_client(struct hclge_dev *hdev, 3702 enum hnae3_reset_notify_type type) 3703 { 3704 struct hnae3_handle *handle = &hdev->vport[0].nic; 3705 struct hnae3_client *client = hdev->nic_client; 3706 int ret; 3707 3708 if (!test_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state) || !client) 3709 return 0; 3710 3711 if (!client->ops->reset_notify) 3712 return -EOPNOTSUPP; 3713 3714 ret = client->ops->reset_notify(handle, type); 3715 if (ret) 3716 dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n", 3717 type, ret); 3718 3719 return ret; 3720 } 3721 3722 static int hclge_notify_roce_client(struct hclge_dev *hdev, 3723 enum hnae3_reset_notify_type type) 3724 { 3725 struct hnae3_handle *handle = &hdev->vport[0].roce; 3726 struct hnae3_client *client = hdev->roce_client; 3727 int ret; 3728 3729 if (!test_bit(HCLGE_STATE_ROCE_REGISTERED, &hdev->state) || !client) 3730 return 0; 3731 3732 if (!client->ops->reset_notify) 3733 return -EOPNOTSUPP; 3734 3735 ret = client->ops->reset_notify(handle, type); 3736 if (ret) 3737 dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)", 3738 type, ret); 3739 3740 return ret; 3741 } 3742 3743 static int hclge_reset_wait(struct hclge_dev *hdev) 3744 { 3745 #define HCLGE_RESET_WATI_MS 100 3746 #define HCLGE_RESET_WAIT_CNT 350 3747 3748 u32 val, reg, reg_bit; 3749 u32 cnt = 0; 3750 3751 switch (hdev->reset_type) { 3752 case HNAE3_IMP_RESET: 3753 reg = HCLGE_GLOBAL_RESET_REG; 3754 reg_bit = HCLGE_IMP_RESET_BIT; 3755 break; 3756 case HNAE3_GLOBAL_RESET: 3757 reg = HCLGE_GLOBAL_RESET_REG; 3758 reg_bit = HCLGE_GLOBAL_RESET_BIT; 3759 break; 3760 case HNAE3_FUNC_RESET: 3761 reg = HCLGE_FUN_RST_ING; 3762 reg_bit = HCLGE_FUN_RST_ING_B; 3763 break; 3764 default: 3765 dev_err(&hdev->pdev->dev, 3766 "Wait for unsupported reset type: %d\n", 3767 hdev->reset_type); 3768 return -EINVAL; 3769 } 3770 3771 val = hclge_read_dev(&hdev->hw, reg); 3772 while (hnae3_get_bit(val, reg_bit) && cnt < HCLGE_RESET_WAIT_CNT) { 3773 msleep(HCLGE_RESET_WATI_MS); 3774 val = hclge_read_dev(&hdev->hw, reg); 3775 cnt++; 3776 } 3777 3778 if (cnt >= HCLGE_RESET_WAIT_CNT) { 3779 dev_warn(&hdev->pdev->dev, 3780 "Wait for reset timeout: %d\n", hdev->reset_type); 3781 return -EBUSY; 3782 } 3783 3784 return 0; 3785 } 3786 3787 static int hclge_set_vf_rst(struct hclge_dev *hdev, int func_id, bool reset) 3788 { 3789 struct hclge_vf_rst_cmd *req; 3790 struct hclge_desc desc; 3791 3792 req = (struct hclge_vf_rst_cmd *)desc.data; 3793 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GBL_RST_STATUS, false); 3794 req->dest_vfid = func_id; 3795 3796 if (reset) 3797 req->vf_rst = 0x1; 3798 3799 return hclge_cmd_send(&hdev->hw, &desc, 1); 3800 } 3801 3802 static int hclge_set_all_vf_rst(struct hclge_dev *hdev, bool reset) 3803 { 3804 int i; 3805 3806 for (i = HCLGE_VF_VPORT_START_NUM; i < hdev->num_alloc_vport; i++) { 3807 struct hclge_vport *vport = &hdev->vport[i]; 3808 int ret; 3809 3810 /* Send cmd to set/clear VF's FUNC_RST_ING */ 3811 ret = hclge_set_vf_rst(hdev, vport->vport_id, reset); 3812 if (ret) { 3813 dev_err(&hdev->pdev->dev, 3814 "set vf(%u) rst failed %d!\n", 3815 vport->vport_id - HCLGE_VF_VPORT_START_NUM, 3816 ret); 3817 return ret; 3818 } 3819 3820 if (!reset || 3821 !test_bit(HCLGE_VPORT_STATE_INITED, &vport->state)) 3822 continue; 3823 3824 if (!test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state) && 3825 hdev->reset_type == HNAE3_FUNC_RESET) { 3826 set_bit(HCLGE_VPORT_NEED_NOTIFY_RESET, 3827 &vport->need_notify); 3828 continue; 3829 } 3830 3831 /* Inform VF to process the reset. 3832 * hclge_inform_reset_assert_to_vf may fail if VF 3833 * driver is not loaded. 3834 */ 3835 ret = hclge_inform_reset_assert_to_vf(vport); 3836 if (ret) 3837 dev_warn(&hdev->pdev->dev, 3838 "inform reset to vf(%u) failed %d!\n", 3839 vport->vport_id - HCLGE_VF_VPORT_START_NUM, 3840 ret); 3841 } 3842 3843 return 0; 3844 } 3845 3846 static void hclge_mailbox_service_task(struct hclge_dev *hdev) 3847 { 3848 if (!test_and_clear_bit(HCLGE_STATE_MBX_SERVICE_SCHED, &hdev->state) || 3849 test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state) || 3850 test_and_set_bit(HCLGE_STATE_MBX_HANDLING, &hdev->state)) 3851 return; 3852 3853 if (time_is_before_jiffies(hdev->last_mbx_scheduled + 3854 HCLGE_MBX_SCHED_TIMEOUT)) 3855 dev_warn(&hdev->pdev->dev, 3856 "mbx service task is scheduled after %ums on cpu%u!\n", 3857 jiffies_to_msecs(jiffies - hdev->last_mbx_scheduled), 3858 smp_processor_id()); 3859 3860 hclge_mbx_handler(hdev); 3861 3862 clear_bit(HCLGE_STATE_MBX_HANDLING, &hdev->state); 3863 } 3864 3865 static void hclge_func_reset_sync_vf(struct hclge_dev *hdev) 3866 { 3867 struct hclge_pf_rst_sync_cmd *req; 3868 struct hclge_desc desc; 3869 int cnt = 0; 3870 int ret; 3871 3872 req = (struct hclge_pf_rst_sync_cmd *)desc.data; 3873 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_VF_RST_RDY, true); 3874 3875 do { 3876 /* vf need to down netdev by mbx during PF or FLR reset */ 3877 hclge_mailbox_service_task(hdev); 3878 3879 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 3880 /* for compatible with old firmware, wait 3881 * 100 ms for VF to stop IO 3882 */ 3883 if (ret == -EOPNOTSUPP) { 3884 msleep(HCLGE_RESET_SYNC_TIME); 3885 return; 3886 } else if (ret) { 3887 dev_warn(&hdev->pdev->dev, "sync with VF fail %d!\n", 3888 ret); 3889 return; 3890 } else if (req->all_vf_ready) { 3891 return; 3892 } 3893 msleep(HCLGE_PF_RESET_SYNC_TIME); 3894 hclge_comm_cmd_reuse_desc(&desc, true); 3895 } while (cnt++ < HCLGE_PF_RESET_SYNC_CNT); 3896 3897 dev_warn(&hdev->pdev->dev, "sync with VF timeout!\n"); 3898 } 3899 3900 void hclge_report_hw_error(struct hclge_dev *hdev, 3901 enum hnae3_hw_error_type type) 3902 { 3903 struct hnae3_client *client = hdev->nic_client; 3904 3905 if (!client || !client->ops->process_hw_error || 3906 !test_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state)) 3907 return; 3908 3909 client->ops->process_hw_error(&hdev->vport[0].nic, type); 3910 } 3911 3912 static void hclge_handle_imp_error(struct hclge_dev *hdev) 3913 { 3914 u32 reg_val; 3915 3916 reg_val = hclge_read_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG); 3917 if (reg_val & BIT(HCLGE_VECTOR0_IMP_RD_POISON_B)) { 3918 hclge_report_hw_error(hdev, HNAE3_IMP_RD_POISON_ERROR); 3919 reg_val &= ~BIT(HCLGE_VECTOR0_IMP_RD_POISON_B); 3920 hclge_write_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG, reg_val); 3921 } 3922 3923 if (reg_val & BIT(HCLGE_VECTOR0_IMP_CMDQ_ERR_B)) { 3924 hclge_report_hw_error(hdev, HNAE3_CMDQ_ECC_ERROR); 3925 reg_val &= ~BIT(HCLGE_VECTOR0_IMP_CMDQ_ERR_B); 3926 hclge_write_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG, reg_val); 3927 } 3928 } 3929 3930 int hclge_func_reset_cmd(struct hclge_dev *hdev, int func_id) 3931 { 3932 struct hclge_desc desc; 3933 struct hclge_reset_cmd *req = (struct hclge_reset_cmd *)desc.data; 3934 int ret; 3935 3936 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_RST_TRIGGER, false); 3937 hnae3_set_bit(req->mac_func_reset, HCLGE_CFG_RESET_FUNC_B, 1); 3938 req->fun_reset_vfid = func_id; 3939 3940 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 3941 if (ret) 3942 dev_err(&hdev->pdev->dev, 3943 "send function reset cmd fail, status =%d\n", ret); 3944 3945 return ret; 3946 } 3947 3948 static void hclge_do_reset(struct hclge_dev *hdev) 3949 { 3950 struct hnae3_handle *handle = &hdev->vport[0].nic; 3951 struct pci_dev *pdev = hdev->pdev; 3952 u32 val; 3953 3954 if (hclge_get_hw_reset_stat(handle)) { 3955 dev_info(&pdev->dev, "hardware reset not finish\n"); 3956 dev_info(&pdev->dev, "func_rst_reg:0x%x, global_rst_reg:0x%x\n", 3957 hclge_read_dev(&hdev->hw, HCLGE_FUN_RST_ING), 3958 hclge_read_dev(&hdev->hw, HCLGE_GLOBAL_RESET_REG)); 3959 return; 3960 } 3961 3962 switch (hdev->reset_type) { 3963 case HNAE3_IMP_RESET: 3964 dev_info(&pdev->dev, "IMP reset requested\n"); 3965 val = hclge_read_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG); 3966 hnae3_set_bit(val, HCLGE_TRIGGER_IMP_RESET_B, 1); 3967 hclge_write_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG, val); 3968 break; 3969 case HNAE3_GLOBAL_RESET: 3970 dev_info(&pdev->dev, "global reset requested\n"); 3971 val = hclge_read_dev(&hdev->hw, HCLGE_GLOBAL_RESET_REG); 3972 hnae3_set_bit(val, HCLGE_GLOBAL_RESET_BIT, 1); 3973 hclge_write_dev(&hdev->hw, HCLGE_GLOBAL_RESET_REG, val); 3974 break; 3975 case HNAE3_FUNC_RESET: 3976 dev_info(&pdev->dev, "PF reset requested\n"); 3977 /* schedule again to check later */ 3978 set_bit(HNAE3_FUNC_RESET, &hdev->reset_pending); 3979 hclge_reset_task_schedule(hdev); 3980 break; 3981 default: 3982 dev_warn(&pdev->dev, 3983 "unsupported reset type: %d\n", hdev->reset_type); 3984 break; 3985 } 3986 } 3987 3988 static enum hnae3_reset_type hclge_get_reset_level(struct hnae3_ae_dev *ae_dev, 3989 unsigned long *addr) 3990 { 3991 enum hnae3_reset_type rst_level = HNAE3_NONE_RESET; 3992 struct hclge_dev *hdev = ae_dev->priv; 3993 3994 /* return the highest priority reset level amongst all */ 3995 if (test_bit(HNAE3_IMP_RESET, addr)) { 3996 rst_level = HNAE3_IMP_RESET; 3997 clear_bit(HNAE3_IMP_RESET, addr); 3998 clear_bit(HNAE3_GLOBAL_RESET, addr); 3999 clear_bit(HNAE3_FUNC_RESET, addr); 4000 } else if (test_bit(HNAE3_GLOBAL_RESET, addr)) { 4001 rst_level = HNAE3_GLOBAL_RESET; 4002 clear_bit(HNAE3_GLOBAL_RESET, addr); 4003 clear_bit(HNAE3_FUNC_RESET, addr); 4004 } else if (test_bit(HNAE3_FUNC_RESET, addr)) { 4005 rst_level = HNAE3_FUNC_RESET; 4006 clear_bit(HNAE3_FUNC_RESET, addr); 4007 } else if (test_bit(HNAE3_FLR_RESET, addr)) { 4008 rst_level = HNAE3_FLR_RESET; 4009 clear_bit(HNAE3_FLR_RESET, addr); 4010 } 4011 4012 if (hdev->reset_type != HNAE3_NONE_RESET && 4013 rst_level < hdev->reset_type) 4014 return HNAE3_NONE_RESET; 4015 4016 return rst_level; 4017 } 4018 4019 static void hclge_clear_reset_cause(struct hclge_dev *hdev) 4020 { 4021 u32 clearval = 0; 4022 4023 switch (hdev->reset_type) { 4024 case HNAE3_IMP_RESET: 4025 clearval = BIT(HCLGE_VECTOR0_IMPRESET_INT_B); 4026 break; 4027 case HNAE3_GLOBAL_RESET: 4028 clearval = BIT(HCLGE_VECTOR0_GLOBALRESET_INT_B); 4029 break; 4030 default: 4031 break; 4032 } 4033 4034 if (!clearval) 4035 return; 4036 4037 /* For revision 0x20, the reset interrupt source 4038 * can only be cleared after hardware reset done 4039 */ 4040 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2) 4041 hclge_write_dev(&hdev->hw, HCLGE_MISC_RESET_STS_REG, 4042 clearval); 4043 4044 hclge_enable_vector(&hdev->misc_vector, true); 4045 } 4046 4047 static void hclge_reset_handshake(struct hclge_dev *hdev, bool enable) 4048 { 4049 u32 reg_val; 4050 4051 reg_val = hclge_read_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG); 4052 if (enable) 4053 reg_val |= HCLGE_COMM_NIC_SW_RST_RDY; 4054 else 4055 reg_val &= ~HCLGE_COMM_NIC_SW_RST_RDY; 4056 4057 hclge_write_dev(&hdev->hw, HCLGE_COMM_NIC_CSQ_DEPTH_REG, reg_val); 4058 } 4059 4060 static int hclge_func_reset_notify_vf(struct hclge_dev *hdev) 4061 { 4062 int ret; 4063 4064 ret = hclge_set_all_vf_rst(hdev, true); 4065 if (ret) 4066 return ret; 4067 4068 hclge_func_reset_sync_vf(hdev); 4069 4070 return 0; 4071 } 4072 4073 static int hclge_reset_prepare_wait(struct hclge_dev *hdev) 4074 { 4075 u32 reg_val; 4076 int ret = 0; 4077 4078 switch (hdev->reset_type) { 4079 case HNAE3_FUNC_RESET: 4080 ret = hclge_func_reset_notify_vf(hdev); 4081 if (ret) 4082 return ret; 4083 4084 ret = hclge_func_reset_cmd(hdev, 0); 4085 if (ret) { 4086 dev_err(&hdev->pdev->dev, 4087 "asserting function reset fail %d!\n", ret); 4088 return ret; 4089 } 4090 4091 /* After performaning pf reset, it is not necessary to do the 4092 * mailbox handling or send any command to firmware, because 4093 * any mailbox handling or command to firmware is only valid 4094 * after hclge_comm_cmd_init is called. 4095 */ 4096 set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state); 4097 hdev->rst_stats.pf_rst_cnt++; 4098 break; 4099 case HNAE3_FLR_RESET: 4100 ret = hclge_func_reset_notify_vf(hdev); 4101 if (ret) 4102 return ret; 4103 break; 4104 case HNAE3_IMP_RESET: 4105 hclge_handle_imp_error(hdev); 4106 reg_val = hclge_read_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG); 4107 hclge_write_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG, 4108 BIT(HCLGE_VECTOR0_IMP_RESET_INT_B) | reg_val); 4109 break; 4110 default: 4111 break; 4112 } 4113 4114 /* inform hardware that preparatory work is done */ 4115 msleep(HCLGE_RESET_SYNC_TIME); 4116 hclge_reset_handshake(hdev, true); 4117 dev_info(&hdev->pdev->dev, "prepare wait ok\n"); 4118 4119 return ret; 4120 } 4121 4122 static void hclge_show_rst_info(struct hclge_dev *hdev) 4123 { 4124 char *buf; 4125 4126 buf = kzalloc(HCLGE_DBG_RESET_INFO_LEN, GFP_KERNEL); 4127 if (!buf) 4128 return; 4129 4130 hclge_dbg_dump_rst_info(hdev, buf, HCLGE_DBG_RESET_INFO_LEN); 4131 4132 dev_info(&hdev->pdev->dev, "dump reset info:\n%s", buf); 4133 4134 kfree(buf); 4135 } 4136 4137 static bool hclge_reset_err_handle(struct hclge_dev *hdev) 4138 { 4139 #define MAX_RESET_FAIL_CNT 5 4140 4141 if (hdev->reset_pending) { 4142 dev_info(&hdev->pdev->dev, "Reset pending %lu\n", 4143 hdev->reset_pending); 4144 return true; 4145 } else if (hclge_read_dev(&hdev->hw, HCLGE_MISC_VECTOR_INT_STS) & 4146 HCLGE_RESET_INT_M) { 4147 dev_info(&hdev->pdev->dev, 4148 "reset failed because new reset interrupt\n"); 4149 hclge_clear_reset_cause(hdev); 4150 return false; 4151 } else if (hdev->rst_stats.reset_fail_cnt < MAX_RESET_FAIL_CNT) { 4152 hdev->rst_stats.reset_fail_cnt++; 4153 set_bit(hdev->reset_type, &hdev->reset_pending); 4154 dev_info(&hdev->pdev->dev, 4155 "re-schedule reset task(%u)\n", 4156 hdev->rst_stats.reset_fail_cnt); 4157 return true; 4158 } 4159 4160 hclge_clear_reset_cause(hdev); 4161 4162 /* recover the handshake status when reset fail */ 4163 hclge_reset_handshake(hdev, true); 4164 4165 dev_err(&hdev->pdev->dev, "Reset fail!\n"); 4166 4167 hclge_show_rst_info(hdev); 4168 4169 set_bit(HCLGE_STATE_RST_FAIL, &hdev->state); 4170 4171 return false; 4172 } 4173 4174 static void hclge_update_reset_level(struct hclge_dev *hdev) 4175 { 4176 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 4177 enum hnae3_reset_type reset_level; 4178 4179 /* reset request will not be set during reset, so clear 4180 * pending reset request to avoid unnecessary reset 4181 * caused by the same reason. 4182 */ 4183 hclge_get_reset_level(ae_dev, &hdev->reset_request); 4184 4185 /* if default_reset_request has a higher level reset request, 4186 * it should be handled as soon as possible. since some errors 4187 * need this kind of reset to fix. 4188 */ 4189 reset_level = hclge_get_reset_level(ae_dev, 4190 &hdev->default_reset_request); 4191 if (reset_level != HNAE3_NONE_RESET) 4192 set_bit(reset_level, &hdev->reset_request); 4193 } 4194 4195 static int hclge_set_rst_done(struct hclge_dev *hdev) 4196 { 4197 struct hclge_pf_rst_done_cmd *req; 4198 struct hclge_desc desc; 4199 int ret; 4200 4201 req = (struct hclge_pf_rst_done_cmd *)desc.data; 4202 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_PF_RST_DONE, false); 4203 req->pf_rst_done |= HCLGE_PF_RESET_DONE_BIT; 4204 4205 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 4206 /* To be compatible with the old firmware, which does not support 4207 * command HCLGE_OPC_PF_RST_DONE, just print a warning and 4208 * return success 4209 */ 4210 if (ret == -EOPNOTSUPP) { 4211 dev_warn(&hdev->pdev->dev, 4212 "current firmware does not support command(0x%x)!\n", 4213 HCLGE_OPC_PF_RST_DONE); 4214 return 0; 4215 } else if (ret) { 4216 dev_err(&hdev->pdev->dev, "assert PF reset done fail %d!\n", 4217 ret); 4218 } 4219 4220 return ret; 4221 } 4222 4223 static int hclge_reset_prepare_up(struct hclge_dev *hdev) 4224 { 4225 int ret = 0; 4226 4227 switch (hdev->reset_type) { 4228 case HNAE3_FUNC_RESET: 4229 case HNAE3_FLR_RESET: 4230 ret = hclge_set_all_vf_rst(hdev, false); 4231 break; 4232 case HNAE3_GLOBAL_RESET: 4233 case HNAE3_IMP_RESET: 4234 ret = hclge_set_rst_done(hdev); 4235 break; 4236 default: 4237 break; 4238 } 4239 4240 /* clear up the handshake status after re-initialize done */ 4241 hclge_reset_handshake(hdev, false); 4242 4243 return ret; 4244 } 4245 4246 static int hclge_reset_stack(struct hclge_dev *hdev) 4247 { 4248 int ret; 4249 4250 ret = hclge_notify_client(hdev, HNAE3_UNINIT_CLIENT); 4251 if (ret) 4252 return ret; 4253 4254 ret = hclge_reset_ae_dev(hdev->ae_dev); 4255 if (ret) 4256 return ret; 4257 4258 return hclge_notify_client(hdev, HNAE3_INIT_CLIENT); 4259 } 4260 4261 static int hclge_reset_prepare(struct hclge_dev *hdev) 4262 { 4263 int ret; 4264 4265 hdev->rst_stats.reset_cnt++; 4266 /* perform reset of the stack & ae device for a client */ 4267 ret = hclge_notify_roce_client(hdev, HNAE3_DOWN_CLIENT); 4268 if (ret) 4269 return ret; 4270 4271 rtnl_lock(); 4272 ret = hclge_notify_client(hdev, HNAE3_DOWN_CLIENT); 4273 rtnl_unlock(); 4274 if (ret) 4275 return ret; 4276 4277 return hclge_reset_prepare_wait(hdev); 4278 } 4279 4280 static int hclge_reset_rebuild(struct hclge_dev *hdev) 4281 { 4282 int ret; 4283 4284 hdev->rst_stats.hw_reset_done_cnt++; 4285 4286 ret = hclge_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT); 4287 if (ret) 4288 return ret; 4289 4290 rtnl_lock(); 4291 ret = hclge_reset_stack(hdev); 4292 rtnl_unlock(); 4293 if (ret) 4294 return ret; 4295 4296 hclge_clear_reset_cause(hdev); 4297 4298 ret = hclge_notify_roce_client(hdev, HNAE3_INIT_CLIENT); 4299 /* ignore RoCE notify error if it fails HCLGE_RESET_MAX_FAIL_CNT - 1 4300 * times 4301 */ 4302 if (ret && 4303 hdev->rst_stats.reset_fail_cnt < HCLGE_RESET_MAX_FAIL_CNT - 1) 4304 return ret; 4305 4306 ret = hclge_reset_prepare_up(hdev); 4307 if (ret) 4308 return ret; 4309 4310 rtnl_lock(); 4311 ret = hclge_notify_client(hdev, HNAE3_UP_CLIENT); 4312 rtnl_unlock(); 4313 if (ret) 4314 return ret; 4315 4316 ret = hclge_notify_roce_client(hdev, HNAE3_UP_CLIENT); 4317 if (ret) 4318 return ret; 4319 4320 hdev->last_reset_time = jiffies; 4321 hdev->rst_stats.reset_fail_cnt = 0; 4322 hdev->rst_stats.reset_done_cnt++; 4323 clear_bit(HCLGE_STATE_RST_FAIL, &hdev->state); 4324 4325 hclge_update_reset_level(hdev); 4326 4327 return 0; 4328 } 4329 4330 static void hclge_reset(struct hclge_dev *hdev) 4331 { 4332 if (hclge_reset_prepare(hdev)) 4333 goto err_reset; 4334 4335 if (hclge_reset_wait(hdev)) 4336 goto err_reset; 4337 4338 if (hclge_reset_rebuild(hdev)) 4339 goto err_reset; 4340 4341 return; 4342 4343 err_reset: 4344 if (hclge_reset_err_handle(hdev)) 4345 hclge_reset_task_schedule(hdev); 4346 } 4347 4348 static void hclge_reset_event(struct pci_dev *pdev, struct hnae3_handle *handle) 4349 { 4350 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); 4351 struct hclge_dev *hdev = ae_dev->priv; 4352 4353 /* We might end up getting called broadly because of 2 below cases: 4354 * 1. Recoverable error was conveyed through APEI and only way to bring 4355 * normalcy is to reset. 4356 * 2. A new reset request from the stack due to timeout 4357 * 4358 * check if this is a new reset request and we are not here just because 4359 * last reset attempt did not succeed and watchdog hit us again. We will 4360 * know this if last reset request did not occur very recently (watchdog 4361 * timer = 5*HZ, let us check after sufficiently large time, say 4*5*Hz) 4362 * In case of new request we reset the "reset level" to PF reset. 4363 * And if it is a repeat reset request of the most recent one then we 4364 * want to make sure we throttle the reset request. Therefore, we will 4365 * not allow it again before 3*HZ times. 4366 */ 4367 4368 if (time_before(jiffies, (hdev->last_reset_time + 4369 HCLGE_RESET_INTERVAL))) { 4370 mod_timer(&hdev->reset_timer, jiffies + HCLGE_RESET_INTERVAL); 4371 return; 4372 } 4373 4374 if (hdev->default_reset_request) { 4375 hdev->reset_level = 4376 hclge_get_reset_level(ae_dev, 4377 &hdev->default_reset_request); 4378 } else if (time_after(jiffies, (hdev->last_reset_time + 4 * 5 * HZ))) { 4379 hdev->reset_level = HNAE3_FUNC_RESET; 4380 } 4381 4382 dev_info(&hdev->pdev->dev, "received reset event, reset type is %d\n", 4383 hdev->reset_level); 4384 4385 /* request reset & schedule reset task */ 4386 set_bit(hdev->reset_level, &hdev->reset_request); 4387 hclge_reset_task_schedule(hdev); 4388 4389 if (hdev->reset_level < HNAE3_GLOBAL_RESET) 4390 hdev->reset_level++; 4391 } 4392 4393 static void hclge_set_def_reset_request(struct hnae3_ae_dev *ae_dev, 4394 enum hnae3_reset_type rst_type) 4395 { 4396 struct hclge_dev *hdev = ae_dev->priv; 4397 4398 set_bit(rst_type, &hdev->default_reset_request); 4399 } 4400 4401 static void hclge_reset_timer(struct timer_list *t) 4402 { 4403 struct hclge_dev *hdev = from_timer(hdev, t, reset_timer); 4404 4405 /* if default_reset_request has no value, it means that this reset 4406 * request has already be handled, so just return here 4407 */ 4408 if (!hdev->default_reset_request) 4409 return; 4410 4411 dev_info(&hdev->pdev->dev, 4412 "triggering reset in reset timer\n"); 4413 hclge_reset_event(hdev->pdev, NULL); 4414 } 4415 4416 static void hclge_reset_subtask(struct hclge_dev *hdev) 4417 { 4418 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 4419 4420 /* check if there is any ongoing reset in the hardware. This status can 4421 * be checked from reset_pending. If there is then, we need to wait for 4422 * hardware to complete reset. 4423 * a. If we are able to figure out in reasonable time that hardware 4424 * has fully resetted then, we can proceed with driver, client 4425 * reset. 4426 * b. else, we can come back later to check this status so re-sched 4427 * now. 4428 */ 4429 hdev->last_reset_time = jiffies; 4430 hdev->reset_type = hclge_get_reset_level(ae_dev, &hdev->reset_pending); 4431 if (hdev->reset_type != HNAE3_NONE_RESET) 4432 hclge_reset(hdev); 4433 4434 /* check if we got any *new* reset requests to be honored */ 4435 hdev->reset_type = hclge_get_reset_level(ae_dev, &hdev->reset_request); 4436 if (hdev->reset_type != HNAE3_NONE_RESET) 4437 hclge_do_reset(hdev); 4438 4439 hdev->reset_type = HNAE3_NONE_RESET; 4440 } 4441 4442 static void hclge_handle_err_reset_request(struct hclge_dev *hdev) 4443 { 4444 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 4445 enum hnae3_reset_type reset_type; 4446 4447 if (ae_dev->hw_err_reset_req) { 4448 reset_type = hclge_get_reset_level(ae_dev, 4449 &ae_dev->hw_err_reset_req); 4450 hclge_set_def_reset_request(ae_dev, reset_type); 4451 } 4452 4453 if (hdev->default_reset_request && ae_dev->ops->reset_event) 4454 ae_dev->ops->reset_event(hdev->pdev, NULL); 4455 4456 /* enable interrupt after error handling complete */ 4457 hclge_enable_vector(&hdev->misc_vector, true); 4458 } 4459 4460 static void hclge_handle_err_recovery(struct hclge_dev *hdev) 4461 { 4462 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 4463 4464 ae_dev->hw_err_reset_req = 0; 4465 4466 if (hclge_find_error_source(hdev)) { 4467 hclge_handle_error_info_log(ae_dev); 4468 hclge_handle_mac_tnl(hdev); 4469 hclge_handle_vf_queue_err_ras(hdev); 4470 } 4471 4472 hclge_handle_err_reset_request(hdev); 4473 } 4474 4475 static void hclge_misc_err_recovery(struct hclge_dev *hdev) 4476 { 4477 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 4478 struct device *dev = &hdev->pdev->dev; 4479 u32 msix_sts_reg; 4480 4481 msix_sts_reg = hclge_read_dev(&hdev->hw, HCLGE_MISC_VECTOR_INT_STS); 4482 if (msix_sts_reg & HCLGE_VECTOR0_REG_MSIX_MASK) { 4483 if (hclge_handle_hw_msix_error 4484 (hdev, &hdev->default_reset_request)) 4485 dev_info(dev, "received msix interrupt 0x%x\n", 4486 msix_sts_reg); 4487 } 4488 4489 hclge_handle_hw_ras_error(ae_dev); 4490 4491 hclge_handle_err_reset_request(hdev); 4492 } 4493 4494 static void hclge_errhand_service_task(struct hclge_dev *hdev) 4495 { 4496 if (!test_and_clear_bit(HCLGE_STATE_ERR_SERVICE_SCHED, &hdev->state)) 4497 return; 4498 4499 if (hnae3_dev_ras_imp_supported(hdev)) 4500 hclge_handle_err_recovery(hdev); 4501 else 4502 hclge_misc_err_recovery(hdev); 4503 } 4504 4505 static void hclge_reset_service_task(struct hclge_dev *hdev) 4506 { 4507 if (!test_and_clear_bit(HCLGE_STATE_RST_SERVICE_SCHED, &hdev->state)) 4508 return; 4509 4510 if (time_is_before_jiffies(hdev->last_rst_scheduled + 4511 HCLGE_RESET_SCHED_TIMEOUT)) 4512 dev_warn(&hdev->pdev->dev, 4513 "reset service task is scheduled after %ums on cpu%u!\n", 4514 jiffies_to_msecs(jiffies - hdev->last_rst_scheduled), 4515 smp_processor_id()); 4516 4517 down(&hdev->reset_sem); 4518 set_bit(HCLGE_STATE_RST_HANDLING, &hdev->state); 4519 4520 hclge_reset_subtask(hdev); 4521 4522 clear_bit(HCLGE_STATE_RST_HANDLING, &hdev->state); 4523 up(&hdev->reset_sem); 4524 } 4525 4526 static void hclge_update_vport_alive(struct hclge_dev *hdev) 4527 { 4528 #define HCLGE_ALIVE_SECONDS_NORMAL 8 4529 4530 unsigned long alive_time = HCLGE_ALIVE_SECONDS_NORMAL * HZ; 4531 int i; 4532 4533 /* start from vport 1 for PF is always alive */ 4534 for (i = 1; i < hdev->num_alloc_vport; i++) { 4535 struct hclge_vport *vport = &hdev->vport[i]; 4536 4537 if (!test_bit(HCLGE_VPORT_STATE_INITED, &vport->state) || 4538 !test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state)) 4539 continue; 4540 if (time_after(jiffies, vport->last_active_jiffies + 4541 alive_time)) { 4542 clear_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state); 4543 dev_warn(&hdev->pdev->dev, 4544 "VF %u heartbeat timeout\n", 4545 i - HCLGE_VF_VPORT_START_NUM); 4546 } 4547 } 4548 } 4549 4550 static void hclge_periodic_service_task(struct hclge_dev *hdev) 4551 { 4552 unsigned long delta = round_jiffies_relative(HZ); 4553 4554 if (test_bit(HCLGE_STATE_RST_FAIL, &hdev->state)) 4555 return; 4556 4557 /* Always handle the link updating to make sure link state is 4558 * updated when it is triggered by mbx. 4559 */ 4560 hclge_update_link_status(hdev); 4561 hclge_sync_mac_table(hdev); 4562 hclge_sync_promisc_mode(hdev); 4563 hclge_sync_fd_table(hdev); 4564 4565 if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) { 4566 delta = jiffies - hdev->last_serv_processed; 4567 4568 if (delta < round_jiffies_relative(HZ)) { 4569 delta = round_jiffies_relative(HZ) - delta; 4570 goto out; 4571 } 4572 } 4573 4574 hdev->serv_processed_cnt++; 4575 hclge_update_vport_alive(hdev); 4576 4577 if (test_bit(HCLGE_STATE_DOWN, &hdev->state)) { 4578 hdev->last_serv_processed = jiffies; 4579 goto out; 4580 } 4581 4582 if (!(hdev->serv_processed_cnt % HCLGE_STATS_TIMER_INTERVAL)) 4583 hclge_update_stats_for_all(hdev); 4584 4585 hclge_update_port_info(hdev); 4586 hclge_sync_vlan_filter(hdev); 4587 4588 if (!(hdev->serv_processed_cnt % HCLGE_ARFS_EXPIRE_INTERVAL)) 4589 hclge_rfs_filter_expire(hdev); 4590 4591 hdev->last_serv_processed = jiffies; 4592 4593 out: 4594 hclge_task_schedule(hdev, delta); 4595 } 4596 4597 static void hclge_ptp_service_task(struct hclge_dev *hdev) 4598 { 4599 unsigned long flags; 4600 4601 if (!test_bit(HCLGE_STATE_PTP_EN, &hdev->state) || 4602 !test_bit(HCLGE_STATE_PTP_TX_HANDLING, &hdev->state) || 4603 !time_is_before_jiffies(hdev->ptp->tx_start + HZ)) 4604 return; 4605 4606 /* to prevent concurrence with the irq handler */ 4607 spin_lock_irqsave(&hdev->ptp->lock, flags); 4608 4609 /* check HCLGE_STATE_PTP_TX_HANDLING here again, since the irq 4610 * handler may handle it just before spin_lock_irqsave(). 4611 */ 4612 if (test_bit(HCLGE_STATE_PTP_TX_HANDLING, &hdev->state)) 4613 hclge_ptp_clean_tx_hwts(hdev); 4614 4615 spin_unlock_irqrestore(&hdev->ptp->lock, flags); 4616 } 4617 4618 static void hclge_service_task(struct work_struct *work) 4619 { 4620 struct hclge_dev *hdev = 4621 container_of(work, struct hclge_dev, service_task.work); 4622 4623 hclge_errhand_service_task(hdev); 4624 hclge_reset_service_task(hdev); 4625 hclge_ptp_service_task(hdev); 4626 hclge_mailbox_service_task(hdev); 4627 hclge_periodic_service_task(hdev); 4628 4629 /* Handle error recovery, reset and mbx again in case periodical task 4630 * delays the handling by calling hclge_task_schedule() in 4631 * hclge_periodic_service_task(). 4632 */ 4633 hclge_errhand_service_task(hdev); 4634 hclge_reset_service_task(hdev); 4635 hclge_mailbox_service_task(hdev); 4636 } 4637 4638 struct hclge_vport *hclge_get_vport(struct hnae3_handle *handle) 4639 { 4640 /* VF handle has no client */ 4641 if (!handle->client) 4642 return container_of(handle, struct hclge_vport, nic); 4643 else if (handle->client->type == HNAE3_CLIENT_ROCE) 4644 return container_of(handle, struct hclge_vport, roce); 4645 else 4646 return container_of(handle, struct hclge_vport, nic); 4647 } 4648 4649 static void hclge_get_vector_info(struct hclge_dev *hdev, u16 idx, 4650 struct hnae3_vector_info *vector_info) 4651 { 4652 #define HCLGE_PF_MAX_VECTOR_NUM_DEV_V2 64 4653 4654 vector_info->vector = pci_irq_vector(hdev->pdev, idx); 4655 4656 /* need an extend offset to config vector >= 64 */ 4657 if (idx - 1 < HCLGE_PF_MAX_VECTOR_NUM_DEV_V2) 4658 vector_info->io_addr = hdev->hw.hw.io_base + 4659 HCLGE_VECTOR_REG_BASE + 4660 (idx - 1) * HCLGE_VECTOR_REG_OFFSET; 4661 else 4662 vector_info->io_addr = hdev->hw.hw.io_base + 4663 HCLGE_VECTOR_EXT_REG_BASE + 4664 (idx - 1) / HCLGE_PF_MAX_VECTOR_NUM_DEV_V2 * 4665 HCLGE_VECTOR_REG_OFFSET_H + 4666 (idx - 1) % HCLGE_PF_MAX_VECTOR_NUM_DEV_V2 * 4667 HCLGE_VECTOR_REG_OFFSET; 4668 4669 hdev->vector_status[idx] = hdev->vport[0].vport_id; 4670 hdev->vector_irq[idx] = vector_info->vector; 4671 } 4672 4673 static int hclge_get_vector(struct hnae3_handle *handle, u16 vector_num, 4674 struct hnae3_vector_info *vector_info) 4675 { 4676 struct hclge_vport *vport = hclge_get_vport(handle); 4677 struct hnae3_vector_info *vector = vector_info; 4678 struct hclge_dev *hdev = vport->back; 4679 int alloc = 0; 4680 u16 i = 0; 4681 u16 j; 4682 4683 vector_num = min_t(u16, hdev->num_nic_msi - 1, vector_num); 4684 vector_num = min(hdev->num_msi_left, vector_num); 4685 4686 for (j = 0; j < vector_num; j++) { 4687 while (++i < hdev->num_nic_msi) { 4688 if (hdev->vector_status[i] == HCLGE_INVALID_VPORT) { 4689 hclge_get_vector_info(hdev, i, vector); 4690 vector++; 4691 alloc++; 4692 4693 break; 4694 } 4695 } 4696 } 4697 hdev->num_msi_left -= alloc; 4698 hdev->num_msi_used += alloc; 4699 4700 return alloc; 4701 } 4702 4703 static int hclge_get_vector_index(struct hclge_dev *hdev, int vector) 4704 { 4705 int i; 4706 4707 for (i = 0; i < hdev->num_msi; i++) 4708 if (vector == hdev->vector_irq[i]) 4709 return i; 4710 4711 return -EINVAL; 4712 } 4713 4714 static int hclge_put_vector(struct hnae3_handle *handle, int vector) 4715 { 4716 struct hclge_vport *vport = hclge_get_vport(handle); 4717 struct hclge_dev *hdev = vport->back; 4718 int vector_id; 4719 4720 vector_id = hclge_get_vector_index(hdev, vector); 4721 if (vector_id < 0) { 4722 dev_err(&hdev->pdev->dev, 4723 "Get vector index fail. vector = %d\n", vector); 4724 return vector_id; 4725 } 4726 4727 hclge_free_vector(hdev, vector_id); 4728 4729 return 0; 4730 } 4731 4732 static int hclge_get_rss(struct hnae3_handle *handle, u32 *indir, 4733 u8 *key, u8 *hfunc) 4734 { 4735 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev); 4736 struct hclge_vport *vport = hclge_get_vport(handle); 4737 struct hclge_comm_rss_cfg *rss_cfg = &vport->back->rss_cfg; 4738 4739 hclge_comm_get_rss_hash_info(rss_cfg, key, hfunc); 4740 4741 hclge_comm_get_rss_indir_tbl(rss_cfg, indir, 4742 ae_dev->dev_specs.rss_ind_tbl_size); 4743 4744 return 0; 4745 } 4746 4747 static int hclge_set_rss(struct hnae3_handle *handle, const u32 *indir, 4748 const u8 *key, const u8 hfunc) 4749 { 4750 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev); 4751 struct hclge_vport *vport = hclge_get_vport(handle); 4752 struct hclge_dev *hdev = vport->back; 4753 struct hclge_comm_rss_cfg *rss_cfg = &hdev->rss_cfg; 4754 int ret, i; 4755 4756 ret = hclge_comm_set_rss_hash_key(rss_cfg, &hdev->hw.hw, key, hfunc); 4757 if (ret) { 4758 dev_err(&hdev->pdev->dev, "invalid hfunc type %u\n", hfunc); 4759 return ret; 4760 } 4761 4762 /* Update the shadow RSS table with user specified qids */ 4763 for (i = 0; i < ae_dev->dev_specs.rss_ind_tbl_size; i++) 4764 rss_cfg->rss_indirection_tbl[i] = indir[i]; 4765 4766 /* Update the hardware */ 4767 return hclge_comm_set_rss_indir_table(ae_dev, &hdev->hw.hw, 4768 rss_cfg->rss_indirection_tbl); 4769 } 4770 4771 static int hclge_set_rss_tuple(struct hnae3_handle *handle, 4772 struct ethtool_rxnfc *nfc) 4773 { 4774 struct hclge_vport *vport = hclge_get_vport(handle); 4775 struct hclge_dev *hdev = vport->back; 4776 int ret; 4777 4778 ret = hclge_comm_set_rss_tuple(hdev->ae_dev, &hdev->hw.hw, 4779 &hdev->rss_cfg, nfc); 4780 if (ret) { 4781 dev_err(&hdev->pdev->dev, 4782 "failed to set rss tuple, ret = %d.\n", ret); 4783 return ret; 4784 } 4785 4786 return 0; 4787 } 4788 4789 static int hclge_get_rss_tuple(struct hnae3_handle *handle, 4790 struct ethtool_rxnfc *nfc) 4791 { 4792 struct hclge_vport *vport = hclge_get_vport(handle); 4793 u8 tuple_sets; 4794 int ret; 4795 4796 nfc->data = 0; 4797 4798 ret = hclge_comm_get_rss_tuple(&vport->back->rss_cfg, nfc->flow_type, 4799 &tuple_sets); 4800 if (ret || !tuple_sets) 4801 return ret; 4802 4803 nfc->data = hclge_comm_convert_rss_tuple(tuple_sets); 4804 4805 return 0; 4806 } 4807 4808 static int hclge_get_tc_size(struct hnae3_handle *handle) 4809 { 4810 struct hclge_vport *vport = hclge_get_vport(handle); 4811 struct hclge_dev *hdev = vport->back; 4812 4813 return hdev->pf_rss_size_max; 4814 } 4815 4816 static int hclge_init_rss_tc_mode(struct hclge_dev *hdev) 4817 { 4818 struct hnae3_ae_dev *ae_dev = hdev->ae_dev; 4819 struct hclge_vport *vport = hdev->vport; 4820 u16 tc_offset[HCLGE_MAX_TC_NUM] = {0}; 4821 u16 tc_valid[HCLGE_MAX_TC_NUM] = {0}; 4822 u16 tc_size[HCLGE_MAX_TC_NUM] = {0}; 4823 struct hnae3_tc_info *tc_info; 4824 u16 roundup_size; 4825 u16 rss_size; 4826 int i; 4827 4828 tc_info = &vport->nic.kinfo.tc_info; 4829 for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { 4830 rss_size = tc_info->tqp_count[i]; 4831 tc_valid[i] = 0; 4832 4833 if (!(hdev->hw_tc_map & BIT(i))) 4834 continue; 4835 4836 /* tc_size set to hardware is the log2 of roundup power of two 4837 * of rss_size, the acutal queue size is limited by indirection 4838 * table. 4839 */ 4840 if (rss_size > ae_dev->dev_specs.rss_ind_tbl_size || 4841 rss_size == 0) { 4842 dev_err(&hdev->pdev->dev, 4843 "Configure rss tc size failed, invalid TC_SIZE = %u\n", 4844 rss_size); 4845 return -EINVAL; 4846 } 4847 4848 roundup_size = roundup_pow_of_two(rss_size); 4849 roundup_size = ilog2(roundup_size); 4850 4851 tc_valid[i] = 1; 4852 tc_size[i] = roundup_size; 4853 tc_offset[i] = tc_info->tqp_offset[i]; 4854 } 4855 4856 return hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset, tc_valid, 4857 tc_size); 4858 } 4859 4860 int hclge_rss_init_hw(struct hclge_dev *hdev) 4861 { 4862 u16 *rss_indir = hdev->rss_cfg.rss_indirection_tbl; 4863 u8 *key = hdev->rss_cfg.rss_hash_key; 4864 u8 hfunc = hdev->rss_cfg.rss_algo; 4865 int ret; 4866 4867 ret = hclge_comm_set_rss_indir_table(hdev->ae_dev, &hdev->hw.hw, 4868 rss_indir); 4869 if (ret) 4870 return ret; 4871 4872 ret = hclge_comm_set_rss_algo_key(&hdev->hw.hw, hfunc, key); 4873 if (ret) 4874 return ret; 4875 4876 ret = hclge_comm_set_rss_input_tuple(&hdev->hw.hw, &hdev->rss_cfg); 4877 if (ret) 4878 return ret; 4879 4880 return hclge_init_rss_tc_mode(hdev); 4881 } 4882 4883 int hclge_bind_ring_with_vector(struct hclge_vport *vport, 4884 int vector_id, bool en, 4885 struct hnae3_ring_chain_node *ring_chain) 4886 { 4887 struct hclge_dev *hdev = vport->back; 4888 struct hnae3_ring_chain_node *node; 4889 struct hclge_desc desc; 4890 struct hclge_ctrl_vector_chain_cmd *req = 4891 (struct hclge_ctrl_vector_chain_cmd *)desc.data; 4892 enum hclge_comm_cmd_status status; 4893 enum hclge_opcode_type op; 4894 u16 tqp_type_and_id; 4895 int i; 4896 4897 op = en ? HCLGE_OPC_ADD_RING_TO_VECTOR : HCLGE_OPC_DEL_RING_TO_VECTOR; 4898 hclge_cmd_setup_basic_desc(&desc, op, false); 4899 req->int_vector_id_l = hnae3_get_field(vector_id, 4900 HCLGE_VECTOR_ID_L_M, 4901 HCLGE_VECTOR_ID_L_S); 4902 req->int_vector_id_h = hnae3_get_field(vector_id, 4903 HCLGE_VECTOR_ID_H_M, 4904 HCLGE_VECTOR_ID_H_S); 4905 4906 i = 0; 4907 for (node = ring_chain; node; node = node->next) { 4908 tqp_type_and_id = le16_to_cpu(req->tqp_type_and_id[i]); 4909 hnae3_set_field(tqp_type_and_id, HCLGE_INT_TYPE_M, 4910 HCLGE_INT_TYPE_S, 4911 hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B)); 4912 hnae3_set_field(tqp_type_and_id, HCLGE_TQP_ID_M, 4913 HCLGE_TQP_ID_S, node->tqp_index); 4914 hnae3_set_field(tqp_type_and_id, HCLGE_INT_GL_IDX_M, 4915 HCLGE_INT_GL_IDX_S, 4916 hnae3_get_field(node->int_gl_idx, 4917 HNAE3_RING_GL_IDX_M, 4918 HNAE3_RING_GL_IDX_S)); 4919 req->tqp_type_and_id[i] = cpu_to_le16(tqp_type_and_id); 4920 if (++i >= HCLGE_VECTOR_ELEMENTS_PER_CMD) { 4921 req->int_cause_num = HCLGE_VECTOR_ELEMENTS_PER_CMD; 4922 req->vfid = vport->vport_id; 4923 4924 status = hclge_cmd_send(&hdev->hw, &desc, 1); 4925 if (status) { 4926 dev_err(&hdev->pdev->dev, 4927 "Map TQP fail, status is %d.\n", 4928 status); 4929 return -EIO; 4930 } 4931 i = 0; 4932 4933 hclge_cmd_setup_basic_desc(&desc, 4934 op, 4935 false); 4936 req->int_vector_id_l = 4937 hnae3_get_field(vector_id, 4938 HCLGE_VECTOR_ID_L_M, 4939 HCLGE_VECTOR_ID_L_S); 4940 req->int_vector_id_h = 4941 hnae3_get_field(vector_id, 4942 HCLGE_VECTOR_ID_H_M, 4943 HCLGE_VECTOR_ID_H_S); 4944 } 4945 } 4946 4947 if (i > 0) { 4948 req->int_cause_num = i; 4949 req->vfid = vport->vport_id; 4950 status = hclge_cmd_send(&hdev->hw, &desc, 1); 4951 if (status) { 4952 dev_err(&hdev->pdev->dev, 4953 "Map TQP fail, status is %d.\n", status); 4954 return -EIO; 4955 } 4956 } 4957 4958 return 0; 4959 } 4960 4961 static int hclge_map_ring_to_vector(struct hnae3_handle *handle, int vector, 4962 struct hnae3_ring_chain_node *ring_chain) 4963 { 4964 struct hclge_vport *vport = hclge_get_vport(handle); 4965 struct hclge_dev *hdev = vport->back; 4966 int vector_id; 4967 4968 vector_id = hclge_get_vector_index(hdev, vector); 4969 if (vector_id < 0) { 4970 dev_err(&hdev->pdev->dev, 4971 "failed to get vector index. vector=%d\n", vector); 4972 return vector_id; 4973 } 4974 4975 return hclge_bind_ring_with_vector(vport, vector_id, true, ring_chain); 4976 } 4977 4978 static int hclge_unmap_ring_frm_vector(struct hnae3_handle *handle, int vector, 4979 struct hnae3_ring_chain_node *ring_chain) 4980 { 4981 struct hclge_vport *vport = hclge_get_vport(handle); 4982 struct hclge_dev *hdev = vport->back; 4983 int vector_id, ret; 4984 4985 if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state)) 4986 return 0; 4987 4988 vector_id = hclge_get_vector_index(hdev, vector); 4989 if (vector_id < 0) { 4990 dev_err(&handle->pdev->dev, 4991 "Get vector index fail. ret =%d\n", vector_id); 4992 return vector_id; 4993 } 4994 4995 ret = hclge_bind_ring_with_vector(vport, vector_id, false, ring_chain); 4996 if (ret) 4997 dev_err(&handle->pdev->dev, 4998 "Unmap ring from vector fail. vectorid=%d, ret =%d\n", 4999 vector_id, ret); 5000 5001 return ret; 5002 } 5003 5004 static int hclge_cmd_set_promisc_mode(struct hclge_dev *hdev, u8 vf_id, 5005 bool en_uc, bool en_mc, bool en_bc) 5006 { 5007 struct hclge_vport *vport = &hdev->vport[vf_id]; 5008 struct hnae3_handle *handle = &vport->nic; 5009 struct hclge_promisc_cfg_cmd *req; 5010 struct hclge_desc desc; 5011 bool uc_tx_en = en_uc; 5012 u8 promisc_cfg = 0; 5013 int ret; 5014 5015 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_PROMISC_MODE, false); 5016 5017 req = (struct hclge_promisc_cfg_cmd *)desc.data; 5018 req->vf_id = vf_id; 5019 5020 if (test_bit(HNAE3_PFLAG_LIMIT_PROMISC, &handle->priv_flags)) 5021 uc_tx_en = false; 5022 5023 hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_UC_RX_EN, en_uc ? 1 : 0); 5024 hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_MC_RX_EN, en_mc ? 1 : 0); 5025 hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_BC_RX_EN, en_bc ? 1 : 0); 5026 hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_UC_TX_EN, uc_tx_en ? 1 : 0); 5027 hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_MC_TX_EN, en_mc ? 1 : 0); 5028 hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_BC_TX_EN, en_bc ? 1 : 0); 5029 req->extend_promisc = promisc_cfg; 5030 5031 /* to be compatible with DEVICE_VERSION_V1/2 */ 5032 promisc_cfg = 0; 5033 hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_EN_UC, en_uc ? 1 : 0); 5034 hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_EN_MC, en_mc ? 1 : 0); 5035 hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_EN_BC, en_bc ? 1 : 0); 5036 hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_TX_EN, 1); 5037 hnae3_set_bit(promisc_cfg, HCLGE_PROMISC_RX_EN, 1); 5038 req->promisc = promisc_cfg; 5039 5040 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 5041 if (ret) 5042 dev_err(&hdev->pdev->dev, 5043 "failed to set vport %u promisc mode, ret = %d.\n", 5044 vf_id, ret); 5045 5046 return ret; 5047 } 5048 5049 int hclge_set_vport_promisc_mode(struct hclge_vport *vport, bool en_uc_pmc, 5050 bool en_mc_pmc, bool en_bc_pmc) 5051 { 5052 return hclge_cmd_set_promisc_mode(vport->back, vport->vport_id, 5053 en_uc_pmc, en_mc_pmc, en_bc_pmc); 5054 } 5055 5056 static int hclge_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc, 5057 bool en_mc_pmc) 5058 { 5059 struct hclge_vport *vport = hclge_get_vport(handle); 5060 struct hclge_dev *hdev = vport->back; 5061 bool en_bc_pmc = true; 5062 5063 /* For device whose version below V2, if broadcast promisc enabled, 5064 * vlan filter is always bypassed. So broadcast promisc should be 5065 * disabled until user enable promisc mode 5066 */ 5067 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2) 5068 en_bc_pmc = handle->netdev_flags & HNAE3_BPE ? true : false; 5069 5070 return hclge_set_vport_promisc_mode(vport, en_uc_pmc, en_mc_pmc, 5071 en_bc_pmc); 5072 } 5073 5074 static void hclge_request_update_promisc_mode(struct hnae3_handle *handle) 5075 { 5076 struct hclge_vport *vport = hclge_get_vport(handle); 5077 5078 set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, &vport->state); 5079 } 5080 5081 static void hclge_sync_fd_state(struct hclge_dev *hdev) 5082 { 5083 if (hlist_empty(&hdev->fd_rule_list)) 5084 hdev->fd_active_type = HCLGE_FD_RULE_NONE; 5085 } 5086 5087 static void hclge_fd_inc_rule_cnt(struct hclge_dev *hdev, u16 location) 5088 { 5089 if (!test_bit(location, hdev->fd_bmap)) { 5090 set_bit(location, hdev->fd_bmap); 5091 hdev->hclge_fd_rule_num++; 5092 } 5093 } 5094 5095 static void hclge_fd_dec_rule_cnt(struct hclge_dev *hdev, u16 location) 5096 { 5097 if (test_bit(location, hdev->fd_bmap)) { 5098 clear_bit(location, hdev->fd_bmap); 5099 hdev->hclge_fd_rule_num--; 5100 } 5101 } 5102 5103 static void hclge_fd_free_node(struct hclge_dev *hdev, 5104 struct hclge_fd_rule *rule) 5105 { 5106 hlist_del(&rule->rule_node); 5107 kfree(rule); 5108 hclge_sync_fd_state(hdev); 5109 } 5110 5111 static void hclge_update_fd_rule_node(struct hclge_dev *hdev, 5112 struct hclge_fd_rule *old_rule, 5113 struct hclge_fd_rule *new_rule, 5114 enum HCLGE_FD_NODE_STATE state) 5115 { 5116 switch (state) { 5117 case HCLGE_FD_TO_ADD: 5118 case HCLGE_FD_ACTIVE: 5119 /* 1) if the new state is TO_ADD, just replace the old rule 5120 * with the same location, no matter its state, because the 5121 * new rule will be configured to the hardware. 5122 * 2) if the new state is ACTIVE, it means the new rule 5123 * has been configured to the hardware, so just replace 5124 * the old rule node with the same location. 5125 * 3) for it doesn't add a new node to the list, so it's 5126 * unnecessary to update the rule number and fd_bmap. 5127 */ 5128 new_rule->rule_node.next = old_rule->rule_node.next; 5129 new_rule->rule_node.pprev = old_rule->rule_node.pprev; 5130 memcpy(old_rule, new_rule, sizeof(*old_rule)); 5131 kfree(new_rule); 5132 break; 5133 case HCLGE_FD_DELETED: 5134 hclge_fd_dec_rule_cnt(hdev, old_rule->location); 5135 hclge_fd_free_node(hdev, old_rule); 5136 break; 5137 case HCLGE_FD_TO_DEL: 5138 /* if new request is TO_DEL, and old rule is existent 5139 * 1) the state of old rule is TO_DEL, we need do nothing, 5140 * because we delete rule by location, other rule content 5141 * is unncessary. 5142 * 2) the state of old rule is ACTIVE, we need to change its 5143 * state to TO_DEL, so the rule will be deleted when periodic 5144 * task being scheduled. 5145 * 3) the state of old rule is TO_ADD, it means the rule hasn't 5146 * been added to hardware, so we just delete the rule node from 5147 * fd_rule_list directly. 5148 */ 5149 if (old_rule->state == HCLGE_FD_TO_ADD) { 5150 hclge_fd_dec_rule_cnt(hdev, old_rule->location); 5151 hclge_fd_free_node(hdev, old_rule); 5152 return; 5153 } 5154 old_rule->state = HCLGE_FD_TO_DEL; 5155 break; 5156 } 5157 } 5158 5159 static struct hclge_fd_rule *hclge_find_fd_rule(struct hlist_head *hlist, 5160 u16 location, 5161 struct hclge_fd_rule **parent) 5162 { 5163 struct hclge_fd_rule *rule; 5164 struct hlist_node *node; 5165 5166 hlist_for_each_entry_safe(rule, node, hlist, rule_node) { 5167 if (rule->location == location) 5168 return rule; 5169 else if (rule->location > location) 5170 return NULL; 5171 /* record the parent node, use to keep the nodes in fd_rule_list 5172 * in ascend order. 5173 */ 5174 *parent = rule; 5175 } 5176 5177 return NULL; 5178 } 5179 5180 /* insert fd rule node in ascend order according to rule->location */ 5181 static void hclge_fd_insert_rule_node(struct hlist_head *hlist, 5182 struct hclge_fd_rule *rule, 5183 struct hclge_fd_rule *parent) 5184 { 5185 INIT_HLIST_NODE(&rule->rule_node); 5186 5187 if (parent) 5188 hlist_add_behind(&rule->rule_node, &parent->rule_node); 5189 else 5190 hlist_add_head(&rule->rule_node, hlist); 5191 } 5192 5193 static int hclge_fd_set_user_def_cmd(struct hclge_dev *hdev, 5194 struct hclge_fd_user_def_cfg *cfg) 5195 { 5196 struct hclge_fd_user_def_cfg_cmd *req; 5197 struct hclge_desc desc; 5198 u16 data = 0; 5199 int ret; 5200 5201 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_USER_DEF_OP, false); 5202 5203 req = (struct hclge_fd_user_def_cfg_cmd *)desc.data; 5204 5205 hnae3_set_bit(data, HCLGE_FD_USER_DEF_EN_B, cfg[0].ref_cnt > 0); 5206 hnae3_set_field(data, HCLGE_FD_USER_DEF_OFT_M, 5207 HCLGE_FD_USER_DEF_OFT_S, cfg[0].offset); 5208 req->ol2_cfg = cpu_to_le16(data); 5209 5210 data = 0; 5211 hnae3_set_bit(data, HCLGE_FD_USER_DEF_EN_B, cfg[1].ref_cnt > 0); 5212 hnae3_set_field(data, HCLGE_FD_USER_DEF_OFT_M, 5213 HCLGE_FD_USER_DEF_OFT_S, cfg[1].offset); 5214 req->ol3_cfg = cpu_to_le16(data); 5215 5216 data = 0; 5217 hnae3_set_bit(data, HCLGE_FD_USER_DEF_EN_B, cfg[2].ref_cnt > 0); 5218 hnae3_set_field(data, HCLGE_FD_USER_DEF_OFT_M, 5219 HCLGE_FD_USER_DEF_OFT_S, cfg[2].offset); 5220 req->ol4_cfg = cpu_to_le16(data); 5221 5222 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 5223 if (ret) 5224 dev_err(&hdev->pdev->dev, 5225 "failed to set fd user def data, ret= %d\n", ret); 5226 return ret; 5227 } 5228 5229 static void hclge_sync_fd_user_def_cfg(struct hclge_dev *hdev, bool locked) 5230 { 5231 int ret; 5232 5233 if (!test_and_clear_bit(HCLGE_STATE_FD_USER_DEF_CHANGED, &hdev->state)) 5234 return; 5235 5236 if (!locked) 5237 spin_lock_bh(&hdev->fd_rule_lock); 5238 5239 ret = hclge_fd_set_user_def_cmd(hdev, hdev->fd_cfg.user_def_cfg); 5240 if (ret) 5241 set_bit(HCLGE_STATE_FD_USER_DEF_CHANGED, &hdev->state); 5242 5243 if (!locked) 5244 spin_unlock_bh(&hdev->fd_rule_lock); 5245 } 5246 5247 static int hclge_fd_check_user_def_refcnt(struct hclge_dev *hdev, 5248 struct hclge_fd_rule *rule) 5249 { 5250 struct hlist_head *hlist = &hdev->fd_rule_list; 5251 struct hclge_fd_rule *fd_rule, *parent = NULL; 5252 struct hclge_fd_user_def_info *info, *old_info; 5253 struct hclge_fd_user_def_cfg *cfg; 5254 5255 if (!rule || rule->rule_type != HCLGE_FD_EP_ACTIVE || 5256 rule->ep.user_def.layer == HCLGE_FD_USER_DEF_NONE) 5257 return 0; 5258 5259 /* for valid layer is start from 1, so need minus 1 to get the cfg */ 5260 cfg = &hdev->fd_cfg.user_def_cfg[rule->ep.user_def.layer - 1]; 5261 info = &rule->ep.user_def; 5262 5263 if (!cfg->ref_cnt || cfg->offset == info->offset) 5264 return 0; 5265 5266 if (cfg->ref_cnt > 1) 5267 goto error; 5268 5269 fd_rule = hclge_find_fd_rule(hlist, rule->location, &parent); 5270 if (fd_rule) { 5271 old_info = &fd_rule->ep.user_def; 5272 if (info->layer == old_info->layer) 5273 return 0; 5274 } 5275 5276 error: 5277 dev_err(&hdev->pdev->dev, 5278 "No available offset for layer%d fd rule, each layer only support one user def offset.\n", 5279 info->layer + 1); 5280 return -ENOSPC; 5281 } 5282 5283 static void hclge_fd_inc_user_def_refcnt(struct hclge_dev *hdev, 5284 struct hclge_fd_rule *rule) 5285 { 5286 struct hclge_fd_user_def_cfg *cfg; 5287 5288 if (!rule || rule->rule_type != HCLGE_FD_EP_ACTIVE || 5289 rule->ep.user_def.layer == HCLGE_FD_USER_DEF_NONE) 5290 return; 5291 5292 cfg = &hdev->fd_cfg.user_def_cfg[rule->ep.user_def.layer - 1]; 5293 if (!cfg->ref_cnt) { 5294 cfg->offset = rule->ep.user_def.offset; 5295 set_bit(HCLGE_STATE_FD_USER_DEF_CHANGED, &hdev->state); 5296 } 5297 cfg->ref_cnt++; 5298 } 5299 5300 static void hclge_fd_dec_user_def_refcnt(struct hclge_dev *hdev, 5301 struct hclge_fd_rule *rule) 5302 { 5303 struct hclge_fd_user_def_cfg *cfg; 5304 5305 if (!rule || rule->rule_type != HCLGE_FD_EP_ACTIVE || 5306 rule->ep.user_def.layer == HCLGE_FD_USER_DEF_NONE) 5307 return; 5308 5309 cfg = &hdev->fd_cfg.user_def_cfg[rule->ep.user_def.layer - 1]; 5310 if (!cfg->ref_cnt) 5311 return; 5312 5313 cfg->ref_cnt--; 5314 if (!cfg->ref_cnt) { 5315 cfg->offset = 0; 5316 set_bit(HCLGE_STATE_FD_USER_DEF_CHANGED, &hdev->state); 5317 } 5318 } 5319 5320 static void hclge_update_fd_list(struct hclge_dev *hdev, 5321 enum HCLGE_FD_NODE_STATE state, u16 location, 5322 struct hclge_fd_rule *new_rule) 5323 { 5324 struct hlist_head *hlist = &hdev->fd_rule_list; 5325 struct hclge_fd_rule *fd_rule, *parent = NULL; 5326 5327 fd_rule = hclge_find_fd_rule(hlist, location, &parent); 5328 if (fd_rule) { 5329 hclge_fd_dec_user_def_refcnt(hdev, fd_rule); 5330 if (state == HCLGE_FD_ACTIVE) 5331 hclge_fd_inc_user_def_refcnt(hdev, new_rule); 5332 hclge_sync_fd_user_def_cfg(hdev, true); 5333 5334 hclge_update_fd_rule_node(hdev, fd_rule, new_rule, state); 5335 return; 5336 } 5337 5338 /* it's unlikely to fail here, because we have checked the rule 5339 * exist before. 5340 */ 5341 if (unlikely(state == HCLGE_FD_TO_DEL || state == HCLGE_FD_DELETED)) { 5342 dev_warn(&hdev->pdev->dev, 5343 "failed to delete fd rule %u, it's inexistent\n", 5344 location); 5345 return; 5346 } 5347 5348 hclge_fd_inc_user_def_refcnt(hdev, new_rule); 5349 hclge_sync_fd_user_def_cfg(hdev, true); 5350 5351 hclge_fd_insert_rule_node(hlist, new_rule, parent); 5352 hclge_fd_inc_rule_cnt(hdev, new_rule->location); 5353 5354 if (state == HCLGE_FD_TO_ADD) { 5355 set_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state); 5356 hclge_task_schedule(hdev, 0); 5357 } 5358 } 5359 5360 static int hclge_get_fd_mode(struct hclge_dev *hdev, u8 *fd_mode) 5361 { 5362 struct hclge_get_fd_mode_cmd *req; 5363 struct hclge_desc desc; 5364 int ret; 5365 5366 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_MODE_CTRL, true); 5367 5368 req = (struct hclge_get_fd_mode_cmd *)desc.data; 5369 5370 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 5371 if (ret) { 5372 dev_err(&hdev->pdev->dev, "get fd mode fail, ret=%d\n", ret); 5373 return ret; 5374 } 5375 5376 *fd_mode = req->mode; 5377 5378 return ret; 5379 } 5380 5381 static int hclge_get_fd_allocation(struct hclge_dev *hdev, 5382 u32 *stage1_entry_num, 5383 u32 *stage2_entry_num, 5384 u16 *stage1_counter_num, 5385 u16 *stage2_counter_num) 5386 { 5387 struct hclge_get_fd_allocation_cmd *req; 5388 struct hclge_desc desc; 5389 int ret; 5390 5391 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_GET_ALLOCATION, true); 5392 5393 req = (struct hclge_get_fd_allocation_cmd *)desc.data; 5394 5395 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 5396 if (ret) { 5397 dev_err(&hdev->pdev->dev, "query fd allocation fail, ret=%d\n", 5398 ret); 5399 return ret; 5400 } 5401 5402 *stage1_entry_num = le32_to_cpu(req->stage1_entry_num); 5403 *stage2_entry_num = le32_to_cpu(req->stage2_entry_num); 5404 *stage1_counter_num = le16_to_cpu(req->stage1_counter_num); 5405 *stage2_counter_num = le16_to_cpu(req->stage2_counter_num); 5406 5407 return ret; 5408 } 5409 5410 static int hclge_set_fd_key_config(struct hclge_dev *hdev, 5411 enum HCLGE_FD_STAGE stage_num) 5412 { 5413 struct hclge_set_fd_key_config_cmd *req; 5414 struct hclge_fd_key_cfg *stage; 5415 struct hclge_desc desc; 5416 int ret; 5417 5418 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_KEY_CONFIG, false); 5419 5420 req = (struct hclge_set_fd_key_config_cmd *)desc.data; 5421 stage = &hdev->fd_cfg.key_cfg[stage_num]; 5422 req->stage = stage_num; 5423 req->key_select = stage->key_sel; 5424 req->inner_sipv6_word_en = stage->inner_sipv6_word_en; 5425 req->inner_dipv6_word_en = stage->inner_dipv6_word_en; 5426 req->outer_sipv6_word_en = stage->outer_sipv6_word_en; 5427 req->outer_dipv6_word_en = stage->outer_dipv6_word_en; 5428 req->tuple_mask = cpu_to_le32(~stage->tuple_active); 5429 req->meta_data_mask = cpu_to_le32(~stage->meta_data_active); 5430 5431 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 5432 if (ret) 5433 dev_err(&hdev->pdev->dev, "set fd key fail, ret=%d\n", ret); 5434 5435 return ret; 5436 } 5437 5438 static void hclge_fd_disable_user_def(struct hclge_dev *hdev) 5439 { 5440 struct hclge_fd_user_def_cfg *cfg = hdev->fd_cfg.user_def_cfg; 5441 5442 spin_lock_bh(&hdev->fd_rule_lock); 5443 memset(cfg, 0, sizeof(hdev->fd_cfg.user_def_cfg)); 5444 spin_unlock_bh(&hdev->fd_rule_lock); 5445 5446 hclge_fd_set_user_def_cmd(hdev, cfg); 5447 } 5448 5449 static int hclge_init_fd_config(struct hclge_dev *hdev) 5450 { 5451 #define LOW_2_WORDS 0x03 5452 struct hclge_fd_key_cfg *key_cfg; 5453 int ret; 5454 5455 if (!hnae3_ae_dev_fd_supported(hdev->ae_dev)) 5456 return 0; 5457 5458 ret = hclge_get_fd_mode(hdev, &hdev->fd_cfg.fd_mode); 5459 if (ret) 5460 return ret; 5461 5462 switch (hdev->fd_cfg.fd_mode) { 5463 case HCLGE_FD_MODE_DEPTH_2K_WIDTH_400B_STAGE_1: 5464 hdev->fd_cfg.max_key_length = MAX_KEY_LENGTH; 5465 break; 5466 case HCLGE_FD_MODE_DEPTH_4K_WIDTH_200B_STAGE_1: 5467 hdev->fd_cfg.max_key_length = MAX_KEY_LENGTH / 2; 5468 break; 5469 default: 5470 dev_err(&hdev->pdev->dev, 5471 "Unsupported flow director mode %u\n", 5472 hdev->fd_cfg.fd_mode); 5473 return -EOPNOTSUPP; 5474 } 5475 5476 key_cfg = &hdev->fd_cfg.key_cfg[HCLGE_FD_STAGE_1]; 5477 key_cfg->key_sel = HCLGE_FD_KEY_BASE_ON_TUPLE; 5478 key_cfg->inner_sipv6_word_en = LOW_2_WORDS; 5479 key_cfg->inner_dipv6_word_en = LOW_2_WORDS; 5480 key_cfg->outer_sipv6_word_en = 0; 5481 key_cfg->outer_dipv6_word_en = 0; 5482 5483 key_cfg->tuple_active = BIT(INNER_VLAN_TAG_FST) | BIT(INNER_ETH_TYPE) | 5484 BIT(INNER_IP_PROTO) | BIT(INNER_IP_TOS) | 5485 BIT(INNER_SRC_IP) | BIT(INNER_DST_IP) | 5486 BIT(INNER_SRC_PORT) | BIT(INNER_DST_PORT); 5487 5488 /* If use max 400bit key, we can support tuples for ether type */ 5489 if (hdev->fd_cfg.fd_mode == HCLGE_FD_MODE_DEPTH_2K_WIDTH_400B_STAGE_1) { 5490 key_cfg->tuple_active |= 5491 BIT(INNER_DST_MAC) | BIT(INNER_SRC_MAC); 5492 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) 5493 key_cfg->tuple_active |= HCLGE_FD_TUPLE_USER_DEF_TUPLES; 5494 } 5495 5496 /* roce_type is used to filter roce frames 5497 * dst_vport is used to specify the rule 5498 */ 5499 key_cfg->meta_data_active = BIT(ROCE_TYPE) | BIT(DST_VPORT); 5500 5501 ret = hclge_get_fd_allocation(hdev, 5502 &hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1], 5503 &hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_2], 5504 &hdev->fd_cfg.cnt_num[HCLGE_FD_STAGE_1], 5505 &hdev->fd_cfg.cnt_num[HCLGE_FD_STAGE_2]); 5506 if (ret) 5507 return ret; 5508 5509 return hclge_set_fd_key_config(hdev, HCLGE_FD_STAGE_1); 5510 } 5511 5512 static int hclge_fd_tcam_config(struct hclge_dev *hdev, u8 stage, bool sel_x, 5513 int loc, u8 *key, bool is_add) 5514 { 5515 struct hclge_fd_tcam_config_1_cmd *req1; 5516 struct hclge_fd_tcam_config_2_cmd *req2; 5517 struct hclge_fd_tcam_config_3_cmd *req3; 5518 struct hclge_desc desc[3]; 5519 int ret; 5520 5521 hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_FD_TCAM_OP, false); 5522 desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 5523 hclge_cmd_setup_basic_desc(&desc[1], HCLGE_OPC_FD_TCAM_OP, false); 5524 desc[1].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 5525 hclge_cmd_setup_basic_desc(&desc[2], HCLGE_OPC_FD_TCAM_OP, false); 5526 5527 req1 = (struct hclge_fd_tcam_config_1_cmd *)desc[0].data; 5528 req2 = (struct hclge_fd_tcam_config_2_cmd *)desc[1].data; 5529 req3 = (struct hclge_fd_tcam_config_3_cmd *)desc[2].data; 5530 5531 req1->stage = stage; 5532 req1->xy_sel = sel_x ? 1 : 0; 5533 hnae3_set_bit(req1->port_info, HCLGE_FD_EPORT_SW_EN_B, 0); 5534 req1->index = cpu_to_le32(loc); 5535 req1->entry_vld = sel_x ? is_add : 0; 5536 5537 if (key) { 5538 memcpy(req1->tcam_data, &key[0], sizeof(req1->tcam_data)); 5539 memcpy(req2->tcam_data, &key[sizeof(req1->tcam_data)], 5540 sizeof(req2->tcam_data)); 5541 memcpy(req3->tcam_data, &key[sizeof(req1->tcam_data) + 5542 sizeof(req2->tcam_data)], sizeof(req3->tcam_data)); 5543 } 5544 5545 ret = hclge_cmd_send(&hdev->hw, desc, 3); 5546 if (ret) 5547 dev_err(&hdev->pdev->dev, 5548 "config tcam key fail, ret=%d\n", 5549 ret); 5550 5551 return ret; 5552 } 5553 5554 static int hclge_fd_ad_config(struct hclge_dev *hdev, u8 stage, int loc, 5555 struct hclge_fd_ad_data *action) 5556 { 5557 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev); 5558 struct hclge_fd_ad_config_cmd *req; 5559 struct hclge_desc desc; 5560 u64 ad_data = 0; 5561 int ret; 5562 5563 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_FD_AD_OP, false); 5564 5565 req = (struct hclge_fd_ad_config_cmd *)desc.data; 5566 req->index = cpu_to_le32(loc); 5567 req->stage = stage; 5568 5569 hnae3_set_bit(ad_data, HCLGE_FD_AD_WR_RULE_ID_B, 5570 action->write_rule_id_to_bd); 5571 hnae3_set_field(ad_data, HCLGE_FD_AD_RULE_ID_M, HCLGE_FD_AD_RULE_ID_S, 5572 action->rule_id); 5573 if (test_bit(HNAE3_DEV_SUPPORT_FD_FORWARD_TC_B, ae_dev->caps)) { 5574 hnae3_set_bit(ad_data, HCLGE_FD_AD_TC_OVRD_B, 5575 action->override_tc); 5576 hnae3_set_field(ad_data, HCLGE_FD_AD_TC_SIZE_M, 5577 HCLGE_FD_AD_TC_SIZE_S, (u32)action->tc_size); 5578 } 5579 ad_data <<= 32; 5580 hnae3_set_bit(ad_data, HCLGE_FD_AD_DROP_B, action->drop_packet); 5581 hnae3_set_bit(ad_data, HCLGE_FD_AD_DIRECT_QID_B, 5582 action->forward_to_direct_queue); 5583 hnae3_set_field(ad_data, HCLGE_FD_AD_QID_M, HCLGE_FD_AD_QID_S, 5584 action->queue_id); 5585 hnae3_set_bit(ad_data, HCLGE_FD_AD_USE_COUNTER_B, action->use_counter); 5586 hnae3_set_field(ad_data, HCLGE_FD_AD_COUNTER_NUM_M, 5587 HCLGE_FD_AD_COUNTER_NUM_S, action->counter_id); 5588 hnae3_set_bit(ad_data, HCLGE_FD_AD_NXT_STEP_B, action->use_next_stage); 5589 hnae3_set_field(ad_data, HCLGE_FD_AD_NXT_KEY_M, HCLGE_FD_AD_NXT_KEY_S, 5590 action->counter_id); 5591 5592 req->ad_data = cpu_to_le64(ad_data); 5593 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 5594 if (ret) 5595 dev_err(&hdev->pdev->dev, "fd ad config fail, ret=%d\n", ret); 5596 5597 return ret; 5598 } 5599 5600 static bool hclge_fd_convert_tuple(u32 tuple_bit, u8 *key_x, u8 *key_y, 5601 struct hclge_fd_rule *rule) 5602 { 5603 int offset, moffset, ip_offset; 5604 enum HCLGE_FD_KEY_OPT key_opt; 5605 u16 tmp_x_s, tmp_y_s; 5606 u32 tmp_x_l, tmp_y_l; 5607 u8 *p = (u8 *)rule; 5608 int i; 5609 5610 if (rule->unused_tuple & BIT(tuple_bit)) 5611 return true; 5612 5613 key_opt = tuple_key_info[tuple_bit].key_opt; 5614 offset = tuple_key_info[tuple_bit].offset; 5615 moffset = tuple_key_info[tuple_bit].moffset; 5616 5617 switch (key_opt) { 5618 case KEY_OPT_U8: 5619 calc_x(*key_x, p[offset], p[moffset]); 5620 calc_y(*key_y, p[offset], p[moffset]); 5621 5622 return true; 5623 case KEY_OPT_LE16: 5624 calc_x(tmp_x_s, *(u16 *)(&p[offset]), *(u16 *)(&p[moffset])); 5625 calc_y(tmp_y_s, *(u16 *)(&p[offset]), *(u16 *)(&p[moffset])); 5626 *(__le16 *)key_x = cpu_to_le16(tmp_x_s); 5627 *(__le16 *)key_y = cpu_to_le16(tmp_y_s); 5628 5629 return true; 5630 case KEY_OPT_LE32: 5631 calc_x(tmp_x_l, *(u32 *)(&p[offset]), *(u32 *)(&p[moffset])); 5632 calc_y(tmp_y_l, *(u32 *)(&p[offset]), *(u32 *)(&p[moffset])); 5633 *(__le32 *)key_x = cpu_to_le32(tmp_x_l); 5634 *(__le32 *)key_y = cpu_to_le32(tmp_y_l); 5635 5636 return true; 5637 case KEY_OPT_MAC: 5638 for (i = 0; i < ETH_ALEN; i++) { 5639 calc_x(key_x[ETH_ALEN - 1 - i], p[offset + i], 5640 p[moffset + i]); 5641 calc_y(key_y[ETH_ALEN - 1 - i], p[offset + i], 5642 p[moffset + i]); 5643 } 5644 5645 return true; 5646 case KEY_OPT_IP: 5647 ip_offset = IPV4_INDEX * sizeof(u32); 5648 calc_x(tmp_x_l, *(u32 *)(&p[offset + ip_offset]), 5649 *(u32 *)(&p[moffset + ip_offset])); 5650 calc_y(tmp_y_l, *(u32 *)(&p[offset + ip_offset]), 5651 *(u32 *)(&p[moffset + ip_offset])); 5652 *(__le32 *)key_x = cpu_to_le32(tmp_x_l); 5653 *(__le32 *)key_y = cpu_to_le32(tmp_y_l); 5654 5655 return true; 5656 default: 5657 return false; 5658 } 5659 } 5660 5661 static u32 hclge_get_port_number(enum HLCGE_PORT_TYPE port_type, u8 pf_id, 5662 u8 vf_id, u8 network_port_id) 5663 { 5664 u32 port_number = 0; 5665 5666 if (port_type == HOST_PORT) { 5667 hnae3_set_field(port_number, HCLGE_PF_ID_M, HCLGE_PF_ID_S, 5668 pf_id); 5669 hnae3_set_field(port_number, HCLGE_VF_ID_M, HCLGE_VF_ID_S, 5670 vf_id); 5671 hnae3_set_bit(port_number, HCLGE_PORT_TYPE_B, HOST_PORT); 5672 } else { 5673 hnae3_set_field(port_number, HCLGE_NETWORK_PORT_ID_M, 5674 HCLGE_NETWORK_PORT_ID_S, network_port_id); 5675 hnae3_set_bit(port_number, HCLGE_PORT_TYPE_B, NETWORK_PORT); 5676 } 5677 5678 return port_number; 5679 } 5680 5681 static void hclge_fd_convert_meta_data(struct hclge_fd_key_cfg *key_cfg, 5682 __le32 *key_x, __le32 *key_y, 5683 struct hclge_fd_rule *rule) 5684 { 5685 u32 tuple_bit, meta_data = 0, tmp_x, tmp_y, port_number; 5686 u8 cur_pos = 0, tuple_size, shift_bits; 5687 unsigned int i; 5688 5689 for (i = 0; i < MAX_META_DATA; i++) { 5690 tuple_size = meta_data_key_info[i].key_length; 5691 tuple_bit = key_cfg->meta_data_active & BIT(i); 5692 5693 switch (tuple_bit) { 5694 case BIT(ROCE_TYPE): 5695 hnae3_set_bit(meta_data, cur_pos, NIC_PACKET); 5696 cur_pos += tuple_size; 5697 break; 5698 case BIT(DST_VPORT): 5699 port_number = hclge_get_port_number(HOST_PORT, 0, 5700 rule->vf_id, 0); 5701 hnae3_set_field(meta_data, 5702 GENMASK(cur_pos + tuple_size, cur_pos), 5703 cur_pos, port_number); 5704 cur_pos += tuple_size; 5705 break; 5706 default: 5707 break; 5708 } 5709 } 5710 5711 calc_x(tmp_x, meta_data, 0xFFFFFFFF); 5712 calc_y(tmp_y, meta_data, 0xFFFFFFFF); 5713 shift_bits = sizeof(meta_data) * 8 - cur_pos; 5714 5715 *key_x = cpu_to_le32(tmp_x << shift_bits); 5716 *key_y = cpu_to_le32(tmp_y << shift_bits); 5717 } 5718 5719 /* A complete key is combined with meta data key and tuple key. 5720 * Meta data key is stored at the MSB region, and tuple key is stored at 5721 * the LSB region, unused bits will be filled 0. 5722 */ 5723 static int hclge_config_key(struct hclge_dev *hdev, u8 stage, 5724 struct hclge_fd_rule *rule) 5725 { 5726 struct hclge_fd_key_cfg *key_cfg = &hdev->fd_cfg.key_cfg[stage]; 5727 u8 key_x[MAX_KEY_BYTES], key_y[MAX_KEY_BYTES]; 5728 u8 *cur_key_x, *cur_key_y; 5729 u8 meta_data_region; 5730 u8 tuple_size; 5731 int ret; 5732 u32 i; 5733 5734 memset(key_x, 0, sizeof(key_x)); 5735 memset(key_y, 0, sizeof(key_y)); 5736 cur_key_x = key_x; 5737 cur_key_y = key_y; 5738 5739 for (i = 0; i < MAX_TUPLE; i++) { 5740 bool tuple_valid; 5741 5742 tuple_size = tuple_key_info[i].key_length / 8; 5743 if (!(key_cfg->tuple_active & BIT(i))) 5744 continue; 5745 5746 tuple_valid = hclge_fd_convert_tuple(i, cur_key_x, 5747 cur_key_y, rule); 5748 if (tuple_valid) { 5749 cur_key_x += tuple_size; 5750 cur_key_y += tuple_size; 5751 } 5752 } 5753 5754 meta_data_region = hdev->fd_cfg.max_key_length / 8 - 5755 MAX_META_DATA_LENGTH / 8; 5756 5757 hclge_fd_convert_meta_data(key_cfg, 5758 (__le32 *)(key_x + meta_data_region), 5759 (__le32 *)(key_y + meta_data_region), 5760 rule); 5761 5762 ret = hclge_fd_tcam_config(hdev, stage, false, rule->location, key_y, 5763 true); 5764 if (ret) { 5765 dev_err(&hdev->pdev->dev, 5766 "fd key_y config fail, loc=%u, ret=%d\n", 5767 rule->queue_id, ret); 5768 return ret; 5769 } 5770 5771 ret = hclge_fd_tcam_config(hdev, stage, true, rule->location, key_x, 5772 true); 5773 if (ret) 5774 dev_err(&hdev->pdev->dev, 5775 "fd key_x config fail, loc=%u, ret=%d\n", 5776 rule->queue_id, ret); 5777 return ret; 5778 } 5779 5780 static int hclge_config_action(struct hclge_dev *hdev, u8 stage, 5781 struct hclge_fd_rule *rule) 5782 { 5783 struct hclge_vport *vport = hdev->vport; 5784 struct hnae3_knic_private_info *kinfo = &vport->nic.kinfo; 5785 struct hclge_fd_ad_data ad_data; 5786 5787 memset(&ad_data, 0, sizeof(struct hclge_fd_ad_data)); 5788 ad_data.ad_id = rule->location; 5789 5790 if (rule->action == HCLGE_FD_ACTION_DROP_PACKET) { 5791 ad_data.drop_packet = true; 5792 } else if (rule->action == HCLGE_FD_ACTION_SELECT_TC) { 5793 ad_data.override_tc = true; 5794 ad_data.queue_id = 5795 kinfo->tc_info.tqp_offset[rule->cls_flower.tc]; 5796 ad_data.tc_size = 5797 ilog2(kinfo->tc_info.tqp_count[rule->cls_flower.tc]); 5798 } else { 5799 ad_data.forward_to_direct_queue = true; 5800 ad_data.queue_id = rule->queue_id; 5801 } 5802 5803 if (hdev->fd_cfg.cnt_num[HCLGE_FD_STAGE_1]) { 5804 ad_data.use_counter = true; 5805 ad_data.counter_id = rule->vf_id % 5806 hdev->fd_cfg.cnt_num[HCLGE_FD_STAGE_1]; 5807 } else { 5808 ad_data.use_counter = false; 5809 ad_data.counter_id = 0; 5810 } 5811 5812 ad_data.use_next_stage = false; 5813 ad_data.next_input_key = 0; 5814 5815 ad_data.write_rule_id_to_bd = true; 5816 ad_data.rule_id = rule->location; 5817 5818 return hclge_fd_ad_config(hdev, stage, ad_data.ad_id, &ad_data); 5819 } 5820 5821 static int hclge_fd_check_tcpip4_tuple(struct ethtool_tcpip4_spec *spec, 5822 u32 *unused_tuple) 5823 { 5824 if (!spec || !unused_tuple) 5825 return -EINVAL; 5826 5827 *unused_tuple |= BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC); 5828 5829 if (!spec->ip4src) 5830 *unused_tuple |= BIT(INNER_SRC_IP); 5831 5832 if (!spec->ip4dst) 5833 *unused_tuple |= BIT(INNER_DST_IP); 5834 5835 if (!spec->psrc) 5836 *unused_tuple |= BIT(INNER_SRC_PORT); 5837 5838 if (!spec->pdst) 5839 *unused_tuple |= BIT(INNER_DST_PORT); 5840 5841 if (!spec->tos) 5842 *unused_tuple |= BIT(INNER_IP_TOS); 5843 5844 return 0; 5845 } 5846 5847 static int hclge_fd_check_ip4_tuple(struct ethtool_usrip4_spec *spec, 5848 u32 *unused_tuple) 5849 { 5850 if (!spec || !unused_tuple) 5851 return -EINVAL; 5852 5853 *unused_tuple |= BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC) | 5854 BIT(INNER_SRC_PORT) | BIT(INNER_DST_PORT); 5855 5856 if (!spec->ip4src) 5857 *unused_tuple |= BIT(INNER_SRC_IP); 5858 5859 if (!spec->ip4dst) 5860 *unused_tuple |= BIT(INNER_DST_IP); 5861 5862 if (!spec->tos) 5863 *unused_tuple |= BIT(INNER_IP_TOS); 5864 5865 if (!spec->proto) 5866 *unused_tuple |= BIT(INNER_IP_PROTO); 5867 5868 if (spec->l4_4_bytes) 5869 return -EOPNOTSUPP; 5870 5871 if (spec->ip_ver != ETH_RX_NFC_IP4) 5872 return -EOPNOTSUPP; 5873 5874 return 0; 5875 } 5876 5877 static int hclge_fd_check_tcpip6_tuple(struct ethtool_tcpip6_spec *spec, 5878 u32 *unused_tuple) 5879 { 5880 if (!spec || !unused_tuple) 5881 return -EINVAL; 5882 5883 *unused_tuple |= BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC); 5884 5885 /* check whether src/dst ip address used */ 5886 if (ipv6_addr_any((struct in6_addr *)spec->ip6src)) 5887 *unused_tuple |= BIT(INNER_SRC_IP); 5888 5889 if (ipv6_addr_any((struct in6_addr *)spec->ip6dst)) 5890 *unused_tuple |= BIT(INNER_DST_IP); 5891 5892 if (!spec->psrc) 5893 *unused_tuple |= BIT(INNER_SRC_PORT); 5894 5895 if (!spec->pdst) 5896 *unused_tuple |= BIT(INNER_DST_PORT); 5897 5898 if (!spec->tclass) 5899 *unused_tuple |= BIT(INNER_IP_TOS); 5900 5901 return 0; 5902 } 5903 5904 static int hclge_fd_check_ip6_tuple(struct ethtool_usrip6_spec *spec, 5905 u32 *unused_tuple) 5906 { 5907 if (!spec || !unused_tuple) 5908 return -EINVAL; 5909 5910 *unused_tuple |= BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC) | 5911 BIT(INNER_SRC_PORT) | BIT(INNER_DST_PORT); 5912 5913 /* check whether src/dst ip address used */ 5914 if (ipv6_addr_any((struct in6_addr *)spec->ip6src)) 5915 *unused_tuple |= BIT(INNER_SRC_IP); 5916 5917 if (ipv6_addr_any((struct in6_addr *)spec->ip6dst)) 5918 *unused_tuple |= BIT(INNER_DST_IP); 5919 5920 if (!spec->l4_proto) 5921 *unused_tuple |= BIT(INNER_IP_PROTO); 5922 5923 if (!spec->tclass) 5924 *unused_tuple |= BIT(INNER_IP_TOS); 5925 5926 if (spec->l4_4_bytes) 5927 return -EOPNOTSUPP; 5928 5929 return 0; 5930 } 5931 5932 static int hclge_fd_check_ether_tuple(struct ethhdr *spec, u32 *unused_tuple) 5933 { 5934 if (!spec || !unused_tuple) 5935 return -EINVAL; 5936 5937 *unused_tuple |= BIT(INNER_SRC_IP) | BIT(INNER_DST_IP) | 5938 BIT(INNER_SRC_PORT) | BIT(INNER_DST_PORT) | 5939 BIT(INNER_IP_TOS) | BIT(INNER_IP_PROTO); 5940 5941 if (is_zero_ether_addr(spec->h_source)) 5942 *unused_tuple |= BIT(INNER_SRC_MAC); 5943 5944 if (is_zero_ether_addr(spec->h_dest)) 5945 *unused_tuple |= BIT(INNER_DST_MAC); 5946 5947 if (!spec->h_proto) 5948 *unused_tuple |= BIT(INNER_ETH_TYPE); 5949 5950 return 0; 5951 } 5952 5953 static int hclge_fd_check_ext_tuple(struct hclge_dev *hdev, 5954 struct ethtool_rx_flow_spec *fs, 5955 u32 *unused_tuple) 5956 { 5957 if (fs->flow_type & FLOW_EXT) { 5958 if (fs->h_ext.vlan_etype) { 5959 dev_err(&hdev->pdev->dev, "vlan-etype is not supported!\n"); 5960 return -EOPNOTSUPP; 5961 } 5962 5963 if (!fs->h_ext.vlan_tci) 5964 *unused_tuple |= BIT(INNER_VLAN_TAG_FST); 5965 5966 if (fs->m_ext.vlan_tci && 5967 be16_to_cpu(fs->h_ext.vlan_tci) >= VLAN_N_VID) { 5968 dev_err(&hdev->pdev->dev, 5969 "failed to config vlan_tci, invalid vlan_tci: %u, max is %d.\n", 5970 ntohs(fs->h_ext.vlan_tci), VLAN_N_VID - 1); 5971 return -EINVAL; 5972 } 5973 } else { 5974 *unused_tuple |= BIT(INNER_VLAN_TAG_FST); 5975 } 5976 5977 if (fs->flow_type & FLOW_MAC_EXT) { 5978 if (hdev->fd_cfg.fd_mode != 5979 HCLGE_FD_MODE_DEPTH_2K_WIDTH_400B_STAGE_1) { 5980 dev_err(&hdev->pdev->dev, 5981 "FLOW_MAC_EXT is not supported in current fd mode!\n"); 5982 return -EOPNOTSUPP; 5983 } 5984 5985 if (is_zero_ether_addr(fs->h_ext.h_dest)) 5986 *unused_tuple |= BIT(INNER_DST_MAC); 5987 else 5988 *unused_tuple &= ~BIT(INNER_DST_MAC); 5989 } 5990 5991 return 0; 5992 } 5993 5994 static int hclge_fd_get_user_def_layer(u32 flow_type, u32 *unused_tuple, 5995 struct hclge_fd_user_def_info *info) 5996 { 5997 switch (flow_type) { 5998 case ETHER_FLOW: 5999 info->layer = HCLGE_FD_USER_DEF_L2; 6000 *unused_tuple &= ~BIT(INNER_L2_RSV); 6001 break; 6002 case IP_USER_FLOW: 6003 case IPV6_USER_FLOW: 6004 info->layer = HCLGE_FD_USER_DEF_L3; 6005 *unused_tuple &= ~BIT(INNER_L3_RSV); 6006 break; 6007 case TCP_V4_FLOW: 6008 case UDP_V4_FLOW: 6009 case TCP_V6_FLOW: 6010 case UDP_V6_FLOW: 6011 info->layer = HCLGE_FD_USER_DEF_L4; 6012 *unused_tuple &= ~BIT(INNER_L4_RSV); 6013 break; 6014 default: 6015 return -EOPNOTSUPP; 6016 } 6017 6018 return 0; 6019 } 6020 6021 static bool hclge_fd_is_user_def_all_masked(struct ethtool_rx_flow_spec *fs) 6022 { 6023 return be32_to_cpu(fs->m_ext.data[1] | fs->m_ext.data[0]) == 0; 6024 } 6025 6026 static int hclge_fd_parse_user_def_field(struct hclge_dev *hdev, 6027 struct ethtool_rx_flow_spec *fs, 6028 u32 *unused_tuple, 6029 struct hclge_fd_user_def_info *info) 6030 { 6031 u32 tuple_active = hdev->fd_cfg.key_cfg[HCLGE_FD_STAGE_1].tuple_active; 6032 u32 flow_type = fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT); 6033 u16 data, offset, data_mask, offset_mask; 6034 int ret; 6035 6036 info->layer = HCLGE_FD_USER_DEF_NONE; 6037 *unused_tuple |= HCLGE_FD_TUPLE_USER_DEF_TUPLES; 6038 6039 if (!(fs->flow_type & FLOW_EXT) || hclge_fd_is_user_def_all_masked(fs)) 6040 return 0; 6041 6042 /* user-def data from ethtool is 64 bit value, the bit0~15 is used 6043 * for data, and bit32~47 is used for offset. 6044 */ 6045 data = be32_to_cpu(fs->h_ext.data[1]) & HCLGE_FD_USER_DEF_DATA; 6046 data_mask = be32_to_cpu(fs->m_ext.data[1]) & HCLGE_FD_USER_DEF_DATA; 6047 offset = be32_to_cpu(fs->h_ext.data[0]) & HCLGE_FD_USER_DEF_OFFSET; 6048 offset_mask = be32_to_cpu(fs->m_ext.data[0]) & HCLGE_FD_USER_DEF_OFFSET; 6049 6050 if (!(tuple_active & HCLGE_FD_TUPLE_USER_DEF_TUPLES)) { 6051 dev_err(&hdev->pdev->dev, "user-def bytes are not supported\n"); 6052 return -EOPNOTSUPP; 6053 } 6054 6055 if (offset > HCLGE_FD_MAX_USER_DEF_OFFSET) { 6056 dev_err(&hdev->pdev->dev, 6057 "user-def offset[%u] should be no more than %u\n", 6058 offset, HCLGE_FD_MAX_USER_DEF_OFFSET); 6059 return -EINVAL; 6060 } 6061 6062 if (offset_mask != HCLGE_FD_USER_DEF_OFFSET_UNMASK) { 6063 dev_err(&hdev->pdev->dev, "user-def offset can't be masked\n"); 6064 return -EINVAL; 6065 } 6066 6067 ret = hclge_fd_get_user_def_layer(flow_type, unused_tuple, info); 6068 if (ret) { 6069 dev_err(&hdev->pdev->dev, 6070 "unsupported flow type for user-def bytes, ret = %d\n", 6071 ret); 6072 return ret; 6073 } 6074 6075 info->data = data; 6076 info->data_mask = data_mask; 6077 info->offset = offset; 6078 6079 return 0; 6080 } 6081 6082 static int hclge_fd_check_spec(struct hclge_dev *hdev, 6083 struct ethtool_rx_flow_spec *fs, 6084 u32 *unused_tuple, 6085 struct hclge_fd_user_def_info *info) 6086 { 6087 u32 flow_type; 6088 int ret; 6089 6090 if (fs->location >= hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]) { 6091 dev_err(&hdev->pdev->dev, 6092 "failed to config fd rules, invalid rule location: %u, max is %u\n.", 6093 fs->location, 6094 hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1] - 1); 6095 return -EINVAL; 6096 } 6097 6098 ret = hclge_fd_parse_user_def_field(hdev, fs, unused_tuple, info); 6099 if (ret) 6100 return ret; 6101 6102 flow_type = fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT); 6103 switch (flow_type) { 6104 case SCTP_V4_FLOW: 6105 case TCP_V4_FLOW: 6106 case UDP_V4_FLOW: 6107 ret = hclge_fd_check_tcpip4_tuple(&fs->h_u.tcp_ip4_spec, 6108 unused_tuple); 6109 break; 6110 case IP_USER_FLOW: 6111 ret = hclge_fd_check_ip4_tuple(&fs->h_u.usr_ip4_spec, 6112 unused_tuple); 6113 break; 6114 case SCTP_V6_FLOW: 6115 case TCP_V6_FLOW: 6116 case UDP_V6_FLOW: 6117 ret = hclge_fd_check_tcpip6_tuple(&fs->h_u.tcp_ip6_spec, 6118 unused_tuple); 6119 break; 6120 case IPV6_USER_FLOW: 6121 ret = hclge_fd_check_ip6_tuple(&fs->h_u.usr_ip6_spec, 6122 unused_tuple); 6123 break; 6124 case ETHER_FLOW: 6125 if (hdev->fd_cfg.fd_mode != 6126 HCLGE_FD_MODE_DEPTH_2K_WIDTH_400B_STAGE_1) { 6127 dev_err(&hdev->pdev->dev, 6128 "ETHER_FLOW is not supported in current fd mode!\n"); 6129 return -EOPNOTSUPP; 6130 } 6131 6132 ret = hclge_fd_check_ether_tuple(&fs->h_u.ether_spec, 6133 unused_tuple); 6134 break; 6135 default: 6136 dev_err(&hdev->pdev->dev, 6137 "unsupported protocol type, protocol type = %#x\n", 6138 flow_type); 6139 return -EOPNOTSUPP; 6140 } 6141 6142 if (ret) { 6143 dev_err(&hdev->pdev->dev, 6144 "failed to check flow union tuple, ret = %d\n", 6145 ret); 6146 return ret; 6147 } 6148 6149 return hclge_fd_check_ext_tuple(hdev, fs, unused_tuple); 6150 } 6151 6152 static void hclge_fd_get_tcpip4_tuple(struct ethtool_rx_flow_spec *fs, 6153 struct hclge_fd_rule *rule, u8 ip_proto) 6154 { 6155 rule->tuples.src_ip[IPV4_INDEX] = 6156 be32_to_cpu(fs->h_u.tcp_ip4_spec.ip4src); 6157 rule->tuples_mask.src_ip[IPV4_INDEX] = 6158 be32_to_cpu(fs->m_u.tcp_ip4_spec.ip4src); 6159 6160 rule->tuples.dst_ip[IPV4_INDEX] = 6161 be32_to_cpu(fs->h_u.tcp_ip4_spec.ip4dst); 6162 rule->tuples_mask.dst_ip[IPV4_INDEX] = 6163 be32_to_cpu(fs->m_u.tcp_ip4_spec.ip4dst); 6164 6165 rule->tuples.src_port = be16_to_cpu(fs->h_u.tcp_ip4_spec.psrc); 6166 rule->tuples_mask.src_port = be16_to_cpu(fs->m_u.tcp_ip4_spec.psrc); 6167 6168 rule->tuples.dst_port = be16_to_cpu(fs->h_u.tcp_ip4_spec.pdst); 6169 rule->tuples_mask.dst_port = be16_to_cpu(fs->m_u.tcp_ip4_spec.pdst); 6170 6171 rule->tuples.ip_tos = fs->h_u.tcp_ip4_spec.tos; 6172 rule->tuples_mask.ip_tos = fs->m_u.tcp_ip4_spec.tos; 6173 6174 rule->tuples.ether_proto = ETH_P_IP; 6175 rule->tuples_mask.ether_proto = 0xFFFF; 6176 6177 rule->tuples.ip_proto = ip_proto; 6178 rule->tuples_mask.ip_proto = 0xFF; 6179 } 6180 6181 static void hclge_fd_get_ip4_tuple(struct ethtool_rx_flow_spec *fs, 6182 struct hclge_fd_rule *rule) 6183 { 6184 rule->tuples.src_ip[IPV4_INDEX] = 6185 be32_to_cpu(fs->h_u.usr_ip4_spec.ip4src); 6186 rule->tuples_mask.src_ip[IPV4_INDEX] = 6187 be32_to_cpu(fs->m_u.usr_ip4_spec.ip4src); 6188 6189 rule->tuples.dst_ip[IPV4_INDEX] = 6190 be32_to_cpu(fs->h_u.usr_ip4_spec.ip4dst); 6191 rule->tuples_mask.dst_ip[IPV4_INDEX] = 6192 be32_to_cpu(fs->m_u.usr_ip4_spec.ip4dst); 6193 6194 rule->tuples.ip_tos = fs->h_u.usr_ip4_spec.tos; 6195 rule->tuples_mask.ip_tos = fs->m_u.usr_ip4_spec.tos; 6196 6197 rule->tuples.ip_proto = fs->h_u.usr_ip4_spec.proto; 6198 rule->tuples_mask.ip_proto = fs->m_u.usr_ip4_spec.proto; 6199 6200 rule->tuples.ether_proto = ETH_P_IP; 6201 rule->tuples_mask.ether_proto = 0xFFFF; 6202 } 6203 6204 static void hclge_fd_get_tcpip6_tuple(struct ethtool_rx_flow_spec *fs, 6205 struct hclge_fd_rule *rule, u8 ip_proto) 6206 { 6207 be32_to_cpu_array(rule->tuples.src_ip, fs->h_u.tcp_ip6_spec.ip6src, 6208 IPV6_SIZE); 6209 be32_to_cpu_array(rule->tuples_mask.src_ip, fs->m_u.tcp_ip6_spec.ip6src, 6210 IPV6_SIZE); 6211 6212 be32_to_cpu_array(rule->tuples.dst_ip, fs->h_u.tcp_ip6_spec.ip6dst, 6213 IPV6_SIZE); 6214 be32_to_cpu_array(rule->tuples_mask.dst_ip, fs->m_u.tcp_ip6_spec.ip6dst, 6215 IPV6_SIZE); 6216 6217 rule->tuples.src_port = be16_to_cpu(fs->h_u.tcp_ip6_spec.psrc); 6218 rule->tuples_mask.src_port = be16_to_cpu(fs->m_u.tcp_ip6_spec.psrc); 6219 6220 rule->tuples.dst_port = be16_to_cpu(fs->h_u.tcp_ip6_spec.pdst); 6221 rule->tuples_mask.dst_port = be16_to_cpu(fs->m_u.tcp_ip6_spec.pdst); 6222 6223 rule->tuples.ether_proto = ETH_P_IPV6; 6224 rule->tuples_mask.ether_proto = 0xFFFF; 6225 6226 rule->tuples.ip_tos = fs->h_u.tcp_ip6_spec.tclass; 6227 rule->tuples_mask.ip_tos = fs->m_u.tcp_ip6_spec.tclass; 6228 6229 rule->tuples.ip_proto = ip_proto; 6230 rule->tuples_mask.ip_proto = 0xFF; 6231 } 6232 6233 static void hclge_fd_get_ip6_tuple(struct ethtool_rx_flow_spec *fs, 6234 struct hclge_fd_rule *rule) 6235 { 6236 be32_to_cpu_array(rule->tuples.src_ip, fs->h_u.usr_ip6_spec.ip6src, 6237 IPV6_SIZE); 6238 be32_to_cpu_array(rule->tuples_mask.src_ip, fs->m_u.usr_ip6_spec.ip6src, 6239 IPV6_SIZE); 6240 6241 be32_to_cpu_array(rule->tuples.dst_ip, fs->h_u.usr_ip6_spec.ip6dst, 6242 IPV6_SIZE); 6243 be32_to_cpu_array(rule->tuples_mask.dst_ip, fs->m_u.usr_ip6_spec.ip6dst, 6244 IPV6_SIZE); 6245 6246 rule->tuples.ip_proto = fs->h_u.usr_ip6_spec.l4_proto; 6247 rule->tuples_mask.ip_proto = fs->m_u.usr_ip6_spec.l4_proto; 6248 6249 rule->tuples.ip_tos = fs->h_u.tcp_ip6_spec.tclass; 6250 rule->tuples_mask.ip_tos = fs->m_u.tcp_ip6_spec.tclass; 6251 6252 rule->tuples.ether_proto = ETH_P_IPV6; 6253 rule->tuples_mask.ether_proto = 0xFFFF; 6254 } 6255 6256 static void hclge_fd_get_ether_tuple(struct ethtool_rx_flow_spec *fs, 6257 struct hclge_fd_rule *rule) 6258 { 6259 ether_addr_copy(rule->tuples.src_mac, fs->h_u.ether_spec.h_source); 6260 ether_addr_copy(rule->tuples_mask.src_mac, fs->m_u.ether_spec.h_source); 6261 6262 ether_addr_copy(rule->tuples.dst_mac, fs->h_u.ether_spec.h_dest); 6263 ether_addr_copy(rule->tuples_mask.dst_mac, fs->m_u.ether_spec.h_dest); 6264 6265 rule->tuples.ether_proto = be16_to_cpu(fs->h_u.ether_spec.h_proto); 6266 rule->tuples_mask.ether_proto = be16_to_cpu(fs->m_u.ether_spec.h_proto); 6267 } 6268 6269 static void hclge_fd_get_user_def_tuple(struct hclge_fd_user_def_info *info, 6270 struct hclge_fd_rule *rule) 6271 { 6272 switch (info->layer) { 6273 case HCLGE_FD_USER_DEF_L2: 6274 rule->tuples.l2_user_def = info->data; 6275 rule->tuples_mask.l2_user_def = info->data_mask; 6276 break; 6277 case HCLGE_FD_USER_DEF_L3: 6278 rule->tuples.l3_user_def = info->data; 6279 rule->tuples_mask.l3_user_def = info->data_mask; 6280 break; 6281 case HCLGE_FD_USER_DEF_L4: 6282 rule->tuples.l4_user_def = (u32)info->data << 16; 6283 rule->tuples_mask.l4_user_def = (u32)info->data_mask << 16; 6284 break; 6285 default: 6286 break; 6287 } 6288 6289 rule->ep.user_def = *info; 6290 } 6291 6292 static int hclge_fd_get_tuple(struct ethtool_rx_flow_spec *fs, 6293 struct hclge_fd_rule *rule, 6294 struct hclge_fd_user_def_info *info) 6295 { 6296 u32 flow_type = fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT); 6297 6298 switch (flow_type) { 6299 case SCTP_V4_FLOW: 6300 hclge_fd_get_tcpip4_tuple(fs, rule, IPPROTO_SCTP); 6301 break; 6302 case TCP_V4_FLOW: 6303 hclge_fd_get_tcpip4_tuple(fs, rule, IPPROTO_TCP); 6304 break; 6305 case UDP_V4_FLOW: 6306 hclge_fd_get_tcpip4_tuple(fs, rule, IPPROTO_UDP); 6307 break; 6308 case IP_USER_FLOW: 6309 hclge_fd_get_ip4_tuple(fs, rule); 6310 break; 6311 case SCTP_V6_FLOW: 6312 hclge_fd_get_tcpip6_tuple(fs, rule, IPPROTO_SCTP); 6313 break; 6314 case TCP_V6_FLOW: 6315 hclge_fd_get_tcpip6_tuple(fs, rule, IPPROTO_TCP); 6316 break; 6317 case UDP_V6_FLOW: 6318 hclge_fd_get_tcpip6_tuple(fs, rule, IPPROTO_UDP); 6319 break; 6320 case IPV6_USER_FLOW: 6321 hclge_fd_get_ip6_tuple(fs, rule); 6322 break; 6323 case ETHER_FLOW: 6324 hclge_fd_get_ether_tuple(fs, rule); 6325 break; 6326 default: 6327 return -EOPNOTSUPP; 6328 } 6329 6330 if (fs->flow_type & FLOW_EXT) { 6331 rule->tuples.vlan_tag1 = be16_to_cpu(fs->h_ext.vlan_tci); 6332 rule->tuples_mask.vlan_tag1 = be16_to_cpu(fs->m_ext.vlan_tci); 6333 hclge_fd_get_user_def_tuple(info, rule); 6334 } 6335 6336 if (fs->flow_type & FLOW_MAC_EXT) { 6337 ether_addr_copy(rule->tuples.dst_mac, fs->h_ext.h_dest); 6338 ether_addr_copy(rule->tuples_mask.dst_mac, fs->m_ext.h_dest); 6339 } 6340 6341 return 0; 6342 } 6343 6344 static int hclge_fd_config_rule(struct hclge_dev *hdev, 6345 struct hclge_fd_rule *rule) 6346 { 6347 int ret; 6348 6349 ret = hclge_config_action(hdev, HCLGE_FD_STAGE_1, rule); 6350 if (ret) 6351 return ret; 6352 6353 return hclge_config_key(hdev, HCLGE_FD_STAGE_1, rule); 6354 } 6355 6356 static int hclge_add_fd_entry_common(struct hclge_dev *hdev, 6357 struct hclge_fd_rule *rule) 6358 { 6359 int ret; 6360 6361 spin_lock_bh(&hdev->fd_rule_lock); 6362 6363 if (hdev->fd_active_type != rule->rule_type && 6364 (hdev->fd_active_type == HCLGE_FD_TC_FLOWER_ACTIVE || 6365 hdev->fd_active_type == HCLGE_FD_EP_ACTIVE)) { 6366 dev_err(&hdev->pdev->dev, 6367 "mode conflict(new type %d, active type %d), please delete existent rules first\n", 6368 rule->rule_type, hdev->fd_active_type); 6369 spin_unlock_bh(&hdev->fd_rule_lock); 6370 return -EINVAL; 6371 } 6372 6373 ret = hclge_fd_check_user_def_refcnt(hdev, rule); 6374 if (ret) 6375 goto out; 6376 6377 ret = hclge_clear_arfs_rules(hdev); 6378 if (ret) 6379 goto out; 6380 6381 ret = hclge_fd_config_rule(hdev, rule); 6382 if (ret) 6383 goto out; 6384 6385 rule->state = HCLGE_FD_ACTIVE; 6386 hdev->fd_active_type = rule->rule_type; 6387 hclge_update_fd_list(hdev, rule->state, rule->location, rule); 6388 6389 out: 6390 spin_unlock_bh(&hdev->fd_rule_lock); 6391 return ret; 6392 } 6393 6394 static bool hclge_is_cls_flower_active(struct hnae3_handle *handle) 6395 { 6396 struct hclge_vport *vport = hclge_get_vport(handle); 6397 struct hclge_dev *hdev = vport->back; 6398 6399 return hdev->fd_active_type == HCLGE_FD_TC_FLOWER_ACTIVE; 6400 } 6401 6402 static int hclge_fd_parse_ring_cookie(struct hclge_dev *hdev, u64 ring_cookie, 6403 u16 *vport_id, u8 *action, u16 *queue_id) 6404 { 6405 struct hclge_vport *vport = hdev->vport; 6406 6407 if (ring_cookie == RX_CLS_FLOW_DISC) { 6408 *action = HCLGE_FD_ACTION_DROP_PACKET; 6409 } else { 6410 u32 ring = ethtool_get_flow_spec_ring(ring_cookie); 6411 u8 vf = ethtool_get_flow_spec_ring_vf(ring_cookie); 6412 u16 tqps; 6413 6414 /* To keep consistent with user's configuration, minus 1 when 6415 * printing 'vf', because vf id from ethtool is added 1 for vf. 6416 */ 6417 if (vf > hdev->num_req_vfs) { 6418 dev_err(&hdev->pdev->dev, 6419 "Error: vf id (%u) should be less than %u\n", 6420 vf - 1U, hdev->num_req_vfs); 6421 return -EINVAL; 6422 } 6423 6424 *vport_id = vf ? hdev->vport[vf].vport_id : vport->vport_id; 6425 tqps = hdev->vport[vf].nic.kinfo.num_tqps; 6426 6427 if (ring >= tqps) { 6428 dev_err(&hdev->pdev->dev, 6429 "Error: queue id (%u) > max tqp num (%u)\n", 6430 ring, tqps - 1U); 6431 return -EINVAL; 6432 } 6433 6434 *action = HCLGE_FD_ACTION_SELECT_QUEUE; 6435 *queue_id = ring; 6436 } 6437 6438 return 0; 6439 } 6440 6441 static int hclge_add_fd_entry(struct hnae3_handle *handle, 6442 struct ethtool_rxnfc *cmd) 6443 { 6444 struct hclge_vport *vport = hclge_get_vport(handle); 6445 struct hclge_dev *hdev = vport->back; 6446 struct hclge_fd_user_def_info info; 6447 u16 dst_vport_id = 0, q_index = 0; 6448 struct ethtool_rx_flow_spec *fs; 6449 struct hclge_fd_rule *rule; 6450 u32 unused = 0; 6451 u8 action; 6452 int ret; 6453 6454 if (!hnae3_ae_dev_fd_supported(hdev->ae_dev)) { 6455 dev_err(&hdev->pdev->dev, 6456 "flow table director is not supported\n"); 6457 return -EOPNOTSUPP; 6458 } 6459 6460 if (!hdev->fd_en) { 6461 dev_err(&hdev->pdev->dev, 6462 "please enable flow director first\n"); 6463 return -EOPNOTSUPP; 6464 } 6465 6466 fs = (struct ethtool_rx_flow_spec *)&cmd->fs; 6467 6468 ret = hclge_fd_check_spec(hdev, fs, &unused, &info); 6469 if (ret) 6470 return ret; 6471 6472 ret = hclge_fd_parse_ring_cookie(hdev, fs->ring_cookie, &dst_vport_id, 6473 &action, &q_index); 6474 if (ret) 6475 return ret; 6476 6477 rule = kzalloc(sizeof(*rule), GFP_KERNEL); 6478 if (!rule) 6479 return -ENOMEM; 6480 6481 ret = hclge_fd_get_tuple(fs, rule, &info); 6482 if (ret) { 6483 kfree(rule); 6484 return ret; 6485 } 6486 6487 rule->flow_type = fs->flow_type; 6488 rule->location = fs->location; 6489 rule->unused_tuple = unused; 6490 rule->vf_id = dst_vport_id; 6491 rule->queue_id = q_index; 6492 rule->action = action; 6493 rule->rule_type = HCLGE_FD_EP_ACTIVE; 6494 6495 ret = hclge_add_fd_entry_common(hdev, rule); 6496 if (ret) 6497 kfree(rule); 6498 6499 return ret; 6500 } 6501 6502 static int hclge_del_fd_entry(struct hnae3_handle *handle, 6503 struct ethtool_rxnfc *cmd) 6504 { 6505 struct hclge_vport *vport = hclge_get_vport(handle); 6506 struct hclge_dev *hdev = vport->back; 6507 struct ethtool_rx_flow_spec *fs; 6508 int ret; 6509 6510 if (!hnae3_ae_dev_fd_supported(hdev->ae_dev)) 6511 return -EOPNOTSUPP; 6512 6513 fs = (struct ethtool_rx_flow_spec *)&cmd->fs; 6514 6515 if (fs->location >= hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]) 6516 return -EINVAL; 6517 6518 spin_lock_bh(&hdev->fd_rule_lock); 6519 if (hdev->fd_active_type == HCLGE_FD_TC_FLOWER_ACTIVE || 6520 !test_bit(fs->location, hdev->fd_bmap)) { 6521 dev_err(&hdev->pdev->dev, 6522 "Delete fail, rule %u is inexistent\n", fs->location); 6523 spin_unlock_bh(&hdev->fd_rule_lock); 6524 return -ENOENT; 6525 } 6526 6527 ret = hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true, fs->location, 6528 NULL, false); 6529 if (ret) 6530 goto out; 6531 6532 hclge_update_fd_list(hdev, HCLGE_FD_DELETED, fs->location, NULL); 6533 6534 out: 6535 spin_unlock_bh(&hdev->fd_rule_lock); 6536 return ret; 6537 } 6538 6539 static void hclge_clear_fd_rules_in_list(struct hclge_dev *hdev, 6540 bool clear_list) 6541 { 6542 struct hclge_fd_rule *rule; 6543 struct hlist_node *node; 6544 u16 location; 6545 6546 spin_lock_bh(&hdev->fd_rule_lock); 6547 6548 for_each_set_bit(location, hdev->fd_bmap, 6549 hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]) 6550 hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true, location, 6551 NULL, false); 6552 6553 if (clear_list) { 6554 hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, 6555 rule_node) { 6556 hlist_del(&rule->rule_node); 6557 kfree(rule); 6558 } 6559 hdev->fd_active_type = HCLGE_FD_RULE_NONE; 6560 hdev->hclge_fd_rule_num = 0; 6561 bitmap_zero(hdev->fd_bmap, 6562 hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]); 6563 } 6564 6565 spin_unlock_bh(&hdev->fd_rule_lock); 6566 } 6567 6568 static void hclge_del_all_fd_entries(struct hclge_dev *hdev) 6569 { 6570 if (!hnae3_ae_dev_fd_supported(hdev->ae_dev)) 6571 return; 6572 6573 hclge_clear_fd_rules_in_list(hdev, true); 6574 hclge_fd_disable_user_def(hdev); 6575 } 6576 6577 static int hclge_restore_fd_entries(struct hnae3_handle *handle) 6578 { 6579 struct hclge_vport *vport = hclge_get_vport(handle); 6580 struct hclge_dev *hdev = vport->back; 6581 struct hclge_fd_rule *rule; 6582 struct hlist_node *node; 6583 6584 /* Return ok here, because reset error handling will check this 6585 * return value. If error is returned here, the reset process will 6586 * fail. 6587 */ 6588 if (!hnae3_ae_dev_fd_supported(hdev->ae_dev)) 6589 return 0; 6590 6591 /* if fd is disabled, should not restore it when reset */ 6592 if (!hdev->fd_en) 6593 return 0; 6594 6595 spin_lock_bh(&hdev->fd_rule_lock); 6596 hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) { 6597 if (rule->state == HCLGE_FD_ACTIVE) 6598 rule->state = HCLGE_FD_TO_ADD; 6599 } 6600 spin_unlock_bh(&hdev->fd_rule_lock); 6601 set_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state); 6602 6603 return 0; 6604 } 6605 6606 static int hclge_get_fd_rule_cnt(struct hnae3_handle *handle, 6607 struct ethtool_rxnfc *cmd) 6608 { 6609 struct hclge_vport *vport = hclge_get_vport(handle); 6610 struct hclge_dev *hdev = vport->back; 6611 6612 if (!hnae3_ae_dev_fd_supported(hdev->ae_dev) || hclge_is_cls_flower_active(handle)) 6613 return -EOPNOTSUPP; 6614 6615 cmd->rule_cnt = hdev->hclge_fd_rule_num; 6616 cmd->data = hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]; 6617 6618 return 0; 6619 } 6620 6621 static void hclge_fd_get_tcpip4_info(struct hclge_fd_rule *rule, 6622 struct ethtool_tcpip4_spec *spec, 6623 struct ethtool_tcpip4_spec *spec_mask) 6624 { 6625 spec->ip4src = cpu_to_be32(rule->tuples.src_ip[IPV4_INDEX]); 6626 spec_mask->ip4src = rule->unused_tuple & BIT(INNER_SRC_IP) ? 6627 0 : cpu_to_be32(rule->tuples_mask.src_ip[IPV4_INDEX]); 6628 6629 spec->ip4dst = cpu_to_be32(rule->tuples.dst_ip[IPV4_INDEX]); 6630 spec_mask->ip4dst = rule->unused_tuple & BIT(INNER_DST_IP) ? 6631 0 : cpu_to_be32(rule->tuples_mask.dst_ip[IPV4_INDEX]); 6632 6633 spec->psrc = cpu_to_be16(rule->tuples.src_port); 6634 spec_mask->psrc = rule->unused_tuple & BIT(INNER_SRC_PORT) ? 6635 0 : cpu_to_be16(rule->tuples_mask.src_port); 6636 6637 spec->pdst = cpu_to_be16(rule->tuples.dst_port); 6638 spec_mask->pdst = rule->unused_tuple & BIT(INNER_DST_PORT) ? 6639 0 : cpu_to_be16(rule->tuples_mask.dst_port); 6640 6641 spec->tos = rule->tuples.ip_tos; 6642 spec_mask->tos = rule->unused_tuple & BIT(INNER_IP_TOS) ? 6643 0 : rule->tuples_mask.ip_tos; 6644 } 6645 6646 static void hclge_fd_get_ip4_info(struct hclge_fd_rule *rule, 6647 struct ethtool_usrip4_spec *spec, 6648 struct ethtool_usrip4_spec *spec_mask) 6649 { 6650 spec->ip4src = cpu_to_be32(rule->tuples.src_ip[IPV4_INDEX]); 6651 spec_mask->ip4src = rule->unused_tuple & BIT(INNER_SRC_IP) ? 6652 0 : cpu_to_be32(rule->tuples_mask.src_ip[IPV4_INDEX]); 6653 6654 spec->ip4dst = cpu_to_be32(rule->tuples.dst_ip[IPV4_INDEX]); 6655 spec_mask->ip4dst = rule->unused_tuple & BIT(INNER_DST_IP) ? 6656 0 : cpu_to_be32(rule->tuples_mask.dst_ip[IPV4_INDEX]); 6657 6658 spec->tos = rule->tuples.ip_tos; 6659 spec_mask->tos = rule->unused_tuple & BIT(INNER_IP_TOS) ? 6660 0 : rule->tuples_mask.ip_tos; 6661 6662 spec->proto = rule->tuples.ip_proto; 6663 spec_mask->proto = rule->unused_tuple & BIT(INNER_IP_PROTO) ? 6664 0 : rule->tuples_mask.ip_proto; 6665 6666 spec->ip_ver = ETH_RX_NFC_IP4; 6667 } 6668 6669 static void hclge_fd_get_tcpip6_info(struct hclge_fd_rule *rule, 6670 struct ethtool_tcpip6_spec *spec, 6671 struct ethtool_tcpip6_spec *spec_mask) 6672 { 6673 cpu_to_be32_array(spec->ip6src, 6674 rule->tuples.src_ip, IPV6_SIZE); 6675 cpu_to_be32_array(spec->ip6dst, 6676 rule->tuples.dst_ip, IPV6_SIZE); 6677 if (rule->unused_tuple & BIT(INNER_SRC_IP)) 6678 memset(spec_mask->ip6src, 0, sizeof(spec_mask->ip6src)); 6679 else 6680 cpu_to_be32_array(spec_mask->ip6src, rule->tuples_mask.src_ip, 6681 IPV6_SIZE); 6682 6683 if (rule->unused_tuple & BIT(INNER_DST_IP)) 6684 memset(spec_mask->ip6dst, 0, sizeof(spec_mask->ip6dst)); 6685 else 6686 cpu_to_be32_array(spec_mask->ip6dst, rule->tuples_mask.dst_ip, 6687 IPV6_SIZE); 6688 6689 spec->tclass = rule->tuples.ip_tos; 6690 spec_mask->tclass = rule->unused_tuple & BIT(INNER_IP_TOS) ? 6691 0 : rule->tuples_mask.ip_tos; 6692 6693 spec->psrc = cpu_to_be16(rule->tuples.src_port); 6694 spec_mask->psrc = rule->unused_tuple & BIT(INNER_SRC_PORT) ? 6695 0 : cpu_to_be16(rule->tuples_mask.src_port); 6696 6697 spec->pdst = cpu_to_be16(rule->tuples.dst_port); 6698 spec_mask->pdst = rule->unused_tuple & BIT(INNER_DST_PORT) ? 6699 0 : cpu_to_be16(rule->tuples_mask.dst_port); 6700 } 6701 6702 static void hclge_fd_get_ip6_info(struct hclge_fd_rule *rule, 6703 struct ethtool_usrip6_spec *spec, 6704 struct ethtool_usrip6_spec *spec_mask) 6705 { 6706 cpu_to_be32_array(spec->ip6src, rule->tuples.src_ip, IPV6_SIZE); 6707 cpu_to_be32_array(spec->ip6dst, rule->tuples.dst_ip, IPV6_SIZE); 6708 if (rule->unused_tuple & BIT(INNER_SRC_IP)) 6709 memset(spec_mask->ip6src, 0, sizeof(spec_mask->ip6src)); 6710 else 6711 cpu_to_be32_array(spec_mask->ip6src, 6712 rule->tuples_mask.src_ip, IPV6_SIZE); 6713 6714 if (rule->unused_tuple & BIT(INNER_DST_IP)) 6715 memset(spec_mask->ip6dst, 0, sizeof(spec_mask->ip6dst)); 6716 else 6717 cpu_to_be32_array(spec_mask->ip6dst, 6718 rule->tuples_mask.dst_ip, IPV6_SIZE); 6719 6720 spec->tclass = rule->tuples.ip_tos; 6721 spec_mask->tclass = rule->unused_tuple & BIT(INNER_IP_TOS) ? 6722 0 : rule->tuples_mask.ip_tos; 6723 6724 spec->l4_proto = rule->tuples.ip_proto; 6725 spec_mask->l4_proto = rule->unused_tuple & BIT(INNER_IP_PROTO) ? 6726 0 : rule->tuples_mask.ip_proto; 6727 } 6728 6729 static void hclge_fd_get_ether_info(struct hclge_fd_rule *rule, 6730 struct ethhdr *spec, 6731 struct ethhdr *spec_mask) 6732 { 6733 ether_addr_copy(spec->h_source, rule->tuples.src_mac); 6734 ether_addr_copy(spec->h_dest, rule->tuples.dst_mac); 6735 6736 if (rule->unused_tuple & BIT(INNER_SRC_MAC)) 6737 eth_zero_addr(spec_mask->h_source); 6738 else 6739 ether_addr_copy(spec_mask->h_source, rule->tuples_mask.src_mac); 6740 6741 if (rule->unused_tuple & BIT(INNER_DST_MAC)) 6742 eth_zero_addr(spec_mask->h_dest); 6743 else 6744 ether_addr_copy(spec_mask->h_dest, rule->tuples_mask.dst_mac); 6745 6746 spec->h_proto = cpu_to_be16(rule->tuples.ether_proto); 6747 spec_mask->h_proto = rule->unused_tuple & BIT(INNER_ETH_TYPE) ? 6748 0 : cpu_to_be16(rule->tuples_mask.ether_proto); 6749 } 6750 6751 static void hclge_fd_get_user_def_info(struct ethtool_rx_flow_spec *fs, 6752 struct hclge_fd_rule *rule) 6753 { 6754 if ((rule->unused_tuple & HCLGE_FD_TUPLE_USER_DEF_TUPLES) == 6755 HCLGE_FD_TUPLE_USER_DEF_TUPLES) { 6756 fs->h_ext.data[0] = 0; 6757 fs->h_ext.data[1] = 0; 6758 fs->m_ext.data[0] = 0; 6759 fs->m_ext.data[1] = 0; 6760 } else { 6761 fs->h_ext.data[0] = cpu_to_be32(rule->ep.user_def.offset); 6762 fs->h_ext.data[1] = cpu_to_be32(rule->ep.user_def.data); 6763 fs->m_ext.data[0] = 6764 cpu_to_be32(HCLGE_FD_USER_DEF_OFFSET_UNMASK); 6765 fs->m_ext.data[1] = cpu_to_be32(rule->ep.user_def.data_mask); 6766 } 6767 } 6768 6769 static void hclge_fd_get_ext_info(struct ethtool_rx_flow_spec *fs, 6770 struct hclge_fd_rule *rule) 6771 { 6772 if (fs->flow_type & FLOW_EXT) { 6773 fs->h_ext.vlan_tci = cpu_to_be16(rule->tuples.vlan_tag1); 6774 fs->m_ext.vlan_tci = 6775 rule->unused_tuple & BIT(INNER_VLAN_TAG_FST) ? 6776 0 : cpu_to_be16(rule->tuples_mask.vlan_tag1); 6777 6778 hclge_fd_get_user_def_info(fs, rule); 6779 } 6780 6781 if (fs->flow_type & FLOW_MAC_EXT) { 6782 ether_addr_copy(fs->h_ext.h_dest, rule->tuples.dst_mac); 6783 if (rule->unused_tuple & BIT(INNER_DST_MAC)) 6784 eth_zero_addr(fs->m_u.ether_spec.h_dest); 6785 else 6786 ether_addr_copy(fs->m_u.ether_spec.h_dest, 6787 rule->tuples_mask.dst_mac); 6788 } 6789 } 6790 6791 static struct hclge_fd_rule *hclge_get_fd_rule(struct hclge_dev *hdev, 6792 u16 location) 6793 { 6794 struct hclge_fd_rule *rule = NULL; 6795 struct hlist_node *node2; 6796 6797 hlist_for_each_entry_safe(rule, node2, &hdev->fd_rule_list, rule_node) { 6798 if (rule->location == location) 6799 return rule; 6800 else if (rule->location > location) 6801 return NULL; 6802 } 6803 6804 return NULL; 6805 } 6806 6807 static void hclge_fd_get_ring_cookie(struct ethtool_rx_flow_spec *fs, 6808 struct hclge_fd_rule *rule) 6809 { 6810 if (rule->action == HCLGE_FD_ACTION_DROP_PACKET) { 6811 fs->ring_cookie = RX_CLS_FLOW_DISC; 6812 } else { 6813 u64 vf_id; 6814 6815 fs->ring_cookie = rule->queue_id; 6816 vf_id = rule->vf_id; 6817 vf_id <<= ETHTOOL_RX_FLOW_SPEC_RING_VF_OFF; 6818 fs->ring_cookie |= vf_id; 6819 } 6820 } 6821 6822 static int hclge_get_fd_rule_info(struct hnae3_handle *handle, 6823 struct ethtool_rxnfc *cmd) 6824 { 6825 struct hclge_vport *vport = hclge_get_vport(handle); 6826 struct hclge_fd_rule *rule = NULL; 6827 struct hclge_dev *hdev = vport->back; 6828 struct ethtool_rx_flow_spec *fs; 6829 6830 if (!hnae3_ae_dev_fd_supported(hdev->ae_dev)) 6831 return -EOPNOTSUPP; 6832 6833 fs = (struct ethtool_rx_flow_spec *)&cmd->fs; 6834 6835 spin_lock_bh(&hdev->fd_rule_lock); 6836 6837 rule = hclge_get_fd_rule(hdev, fs->location); 6838 if (!rule) { 6839 spin_unlock_bh(&hdev->fd_rule_lock); 6840 return -ENOENT; 6841 } 6842 6843 fs->flow_type = rule->flow_type; 6844 switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) { 6845 case SCTP_V4_FLOW: 6846 case TCP_V4_FLOW: 6847 case UDP_V4_FLOW: 6848 hclge_fd_get_tcpip4_info(rule, &fs->h_u.tcp_ip4_spec, 6849 &fs->m_u.tcp_ip4_spec); 6850 break; 6851 case IP_USER_FLOW: 6852 hclge_fd_get_ip4_info(rule, &fs->h_u.usr_ip4_spec, 6853 &fs->m_u.usr_ip4_spec); 6854 break; 6855 case SCTP_V6_FLOW: 6856 case TCP_V6_FLOW: 6857 case UDP_V6_FLOW: 6858 hclge_fd_get_tcpip6_info(rule, &fs->h_u.tcp_ip6_spec, 6859 &fs->m_u.tcp_ip6_spec); 6860 break; 6861 case IPV6_USER_FLOW: 6862 hclge_fd_get_ip6_info(rule, &fs->h_u.usr_ip6_spec, 6863 &fs->m_u.usr_ip6_spec); 6864 break; 6865 /* The flow type of fd rule has been checked before adding in to rule 6866 * list. As other flow types have been handled, it must be ETHER_FLOW 6867 * for the default case 6868 */ 6869 default: 6870 hclge_fd_get_ether_info(rule, &fs->h_u.ether_spec, 6871 &fs->m_u.ether_spec); 6872 break; 6873 } 6874 6875 hclge_fd_get_ext_info(fs, rule); 6876 6877 hclge_fd_get_ring_cookie(fs, rule); 6878 6879 spin_unlock_bh(&hdev->fd_rule_lock); 6880 6881 return 0; 6882 } 6883 6884 static int hclge_get_all_rules(struct hnae3_handle *handle, 6885 struct ethtool_rxnfc *cmd, u32 *rule_locs) 6886 { 6887 struct hclge_vport *vport = hclge_get_vport(handle); 6888 struct hclge_dev *hdev = vport->back; 6889 struct hclge_fd_rule *rule; 6890 struct hlist_node *node2; 6891 int cnt = 0; 6892 6893 if (!hnae3_ae_dev_fd_supported(hdev->ae_dev)) 6894 return -EOPNOTSUPP; 6895 6896 cmd->data = hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]; 6897 6898 spin_lock_bh(&hdev->fd_rule_lock); 6899 hlist_for_each_entry_safe(rule, node2, 6900 &hdev->fd_rule_list, rule_node) { 6901 if (cnt == cmd->rule_cnt) { 6902 spin_unlock_bh(&hdev->fd_rule_lock); 6903 return -EMSGSIZE; 6904 } 6905 6906 if (rule->state == HCLGE_FD_TO_DEL) 6907 continue; 6908 6909 rule_locs[cnt] = rule->location; 6910 cnt++; 6911 } 6912 6913 spin_unlock_bh(&hdev->fd_rule_lock); 6914 6915 cmd->rule_cnt = cnt; 6916 6917 return 0; 6918 } 6919 6920 static void hclge_fd_get_flow_tuples(const struct flow_keys *fkeys, 6921 struct hclge_fd_rule_tuples *tuples) 6922 { 6923 #define flow_ip6_src fkeys->addrs.v6addrs.src.in6_u.u6_addr32 6924 #define flow_ip6_dst fkeys->addrs.v6addrs.dst.in6_u.u6_addr32 6925 6926 tuples->ether_proto = be16_to_cpu(fkeys->basic.n_proto); 6927 tuples->ip_proto = fkeys->basic.ip_proto; 6928 tuples->dst_port = be16_to_cpu(fkeys->ports.dst); 6929 6930 if (fkeys->basic.n_proto == htons(ETH_P_IP)) { 6931 tuples->src_ip[3] = be32_to_cpu(fkeys->addrs.v4addrs.src); 6932 tuples->dst_ip[3] = be32_to_cpu(fkeys->addrs.v4addrs.dst); 6933 } else { 6934 int i; 6935 6936 for (i = 0; i < IPV6_SIZE; i++) { 6937 tuples->src_ip[i] = be32_to_cpu(flow_ip6_src[i]); 6938 tuples->dst_ip[i] = be32_to_cpu(flow_ip6_dst[i]); 6939 } 6940 } 6941 } 6942 6943 /* traverse all rules, check whether an existed rule has the same tuples */ 6944 static struct hclge_fd_rule * 6945 hclge_fd_search_flow_keys(struct hclge_dev *hdev, 6946 const struct hclge_fd_rule_tuples *tuples) 6947 { 6948 struct hclge_fd_rule *rule = NULL; 6949 struct hlist_node *node; 6950 6951 hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) { 6952 if (!memcmp(tuples, &rule->tuples, sizeof(*tuples))) 6953 return rule; 6954 } 6955 6956 return NULL; 6957 } 6958 6959 static void hclge_fd_build_arfs_rule(const struct hclge_fd_rule_tuples *tuples, 6960 struct hclge_fd_rule *rule) 6961 { 6962 rule->unused_tuple = BIT(INNER_SRC_MAC) | BIT(INNER_DST_MAC) | 6963 BIT(INNER_VLAN_TAG_FST) | BIT(INNER_IP_TOS) | 6964 BIT(INNER_SRC_PORT); 6965 rule->action = 0; 6966 rule->vf_id = 0; 6967 rule->rule_type = HCLGE_FD_ARFS_ACTIVE; 6968 rule->state = HCLGE_FD_TO_ADD; 6969 if (tuples->ether_proto == ETH_P_IP) { 6970 if (tuples->ip_proto == IPPROTO_TCP) 6971 rule->flow_type = TCP_V4_FLOW; 6972 else 6973 rule->flow_type = UDP_V4_FLOW; 6974 } else { 6975 if (tuples->ip_proto == IPPROTO_TCP) 6976 rule->flow_type = TCP_V6_FLOW; 6977 else 6978 rule->flow_type = UDP_V6_FLOW; 6979 } 6980 memcpy(&rule->tuples, tuples, sizeof(rule->tuples)); 6981 memset(&rule->tuples_mask, 0xFF, sizeof(rule->tuples_mask)); 6982 } 6983 6984 static int hclge_add_fd_entry_by_arfs(struct hnae3_handle *handle, u16 queue_id, 6985 u16 flow_id, struct flow_keys *fkeys) 6986 { 6987 struct hclge_vport *vport = hclge_get_vport(handle); 6988 struct hclge_fd_rule_tuples new_tuples = {}; 6989 struct hclge_dev *hdev = vport->back; 6990 struct hclge_fd_rule *rule; 6991 u16 bit_id; 6992 6993 if (!hnae3_ae_dev_fd_supported(hdev->ae_dev)) 6994 return -EOPNOTSUPP; 6995 6996 /* when there is already fd rule existed add by user, 6997 * arfs should not work 6998 */ 6999 spin_lock_bh(&hdev->fd_rule_lock); 7000 if (hdev->fd_active_type != HCLGE_FD_ARFS_ACTIVE && 7001 hdev->fd_active_type != HCLGE_FD_RULE_NONE) { 7002 spin_unlock_bh(&hdev->fd_rule_lock); 7003 return -EOPNOTSUPP; 7004 } 7005 7006 hclge_fd_get_flow_tuples(fkeys, &new_tuples); 7007 7008 /* check is there flow director filter existed for this flow, 7009 * if not, create a new filter for it; 7010 * if filter exist with different queue id, modify the filter; 7011 * if filter exist with same queue id, do nothing 7012 */ 7013 rule = hclge_fd_search_flow_keys(hdev, &new_tuples); 7014 if (!rule) { 7015 bit_id = find_first_zero_bit(hdev->fd_bmap, MAX_FD_FILTER_NUM); 7016 if (bit_id >= hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]) { 7017 spin_unlock_bh(&hdev->fd_rule_lock); 7018 return -ENOSPC; 7019 } 7020 7021 rule = kzalloc(sizeof(*rule), GFP_ATOMIC); 7022 if (!rule) { 7023 spin_unlock_bh(&hdev->fd_rule_lock); 7024 return -ENOMEM; 7025 } 7026 7027 rule->location = bit_id; 7028 rule->arfs.flow_id = flow_id; 7029 rule->queue_id = queue_id; 7030 hclge_fd_build_arfs_rule(&new_tuples, rule); 7031 hclge_update_fd_list(hdev, rule->state, rule->location, rule); 7032 hdev->fd_active_type = HCLGE_FD_ARFS_ACTIVE; 7033 } else if (rule->queue_id != queue_id) { 7034 rule->queue_id = queue_id; 7035 rule->state = HCLGE_FD_TO_ADD; 7036 set_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state); 7037 hclge_task_schedule(hdev, 0); 7038 } 7039 spin_unlock_bh(&hdev->fd_rule_lock); 7040 return rule->location; 7041 } 7042 7043 static void hclge_rfs_filter_expire(struct hclge_dev *hdev) 7044 { 7045 #ifdef CONFIG_RFS_ACCEL 7046 struct hnae3_handle *handle = &hdev->vport[0].nic; 7047 struct hclge_fd_rule *rule; 7048 struct hlist_node *node; 7049 7050 spin_lock_bh(&hdev->fd_rule_lock); 7051 if (hdev->fd_active_type != HCLGE_FD_ARFS_ACTIVE) { 7052 spin_unlock_bh(&hdev->fd_rule_lock); 7053 return; 7054 } 7055 hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) { 7056 if (rule->state != HCLGE_FD_ACTIVE) 7057 continue; 7058 if (rps_may_expire_flow(handle->netdev, rule->queue_id, 7059 rule->arfs.flow_id, rule->location)) { 7060 rule->state = HCLGE_FD_TO_DEL; 7061 set_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state); 7062 } 7063 } 7064 spin_unlock_bh(&hdev->fd_rule_lock); 7065 #endif 7066 } 7067 7068 /* make sure being called after lock up with fd_rule_lock */ 7069 static int hclge_clear_arfs_rules(struct hclge_dev *hdev) 7070 { 7071 #ifdef CONFIG_RFS_ACCEL 7072 struct hclge_fd_rule *rule; 7073 struct hlist_node *node; 7074 int ret; 7075 7076 if (hdev->fd_active_type != HCLGE_FD_ARFS_ACTIVE) 7077 return 0; 7078 7079 hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) { 7080 switch (rule->state) { 7081 case HCLGE_FD_TO_DEL: 7082 case HCLGE_FD_ACTIVE: 7083 ret = hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true, 7084 rule->location, NULL, false); 7085 if (ret) 7086 return ret; 7087 fallthrough; 7088 case HCLGE_FD_TO_ADD: 7089 hclge_fd_dec_rule_cnt(hdev, rule->location); 7090 hlist_del(&rule->rule_node); 7091 kfree(rule); 7092 break; 7093 default: 7094 break; 7095 } 7096 } 7097 hclge_sync_fd_state(hdev); 7098 7099 #endif 7100 return 0; 7101 } 7102 7103 static void hclge_get_cls_key_basic(const struct flow_rule *flow, 7104 struct hclge_fd_rule *rule) 7105 { 7106 if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_BASIC)) { 7107 struct flow_match_basic match; 7108 u16 ethtype_key, ethtype_mask; 7109 7110 flow_rule_match_basic(flow, &match); 7111 ethtype_key = ntohs(match.key->n_proto); 7112 ethtype_mask = ntohs(match.mask->n_proto); 7113 7114 if (ethtype_key == ETH_P_ALL) { 7115 ethtype_key = 0; 7116 ethtype_mask = 0; 7117 } 7118 rule->tuples.ether_proto = ethtype_key; 7119 rule->tuples_mask.ether_proto = ethtype_mask; 7120 rule->tuples.ip_proto = match.key->ip_proto; 7121 rule->tuples_mask.ip_proto = match.mask->ip_proto; 7122 } else { 7123 rule->unused_tuple |= BIT(INNER_IP_PROTO); 7124 rule->unused_tuple |= BIT(INNER_ETH_TYPE); 7125 } 7126 } 7127 7128 static void hclge_get_cls_key_mac(const struct flow_rule *flow, 7129 struct hclge_fd_rule *rule) 7130 { 7131 if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { 7132 struct flow_match_eth_addrs match; 7133 7134 flow_rule_match_eth_addrs(flow, &match); 7135 ether_addr_copy(rule->tuples.dst_mac, match.key->dst); 7136 ether_addr_copy(rule->tuples_mask.dst_mac, match.mask->dst); 7137 ether_addr_copy(rule->tuples.src_mac, match.key->src); 7138 ether_addr_copy(rule->tuples_mask.src_mac, match.mask->src); 7139 } else { 7140 rule->unused_tuple |= BIT(INNER_DST_MAC); 7141 rule->unused_tuple |= BIT(INNER_SRC_MAC); 7142 } 7143 } 7144 7145 static void hclge_get_cls_key_vlan(const struct flow_rule *flow, 7146 struct hclge_fd_rule *rule) 7147 { 7148 if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_VLAN)) { 7149 struct flow_match_vlan match; 7150 7151 flow_rule_match_vlan(flow, &match); 7152 rule->tuples.vlan_tag1 = match.key->vlan_id | 7153 (match.key->vlan_priority << VLAN_PRIO_SHIFT); 7154 rule->tuples_mask.vlan_tag1 = match.mask->vlan_id | 7155 (match.mask->vlan_priority << VLAN_PRIO_SHIFT); 7156 } else { 7157 rule->unused_tuple |= BIT(INNER_VLAN_TAG_FST); 7158 } 7159 } 7160 7161 static void hclge_get_cls_key_ip(const struct flow_rule *flow, 7162 struct hclge_fd_rule *rule) 7163 { 7164 u16 addr_type = 0; 7165 7166 if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_CONTROL)) { 7167 struct flow_match_control match; 7168 7169 flow_rule_match_control(flow, &match); 7170 addr_type = match.key->addr_type; 7171 } 7172 7173 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { 7174 struct flow_match_ipv4_addrs match; 7175 7176 flow_rule_match_ipv4_addrs(flow, &match); 7177 rule->tuples.src_ip[IPV4_INDEX] = be32_to_cpu(match.key->src); 7178 rule->tuples_mask.src_ip[IPV4_INDEX] = 7179 be32_to_cpu(match.mask->src); 7180 rule->tuples.dst_ip[IPV4_INDEX] = be32_to_cpu(match.key->dst); 7181 rule->tuples_mask.dst_ip[IPV4_INDEX] = 7182 be32_to_cpu(match.mask->dst); 7183 } else if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { 7184 struct flow_match_ipv6_addrs match; 7185 7186 flow_rule_match_ipv6_addrs(flow, &match); 7187 be32_to_cpu_array(rule->tuples.src_ip, match.key->src.s6_addr32, 7188 IPV6_SIZE); 7189 be32_to_cpu_array(rule->tuples_mask.src_ip, 7190 match.mask->src.s6_addr32, IPV6_SIZE); 7191 be32_to_cpu_array(rule->tuples.dst_ip, match.key->dst.s6_addr32, 7192 IPV6_SIZE); 7193 be32_to_cpu_array(rule->tuples_mask.dst_ip, 7194 match.mask->dst.s6_addr32, IPV6_SIZE); 7195 } else { 7196 rule->unused_tuple |= BIT(INNER_SRC_IP); 7197 rule->unused_tuple |= BIT(INNER_DST_IP); 7198 } 7199 } 7200 7201 static void hclge_get_cls_key_port(const struct flow_rule *flow, 7202 struct hclge_fd_rule *rule) 7203 { 7204 if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_PORTS)) { 7205 struct flow_match_ports match; 7206 7207 flow_rule_match_ports(flow, &match); 7208 7209 rule->tuples.src_port = be16_to_cpu(match.key->src); 7210 rule->tuples_mask.src_port = be16_to_cpu(match.mask->src); 7211 rule->tuples.dst_port = be16_to_cpu(match.key->dst); 7212 rule->tuples_mask.dst_port = be16_to_cpu(match.mask->dst); 7213 } else { 7214 rule->unused_tuple |= BIT(INNER_SRC_PORT); 7215 rule->unused_tuple |= BIT(INNER_DST_PORT); 7216 } 7217 } 7218 7219 static int hclge_parse_cls_flower(struct hclge_dev *hdev, 7220 struct flow_cls_offload *cls_flower, 7221 struct hclge_fd_rule *rule) 7222 { 7223 struct flow_rule *flow = flow_cls_offload_flow_rule(cls_flower); 7224 struct flow_dissector *dissector = flow->match.dissector; 7225 7226 if (dissector->used_keys & 7227 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) | 7228 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) | 7229 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) | 7230 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) | 7231 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | 7232 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | 7233 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS))) { 7234 dev_err(&hdev->pdev->dev, "unsupported key set: %#llx\n", 7235 dissector->used_keys); 7236 return -EOPNOTSUPP; 7237 } 7238 7239 hclge_get_cls_key_basic(flow, rule); 7240 hclge_get_cls_key_mac(flow, rule); 7241 hclge_get_cls_key_vlan(flow, rule); 7242 hclge_get_cls_key_ip(flow, rule); 7243 hclge_get_cls_key_port(flow, rule); 7244 7245 return 0; 7246 } 7247 7248 static int hclge_check_cls_flower(struct hclge_dev *hdev, 7249 struct flow_cls_offload *cls_flower, int tc) 7250 { 7251 u32 prio = cls_flower->common.prio; 7252 7253 if (tc < 0 || tc > hdev->tc_max) { 7254 dev_err(&hdev->pdev->dev, "invalid traffic class\n"); 7255 return -EINVAL; 7256 } 7257 7258 if (prio == 0 || 7259 prio > hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]) { 7260 dev_err(&hdev->pdev->dev, 7261 "prio %u should be in range[1, %u]\n", 7262 prio, hdev->fd_cfg.rule_num[HCLGE_FD_STAGE_1]); 7263 return -EINVAL; 7264 } 7265 7266 if (test_bit(prio - 1, hdev->fd_bmap)) { 7267 dev_err(&hdev->pdev->dev, "prio %u is already used\n", prio); 7268 return -EINVAL; 7269 } 7270 return 0; 7271 } 7272 7273 static int hclge_add_cls_flower(struct hnae3_handle *handle, 7274 struct flow_cls_offload *cls_flower, 7275 int tc) 7276 { 7277 struct hclge_vport *vport = hclge_get_vport(handle); 7278 struct hclge_dev *hdev = vport->back; 7279 struct hclge_fd_rule *rule; 7280 int ret; 7281 7282 if (!hnae3_ae_dev_fd_supported(hdev->ae_dev)) { 7283 dev_err(&hdev->pdev->dev, 7284 "cls flower is not supported\n"); 7285 return -EOPNOTSUPP; 7286 } 7287 7288 ret = hclge_check_cls_flower(hdev, cls_flower, tc); 7289 if (ret) { 7290 dev_err(&hdev->pdev->dev, 7291 "failed to check cls flower params, ret = %d\n", ret); 7292 return ret; 7293 } 7294 7295 rule = kzalloc(sizeof(*rule), GFP_KERNEL); 7296 if (!rule) 7297 return -ENOMEM; 7298 7299 ret = hclge_parse_cls_flower(hdev, cls_flower, rule); 7300 if (ret) { 7301 kfree(rule); 7302 return ret; 7303 } 7304 7305 rule->action = HCLGE_FD_ACTION_SELECT_TC; 7306 rule->cls_flower.tc = tc; 7307 rule->location = cls_flower->common.prio - 1; 7308 rule->vf_id = 0; 7309 rule->cls_flower.cookie = cls_flower->cookie; 7310 rule->rule_type = HCLGE_FD_TC_FLOWER_ACTIVE; 7311 7312 ret = hclge_add_fd_entry_common(hdev, rule); 7313 if (ret) 7314 kfree(rule); 7315 7316 return ret; 7317 } 7318 7319 static struct hclge_fd_rule *hclge_find_cls_flower(struct hclge_dev *hdev, 7320 unsigned long cookie) 7321 { 7322 struct hclge_fd_rule *rule; 7323 struct hlist_node *node; 7324 7325 hlist_for_each_entry_safe(rule, node, &hdev->fd_rule_list, rule_node) { 7326 if (rule->cls_flower.cookie == cookie) 7327 return rule; 7328 } 7329 7330 return NULL; 7331 } 7332 7333 static int hclge_del_cls_flower(struct hnae3_handle *handle, 7334 struct flow_cls_offload *cls_flower) 7335 { 7336 struct hclge_vport *vport = hclge_get_vport(handle); 7337 struct hclge_dev *hdev = vport->back; 7338 struct hclge_fd_rule *rule; 7339 int ret; 7340 7341 if (!hnae3_ae_dev_fd_supported(hdev->ae_dev)) 7342 return -EOPNOTSUPP; 7343 7344 spin_lock_bh(&hdev->fd_rule_lock); 7345 7346 rule = hclge_find_cls_flower(hdev, cls_flower->cookie); 7347 if (!rule) { 7348 spin_unlock_bh(&hdev->fd_rule_lock); 7349 return -EINVAL; 7350 } 7351 7352 ret = hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true, rule->location, 7353 NULL, false); 7354 if (ret) { 7355 /* if tcam config fail, set rule state to TO_DEL, 7356 * so the rule will be deleted when periodic 7357 * task being scheduled. 7358 */ 7359 hclge_update_fd_list(hdev, HCLGE_FD_TO_DEL, rule->location, NULL); 7360 set_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state); 7361 spin_unlock_bh(&hdev->fd_rule_lock); 7362 return ret; 7363 } 7364 7365 hclge_update_fd_list(hdev, HCLGE_FD_DELETED, rule->location, NULL); 7366 spin_unlock_bh(&hdev->fd_rule_lock); 7367 7368 return 0; 7369 } 7370 7371 static void hclge_sync_fd_list(struct hclge_dev *hdev, struct hlist_head *hlist) 7372 { 7373 struct hclge_fd_rule *rule; 7374 struct hlist_node *node; 7375 int ret = 0; 7376 7377 if (!test_and_clear_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state)) 7378 return; 7379 7380 spin_lock_bh(&hdev->fd_rule_lock); 7381 7382 hlist_for_each_entry_safe(rule, node, hlist, rule_node) { 7383 switch (rule->state) { 7384 case HCLGE_FD_TO_ADD: 7385 ret = hclge_fd_config_rule(hdev, rule); 7386 if (ret) 7387 goto out; 7388 rule->state = HCLGE_FD_ACTIVE; 7389 break; 7390 case HCLGE_FD_TO_DEL: 7391 ret = hclge_fd_tcam_config(hdev, HCLGE_FD_STAGE_1, true, 7392 rule->location, NULL, false); 7393 if (ret) 7394 goto out; 7395 hclge_fd_dec_rule_cnt(hdev, rule->location); 7396 hclge_fd_free_node(hdev, rule); 7397 break; 7398 default: 7399 break; 7400 } 7401 } 7402 7403 out: 7404 if (ret) 7405 set_bit(HCLGE_STATE_FD_TBL_CHANGED, &hdev->state); 7406 7407 spin_unlock_bh(&hdev->fd_rule_lock); 7408 } 7409 7410 static void hclge_sync_fd_table(struct hclge_dev *hdev) 7411 { 7412 if (!hnae3_ae_dev_fd_supported(hdev->ae_dev)) 7413 return; 7414 7415 if (test_and_clear_bit(HCLGE_STATE_FD_CLEAR_ALL, &hdev->state)) { 7416 bool clear_list = hdev->fd_active_type == HCLGE_FD_ARFS_ACTIVE; 7417 7418 hclge_clear_fd_rules_in_list(hdev, clear_list); 7419 } 7420 7421 hclge_sync_fd_user_def_cfg(hdev, false); 7422 7423 hclge_sync_fd_list(hdev, &hdev->fd_rule_list); 7424 } 7425 7426 static bool hclge_get_hw_reset_stat(struct hnae3_handle *handle) 7427 { 7428 struct hclge_vport *vport = hclge_get_vport(handle); 7429 struct hclge_dev *hdev = vport->back; 7430 7431 return hclge_read_dev(&hdev->hw, HCLGE_GLOBAL_RESET_REG) || 7432 hclge_read_dev(&hdev->hw, HCLGE_FUN_RST_ING); 7433 } 7434 7435 static bool hclge_get_cmdq_stat(struct hnae3_handle *handle) 7436 { 7437 struct hclge_vport *vport = hclge_get_vport(handle); 7438 struct hclge_dev *hdev = vport->back; 7439 7440 return test_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state); 7441 } 7442 7443 static bool hclge_ae_dev_resetting(struct hnae3_handle *handle) 7444 { 7445 struct hclge_vport *vport = hclge_get_vport(handle); 7446 struct hclge_dev *hdev = vport->back; 7447 7448 return test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state); 7449 } 7450 7451 static unsigned long hclge_ae_dev_reset_cnt(struct hnae3_handle *handle) 7452 { 7453 struct hclge_vport *vport = hclge_get_vport(handle); 7454 struct hclge_dev *hdev = vport->back; 7455 7456 return hdev->rst_stats.hw_reset_done_cnt; 7457 } 7458 7459 static void hclge_enable_fd(struct hnae3_handle *handle, bool enable) 7460 { 7461 struct hclge_vport *vport = hclge_get_vport(handle); 7462 struct hclge_dev *hdev = vport->back; 7463 7464 hdev->fd_en = enable; 7465 7466 if (!enable) 7467 set_bit(HCLGE_STATE_FD_CLEAR_ALL, &hdev->state); 7468 else 7469 hclge_restore_fd_entries(handle); 7470 7471 hclge_task_schedule(hdev, 0); 7472 } 7473 7474 static void hclge_cfg_mac_mode(struct hclge_dev *hdev, bool enable) 7475 { 7476 #define HCLGE_LINK_STATUS_WAIT_CNT 3 7477 7478 struct hclge_desc desc; 7479 struct hclge_config_mac_mode_cmd *req = 7480 (struct hclge_config_mac_mode_cmd *)desc.data; 7481 u32 loop_en = 0; 7482 int ret; 7483 7484 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_MAC_MODE, false); 7485 7486 if (enable) { 7487 hnae3_set_bit(loop_en, HCLGE_MAC_TX_EN_B, 1U); 7488 hnae3_set_bit(loop_en, HCLGE_MAC_RX_EN_B, 1U); 7489 hnae3_set_bit(loop_en, HCLGE_MAC_PAD_TX_B, 1U); 7490 hnae3_set_bit(loop_en, HCLGE_MAC_PAD_RX_B, 1U); 7491 hnae3_set_bit(loop_en, HCLGE_MAC_FCS_TX_B, 1U); 7492 hnae3_set_bit(loop_en, HCLGE_MAC_RX_FCS_B, 1U); 7493 hnae3_set_bit(loop_en, HCLGE_MAC_RX_FCS_STRIP_B, 1U); 7494 hnae3_set_bit(loop_en, HCLGE_MAC_TX_OVERSIZE_TRUNCATE_B, 1U); 7495 hnae3_set_bit(loop_en, HCLGE_MAC_RX_OVERSIZE_TRUNCATE_B, 1U); 7496 hnae3_set_bit(loop_en, HCLGE_MAC_TX_UNDER_MIN_ERR_B, 1U); 7497 } 7498 7499 req->txrx_pad_fcs_loop_en = cpu_to_le32(loop_en); 7500 7501 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 7502 if (ret) { 7503 dev_err(&hdev->pdev->dev, 7504 "mac enable fail, ret =%d.\n", ret); 7505 return; 7506 } 7507 7508 if (!enable) 7509 hclge_mac_link_status_wait(hdev, HCLGE_LINK_STATUS_DOWN, 7510 HCLGE_LINK_STATUS_WAIT_CNT); 7511 } 7512 7513 static int hclge_config_switch_param(struct hclge_dev *hdev, int vfid, 7514 u8 switch_param, u8 param_mask) 7515 { 7516 struct hclge_mac_vlan_switch_cmd *req; 7517 struct hclge_desc desc; 7518 u32 func_id; 7519 int ret; 7520 7521 func_id = hclge_get_port_number(HOST_PORT, 0, vfid, 0); 7522 req = (struct hclge_mac_vlan_switch_cmd *)desc.data; 7523 7524 /* read current config parameter */ 7525 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_SWITCH_PARAM, 7526 true); 7527 req->roce_sel = HCLGE_MAC_VLAN_NIC_SEL; 7528 req->func_id = cpu_to_le32(func_id); 7529 7530 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 7531 if (ret) { 7532 dev_err(&hdev->pdev->dev, 7533 "read mac vlan switch parameter fail, ret = %d\n", ret); 7534 return ret; 7535 } 7536 7537 /* modify and write new config parameter */ 7538 hclge_comm_cmd_reuse_desc(&desc, false); 7539 req->switch_param = (req->switch_param & param_mask) | switch_param; 7540 req->param_mask = param_mask; 7541 7542 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 7543 if (ret) 7544 dev_err(&hdev->pdev->dev, 7545 "set mac vlan switch parameter fail, ret = %d\n", ret); 7546 return ret; 7547 } 7548 7549 static void hclge_phy_link_status_wait(struct hclge_dev *hdev, 7550 int link_ret) 7551 { 7552 #define HCLGE_PHY_LINK_STATUS_NUM 200 7553 7554 struct phy_device *phydev = hdev->hw.mac.phydev; 7555 int i = 0; 7556 int ret; 7557 7558 do { 7559 ret = phy_read_status(phydev); 7560 if (ret) { 7561 dev_err(&hdev->pdev->dev, 7562 "phy update link status fail, ret = %d\n", ret); 7563 return; 7564 } 7565 7566 if (phydev->link == link_ret) 7567 break; 7568 7569 msleep(HCLGE_LINK_STATUS_MS); 7570 } while (++i < HCLGE_PHY_LINK_STATUS_NUM); 7571 } 7572 7573 static int hclge_mac_link_status_wait(struct hclge_dev *hdev, int link_ret, 7574 int wait_cnt) 7575 { 7576 int link_status; 7577 int i = 0; 7578 int ret; 7579 7580 do { 7581 ret = hclge_get_mac_link_status(hdev, &link_status); 7582 if (ret) 7583 return ret; 7584 if (link_status == link_ret) 7585 return 0; 7586 7587 msleep(HCLGE_LINK_STATUS_MS); 7588 } while (++i < wait_cnt); 7589 return -EBUSY; 7590 } 7591 7592 static int hclge_mac_phy_link_status_wait(struct hclge_dev *hdev, bool en, 7593 bool is_phy) 7594 { 7595 #define HCLGE_MAC_LINK_STATUS_NUM 100 7596 7597 int link_ret; 7598 7599 link_ret = en ? HCLGE_LINK_STATUS_UP : HCLGE_LINK_STATUS_DOWN; 7600 7601 if (is_phy) 7602 hclge_phy_link_status_wait(hdev, link_ret); 7603 7604 return hclge_mac_link_status_wait(hdev, link_ret, 7605 HCLGE_MAC_LINK_STATUS_NUM); 7606 } 7607 7608 static int hclge_set_app_loopback(struct hclge_dev *hdev, bool en) 7609 { 7610 struct hclge_config_mac_mode_cmd *req; 7611 struct hclge_desc desc; 7612 u32 loop_en; 7613 int ret; 7614 7615 req = (struct hclge_config_mac_mode_cmd *)&desc.data[0]; 7616 /* 1 Read out the MAC mode config at first */ 7617 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_MAC_MODE, true); 7618 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 7619 if (ret) { 7620 dev_err(&hdev->pdev->dev, 7621 "mac loopback get fail, ret =%d.\n", ret); 7622 return ret; 7623 } 7624 7625 /* 2 Then setup the loopback flag */ 7626 loop_en = le32_to_cpu(req->txrx_pad_fcs_loop_en); 7627 hnae3_set_bit(loop_en, HCLGE_MAC_APP_LP_B, en ? 1 : 0); 7628 7629 req->txrx_pad_fcs_loop_en = cpu_to_le32(loop_en); 7630 7631 /* 3 Config mac work mode with loopback flag 7632 * and its original configure parameters 7633 */ 7634 hclge_comm_cmd_reuse_desc(&desc, false); 7635 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 7636 if (ret) 7637 dev_err(&hdev->pdev->dev, 7638 "mac loopback set fail, ret =%d.\n", ret); 7639 return ret; 7640 } 7641 7642 static int hclge_cfg_common_loopback_cmd_send(struct hclge_dev *hdev, bool en, 7643 enum hnae3_loop loop_mode) 7644 { 7645 struct hclge_common_lb_cmd *req; 7646 struct hclge_desc desc; 7647 u8 loop_mode_b; 7648 int ret; 7649 7650 req = (struct hclge_common_lb_cmd *)desc.data; 7651 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_COMMON_LOOPBACK, false); 7652 7653 switch (loop_mode) { 7654 case HNAE3_LOOP_SERIAL_SERDES: 7655 loop_mode_b = HCLGE_CMD_SERDES_SERIAL_INNER_LOOP_B; 7656 break; 7657 case HNAE3_LOOP_PARALLEL_SERDES: 7658 loop_mode_b = HCLGE_CMD_SERDES_PARALLEL_INNER_LOOP_B; 7659 break; 7660 case HNAE3_LOOP_PHY: 7661 loop_mode_b = HCLGE_CMD_GE_PHY_INNER_LOOP_B; 7662 break; 7663 default: 7664 dev_err(&hdev->pdev->dev, 7665 "unsupported loopback mode %d\n", loop_mode); 7666 return -ENOTSUPP; 7667 } 7668 7669 req->mask = loop_mode_b; 7670 if (en) 7671 req->enable = loop_mode_b; 7672 7673 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 7674 if (ret) 7675 dev_err(&hdev->pdev->dev, 7676 "failed to send loopback cmd, loop_mode = %d, ret = %d\n", 7677 loop_mode, ret); 7678 7679 return ret; 7680 } 7681 7682 static int hclge_cfg_common_loopback_wait(struct hclge_dev *hdev) 7683 { 7684 #define HCLGE_COMMON_LB_RETRY_MS 10 7685 #define HCLGE_COMMON_LB_RETRY_NUM 100 7686 7687 struct hclge_common_lb_cmd *req; 7688 struct hclge_desc desc; 7689 u32 i = 0; 7690 int ret; 7691 7692 req = (struct hclge_common_lb_cmd *)desc.data; 7693 7694 do { 7695 msleep(HCLGE_COMMON_LB_RETRY_MS); 7696 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_COMMON_LOOPBACK, 7697 true); 7698 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 7699 if (ret) { 7700 dev_err(&hdev->pdev->dev, 7701 "failed to get loopback done status, ret = %d\n", 7702 ret); 7703 return ret; 7704 } 7705 } while (++i < HCLGE_COMMON_LB_RETRY_NUM && 7706 !(req->result & HCLGE_CMD_COMMON_LB_DONE_B)); 7707 7708 if (!(req->result & HCLGE_CMD_COMMON_LB_DONE_B)) { 7709 dev_err(&hdev->pdev->dev, "wait loopback timeout\n"); 7710 return -EBUSY; 7711 } else if (!(req->result & HCLGE_CMD_COMMON_LB_SUCCESS_B)) { 7712 dev_err(&hdev->pdev->dev, "failed to do loopback test\n"); 7713 return -EIO; 7714 } 7715 7716 return 0; 7717 } 7718 7719 static int hclge_cfg_common_loopback(struct hclge_dev *hdev, bool en, 7720 enum hnae3_loop loop_mode) 7721 { 7722 int ret; 7723 7724 ret = hclge_cfg_common_loopback_cmd_send(hdev, en, loop_mode); 7725 if (ret) 7726 return ret; 7727 7728 return hclge_cfg_common_loopback_wait(hdev); 7729 } 7730 7731 static int hclge_set_common_loopback(struct hclge_dev *hdev, bool en, 7732 enum hnae3_loop loop_mode) 7733 { 7734 int ret; 7735 7736 ret = hclge_cfg_common_loopback(hdev, en, loop_mode); 7737 if (ret) 7738 return ret; 7739 7740 hclge_cfg_mac_mode(hdev, en); 7741 7742 ret = hclge_mac_phy_link_status_wait(hdev, en, false); 7743 if (ret) 7744 dev_err(&hdev->pdev->dev, 7745 "serdes loopback config mac mode timeout\n"); 7746 7747 return ret; 7748 } 7749 7750 static int hclge_enable_phy_loopback(struct hclge_dev *hdev, 7751 struct phy_device *phydev) 7752 { 7753 int ret; 7754 7755 if (!phydev->suspended) { 7756 ret = phy_suspend(phydev); 7757 if (ret) 7758 return ret; 7759 } 7760 7761 ret = phy_resume(phydev); 7762 if (ret) 7763 return ret; 7764 7765 return phy_loopback(phydev, true); 7766 } 7767 7768 static int hclge_disable_phy_loopback(struct hclge_dev *hdev, 7769 struct phy_device *phydev) 7770 { 7771 int ret; 7772 7773 ret = phy_loopback(phydev, false); 7774 if (ret) 7775 return ret; 7776 7777 return phy_suspend(phydev); 7778 } 7779 7780 static int hclge_set_phy_loopback(struct hclge_dev *hdev, bool en) 7781 { 7782 struct phy_device *phydev = hdev->hw.mac.phydev; 7783 int ret; 7784 7785 if (!phydev) { 7786 if (hnae3_dev_phy_imp_supported(hdev)) 7787 return hclge_set_common_loopback(hdev, en, 7788 HNAE3_LOOP_PHY); 7789 return -ENOTSUPP; 7790 } 7791 7792 if (en) 7793 ret = hclge_enable_phy_loopback(hdev, phydev); 7794 else 7795 ret = hclge_disable_phy_loopback(hdev, phydev); 7796 if (ret) { 7797 dev_err(&hdev->pdev->dev, 7798 "set phy loopback fail, ret = %d\n", ret); 7799 return ret; 7800 } 7801 7802 hclge_cfg_mac_mode(hdev, en); 7803 7804 ret = hclge_mac_phy_link_status_wait(hdev, en, true); 7805 if (ret) 7806 dev_err(&hdev->pdev->dev, 7807 "phy loopback config mac mode timeout\n"); 7808 7809 return ret; 7810 } 7811 7812 static int hclge_tqp_enable_cmd_send(struct hclge_dev *hdev, u16 tqp_id, 7813 u16 stream_id, bool enable) 7814 { 7815 struct hclge_desc desc; 7816 struct hclge_cfg_com_tqp_queue_cmd *req = 7817 (struct hclge_cfg_com_tqp_queue_cmd *)desc.data; 7818 7819 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_COM_TQP_QUEUE, false); 7820 req->tqp_id = cpu_to_le16(tqp_id); 7821 req->stream_id = cpu_to_le16(stream_id); 7822 if (enable) 7823 req->enable |= 1U << HCLGE_TQP_ENABLE_B; 7824 7825 return hclge_cmd_send(&hdev->hw, &desc, 1); 7826 } 7827 7828 static int hclge_tqp_enable(struct hnae3_handle *handle, bool enable) 7829 { 7830 struct hclge_vport *vport = hclge_get_vport(handle); 7831 struct hclge_dev *hdev = vport->back; 7832 int ret; 7833 u16 i; 7834 7835 for (i = 0; i < handle->kinfo.num_tqps; i++) { 7836 ret = hclge_tqp_enable_cmd_send(hdev, i, 0, enable); 7837 if (ret) 7838 return ret; 7839 } 7840 return 0; 7841 } 7842 7843 static int hclge_set_loopback(struct hnae3_handle *handle, 7844 enum hnae3_loop loop_mode, bool en) 7845 { 7846 struct hclge_vport *vport = hclge_get_vport(handle); 7847 struct hclge_dev *hdev = vport->back; 7848 int ret = 0; 7849 7850 /* Loopback can be enabled in three places: SSU, MAC, and serdes. By 7851 * default, SSU loopback is enabled, so if the SMAC and the DMAC are 7852 * the same, the packets are looped back in the SSU. If SSU loopback 7853 * is disabled, packets can reach MAC even if SMAC is the same as DMAC. 7854 */ 7855 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) { 7856 u8 switch_param = en ? 0 : BIT(HCLGE_SWITCH_ALW_LPBK_B); 7857 7858 ret = hclge_config_switch_param(hdev, PF_VPORT_ID, switch_param, 7859 HCLGE_SWITCH_ALW_LPBK_MASK); 7860 if (ret) 7861 return ret; 7862 } 7863 7864 switch (loop_mode) { 7865 case HNAE3_LOOP_APP: 7866 ret = hclge_set_app_loopback(hdev, en); 7867 break; 7868 case HNAE3_LOOP_SERIAL_SERDES: 7869 case HNAE3_LOOP_PARALLEL_SERDES: 7870 ret = hclge_set_common_loopback(hdev, en, loop_mode); 7871 break; 7872 case HNAE3_LOOP_PHY: 7873 ret = hclge_set_phy_loopback(hdev, en); 7874 break; 7875 case HNAE3_LOOP_EXTERNAL: 7876 break; 7877 default: 7878 ret = -ENOTSUPP; 7879 dev_err(&hdev->pdev->dev, 7880 "loop_mode %d is not supported\n", loop_mode); 7881 break; 7882 } 7883 7884 if (ret) 7885 return ret; 7886 7887 ret = hclge_tqp_enable(handle, en); 7888 if (ret) 7889 dev_err(&hdev->pdev->dev, "failed to %s tqp in loopback, ret = %d\n", 7890 en ? "enable" : "disable", ret); 7891 7892 return ret; 7893 } 7894 7895 static int hclge_set_default_loopback(struct hclge_dev *hdev) 7896 { 7897 int ret; 7898 7899 ret = hclge_set_app_loopback(hdev, false); 7900 if (ret) 7901 return ret; 7902 7903 ret = hclge_cfg_common_loopback(hdev, false, HNAE3_LOOP_SERIAL_SERDES); 7904 if (ret) 7905 return ret; 7906 7907 return hclge_cfg_common_loopback(hdev, false, 7908 HNAE3_LOOP_PARALLEL_SERDES); 7909 } 7910 7911 static void hclge_flush_link_update(struct hclge_dev *hdev) 7912 { 7913 #define HCLGE_FLUSH_LINK_TIMEOUT 100000 7914 7915 unsigned long last = hdev->serv_processed_cnt; 7916 int i = 0; 7917 7918 while (test_bit(HCLGE_STATE_LINK_UPDATING, &hdev->state) && 7919 i++ < HCLGE_FLUSH_LINK_TIMEOUT && 7920 last == hdev->serv_processed_cnt) 7921 usleep_range(1, 1); 7922 } 7923 7924 static void hclge_set_timer_task(struct hnae3_handle *handle, bool enable) 7925 { 7926 struct hclge_vport *vport = hclge_get_vport(handle); 7927 struct hclge_dev *hdev = vport->back; 7928 7929 if (enable) { 7930 hclge_task_schedule(hdev, 0); 7931 } else { 7932 /* Set the DOWN flag here to disable link updating */ 7933 set_bit(HCLGE_STATE_DOWN, &hdev->state); 7934 7935 /* flush memory to make sure DOWN is seen by service task */ 7936 smp_mb__before_atomic(); 7937 hclge_flush_link_update(hdev); 7938 } 7939 } 7940 7941 static int hclge_ae_start(struct hnae3_handle *handle) 7942 { 7943 struct hclge_vport *vport = hclge_get_vport(handle); 7944 struct hclge_dev *hdev = vport->back; 7945 7946 /* mac enable */ 7947 hclge_cfg_mac_mode(hdev, true); 7948 clear_bit(HCLGE_STATE_DOWN, &hdev->state); 7949 hdev->hw.mac.link = 0; 7950 7951 /* reset tqp stats */ 7952 hclge_comm_reset_tqp_stats(handle); 7953 7954 hclge_mac_start_phy(hdev); 7955 7956 return 0; 7957 } 7958 7959 static void hclge_ae_stop(struct hnae3_handle *handle) 7960 { 7961 struct hclge_vport *vport = hclge_get_vport(handle); 7962 struct hclge_dev *hdev = vport->back; 7963 7964 set_bit(HCLGE_STATE_DOWN, &hdev->state); 7965 spin_lock_bh(&hdev->fd_rule_lock); 7966 hclge_clear_arfs_rules(hdev); 7967 spin_unlock_bh(&hdev->fd_rule_lock); 7968 7969 /* If it is not PF reset or FLR, the firmware will disable the MAC, 7970 * so it only need to stop phy here. 7971 */ 7972 if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state)) { 7973 hclge_pfc_pause_en_cfg(hdev, HCLGE_PFC_TX_RX_DISABLE, 7974 HCLGE_PFC_DISABLE); 7975 if (hdev->reset_type != HNAE3_FUNC_RESET && 7976 hdev->reset_type != HNAE3_FLR_RESET) { 7977 hclge_mac_stop_phy(hdev); 7978 hclge_update_link_status(hdev); 7979 return; 7980 } 7981 } 7982 7983 hclge_reset_tqp(handle); 7984 7985 hclge_config_mac_tnl_int(hdev, false); 7986 7987 /* Mac disable */ 7988 hclge_cfg_mac_mode(hdev, false); 7989 7990 hclge_mac_stop_phy(hdev); 7991 7992 /* reset tqp stats */ 7993 hclge_comm_reset_tqp_stats(handle); 7994 hclge_update_link_status(hdev); 7995 } 7996 7997 int hclge_vport_start(struct hclge_vport *vport) 7998 { 7999 struct hclge_dev *hdev = vport->back; 8000 8001 set_bit(HCLGE_VPORT_STATE_INITED, &vport->state); 8002 set_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state); 8003 set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, &vport->state); 8004 vport->last_active_jiffies = jiffies; 8005 vport->need_notify = 0; 8006 8007 if (test_bit(vport->vport_id, hdev->vport_config_block)) { 8008 if (vport->vport_id) { 8009 hclge_restore_mac_table_common(vport); 8010 hclge_restore_vport_vlan_table(vport); 8011 } else { 8012 hclge_restore_hw_table(hdev); 8013 } 8014 } 8015 8016 clear_bit(vport->vport_id, hdev->vport_config_block); 8017 8018 return 0; 8019 } 8020 8021 void hclge_vport_stop(struct hclge_vport *vport) 8022 { 8023 clear_bit(HCLGE_VPORT_STATE_INITED, &vport->state); 8024 clear_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state); 8025 vport->need_notify = 0; 8026 } 8027 8028 static int hclge_client_start(struct hnae3_handle *handle) 8029 { 8030 struct hclge_vport *vport = hclge_get_vport(handle); 8031 8032 return hclge_vport_start(vport); 8033 } 8034 8035 static void hclge_client_stop(struct hnae3_handle *handle) 8036 { 8037 struct hclge_vport *vport = hclge_get_vport(handle); 8038 8039 hclge_vport_stop(vport); 8040 } 8041 8042 static int hclge_get_mac_vlan_cmd_status(struct hclge_vport *vport, 8043 u16 cmdq_resp, u8 resp_code, 8044 enum hclge_mac_vlan_tbl_opcode op) 8045 { 8046 struct hclge_dev *hdev = vport->back; 8047 8048 if (cmdq_resp) { 8049 dev_err(&hdev->pdev->dev, 8050 "cmdq execute failed for get_mac_vlan_cmd_status,status=%u.\n", 8051 cmdq_resp); 8052 return -EIO; 8053 } 8054 8055 if (op == HCLGE_MAC_VLAN_ADD) { 8056 if (!resp_code || resp_code == 1) 8057 return 0; 8058 else if (resp_code == HCLGE_ADD_UC_OVERFLOW || 8059 resp_code == HCLGE_ADD_MC_OVERFLOW) 8060 return -ENOSPC; 8061 8062 dev_err(&hdev->pdev->dev, 8063 "add mac addr failed for undefined, code=%u.\n", 8064 resp_code); 8065 return -EIO; 8066 } else if (op == HCLGE_MAC_VLAN_REMOVE) { 8067 if (!resp_code) { 8068 return 0; 8069 } else if (resp_code == 1) { 8070 dev_dbg(&hdev->pdev->dev, 8071 "remove mac addr failed for miss.\n"); 8072 return -ENOENT; 8073 } 8074 8075 dev_err(&hdev->pdev->dev, 8076 "remove mac addr failed for undefined, code=%u.\n", 8077 resp_code); 8078 return -EIO; 8079 } else if (op == HCLGE_MAC_VLAN_LKUP) { 8080 if (!resp_code) { 8081 return 0; 8082 } else if (resp_code == 1) { 8083 dev_dbg(&hdev->pdev->dev, 8084 "lookup mac addr failed for miss.\n"); 8085 return -ENOENT; 8086 } 8087 8088 dev_err(&hdev->pdev->dev, 8089 "lookup mac addr failed for undefined, code=%u.\n", 8090 resp_code); 8091 return -EIO; 8092 } 8093 8094 dev_err(&hdev->pdev->dev, 8095 "unknown opcode for get_mac_vlan_cmd_status, opcode=%d.\n", op); 8096 8097 return -EINVAL; 8098 } 8099 8100 static int hclge_update_desc_vfid(struct hclge_desc *desc, int vfid, bool clr) 8101 { 8102 #define HCLGE_VF_NUM_IN_FIRST_DESC 192 8103 8104 unsigned int word_num; 8105 unsigned int bit_num; 8106 8107 if (vfid > 255 || vfid < 0) 8108 return -EIO; 8109 8110 if (vfid >= 0 && vfid < HCLGE_VF_NUM_IN_FIRST_DESC) { 8111 word_num = vfid / 32; 8112 bit_num = vfid % 32; 8113 if (clr) 8114 desc[1].data[word_num] &= cpu_to_le32(~(1 << bit_num)); 8115 else 8116 desc[1].data[word_num] |= cpu_to_le32(1 << bit_num); 8117 } else { 8118 word_num = (vfid - HCLGE_VF_NUM_IN_FIRST_DESC) / 32; 8119 bit_num = vfid % 32; 8120 if (clr) 8121 desc[2].data[word_num] &= cpu_to_le32(~(1 << bit_num)); 8122 else 8123 desc[2].data[word_num] |= cpu_to_le32(1 << bit_num); 8124 } 8125 8126 return 0; 8127 } 8128 8129 static bool hclge_is_all_function_id_zero(struct hclge_desc *desc) 8130 { 8131 #define HCLGE_DESC_NUMBER 3 8132 #define HCLGE_FUNC_NUMBER_PER_DESC 6 8133 int i, j; 8134 8135 for (i = 1; i < HCLGE_DESC_NUMBER; i++) 8136 for (j = 0; j < HCLGE_FUNC_NUMBER_PER_DESC; j++) 8137 if (desc[i].data[j]) 8138 return false; 8139 8140 return true; 8141 } 8142 8143 static void hclge_prepare_mac_addr(struct hclge_mac_vlan_tbl_entry_cmd *new_req, 8144 const u8 *addr, bool is_mc) 8145 { 8146 const unsigned char *mac_addr = addr; 8147 u32 high_val = mac_addr[2] << 16 | (mac_addr[3] << 24) | 8148 (mac_addr[0]) | (mac_addr[1] << 8); 8149 u32 low_val = mac_addr[4] | (mac_addr[5] << 8); 8150 8151 hnae3_set_bit(new_req->flags, HCLGE_MAC_VLAN_BIT0_EN_B, 1); 8152 if (is_mc) { 8153 hnae3_set_bit(new_req->entry_type, HCLGE_MAC_VLAN_BIT1_EN_B, 1); 8154 hnae3_set_bit(new_req->mc_mac_en, HCLGE_MAC_VLAN_BIT0_EN_B, 1); 8155 } 8156 8157 new_req->mac_addr_hi32 = cpu_to_le32(high_val); 8158 new_req->mac_addr_lo16 = cpu_to_le16(low_val & 0xffff); 8159 } 8160 8161 static int hclge_remove_mac_vlan_tbl(struct hclge_vport *vport, 8162 struct hclge_mac_vlan_tbl_entry_cmd *req) 8163 { 8164 struct hclge_dev *hdev = vport->back; 8165 struct hclge_desc desc; 8166 u8 resp_code; 8167 u16 retval; 8168 int ret; 8169 8170 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_REMOVE, false); 8171 8172 memcpy(desc.data, req, sizeof(struct hclge_mac_vlan_tbl_entry_cmd)); 8173 8174 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 8175 if (ret) { 8176 dev_err(&hdev->pdev->dev, 8177 "del mac addr failed for cmd_send, ret =%d.\n", 8178 ret); 8179 return ret; 8180 } 8181 resp_code = (le32_to_cpu(desc.data[0]) >> 8) & 0xff; 8182 retval = le16_to_cpu(desc.retval); 8183 8184 return hclge_get_mac_vlan_cmd_status(vport, retval, resp_code, 8185 HCLGE_MAC_VLAN_REMOVE); 8186 } 8187 8188 static int hclge_lookup_mac_vlan_tbl(struct hclge_vport *vport, 8189 struct hclge_mac_vlan_tbl_entry_cmd *req, 8190 struct hclge_desc *desc, 8191 bool is_mc) 8192 { 8193 struct hclge_dev *hdev = vport->back; 8194 u8 resp_code; 8195 u16 retval; 8196 int ret; 8197 8198 hclge_cmd_setup_basic_desc(&desc[0], HCLGE_OPC_MAC_VLAN_ADD, true); 8199 if (is_mc) { 8200 desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 8201 memcpy(desc[0].data, 8202 req, 8203 sizeof(struct hclge_mac_vlan_tbl_entry_cmd)); 8204 hclge_cmd_setup_basic_desc(&desc[1], 8205 HCLGE_OPC_MAC_VLAN_ADD, 8206 true); 8207 desc[1].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 8208 hclge_cmd_setup_basic_desc(&desc[2], 8209 HCLGE_OPC_MAC_VLAN_ADD, 8210 true); 8211 ret = hclge_cmd_send(&hdev->hw, desc, 3); 8212 } else { 8213 memcpy(desc[0].data, 8214 req, 8215 sizeof(struct hclge_mac_vlan_tbl_entry_cmd)); 8216 ret = hclge_cmd_send(&hdev->hw, desc, 1); 8217 } 8218 if (ret) { 8219 dev_err(&hdev->pdev->dev, 8220 "lookup mac addr failed for cmd_send, ret =%d.\n", 8221 ret); 8222 return ret; 8223 } 8224 resp_code = (le32_to_cpu(desc[0].data[0]) >> 8) & 0xff; 8225 retval = le16_to_cpu(desc[0].retval); 8226 8227 return hclge_get_mac_vlan_cmd_status(vport, retval, resp_code, 8228 HCLGE_MAC_VLAN_LKUP); 8229 } 8230 8231 static int hclge_add_mac_vlan_tbl(struct hclge_vport *vport, 8232 struct hclge_mac_vlan_tbl_entry_cmd *req, 8233 struct hclge_desc *mc_desc) 8234 { 8235 struct hclge_dev *hdev = vport->back; 8236 int cfg_status; 8237 u8 resp_code; 8238 u16 retval; 8239 int ret; 8240 8241 if (!mc_desc) { 8242 struct hclge_desc desc; 8243 8244 hclge_cmd_setup_basic_desc(&desc, 8245 HCLGE_OPC_MAC_VLAN_ADD, 8246 false); 8247 memcpy(desc.data, req, 8248 sizeof(struct hclge_mac_vlan_tbl_entry_cmd)); 8249 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 8250 resp_code = (le32_to_cpu(desc.data[0]) >> 8) & 0xff; 8251 retval = le16_to_cpu(desc.retval); 8252 8253 cfg_status = hclge_get_mac_vlan_cmd_status(vport, retval, 8254 resp_code, 8255 HCLGE_MAC_VLAN_ADD); 8256 } else { 8257 hclge_comm_cmd_reuse_desc(&mc_desc[0], false); 8258 mc_desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 8259 hclge_comm_cmd_reuse_desc(&mc_desc[1], false); 8260 mc_desc[1].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 8261 hclge_comm_cmd_reuse_desc(&mc_desc[2], false); 8262 mc_desc[2].flag &= cpu_to_le16(~HCLGE_COMM_CMD_FLAG_NEXT); 8263 memcpy(mc_desc[0].data, req, 8264 sizeof(struct hclge_mac_vlan_tbl_entry_cmd)); 8265 ret = hclge_cmd_send(&hdev->hw, mc_desc, 3); 8266 resp_code = (le32_to_cpu(mc_desc[0].data[0]) >> 8) & 0xff; 8267 retval = le16_to_cpu(mc_desc[0].retval); 8268 8269 cfg_status = hclge_get_mac_vlan_cmd_status(vport, retval, 8270 resp_code, 8271 HCLGE_MAC_VLAN_ADD); 8272 } 8273 8274 if (ret) { 8275 dev_err(&hdev->pdev->dev, 8276 "add mac addr failed for cmd_send, ret =%d.\n", 8277 ret); 8278 return ret; 8279 } 8280 8281 return cfg_status; 8282 } 8283 8284 static int hclge_set_umv_space(struct hclge_dev *hdev, u16 space_size, 8285 u16 *allocated_size) 8286 { 8287 struct hclge_umv_spc_alc_cmd *req; 8288 struct hclge_desc desc; 8289 int ret; 8290 8291 req = (struct hclge_umv_spc_alc_cmd *)desc.data; 8292 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_ALLOCATE, false); 8293 8294 req->space_size = cpu_to_le32(space_size); 8295 8296 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 8297 if (ret) { 8298 dev_err(&hdev->pdev->dev, "failed to set umv space, ret = %d\n", 8299 ret); 8300 return ret; 8301 } 8302 8303 *allocated_size = le32_to_cpu(desc.data[1]); 8304 8305 return 0; 8306 } 8307 8308 static int hclge_init_umv_space(struct hclge_dev *hdev) 8309 { 8310 u16 allocated_size = 0; 8311 int ret; 8312 8313 ret = hclge_set_umv_space(hdev, hdev->wanted_umv_size, &allocated_size); 8314 if (ret) 8315 return ret; 8316 8317 if (allocated_size < hdev->wanted_umv_size) 8318 dev_warn(&hdev->pdev->dev, 8319 "failed to alloc umv space, want %u, get %u\n", 8320 hdev->wanted_umv_size, allocated_size); 8321 8322 hdev->max_umv_size = allocated_size; 8323 hdev->priv_umv_size = hdev->max_umv_size / (hdev->num_alloc_vport + 1); 8324 hdev->share_umv_size = hdev->priv_umv_size + 8325 hdev->max_umv_size % (hdev->num_alloc_vport + 1); 8326 8327 if (hdev->ae_dev->dev_specs.mc_mac_size) 8328 set_bit(HNAE3_DEV_SUPPORT_MC_MAC_MNG_B, hdev->ae_dev->caps); 8329 8330 return 0; 8331 } 8332 8333 static void hclge_reset_umv_space(struct hclge_dev *hdev) 8334 { 8335 struct hclge_vport *vport; 8336 int i; 8337 8338 for (i = 0; i < hdev->num_alloc_vport; i++) { 8339 vport = &hdev->vport[i]; 8340 vport->used_umv_num = 0; 8341 } 8342 8343 mutex_lock(&hdev->vport_lock); 8344 hdev->share_umv_size = hdev->priv_umv_size + 8345 hdev->max_umv_size % (hdev->num_alloc_vport + 1); 8346 mutex_unlock(&hdev->vport_lock); 8347 8348 hdev->used_mc_mac_num = 0; 8349 } 8350 8351 static bool hclge_is_umv_space_full(struct hclge_vport *vport, bool need_lock) 8352 { 8353 struct hclge_dev *hdev = vport->back; 8354 bool is_full; 8355 8356 if (need_lock) 8357 mutex_lock(&hdev->vport_lock); 8358 8359 is_full = (vport->used_umv_num >= hdev->priv_umv_size && 8360 hdev->share_umv_size == 0); 8361 8362 if (need_lock) 8363 mutex_unlock(&hdev->vport_lock); 8364 8365 return is_full; 8366 } 8367 8368 static void hclge_update_umv_space(struct hclge_vport *vport, bool is_free) 8369 { 8370 struct hclge_dev *hdev = vport->back; 8371 8372 if (is_free) { 8373 if (vport->used_umv_num > hdev->priv_umv_size) 8374 hdev->share_umv_size++; 8375 8376 if (vport->used_umv_num > 0) 8377 vport->used_umv_num--; 8378 } else { 8379 if (vport->used_umv_num >= hdev->priv_umv_size && 8380 hdev->share_umv_size > 0) 8381 hdev->share_umv_size--; 8382 vport->used_umv_num++; 8383 } 8384 } 8385 8386 static struct hclge_mac_node *hclge_find_mac_node(struct list_head *list, 8387 const u8 *mac_addr) 8388 { 8389 struct hclge_mac_node *mac_node, *tmp; 8390 8391 list_for_each_entry_safe(mac_node, tmp, list, node) 8392 if (ether_addr_equal(mac_addr, mac_node->mac_addr)) 8393 return mac_node; 8394 8395 return NULL; 8396 } 8397 8398 static void hclge_update_mac_node(struct hclge_mac_node *mac_node, 8399 enum HCLGE_MAC_NODE_STATE state) 8400 { 8401 switch (state) { 8402 /* from set_rx_mode or tmp_add_list */ 8403 case HCLGE_MAC_TO_ADD: 8404 if (mac_node->state == HCLGE_MAC_TO_DEL) 8405 mac_node->state = HCLGE_MAC_ACTIVE; 8406 break; 8407 /* only from set_rx_mode */ 8408 case HCLGE_MAC_TO_DEL: 8409 if (mac_node->state == HCLGE_MAC_TO_ADD) { 8410 list_del(&mac_node->node); 8411 kfree(mac_node); 8412 } else { 8413 mac_node->state = HCLGE_MAC_TO_DEL; 8414 } 8415 break; 8416 /* only from tmp_add_list, the mac_node->state won't be 8417 * ACTIVE. 8418 */ 8419 case HCLGE_MAC_ACTIVE: 8420 if (mac_node->state == HCLGE_MAC_TO_ADD) 8421 mac_node->state = HCLGE_MAC_ACTIVE; 8422 8423 break; 8424 } 8425 } 8426 8427 int hclge_update_mac_list(struct hclge_vport *vport, 8428 enum HCLGE_MAC_NODE_STATE state, 8429 enum HCLGE_MAC_ADDR_TYPE mac_type, 8430 const unsigned char *addr) 8431 { 8432 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN]; 8433 struct hclge_dev *hdev = vport->back; 8434 struct hclge_mac_node *mac_node; 8435 struct list_head *list; 8436 8437 list = (mac_type == HCLGE_MAC_ADDR_UC) ? 8438 &vport->uc_mac_list : &vport->mc_mac_list; 8439 8440 spin_lock_bh(&vport->mac_list_lock); 8441 8442 /* if the mac addr is already in the mac list, no need to add a new 8443 * one into it, just check the mac addr state, convert it to a new 8444 * state, or just remove it, or do nothing. 8445 */ 8446 mac_node = hclge_find_mac_node(list, addr); 8447 if (mac_node) { 8448 hclge_update_mac_node(mac_node, state); 8449 spin_unlock_bh(&vport->mac_list_lock); 8450 set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, &vport->state); 8451 return 0; 8452 } 8453 8454 /* if this address is never added, unnecessary to delete */ 8455 if (state == HCLGE_MAC_TO_DEL) { 8456 spin_unlock_bh(&vport->mac_list_lock); 8457 hnae3_format_mac_addr(format_mac_addr, addr); 8458 dev_err(&hdev->pdev->dev, 8459 "failed to delete address %s from mac list\n", 8460 format_mac_addr); 8461 return -ENOENT; 8462 } 8463 8464 mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC); 8465 if (!mac_node) { 8466 spin_unlock_bh(&vport->mac_list_lock); 8467 return -ENOMEM; 8468 } 8469 8470 set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, &vport->state); 8471 8472 mac_node->state = state; 8473 ether_addr_copy(mac_node->mac_addr, addr); 8474 list_add_tail(&mac_node->node, list); 8475 8476 spin_unlock_bh(&vport->mac_list_lock); 8477 8478 return 0; 8479 } 8480 8481 static int hclge_add_uc_addr(struct hnae3_handle *handle, 8482 const unsigned char *addr) 8483 { 8484 struct hclge_vport *vport = hclge_get_vport(handle); 8485 8486 return hclge_update_mac_list(vport, HCLGE_MAC_TO_ADD, HCLGE_MAC_ADDR_UC, 8487 addr); 8488 } 8489 8490 int hclge_add_uc_addr_common(struct hclge_vport *vport, 8491 const unsigned char *addr) 8492 { 8493 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN]; 8494 struct hclge_dev *hdev = vport->back; 8495 struct hclge_mac_vlan_tbl_entry_cmd req; 8496 struct hclge_desc desc; 8497 u16 egress_port = 0; 8498 int ret; 8499 8500 /* mac addr check */ 8501 if (is_zero_ether_addr(addr) || 8502 is_broadcast_ether_addr(addr) || 8503 is_multicast_ether_addr(addr)) { 8504 hnae3_format_mac_addr(format_mac_addr, addr); 8505 dev_err(&hdev->pdev->dev, 8506 "Set_uc mac err! invalid mac:%s. is_zero:%d,is_br=%d,is_mul=%d\n", 8507 format_mac_addr, is_zero_ether_addr(addr), 8508 is_broadcast_ether_addr(addr), 8509 is_multicast_ether_addr(addr)); 8510 return -EINVAL; 8511 } 8512 8513 memset(&req, 0, sizeof(req)); 8514 8515 hnae3_set_field(egress_port, HCLGE_MAC_EPORT_VFID_M, 8516 HCLGE_MAC_EPORT_VFID_S, vport->vport_id); 8517 8518 req.egress_port = cpu_to_le16(egress_port); 8519 8520 hclge_prepare_mac_addr(&req, addr, false); 8521 8522 /* Lookup the mac address in the mac_vlan table, and add 8523 * it if the entry is inexistent. Repeated unicast entry 8524 * is not allowed in the mac vlan table. 8525 */ 8526 ret = hclge_lookup_mac_vlan_tbl(vport, &req, &desc, false); 8527 if (ret == -ENOENT) { 8528 mutex_lock(&hdev->vport_lock); 8529 if (!hclge_is_umv_space_full(vport, false)) { 8530 ret = hclge_add_mac_vlan_tbl(vport, &req, NULL); 8531 if (!ret) 8532 hclge_update_umv_space(vport, false); 8533 mutex_unlock(&hdev->vport_lock); 8534 return ret; 8535 } 8536 mutex_unlock(&hdev->vport_lock); 8537 8538 if (!(vport->overflow_promisc_flags & HNAE3_OVERFLOW_UPE)) 8539 dev_err(&hdev->pdev->dev, "UC MAC table full(%u)\n", 8540 hdev->priv_umv_size); 8541 8542 return -ENOSPC; 8543 } 8544 8545 /* check if we just hit the duplicate */ 8546 if (!ret) 8547 return -EEXIST; 8548 8549 return ret; 8550 } 8551 8552 static int hclge_rm_uc_addr(struct hnae3_handle *handle, 8553 const unsigned char *addr) 8554 { 8555 struct hclge_vport *vport = hclge_get_vport(handle); 8556 8557 return hclge_update_mac_list(vport, HCLGE_MAC_TO_DEL, HCLGE_MAC_ADDR_UC, 8558 addr); 8559 } 8560 8561 int hclge_rm_uc_addr_common(struct hclge_vport *vport, 8562 const unsigned char *addr) 8563 { 8564 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN]; 8565 struct hclge_dev *hdev = vport->back; 8566 struct hclge_mac_vlan_tbl_entry_cmd req; 8567 int ret; 8568 8569 /* mac addr check */ 8570 if (is_zero_ether_addr(addr) || 8571 is_broadcast_ether_addr(addr) || 8572 is_multicast_ether_addr(addr)) { 8573 hnae3_format_mac_addr(format_mac_addr, addr); 8574 dev_dbg(&hdev->pdev->dev, "Remove mac err! invalid mac:%s.\n", 8575 format_mac_addr); 8576 return -EINVAL; 8577 } 8578 8579 memset(&req, 0, sizeof(req)); 8580 hnae3_set_bit(req.entry_type, HCLGE_MAC_VLAN_BIT0_EN_B, 0); 8581 hclge_prepare_mac_addr(&req, addr, false); 8582 ret = hclge_remove_mac_vlan_tbl(vport, &req); 8583 if (!ret || ret == -ENOENT) { 8584 mutex_lock(&hdev->vport_lock); 8585 hclge_update_umv_space(vport, true); 8586 mutex_unlock(&hdev->vport_lock); 8587 return 0; 8588 } 8589 8590 return ret; 8591 } 8592 8593 static int hclge_add_mc_addr(struct hnae3_handle *handle, 8594 const unsigned char *addr) 8595 { 8596 struct hclge_vport *vport = hclge_get_vport(handle); 8597 8598 return hclge_update_mac_list(vport, HCLGE_MAC_TO_ADD, HCLGE_MAC_ADDR_MC, 8599 addr); 8600 } 8601 8602 int hclge_add_mc_addr_common(struct hclge_vport *vport, 8603 const unsigned char *addr) 8604 { 8605 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN]; 8606 struct hclge_dev *hdev = vport->back; 8607 struct hclge_mac_vlan_tbl_entry_cmd req; 8608 struct hclge_desc desc[3]; 8609 bool is_new_addr = false; 8610 int status; 8611 8612 /* mac addr check */ 8613 if (!is_multicast_ether_addr(addr)) { 8614 hnae3_format_mac_addr(format_mac_addr, addr); 8615 dev_err(&hdev->pdev->dev, 8616 "Add mc mac err! invalid mac:%s.\n", 8617 format_mac_addr); 8618 return -EINVAL; 8619 } 8620 memset(&req, 0, sizeof(req)); 8621 hclge_prepare_mac_addr(&req, addr, true); 8622 status = hclge_lookup_mac_vlan_tbl(vport, &req, desc, true); 8623 if (status) { 8624 if (hnae3_ae_dev_mc_mac_mng_supported(hdev->ae_dev) && 8625 hdev->used_mc_mac_num >= 8626 hdev->ae_dev->dev_specs.mc_mac_size) 8627 goto err_no_space; 8628 8629 is_new_addr = true; 8630 8631 /* This mac addr do not exist, add new entry for it */ 8632 memset(desc[0].data, 0, sizeof(desc[0].data)); 8633 memset(desc[1].data, 0, sizeof(desc[0].data)); 8634 memset(desc[2].data, 0, sizeof(desc[0].data)); 8635 } 8636 status = hclge_update_desc_vfid(desc, vport->vport_id, false); 8637 if (status) 8638 return status; 8639 status = hclge_add_mac_vlan_tbl(vport, &req, desc); 8640 if (status == -ENOSPC) 8641 goto err_no_space; 8642 else if (!status && is_new_addr) 8643 hdev->used_mc_mac_num++; 8644 8645 return status; 8646 8647 err_no_space: 8648 /* if already overflow, not to print each time */ 8649 if (!(vport->overflow_promisc_flags & HNAE3_OVERFLOW_MPE)) { 8650 vport->overflow_promisc_flags |= HNAE3_OVERFLOW_MPE; 8651 dev_err(&hdev->pdev->dev, "mc mac vlan table is full\n"); 8652 } 8653 8654 return -ENOSPC; 8655 } 8656 8657 static int hclge_rm_mc_addr(struct hnae3_handle *handle, 8658 const unsigned char *addr) 8659 { 8660 struct hclge_vport *vport = hclge_get_vport(handle); 8661 8662 return hclge_update_mac_list(vport, HCLGE_MAC_TO_DEL, HCLGE_MAC_ADDR_MC, 8663 addr); 8664 } 8665 8666 int hclge_rm_mc_addr_common(struct hclge_vport *vport, 8667 const unsigned char *addr) 8668 { 8669 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN]; 8670 struct hclge_dev *hdev = vport->back; 8671 struct hclge_mac_vlan_tbl_entry_cmd req; 8672 enum hclge_comm_cmd_status status; 8673 struct hclge_desc desc[3]; 8674 8675 /* mac addr check */ 8676 if (!is_multicast_ether_addr(addr)) { 8677 hnae3_format_mac_addr(format_mac_addr, addr); 8678 dev_dbg(&hdev->pdev->dev, 8679 "Remove mc mac err! invalid mac:%s.\n", 8680 format_mac_addr); 8681 return -EINVAL; 8682 } 8683 8684 memset(&req, 0, sizeof(req)); 8685 hclge_prepare_mac_addr(&req, addr, true); 8686 status = hclge_lookup_mac_vlan_tbl(vport, &req, desc, true); 8687 if (!status) { 8688 /* This mac addr exist, remove this handle's VFID for it */ 8689 status = hclge_update_desc_vfid(desc, vport->vport_id, true); 8690 if (status) 8691 return status; 8692 8693 if (hclge_is_all_function_id_zero(desc)) { 8694 /* All the vfid is zero, so need to delete this entry */ 8695 status = hclge_remove_mac_vlan_tbl(vport, &req); 8696 if (!status) 8697 hdev->used_mc_mac_num--; 8698 } else { 8699 /* Not all the vfid is zero, update the vfid */ 8700 status = hclge_add_mac_vlan_tbl(vport, &req, desc); 8701 } 8702 } else if (status == -ENOENT) { 8703 status = 0; 8704 } 8705 8706 return status; 8707 } 8708 8709 static void hclge_sync_vport_mac_list(struct hclge_vport *vport, 8710 struct list_head *list, 8711 enum HCLGE_MAC_ADDR_TYPE mac_type) 8712 { 8713 int (*sync)(struct hclge_vport *vport, const unsigned char *addr); 8714 struct hclge_mac_node *mac_node, *tmp; 8715 int ret; 8716 8717 if (mac_type == HCLGE_MAC_ADDR_UC) 8718 sync = hclge_add_uc_addr_common; 8719 else 8720 sync = hclge_add_mc_addr_common; 8721 8722 list_for_each_entry_safe(mac_node, tmp, list, node) { 8723 ret = sync(vport, mac_node->mac_addr); 8724 if (!ret) { 8725 mac_node->state = HCLGE_MAC_ACTIVE; 8726 } else { 8727 set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, 8728 &vport->state); 8729 8730 /* If one unicast mac address is existing in hardware, 8731 * we need to try whether other unicast mac addresses 8732 * are new addresses that can be added. 8733 * Multicast mac address can be reusable, even though 8734 * there is no space to add new multicast mac address, 8735 * we should check whether other mac addresses are 8736 * existing in hardware for reuse. 8737 */ 8738 if ((mac_type == HCLGE_MAC_ADDR_UC && ret != -EEXIST) || 8739 (mac_type == HCLGE_MAC_ADDR_MC && ret != -ENOSPC)) 8740 break; 8741 } 8742 } 8743 } 8744 8745 static void hclge_unsync_vport_mac_list(struct hclge_vport *vport, 8746 struct list_head *list, 8747 enum HCLGE_MAC_ADDR_TYPE mac_type) 8748 { 8749 int (*unsync)(struct hclge_vport *vport, const unsigned char *addr); 8750 struct hclge_mac_node *mac_node, *tmp; 8751 int ret; 8752 8753 if (mac_type == HCLGE_MAC_ADDR_UC) 8754 unsync = hclge_rm_uc_addr_common; 8755 else 8756 unsync = hclge_rm_mc_addr_common; 8757 8758 list_for_each_entry_safe(mac_node, tmp, list, node) { 8759 ret = unsync(vport, mac_node->mac_addr); 8760 if (!ret || ret == -ENOENT) { 8761 list_del(&mac_node->node); 8762 kfree(mac_node); 8763 } else { 8764 set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, 8765 &vport->state); 8766 break; 8767 } 8768 } 8769 } 8770 8771 static bool hclge_sync_from_add_list(struct list_head *add_list, 8772 struct list_head *mac_list) 8773 { 8774 struct hclge_mac_node *mac_node, *tmp, *new_node; 8775 bool all_added = true; 8776 8777 list_for_each_entry_safe(mac_node, tmp, add_list, node) { 8778 if (mac_node->state == HCLGE_MAC_TO_ADD) 8779 all_added = false; 8780 8781 /* if the mac address from tmp_add_list is not in the 8782 * uc/mc_mac_list, it means have received a TO_DEL request 8783 * during the time window of adding the mac address into mac 8784 * table. if mac_node state is ACTIVE, then change it to TO_DEL, 8785 * then it will be removed at next time. else it must be TO_ADD, 8786 * this address hasn't been added into mac table, 8787 * so just remove the mac node. 8788 */ 8789 new_node = hclge_find_mac_node(mac_list, mac_node->mac_addr); 8790 if (new_node) { 8791 hclge_update_mac_node(new_node, mac_node->state); 8792 list_del(&mac_node->node); 8793 kfree(mac_node); 8794 } else if (mac_node->state == HCLGE_MAC_ACTIVE) { 8795 mac_node->state = HCLGE_MAC_TO_DEL; 8796 list_move_tail(&mac_node->node, mac_list); 8797 } else { 8798 list_del(&mac_node->node); 8799 kfree(mac_node); 8800 } 8801 } 8802 8803 return all_added; 8804 } 8805 8806 static void hclge_sync_from_del_list(struct list_head *del_list, 8807 struct list_head *mac_list) 8808 { 8809 struct hclge_mac_node *mac_node, *tmp, *new_node; 8810 8811 list_for_each_entry_safe(mac_node, tmp, del_list, node) { 8812 new_node = hclge_find_mac_node(mac_list, mac_node->mac_addr); 8813 if (new_node) { 8814 /* If the mac addr exists in the mac list, it means 8815 * received a new TO_ADD request during the time window 8816 * of configuring the mac address. For the mac node 8817 * state is TO_ADD, and the address is already in the 8818 * in the hardware(due to delete fail), so we just need 8819 * to change the mac node state to ACTIVE. 8820 */ 8821 new_node->state = HCLGE_MAC_ACTIVE; 8822 list_del(&mac_node->node); 8823 kfree(mac_node); 8824 } else { 8825 list_move_tail(&mac_node->node, mac_list); 8826 } 8827 } 8828 } 8829 8830 static void hclge_update_overflow_flags(struct hclge_vport *vport, 8831 enum HCLGE_MAC_ADDR_TYPE mac_type, 8832 bool is_all_added) 8833 { 8834 if (mac_type == HCLGE_MAC_ADDR_UC) { 8835 if (is_all_added) 8836 vport->overflow_promisc_flags &= ~HNAE3_OVERFLOW_UPE; 8837 else if (hclge_is_umv_space_full(vport, true)) 8838 vport->overflow_promisc_flags |= HNAE3_OVERFLOW_UPE; 8839 } else { 8840 if (is_all_added) 8841 vport->overflow_promisc_flags &= ~HNAE3_OVERFLOW_MPE; 8842 else 8843 vport->overflow_promisc_flags |= HNAE3_OVERFLOW_MPE; 8844 } 8845 } 8846 8847 static void hclge_sync_vport_mac_table(struct hclge_vport *vport, 8848 enum HCLGE_MAC_ADDR_TYPE mac_type) 8849 { 8850 struct hclge_mac_node *mac_node, *tmp, *new_node; 8851 struct list_head tmp_add_list, tmp_del_list; 8852 struct list_head *list; 8853 bool all_added; 8854 8855 INIT_LIST_HEAD(&tmp_add_list); 8856 INIT_LIST_HEAD(&tmp_del_list); 8857 8858 /* move the mac addr to the tmp_add_list and tmp_del_list, then 8859 * we can add/delete these mac addr outside the spin lock 8860 */ 8861 list = (mac_type == HCLGE_MAC_ADDR_UC) ? 8862 &vport->uc_mac_list : &vport->mc_mac_list; 8863 8864 spin_lock_bh(&vport->mac_list_lock); 8865 8866 list_for_each_entry_safe(mac_node, tmp, list, node) { 8867 switch (mac_node->state) { 8868 case HCLGE_MAC_TO_DEL: 8869 list_move_tail(&mac_node->node, &tmp_del_list); 8870 break; 8871 case HCLGE_MAC_TO_ADD: 8872 new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC); 8873 if (!new_node) 8874 goto stop_traverse; 8875 ether_addr_copy(new_node->mac_addr, mac_node->mac_addr); 8876 new_node->state = mac_node->state; 8877 list_add_tail(&new_node->node, &tmp_add_list); 8878 break; 8879 default: 8880 break; 8881 } 8882 } 8883 8884 stop_traverse: 8885 spin_unlock_bh(&vport->mac_list_lock); 8886 8887 /* delete first, in order to get max mac table space for adding */ 8888 hclge_unsync_vport_mac_list(vport, &tmp_del_list, mac_type); 8889 hclge_sync_vport_mac_list(vport, &tmp_add_list, mac_type); 8890 8891 /* if some mac addresses were added/deleted fail, move back to the 8892 * mac_list, and retry at next time. 8893 */ 8894 spin_lock_bh(&vport->mac_list_lock); 8895 8896 hclge_sync_from_del_list(&tmp_del_list, list); 8897 all_added = hclge_sync_from_add_list(&tmp_add_list, list); 8898 8899 spin_unlock_bh(&vport->mac_list_lock); 8900 8901 hclge_update_overflow_flags(vport, mac_type, all_added); 8902 } 8903 8904 static bool hclge_need_sync_mac_table(struct hclge_vport *vport) 8905 { 8906 struct hclge_dev *hdev = vport->back; 8907 8908 if (test_bit(vport->vport_id, hdev->vport_config_block)) 8909 return false; 8910 8911 if (test_and_clear_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, &vport->state)) 8912 return true; 8913 8914 return false; 8915 } 8916 8917 static void hclge_sync_mac_table(struct hclge_dev *hdev) 8918 { 8919 int i; 8920 8921 for (i = 0; i < hdev->num_alloc_vport; i++) { 8922 struct hclge_vport *vport = &hdev->vport[i]; 8923 8924 if (!hclge_need_sync_mac_table(vport)) 8925 continue; 8926 8927 hclge_sync_vport_mac_table(vport, HCLGE_MAC_ADDR_UC); 8928 hclge_sync_vport_mac_table(vport, HCLGE_MAC_ADDR_MC); 8929 } 8930 } 8931 8932 static void hclge_build_del_list(struct list_head *list, 8933 bool is_del_list, 8934 struct list_head *tmp_del_list) 8935 { 8936 struct hclge_mac_node *mac_cfg, *tmp; 8937 8938 list_for_each_entry_safe(mac_cfg, tmp, list, node) { 8939 switch (mac_cfg->state) { 8940 case HCLGE_MAC_TO_DEL: 8941 case HCLGE_MAC_ACTIVE: 8942 list_move_tail(&mac_cfg->node, tmp_del_list); 8943 break; 8944 case HCLGE_MAC_TO_ADD: 8945 if (is_del_list) { 8946 list_del(&mac_cfg->node); 8947 kfree(mac_cfg); 8948 } 8949 break; 8950 } 8951 } 8952 } 8953 8954 static void hclge_unsync_del_list(struct hclge_vport *vport, 8955 int (*unsync)(struct hclge_vport *vport, 8956 const unsigned char *addr), 8957 bool is_del_list, 8958 struct list_head *tmp_del_list) 8959 { 8960 struct hclge_mac_node *mac_cfg, *tmp; 8961 int ret; 8962 8963 list_for_each_entry_safe(mac_cfg, tmp, tmp_del_list, node) { 8964 ret = unsync(vport, mac_cfg->mac_addr); 8965 if (!ret || ret == -ENOENT) { 8966 /* clear all mac addr from hardware, but remain these 8967 * mac addr in the mac list, and restore them after 8968 * vf reset finished. 8969 */ 8970 if (!is_del_list && 8971 mac_cfg->state == HCLGE_MAC_ACTIVE) { 8972 mac_cfg->state = HCLGE_MAC_TO_ADD; 8973 } else { 8974 list_del(&mac_cfg->node); 8975 kfree(mac_cfg); 8976 } 8977 } else if (is_del_list) { 8978 mac_cfg->state = HCLGE_MAC_TO_DEL; 8979 } 8980 } 8981 } 8982 8983 void hclge_rm_vport_all_mac_table(struct hclge_vport *vport, bool is_del_list, 8984 enum HCLGE_MAC_ADDR_TYPE mac_type) 8985 { 8986 int (*unsync)(struct hclge_vport *vport, const unsigned char *addr); 8987 struct hclge_dev *hdev = vport->back; 8988 struct list_head tmp_del_list, *list; 8989 8990 if (mac_type == HCLGE_MAC_ADDR_UC) { 8991 list = &vport->uc_mac_list; 8992 unsync = hclge_rm_uc_addr_common; 8993 } else { 8994 list = &vport->mc_mac_list; 8995 unsync = hclge_rm_mc_addr_common; 8996 } 8997 8998 INIT_LIST_HEAD(&tmp_del_list); 8999 9000 if (!is_del_list) 9001 set_bit(vport->vport_id, hdev->vport_config_block); 9002 9003 spin_lock_bh(&vport->mac_list_lock); 9004 9005 hclge_build_del_list(list, is_del_list, &tmp_del_list); 9006 9007 spin_unlock_bh(&vport->mac_list_lock); 9008 9009 hclge_unsync_del_list(vport, unsync, is_del_list, &tmp_del_list); 9010 9011 spin_lock_bh(&vport->mac_list_lock); 9012 9013 hclge_sync_from_del_list(&tmp_del_list, list); 9014 9015 spin_unlock_bh(&vport->mac_list_lock); 9016 } 9017 9018 /* remove all mac address when uninitailize */ 9019 static void hclge_uninit_vport_mac_list(struct hclge_vport *vport, 9020 enum HCLGE_MAC_ADDR_TYPE mac_type) 9021 { 9022 struct hclge_mac_node *mac_node, *tmp; 9023 struct hclge_dev *hdev = vport->back; 9024 struct list_head tmp_del_list, *list; 9025 9026 INIT_LIST_HEAD(&tmp_del_list); 9027 9028 list = (mac_type == HCLGE_MAC_ADDR_UC) ? 9029 &vport->uc_mac_list : &vport->mc_mac_list; 9030 9031 spin_lock_bh(&vport->mac_list_lock); 9032 9033 list_for_each_entry_safe(mac_node, tmp, list, node) { 9034 switch (mac_node->state) { 9035 case HCLGE_MAC_TO_DEL: 9036 case HCLGE_MAC_ACTIVE: 9037 list_move_tail(&mac_node->node, &tmp_del_list); 9038 break; 9039 case HCLGE_MAC_TO_ADD: 9040 list_del(&mac_node->node); 9041 kfree(mac_node); 9042 break; 9043 } 9044 } 9045 9046 spin_unlock_bh(&vport->mac_list_lock); 9047 9048 hclge_unsync_vport_mac_list(vport, &tmp_del_list, mac_type); 9049 9050 if (!list_empty(&tmp_del_list)) 9051 dev_warn(&hdev->pdev->dev, 9052 "uninit %s mac list for vport %u not completely.\n", 9053 mac_type == HCLGE_MAC_ADDR_UC ? "uc" : "mc", 9054 vport->vport_id); 9055 9056 list_for_each_entry_safe(mac_node, tmp, &tmp_del_list, node) { 9057 list_del(&mac_node->node); 9058 kfree(mac_node); 9059 } 9060 } 9061 9062 static void hclge_uninit_mac_table(struct hclge_dev *hdev) 9063 { 9064 struct hclge_vport *vport; 9065 int i; 9066 9067 for (i = 0; i < hdev->num_alloc_vport; i++) { 9068 vport = &hdev->vport[i]; 9069 hclge_uninit_vport_mac_list(vport, HCLGE_MAC_ADDR_UC); 9070 hclge_uninit_vport_mac_list(vport, HCLGE_MAC_ADDR_MC); 9071 } 9072 } 9073 9074 static int hclge_get_mac_ethertype_cmd_status(struct hclge_dev *hdev, 9075 u16 cmdq_resp, u8 resp_code) 9076 { 9077 #define HCLGE_ETHERTYPE_SUCCESS_ADD 0 9078 #define HCLGE_ETHERTYPE_ALREADY_ADD 1 9079 #define HCLGE_ETHERTYPE_MGR_TBL_OVERFLOW 2 9080 #define HCLGE_ETHERTYPE_KEY_CONFLICT 3 9081 9082 int return_status; 9083 9084 if (cmdq_resp) { 9085 dev_err(&hdev->pdev->dev, 9086 "cmdq execute failed for get_mac_ethertype_cmd_status, status=%u.\n", 9087 cmdq_resp); 9088 return -EIO; 9089 } 9090 9091 switch (resp_code) { 9092 case HCLGE_ETHERTYPE_SUCCESS_ADD: 9093 case HCLGE_ETHERTYPE_ALREADY_ADD: 9094 return_status = 0; 9095 break; 9096 case HCLGE_ETHERTYPE_MGR_TBL_OVERFLOW: 9097 dev_err(&hdev->pdev->dev, 9098 "add mac ethertype failed for manager table overflow.\n"); 9099 return_status = -EIO; 9100 break; 9101 case HCLGE_ETHERTYPE_KEY_CONFLICT: 9102 dev_err(&hdev->pdev->dev, 9103 "add mac ethertype failed for key conflict.\n"); 9104 return_status = -EIO; 9105 break; 9106 default: 9107 dev_err(&hdev->pdev->dev, 9108 "add mac ethertype failed for undefined, code=%u.\n", 9109 resp_code); 9110 return_status = -EIO; 9111 } 9112 9113 return return_status; 9114 } 9115 9116 static int hclge_set_vf_mac(struct hnae3_handle *handle, int vf, 9117 u8 *mac_addr) 9118 { 9119 struct hclge_vport *vport = hclge_get_vport(handle); 9120 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN]; 9121 struct hclge_dev *hdev = vport->back; 9122 9123 vport = hclge_get_vf_vport(hdev, vf); 9124 if (!vport) 9125 return -EINVAL; 9126 9127 hnae3_format_mac_addr(format_mac_addr, mac_addr); 9128 if (ether_addr_equal(mac_addr, vport->vf_info.mac)) { 9129 dev_info(&hdev->pdev->dev, 9130 "Specified MAC(=%s) is same as before, no change committed!\n", 9131 format_mac_addr); 9132 return 0; 9133 } 9134 9135 ether_addr_copy(vport->vf_info.mac, mac_addr); 9136 9137 /* there is a timewindow for PF to know VF unalive, it may 9138 * cause send mailbox fail, but it doesn't matter, VF will 9139 * query it when reinit. 9140 */ 9141 if (test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state)) { 9142 dev_info(&hdev->pdev->dev, 9143 "MAC of VF %d has been set to %s, and it will be reinitialized!\n", 9144 vf, format_mac_addr); 9145 (void)hclge_inform_reset_assert_to_vf(vport); 9146 return 0; 9147 } 9148 9149 dev_info(&hdev->pdev->dev, 9150 "MAC of VF %d has been set to %s, will be active after VF reset\n", 9151 vf, format_mac_addr); 9152 return 0; 9153 } 9154 9155 static int hclge_add_mgr_tbl(struct hclge_dev *hdev, 9156 const struct hclge_mac_mgr_tbl_entry_cmd *req) 9157 { 9158 struct hclge_desc desc; 9159 u8 resp_code; 9160 u16 retval; 9161 int ret; 9162 9163 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_ETHTYPE_ADD, false); 9164 memcpy(desc.data, req, sizeof(struct hclge_mac_mgr_tbl_entry_cmd)); 9165 9166 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 9167 if (ret) { 9168 dev_err(&hdev->pdev->dev, 9169 "add mac ethertype failed for cmd_send, ret =%d.\n", 9170 ret); 9171 return ret; 9172 } 9173 9174 resp_code = (le32_to_cpu(desc.data[0]) >> 8) & 0xff; 9175 retval = le16_to_cpu(desc.retval); 9176 9177 return hclge_get_mac_ethertype_cmd_status(hdev, retval, resp_code); 9178 } 9179 9180 static int init_mgr_tbl(struct hclge_dev *hdev) 9181 { 9182 int ret; 9183 int i; 9184 9185 for (i = 0; i < ARRAY_SIZE(hclge_mgr_table); i++) { 9186 ret = hclge_add_mgr_tbl(hdev, &hclge_mgr_table[i]); 9187 if (ret) { 9188 dev_err(&hdev->pdev->dev, 9189 "add mac ethertype failed, ret =%d.\n", 9190 ret); 9191 return ret; 9192 } 9193 } 9194 9195 return 0; 9196 } 9197 9198 static void hclge_get_mac_addr(struct hnae3_handle *handle, u8 *p) 9199 { 9200 struct hclge_vport *vport = hclge_get_vport(handle); 9201 struct hclge_dev *hdev = vport->back; 9202 9203 ether_addr_copy(p, hdev->hw.mac.mac_addr); 9204 } 9205 9206 int hclge_update_mac_node_for_dev_addr(struct hclge_vport *vport, 9207 const u8 *old_addr, const u8 *new_addr) 9208 { 9209 struct list_head *list = &vport->uc_mac_list; 9210 struct hclge_mac_node *old_node, *new_node; 9211 9212 new_node = hclge_find_mac_node(list, new_addr); 9213 if (!new_node) { 9214 new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC); 9215 if (!new_node) 9216 return -ENOMEM; 9217 9218 new_node->state = HCLGE_MAC_TO_ADD; 9219 ether_addr_copy(new_node->mac_addr, new_addr); 9220 list_add(&new_node->node, list); 9221 } else { 9222 if (new_node->state == HCLGE_MAC_TO_DEL) 9223 new_node->state = HCLGE_MAC_ACTIVE; 9224 9225 /* make sure the new addr is in the list head, avoid dev 9226 * addr may be not re-added into mac table for the umv space 9227 * limitation after global/imp reset which will clear mac 9228 * table by hardware. 9229 */ 9230 list_move(&new_node->node, list); 9231 } 9232 9233 if (old_addr && !ether_addr_equal(old_addr, new_addr)) { 9234 old_node = hclge_find_mac_node(list, old_addr); 9235 if (old_node) { 9236 if (old_node->state == HCLGE_MAC_TO_ADD) { 9237 list_del(&old_node->node); 9238 kfree(old_node); 9239 } else { 9240 old_node->state = HCLGE_MAC_TO_DEL; 9241 } 9242 } 9243 } 9244 9245 set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, &vport->state); 9246 9247 return 0; 9248 } 9249 9250 static int hclge_set_mac_addr(struct hnae3_handle *handle, const void *p, 9251 bool is_first) 9252 { 9253 const unsigned char *new_addr = (const unsigned char *)p; 9254 struct hclge_vport *vport = hclge_get_vport(handle); 9255 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN]; 9256 struct hclge_dev *hdev = vport->back; 9257 unsigned char *old_addr = NULL; 9258 int ret; 9259 9260 /* mac addr check */ 9261 if (is_zero_ether_addr(new_addr) || 9262 is_broadcast_ether_addr(new_addr) || 9263 is_multicast_ether_addr(new_addr)) { 9264 hnae3_format_mac_addr(format_mac_addr, new_addr); 9265 dev_err(&hdev->pdev->dev, 9266 "change uc mac err! invalid mac: %s.\n", 9267 format_mac_addr); 9268 return -EINVAL; 9269 } 9270 9271 ret = hclge_pause_addr_cfg(hdev, new_addr); 9272 if (ret) { 9273 dev_err(&hdev->pdev->dev, 9274 "failed to configure mac pause address, ret = %d\n", 9275 ret); 9276 return ret; 9277 } 9278 9279 if (!is_first) 9280 old_addr = hdev->hw.mac.mac_addr; 9281 9282 spin_lock_bh(&vport->mac_list_lock); 9283 ret = hclge_update_mac_node_for_dev_addr(vport, old_addr, new_addr); 9284 if (ret) { 9285 hnae3_format_mac_addr(format_mac_addr, new_addr); 9286 dev_err(&hdev->pdev->dev, 9287 "failed to change the mac addr:%s, ret = %d\n", 9288 format_mac_addr, ret); 9289 spin_unlock_bh(&vport->mac_list_lock); 9290 9291 if (!is_first) 9292 hclge_pause_addr_cfg(hdev, old_addr); 9293 9294 return ret; 9295 } 9296 /* we must update dev addr with spin lock protect, preventing dev addr 9297 * being removed by set_rx_mode path. 9298 */ 9299 ether_addr_copy(hdev->hw.mac.mac_addr, new_addr); 9300 spin_unlock_bh(&vport->mac_list_lock); 9301 9302 hclge_task_schedule(hdev, 0); 9303 9304 return 0; 9305 } 9306 9307 static int hclge_mii_ioctl(struct hclge_dev *hdev, struct ifreq *ifr, int cmd) 9308 { 9309 struct mii_ioctl_data *data = if_mii(ifr); 9310 9311 if (!hnae3_dev_phy_imp_supported(hdev)) 9312 return -EOPNOTSUPP; 9313 9314 switch (cmd) { 9315 case SIOCGMIIPHY: 9316 data->phy_id = hdev->hw.mac.phy_addr; 9317 /* this command reads phy id and register at the same time */ 9318 fallthrough; 9319 case SIOCGMIIREG: 9320 data->val_out = hclge_read_phy_reg(hdev, data->reg_num); 9321 return 0; 9322 9323 case SIOCSMIIREG: 9324 return hclge_write_phy_reg(hdev, data->reg_num, data->val_in); 9325 default: 9326 return -EOPNOTSUPP; 9327 } 9328 } 9329 9330 static int hclge_do_ioctl(struct hnae3_handle *handle, struct ifreq *ifr, 9331 int cmd) 9332 { 9333 struct hclge_vport *vport = hclge_get_vport(handle); 9334 struct hclge_dev *hdev = vport->back; 9335 9336 switch (cmd) { 9337 case SIOCGHWTSTAMP: 9338 return hclge_ptp_get_cfg(hdev, ifr); 9339 case SIOCSHWTSTAMP: 9340 return hclge_ptp_set_cfg(hdev, ifr); 9341 default: 9342 if (!hdev->hw.mac.phydev) 9343 return hclge_mii_ioctl(hdev, ifr, cmd); 9344 } 9345 9346 return phy_mii_ioctl(hdev->hw.mac.phydev, ifr, cmd); 9347 } 9348 9349 static int hclge_set_port_vlan_filter_bypass(struct hclge_dev *hdev, u8 vf_id, 9350 bool bypass_en) 9351 { 9352 struct hclge_port_vlan_filter_bypass_cmd *req; 9353 struct hclge_desc desc; 9354 int ret; 9355 9356 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_PORT_VLAN_BYPASS, false); 9357 req = (struct hclge_port_vlan_filter_bypass_cmd *)desc.data; 9358 req->vf_id = vf_id; 9359 hnae3_set_bit(req->bypass_state, HCLGE_INGRESS_BYPASS_B, 9360 bypass_en ? 1 : 0); 9361 9362 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 9363 if (ret) 9364 dev_err(&hdev->pdev->dev, 9365 "failed to set vport%u port vlan filter bypass state, ret = %d.\n", 9366 vf_id, ret); 9367 9368 return ret; 9369 } 9370 9371 static int hclge_set_vlan_filter_ctrl(struct hclge_dev *hdev, u8 vlan_type, 9372 u8 fe_type, bool filter_en, u8 vf_id) 9373 { 9374 struct hclge_vlan_filter_ctrl_cmd *req; 9375 struct hclge_desc desc; 9376 int ret; 9377 9378 /* read current vlan filter parameter */ 9379 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_VLAN_FILTER_CTRL, true); 9380 req = (struct hclge_vlan_filter_ctrl_cmd *)desc.data; 9381 req->vlan_type = vlan_type; 9382 req->vf_id = vf_id; 9383 9384 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 9385 if (ret) { 9386 dev_err(&hdev->pdev->dev, "failed to get vport%u vlan filter config, ret = %d.\n", 9387 vf_id, ret); 9388 return ret; 9389 } 9390 9391 /* modify and write new config parameter */ 9392 hclge_comm_cmd_reuse_desc(&desc, false); 9393 req->vlan_fe = filter_en ? 9394 (req->vlan_fe | fe_type) : (req->vlan_fe & ~fe_type); 9395 9396 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 9397 if (ret) 9398 dev_err(&hdev->pdev->dev, "failed to set vport%u vlan filter, ret = %d.\n", 9399 vf_id, ret); 9400 9401 return ret; 9402 } 9403 9404 static int hclge_set_vport_vlan_filter(struct hclge_vport *vport, bool enable) 9405 { 9406 struct hclge_dev *hdev = vport->back; 9407 struct hnae3_ae_dev *ae_dev = hdev->ae_dev; 9408 int ret; 9409 9410 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2) 9411 return hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF, 9412 HCLGE_FILTER_FE_EGRESS_V1_B, 9413 enable, vport->vport_id); 9414 9415 ret = hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF, 9416 HCLGE_FILTER_FE_EGRESS, enable, 9417 vport->vport_id); 9418 if (ret) 9419 return ret; 9420 9421 if (test_bit(HNAE3_DEV_SUPPORT_PORT_VLAN_BYPASS_B, ae_dev->caps)) { 9422 ret = hclge_set_port_vlan_filter_bypass(hdev, vport->vport_id, 9423 !enable); 9424 } else if (!vport->vport_id) { 9425 if (test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps)) 9426 enable = false; 9427 9428 ret = hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_PORT, 9429 HCLGE_FILTER_FE_INGRESS, 9430 enable, 0); 9431 } 9432 9433 return ret; 9434 } 9435 9436 static bool hclge_need_enable_vport_vlan_filter(struct hclge_vport *vport) 9437 { 9438 struct hnae3_handle *handle = &vport->nic; 9439 struct hclge_vport_vlan_cfg *vlan, *tmp; 9440 struct hclge_dev *hdev = vport->back; 9441 9442 if (vport->vport_id) { 9443 if (vport->port_base_vlan_cfg.state != 9444 HNAE3_PORT_BASE_VLAN_DISABLE) 9445 return true; 9446 9447 if (vport->vf_info.trusted && vport->vf_info.request_uc_en) 9448 return false; 9449 } else if (handle->netdev_flags & HNAE3_USER_UPE) { 9450 return false; 9451 } 9452 9453 if (!vport->req_vlan_fltr_en) 9454 return false; 9455 9456 /* compatible with former device, always enable vlan filter */ 9457 if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, hdev->ae_dev->caps)) 9458 return true; 9459 9460 list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) 9461 if (vlan->vlan_id != 0) 9462 return true; 9463 9464 return false; 9465 } 9466 9467 int hclge_enable_vport_vlan_filter(struct hclge_vport *vport, bool request_en) 9468 { 9469 struct hclge_dev *hdev = vport->back; 9470 bool need_en; 9471 int ret; 9472 9473 mutex_lock(&hdev->vport_lock); 9474 9475 vport->req_vlan_fltr_en = request_en; 9476 9477 need_en = hclge_need_enable_vport_vlan_filter(vport); 9478 if (need_en == vport->cur_vlan_fltr_en) { 9479 mutex_unlock(&hdev->vport_lock); 9480 return 0; 9481 } 9482 9483 ret = hclge_set_vport_vlan_filter(vport, need_en); 9484 if (ret) { 9485 mutex_unlock(&hdev->vport_lock); 9486 return ret; 9487 } 9488 9489 vport->cur_vlan_fltr_en = need_en; 9490 9491 mutex_unlock(&hdev->vport_lock); 9492 9493 return 0; 9494 } 9495 9496 static int hclge_enable_vlan_filter(struct hnae3_handle *handle, bool enable) 9497 { 9498 struct hclge_vport *vport = hclge_get_vport(handle); 9499 9500 return hclge_enable_vport_vlan_filter(vport, enable); 9501 } 9502 9503 static int hclge_set_vf_vlan_filter_cmd(struct hclge_dev *hdev, u16 vfid, 9504 bool is_kill, u16 vlan, 9505 struct hclge_desc *desc) 9506 { 9507 struct hclge_vlan_filter_vf_cfg_cmd *req0; 9508 struct hclge_vlan_filter_vf_cfg_cmd *req1; 9509 u8 vf_byte_val; 9510 u8 vf_byte_off; 9511 int ret; 9512 9513 hclge_cmd_setup_basic_desc(&desc[0], 9514 HCLGE_OPC_VLAN_FILTER_VF_CFG, false); 9515 hclge_cmd_setup_basic_desc(&desc[1], 9516 HCLGE_OPC_VLAN_FILTER_VF_CFG, false); 9517 9518 desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 9519 9520 vf_byte_off = vfid / 8; 9521 vf_byte_val = 1 << (vfid % 8); 9522 9523 req0 = (struct hclge_vlan_filter_vf_cfg_cmd *)desc[0].data; 9524 req1 = (struct hclge_vlan_filter_vf_cfg_cmd *)desc[1].data; 9525 9526 req0->vlan_id = cpu_to_le16(vlan); 9527 req0->vlan_cfg = is_kill; 9528 9529 if (vf_byte_off < HCLGE_MAX_VF_BYTES) 9530 req0->vf_bitmap[vf_byte_off] = vf_byte_val; 9531 else 9532 req1->vf_bitmap[vf_byte_off - HCLGE_MAX_VF_BYTES] = vf_byte_val; 9533 9534 ret = hclge_cmd_send(&hdev->hw, desc, 2); 9535 if (ret) { 9536 dev_err(&hdev->pdev->dev, 9537 "Send vf vlan command fail, ret =%d.\n", 9538 ret); 9539 return ret; 9540 } 9541 9542 return 0; 9543 } 9544 9545 static int hclge_check_vf_vlan_cmd_status(struct hclge_dev *hdev, u16 vfid, 9546 bool is_kill, struct hclge_desc *desc) 9547 { 9548 struct hclge_vlan_filter_vf_cfg_cmd *req; 9549 9550 req = (struct hclge_vlan_filter_vf_cfg_cmd *)desc[0].data; 9551 9552 if (!is_kill) { 9553 #define HCLGE_VF_VLAN_NO_ENTRY 2 9554 if (!req->resp_code || req->resp_code == 1) 9555 return 0; 9556 9557 if (req->resp_code == HCLGE_VF_VLAN_NO_ENTRY) { 9558 set_bit(vfid, hdev->vf_vlan_full); 9559 dev_warn(&hdev->pdev->dev, 9560 "vf vlan table is full, vf vlan filter is disabled\n"); 9561 return 0; 9562 } 9563 9564 dev_err(&hdev->pdev->dev, 9565 "Add vf vlan filter fail, ret =%u.\n", 9566 req->resp_code); 9567 } else { 9568 #define HCLGE_VF_VLAN_DEL_NO_FOUND 1 9569 if (!req->resp_code) 9570 return 0; 9571 9572 /* vf vlan filter is disabled when vf vlan table is full, 9573 * then new vlan id will not be added into vf vlan table. 9574 * Just return 0 without warning, avoid massive verbose 9575 * print logs when unload. 9576 */ 9577 if (req->resp_code == HCLGE_VF_VLAN_DEL_NO_FOUND) 9578 return 0; 9579 9580 dev_err(&hdev->pdev->dev, 9581 "Kill vf vlan filter fail, ret =%u.\n", 9582 req->resp_code); 9583 } 9584 9585 return -EIO; 9586 } 9587 9588 static int hclge_set_vf_vlan_common(struct hclge_dev *hdev, u16 vfid, 9589 bool is_kill, u16 vlan) 9590 { 9591 struct hclge_vport *vport = &hdev->vport[vfid]; 9592 struct hclge_desc desc[2]; 9593 int ret; 9594 9595 /* if vf vlan table is full, firmware will close vf vlan filter, it 9596 * is unable and unnecessary to add new vlan id to vf vlan filter. 9597 * If spoof check is enable, and vf vlan is full, it shouldn't add 9598 * new vlan, because tx packets with these vlan id will be dropped. 9599 */ 9600 if (test_bit(vfid, hdev->vf_vlan_full) && !is_kill) { 9601 if (vport->vf_info.spoofchk && vlan) { 9602 dev_err(&hdev->pdev->dev, 9603 "Can't add vlan due to spoof check is on and vf vlan table is full\n"); 9604 return -EPERM; 9605 } 9606 return 0; 9607 } 9608 9609 ret = hclge_set_vf_vlan_filter_cmd(hdev, vfid, is_kill, vlan, desc); 9610 if (ret) 9611 return ret; 9612 9613 return hclge_check_vf_vlan_cmd_status(hdev, vfid, is_kill, desc); 9614 } 9615 9616 static int hclge_set_port_vlan_filter(struct hclge_dev *hdev, __be16 proto, 9617 u16 vlan_id, bool is_kill) 9618 { 9619 struct hclge_vlan_filter_pf_cfg_cmd *req; 9620 struct hclge_desc desc; 9621 u8 vlan_offset_byte_val; 9622 u8 vlan_offset_byte; 9623 u8 vlan_offset_160; 9624 int ret; 9625 9626 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_VLAN_FILTER_PF_CFG, false); 9627 9628 vlan_offset_160 = vlan_id / HCLGE_VLAN_ID_OFFSET_STEP; 9629 vlan_offset_byte = (vlan_id % HCLGE_VLAN_ID_OFFSET_STEP) / 9630 HCLGE_VLAN_BYTE_SIZE; 9631 vlan_offset_byte_val = 1 << (vlan_id % HCLGE_VLAN_BYTE_SIZE); 9632 9633 req = (struct hclge_vlan_filter_pf_cfg_cmd *)desc.data; 9634 req->vlan_offset = vlan_offset_160; 9635 req->vlan_cfg = is_kill; 9636 req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val; 9637 9638 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 9639 if (ret) 9640 dev_err(&hdev->pdev->dev, 9641 "port vlan command, send fail, ret =%d.\n", ret); 9642 return ret; 9643 } 9644 9645 static bool hclge_need_update_port_vlan(struct hclge_dev *hdev, u16 vport_id, 9646 u16 vlan_id, bool is_kill) 9647 { 9648 /* vlan 0 may be added twice when 8021q module is enabled */ 9649 if (!is_kill && !vlan_id && 9650 test_bit(vport_id, hdev->vlan_table[vlan_id])) 9651 return false; 9652 9653 if (!is_kill && test_and_set_bit(vport_id, hdev->vlan_table[vlan_id])) { 9654 dev_warn(&hdev->pdev->dev, 9655 "Add port vlan failed, vport %u is already in vlan %u\n", 9656 vport_id, vlan_id); 9657 return false; 9658 } 9659 9660 if (is_kill && 9661 !test_and_clear_bit(vport_id, hdev->vlan_table[vlan_id])) { 9662 dev_warn(&hdev->pdev->dev, 9663 "Delete port vlan failed, vport %u is not in vlan %u\n", 9664 vport_id, vlan_id); 9665 return false; 9666 } 9667 9668 return true; 9669 } 9670 9671 static int hclge_set_vlan_filter_hw(struct hclge_dev *hdev, __be16 proto, 9672 u16 vport_id, u16 vlan_id, 9673 bool is_kill) 9674 { 9675 u16 vport_idx, vport_num = 0; 9676 int ret; 9677 9678 if (is_kill && !vlan_id) 9679 return 0; 9680 9681 if (vlan_id >= VLAN_N_VID) 9682 return -EINVAL; 9683 9684 ret = hclge_set_vf_vlan_common(hdev, vport_id, is_kill, vlan_id); 9685 if (ret) { 9686 dev_err(&hdev->pdev->dev, 9687 "Set %u vport vlan filter config fail, ret =%d.\n", 9688 vport_id, ret); 9689 return ret; 9690 } 9691 9692 if (!hclge_need_update_port_vlan(hdev, vport_id, vlan_id, is_kill)) 9693 return 0; 9694 9695 for_each_set_bit(vport_idx, hdev->vlan_table[vlan_id], HCLGE_VPORT_NUM) 9696 vport_num++; 9697 9698 if ((is_kill && vport_num == 0) || (!is_kill && vport_num == 1)) 9699 ret = hclge_set_port_vlan_filter(hdev, proto, vlan_id, 9700 is_kill); 9701 9702 return ret; 9703 } 9704 9705 static int hclge_set_vlan_tx_offload_cfg(struct hclge_vport *vport) 9706 { 9707 struct hclge_tx_vtag_cfg *vcfg = &vport->txvlan_cfg; 9708 struct hclge_vport_vtag_tx_cfg_cmd *req; 9709 struct hclge_dev *hdev = vport->back; 9710 struct hclge_desc desc; 9711 u16 bmap_index; 9712 int status; 9713 9714 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_VLAN_PORT_TX_CFG, false); 9715 9716 req = (struct hclge_vport_vtag_tx_cfg_cmd *)desc.data; 9717 req->def_vlan_tag1 = cpu_to_le16(vcfg->default_tag1); 9718 req->def_vlan_tag2 = cpu_to_le16(vcfg->default_tag2); 9719 hnae3_set_bit(req->vport_vlan_cfg, HCLGE_ACCEPT_TAG1_B, 9720 vcfg->accept_tag1 ? 1 : 0); 9721 hnae3_set_bit(req->vport_vlan_cfg, HCLGE_ACCEPT_UNTAG1_B, 9722 vcfg->accept_untag1 ? 1 : 0); 9723 hnae3_set_bit(req->vport_vlan_cfg, HCLGE_ACCEPT_TAG2_B, 9724 vcfg->accept_tag2 ? 1 : 0); 9725 hnae3_set_bit(req->vport_vlan_cfg, HCLGE_ACCEPT_UNTAG2_B, 9726 vcfg->accept_untag2 ? 1 : 0); 9727 hnae3_set_bit(req->vport_vlan_cfg, HCLGE_PORT_INS_TAG1_EN_B, 9728 vcfg->insert_tag1_en ? 1 : 0); 9729 hnae3_set_bit(req->vport_vlan_cfg, HCLGE_PORT_INS_TAG2_EN_B, 9730 vcfg->insert_tag2_en ? 1 : 0); 9731 hnae3_set_bit(req->vport_vlan_cfg, HCLGE_TAG_SHIFT_MODE_EN_B, 9732 vcfg->tag_shift_mode_en ? 1 : 0); 9733 hnae3_set_bit(req->vport_vlan_cfg, HCLGE_CFG_NIC_ROCE_SEL_B, 0); 9734 9735 req->vf_offset = vport->vport_id / HCLGE_VF_NUM_PER_CMD; 9736 bmap_index = vport->vport_id % HCLGE_VF_NUM_PER_CMD / 9737 HCLGE_VF_NUM_PER_BYTE; 9738 req->vf_bitmap[bmap_index] = 9739 1U << (vport->vport_id % HCLGE_VF_NUM_PER_BYTE); 9740 9741 status = hclge_cmd_send(&hdev->hw, &desc, 1); 9742 if (status) 9743 dev_err(&hdev->pdev->dev, 9744 "Send port txvlan cfg command fail, ret =%d\n", 9745 status); 9746 9747 return status; 9748 } 9749 9750 static int hclge_set_vlan_rx_offload_cfg(struct hclge_vport *vport) 9751 { 9752 struct hclge_rx_vtag_cfg *vcfg = &vport->rxvlan_cfg; 9753 struct hclge_vport_vtag_rx_cfg_cmd *req; 9754 struct hclge_dev *hdev = vport->back; 9755 struct hclge_desc desc; 9756 u16 bmap_index; 9757 int status; 9758 9759 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_VLAN_PORT_RX_CFG, false); 9760 9761 req = (struct hclge_vport_vtag_rx_cfg_cmd *)desc.data; 9762 hnae3_set_bit(req->vport_vlan_cfg, HCLGE_REM_TAG1_EN_B, 9763 vcfg->strip_tag1_en ? 1 : 0); 9764 hnae3_set_bit(req->vport_vlan_cfg, HCLGE_REM_TAG2_EN_B, 9765 vcfg->strip_tag2_en ? 1 : 0); 9766 hnae3_set_bit(req->vport_vlan_cfg, HCLGE_SHOW_TAG1_EN_B, 9767 vcfg->vlan1_vlan_prionly ? 1 : 0); 9768 hnae3_set_bit(req->vport_vlan_cfg, HCLGE_SHOW_TAG2_EN_B, 9769 vcfg->vlan2_vlan_prionly ? 1 : 0); 9770 hnae3_set_bit(req->vport_vlan_cfg, HCLGE_DISCARD_TAG1_EN_B, 9771 vcfg->strip_tag1_discard_en ? 1 : 0); 9772 hnae3_set_bit(req->vport_vlan_cfg, HCLGE_DISCARD_TAG2_EN_B, 9773 vcfg->strip_tag2_discard_en ? 1 : 0); 9774 9775 req->vf_offset = vport->vport_id / HCLGE_VF_NUM_PER_CMD; 9776 bmap_index = vport->vport_id % HCLGE_VF_NUM_PER_CMD / 9777 HCLGE_VF_NUM_PER_BYTE; 9778 req->vf_bitmap[bmap_index] = 9779 1U << (vport->vport_id % HCLGE_VF_NUM_PER_BYTE); 9780 9781 status = hclge_cmd_send(&hdev->hw, &desc, 1); 9782 if (status) 9783 dev_err(&hdev->pdev->dev, 9784 "Send port rxvlan cfg command fail, ret =%d\n", 9785 status); 9786 9787 return status; 9788 } 9789 9790 static int hclge_vlan_offload_cfg(struct hclge_vport *vport, 9791 u16 port_base_vlan_state, 9792 u16 vlan_tag, u8 qos) 9793 { 9794 int ret; 9795 9796 if (port_base_vlan_state == HNAE3_PORT_BASE_VLAN_DISABLE) { 9797 vport->txvlan_cfg.accept_tag1 = true; 9798 vport->txvlan_cfg.insert_tag1_en = false; 9799 vport->txvlan_cfg.default_tag1 = 0; 9800 } else { 9801 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(vport->nic.pdev); 9802 9803 vport->txvlan_cfg.accept_tag1 = 9804 ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3; 9805 vport->txvlan_cfg.insert_tag1_en = true; 9806 vport->txvlan_cfg.default_tag1 = (qos << VLAN_PRIO_SHIFT) | 9807 vlan_tag; 9808 } 9809 9810 vport->txvlan_cfg.accept_untag1 = true; 9811 9812 /* accept_tag2 and accept_untag2 are not supported on 9813 * pdev revision(0x20), new revision support them, 9814 * this two fields can not be configured by user. 9815 */ 9816 vport->txvlan_cfg.accept_tag2 = true; 9817 vport->txvlan_cfg.accept_untag2 = true; 9818 vport->txvlan_cfg.insert_tag2_en = false; 9819 vport->txvlan_cfg.default_tag2 = 0; 9820 vport->txvlan_cfg.tag_shift_mode_en = true; 9821 9822 if (port_base_vlan_state == HNAE3_PORT_BASE_VLAN_DISABLE) { 9823 vport->rxvlan_cfg.strip_tag1_en = false; 9824 vport->rxvlan_cfg.strip_tag2_en = 9825 vport->rxvlan_cfg.rx_vlan_offload_en; 9826 vport->rxvlan_cfg.strip_tag2_discard_en = false; 9827 } else { 9828 vport->rxvlan_cfg.strip_tag1_en = 9829 vport->rxvlan_cfg.rx_vlan_offload_en; 9830 vport->rxvlan_cfg.strip_tag2_en = true; 9831 vport->rxvlan_cfg.strip_tag2_discard_en = true; 9832 } 9833 9834 vport->rxvlan_cfg.strip_tag1_discard_en = false; 9835 vport->rxvlan_cfg.vlan1_vlan_prionly = false; 9836 vport->rxvlan_cfg.vlan2_vlan_prionly = false; 9837 9838 ret = hclge_set_vlan_tx_offload_cfg(vport); 9839 if (ret) 9840 return ret; 9841 9842 return hclge_set_vlan_rx_offload_cfg(vport); 9843 } 9844 9845 static int hclge_set_vlan_protocol_type(struct hclge_dev *hdev) 9846 { 9847 struct hclge_rx_vlan_type_cfg_cmd *rx_req; 9848 struct hclge_tx_vlan_type_cfg_cmd *tx_req; 9849 struct hclge_desc desc; 9850 int status; 9851 9852 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_TYPE_ID, false); 9853 rx_req = (struct hclge_rx_vlan_type_cfg_cmd *)desc.data; 9854 rx_req->ot_fst_vlan_type = 9855 cpu_to_le16(hdev->vlan_type_cfg.rx_ot_fst_vlan_type); 9856 rx_req->ot_sec_vlan_type = 9857 cpu_to_le16(hdev->vlan_type_cfg.rx_ot_sec_vlan_type); 9858 rx_req->in_fst_vlan_type = 9859 cpu_to_le16(hdev->vlan_type_cfg.rx_in_fst_vlan_type); 9860 rx_req->in_sec_vlan_type = 9861 cpu_to_le16(hdev->vlan_type_cfg.rx_in_sec_vlan_type); 9862 9863 status = hclge_cmd_send(&hdev->hw, &desc, 1); 9864 if (status) { 9865 dev_err(&hdev->pdev->dev, 9866 "Send rxvlan protocol type command fail, ret =%d\n", 9867 status); 9868 return status; 9869 } 9870 9871 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_VLAN_INSERT, false); 9872 9873 tx_req = (struct hclge_tx_vlan_type_cfg_cmd *)desc.data; 9874 tx_req->ot_vlan_type = cpu_to_le16(hdev->vlan_type_cfg.tx_ot_vlan_type); 9875 tx_req->in_vlan_type = cpu_to_le16(hdev->vlan_type_cfg.tx_in_vlan_type); 9876 9877 status = hclge_cmd_send(&hdev->hw, &desc, 1); 9878 if (status) 9879 dev_err(&hdev->pdev->dev, 9880 "Send txvlan protocol type command fail, ret =%d\n", 9881 status); 9882 9883 return status; 9884 } 9885 9886 static int hclge_init_vlan_filter(struct hclge_dev *hdev) 9887 { 9888 struct hclge_vport *vport; 9889 int ret; 9890 int i; 9891 9892 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2) 9893 return hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF, 9894 HCLGE_FILTER_FE_EGRESS_V1_B, 9895 true, 0); 9896 9897 /* for revision 0x21, vf vlan filter is per function */ 9898 for (i = 0; i < hdev->num_alloc_vport; i++) { 9899 vport = &hdev->vport[i]; 9900 ret = hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF, 9901 HCLGE_FILTER_FE_EGRESS, true, 9902 vport->vport_id); 9903 if (ret) 9904 return ret; 9905 vport->cur_vlan_fltr_en = true; 9906 } 9907 9908 return hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_PORT, 9909 HCLGE_FILTER_FE_INGRESS, true, 0); 9910 } 9911 9912 static int hclge_init_vlan_type(struct hclge_dev *hdev) 9913 { 9914 hdev->vlan_type_cfg.rx_in_fst_vlan_type = ETH_P_8021Q; 9915 hdev->vlan_type_cfg.rx_in_sec_vlan_type = ETH_P_8021Q; 9916 hdev->vlan_type_cfg.rx_ot_fst_vlan_type = ETH_P_8021Q; 9917 hdev->vlan_type_cfg.rx_ot_sec_vlan_type = ETH_P_8021Q; 9918 hdev->vlan_type_cfg.tx_ot_vlan_type = ETH_P_8021Q; 9919 hdev->vlan_type_cfg.tx_in_vlan_type = ETH_P_8021Q; 9920 9921 return hclge_set_vlan_protocol_type(hdev); 9922 } 9923 9924 static int hclge_init_vport_vlan_offload(struct hclge_dev *hdev) 9925 { 9926 struct hclge_port_base_vlan_config *cfg; 9927 struct hclge_vport *vport; 9928 int ret; 9929 int i; 9930 9931 for (i = 0; i < hdev->num_alloc_vport; i++) { 9932 vport = &hdev->vport[i]; 9933 cfg = &vport->port_base_vlan_cfg; 9934 9935 ret = hclge_vlan_offload_cfg(vport, cfg->state, 9936 cfg->vlan_info.vlan_tag, 9937 cfg->vlan_info.qos); 9938 if (ret) 9939 return ret; 9940 } 9941 return 0; 9942 } 9943 9944 static int hclge_init_vlan_config(struct hclge_dev *hdev) 9945 { 9946 struct hnae3_handle *handle = &hdev->vport[0].nic; 9947 int ret; 9948 9949 ret = hclge_init_vlan_filter(hdev); 9950 if (ret) 9951 return ret; 9952 9953 ret = hclge_init_vlan_type(hdev); 9954 if (ret) 9955 return ret; 9956 9957 ret = hclge_init_vport_vlan_offload(hdev); 9958 if (ret) 9959 return ret; 9960 9961 return hclge_set_vlan_filter(handle, htons(ETH_P_8021Q), 0, false); 9962 } 9963 9964 static void hclge_add_vport_vlan_table(struct hclge_vport *vport, u16 vlan_id, 9965 bool writen_to_tbl) 9966 { 9967 struct hclge_vport_vlan_cfg *vlan, *tmp; 9968 struct hclge_dev *hdev = vport->back; 9969 9970 mutex_lock(&hdev->vport_lock); 9971 9972 list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) { 9973 if (vlan->vlan_id == vlan_id) { 9974 mutex_unlock(&hdev->vport_lock); 9975 return; 9976 } 9977 } 9978 9979 vlan = kzalloc(sizeof(*vlan), GFP_KERNEL); 9980 if (!vlan) { 9981 mutex_unlock(&hdev->vport_lock); 9982 return; 9983 } 9984 9985 vlan->hd_tbl_status = writen_to_tbl; 9986 vlan->vlan_id = vlan_id; 9987 9988 list_add_tail(&vlan->node, &vport->vlan_list); 9989 mutex_unlock(&hdev->vport_lock); 9990 } 9991 9992 static int hclge_add_vport_all_vlan_table(struct hclge_vport *vport) 9993 { 9994 struct hclge_vport_vlan_cfg *vlan, *tmp; 9995 struct hclge_dev *hdev = vport->back; 9996 int ret; 9997 9998 mutex_lock(&hdev->vport_lock); 9999 10000 list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) { 10001 if (!vlan->hd_tbl_status) { 10002 ret = hclge_set_vlan_filter_hw(hdev, htons(ETH_P_8021Q), 10003 vport->vport_id, 10004 vlan->vlan_id, false); 10005 if (ret) { 10006 dev_err(&hdev->pdev->dev, 10007 "restore vport vlan list failed, ret=%d\n", 10008 ret); 10009 10010 mutex_unlock(&hdev->vport_lock); 10011 return ret; 10012 } 10013 } 10014 vlan->hd_tbl_status = true; 10015 } 10016 10017 mutex_unlock(&hdev->vport_lock); 10018 10019 return 0; 10020 } 10021 10022 static void hclge_rm_vport_vlan_table(struct hclge_vport *vport, u16 vlan_id, 10023 bool is_write_tbl) 10024 { 10025 struct hclge_vport_vlan_cfg *vlan, *tmp; 10026 struct hclge_dev *hdev = vport->back; 10027 10028 mutex_lock(&hdev->vport_lock); 10029 10030 list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) { 10031 if (vlan->vlan_id == vlan_id) { 10032 if (is_write_tbl && vlan->hd_tbl_status) 10033 hclge_set_vlan_filter_hw(hdev, 10034 htons(ETH_P_8021Q), 10035 vport->vport_id, 10036 vlan_id, 10037 true); 10038 10039 list_del(&vlan->node); 10040 kfree(vlan); 10041 break; 10042 } 10043 } 10044 10045 mutex_unlock(&hdev->vport_lock); 10046 } 10047 10048 void hclge_rm_vport_all_vlan_table(struct hclge_vport *vport, bool is_del_list) 10049 { 10050 struct hclge_vport_vlan_cfg *vlan, *tmp; 10051 struct hclge_dev *hdev = vport->back; 10052 10053 mutex_lock(&hdev->vport_lock); 10054 10055 list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) { 10056 if (vlan->hd_tbl_status) 10057 hclge_set_vlan_filter_hw(hdev, 10058 htons(ETH_P_8021Q), 10059 vport->vport_id, 10060 vlan->vlan_id, 10061 true); 10062 10063 vlan->hd_tbl_status = false; 10064 if (is_del_list) { 10065 list_del(&vlan->node); 10066 kfree(vlan); 10067 } 10068 } 10069 clear_bit(vport->vport_id, hdev->vf_vlan_full); 10070 mutex_unlock(&hdev->vport_lock); 10071 } 10072 10073 void hclge_uninit_vport_vlan_table(struct hclge_dev *hdev) 10074 { 10075 struct hclge_vport_vlan_cfg *vlan, *tmp; 10076 struct hclge_vport *vport; 10077 int i; 10078 10079 mutex_lock(&hdev->vport_lock); 10080 10081 for (i = 0; i < hdev->num_alloc_vport; i++) { 10082 vport = &hdev->vport[i]; 10083 list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) { 10084 list_del(&vlan->node); 10085 kfree(vlan); 10086 } 10087 } 10088 10089 mutex_unlock(&hdev->vport_lock); 10090 } 10091 10092 void hclge_restore_vport_port_base_vlan_config(struct hclge_dev *hdev) 10093 { 10094 struct hclge_vlan_info *vlan_info; 10095 struct hclge_vport *vport; 10096 u16 vlan_proto; 10097 u16 vlan_id; 10098 u16 state; 10099 int vf_id; 10100 int ret; 10101 10102 /* PF should restore all vfs port base vlan */ 10103 for (vf_id = 0; vf_id < hdev->num_alloc_vfs; vf_id++) { 10104 vport = &hdev->vport[vf_id + HCLGE_VF_VPORT_START_NUM]; 10105 vlan_info = vport->port_base_vlan_cfg.tbl_sta ? 10106 &vport->port_base_vlan_cfg.vlan_info : 10107 &vport->port_base_vlan_cfg.old_vlan_info; 10108 10109 vlan_id = vlan_info->vlan_tag; 10110 vlan_proto = vlan_info->vlan_proto; 10111 state = vport->port_base_vlan_cfg.state; 10112 10113 if (state != HNAE3_PORT_BASE_VLAN_DISABLE) { 10114 clear_bit(vport->vport_id, hdev->vlan_table[vlan_id]); 10115 ret = hclge_set_vlan_filter_hw(hdev, htons(vlan_proto), 10116 vport->vport_id, 10117 vlan_id, false); 10118 vport->port_base_vlan_cfg.tbl_sta = ret == 0; 10119 } 10120 } 10121 } 10122 10123 void hclge_restore_vport_vlan_table(struct hclge_vport *vport) 10124 { 10125 struct hclge_vport_vlan_cfg *vlan, *tmp; 10126 struct hclge_dev *hdev = vport->back; 10127 int ret; 10128 10129 mutex_lock(&hdev->vport_lock); 10130 10131 if (vport->port_base_vlan_cfg.state == HNAE3_PORT_BASE_VLAN_DISABLE) { 10132 list_for_each_entry_safe(vlan, tmp, &vport->vlan_list, node) { 10133 ret = hclge_set_vlan_filter_hw(hdev, htons(ETH_P_8021Q), 10134 vport->vport_id, 10135 vlan->vlan_id, false); 10136 if (ret) 10137 break; 10138 vlan->hd_tbl_status = true; 10139 } 10140 } 10141 10142 mutex_unlock(&hdev->vport_lock); 10143 } 10144 10145 /* For global reset and imp reset, hardware will clear the mac table, 10146 * so we change the mac address state from ACTIVE to TO_ADD, then they 10147 * can be restored in the service task after reset complete. Furtherly, 10148 * the mac addresses with state TO_DEL or DEL_FAIL are unnecessary to 10149 * be restored after reset, so just remove these mac nodes from mac_list. 10150 */ 10151 static void hclge_mac_node_convert_for_reset(struct list_head *list) 10152 { 10153 struct hclge_mac_node *mac_node, *tmp; 10154 10155 list_for_each_entry_safe(mac_node, tmp, list, node) { 10156 if (mac_node->state == HCLGE_MAC_ACTIVE) { 10157 mac_node->state = HCLGE_MAC_TO_ADD; 10158 } else if (mac_node->state == HCLGE_MAC_TO_DEL) { 10159 list_del(&mac_node->node); 10160 kfree(mac_node); 10161 } 10162 } 10163 } 10164 10165 void hclge_restore_mac_table_common(struct hclge_vport *vport) 10166 { 10167 spin_lock_bh(&vport->mac_list_lock); 10168 10169 hclge_mac_node_convert_for_reset(&vport->uc_mac_list); 10170 hclge_mac_node_convert_for_reset(&vport->mc_mac_list); 10171 set_bit(HCLGE_VPORT_STATE_MAC_TBL_CHANGE, &vport->state); 10172 10173 spin_unlock_bh(&vport->mac_list_lock); 10174 } 10175 10176 static void hclge_restore_hw_table(struct hclge_dev *hdev) 10177 { 10178 struct hclge_vport *vport = &hdev->vport[0]; 10179 struct hnae3_handle *handle = &vport->nic; 10180 10181 hclge_restore_mac_table_common(vport); 10182 hclge_restore_vport_port_base_vlan_config(hdev); 10183 hclge_restore_vport_vlan_table(vport); 10184 set_bit(HCLGE_STATE_FD_USER_DEF_CHANGED, &hdev->state); 10185 hclge_restore_fd_entries(handle); 10186 } 10187 10188 int hclge_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable) 10189 { 10190 struct hclge_vport *vport = hclge_get_vport(handle); 10191 10192 if (vport->port_base_vlan_cfg.state == HNAE3_PORT_BASE_VLAN_DISABLE) { 10193 vport->rxvlan_cfg.strip_tag1_en = false; 10194 vport->rxvlan_cfg.strip_tag2_en = enable; 10195 vport->rxvlan_cfg.strip_tag2_discard_en = false; 10196 } else { 10197 vport->rxvlan_cfg.strip_tag1_en = enable; 10198 vport->rxvlan_cfg.strip_tag2_en = true; 10199 vport->rxvlan_cfg.strip_tag2_discard_en = true; 10200 } 10201 10202 vport->rxvlan_cfg.strip_tag1_discard_en = false; 10203 vport->rxvlan_cfg.vlan1_vlan_prionly = false; 10204 vport->rxvlan_cfg.vlan2_vlan_prionly = false; 10205 vport->rxvlan_cfg.rx_vlan_offload_en = enable; 10206 10207 return hclge_set_vlan_rx_offload_cfg(vport); 10208 } 10209 10210 static void hclge_set_vport_vlan_fltr_change(struct hclge_vport *vport) 10211 { 10212 struct hclge_dev *hdev = vport->back; 10213 10214 if (test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, hdev->ae_dev->caps)) 10215 set_bit(HCLGE_VPORT_STATE_VLAN_FLTR_CHANGE, &vport->state); 10216 } 10217 10218 static int hclge_update_vlan_filter_entries(struct hclge_vport *vport, 10219 u16 port_base_vlan_state, 10220 struct hclge_vlan_info *new_info, 10221 struct hclge_vlan_info *old_info) 10222 { 10223 struct hclge_dev *hdev = vport->back; 10224 int ret; 10225 10226 if (port_base_vlan_state == HNAE3_PORT_BASE_VLAN_ENABLE) { 10227 hclge_rm_vport_all_vlan_table(vport, false); 10228 /* force clear VLAN 0 */ 10229 ret = hclge_set_vf_vlan_common(hdev, vport->vport_id, true, 0); 10230 if (ret) 10231 return ret; 10232 return hclge_set_vlan_filter_hw(hdev, 10233 htons(new_info->vlan_proto), 10234 vport->vport_id, 10235 new_info->vlan_tag, 10236 false); 10237 } 10238 10239 vport->port_base_vlan_cfg.tbl_sta = false; 10240 10241 /* force add VLAN 0 */ 10242 ret = hclge_set_vf_vlan_common(hdev, vport->vport_id, false, 0); 10243 if (ret) 10244 return ret; 10245 10246 ret = hclge_set_vlan_filter_hw(hdev, htons(old_info->vlan_proto), 10247 vport->vport_id, old_info->vlan_tag, 10248 true); 10249 if (ret) 10250 return ret; 10251 10252 return hclge_add_vport_all_vlan_table(vport); 10253 } 10254 10255 static bool hclge_need_update_vlan_filter(const struct hclge_vlan_info *new_cfg, 10256 const struct hclge_vlan_info *old_cfg) 10257 { 10258 if (new_cfg->vlan_tag != old_cfg->vlan_tag) 10259 return true; 10260 10261 if (new_cfg->vlan_tag == 0 && (new_cfg->qos == 0 || old_cfg->qos == 0)) 10262 return true; 10263 10264 return false; 10265 } 10266 10267 static int hclge_modify_port_base_vlan_tag(struct hclge_vport *vport, 10268 struct hclge_vlan_info *new_info, 10269 struct hclge_vlan_info *old_info) 10270 { 10271 struct hclge_dev *hdev = vport->back; 10272 int ret; 10273 10274 /* add new VLAN tag */ 10275 ret = hclge_set_vlan_filter_hw(hdev, htons(new_info->vlan_proto), 10276 vport->vport_id, new_info->vlan_tag, 10277 false); 10278 if (ret) 10279 return ret; 10280 10281 vport->port_base_vlan_cfg.tbl_sta = false; 10282 /* remove old VLAN tag */ 10283 if (old_info->vlan_tag == 0) 10284 ret = hclge_set_vf_vlan_common(hdev, vport->vport_id, 10285 true, 0); 10286 else 10287 ret = hclge_set_vlan_filter_hw(hdev, htons(ETH_P_8021Q), 10288 vport->vport_id, 10289 old_info->vlan_tag, true); 10290 if (ret) 10291 dev_err(&hdev->pdev->dev, 10292 "failed to clear vport%u port base vlan %u, ret = %d.\n", 10293 vport->vport_id, old_info->vlan_tag, ret); 10294 10295 return ret; 10296 } 10297 10298 int hclge_update_port_base_vlan_cfg(struct hclge_vport *vport, u16 state, 10299 struct hclge_vlan_info *vlan_info) 10300 { 10301 struct hnae3_handle *nic = &vport->nic; 10302 struct hclge_vlan_info *old_vlan_info; 10303 int ret; 10304 10305 old_vlan_info = &vport->port_base_vlan_cfg.vlan_info; 10306 10307 ret = hclge_vlan_offload_cfg(vport, state, vlan_info->vlan_tag, 10308 vlan_info->qos); 10309 if (ret) 10310 return ret; 10311 10312 if (!hclge_need_update_vlan_filter(vlan_info, old_vlan_info)) 10313 goto out; 10314 10315 if (state == HNAE3_PORT_BASE_VLAN_MODIFY) 10316 ret = hclge_modify_port_base_vlan_tag(vport, vlan_info, 10317 old_vlan_info); 10318 else 10319 ret = hclge_update_vlan_filter_entries(vport, state, vlan_info, 10320 old_vlan_info); 10321 if (ret) 10322 return ret; 10323 10324 out: 10325 vport->port_base_vlan_cfg.state = state; 10326 if (state == HNAE3_PORT_BASE_VLAN_DISABLE) 10327 nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_DISABLE; 10328 else 10329 nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE; 10330 10331 vport->port_base_vlan_cfg.old_vlan_info = *old_vlan_info; 10332 vport->port_base_vlan_cfg.vlan_info = *vlan_info; 10333 vport->port_base_vlan_cfg.tbl_sta = true; 10334 hclge_set_vport_vlan_fltr_change(vport); 10335 10336 return 0; 10337 } 10338 10339 static u16 hclge_get_port_base_vlan_state(struct hclge_vport *vport, 10340 enum hnae3_port_base_vlan_state state, 10341 u16 vlan, u8 qos) 10342 { 10343 if (state == HNAE3_PORT_BASE_VLAN_DISABLE) { 10344 if (!vlan && !qos) 10345 return HNAE3_PORT_BASE_VLAN_NOCHANGE; 10346 10347 return HNAE3_PORT_BASE_VLAN_ENABLE; 10348 } 10349 10350 if (!vlan && !qos) 10351 return HNAE3_PORT_BASE_VLAN_DISABLE; 10352 10353 if (vport->port_base_vlan_cfg.vlan_info.vlan_tag == vlan && 10354 vport->port_base_vlan_cfg.vlan_info.qos == qos) 10355 return HNAE3_PORT_BASE_VLAN_NOCHANGE; 10356 10357 return HNAE3_PORT_BASE_VLAN_MODIFY; 10358 } 10359 10360 static int hclge_set_vf_vlan_filter(struct hnae3_handle *handle, int vfid, 10361 u16 vlan, u8 qos, __be16 proto) 10362 { 10363 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev); 10364 struct hclge_vport *vport = hclge_get_vport(handle); 10365 struct hclge_dev *hdev = vport->back; 10366 struct hclge_vlan_info vlan_info; 10367 u16 state; 10368 int ret; 10369 10370 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2) 10371 return -EOPNOTSUPP; 10372 10373 vport = hclge_get_vf_vport(hdev, vfid); 10374 if (!vport) 10375 return -EINVAL; 10376 10377 /* qos is a 3 bits value, so can not be bigger than 7 */ 10378 if (vlan > VLAN_N_VID - 1 || qos > 7) 10379 return -EINVAL; 10380 if (proto != htons(ETH_P_8021Q)) 10381 return -EPROTONOSUPPORT; 10382 10383 state = hclge_get_port_base_vlan_state(vport, 10384 vport->port_base_vlan_cfg.state, 10385 vlan, qos); 10386 if (state == HNAE3_PORT_BASE_VLAN_NOCHANGE) 10387 return 0; 10388 10389 vlan_info.vlan_tag = vlan; 10390 vlan_info.qos = qos; 10391 vlan_info.vlan_proto = ntohs(proto); 10392 10393 ret = hclge_update_port_base_vlan_cfg(vport, state, &vlan_info); 10394 if (ret) { 10395 dev_err(&hdev->pdev->dev, 10396 "failed to update port base vlan for vf %d, ret = %d\n", 10397 vfid, ret); 10398 return ret; 10399 } 10400 10401 /* there is a timewindow for PF to know VF unalive, it may 10402 * cause send mailbox fail, but it doesn't matter, VF will 10403 * query it when reinit. 10404 * for DEVICE_VERSION_V3, vf doesn't need to know about the port based 10405 * VLAN state. 10406 */ 10407 if (ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) { 10408 if (test_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state)) 10409 (void)hclge_push_vf_port_base_vlan_info(&hdev->vport[0], 10410 vport->vport_id, 10411 state, 10412 &vlan_info); 10413 else 10414 set_bit(HCLGE_VPORT_NEED_NOTIFY_VF_VLAN, 10415 &vport->need_notify); 10416 } 10417 return 0; 10418 } 10419 10420 static void hclge_clear_vf_vlan(struct hclge_dev *hdev) 10421 { 10422 struct hclge_vlan_info *vlan_info; 10423 struct hclge_vport *vport; 10424 int ret; 10425 int vf; 10426 10427 /* clear port base vlan for all vf */ 10428 for (vf = HCLGE_VF_VPORT_START_NUM; vf < hdev->num_alloc_vport; vf++) { 10429 vport = &hdev->vport[vf]; 10430 vlan_info = &vport->port_base_vlan_cfg.vlan_info; 10431 10432 ret = hclge_set_vlan_filter_hw(hdev, htons(ETH_P_8021Q), 10433 vport->vport_id, 10434 vlan_info->vlan_tag, true); 10435 if (ret) 10436 dev_err(&hdev->pdev->dev, 10437 "failed to clear vf vlan for vf%d, ret = %d\n", 10438 vf - HCLGE_VF_VPORT_START_NUM, ret); 10439 } 10440 } 10441 10442 int hclge_set_vlan_filter(struct hnae3_handle *handle, __be16 proto, 10443 u16 vlan_id, bool is_kill) 10444 { 10445 struct hclge_vport *vport = hclge_get_vport(handle); 10446 struct hclge_dev *hdev = vport->back; 10447 bool writen_to_tbl = false; 10448 int ret = 0; 10449 10450 /* When device is resetting or reset failed, firmware is unable to 10451 * handle mailbox. Just record the vlan id, and remove it after 10452 * reset finished. 10453 */ 10454 if ((test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state) || 10455 test_bit(HCLGE_STATE_RST_FAIL, &hdev->state)) && is_kill) { 10456 set_bit(vlan_id, vport->vlan_del_fail_bmap); 10457 return -EBUSY; 10458 } 10459 10460 /* when port base vlan enabled, we use port base vlan as the vlan 10461 * filter entry. In this case, we don't update vlan filter table 10462 * when user add new vlan or remove exist vlan, just update the vport 10463 * vlan list. The vlan id in vlan list will be writen in vlan filter 10464 * table until port base vlan disabled 10465 */ 10466 if (handle->port_base_vlan_state == HNAE3_PORT_BASE_VLAN_DISABLE) { 10467 ret = hclge_set_vlan_filter_hw(hdev, proto, vport->vport_id, 10468 vlan_id, is_kill); 10469 writen_to_tbl = true; 10470 } 10471 10472 if (!ret) { 10473 if (!is_kill) 10474 hclge_add_vport_vlan_table(vport, vlan_id, 10475 writen_to_tbl); 10476 else if (is_kill && vlan_id != 0) 10477 hclge_rm_vport_vlan_table(vport, vlan_id, false); 10478 } else if (is_kill) { 10479 /* when remove hw vlan filter failed, record the vlan id, 10480 * and try to remove it from hw later, to be consistence 10481 * with stack 10482 */ 10483 set_bit(vlan_id, vport->vlan_del_fail_bmap); 10484 } 10485 10486 hclge_set_vport_vlan_fltr_change(vport); 10487 10488 return ret; 10489 } 10490 10491 static void hclge_sync_vlan_fltr_state(struct hclge_dev *hdev) 10492 { 10493 struct hclge_vport *vport; 10494 int ret; 10495 u16 i; 10496 10497 for (i = 0; i < hdev->num_alloc_vport; i++) { 10498 vport = &hdev->vport[i]; 10499 if (!test_and_clear_bit(HCLGE_VPORT_STATE_VLAN_FLTR_CHANGE, 10500 &vport->state)) 10501 continue; 10502 10503 ret = hclge_enable_vport_vlan_filter(vport, 10504 vport->req_vlan_fltr_en); 10505 if (ret) { 10506 dev_err(&hdev->pdev->dev, 10507 "failed to sync vlan filter state for vport%u, ret = %d\n", 10508 vport->vport_id, ret); 10509 set_bit(HCLGE_VPORT_STATE_VLAN_FLTR_CHANGE, 10510 &vport->state); 10511 return; 10512 } 10513 } 10514 } 10515 10516 static void hclge_sync_vlan_filter(struct hclge_dev *hdev) 10517 { 10518 #define HCLGE_MAX_SYNC_COUNT 60 10519 10520 int i, ret, sync_cnt = 0; 10521 u16 vlan_id; 10522 10523 /* start from vport 1 for PF is always alive */ 10524 for (i = 0; i < hdev->num_alloc_vport; i++) { 10525 struct hclge_vport *vport = &hdev->vport[i]; 10526 10527 vlan_id = find_first_bit(vport->vlan_del_fail_bmap, 10528 VLAN_N_VID); 10529 while (vlan_id != VLAN_N_VID) { 10530 ret = hclge_set_vlan_filter_hw(hdev, htons(ETH_P_8021Q), 10531 vport->vport_id, vlan_id, 10532 true); 10533 if (ret && ret != -EINVAL) 10534 return; 10535 10536 clear_bit(vlan_id, vport->vlan_del_fail_bmap); 10537 hclge_rm_vport_vlan_table(vport, vlan_id, false); 10538 hclge_set_vport_vlan_fltr_change(vport); 10539 10540 sync_cnt++; 10541 if (sync_cnt >= HCLGE_MAX_SYNC_COUNT) 10542 return; 10543 10544 vlan_id = find_first_bit(vport->vlan_del_fail_bmap, 10545 VLAN_N_VID); 10546 } 10547 } 10548 10549 hclge_sync_vlan_fltr_state(hdev); 10550 } 10551 10552 static int hclge_set_mac_mtu(struct hclge_dev *hdev, int new_mps) 10553 { 10554 struct hclge_config_max_frm_size_cmd *req; 10555 struct hclge_desc desc; 10556 10557 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CONFIG_MAX_FRM_SIZE, false); 10558 10559 req = (struct hclge_config_max_frm_size_cmd *)desc.data; 10560 req->max_frm_size = cpu_to_le16(new_mps); 10561 req->min_frm_size = HCLGE_MAC_MIN_FRAME; 10562 10563 return hclge_cmd_send(&hdev->hw, &desc, 1); 10564 } 10565 10566 static int hclge_set_mtu(struct hnae3_handle *handle, int new_mtu) 10567 { 10568 struct hclge_vport *vport = hclge_get_vport(handle); 10569 10570 return hclge_set_vport_mtu(vport, new_mtu); 10571 } 10572 10573 int hclge_set_vport_mtu(struct hclge_vport *vport, int new_mtu) 10574 { 10575 struct hclge_dev *hdev = vport->back; 10576 int i, max_frm_size, ret; 10577 10578 /* HW supprt 2 layer vlan */ 10579 max_frm_size = new_mtu + ETH_HLEN + ETH_FCS_LEN + 2 * VLAN_HLEN; 10580 if (max_frm_size < HCLGE_MAC_MIN_FRAME || 10581 max_frm_size > hdev->ae_dev->dev_specs.max_frm_size) 10582 return -EINVAL; 10583 10584 max_frm_size = max(max_frm_size, HCLGE_MAC_DEFAULT_FRAME); 10585 mutex_lock(&hdev->vport_lock); 10586 /* VF's mps must fit within hdev->mps */ 10587 if (vport->vport_id && max_frm_size > hdev->mps) { 10588 mutex_unlock(&hdev->vport_lock); 10589 return -EINVAL; 10590 } else if (vport->vport_id) { 10591 vport->mps = max_frm_size; 10592 mutex_unlock(&hdev->vport_lock); 10593 return 0; 10594 } 10595 10596 /* PF's mps must be greater then VF's mps */ 10597 for (i = 1; i < hdev->num_alloc_vport; i++) 10598 if (max_frm_size < hdev->vport[i].mps) { 10599 dev_err(&hdev->pdev->dev, 10600 "failed to set pf mtu for less than vport %d, mps = %u.\n", 10601 i, hdev->vport[i].mps); 10602 mutex_unlock(&hdev->vport_lock); 10603 return -EINVAL; 10604 } 10605 10606 hclge_notify_client(hdev, HNAE3_DOWN_CLIENT); 10607 10608 ret = hclge_set_mac_mtu(hdev, max_frm_size); 10609 if (ret) { 10610 dev_err(&hdev->pdev->dev, 10611 "Change mtu fail, ret =%d\n", ret); 10612 goto out; 10613 } 10614 10615 hdev->mps = max_frm_size; 10616 vport->mps = max_frm_size; 10617 10618 ret = hclge_buffer_alloc(hdev); 10619 if (ret) 10620 dev_err(&hdev->pdev->dev, 10621 "Allocate buffer fail, ret =%d\n", ret); 10622 10623 out: 10624 hclge_notify_client(hdev, HNAE3_UP_CLIENT); 10625 mutex_unlock(&hdev->vport_lock); 10626 return ret; 10627 } 10628 10629 static int hclge_reset_tqp_cmd_send(struct hclge_dev *hdev, u16 queue_id, 10630 bool enable) 10631 { 10632 struct hclge_reset_tqp_queue_cmd *req; 10633 struct hclge_desc desc; 10634 int ret; 10635 10636 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RESET_TQP_QUEUE, false); 10637 10638 req = (struct hclge_reset_tqp_queue_cmd *)desc.data; 10639 req->tqp_id = cpu_to_le16(queue_id); 10640 if (enable) 10641 hnae3_set_bit(req->reset_req, HCLGE_TQP_RESET_B, 1U); 10642 10643 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 10644 if (ret) { 10645 dev_err(&hdev->pdev->dev, 10646 "Send tqp reset cmd error, status =%d\n", ret); 10647 return ret; 10648 } 10649 10650 return 0; 10651 } 10652 10653 static int hclge_get_reset_status(struct hclge_dev *hdev, u16 queue_id, 10654 u8 *reset_status) 10655 { 10656 struct hclge_reset_tqp_queue_cmd *req; 10657 struct hclge_desc desc; 10658 int ret; 10659 10660 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_RESET_TQP_QUEUE, true); 10661 10662 req = (struct hclge_reset_tqp_queue_cmd *)desc.data; 10663 req->tqp_id = cpu_to_le16(queue_id); 10664 10665 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 10666 if (ret) { 10667 dev_err(&hdev->pdev->dev, 10668 "Get reset status error, status =%d\n", ret); 10669 return ret; 10670 } 10671 10672 *reset_status = hnae3_get_bit(req->ready_to_reset, HCLGE_TQP_RESET_B); 10673 10674 return 0; 10675 } 10676 10677 u16 hclge_covert_handle_qid_global(struct hnae3_handle *handle, u16 queue_id) 10678 { 10679 struct hclge_comm_tqp *tqp; 10680 struct hnae3_queue *queue; 10681 10682 queue = handle->kinfo.tqp[queue_id]; 10683 tqp = container_of(queue, struct hclge_comm_tqp, q); 10684 10685 return tqp->index; 10686 } 10687 10688 static int hclge_reset_tqp_cmd(struct hnae3_handle *handle) 10689 { 10690 struct hclge_vport *vport = hclge_get_vport(handle); 10691 struct hclge_dev *hdev = vport->back; 10692 u16 reset_try_times = 0; 10693 u8 reset_status; 10694 u16 queue_gid; 10695 int ret; 10696 u16 i; 10697 10698 for (i = 0; i < handle->kinfo.num_tqps; i++) { 10699 queue_gid = hclge_covert_handle_qid_global(handle, i); 10700 ret = hclge_reset_tqp_cmd_send(hdev, queue_gid, true); 10701 if (ret) { 10702 dev_err(&hdev->pdev->dev, 10703 "failed to send reset tqp cmd, ret = %d\n", 10704 ret); 10705 return ret; 10706 } 10707 10708 while (reset_try_times++ < HCLGE_TQP_RESET_TRY_TIMES) { 10709 ret = hclge_get_reset_status(hdev, queue_gid, 10710 &reset_status); 10711 if (ret) 10712 return ret; 10713 10714 if (reset_status) 10715 break; 10716 10717 /* Wait for tqp hw reset */ 10718 usleep_range(1000, 1200); 10719 } 10720 10721 if (reset_try_times >= HCLGE_TQP_RESET_TRY_TIMES) { 10722 dev_err(&hdev->pdev->dev, 10723 "wait for tqp hw reset timeout\n"); 10724 return -ETIME; 10725 } 10726 10727 ret = hclge_reset_tqp_cmd_send(hdev, queue_gid, false); 10728 if (ret) { 10729 dev_err(&hdev->pdev->dev, 10730 "failed to deassert soft reset, ret = %d\n", 10731 ret); 10732 return ret; 10733 } 10734 reset_try_times = 0; 10735 } 10736 return 0; 10737 } 10738 10739 static int hclge_reset_rcb(struct hnae3_handle *handle) 10740 { 10741 #define HCLGE_RESET_RCB_NOT_SUPPORT 0U 10742 #define HCLGE_RESET_RCB_SUCCESS 1U 10743 10744 struct hclge_vport *vport = hclge_get_vport(handle); 10745 struct hclge_dev *hdev = vport->back; 10746 struct hclge_reset_cmd *req; 10747 struct hclge_desc desc; 10748 u8 return_status; 10749 u16 queue_gid; 10750 int ret; 10751 10752 queue_gid = hclge_covert_handle_qid_global(handle, 0); 10753 10754 req = (struct hclge_reset_cmd *)desc.data; 10755 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CFG_RST_TRIGGER, false); 10756 hnae3_set_bit(req->fun_reset_rcb, HCLGE_CFG_RESET_RCB_B, 1); 10757 req->fun_reset_rcb_vqid_start = cpu_to_le16(queue_gid); 10758 req->fun_reset_rcb_vqid_num = cpu_to_le16(handle->kinfo.num_tqps); 10759 10760 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 10761 if (ret) { 10762 dev_err(&hdev->pdev->dev, 10763 "failed to send rcb reset cmd, ret = %d\n", ret); 10764 return ret; 10765 } 10766 10767 return_status = req->fun_reset_rcb_return_status; 10768 if (return_status == HCLGE_RESET_RCB_SUCCESS) 10769 return 0; 10770 10771 if (return_status != HCLGE_RESET_RCB_NOT_SUPPORT) { 10772 dev_err(&hdev->pdev->dev, "failed to reset rcb, ret = %u\n", 10773 return_status); 10774 return -EIO; 10775 } 10776 10777 /* if reset rcb cmd is unsupported, we need to send reset tqp cmd 10778 * again to reset all tqps 10779 */ 10780 return hclge_reset_tqp_cmd(handle); 10781 } 10782 10783 int hclge_reset_tqp(struct hnae3_handle *handle) 10784 { 10785 struct hclge_vport *vport = hclge_get_vport(handle); 10786 struct hclge_dev *hdev = vport->back; 10787 int ret; 10788 10789 /* only need to disable PF's tqp */ 10790 if (!vport->vport_id) { 10791 ret = hclge_tqp_enable(handle, false); 10792 if (ret) { 10793 dev_err(&hdev->pdev->dev, 10794 "failed to disable tqp, ret = %d\n", ret); 10795 return ret; 10796 } 10797 } 10798 10799 return hclge_reset_rcb(handle); 10800 } 10801 10802 static u32 hclge_get_fw_version(struct hnae3_handle *handle) 10803 { 10804 struct hclge_vport *vport = hclge_get_vport(handle); 10805 struct hclge_dev *hdev = vport->back; 10806 10807 return hdev->fw_version; 10808 } 10809 10810 static void hclge_set_flowctrl_adv(struct hclge_dev *hdev, u32 rx_en, u32 tx_en) 10811 { 10812 struct phy_device *phydev = hdev->hw.mac.phydev; 10813 10814 if (!phydev) 10815 return; 10816 10817 phy_set_asym_pause(phydev, rx_en, tx_en); 10818 } 10819 10820 static int hclge_cfg_pauseparam(struct hclge_dev *hdev, u32 rx_en, u32 tx_en) 10821 { 10822 int ret; 10823 10824 if (hdev->tm_info.fc_mode == HCLGE_FC_PFC) 10825 return 0; 10826 10827 ret = hclge_mac_pause_en_cfg(hdev, tx_en, rx_en); 10828 if (ret) 10829 dev_err(&hdev->pdev->dev, 10830 "configure pauseparam error, ret = %d.\n", ret); 10831 10832 return ret; 10833 } 10834 10835 int hclge_cfg_flowctrl(struct hclge_dev *hdev) 10836 { 10837 struct phy_device *phydev = hdev->hw.mac.phydev; 10838 u16 remote_advertising = 0; 10839 u16 local_advertising; 10840 u32 rx_pause, tx_pause; 10841 u8 flowctl; 10842 10843 if (!phydev->link) 10844 return 0; 10845 10846 if (!phydev->autoneg) 10847 return hclge_mac_pause_setup_hw(hdev); 10848 10849 local_advertising = linkmode_adv_to_lcl_adv_t(phydev->advertising); 10850 10851 if (phydev->pause) 10852 remote_advertising = LPA_PAUSE_CAP; 10853 10854 if (phydev->asym_pause) 10855 remote_advertising |= LPA_PAUSE_ASYM; 10856 10857 flowctl = mii_resolve_flowctrl_fdx(local_advertising, 10858 remote_advertising); 10859 tx_pause = flowctl & FLOW_CTRL_TX; 10860 rx_pause = flowctl & FLOW_CTRL_RX; 10861 10862 if (phydev->duplex == HCLGE_MAC_HALF) { 10863 tx_pause = 0; 10864 rx_pause = 0; 10865 } 10866 10867 return hclge_cfg_pauseparam(hdev, rx_pause, tx_pause); 10868 } 10869 10870 static void hclge_get_pauseparam(struct hnae3_handle *handle, u32 *auto_neg, 10871 u32 *rx_en, u32 *tx_en) 10872 { 10873 struct hclge_vport *vport = hclge_get_vport(handle); 10874 struct hclge_dev *hdev = vport->back; 10875 u8 media_type = hdev->hw.mac.media_type; 10876 10877 *auto_neg = (media_type == HNAE3_MEDIA_TYPE_COPPER) ? 10878 hclge_get_autoneg(handle) : 0; 10879 10880 if (hdev->tm_info.fc_mode == HCLGE_FC_PFC) { 10881 *rx_en = 0; 10882 *tx_en = 0; 10883 return; 10884 } 10885 10886 if (hdev->tm_info.fc_mode == HCLGE_FC_RX_PAUSE) { 10887 *rx_en = 1; 10888 *tx_en = 0; 10889 } else if (hdev->tm_info.fc_mode == HCLGE_FC_TX_PAUSE) { 10890 *tx_en = 1; 10891 *rx_en = 0; 10892 } else if (hdev->tm_info.fc_mode == HCLGE_FC_FULL) { 10893 *rx_en = 1; 10894 *tx_en = 1; 10895 } else { 10896 *rx_en = 0; 10897 *tx_en = 0; 10898 } 10899 } 10900 10901 static void hclge_record_user_pauseparam(struct hclge_dev *hdev, 10902 u32 rx_en, u32 tx_en) 10903 { 10904 if (rx_en && tx_en) 10905 hdev->fc_mode_last_time = HCLGE_FC_FULL; 10906 else if (rx_en && !tx_en) 10907 hdev->fc_mode_last_time = HCLGE_FC_RX_PAUSE; 10908 else if (!rx_en && tx_en) 10909 hdev->fc_mode_last_time = HCLGE_FC_TX_PAUSE; 10910 else 10911 hdev->fc_mode_last_time = HCLGE_FC_NONE; 10912 10913 hdev->tm_info.fc_mode = hdev->fc_mode_last_time; 10914 } 10915 10916 static int hclge_set_pauseparam(struct hnae3_handle *handle, u32 auto_neg, 10917 u32 rx_en, u32 tx_en) 10918 { 10919 struct hclge_vport *vport = hclge_get_vport(handle); 10920 struct hclge_dev *hdev = vport->back; 10921 struct phy_device *phydev = hdev->hw.mac.phydev; 10922 u32 fc_autoneg; 10923 10924 if (phydev || hnae3_dev_phy_imp_supported(hdev)) { 10925 fc_autoneg = hclge_get_autoneg(handle); 10926 if (auto_neg != fc_autoneg) { 10927 dev_info(&hdev->pdev->dev, 10928 "To change autoneg please use: ethtool -s <dev> autoneg <on|off>\n"); 10929 return -EOPNOTSUPP; 10930 } 10931 } 10932 10933 if (hdev->tm_info.fc_mode == HCLGE_FC_PFC) { 10934 dev_info(&hdev->pdev->dev, 10935 "Priority flow control enabled. Cannot set link flow control.\n"); 10936 return -EOPNOTSUPP; 10937 } 10938 10939 hclge_set_flowctrl_adv(hdev, rx_en, tx_en); 10940 10941 hclge_record_user_pauseparam(hdev, rx_en, tx_en); 10942 10943 if (!auto_neg || hnae3_dev_phy_imp_supported(hdev)) 10944 return hclge_cfg_pauseparam(hdev, rx_en, tx_en); 10945 10946 if (phydev) 10947 return phy_start_aneg(phydev); 10948 10949 return -EOPNOTSUPP; 10950 } 10951 10952 static void hclge_get_ksettings_an_result(struct hnae3_handle *handle, 10953 u8 *auto_neg, u32 *speed, u8 *duplex, u32 *lane_num) 10954 { 10955 struct hclge_vport *vport = hclge_get_vport(handle); 10956 struct hclge_dev *hdev = vport->back; 10957 10958 if (speed) 10959 *speed = hdev->hw.mac.speed; 10960 if (duplex) 10961 *duplex = hdev->hw.mac.duplex; 10962 if (auto_neg) 10963 *auto_neg = hdev->hw.mac.autoneg; 10964 if (lane_num) 10965 *lane_num = hdev->hw.mac.lane_num; 10966 } 10967 10968 static void hclge_get_media_type(struct hnae3_handle *handle, u8 *media_type, 10969 u8 *module_type) 10970 { 10971 struct hclge_vport *vport = hclge_get_vport(handle); 10972 struct hclge_dev *hdev = vport->back; 10973 10974 /* When nic is down, the service task is not running, doesn't update 10975 * the port information per second. Query the port information before 10976 * return the media type, ensure getting the correct media information. 10977 */ 10978 hclge_update_port_info(hdev); 10979 10980 if (media_type) 10981 *media_type = hdev->hw.mac.media_type; 10982 10983 if (module_type) 10984 *module_type = hdev->hw.mac.module_type; 10985 } 10986 10987 static void hclge_get_mdix_mode(struct hnae3_handle *handle, 10988 u8 *tp_mdix_ctrl, u8 *tp_mdix) 10989 { 10990 struct hclge_vport *vport = hclge_get_vport(handle); 10991 struct hclge_dev *hdev = vport->back; 10992 struct phy_device *phydev = hdev->hw.mac.phydev; 10993 int mdix_ctrl, mdix, is_resolved; 10994 unsigned int retval; 10995 10996 if (!phydev) { 10997 *tp_mdix_ctrl = ETH_TP_MDI_INVALID; 10998 *tp_mdix = ETH_TP_MDI_INVALID; 10999 return; 11000 } 11001 11002 phy_write(phydev, HCLGE_PHY_PAGE_REG, HCLGE_PHY_PAGE_MDIX); 11003 11004 retval = phy_read(phydev, HCLGE_PHY_CSC_REG); 11005 mdix_ctrl = hnae3_get_field(retval, HCLGE_PHY_MDIX_CTRL_M, 11006 HCLGE_PHY_MDIX_CTRL_S); 11007 11008 retval = phy_read(phydev, HCLGE_PHY_CSS_REG); 11009 mdix = hnae3_get_bit(retval, HCLGE_PHY_MDIX_STATUS_B); 11010 is_resolved = hnae3_get_bit(retval, HCLGE_PHY_SPEED_DUP_RESOLVE_B); 11011 11012 phy_write(phydev, HCLGE_PHY_PAGE_REG, HCLGE_PHY_PAGE_COPPER); 11013 11014 switch (mdix_ctrl) { 11015 case 0x0: 11016 *tp_mdix_ctrl = ETH_TP_MDI; 11017 break; 11018 case 0x1: 11019 *tp_mdix_ctrl = ETH_TP_MDI_X; 11020 break; 11021 case 0x3: 11022 *tp_mdix_ctrl = ETH_TP_MDI_AUTO; 11023 break; 11024 default: 11025 *tp_mdix_ctrl = ETH_TP_MDI_INVALID; 11026 break; 11027 } 11028 11029 if (!is_resolved) 11030 *tp_mdix = ETH_TP_MDI_INVALID; 11031 else if (mdix) 11032 *tp_mdix = ETH_TP_MDI_X; 11033 else 11034 *tp_mdix = ETH_TP_MDI; 11035 } 11036 11037 static void hclge_info_show(struct hclge_dev *hdev) 11038 { 11039 struct hnae3_handle *handle = &hdev->vport->nic; 11040 struct device *dev = &hdev->pdev->dev; 11041 11042 dev_info(dev, "PF info begin:\n"); 11043 11044 dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps); 11045 dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc); 11046 dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc); 11047 dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport); 11048 dev_info(dev, "Numbers of VF for this PF: %u\n", hdev->num_req_vfs); 11049 dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map); 11050 dev_info(dev, "Total buffer size for TX/RX: %u\n", hdev->pkt_buf_size); 11051 dev_info(dev, "TX buffer size for each TC: %u\n", hdev->tx_buf_size); 11052 dev_info(dev, "DV buffer size for each TC: %u\n", hdev->dv_buf_size); 11053 dev_info(dev, "This is %s PF\n", 11054 hdev->flag & HCLGE_FLAG_MAIN ? "main" : "not main"); 11055 dev_info(dev, "DCB %s\n", 11056 handle->kinfo.tc_info.dcb_ets_active ? "enable" : "disable"); 11057 dev_info(dev, "MQPRIO %s\n", 11058 handle->kinfo.tc_info.mqprio_active ? "enable" : "disable"); 11059 dev_info(dev, "Default tx spare buffer size: %u\n", 11060 hdev->tx_spare_buf_size); 11061 11062 dev_info(dev, "PF info end.\n"); 11063 } 11064 11065 static int hclge_init_nic_client_instance(struct hnae3_ae_dev *ae_dev, 11066 struct hclge_vport *vport) 11067 { 11068 struct hnae3_client *client = vport->nic.client; 11069 struct hclge_dev *hdev = ae_dev->priv; 11070 int rst_cnt = hdev->rst_stats.reset_cnt; 11071 int ret; 11072 11073 ret = client->ops->init_instance(&vport->nic); 11074 if (ret) 11075 return ret; 11076 11077 set_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state); 11078 if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state) || 11079 rst_cnt != hdev->rst_stats.reset_cnt) { 11080 ret = -EBUSY; 11081 goto init_nic_err; 11082 } 11083 11084 /* Enable nic hw error interrupts */ 11085 ret = hclge_config_nic_hw_error(hdev, true); 11086 if (ret) { 11087 dev_err(&ae_dev->pdev->dev, 11088 "fail(%d) to enable hw error interrupts\n", ret); 11089 goto init_nic_err; 11090 } 11091 11092 hnae3_set_client_init_flag(client, ae_dev, 1); 11093 11094 if (netif_msg_drv(&hdev->vport->nic)) 11095 hclge_info_show(hdev); 11096 11097 return ret; 11098 11099 init_nic_err: 11100 clear_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state); 11101 while (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state)) 11102 msleep(HCLGE_WAIT_RESET_DONE); 11103 11104 client->ops->uninit_instance(&vport->nic, 0); 11105 11106 return ret; 11107 } 11108 11109 static int hclge_init_roce_client_instance(struct hnae3_ae_dev *ae_dev, 11110 struct hclge_vport *vport) 11111 { 11112 struct hclge_dev *hdev = ae_dev->priv; 11113 struct hnae3_client *client; 11114 int rst_cnt; 11115 int ret; 11116 11117 if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client || 11118 !hdev->nic_client) 11119 return 0; 11120 11121 client = hdev->roce_client; 11122 ret = hclge_init_roce_base_info(vport); 11123 if (ret) 11124 return ret; 11125 11126 rst_cnt = hdev->rst_stats.reset_cnt; 11127 ret = client->ops->init_instance(&vport->roce); 11128 if (ret) 11129 return ret; 11130 11131 set_bit(HCLGE_STATE_ROCE_REGISTERED, &hdev->state); 11132 if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state) || 11133 rst_cnt != hdev->rst_stats.reset_cnt) { 11134 ret = -EBUSY; 11135 goto init_roce_err; 11136 } 11137 11138 /* Enable roce ras interrupts */ 11139 ret = hclge_config_rocee_ras_interrupt(hdev, true); 11140 if (ret) { 11141 dev_err(&ae_dev->pdev->dev, 11142 "fail(%d) to enable roce ras interrupts\n", ret); 11143 goto init_roce_err; 11144 } 11145 11146 hnae3_set_client_init_flag(client, ae_dev, 1); 11147 11148 return 0; 11149 11150 init_roce_err: 11151 clear_bit(HCLGE_STATE_ROCE_REGISTERED, &hdev->state); 11152 while (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state)) 11153 msleep(HCLGE_WAIT_RESET_DONE); 11154 11155 hdev->roce_client->ops->uninit_instance(&vport->roce, 0); 11156 11157 return ret; 11158 } 11159 11160 static int hclge_init_client_instance(struct hnae3_client *client, 11161 struct hnae3_ae_dev *ae_dev) 11162 { 11163 struct hclge_dev *hdev = ae_dev->priv; 11164 struct hclge_vport *vport = &hdev->vport[0]; 11165 int ret; 11166 11167 switch (client->type) { 11168 case HNAE3_CLIENT_KNIC: 11169 hdev->nic_client = client; 11170 vport->nic.client = client; 11171 ret = hclge_init_nic_client_instance(ae_dev, vport); 11172 if (ret) 11173 goto clear_nic; 11174 11175 ret = hclge_init_roce_client_instance(ae_dev, vport); 11176 if (ret) 11177 goto clear_roce; 11178 11179 break; 11180 case HNAE3_CLIENT_ROCE: 11181 if (hnae3_dev_roce_supported(hdev)) { 11182 hdev->roce_client = client; 11183 vport->roce.client = client; 11184 } 11185 11186 ret = hclge_init_roce_client_instance(ae_dev, vport); 11187 if (ret) 11188 goto clear_roce; 11189 11190 break; 11191 default: 11192 return -EINVAL; 11193 } 11194 11195 return 0; 11196 11197 clear_nic: 11198 hdev->nic_client = NULL; 11199 vport->nic.client = NULL; 11200 return ret; 11201 clear_roce: 11202 hdev->roce_client = NULL; 11203 vport->roce.client = NULL; 11204 return ret; 11205 } 11206 11207 static void hclge_uninit_client_instance(struct hnae3_client *client, 11208 struct hnae3_ae_dev *ae_dev) 11209 { 11210 struct hclge_dev *hdev = ae_dev->priv; 11211 struct hclge_vport *vport = &hdev->vport[0]; 11212 11213 if (hdev->roce_client) { 11214 clear_bit(HCLGE_STATE_ROCE_REGISTERED, &hdev->state); 11215 while (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state)) 11216 msleep(HCLGE_WAIT_RESET_DONE); 11217 11218 hdev->roce_client->ops->uninit_instance(&vport->roce, 0); 11219 hdev->roce_client = NULL; 11220 vport->roce.client = NULL; 11221 } 11222 if (client->type == HNAE3_CLIENT_ROCE) 11223 return; 11224 if (hdev->nic_client && client->ops->uninit_instance) { 11225 clear_bit(HCLGE_STATE_NIC_REGISTERED, &hdev->state); 11226 while (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state)) 11227 msleep(HCLGE_WAIT_RESET_DONE); 11228 11229 client->ops->uninit_instance(&vport->nic, 0); 11230 hdev->nic_client = NULL; 11231 vport->nic.client = NULL; 11232 } 11233 } 11234 11235 static int hclge_dev_mem_map(struct hclge_dev *hdev) 11236 { 11237 struct pci_dev *pdev = hdev->pdev; 11238 struct hclge_hw *hw = &hdev->hw; 11239 11240 /* for device does not have device memory, return directly */ 11241 if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGE_MEM_BAR))) 11242 return 0; 11243 11244 hw->hw.mem_base = 11245 devm_ioremap_wc(&pdev->dev, 11246 pci_resource_start(pdev, HCLGE_MEM_BAR), 11247 pci_resource_len(pdev, HCLGE_MEM_BAR)); 11248 if (!hw->hw.mem_base) { 11249 dev_err(&pdev->dev, "failed to map device memory\n"); 11250 return -EFAULT; 11251 } 11252 11253 return 0; 11254 } 11255 11256 static int hclge_pci_init(struct hclge_dev *hdev) 11257 { 11258 struct pci_dev *pdev = hdev->pdev; 11259 struct hclge_hw *hw; 11260 int ret; 11261 11262 ret = pci_enable_device(pdev); 11263 if (ret) { 11264 dev_err(&pdev->dev, "failed to enable PCI device\n"); 11265 return ret; 11266 } 11267 11268 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 11269 if (ret) { 11270 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 11271 if (ret) { 11272 dev_err(&pdev->dev, 11273 "can't set consistent PCI DMA"); 11274 goto err_disable_device; 11275 } 11276 dev_warn(&pdev->dev, "set DMA mask to 32 bits\n"); 11277 } 11278 11279 ret = pci_request_regions(pdev, HCLGE_DRIVER_NAME); 11280 if (ret) { 11281 dev_err(&pdev->dev, "PCI request regions failed %d\n", ret); 11282 goto err_disable_device; 11283 } 11284 11285 pci_set_master(pdev); 11286 hw = &hdev->hw; 11287 hw->hw.io_base = pcim_iomap(pdev, 2, 0); 11288 if (!hw->hw.io_base) { 11289 dev_err(&pdev->dev, "Can't map configuration register space\n"); 11290 ret = -ENOMEM; 11291 goto err_release_regions; 11292 } 11293 11294 ret = hclge_dev_mem_map(hdev); 11295 if (ret) 11296 goto err_unmap_io_base; 11297 11298 hdev->num_req_vfs = pci_sriov_get_totalvfs(pdev); 11299 11300 return 0; 11301 11302 err_unmap_io_base: 11303 pcim_iounmap(pdev, hdev->hw.hw.io_base); 11304 err_release_regions: 11305 pci_release_regions(pdev); 11306 err_disable_device: 11307 pci_disable_device(pdev); 11308 11309 return ret; 11310 } 11311 11312 static void hclge_pci_uninit(struct hclge_dev *hdev) 11313 { 11314 struct pci_dev *pdev = hdev->pdev; 11315 11316 if (hdev->hw.hw.mem_base) 11317 devm_iounmap(&pdev->dev, hdev->hw.hw.mem_base); 11318 11319 pcim_iounmap(pdev, hdev->hw.hw.io_base); 11320 pci_free_irq_vectors(pdev); 11321 pci_release_mem_regions(pdev); 11322 pci_disable_device(pdev); 11323 } 11324 11325 static void hclge_state_init(struct hclge_dev *hdev) 11326 { 11327 set_bit(HCLGE_STATE_SERVICE_INITED, &hdev->state); 11328 set_bit(HCLGE_STATE_DOWN, &hdev->state); 11329 clear_bit(HCLGE_STATE_RST_SERVICE_SCHED, &hdev->state); 11330 clear_bit(HCLGE_STATE_RST_HANDLING, &hdev->state); 11331 clear_bit(HCLGE_STATE_RST_FAIL, &hdev->state); 11332 clear_bit(HCLGE_STATE_MBX_SERVICE_SCHED, &hdev->state); 11333 clear_bit(HCLGE_STATE_MBX_HANDLING, &hdev->state); 11334 } 11335 11336 static void hclge_state_uninit(struct hclge_dev *hdev) 11337 { 11338 set_bit(HCLGE_STATE_DOWN, &hdev->state); 11339 set_bit(HCLGE_STATE_REMOVING, &hdev->state); 11340 11341 if (hdev->reset_timer.function) 11342 del_timer_sync(&hdev->reset_timer); 11343 if (hdev->service_task.work.func) 11344 cancel_delayed_work_sync(&hdev->service_task); 11345 } 11346 11347 static void hclge_reset_prepare_general(struct hnae3_ae_dev *ae_dev, 11348 enum hnae3_reset_type rst_type) 11349 { 11350 #define HCLGE_RESET_RETRY_WAIT_MS 500 11351 #define HCLGE_RESET_RETRY_CNT 5 11352 11353 struct hclge_dev *hdev = ae_dev->priv; 11354 int retry_cnt = 0; 11355 int ret; 11356 11357 while (retry_cnt++ < HCLGE_RESET_RETRY_CNT) { 11358 down(&hdev->reset_sem); 11359 set_bit(HCLGE_STATE_RST_HANDLING, &hdev->state); 11360 hdev->reset_type = rst_type; 11361 ret = hclge_reset_prepare(hdev); 11362 if (!ret && !hdev->reset_pending) 11363 break; 11364 11365 dev_err(&hdev->pdev->dev, 11366 "failed to prepare to reset, ret=%d, reset_pending:0x%lx, retry_cnt:%d\n", 11367 ret, hdev->reset_pending, retry_cnt); 11368 clear_bit(HCLGE_STATE_RST_HANDLING, &hdev->state); 11369 up(&hdev->reset_sem); 11370 msleep(HCLGE_RESET_RETRY_WAIT_MS); 11371 } 11372 11373 /* disable misc vector before reset done */ 11374 hclge_enable_vector(&hdev->misc_vector, false); 11375 set_bit(HCLGE_COMM_STATE_CMD_DISABLE, &hdev->hw.hw.comm_state); 11376 11377 if (hdev->reset_type == HNAE3_FLR_RESET) 11378 hdev->rst_stats.flr_rst_cnt++; 11379 } 11380 11381 static void hclge_reset_done(struct hnae3_ae_dev *ae_dev) 11382 { 11383 struct hclge_dev *hdev = ae_dev->priv; 11384 int ret; 11385 11386 hclge_enable_vector(&hdev->misc_vector, true); 11387 11388 ret = hclge_reset_rebuild(hdev); 11389 if (ret) 11390 dev_err(&hdev->pdev->dev, "fail to rebuild, ret=%d\n", ret); 11391 11392 hdev->reset_type = HNAE3_NONE_RESET; 11393 clear_bit(HCLGE_STATE_RST_HANDLING, &hdev->state); 11394 up(&hdev->reset_sem); 11395 } 11396 11397 static void hclge_clear_resetting_state(struct hclge_dev *hdev) 11398 { 11399 u16 i; 11400 11401 for (i = 0; i < hdev->num_alloc_vport; i++) { 11402 struct hclge_vport *vport = &hdev->vport[i]; 11403 int ret; 11404 11405 /* Send cmd to clear vport's FUNC_RST_ING */ 11406 ret = hclge_set_vf_rst(hdev, vport->vport_id, false); 11407 if (ret) 11408 dev_warn(&hdev->pdev->dev, 11409 "clear vport(%u) rst failed %d!\n", 11410 vport->vport_id, ret); 11411 } 11412 } 11413 11414 static int hclge_clear_hw_resource(struct hclge_dev *hdev) 11415 { 11416 struct hclge_desc desc; 11417 int ret; 11418 11419 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CLEAR_HW_RESOURCE, false); 11420 11421 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 11422 /* This new command is only supported by new firmware, it will 11423 * fail with older firmware. Error value -EOPNOSUPP can only be 11424 * returned by older firmware running this command, to keep code 11425 * backward compatible we will override this value and return 11426 * success. 11427 */ 11428 if (ret && ret != -EOPNOTSUPP) { 11429 dev_err(&hdev->pdev->dev, 11430 "failed to clear hw resource, ret = %d\n", ret); 11431 return ret; 11432 } 11433 return 0; 11434 } 11435 11436 static void hclge_init_rxd_adv_layout(struct hclge_dev *hdev) 11437 { 11438 if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev)) 11439 hclge_write_dev(&hdev->hw, HCLGE_RXD_ADV_LAYOUT_EN_REG, 1); 11440 } 11441 11442 static void hclge_uninit_rxd_adv_layout(struct hclge_dev *hdev) 11443 { 11444 if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev)) 11445 hclge_write_dev(&hdev->hw, HCLGE_RXD_ADV_LAYOUT_EN_REG, 0); 11446 } 11447 11448 static struct hclge_wol_info *hclge_get_wol_info(struct hnae3_handle *handle) 11449 { 11450 struct hclge_vport *vport = hclge_get_vport(handle); 11451 11452 return &vport->back->hw.mac.wol; 11453 } 11454 11455 static int hclge_get_wol_supported_mode(struct hclge_dev *hdev, 11456 u32 *wol_supported) 11457 { 11458 struct hclge_query_wol_supported_cmd *wol_supported_cmd; 11459 struct hclge_desc desc; 11460 int ret; 11461 11462 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_WOL_GET_SUPPORTED_MODE, 11463 true); 11464 wol_supported_cmd = (struct hclge_query_wol_supported_cmd *)desc.data; 11465 11466 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 11467 if (ret) { 11468 dev_err(&hdev->pdev->dev, 11469 "failed to query wol supported, ret = %d\n", ret); 11470 return ret; 11471 } 11472 11473 *wol_supported = le32_to_cpu(wol_supported_cmd->supported_wake_mode); 11474 11475 return 0; 11476 } 11477 11478 static int hclge_set_wol_cfg(struct hclge_dev *hdev, 11479 struct hclge_wol_info *wol_info) 11480 { 11481 struct hclge_wol_cfg_cmd *wol_cfg_cmd; 11482 struct hclge_desc desc; 11483 int ret; 11484 11485 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_WOL_CFG, false); 11486 wol_cfg_cmd = (struct hclge_wol_cfg_cmd *)desc.data; 11487 wol_cfg_cmd->wake_on_lan_mode = cpu_to_le32(wol_info->wol_current_mode); 11488 wol_cfg_cmd->sopass_size = wol_info->wol_sopass_size; 11489 memcpy(wol_cfg_cmd->sopass, wol_info->wol_sopass, SOPASS_MAX); 11490 11491 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 11492 if (ret) 11493 dev_err(&hdev->pdev->dev, 11494 "failed to set wol config, ret = %d\n", ret); 11495 11496 return ret; 11497 } 11498 11499 static int hclge_update_wol(struct hclge_dev *hdev) 11500 { 11501 struct hclge_wol_info *wol_info = &hdev->hw.mac.wol; 11502 11503 if (!hnae3_ae_dev_wol_supported(hdev->ae_dev)) 11504 return 0; 11505 11506 return hclge_set_wol_cfg(hdev, wol_info); 11507 } 11508 11509 static int hclge_init_wol(struct hclge_dev *hdev) 11510 { 11511 struct hclge_wol_info *wol_info = &hdev->hw.mac.wol; 11512 int ret; 11513 11514 if (!hnae3_ae_dev_wol_supported(hdev->ae_dev)) 11515 return 0; 11516 11517 memset(wol_info, 0, sizeof(struct hclge_wol_info)); 11518 ret = hclge_get_wol_supported_mode(hdev, 11519 &wol_info->wol_support_mode); 11520 if (ret) { 11521 wol_info->wol_support_mode = 0; 11522 return ret; 11523 } 11524 11525 return hclge_update_wol(hdev); 11526 } 11527 11528 static void hclge_get_wol(struct hnae3_handle *handle, 11529 struct ethtool_wolinfo *wol) 11530 { 11531 struct hclge_wol_info *wol_info = hclge_get_wol_info(handle); 11532 11533 wol->supported = wol_info->wol_support_mode; 11534 wol->wolopts = wol_info->wol_current_mode; 11535 if (wol_info->wol_current_mode & WAKE_MAGICSECURE) 11536 memcpy(wol->sopass, wol_info->wol_sopass, SOPASS_MAX); 11537 } 11538 11539 static int hclge_set_wol(struct hnae3_handle *handle, 11540 struct ethtool_wolinfo *wol) 11541 { 11542 struct hclge_wol_info *wol_info = hclge_get_wol_info(handle); 11543 struct hclge_vport *vport = hclge_get_vport(handle); 11544 u32 wol_mode; 11545 int ret; 11546 11547 wol_mode = wol->wolopts; 11548 if (wol_mode & ~wol_info->wol_support_mode) 11549 return -EINVAL; 11550 11551 wol_info->wol_current_mode = wol_mode; 11552 if (wol_mode & WAKE_MAGICSECURE) { 11553 memcpy(wol_info->wol_sopass, wol->sopass, SOPASS_MAX); 11554 wol_info->wol_sopass_size = SOPASS_MAX; 11555 } else { 11556 wol_info->wol_sopass_size = 0; 11557 } 11558 11559 ret = hclge_set_wol_cfg(vport->back, wol_info); 11560 if (ret) 11561 wol_info->wol_current_mode = 0; 11562 11563 return ret; 11564 } 11565 11566 static int hclge_init_ae_dev(struct hnae3_ae_dev *ae_dev) 11567 { 11568 struct pci_dev *pdev = ae_dev->pdev; 11569 struct hclge_dev *hdev; 11570 int ret; 11571 11572 hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL); 11573 if (!hdev) 11574 return -ENOMEM; 11575 11576 hdev->pdev = pdev; 11577 hdev->ae_dev = ae_dev; 11578 hdev->reset_type = HNAE3_NONE_RESET; 11579 hdev->reset_level = HNAE3_FUNC_RESET; 11580 ae_dev->priv = hdev; 11581 11582 /* HW supprt 2 layer vlan */ 11583 hdev->mps = ETH_FRAME_LEN + ETH_FCS_LEN + 2 * VLAN_HLEN; 11584 11585 mutex_init(&hdev->vport_lock); 11586 spin_lock_init(&hdev->fd_rule_lock); 11587 sema_init(&hdev->reset_sem, 1); 11588 11589 ret = hclge_pci_init(hdev); 11590 if (ret) 11591 goto out; 11592 11593 ret = hclge_devlink_init(hdev); 11594 if (ret) 11595 goto err_pci_uninit; 11596 11597 /* Firmware command queue initialize */ 11598 ret = hclge_comm_cmd_queue_init(hdev->pdev, &hdev->hw.hw); 11599 if (ret) 11600 goto err_devlink_uninit; 11601 11602 /* Firmware command initialize */ 11603 ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw, &hdev->fw_version, 11604 true, hdev->reset_pending); 11605 if (ret) 11606 goto err_cmd_uninit; 11607 11608 ret = hclge_clear_hw_resource(hdev); 11609 if (ret) 11610 goto err_cmd_uninit; 11611 11612 ret = hclge_get_cap(hdev); 11613 if (ret) 11614 goto err_cmd_uninit; 11615 11616 ret = hclge_query_dev_specs(hdev); 11617 if (ret) { 11618 dev_err(&pdev->dev, "failed to query dev specifications, ret = %d.\n", 11619 ret); 11620 goto err_cmd_uninit; 11621 } 11622 11623 ret = hclge_configure(hdev); 11624 if (ret) { 11625 dev_err(&pdev->dev, "Configure dev error, ret = %d.\n", ret); 11626 goto err_cmd_uninit; 11627 } 11628 11629 ret = hclge_init_msi(hdev); 11630 if (ret) { 11631 dev_err(&pdev->dev, "Init MSI/MSI-X error, ret = %d.\n", ret); 11632 goto err_cmd_uninit; 11633 } 11634 11635 ret = hclge_misc_irq_init(hdev); 11636 if (ret) 11637 goto err_msi_uninit; 11638 11639 ret = hclge_alloc_tqps(hdev); 11640 if (ret) { 11641 dev_err(&pdev->dev, "Allocate TQPs error, ret = %d.\n", ret); 11642 goto err_msi_irq_uninit; 11643 } 11644 11645 ret = hclge_alloc_vport(hdev); 11646 if (ret) 11647 goto err_msi_irq_uninit; 11648 11649 ret = hclge_map_tqp(hdev); 11650 if (ret) 11651 goto err_msi_irq_uninit; 11652 11653 if (hdev->hw.mac.media_type == HNAE3_MEDIA_TYPE_COPPER) { 11654 if (hnae3_dev_phy_imp_supported(hdev)) 11655 ret = hclge_update_tp_port_info(hdev); 11656 else 11657 ret = hclge_mac_mdio_config(hdev); 11658 11659 if (ret) 11660 goto err_msi_irq_uninit; 11661 } 11662 11663 ret = hclge_init_umv_space(hdev); 11664 if (ret) 11665 goto err_mdiobus_unreg; 11666 11667 ret = hclge_mac_init(hdev); 11668 if (ret) { 11669 dev_err(&pdev->dev, "Mac init error, ret = %d\n", ret); 11670 goto err_mdiobus_unreg; 11671 } 11672 11673 ret = hclge_config_tso(hdev, HCLGE_TSO_MSS_MIN, HCLGE_TSO_MSS_MAX); 11674 if (ret) { 11675 dev_err(&pdev->dev, "Enable tso fail, ret =%d\n", ret); 11676 goto err_mdiobus_unreg; 11677 } 11678 11679 ret = hclge_config_gro(hdev); 11680 if (ret) 11681 goto err_mdiobus_unreg; 11682 11683 ret = hclge_init_vlan_config(hdev); 11684 if (ret) { 11685 dev_err(&pdev->dev, "VLAN init fail, ret =%d\n", ret); 11686 goto err_mdiobus_unreg; 11687 } 11688 11689 ret = hclge_tm_schd_init(hdev); 11690 if (ret) { 11691 dev_err(&pdev->dev, "tm schd init fail, ret =%d\n", ret); 11692 goto err_mdiobus_unreg; 11693 } 11694 11695 ret = hclge_comm_rss_init_cfg(&hdev->vport->nic, hdev->ae_dev, 11696 &hdev->rss_cfg); 11697 if (ret) { 11698 dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret); 11699 goto err_mdiobus_unreg; 11700 } 11701 11702 ret = hclge_rss_init_hw(hdev); 11703 if (ret) { 11704 dev_err(&pdev->dev, "Rss init fail, ret =%d\n", ret); 11705 goto err_mdiobus_unreg; 11706 } 11707 11708 ret = init_mgr_tbl(hdev); 11709 if (ret) { 11710 dev_err(&pdev->dev, "manager table init fail, ret =%d\n", ret); 11711 goto err_mdiobus_unreg; 11712 } 11713 11714 ret = hclge_init_fd_config(hdev); 11715 if (ret) { 11716 dev_err(&pdev->dev, 11717 "fd table init fail, ret=%d\n", ret); 11718 goto err_mdiobus_unreg; 11719 } 11720 11721 ret = hclge_ptp_init(hdev); 11722 if (ret) 11723 goto err_mdiobus_unreg; 11724 11725 ret = hclge_update_port_info(hdev); 11726 if (ret) 11727 goto err_mdiobus_unreg; 11728 11729 INIT_KFIFO(hdev->mac_tnl_log); 11730 11731 hclge_dcb_ops_set(hdev); 11732 11733 timer_setup(&hdev->reset_timer, hclge_reset_timer, 0); 11734 INIT_DELAYED_WORK(&hdev->service_task, hclge_service_task); 11735 11736 hclge_clear_all_event_cause(hdev); 11737 hclge_clear_resetting_state(hdev); 11738 11739 /* Log and clear the hw errors those already occurred */ 11740 if (hnae3_dev_ras_imp_supported(hdev)) 11741 hclge_handle_occurred_error(hdev); 11742 else 11743 hclge_handle_all_hns_hw_errors(ae_dev); 11744 11745 /* request delayed reset for the error recovery because an immediate 11746 * global reset on a PF affecting pending initialization of other PFs 11747 */ 11748 if (ae_dev->hw_err_reset_req) { 11749 enum hnae3_reset_type reset_level; 11750 11751 reset_level = hclge_get_reset_level(ae_dev, 11752 &ae_dev->hw_err_reset_req); 11753 hclge_set_def_reset_request(ae_dev, reset_level); 11754 mod_timer(&hdev->reset_timer, jiffies + HCLGE_RESET_INTERVAL); 11755 } 11756 11757 hclge_init_rxd_adv_layout(hdev); 11758 11759 /* Enable MISC vector(vector0) */ 11760 hclge_enable_vector(&hdev->misc_vector, true); 11761 11762 ret = hclge_init_wol(hdev); 11763 if (ret) 11764 dev_warn(&pdev->dev, 11765 "failed to wake on lan init, ret = %d\n", ret); 11766 11767 hclge_state_init(hdev); 11768 hdev->last_reset_time = jiffies; 11769 11770 dev_info(&hdev->pdev->dev, "%s driver initialization finished.\n", 11771 HCLGE_DRIVER_NAME); 11772 11773 hclge_task_schedule(hdev, round_jiffies_relative(HZ)); 11774 11775 return 0; 11776 11777 err_mdiobus_unreg: 11778 if (hdev->hw.mac.phydev) 11779 mdiobus_unregister(hdev->hw.mac.mdio_bus); 11780 err_msi_irq_uninit: 11781 hclge_misc_irq_uninit(hdev); 11782 err_msi_uninit: 11783 pci_free_irq_vectors(pdev); 11784 err_cmd_uninit: 11785 hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw); 11786 err_devlink_uninit: 11787 hclge_devlink_uninit(hdev); 11788 err_pci_uninit: 11789 pcim_iounmap(pdev, hdev->hw.hw.io_base); 11790 pci_release_regions(pdev); 11791 pci_disable_device(pdev); 11792 out: 11793 mutex_destroy(&hdev->vport_lock); 11794 return ret; 11795 } 11796 11797 static void hclge_stats_clear(struct hclge_dev *hdev) 11798 { 11799 memset(&hdev->mac_stats, 0, sizeof(hdev->mac_stats)); 11800 memset(&hdev->fec_stats, 0, sizeof(hdev->fec_stats)); 11801 } 11802 11803 static int hclge_set_mac_spoofchk(struct hclge_dev *hdev, int vf, bool enable) 11804 { 11805 return hclge_config_switch_param(hdev, vf, enable, 11806 HCLGE_SWITCH_ANTI_SPOOF_MASK); 11807 } 11808 11809 static int hclge_set_vlan_spoofchk(struct hclge_dev *hdev, int vf, bool enable) 11810 { 11811 return hclge_set_vlan_filter_ctrl(hdev, HCLGE_FILTER_TYPE_VF, 11812 HCLGE_FILTER_FE_NIC_INGRESS_B, 11813 enable, vf); 11814 } 11815 11816 static int hclge_set_vf_spoofchk_hw(struct hclge_dev *hdev, int vf, bool enable) 11817 { 11818 int ret; 11819 11820 ret = hclge_set_mac_spoofchk(hdev, vf, enable); 11821 if (ret) { 11822 dev_err(&hdev->pdev->dev, 11823 "Set vf %d mac spoof check %s failed, ret=%d\n", 11824 vf, enable ? "on" : "off", ret); 11825 return ret; 11826 } 11827 11828 ret = hclge_set_vlan_spoofchk(hdev, vf, enable); 11829 if (ret) 11830 dev_err(&hdev->pdev->dev, 11831 "Set vf %d vlan spoof check %s failed, ret=%d\n", 11832 vf, enable ? "on" : "off", ret); 11833 11834 return ret; 11835 } 11836 11837 static int hclge_set_vf_spoofchk(struct hnae3_handle *handle, int vf, 11838 bool enable) 11839 { 11840 struct hclge_vport *vport = hclge_get_vport(handle); 11841 struct hclge_dev *hdev = vport->back; 11842 u32 new_spoofchk = enable ? 1 : 0; 11843 int ret; 11844 11845 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2) 11846 return -EOPNOTSUPP; 11847 11848 vport = hclge_get_vf_vport(hdev, vf); 11849 if (!vport) 11850 return -EINVAL; 11851 11852 if (vport->vf_info.spoofchk == new_spoofchk) 11853 return 0; 11854 11855 if (enable && test_bit(vport->vport_id, hdev->vf_vlan_full)) 11856 dev_warn(&hdev->pdev->dev, 11857 "vf %d vlan table is full, enable spoof check may cause its packet send fail\n", 11858 vf); 11859 else if (enable && hclge_is_umv_space_full(vport, true)) 11860 dev_warn(&hdev->pdev->dev, 11861 "vf %d mac table is full, enable spoof check may cause its packet send fail\n", 11862 vf); 11863 11864 ret = hclge_set_vf_spoofchk_hw(hdev, vport->vport_id, enable); 11865 if (ret) 11866 return ret; 11867 11868 vport->vf_info.spoofchk = new_spoofchk; 11869 return 0; 11870 } 11871 11872 static int hclge_reset_vport_spoofchk(struct hclge_dev *hdev) 11873 { 11874 struct hclge_vport *vport = hdev->vport; 11875 int ret; 11876 int i; 11877 11878 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2) 11879 return 0; 11880 11881 /* resume the vf spoof check state after reset */ 11882 for (i = 0; i < hdev->num_alloc_vport; i++) { 11883 ret = hclge_set_vf_spoofchk_hw(hdev, vport->vport_id, 11884 vport->vf_info.spoofchk); 11885 if (ret) 11886 return ret; 11887 11888 vport++; 11889 } 11890 11891 return 0; 11892 } 11893 11894 static int hclge_set_vf_trust(struct hnae3_handle *handle, int vf, bool enable) 11895 { 11896 struct hclge_vport *vport = hclge_get_vport(handle); 11897 struct hclge_dev *hdev = vport->back; 11898 u32 new_trusted = enable ? 1 : 0; 11899 11900 vport = hclge_get_vf_vport(hdev, vf); 11901 if (!vport) 11902 return -EINVAL; 11903 11904 if (vport->vf_info.trusted == new_trusted) 11905 return 0; 11906 11907 vport->vf_info.trusted = new_trusted; 11908 set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, &vport->state); 11909 hclge_task_schedule(hdev, 0); 11910 11911 return 0; 11912 } 11913 11914 static void hclge_reset_vf_rate(struct hclge_dev *hdev) 11915 { 11916 int ret; 11917 int vf; 11918 11919 /* reset vf rate to default value */ 11920 for (vf = HCLGE_VF_VPORT_START_NUM; vf < hdev->num_alloc_vport; vf++) { 11921 struct hclge_vport *vport = &hdev->vport[vf]; 11922 11923 vport->vf_info.max_tx_rate = 0; 11924 ret = hclge_tm_qs_shaper_cfg(vport, vport->vf_info.max_tx_rate); 11925 if (ret) 11926 dev_err(&hdev->pdev->dev, 11927 "vf%d failed to reset to default, ret=%d\n", 11928 vf - HCLGE_VF_VPORT_START_NUM, ret); 11929 } 11930 } 11931 11932 static int hclge_vf_rate_param_check(struct hclge_dev *hdev, 11933 int min_tx_rate, int max_tx_rate) 11934 { 11935 if (min_tx_rate != 0 || 11936 max_tx_rate < 0 || max_tx_rate > hdev->hw.mac.max_speed) { 11937 dev_err(&hdev->pdev->dev, 11938 "min_tx_rate:%d [0], max_tx_rate:%d [0, %u]\n", 11939 min_tx_rate, max_tx_rate, hdev->hw.mac.max_speed); 11940 return -EINVAL; 11941 } 11942 11943 return 0; 11944 } 11945 11946 static int hclge_set_vf_rate(struct hnae3_handle *handle, int vf, 11947 int min_tx_rate, int max_tx_rate, bool force) 11948 { 11949 struct hclge_vport *vport = hclge_get_vport(handle); 11950 struct hclge_dev *hdev = vport->back; 11951 int ret; 11952 11953 ret = hclge_vf_rate_param_check(hdev, min_tx_rate, max_tx_rate); 11954 if (ret) 11955 return ret; 11956 11957 vport = hclge_get_vf_vport(hdev, vf); 11958 if (!vport) 11959 return -EINVAL; 11960 11961 if (!force && max_tx_rate == vport->vf_info.max_tx_rate) 11962 return 0; 11963 11964 ret = hclge_tm_qs_shaper_cfg(vport, max_tx_rate); 11965 if (ret) 11966 return ret; 11967 11968 vport->vf_info.max_tx_rate = max_tx_rate; 11969 11970 return 0; 11971 } 11972 11973 static int hclge_resume_vf_rate(struct hclge_dev *hdev) 11974 { 11975 struct hnae3_handle *handle = &hdev->vport->nic; 11976 struct hclge_vport *vport; 11977 int ret; 11978 int vf; 11979 11980 /* resume the vf max_tx_rate after reset */ 11981 for (vf = 0; vf < pci_num_vf(hdev->pdev); vf++) { 11982 vport = hclge_get_vf_vport(hdev, vf); 11983 if (!vport) 11984 return -EINVAL; 11985 11986 /* zero means max rate, after reset, firmware already set it to 11987 * max rate, so just continue. 11988 */ 11989 if (!vport->vf_info.max_tx_rate) 11990 continue; 11991 11992 ret = hclge_set_vf_rate(handle, vf, 0, 11993 vport->vf_info.max_tx_rate, true); 11994 if (ret) { 11995 dev_err(&hdev->pdev->dev, 11996 "vf%d failed to resume tx_rate:%u, ret=%d\n", 11997 vf, vport->vf_info.max_tx_rate, ret); 11998 return ret; 11999 } 12000 } 12001 12002 return 0; 12003 } 12004 12005 static void hclge_reset_vport_state(struct hclge_dev *hdev) 12006 { 12007 struct hclge_vport *vport = hdev->vport; 12008 int i; 12009 12010 for (i = 0; i < hdev->num_alloc_vport; i++) { 12011 clear_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state); 12012 vport++; 12013 } 12014 } 12015 12016 static int hclge_reset_ae_dev(struct hnae3_ae_dev *ae_dev) 12017 { 12018 struct hclge_dev *hdev = ae_dev->priv; 12019 struct pci_dev *pdev = ae_dev->pdev; 12020 int ret; 12021 12022 set_bit(HCLGE_STATE_DOWN, &hdev->state); 12023 12024 hclge_stats_clear(hdev); 12025 /* NOTE: pf reset needn't to clear or restore pf and vf table entry. 12026 * so here should not clean table in memory. 12027 */ 12028 if (hdev->reset_type == HNAE3_IMP_RESET || 12029 hdev->reset_type == HNAE3_GLOBAL_RESET) { 12030 memset(hdev->vlan_table, 0, sizeof(hdev->vlan_table)); 12031 memset(hdev->vf_vlan_full, 0, sizeof(hdev->vf_vlan_full)); 12032 bitmap_set(hdev->vport_config_block, 0, hdev->num_alloc_vport); 12033 hclge_reset_umv_space(hdev); 12034 } 12035 12036 ret = hclge_comm_cmd_init(hdev->ae_dev, &hdev->hw.hw, &hdev->fw_version, 12037 true, hdev->reset_pending); 12038 if (ret) { 12039 dev_err(&pdev->dev, "Cmd queue init failed\n"); 12040 return ret; 12041 } 12042 12043 ret = hclge_map_tqp(hdev); 12044 if (ret) { 12045 dev_err(&pdev->dev, "Map tqp error, ret = %d.\n", ret); 12046 return ret; 12047 } 12048 12049 ret = hclge_mac_init(hdev); 12050 if (ret) { 12051 dev_err(&pdev->dev, "Mac init error, ret = %d\n", ret); 12052 return ret; 12053 } 12054 12055 ret = hclge_tp_port_init(hdev); 12056 if (ret) { 12057 dev_err(&pdev->dev, "failed to init tp port, ret = %d\n", 12058 ret); 12059 return ret; 12060 } 12061 12062 ret = hclge_config_tso(hdev, HCLGE_TSO_MSS_MIN, HCLGE_TSO_MSS_MAX); 12063 if (ret) { 12064 dev_err(&pdev->dev, "Enable tso fail, ret =%d\n", ret); 12065 return ret; 12066 } 12067 12068 ret = hclge_config_gro(hdev); 12069 if (ret) 12070 return ret; 12071 12072 ret = hclge_init_vlan_config(hdev); 12073 if (ret) { 12074 dev_err(&pdev->dev, "VLAN init fail, ret =%d\n", ret); 12075 return ret; 12076 } 12077 12078 ret = hclge_tm_init_hw(hdev, true); 12079 if (ret) { 12080 dev_err(&pdev->dev, "tm init hw fail, ret =%d\n", ret); 12081 return ret; 12082 } 12083 12084 ret = hclge_rss_init_hw(hdev); 12085 if (ret) { 12086 dev_err(&pdev->dev, "Rss init fail, ret =%d\n", ret); 12087 return ret; 12088 } 12089 12090 ret = init_mgr_tbl(hdev); 12091 if (ret) { 12092 dev_err(&pdev->dev, 12093 "failed to reinit manager table, ret = %d\n", ret); 12094 return ret; 12095 } 12096 12097 ret = hclge_init_fd_config(hdev); 12098 if (ret) { 12099 dev_err(&pdev->dev, "fd table init fail, ret=%d\n", ret); 12100 return ret; 12101 } 12102 12103 ret = hclge_ptp_init(hdev); 12104 if (ret) 12105 return ret; 12106 12107 /* Log and clear the hw errors those already occurred */ 12108 if (hnae3_dev_ras_imp_supported(hdev)) 12109 hclge_handle_occurred_error(hdev); 12110 else 12111 hclge_handle_all_hns_hw_errors(ae_dev); 12112 12113 /* Re-enable the hw error interrupts because 12114 * the interrupts get disabled on global reset. 12115 */ 12116 ret = hclge_config_nic_hw_error(hdev, true); 12117 if (ret) { 12118 dev_err(&pdev->dev, 12119 "fail(%d) to re-enable NIC hw error interrupts\n", 12120 ret); 12121 return ret; 12122 } 12123 12124 if (hdev->roce_client) { 12125 ret = hclge_config_rocee_ras_interrupt(hdev, true); 12126 if (ret) { 12127 dev_err(&pdev->dev, 12128 "fail(%d) to re-enable roce ras interrupts\n", 12129 ret); 12130 return ret; 12131 } 12132 } 12133 12134 hclge_reset_vport_state(hdev); 12135 ret = hclge_reset_vport_spoofchk(hdev); 12136 if (ret) 12137 return ret; 12138 12139 ret = hclge_resume_vf_rate(hdev); 12140 if (ret) 12141 return ret; 12142 12143 hclge_init_rxd_adv_layout(hdev); 12144 12145 ret = hclge_update_wol(hdev); 12146 if (ret) 12147 dev_warn(&pdev->dev, 12148 "failed to update wol config, ret = %d\n", ret); 12149 12150 dev_info(&pdev->dev, "Reset done, %s driver initialization finished.\n", 12151 HCLGE_DRIVER_NAME); 12152 12153 return 0; 12154 } 12155 12156 static void hclge_uninit_ae_dev(struct hnae3_ae_dev *ae_dev) 12157 { 12158 struct hclge_dev *hdev = ae_dev->priv; 12159 struct hclge_mac *mac = &hdev->hw.mac; 12160 12161 hclge_reset_vf_rate(hdev); 12162 hclge_clear_vf_vlan(hdev); 12163 hclge_state_uninit(hdev); 12164 hclge_ptp_uninit(hdev); 12165 hclge_uninit_rxd_adv_layout(hdev); 12166 hclge_uninit_mac_table(hdev); 12167 hclge_del_all_fd_entries(hdev); 12168 12169 if (mac->phydev) 12170 mdiobus_unregister(mac->mdio_bus); 12171 12172 /* Disable MISC vector(vector0) */ 12173 hclge_enable_vector(&hdev->misc_vector, false); 12174 synchronize_irq(hdev->misc_vector.vector_irq); 12175 12176 /* Disable all hw interrupts */ 12177 hclge_config_mac_tnl_int(hdev, false); 12178 hclge_config_nic_hw_error(hdev, false); 12179 hclge_config_rocee_ras_interrupt(hdev, false); 12180 12181 hclge_comm_cmd_uninit(hdev->ae_dev, &hdev->hw.hw); 12182 hclge_misc_irq_uninit(hdev); 12183 hclge_devlink_uninit(hdev); 12184 hclge_pci_uninit(hdev); 12185 hclge_uninit_vport_vlan_table(hdev); 12186 mutex_destroy(&hdev->vport_lock); 12187 ae_dev->priv = NULL; 12188 } 12189 12190 static u32 hclge_get_max_channels(struct hnae3_handle *handle) 12191 { 12192 struct hclge_vport *vport = hclge_get_vport(handle); 12193 struct hclge_dev *hdev = vport->back; 12194 12195 return min_t(u32, hdev->pf_rss_size_max, vport->alloc_tqps); 12196 } 12197 12198 static void hclge_get_channels(struct hnae3_handle *handle, 12199 struct ethtool_channels *ch) 12200 { 12201 ch->max_combined = hclge_get_max_channels(handle); 12202 ch->other_count = 1; 12203 ch->max_other = 1; 12204 ch->combined_count = handle->kinfo.rss_size; 12205 } 12206 12207 static void hclge_get_tqps_and_rss_info(struct hnae3_handle *handle, 12208 u16 *alloc_tqps, u16 *max_rss_size) 12209 { 12210 struct hclge_vport *vport = hclge_get_vport(handle); 12211 struct hclge_dev *hdev = vport->back; 12212 12213 *alloc_tqps = vport->alloc_tqps; 12214 *max_rss_size = hdev->pf_rss_size_max; 12215 } 12216 12217 static int hclge_set_rss_tc_mode_cfg(struct hnae3_handle *handle) 12218 { 12219 struct hclge_vport *vport = hclge_get_vport(handle); 12220 u16 tc_offset[HCLGE_MAX_TC_NUM] = {0}; 12221 struct hclge_dev *hdev = vport->back; 12222 u16 tc_size[HCLGE_MAX_TC_NUM] = {0}; 12223 u16 tc_valid[HCLGE_MAX_TC_NUM]; 12224 u16 roundup_size; 12225 unsigned int i; 12226 12227 roundup_size = roundup_pow_of_two(vport->nic.kinfo.rss_size); 12228 roundup_size = ilog2(roundup_size); 12229 /* Set the RSS TC mode according to the new RSS size */ 12230 for (i = 0; i < HCLGE_MAX_TC_NUM; i++) { 12231 tc_valid[i] = 0; 12232 12233 if (!(hdev->hw_tc_map & BIT(i))) 12234 continue; 12235 12236 tc_valid[i] = 1; 12237 tc_size[i] = roundup_size; 12238 tc_offset[i] = vport->nic.kinfo.rss_size * i; 12239 } 12240 12241 return hclge_comm_set_rss_tc_mode(&hdev->hw.hw, tc_offset, tc_valid, 12242 tc_size); 12243 } 12244 12245 static int hclge_set_channels(struct hnae3_handle *handle, u32 new_tqps_num, 12246 bool rxfh_configured) 12247 { 12248 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev); 12249 struct hclge_vport *vport = hclge_get_vport(handle); 12250 struct hnae3_knic_private_info *kinfo = &vport->nic.kinfo; 12251 struct hclge_dev *hdev = vport->back; 12252 u16 cur_rss_size = kinfo->rss_size; 12253 u16 cur_tqps = kinfo->num_tqps; 12254 u32 *rss_indir; 12255 unsigned int i; 12256 int ret; 12257 12258 kinfo->req_rss_size = new_tqps_num; 12259 12260 ret = hclge_tm_vport_map_update(hdev); 12261 if (ret) { 12262 dev_err(&hdev->pdev->dev, "tm vport map fail, ret =%d\n", ret); 12263 return ret; 12264 } 12265 12266 ret = hclge_set_rss_tc_mode_cfg(handle); 12267 if (ret) 12268 return ret; 12269 12270 /* RSS indirection table has been configured by user */ 12271 if (rxfh_configured) 12272 goto out; 12273 12274 /* Reinitializes the rss indirect table according to the new RSS size */ 12275 rss_indir = kcalloc(ae_dev->dev_specs.rss_ind_tbl_size, sizeof(u32), 12276 GFP_KERNEL); 12277 if (!rss_indir) 12278 return -ENOMEM; 12279 12280 for (i = 0; i < ae_dev->dev_specs.rss_ind_tbl_size; i++) 12281 rss_indir[i] = i % kinfo->rss_size; 12282 12283 ret = hclge_set_rss(handle, rss_indir, NULL, 0); 12284 if (ret) 12285 dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n", 12286 ret); 12287 12288 kfree(rss_indir); 12289 12290 out: 12291 if (!ret) 12292 dev_info(&hdev->pdev->dev, 12293 "Channels changed, rss_size from %u to %u, tqps from %u to %u", 12294 cur_rss_size, kinfo->rss_size, 12295 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc); 12296 12297 return ret; 12298 } 12299 12300 static int hclge_set_led_status(struct hclge_dev *hdev, u8 locate_led_status) 12301 { 12302 struct hclge_set_led_state_cmd *req; 12303 struct hclge_desc desc; 12304 int ret; 12305 12306 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_LED_STATUS_CFG, false); 12307 12308 req = (struct hclge_set_led_state_cmd *)desc.data; 12309 hnae3_set_field(req->locate_led_config, HCLGE_LED_LOCATE_STATE_M, 12310 HCLGE_LED_LOCATE_STATE_S, locate_led_status); 12311 12312 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 12313 if (ret) 12314 dev_err(&hdev->pdev->dev, 12315 "Send set led state cmd error, ret =%d\n", ret); 12316 12317 return ret; 12318 } 12319 12320 enum hclge_led_status { 12321 HCLGE_LED_OFF, 12322 HCLGE_LED_ON, 12323 HCLGE_LED_NO_CHANGE = 0xFF, 12324 }; 12325 12326 static int hclge_set_led_id(struct hnae3_handle *handle, 12327 enum ethtool_phys_id_state status) 12328 { 12329 struct hclge_vport *vport = hclge_get_vport(handle); 12330 struct hclge_dev *hdev = vport->back; 12331 12332 switch (status) { 12333 case ETHTOOL_ID_ACTIVE: 12334 return hclge_set_led_status(hdev, HCLGE_LED_ON); 12335 case ETHTOOL_ID_INACTIVE: 12336 return hclge_set_led_status(hdev, HCLGE_LED_OFF); 12337 default: 12338 return -EINVAL; 12339 } 12340 } 12341 12342 static void hclge_get_link_mode(struct hnae3_handle *handle, 12343 unsigned long *supported, 12344 unsigned long *advertising) 12345 { 12346 unsigned int size = BITS_TO_LONGS(__ETHTOOL_LINK_MODE_MASK_NBITS); 12347 struct hclge_vport *vport = hclge_get_vport(handle); 12348 struct hclge_dev *hdev = vport->back; 12349 unsigned int idx = 0; 12350 12351 for (; idx < size; idx++) { 12352 supported[idx] = hdev->hw.mac.supported[idx]; 12353 advertising[idx] = hdev->hw.mac.advertising[idx]; 12354 } 12355 } 12356 12357 static int hclge_gro_en(struct hnae3_handle *handle, bool enable) 12358 { 12359 struct hclge_vport *vport = hclge_get_vport(handle); 12360 struct hclge_dev *hdev = vport->back; 12361 bool gro_en_old = hdev->gro_en; 12362 int ret; 12363 12364 hdev->gro_en = enable; 12365 ret = hclge_config_gro(hdev); 12366 if (ret) 12367 hdev->gro_en = gro_en_old; 12368 12369 return ret; 12370 } 12371 12372 static int hclge_sync_vport_promisc_mode(struct hclge_vport *vport) 12373 { 12374 struct hnae3_handle *handle = &vport->nic; 12375 struct hclge_dev *hdev = vport->back; 12376 bool uc_en = false; 12377 bool mc_en = false; 12378 u8 tmp_flags; 12379 bool bc_en; 12380 int ret; 12381 12382 if (vport->last_promisc_flags != vport->overflow_promisc_flags) { 12383 set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, &vport->state); 12384 vport->last_promisc_flags = vport->overflow_promisc_flags; 12385 } 12386 12387 if (!test_and_clear_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, 12388 &vport->state)) 12389 return 0; 12390 12391 /* for PF */ 12392 if (!vport->vport_id) { 12393 tmp_flags = handle->netdev_flags | vport->last_promisc_flags; 12394 ret = hclge_set_promisc_mode(handle, tmp_flags & HNAE3_UPE, 12395 tmp_flags & HNAE3_MPE); 12396 if (!ret) 12397 set_bit(HCLGE_VPORT_STATE_VLAN_FLTR_CHANGE, 12398 &vport->state); 12399 else 12400 set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, 12401 &vport->state); 12402 return ret; 12403 } 12404 12405 /* for VF */ 12406 if (vport->vf_info.trusted) { 12407 uc_en = vport->vf_info.request_uc_en > 0 || 12408 vport->overflow_promisc_flags & HNAE3_OVERFLOW_UPE; 12409 mc_en = vport->vf_info.request_mc_en > 0 || 12410 vport->overflow_promisc_flags & HNAE3_OVERFLOW_MPE; 12411 } 12412 bc_en = vport->vf_info.request_bc_en > 0; 12413 12414 ret = hclge_cmd_set_promisc_mode(hdev, vport->vport_id, uc_en, 12415 mc_en, bc_en); 12416 if (ret) { 12417 set_bit(HCLGE_VPORT_STATE_PROMISC_CHANGE, &vport->state); 12418 return ret; 12419 } 12420 hclge_set_vport_vlan_fltr_change(vport); 12421 12422 return 0; 12423 } 12424 12425 static void hclge_sync_promisc_mode(struct hclge_dev *hdev) 12426 { 12427 struct hclge_vport *vport; 12428 int ret; 12429 u16 i; 12430 12431 for (i = 0; i < hdev->num_alloc_vport; i++) { 12432 vport = &hdev->vport[i]; 12433 12434 ret = hclge_sync_vport_promisc_mode(vport); 12435 if (ret) 12436 return; 12437 } 12438 } 12439 12440 static bool hclge_module_existed(struct hclge_dev *hdev) 12441 { 12442 struct hclge_desc desc; 12443 u32 existed; 12444 int ret; 12445 12446 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_GET_SFP_EXIST, true); 12447 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 12448 if (ret) { 12449 dev_err(&hdev->pdev->dev, 12450 "failed to get SFP exist state, ret = %d\n", ret); 12451 return false; 12452 } 12453 12454 existed = le32_to_cpu(desc.data[0]); 12455 12456 return existed != 0; 12457 } 12458 12459 /* need 6 bds(total 140 bytes) in one reading 12460 * return the number of bytes actually read, 0 means read failed. 12461 */ 12462 static u16 hclge_get_sfp_eeprom_info(struct hclge_dev *hdev, u32 offset, 12463 u32 len, u8 *data) 12464 { 12465 struct hclge_desc desc[HCLGE_SFP_INFO_CMD_NUM]; 12466 struct hclge_sfp_info_bd0_cmd *sfp_info_bd0; 12467 u16 read_len; 12468 u16 copy_len; 12469 int ret; 12470 int i; 12471 12472 /* setup all 6 bds to read module eeprom info. */ 12473 for (i = 0; i < HCLGE_SFP_INFO_CMD_NUM; i++) { 12474 hclge_cmd_setup_basic_desc(&desc[i], HCLGE_OPC_GET_SFP_EEPROM, 12475 true); 12476 12477 /* bd0~bd4 need next flag */ 12478 if (i < HCLGE_SFP_INFO_CMD_NUM - 1) 12479 desc[i].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT); 12480 } 12481 12482 /* setup bd0, this bd contains offset and read length. */ 12483 sfp_info_bd0 = (struct hclge_sfp_info_bd0_cmd *)desc[0].data; 12484 sfp_info_bd0->offset = cpu_to_le16((u16)offset); 12485 read_len = min_t(u16, len, HCLGE_SFP_INFO_MAX_LEN); 12486 sfp_info_bd0->read_len = cpu_to_le16(read_len); 12487 12488 ret = hclge_cmd_send(&hdev->hw, desc, i); 12489 if (ret) { 12490 dev_err(&hdev->pdev->dev, 12491 "failed to get SFP eeprom info, ret = %d\n", ret); 12492 return 0; 12493 } 12494 12495 /* copy sfp info from bd0 to out buffer. */ 12496 copy_len = min_t(u16, len, HCLGE_SFP_INFO_BD0_LEN); 12497 memcpy(data, sfp_info_bd0->data, copy_len); 12498 read_len = copy_len; 12499 12500 /* copy sfp info from bd1~bd5 to out buffer if needed. */ 12501 for (i = 1; i < HCLGE_SFP_INFO_CMD_NUM; i++) { 12502 if (read_len >= len) 12503 return read_len; 12504 12505 copy_len = min_t(u16, len - read_len, HCLGE_SFP_INFO_BDX_LEN); 12506 memcpy(data + read_len, desc[i].data, copy_len); 12507 read_len += copy_len; 12508 } 12509 12510 return read_len; 12511 } 12512 12513 static int hclge_get_module_eeprom(struct hnae3_handle *handle, u32 offset, 12514 u32 len, u8 *data) 12515 { 12516 struct hclge_vport *vport = hclge_get_vport(handle); 12517 struct hclge_dev *hdev = vport->back; 12518 u32 read_len = 0; 12519 u16 data_len; 12520 12521 if (hdev->hw.mac.media_type != HNAE3_MEDIA_TYPE_FIBER) 12522 return -EOPNOTSUPP; 12523 12524 if (!hclge_module_existed(hdev)) 12525 return -ENXIO; 12526 12527 while (read_len < len) { 12528 data_len = hclge_get_sfp_eeprom_info(hdev, 12529 offset + read_len, 12530 len - read_len, 12531 data + read_len); 12532 if (!data_len) 12533 return -EIO; 12534 12535 read_len += data_len; 12536 } 12537 12538 return 0; 12539 } 12540 12541 static int hclge_get_link_diagnosis_info(struct hnae3_handle *handle, 12542 u32 *status_code) 12543 { 12544 struct hclge_vport *vport = hclge_get_vport(handle); 12545 struct hclge_dev *hdev = vport->back; 12546 struct hclge_desc desc; 12547 int ret; 12548 12549 if (hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2) 12550 return -EOPNOTSUPP; 12551 12552 hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_LINK_DIAGNOSIS, true); 12553 ret = hclge_cmd_send(&hdev->hw, &desc, 1); 12554 if (ret) { 12555 dev_err(&hdev->pdev->dev, 12556 "failed to query link diagnosis info, ret = %d\n", ret); 12557 return ret; 12558 } 12559 12560 *status_code = le32_to_cpu(desc.data[0]); 12561 return 0; 12562 } 12563 12564 /* After disable sriov, VF still has some config and info need clean, 12565 * which configed by PF. 12566 */ 12567 static void hclge_clear_vport_vf_info(struct hclge_vport *vport, int vfid) 12568 { 12569 struct hclge_dev *hdev = vport->back; 12570 struct hclge_vlan_info vlan_info; 12571 int ret; 12572 12573 clear_bit(HCLGE_VPORT_STATE_INITED, &vport->state); 12574 clear_bit(HCLGE_VPORT_STATE_ALIVE, &vport->state); 12575 vport->need_notify = 0; 12576 vport->mps = 0; 12577 12578 /* after disable sriov, clean VF rate configured by PF */ 12579 ret = hclge_tm_qs_shaper_cfg(vport, 0); 12580 if (ret) 12581 dev_err(&hdev->pdev->dev, 12582 "failed to clean vf%d rate config, ret = %d\n", 12583 vfid, ret); 12584 12585 vlan_info.vlan_tag = 0; 12586 vlan_info.qos = 0; 12587 vlan_info.vlan_proto = ETH_P_8021Q; 12588 ret = hclge_update_port_base_vlan_cfg(vport, 12589 HNAE3_PORT_BASE_VLAN_DISABLE, 12590 &vlan_info); 12591 if (ret) 12592 dev_err(&hdev->pdev->dev, 12593 "failed to clean vf%d port base vlan, ret = %d\n", 12594 vfid, ret); 12595 12596 ret = hclge_set_vf_spoofchk_hw(hdev, vport->vport_id, false); 12597 if (ret) 12598 dev_err(&hdev->pdev->dev, 12599 "failed to clean vf%d spoof config, ret = %d\n", 12600 vfid, ret); 12601 12602 memset(&vport->vf_info, 0, sizeof(vport->vf_info)); 12603 } 12604 12605 static void hclge_clean_vport_config(struct hnae3_ae_dev *ae_dev, int num_vfs) 12606 { 12607 struct hclge_dev *hdev = ae_dev->priv; 12608 struct hclge_vport *vport; 12609 int i; 12610 12611 for (i = 0; i < num_vfs; i++) { 12612 vport = &hdev->vport[i + HCLGE_VF_VPORT_START_NUM]; 12613 12614 hclge_clear_vport_vf_info(vport, i); 12615 } 12616 } 12617 12618 static int hclge_get_dscp_prio(struct hnae3_handle *h, u8 dscp, u8 *tc_mode, 12619 u8 *priority) 12620 { 12621 struct hclge_vport *vport = hclge_get_vport(h); 12622 12623 if (dscp >= HNAE3_MAX_DSCP) 12624 return -EINVAL; 12625 12626 if (tc_mode) 12627 *tc_mode = vport->nic.kinfo.tc_map_mode; 12628 if (priority) 12629 *priority = vport->nic.kinfo.dscp_prio[dscp] == HNAE3_PRIO_ID_INVALID ? 0 : 12630 vport->nic.kinfo.dscp_prio[dscp]; 12631 12632 return 0; 12633 } 12634 12635 static const struct hnae3_ae_ops hclge_ops = { 12636 .init_ae_dev = hclge_init_ae_dev, 12637 .uninit_ae_dev = hclge_uninit_ae_dev, 12638 .reset_prepare = hclge_reset_prepare_general, 12639 .reset_done = hclge_reset_done, 12640 .init_client_instance = hclge_init_client_instance, 12641 .uninit_client_instance = hclge_uninit_client_instance, 12642 .map_ring_to_vector = hclge_map_ring_to_vector, 12643 .unmap_ring_from_vector = hclge_unmap_ring_frm_vector, 12644 .get_vector = hclge_get_vector, 12645 .put_vector = hclge_put_vector, 12646 .set_promisc_mode = hclge_set_promisc_mode, 12647 .request_update_promisc_mode = hclge_request_update_promisc_mode, 12648 .set_loopback = hclge_set_loopback, 12649 .start = hclge_ae_start, 12650 .stop = hclge_ae_stop, 12651 .client_start = hclge_client_start, 12652 .client_stop = hclge_client_stop, 12653 .get_status = hclge_get_status, 12654 .get_ksettings_an_result = hclge_get_ksettings_an_result, 12655 .cfg_mac_speed_dup_h = hclge_cfg_mac_speed_dup_h, 12656 .get_media_type = hclge_get_media_type, 12657 .check_port_speed = hclge_check_port_speed, 12658 .get_fec_stats = hclge_get_fec_stats, 12659 .get_fec = hclge_get_fec, 12660 .set_fec = hclge_set_fec, 12661 .get_rss_key_size = hclge_comm_get_rss_key_size, 12662 .get_rss = hclge_get_rss, 12663 .set_rss = hclge_set_rss, 12664 .set_rss_tuple = hclge_set_rss_tuple, 12665 .get_rss_tuple = hclge_get_rss_tuple, 12666 .get_tc_size = hclge_get_tc_size, 12667 .get_mac_addr = hclge_get_mac_addr, 12668 .set_mac_addr = hclge_set_mac_addr, 12669 .do_ioctl = hclge_do_ioctl, 12670 .add_uc_addr = hclge_add_uc_addr, 12671 .rm_uc_addr = hclge_rm_uc_addr, 12672 .add_mc_addr = hclge_add_mc_addr, 12673 .rm_mc_addr = hclge_rm_mc_addr, 12674 .set_autoneg = hclge_set_autoneg, 12675 .get_autoneg = hclge_get_autoneg, 12676 .restart_autoneg = hclge_restart_autoneg, 12677 .halt_autoneg = hclge_halt_autoneg, 12678 .get_pauseparam = hclge_get_pauseparam, 12679 .set_pauseparam = hclge_set_pauseparam, 12680 .set_mtu = hclge_set_mtu, 12681 .reset_queue = hclge_reset_tqp, 12682 .get_stats = hclge_get_stats, 12683 .get_mac_stats = hclge_get_mac_stat, 12684 .update_stats = hclge_update_stats, 12685 .get_strings = hclge_get_strings, 12686 .get_sset_count = hclge_get_sset_count, 12687 .get_fw_version = hclge_get_fw_version, 12688 .get_mdix_mode = hclge_get_mdix_mode, 12689 .enable_vlan_filter = hclge_enable_vlan_filter, 12690 .set_vlan_filter = hclge_set_vlan_filter, 12691 .set_vf_vlan_filter = hclge_set_vf_vlan_filter, 12692 .enable_hw_strip_rxvtag = hclge_en_hw_strip_rxvtag, 12693 .reset_event = hclge_reset_event, 12694 .get_reset_level = hclge_get_reset_level, 12695 .set_default_reset_request = hclge_set_def_reset_request, 12696 .get_tqps_and_rss_info = hclge_get_tqps_and_rss_info, 12697 .set_channels = hclge_set_channels, 12698 .get_channels = hclge_get_channels, 12699 .get_regs_len = hclge_get_regs_len, 12700 .get_regs = hclge_get_regs, 12701 .set_led_id = hclge_set_led_id, 12702 .get_link_mode = hclge_get_link_mode, 12703 .add_fd_entry = hclge_add_fd_entry, 12704 .del_fd_entry = hclge_del_fd_entry, 12705 .get_fd_rule_cnt = hclge_get_fd_rule_cnt, 12706 .get_fd_rule_info = hclge_get_fd_rule_info, 12707 .get_fd_all_rules = hclge_get_all_rules, 12708 .enable_fd = hclge_enable_fd, 12709 .add_arfs_entry = hclge_add_fd_entry_by_arfs, 12710 .dbg_read_cmd = hclge_dbg_read_cmd, 12711 .handle_hw_ras_error = hclge_handle_hw_ras_error, 12712 .get_hw_reset_stat = hclge_get_hw_reset_stat, 12713 .ae_dev_resetting = hclge_ae_dev_resetting, 12714 .ae_dev_reset_cnt = hclge_ae_dev_reset_cnt, 12715 .set_gro_en = hclge_gro_en, 12716 .get_global_queue_id = hclge_covert_handle_qid_global, 12717 .set_timer_task = hclge_set_timer_task, 12718 .mac_connect_phy = hclge_mac_connect_phy, 12719 .mac_disconnect_phy = hclge_mac_disconnect_phy, 12720 .get_vf_config = hclge_get_vf_config, 12721 .set_vf_link_state = hclge_set_vf_link_state, 12722 .set_vf_spoofchk = hclge_set_vf_spoofchk, 12723 .set_vf_trust = hclge_set_vf_trust, 12724 .set_vf_rate = hclge_set_vf_rate, 12725 .set_vf_mac = hclge_set_vf_mac, 12726 .get_module_eeprom = hclge_get_module_eeprom, 12727 .get_cmdq_stat = hclge_get_cmdq_stat, 12728 .add_cls_flower = hclge_add_cls_flower, 12729 .del_cls_flower = hclge_del_cls_flower, 12730 .cls_flower_active = hclge_is_cls_flower_active, 12731 .get_phy_link_ksettings = hclge_get_phy_link_ksettings, 12732 .set_phy_link_ksettings = hclge_set_phy_link_ksettings, 12733 .set_tx_hwts_info = hclge_ptp_set_tx_info, 12734 .get_rx_hwts = hclge_ptp_get_rx_hwts, 12735 .get_ts_info = hclge_ptp_get_ts_info, 12736 .get_link_diagnosis_info = hclge_get_link_diagnosis_info, 12737 .clean_vf_config = hclge_clean_vport_config, 12738 .get_dscp_prio = hclge_get_dscp_prio, 12739 .get_wol = hclge_get_wol, 12740 .set_wol = hclge_set_wol, 12741 }; 12742 12743 static struct hnae3_ae_algo ae_algo = { 12744 .ops = &hclge_ops, 12745 .pdev_id_table = ae_algo_pci_tbl, 12746 }; 12747 12748 static int __init hclge_init(void) 12749 { 12750 pr_info("%s is initializing\n", HCLGE_NAME); 12751 12752 hclge_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, HCLGE_NAME); 12753 if (!hclge_wq) { 12754 pr_err("%s: failed to create workqueue\n", HCLGE_NAME); 12755 return -ENOMEM; 12756 } 12757 12758 hnae3_register_ae_algo(&ae_algo); 12759 12760 return 0; 12761 } 12762 12763 static void __exit hclge_exit(void) 12764 { 12765 hnae3_unregister_ae_algo_prepare(&ae_algo); 12766 hnae3_unregister_ae_algo(&ae_algo); 12767 destroy_workqueue(hclge_wq); 12768 } 12769 module_init(hclge_init); 12770 module_exit(hclge_exit); 12771 12772 MODULE_LICENSE("GPL"); 12773 MODULE_AUTHOR("Huawei Tech. Co., Ltd."); 12774 MODULE_DESCRIPTION("HCLGE Driver"); 12775 MODULE_VERSION(HCLGE_MOD_VERSION); 12776