xref: /linux/drivers/net/ethernet/hisilicon/hns3/hns3pf/hclge_err.c (revision d6296cb65320be16dbf20f2fd584ddc25f3437cd)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Copyright (c) 2016-2017 Hisilicon Limited. */
3 
4 #include <linux/sched/clock.h>
5 
6 #include "hclge_err.h"
7 
8 static const struct hclge_hw_error hclge_imp_tcm_ecc_int[] = {
9 	{
10 		.int_msk = BIT(1),
11 		.msg = "imp_itcm0_ecc_mbit_err",
12 		.reset_level = HNAE3_NONE_RESET
13 	}, {
14 		.int_msk = BIT(3),
15 		.msg = "imp_itcm1_ecc_mbit_err",
16 		.reset_level = HNAE3_NONE_RESET
17 	}, {
18 		.int_msk = BIT(5),
19 		.msg = "imp_itcm2_ecc_mbit_err",
20 		.reset_level = HNAE3_NONE_RESET
21 	}, {
22 		.int_msk = BIT(7),
23 		.msg = "imp_itcm3_ecc_mbit_err",
24 		.reset_level = HNAE3_NONE_RESET
25 	}, {
26 		.int_msk = BIT(9),
27 		.msg = "imp_dtcm0_mem0_ecc_mbit_err",
28 		.reset_level = HNAE3_NONE_RESET
29 	}, {
30 		.int_msk = BIT(11),
31 		.msg = "imp_dtcm0_mem1_ecc_mbit_err",
32 		.reset_level = HNAE3_NONE_RESET
33 	}, {
34 		.int_msk = BIT(13),
35 		.msg = "imp_dtcm1_mem0_ecc_mbit_err",
36 		.reset_level = HNAE3_NONE_RESET
37 	}, {
38 		.int_msk = BIT(15),
39 		.msg = "imp_dtcm1_mem1_ecc_mbit_err",
40 		.reset_level = HNAE3_NONE_RESET
41 	}, {
42 		.int_msk = BIT(17),
43 		.msg = "imp_itcm4_ecc_mbit_err",
44 		.reset_level = HNAE3_NONE_RESET
45 	}, {
46 		/* sentinel */
47 	}
48 };
49 
50 static const struct hclge_hw_error hclge_cmdq_nic_mem_ecc_int[] = {
51 	{
52 		.int_msk = BIT(1),
53 		.msg = "cmdq_nic_rx_depth_ecc_mbit_err",
54 		.reset_level = HNAE3_NONE_RESET
55 	}, {
56 		.int_msk = BIT(3),
57 		.msg = "cmdq_nic_tx_depth_ecc_mbit_err",
58 		.reset_level = HNAE3_NONE_RESET
59 	}, {
60 		.int_msk = BIT(5),
61 		.msg = "cmdq_nic_rx_tail_ecc_mbit_err",
62 		.reset_level = HNAE3_NONE_RESET
63 	}, {
64 		.int_msk = BIT(7),
65 		.msg = "cmdq_nic_tx_tail_ecc_mbit_err",
66 		.reset_level = HNAE3_NONE_RESET
67 	}, {
68 		.int_msk = BIT(9),
69 		.msg = "cmdq_nic_rx_head_ecc_mbit_err",
70 		.reset_level = HNAE3_NONE_RESET
71 	}, {
72 		.int_msk = BIT(11),
73 		.msg = "cmdq_nic_tx_head_ecc_mbit_err",
74 		.reset_level = HNAE3_NONE_RESET
75 	}, {
76 		.int_msk = BIT(13),
77 		.msg = "cmdq_nic_rx_addr_ecc_mbit_err",
78 		.reset_level = HNAE3_NONE_RESET
79 	}, {
80 		.int_msk = BIT(15),
81 		.msg = "cmdq_nic_tx_addr_ecc_mbit_err",
82 		.reset_level = HNAE3_NONE_RESET
83 	}, {
84 		.int_msk = BIT(17),
85 		.msg = "cmdq_rocee_rx_depth_ecc_mbit_err",
86 		.reset_level = HNAE3_NONE_RESET
87 	}, {
88 		.int_msk = BIT(19),
89 		.msg = "cmdq_rocee_tx_depth_ecc_mbit_err",
90 		.reset_level = HNAE3_NONE_RESET
91 	}, {
92 		.int_msk = BIT(21),
93 		.msg = "cmdq_rocee_rx_tail_ecc_mbit_err",
94 		.reset_level = HNAE3_NONE_RESET
95 	}, {
96 		.int_msk = BIT(23),
97 		.msg = "cmdq_rocee_tx_tail_ecc_mbit_err",
98 		.reset_level = HNAE3_NONE_RESET
99 	}, {
100 		.int_msk = BIT(25),
101 		.msg = "cmdq_rocee_rx_head_ecc_mbit_err",
102 		.reset_level = HNAE3_NONE_RESET
103 	}, {
104 		.int_msk = BIT(27),
105 		.msg = "cmdq_rocee_tx_head_ecc_mbit_err",
106 		.reset_level = HNAE3_NONE_RESET
107 	}, {
108 		.int_msk = BIT(29),
109 		.msg = "cmdq_rocee_rx_addr_ecc_mbit_err",
110 		.reset_level = HNAE3_NONE_RESET
111 	}, {
112 		.int_msk = BIT(31),
113 		.msg = "cmdq_rocee_tx_addr_ecc_mbit_err",
114 		.reset_level = HNAE3_NONE_RESET
115 	}, {
116 		/* sentinel */
117 	}
118 };
119 
120 static const struct hclge_hw_error hclge_tqp_int_ecc_int[] = {
121 	{
122 		.int_msk = BIT(6),
123 		.msg = "tqp_int_cfg_even_ecc_mbit_err",
124 		.reset_level = HNAE3_NONE_RESET
125 	}, {
126 		.int_msk = BIT(7),
127 		.msg = "tqp_int_cfg_odd_ecc_mbit_err",
128 		.reset_level = HNAE3_NONE_RESET
129 	}, {
130 		.int_msk = BIT(8),
131 		.msg = "tqp_int_ctrl_even_ecc_mbit_err",
132 		.reset_level = HNAE3_NONE_RESET
133 	}, {
134 		.int_msk = BIT(9),
135 		.msg = "tqp_int_ctrl_odd_ecc_mbit_err",
136 		.reset_level = HNAE3_NONE_RESET
137 	}, {
138 		.int_msk = BIT(10),
139 		.msg = "tx_que_scan_int_ecc_mbit_err",
140 		.reset_level = HNAE3_NONE_RESET
141 	}, {
142 		.int_msk = BIT(11),
143 		.msg = "rx_que_scan_int_ecc_mbit_err",
144 		.reset_level = HNAE3_NONE_RESET
145 	}, {
146 		/* sentinel */
147 	}
148 };
149 
150 static const struct hclge_hw_error hclge_msix_sram_ecc_int[] = {
151 	{
152 		.int_msk = BIT(1),
153 		.msg = "msix_nic_ecc_mbit_err",
154 		.reset_level = HNAE3_NONE_RESET
155 	}, {
156 		.int_msk = BIT(3),
157 		.msg = "msix_rocee_ecc_mbit_err",
158 		.reset_level = HNAE3_NONE_RESET
159 	}, {
160 		/* sentinel */
161 	}
162 };
163 
164 static const struct hclge_hw_error hclge_igu_int[] = {
165 	{
166 		.int_msk = BIT(0),
167 		.msg = "igu_rx_buf0_ecc_mbit_err",
168 		.reset_level = HNAE3_GLOBAL_RESET
169 	}, {
170 		.int_msk = BIT(2),
171 		.msg = "igu_rx_buf1_ecc_mbit_err",
172 		.reset_level = HNAE3_GLOBAL_RESET
173 	}, {
174 		/* sentinel */
175 	}
176 };
177 
178 static const struct hclge_hw_error hclge_igu_egu_tnl_int[] = {
179 	{
180 		.int_msk = BIT(0),
181 		.msg = "rx_buf_overflow",
182 		.reset_level = HNAE3_GLOBAL_RESET
183 	}, {
184 		.int_msk = BIT(1),
185 		.msg = "rx_stp_fifo_overflow",
186 		.reset_level = HNAE3_GLOBAL_RESET
187 	}, {
188 		.int_msk = BIT(2),
189 		.msg = "rx_stp_fifo_underflow",
190 		.reset_level = HNAE3_GLOBAL_RESET
191 	}, {
192 		.int_msk = BIT(3),
193 		.msg = "tx_buf_overflow",
194 		.reset_level = HNAE3_GLOBAL_RESET
195 	}, {
196 		.int_msk = BIT(4),
197 		.msg = "tx_buf_underrun",
198 		.reset_level = HNAE3_GLOBAL_RESET
199 	}, {
200 		.int_msk = BIT(5),
201 		.msg = "rx_stp_buf_overflow",
202 		.reset_level = HNAE3_GLOBAL_RESET
203 	}, {
204 		/* sentinel */
205 	}
206 };
207 
208 static const struct hclge_hw_error hclge_ncsi_err_int[] = {
209 	{
210 		.int_msk = BIT(1),
211 		.msg = "ncsi_tx_ecc_mbit_err",
212 		.reset_level = HNAE3_NONE_RESET
213 	}, {
214 		/* sentinel */
215 	}
216 };
217 
218 static const struct hclge_hw_error hclge_ppp_mpf_abnormal_int_st1[] = {
219 	{
220 		.int_msk = BIT(0),
221 		.msg = "vf_vlan_ad_mem_ecc_mbit_err",
222 		.reset_level = HNAE3_GLOBAL_RESET
223 	}, {
224 		.int_msk = BIT(1),
225 		.msg = "umv_mcast_group_mem_ecc_mbit_err",
226 		.reset_level = HNAE3_GLOBAL_RESET
227 	}, {
228 		.int_msk = BIT(2),
229 		.msg = "umv_key_mem0_ecc_mbit_err",
230 		.reset_level = HNAE3_GLOBAL_RESET
231 	}, {
232 		.int_msk = BIT(3),
233 		.msg = "umv_key_mem1_ecc_mbit_err",
234 		.reset_level = HNAE3_GLOBAL_RESET
235 	}, {
236 		.int_msk = BIT(4),
237 		.msg = "umv_key_mem2_ecc_mbit_err",
238 		.reset_level = HNAE3_GLOBAL_RESET
239 	}, {
240 		.int_msk = BIT(5),
241 		.msg = "umv_key_mem3_ecc_mbit_err",
242 		.reset_level = HNAE3_GLOBAL_RESET
243 	}, {
244 		.int_msk = BIT(6),
245 		.msg = "umv_ad_mem_ecc_mbit_err",
246 		.reset_level = HNAE3_GLOBAL_RESET
247 	}, {
248 		.int_msk = BIT(7),
249 		.msg = "rss_tc_mode_mem_ecc_mbit_err",
250 		.reset_level = HNAE3_GLOBAL_RESET
251 	}, {
252 		.int_msk = BIT(8),
253 		.msg = "rss_idt_mem0_ecc_mbit_err",
254 		.reset_level = HNAE3_GLOBAL_RESET
255 	}, {
256 		.int_msk = BIT(9),
257 		.msg = "rss_idt_mem1_ecc_mbit_err",
258 		.reset_level = HNAE3_GLOBAL_RESET
259 	}, {
260 		.int_msk = BIT(10),
261 		.msg = "rss_idt_mem2_ecc_mbit_err",
262 		.reset_level = HNAE3_GLOBAL_RESET
263 	}, {
264 		.int_msk = BIT(11),
265 		.msg = "rss_idt_mem3_ecc_mbit_err",
266 		.reset_level = HNAE3_GLOBAL_RESET
267 	}, {
268 		.int_msk = BIT(12),
269 		.msg = "rss_idt_mem4_ecc_mbit_err",
270 		.reset_level = HNAE3_GLOBAL_RESET
271 	}, {
272 		.int_msk = BIT(13),
273 		.msg = "rss_idt_mem5_ecc_mbit_err",
274 		.reset_level = HNAE3_GLOBAL_RESET
275 	}, {
276 		.int_msk = BIT(14),
277 		.msg = "rss_idt_mem6_ecc_mbit_err",
278 		.reset_level = HNAE3_GLOBAL_RESET
279 	}, {
280 		.int_msk = BIT(15),
281 		.msg = "rss_idt_mem7_ecc_mbit_err",
282 		.reset_level = HNAE3_GLOBAL_RESET
283 	}, {
284 		.int_msk = BIT(16),
285 		.msg = "rss_idt_mem8_ecc_mbit_err",
286 		.reset_level = HNAE3_GLOBAL_RESET
287 	}, {
288 		.int_msk = BIT(17),
289 		.msg = "rss_idt_mem9_ecc_mbit_err",
290 		.reset_level = HNAE3_GLOBAL_RESET
291 	}, {
292 		.int_msk = BIT(18),
293 		.msg = "rss_idt_mem10_ecc_mbit_err",
294 		.reset_level = HNAE3_GLOBAL_RESET
295 	}, {
296 		.int_msk = BIT(19),
297 		.msg = "rss_idt_mem11_ecc_mbit_err",
298 		.reset_level = HNAE3_GLOBAL_RESET
299 	}, {
300 		.int_msk = BIT(20),
301 		.msg = "rss_idt_mem12_ecc_mbit_err",
302 		.reset_level = HNAE3_GLOBAL_RESET
303 	}, {
304 		.int_msk = BIT(21),
305 		.msg = "rss_idt_mem13_ecc_mbit_err",
306 		.reset_level = HNAE3_GLOBAL_RESET
307 	}, {
308 		.int_msk = BIT(22),
309 		.msg = "rss_idt_mem14_ecc_mbit_err",
310 		.reset_level = HNAE3_GLOBAL_RESET
311 	}, {
312 		.int_msk = BIT(23),
313 		.msg = "rss_idt_mem15_ecc_mbit_err",
314 		.reset_level = HNAE3_GLOBAL_RESET
315 	}, {
316 		.int_msk = BIT(24),
317 		.msg = "port_vlan_mem_ecc_mbit_err",
318 		.reset_level = HNAE3_GLOBAL_RESET
319 	}, {
320 		.int_msk = BIT(25),
321 		.msg = "mcast_linear_table_mem_ecc_mbit_err",
322 		.reset_level = HNAE3_GLOBAL_RESET
323 	}, {
324 		.int_msk = BIT(26),
325 		.msg = "mcast_result_mem_ecc_mbit_err",
326 		.reset_level = HNAE3_GLOBAL_RESET
327 	}, {
328 		.int_msk = BIT(27),
329 		.msg = "flow_director_ad_mem0_ecc_mbit_err",
330 		.reset_level = HNAE3_GLOBAL_RESET
331 	}, {
332 		.int_msk = BIT(28),
333 		.msg = "flow_director_ad_mem1_ecc_mbit_err",
334 		.reset_level = HNAE3_GLOBAL_RESET
335 	}, {
336 		.int_msk = BIT(29),
337 		.msg = "rx_vlan_tag_memory_ecc_mbit_err",
338 		.reset_level = HNAE3_GLOBAL_RESET
339 	}, {
340 		.int_msk = BIT(30),
341 		.msg = "Tx_UP_mapping_config_mem_ecc_mbit_err",
342 		.reset_level = HNAE3_GLOBAL_RESET
343 	}, {
344 		/* sentinel */
345 	}
346 };
347 
348 static const struct hclge_hw_error hclge_ppp_pf_abnormal_int[] = {
349 	{
350 		.int_msk = BIT(0),
351 		.msg = "tx_vlan_tag_err",
352 		.reset_level = HNAE3_NONE_RESET
353 	}, {
354 		.int_msk = BIT(1),
355 		.msg = "rss_list_tc_unassigned_queue_err",
356 		.reset_level = HNAE3_NONE_RESET
357 	}, {
358 		/* sentinel */
359 	}
360 };
361 
362 static const struct hclge_hw_error hclge_ppp_mpf_abnormal_int_st3[] = {
363 	{
364 		.int_msk = BIT(0),
365 		.msg = "hfs_fifo_mem_ecc_mbit_err",
366 		.reset_level = HNAE3_GLOBAL_RESET
367 	}, {
368 		.int_msk = BIT(1),
369 		.msg = "rslt_descr_fifo_mem_ecc_mbit_err",
370 		.reset_level = HNAE3_GLOBAL_RESET
371 	}, {
372 		.int_msk = BIT(2),
373 		.msg = "tx_vlan_tag_mem_ecc_mbit_err",
374 		.reset_level = HNAE3_GLOBAL_RESET
375 	}, {
376 		.int_msk = BIT(3),
377 		.msg = "FD_CN0_memory_ecc_mbit_err",
378 		.reset_level = HNAE3_GLOBAL_RESET
379 	}, {
380 		.int_msk = BIT(4),
381 		.msg = "FD_CN1_memory_ecc_mbit_err",
382 		.reset_level = HNAE3_GLOBAL_RESET
383 	}, {
384 		.int_msk = BIT(5),
385 		.msg = "GRO_AD_memory_ecc_mbit_err",
386 		.reset_level = HNAE3_GLOBAL_RESET
387 	}, {
388 		/* sentinel */
389 	}
390 };
391 
392 static const struct hclge_hw_error hclge_tm_sch_rint[] = {
393 	{
394 		.int_msk = BIT(1),
395 		.msg = "tm_sch_ecc_mbit_err",
396 		.reset_level = HNAE3_GLOBAL_RESET
397 	}, {
398 		.int_msk = BIT(2),
399 		.msg = "tm_sch_port_shap_sub_fifo_wr_err",
400 		.reset_level = HNAE3_GLOBAL_RESET
401 	}, {
402 		.int_msk = BIT(3),
403 		.msg = "tm_sch_port_shap_sub_fifo_rd_err",
404 		.reset_level = HNAE3_GLOBAL_RESET
405 	}, {
406 		.int_msk = BIT(4),
407 		.msg = "tm_sch_pg_pshap_sub_fifo_wr_err",
408 		.reset_level = HNAE3_GLOBAL_RESET
409 	}, {
410 		.int_msk = BIT(5),
411 		.msg = "tm_sch_pg_pshap_sub_fifo_rd_err",
412 		.reset_level = HNAE3_GLOBAL_RESET
413 	}, {
414 		.int_msk = BIT(6),
415 		.msg = "tm_sch_pg_cshap_sub_fifo_wr_err",
416 		.reset_level = HNAE3_GLOBAL_RESET
417 	}, {
418 		.int_msk = BIT(7),
419 		.msg = "tm_sch_pg_cshap_sub_fifo_rd_err",
420 		.reset_level = HNAE3_GLOBAL_RESET
421 	}, {
422 		.int_msk = BIT(8),
423 		.msg = "tm_sch_pri_pshap_sub_fifo_wr_err",
424 		.reset_level = HNAE3_GLOBAL_RESET
425 	}, {
426 		.int_msk = BIT(9),
427 		.msg = "tm_sch_pri_pshap_sub_fifo_rd_err",
428 		.reset_level = HNAE3_GLOBAL_RESET
429 	}, {
430 		.int_msk = BIT(10),
431 		.msg = "tm_sch_pri_cshap_sub_fifo_wr_err",
432 		.reset_level = HNAE3_GLOBAL_RESET
433 	}, {
434 		.int_msk = BIT(11),
435 		.msg = "tm_sch_pri_cshap_sub_fifo_rd_err",
436 		.reset_level = HNAE3_GLOBAL_RESET
437 	}, {
438 		.int_msk = BIT(12),
439 		.msg = "tm_sch_port_shap_offset_fifo_wr_err",
440 		.reset_level = HNAE3_GLOBAL_RESET
441 	}, {
442 		.int_msk = BIT(13),
443 		.msg = "tm_sch_port_shap_offset_fifo_rd_err",
444 		.reset_level = HNAE3_GLOBAL_RESET
445 	}, {
446 		.int_msk = BIT(14),
447 		.msg = "tm_sch_pg_pshap_offset_fifo_wr_err",
448 		.reset_level = HNAE3_GLOBAL_RESET
449 	}, {
450 		.int_msk = BIT(15),
451 		.msg = "tm_sch_pg_pshap_offset_fifo_rd_err",
452 		.reset_level = HNAE3_GLOBAL_RESET
453 	}, {
454 		.int_msk = BIT(16),
455 		.msg = "tm_sch_pg_cshap_offset_fifo_wr_err",
456 		.reset_level = HNAE3_GLOBAL_RESET
457 	}, {
458 		.int_msk = BIT(17),
459 		.msg = "tm_sch_pg_cshap_offset_fifo_rd_err",
460 		.reset_level = HNAE3_GLOBAL_RESET
461 	}, {
462 		.int_msk = BIT(18),
463 		.msg = "tm_sch_pri_pshap_offset_fifo_wr_err",
464 		.reset_level = HNAE3_GLOBAL_RESET
465 	}, {
466 		.int_msk = BIT(19),
467 		.msg = "tm_sch_pri_pshap_offset_fifo_rd_err",
468 		.reset_level = HNAE3_GLOBAL_RESET
469 	}, {
470 		.int_msk = BIT(20),
471 		.msg = "tm_sch_pri_cshap_offset_fifo_wr_err",
472 		.reset_level = HNAE3_GLOBAL_RESET
473 	}, {
474 		.int_msk = BIT(21),
475 		.msg = "tm_sch_pri_cshap_offset_fifo_rd_err",
476 		.reset_level = HNAE3_GLOBAL_RESET
477 	}, {
478 		.int_msk = BIT(22),
479 		.msg = "tm_sch_rq_fifo_wr_err",
480 		.reset_level = HNAE3_GLOBAL_RESET
481 	}, {
482 		.int_msk = BIT(23),
483 		.msg = "tm_sch_rq_fifo_rd_err",
484 		.reset_level = HNAE3_GLOBAL_RESET
485 	}, {
486 		.int_msk = BIT(24),
487 		.msg = "tm_sch_nq_fifo_wr_err",
488 		.reset_level = HNAE3_GLOBAL_RESET
489 	}, {
490 		.int_msk = BIT(25),
491 		.msg = "tm_sch_nq_fifo_rd_err",
492 		.reset_level = HNAE3_GLOBAL_RESET
493 	}, {
494 		.int_msk = BIT(26),
495 		.msg = "tm_sch_roce_up_fifo_wr_err",
496 		.reset_level = HNAE3_GLOBAL_RESET
497 	}, {
498 		.int_msk = BIT(27),
499 		.msg = "tm_sch_roce_up_fifo_rd_err",
500 		.reset_level = HNAE3_GLOBAL_RESET
501 	}, {
502 		.int_msk = BIT(28),
503 		.msg = "tm_sch_rcb_byte_fifo_wr_err",
504 		.reset_level = HNAE3_GLOBAL_RESET
505 	}, {
506 		.int_msk = BIT(29),
507 		.msg = "tm_sch_rcb_byte_fifo_rd_err",
508 		.reset_level = HNAE3_GLOBAL_RESET
509 	}, {
510 		.int_msk = BIT(30),
511 		.msg = "tm_sch_ssu_byte_fifo_wr_err",
512 		.reset_level = HNAE3_GLOBAL_RESET
513 	}, {
514 		.int_msk = BIT(31),
515 		.msg = "tm_sch_ssu_byte_fifo_rd_err",
516 		.reset_level = HNAE3_GLOBAL_RESET
517 	}, {
518 		/* sentinel */
519 	}
520 };
521 
522 static const struct hclge_hw_error hclge_qcn_fifo_rint[] = {
523 	{
524 		.int_msk = BIT(0),
525 		.msg = "qcn_shap_gp0_sch_fifo_rd_err",
526 		.reset_level = HNAE3_GLOBAL_RESET
527 	}, {
528 		.int_msk = BIT(1),
529 		.msg = "qcn_shap_gp0_sch_fifo_wr_err",
530 		.reset_level = HNAE3_GLOBAL_RESET
531 	}, {
532 		.int_msk = BIT(2),
533 		.msg = "qcn_shap_gp1_sch_fifo_rd_err",
534 		.reset_level = HNAE3_GLOBAL_RESET
535 	}, {
536 		.int_msk = BIT(3),
537 		.msg = "qcn_shap_gp1_sch_fifo_wr_err",
538 		.reset_level = HNAE3_GLOBAL_RESET
539 	}, {
540 		.int_msk = BIT(4),
541 		.msg = "qcn_shap_gp2_sch_fifo_rd_err",
542 		.reset_level = HNAE3_GLOBAL_RESET
543 	}, {
544 		.int_msk = BIT(5),
545 		.msg = "qcn_shap_gp2_sch_fifo_wr_err",
546 		.reset_level = HNAE3_GLOBAL_RESET
547 	}, {
548 		.int_msk = BIT(6),
549 		.msg = "qcn_shap_gp3_sch_fifo_rd_err",
550 		.reset_level = HNAE3_GLOBAL_RESET
551 	}, {
552 		.int_msk = BIT(7),
553 		.msg = "qcn_shap_gp3_sch_fifo_wr_err",
554 		.reset_level = HNAE3_GLOBAL_RESET
555 	}, {
556 		.int_msk = BIT(8),
557 		.msg = "qcn_shap_gp0_offset_fifo_rd_err",
558 		.reset_level = HNAE3_GLOBAL_RESET
559 	}, {
560 		.int_msk = BIT(9),
561 		.msg = "qcn_shap_gp0_offset_fifo_wr_err",
562 		.reset_level = HNAE3_GLOBAL_RESET
563 	}, {
564 		.int_msk = BIT(10),
565 		.msg = "qcn_shap_gp1_offset_fifo_rd_err",
566 		.reset_level = HNAE3_GLOBAL_RESET
567 	}, {
568 		.int_msk = BIT(11),
569 		.msg = "qcn_shap_gp1_offset_fifo_wr_err",
570 		.reset_level = HNAE3_GLOBAL_RESET
571 	}, {
572 		.int_msk = BIT(12),
573 		.msg = "qcn_shap_gp2_offset_fifo_rd_err",
574 		.reset_level = HNAE3_GLOBAL_RESET
575 	}, {
576 		.int_msk = BIT(13),
577 		.msg = "qcn_shap_gp2_offset_fifo_wr_err",
578 		.reset_level = HNAE3_GLOBAL_RESET
579 	}, {
580 		.int_msk = BIT(14),
581 		.msg = "qcn_shap_gp3_offset_fifo_rd_err",
582 		.reset_level = HNAE3_GLOBAL_RESET
583 	}, {
584 		.int_msk = BIT(15),
585 		.msg = "qcn_shap_gp3_offset_fifo_wr_err",
586 		.reset_level = HNAE3_GLOBAL_RESET
587 	}, {
588 		.int_msk = BIT(16),
589 		.msg = "qcn_byte_info_fifo_rd_err",
590 		.reset_level = HNAE3_GLOBAL_RESET
591 	}, {
592 		.int_msk = BIT(17),
593 		.msg = "qcn_byte_info_fifo_wr_err",
594 		.reset_level = HNAE3_GLOBAL_RESET
595 	}, {
596 		/* sentinel */
597 	}
598 };
599 
600 static const struct hclge_hw_error hclge_qcn_ecc_rint[] = {
601 	{
602 		.int_msk = BIT(1),
603 		.msg = "qcn_byte_mem_ecc_mbit_err",
604 		.reset_level = HNAE3_GLOBAL_RESET
605 	}, {
606 		.int_msk = BIT(3),
607 		.msg = "qcn_time_mem_ecc_mbit_err",
608 		.reset_level = HNAE3_GLOBAL_RESET
609 	}, {
610 		.int_msk = BIT(5),
611 		.msg = "qcn_fb_mem_ecc_mbit_err",
612 		.reset_level = HNAE3_GLOBAL_RESET
613 	}, {
614 		.int_msk = BIT(7),
615 		.msg = "qcn_link_mem_ecc_mbit_err",
616 		.reset_level = HNAE3_GLOBAL_RESET
617 	}, {
618 		.int_msk = BIT(9),
619 		.msg = "qcn_rate_mem_ecc_mbit_err",
620 		.reset_level = HNAE3_GLOBAL_RESET
621 	}, {
622 		.int_msk = BIT(11),
623 		.msg = "qcn_tmplt_mem_ecc_mbit_err",
624 		.reset_level = HNAE3_GLOBAL_RESET
625 	}, {
626 		.int_msk = BIT(13),
627 		.msg = "qcn_shap_cfg_mem_ecc_mbit_err",
628 		.reset_level = HNAE3_GLOBAL_RESET
629 	}, {
630 		.int_msk = BIT(15),
631 		.msg = "qcn_gp0_barrel_mem_ecc_mbit_err",
632 		.reset_level = HNAE3_GLOBAL_RESET
633 	}, {
634 		.int_msk = BIT(17),
635 		.msg = "qcn_gp1_barrel_mem_ecc_mbit_err",
636 		.reset_level = HNAE3_GLOBAL_RESET
637 	}, {
638 		.int_msk = BIT(19),
639 		.msg = "qcn_gp2_barrel_mem_ecc_mbit_err",
640 		.reset_level = HNAE3_GLOBAL_RESET
641 	}, {
642 		.int_msk = BIT(21),
643 		.msg = "qcn_gp3_barral_mem_ecc_mbit_err",
644 		.reset_level = HNAE3_GLOBAL_RESET
645 	}, {
646 		/* sentinel */
647 	}
648 };
649 
650 static const struct hclge_hw_error hclge_mac_afifo_tnl_int[] = {
651 	{
652 		.int_msk = BIT(0),
653 		.msg = "egu_cge_afifo_ecc_1bit_err",
654 		.reset_level = HNAE3_NONE_RESET
655 	}, {
656 		.int_msk = BIT(1),
657 		.msg = "egu_cge_afifo_ecc_mbit_err",
658 		.reset_level = HNAE3_GLOBAL_RESET
659 	}, {
660 		.int_msk = BIT(2),
661 		.msg = "egu_lge_afifo_ecc_1bit_err",
662 		.reset_level = HNAE3_NONE_RESET
663 	}, {
664 		.int_msk = BIT(3),
665 		.msg = "egu_lge_afifo_ecc_mbit_err",
666 		.reset_level = HNAE3_GLOBAL_RESET
667 	}, {
668 		.int_msk = BIT(4),
669 		.msg = "cge_igu_afifo_ecc_1bit_err",
670 		.reset_level = HNAE3_NONE_RESET
671 	}, {
672 		.int_msk = BIT(5),
673 		.msg = "cge_igu_afifo_ecc_mbit_err",
674 		.reset_level = HNAE3_GLOBAL_RESET
675 	}, {
676 		.int_msk = BIT(6),
677 		.msg = "lge_igu_afifo_ecc_1bit_err",
678 		.reset_level = HNAE3_NONE_RESET
679 	}, {
680 		.int_msk = BIT(7),
681 		.msg = "lge_igu_afifo_ecc_mbit_err",
682 		.reset_level = HNAE3_GLOBAL_RESET
683 	}, {
684 		.int_msk = BIT(8),
685 		.msg = "cge_igu_afifo_overflow_err",
686 		.reset_level = HNAE3_GLOBAL_RESET
687 	}, {
688 		.int_msk = BIT(9),
689 		.msg = "lge_igu_afifo_overflow_err",
690 		.reset_level = HNAE3_GLOBAL_RESET
691 	}, {
692 		.int_msk = BIT(10),
693 		.msg = "egu_cge_afifo_underrun_err",
694 		.reset_level = HNAE3_GLOBAL_RESET
695 	}, {
696 		.int_msk = BIT(11),
697 		.msg = "egu_lge_afifo_underrun_err",
698 		.reset_level = HNAE3_GLOBAL_RESET
699 	}, {
700 		.int_msk = BIT(12),
701 		.msg = "egu_ge_afifo_underrun_err",
702 		.reset_level = HNAE3_GLOBAL_RESET
703 	}, {
704 		.int_msk = BIT(13),
705 		.msg = "ge_igu_afifo_overflow_err",
706 		.reset_level = HNAE3_GLOBAL_RESET
707 	}, {
708 		/* sentinel */
709 	}
710 };
711 
712 static const struct hclge_hw_error hclge_ppu_mpf_abnormal_int_st2[] = {
713 	{
714 		.int_msk = BIT(13),
715 		.msg = "rpu_rx_pkt_bit32_ecc_mbit_err",
716 		.reset_level = HNAE3_GLOBAL_RESET
717 	}, {
718 		.int_msk = BIT(14),
719 		.msg = "rpu_rx_pkt_bit33_ecc_mbit_err",
720 		.reset_level = HNAE3_GLOBAL_RESET
721 	}, {
722 		.int_msk = BIT(15),
723 		.msg = "rpu_rx_pkt_bit34_ecc_mbit_err",
724 		.reset_level = HNAE3_GLOBAL_RESET
725 	}, {
726 		.int_msk = BIT(16),
727 		.msg = "rpu_rx_pkt_bit35_ecc_mbit_err",
728 		.reset_level = HNAE3_GLOBAL_RESET
729 	}, {
730 		.int_msk = BIT(17),
731 		.msg = "rcb_tx_ring_ecc_mbit_err",
732 		.reset_level = HNAE3_GLOBAL_RESET
733 	}, {
734 		.int_msk = BIT(18),
735 		.msg = "rcb_rx_ring_ecc_mbit_err",
736 		.reset_level = HNAE3_GLOBAL_RESET
737 	}, {
738 		.int_msk = BIT(19),
739 		.msg = "rcb_tx_fbd_ecc_mbit_err",
740 		.reset_level = HNAE3_GLOBAL_RESET
741 	}, {
742 		.int_msk = BIT(20),
743 		.msg = "rcb_rx_ebd_ecc_mbit_err",
744 		.reset_level = HNAE3_GLOBAL_RESET
745 	}, {
746 		.int_msk = BIT(21),
747 		.msg = "rcb_tso_info_ecc_mbit_err",
748 		.reset_level = HNAE3_GLOBAL_RESET
749 	}, {
750 		.int_msk = BIT(22),
751 		.msg = "rcb_tx_int_info_ecc_mbit_err",
752 		.reset_level = HNAE3_GLOBAL_RESET
753 	}, {
754 		.int_msk = BIT(23),
755 		.msg = "rcb_rx_int_info_ecc_mbit_err",
756 		.reset_level = HNAE3_GLOBAL_RESET
757 	}, {
758 		.int_msk = BIT(24),
759 		.msg = "tpu_tx_pkt_0_ecc_mbit_err",
760 		.reset_level = HNAE3_GLOBAL_RESET
761 	}, {
762 		.int_msk = BIT(25),
763 		.msg = "tpu_tx_pkt_1_ecc_mbit_err",
764 		.reset_level = HNAE3_GLOBAL_RESET
765 	}, {
766 		.int_msk = BIT(26),
767 		.msg = "rd_bus_err",
768 		.reset_level = HNAE3_GLOBAL_RESET
769 	}, {
770 		.int_msk = BIT(27),
771 		.msg = "wr_bus_err",
772 		.reset_level = HNAE3_GLOBAL_RESET
773 	}, {
774 		.int_msk = BIT(28),
775 		.msg = "reg_search_miss",
776 		.reset_level = HNAE3_GLOBAL_RESET
777 	}, {
778 		.int_msk = BIT(29),
779 		.msg = "rx_q_search_miss",
780 		.reset_level = HNAE3_NONE_RESET
781 	}, {
782 		.int_msk = BIT(30),
783 		.msg = "ooo_ecc_err_detect",
784 		.reset_level = HNAE3_NONE_RESET
785 	}, {
786 		.int_msk = BIT(31),
787 		.msg = "ooo_ecc_err_multpl",
788 		.reset_level = HNAE3_GLOBAL_RESET
789 	}, {
790 		/* sentinel */
791 	}
792 };
793 
794 static const struct hclge_hw_error hclge_ppu_mpf_abnormal_int_st3[] = {
795 	{
796 		.int_msk = BIT(4),
797 		.msg = "gro_bd_ecc_mbit_err",
798 		.reset_level = HNAE3_GLOBAL_RESET
799 	}, {
800 		.int_msk = BIT(5),
801 		.msg = "gro_context_ecc_mbit_err",
802 		.reset_level = HNAE3_GLOBAL_RESET
803 	}, {
804 		.int_msk = BIT(6),
805 		.msg = "rx_stash_cfg_ecc_mbit_err",
806 		.reset_level = HNAE3_GLOBAL_RESET
807 	}, {
808 		.int_msk = BIT(7),
809 		.msg = "axi_rd_fbd_ecc_mbit_err",
810 		.reset_level = HNAE3_GLOBAL_RESET
811 	}, {
812 		/* sentinel */
813 	}
814 };
815 
816 static const struct hclge_hw_error hclge_ppu_pf_abnormal_int[] = {
817 	{
818 		.int_msk = BIT(0),
819 		.msg = "over_8bd_no_fe",
820 		.reset_level = HNAE3_FUNC_RESET
821 	}, {
822 		.int_msk = BIT(1),
823 		.msg = "tso_mss_cmp_min_err",
824 		.reset_level = HNAE3_NONE_RESET
825 	}, {
826 		.int_msk = BIT(2),
827 		.msg = "tso_mss_cmp_max_err",
828 		.reset_level = HNAE3_NONE_RESET
829 	}, {
830 		.int_msk = BIT(3),
831 		.msg = "tx_rd_fbd_poison",
832 		.reset_level = HNAE3_FUNC_RESET
833 	}, {
834 		.int_msk = BIT(4),
835 		.msg = "rx_rd_ebd_poison",
836 		.reset_level = HNAE3_FUNC_RESET
837 	}, {
838 		.int_msk = BIT(5),
839 		.msg = "buf_wait_timeout",
840 		.reset_level = HNAE3_NONE_RESET
841 	}, {
842 		/* sentinel */
843 	}
844 };
845 
846 static const struct hclge_hw_error hclge_ssu_com_err_int[] = {
847 	{
848 		.int_msk = BIT(0),
849 		.msg = "buf_sum_err",
850 		.reset_level = HNAE3_NONE_RESET
851 	}, {
852 		.int_msk = BIT(1),
853 		.msg = "ppp_mb_num_err",
854 		.reset_level = HNAE3_NONE_RESET
855 	}, {
856 		.int_msk = BIT(2),
857 		.msg = "ppp_mbid_err",
858 		.reset_level = HNAE3_GLOBAL_RESET
859 	}, {
860 		.int_msk = BIT(3),
861 		.msg = "ppp_rlt_mac_err",
862 		.reset_level = HNAE3_GLOBAL_RESET
863 	}, {
864 		.int_msk = BIT(4),
865 		.msg = "ppp_rlt_host_err",
866 		.reset_level = HNAE3_GLOBAL_RESET
867 	}, {
868 		.int_msk = BIT(5),
869 		.msg = "cks_edit_position_err",
870 		.reset_level = HNAE3_GLOBAL_RESET
871 	}, {
872 		.int_msk = BIT(6),
873 		.msg = "cks_edit_condition_err",
874 		.reset_level = HNAE3_GLOBAL_RESET
875 	}, {
876 		.int_msk = BIT(7),
877 		.msg = "vlan_edit_condition_err",
878 		.reset_level = HNAE3_GLOBAL_RESET
879 	}, {
880 		.int_msk = BIT(8),
881 		.msg = "vlan_num_ot_err",
882 		.reset_level = HNAE3_GLOBAL_RESET
883 	}, {
884 		.int_msk = BIT(9),
885 		.msg = "vlan_num_in_err",
886 		.reset_level = HNAE3_GLOBAL_RESET
887 	}, {
888 		/* sentinel */
889 	}
890 };
891 
892 #define HCLGE_SSU_MEM_ECC_ERR(x) \
893 { \
894 	.int_msk = BIT(x), \
895 	.msg = "ssu_mem" #x "_ecc_mbit_err", \
896 	.reset_level = HNAE3_GLOBAL_RESET \
897 }
898 
899 static const struct hclge_hw_error hclge_ssu_mem_ecc_err_int[] = {
900 	HCLGE_SSU_MEM_ECC_ERR(0),
901 	HCLGE_SSU_MEM_ECC_ERR(1),
902 	HCLGE_SSU_MEM_ECC_ERR(2),
903 	HCLGE_SSU_MEM_ECC_ERR(3),
904 	HCLGE_SSU_MEM_ECC_ERR(4),
905 	HCLGE_SSU_MEM_ECC_ERR(5),
906 	HCLGE_SSU_MEM_ECC_ERR(6),
907 	HCLGE_SSU_MEM_ECC_ERR(7),
908 	HCLGE_SSU_MEM_ECC_ERR(8),
909 	HCLGE_SSU_MEM_ECC_ERR(9),
910 	HCLGE_SSU_MEM_ECC_ERR(10),
911 	HCLGE_SSU_MEM_ECC_ERR(11),
912 	HCLGE_SSU_MEM_ECC_ERR(12),
913 	HCLGE_SSU_MEM_ECC_ERR(13),
914 	HCLGE_SSU_MEM_ECC_ERR(14),
915 	HCLGE_SSU_MEM_ECC_ERR(15),
916 	HCLGE_SSU_MEM_ECC_ERR(16),
917 	HCLGE_SSU_MEM_ECC_ERR(17),
918 	HCLGE_SSU_MEM_ECC_ERR(18),
919 	HCLGE_SSU_MEM_ECC_ERR(19),
920 	HCLGE_SSU_MEM_ECC_ERR(20),
921 	HCLGE_SSU_MEM_ECC_ERR(21),
922 	HCLGE_SSU_MEM_ECC_ERR(22),
923 	HCLGE_SSU_MEM_ECC_ERR(23),
924 	HCLGE_SSU_MEM_ECC_ERR(24),
925 	HCLGE_SSU_MEM_ECC_ERR(25),
926 	HCLGE_SSU_MEM_ECC_ERR(26),
927 	HCLGE_SSU_MEM_ECC_ERR(27),
928 	HCLGE_SSU_MEM_ECC_ERR(28),
929 	HCLGE_SSU_MEM_ECC_ERR(29),
930 	HCLGE_SSU_MEM_ECC_ERR(30),
931 	HCLGE_SSU_MEM_ECC_ERR(31),
932 	{ /* sentinel */ }
933 };
934 
935 static const struct hclge_hw_error hclge_ssu_port_based_err_int[] = {
936 	{
937 		.int_msk = BIT(0),
938 		.msg = "roc_pkt_without_key_port",
939 		.reset_level = HNAE3_FUNC_RESET
940 	}, {
941 		.int_msk = BIT(1),
942 		.msg = "tpu_pkt_without_key_port",
943 		.reset_level = HNAE3_GLOBAL_RESET
944 	}, {
945 		.int_msk = BIT(2),
946 		.msg = "igu_pkt_without_key_port",
947 		.reset_level = HNAE3_GLOBAL_RESET
948 	}, {
949 		.int_msk = BIT(3),
950 		.msg = "roc_eof_mis_match_port",
951 		.reset_level = HNAE3_GLOBAL_RESET
952 	}, {
953 		.int_msk = BIT(4),
954 		.msg = "tpu_eof_mis_match_port",
955 		.reset_level = HNAE3_GLOBAL_RESET
956 	}, {
957 		.int_msk = BIT(5),
958 		.msg = "igu_eof_mis_match_port",
959 		.reset_level = HNAE3_GLOBAL_RESET
960 	}, {
961 		.int_msk = BIT(6),
962 		.msg = "roc_sof_mis_match_port",
963 		.reset_level = HNAE3_GLOBAL_RESET
964 	}, {
965 		.int_msk = BIT(7),
966 		.msg = "tpu_sof_mis_match_port",
967 		.reset_level = HNAE3_GLOBAL_RESET
968 	}, {
969 		.int_msk = BIT(8),
970 		.msg = "igu_sof_mis_match_port",
971 		.reset_level = HNAE3_GLOBAL_RESET
972 	}, {
973 		.int_msk = BIT(11),
974 		.msg = "ets_rd_int_rx_port",
975 		.reset_level = HNAE3_GLOBAL_RESET
976 	}, {
977 		.int_msk = BIT(12),
978 		.msg = "ets_wr_int_rx_port",
979 		.reset_level = HNAE3_GLOBAL_RESET
980 	}, {
981 		.int_msk = BIT(13),
982 		.msg = "ets_rd_int_tx_port",
983 		.reset_level = HNAE3_GLOBAL_RESET
984 	}, {
985 		.int_msk = BIT(14),
986 		.msg = "ets_wr_int_tx_port",
987 		.reset_level = HNAE3_GLOBAL_RESET
988 	}, {
989 		/* sentinel */
990 	}
991 };
992 
993 static const struct hclge_hw_error hclge_ssu_fifo_overflow_int[] = {
994 	{
995 		.int_msk = BIT(0),
996 		.msg = "ig_mac_inf_int",
997 		.reset_level = HNAE3_GLOBAL_RESET
998 	}, {
999 		.int_msk = BIT(1),
1000 		.msg = "ig_host_inf_int",
1001 		.reset_level = HNAE3_GLOBAL_RESET
1002 	}, {
1003 		.int_msk = BIT(2),
1004 		.msg = "ig_roc_buf_int",
1005 		.reset_level = HNAE3_GLOBAL_RESET
1006 	}, {
1007 		.int_msk = BIT(3),
1008 		.msg = "ig_host_data_fifo_int",
1009 		.reset_level = HNAE3_GLOBAL_RESET
1010 	}, {
1011 		.int_msk = BIT(4),
1012 		.msg = "ig_host_key_fifo_int",
1013 		.reset_level = HNAE3_GLOBAL_RESET
1014 	}, {
1015 		.int_msk = BIT(5),
1016 		.msg = "tx_qcn_fifo_int",
1017 		.reset_level = HNAE3_GLOBAL_RESET
1018 	}, {
1019 		.int_msk = BIT(6),
1020 		.msg = "rx_qcn_fifo_int",
1021 		.reset_level = HNAE3_GLOBAL_RESET
1022 	}, {
1023 		.int_msk = BIT(7),
1024 		.msg = "tx_pf_rd_fifo_int",
1025 		.reset_level = HNAE3_GLOBAL_RESET
1026 	}, {
1027 		.int_msk = BIT(8),
1028 		.msg = "rx_pf_rd_fifo_int",
1029 		.reset_level = HNAE3_GLOBAL_RESET
1030 	}, {
1031 		.int_msk = BIT(9),
1032 		.msg = "qm_eof_fifo_int",
1033 		.reset_level = HNAE3_GLOBAL_RESET
1034 	}, {
1035 		.int_msk = BIT(10),
1036 		.msg = "mb_rlt_fifo_int",
1037 		.reset_level = HNAE3_GLOBAL_RESET
1038 	}, {
1039 		.int_msk = BIT(11),
1040 		.msg = "dup_uncopy_fifo_int",
1041 		.reset_level = HNAE3_GLOBAL_RESET
1042 	}, {
1043 		.int_msk = BIT(12),
1044 		.msg = "dup_cnt_rd_fifo_int",
1045 		.reset_level = HNAE3_GLOBAL_RESET
1046 	}, {
1047 		.int_msk = BIT(13),
1048 		.msg = "dup_cnt_drop_fifo_int",
1049 		.reset_level = HNAE3_GLOBAL_RESET
1050 	}, {
1051 		.int_msk = BIT(14),
1052 		.msg = "dup_cnt_wrb_fifo_int",
1053 		.reset_level = HNAE3_GLOBAL_RESET
1054 	}, {
1055 		.int_msk = BIT(15),
1056 		.msg = "host_cmd_fifo_int",
1057 		.reset_level = HNAE3_GLOBAL_RESET
1058 	}, {
1059 		.int_msk = BIT(16),
1060 		.msg = "mac_cmd_fifo_int",
1061 		.reset_level = HNAE3_GLOBAL_RESET
1062 	}, {
1063 		.int_msk = BIT(17),
1064 		.msg = "host_cmd_bitmap_empty_int",
1065 		.reset_level = HNAE3_GLOBAL_RESET
1066 	}, {
1067 		.int_msk = BIT(18),
1068 		.msg = "mac_cmd_bitmap_empty_int",
1069 		.reset_level = HNAE3_GLOBAL_RESET
1070 	}, {
1071 		.int_msk = BIT(19),
1072 		.msg = "dup_bitmap_empty_int",
1073 		.reset_level = HNAE3_GLOBAL_RESET
1074 	}, {
1075 		.int_msk = BIT(20),
1076 		.msg = "out_queue_bitmap_empty_int",
1077 		.reset_level = HNAE3_GLOBAL_RESET
1078 	}, {
1079 		.int_msk = BIT(21),
1080 		.msg = "bank2_bitmap_empty_int",
1081 		.reset_level = HNAE3_GLOBAL_RESET
1082 	}, {
1083 		.int_msk = BIT(22),
1084 		.msg = "bank1_bitmap_empty_int",
1085 		.reset_level = HNAE3_GLOBAL_RESET
1086 	}, {
1087 		.int_msk = BIT(23),
1088 		.msg = "bank0_bitmap_empty_int",
1089 		.reset_level = HNAE3_GLOBAL_RESET
1090 	}, {
1091 		/* sentinel */
1092 	}
1093 };
1094 
1095 static const struct hclge_hw_error hclge_ssu_ets_tcg_int[] = {
1096 	{
1097 		.int_msk = BIT(0),
1098 		.msg = "ets_rd_int_rx_tcg",
1099 		.reset_level = HNAE3_GLOBAL_RESET
1100 	}, {
1101 		.int_msk = BIT(1),
1102 		.msg = "ets_wr_int_rx_tcg",
1103 		.reset_level = HNAE3_GLOBAL_RESET
1104 	}, {
1105 		.int_msk = BIT(2),
1106 		.msg = "ets_rd_int_tx_tcg",
1107 		.reset_level = HNAE3_GLOBAL_RESET
1108 	}, {
1109 		.int_msk = BIT(3),
1110 		.msg = "ets_wr_int_tx_tcg",
1111 		.reset_level = HNAE3_GLOBAL_RESET
1112 	}, {
1113 		/* sentinel */
1114 	}
1115 };
1116 
1117 static const struct hclge_hw_error hclge_ssu_port_based_pf_int[] = {
1118 	{
1119 		.int_msk = BIT(0),
1120 		.msg = "roc_pkt_without_key_port",
1121 		.reset_level = HNAE3_FUNC_RESET
1122 	}, {
1123 		.int_msk = BIT(9),
1124 		.msg = "low_water_line_err_port",
1125 		.reset_level = HNAE3_NONE_RESET
1126 	}, {
1127 		.int_msk = BIT(10),
1128 		.msg = "hi_water_line_err_port",
1129 		.reset_level = HNAE3_GLOBAL_RESET
1130 	}, {
1131 		/* sentinel */
1132 	}
1133 };
1134 
1135 static const struct hclge_hw_error hclge_rocee_qmm_ovf_err_int[] = {
1136 	{
1137 		.int_msk = 0,
1138 		.msg = "rocee qmm ovf: sgid invalid err"
1139 	}, {
1140 		.int_msk = 0x4,
1141 		.msg = "rocee qmm ovf: sgid ovf err"
1142 	}, {
1143 		.int_msk = 0x8,
1144 		.msg = "rocee qmm ovf: smac invalid err"
1145 	}, {
1146 		.int_msk = 0xC,
1147 		.msg = "rocee qmm ovf: smac ovf err"
1148 	}, {
1149 		.int_msk = 0x10,
1150 		.msg = "rocee qmm ovf: cqc invalid err"
1151 	}, {
1152 		.int_msk = 0x11,
1153 		.msg = "rocee qmm ovf: cqc ovf err"
1154 	}, {
1155 		.int_msk = 0x12,
1156 		.msg = "rocee qmm ovf: cqc hopnum err"
1157 	}, {
1158 		.int_msk = 0x13,
1159 		.msg = "rocee qmm ovf: cqc ba0 err"
1160 	}, {
1161 		.int_msk = 0x14,
1162 		.msg = "rocee qmm ovf: srqc invalid err"
1163 	}, {
1164 		.int_msk = 0x15,
1165 		.msg = "rocee qmm ovf: srqc ovf err"
1166 	}, {
1167 		.int_msk = 0x16,
1168 		.msg = "rocee qmm ovf: srqc hopnum err"
1169 	}, {
1170 		.int_msk = 0x17,
1171 		.msg = "rocee qmm ovf: srqc ba0 err"
1172 	}, {
1173 		.int_msk = 0x18,
1174 		.msg = "rocee qmm ovf: mpt invalid err"
1175 	}, {
1176 		.int_msk = 0x19,
1177 		.msg = "rocee qmm ovf: mpt ovf err"
1178 	}, {
1179 		.int_msk = 0x1A,
1180 		.msg = "rocee qmm ovf: mpt hopnum err"
1181 	}, {
1182 		.int_msk = 0x1B,
1183 		.msg = "rocee qmm ovf: mpt ba0 err"
1184 	}, {
1185 		.int_msk = 0x1C,
1186 		.msg = "rocee qmm ovf: qpc invalid err"
1187 	}, {
1188 		.int_msk = 0x1D,
1189 		.msg = "rocee qmm ovf: qpc ovf err"
1190 	}, {
1191 		.int_msk = 0x1E,
1192 		.msg = "rocee qmm ovf: qpc hopnum err"
1193 	}, {
1194 		.int_msk = 0x1F,
1195 		.msg = "rocee qmm ovf: qpc ba0 err"
1196 	}, {
1197 		/* sentinel */
1198 	}
1199 };
1200 
1201 static const struct hclge_hw_module_id hclge_hw_module_id_st[] = {
1202 	{
1203 		.module_id = MODULE_NONE,
1204 		.msg = "MODULE_NONE"
1205 	}, {
1206 		.module_id = MODULE_BIOS_COMMON,
1207 		.msg = "MODULE_BIOS_COMMON"
1208 	}, {
1209 		.module_id = MODULE_GE,
1210 		.msg = "MODULE_GE"
1211 	}, {
1212 		.module_id = MODULE_IGU_EGU,
1213 		.msg = "MODULE_IGU_EGU"
1214 	}, {
1215 		.module_id = MODULE_LGE,
1216 		.msg = "MODULE_LGE"
1217 	}, {
1218 		.module_id = MODULE_NCSI,
1219 		.msg = "MODULE_NCSI"
1220 	}, {
1221 		.module_id = MODULE_PPP,
1222 		.msg = "MODULE_PPP"
1223 	}, {
1224 		.module_id = MODULE_QCN,
1225 		.msg = "MODULE_QCN"
1226 	}, {
1227 		.module_id = MODULE_RCB_RX,
1228 		.msg = "MODULE_RCB_RX"
1229 	}, {
1230 		.module_id = MODULE_RTC,
1231 		.msg = "MODULE_RTC"
1232 	}, {
1233 		.module_id = MODULE_SSU,
1234 		.msg = "MODULE_SSU"
1235 	}, {
1236 		.module_id = MODULE_TM,
1237 		.msg = "MODULE_TM"
1238 	}, {
1239 		.module_id = MODULE_RCB_TX,
1240 		.msg = "MODULE_RCB_TX"
1241 	}, {
1242 		.module_id = MODULE_TXDMA,
1243 		.msg = "MODULE_TXDMA"
1244 	}, {
1245 		.module_id = MODULE_MASTER,
1246 		.msg = "MODULE_MASTER"
1247 	}, {
1248 		.module_id = MODULE_HIMAC,
1249 		.msg = "MODULE_HIMAC"
1250 	}, {
1251 		.module_id = MODULE_ROCEE_TOP,
1252 		.msg = "MODULE_ROCEE_TOP"
1253 	}, {
1254 		.module_id = MODULE_ROCEE_TIMER,
1255 		.msg = "MODULE_ROCEE_TIMER"
1256 	}, {
1257 		.module_id = MODULE_ROCEE_MDB,
1258 		.msg = "MODULE_ROCEE_MDB"
1259 	}, {
1260 		.module_id = MODULE_ROCEE_TSP,
1261 		.msg = "MODULE_ROCEE_TSP"
1262 	}, {
1263 		.module_id = MODULE_ROCEE_TRP,
1264 		.msg = "MODULE_ROCEE_TRP"
1265 	}, {
1266 		.module_id = MODULE_ROCEE_SCC,
1267 		.msg = "MODULE_ROCEE_SCC"
1268 	}, {
1269 		.module_id = MODULE_ROCEE_CAEP,
1270 		.msg = "MODULE_ROCEE_CAEP"
1271 	}, {
1272 		.module_id = MODULE_ROCEE_GEN_AC,
1273 		.msg = "MODULE_ROCEE_GEN_AC"
1274 	}, {
1275 		.module_id = MODULE_ROCEE_QMM,
1276 		.msg = "MODULE_ROCEE_QMM"
1277 	}, {
1278 		.module_id = MODULE_ROCEE_LSAN,
1279 		.msg = "MODULE_ROCEE_LSAN"
1280 	}
1281 };
1282 
1283 static const struct hclge_hw_type_id hclge_hw_type_id_st[] = {
1284 	{
1285 		.type_id = NONE_ERROR,
1286 		.msg = "none_error"
1287 	}, {
1288 		.type_id = FIFO_ERROR,
1289 		.msg = "fifo_error"
1290 	}, {
1291 		.type_id = MEMORY_ERROR,
1292 		.msg = "memory_error"
1293 	}, {
1294 		.type_id = POISON_ERROR,
1295 		.msg = "poison_error"
1296 	}, {
1297 		.type_id = MSIX_ECC_ERROR,
1298 		.msg = "msix_ecc_error"
1299 	}, {
1300 		.type_id = TQP_INT_ECC_ERROR,
1301 		.msg = "tqp_int_ecc_error"
1302 	}, {
1303 		.type_id = PF_ABNORMAL_INT_ERROR,
1304 		.msg = "pf_abnormal_int_error"
1305 	}, {
1306 		.type_id = MPF_ABNORMAL_INT_ERROR,
1307 		.msg = "mpf_abnormal_int_error"
1308 	}, {
1309 		.type_id = COMMON_ERROR,
1310 		.msg = "common_error"
1311 	}, {
1312 		.type_id = PORT_ERROR,
1313 		.msg = "port_error"
1314 	}, {
1315 		.type_id = ETS_ERROR,
1316 		.msg = "ets_error"
1317 	}, {
1318 		.type_id = NCSI_ERROR,
1319 		.msg = "ncsi_error"
1320 	}, {
1321 		.type_id = GLB_ERROR,
1322 		.msg = "glb_error"
1323 	}, {
1324 		.type_id = LINK_ERROR,
1325 		.msg = "link_error"
1326 	}, {
1327 		.type_id = PTP_ERROR,
1328 		.msg = "ptp_error"
1329 	}, {
1330 		.type_id = ROCEE_NORMAL_ERR,
1331 		.msg = "rocee_normal_error"
1332 	}, {
1333 		.type_id = ROCEE_OVF_ERR,
1334 		.msg = "rocee_ovf_error"
1335 	}, {
1336 		.type_id = ROCEE_BUS_ERR,
1337 		.msg = "rocee_bus_error"
1338 	},
1339 };
1340 
1341 static void hclge_log_error(struct device *dev, char *reg,
1342 			    const struct hclge_hw_error *err,
1343 			    u32 err_sts, unsigned long *reset_requests)
1344 {
1345 	while (err->msg) {
1346 		if (err->int_msk & err_sts) {
1347 			dev_err(dev, "%s %s found [error status=0x%x]\n",
1348 				reg, err->msg, err_sts);
1349 			if (err->reset_level &&
1350 			    err->reset_level != HNAE3_NONE_RESET)
1351 				set_bit(err->reset_level, reset_requests);
1352 		}
1353 		err++;
1354 	}
1355 }
1356 
1357 /* hclge_cmd_query_error: read the error information
1358  * @hdev: pointer to struct hclge_dev
1359  * @desc: descriptor for describing the command
1360  * @cmd:  command opcode
1361  * @flag: flag for extended command structure
1362  *
1363  * This function query the error info from hw register/s using command
1364  */
1365 static int hclge_cmd_query_error(struct hclge_dev *hdev,
1366 				 struct hclge_desc *desc, u32 cmd, u16 flag)
1367 {
1368 	struct device *dev = &hdev->pdev->dev;
1369 	int desc_num = 1;
1370 	int ret;
1371 
1372 	hclge_cmd_setup_basic_desc(&desc[0], cmd, true);
1373 	if (flag) {
1374 		desc[0].flag |= cpu_to_le16(flag);
1375 		hclge_cmd_setup_basic_desc(&desc[1], cmd, true);
1376 		desc_num = 2;
1377 	}
1378 
1379 	ret = hclge_cmd_send(&hdev->hw, &desc[0], desc_num);
1380 	if (ret)
1381 		dev_err(dev, "query error cmd failed (%d)\n", ret);
1382 
1383 	return ret;
1384 }
1385 
1386 static int hclge_clear_mac_tnl_int(struct hclge_dev *hdev)
1387 {
1388 	struct hclge_desc desc;
1389 
1390 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_CLEAR_MAC_TNL_INT, false);
1391 	desc.data[0] = cpu_to_le32(HCLGE_MAC_TNL_INT_CLR);
1392 
1393 	return hclge_cmd_send(&hdev->hw, &desc, 1);
1394 }
1395 
1396 static int hclge_config_common_hw_err_int(struct hclge_dev *hdev, bool en)
1397 {
1398 	struct device *dev = &hdev->pdev->dev;
1399 	struct hclge_desc desc[2];
1400 	int ret;
1401 
1402 	/* configure common error interrupts */
1403 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_COMMON_ECC_INT_CFG, false);
1404 	desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
1405 	hclge_cmd_setup_basic_desc(&desc[1], HCLGE_COMMON_ECC_INT_CFG, false);
1406 
1407 	if (en) {
1408 		desc[0].data[0] = cpu_to_le32(HCLGE_IMP_TCM_ECC_ERR_INT_EN);
1409 		desc[0].data[2] = cpu_to_le32(HCLGE_CMDQ_NIC_ECC_ERR_INT_EN |
1410 					HCLGE_CMDQ_ROCEE_ECC_ERR_INT_EN);
1411 		desc[0].data[3] = cpu_to_le32(HCLGE_IMP_RD_POISON_ERR_INT_EN);
1412 		desc[0].data[4] = cpu_to_le32(HCLGE_TQP_ECC_ERR_INT_EN |
1413 					      HCLGE_MSIX_SRAM_ECC_ERR_INT_EN);
1414 		desc[0].data[5] = cpu_to_le32(HCLGE_IMP_ITCM4_ECC_ERR_INT_EN);
1415 	}
1416 
1417 	desc[1].data[0] = cpu_to_le32(HCLGE_IMP_TCM_ECC_ERR_INT_EN_MASK);
1418 	desc[1].data[2] = cpu_to_le32(HCLGE_CMDQ_NIC_ECC_ERR_INT_EN_MASK |
1419 				HCLGE_CMDQ_ROCEE_ECC_ERR_INT_EN_MASK);
1420 	desc[1].data[3] = cpu_to_le32(HCLGE_IMP_RD_POISON_ERR_INT_EN_MASK);
1421 	desc[1].data[4] = cpu_to_le32(HCLGE_TQP_ECC_ERR_INT_EN_MASK |
1422 				      HCLGE_MSIX_SRAM_ECC_ERR_INT_EN_MASK);
1423 	desc[1].data[5] = cpu_to_le32(HCLGE_IMP_ITCM4_ECC_ERR_INT_EN_MASK);
1424 
1425 	ret = hclge_cmd_send(&hdev->hw, &desc[0], 2);
1426 	if (ret)
1427 		dev_err(dev,
1428 			"fail(%d) to configure common err interrupts\n", ret);
1429 
1430 	return ret;
1431 }
1432 
1433 static int hclge_config_ncsi_hw_err_int(struct hclge_dev *hdev, bool en)
1434 {
1435 	struct device *dev = &hdev->pdev->dev;
1436 	struct hclge_desc desc;
1437 	int ret;
1438 
1439 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
1440 		return 0;
1441 
1442 	/* configure NCSI error interrupts */
1443 	hclge_cmd_setup_basic_desc(&desc, HCLGE_NCSI_INT_EN, false);
1444 	if (en)
1445 		desc.data[0] = cpu_to_le32(HCLGE_NCSI_ERR_INT_EN);
1446 
1447 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
1448 	if (ret)
1449 		dev_err(dev,
1450 			"fail(%d) to configure  NCSI error interrupts\n", ret);
1451 
1452 	return ret;
1453 }
1454 
1455 static int hclge_config_igu_egu_hw_err_int(struct hclge_dev *hdev, bool en)
1456 {
1457 	struct device *dev = &hdev->pdev->dev;
1458 	struct hclge_desc desc;
1459 	int ret;
1460 
1461 	/* configure IGU,EGU error interrupts */
1462 	hclge_cmd_setup_basic_desc(&desc, HCLGE_IGU_COMMON_INT_EN, false);
1463 	desc.data[0] = cpu_to_le32(HCLGE_IGU_ERR_INT_TYPE);
1464 	if (en)
1465 		desc.data[0] |= cpu_to_le32(HCLGE_IGU_ERR_INT_EN);
1466 
1467 	desc.data[1] = cpu_to_le32(HCLGE_IGU_ERR_INT_EN_MASK);
1468 
1469 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
1470 	if (ret) {
1471 		dev_err(dev,
1472 			"fail(%d) to configure IGU common interrupts\n", ret);
1473 		return ret;
1474 	}
1475 
1476 	hclge_cmd_setup_basic_desc(&desc, HCLGE_IGU_EGU_TNL_INT_EN, false);
1477 	if (en)
1478 		desc.data[0] = cpu_to_le32(HCLGE_IGU_TNL_ERR_INT_EN);
1479 
1480 	desc.data[1] = cpu_to_le32(HCLGE_IGU_TNL_ERR_INT_EN_MASK);
1481 
1482 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
1483 	if (ret) {
1484 		dev_err(dev,
1485 			"fail(%d) to configure IGU-EGU TNL interrupts\n", ret);
1486 		return ret;
1487 	}
1488 
1489 	ret = hclge_config_ncsi_hw_err_int(hdev, en);
1490 
1491 	return ret;
1492 }
1493 
1494 static int hclge_config_ppp_error_interrupt(struct hclge_dev *hdev, u32 cmd,
1495 					    bool en)
1496 {
1497 	struct device *dev = &hdev->pdev->dev;
1498 	struct hclge_desc desc[2];
1499 	int ret;
1500 
1501 	/* configure PPP error interrupts */
1502 	hclge_cmd_setup_basic_desc(&desc[0], cmd, false);
1503 	desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
1504 	hclge_cmd_setup_basic_desc(&desc[1], cmd, false);
1505 
1506 	if (cmd == HCLGE_PPP_CMD0_INT_CMD) {
1507 		if (en) {
1508 			desc[0].data[0] =
1509 				cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT0_EN);
1510 			desc[0].data[1] =
1511 				cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT1_EN);
1512 			desc[0].data[4] = cpu_to_le32(HCLGE_PPP_PF_ERR_INT_EN);
1513 		}
1514 
1515 		desc[1].data[0] =
1516 			cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT0_EN_MASK);
1517 		desc[1].data[1] =
1518 			cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT1_EN_MASK);
1519 		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
1520 			desc[1].data[2] =
1521 				cpu_to_le32(HCLGE_PPP_PF_ERR_INT_EN_MASK);
1522 	} else if (cmd == HCLGE_PPP_CMD1_INT_CMD) {
1523 		if (en) {
1524 			desc[0].data[0] =
1525 				cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT2_EN);
1526 			desc[0].data[1] =
1527 				cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT3_EN);
1528 		}
1529 
1530 		desc[1].data[0] =
1531 				cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT2_EN_MASK);
1532 		desc[1].data[1] =
1533 				cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT3_EN_MASK);
1534 	}
1535 
1536 	ret = hclge_cmd_send(&hdev->hw, &desc[0], 2);
1537 	if (ret)
1538 		dev_err(dev, "fail(%d) to configure PPP error intr\n", ret);
1539 
1540 	return ret;
1541 }
1542 
1543 static int hclge_config_ppp_hw_err_int(struct hclge_dev *hdev, bool en)
1544 {
1545 	int ret;
1546 
1547 	ret = hclge_config_ppp_error_interrupt(hdev, HCLGE_PPP_CMD0_INT_CMD,
1548 					       en);
1549 	if (ret)
1550 		return ret;
1551 
1552 	ret = hclge_config_ppp_error_interrupt(hdev, HCLGE_PPP_CMD1_INT_CMD,
1553 					       en);
1554 
1555 	return ret;
1556 }
1557 
1558 static int hclge_config_tm_hw_err_int(struct hclge_dev *hdev, bool en)
1559 {
1560 	struct device *dev = &hdev->pdev->dev;
1561 	struct hclge_desc desc;
1562 	int ret;
1563 
1564 	/* configure TM SCH hw errors */
1565 	hclge_cmd_setup_basic_desc(&desc, HCLGE_TM_SCH_ECC_INT_EN, false);
1566 	if (en)
1567 		desc.data[0] = cpu_to_le32(HCLGE_TM_SCH_ECC_ERR_INT_EN);
1568 
1569 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
1570 	if (ret) {
1571 		dev_err(dev, "fail(%d) to configure TM SCH errors\n", ret);
1572 		return ret;
1573 	}
1574 
1575 	/* configure TM QCN hw errors */
1576 	hclge_cmd_setup_basic_desc(&desc, HCLGE_TM_QCN_MEM_INT_CFG, false);
1577 	desc.data[0] = cpu_to_le32(HCLGE_TM_QCN_ERR_INT_TYPE);
1578 	if (en) {
1579 		desc.data[0] |= cpu_to_le32(HCLGE_TM_QCN_FIFO_INT_EN);
1580 		desc.data[1] = cpu_to_le32(HCLGE_TM_QCN_MEM_ERR_INT_EN);
1581 	}
1582 
1583 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
1584 	if (ret)
1585 		dev_err(dev,
1586 			"fail(%d) to configure TM QCN mem errors\n", ret);
1587 
1588 	return ret;
1589 }
1590 
1591 static int hclge_config_mac_err_int(struct hclge_dev *hdev, bool en)
1592 {
1593 	struct device *dev = &hdev->pdev->dev;
1594 	struct hclge_desc desc;
1595 	int ret;
1596 
1597 	/* configure MAC common error interrupts */
1598 	hclge_cmd_setup_basic_desc(&desc, HCLGE_MAC_COMMON_INT_EN, false);
1599 	if (en)
1600 		desc.data[0] = cpu_to_le32(HCLGE_MAC_COMMON_ERR_INT_EN);
1601 
1602 	desc.data[1] = cpu_to_le32(HCLGE_MAC_COMMON_ERR_INT_EN_MASK);
1603 
1604 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
1605 	if (ret)
1606 		dev_err(dev,
1607 			"fail(%d) to configure MAC COMMON error intr\n", ret);
1608 
1609 	return ret;
1610 }
1611 
1612 int hclge_config_mac_tnl_int(struct hclge_dev *hdev, bool en)
1613 {
1614 	struct hclge_desc desc;
1615 
1616 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_MAC_TNL_INT_EN, false);
1617 	if (en)
1618 		desc.data[0] = cpu_to_le32(HCLGE_MAC_TNL_INT_EN);
1619 	else
1620 		desc.data[0] = 0;
1621 
1622 	desc.data[1] = cpu_to_le32(HCLGE_MAC_TNL_INT_EN_MASK);
1623 
1624 	return hclge_cmd_send(&hdev->hw, &desc, 1);
1625 }
1626 
1627 static int hclge_config_ppu_error_interrupts(struct hclge_dev *hdev, u32 cmd,
1628 					     bool en)
1629 {
1630 	struct device *dev = &hdev->pdev->dev;
1631 	struct hclge_desc desc[2];
1632 	int desc_num = 1;
1633 	int ret;
1634 
1635 	/* configure PPU error interrupts */
1636 	if (cmd == HCLGE_PPU_MPF_ECC_INT_CMD) {
1637 		hclge_cmd_setup_basic_desc(&desc[0], cmd, false);
1638 		desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
1639 		hclge_cmd_setup_basic_desc(&desc[1], cmd, false);
1640 		if (en) {
1641 			desc[0].data[0] =
1642 				cpu_to_le32(HCLGE_PPU_MPF_ABNORMAL_INT0_EN);
1643 			desc[0].data[1] =
1644 				cpu_to_le32(HCLGE_PPU_MPF_ABNORMAL_INT1_EN);
1645 			desc[1].data[3] =
1646 				cpu_to_le32(HCLGE_PPU_MPF_ABNORMAL_INT3_EN);
1647 			desc[1].data[4] =
1648 				cpu_to_le32(HCLGE_PPU_MPF_ABNORMAL_INT2_EN);
1649 		}
1650 
1651 		desc[1].data[0] =
1652 			cpu_to_le32(HCLGE_PPU_MPF_ABNORMAL_INT0_EN_MASK);
1653 		desc[1].data[1] =
1654 			cpu_to_le32(HCLGE_PPU_MPF_ABNORMAL_INT1_EN_MASK);
1655 		desc[1].data[2] =
1656 			cpu_to_le32(HCLGE_PPU_MPF_ABNORMAL_INT2_EN_MASK);
1657 		desc[1].data[3] |=
1658 			cpu_to_le32(HCLGE_PPU_MPF_ABNORMAL_INT3_EN_MASK);
1659 		desc_num = 2;
1660 	} else if (cmd == HCLGE_PPU_MPF_OTHER_INT_CMD) {
1661 		hclge_cmd_setup_basic_desc(&desc[0], cmd, false);
1662 		if (en)
1663 			desc[0].data[0] =
1664 				cpu_to_le32(HCLGE_PPU_MPF_ABNORMAL_INT2_EN2);
1665 
1666 		desc[0].data[2] =
1667 			cpu_to_le32(HCLGE_PPU_MPF_ABNORMAL_INT2_EN2_MASK);
1668 	} else if (cmd == HCLGE_PPU_PF_OTHER_INT_CMD) {
1669 		hclge_cmd_setup_basic_desc(&desc[0], cmd, false);
1670 		if (en)
1671 			desc[0].data[0] =
1672 				cpu_to_le32(HCLGE_PPU_PF_ABNORMAL_INT_EN);
1673 
1674 		desc[0].data[2] =
1675 			cpu_to_le32(HCLGE_PPU_PF_ABNORMAL_INT_EN_MASK);
1676 	} else {
1677 		dev_err(dev, "Invalid cmd to configure PPU error interrupts\n");
1678 		return -EINVAL;
1679 	}
1680 
1681 	ret = hclge_cmd_send(&hdev->hw, &desc[0], desc_num);
1682 
1683 	return ret;
1684 }
1685 
1686 static int hclge_config_ppu_hw_err_int(struct hclge_dev *hdev, bool en)
1687 {
1688 	struct device *dev = &hdev->pdev->dev;
1689 	int ret;
1690 
1691 	ret = hclge_config_ppu_error_interrupts(hdev, HCLGE_PPU_MPF_ECC_INT_CMD,
1692 						en);
1693 	if (ret) {
1694 		dev_err(dev, "fail(%d) to configure PPU MPF ECC error intr\n",
1695 			ret);
1696 		return ret;
1697 	}
1698 
1699 	ret = hclge_config_ppu_error_interrupts(hdev,
1700 						HCLGE_PPU_MPF_OTHER_INT_CMD,
1701 						en);
1702 	if (ret) {
1703 		dev_err(dev, "fail(%d) to configure PPU MPF other intr\n", ret);
1704 		return ret;
1705 	}
1706 
1707 	ret = hclge_config_ppu_error_interrupts(hdev,
1708 						HCLGE_PPU_PF_OTHER_INT_CMD, en);
1709 	if (ret)
1710 		dev_err(dev, "fail(%d) to configure PPU PF error interrupts\n",
1711 			ret);
1712 	return ret;
1713 }
1714 
1715 static int hclge_config_ssu_hw_err_int(struct hclge_dev *hdev, bool en)
1716 {
1717 	struct device *dev = &hdev->pdev->dev;
1718 	struct hclge_desc desc[2];
1719 	int ret;
1720 
1721 	/* configure SSU ecc error interrupts */
1722 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_SSU_ECC_INT_CMD, false);
1723 	desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
1724 	hclge_cmd_setup_basic_desc(&desc[1], HCLGE_SSU_ECC_INT_CMD, false);
1725 	if (en) {
1726 		desc[0].data[0] = cpu_to_le32(HCLGE_SSU_1BIT_ECC_ERR_INT_EN);
1727 		desc[0].data[1] =
1728 			cpu_to_le32(HCLGE_SSU_MULTI_BIT_ECC_ERR_INT_EN);
1729 		desc[0].data[4] = cpu_to_le32(HCLGE_SSU_BIT32_ECC_ERR_INT_EN);
1730 	}
1731 
1732 	desc[1].data[0] = cpu_to_le32(HCLGE_SSU_1BIT_ECC_ERR_INT_EN_MASK);
1733 	desc[1].data[1] = cpu_to_le32(HCLGE_SSU_MULTI_BIT_ECC_ERR_INT_EN_MASK);
1734 	desc[1].data[2] = cpu_to_le32(HCLGE_SSU_BIT32_ECC_ERR_INT_EN_MASK);
1735 
1736 	ret = hclge_cmd_send(&hdev->hw, &desc[0], 2);
1737 	if (ret) {
1738 		dev_err(dev,
1739 			"fail(%d) to configure SSU ECC error interrupt\n", ret);
1740 		return ret;
1741 	}
1742 
1743 	/* configure SSU common error interrupts */
1744 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_SSU_COMMON_INT_CMD, false);
1745 	desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
1746 	hclge_cmd_setup_basic_desc(&desc[1], HCLGE_SSU_COMMON_INT_CMD, false);
1747 
1748 	if (en) {
1749 		if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
1750 			desc[0].data[0] =
1751 				cpu_to_le32(HCLGE_SSU_COMMON_INT_EN);
1752 		else
1753 			desc[0].data[0] =
1754 				cpu_to_le32(HCLGE_SSU_COMMON_INT_EN & ~BIT(5));
1755 		desc[0].data[1] = cpu_to_le32(HCLGE_SSU_PORT_BASED_ERR_INT_EN);
1756 		desc[0].data[2] =
1757 			cpu_to_le32(HCLGE_SSU_FIFO_OVERFLOW_ERR_INT_EN);
1758 	}
1759 
1760 	desc[1].data[0] = cpu_to_le32(HCLGE_SSU_COMMON_INT_EN_MASK |
1761 				HCLGE_SSU_PORT_BASED_ERR_INT_EN_MASK);
1762 	desc[1].data[1] = cpu_to_le32(HCLGE_SSU_FIFO_OVERFLOW_ERR_INT_EN_MASK);
1763 
1764 	ret = hclge_cmd_send(&hdev->hw, &desc[0], 2);
1765 	if (ret)
1766 		dev_err(dev,
1767 			"fail(%d) to configure SSU COMMON error intr\n", ret);
1768 
1769 	return ret;
1770 }
1771 
1772 /* hclge_query_bd_num: query number of buffer descriptors
1773  * @hdev: pointer to struct hclge_dev
1774  * @is_ras: true for ras, false for msix
1775  * @mpf_bd_num: number of main PF interrupt buffer descriptors
1776  * @pf_bd_num: number of not main PF interrupt buffer descriptors
1777  *
1778  * This function querys number of mpf and pf buffer descriptors.
1779  */
1780 static int hclge_query_bd_num(struct hclge_dev *hdev, bool is_ras,
1781 			      u32 *mpf_bd_num, u32 *pf_bd_num)
1782 {
1783 	struct device *dev = &hdev->pdev->dev;
1784 	u32 mpf_min_bd_num, pf_min_bd_num;
1785 	enum hclge_opcode_type opcode;
1786 	struct hclge_desc desc_bd;
1787 	int ret;
1788 
1789 	if (is_ras) {
1790 		opcode = HCLGE_QUERY_RAS_INT_STS_BD_NUM;
1791 		mpf_min_bd_num = HCLGE_MPF_RAS_INT_MIN_BD_NUM;
1792 		pf_min_bd_num = HCLGE_PF_RAS_INT_MIN_BD_NUM;
1793 	} else {
1794 		opcode = HCLGE_QUERY_MSIX_INT_STS_BD_NUM;
1795 		mpf_min_bd_num = HCLGE_MPF_MSIX_INT_MIN_BD_NUM;
1796 		pf_min_bd_num = HCLGE_PF_MSIX_INT_MIN_BD_NUM;
1797 	}
1798 
1799 	hclge_cmd_setup_basic_desc(&desc_bd, opcode, true);
1800 	ret = hclge_cmd_send(&hdev->hw, &desc_bd, 1);
1801 	if (ret) {
1802 		dev_err(dev, "fail(%d) to query msix int status bd num\n",
1803 			ret);
1804 		return ret;
1805 	}
1806 
1807 	*mpf_bd_num = le32_to_cpu(desc_bd.data[0]);
1808 	*pf_bd_num = le32_to_cpu(desc_bd.data[1]);
1809 	if (*mpf_bd_num < mpf_min_bd_num || *pf_bd_num < pf_min_bd_num) {
1810 		dev_err(dev, "Invalid bd num: mpf(%u), pf(%u)\n",
1811 			*mpf_bd_num, *pf_bd_num);
1812 		return -EINVAL;
1813 	}
1814 
1815 	return 0;
1816 }
1817 
1818 /* hclge_handle_mpf_ras_error: handle all main PF RAS errors
1819  * @hdev: pointer to struct hclge_dev
1820  * @desc: descriptor for describing the command
1821  * @num:  number of extended command structures
1822  *
1823  * This function handles all the main PF RAS errors in the
1824  * hw register/s using command.
1825  */
1826 static int hclge_handle_mpf_ras_error(struct hclge_dev *hdev,
1827 				      struct hclge_desc *desc,
1828 				      int num)
1829 {
1830 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
1831 	struct device *dev = &hdev->pdev->dev;
1832 	__le32 *desc_data;
1833 	u32 status;
1834 	int ret;
1835 
1836 	/* query all main PF RAS errors */
1837 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_QUERY_CLEAR_MPF_RAS_INT,
1838 				   true);
1839 	ret = hclge_cmd_send(&hdev->hw, &desc[0], num);
1840 	if (ret) {
1841 		dev_err(dev, "query all mpf ras int cmd failed (%d)\n", ret);
1842 		return ret;
1843 	}
1844 
1845 	/* log HNS common errors */
1846 	status = le32_to_cpu(desc[0].data[0]);
1847 	if (status)
1848 		hclge_log_error(dev, "IMP_TCM_ECC_INT_STS",
1849 				&hclge_imp_tcm_ecc_int[0], status,
1850 				&ae_dev->hw_err_reset_req);
1851 
1852 	status = le32_to_cpu(desc[0].data[1]);
1853 	if (status)
1854 		hclge_log_error(dev, "CMDQ_MEM_ECC_INT_STS",
1855 				&hclge_cmdq_nic_mem_ecc_int[0], status,
1856 				&ae_dev->hw_err_reset_req);
1857 
1858 	if ((le32_to_cpu(desc[0].data[2])) & BIT(0))
1859 		dev_warn(dev, "imp_rd_data_poison_err found\n");
1860 
1861 	status = le32_to_cpu(desc[0].data[3]);
1862 	if (status)
1863 		hclge_log_error(dev, "TQP_INT_ECC_INT_STS",
1864 				&hclge_tqp_int_ecc_int[0], status,
1865 				&ae_dev->hw_err_reset_req);
1866 
1867 	status = le32_to_cpu(desc[0].data[4]);
1868 	if (status)
1869 		hclge_log_error(dev, "MSIX_ECC_INT_STS",
1870 				&hclge_msix_sram_ecc_int[0], status,
1871 				&ae_dev->hw_err_reset_req);
1872 
1873 	/* log SSU(Storage Switch Unit) errors */
1874 	desc_data = (__le32 *)&desc[2];
1875 	status = le32_to_cpu(*(desc_data + 2));
1876 	if (status)
1877 		hclge_log_error(dev, "SSU_ECC_MULTI_BIT_INT_0",
1878 				&hclge_ssu_mem_ecc_err_int[0], status,
1879 				&ae_dev->hw_err_reset_req);
1880 
1881 	status = le32_to_cpu(*(desc_data + 3)) & BIT(0);
1882 	if (status) {
1883 		dev_err(dev, "SSU_ECC_MULTI_BIT_INT_1 ssu_mem32_ecc_mbit_err found [error status=0x%x]\n",
1884 			status);
1885 		set_bit(HNAE3_GLOBAL_RESET, &ae_dev->hw_err_reset_req);
1886 	}
1887 
1888 	status = le32_to_cpu(*(desc_data + 4)) & HCLGE_SSU_COMMON_ERR_INT_MASK;
1889 	if (status)
1890 		hclge_log_error(dev, "SSU_COMMON_ERR_INT",
1891 				&hclge_ssu_com_err_int[0], status,
1892 				&ae_dev->hw_err_reset_req);
1893 
1894 	/* log IGU(Ingress Unit) errors */
1895 	desc_data = (__le32 *)&desc[3];
1896 	status = le32_to_cpu(*desc_data) & HCLGE_IGU_INT_MASK;
1897 	if (status)
1898 		hclge_log_error(dev, "IGU_INT_STS",
1899 				&hclge_igu_int[0], status,
1900 				&ae_dev->hw_err_reset_req);
1901 
1902 	/* log PPP(Programmable Packet Process) errors */
1903 	desc_data = (__le32 *)&desc[4];
1904 	status = le32_to_cpu(*(desc_data + 1));
1905 	if (status)
1906 		hclge_log_error(dev, "PPP_MPF_ABNORMAL_INT_ST1",
1907 				&hclge_ppp_mpf_abnormal_int_st1[0], status,
1908 				&ae_dev->hw_err_reset_req);
1909 
1910 	status = le32_to_cpu(*(desc_data + 3)) & HCLGE_PPP_MPF_INT_ST3_MASK;
1911 	if (status)
1912 		hclge_log_error(dev, "PPP_MPF_ABNORMAL_INT_ST3",
1913 				&hclge_ppp_mpf_abnormal_int_st3[0], status,
1914 				&ae_dev->hw_err_reset_req);
1915 
1916 	/* log PPU(RCB) errors */
1917 	desc_data = (__le32 *)&desc[5];
1918 	status = le32_to_cpu(*(desc_data + 1));
1919 	if (status) {
1920 		dev_err(dev,
1921 			"PPU_MPF_ABNORMAL_INT_ST1 rpu_rx_pkt_ecc_mbit_err found\n");
1922 		set_bit(HNAE3_GLOBAL_RESET, &ae_dev->hw_err_reset_req);
1923 	}
1924 
1925 	status = le32_to_cpu(*(desc_data + 2));
1926 	if (status)
1927 		hclge_log_error(dev, "PPU_MPF_ABNORMAL_INT_ST2",
1928 				&hclge_ppu_mpf_abnormal_int_st2[0], status,
1929 				&ae_dev->hw_err_reset_req);
1930 
1931 	status = le32_to_cpu(*(desc_data + 3)) & HCLGE_PPU_MPF_INT_ST3_MASK;
1932 	if (status)
1933 		hclge_log_error(dev, "PPU_MPF_ABNORMAL_INT_ST3",
1934 				&hclge_ppu_mpf_abnormal_int_st3[0], status,
1935 				&ae_dev->hw_err_reset_req);
1936 
1937 	/* log TM(Traffic Manager) errors */
1938 	desc_data = (__le32 *)&desc[6];
1939 	status = le32_to_cpu(*desc_data);
1940 	if (status)
1941 		hclge_log_error(dev, "TM_SCH_RINT",
1942 				&hclge_tm_sch_rint[0], status,
1943 				&ae_dev->hw_err_reset_req);
1944 
1945 	/* log QCN(Quantized Congestion Control) errors */
1946 	desc_data = (__le32 *)&desc[7];
1947 	status = le32_to_cpu(*desc_data) & HCLGE_QCN_FIFO_INT_MASK;
1948 	if (status)
1949 		hclge_log_error(dev, "QCN_FIFO_RINT",
1950 				&hclge_qcn_fifo_rint[0], status,
1951 				&ae_dev->hw_err_reset_req);
1952 
1953 	status = le32_to_cpu(*(desc_data + 1)) & HCLGE_QCN_ECC_INT_MASK;
1954 	if (status)
1955 		hclge_log_error(dev, "QCN_ECC_RINT",
1956 				&hclge_qcn_ecc_rint[0], status,
1957 				&ae_dev->hw_err_reset_req);
1958 
1959 	/* log NCSI errors */
1960 	desc_data = (__le32 *)&desc[9];
1961 	status = le32_to_cpu(*desc_data) & HCLGE_NCSI_ECC_INT_MASK;
1962 	if (status)
1963 		hclge_log_error(dev, "NCSI_ECC_INT_RPT",
1964 				&hclge_ncsi_err_int[0], status,
1965 				&ae_dev->hw_err_reset_req);
1966 
1967 	/* clear all main PF RAS errors */
1968 	hclge_comm_cmd_reuse_desc(&desc[0], false);
1969 	ret = hclge_cmd_send(&hdev->hw, &desc[0], num);
1970 	if (ret)
1971 		dev_err(dev, "clear all mpf ras int cmd failed (%d)\n", ret);
1972 
1973 	return ret;
1974 }
1975 
1976 /* hclge_handle_pf_ras_error: handle all PF RAS errors
1977  * @hdev: pointer to struct hclge_dev
1978  * @desc: descriptor for describing the command
1979  * @num:  number of extended command structures
1980  *
1981  * This function handles all the PF RAS errors in the
1982  * hw registers using command.
1983  */
1984 static int hclge_handle_pf_ras_error(struct hclge_dev *hdev,
1985 				     struct hclge_desc *desc,
1986 				     int num)
1987 {
1988 	struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
1989 	struct device *dev = &hdev->pdev->dev;
1990 	__le32 *desc_data;
1991 	u32 status;
1992 	int ret;
1993 
1994 	/* query all PF RAS errors */
1995 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_QUERY_CLEAR_PF_RAS_INT,
1996 				   true);
1997 	ret = hclge_cmd_send(&hdev->hw, &desc[0], num);
1998 	if (ret) {
1999 		dev_err(dev, "query all pf ras int cmd failed (%d)\n", ret);
2000 		return ret;
2001 	}
2002 
2003 	/* log SSU(Storage Switch Unit) errors */
2004 	status = le32_to_cpu(desc[0].data[0]);
2005 	if (status)
2006 		hclge_log_error(dev, "SSU_PORT_BASED_ERR_INT",
2007 				&hclge_ssu_port_based_err_int[0], status,
2008 				&ae_dev->hw_err_reset_req);
2009 
2010 	status = le32_to_cpu(desc[0].data[1]);
2011 	if (status)
2012 		hclge_log_error(dev, "SSU_FIFO_OVERFLOW_INT",
2013 				&hclge_ssu_fifo_overflow_int[0], status,
2014 				&ae_dev->hw_err_reset_req);
2015 
2016 	status = le32_to_cpu(desc[0].data[2]);
2017 	if (status)
2018 		hclge_log_error(dev, "SSU_ETS_TCG_INT",
2019 				&hclge_ssu_ets_tcg_int[0], status,
2020 				&ae_dev->hw_err_reset_req);
2021 
2022 	/* log IGU(Ingress Unit) EGU(Egress Unit) TNL errors */
2023 	desc_data = (__le32 *)&desc[1];
2024 	status = le32_to_cpu(*desc_data) & HCLGE_IGU_EGU_TNL_INT_MASK;
2025 	if (status)
2026 		hclge_log_error(dev, "IGU_EGU_TNL_INT_STS",
2027 				&hclge_igu_egu_tnl_int[0], status,
2028 				&ae_dev->hw_err_reset_req);
2029 
2030 	/* log PPU(RCB) errors */
2031 	desc_data = (__le32 *)&desc[3];
2032 	status = le32_to_cpu(*desc_data) & HCLGE_PPU_PF_INT_RAS_MASK;
2033 	if (status) {
2034 		hclge_log_error(dev, "PPU_PF_ABNORMAL_INT_ST0",
2035 				&hclge_ppu_pf_abnormal_int[0], status,
2036 				&ae_dev->hw_err_reset_req);
2037 		hclge_report_hw_error(hdev, HNAE3_PPU_POISON_ERROR);
2038 	}
2039 
2040 	/* clear all PF RAS errors */
2041 	hclge_comm_cmd_reuse_desc(&desc[0], false);
2042 	ret = hclge_cmd_send(&hdev->hw, &desc[0], num);
2043 	if (ret)
2044 		dev_err(dev, "clear all pf ras int cmd failed (%d)\n", ret);
2045 
2046 	return ret;
2047 }
2048 
2049 static int hclge_handle_all_ras_errors(struct hclge_dev *hdev)
2050 {
2051 	u32 mpf_bd_num, pf_bd_num, bd_num;
2052 	struct hclge_desc *desc;
2053 	int ret;
2054 
2055 	/* query the number of registers in the RAS int status */
2056 	ret = hclge_query_bd_num(hdev, true, &mpf_bd_num, &pf_bd_num);
2057 	if (ret)
2058 		return ret;
2059 
2060 	bd_num = max_t(u32, mpf_bd_num, pf_bd_num);
2061 	desc = kcalloc(bd_num, sizeof(struct hclge_desc), GFP_KERNEL);
2062 	if (!desc)
2063 		return -ENOMEM;
2064 
2065 	/* handle all main PF RAS errors */
2066 	ret = hclge_handle_mpf_ras_error(hdev, desc, mpf_bd_num);
2067 	if (ret) {
2068 		kfree(desc);
2069 		return ret;
2070 	}
2071 	memset(desc, 0, bd_num * sizeof(struct hclge_desc));
2072 
2073 	/* handle all PF RAS errors */
2074 	ret = hclge_handle_pf_ras_error(hdev, desc, pf_bd_num);
2075 	kfree(desc);
2076 
2077 	return ret;
2078 }
2079 
2080 static int hclge_log_rocee_axi_error(struct hclge_dev *hdev)
2081 {
2082 	struct device *dev = &hdev->pdev->dev;
2083 	struct hclge_desc desc[3];
2084 	int ret;
2085 
2086 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_QUERY_ROCEE_AXI_RAS_INFO_CMD,
2087 				   true);
2088 	hclge_cmd_setup_basic_desc(&desc[1], HCLGE_QUERY_ROCEE_AXI_RAS_INFO_CMD,
2089 				   true);
2090 	hclge_cmd_setup_basic_desc(&desc[2], HCLGE_QUERY_ROCEE_AXI_RAS_INFO_CMD,
2091 				   true);
2092 	desc[0].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
2093 	desc[1].flag |= cpu_to_le16(HCLGE_COMM_CMD_FLAG_NEXT);
2094 
2095 	ret = hclge_cmd_send(&hdev->hw, &desc[0], 3);
2096 	if (ret) {
2097 		dev_err(dev, "failed(%d) to query ROCEE AXI error sts\n", ret);
2098 		return ret;
2099 	}
2100 
2101 	dev_err(dev, "AXI1: %08X %08X %08X %08X %08X %08X\n",
2102 		le32_to_cpu(desc[0].data[0]), le32_to_cpu(desc[0].data[1]),
2103 		le32_to_cpu(desc[0].data[2]), le32_to_cpu(desc[0].data[3]),
2104 		le32_to_cpu(desc[0].data[4]), le32_to_cpu(desc[0].data[5]));
2105 	dev_err(dev, "AXI2: %08X %08X %08X %08X %08X %08X\n",
2106 		le32_to_cpu(desc[1].data[0]), le32_to_cpu(desc[1].data[1]),
2107 		le32_to_cpu(desc[1].data[2]), le32_to_cpu(desc[1].data[3]),
2108 		le32_to_cpu(desc[1].data[4]), le32_to_cpu(desc[1].data[5]));
2109 	dev_err(dev, "AXI3: %08X %08X %08X %08X\n",
2110 		le32_to_cpu(desc[2].data[0]), le32_to_cpu(desc[2].data[1]),
2111 		le32_to_cpu(desc[2].data[2]), le32_to_cpu(desc[2].data[3]));
2112 
2113 	return 0;
2114 }
2115 
2116 static int hclge_log_rocee_ecc_error(struct hclge_dev *hdev)
2117 {
2118 	struct device *dev = &hdev->pdev->dev;
2119 	struct hclge_desc desc[2];
2120 	int ret;
2121 
2122 	ret = hclge_cmd_query_error(hdev, &desc[0],
2123 				    HCLGE_QUERY_ROCEE_ECC_RAS_INFO_CMD,
2124 				    HCLGE_COMM_CMD_FLAG_NEXT);
2125 	if (ret) {
2126 		dev_err(dev, "failed(%d) to query ROCEE ECC error sts\n", ret);
2127 		return ret;
2128 	}
2129 
2130 	dev_err(dev, "ECC1: %08X %08X %08X %08X %08X %08X\n",
2131 		le32_to_cpu(desc[0].data[0]), le32_to_cpu(desc[0].data[1]),
2132 		le32_to_cpu(desc[0].data[2]), le32_to_cpu(desc[0].data[3]),
2133 		le32_to_cpu(desc[0].data[4]), le32_to_cpu(desc[0].data[5]));
2134 	dev_err(dev, "ECC2: %08X %08X %08X\n", le32_to_cpu(desc[1].data[0]),
2135 		le32_to_cpu(desc[1].data[1]), le32_to_cpu(desc[1].data[2]));
2136 
2137 	return 0;
2138 }
2139 
2140 static int hclge_log_rocee_ovf_error(struct hclge_dev *hdev)
2141 {
2142 	struct device *dev = &hdev->pdev->dev;
2143 	struct hclge_desc desc[2];
2144 	int ret;
2145 
2146 	/* read overflow error status */
2147 	ret = hclge_cmd_query_error(hdev, &desc[0], HCLGE_ROCEE_PF_RAS_INT_CMD,
2148 				    0);
2149 	if (ret) {
2150 		dev_err(dev, "failed(%d) to query ROCEE OVF error sts\n", ret);
2151 		return ret;
2152 	}
2153 
2154 	/* log overflow error */
2155 	if (le32_to_cpu(desc[0].data[0]) & HCLGE_ROCEE_OVF_ERR_INT_MASK) {
2156 		const struct hclge_hw_error *err;
2157 		u32 err_sts;
2158 
2159 		err = &hclge_rocee_qmm_ovf_err_int[0];
2160 		err_sts = HCLGE_ROCEE_OVF_ERR_TYPE_MASK &
2161 			  le32_to_cpu(desc[0].data[0]);
2162 		while (err->msg) {
2163 			if (err->int_msk == err_sts) {
2164 				dev_err(dev, "%s [error status=0x%x] found\n",
2165 					err->msg,
2166 					le32_to_cpu(desc[0].data[0]));
2167 				break;
2168 			}
2169 			err++;
2170 		}
2171 	}
2172 
2173 	if (le32_to_cpu(desc[0].data[1]) & HCLGE_ROCEE_OVF_ERR_INT_MASK) {
2174 		dev_err(dev, "ROCEE TSP OVF [error status=0x%x] found\n",
2175 			le32_to_cpu(desc[0].data[1]));
2176 	}
2177 
2178 	if (le32_to_cpu(desc[0].data[2]) & HCLGE_ROCEE_OVF_ERR_INT_MASK) {
2179 		dev_err(dev, "ROCEE SCC OVF [error status=0x%x] found\n",
2180 			le32_to_cpu(desc[0].data[2]));
2181 	}
2182 
2183 	return 0;
2184 }
2185 
2186 static enum hnae3_reset_type
2187 hclge_log_and_clear_rocee_ras_error(struct hclge_dev *hdev)
2188 {
2189 	enum hnae3_reset_type reset_type = HNAE3_NONE_RESET;
2190 	struct device *dev = &hdev->pdev->dev;
2191 	struct hclge_desc desc[2];
2192 	unsigned int status;
2193 	int ret;
2194 
2195 	/* read RAS error interrupt status */
2196 	ret = hclge_cmd_query_error(hdev, &desc[0],
2197 				    HCLGE_QUERY_CLEAR_ROCEE_RAS_INT, 0);
2198 	if (ret) {
2199 		dev_err(dev, "failed(%d) to query ROCEE RAS INT SRC\n", ret);
2200 		/* reset everything for now */
2201 		return HNAE3_GLOBAL_RESET;
2202 	}
2203 
2204 	status = le32_to_cpu(desc[0].data[0]);
2205 	if (status & HCLGE_ROCEE_AXI_ERR_INT_MASK) {
2206 		if (status & HCLGE_ROCEE_RERR_INT_MASK)
2207 			dev_err(dev, "ROCEE RAS AXI rresp error\n");
2208 
2209 		if (status & HCLGE_ROCEE_BERR_INT_MASK)
2210 			dev_err(dev, "ROCEE RAS AXI bresp error\n");
2211 
2212 		reset_type = HNAE3_FUNC_RESET;
2213 
2214 		hclge_report_hw_error(hdev, HNAE3_ROCEE_AXI_RESP_ERROR);
2215 
2216 		ret = hclge_log_rocee_axi_error(hdev);
2217 		if (ret)
2218 			return HNAE3_GLOBAL_RESET;
2219 	}
2220 
2221 	if (status & HCLGE_ROCEE_ECC_INT_MASK) {
2222 		dev_err(dev, "ROCEE RAS 2bit ECC error\n");
2223 		reset_type = HNAE3_GLOBAL_RESET;
2224 
2225 		ret = hclge_log_rocee_ecc_error(hdev);
2226 		if (ret)
2227 			return HNAE3_GLOBAL_RESET;
2228 	}
2229 
2230 	if (status & HCLGE_ROCEE_OVF_INT_MASK) {
2231 		ret = hclge_log_rocee_ovf_error(hdev);
2232 		if (ret) {
2233 			dev_err(dev, "failed(%d) to process ovf error\n", ret);
2234 			/* reset everything for now */
2235 			return HNAE3_GLOBAL_RESET;
2236 		}
2237 	}
2238 
2239 	/* clear error status */
2240 	hclge_comm_cmd_reuse_desc(&desc[0], false);
2241 	ret = hclge_cmd_send(&hdev->hw, &desc[0], 1);
2242 	if (ret) {
2243 		dev_err(dev, "failed(%d) to clear ROCEE RAS error\n", ret);
2244 		/* reset everything for now */
2245 		return HNAE3_GLOBAL_RESET;
2246 	}
2247 
2248 	return reset_type;
2249 }
2250 
2251 int hclge_config_rocee_ras_interrupt(struct hclge_dev *hdev, bool en)
2252 {
2253 	struct device *dev = &hdev->pdev->dev;
2254 	struct hclge_desc desc;
2255 	int ret;
2256 
2257 	if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2 ||
2258 	    !hnae3_dev_roce_supported(hdev))
2259 		return 0;
2260 
2261 	hclge_cmd_setup_basic_desc(&desc, HCLGE_CONFIG_ROCEE_RAS_INT_EN, false);
2262 	if (en) {
2263 		/* enable ROCEE hw error interrupts */
2264 		desc.data[0] = cpu_to_le32(HCLGE_ROCEE_RAS_NFE_INT_EN);
2265 		desc.data[1] = cpu_to_le32(HCLGE_ROCEE_RAS_CE_INT_EN);
2266 
2267 		hclge_log_and_clear_rocee_ras_error(hdev);
2268 	}
2269 	desc.data[2] = cpu_to_le32(HCLGE_ROCEE_RAS_NFE_INT_EN_MASK);
2270 	desc.data[3] = cpu_to_le32(HCLGE_ROCEE_RAS_CE_INT_EN_MASK);
2271 
2272 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
2273 	if (ret)
2274 		dev_err(dev, "failed(%d) to config ROCEE RAS interrupt\n", ret);
2275 
2276 	return ret;
2277 }
2278 
2279 static void hclge_handle_rocee_ras_error(struct hnae3_ae_dev *ae_dev)
2280 {
2281 	struct hclge_dev *hdev = ae_dev->priv;
2282 	enum hnae3_reset_type reset_type;
2283 
2284 	if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state))
2285 		return;
2286 
2287 	reset_type = hclge_log_and_clear_rocee_ras_error(hdev);
2288 	if (reset_type != HNAE3_NONE_RESET)
2289 		set_bit(reset_type, &ae_dev->hw_err_reset_req);
2290 }
2291 
2292 static const struct hclge_hw_blk hw_blk[] = {
2293 	{
2294 		.msk = BIT(0),
2295 		.name = "IGU_EGU",
2296 		.config_err_int = hclge_config_igu_egu_hw_err_int,
2297 	}, {
2298 		.msk = BIT(1),
2299 		.name = "PPP",
2300 		.config_err_int = hclge_config_ppp_hw_err_int,
2301 	}, {
2302 		.msk = BIT(2),
2303 		.name = "SSU",
2304 		.config_err_int = hclge_config_ssu_hw_err_int,
2305 	}, {
2306 		.msk = BIT(3),
2307 		.name = "PPU",
2308 		.config_err_int = hclge_config_ppu_hw_err_int,
2309 	}, {
2310 		.msk = BIT(4),
2311 		.name = "TM",
2312 		.config_err_int = hclge_config_tm_hw_err_int,
2313 	}, {
2314 		.msk = BIT(5),
2315 		.name = "COMMON",
2316 		.config_err_int = hclge_config_common_hw_err_int,
2317 	}, {
2318 		.msk = BIT(8),
2319 		.name = "MAC",
2320 		.config_err_int = hclge_config_mac_err_int,
2321 	}, {
2322 		/* sentinel */
2323 	}
2324 };
2325 
2326 static void hclge_config_all_msix_error(struct hclge_dev *hdev, bool enable)
2327 {
2328 	u32 reg_val;
2329 
2330 	reg_val = hclge_read_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG);
2331 
2332 	if (enable)
2333 		reg_val |= BIT(HCLGE_VECTOR0_ALL_MSIX_ERR_B);
2334 	else
2335 		reg_val &= ~BIT(HCLGE_VECTOR0_ALL_MSIX_ERR_B);
2336 
2337 	hclge_write_dev(&hdev->hw, HCLGE_PF_OTHER_INT_REG, reg_val);
2338 }
2339 
2340 int hclge_config_nic_hw_error(struct hclge_dev *hdev, bool state)
2341 {
2342 	const struct hclge_hw_blk *module = hw_blk;
2343 	int ret = 0;
2344 
2345 	hclge_config_all_msix_error(hdev, state);
2346 
2347 	while (module->name) {
2348 		if (module->config_err_int) {
2349 			ret = module->config_err_int(hdev, state);
2350 			if (ret)
2351 				return ret;
2352 		}
2353 		module++;
2354 	}
2355 
2356 	return ret;
2357 }
2358 
2359 pci_ers_result_t hclge_handle_hw_ras_error(struct hnae3_ae_dev *ae_dev)
2360 {
2361 	struct hclge_dev *hdev = ae_dev->priv;
2362 	struct device *dev = &hdev->pdev->dev;
2363 	u32 status;
2364 
2365 	if (!test_bit(HCLGE_STATE_SERVICE_INITED, &hdev->state)) {
2366 		dev_err(dev,
2367 			"Can't recover - RAS error reported during dev init\n");
2368 		return PCI_ERS_RESULT_NONE;
2369 	}
2370 
2371 	status = hclge_read_dev(&hdev->hw, HCLGE_RAS_PF_OTHER_INT_STS_REG);
2372 	if (status & HCLGE_RAS_REG_NFE_MASK ||
2373 	    status & HCLGE_RAS_REG_ROCEE_ERR_MASK)
2374 		ae_dev->hw_err_reset_req = 0;
2375 	else
2376 		goto out;
2377 
2378 	/* Handling Non-fatal HNS RAS errors */
2379 	if (status & HCLGE_RAS_REG_NFE_MASK) {
2380 		dev_err(dev,
2381 			"HNS Non-Fatal RAS error(status=0x%x) identified\n",
2382 			status);
2383 		hclge_handle_all_ras_errors(hdev);
2384 	}
2385 
2386 	/* Handling Non-fatal Rocee RAS errors */
2387 	if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2 &&
2388 	    status & HCLGE_RAS_REG_ROCEE_ERR_MASK) {
2389 		dev_err(dev, "ROCEE Non-Fatal RAS error identified\n");
2390 		hclge_handle_rocee_ras_error(ae_dev);
2391 	}
2392 
2393 	if (ae_dev->hw_err_reset_req)
2394 		return PCI_ERS_RESULT_NEED_RESET;
2395 
2396 out:
2397 	return PCI_ERS_RESULT_RECOVERED;
2398 }
2399 
2400 static int hclge_clear_hw_msix_error(struct hclge_dev *hdev,
2401 				     struct hclge_desc *desc, bool is_mpf,
2402 				     u32 bd_num)
2403 {
2404 	if (is_mpf)
2405 		desc[0].opcode =
2406 			cpu_to_le16(HCLGE_QUERY_CLEAR_ALL_MPF_MSIX_INT);
2407 	else
2408 		desc[0].opcode = cpu_to_le16(HCLGE_QUERY_CLEAR_ALL_PF_MSIX_INT);
2409 
2410 	desc[0].flag = cpu_to_le16(HCLGE_COMM_CMD_FLAG_NO_INTR |
2411 				   HCLGE_COMM_CMD_FLAG_IN);
2412 
2413 	return hclge_cmd_send(&hdev->hw, &desc[0], bd_num);
2414 }
2415 
2416 /* hclge_query_8bd_info: query information about over_8bd_nfe_err
2417  * @hdev: pointer to struct hclge_dev
2418  * @vf_id: Index of the virtual function with error
2419  * @q_id: Physical index of the queue with error
2420  *
2421  * This function get specific index of queue and function which causes
2422  * over_8bd_nfe_err by using command. If vf_id is 0, it means error is
2423  * caused by PF instead of VF.
2424  */
2425 static int hclge_query_over_8bd_err_info(struct hclge_dev *hdev, u16 *vf_id,
2426 					 u16 *q_id)
2427 {
2428 	struct hclge_query_ppu_pf_other_int_dfx_cmd *req;
2429 	struct hclge_desc desc;
2430 	int ret;
2431 
2432 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_PPU_PF_OTHER_INT_DFX, true);
2433 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
2434 	if (ret)
2435 		return ret;
2436 
2437 	req = (struct hclge_query_ppu_pf_other_int_dfx_cmd *)desc.data;
2438 	*vf_id = le16_to_cpu(req->over_8bd_no_fe_vf_id);
2439 	*q_id = le16_to_cpu(req->over_8bd_no_fe_qid);
2440 
2441 	return 0;
2442 }
2443 
2444 /* hclge_handle_over_8bd_err: handle MSI-X error named over_8bd_nfe_err
2445  * @hdev: pointer to struct hclge_dev
2446  * @reset_requests: reset level that we need to trigger later
2447  *
2448  * over_8bd_nfe_err is a special MSI-X because it may caused by a VF, in
2449  * that case, we need to trigger VF reset. Otherwise, a PF reset is needed.
2450  */
2451 static void hclge_handle_over_8bd_err(struct hclge_dev *hdev,
2452 				      unsigned long *reset_requests)
2453 {
2454 	struct device *dev = &hdev->pdev->dev;
2455 	u16 vf_id;
2456 	u16 q_id;
2457 	int ret;
2458 
2459 	ret = hclge_query_over_8bd_err_info(hdev, &vf_id, &q_id);
2460 	if (ret) {
2461 		dev_err(dev, "fail(%d) to query over_8bd_no_fe info\n",
2462 			ret);
2463 		return;
2464 	}
2465 
2466 	dev_err(dev, "PPU_PF_ABNORMAL_INT_ST over_8bd_no_fe found, vport(%u), queue_id(%u)\n",
2467 		vf_id, q_id);
2468 
2469 	if (vf_id) {
2470 		if (vf_id >= hdev->num_alloc_vport) {
2471 			dev_err(dev, "invalid vport(%u)\n", vf_id);
2472 			return;
2473 		}
2474 
2475 		/* If we need to trigger other reset whose level is higher
2476 		 * than HNAE3_VF_FUNC_RESET, no need to trigger a VF reset
2477 		 * here.
2478 		 */
2479 		if (*reset_requests != 0)
2480 			return;
2481 
2482 		ret = hclge_inform_reset_assert_to_vf(&hdev->vport[vf_id]);
2483 		if (ret)
2484 			dev_err(dev, "inform reset to vport(%u) failed %d!\n",
2485 				vf_id, ret);
2486 	} else {
2487 		set_bit(HNAE3_FUNC_RESET, reset_requests);
2488 	}
2489 }
2490 
2491 /* hclge_handle_mpf_msix_error: handle all main PF MSI-X errors
2492  * @hdev: pointer to struct hclge_dev
2493  * @desc: descriptor for describing the command
2494  * @mpf_bd_num: number of extended command structures
2495  * @reset_requests: record of the reset level that we need
2496  *
2497  * This function handles all the main PF MSI-X errors in the hw register/s
2498  * using command.
2499  */
2500 static int hclge_handle_mpf_msix_error(struct hclge_dev *hdev,
2501 				       struct hclge_desc *desc,
2502 				       int mpf_bd_num,
2503 				       unsigned long *reset_requests)
2504 {
2505 	struct device *dev = &hdev->pdev->dev;
2506 	__le32 *desc_data;
2507 	u32 status;
2508 	int ret;
2509 	/* query all main PF MSIx errors */
2510 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_QUERY_CLEAR_ALL_MPF_MSIX_INT,
2511 				   true);
2512 	ret = hclge_cmd_send(&hdev->hw, &desc[0], mpf_bd_num);
2513 	if (ret) {
2514 		dev_err(dev, "query all mpf msix int cmd failed (%d)\n", ret);
2515 		return ret;
2516 	}
2517 
2518 	/* log MAC errors */
2519 	desc_data = (__le32 *)&desc[1];
2520 	status = le32_to_cpu(*desc_data);
2521 	if (status)
2522 		hclge_log_error(dev, "MAC_AFIFO_TNL_INT_R",
2523 				&hclge_mac_afifo_tnl_int[0], status,
2524 				reset_requests);
2525 
2526 	/* log PPU(RCB) MPF errors */
2527 	desc_data = (__le32 *)&desc[5];
2528 	status = le32_to_cpu(*(desc_data + 2)) &
2529 			HCLGE_PPU_MPF_INT_ST2_MSIX_MASK;
2530 	if (status)
2531 		dev_err(dev, "PPU_MPF_ABNORMAL_INT_ST2 rx_q_search_miss found [dfx status=0x%x\n]",
2532 			status);
2533 
2534 	/* clear all main PF MSIx errors */
2535 	ret = hclge_clear_hw_msix_error(hdev, desc, true, mpf_bd_num);
2536 	if (ret)
2537 		dev_err(dev, "clear all mpf msix int cmd failed (%d)\n", ret);
2538 
2539 	return ret;
2540 }
2541 
2542 /* hclge_handle_pf_msix_error: handle all PF MSI-X errors
2543  * @hdev: pointer to struct hclge_dev
2544  * @desc: descriptor for describing the command
2545  * @mpf_bd_num: number of extended command structures
2546  * @reset_requests: record of the reset level that we need
2547  *
2548  * This function handles all the PF MSI-X errors in the hw register/s using
2549  * command.
2550  */
2551 static int hclge_handle_pf_msix_error(struct hclge_dev *hdev,
2552 				      struct hclge_desc *desc,
2553 				      int pf_bd_num,
2554 				      unsigned long *reset_requests)
2555 {
2556 	struct device *dev = &hdev->pdev->dev;
2557 	__le32 *desc_data;
2558 	u32 status;
2559 	int ret;
2560 
2561 	/* query all PF MSIx errors */
2562 	hclge_cmd_setup_basic_desc(&desc[0], HCLGE_QUERY_CLEAR_ALL_PF_MSIX_INT,
2563 				   true);
2564 	ret = hclge_cmd_send(&hdev->hw, &desc[0], pf_bd_num);
2565 	if (ret) {
2566 		dev_err(dev, "query all pf msix int cmd failed (%d)\n", ret);
2567 		return ret;
2568 	}
2569 
2570 	/* log SSU PF errors */
2571 	status = le32_to_cpu(desc[0].data[0]) & HCLGE_SSU_PORT_INT_MSIX_MASK;
2572 	if (status)
2573 		hclge_log_error(dev, "SSU_PORT_BASED_ERR_INT",
2574 				&hclge_ssu_port_based_pf_int[0],
2575 				status, reset_requests);
2576 
2577 	/* read and log PPP PF errors */
2578 	desc_data = (__le32 *)&desc[2];
2579 	status = le32_to_cpu(*desc_data);
2580 	if (status)
2581 		hclge_log_error(dev, "PPP_PF_ABNORMAL_INT_ST0",
2582 				&hclge_ppp_pf_abnormal_int[0],
2583 				status, reset_requests);
2584 
2585 	/* log PPU(RCB) PF errors */
2586 	desc_data = (__le32 *)&desc[3];
2587 	status = le32_to_cpu(*desc_data) & HCLGE_PPU_PF_INT_MSIX_MASK;
2588 	if (status)
2589 		hclge_log_error(dev, "PPU_PF_ABNORMAL_INT_ST",
2590 				&hclge_ppu_pf_abnormal_int[0],
2591 				status, reset_requests);
2592 
2593 	status = le32_to_cpu(*desc_data) & HCLGE_PPU_PF_OVER_8BD_ERR_MASK;
2594 	if (status)
2595 		hclge_handle_over_8bd_err(hdev, reset_requests);
2596 
2597 	/* clear all PF MSIx errors */
2598 	ret = hclge_clear_hw_msix_error(hdev, desc, false, pf_bd_num);
2599 	if (ret)
2600 		dev_err(dev, "clear all pf msix int cmd failed (%d)\n", ret);
2601 
2602 	return ret;
2603 }
2604 
2605 static int hclge_handle_all_hw_msix_error(struct hclge_dev *hdev,
2606 					  unsigned long *reset_requests)
2607 {
2608 	u32 mpf_bd_num, pf_bd_num, bd_num;
2609 	struct hclge_desc *desc;
2610 	int ret;
2611 
2612 	/* query the number of bds for the MSIx int status */
2613 	ret = hclge_query_bd_num(hdev, false, &mpf_bd_num, &pf_bd_num);
2614 	if (ret)
2615 		goto out;
2616 
2617 	bd_num = max_t(u32, mpf_bd_num, pf_bd_num);
2618 	desc = kcalloc(bd_num, sizeof(struct hclge_desc), GFP_KERNEL);
2619 	if (!desc)
2620 		return -ENOMEM;
2621 
2622 	ret = hclge_handle_mpf_msix_error(hdev, desc, mpf_bd_num,
2623 					  reset_requests);
2624 	if (ret)
2625 		goto msi_error;
2626 
2627 	memset(desc, 0, bd_num * sizeof(struct hclge_desc));
2628 	ret = hclge_handle_pf_msix_error(hdev, desc, pf_bd_num, reset_requests);
2629 	if (ret)
2630 		goto msi_error;
2631 
2632 	ret = hclge_handle_mac_tnl(hdev);
2633 
2634 msi_error:
2635 	kfree(desc);
2636 out:
2637 	return ret;
2638 }
2639 
2640 int hclge_handle_hw_msix_error(struct hclge_dev *hdev,
2641 			       unsigned long *reset_requests)
2642 {
2643 	struct device *dev = &hdev->pdev->dev;
2644 
2645 	if (!test_bit(HCLGE_STATE_SERVICE_INITED, &hdev->state)) {
2646 		dev_err(dev,
2647 			"failed to handle msix error during dev init\n");
2648 		return -EAGAIN;
2649 	}
2650 
2651 	return hclge_handle_all_hw_msix_error(hdev, reset_requests);
2652 }
2653 
2654 int hclge_handle_mac_tnl(struct hclge_dev *hdev)
2655 {
2656 	struct hclge_mac_tnl_stats mac_tnl_stats;
2657 	struct device *dev = &hdev->pdev->dev;
2658 	struct hclge_desc desc;
2659 	u32 status;
2660 	int ret;
2661 
2662 	/* query and clear mac tnl interruptions */
2663 	hclge_cmd_setup_basic_desc(&desc, HCLGE_OPC_QUERY_MAC_TNL_INT, true);
2664 	ret = hclge_cmd_send(&hdev->hw, &desc, 1);
2665 	if (ret) {
2666 		dev_err(dev, "failed to query mac tnl int, ret = %d.\n", ret);
2667 		return ret;
2668 	}
2669 
2670 	status = le32_to_cpu(desc.data[0]);
2671 	if (status) {
2672 		/* When mac tnl interrupt occurs, we record current time and
2673 		 * register status here in a fifo, then clear the status. So
2674 		 * that if link status changes suddenly at some time, we can
2675 		 * query them by debugfs.
2676 		 */
2677 		mac_tnl_stats.time = local_clock();
2678 		mac_tnl_stats.status = status;
2679 		kfifo_put(&hdev->mac_tnl_log, mac_tnl_stats);
2680 		ret = hclge_clear_mac_tnl_int(hdev);
2681 		if (ret)
2682 			dev_err(dev, "failed to clear mac tnl int, ret = %d.\n",
2683 				ret);
2684 	}
2685 
2686 	return ret;
2687 }
2688 
2689 void hclge_handle_all_hns_hw_errors(struct hnae3_ae_dev *ae_dev)
2690 {
2691 	struct hclge_dev *hdev = ae_dev->priv;
2692 	struct device *dev = &hdev->pdev->dev;
2693 	u32 mpf_bd_num, pf_bd_num, bd_num;
2694 	struct hclge_desc *desc;
2695 	u32 status;
2696 	int ret;
2697 
2698 	ae_dev->hw_err_reset_req = 0;
2699 	status = hclge_read_dev(&hdev->hw, HCLGE_RAS_PF_OTHER_INT_STS_REG);
2700 
2701 	/* query the number of bds for the MSIx int status */
2702 	ret = hclge_query_bd_num(hdev, false, &mpf_bd_num, &pf_bd_num);
2703 	if (ret)
2704 		return;
2705 
2706 	bd_num = max_t(u32, mpf_bd_num, pf_bd_num);
2707 	desc = kcalloc(bd_num, sizeof(struct hclge_desc), GFP_KERNEL);
2708 	if (!desc)
2709 		return;
2710 
2711 	/* Clear HNS hw errors reported through msix  */
2712 	memset(&desc[0].data[0], 0xFF, mpf_bd_num * sizeof(struct hclge_desc) -
2713 	       HCLGE_DESC_NO_DATA_LEN);
2714 	ret = hclge_clear_hw_msix_error(hdev, desc, true, mpf_bd_num);
2715 	if (ret) {
2716 		dev_err(dev, "fail(%d) to clear mpf msix int during init\n",
2717 			ret);
2718 		goto msi_error;
2719 	}
2720 
2721 	memset(&desc[0].data[0], 0xFF, pf_bd_num * sizeof(struct hclge_desc) -
2722 	       HCLGE_DESC_NO_DATA_LEN);
2723 	ret = hclge_clear_hw_msix_error(hdev, desc, false, pf_bd_num);
2724 	if (ret) {
2725 		dev_err(dev, "fail(%d) to clear pf msix int during init\n",
2726 			ret);
2727 		goto msi_error;
2728 	}
2729 
2730 	/* Handle Non-fatal HNS RAS errors */
2731 	if (status & HCLGE_RAS_REG_NFE_MASK) {
2732 		dev_err(dev, "HNS hw error(RAS) identified during init\n");
2733 		hclge_handle_all_ras_errors(hdev);
2734 	}
2735 
2736 msi_error:
2737 	kfree(desc);
2738 }
2739 
2740 bool hclge_find_error_source(struct hclge_dev *hdev)
2741 {
2742 	u32 msix_src_flag, hw_err_src_flag;
2743 
2744 	msix_src_flag = hclge_read_dev(&hdev->hw, HCLGE_MISC_VECTOR_INT_STS) &
2745 			HCLGE_VECTOR0_REG_MSIX_MASK;
2746 
2747 	hw_err_src_flag = hclge_read_dev(&hdev->hw,
2748 					 HCLGE_RAS_PF_OTHER_INT_STS_REG) &
2749 			  HCLGE_RAS_REG_ERR_MASK;
2750 
2751 	return msix_src_flag || hw_err_src_flag;
2752 }
2753 
2754 void hclge_handle_occurred_error(struct hclge_dev *hdev)
2755 {
2756 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
2757 
2758 	if (hclge_find_error_source(hdev))
2759 		hclge_handle_error_info_log(ae_dev);
2760 }
2761 
2762 static void
2763 hclge_handle_error_type_reg_log(struct device *dev,
2764 				struct hclge_mod_err_info *mod_info,
2765 				struct hclge_type_reg_err_info *type_reg_info)
2766 {
2767 #define HCLGE_ERR_TYPE_MASK 0x7F
2768 #define HCLGE_ERR_TYPE_IS_RAS_OFFSET 7
2769 
2770 	u8 mod_id, total_module, type_id, total_type, i, is_ras;
2771 	u8 index_module = MODULE_NONE;
2772 	u8 index_type = NONE_ERROR;
2773 
2774 	mod_id = mod_info->mod_id;
2775 	type_id = type_reg_info->type_id & HCLGE_ERR_TYPE_MASK;
2776 	is_ras = type_reg_info->type_id >> HCLGE_ERR_TYPE_IS_RAS_OFFSET;
2777 
2778 	total_module = ARRAY_SIZE(hclge_hw_module_id_st);
2779 	total_type = ARRAY_SIZE(hclge_hw_type_id_st);
2780 
2781 	for (i = 0; i < total_module; i++) {
2782 		if (mod_id == hclge_hw_module_id_st[i].module_id) {
2783 			index_module = i;
2784 			break;
2785 		}
2786 	}
2787 
2788 	for (i = 0; i < total_type; i++) {
2789 		if (type_id == hclge_hw_type_id_st[i].type_id) {
2790 			index_type = i;
2791 			break;
2792 		}
2793 	}
2794 
2795 	if (index_module != MODULE_NONE && index_type != NONE_ERROR)
2796 		dev_err(dev,
2797 			"found %s %s, is %s error.\n",
2798 			hclge_hw_module_id_st[index_module].msg,
2799 			hclge_hw_type_id_st[index_type].msg,
2800 			is_ras ? "ras" : "msix");
2801 	else
2802 		dev_err(dev,
2803 			"unknown module[%u] or type[%u].\n", mod_id, type_id);
2804 
2805 	dev_err(dev, "reg_value:\n");
2806 	for (i = 0; i < type_reg_info->reg_num; i++)
2807 		dev_err(dev, "0x%08x\n", type_reg_info->hclge_reg[i]);
2808 }
2809 
2810 static void hclge_handle_error_module_log(struct hnae3_ae_dev *ae_dev,
2811 					  const u32 *buf, u32 buf_size)
2812 {
2813 	struct hclge_type_reg_err_info *type_reg_info;
2814 	struct hclge_dev *hdev = ae_dev->priv;
2815 	struct device *dev = &hdev->pdev->dev;
2816 	struct hclge_mod_err_info *mod_info;
2817 	struct hclge_sum_err_info *sum_info;
2818 	u8 mod_num, err_num, i;
2819 	u32 offset = 0;
2820 
2821 	sum_info = (struct hclge_sum_err_info *)&buf[offset++];
2822 	if (sum_info->reset_type &&
2823 	    sum_info->reset_type != HNAE3_NONE_RESET)
2824 		set_bit(sum_info->reset_type, &ae_dev->hw_err_reset_req);
2825 	mod_num = sum_info->mod_num;
2826 
2827 	while (mod_num--) {
2828 		if (offset >= buf_size) {
2829 			dev_err(dev, "The offset(%u) exceeds buf's size(%u).\n",
2830 				offset, buf_size);
2831 			return;
2832 		}
2833 		mod_info = (struct hclge_mod_err_info *)&buf[offset++];
2834 		err_num = mod_info->err_num;
2835 
2836 		for (i = 0; i < err_num; i++) {
2837 			if (offset >= buf_size) {
2838 				dev_err(dev,
2839 					"The offset(%u) exceeds buf size(%u).\n",
2840 					offset, buf_size);
2841 				return;
2842 			}
2843 
2844 			type_reg_info = (struct hclge_type_reg_err_info *)
2845 					    &buf[offset++];
2846 			hclge_handle_error_type_reg_log(dev, mod_info,
2847 							type_reg_info);
2848 
2849 			offset += type_reg_info->reg_num;
2850 		}
2851 	}
2852 }
2853 
2854 static int hclge_query_all_err_bd_num(struct hclge_dev *hdev, u32 *bd_num)
2855 {
2856 	struct device *dev = &hdev->pdev->dev;
2857 	struct hclge_desc desc_bd;
2858 	int ret;
2859 
2860 	hclge_cmd_setup_basic_desc(&desc_bd, HCLGE_QUERY_ALL_ERR_BD_NUM, true);
2861 	ret = hclge_cmd_send(&hdev->hw, &desc_bd, 1);
2862 	if (ret) {
2863 		dev_err(dev, "failed to query error bd_num, ret = %d.\n", ret);
2864 		return ret;
2865 	}
2866 
2867 	*bd_num = le32_to_cpu(desc_bd.data[0]);
2868 	if (!(*bd_num)) {
2869 		dev_err(dev, "The value of bd_num is 0!\n");
2870 		return -EINVAL;
2871 	}
2872 
2873 	return 0;
2874 }
2875 
2876 static int hclge_query_all_err_info(struct hclge_dev *hdev,
2877 				    struct hclge_desc *desc, u32 bd_num)
2878 {
2879 	struct device *dev = &hdev->pdev->dev;
2880 	int ret;
2881 
2882 	hclge_cmd_setup_basic_desc(desc, HCLGE_QUERY_ALL_ERR_INFO, true);
2883 	ret = hclge_cmd_send(&hdev->hw, desc, bd_num);
2884 	if (ret)
2885 		dev_err(dev, "failed to query error info, ret = %d.\n", ret);
2886 
2887 	return ret;
2888 }
2889 
2890 int hclge_handle_error_info_log(struct hnae3_ae_dev *ae_dev)
2891 {
2892 	u32 bd_num, desc_len, buf_len, buf_size, i;
2893 	struct hclge_dev *hdev = ae_dev->priv;
2894 	struct hclge_desc *desc;
2895 	__le32 *desc_data;
2896 	u32 *buf;
2897 	int ret;
2898 
2899 	ret = hclge_query_all_err_bd_num(hdev, &bd_num);
2900 	if (ret)
2901 		goto out;
2902 
2903 	desc_len = bd_num * sizeof(struct hclge_desc);
2904 	desc = kzalloc(desc_len, GFP_KERNEL);
2905 	if (!desc) {
2906 		ret = -ENOMEM;
2907 		goto out;
2908 	}
2909 
2910 	ret = hclge_query_all_err_info(hdev, desc, bd_num);
2911 	if (ret)
2912 		goto err_desc;
2913 
2914 	buf_len = bd_num * sizeof(struct hclge_desc) - HCLGE_DESC_NO_DATA_LEN;
2915 	buf_size = buf_len / sizeof(u32);
2916 
2917 	desc_data = kzalloc(buf_len, GFP_KERNEL);
2918 	if (!desc_data) {
2919 		ret = -ENOMEM;
2920 		goto err_desc;
2921 	}
2922 
2923 	buf = kzalloc(buf_len, GFP_KERNEL);
2924 	if (!buf) {
2925 		ret = -ENOMEM;
2926 		goto err_buf_alloc;
2927 	}
2928 
2929 	memcpy(desc_data, &desc[0].data[0], buf_len);
2930 	for (i = 0; i < buf_size; i++)
2931 		buf[i] = le32_to_cpu(desc_data[i]);
2932 
2933 	hclge_handle_error_module_log(ae_dev, buf, buf_size);
2934 	kfree(buf);
2935 
2936 err_buf_alloc:
2937 	kfree(desc_data);
2938 err_desc:
2939 	kfree(desc);
2940 out:
2941 	return ret;
2942 }
2943